Programmable

FLOATING POINT 1/0 Processor
SYSTEMS, INC. (FPIOCP) Manual

8E80-7350-00=2

by FPS Technical Publications Staff

Programmable
1/0Q0 Processor
(FPICPR) Manual

860-7350~-002

3rd Edition, June 1978
Publication No. FPS 7350-02

NOTICE

The material in this manual is for
information purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes
no responsibility for any errors
which may cprpear in this publication.

Copyright © 1978 by Floating Point Systems, Inc.
Beaverton, Oregaon 97005

A1l rights reserved. No part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printad in USA

CHAPTER 1

e o o o o o o o
(o N, I S S S S S
e o o
W o -

el e

CHAPTER &

¢ & ¢ s o o
o o ® .
N =

e o o o o o
e o o o . .
N UR SR [« NV, F SR VORI SR o

AU EESEPFLLLLLPODNNPODPNPNDNNDN

o o
.
N -

SfhEEAESEPRFEAEEREPPERERPRPPPEEEPRPREEES
L]

L]

FPS 7350-01

CONTENTS

INTRODUCTION

PURPOSE

SCOPE

GENERAL DESCRIPTION

FUNCTIONAL DESCRIPTION
Buffer Memory (FIFO)
ALU/Scratchpad Memory
CPU/Program Source Memory

MAJOR COMPONENTS

PIOP FEATURES

INSTRUCTION SET

INTRODUCTION
INSTRUCTION WORD
INSTRUCTION SET

FUNCTIONAL ELEMENTS

INTRODUCTION
TRANSCEIVER
REGISTERS
OTHER ELEMENTS

PROGRAMMING

INTRODUCTION
Programming Hints
Reference Material
USING THE TRANSCEIVER
Teransceiver Operation
Transceiver Formats
Transceiver Instructions
Transceiver Timing Considerations
Interaction of Tramsceiver Instructions
DMA Transfers
USING THE ALU
ALU Source (Inputs)
ALU Destination (Output)
ALU Function
Using ALU Instructions
USING THE PROGRAM SOURCE MEMORY
Instructions That Use Program Source Memory
Branch and Jump Instructions
INTERRUPT HANDLING
COMMUNICATING WITH THE AP

iii

4=1
4=2 -
4-3

b=ty

b=ty

4=7

4=9

4=13
4=21
4=22
4=25
4=30
4-30
4-31
4=32
4=34
4-37
4=40
b4t
4=t46

CHAPTER 5 ASSEMBLER

5.1 INTRODUCTION 5-1
5.2 THE BASICS 5=2
5.3 WRITING PROGRAMS ' 5-11
5.4 USING THE ASSEMBLER 5-13
5.5 SAMPLE LISTINGS 5-14

CHAPTER 6 PROGRAMMABLE I/0 CHANNEL (PIOC)

6.1 INTRODUCTION 6-1
6.2 CHANNEL INSTRUCTIONS 6-2
6.3 WRITING CHANNEL COMMAND PROGRAMS 6-6
6.4 ACCESSING DISK DATA USING DKPIOC 6-10
6.5 AP/PIOP PROCESS SYNCHRONIZATION 6-12
6.6 PIOC ERROR CONDITIONS ' 6-16

CHAPTER 7 FORTRAN OPERATIONS

7.1 INTRODUCTION 7-1
7.2 FORTRAN CALLS 7-3
7.2.1 Load PIOP From AP MD (PPLOAD) 7=4
7.2.2 Start PIOP (PPGO) 7-5
7.2.3 Reset PIOP (PPRS) 7-6
7:2.4 Get PIOP Status (PPSTAT) 7=7
7¢2.5 Wait for PIOP (PPWAIT) 7-8
7246 Read PIOP Flag From AP (PPFRD) 7-9
7.2.7 Set PIOP Flag From AP (PPFSET) - 7-10
7.2.8 Clear PIOP Flag From AP (PPFCLR) 7-11
7.2.9 Initialize PIOP Disk Parameters (INPPDK) 7-12
7.2.10 Read Data From PIOP Disk to AP MD (RDPPDK) 7-15
7.2.11 Write Data From AP MD to PIOP Disk (WRPPDK) 7-17
7.2.12 Write To and Read From PIOP Disk (WRDPPD) 7-19
7.2.13 Start PIOP Channel (PCGO) 7-21
7.2.14 Get PIOP Channel Status (PCSTAT) 7-23
7.2.15 PIOP Execute Loader (PEXEC) 7=25
7.3 SAMPLE PROGRAMS 7-27
7.3.1 Fortran Subroutine Example 7=27
73.2 Fortran Program Example 7=30

FPS 7350-01 iv

CHAPTER 8

00 Co 0o 00 0o
.
wwLN e~

« o
[] e @
w N

o o o
. .
N -

.
L]
S LW

00 00 00 Q0 0O 00 OO OO Q0 GO0 00 OO0 0o
.
O\O\O\O\ant.ﬁmml-\#\vl-\w

e« & o o
e e o L]
W N -

APPENDIX A

APPENDIX B

APPENDIX C

aOaOn
L
(VoINS

APPENDIX D

L] L]

[vRBeleleNe]
L]
w B WN e

FPS 7350-01

PIOP DEBUGGER - PPDBUG

INTRODUCTION

OPERATING PROCEDURE

MONITORING REGISTERS AND MEMORY LOCATIONS
"E", Open and Examine

"+", "=" and "." Examine Next, Last and
Re—-examine
"C", Change

CHANGING INPUT/OUTPUT FORMATS

"N", Set Radix

"F", Set/Reset Floating-Point I/0
MEMORY LOADING AND DUMPING

"Y", Yank from a File

"W", Write to a File

"Z", Zero the AP

Preparing Data Files for Yanking
EXECUTING PROGRAMS

"I", Initialize the PIOP

"R", Run a PIOP Program

"X", Exit to PPDBUG

INSTRUCTION SET
PIOP INTERCONNECTIONS

SPECTAL STORAGE ELEMENTS

INTRODUCTION
FIFO MEMORY ELEMENT
STACK

SUMMARY OF PPDBUG COMMANDS

INTRODUCTION

PROGRAM EXECUTION COMMANDS

REGISTER EXAMINATION /MODIFICATION COMMANDS
MEMORY LOAD/DUMP COMMANDS

ACCESSIBLE FUNCTIONAL UNITS

8=-1
8-2
8-2
8-3

8~4
8-5
8-7
8-8
8-9
8-12
8-12
8-13
8-15
8-15
8-17
8=17
8-17
8=-17

D=2
D-3
D=4
D=5

Figure No.

3-1
3-2

4-1
4=2
4=3
b=4
4=5
4=6
4=7
4-8
4-9
4-10
4-11
4-12
4-13
4=14
4=-15

FPS 7350-01

ILLUSTRATIONS

Title

PIOP Used as Basic I/0 Interface

PIOP Used as Main Data Management Processor

PIOP Used an an 1/0 Bus

PIOP - - Overall Block Diagram

Buffer Memory (Transceiver) = Simplified
Diagram

ALU/Scratchpad Memory - Simplified Diagram

CPU/Program Source Memory - Simplified Diagram

PIOP Instruction Word

Control Register (CR)
Device Command Register (DC)

Transceiver - Simplified Diagram
Transceiver Formats

IN to Empty FIFO

Multiple IN“s to Empty FIFO
SETMAW Instruction

SETMAW Loop

SEIMAW IN Loop

SETMAR OUT Loop

ALU Instruction Formats

ALU Logic = Block Diagram
Program Source Address Logic
Next Address Control Logic
TR PS,IOR Instruction Cycles
Program Cycles

Interrupt Timing

Channel Instruction Format
Channel Program Example 1

Channel Program Example 2

Timing for Block FFT

PIOP Interconnection Diagram

Operation of a Typical FIFO Memory
Stack Operation

vi

4=5

4-8

4=-13
4=14
4=15
4=16
4-18
4=20
4=25
4=28
4=34
4=36
4=37
4-38
4=45

6-2
6-8
6-13
7-32

B-2

Table No.
1-1

2-1
2=-2
2=3
2-4
2-5

3-1
3-2
3-3

4-1
4=2
4=3
b=ty
4=5
46
4=7
4-8
4=9
4-10
4-11

6-1
6-2
6-3

A-1
A-2
A-3
A-4

FPS 7350-01

TABLES

Title
Applicable Publications

Shorthand Notation Conventions
PIOP Instructions

Expanded PIOP Instructions
Symbol Definitions
Cross=Reference List

ALU Status Conditionms
Device Status (Assignment for Disk Interface)
Flags

Programming Subjects

I/0 Word Formats
Transceiver Instructions
ALU Instructions

ALU Designations

Summary of ALU Instructions
Stack-Related Instructions
BIT # FIELD

Branch Instructions
Extended Branch Instructiouns
AP Device Instructions

Addressing Modes
Channel Instruction Operation Codes
Disk Data Format Types

Fortran Calls
Error Information

PIOP Instructions

PIOP Expanded Instructions
Symbol Definitions
Cross-Reference List

vii

Page

2=4
2=5
2-12
2-13
2-14

3-7
3-8
3-8

4=1

4=7

4=9

4-26
4=29
4-32
4=40
4=41
442
4=43
4=46

6=2
6-4
6-10

7-1
7-2

A=2
A-9
A-10
A-11

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

The purpose of this manual is to provide the information necessary to
understand, program, and use the Programmable Input/Output Processor
(PIOP). The PIOP is a general-purpose programmable controller that
interfaces peripheral devices to the Floating Point Systems” AP-120
Array Processor. Throughout the remainder of this manual, the Array
Processor is referred to as either the "AP-120" or "AP," and the
peripheral device is referred to as the "external device."

FPS 7350-01 1 - 1

1.2 SCOPE

This manual is a user’s document and, therefore, stresses software
information related to the PIOP. Hardware information, from a
programming standpoint, is also included. A general description of the
PIOP is covered in this chapter. Subsequent chapters describe
programming, the programmable 1I/0 channel (PIOC) which is a software
interpreter residing in the PIOP, the assembler, Fortran operations,
debugging programs, and diagnostic programs.

Although the PIOP communicates with the AP and handles transfers of
data between the AP and the external device, the AP itself is not
described in this manual. However, those AP functions that are
necessary for a complete understanding of the PIOP are included. If
more information is desired on the AP, the reader should refer to the
manuals listed in Table l-1 below. Any of these manuals can be ordered
from Floating Point Systems, P.0. Box 23489, Portland, Oregon 97223.

Table 1-1 Applicable Publicatiomns

TITLE NUMBER
PROCESSOR HANDBOOK 7259-02
MAINTENANCE MANUAL 7270
DIAGNOSTIC SOFTWARE MANUAL 7284-03
AP MATH LIBRARY 7288-03
PAGE SELECT MANUAL 7365
PROGRAMMERS REFERENCE MANUAL 7318

0033

FPS 7350-01 1 - 2

1.3 GENERAL DESCRIPTION

The programmable 1I/0 processor (PIOP) is an independent parallel
processor. This processor, which can be tightly coupled to an AP, can
serve both as an auxiliary main data management processor to the AP and
as an 1/0 processor for handling one or more external devices.

The PIOP can be used in a number of ways, depending on the particular
user’s requirements. Three of these uses are to serve as a main data
management processor, as an 1/0 interface, and as an I/0 bus. Each of
these uses is briefly described below:

main data Because the PIOP contains its own

management processor parallel processor, instruction set,
and program source memory, it can
control data flow to or from the AP
in data "bursts" of 6 MHz or in
sustained data transfers of 3 MHz.

The PIOP can extract data from the
AP’s main data memory, perform
arithmetic operations on the data,

and then return the results to the

AP main data memory. The data handled
by the PIOP is processed in parallel
with the AP’s processing operatious.

Although the PIOP does not have a
main memory, it has access to the
AP main data memory. This access,
coupled with the high transfer rate
between the PIOP and AP, permits the
PIOP to use the AP main data memory
for storage whenever required.

FPS 7350-01 1 - 3

I/0 interface When functioning as an interface, the
PIOP may be connected to any external
device that is compatible with TTL
logic. Unlike other interfaces that
are hardwired to service a specific
unit (such as a disk), the PIOP contains
a 20-bit device register that permits
the PIOP to serve as a programmable
interface.

In other words, this device register

can be programmed in such a manner that
the PIOP generates and recognizes the
handshaking and data signals required

by the external device. Thus, microcode
within the PIOP can respond to any

type of external device. There is no
need to change the hardware when servicing
a different type of device.

1/0 bus The PIOP may be microprogrammed in such
a way that it generates the typical
signals of an I/0 bus. When used in this
manner, the PIOP serves as an interface
between the AP and multiple external
devices.

The flexibility of the PIOP allows it to perform the above tasks as
needed, all under program control. For example, a typical PIOP
operation might begin with data transfers to and from the AP for
processing of data, then might serve as an I/0 interface to handle
transfers from the external device to the AP for processing (or from
the device to the PIOP for integer calculations), then might once again
serve as a parallel processor to the AP, then might serve as an I/0 bus
for handling multiple external devices, etc.

s

FPS 7350-01 1 -

Although it is beyond the scope of this manual to describe hardware
configurations, four possible configurations are shown in Figures l-l
through 1-3 in order to illustrate the flexibility of the PIOP and to
emphasize the importance of the programmer’s task.

HoST AP PIOP EXTERNAL
DEVICE

0251

Figure l-1 PIOP Used as Basic I/0 Interface

e

HOST AP P1QP

0252

Figure 1-2 PIOP Used as Main Data Management Processor

EXTERNAL
DEVICE

EXTERNAL
DEVICE

HOST AP PP

EXTERNAL
DEVICE

/\

EXTERNAL
OEVICE

0034

Figure 1-3 PIOP Used as an 1/0 Bus

FPS 7350-01 1 - 5

l.4 FUNCTIONAL DESCRIPTION

Although it is beyond the scope of this manual to provide detailed
hardware information, it is necessary for the programmer to have a
basic understanding of the PIOP hardware, particularly the data paths.
These data paths permit information flow between the PIOP and other
devices and also interconnect major PIOP components.

Figure 1=-4 is an overall block diagram of the PIOP. The major
functional wunits shown on the drawing are: ALU/scratchpad memory,
CPU/program source memory, and buffer memory. This buffer is a
first=-in, first-out (FIFO) memory element. Other components shown in
the drawing include the formatter and APMA, device command, IOR, and
MDI registers. The following discussion of the block diagram shown in
Figure 1-4 is intended primarily to indicate the flow of data through
the PIOP. Subsequent block diagrams and related descriptions explain
why these paths are used.

The ALU/scratchpad memory consists of an arithmetic and logic unit
(ALU) and sixteen 20-bit registers that can be accessed by the
programmer. The ALU performs arithmetic and logic operations required
by the PIQP. The 16 registers serve as a scratchpad memory. Either
the output of the ALU or the contents of any one of the registers (as
selected by the programmer) can be loaded into the APMA and device
command registers.

The APMA (AP memory address) register is used to supply the address in
the AP’s main data memory that is to be used when performing DMA
transfers between the PIOP and the AP. The device command (DC)
register performs two basic functions: it can be used to supply the
DMA address when transferring data between the PIOP and the external
device, or it can be used to supply necessary command and handshaking
signals to the device. These signals might include such commands as
start, stop, read, write, and acknowledge. Because the contents of the
device command register can be determined by the programmer, the device
command register can function as a programmable interface.

An output bus is used to send ALU status information to the CPU/program

source memory. Such status information includes sign, zero, overflow,
etc.

FPS 7350-01 1 - 6

T10-06€L Sdd

-7

1 | -
] ! '
| COMMUNICATION | !
T0 MAIN DATA I
' MEMORY ADDRESS
o ! REGISTER DC
= REGISTER REGISTER }——n—
(ADDRESS < 20 20 >(ADDRESS A_j
FOR DMA) FOR DMA) |

EYTERNAL DEVICE

]
]
I
I
| 1
]]
| 1
]]
1 1
] 1
| '
1]
| ALU/SCRATCH /1___.-__38 !
' MEMORY S .
\ PIOP “FRONT PANEL" (16 x 2p))
______ 1
| ‘ \ ALU STATUS| INTERRUPTS :
! FLAGS ' |
)
! " TNTERRUPTS > ERT KL !
| DEVICE
| \ i \ STATUS 5: '
' . , |R£G|$1£R :
! | . CPU/PROGRAM 1
: . 38 > SOURCE MEMORY F 38) .
. 1 1 (256 x 38) i
1
‘m AP 170 BU 10R DATA BUS \
:. ep— v .- 1 A \
J <: 38 :
! 38
])
1 |
|]
| STATUS ‘
|]
RN [} RN O .
| \ i
| ! |
TETRY) L /l T > BUFFER MEMORY < 38 >ruummk< fxﬁum\lHl \, !
P - N (FIFO; 16 x 38) DEVICE '
I COMMUNICAT 10N I BUS 1
) WITH AP MAIN ' |
, DATA MEMORY ' |
| INPUT_AND oUTIUT , '
| REGISTERS . |
X TRANSCE IVER SECTION OF PIOP Ly ,
oy T T T oot - B [

003%

Figure 1-4 PIOP - Overall Block Diagram

-

The output of the ALU/scratchpad memory can also be applied to the data
bus. This means that the output of the ALU or the contents of the
selected scratchpad register can be applied to any one of three other
components: the CPU/program source memory, the buffer memory, or the
input/output register (IOR).

The CPU/program source memory consists of a CPU and a 256-word random
access memory. This memory is used to store the instructions needed by
the PIOP while the CPU decodes the instructions and directs all data
flow by enabling the various PIOP elements as needed.

One of the functions of the CPU is to determine the address of the next
instruction. Because of this, various status and interrupt signals are
applied to the CPU. These signals include: £flags and interruts from
the AP, status from the ALU, status and interrupts from the external
device, and status from the buffer memory. The CPU wuses this
information to compute the required next address. In other words, one
of the jobs of the CPU is to generate the branches and jumps (computed
GO TOs) that are required.

The CPU/program source memory also receives information from the
input/output register (IOR). This register permits communication
between the PIOP and the AP and is used as a temporary -storage device
when transferring information into the CPU/program source memory. This
information might be an instruction that is loaded directly into the
program source memory, or it might be an instruction that 1is just
decoded by the CPU for execution by the PIOP, or it might be data that
the CPU routes to the data bus at the proper time.

The buffer memory contains a 1lé6-word by 38-bit first-in, first-out
(FIFO) element that compensates for different data rates between the
PIOP, the AP, and the external device. For example, the external
device may load the FIFO at a slow rate but the FIFO might be read by
the PIOP in a high-speed burst.

The buffer memory output buffer can be loaded from a number of sources.
If it is loaded from the data bus, it can receive information <£from
either the ALU/scratchpad memory or from the CPU/program source memory.
This means that the buffer could be loaded with data from the ALU, with
data from any one of the 16 scratchpad registers, with instructions
from the program source memory, or with the contents of the IOR
(through the CPU).

The buffer memory can be 1loaded £from the AP MD bus when it is
communicating with the AP or it can be loaded from the external device
through the formatter.

The ouput of the buffer memory can be sent to the AP (through the MDI
register), to the external device (through the formatter and external
data bus), or to the data bus where, under CPU control, it can be
loaded into any component connected to the data bus.

FPS 7350-01 1 - 8

The following paragraphs (l.4.l1 through l.4.3) describe the three major
components of the PIOQOP: buffer memory, ALU/scratchpad memory, and
CPU /program source memory.

l.4.1 BUFFER MEMORY (FIFO)

Figure 1-=5 is a simplified diagram of the buffer memory which is also
referred to as the '"transceiver." The main purpose of the buffer
memory is to compensate for different data rates between the AP and the
external device. The AP, for instance, can load information into the
FIFO at high speed and then the data can be retrieved by the external
device at a slower rate. The buffer memory can also be used to store
information from either the AP or the extermal device until the PIOP is
ready to use the information.

Data from the AP is applied directly to the input buffer register while
data from the external device is applied through the external device
formatter to the same register. The data is then loaded into the FIFO
(first-in, first-out) memory element. The FIFO location where the word
is to be stored is controlled by a pointer.

When a word is to be retrieved from the FIFO, the pointer selects the
proper word which is appplied to the output buffer register. The
output buffer can also be loaded from the data bus through its
formatter.

The contents of the output buffer register can be sent to one of three
places: to the MDI register (for transfer to the AP), to the extermal
device formatter (for transfer to the external device), or to the PIOP
data bus formatter (for transfer to other PIOP elements).

Notice that information on the data bus can be applied to the output
buffer register. This permits data from other PIOP components to be
loaded into the output buffer for transfer to either the AP or to the
external device.

FPS 7350-01 1 - 9

10-0S€. Sdd

01

MDI BUS

v (OB

MD BUS <::¥

MD] REG K

STACK POINTER (SP) p,

CPU/PROGRAM
SOURCE MEMORY

i

<::38 PI10P_DATA BUS

3

ALU/SCRATCH
MEMORY

4ol

IB REGISTER

L

FIFO (16 x 38)

38

g }

DB FORMATTER .—i::::::>

(1)

%7_—“

0B REGISTER

I

DB FORMATTER
(ourt)

34

34

EXT DEVICE
FORMATTER

& Te—

Figure 1-5

Buffer Memory (Transceiver) - Simplified Diagram

014%

EXTERNAL
DEVICE

l.4.2 ALU/SCRATCHPAD MEMORY

Figure 1=-6 is a simplified diagram of the ALU/scratchpad memory within
the PIOP. This component contains the ALU that performs the arithmetic
and logic functions required by the PIOP and also contains a number of
scratchpad registers that can be accessed by the programmer.

The scratchpad memory consists of sixteen 20-bit registers that can be
accessed by the .programmer. Any one or two of these registers can be
selected at a time by the A and B address inputs to the memory. Notice
that the B address is fed through a multiplexer. The other input to
this multiplexer is the PSA (program source address) from the CPU.
Thus, the program source address can be used to select one of the 16
registers, if desired (used for ALU dump/load from/to the AP).

The contents of the selected register, or registers, are applied to a
multiplexer. Other inputs to this multiplexer are: all zeros, the
contents of the Q register (an internal work register), the data on the
data bus. This wmultiplexer, which is controlled by decoding a
double-operand instruction, selects two of the five multiplexer inputs
designated as R and S.

R and S are fed into the function ALU (F) which performs the necessary
arithmetic or 1logic operation on the two inputs as specified by the
CPU. The output of the ALU is then applied to another multiplexer.
The other input to this multiplexer is the contents of the scratchpad
register selected by address A.

The multiplexer output (Y¥) is . applied to the device control (DC)
register and to the AP memory address (APMA) register. Thus, depending
on which of these two registers is enabled, the output of the ALU (or
the contents of the register selected by address A) can be used as the
address needed by the AP for DMA transfers, or it can be used as a
command word for the external device.

FPS 7350-01 1 - 11

SHIFT . :
e r—<<::i:> TRANSCE [VER
1 L
v y

-
RAM Q
SHIFT SHIFT
CPU/PROGRAM
LT T SOURCE MEMORY
8_ADDRESS A ADDRESS 3
RAM SCRATCH 2 J
MUX MEMORY 2ERO REG M
8 ADDRESS 16 x 29
20
v (0)
PSA (from CPU) AB wx e 9<:38
R S
3 N
F
FUNCT ION
DATA BUS
39
- 3
Y ¥
MUX
oc APMA VALUE
Eﬂ E%
A
EXTERNAL AP
DEVICE MUX
38

0l4s
Figure 1-6 ALU/Scratchpad Yemory - Simplified Diagram

FPS 7350-01 1 - 12

Inputs to the final multiplexer on the drawing are: value (a specific
value selected by the programmer) or the output of the previous
multiplexer which is either the ALU output or the contents of register
A. The selected output is then applied to the data bus where it can be
fed to one of the other main PIOP components connected to the data bus.

Notice that the output of the function ALU (F) is fed back to both the
RAM shift and Q shift logic. The output of the RAM and Q shift logic
is fed to a shift multiplexer which performs any required shifts on the
scratchpad or Q registers, under control of the CPU.

l.4.3 CPU/PROGRAM SOURCE MEMORY

Figure 1-7 is a simplified diagram of the CPU/program source memory.
This component consists of the program source memory which stores the
instructions to be executed by the PIOP, the program source address
logic which determines the address of the mnext instruction to be
executed, and the control buffer which decodes the instruction and
generates the control signals needed by the PIOP to perform the
specified task.

A program counter, referred to as the '"program source address" or
"PSA," determines which instruction is to be executed next. This PSA
can be changed by the branch, jump, and subroutine instructions.

The program source memory is loaded from the input/output register
(IOR) by means of a PIOP instruction. This path is used because the
program is typically stored in the AP’s main data memory and then
loaded into the PIOP’s program source memory as needed.

The key to the program source memory is the PSA (program source
address) which is shown on Figure 1-7 directly below the PSA
multiplexer. It is this address that determines which instruction is
to be retrieved from the program source memory. There are five inputs
to this PSA multiplexer: the counter, the LIFO stack, the next address
control logic, the address register (AR), and the branch condition
select 1logic. Each of these inputs 1is described separately in
subsequent paragraphs.

During a typical operation of the CPU/program source memory, the
address of the instruction to be executed is placed on the data bus and
loaded into the address register (AR). This address might come from
the ALU or one of the 16 scratchpad registers, from the FIFO in the
transceiver, or from the input/output register (IOR). If the
multiplexer selects this input as its output, the contents of the
address register are used to select the appropriate instruction in
Memory.

FPS 7350-01 1 - 13

PIOP - ALU - STATUS
170 3US QF AP AP - FLAGS
EXTERNAL
J\ L’ DEVICE - ————— AP - INTERRUPTS
STATUS —
o EXTERNAL DEVICE -
T INTERRUPTS
108
] g TRANSCE IVER
39
=2 =2
BRANCH
CONDITION
SELECT
] A
LU/RAM
L ‘L SCRATCH
MEMORY
INC ADDRESS
CONTROL N 16 x 28
38 v]
3
COUNTER
P
JL ¢
AR BRANCH
LIFO REG COMPUTE
(DISP FIELD)
v . ! <L
INTERRUPT
PSA MUX LOGIC
8 8
A
PROGRAM
:> LoGIC __3__"a_"> SOURCE P Losic =
256 x 38
—J
18
JvLm (Ps)
LOGIC
18 DECODED CONTROL
SIGNALS TO ALL
‘gééﬁggzéo“ > PIOP REGISTERS,
LATCHES, LOGIC,
38 ! ANO OTHER DEVICES
MUX 38
{
8 i 3147

Figure 1-7 CPU/Program Source Memory - Simplified Diagram

FPS 7350-01 1 - 14

When sequential memory locations are to be addressed, the PSA is fed to
an incrementer (INC) and applied through a register to the multiplexer.
When this input is used as the multiplexer output, the PSA is the next
sequential address.

Another input to the PSA multiplexer is the output of the LIFO
(last-in, first-out) subroutine stack. Whenever the program jumps to a
subroutine, the address of the next instruction in the main program is
pushed on to this stack. When the program returns from the subroutine,
the stack 1is popped and the former PSA 1is applied through the
multiplexer to the memory. Loading (pushing) and retrieving (popping)
addresses from the stack are under control of a stack pointer (SP).

Another input to the PSA multiplexer is the next address control logic
which generates a memory address based on the branch condition select
logic. 1In this case, inputs from the PIOP (ALU status), £from the AP
(flags), and from the external device (device) are applied to the
branch condition select logic. Based on the condition tested and the
results of the test, the branch condition select logic and the next
address control logic compute the branch address needed. For example,
the PIOP may test an error status bit in the external device, and if an
error exists, branch to an error-handling routine. The address of the
error-handling routine would be computed by the next address control
logic and fed through the PSA muliplexer to the memory.

The output of the branch compute logic is another input to the PSA
multiplexer. This 1logic generates a branch address based on a
displacement field. This displacement (DISP) field is part of the
instruction word and, therefore, under the programmer’s control.

Another source of PSA’s is the interrupt logic. The interrupt logic
receives interrupt information from either the AP or the external
device. Based on the interrupt information received, the interrupt
logic generates the appropriate interrupt trap location (the first four
locations in program source memory are reserved for traps).

Once the PSA multiplexer selects the appropriate input to be used as
the PSA, the PSA is applied to the program source memory and is also
stored in the PSAQ register. When this register is enabled, the PSA is
controlled by a logic element that either sends the PSA back to the
branch compute logic as an input, or places the PSA on the data bus.
When placed on the data bus, the PSA can be sent to any one of four
places: back to the address register, to the ALU/scratchpad memory, to
the transceiver, or to the IOR.

The instruction selected by the PSA 1is retrieved from the program
source memory and applied through logic to a control buffer (CB) and to
a multiplexer. The control buffer decodes the instruction and provides
all of the control signals needed by the PIOP logic elements. Either
the instruction or the contents of the IOR can be selected by the
multiplexer for application to the data bus.

FPS 7350-01 1 - 15

1.5 MAJOR COMPONENTS

The major components of the PIOP are

listed below and described in

detail in Chapter 3 of this manual.

program sSource memory

ALU registers

Q register

address register

control register

I/0 register

device command register

device status inputs

ALU status

AP memory address
register

FIFO hardware element

LIFO stack

transceiver

ALU

FPS 7350-01

38-bit by 256-word writable control store
used for program instructions

sixteen 20-bit RAM registers that are part
of the ALU. Typically used to hold
arguments for PIOP instructions.

20-bit RAM register that is also part of
the ALU. Used as a work register.

used for programmed jump and branch
addresses

20-bit register that selects transceiver
format, indicates PIOP status, and arms
interrupts

used for communication between the AP and
the PIOP; can be accessed by either
system

20-bit register that contains address
and/or command information for the external
device

8 sense lines that indicate external
device status

8 bits that indicate status of the
PIOP’s ALU. These status bits appear as
conditions which can be tested, and as
bits in the PIOP control register.

used by the DMA logic to save
the AP main data address

first-in, first-out hardware structure used
for burst data handling. Can hold sixteen
38-bit words.

4=word stack used for subroutine linkage

formats and buffers data being transferred
between the AP and the external device

performs the arithmetic and logic functions
required by the PIOP.

1 - 16

1.6 PIOP FEATURES

Some of the features of the PIOP that may be Sf interest to
programmer are briefly described below:

LIFO stack

FIFO element

format handling

instructions

expanded formats

FPS 7350-01

A 4=level subroutine stack that permits
nesting of subroutines. Stack pointer
operation is automatic. This stack is
used with both jump to subroutine and
return from subroutine instructioms.

A lé6-word, first-in, first—-out element
that permits synchronous transfers of
data between the AP and the PIOP at a 6
MHz rate. The write pointer is advanced
automatically when writing data while

a program instruction is used to advance
the read pointer. Both pointers can be
reset under program control.

The transceiver can transfer data between
the device and the AP in any one of four
different formats. The format to be used
can be selected by the programmer. Subfield
addressing within each format is possible.

The instruction set is used in a micro-
programmed format (38-bit instruction word)
to allow parallel processing of multiple
microinstructions.

In the macro format, 4 bits of the
instruction word can select 1 of 16
arithmetic or logic operations. Imn the
expanded format, bit positions are
redefined so that arithmetic operatioms
can be selected by 12 bits (five fields)
which increase the number of operatiomns
that can be performed.

Other fields in the instruction word may
also be redefined. This permits the
programmer to use only those instructiomns
needed for a particular job and makes
programming simpler and more effective.

the

data transfer
instructions

branching

interrupt arming

interrupts

FPS 7350-01

Separate instructions are provided for:
a. transfers between the PIOP and
the external device
b. transfers between the PIOP and
the AP’s main data memory
c. transfers between PIOP elements
This permits multiple transfers to take
place in one instruction cycle.

The PIQOP instruction set includes four
unconditional jump instructions and
seven conditional branch instructions.
Jumps may be either relative or absolute
while branches are always relative.

In addition to the capability of enabling
or disabling interrupts, the PIOP also
permits interrupts to be "armed" or
"disarmed." If an interrupt occurs when
an interrupt is disabled but "armed,"

the interrupt is not serviced but is,
however, stored for future use. This
interrupt can then be acted upon once

it is enabled.

Four interrupts trap to specific locatioms
in program source memory. These traps
occur only if the particular interrupt is
armed and enabled.

In addition to the PIOP features, the software supplied with the system
also permits easier and more efficient programming. Three such
examples are:

programmable I/0 A software interpreter (residing in the PIOP)
channel that interprets channel programs stored in main
data memory. Channel program instructions
are structured in 4=-word blocks. The
first word is the op code and addressing
modes, and the next three words contain
arguments. One of three addressing modes
(immediate, normal, and indirect) can be
used with each argument. (See Chapter 6.)

assembler The assembler provided with the PIOP is
a 2-pass assembler written in Fortram IV.
PIOP assembly language (PPAL) instructions
are assembled for subsequent use by the
PIOP debugger or from Fortran.

Fortran calls A number of Fortran calls are available
for communication with the PIOP, the
AP disk, and the PIOP disk channel. 1In
addition, there is a Fortran call for
an executive loader.

FPS 7350-01 1 - 19

CHAPTER 2

INSTRUCTION SET

2.1 INTRODUCTION

This chapter introduces the instruction set so that the reader is
exposed to the instruction word format and the various instructions and
arguments that are used when programming the programmable I/0 processor
(PI0P).

It is not the purpose of this chapter to provide detailed descriptions
of 1individual instructions but simply to present an overview so that
the reader can become familiar with the structure of the instruction
word and the mnemonics wused for individual fields and instructioms.
Detailed information on individual instructions is presented in
subsequent chapters of this manual.

The complete PIOP instruction set 1is presented 1in tabular form in

Appendix A of this manual in order to provide a quick reference when
using the PIOP instruction set.

FPS 7350-01 2 - 1

2.2 INSTRUCTION WORD

The PIOP uses a 38-bit instruction word (bits 2 through 39) which is
shown in Figure 2-l. When looking at the instruction word, it must be
remembered that the PIOP is a parallel processor. Therefore, all
operations selected by the entire instruction word are performed
simultaneously.

Note that the basic fields in the instruction word may be redefined for
other uses. Thus, for example, if the EXPAN field contains an octal
14, then bits 20 through 39 are redefined and become the VALUE field
rather than the fields shown in the basic word. Because octal 14
happens to be the TCVR instruction (transmit VALUE to control
register), this means that the programmer can load any desired value
into the control register by placing the appropriate number in the
VALUE field.

When using the assembler, the number to be loaded in the VALUE field is
indicated by a literal following the instruction. For instance, if the
programmer wants to load the number 40000 into the VALUE field, he or
she would use the instruction, TCVR 40000. The literal must be a
20-bit positive number. The only other instruction that is wused to
load the VALUE field when using the assembler is the TVDB instruction
(transmit VALUE to data bus).

The redefined fields shown in Figure 2-1 permit great versatility in
programming. For example, although both unconditional jump
instructions and conditional branch instructions are defined by the PSA
CONTROL field, Jump and branch instructions use different
displacements. If the PSA CONTROL field contains a jump instruction,
then the instruction uses the DISP8 field (8-bit displacement). This
jump can be either an absolute or relative jump. In either case, the
appropriate number is taken from the DISP8 field. On the other hand,
the PSA CONTROL field uses the BIT # and DISP5 (5-bit displacement)
fields if a branch instruction is used. In this case, the branch
instruction tests a flag or status bit that has been specified by the
BIT # field and then, if the proper condition is met, performs a
relative branch based on the value in the DISP5 field.

Instruction word fields are wused for commands and arguments. For
example, the ALU field may use either one or two arguments. If only
one argument is to be used, it is specified by either the A or B field.
On the other hand, if two arguments are to be used, they are specified
by the A and the B field.

Although a zero in certain fields results in mno operation £for that
field, there is only one NOP (no operation) instruction. This
instruction is all 0’s in the entire PIOP instruction word. The NOP
instruction 1is not listed in the instruction set but is available when
using the assembler.

FPS 7350-01 2 - 2

10-05€L Sdid

SPIN GRouP

Figure 2-1

PIOP Instruction Word

DATA BuS e
ALU GROU? GROUP 4 [1/0 ‘ N
2 4 5 6 178 9 110 11 12 13 14 15 16 17 18 19 20 21 22 23 28 25 26 27 28 29 30 31 32 33 34 735 %> W w3
T T T T ¥ T ¥ ¥ ¥ T T ¥ L ¥ v T ¥ L | JEREEEE S v T v
TRANSFER
10CHD EXPAN A] ALY HORD PSA CONTROL BITs 170 |sbss] susc] soav
1 . 1 I n 1 " . . e L L L ASRC 2 L i ST X 1 " L 1 1 Lo —
: A

] 1] ' i 1 |]]]]

']] '] [} [}] |]]

]] [} ' i]])] i 1

]])]]] 1] !] [}
LT NOTE 2 T T L — — T : T))
L7 '. A B ALUSRC ALUDST ALUFCN SH c BIT » — l 1 ! !

e s 'l 1 A i s 1 IS i s 1. 4 '
' ' ')) !
L R X X) BIT # — 1 \
SF, CF, S . } + .
R EXPANDED DATA BUS TRANSFER GROUP : . . BIT ¥ ,
1]

r]) ! | ‘ ‘ ' !
T T 5 ¥ T T L] T T LA T Ld T T T T T T T T T T
TVDB,TVCR, TVER > VALUE
i Il 3 1 1 1 A A 1 Y i 4 IS L 1 i e 'y i iy 1 4

1 ! ' l | .
PS ACCESS GROUP SPEC 1
T T] i]]
]]
FIELD NAMES ! 0/1 { 4— NOTE 3 , CONDITIONAL : .
. | ! BRANCH GROUP
A - REGISTER A J 1 1 |
) .)] [*")
ALUDST - ALU DESTINATION COMMAND ,) et ; ; ——
ALUFCN - ALU FUNCTION COMMAND ! | 10 - 15 BIT + DISPS
— 1 1 1 L ' 1 — 1
ALU - ALU INSTRUCTION : | |
]] | ! |
SLUSRC - ALU SOURCE COMMAND | . TRUNCATED VALUE GROUP | | |
B - REGISTER B — ; ; . : —
BIT # - BIT NUMBER T ' T e
IF SRC = > -
C - CARRY IN SRC =1 ; L, oises
DST - DATA BUS DESTINATION ! !
SRC - DATA BUS SOURCE ! :
[
DISPS - DISPLACEMENT 5 !
DISP8 - DISPLACEMENT 8 T
EXPAN - EXPANSION A NN orses]
1/0 - INPUT/OUTPUT -)
10CHD - 170 COMMAND JHP GROUP
PSA - PROGRAM SOURCE ADDAESS CONTROL
SH - SHIFT NOTES
SPEC - SPECIAL
SPIN - SPIN 1. BIT # conflicts are not flagged if BIT #'s are equal
VALUE - VALUE 2. Programming of ALU expanded mnemonics implies 17 in EXPAN field
~ 3. Programming of TR IOR, PS; TR PS, IOR implies a 7 in SPEC field
WORD WORD

0037

2.3 INSTRUCTION SET

The entire PIOP instruction set is presented in tabular form. The
tables are broken down according to instruction word fields.

The particular conventions that apply to the '"shorthand notation"
column only are listed in Table 2-1 below.

Table 2-1 Shorthand Notation Conventions

| SYMBOL MEANING EXAMPLE REMARKS
() contents of source = (8) Source equals the contents of
register B.
source = PSA Source equals the program

source address.

>or < moved into A>CR The contents of the register
specified by theA field
is moved into the CR register.

PSA < PSA +1 The program source address {s
incremented and moved into the
program source address.

e deferred address write @APMA Write data into the location
which has the address specified
by the contents of the APMA
register.

0038

The complete PIOP instruction set is presented in the following tables:
Table 2-2 Basic PIOP Instruction Lists all of the instructions
Set in the basic format.

Table 2-3 Expanded PIOP Instruction Lists the instructions avail-
Set able in the expanded format.

Table 2-4 Symbols Used For Expanded Defines the symbols used in
Format Table 2-3.

Table 2-5 Cross-Reference List Lists all of the instructions

(basic and expanded) in
alphabetical order.

FPS 7350-01 2 - 4

Table 2-2

PIOP Instructions

OTHER
OCTAL SHORTHAND FIELDS
FIELD CODE MNEMONIC MEANING DESCRIPTION NOTATION (ARGUMENT)
10CMD 0 - - No operation. - -
1 SETMAR set memory Initates a OMA read cycle to fetch Read @ APMA -
address, data from the AP's main data memory
read at the address specified by the ALU
output. Data fs not available until
6 cycles later. The sequence is:
1. SETMAR instruction
2. MDCR2* true (request to AP DMA
channel)
3. MDCA2 true (acknowledge from
AP DMA channel)
4, WAIT
5. DCHO2 (loads data into FIFQ
input buffer)
6. FIFO
7. DATA AVAILABLE (If FIFQ was
empty)
2 SETMAW set memory Initiates a DMA write cycle at the Write @ APMA -
address, location specified by the ALU output.
write Data is written into the AP's main
data memory. Data is available in
memory after the third cycle. The
sequence is:
1. SETMAW instruction !
2. CYCLE REQUEST (data in FIFO
output buffer taken)
3. CYCLE ACKNOWLEDGE (data now in
(memory)
3 SETDA set device Loads the device control ALU > DVCMD -
address register with data present on the
ALU bus at the end of the instruction
cycle. The device control register
is a write-only register.
0039

FPS 7350-01

Table 2-2

PIOP Instructions (cont.)

OTHER
OCTAL SHORTHAND FIELDS
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION (ARGUMENT)
EXPAN Q - - No operation. - -
1 CF A clear flag Clears the flag specified by A (A is Clear flag BIT # BIT #
specified in the BIT # field).
2 RFF reset FIFO Resets the FIFO pointers. Causes - -
DATA VALID and FIFO FULL to go false
(clear).
New data entering FIFO (through IN or
SETMAR instructions or external
handshake) falls through to the
output buffer and causes DATA VALID
to be true (set).
3 AFF advance FIF0 | Advances FIFQ read pointer: New data is - -
written into FIFO output buffer at the
end of the instruction cycle. If no
valid words are in the FIFQO, DATA VALID
goes false (clear).
4 SF x | set flag Sets the flag specified by x (x is Set flag BIT # 8IT s
specified in the 8IT # field).
) SINT x | set interrupt| Sets interrupt x. The interrupt that Set interrupt 8IT #
is set executes in the second cycle BIT 4
after the SINT instruction.
6 ENINT enable Enables interrupt logic. Pending - -
interrupts interrupts start executing on the
next cycle.
7 DISINT | disable Oisables interrupt logic. - -
interrupts
10 NOP - No operation. - -
11 START start 8egin program execution at current Start -
PSA location.
12 HALT halt Stop immediately. Nothing else PSA < PSA + 1 -
in the instruction executes.
13 PSAB program Causes tme four least significant PSA > 8 -
source bits of the PSA to be used as ALU
address, register address 8. Can be used for
register 8 sequential loading of ALU registers
while PIOP is halted.
14 TVCR x | transmit Transfers the value x {from VALUE VALUE > CR VALUE
value to field) on to the data bus and loads
control the control register (CR) with that
register value at the end of this cycle.
15 TVOB x | transmit Transfers the value x (from VALUE VALUE > 08B VALUE
value to field) on to the data bus.
data bus
186 - = Mot used. - -
17 - - Indicates expanded ALU instruction - ALU EXPAN
format.
0040
FPS 7350-01 2 - 6

FPS 7350-01

Table 2-2 PIOP Instructions (cont.)
OTHER
QCTAL SHORTHAND FIELDS
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION USED
A 1-17 - - Contains address of one of 16 - -
internal ALU registers.
8 1-17 - - Contains address of one of 16 - -
internal ALU registers.
ALY 0 - - No operation. - -
1 MOVD B move data Move data bus contents to ALU 0B > B 8
register 8. ALU output is that
data.
2 |ADDD A,B add data Add the data bus contents to the g + A > A,8
contents of register A and store
results in register B. ALU output
is (DATA)+(A).
3 |ANDD A,8 logical “and" Logically “and® the data bus 08 and A A8
of data contents with the contents of
register A and store results in
register 8. ALU output is
(DATA)"and"(A).
4 ORD A,B Togical “or" Logically "or" the data bus 0B or A > A,B
of data contents with the contents of
register A and store results in
register B. ALU output is
(DATA) “or"(A).
5 X0RD A,8 logical Logically "exclusive or" the DB xor A A.8
"exclusive or" data bus contents with the
of data contents of register A and store
results in register B. ALU output
is (DATA)"xor"(A).
6 PASSD pass data Data on data bus passes through 0B > Y -
the ALU unchanged and unsaved. The
data appears on ALU outputs.
7 PASSA A,B | pass register A Data in register A is gated to ALU A > Y A,8
outputs. Data in register B is 8 > 8
written in to itself., PASSA is a
fast ALU path.
10 INCB 8 increment Increment register 8 contents. 8 +1>Y 8
register 8 ALU output is (B) + 1.
11 DECB 8 decrement Decrement the ALU register 8 8 -1>Y 8
register 8 contents, ALU output is (B) - 1.
12 INCD increment Increment data on the data bus (D) DB +1>%Y -
data bus and pass through the ALU (not
saved),
13 DECD decrement Decrement data on the data bus (D) 0B -1>Y -
data bus and pass through the ALU (not
saved).
14 ADD A,3 add register Add register A to register B, A+ B > Y A,8
A to register 8 store the results in register B.
ALU outputs = (A) + (B).
15 SUs A,8 subtract Subtract register A from register 8 - A > Y A8
register A from B and store results in register
register 8 8. ALU outputs = (8) - (A).
16 PASSB pass register B Pass register 8 contents unchanged B > 8
an to the Y bus.
17 PASSQ pass register § Pass Q register contents to ALU Q >y -
BUS (Y).
0041

Table 2-2

PIOP Instructions (cont.)

OTHER
OCTAL SHORTHAND | FIELDS
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION USED
TRANSFER 0 |TR ALU,_ | arithmetic and Source of the data bus is 08 <Y -
(SRC) Togic unit the ALU output (Y).
1 |TR (DISPY| displacement 8 Saurce of the data bus is D8 < DISP8 |DISP8
" the contents of the DISP8
field.
NOTE 1 2 |TRFF,_ | FIFO Source of the data bus is 08 < IB -
FIFO input buffer.
3 |TR-IOR,_ | input/output Source of the data bus is DB < IOR -
register the contents of the [/0
register.
4 |TR PSA,_ | program source Source of the data bus is 0B < PSA -
address the program source address
register.
5 - - - - -
6 |TR CR,_ control register | Source of the data bus is 0B < CR -
the contents of the control
register.
7 - - Indicates that the SPEC GO TO SPEC -
(special) field is to be used
as the next field in the
instruction word.
TRANSFER 0 - - No operation. - -
(osT)
1 - - - - -
NOTE 2
2 |TR_,'FF FIFQ Destination is the FIFO 0B > 08 -
output buffer.
3 {TR_, IOR | input/output Destination is the 1/0 D8 > IOR -
register register.
4 |TR_, AR address register Destination is the address DB > AR -
register - of the CPU.
5 - - - - -
6 I[TR_, CR control register Destination is the control 08 > CR -
register.
7 - - - -
SPEC 0 |TR PS, IOk program source, Transfers program source IOR < PS |PSA CONTROL
input/output word into the 1/0 register
register (2-cycle instruction).
1 |7TR IOR,PS; see above Transfers contents of 1/0 PS < IOR |[PSA CONTROL
register to program source
(2-cycle instruction).
NOTES
1. Source loaded on data bus at beginning of cycle.
2. Destination loaded on data bus at end of cycle.

FPS 7350-01

Table 2-2

PIOP Instructions (cont.)

FIELD

OCTAL
CODE

MNEMONIC

MEANING

DESCRIPTION

SHORTHAND
NOTATION

OTHER
FIELDS
USED

PSA
CONTROL

10

1

12

13

14

JMPAR

JMPST

JMPA ¥

PoP

PUSH

RTN

JSR ¥V

BOSC x, ¥y

BDSS X, .y

BFC x, y

BFS x, ¥

BISC x, v

jump to address
register

Jump to stack

Jjump absolute

pop the stack

push the stack

return

Jump to
subroutine,
relative

branch if device
status is clear

branch if device
status is set

branch if flag
clear

branch if flag
set

branch if ALU
status Ts clear

No Operation.

Absolute jump to address contained in
the PIOP address register (AR).
Address register can be loaded as a
data bus destination. The contents of
the register is the 8 LSB's of the
data bus.

This instruction uses no other fields
and is, therefore, useful for tight
loops and computed GO TO's.

Jump to address at top of stack. Does
not change stack contents so is not a
subroutine return instruction. This
instruction uses no other fields.

Jump to absolute address V which is
contained in the DISP8 field.

Advance subroutine return stack to
the next address. This instruction
does not change PSA.

Enter the current address plus one
in to the subroutine return stack.
This instruction does not change the
PSA.

Jump to address at the top of the
stack and advance the stack tc the
next address (POP the stack).

Jump by the relative location V as

specified by the DISP8 field. Enter
the current location plus one into

the stack.

If device status BIT # x is clear,
branch relative as specified by y. The

maximum displacement is +17 to -20 octal

locations. If %27, then a high level on
DSP7* was sampled at the beginning of
this instruction. ¥ may be specified

as a relative argument.

NOTE

DS@7* is one of eight sense lines

(DS@@* - 0S@7*) that allow the PIOP
to be controlled
externally.

Same as above except BIT #x must be
set for the branch to occur (DS7*
1ine lTow if x=7).

If flag BIT # x is clear, branch rela-
tive as specified by y (DISP5). The
maximum displacement is +17 to -20
octal locations.

Same as above, except branch occurs
if flag is set.

1f internal status BIT #x is clear
(zero), branch as specified byy
(DISP5). Maximum displacement is +17
to -20 octal locations.

Internal status BIT # is defined as
follows:

If set: 0 = FIFO data valid
1 = FIFO full
2 = R shift out
3 = Q shift out
4 = ALU carry
5 = ALU zero
6 = ALU sign
7 = ALU overflow

Note that bits 2 through 7 above also
appear in the control register {CR).

,

PSA < AR

PSA < ST

PSA < DISP8

PSA + 1> ST

POP AND JMPST

PSA < PSA + DISP8 ,

PUSH

If condition is
true, then:

PSA < PSA + DISPS

If condition is
not true, then:

PSA < PSA + 1

p1sp8

D1sP8

8IT #, DISPS

8IT #, DISPS

8IT ¢, DISPS

BIT #, DISPS

BIT #, DISPS

FPS 7350-01

2 - 9

Table 2-2

PIOP Instructions (cont.)

OCTAL SHORTHAND 2??5;5
FIELD | CODE MNEMONIC MEANING DESCRIPTION NOTATION USED
PSA 15 8ISS x, y | brancn if ALU Same as BISC except that status If condition BIT «, DISPS
CONTROL status is set must be set (1} for the branch is true, then:
to occur.
These instructions are alternate mnemonics PSA < PSA + DISPS
for the eight BISS and eight BISC mnemonics.| 1f condition is
not true, then:
BFV DISP Branch if FIFO data valid PSA < PSA + 1
BFF DISP Branch if FIFQ full
BFOT DISP Branch if R-shift output =1
BQOT OISP Branch if Q-shift ocutput = 1
BC OISP Branch if carry set
8Z DISP 8ranch if ALU=0
BM DISP Branch if ALU is minus
8OVF DISP Branch if overflew =1
BNFY DISP Branch if FIFQ data not valid
BNFF DISP Branch if FIFO not full
BNFOT DISP Branch if R-shift output = Q
BNQOT DISP Branch if Q-shift output = 0
BNC DISP Branch if ALU carry out is 0
BNZ DISP Branch if ALU is not O
BP DISP Branch if ALU is positive
BNOVF DISP Branch if ALU overflow = O
16 BNZST branch if ALU If ALU output is non-zero, branch to the PSA < ST -
not zero, stack location at the top of the stack. For
example:
TVDB 1P; MOVD CNT
PUSH
DEC CNT
BNZST
HALT
The above loops 10 times before halting.
17 JMP X Jump Jump unconditionally to the relative PSA < PSA + O0ISP8 | DISP8

address specified by X.

FPS 7350-01

C044

Table 2-2

PIOP Instructions (cont.)

OCTAL

FIELD | CODE

MNEMONIC

MEANING

DESCRIPTION

SHORTHAND
NOTATION

OTHER
FIELDS
USED

10 0

ot

IN

[ORST

output

input

input/output
reset

No operation.

Places FIFQ output buffer contents on external
device bus (DEYP2* through DEV39*) and advances
format logic. The format is specified by the
FORMAT field in the control register.

Loads the FIFO input buffer with data on the
external device bus (DEV@2* through DEV39*)

at the end of the present cycle. This instruction
also advances the format logic. The format is
specified by the FORMAT field in the control
register.

Causes PIORST* (PIOP reset) to go true (low)
which, by convention, resets all devices
connected to the PIOP bus.

SPIN 8IT 37

8IT 38

BIT 39

SOSC x

SDSS x

SDAV

spin until
device status
is clear

spin until
device status
is set

spin until
data
available

Spin until device status (BIT #) is clear. PIOP
spins (waits) until. device status line
referenced by x (in BIT # field) is clear (high
level) and then executes the remainder of that
instruction. Device status state is sampled at
the beginning of the instruction cycle.

167ns
’ so¢ 7]
' gsgre 0

XFII—{L

€xecure
REMAINDER

of
INSTRUCTION

[2i4<114
L1331
INSTRUCT TN

-——}
- - pd
- -
--}-

Only INTP (interrupt B) interrupts spins. If
interrupted, the remainder of the instruction is
not executed. Upon return from the interrupt, the
next instruction is executed. The SPIN is not
reentered.

Same as above, except the 0SP7* level is
inverted.

Spin until FIFO data is available. The PIOP spins
(waits) until the FIFO contains valid data.

SETMAR; PASSB BUF; RFF

SDAV; TRFF,DB; WORD 3; MOVD @; AFF
The above instruction sequence puts valid data
from the AP's main data location (buffer) into ALY

register P and then the AFF resets the data valid
flag. The spin is a minimum of five cycles.

BIT #

BIT #

FPS 7350-01

INPUT/OUTPUT DATA FORMAT

FIELD

CODE WORD 0B TRANSFERS 8ITS

WORD

24-39
12-23
2-11
2-39

0 WORD Q
1 WORD 1
2 WORD 2
3 WORD 3

low mantissa (ML)
high mantissa (MH)
exponent
full word

0045

Table 2-3

Expanded PIOP Instructions

OTHER
OCTAL SHORTHAND FIELDS
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION USED
ALUSRC 0 AQ - A >R, Q >8 A
1 AB - A >R, B >8§ 8
2 24 - A1l of these codes are used to p>R, Q >8 -
select the data source for the
3 28 - R and S input fields of the ALU. p>R, B >S5 8
4 ZA - Note that A and B fields are g>R, A >S5S A
deferred. That is, the A (or 8)
S DA - field selects one of 16 0B>R, A >5§ A
registers. The contents of the
6 0q - selected register is then moved pB>R, @ >SS -
into either the S or R input
7 0z - field of the ALU. DB>R,P>S -
ALUDST 0 q Internal work
register F>Q, F>Y ALUFCN
1 NP - All of these codes are used to F>Y ALUFCN
select the destination that is
2 A A field to receive the ALU output F> B, A >Y A, ALUFCN
function.
3 F ALU function F> B,F>Y B, ALUFCN
Mnemonics are:
4 RQ Right shift Q F/l2> B, Q2 >
Q = internal work register Q,F>Y 8, ALUFCN
5 RF Right shift F = ALU function
ALU function F/12> 8 ,F>Y B, ALUFCN
Y = ALU output bus
6 LQ Left shift Q 2> 8, 2¢ >
Note that a right shift is a Q,F> 8, ALUFCN
divide by 2 while a left shift
7 LF Left shift is a multiply by 2.
ALU function 2> B, F>Y 8, ALUFCN
ALUFCN 0 AD add F=R+S5+¢C ALUSRC, ALUDST
1 S8 subtract F=S-R ALUSRC, ALUDST
2 SR subtract, These codes are the function F2R-S ALUSRC, ALUDST
reverse performed by the ALU.
3 OR logical “or* R and S are ALU input operands. F=RorS ALUSRC, ALUDST
4 AN logical “and” The ALUSRC field selects the F=RandS$ ALUSRC, ALUDST
soyrce for R and §; the ALUDST
S NA logical "nand" | selects the destination for the F = “not" R and S ALUSRC, ALUDST
ALU output after the selected
6 XQ exclusive “or* | function has been performed. F=Rzxors$S ALUSRC, ALUDST
7 XN “exclusive "nor”® F = “not" R xor S ALUSRC, ALUDST
SH 0 - default Shift in zeros - -
1 N - Shift in ones. - -
2 R rotate Rotate (shift out becomes shift in) - -
3 A arithmetic Sign extend on right shift; fill - -
shift with zeros on left shift.
o 0 - default - F=F ALUFCN
1 1 - - FouF+1l ALUFCN

FPS 7350-01

12

0046

Table 2-4 Symbol Definitions

SYMBOL DESCRIPTION

A Register A - one of 16 internal registers (scratch-
pad memory of ALU). The specific register to be
xs:? }s specified by a 4-bit binary number in the
eld.

B Register B address - one of 16 internal registers
(scratchpad memory of ALU). The specific register
to be used fs specified by a 4-bit binary number
in the B field.

NOTE

The same 16 registers are used by
both A and B fields. For

example, the A field may specify
register #2 while the B8 field
may specify register #14.

Data Bus - the bi-directional bus connecting
o8 the transceiver to the other PIOP circuits.
The mnemonic DB is also used for data bus.

Q Register Q - an internal work register.

R ALU Input Register R - one of two inputs to
the ALU. Designates the left-hand input in a
double-operand statement.

S ALU Input Register S - One of two inputs to
the ALU. Designates the right-hand input in a
double-operand statement.

Y ALU Qutput Bus Y - indicates the output bus of
the ALU. More specifically, the output of the
ALU Bus Select Logic.

)4 Represents binary 0's. For example, the
expression Z > R indicates that all zeros
are loaded into the ALU R input register.

F Results of the ALU function which are applied
to the ALU destination.

0047

FPS 7350-01 2 - 13

Table 2-5

Cross-Reference List

memNIc | FIELD | GoOE NOTATION wevonic | P | Cooe NOTATION
A ALUDST 2 F>8,A>Y ENINT EXPAN 6 -
A SH 3 -
AB ALUSRC 1 A>R, 8>S F ALUDST 3 F>8,F>Y
AD ALUFCN 0 R+S+C
ADD ALU 14 A+B>8 HALT EXPAN 12 Halt, PSA < PSA + 1
ADDD ALY 2 DB+A>8
AFF EXPAN 3 - N 10 1 -
AN ALUFCN 4 R and § INCB ALY 10 B+1>8
ANDD ALU 3 08 and A> B INCD ALY 12 08 +1>Y
AQ ALUSRC 0 A>R, Q>S 10RST 10 7 -
80SC PSA 10 P PSA 17 PSA < PSA + DISP8
80SS PsA 1 If condition is JMPA PSA 3 PSA < DISPS
8FC PSA 12 PEACS PSA s DISPS JMPAR PSA 1 PSA < AR
8Fs PSA 13 If condition is IMPST PSA 2 PSA < ST
not true, then:

BISC PSA 14 PSA < PSA + 1 JSR PsA 7 PSA < PSA + DISP8, PUSH
BISS PSA 15
BNZST PSA 16 PSA < ST LF ALUDST 7 %F>8, F>Y

Lq ALUDST 6 2F>8,205>0Q F>Y
CF EXPAN 1 clear flag BIT #

MOVD ALU 1 08 > B
oA ALUSRC 5 08> R, A> S
08 osT 0 - N SH 1 -
0ECB AL 1 B-1>8 NA ALUFCN 5 “not* R and §
DECD ALU 13 08-15Y NP ALUDST 1 Fa
DISINT EXPAN 7 -
) ALUSRC 6 08 >R, Q>S5
0z ASUSRC 7 08 >R, @55

FPS 7350-01

N

14

0048

Table 2-5

Cross-Reference List (cont.)

MNEMONIC FIELD gggQL iﬁ?ﬁ??éﬂ“ MNEMONIC | FIELD 83;2‘ §g$§;¥3:°
OR ALUFCN 3 RorS TR ALU, -- | TR(SRC) 0 DB < ¥
ORD ALY 4 DB or A> B TR,CR, -- | TR(SRC) 5 DB < (CR)
ouT 10 2 - TR(D1SP8),--| TR(SRC) 1 D8 < (D1SPB)
TR FF, == | TR(SRC) 2 08 < (18)
PASSA ALY 7 A>Y,8>8 TR IOR, -- | TR(SRC) 3 DB < {IOR)
PASSB ALY 16 8> 7Y TR IOR, PS |SPEC 1 PS < (I0R)
PASSD ALY 6 0B > Y TR PS, 10R |SPEC 0 (I0R) < PS
PASSQ ALY 17 Q>Y TR PSA, -- | TR(SRC) 4 0B < (PSA)
PoP PSA 4 - TR --, AR | TR(DST) ') DB > (AR)
PSAB EXPAN 13 PSA > B TR --, CR | TR(DST) 6 08 > (CR)
PUSH PSA 5 PSA + 1 >ST TR --, FF | TR(DST) 2 08 > (08)
TR --, I0R | TR(DST) 3 0B > (ICR)
Q ALUDST 0 F>Q, F>Y TVCR EXPAN 14 VALUE > CR
V08 EXPAN 15 VALUE > 0B
R SH 2 - TVEX EXPAN 16 VALUE > EXP
RF ALUDST 5 Fl2>8, F>1Y
RFF EXPAN 2 - WORD 0 WORD 0 -
RQ ALUDST 4 F/l2>8,Q2>Q, F>Y WORD 1 WORD 1 -
RTN PSA 6 POP and JMPST WORD 2 WORD 2 -
WORD 3 WORD 3 -
8 ALUFCN 1 s -R
SDAV SPIN - - N ALUFCN 7 "not* R xor S
SDsC SPIN - - X0 ALUFCN 6 R xor S
S0SS SPIN - - XORD ALy 5 DB xor A > 8
SETDA 10cMD 3 ALU > DVCMD
SETMAR 10CM0 1 Read APMA A ALUSRC 4 B>R,A>S
SETMAW 10CMD 2 Write APMA 8 ALUSRC 3 p>R,B>S
SF EXPAN 4 Set flag BIT # 2Q ALUSRC 2 >R, Q>S5
SINDC 10 4 -
SINDS 10 3 -
SINT EXPAN 5 Set interrupt BIT #
SOT0C 10 6 -
SOTOS 10 5 -
SR ALUFCN 2 R-S
START EXPAN 1 Start
sus ALY 15 8-A>8

FPS 7350-01

15

0c49

CHAPTER 3

FUNCTIONAL ELEMENTS

3.1 INTRODUCTION

As an aid in understanding the programmable I/0 processor (PIOP), brief
descriptions of the major functional elements of the system are
presented in the following paragraphs. These paragraphs cover: the
transceiver, the registers, and other PIOP elements. Note, however,
that it 1is not the intent of this chapter to describe all PIOP
functional elements but only those elements that are of interest to the
programmer. All of the elements described are shown in the block
diagrams in Chapter 1 of this manual.

FPS 7350-01 3 - 1

3.2 TRANSCEIVER

The transceiver portion of the PIOP formats and buffers the data
transferred between the external device and the AP. Thus, the
transceiver can compensate for different device speeds.

A brief description of the transceiver and the associated FIFO
(first-in, first-out) memory element is given below:

transceiver Formats and buffers data transferred
between the AP main data memory and
the external device. The transceiver
is under PIOP program control.

The transparent transceiver can transfer
38-bit words between the PIOP and the
external device in one of four formats:
full 38-bit word, three 16-bit words,

two l6-bit words with truncated mantissa,
or two l6-bit words with truncated
exponent.

When transferring data between the
transceiver and other PIOP elements,
the full 38-bit word or the EXP, MH, ML
fields.

When transferring data, the FIFO memory
provides automatic word sequencing. However,
the length of time it takes a word to
sequence through the FIFO must be comnsidered
during programming to ensure that data is
available at the proper time.

The transceiver contains input and output
format logic, input and output buffer
registers for the FIFO memory, and the
FIFO (first-in, first-out) memory element.
This memory element is described below.

FPS 7350-01 3 - 2

transceiver FIFO
memory element

FPS 7350-01

A first-in, first-out (FIFO) memory used
for data transfers. This memory can hold
up to sixteen 38-bit words.

Data may be loaded into the FIFO input
buffer from either the external device

bus (DEV) or from the AP’s main data

memory bus (MD). Data is entered one word
at a time. The FIFO output can be advanced
under program control in order to "skip"
words.

One application of the FIFO can be to
compensate for different data rates
between the PIOP, the AP, and the
external device. For example, the
external device may load the FIFO at a
slow rate but the FIFO can be read by
the PIOP in a high=-speed burst.

3.3 REGISTERS

The PIOP contains various registers that can be used for such functions
as loading addresses, reading status bits, issuing commands to external
devices, loading operands for arithmetic and legical operations, etc.

A brief description of each of these registers is given below:

ALU registers 16 individual 20-bit RAM registers in
(scratchpad memory) the ALU. These registers store operands
for the ALU operations.

Specific registers are accessed by
addresses in the A and B fields as
specified by the ALU instruction
currently being executed.

Q register A 20-bit internal work register in the
ALU. Loaded by the ALU instructions in
the expanded format (ALUSRC and ALUDST
fields).

address register (AR) An 8-bit register used for computed
GO TO’s. The register contents are
used by the JMPAR instruction as an
absolute address.

1/0 register (IOR) A 38-bit register used for communication
between the AP and the PIOP. This
register can be accessed by either the
AP or the PIOP.

This register is also used as an
intermediate storage device during
program source fetch/store instructions.

This register appears to the AP as device
address 100.

All of the previously-mentioned registers are used for addresses or
data. The remaining registers are used primarily for command and
status functions as described below. In addition, sense 1lines and
individual register bits that provide status information are also
described.

FPS 7350-01 3 - 4

control register (CR)

device command
register (DC)

ALU status

device status (DS)

flags

FPS 7350-01

A 20-bit read/write register used for
internal PIOP control functions and
status indications. The control register
can be loaded by the TVCR VALUE
instruction (transfer value to control
register). The bit pattern for the
control register is shown in Figure 3-l.

A 20-bit write—only register that contains
address and/or command information for
controlling an external device. This
register can be specified as a destination
by the DST portion of the TRANSFER field.

The meaning of each bit in this register
is both program and device dependent. A
typical bit assignment is shown in
Figure 3-2.

5 bits in the control register are used

to indicate the status of the ALU. These
bits can be tested by the BISS and BISC
(branch if status set and branch if status
clear) instruction. The individual ALU
status bits in the control register along
with other ALU status bits are listed in
Table 3-1.

8 sense lines that indicate the status

of the external device used with the

PIOP. The specific meaning of each line
is dependent on the particular application.

These sense lines can be tested by the
BDSS, BDSC, SDSC, and SPIN

instructions. A typical example of these
lines when used as a disk interface is
shown in Table 3-2.

8 flags that can be accessed by both the
AP and the PIOP. These flags are

defined by the program. A typical example
is shown in Table 3-3.

The flags can be set by the SF instruction,
cleared by the CF instruction, and tested
by the BFS and BFC instructiomns.

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
T T T T T T T T T
DATA F H H
INTERRUPT ARM P 8 A ALU STATUS vALID| FuLL | ouT IN FORMAT
L 1 1 | | L L L 1
FIELD BIT VALUE NAME FUNCTION
INTERRUPT ARM 20 1 INTD when set, arms interrupt zero which is the
highest priority interrupt.
21 1 INT1 When set, arms interrupt one.
22 1 INT2 Wihen set, arms interrupt two.
23 1 INT3 When set, arms interrupt three.
BIT#
ALU STATUS - 24 1 - Enable FIFO pass feature. 3
- 26 1 - Indicates state of farmat logic.
- 27 1 - Indicates state of format logic.
7 28 1 QVERFLOW When set, indicates that the output of the
ALU is an overflow condition.
6 29 /9 SIGN Indicates the sign of the ALU output.
(? = positive; 1 = negative.)
5 30 1 F=0 When set, indicates that the output of
the ALU function is zero.
4 k) 1 CARRY When set, indicates that the ALU function can be
resulted in a carry bit. used for
> conditional
3 32 1/8 Q-SHIFT QUT Contains the bit that was shifted out during branch
a Q-shift operation. Note that a Q-shift can instructions
be either a left or right shift.
2 33 1/9 R-SHIFT QUT Contains the bit that was shifted out during
an R-shift (RaM-shift) operation.
- 34 1 DATA VALID Indicates that data is valid.
- 35 1 FIFOFULL Indicates that the FIFQ is full.
FIFO 1/0
HANDSHAKE ENABLES 36 1 - When set, enmables the output handshake feature.
37 1 - When set, enables the input handshake feature.
FORMAT SELECT 38,39 92 - Transceiver format 2 (full words)
1 - Transceiver format 1 éEXP, MH, ML)
19 - Transceiver format 2 (high word, Tow word)
11 - Transceiver format 3 (high word, low word)
NOTE
A more thorough description
of transceiver formats is
given in chapter 4.2.3.
0050
Figure 3-1 Control Register (CR)

FPS 7350-02

FPS

0 1 2 3 4 S 6 7 3 9 10 11 12 13 14 15 16 17 18 18

- T v v + - -+
ST . INIT INIT
B UNUSED . S ™ IADD X WRT AB R0 ACK
§£I VALUE NAME FUNCTION
g -10 - - Unused.
11 1 /STROBE M When set, transfers data between the PIQP
and the disk input buffer.
12 - 15 0/1 /1ADD® thru When a specific bit is set, selects the
/TADD3 address of one of four disk registers.
16 1 /INIT WRITEZ When set, initiates a write operation (data
from PIOP is to be written into disk buffer).
17 1 /ABCRT When set, aborts the current disk operation.
18 1 /INIT READ Yhen set, initiates a read operation (data

from disk is moved into disk buffer).

19 1 /FIFO ACK When set, provides an acknowledge signal that
is part of the disk/PIOP handshaking sequence,

NOTES

1. The / before each command is a convention used
with a disk.

2. The above is only a representative example of
of how the OVCMO reqister is used with an
external device. In this exampie, a disk
storage device is used.

=
pe}
o
—

Figure 3-2 Device Command Register (DC)
(Assignment for Disk Interface)

Table 3-1 ALU Status Conditions

CR
8IT BIT# VALUE NAME FUNCTION

- g = 1 DATA VALID When set, indicates that the
FIFQ output buffer has been
loaged. Reset by RFF or by
advancing FIFQ more times than
it was loaded.

- 1 = 1 FIFQ FULL When set, indicates that the
FIFQ is full.

33 2 = 1 SHIFT QUT FROM When set, indicates that there
F REGISTER was a shift out of the function
register of the ALU.

32 3 = 1 SHIFT OUT FROM When set, indicates that there
Q REGISTER was a shift out of the ALU's
Q register (internal work register).

31 4 = 1 CARRY When set, indicates that the ALU
function resulted in a carry.

30 5§ = 1 ZERQ When set, indicates that the ALU
. function resulted in a zero.

29 6 = 9/1 SIGN Indicates the sign of the result
of the ALU operation.

= positive

= negative

28 7 = 1 QVERFLOW When set, indicates that the ALU
operation resulted in an overflow
condition.

7350-01 3 - 7 0os2

Table 3-2 Device Status (Assignment for Disk Interface)

[o0]
=
3

SIGNAL
FLAG 9
FLAG 1
FLAG 2
FLAG 3
FLAG 4
FLAG 5
FLAG 6
FLAG 7

~ o wn Lol w ~N - Q l

FPS 7350-01

NAME

OPEN CABLE

VERIFY

FIFQ REQ

Table 3-3

AP DEVICE
ADDRESS

110
111
112
113
114
115
116
117

FUNCTION
tinused

Wnen set, indicates that an
open cable condition exists.

When set, indicates that the
disk is performing a verify
operation.

when set, provides the FIFQ
request handshaking signal.

0053

Flags

REMARKS

AP - set by OUT
cleared by IN
When DA is set,
flag is gated to ICRDY.

PIOP - Flag set by SF
Flag cleared by CF

00s4

3.4 OTHER ELEMENTS

Other PIOP functional elements are listed below along with a briéf
description of each element. A more thorough discussion is contained
in Chapter 4 of this manual.

program source A 256=word by 38-bit writable control
memory store which can be used to store data
or program instruction words.

This memory is addressed by PSA (program
source address) logic. Data is entered by
means of the TR IOR,PS instruction and
retrieved by the TR PS,IOR instructioun.
The selected word is decoded by the
control buffer during execution time.

instruction register During run time, decodes data from either
the program source memory or from the
1/0 register (IOR) if the deposit is
made from an AP program (SNSA, DA=100).
The latter is explained more fully in
paragraph 4.6.

PSA multiplexer The program source address (PSA) is
determined by the output of a.multiplexer.
This multiplexer has the following six
input sources:

a. program counter

b. (DISP8) - the contents of the
DISP8 field in the instruction
word

¢c. PSAQ + (DISP8) modulo 256 -
the PSA register plus contents
of DISP8

d. PSAQ + (DISP8) biased - the
same as above but biased
rather than modulo 256

e. subroutine stack

f. interrupts

FPS 7350-01 3 - 9

ALU

FPS 7350-01

Performs the arithmetic and logic operatioms
required by the PIOP. In addition, contains
16 registers that can be accessed by the
programmer .

In addition to the normal instructions used
to select arithmetic or logic operations
(such as ADD and OR), the ALU field can be
expanded.

The expanded field provides eight double-
operand instructions for selecting the
two ALU inputs, eight instructions for
selecting the function to be performed,
and eight instructions for selecting the
destination that is to receive the output
of the ALU.

CHAPTER 4

PROGRAMMING

4.1 INTRODUCTION

This chapter provides the basic information needed to program the
programmable I/0 processor (PIOP) and is divided into five basic parts
as shown in Table 4-1. Although this chapter is devoted to software,
explanations of hardware are included where necessary for a complete
understanding of the programming techniques. Although the reader was
briefly exposed to the instruction set in Chapter 2, this chapter
provides more detailed information on individual instructions.

The purpose of this chapter is to provide only the information needed
for PIOP interface programming. However, because the PIOP is used with
the array processor, information related to AP programming is included
whenever necessary. If more detailed information on AP programming is
desired, the reader should refer to the applicable publications listed
in Chapter 1 of this manual.

Before referring to the subjects listed in Table 4-1, it is recommended
that the reader consult the programming hints given in paragraph 4.1l.1l.

Table 4-1 Programming Subjects

SUBJECT PARAGRAPH DESCRIPTION

TRANSCEIVER 4.2 Describes basic operation of the transceiver
and FIFO memory element, word formats, the
8 instructions used in programming the
transceiver, timing considerations, and

OMA transfers.

ARITHMETIC 4.3 Defines the ALU registers that can be accessed
& LCGIC UNIT by the programmer, describes ALU operation,
and explains how to use the ALU instructions
in either the normal or expanded format.

PROGRAM SOURCE 4.4 Describes the program source memory, the
MEMORY address control logic used with the memory,
instructions related to program source memory,
and the branch and jump instructions.

INTERRUPT 4.5 Covers the instructions and timing used for
HANDL ING nandling interrupts.

COMMUNICATING 4.6 Describes how the PIOP communicates with the AP.
WITH THE AP

0055

FPS 7350-01 4 - 1

4.1.1 PROGRAMMING HINTS

The following hints are provided to aid the programmer in writing
efficient programs for the PIOP. Each of the items described below is
discussed more fully in the appropriate part of this chapter.

timing Certain timing constraints must be considered when
programming the PIOP. Because of the parallel nature
of the PIOP, it is possible to write a microinstruction
that appears to be valid but is actually illegal.

For example, a single instruction might request data
and also request processing of that data. This is
illegal because the entire instruction is executed
in one cycle which means that the requested process
does not have valid data to act upon. Therefore,
certain PIOP instructions take two or more cycles

to execute properly.

Instructions of this type fall into two categories:
instructions that transfer data in and out of the
PIOP, and instructions that transfer data in and out
of the program source memory.

a. Transferring Data In/Out of the PIQP

The instructions affected by timing are
listed below and described more fully.
in paragraphs 4.2.4 through 4.2.6.

IN

our
SETMAR
SETMAW
SETDA

b. Transferring Data In/Out of the PS Memory

The instructions affected by timing are
listed below and described more fully in
paragraph 4.4.

TR PS,IOR
TR IOR,PS
traps Always start programs at program source memory

location 4 or higher because locations 0 through 3
are reserved for interrupt traps.

FPS 7350-01 4 - 2

armed
interrupts

subroutines

Always disarm interrupts in order to initialize
the interrupts. Disarming clears unwanted
interrupts that may be queued.

Make certain to end all subroutines with an RIN
(return) instruction in order to return to the
proper place in the main program.

4.1.2 REFERENCE MATERIAL

Reference material that may aid the programmer 1is included in
appendices of this manual. The following material is included:

Appendix A

Appendix B

Appendix C

FPS 7350-01

Instruction word diagram and instruction set
tables. Same as those included in Chapter 2
but reproduced in the appendix for quick
reference.

Interconnection diagram. Illustrates the various
lines connecting the PIOP to the AP and to the
external devices.

Describes operation of the FIFO element and
the subroutine return stack for those readers
who might not be familiar with these concepts.

the

4.2 USING THE TRANSCEIVER

The transceiver basically consists of a FIFO (first-in, first-out)
memory element and related logic such as formatting logic and input and
output buffers. This 1l6é-word memory element is wused to provide
buffering in order to synchronize transfers of data. For example, the
external device might load up to 16 words in the FIFO in a fast data
transfer and then these words might be retrieved from the FIFO, one
word at a time, for transfer into the AP’s main data memory. On the
other hand, the external device might load the words at a slow rate and
the PIOP might then retrieve the words in a high-speed transfer. The
FIFO memory element may be used by either the external device or the
AP,

The following paragraphs provide a general description of transceiver
operation, a discussion of the various word formats used with the
transceiver, and an explanation of the instructions used when
programming the transceiver.

A brief description of FIFO memory elements is contained in Appendix B
of this manual.

4.2.1 TRANSCEIVER OPERATION

Figure 4-1 is a simplified diagram of the transceiver. Data from
either the external device or the AP’s main data memory is applied
through a FIFO input buffer (IB) to the FIFO memory element. This
memory element is capable of storing sixteem 38-bit words. Because of
the memory’s operation (first-in, first-out), the first word loaded
into the memory is always the first word retrieved from the memory.

The word that is retrieved from the FIFO memory element enters the FIFO
output buffer (0OB). The output of this buffer can them be applied to
one of three places: to the PIOP, to the external device, or to the
main data input register (MDI) which supplies the data to the AP’s main
data memory.

FPS 7350-01 4 - 4

FPS 7350-01

(IN) {StIMAR)

EXTERNAL
DEVICE MAIN
OEV Q2-39 DATA

|

FIFO INPUT BUFFER
REGISTER (IB)

FIFO
(FF)
(TR_, FF)
FROM P | QP =y RFF
AFF)
j FIFO OUTPUT BUFFER
DB 02-39
REGISTER (0B)
(TR FF,) |, {ouT)
10 PIgp = 10 EXTERNAL
(SETMAW) DEVICE
DEV 02-39

MAIN DATA INPUT
REGISTER (MOI)

I

THE INSTRUCTIONS WHICH MAIN
IMPLEMENT THE PATHS OATA
ON THE FIGURE ARE

SHOWN [N PARENTHESES.

0056

Figure 4-1 Transceiver - Simplified Diagram

As shown in the figure, data from the PIOP can also be applied directly
to the FIFO output buffer (OB) for transfer to either the external
device or through the MDI register to the main data memory.

The instruction mnemonics shown in parenthesis on the figure indicate
the specific instruction that implements a particular data path. For
example, the input buffer can receive data from the extermal device by
means of the IN instruction or can receive data from the AP’s main data
memory by means of a SETMAR instruction.

Loading and retrieving data from the FIFO memory is controlled by two
pointers: a write pointer and a read pointer. The write pointer is
the address of the location to receive the next word when the FIFO 1is
loaded. The read pointer is the address of the next word that is to be
read. If both pointers are equal (read and write addresses identical),
then the FIFO memory is either empty or full.

In order to understand the first-in, first-out operation of the FIFO
memory, assume that both pointers are initially pointing to the first
location in an empty FIFO. As each new word is loaded, the write
pointer advances to the next sequential location but the read pointer
does not move. The write pointer continues advancing as long as words
are being loaded into the FIFO. When data is retrieved, the read
pointer advances to the next location after the word has been read.
Thus, when retrieving data, the first word out of the memory is the
first word that had been loaded into memory.

It should be noted that there are two PIOP instructiomns directly
related to the pointers used with the FIFO memory in the transceiver:
RFF and AFF. A brief explanation of each of these instructions is
given below:

RFF Reset FIFO Resets both the read and write
pointers by returning them to
the first address in the memory.

AFF Advance FIFO Advances the FIFO read pointer to
the next sequential locatiom in
the memory. (The write pointer is
advanced automatically whenever
the low mantissa portiom of the
FIFO input buffer is written.)

FPS 7350-01 4 - 6

4.2.2 TRANSCEIVER FORMATS

Although the transceiver always deals with a 38-bit AP floating-point
word, the word may be transferred between the transceiver and the
external device in any one of four different formats. Thus, the 38-bit
word may be transferred as one full word, as three separate l6-bit
words, as two separate l6-bit words with a truncated mantissa, or as
two separate l6-bit words with a truncated exponent. Transfers can
occur in either direction (from the external device to the transceiver
or vice versa). It should be noted that these formats do not apply
when transferring words between the transceiver and the intermnal data
bus (DB).

The four possible transceiver formats are listed in Table 4-2 below and
illustrated in Figure 4-2.

Table 4-2 1/0 Word Formats

DATA TYPE FORMAT DESCRIPTION
e — — —
38-bit AP '] Full word is transferred.
f\oating-point word
(10-bit exponent; 1 Full word transferred as three

28-bit signed mantissa) separate 16-bit words. These

words are: low mantissa, high
mantissa, and exponent.

2 Mantissa truncated and remainder
of word transferred as two 16-bit
words. These two words are: low
word and high word.

3 Exponent truncated and remainder
of word transferred as two 16-bit
words. These two words are: low
word and high word.

0057

FPS 7350-01 & - 7

OEVE 2 3 39 11 12 13 17 18 23 24 33 34 DEV39
FORMAT 2
EXPONENT S MANTISSA (AP-1208)
[l 1 1 | !
DEVP 130 1 i 39128 1 39124 I 0EV3g
EXPONENT HIGH MANITSSA LOW MANTISSA FORMAT 1
\ | FIRST WORD , | SECOND WORD | THIRD WORD
OEY 1241 1 1 39124 { { DEV39
HIGH WORD LOW WQRD FORMAT 2
P FIRST) WORD | | SECOND HORD)
DEV 124 4 125 1 l 391 2a | DEV39
BIAS EXTEND ON INPUT HIGH WORD LOW WORD FORMAT 3
IN/OUT WORD DEFINITIONS DB TRANSFERS
(REGARDLESS OF SELECTED FORMAT)
FORMAT 2 - N/A WORD @ - LOW MANTISSA
FORMAT 1 - 1st = EXPONENT) WORD 1 - HIGH MANTISSA
2nd = HIGH MANTISSA WORD 2 - EXPONENT
3rd = LOW MANTISSA
{advance word pointer) WORD 3 - FULL WORD
FORAMT 2 - st = HIGH WORD AUTOMATIC
2nd = LOW WQRD SEQUENGING
(advance word pointer)
FORMAT 3 - 1st = HIGH WORD
2nd = LOW WORD
y
NOTES
1. AFF INSTRUCTION MAY B3E USED TO ADVANCE FIFQ READ POINTER.
2. DB TRANSFERS CAN SET "DATA VALID" BUT WILL NEVER ADVANCE
READ OR WRITE POINTERS.
3. POINTERS WILL ADVANCE WITH ANY FULL WORD OR LQOW BYTE TRANSFER
(INCLUDING MD).
4. WORD FIELD GONLY AFFECTS DATA BUS TRANSFERS.

FPS 7350-02

Figure 4-2 Transceiver Formats

00s8

4.2.3 TRANSCEIVER INSTRUCTIONS
There are eight instructions that are directly related to transceiver

operation. These instructions are listed in Table 4-3 below and
described in the following paragraphs.

Table 4=3 Transceiver Instructions

INSTRUCTION |FIELD DESCRIPTION
IN 0 Input. Cata transfer into the PIOP,
QuT 10 Qutput. Data transfer out of the PIQP,
SETMAR 10CMD Set memary address, read. Performs a OMA read

from main data memory.

SETMAW [ocmo Set memory address, write. Performs a OMA
write to the main data memory. Advances the
read pointer.

AFF EXPAN Advance FIFQ. Advances the FIFQ read ;ointer,
RFF EXPAN Reset FIFQ. Resets FIFQ read and write osointers,
TR FF.DB SKC Assembier mnemonic. Transfer contents of the

output buffer (0B) to the data bus.

TR DB,FF 0sT Assembler mnemonic. Transfer data on the data
bus to the input buffer (IB). Sets the data
valid bit (FIFOMT* goes false).

0059

IN - This instruction is used for data transfers into the transceiver.
The IN instruction transfers a data word from the external device
into the FIFO input buffer (IB). The format is determined by the
state of bits 38 and 39 (FORMAT field) in the control register
while the particular word to be transferred is determined by the
format logic.

In the cycle following the IN instruction, the contents of the
input buffer (IB) are written into the FIFO memory. If the

FIFO is empty at this time (that is, at the beginning of the
instruction cycle after the IN instruction), then the valid data
word is available in the FIFO output buffer (OB) at the beginning
of the next cycle.

FPS 7350-02 4 - 9

For example:

RFF "reset FIFO pointers
IN "load word into IB from device bus
NOP

TR FF,DB "data word from the IB is available
"in the OB. DATA VALID is true.

OUT - This instruction is used for data transfers out of the trans-
ceiver. During the cycle in which the OUT instruction occurs,
the contents of the OB are gated to the external device data
lines according to the data format type selected by the control
register FORMAT field (bits 38 and 39) and the data word as
selected by the transceiver format logic.

For example:

ouUT "transfer word on to device bus from
"FIFO output buffer. At the end of the
"eycle, advance to the next word as
"determined by the format

SETMAR - This instruction initiates a DMA cycle to fetch data from the
location specified by the ALU output. Five cycles later,
data enters the input buffer (IB). This 38-bit data
overwrites the previous contents of the IB. If the FIFO
memory is empty, then data is available in the output buffer
(0B) after the next cycle.

For example:
RFF "reset FIFO pointers

SETMAR;ADD 0,1 "load APMA with (REG 0) (REG 1)

NOP "ecycle request

NOP "cycle acknowledge

NOP "wait

NOP "data is written into input buffer
NOP "data passes through FIFO

TR FF,DB "data is available here

FPS 7350-02 4 - 10

SETMAW - This instruction determines the memory address for a write
operation. The SETMAW instruction initiates a DMA write
cycle at the location specified by the ALU output. Data
is taken from the FIFO output buffer (0B) at the end of
the next cycle. Three cycles later, the data arrives in
main data memory at the specified address. The FIFO is
advanced on the cycle after the SETMAW instruction.

For example:

TR IOR,FF;INCB CNT;SETMAW '"load APMA with (CNT)+l; load

NOP

NOP

"FIFO output buffer (0B) from IOR
"cycle request; during this cycle,
"data is read from the OB. The FIFO
"pointer is advanced.

"cycle acknowledge

AFF - This instruction advances the FIFO pointer (the FIFO write
pointer is advanced whenever the low mantissa portion of the
input buffer is written). When this instruction is used, the
output buffer contains a new word at the beginning of the next
cycle. If no word was written, the word is not wvalid.

For example:
RFF
IN
IN

NOP

AFF

TR FF,DB

FPS 7350-02

"reset FIFO pointers
"load a word into the input buffer (IB)
"load a second word into the IB

"DATA VALID true. Word transferred by
first IN instruction is available here.

"advance FIFO read pointer; the word
transferred by the first IN instruction
is still available here.

"word transferred by second IN instructiomn
is available here.

RFF - This instruction resets both FIFO pointers so that the FIFO
memory appears to be empty. It also initiates the format control
logic to input or output the first word of the selected format.

For example (assume full word format selected):

N "transfer first word into input buffer (IB)

N "transfer second word into IB

IN "transfer third word into IB

RFF "reset FIFO pointers

IN "transfer fourth word into IB

IN "transfer fifth word into IB

NOP "fourth word available here (first through
third words no longer available because
of RFF)

TR FF,DB;AFF "fourth word still available here

TR FF,DB "fifth word available here

TR FF,DB - This instruction transfers the contents of the output
buffer (OB) to the data bus according to the word specified
by the WORD field in the PIOP instruction word.

TR DB,FF - This instruction loads the FIFO output buffer (0B) from the
data bus according to the format specified by the FORMAT
field in the control register and the word specified by the
WORD field in the PIOP instruction word.

A RFF instruction should always follow a TR DB, CR instructiom before
data is transferred to/from the external device.

Interaction of these eight transceiver-related instructions is
described in subsequent paragraphs.

FPS 7350-02 4 - 12

4.2.4 TRANSCEIVER TIMING CONSIDERATIONS

When using certain PIOP instructions that are related to the
transceiver, the sequence of actions begun by one instruction may
overlap the sequence of actions begun by another instruction. In
addition, data from one instruction may not be available until a few
cycles later, depending on the condition of the FIFO memory.
Therefore, it is important to know the instruction timing
considerations in order to program the PIOP properly. The instructions
that require consideration of timing are the instructiomns which
interact with external devices. These instructions are:

IN Strobes data at the end of the instruction cycle
ouT Places data on to the output bus

SETMAR Initiates a DMA read cycle

SETMAW Initiates a DMA write cycle

Instruction timing is covered in this section by providing a number of
typical examples. If it 41is necessary to review the transceiver
instructions, refer to paragraph 4.2.4.

Example 1 Using an IN instruction with an empty FIFO memory

The timing for this example is shown in Figure 4-3.
This example shows the timing of an IN instruction
when the FIFO memory is empty. Note that the data
requested by the IN instruction is not available
for the PIOP until two cycles later.

167 ns

——
' ' i [
i
! ! ! !
! IN ! | !
' [1 '
1 ' 1 | -
! [Ty ENY | NoTE
4 A OATA VALID TESTED 3Y
__] FOLLOWING [NSTRUCTIONS:
DATA STROBED 2{?3 g - BRANCH IF
INTO INPUT BUFFER ioay
DATA PASSES
THRU FIFO
DATA STROBED INTO —
QUTPUT BUFFER. DATA
VALID GOES TRUE
OATA AVAILABLE —
FOR PIOP
. 0060
Figure 4=3 IN to Empty FIFO %

FPS 7350-02 4 - 13

Example 2

FPS 7350-01

Multiple IN instructions with an emptv FIFO memory

The timing for this example is shown in Figure 4-4.
This example shows the timing when the FIFO memory
is empty and a number of IN instructions are used.
Note that the data read by the first IN instruction
is available at the beginning of the third cycle.
This word is still available at the beginning of the

sixth cycle.

By the time the sixth cycle begins, two

subsequent words have been stored in the FIFO memory.

NOP

[
i
I
IN I AFF
|
I

Figure 4=4

Multiple IN’s to Empty FIFO

A 'WORD IS STROBED INTO THE
INPUT BUFFER ON EACH OF
THESE CYCLES

WORD READ BY FIRST
"IN AVAILABLE" HERE

FIRST WORD STILL AVAILABE.
TWO SUBSEQUENT WORDS ARE
STORED IN THE FIFO AND CAN
BE ACCESSED BY AN AFF
INSTRUCTION.

CATA FROM SECOND "IN®
LOADED INTO FIFQ
QUTPUT BUFFER (08)

BY AFF INSTRUCTION.

0061

Example 3

FPS 7350-02

SETMAW Instruction

The timing for this example is shown in Figure 4-5.
This example assumes that there is a valid word in
the FIFO memory. This word could be there already,
it could be placed there by one of the following
methods:

a. an AFF instruction in the same cycle
b. a TR DB,FF instruction in the same cycle
c. an IN instruction in the previous cycle

Note that the data to be written by the SETMAW

instruction is not written into the MDI register
until the end of the second instruction cycle.

FIFQ ADVANCED
e e

SETMAW

\
1
1
NOP [
|
'

|

DATA STROBED

INTO MDI REG
MDCR2 NEW WORD [N 08 0062
TRUE

Figure 4-5 SETMAW Instruction

or

Example 4 3 MHz IN Instruction, SETMAW Loop

The timing for this example is shown in Figure 4-6.

DATA LOADED 1st 4ORD 2nd WORD rd 4ORD
INTO FIFO BY (N TAKEN 8Y AP TAKEN BY 4P TAKEN BY AP
{
DATA WRITTEN
INTO FIFO
1
| ‘l' : | ‘I' ‘ | I' ‘ | ! {]
[}] [} 1 | I | I | i
] | | i | 1 | ! i |
REF I [OSETMW. N | SETMAW N SETMAW ' ‘ \
] 1] | | l | | |]
| | ! | i | | { | |
A T A A
DATA FROM DATA FROM DATA FROM
Ist IN 2nd IN 3rd (N l
LOADED INTO LOADED INTO LOADED INTO
FIFO 08 DATA FIFO 08 DATA FIFO 08 DATA
(AUTOMATIC) FROM FROM FROM
DATA VALID lst iN 2nd IN 3rd IN
GOES TRUE INTO MOI INTO MDI INTO MDI
REGISTER REGISTER REGISTER
BY SETMAW / 3Y SETMAW
INSTRUCTION (INSTRUCTION
CODE ILLUSTRATED ABOVE: RFF
In
SETMAW
N
SETMAW
IN
SETMAW

NOTE

NO ADDRESS GENERATION IS
SHOWN FOR SETMAW INSTRUCTION

0063

Figure 4-6 SETMAW Loop

FPS 7350-02 4 = 16

Example 5

FPS 7350-02

SETMAW IN Loop

The timing for this example is shown in Figure 4-7.
The figure illustrates the following program. Note
that it is assumed that DSO0* goes low to indicate
external device data ready. Also, the program
assumes that APMA = ALU register 0.

IN;SDSS O "IN to initialize
FIFO memory

NOP

SETMAW;IN;SDSS O;INCB O "Perform DMA write to

"AP main data memory;
"wait for device
"ready; increment ALU
"register 0

NOP

SETMAW ;IN;SDSS O3;INCB 0 "Perform DMA write to
"AP main data memory;
"wait for device
"ready; increment ALU
"register 0

JMP .-1 "Loop to previous

"instruction

FPS 7350-02

i I
-+ | $=TYPICAL OF LOCP
|
]]
167 ns JMP .-l
e
i] | I |
I 1 | ! !
| ! 1 | :
1 1 | | "
[
| | : I I
N> !
|
| q)
l — —
note 1 I note 2
0Adg* | {

H

&__0spg* SYNCHRONIZED

I I
SPIN SPIN L INSTRUCTION

BEGINS ENDS ACTUALLY
EXECUTES

NOTES

1 0SP@ MUST BE TRUE WITHIN 125 ns OF [N* GOING LOW
TO GET THE NEXT CYCLE.

2 DSPP MUST BE FALSE WITHIN 125 ns QF IN* GOING HIGH
OR THE NEXT CYCLE PROCEEDS WITHQUT HANDSHAKING.

3 DATA MUST REMAIN VALID UNTIL IN GOES FALSE.

0064

Figure 4-7 SETMAW IN Loop

Example 6

FPS 7350-02

SETMAR OUT Loop

The timing for this example is shown in Figure 4-8.
The figure illustrates the following program. Note
that it is assumed that DS00* goes low to indicate
valid data. Also, the program assumes that APMA = ALU

register O.

SETMAR;INCB O

NOP
SETMAR;INCB 0
NOP
SETMAR;INCB 0
NOP

SDSS 0;SETMAR;INCB 0; OUT

JMP ."'1

"Set up a buffer of
"data to cover up the
"access time

"Spin out, initiate
"read for later. OUT
"advances the FIFO
"to the next word

FPS 7350-01

INSTRUCTION 7 INSTRUCTICN 8
~

——— e ——

' |]
i 1 1
1 1 !
CYCLE L 4 CYCLE2 , CYCLE 3
i | 1
1]]
! I '

2
g g
* *

)3

o

g

|~
& ..
I

‘\\note 2

| A

k‘-—S‘l’ll'l"US
SYNCHRONIZED
I
I t._. INSTRUCTION
SPIN SPIN ACTUALLY
BEGINS ENDS EXECUTES
NOTES

1 0SPP MUST BE TRUE WITHIN 125ns OF QUT*
GOING LOW TO GET NEXT CYCLE.

2 DS@PP MUST BE FALSE WITHIN 125as OF QUT*
GOING HIGH OR THE NEXT CYCLE PROCEEDS
WITHOUT HANDSHAKING

3 DATA IS VALID DURING TIME QUT* IS LOW

0065

Figure 4-8 SETMAR OUT Loop

4.2.5 INTERACTION OF TRANSCEIVER INSTRUCTIONS

Interaction between

some of the transceiver instructions occurs when

the sequence of actions begun by one instruction overlaps the sequence
of actions begun by another instructioun.

Instruction interaction is best described by using a few examples. It

is assumed

that the reader is already familiar with the transceiver

instructions and timing considerations as described previously.

Example 1

Example 2

Example 3

Example 4

FPS 7350-01

SETMAR
NOP

RFF

IN

IN

NOP

SETMAW ;AFF

RFF

IN
INAFF
SETMAW

"data is written here

"l is written into main data
"because 2 is not gated into the
"output buffer until the end of
"the cycle after the output buffer
"is gated into the MDI register

"this writes data from the second IN

"because data is in the output buffer
"after SETMAW is loaded into the MDI

"register

"data from second IN is written into
"main data. This is similar to
"example 3 except the AFF was placed
"before SETMAW

Example 5 IN;RFF
IN "at this point the FIFO is empty;

"therefore, the output buffer is

"overwritten in the next cycle
NOP "first IN data available in the
TR FF,DB "output buffer second IN data

"available in the output buffer

4.2.6 DMA TRANSFERS

All data transfers between the AP and the PIOP are direct memory access
(DMA) transfers. The direction of transfer is determined by either a
read (SETMAR) or write (SETMAW) instruction. Regardless of the
direction of data transfer, the output of the ALU is moved into the
PIOP’s AP memory address register (APMA) which indicates the address
used for the data transfer. When transferring data, data is moved
between the AP and the FIFO memory in the transceiver portion of the
PIOP.

The SETMAR and SETMAW instructions each perform two basic operatiomse.
The first operation sets up the main data memory address by loading the
output of the ALU into the APMA register. The second operation is the
DMA transfer of data.

The APMA register is loaded from the ALU each time a SETMAR or SETMAW
instruction is executed. Five cycles later, the 38-bit data word
appears in the FIFO input buffer (IB). At this point, the data is
available for gating on to the data bus or for transmission to the
external device. Therefore, it takes six cycles before the results of
a DMA read operation can be used. However, because a DMA request can
be made every other c¢ycle, the effective rate can be as high as one
word every two cyclese.

The six cycles that occur after a DMA read (SETMAR) instruction are:

0 = SETMAR

1 = cycle request

2 = cycle acknowledge

3 = wait

4 = DCHOL

5 = FIFO

6 = data valid at the beginning of this cycle

Because the APMA is loaded from the ALU, it 1is necessary for the
programmer to know the output of the ALU. This is normally handled by
setting up the ALU with the proper value when using either a SETMAR or
SETMAW instructiom.

FPS 7350-01 4 - 22

As an example of how to set up the ALU with the proper value, assume
that it is desired to read data from location 12 in the AP’s main data
memory. The following instruction could be used:

TVDB 12.; PASSD; SETMAR

The TVDB 12. dinstruction transmits the value in the VALUE field (which
is decimal 12 in this example) to the data bus. The PASSD instruction
moves the data on the data bus (D) to the ALU output bus. Therefore,
the value 12. becomes the ALU output when these two instructions are
executed. The SETMAR instruction then takes the ALU output (which is
now 12.) and loads it into the APMA. Because SETMAR reads data from
the address specified by the contents of the APMA, data is read from
main data memory location 12 when the SETMAR is executed.

Another method of setting up addresses for DMA transfers is to load the
starting address in ome of the ALU’s intermal registers. Assume, for
example, that register 6 has been loaded with a starting address of
200. Sequential DMA transfers could be made by using the following
instructions:

PASSB 6; SETMAR

NOP "cannot execute two SETMAR’s in a row
INCB 6; SETMAR
JMP . "1

The PASSB 6 instruction moves the contents of register 6 to the ALU
output bus. Thus, the APMA points to location 200 for the first DMA.
The INCB 6 instruction increments the contents of register 6 and the
JMP .-l causes the program to go back to the first instructiomn.
Because register 6 has been incremented, the SETMAR instruction now
reads the contents of main data memory location 20l. This process is
repeated and data is read from sequential memory locations.
Unfortunately, this results in a never-ending loop. Therefore, a more
realistic example is given in the next paragraph.

One method of performing DMA read or write transfers from or to
sequential memory locatiomns is to set up three internal ALU registers
as follows:

register 1 = counter (number of words to be transferred)

register 2 = starting address (first memory location to be read or
loaded)

register 3 = increment value

For the sake of this example, assume that register 1 is loaded with 7,
register 2 with 200, and register 3 with 1.

FPS 7350-01 4 - 23

Once these registers have been set up, the following instructions can
be used to perform sequential DMA transfers:

ADD 3,2; SETMAR "Adds the increment value to the starting
"address and moves the resultant value into
"register 2. Because the result of an ADD is
"on the ALU output bus, the value now in
"register 2 is loaded into the APMA register.

"Because this instruction is set up as part
"of a loop, register 2 should actually be
"loaded with the starting address minus the
"increment value. Therefore, the first time
"the instruction is executed, it performs the
"DMA read at the correct starting address.

DEC 1 "Decrements the counter to indicate one word
"had been transferred.

BNZ .=-2 "If the counter is not zero, branches back
"to the first instruction and repeats the
"sequence.

HALT "If the counter is zero, indicating all 7 words

"were transferred, the program stops. The AP can
"test to see if the program is rumnning or not.

Typically, the first instruction in the above example would have an OUT
following the SETMAR as shown below:

ADD 3,2; SETMAR; OUT

With the OUT instruction added, DMA transfer is first made by the
SETMAR and then data is transferred to the external device by the OUT
instruction. However, there are timing constraints that must be
followed because the data must be in the FIFO output buffer at the time
of the OUT instruction (refer to paragraph 4.2.5, Timing
Considerations).

FPS 7350-01 4 - 24

4«3 USING THE ALU

The arithmetic and logic unit (ALU) in the PIOP not only performs the
arithmetic and logical operations required by the PIOP, but also
contains 17 registers that can be accessed by the program.

Operations performed by the ALU may be specified in either the normal
format or in the expanded format as shown in Figure 4-9.

16 17 18 19

/ ALU N NORMAL
’ . N FORMAT
, AN
/ AN
7 N
/ N\
’ N
/ N
s . N
/ AN
,16 17 18 19 20 21 22 23 24 25 26 27
: ¥ v T . r —r
EXPANDED
ALUSRC ALUDST ALUFCN SH c FORMAT
ALU =AU ALUFCN = ALU function
ALUSRC = ALU source SH = shift
ALUDST = ALU destination C = carry in

0066
Figure 4-9 ALU Instruction Formats

In the normal format, the four bits making up the ALU field can be used
to select 1 of 16 arithmetic or logical operations. In the expanded
format, the ALU field is expanded 1into 12 bits which make wup the
ALUSRC, ALUDST, ALUFCN, SH, and C fields.

When using the normal format, fewer operations can be used than in the
expanded format but less instruction word bits are used. The bits that
are thus saved are used to make up the data bus source (SRC) and data
bus destination (DST) fields so that data bus transfer fields can be
implemented in the same cycle as the ALU operatiomn.

When using the normal format, the 4-bit ALU field is wused to specify

the operation to be performed. The 16 instructions that can be
selected by this ALU field are listed in Table 4-=4.

FPS 7350-01 4 = 25

Table 4-4 ALU Instructions

Qctal ? Octal

Code Mnemonic Meaning | Code Mnemanic Meaning

0 NOP no aperation ; 10 INCB increment register 8

1 MOVD | move data o DECB | decrement register 8

2 ADDD add data 12 INCD increment data bus

3 ANOD logical “and" 13 DECD decrement data bus

4 0RO logical “or" 14 ADOD add reg. A to reg. 8

5 XORD Togical “"xor® 15 Sus subtract reg.A from reg. 8

6 PASSD pass data 16 PASSB pass register 8

7 PASSA pass reg. A 17 PASSQ gass register Q 0067

A complete description of each of the above 16 instructions is given in
Chapter 2 of this manual which describes the PIOP instruction set.

When using the expanded ALU format, it is necessary for the programmer
to have a basic understanding of the ALU logic. A simplified block
diagram of the ALU is illustrated in Figure 4-10 and described 1in the
following paragraphs.

Each of the 16 addressable RAM registers shown on the drawing can be
selected by either the A or B address input which corresponds to the A
and B fields of the PIOP basic instruction word. The contents of the
selected register are gated to the ALU data source selector. This
selector, which functions as a multiplexer, receives inputs from: the
ALU registers, the Q register, the direct data in line (which comes
from the PIOP’s data bus), and logic that dinputs all 0°s to the
selector.

The information that is to be gated from the ALU data source selector
is determined by instructions in the ALUSRC (ALU source) field of the
expanded ALU format. Two outputs (R and S) are selected and applied to
the R and S inputs of the ALU itself. Both of these ALU inputs are
selected by a single instruction. For example, the ALUSRC field
instruction "AQ" indicates that the register A contents are applied to
the ALU R input and that the Q register contents are applied to the ALU
S input.

Once information is loaded into the ALU, the particular function
performed is determined by instructions in the ALUFCN (ALU function)
field. These instructions include arithmetic operations such as ADD
and SUB and logical operations such as AND and OR.

FPS 7350-01 4 - 26

The ALU output (which is labelled "F" for function) may be applied to
the output data selector, or back to the Q register, or back to the RAM
shift 1logic. The output data selector logic selects either the
function (F) from the ALU or the output of the A register as an output
(labelled "Y"). The ALUDST field selects the appropriate function that
is to be applied to the Y output of the output data selector.

This Y output of the ALU logic can be selected as the source of the

data bus by using the ALU instruction in the DBSRC field of the basic
instruction word.

FPS 7350-01 4 - 27

8|76

IE

210

DESTINATION
CONTROL

ALY

ALY
FUNCTION| FUNCTION

MICROINSTRUCTION DECODE

o

v

;
— RAM, RAM SHIFT RAM —> l —
1!
cLocK PR
N % !
'8' DATA IN 3-SHIFT
—
™ ‘A" A00RESS e ‘ U
AM
16 ADDRESSABLE REGISTERS c 2
N '8 AODRESSW 5 9 REGISTER
DATA DATA -1 Ccp
ouT ouT 9
] ‘ ’
(LOGIC
DIRECT ‘9
DATA IN O U \}
<
D A 8 2 qQ
ALU DATA SOURCE
SELECTOR
R S
R s —>G
CARRY IN Cin —>°
> CN+4
S-FUNCTION ALU b 3 (SIGN)
L——» QvERFLOW
L F=0000
F
\J U
QUTPUT A F
ENABLE et QUTPUT DATA SELECTOR
Y

l;u/L DATA OUT

Q068

Figure 4-10 ALU Logic = Block Diagram

FPS 7350-01 28

Subsequent descriptions of ALU programming use letter designatioms to
represent the ALU registers, inputs, outputs, and the data bus. These
letters, along with a brief description, are listed in Table 4=5 below.

Table 4=5 ALU Designatioms

SYMBOL DESCRIPTION REMARKS

A Register A - one of 16 internal registers. The
specific register to be usea is specified by a
4-bit binary number in the A field.

B Register B address - one of 16 internal regis-
ters. The specific register to be used is speci-
fied by a 4-bit binary number in the B field.

Source or desti-
nation address
for ALU operands
NOTE or results

The same 16 registers are used by
both A and B fields. For

example, the A field may specify
register #2 while the 8 field
may specify register #14.

0 Data Bus - the bi-directional bus connecting
or the transceiver to the other PIOP circuits. -
08 The mnemonic 0B is also used for data bus.
Q Register Q - an internal work register. -
R ALU Input Register R - one of two inputs to
the ALU. Designates the left-hand input in a
double-aperand statement. These are outputs
of tpe ALU operand
s ALU Input Register S - One of two inputs to multiplexer
the ALU. Designates the right-hand input in a
double-operand statement,
Y ALU Output Bus Y - indicates the output bus of
the ALU. More specifically, the output of the -
ALU Bus Select Logic.
z Represents binary 0's. For example, the
expression Z > R indicates that all zeros -
are loaded into the ALU R input register.
F Results of the ALU function which are applied -
to the ALU destination.
0069

A description of the instructions that are used when the expanded ALU
format has been selected is given in the following paragraphs. These
paragraphs cover the ALU source (inputs to the ALU), destination
(information used as ALU output), and function (selected operation of
the ALU).

.

FPS 7350-01 4 - 29

4.3.1 ALU SOURCE (INPUTS)

The ALUSRC (ALU source) field contains a double-operand instruction
that specifies which two inputs are to be applied to the ALU. The five
possible inputs are: :

A = register A
B = register B
D = data bus

Z = binary 0°s
Q = register Q

The first 1letter in the 2-letter statement (double-operand statement)
represents the R input to the ALU while the second letter represents
the S input to the ALU. For example:

ZQ = binary 0’s applied to R input;
contents of Q register applied to S input

It is important to remember that not all possible 2-letter combinatioms
are valid. For instance, the combination "AZ" is not a valid
instruction although the combination '"ZA" is a valid instruction.

The permissible operand combinations are:

AQ
AB
ZQ
ZB
ZA
DA
DQ
Dz

A complete description of each of the above combinations is given in
the instruction set explanation (refer to Chapter 2).

4.3.2 ALU DESTINATION (OUTPUT)
The ALUDST (ALU destination) field contains one of eight instructions

that specifies where the output of the ALU is to be set. The ALU
output is labelled "F" (for ALU function).

FPS 7350-01 4 - 30

The eight instructions that can be selected in the ALUDST field are as
follows:

O
]

F-Q, F->Y
F—>Y
F->B, A>Y
F—>B, F—>Y
Right shift Q and F, depending on SH (shift)
field with F—=>Y. For example:
F/2-B, Q/2-Q, F->Y
RF = Right shift F, depending on SH (shift) field
with B—>Y. For example:
F/2->B, F->Y
LQ = Left shift F and Q, depending on SH (shift)
field with B—>Y. For example:
2F—>B, 2Q—Q, F->Y
LF = Left shift F, depending on SH (shift) field
with F—>Y. For example:
2F->B, F—XY

=
L]
"

o
o
Wonon

Note that the selected destination for the above instructions is one of
the following: the Q register (internal work register), Y (the ALU
output bus), or the B register (one of 16 internal ALU registers
selected by the REG B field in the instruction word).

4.3.3 ALU FUNCTION

The ALUFCN (ALU function) field contains one of eight instructions that
specifies which arithmetic or logical operation the ALU is to perform.
The result of the selected function is labelled "F." Thus, when a
particular operation is selected, the result of that operation
(function) is sent to the destination specified by the ALUDST field.

The eight functions that can be selected by the ALUFCN field are listed
below. Note that "R" and "S" indicate the two inputs to the ALU and
"C" indicates the carry bit as specified by the C (carry) field.

add F=R+S +C
subtract F=R-S5-NOTC
subtract, reverse F=S8S ~-R=-NOTC
logical "or" F =R "or" s
logical "and" F =R "and" §
logical "nand" F = NOT R "and" S
exclusive "or" F =R "xor" S
exclusive "nor" F = NOT R "xor" S

A complete description of each of the above instructions, including
appropriate octal codes, is given in the instruction set explanation
(refer to Chapter 2).

FPS 7350-01 4 - 31

4+3.4 USING ALU INSTRUCTIONS

One of the advantages of the expanded format is that a uaumber of
different ALU operations can be executed in a single cycle. For
example, the ALU source, destination, and function can all be selected
by the expanded format and then executed in a single instruction word
cycle.

The available ALU instructions are summarized in Table 4-6.

Table 4-~6 Summary of ALU Instructions

FIELDS IN EXPANDED FORMAT

0CTAL

CODE ALUSRC ALUDST ALUFCN SHIFT CARRY
0 AQ Q AD - -
1 AB NP SB N 1
2 20 A SR R -
3 28 F 0R A -
4 A RQ AN - -
5 DA RF NA - -
6 0q LQ X0 - -
7 0z LF XN - -

0070

When using this expanded format, the function field (ALUFCN) represents
the basic op code and the shift and increment fields (SHIFT and C) are
condidered extensions of this code.

Either two, three, or four arguments may be used with the basic op
code. If two arguments are used, they are always source (ALUSRC) and
destination (ALUDST). If three arguments are used, then the third
argument 1is either register A or register B (REG A or REG B). If four
arguments are used, then the third argument is always register A (REG
A) and the fourth argument is always register B (REG B).

The function, extensions, and arguments must always be expressed in the
following order:

function-increment-shift .source,destination,register A,register B
In other words, the instruction fields must be defined in this order:
ALUFCN=-SHIFT-C ALUSRC, ALUDST, REG A, REG B
When defining REG A and REG B, they should always be reduced to a

number from 0 to 15 in order to specify the particular intermal
register that is used.

FPS 7350-01 4 - 32

The following is an example of a combined ALU instruction
arguments:

AD AB,F,3,4 @

/' V\ register B
function

register A
source
destination

The above instruction indicates that:

AD

an addition is to be performed

with four

AB = the two sources for the ALU (the values to be added) are
the contents of register A and the contents of register B

F = the destination of the result is the ALU output bus and

register B (in other words: A + B—B)
3 = register A is ALU internal register number 3

4 = register B is ALU internal register number 4

Note that no extensions (shift or increment) were used in the above

example.

Some other examples of ALU combined instructions are:

AD ZQ,NP basic op code plus two arguments (source and

destination); no extensions

AD ZB,LQ 5 three arguments (source, destination, register);
the register number (5) can be specified in either

the REG A or REG B field

ADN AB,RF,7 basic op code with one extension (N); extension

indicates to shift in all 1°’s

ADI AB,F,8,9 basic op code with one extension (increment) and
four arguments (source, destination, register A,

register B)

ADIR DQ,Q basic op code with two extensiocns (I and R); I
indicates an increment and R indicates a rotate

OR ZA,F,2,3 move register 2 to register 3

FPS 7350-01 4 - 33

4.4 USING PROGRAM SOURCE MEMORY

The program source memory in the PIOP is a writable control store that
holds the program instructions that are to be executed. A program
counter, referred to as the '"program source address,'" determines which
instruction is to be executed next. The contents of this program
counter can be changed by the branch, jump, and subroutine instructions
in the PSA CONTROL field of the PIOP instruction word.

Figure 4~11 is a simplified block diagram of the logic that controls
the program source memory. When an instruction word is decoded, the
instruction register (which performs the decoding) sends the
appropriate signals to the next address control logic. Based on these
signals, this logic then performs one of two operatioms: increments
the current address to point to the next sequential instructiom, or
computes a completely new address for the next instruction if required
because some type of jump or branch instruction has been decoded.

So NEXT
ADDRESS
CONTROL

CONTROL
BUFFER Sl

L PSAQ H
DATA ¥ M PSA
BUS (FSA)

INTERRUPT
LOGIC

PROGRAM
SOURCE
MEMORY

256 x 38

0071

Figure 4-11 Program Source Address Logic

FPS 7350-01 4 - 34

After the appropriate address has been generated by the next address
control logic, the address is applied to both the program source memory
and the PSAQ register. Once the program source memory has been
addressed, then the selected instruction word is applied to the control
buffer for decoding.

Notice that the output of the PSAQ register is fed back to the next
address control logic. This line is used only when stepping through
sequential memory locations. The current address is fed back to the
address control logic, incremented, and then used for the next address.

If a computed jump or branch address is required, or if an interrupt
occurs, then the address control logic uses different input data to
compute the next address.

It is necessary to remember the difference between the terms "PSA" and
"PSAQ." The term PSAQ is used for the address of the currently

executing instruction while PSA is used for the address of the next
instruction.

NOTE

The term "PSA" refers to a condition while the
term "PSAQ" refers to a register that can be
loaded and read. Unless otherwise specified,
both this manual and the assembler use both
terms to indicate the register (PSAQ).

Figure 4-12 is a block diagram of the next address control logic. This
logic contains the address register (AR) which is normally loaded from
the PSAQ. However, this register can also be loaded from the data bus
by using the AR instruction in the DST field.

The figure also shows the 4 x 4 subroutine stack and related stack

pointer which are used with the JSR, RTN, PUSH, and POP instructions in
the PSA CONTROL field of the instruction word.

FPS 7350-01 4 = 35

- —————— =

R
|
_____ 1 PUSH/POP STACK ENABLE
l |
A 4 4 A v
REGISTER
ENABLE
o1 — AR REGISTER < STACK POINTER
f1 4 x4 STACK
DIRECT
INPUTS 4»-—-—-——<3<i::}
4 . 'y CLOCK
? 7] —
h h
o) AR Y
Y
, MICROPROGRAM
MULTIPLEXER COUNTER REGISTER
51
|m= - - Xg Xy X2 X3
! OR3 T
! ORZ
LRy
I oRg
e e e =
A4
ZER0
INCREMENTER -
QUTPUT
CONTROL /, / /1 /1
0 & —t
| |
19 v Yll P) v Y3 Ca Chea ¥
0672

FPS 7350-01

Figure 4-12

Next Address Control Logic

36

The multiplexer shown in Figure 4=-12 selects one of four inputs as the
output to be applied to the program source memory. The D input (direct
inputs) is the displacement value required for Jjump and branch
instructions. The displacement is selected by either the DISPS5 or
DISP8 fields. The AR input represents the contents of the address
register (which contains the current address). "The F input is the word
from the top of the stack. The uPC (microprogram) input represents the
incremented address necessary when addressing sequential memory
locations.

The output of the multiplexer is applied to output control elements for
gating to the program source memory and to the PSAQ register. If
sequential addressing is being used, then the output is also fed to the
incrementer.

Subsequent paragraphs cover the special instructions that use program
source memory and the branch and jump instructioms.

4.4.1 INSTRUCTIONS THAT USE PROGRAM SOURCE MEMORY

There are two instructions in the SPEC (special) field that can use the
program source (PS) memory. The input/output register (IOR) is the
only element that can be used as a source or destination for these PS
operations. The two instructions are: TR PS,IOR and TR IOR, PS. Both

of these are 2-cycle instructions. These cycles are shown in Figure
4"130

INSTRUCTION 2 INSTRUCTION 1 INSTRUCTION 2
4 Y
T CYCLE 1 e T
| | | ! |
|] |
. EXECUTE D | SPIN | EXECUTE Ist | EXECUTE 2nd 1
. X | INSTRUCTION | [INSTRUCTION |
) | i (REST OF IT) | |
1 ! | | |
| ! ! { |
C O FETCH | | i
1 TR IOR, PS | ! | |
| OR | FETCH/STORE I FETCH 2nd | FETCH 3rd]
; TRPS, IR 1 DATA | INSTRUCTION | INSTRUCTION |
V ! | ! !

INSTRUCTION REQUESTING PS DATA FETCHED IN CYCLE 9 -
PS DATA NOT AVAILABLE UNTIL INSTRUCTION 2

0073
Figure 4-13 TR PS,IOR Instruction Cycles

FPS 7350-01 4 = 37

As shown in the figure, the TR PS,IOR (or TR IOR,PS) portion of the
instruction is executed during the first cycle. The rest of the
instruction 1is executed in the second cycle. There is no data on the
data bus during the second cycle. The IOR can be gated to the data bus
in the next instruction for use in that instructionm.

The address of the operation is forced by the PSA CONTROL field. For
example:

TR IOR,PS; JMPA 15.

The above instruction uses program source (PS) location 15. to store
the contents of the IOR. Note that the program counter 1is always
incremented during a PS fetch/store instruction.

As an example of how to use the TR IOR,PS instruction correctly, assume
that it is desired to store the sum of ALU registers 0 and 1l in program
source memory location 255 and then return. This could be dome by
using the following program:

ADD 0,1; TR ALU,IOR "Add the contents of registers 0
: "and 1; move the result to the
"I1/0 register

TR IOR,PS; JMPA 255 "Transfer the contents of the I/0
"register to program source memory
"location 253

RTN "Return from subroutine

The above program takes four PIOP cycles for execution. The four
required cycles are shown in Figure 4-14.

INSTRUCTION INSTRUCTION

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

] 1 | | 1

' FETCH 2nd ; STORE IOR | FETCH 3rd | FETCH 4tn '

| INSTRUCTION I IN PS 255 1 INSTRUCTION I INSTRUCTION |

| | 1 |

| ! | 1
! 1

! : X

! . 1

| EXECUTE 1st ! , EXEQTE 3ra 1

1
| | : |
|]) '

1
!
!
SPIN [NOP
I
|
|

0074

Figure 4-14 Program Cycles

FPS 7350-01 4 - 38

As shown in Figure 4-14, the first instructionm (ADD 0, 1; TR ALU,IOR)
is executed during cycle l. The second instruction (TR IOR,PS; JMPA
255) is fetched during this cycle. During the second cycle, the
contents of the IOR are stored in PS 1location 255. The third
instruction (RIN) is not fetched until the third c¢ycle and is not
executed until the fourth cycle.

As an example of how to use the TR PS,IOR instruction correctly, assume
that it is desired to read data from the program source memory at the
absolute address contained in the address register (AR) and then store
this data in ALU register 0. This could be done by using the following
program:

TR PS,IOR; JMPAR "Transfer the contents of the program
"source memory location specified by
"the address register to the I1/0
"register

TR IOR,DB; MOVD 0; RIN "Transfer the contents of the I/0
"register to the data bus; move data
"on data bus to ALU register O0;
"return from subroutine

The above program is executed in three cycles. During the first cycle,
the first instruction is fetched. During the second cycle, the first
instruction is executed and the second instruction is fetched. During
the third cycle, the second instruction is executed.

The following is an example of incorrect usage of the program source
instruction:

TR PS,IOR; MOVD OQ
RTN

In the abcve example, the first instruction indicates that data from
program source memory is to be transferred to the I/0 register and that
data on the data bus is to be moved into ALU register 0.

There are two problems with the above program. First of all, the
desired data ends up in the 1IOR in the first cycle and the MOVD O
instruction executes in the second cycle. Therefore, moving data from
the data bus into register 0 causes invalid data to be moved into the
register because the IOR is not gated on to the data bus automatically.

The second problem is that no address was forced by the PSA CONTROL
field; therefore, the data accessed is the RTN instruction.

FPS 7350-01 4 - 39

4.4.2 BRANCH AND JUMP INSTRUCTIONS

The PSA CONTROL field in the PIOP instruction word can be wused to
select 1 of 15 dinstructions. There are four wunconditional jump
instructions, seven conditional branch instructions (plus 16 extended
versions), and four instructions that manipulate the subroutine return
stack. Jumps may be made to relative or absolute addresses while all
conditional branches are made to relative addresses.

The subroutine return stack provides ' return address linkage when
executing subroutines. These two instructions are JSR (jump to
subroutine) and RTIN (return from subroutine). Because the stack is a
4-word stack, up to four subroutines can be nested. The programmer
should always end every subroutine with a RTN imnstruction.

Two other instructions, PUSH and POP, are also used with the subroutine

return stack. These 1instructions, as well as the JSR and RTN
instructions, are briefly described in Table 4=7 below.

Table 4-=7 Stack-Related Instructions

INSTRUCTION DESCRIPTION

JSR 3ranches to the location specified by the
contents of the DISP8 field (relative to
the current location). The current
PSA + 1 is pushed on to the stack.

RTN 8ranches to the address at the top of
of the stack and advances the pointer.

PUSH Forces the address of the next sequential
instruction on to the stack.

PoP Advances the stack pointer, thereby
discarding the value at the top of the
stack.

0075

When using branch instructions, the instruction £first tests some
condition and then branches according to the results of the test. The
BIT # field selects the number of condition to be tested while the
instruction itself determines the type of condition. For example, the
BFS instruction (branch if flag set) tests a flag. The flag number is
specified by the value in the BIT # field. The possible items that can
be specified by the BIT # field are listed in Table 4-8.

FPS 7350-01 4 - 40

Table 4-8 BIT # FIELD

BIT ¢ FIELD DESCRIPTION

FLAG # Specifies the number of the flag to be
tested. Any one of eight flags (0 - 7)
can be selected.

0s ¢ Specifies the external device status line
to be tested. Any one of eight lines can
be selected.

STATUS Specifies the internal status bit to be
tested. Any one of the following eight
bits can be selected.

= FIFQ data valid
FIFQ full

= R-shift out

= Q-shift out
ALU carry

= ALU zero

= ALU sign

= ALU overflow

N OO W NS

0076

A list of all standard branch instructions, along with a brief
description of each instruction, is given in Table 4-9. The 16
extended instructions are presented in Table 4=-10.

FPS 7350-01 4 = 41

Table 4-9

Branch Instructions

TYPE INSTRUCTION MEANING DESCRIPTION
JUMP JMp relative jump Causes an unconditional jump to a relative location.
Jumps can be made in either direction and can be up !
to 256 locations from the current location. The i
effective address is the sum of the 8-bit DISP8 field
and the current address.
JMPA absclute jump Causes an unconditional jump to an absolute address. {
This address is the contents of the DISP8 field. |
JMPAR absolute jump Causes an unconditional jump to an absoiute address.
This address is the contents of the address register (AR).
JMPST Jjump to stack Causes an unconditional jump to the top of the stack.
8RANCH 30SC branch if device g
status is clear
A11 branch instructions cause conditional
80sS branch if device jumps to a relative location. This jocation
status is set is the sum of the contents of the 5-bit
biased DISPS field and the current address.
8Fc ?;agfga:f flag The maximum number of locations that canm be
used are 16 locations forward (+16) or 17
locations backwared (-17) from the current
BFS branch if flag address.
is set
When testing a register bit for a branch
. dition, the bit is specified in the |
81sC branch if ALU con peied R : !
status is clear BIT ¢ field of the PIOP instruction word. :
BISS branch if ALU
status is set
BNZST branch if ALU Conditional branch to the top of the stack. In
is not zero effect, this is a conditional SMPST instruction.
I .
sus- JSR jump to The current program counter (PSA) is pushed on to the
ROUTINE subroutine stack and the jump is then made to a relative location
which is the sum of the DISP8 field and the current
address.
RTN return from The stack is popped {the former program counter is
subroutine retrieved) and the program jumps to the address
specified by the contents of the word just popped.
In effect, this is a POP and JMPST instruction.
STACK PUSH push the stack No jump. The program counter (PSA) +1 is pushed onto
the top of the stack.
PQpP pop the stack No jump. Retrieves the contents from the top of the stack.
0077
FPS 7350-01 42

FPS 7350-01

Table 4-10 Extended Branch Instructions
BASIC
BRANCH VARIATION DESCRIPTION

8ISS variations BFV DISP Branch if FIFQ data valid
BFF DISP Branch if FIFQ full
BFOT OISP |Branch if R-shift output = 1
BQOT DISP |Branch if Q-shift output = 1
BC DISP Branch if carry set
8Z DISP Branch if ALU=0
8M DISP Branch if ALU is minus
BOVF DISP |Branch if aoverflow = 1

BISC variations BNFV OISP |Branch if FIFQ data not valid
BNFF DISP |Branch if FIFQ not full
BNFOT OISP |8ranch if R-shift output = 0
8NQOT DISP |Branch if Q-shift output = 0
BNC 0ISP 8ranch if ALU carry out is O
8NZ DISP Branch if ALU is not Q
BP DISP Branch if ALU is positive
BNQVF OISP |Branch if ALU overflow = Q

0078

4 = 43

4.5 INTERRUPT HANDLING

The PIOP contains four interrupt lines that are connected to the
external device (INTO* through INT3*). Interrupt receivers are "armed"
by the control register (CR) to activate that particular input line.

In general, interrupt lines are enabled or disabled depending on
whether or not the programmer wants to be interrupted at that
particular time. Armed interrupts are queued if the interrupt is
disabled. Interrupts are activated by a high-to-low transition on the
associated interrupt line.

The four interrupt lines (INTO* through INT3%*) trap to program source
memory locations O through 3, respectively. These traps occur only if
the interrupts are armed and enabled. Interrupt 0O is the highest
priority interrupt and interrupt 3 is the lowest priority interrupt.
Only interrupt O can interrupt spins.

Interrupts are armed/disabled by setting/clearing bits 20 through 23 in
the control register. Interrupts are enabled/disabled under program
control. There are three instructions related to interrupt handling.
These instructions are:

SINT set interrupt as specified by BIT # field (test purposes)
ENINT enable the interrupts
DISINT disable the interrupts

The AP instruction SNSA with device address (DA) 102 causes interrupt
3.

When an interrupt is received, the instruction at the appropriate
interrupt address is fetched and executed and then normal program
execution continues from the point where it was interrupted. If a
multiple instruction service routine (interrupt handling subroutine) is
required, a JSR instruction in the interrupt location saves the correct
return address in the subroutine return stack. The return address that
was saved 1is the location after the last instruction executed before
the interrupt. Note that the saved address is not the location after
the interrupt instruction.

FPS 7350-01 4 = 44

The interrupt timing shown in Figure 4-15 below assumes that interrupts
have been armed and disabled.

167 ns

——

CYCLE 1

CYCLE 2 CYCLE 3
—_— ———

T3 1 L J— |
EXECUTE INTERRUPT
INSTRUCT ION

1] |
i 1 |
1 1 1
| | i
1 ! 1
1 1 !

FETCH INTERRUPT [NSTRUCTION;
INHIBIT PSA CLOCKS

INTERRUPT
SYNCHRONIZED

0079

Figure 4-15 Interrupt Timing

In summary:

a. Individual interrupts are armed by bits 20 through 23
the PIOP control register (CR). Interrupts occurring while
disarmed are lost.

be. Interrupts are enabled by the ENINT instruction. The
interrupts remain enabled until disabled (DISINT instruction).
Interrupts occurring while disabled are executed normally
when enabled, provided they have been armed previously.

c. The interrupt return address is saved by executing a
JSR instruction in the interrupt location. This JSR saves
the location which would have been executed next had there
been no interrupt.

FPS 7350-01 4 = 45

4.6 COMMUNICATING WITH THE AP

When the AP communicates with the PIOP, the AP first loads a value into
its device register (DA). This value represents the address of the
external device that is to communicate with the AP. Table 4-11 below
lists the device addresses used to communicate with the PIOP, the
instructions that can be used with these addresses, and the function of
the instructions.

Table 4-11 AP Device Instructions

AQDRESS IN AP

DEVICE ADDRESS (DA) AP
REGISTER INSTRUCTION FUNCTION
100 (IO0R) IN gates IOR to IOBUS
T gates IOR from IOBUS
SNSA deposits I[OR into PIOP control buffer
SNSB executes instruction in control

buffer. Instruction remains in
control buffer. PSA increments

101 SNSA 0 - PIOP running
1 - PIOP not running
SNSB resets PIOP
T sets interrupt 3 (AP interrupt of
PIOP - lowest priority interrupt)
NOTE

BUSY gated to IQDROY
in both cases above

110 (FLAG 7) - .

111 (FLAG 6) SNSA reads specified flag
112 (FLAG 5) SNSB clears specified flag
113 (FLAG 4) T sets specified flag
114 (FLAG 3) - -

115 (FLAG 2) - -

116 (FLAG 1) - -
117 (FLAG 9) - -

0080

Two examples of programs that communicate between the AP and the PIOP
are presented in the following paragraphs.

FPS 7350-01 4 - 46

Example 1

In this example, it is assumed that main data memory location 10
contains the following instructiom: PASSB 0; TR ALU,IOR.

LDDA; DB=100 "Load DA to access IOR

LDMA; DB=10 "Get instruction

NOP "Wait

NOP "Wait

OUT; DB=MD "Load PIOP IOR

SNSA "Deposit instruction

SNSB "Execute instruction

IN; DPX<DB; DB=INBS "Read IOR which contains ALU register O

If a START instruction is executed, execution begins at PSA. The

following instruction sequence is illegal:

SETMA or INCMA or DECMA or LDMA
SNSB (in the next instruction)

FPS 7350-01 | 4 - 47

Example 2

"EXAMPLE: CALL PPLOAD (100, 0, 50)

" STORES INTO PIOP PROGRAM SOURCE MEMORY LOCATIONS
" 0,1,+000.,48,49 THE CONTENTS OF AP MAIN DATA

" LOCATIONS 100,101,...,148,149.

"ENTER WITH FOLLOWING S-PAD PARAMETERS:

" NAME NUMBER
APA $EQU 0 "BASE ADDRESS IN AP120B MAIN DATA MEMORY
PPA SEQU 1 "BASE ADDRESS IN PIOP PROGRAM SOURCE MEMORY
N $EQU 2 "WORD COUNT
"LOCAL VARIABLE:
T™P1 $EQU 0 "TEMPORARY
”
PPLOAD: JSR PPWAIT "BE SURE PIOP NOT RUNNING
MOV APA,APA;SETMA "GET FIRST MD WORD
LDSPI TMP1;DB=377 "8 BIT MASK
DEC PPA; "BACK UP ADDR BECAUSE OF PIOP H/W
DPX<0 "CLEAR DPX(0)
AND TMP1,PPA "MASK ADRESS TO 8 BITS
LDSPT TMP1;DB=1400 "CODE FOR ‘JMPA’ COMMAND

OR TMP1,PPA;DPX<DB;DB=SPFN;WRTMAN "FORM “JMPA PPA“ COMMAND
LDSPNL TMP1l;RPSA;BR .+2 "GET PSA OF THIS INSTRUCTION
""BRANCH AROUND NEXT INSTRUCTION

$vaAL 0,0,16,40000 "THIS IS A PIOP ‘TR IOR,PS’ INSTRUCTION
INC TMPL;SETTMA "SETUP TMA TO OUTPUT INSTRUCTION LATER
RDA;LDSPNL TMP1 "SAVE DA
LDDA ;DB=100 "DA TO PIOP I/0 REGISTER
OUT ;DB=DPX "SET IOR TO ‘JMPA PPA’ COMMAND
SNSA "DEPOSIT COMMAND INTO PIOP CTL BUF
SNSB "EXECUTE °“JMPA PPA’ COMMAND
RPSFT ;0UT "SET IOR TO ‘TR IOR,PS’ COMMAND
SNSA "DEPOSIT COMMAND INTO PIOP CTL BUF
INCMA "GET SECOND MD WORD
OUT ;DB=MD "FIRST PIOP WORD TO IOR
LOOP: INCMA; "l. GET NEXT MD WORD
‘ SNSB; " EXECUTE ‘TR IOR,PS’
" PIOP ADDR INCREMENTS ALSO
DEC N " DECREMENT COUNT
OUT; DB=MD; "2. SET IOR TO MD WORD
BGT LOOP " LOOP UNTIL DONE
RETURN ;LDDA ;DB=SPFN;MOV TMP1,TMP1 "RESTORE DA AND EXIT
SEND

FPS 7350-01 4 = 48

CHAPTER 5

ASSEMBLER

5.1 INTRODUCTION

This. chapter describes how to wuse the PIOP assembler for writing
programs and is divided into three major parts:

basics describes the instruction format,
constants, symbols, expressions,
pseudo ops, and op codes

writing describes comments, concatenationm,
programs labels, and errors

using the describes the assembler loading
assembler procedure and also includes sample files

FPS 7350-01

[9)]
]
-

5.2 THE BASICS

The PIOP assembler is referred to as PPAL (PIOP Program Assembly
Language) . This assembler is written in Fortran IV and provides a
powerful tool for developing programs for the ' PIOP. By wusing this
assembler, instructions having many components can be easily encoded.
As an example, . the following instruction has seven component
instructions:

SETMAR ;DISINT ;XORD 0, 1;TR FF,DB;WORD 1;JMPST;SINDS 6

The above instruction expresses the following:
a. read from main data memory
b. disable all interrupts

c. "exclusive-or" register 0 with data on the
data bus and store result in register 1

d. transfer the contents of the FIFO internal
buffer (IFFB) to the data bus

e. format the FIFO transfer as a WORD 1 type

f. jump to the location given by the top of
the LIFO stack if the ALU output is not zero

g. spin until device status bit is 6, then

do an IN transfer

The remainder of this paragraph 1is devoted to a discussion of PPAL
assembler basics and covers such items as: instruction format,
constants, symbols, expressions, pseudo ops, and op codes.

FPS 7350-01 5 - 2

Instruction Format

An instruction consists of an op code and 0-4 operands. The
op code is separated from the operands by one or more spaces;
the operands are separated from each other by commas. There
are no column restrictions.

Example: ADD 1,2

Constants

A constant is a decimal, octal, or hex integer. A number is
octal by default (as in AP code), unless immediately followed
by a point (.) to indicate decimal, or immediately preceded
by an X and a zero (X0) to indicate hex. Note that this
places a restriction on symbols and labels, i.e. they may
not begin with "XO0".

Example: 400 (=256)
400. (=400)
X0400 (=1024)

Symbols

Symbols may contain up to 6 alpha-numeric characters, beginning
with a letter. Symbols represent l6-bit integers.

Example: ADD REG1,REG2

Expressions

Expressions consist of constants and/or symbols separated by
the operators plus (+) and/or minus (=). They are

evaluated left to right, and may begin with a minus. No
parentheses are allowed. A period in the place of a constant
or symbol indicates the current location counter.

Expressions may be used wherever a constant may be used.

Example: -400.+CHECK+IT-X020
o2

FPS 7350-01 5 - 3

PSEUDC OPS

$END

This must be at the end of each program.

$SEQU

This equates a symbol to a 16-bit integer. The symbol
precedes SEQU by one or more spaces; an expression
follows $EQU by one or more spaces. Any symbol used
in THIS expression must have been previously defined.

Example: REG2 SEQU 2
HERE S$EQU .
BIAS $EQU 20.
EXP $EQU 12+4BIAS

$LOC

This changes the current location counter to the value
of the expression following $LOC. The value should not
exceed 255. A label may precede $LOC (WITHOUT a colomn).

Example: HERE SLOC 15
THERE $LOC HERE+10
$LOC .+1

SVAL

This uses one word of the PIOP program source memory,
filling it directly with values provided by the programmer.
A label may precede $VAL (again, no colon with pseudo ops),
and it must be followed by 3 comsecutive expressioms,
separated by commas. The 3 expressions represent the 3
pieces of the 38-bit PS word: the top 10 bits, the

middle 12 bits, and the bottom 16 bits.

Example: $VAL 0,LABEL-1,12.+4+X010
LABEL $VAL .+1,7777,-1

$SUB

This establishes the name of the Fortran subroutine
output (see the section on output). It is not required
when the Fortran output is not desired, and will be

ignored if present. This pseudo—-op can be put anywhere
in the program prior to the S$END statement.

Example: $SUB TEST

FPS 7350-01 5 - 4

OP CODES

Branch Field

0 (nop) -

1 JMPAR -

2 JMPST -

3 JMPA abs. loc.

4 POP -

5 PUSH -

6 RTN -

7 JSR 8-bit disp.

8 BDSC bit #,5-bit disp.

9 BDSS bit #,5-bit disp.

10 BFC bit #,5-bit disp.

11 BFS bit #,5-bit disp.

12 BISC bit #,5-bit disp. (see extended branch mnemonics)
13 BISS bit #,5-bit disp. " " " ")
" 14 BNZST -

15 JMP 8-bit disp.

Extended Branch Mnemonics

Instruction Represents

BFV 5=-bit disp. BISS 0,5-bit disp.
BFF 5-bit disp. BISS 1,5-bit disp.
BFOT 5-bit disp. BISS 2,5-bit disp.
BQOT 5-bit disp. BISS 3,5-bit disp.
BC 5-bit disp. BISS 4,5-bit disp.
BZ 5-bit disp. BISS 5,5-bit disp.
BM S5-bit disp. BISS 6,5-bit disp.
BOVF 5-bit disp. BISS 7,5-bit disp.
BNFV 5-bit disp. BISC 0,5-bit disp.
BNFF 5-bit disp. BISC 1,5~bit dispe.
BNFOT 5-bit disp. BISC 2,5=bit disp.
BNQOT 5-bit disp. BISC 3, 5-bit disp.
BNC 5=bit disp. BISC 4,5-bit disp.
BNZ 5=bit disp. BISC 5,5=bit disp.
BP 5=-bit disp. BISC 6,5~-bit disp.
BNOVF 5-bit disp. BISC 7,5-bit disp.

FPS 7350-01 5 = 5

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

if FIFO data valid
if FIFO full

if R-shift output
if Q-shift output
if carry set

if ALU = 0

if ALU is minus

if overflow =1

Hou
— 2

if FIFO data not valid
if FIFO not full

if R-shift output = 0
if Q-shift output = 0
if ALU carry out is O
if ALU is not zero

if ALU is positive

if ALU overflow = 0

Branch op codes have 0-2 arguments. For branches with
one argument, the argument is either an 8-bit absolute
location or an 8-bit relative displacement, depending on

the op code.

For branches with 2 arguments, the first

is an expression of value 0-7, representing a bit #
or flag # (same field), and the second is a 5-bit
relative displacement biased by 20 (octal).

Example:

RTN
POP

JSR SUBR
JMPA 10

BFS 3,CHOICE
BISS 5,LABEL
BZ LABEL

Control Field

0 (nop)
1 CF

2 RFF

3 AFF

4 SF

S SINT

6 ENINT
7 DISINT
8

9

START
10 HALT
11 PSAB
12 TVCR
13 TVDB
14 TVER

expression

expression
expression
expression
expression

expression
expression
expression

(same as preceding instruction)

15 (set by use of expanded ALU ops)

For the op codes with one argumedt, the argument should be
an expression reducing to either 0-7 (using the bit # field)
or to a 20-bit positive number (using the value field).

Example:

FPS 7350-01

START
SF 3

TVDB 40000.
FLAGL $EQU 1
CF FLAGL

Data Bus Transfer

source dest

0 ALU DB

1 (disp) ER

2 FF FF

3 IOR IOR

4 PSA AR

5 ™ ™

6 CR CR

7 * ™A

* indicates use of the SPEC field
spec

0 PS,IOR

1 1IOR,PS

2 APMA,DB

3 DVCMD,DB

4 APMA,IOR

5 DVCMD, IOR

6 ER,IOR

7 TMA,IOR

These instructions all have the format TR argl,arg2 .

Any single source can be combined with any single destination:
TR src,dest . The operand pairs must be in the given order.
The 8-bit displacement field is used for TR expression,dest

Example: TR ALU,ER
TR M, ™
TR 12,TMA
TR APMA,DB
TR ER, IOR
SYM S$EQU X014
TR SYM+5.,DB

FPS 7350-01 5 =

~J4

I1/0 Fields

1/0 SDSC SDSS SDAV

0 (nop) 0 (nop) 0 (nop) 0 (nop)
1 oUuT - 1 SDSC bit # 1 SDSS bit # 1 SDAV -
2 IN -

3 IORST =

For the op codes requiring an argument, it should be an
expression reducing to 0-7 (using the bit # field).

Example: IN
IORST
SDsSS 5
BIT SEQU 3
SDSC BIT+1
SDAV

Word Field

0 WORD expression

1 WORD expression

2 WORD expression

3 WORD expression

These take the form: WORD arg
where "arg'" is an expression reducing to 0-3.

Example: WORD 2
ONE SEQU 1
HERE $LOC 2
WORD ONE=-.+3

Addr Bus Field

(nop)

SETMAR -
SETMAW -
SETDA =~

LW~ O

There are no arguments.

Example: SETMAR

FPS 7350-01 5 - 8

Alu Macro Field

0 (nop)
1 MOV
2 ADDD
3 ANDD
4 ORD
5 XORD
6
7
8
9

¢ v v v
W ww

PASSD
PASSA
INCB
DECB

10 INCD

11 DECD

12 ADD

13 SUB

14 PASSB

15 PASSQ

IUUUU?IKPPWIDUJI
(o]

ID’??I
W W

For those with one argument, the argument should be
an expression reducing to 0-15. For those with 2
arguments, both should be expressions reducing to
0-15, and A always precedes B.

Example: INCD
REGl $EQU 7
REG2 SEQU 5
INCB REG2
ADD REG1,REG2

FPS 7350-01 5 - 9

Extended ALU Field

func inc shift src dest

0 AD *% * AQ Q
1 SB I N AB NP
2 SR R 2Q A
3 OR A ZB F
4 AN ZA RQ
5 NA DA RF
6 X0 DQ LQ
7 XN DZ LF

* default shift zeroes
** default no increment

The basic op codes may have one or 2 extensions
(increment and shift, in that order if both are
desired), and have 2-4 arguments. The first
argument is src , the second is dest. These
determine the necessity for 0-2 more arguments.
The third argument, if there are only 3, represents
A or B. If there are 4 arguments, they are expressed
in the following order:

func-inc-shift src,dest,A,B
Both A and B should be expressions reducing to 0-15.

Example: AD ZQ,NP
AD 2B,LQ,S5
AD AB,F,3,4
ADN ZB,RF,7
ADI AB,F,8.,9.
ADIR DQ,Q

FPS 7350-01 5 - 10

5.3 WRITING PROGRAMS

Comments

A comment on a line is indicated by a double quote.
Everything following the quote on the same line is
considered a comment.

Example: ADD 1,2 "this is a comment

Concatenation

As with AP code, semi-colons concatenate instructions
within the same Program Source (PS) word. A semi-colon
at the end of a line (preceding any comments) indicates
that the following line is part of the same PS word.

If the following line has only a comment, the line
after that is still part of the same word.

Example: PASSQ; POP; "comment 1
"comment 2
TR ALU,DB
(This is all in the same PS word.)

Labels

A label is followed by a colon (except for pseudo ops).
Another label and colon may follow, ad infinitum.

Any labels must precede any code on the same LINE.

A PS word which uses more than one line may have
labels on each line.

Example:
LABl: LAB2: PASSQ; 'COMMENT
LAB3: POP
(This is all in the same PS word.)

FPS 7350-01 5 - 11

Errors

Errors detected by Pass 1 of the assembler are printed
preceding the regular listing in the following format:

LOCATION n *** error message ***

An error detected during Pass 2 is printed following the
line in which it was detected.

Although an attempt by the programmer to use the same
field more than once within a single PS word is normally
an error, it is permitted in cases where the contents
of that field is the same for all usages within the word.

Example: CF 5; SDSS 5
(Both instructions use the bit # field, but its contents
would be the same for both anyway, so this is legal.)

Example:

PASS 1

LOCATION 0000 #*** INCORRECT LABEL FORMAT *%*
PASS 2

0000 000000 LA#: PASSQ

000360
000000
0001 000000 NOOP
000000 #** ILLEGAL OP-CODE *%*
000000

0002 000002 S$VAL 2,3
000003 #*** MISSING EXPRESSION **%
000000

SEND

*%%% 3 ERRORS #**%%

SYMBOL VALUE

FPS 7350-01 5 - 12

5.4 USING THE ASSEMBLER

When started running, the assembler asks for 3 filenames
(source file, load module file, and listing file,
respectively), for a radix, for the type of listing,

and for the type of load module desired (see below).

The radix refers to the object code and location

counter printed on the listing, and is available

in octal, decimal, or hex. The listing may be a

full listing or an error-omnly listing (for making

small changes in big programs).

OUTPUT: THE LOAD MODULE

There is no linker for the PIOP. All necessary subroutines
must be assembled together. The regular load module outputted
by the PIOP assembler is similar in format to that

outputted by APLINK using the "E" command (i.e. output
suitable for APSIM). The first number in the load

module file is the number of locations to be loaded

(in F4.0 format), up to 256. Each following line

represents one 38-bit PS word, in 3 pieces

(10- , 12- , and 16-bit) in 3F7.0 format.

The alternate format of the PIOP load module is a Fortran
subroutine consisting mainly of data statements (similar
to the "A" command output from APLINK). The PIOP code
becomes a Fortran-callable, self-loading, optionally
self-starting program when used in conjuction with the

AP program PEXEC, which this Fortranm subroutine calls.
See Appendix D for an example.

The parameters of this Fortran subroutine are as follows:

MDADR - AP main data address at which the PIOP code
will be loaded.
PPSA - PIOP program source address at which the PIOP
code will be loaded (if desired).
FLAG - 0 through 3:
0 load into AP only
1 load into AP, thence into PIOP
2 load into AP and PIOP, and start PIOP
running at beginning of loaded routine
3 1load into AP and start channel program
SIZE - number of PIOP words

The call would be:
CALL name (MDADR,PPSA,FLAG,SIZE)

SIZE is an output parameter; the rest are input
parameters. PPSA is not used if FLAG= 0 or 3.

FPS 7350-01 5 - 13

5.5 SAMPLE LISTINGS

The following are samples of: a source file, a listing file, a load
module file, and a Fortran subroutine output.

Sample Source File

SSUB SAMPLE
"
LABO: PASSQ; " COMMENT
LABl: WORD 2 "COMMENT
LAB2: SETMAR; "COMMENT
LAB3: WORD 2; ""COMMENT
LAB4: PASSA 12.,1 "COMMENT
LABS: TR FF,FF; " COMMENT
LAB6: PASSA 12,10.; "COMMENT
LAB7: IORST; "COMMENT
LAB8: SETMAW "COMMENT
JMPA X0AB; "COMMENT
PASSQ "COMMENT
SYM SEQU 10 "COMMENT
$LOC SYM "COMMENT
MOVE SVAL .,2,SYM '"COMMENT
$END

FPS 7350-01 5 - 14

Sample Listing File

PASS 1
PASS 2

$SUB SAMPLE
"

0000 000000 LABO: PASSQ; ""COMMENT
000360 LABl: WORD 2 ""COMMENT
020000

0001 000414 LAB2: SETMAR; ""COMMENT
000560 LAB3: WORD 2; "'COMMENT
020000 LAB4: PASSA 12.,1 '"COMMENT

0002 001012 LABS: TR FF,FF; ""COMMENT
005164 LAB6: PASSA 12,10.; "COMMENT
100030 LAB7: IORST; ""COMMENT

LAB8: SETMAW ""COMMENT

0003 000000 JMPA XO0AB; ""COMMENT
000360 PASSQ ""COMMENT
001653
000010 SYM SEQU 1O ""COMMENT

0010 SLOC SYM "'COMMENT

0010 000010 MOVE $VAL .,2,SYM '"'COMMENT
000002
0ooo010

SEND

*%%% () FRRORS #**%%

SYMBOL VALUE

LABO 000000

LAB1 000000

LAB2 000001

LAB3 000001

LAB4 000001

LABS 000002

LAB6 000002

LAB7 000002

LABS 000002

SYM 000010

MOVE 000010

FPS 7350-01 - 15

Sample

Load Module File

9.
Q.
268.
522.
0.
0.
0.
0.
0.
8.

Sample

240. 8192.
368. 8192.
2676. 32792.
240. 939.
0. 0.
Q. 0.
0. 0.
O. 0.
2. 8.

Fortran Subroutine Qutput

10

20

SUBROUTINE SAMPLE (MDADR,PPSA,FLAG,SIZE)

INTEGER PPSA,FLAG,SIZE,PIECE(3)
REAL CODE (9,3)

DATA CODE(1,1),CODE(1,2),CODE(1,3)/0.,240.,8192./
DATA CODE(2,1),CODE(2,2),CODE(2,3)/268.,368.,8192./
DATA CODE(3,1),CODE(3,2),CODE(3,3)/522.,2676.,32792./
DATA CODE (4,1),CODE (4,2),CODE (4,3)/0.,240.,939./
DATA CODE(5,1),CODE(5,2),CODE (5,3)/0.,0.,0./

DATA CODE(6,1),CODE(6,2),CODE(6,3)/0.,0.,0./

DATA CODE(7,1),CODE(7,2),CODE(7,3)/0.,0.,0./

DATA CODE(8,1),CODE(8,2),CODE(8,3)/0.,0.,0./

DATA CODE(9,1),CODE(9,2),CODE (9,3)/8.,2.,8./
M=MDADR-1

SIZE=9

DO 20 I=1,9

DO 10 J=1,3

PIECE (J)=IPFIX(CODE(I,J))

CALL APDEP (PIECE, 14,M+1)

CONT INUE

IF (FLAG.LE.O .OR. FLAG.GT.3) RETURN

CALL PEXEC (MDADR,PPSA,FLAG,SIZE)

RETURN

END

FPS 7350-01 5 - 16

CHAPTER 6

PROGRAMMABLE I/0 CHANNEL (PIOC)

6.1 INTRODUCTION

The PIOP programmable I/0 channel (PIOC) is a software construct that
permits many I1/0 operations to be carried out by the PIOP without
having to program the PIOP itself. The PIOC allows the AP to process
in parallel with the PIOP and provides a means of communication between
the PIOP and the AP in order to synchronize the processing where
desired. The PIOC also provides for I/0 operations between the AP main
data memory and a device such as a disk controller interfaced to the
PIOP.

The PIOC operates by interpreting a channel command program which
resides in AP main data memory. A channel command program is written
as a series of channel instructions, each of which contains information
about the PIOP operation to be performed and appropriate parameters
needed to carry out the operation. Channel instructions are described
in detail in paragraph 6.2

Two versions of the PIOC interpreter are available from Floating-Point
Systems. The first, referred to as DKPIOC, is used when the PIOP is
interfaced to the Systems Industries SI9500 Disk Controller. The
second, called GPIOC, is a general channel construct, with specific
handshaking conventions that allow the PIOP to communicate with a
variety of extermal devices, such as A/D converters and bulk memories.

The form of the channel command programs and many of the channel
instructions are the same for both versions of the PIOC. Certain
channel instructions may apply to only one or the other of the
versions, or their interpretations may be somewhat different, depending
on the version. Differences, where they exist, will be noted in the
chapter and indicated by "(DKPIOC)" or "(GPIOC)."

The following paragraphs describe the channel command language, give
some programming examples, and describe channel error conditioms.

FPS 7350-01 | 6 - 1

6.2 CHANNEL INSTRUCTIONS

A channel instruction consists of four 38-bit words in the format shown
below in Figure 6-l.

24
1 |

1112 23124 31 33 34 36 37 39

f weoe |/ IR

20 39

V., [~ /5 Z [ARGUMENT |] woro 2
V / // A : ARGUMENT 2] WORD 3
v/ S N | ARGUMENT 3 | woro 4

0cst

Figure 6-1 Channel Instruction Format

The first word of the instruction contains the operation code of the
operation to be performed and three £fields, M1, M2, and M3, which
select the addressing mode for argument 1, argument 2, and argument 3,
respectively. The three arguments occupy the right-most 20 bits of
instruction words 2, 3, and 4.

One of three addressing modes - immediate, normal, or indirect - can be

selected for each of the three arguments. A description of the three
modes is given in Table 6-l.

Table 6~1 Addressing Modes

Ml, M2, or M3 ADDRESS
CO0E MODE OESCRIPTION
Q Immediate Argument contains operand itself.
1 Normal Argument contains address of operand.
2 Indirect Argument contains pointer to address
of operand.

0082

FPS 7350-01 6 - 2

Channel instructions must reside in
by the PIOP channel interpreter.
to by channel instructions are AP ma

AP main data memory to be executed

To illustrate the difference
following example. Suppose we are
locations and contents:

MAIN DATA ADDRESS

Consequently, all addresses referred
in data memory addresses.
in addressing modes, consider the

given the following main data

CONTENTS

100
2000

Suppose argument 1 100. Then
argument 1l depends on the addressing

EL MODE OPERAND 1
0 Immediate 100
1 Normal 2000
2 Indirect 4751

The operand codes determine the PIOP
channel instruction. A 1list of
functions they perform, is given in
included with each code
applicable only to either
indication 1is made next to the
abbreviated: OPl. OP2 = 0Pl + OP2
the sum of operand 1 and the current
all operations such as ADD, SUB, RSH
result in the AP main data memory.
bits (bits 2-19) by these operations

All instructions, even those requi
(e.g., ADD, MOV, etc.), must be
Arguments not needed by an instruct
Since the channel does not use

other programming uses such as tempo

FPS 7350-01

for convenience.
the DKPIOC

2000
4751

the operand used in connected with
mode selected. In particular:

COMMENTS
The argument itself is the operand.

The argument itself contains the
address (100) of the operand.

The argument contains a pointer to
this address (2000) of the operand.

operation to be performed by the
operation codes, together with the
Table 6-2 below. Mnemonics are
Where the operation is
or GPIOC, an appropriate
op code number. Operand 1 1is
means that operand 2 is replaced by
value of operand 2. Remember that
, etce., produce a 20-bit 1integer
Zeros are written into the high 18

L]

ring fewer than three arguments

written in the 4-word format.
ion can contain arbitrary data.
these words, they are available for
rary storage.

Table 6=2

Channel Instruction

Operation Codes

0P CODE MNEMONIC [TITLE FUNCTION
0 ADD Main Data Add QP2 = QP1 + QP2
1 sus Main Data Subtract QP2 = 0P2 - QP1
2 Mov Main Data Move QP2 = 0P1
3 AND Main Data And QP2 = 0Pl and 0P2
) I0R Main Data Or QP2 = OP1 or OP2
5 XOR Main Data Exclusive Or 0P2 = OP1 xor OP2
) RSH Main Data Logical Right Shift | OP2 = OP1 shifted right 1 bit with a 0 in
the most signficant bit.
7 JMPC Conditional Jump 1f OP1 and QP2 # 0, then jump to OP3
(i.e., execute the command instruction
beginning at main data address OP3),
else execute the next sequential instruction.
10 JMP Unconditional Jump Jump to OP3 (i.e., execute the command
instruction beginning at main data
address 0P3).
11 SF Set Flag Set PIOP flag OP1 to 1 (flags O thru 6 can
be used).
12 CF Clear Flag Clear PIOP flag OP1 to O (flags O thru 6 can
be used).
13 WFS Wait On Flag Set PIOP waits until flag OP1 is set to 1 by
the AP (flags O thru 6 can be used).
14 HALT Halt Channel Stops PIOP execution.
15 READ Cisk Read Transfer a block of OP1 38-bit words from
(okpP10C) the disk, beginning at logical record number
0P2 through the PIOP to AP main data memory,
beginning at address OP3.
16 WRITE Disk Write Transfer a block of QP1 38-bit words from
(pkp10C) AP main data memory, beginning at address
0P3, through the PIQP to the disk, beginning
at logical record number OP2.
17 INIT 300 Disk Initialization Define the physical parameters of the disk
(oxp10C) (300 M8) corresponding to logical record number Q.
The disk formatter control register is set
to OP1. The port and cylinder numbers are
set by OP2, and the head and sector numbers
are set by OP3. (Refer to paragraph 6.4 for
details of the bit meanings.) INIT 300 must
be executed prior to any READ or WRITE command
on a 300 megabyte disk.
20 INIT 80 Disk Initialization Same as above except for an 80 megabyte disk.
(DKPIOC) (80 M8B)
21 SEEK Disk Seek Causes the disk to be positioned to the
(okp1OC) port/cylinder address set in OP1.
22 FORMAT Disk Data Format Defines the data format for transfer of data
(okp10C) to/from the disk where the format type and
number is specified in OP1. The four possible
format types are listed in Table 6-3.
23 ROREG Read Register Read disk register specified by OP1 into
(okp1OC)) address 0P2
OP1 = 0 = disk control register
20 = data buffer
100 = port/cylinder register
140 = seek status register
200 = word count register
220 = commuynication reg. {dual CPU)
240 = error register
300 = head/sector register
340 = seek address register
24 WRTREG Write Register Write OP2 to the disk register specified
(oKPIOC) by OP1.

FPS 7350-01

0083

A convention used with the AP to describe a 38-bit word is to break the
word into three pieces as follows:

BITS NAME
2-11 exponent
12-23 high mantissa
24=39 low mantissa

Thus, if in the first word of a channel instruction the op code = 7, Ml
=2, M2 = 0, and M3 = 1, then this word could be expressed as

7, 0, 201
If, in the second word of a channel instruction, argument 1 = 1234,
then this would be written as

0, 0, 1234

This convention is wused in writing channel programs in the following
chapters.

FPS 7350-01 6 - 5

6.3 WRITING CHANNEL COMMAND PROGRAMS

A channel command program consists of a series of channel instructions
which must be loaded into AP main data memory in order to be executed
by the PIOP. Normally, the command program will occupy a block of
consecutive words in main data memory. Channel instructions are
executed sequentially, except where jump instructions (JMP, JMPC) are
involved. A channel program can be started by a call to PCGO either
from the Fortran level, i.e., call PCGO, or from APAL, i.e., JSR PCGO.
A command program is normally stopped by executing a channel HALT
instruction (op code 14), although certain error conditions such as an
improper op code, or a disk hardware error, can cause the channel

program to halt prematurely. Such conditions are described in Chapter
6.6

Consider a simple example to illustrate the way that channel command
programs are structured.

Example 1

Suppose that we want to use the PIOP to add the integer values in the
right-most 20 bits of AP main data locations 100g through 1058 and
store the results in location 200g. (Obviously, this can be done more
efficiently with AP instructions, but we’re illustrating the PIOC.)

The major steps to be performed are:

l. initialize the sum to zero

2. add a 20-bit value to the sum

3. update pointer to next value

4. decrement count

5. if count not zero, go back to step 2
6. store result :

7. halt

Let us now write a channel program for the PIOP to add these numbers.
Let the program reside in main data, beginning at location 0 (although
any location would do).

FPS 7350-01 6 - 6

STEP AD INSTRUCTION COMMENT

1. 0 1,0,000 Clears location 2 by subtracting location
1 0,0,0 2 from itself. Contents of 1, 2 and 3 are
2 0,0,0 arbitrary. Location 2 will be used as
3 0,0,0 the sum. :
2. 4 0,0,110 Adds the contents of the word pointed to
5 0,0,100 by MD5 (initially 100) to the sum in
6 0,0,2 MD2. Contents of MD7 are arbitrary. MD5
7 0,0,0 will be incremented on each pass through
the loop.
3. 10 0,0,010 Adds 1 to the address pointer, MDS5.
11 0,0,1 Contents of MD13 are arbitrary.
12 0,0,5
13 0,0,0
4o 14 1,0,000 Decrement the loop counter, MD16
15 0,0,1 which was initially 6.
16 0,0,6
17 0,0,0
Se 20 7,0,010 Test (by means of a logical AND) if
21 0,0,7 counter MD16 is zero. If not, go back
22 0,0,16 to step 2, MD4. If zero, then proceed
23 0,0,4 to step 6, MD24.
6. 24 2,0,110 Store the sum in locatiom 200.
25 0,0,2
26 0, 0,200
27 0,0,0
7 30 14,0,0 Halt the PIOP. Contents of MD31,
31 0,0,0 32, 33 are arbitrary.
32 0,0,0
33 0,0,0

As an aid in writing channel programs, the PPAL assembler can be used.
Mnemonics can be defined to identify op codes, addresses, and
constants, making the program more readable. In addition, the PPAL
assembler provides a Fortran program output £for the channel program
that can be called at runtime to load the channel program into AP main
data, beginning at a specified address. (Refer to the PIOP assembler,
Chapter 5.) A PPAL program for the above example is shown in Figure
6-2.

FPS 7350-01 6 - 7

$SUB EXAMP1

" === ABSTRACT ===
"THIS PIOP CHANNEL PROGRAM ADDS THE INTEGER VALUES IN THE RIGHTMOST
"20-BITS OF AP MAIN DATA LOCATIONS 100 THROUGH 105 (OCTAL) AND STORES
"THE SUM IN LOCATION 200 (OCTAL).

"

"DEFINE THE OP CODES BY MNEMONICS:

ADD S$EQU O
SUB SEQU 1
MOV $EQU 2
JMPC SEQU 7

HALT SEQU 14

"

"THE CHANNEL PROGRAM EXPECTS TO BE LOADED BEGINNING AT MD ADDRESS O,
"BUT THAT CAN BE CHANGED BY EDITING THE VALUE FOR OFFSET BELOW AND

"REASSEMBLING."
OFFSET $EQU

0

"DEFINE DATA ADDRESSES:

MDA SEQU
. RESULT $EQU
"DEFINE CONSTANTS:
ONE $SEQU
N SEQU
ZMASK SEQU
"ADDRESSING MODES:
MO00 $EQU
MO10 $EQU
M110 SEQU
"
"THE PROGRAM CAN BE
"FOLLOWING:

" ’

" .

" CALL EXAMP1(0,0,3,I)

" ’

" ’

Figure 6-2

FPS 7350-01

100
200

1
6
7

0
10
110

"MD ADDRESS FOR FIRST WORD OF CHANNEL
""PROGRAM

"ADDRESS OF FIRST DATA WORD
"ADDRESS FOR RESULT

"USED FOR INCREMENT /DECREMENT
"WORD COUNT
"™MASK FOR COUNTER

"MODE M1=0, M2=0, M3=0
"MODE M1=0, M2=l, M3=0
"MODE Ml=1, M2=1, M3=0

LOADED INTO MD FROM FORTRAN AND STARTED BY THE

" CALL GPIOC(1000,0,1,I) / LOADS PIOC INTERPRETER (COULD BE DKPIOC)

/ LOADS CHANNEL PROGRAM BEGINNING AT
/ MDO AND BEGINS EXECUTION

Channel Program Example 1

EXAMP1

SUM

n

"THIS IS THE

LOOP

MDPTR

"

SVAL
SVAL
$VAL
$VAL

"

SVAL
SVAL
$SEQU
SVAL
SVAL

CIR

$VAL JMPC,0,MO010
$VAL
$VAL
SVAL

n

SVAL MO
$VAL
SVAL
SVAL

n

$VAL
SVAL
SVAL
SVAL

1)

""HERE BEGINS
\J

SVAL
SVAL
SEQU
$VAL
SVAL

SEQU
SVAL
SEQU
$VAL
$VAL
SVAL

0,0,0

0,0,0
0,0,0

0,0,MDA
0,0,SUM
0,0,0

0,0, ONE

0,0,0

0, 0,0NE

0,0,N
0,0,0

$END

FPS 7350-01

Figure 6-2

suB, 0,M000

«+0FFSET

«+OFFSET
ADD, O,M110
«+tOFFSET

ADD, 0,M010

0,0,MDPTR

sus, 0,MC00

« +0OFFSET

THE CHANNEL PROGRAM:

"lo

"

"2'

"

ll3.

"4

"6.

"7.

CLEARS LOCATION USED FOR SUM

NEXT LOCATION IS USED FOR SUM

BEGINNING OF THE CHANNEL PROGRAM LOOP

ADDS VALUE TO SUM
NEXT LOCATION POINTS TO DATA

UPDATES POINTER TO DAT:

DECREMENT COUNTER

NEXT LOCATION IS USED AS COUNTER

BRANCH BACK TO LOOP
IF NOT DONE

STORE THE SUM

HALT THE PIOP

"END OF PROGRAM

Channel Program Example 1 (cont.)

6.4 ACCESSING DISK DATA USING DKPIOC

Physically, the data on a disk 1is 1located through the PIOP disk
interface by specifying a port, cylinder, head, and sector address.
One sector contains 256 l6-bit words.

The DKPIOC interpreter allows the user to access the disk by means of
"logical records", where omne logical record is defined to be 256 AP
words. Prior to read/write calls to the disk, the user specifies the
port, cylinder, head, and sector which will be called logical record O
for subsequent reads and writes. In a channel program this is done by
means of the disk initialization instructiom (INIT 80 or INIT 300).
The instruction used depends on whether an 80 megabyte (CDC 9762) or
300 megabyte disk (CDC 9766) is being used. INIT 80 can be used for a
40 megabyte disk (CDC 9760) and INIT 300 for a 150 megabyte disk (CDC
9764).

Prior to read/write calls, the user specifies 1 of 4 formats by which
data is to be transferred between the disk and the AP main data memory.
In a channel program, this is done by means of a formatting instruction
(FORMAT). The four possible formats are summarized in Table 6-3. Note
that one logical record occupies one disk sector in format O, three
disk sectors in format 1, and two disk sectors in formats 2 and 3.

Logical records are defined relative to the most recent record 0
initialization. For example, if format type 1 is specified and if
logical record 0 is defined as disk port 1, cylinder 4, head 2, sector
3, then logical record 1 refers to port 1, cylinder 4, head 2, sector
6.

Table 6=3 Disk Data Format Types

DISK WORDS
TYPE NAME PER AP WORD DESCRIPTION
0 16-bit 1 Only the low mantissa 16 bits of MO
(bits 24-39) is transferred to the di:<.
1 38-bit 3 The 38-bit AP word is transferred to
the disk in three parts:
a. low mantissa (bits 24-39)
b. high mantissa (bits 12-23)
c. exponent (bits 2-11)

2 32-bit 2 The mantissa of the AP word is trunca:zd
truncated and the remaining 32 bits transferred
mantissa in two parts:

a. low word (bits 18-33)
b. high word (bits 2-17)

3 32-bit 2 The exponent of the AP word is trunca:zd
truncated and the remaining 32 bits transferrec
exponent in two parts:

a. low word (bits 24-39)
b. high word (bits 8-23)

3283

FPS 7350-01 6 - 10

The INIT 80 or INIT 300 instruction requires that contents be specified
for three 16-bit disk formatter registers as follows: (Bits here are
numbered 15 to 0, left-to-right. Unspecified bits are not used.)

Disk formatter control register:
Bit 3 = verify

9 - format enable
11l - strobe late

12 - strobe early
13 - offset -
14 - offset +

Port/cylinder address register:

9-0 = cylinder number
(0-410 1if CDC 9760 or 9764)
(0-822 if CDC 9762 or 9766)

Head/sector address register:

Bits 9=5 - head number
(0~4 if CDC 9760 or 9762)
(0-18 if CDC 9764 or 9766)

4=0 - sector number (0-31)
Generally, all control register bits can be set to zero. Thus, to
initialize logical record O to port 1, cylinder &4, head 2, sector 3,

the channel instruction for an 80 megabyte disk is:

1

-

4, 0, O
0, 0, 0
0, 0, 2
0, 0, 1

L]

FPS 7350-01 6 - 11

6.5 AP /PIOP PROCESS SYNCHRONIZATION

It is important to remember that the AP and the PIOP can run in
parallel. A common requirement using this capability is evident when
the PIOP is bringing new data from a device such as a disk into AP main
data memory while the AP is processing data previously transferred from
the device. For processes such as this, the eight PIOP communication
flags provide a convenient means of synchronization of AP and PIOP
processing.

To illustrate a synchronized process between the AP and the PIOP,
consider the following example:

Example 2

Suppose that 100 blocks of floating point data, each 1024 38-bit words
long, reside on an 80 megabyte disk, beginning at port 1, cylinder 7,
head 3, sector 2. We want to do a real to complex FFT on each block
and accumulate the auto-spectrum of all blocks. In the interest of
speed, the data transfer and the computation should be overlapped,
thus, we should double buffer the data in main data memory.

Calling the two data buffers in main data memory A and B, and calling
two PIOP flags AFLAG and BFLAG, we can conceive of the two processes as
follows:

PIOP Process AP Process
Sets AFLAG, BFLAG Start DKPIOC
Initialize pointers, etc.
PPLOOP: Wait until AFLAG set Initialize block counter

Read into buffer A
Clear AFLAG APLOOP: Wait until AFLAG clear
Wait until BFLAG set Process buffer A
Read into buffer B Set AFLAG
Clear BFLAG Wait until BFLAG clear
Go to PPLOOP Process buffer B

Set BFLAG

Decrement count
Go to APLOOP if not zero
If done, turn off PIOP

A channel program to perform the PIOP double buffering process is shown
below in Figure 6-3.

FPS 7350-01 6 - 12

SSUB EXAMP2
"
" ——— ABSTRACT -—-
"THIS PIOP CHANNEL PROGRAM READS BLOCKS OF N 38-BIT WORDS FROM AN 80-MEGABYTE
"DISK AND ALTERNATELY PUTS THEM IN TWO DIFFERENT BUFFERS IN AP MAIN DATA
'""MEMORY. THE READS BEGIN FROM LOGICAL RECORD O.
"
"FOR PURPOSES OF ILLUSTRATION:
" N = 1024
" FWA BUFF A = 2048
"o ‘ B = 4096

"

" AND LOGICAL RECORD O IS DEFINED AS PORT 1, CYLINDER 7, HEAD 3, SECTOR 2.
"

" FORMAT 1 IS USED (38-BIT DATA TRANSFER AS 3 WORDS: LOW MANTISSA, HIGH
" MANTISSA, AND EXPONENT).

”

"9 MAIN DATA LOCATIONS IMMEDIATELY FOLLOWING THE BODY OF THE CHANNEL PROGRAM
"ARE INITIALIZED TO REFLECT THESE VALUES, BUT THEY COULD BE EASILY MODIFIED
"AS A GROUP FROM ANOTHER AP PROGRAM (OR APPUT) PRIOR TO CALLING THE CHANNEL
"PROGRAM.

"

""THE CHANNEL PROGRAM EXPECTS TO BE LOADED BEGINNING AT MD ADDRESS 64., BUT
"THAT CAN BE CHANGED BY EDITING THE VALUE FOR OFFSET BELOW AND REASSEMBLING
"THE PROGRAM WITH PPAL.

”

OFFSET SEQU 64. ""™MD ADDRESS FOR FIRST WORD OF CHANNEL PROGRAM
7"
"FOR COMMUNICATION WITH THE AP, PIOP FLAGS O AND 1 ARE USED.
AFLAG $EQU O
BFLAG SEQU 1
"AFLAG IS CLEARED BY THE CHANNEL PROGRAM TO INDICATE DATA HAS BEEN READ
"INTO BUFFER A. THE CHANNEL PROGRAM EXPECTS AFLAG TO BE SET BY THE AP
"WHEN PROCESSING ON BUFFER A IS COMPLETE AND READY FOR NEW DATA TO BE
"LOADED INTO BUFFER A. BFLAG IS USED SIMILARLY WITH RESPECT TO BUFFER B.

1"

"THE CHANNEL PROGRAM WILL CONTINUE UNTIL STOPPED BY THE AP, E.G. BY JSR PPRS.

"

'"MNEMONICS FOR CHANNEL OP CODES:

ADD $EQU 0 ""ADD

SUB SEQU 1 ""SUBTRACT

JMP SEQU 10 "JUMP

SF SEQU 11 ""SET FLAG

CF $EQU 12 ""CLEAR FLAG

WFS $EQU 13 "WAIT UNTIL FLAG SET

HALT SEQU 14 "PIOP HALT

READ SEQU 15 "DISK READ

INIT80 $SEQU 20 "DISK INITIALIZE LOGICAL RECORD O

FORMAT SEQU 22 "FORMAT DATA
""CONSTANTS FOR ADDRESSING MODES

MO000 $SEQU O "MODE M1=0, M2=0, M3=0

M100 SEQU 100 '""MODE M1l=1, M2=0, M3=0

M110 $EQU 110 '""MODE M1=l, M2=1, M3=0

M111 SEQU 111 '""MODE M1l=1, M2=1, M3=l

"

Figure 6-3 Channel Program Example 2

FPS 7350-01 6 - 13

"HERE BEGINS THE CHANNEL PROGRAM

1

EXAMP2 SVAL S
SVAL O
SVAL O
SVAL 0O

¥, 0,000 "INITIALLY SET AFLAG
0,AFLAG
0
0

v v e

»0
, 0
$VAL SF,0,M000 "INITIALLY SET BFLAG
$VAL 0,0,BFLAG

$VAL 0,0,0
$vVAL 0,0,0

SVAL FORMAT, 0,100 "SPECIFY DATA FORMAT TYPE
$VAL FMT,O0,0
$VAL 0,0,0

0,0,0

SVAL

" B
$VAL INIT80,0,M1LL "INITIALIZE DISK PARAMETERS
$VAL 0,0,CR "FOR LOGICAL RECORD 0
$VAL 0,0,PC
$VAL 0,0,HS

"
$VAL SUB,0,M110 "START READING AT RECORD O
$vAL 0,0,LR
$vaL 0,0,IR
$vaL 0,0,0

"

"HERE BEGINS THE LOOP TO READ INTO BUFFERS A AND B

1"

PPLOOP S$EQU .+QFFSET
$VAL WFS, 0,M000 "WAIT FOR AFLAG TO BE SET BY AP
$§VAL 0,0,AFLAG

b4
$VAL 0,0,0
$VAL 0,0,0
1 4
SVAL READ,Q,M111 "READ ¥ WORDS FROM DISK TO BUFFER A
$VAL 0,0,)
$VAL 0,0,LR
SVAL 0,0,A
"
$§VAL CF, 0,M000 "CLEAR AFLAG
$VAL 0,0,AFLAG
$val 0,0,0
$VAL 0,0,0
1
SVAL ADD,O,M110 "UPDATE LOGICAL RECORD NUMBER
$VAL 0,0,LRINC
$VAL 0,0,IR
$§VAL 0,0,0
"
-$VAL WFS, 0,M000 "WAIT FOR BFLAG TO BE SET BY AP
$VAL 0,0,BFLAG
$vaL 0,0,0
$VAL 0,0,0
1
SVAL READ,OQ,M111 "READ N WORDS INTO BUFFER B
$vaL 0,0,N
$VAL 0,Q,LR
$VAL 0,0,3

"

Figure 6-=3 Channel Program Example 2 (cont.)
FPS 7350-01 6 = 14

SVAL
$VAL
$VAL
$VAL

SVAL
SVAL
SVAL
SVAL

$VAL
SVAL
$VAL
$VAL

CF,0,M000
0, 0,BFLAG
0,0,0
0,0,0

ADD,O,M110

"PARAMETER STORAGE:

A SEQU .+OFFSET
$VAL 0,0,2048.

1)

B SEQU .+OFFSET
$VAL 0,0,4096.

17"

N SEQU .+OFFSET
SVAL 0,0,1024.

"

FMT SEQU .+OFFSET
SVAL 0,0,1

"

CR SEQU .+OFFSET
$VAL 0,0,0

1"

PC SEQU .+OFFSET
$VAL 0,0,2007

"

HS $SEQU .+4OFFSET
SVAL 0,0,142

"

LRINC $EQU .+OFFSET
$VAL 0,0,4

"

LR SEQU .+0FFSET
$VAL 0,0,0

1"

"
SEND
Figure 6-3

FPS 7350-01

""CLEAR BFLAG

""UPDATE LOGICAL RECORD NUMBER

"GO BACK TO BEGINNING OF LOOP

"ADDRESS OF BUFFER A

"ADDRESS OF BUFFER B

"WORD COUNT

"FORMAT TYPE 1 (38-BITS, 3 PARTS)
"DISK CONTROL REGISTER WORD
"PORT 1, CYLINDER 7

""HEAD 3, SECTOR 2

""RECORDS PER DATA BLOCK

"CURRENT LOGICAL RECORD NUMBER

"END OF CHANNEL PROGRAM

Channel Program Example 2 (cont.)

6.6 PIOC ERROR CONDITIONS

The PIOC wuses eight consecutive main data locations to hold status
information about the channel program performance. Following
termination of the channel program, the user can examine the contents
of these words to determine whether the program was successfully
completed or whether the channel program was abnormally terminated.
The channel program is normally started by using the AP subroutine
PCGO, which can be called either from Fortran or from the APAL program.
Calling parameters for PCGO are, 1) the starting address of the channel
program, and, 2) the first word address of the 8-word status buffer.
The first word of the status buffer contains a 0 if the channel program
was successfully completed, otherwise the first word contains the main
data address of the channel instruction whether the error occurred.
If a channel error occurs, status buffer words two through eight
contain information relating to the particular error. For example, if
a disk hardware error occurs using DKPIOC, then the following
information is stored in the status buffer:

word 1 Address of channel instruction where error occurred

word 2 Disk controller error register

word 3 Disk controller seek status register

word 4 Disk controller port/cylinder register

word 5 Disk controller head/sector register

word 6 Disk controller control register

word 7 Disk word count

word 8 Reserved for future use

Conditions which can cause a channel program to terminate abnormally
are:

a. Illegal op code

b. Disk hardware error (DKPIOC) or drive not
connected (open cable)

FPS 7350-01 6 - 16

CHAPTER 7

FORTRAN OPERATIONS

7.1 INTRODUCTION

There are a number of Fortran level calls that are available for use
with the PIOP. These calls can be used for communication with: the
PIOP, the AP disk, or the PIOP disk channel.

The available Fortran calls are listed in Table 7-l. In addition, a
description of each call is presented later in this chapter.

Table 7-1 Fortran Calls

FORTRAN
GENERAL PURPOSE CALL DESCRIPTION
COMMUNICATION PPLOAD Load PIOP from AP-120 main data memory.
WITH PLOP PPGO Start PIOP.
PPRS Reset PIOP.
PPSTAT Get PIOP run/halt status.
PPWAIT Wait for PIOP to halt.
PPFRD Read a PIOP flag from the AP-120.
PPFSET Set a PIOP flag from the AP-120.
PPFCLR Clear a PIOP flag from the AP-120.
COMMUNICATION INPPOK Initialize PIOP disk parameters.
WITH AP DISK ROPPDK Read data from PIOP disk to AP-120
main data memory.
WRPPDK Write data from AP-120 main data
memory to PIOP disk.
WROPPD Write data to, and then read data
from, the PIOP disk.
COMMUNICATION PCGO Start PIOP channel program.
g;InNEEOP DIsK PCSTAT §et PIOP channel error status.
OTHER PEXEC PIOP executive loader.

0089

FPS 7350-01 7 - 1

The PIOP assembly code programs are identified by subroutine name. The
assembler produces a Fortran subroutine of that name which contains the
38-bit PIOP instruction words in DATA statements. The subroutine is

called at run time with a parameter that causes one of the following
actions to occur: :

a. The 38-bit instruction words are loaded into the
AP main data memory.

b. The 38-bit instruction words are loaded into the
PIOP program memory through the AP main data memory.

c. The 38-bit instruction words are loaded into PIOP
program memory and the PIOP begins execution of
the loaded instructions (that is, load and go).

d. If the 38-bit instruction words constitute a
channel program, then the words are loaded into
the AP main data memory and start the PIOC
interpreter (previously loaded into the PIOP)
to execute the loaded channel program (that is,
load channel and go).

When using Fortran level calls that communicate with the AP disk, the
calls execute through DKPIOC (the PIOP disk channel interpreter). This
is loaded into the PIOP from the Fortran level by calling DKPIOC.
(Refer to item c. above.)

Error informationm for the PIOP channel is returned in an 8-word channel
status buffer in the AP main data memory. This error information is
listed in Table 7-2:

Table 7-=2 Error Information

WORD ERROR INFORMATION
0 word = 0 if channel operation was successfully
completed.

Word = address in channel program of operation
being attempted when error occurred.

1 Disk controller error register.

2 Disk controller seek status register.

3 Disk controller port/cylinder address register.
4 Disk controller head/sector address register.
5 Disk controller control register.

[Word count register.

7 Reserved for future use.

0254
FPS 7350-01 7 - 2

7.2 FORTRAN CALLS

A description of each of the 15 available PIOP Fortran calls is
presented in subsequent paragraphs. The description of each call
follows the same format which contains the following information:

PURPOSE:

FORTRAN CALL:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

EXECUTION TIME:

PROGRAM SIZE:

APAL CALL:

SCRATCH:

EXTERNALS:
In addition to the Fortran calls, examples of Fortran subroutines
created by the PIOP assembler are presented in paragraph 7.3.

A description of the conventions wused in the calls is presented in
Chapter 3 of the Math Library Manual (FPS 7288-03).

FPS 7350-01 7 - 3

7.2.1 LOAD PIOP FROM AP MD (PPLOAD)

PURPCSE:

FORTRAN CALL:

PARAMETERS: A = Source vector base adcress (AP MD)

C = Destination vector base acdress
(PIOP PS)

N = EtLtement count

FORMULAZ Ctm) = A(m) for m=0 to N-1

CESCRIPTION: Moves N 38-bit words oeginning at AF main cata
agoress A to PIQOP program scurce memory oeginning at
aadress Ce

EXAMPLE S CALL PPLOAD(1390G¢53)
Stores into P10OP program socurce memory lLocations
Osleeoecesd8949 the PISP program stored in AP main
data Locations 100e1C0lveaesld859145,.

EXECUTION BEST TYPICAL w0ORST SETUP(tus)

TIME/LOQF: 0e3 0e3 Je2 47 (1587 ns memory)

(us) 0e3 0e3 Ce3 447 (233 ns memory)
PROGRAM SIZE: 32 (167 ns memory)
(AP wordgs) 32 (333 ns memory)

APAL CALL: JSR PPLQOAD

SCRATCH: SP(0=2914415)+CPX(C)eMD

EXTERNALS: PPWAIT

FPS 7350-01 7 = 4

Tc Loac the PIOP program source memaory
from the AP=-1238 main data memorye.

CALL PPLOADU(ASCeN)

7.2.2 START PIOP (PPGO)

PURPCSE: To start the PICP runninge.
FORTRAN CALL: CALL PPGOC(A)

PARAMETERSS A = PIOP program starting acdress
(PIQP PS)

FCRMULAZ ' NZA

CESCRIPTION: Starts the PIOP running beginning at PIOP progran
sgurce address A. This routine assumes that tne program
has been loaded previously (see PFLGAT).

EXAMPLE: CALL PPLOAD(100410+30)
CALL PPGO(13)
A 32-word PIOP procram is (caded from AP main data
memory Locations 100+101lseee918849143 into PICF orogram
memcry Locations 1CesllseeeeS8959 by PPLCALS FPPGC then
causes the PICP to start executinc the programe teginning
at PIOP program Location 12

EXECUTION BEST TYRPICAL *ORST SETUP(uUS)

TIME: 347 Je7 37 N/A (167 ns wmemory)
(us) 3e7 37 3e7 N/ZA (333 ns memory)

PROGRAM SIZE: 22 (167 ns memory}
{AP worcs) 22 (223 ns memory)

APAL CALL: JSR PPGQO

SCRATCH: SP(3s1941441S),0PX(T)

EXTERNALS: PPWAIT

FPS 7350-01 7 - 5

7.2.3 RESET PIOP (PPRS)

PURPQSE: To reset the PICGP.

FORTRAN CALL: CALL PPRS

PARAMETERS: N/ZA

FORMULAL N/A

DESCRIPTION: Stops the PIOPe clears the PIOP interruptss and
issues a reset command to the intertface between
the PIOP and the external device.

EXAMPLE: CALL PPRS
Stops the PIQOPe clears the FIGP interruptse and
issues a reset commanc toc the interface between
the PIOP and the external cevice.

EXECUTION SEST TYPICAL wORST SETUP(us)

TIME: a7 0e7 0e7 NZA (167 ns memary)

(us) Je7 Ca7 Ce7 N/ZA (333 ns memaryi}
PROGRAM SIZE: ¢4 (167 ns memory}
(AP woras) 4 (333 ns memory)

APAL CALL: JSR PPRS

SCRATCH: SP(3)

EXTERNALS: None

FPS 7350-01 7 - 6

7.2.4 GET PIOP STATUS (PPSTAT)

PURPOSE: To test the run/halt status of the PICF.
FORTRAN CALL: CALL PPSTAT
PARAMETERS: N/A

FOxMuULAS SP(15) = if PIOF running

1
0 if PICP halted

CESCRIPTION: Tests the run/halt status of the PICGP. 1If the
PI10P is runnings SP(15) is set to 1. I1f the PIJP 13
not runninge 3P(13) is set to 2.

EXAMPLE S CALL PPSTAT
CALL APCHK(I)
The run/halt status of the FIQP is tested by FFSTAT,
The status is returned in integer variable I Ty APCHK.
If the PICP was runnings I=1le otherwise I=C.

EXECUTION BEST TYPICAL WORST SETUP(us)

TIME: le0 1.8 1a8 N/ZA (167 ns memory)
(us? 1.0 le0 l1e3 NZA {333 ns memory)

PROGRAM SIZE: & (167 ns memcry)
(AP Worcs) é (333 ns memory)

AFAL CALL: JSR PPSTAT

SCRATCH: SP(14)

gXTERNALS: None

FPS 7350-01 7 - 7

7.2.5 WAIT FOR PIOP (PPWAIT)

PURPOSE:
FGRTRAN CALL:
PARAMETERS:
FORMULA®

DESCRIPTIONS

EXAMPLES

EXECUTION

TIME:
(us?

PROGRAM SIZE:
(AP woras)

APAL CALL?:
SCRATCH:
EATERNALS:

FPS 7350-01

To wait for the PICP to halte
CALL PPWAIT

N/ A&

N/ A

Waits until the PIOP has haltede This routine
should pe followed oy a call to APYR.

CALL PPwAIT

CALL APWR

PP%AIT waits until the PIJFP has halted betore continuinge.
APWR waits until the AP12CZ2 has halted cefore continuinge

BEST TYPICAL 4CRST SETUP (us)
He #t Bett He# N/ A (17 ns memary)
ot ek Belt N/ A (233 ns memory)

(Execution time derends on «hen the PIGP haltse. The
routine is completed within 2.5 us after the PIQP

haltse)

1¢ {167 ns memory)
10 (333 ns memory)

Y A A . D WP G G TR D WD W D ED WP D S D D WD GRS G D WS WP WA R D G WL WD - -

JSR PPWAIT
SP(14413)
PPSTAT

7.2.6 READ PIOP FLAG FROM AP (PPFRD)

PURPQOSE: To read one of the eight PIOFP communication flags
from the AF.

FORTRAN CALL: CALL PPFRO(N)
PARAMETERS: N = PIOP flag number () to 7)

FORMULAZ SP(1S) = PICP FLAG (N) «here N is from 2 ta 7
and the flag value is either 0 or 1

DESCRIPTION: Causes the AP to read the value ot PIOF
communication flag Ns and out the value intc SP(15).
The value reac will be either 9 or 1.

Any of the 8 FIOP communication flags can oe sets
clearedy or read from either the AP or the PICPe.

EXAMPLE:: CALL PPFRE(4)
CALL APCHK(CI)
The value of PIOP flag 4 is put into SF(i5) by
PPFRDe AFCHK then puts the value into integer
variable ls which will be 1 if the flac was sety
9 if the flag was clearede.

EXECUTION SEST TYPICAL WORST SETUP(uUsS)

TIME: le2 1.2 1.2 N7 A (167 ns memcry)
(us) le2 le2 12 N/ A (333 ns memory)

PROGRAM SIZE: 7 (167 ns memory)
(AP words) 7 (333 ns memory}

APAL CALL: JSR PPFRD

SCRATCH: SP(144153)

EXTERNALS: None

FPS 7350-01 7 - 9

7.2.7 SET PIOP FLAG FROM AP (PPFSET)

PURPOSE:

FORTRAN CALL:

To set one ¢f the eight PIJP communication flags
from the APe.

CALL PPFSET(N)

PARAMETERS: N = PIOP flag numoer (2 to 7)
FORMULA?Z PI0OFP FLAG (N) = 1 where N is from ¢ to 7
DESCRIPTICON: Causes the AP to set the wvalue of PICOP
communication flag number N to le where
N must be from 0 to 7.
Any ot tne 8 PICP communicaticn flags can pe sety
cleareds or read from either the AP or the PICPe.
EXAMPLE: - CALL PPFSET(4)
The value of PIQgP flag 4 is set to 1 by the AF,
EXECUTION BEST TYPICAL WORST SETUP(us)
TIME: 0.8 0.8 Ce8 N/ZA (17 ns memoryl
(us)? 0e8 Jed 0e8 N/A (333 ns memory)
PROGRAM SIZE: 5 (167 ns memory)
(AP «o0ords) S {333 ns memory)
APAL CALL: JSR PPFSET
SCRATCH: SP(14415)
EXTERNALS: None

FPS 7350-01

7.2.8 CLEAR PIOP FLAG FROM AP (PPFCLR)

PURPOSE: To clear cne of the eight PIOP communication flagse

FORTRAN CALL: CALL PPFCLR((N)

PARAMETERS: N = PICP flag number (C to 7)

FORMULA: PIOP FLAG (N) = 0 where N is from ¢ to 7

CESCRIPTICON: Causes the AP to clear the value of PIOP
communication flag number N to (s where

N must pe from 0 to 7.

Any of the 8 PIOP communication flags can be sets
cleareds or reac from either the AP or the PIGP.

EXAMPLE: CALL PFFCLR(4)
The value of PIOP flag 4 is cleared tc 0 oy
the APe
EXECUTION BEST TYPICAL WORST SETUP (us)
TIME: 0.8 0«8 .8 N/ZA (167 ns memory)
{us) 0.8 0«8 0.8 NZA (233 ns memcry)
PROGRAM SIZE: S (17 ns memocry)
(AP words)) (333 ns memory)
APAL CALL: JSR PPFCLR
SCRATCH: SP(14413)
EXTERNALS: None

FPS 7350-01 7 - 11

7.2.9 INITIALIZE PIOP DISK PARAMETERS (INPPDK)

PURPGSS

m
.

FORTRAN CALL:

PARAMETERS:

FPS 7350-01

To specify the disk types the data formats anc
the physical parameters for PIQOP disx Llogical
record Je
disk read/write catls which are made through the
PIOP disk channel interpreter programe.

These parameters are used Dy sutsecquent

CALL INPPOK(OKTYPESFMToCRePCoHSeWKA)

OKTYPE = 01

FMT

Data

=g -

1]
[
]

1]
n
]

(Note: Sits

CR =

sk type flag

- CDC 9760 or 9762 disk
- CDC 9764 or 976& disk

format type

Low mantissa porticn of MD

tbits 24-33) only

(1 disk word = 1 AP word)
Complete 38-bit AP &orc in

3 parts:

-~ [ow mantissa (bits 24=-39%)

-- High mantissa (bits 12-23)

-=- Exponent (bits 2-11?

{3 disk words = 1 AP word)
Mantissa truncated witn remaining
32 bits transferred in 2 paerts:
~-=- Low word {(pbits 18-33)

-- High word (nits 2-17)

(2 disk words = 1 AP word)
Exponent truncated with remaining
32 bits transferred in 2 parts:
-=- Low word (bits 24=39)

-~ High word (bits 8§-23)

numoered 2=-39¢ left to rights)

Contents for cisk formatter
control register

git 3
S
11
12
13
14

- verify

- Format Enable
- Strobe Late

- Strobe Early
- gffset-

- Otfsets

Contents for port/cylinder
address register
Bits 11-10 - Port number (0-3)

9=-0 =« Cylinger number
(3=-410 if COC S760s G764)
(=822 if COC G722, 97K86)

1024+«pPort + Cylincer

7 - 12

7.2.9 INITIALIZE PIOP DISK PARAMETERS (INPPDK) (cont.)

HS = Contents for head/sector
aaaress register
sits 9-5 - Head numoer
(2=4 if COC 3760s 9762)
(3=-18 if CDC S784s 9T8E)}
4«0 - Sector number (3-31)
= 32+xHead + Sector
(Note: For CRe PCs and HSe bits numoereda 15-13
left to righte. Unspecified bits not used.)

WKA = Base address in AP MU of 20-word
work bufter
words (=7 = Channelt status putfer
b 6-19 - Cnannel prograa

FORMULAZ NZA

ODESCRIPTION: Selects the type of disk to pe usede Specifies
the format by which data will pDe transferred pDetween
the disk and AF main data memorye. Specifies the
contents: of the cisk formatter control register (wbhich
hanales such spectal control functions as format enables
read verify after writee data strote celayss and heaa
position offsets)e Initializes the physical Location of
Logical recorda § on the disk in terms of the portscylincer
numbers and the head/sector numbers A logical record
is cefinec as 256 AF main data wordse Depending on the
format selecteds a lLogical record will occupy le 2+ or 3
256-word sectors on the dicske

A 20~word work buffer in AP main data memorys teginning
at address WKAe is used by the routine. The tirst 8
worcs are for the channel error status bufters while the
Last 12 are used for a channel program which the routine
generatese.

After generating the channel programs the routine calils
the PIOP disk channel interpreter to execute it

The PIQOP aisk channel interpreter program DKPIQOC must
have been loaded into the PIQOP program memcry prior to
the call to INPPDK.

all parameters defined by INPPDKX are valid for
subsequent disk reaa/write calls (e.ge RDPPUKs WRPFDK)
as Long as DKFICC remains resident in the PIOP prcgranm
Menorye.

FPS 7350-01 7 - 13

7.2.9 INITIALIZE PIOP DISK PARAMETERS (INPPDK) (cont.)

disk is specifiede. Suosequent data transfers will

be macde in format 14 whereny 328-bit AP worcs are
transferred. to/from the disk as 3 1lE-bit words (Low
mantissas high mantissas and exponent). For this
format a Logical record cccupies 3 25¢=-word cisk
sectorse Thus logical recora 1 wcula refer to

port 1y cylincer 44 head 2 sector 8. AP1238 main
data memory locations 100-119 are used &8s & WOrk areas

EXECUTION BEST TYPICAL wORST SETUP (us)

TIME: Se8 J.8 3.8 N/A {167 ns memory)
(us) 108 10.8 10.8 N/A (333 ns memory)

PROGRAM SIZE: 45 (17 ns memcry)
(AP worgas) 45 (233 ns memory)

APAL CALL: JSR INPPOK

SCRATCH: SP(DeleldelD)«lPX(2)sTPY(L2)

EXTERNALS: PCGO4PCSTAT

EXAMPLE: CALL DKPIQC(Cs0e24ISIZE)

FPS 7350-01

CALL INPPDK(0;110910281690160)

The call to DKPIOC brings the PIOP agisk channel
interpreter program through AP120E main data locatiens
3-(ISIZE~1) and into PIGP program memory Locations
0=-(ISIZE-1)e INPPOK specifies that disk port i
cylinder 44 head 2 sector S w«itl define logical
record ¢ for subseguent read/write calls to the

disk (eeges ROPPLCKsy WRPPCK)e A CDC 9762 (&0 megaoytel

7.2.10 READ DATA FROM PIOP DISK TO AP MD (RDPPDK)

PURPGSE To cause the PIQOP to read a block of data from
the PIOP cisk into AP1208 main data memorye.

FORTRAN CALL: CALL RUPPOK(MOA«LReNsWKASMODE)

PARAMETERS: MDA fase address (M0) for data from cisk

nu

LR togical record on agisk where gata
cegins

N = #ord count (MD words)

WKA = Sase address (M0) of 1&6-word work

vuffer
WYords (=7 = Channel status buffer
(see PCSQ)
n 8-19 - Channel prcgram
MODE= Exit moce flagy
MOCE - Exit after PIQOP halts
1 - £Exit after PIOP starts

[II1]

FORMULAZ NZA

CESCRIPTION: Causes the PIOP to read a block of N words into AP
main data memorys beginning at address MDAy from the
PIOP diske beginning at logical record LRe The format
by which data is transferred trom the disk must have
been specified by a call to INPPDK prior tc calling
RDPPOKe A logicabt record is defineag to te 25& AP main
data words Longe OJepending on the format, either 1, 2.
or 3 16-pit disk words will be storeaga into each A¥ main
agata worde The ohysical disk Location of Logical record
3 is defined by INPPDKe. :

The routine sets up a &-wecrd channel program in

the lé=-word work areas and starts the PIOP aisk
channel interpreter program OKPIOC which initiates
the data transfere. If MOCE=0s the ROPPDXK will wait
until the PIOP stops (transfer complete cor an error
condition) before returning to the cailing orograme
If MODE=1s RDPPOK will return to the calling progran
immediately after starting the PIQP,

EXAMPLE ¢ CALL DKPIOC(0e«le24ISIZE)
CALL INPPEK(D919Q0+102846941202
CALL ROPPOA(100GC909S00910040)
The call to DKPIQC brings the PIQP disk channel
interpreter program through AP1208 main data locations
0-(ISIZE-1) and into PIOP oragram memory ltaocations
3=(ISIZE=~1)e INPPOK specities that disk port 1.
cyltinder 44 heaa 2+ sector 5 will cefine Lecgical
recaora § for subsequent reaa/write calls tc the
disk (eeges ROPPOKe WRPPDK)e A CDC 97£2 (RQ megaoyte)

FPS 7350-01 7 - 15

7.2.10 READ DATA FROM PIOP DISK TO AP MD (RDPPDK) (cont.)

disk is specified. Subseaquent data transfers will

pe mace in format 1, whereby 38-bit AP words are
transferred to/from the disk as 3 16-pbit sorcs (lLow
mantissas high mantissaes and exponentl). For this
format a Logical record occupies % 25¢-worc disk
sectorse Thus togicai record 1 woula refer to

port 1y cylinder 44 heac 2e sector 8. RUPFUK then
causes the PICP to reac 500 38=bit woras (136C 1gs-bit
disk woras) form the disk beginning at Logical reccra
e ana stores them into AP main data locations 1920~
1499, Main data locations 108-113 are used as a work
area by ROPPDKe ROPPOK wiats until the PICP stops
and returns the error status in SP(15) ana in AP
locations 100~1C7«. 1If the dats is to be immediately
transferred to the host without an intervening AP
praocessing call (eege VAODs RFFTs etcel)s then CALL APWR
should foillow ROPPDK.

EXECUTION 3EST TYPICAL W3ORST SETUP(us)

TIME: Gel 60 6e0 N/ZA (167 ns memory}

(us) 6e5 Eed 665 - N/A (333 ns memory)
(Execution time is for MODE=1)

PROGRAM SIZE: &2 (167 ns memory)
(AP words) 42 (333 ns mem@ory)

APAL CALL: JSR RDOPFOK

SCRATCH: SP(0s1e14+15)40PX(D)

EXTERNALS: PCGO+PCSTAT

FPS 7350-01 7 - 16

7.2.11 WRITE DATA FROM AP MD TO PIOP DISK (WRPPDK)

PURPCSE: To cause the PIOP to write a block of data from
AP12028 main data memory tc the PIQP diske.

FORTRAN CALL: CALL WRPPOK(MDAsLReNeWXAgMIDE)

PARAMETERS: MDA Ease adaress (MC) for data for disk

LR Logical record on gisk where cata
cegins
N = wWord count (M0 words)
KA = Dase address (MDY of lé-wora work
outfer
sords €¢=7 = Channet status buffer
(see PCGQ)
" 8-19 - Channel program

MODE= Exit moce flag
MODE 3 - £xit after PIOP halts
1 - Exit after PIOP starts

FORMULAZ N/&

DESCRIPTIONS: Causes the PICP to write a bDlock of N words from AP
main data memorys peginning at adcdress MDAy into the
PI0P diske bDecinning at logical record LR The format
oy which data is transferred to the disk must have
been specified by a call to INPPOK pricr to calling
4RPPOKe A logical record is defined to be 2%& AP main
data words Longe Depending on the format, either 1s 2+
or 3 16-nit disk worcs will be stored for each AP main
gata worde The physical aisk Location of Logical recordg
0 is defined by INPPDKe

The routine sets up a 8-word channel proaram in

the 16-word work areae and starts the PICP disk
channel interpreter program DKPIOC which initiates
the cata transfer. If MODE=0es the W4RPPCK will wait
until the PIQOP stops (transfer complete or an error
condition) before returning to the calling orograme
If MODE=1s wWRPPDK will return to the calling progranm
immediately after starting the PI1QP.

EXAMPLE: CALL DKPIOC(0+092+4ISIZED
CALL INPPOK(O04190+10234694100)
CALL WRPPDK(1000+43+¢500+1G0¢0)
The catl to DKPIOC brings the PICP disk channel
interpreter program through AP12235 main data locatiens
0-(ISIZE-1) ana into PIOP program memory Locations
0-C¢ISIZE-1)e INPPDK specifies that disk port 1ls
cylinder 44 head 24 sector 5 will gefine Logical
record 0 faor supseguent read/write calls to the
disk (eeGes RDFPUKe €RPPDK)e A CDC 9762 (80 megabyte}

FPS 7350-01 7 - 17

7.2.11 WRITE DATA FROM AP MD TO PIOP DISK (WRPPDK) (cont.)

EXECUTION
TIME:
{us)

PROGRAM SIZE:
(AP woras)

APAL CALL:
SCRATCH?
EXTERNALS?

disk is specifieds Subsequent data transfers will
pe made in format 1e whereoy 38=-p0it AP woras are
transferred to/from the disk as 3 16-cit words (Low
mantissas high mantissas and exponent). For this
format a logical reccora occcupies 3 25€-worc cdisk
sectorses Thus Logical record 1 would refer to

port 1+ cylinder 49 heau 2y sector 8. WRPPOK then
causes tne PIOP to write 500 38-hHit words (1300 1lé=-bit
disk words) tc the disk beginning at logical recora
0y from AP main data tLocations 1080~14¢%3. Main data
Locations 103-115 are used a3s a work area by WRPPUKe
WRPPOK waits until the PIOP stops and returns the
error status in SP(15) ance in AP locations 13C=-137.

BEST TYPICAL WORST SETUP(us)
6el 60 Eel N/A {167 ns memory?
55 55 6e5 NZA (233 ns memory}
(Execution time is for MODE=1)
42 (167 ns memory)
42 (333 ns memory)
JSR WRPPODK
SP(09s1e14e15)40PX(2)
PCGOePCSTAT

7 - 18

FPS 7350-01

7.2.12 WRITE TO AND READ FROM PIOP DISK (WRDPPD)

PURPOSE: To cause the PIOP to #rite 3 block of cata to
the PIGP cisk from AP120B main data memorys and
then to read a (possibly cifferent) block of
data from the disk into AP12(C8 main dats memaorye.

FORTRAN CALL: CALL WRUOPPO(MDAWGLRW sNweMOARSLRReNRyWXKA$MQCTE)

PARAMETERS: MD AW

Base address (MO) for data
for disk write

LRW = Logical recora on disk
for disk write
Nw = Word count (MG words)

for disk write

MOAR = Base adcress (MD) for data
from disk read
LRR = Logical record on disk
for disk read
NK = Word count (MD words)
for disk reag
WKA = Base address (MD) of 2C-worcd work
buffer

waords (-7 = Channeil status buffer
(see FTGO)
" 8=-19 - Channel program
MOOE= Exit mode flag
M00E 3 - Exit after PIOP halts
1 - €xit after PIQP starts

FORMULAZ N/ZA

DESCRIPTION: Causes the PIOP to write a block of N words from AP
main data memorys beginning at address M{OAWse into the
PIOP aisks Deginning at Logical record LRws anc then
read a block of NR words into AP main data memory.
beginning at adaress MDARy from the diske beginrning
at Logical record LRRe The format by wnich
gata is transferred to and from the aiskx must have
been specifiec by a call tc INPPUK prior tc calling
“«RUFPPDe A loygical record is defined to be 25¢ AP main
data words longe ©Depending on the formate either 14 2,
or 3 16=-bit aisk words will be stcred for each AP main
gata worde The pnysical disk Location of logical record
0 is defined by INPPDK.

The routine sets up a 12-word channel procram in
the 20-word work areas and starts the PIOP disk
channel interpreter program DXPIOC which initiates
the data transfer. If MOCE=0,s the WRIFPL will wait
until the PIOP stops (transfer complete or an error
condition) before returning to the calling orogram.

FPS 7350-01 7 = 19

7.2.12 WRITE TO AND READ FROM PIOP DISK (WRDPPD) (cont.)

EXAMPLE:

EXECUTION
TIME:
(us)

s

PROGRAM SIZE:
(AF words)

APAL CALLZ
SCRATCH:
EXTERNALS:

FPS 7350-01

It MODE=1s WRIPPD will return to the calling program
immegiately atter starting the PIOP.

CALL DKPIOCU(0eJ92+1SIZE)

CALL INPPDK(0el190¢102896991302

CALL WROPPO(1000409500e200049698004100,41)

The call to DKPIOC brings the PIQOP disk channel
interpreter program through AP123B main data Lcecations
J-(ISIZE=1) ana into PIOP program memory locations
3-(ISIZE-1)e INPPDK specifies that disk pcort 1.
cylinger 44 head 24 sector 5 will cefine Lcgical
record I for subsequent reac/write calits to the

disk (ee3ey RUOFPOKe &ROPPLYe A CUC 9762 (&6 meganyte}
disk is specifiede Supnsequent data transfers will

be made in format 1+ whereoy 38-0it AP worcs are
transferreu to/from the disk as 3 16~bit woras (low
mantissae high mantissas and exponent)s For this
tormat a Logical recora occupies 3 Z2S&=~-worc disk
sectorse Thus Logical recorcg 1 wculd reter to

port 1le¢ cylinder 44 head 24 sector &« %ROPPD then
causes the PIOP tc write 500 38-pit words (1500 16=-Dit
disk words) to the disk beginning at Logical record

8¢ from AP main data locations 1003-1459, and

to reac 800 38-bit worcs (2403 16-0Dit cisk worgs)

from the disk begirning at logical recorg &

(port 1 cylinder 44 head 2y sector 23) into main

data locations 2303-273Se After starting the PICP,
WwROPPD returns immediately to the calling progranm.
Main data locations 133-1135 are used as a waork area

by WRDPPD. The channel status can be examinec later
by calling PCSTATe or by reading main data Lccaticns
100~-107.

BEST TYPICAL WORST SETUP(us)

GeT o7 . 6Ge7 NZA (167 ns memaory)
Te7 Te7 Te7 N/ A (233 ns memory)
‘(Execution time is tor MOCE=1)

46 (167 ns memory)
4¢ (323 ns memory)

JSR 4ROPPC
SP(Celel4915)+LPX(0)
PCGOSPCSTAT

7.2.13 START PIOP CHANNEL (PCGO)

PURPOSE: To start running a PIOP Channel (PICC) prourame.
FORTRAN CALL: CALL PCGC(A4S)

PARAMETERS? A

Base address of channel progran

in AP MD

Base address of 8-word channel status
butfer in AP MD

S

FORMULAZ N/ A

DESCRIPTION: Starts running the PIOP Programmable I/C Channel (PIOC)
interpreter (DKPIOC or GPIOC)s which dinterprets and
executes a channel program located in AP12(B main data
memorys beginning at adcdress A. A channel progras is
written as a series of channel instructionsy each of
which contains information about the PIOP operation
to be performed and appropriate parameters neeced to
carry out the operatione.

Status information regarding the channel is
returned by the interpreter in a 8-word butfer
beginning at address S in main data. Following
termination of the channel programs the routine
PCSTAT can be used to determine if the proaram was
completed successfullye. If an error occurreds

the status information can be ottained by Looking
in the 8-~word pbufter. Status information is

PIOP configuration dependent.

For the PIQOP cisk interface configuration:

S0 = 0 if channel program was completed, or

= Address (MD) of channel instruction

where error occurred

S(1} = Disk controller error register
S(2) = " b seek status register
S(3) = n » port/cylinder address register
S(4) = " b head/sector address register
S(5) = b " control register
S(6) = . " word count
S(7) = (unused)

Prior to execution of PCGOy the PIJC interpreter program
(DKPIOC or GPIOC) must be Loaded into the PIOF program
memoryes and the channel program must be in AP1208B main
data memorys beginning at aadress A. ‘

Operation of the PIQOC is describea in detail in the
PICP Manual (FPS-7350)s chapter 6.

FPS 7350-01 7 = 21

7.2.13 START PIOP CHANNEL (PCGO) (cont.)

EXAMPLE: CALL DKPICC(CsCe2oLINT)
CALL CHANPG(10G3e0s0sLCH)
CALL PCGO(10600+4992)
CALL PCSTAT(3832)
CALL APCHK(I)
The call to DKPICC brings the PIQ0P disk channel
interpreter program through AP123B main data locations
0-¢LINT-1) and into PIOP program memory lLocations
0=-C(LINT-1)e Suppose the channel program tc be executed
is called CHANPG. (Channel programs are normally written
in using PPAL =-- see PICP Manuals section se2.) Then
the call to CHANPG toads the channel program into AP
main cdata locations 1000-(1033+LCH=-1)e Tnen PC5GO causes
the PIOP to execute the channel program CHANPG. AP
main data locations 992-999 are usea to return channel
status informations. PCSTAT waits for the PIOP to stope
and sets SP(15) to indicate if channel errors cccurrede.
APCHK reads SP(15) and sets integer variabile I to ¢
if no channel errors were detectede or to the adaress
of the channel instructicn where errors occurrec.

EXECUTICN BEST TYPICAL 4 0ORST SETUP(us)

TIME: Ja7 7 3e7 NZA (167 ns memory}
(us) 3.7 37 367 N/7A (233 ns memory)

PROGRAM SIZE: 22 (167 ns memory)
(AP woras) 22 (333 ns memory)

APAL CALL: JSR PCGO

SCRATCH: SP(0+14415)+0PX(D)

EXTERNALS: PPWAIT

FPS 7350-01 7 - 22

7.2.14 GET PIOP CHANNEL STATUS (PCSTAT)

PURPOSE?:

FORTrAN CALL:

PARAMETERS?

FORMULAZ

DESCRIPTION:Z

EXAMPLE:

FPS 7350-01

To determine whether a PINC channel prcgranm
has peen successfully run.

CALL PCSTAT(S)

S = Base address of f8=word channel status
buffer in AP MD

SP(15) = S§¢0) = ¢ 1if channel program completecdy or

= address (M3) of channelt instruction
where error occurred

Waits for PIOP to stop running and then sets SP(15)
to indicate channel statuse If the channel prcogranm
has been completec successfullys then SP(15)=3,

if nots then SP(15) ecuals the address c¢f the
channel instruction being executed cy the PIOC

when the error occurreds If an errcr occcurredy

the status information can be obtained by lLooking
in the 8-worag cuffer. Status information is

PIOFP configuration dependent.

For the PIOP cisk interface configuration:

S(C) = C if channel program was completecs. or
= Agdress (M3) of channel instruction

. where errgr occurred
S(1) = Disk controller error register
S€2) = . " seek status register
S(3) = . " port/cylinder address register
S(4) = n " head/sector address register
S{%) = » . control register
S(e) = . 4 word count
S(7) = (unused)

CALL OKPIQGC(O93¢2+LINT)

CALL CHANPG(1000e0+404LCH)

CALL PCGO(100Cs992)

CALL PCSTAT(9S2)

CALL APCHK(I)

The catl to DOKPIOC ©trings the PIOP aisk channel
interpreter program through AP120E main data leccations
g=-(LINT=-1) and into PIOP program memory locations
J=-(LINT=1)e Suppose the channel program to te executec
is callec CHANPG. (Channel programs are normally written
in using PPAL =-- see PIGP Manuale section %.32.) Then
the call to CHANPG loads the channel program intc AP
main data locations 1000-¢1000+1LCH=1)>e Then PLGO causes
the PICP to execute the channel program CHANPG. AF

main data locations 9%2-399 are usec to return channel
status informatione PRPCSTAT waits for the PICP to stops

7 - 23

7.2.14 GET

EXECUTION
TIMES
(Uus)

PROGRAM SIZE:
(AP waorgs)

APAL CALL:
SCRATCH:
EXTERNALS:

FPS 7350-01

PIOP CHANNEL STATUS (PCSTAT) (cont.)

and sets SP(1%) to incicate if channel errors cccurrede
APCHK reads SF(15) and sets integer variable I to ¢

if no channel errors were detecteas or to the address
of the channel instruction where errors occurreda.

BEST TYPICAL WORST SETUP(us)
Hett Re ¥ e N/ZA (167 ns memory)
Hed o8 E % N/ZA (233 ns memory)

(Execution time depends on when the PIJP haltse The
routine is completed within 3.2 us after the PIQOP
haltse)

15 (167 ns memcry)
15 (333 ns memory)
JSR PCSTAT
SP(14)
PPWAIT

7 - 24

T

7.2.15 PIOP EXECUTE LOADER (PEXEC)

(o)
i

<
o
~
h =
LR

™
(73]
(@]
Pt
v
-4
[3

.t}

FPS 7350-01

To execute on= cf the followine options with respect
te PIGT gregrers ir Tair cata memcrve 1) Lecea the
prozxrar into FICP gronram memorys 2)Y Lcuc the
srsaram irro 2I0P crogram memory ana start the

DICP programe <) start the FICF channet intercretera

CALL PIXECIMOLsPFIAGFLAG YN

40A = Base adceress (M) ¢t PiCP ccge
PFSA = Zace acdcrese (PICFP) for PICF coce
FLAG = Lcediny secuence flag
=1 - Luzge *#-pit weras from AP MO
into PICP PS
=2 = Logce T8=bit wcrcs fraom &P MO
intc BICF S arz start PIGP
=% =~ Start FICP charnel interpreter
usiny 78-nit words in AF MC
2s charnel prc:orer (ICCL)
N = Yerc count (28-2it worcs)
N7 A
This routine cerforms one ¢f three loacinz cptions
orni 3&-cit FI0F dnstructicon werocs stecrec in AFI1Z2H
main data wemoryes zeginning at address #DA. I
FrLAcz=ie the inctructicn wecrcs are tocaced into FIQF
oroarailm memoryes pesinning at accress PESA, ¢
FLAG=2e the dinstructior wcrds azre loacec irtec FICP

prosram memorye o2c¢cinning &* acdress FPS3, ance the
PIOF is startec at prozcram accress prFSid. If FLAG=Z,
the instructicn W#crds are treated 2as a PIOP channel
progran I1/9 coamana List (TLCL)Ye arc tnhe PIGP channel
interpreter is startece. hen the interpreter, which
must e lcacgec pricr tu the catl tc PEAECe beains
executing the chanrnel gcrocram at AF123E main data
adaoress MCie

Every PICF prouwram which is assercleg Ly the
PICF asseqcler (PPAL) intc a Fortran subroutine
cor.tains a CALL PEXKEC statemente. The calling
scuuence for the Fortran subroutine is:

Call rame (MUZGPPIAGFLAGeN)

The susrcutinces wnen executeds witil loac the 32-p it
proiras werces trom the hest inte £F120E main

data memoryy Leasinning at address #CA. The rumper
3f worcs lcadeds Ye is passed back to trpe calling

proarare ancd to PIXECe which is cezillec with parameters

Mile ZPSAs FLAGe and ¥Ne 1f FLAG ecucls 1e¢ 29 0or Ze.

7 - 25

7.2.15 PIOP EXECUTE LOADER (PEXEC) (comnt.)

EXAMPLE: CALL PEXEC(10G¢50¢24+40?2
Loads the PIQP program stored in AP1235
main data locations 100-139 into PIOP
program memory Locations SG-89¢ and starts
the PIOP running at program memory location
50« Control returns to the catling orograa
immediately after the PIOP startse

EXECUTION BEST TYPICAL WORST SETUP(us)
TIME: 1.7 le7 1.7 N/A (167 ns memory)
tus 1.7 le7 1e7 N/ A {333 ns memary)

(Add execution time for PPLOAD it FLAG=1e PPLOAD anc
PPGO 1f FLAG=2s or PCGO if FLAG=3.)

PROGRAM SIZE: 70 (167 ns memory)
(AP worgs) 790 (333 ns memory)

APAL CALL: JSR PEXEC :

SCRATCH: SP(0=23%9¢59184915)9CPX(0)eMD

EXTERNALS: PPLOAD+PPGOSPCGE

FPS 7350-01 7 - 26

7.3 SAMPLE PROGRAMS

As an aid to the programmer, two sample Fortran programs are

in the following paragraphs.

Fortran subroutine

Fortran program to rumn

both the AP and the
PIOP with a disk

presentad
These programs are:

Provides the following sample
listings:

a. PIOP assembly code source

b. Assembled listing

c. Fortran subroutine created
by the PIOP assembler

Provides the following:
a. Program listing

b. Timing explanation for the
program (Figure 7-1)

7.3.1 FORTRAN SUBROUTINE EXAMPLE

subroutine
and the

The following three examples of a Fortran
assembly code source listing, assembled 1listing,
listing as created by the PIOP assembler.

Example 1 - PIOP Assembly Code Source

are: PIOP
"subroutine

$SUS TEST
$SU5 TEST
LABO: PASSG3 "COHMMENT
LAB1: &ORL "NUMBER 1
LAB2: SETMAR: "NUM 2
LAc3: W&ORJ 23 "NUN 3
LAB4: PASCA 17.¢1 °"NUM o
LABS: TR FFeFF3 "“NUM 5
LAEG: PASSA 1241043 ™NUM &
LABT: IORST; "NUM 7
LAB8: SETMAW "NUM 8
LAB9TJMPA XOJAES "NUM S
LAc10: PASSG "NUM 10
SYM SEWU 10
MOVE sSLOC Sy
3VAL ee293YM
SEND
FPS 7350-01 7 - 27

Example 2 - Assembled Listing

PASS 1
PASS 1
PASS 2

€SUc TEST

0000 000J3G0 LAB3: PASSGs "COMMENT
£00320 LABl1: wORD 2 ®NUMBER 1
c20000

0001 000414 LAB2: SETMARS ®NUM 2
000560 LAB32: WORD 235 "™NUM 3
0200C0 LAEG: PASSA 12.91 "NUM 4

0002 001012 LABE: TR FFeFFs ®"NUM 3
0051c4 LABE: PASSA 12+10.5 "NUM ©
100030 LABT7: IORSTSs "NUM 7

LAEB8: SETMAW ™NUM 8

0003 000308 LABI:JMFA XJABS "™NUM ¢
000320 LABIO: PASSG "NUM 1C
001€33

060010 SYM $EGQU 10

0010 MCVE SLOC sSYM
G010 000010 VAL «92¢SYHM
goggn2
ggoo1o
SERU
2 E X C LRRORS »*2x=2

SYMBOL vaLuz

LAGO fgogac
LAB1 0903¢C0
LAB2 000001
LAE3 000001
LADG 600001
LABS Ggooece
LABG 400092
L&B7 re00age
LASSE 000002
LAGS 600003
LAB10 6000C2
SYHM 0CCCG1C
MOVE 000010

FPS 7350-01 7 - 28

Example 3 - Fortran Subroutine Created by PIOP Assembler

SUCROUTINE TESTIMDALRGPPSALGFLAGSIZE)

SUCROGUTINF TEST(MUADRePPSAWFLAGESIZE)

o

INTEGER PPSAGFLAGeSIZELWPIECE(I)
REAL CODE(S9+3)

(@]

DATA CUDE(141)4CO00E(192)9sCO0DE(1943)/0e92400981592./
CATA CODEC241)eCODE(242)4CCDE(293)/26809368098192./
DATA CUDE(391)9COUODEC342)9CODE(343)/5224326T6e9327924/
ODATA COCEC491)9CODE(442)9COCE(4943)/0e02404993%6/
DATA COOE(54¢1)9sCODE(S5¢2)9CO0E(S93)/ 0090000/

DATA CCODE(691)9CODE(692)9C00EC6943)/0esle9l4/

DATA CODE(T79134CODE(7¢2)9CU0ECT43)/0e90a904/

DATA CODE(8¢1)+CODE(892)eCODE(ES3)/00s0eela/

DATA COCE(S¢1)sCODE(TS¢2)9COCE(S93)/8e92008e/
M=MOADR =1

SIZZ=3

CG 20 I=1s5

00 10 J=1+3

19 PIECECJI=IPFIX(CODE(IyJI))
CALL AFPDEP(PIECEs1l4seM+1)
230 CONTINJUC

IF (FLAGeLE«O +ORa FLAGaGTe3) RETURN
CALL PEXEC(MDACRePPSAeFLAGSIZE)
RETURN

EXG

FPS 7350-01 7 - 29

7+.3.2 FORTRAN PROGRAM EXAMPLE

The following is a sample Fortran program that runs both the AP and the
PIOP with a disk. This program performs a block FFT (fast Fourier
transform). An explanation of program timing is given in Figure 7-1.

a0 O00O000000n00000000000

Q

aQ

aaan

SUBROUTINE BLKFFT (N,M)

ROUTINE TO DEMONSTRATE USE OF AP120B WITH PIOP DISK INTERFACE AND
FORTRAN CALLABLE PIOP DISK CHANNEL SOFTWARE.

THIS ROUTINE READS AN N BY N ARRAY OF COMPLEX FLOATING POINT NUMBERS, M
COLUMNS AT A TIME, COMPUTES THE COMPLEX FFT OF EACH COLUMN, AND WRITES THE
FFT RESULTS BACK ONTO THE DISK. THUS AT THE COMPLETION OF THE ROUTINE

THE N BY N COMPLEX ARRAY HAS BEEN REPLACED BY THE N BY N COMPLEX ARRAY
RESULTING FROM TAKING THE FORWARD COMPLEX FFT OF EACH OF THE N COLUMNS

OF THE ORIGINAL ARRAY. THE ROUTINE COULD BE USED TO PROCESS DATA

IN ONE-DIMENSION WHEN PERFORMING A 2-D FFT OPERATION.

CONDITIONS UPON ENTRY:

ORIGINAL N BY N COMPLEX ARRAY IS STORED ON DISK BEGINNING AT LOGICAL
RECORD O

N = DIMENSION OF THE ARRAY
M = NUMBER OF COLUMNS TO BE PROCESSED IN AP IN ONE PASS

CONDITIONS UPON EXIT:

ORIGINAL ARRAY REPLACED WITH N BY N COMPLEX ARRAY RESULTING FROM
TAKING COMPLEX FFT OF EACH OF THE N COLUMNS

EXAMPLE: SUPPOSE N=1024, SO THAT 1024 X 1024 X 2 = 2097152 FLOATING-POINT
WORDS RESIDE ON THE DISK. IF WE CHOOSE M=8, I.E. DO 8 COMPLEX
1024-POINT FFTS ON EACH PASS, THEN

NWD =16384
NPASS= 128
NREC = 64

INITIALIZE AP120B
CALL APCLR
INITIALIZE PIOP
CALL PPRS
LOAD PIOP DISK CHANNEL INTERPRETER THRU AP MAIN DATA INTO PIOP
CALL DKPIOC(O0,0,2,ISIZE)
DEFINE DATA FORMAT 1 (38-BITS IN 3 PARTS) ON 80 MEGABYTE (CDC 9762) DISK
DEFINE DISK LOGICAL RECORD 0O (PORT/CYLINDER 0, HEAD/SECTOR 0)
ONE LOGICAL RECORD EQUALS 256 AP WORDS.
CALL INPPDK(0,1,0,0,0,0)
INITIALIZE LOGICAL RECORD POINTERS FOR READING AND WRITING
LRR=0
LRW=0
NUMBER OF FLOATING-POINT NUMBERS TO BE READ EACH PASS
NPN=N-+N
NWD=NPN *M
NUMBER OF LOGICAL RECORDS EACH PASS
NREC=NWD /256

FPS 7350-01 7 - 30

Fortran Program Example (cont.)

C NUMBER OF PASSES
NPASS=NPN /M
C ALLOCATE AP MAIN DATA FOR DOUBLE BUFFERING AND A WORK AREA
IA=0
IB=NWD
IW=IB-NWD

C BEGIN PROCESSING BY READING FIRST BLOCK FROM DISK INTO BUFFER A
CALL RDPPDK(IA,LRR,NWD,IW,1)
LRR=LRR-HVREC

C READ NEXT BLOCK INTO BUFFER B
CALL RDPPDK(IB,LRR,NWD,IW,1)

LRR=LRRNREC
C
C NOW WE CAN GET INTO MAIN LOOP, WHICH WILL READ, PROCESS, AND WRITE
C TWO BLOCKS OF DATA--ONE IN BUFFER A, THE OTHER IN BUFFER B. PIOP
C AND AP OPERATIONS ARE OVERLAPPED TO A GREAT EXTENT.
C
DO 100 I=1,NPASS,2
C
C PROCESS BUFFER A IN MD WITH AP

CALL PROCES (IA,N,M)

C WRITE FFT RESULTS FROM BUFFER A TO DISK, READ NEW BLOCK INTO BUFFER A
CALL WRDPPD(IA,LRW,NWD,IA,LRR,NWD,IW,1)
LRW=LRW-+NREC
LRR=LRR+NREC

C PROCESS BUFFER B IN MD WITH AP
CALL PROCES (IB,N,M)

C WRITE FFT RESULTS FROM BUFFER B TO DISK, READ NEW BLOCK INTO BUFFER B
CALL WRDPPD (IB,LRW,NWD, IB,LRR,NWD,IW,1)
LRW=LRW+NREC
LRR=LRRHNREC

100 CONTINUE

END OF PROCESSING LOOP

aaO0aon

WAIT FOR PIOP TO COMPLETE FINAL DATA TRANSFER
- CALL PPWAIT
CALL APWR
C EXIT
RETURN
END

SUBROUTINE PROCESS (IBUF,N,M)

ROUTINE PERFORMS M N-POINT COMPLEX FFTS OF DATA IN AP MAIN DATA
BEGINNING AT ADDRESS IBUF.

aoaan

IADR=IBUF

DO 1 I=1,M

CALL CFFT(IADR,N, 1)
1 TADR=TADR-+N-+N

RETURN

END

FPS 7350-01 7 - 31

Figure 7-1 illustrates the timing for the program given on the previous
pages.

ASSUMPTIONS : 1. Slow (333ns) main data memory.

Disk transfer rate of 200,000 38-bit words/sec
(600,000 16-bit words/sec).

Disk cyliner-to-cylinder time of 7ms.
Disk latency of 8.2ms

Host system APEX overhead of 2ms per call.
DMA cycle-stealing interference of 10%.

~

a W s W

LET: N = 1024 1024-point CFFT in 8.7ms
M=38

AP PROCESSING 8 x CFFT = §9.6ms
TIME: 10% DMA interference = 7.0
8 x host overhead = 16.0

92.6ms

OMA TRANSFER RATE: 2 x 1024 x 2 x 8 words = 163.8ms

(WRITE & READ) 1 x DMA interference = 7.0
1 x host overhead = 2.0
2 x disk access = 14.0
2 x disk latency = 16.6
203.4ms

PROCESSING LOOP TIMING:

s 0 100 200 300 400 500 R
WRITE/READ |- s —034
PROCESS A —t2:8 —25

WRITE/READ A t 203.4 .
PROCESS 8 2.6

0091

Figure 7-1 Timing for Block FFT

FPS 7350-01 7 - 32

CHAPTER 8

PIOP DEBUGGER - PPDBUG

8.1 INTRODUCTION

PPDBUG provides an interactive facility £for checking PIOP programs.
PPDBUG 1is initiated from within the AP debug program APDBUG by the "J"
command, which causes APDBUG to call PPDBUG. When the debugging
session is complete, the "X" command returns control to APDBUG. In
this way, debugging of both AP and PIOP code can be accomplished from
APDBUG.

PPDBUG has commands to:

l. Examine and/or change memory locations and registers inside
the PIOP.

2. Examine and/or change AP main data memory locationms.

3. Examine contents as program words, integers, or floating-
point numbers.

4. Run PIOP programs.

FPS 7350-01 8§ - 1

8.2 OPERATING PROCEDURE

Debugging is the process of detecting, locating, and removing mistakes
from a program. When the programmer wishes to debug a PIOP program, he
loads the program into PPDBUG. The user may then control program
execution, causing the program to breakpoint at selected program
locations so that he can examine the contents of registers or memory
locations. Contents may be examined as program words, integers, or
floating=-point numbers.

PPDBUG types a "#*'" when ready for user input. An error message is
typed when an error is detected.

8.3 MONITORING REGISTERS AND MEMORY LOCATIONS

Registers and memory locations in the PIOP may be opened, examined, and
modified using one of the following commands:
E open and examine locations in the PIOP (or AP main data memory)

+ examine the next higher location in a PIOP memory (or AP main
data memory)

- examine the next lower location an a PIOP memory (or AP main
data memory)

C change the open location
. re—examine the currently open location

Z zeros out all PIOP memories

A register in the PIOP is opened with an "E" (exam), "+" (next), or "-"
(last) command. PPDBUG gets the value of the desired location in the
PIOP and types out the value on the user console. If desired, the
contents of that location may be changed with a "C" (change) command.
A "." (re-examine) types the contents of the open register.

FPS 7350-01 8§ - 2

8.3.1 "E", Open and Examine

To open and examine a register in the PIOP:

E (cr)
name (cr)

where NAME is the name of the desired register.

To open and examine a memory location in the PIOQP:

E (cr)
name (cr)
location (cr)

where NAME is the memory name and LOCATION is the desired
memory location.

A list of the examinable registers and memories is given in Appendix D,
page D - 5. For the purposes of PPDBUG, all functional units of the
PIOP which have addresses are considered "memories." This includes
PIOP program source memory, the PIOP ALU registers, as well as the AP
main data memory.

Some examples:

l. Examine main data memory location 23.

*
E (er)
MD (cr)
23 (cr)

-234.0000000
*

MD location 23 contains =-234.0.

2. Examine the address register.

(cr)

4 (er)

5l

I*I

MA contains 40.

FPS 7350-01 8 - 3

8.3.2 "+", "=" and "." Examine Next, Last and Re—examine

To open and examine the next higher sequential memory location
above a currently open memory locatiom:

+ (cr)

To open and examine the next lower sequential memory location
below a currently open memory locatiomn:

- (er)

To re-examine the currently open memory location:

. (cr)

Examples:
l. Examine AP main data memory locations 23 and 24.

*

E (er)
MD (cr)
23 (erx)

-234.0000000
*

MD location 23 contains =234.0, now examine MD location 24.

*
+ (cr)
MD 000024

789.0000000
*

MD location contains 789.0

2. Examine ALU registers 7 and 6.

*

E (er)
SP (er)
7 (er)

000027
*

FPS 7350-01 8 - 4

ALU register 7 contains 27. Now examine register 6.

*
- (cr)
SP 000006

-136
*

ALU register 6 contains -136.

8.3.3 "C", Change

To change the contents of a currently "open" register or memory
location to a specified value:

C (ecr)
value (cr)

where VALUE is an integer(s) or floating=-point number (depending
upon what register or memory is "open"). (See paragraph 9.4)

To change a register or MEMORY location, the user must first
"open" it by doing an "E", '"+", or "-" command.

Examples:

l. Examine AP main data memory location 20 and then change its
value to =-97.5.

*
E (cr)
MD (cr)
20 (cr)
76 .00000000
) .
c (ecr)

‘9705 (Cr)
%*

Main data memory location 20 contained 76.0. The user changed it
to contain -97.5.

FPS 7350-01 8 - 5

2. Now change main data memory location 21 to -63.4.

*
+ (cr)
MD 000020
-3.000000000
*

c (cr)

-63.4 (ecr)
*

MD location 21 contained =3.0 and was changed to contain =63.4.

3. Examine ALU register 3 and change its value to 17.

(cr)
U (cr)
(cr)

gml&

w w
[«))

(cr)
(er)

I — QO *
~

ALU register 3 contained 56 and was changed to contain 17.

To examine locations 156 and 157 of PIOP program source Memory,

type:
*
E (er)
PS (er)
156 (cr)
000400 000216 001507
*
¥ (ecr)
PS 000157
001700 000140 000000
*

FPS 7350-01 8 - 6

8.4 CHANGING INPUT/OUTPUT FORMATS

The input and output format used when examining and changing registers
and memory locations may be selected using the following commands:

N sets the radix for integers

F sets the format for input/output of 38-bit wide registers
and memory words

PPDBUG selects the proper format for input/output depending upon the
word size of the particular register or memory location that is open
and the setting of the above two flags:

l. 16=-bit words: (includes the 8-~bit registers AR, FLAG, and PSA)
These locations are examined or changed as integers in the
radix as selected by "N".

2. 38-bit words: AP, main data memory, PIOP program source memory,
etc. These locations are examined or changed as either
floating-point numbers, or as three integers, depending
upon the "F" flag. 20-bit registers, such as ALU and CR, are
displayed in 38-bit format.

The listing of accessible PIOP registers and memories on page D - 5
specifies the width of each as:

16-bit (integer word)
or 38-bit (floating=-point word or program word)

NOTE

Integer output is always unsigned on the
range 0-177777 (octal), or 0-65536
(decimal), or O-FFFF (hexadecimal).
Thus, negative two’s complement numbers
will be typed out as their 16-bit
unsigned equivalent. For example (in
octal), -1 would be output as 177777, and
-2 as 177776, and so forth.

FPS 7350-01 8 - 7

8.4.1 "N" Set Radix
To set the radix for all integers input/output to PPDBUG:

N (cr)
radix (cr)

where the radix is either 8, 10, or 16 for octal, decimal, or
hexadecimal radices, respectively. (Note that the radix number
is always in decimal.)

The contents of l6-bit wide registers (AR, FLAG, and PSA) are examined
and changed using the integer radix as set by the "N" command. In
addition, memory addresses are also entered using the current radix.

On type—-outs, octal numbers may be recognized as having six digits,
decimal numbers as having five digits, and hex numbers as having four
digits.

The default radix is either octal or hex depending upon the conventions
of the host computer.

Examples:
l. Examine S-pad register 10 (decimal) in all three radices

(starting in decimal).

(ex)
(er)

(cr)
(er)

(cr)

] =z — 5}
I*S-Ix-oo I»Ng | *
o o

(cr)
16 (er)
%*

(cr)

#{00 ¢
e <)

The value of the AR register is 256 (decimal), or 200
(octal), or 80 (hexadecimal).

FPS 7350-01 8§ - 8

8.4.2 "F" Set/Reset Floating-Point I1/0

To select floating=-point input/output of 38-bit registers
and memory words:

F (cr)
1 (er)

To select integer (in the current integer radix) input/output
of 38-bit wide registers and memory locations:

F (cr)
0 (er)

38-bit wide registers are split into three pieces: 10-bit
exponent, 12-bit high mantissa (bits 0-11), and lé6-bit low
exponent (bits 12-27) for integer 1/0.

Main data memory, PIOP program source memory, and ALU
registers are among the registers and memories whose I/0

is governed by the "F" flag.

Both examining and changing of 38-bit registers are effected
by the "F". The default setting of the "F" switch is 1 for
floating=-point I/0.

l. Examine command output formats:

F=1: (floating=-point number)

F=0: (exponent) (high mantissa) (low mantissa)

2. Change command input formats:

F=1: C (cr)
(floating=-point number) (cr)

F=0: C (cr)
(exponent) (cr)

(high mantissa) (cr)
(low mantissa) (ex)
Legal floating-point numbers are of the following form:
+or-XX.YYE+or-2Z
where XX is the integer part

YY is the fractiom part
2Z is the expoment

FPS 7350-01 8§ - 9

Any of the three parts may be omitted, except in the
exponent is used. In this case, either an integer part or
part must also be included. The signs may be omitted if
The decimal point may be omitted if not needed. No spaces
inside floating=-point numbers.

The following are all legal floating-point inputs.

-2.3E6
«7E=3
-2
3.65
o7

Examples:

case when an
a fractiom
"+" is used.
are allowed

l. Examine main data address six in both floating-point and

integer. (Assume the integer radix is 16.)

6 (cr)
-1.,000000000

*
F (cr)
0 (cx)
%
N (cr)

MD 0006
0200 0400 _ 0000

| %

MD register six contains -1.0. Its exponent is 200 (hexadecimal)
which has an exponent value of zero (0). The fractiom part is

4000000 (hexadecimal) which is a fraction of -1.0

FPS 7350-01 8 - 10

2. Now change the exponent to 204 and the fractiom to 2000000
and set "F" to l:

*
C (cr)

204 (cr)

200 (cr)

0 (cr)

*

F (er)

1 (er)

*

. (cr)

MD 0006
8.000000000

*

FPS 7350-01 8§ - 11

8.5 MEMORY LOADING AND DUMPING

Blocks of memory locations may be loaded and dumped to and from files
with the following commands:

Y yank (load) into a memory from a file
W write out the contents of a memory to a file
Z zero all the PIOP memories

The user should be aware that the procedure for typing in filenames
varies greatly according to the respective system. In some systems,
the notion of user files is nonexistent. In these cases, a logical
unit number referring to an I/0 device, which was opened previously by
JCL control statements must be entered in place of a filename. Other
systems allow access to disk files, line printers and terminals by
symbolic names. Thus, what must be entered for a filemame depends on
the convention of each respective system. The examples given below are
only meant to be representative and may not be legal on a given system.

8.5.1 ™", Yank from a File

To load a memory from a file:

Y (cr)
memory name (cr)
starting location (er)
filename (ecr)

where MEMORY NAME is an AP or PIOP memory, the beginning memory
address is loaded at the STARTING LOCATION. The name of the file
from which the data is to be read is called FILENAME. The
filename must, of course, be in the proper form as determined
by the particular host operating system.

Yank is typically used to load programs into PIOP program memory
and data into AP main data memory. Some examples:

l. Load a program into PS location 0. The program is assumed
to be in a file named MYPROG which was made using the
output from PPAL.

*
Y (cr)
PS (cr)
0 (cr)
MYPROG (cr)
*

FPS 7350-01 8 - 12

2. Load data into MD starting at location 20 from a file
called DATA.

*

Y (cr)
MD (cr)
20 (cr)
DATA (cr)

*

8.5.2 "W", Write to a File
To write the contents of a memory into a file:

W (cr)
memory name (cr)
starting location (cr)
ending location (cr)
filename (cr)

where MEMORY NAME is an AP or PIOP memory, STARTING LOCATION
is the initial address to be written, ENDING ADDRESS is the
last address to be written and FILENAME is the name of the
file into which the data is to be written.

Some examples:

l. Write main data memory locations 20 through 40 into a
file called DUMP.

*
W (cr)
MD (cr)
20 (ex)
40 (cr)
DUMP (cr)
*

FPS 7350-01 : 8§ - 13

2. Write main data locations 3 through 6 to the line printer
(first, in floating=-point format, and second, in integer
format). (Strictly as an example, the line printer is called
LP:.) Note that data pad may be dumped only from HWDBUG.

*
F (er)
1 (cr)
*

W (cx)
MD (er)
3 (er)
6 (cr)
LP: (er)
*

T (er)
0 (cr)
*

w (cx)
MD (cr)
3 (ex)
6 (cr)
LP: (er)
*

If the user mistypes a "W" command, he as several optioms to abort the
command. If the wrong memory name or starting address was typed, then
the command may be cancelled by entering an ending address (which is
lower than the starting address). In PPDBUG, an unwanted dump already
underway (for example, when a location 1000 was typed, whereas location
100 was wanted) can be aborted by a USER BREAK. How this is
accomplished varies from system to system. Typically, on single-user
mini-computer systems, it is accomplished by raising the most
significant bit of the host switch register.

FPS 7350-01 8 - 14

8.5.3 "Z", Zero the AP

The "Z" command zeros out all the ALU registers and program source
memory locations in the PIOP. This is accomplished by:

Z (cr)

- 8e¢5.4 Preparing Data Files for Yanking

Data files may be prepared by the user for loading into MD and PS by
using PPDBUG. The format of the data files is as follows:

data count
data item #1
data item #2

eee eoss oo

data item #N
All entries must be left justified, one entry per lime.

The data count is the number of memory locations to be filled and
written as a real number (with a decimal point). Thus, if there were
three data items, the count would be "3".

The format is determined by the "F" switch setting for 38-bit memories.
For integer formats, the radix is determined by the N (radix) setting.
When floating point numbers are used they appear one per line. Also,
integers must appear one per line in the file. Thus, for 38-bit
memories written in integer format (F=0), three integers (exponent,
high mantissa, low mantissa) written on three separate . lines must be
included for each memory locatiom.

Some examples:
l. Four element floating point data file:

4e
1.2

.3
-6E7
2.3E=5

FPS 7350-01 8 - 15

2. Three element integer data for a 38-bit wide memory which will
load three integers into the low mantissa.

LOONODOOOW

FPS 7350-01 8 - 16

8.6 EXECUTING PROGRAMS

PIOP program execution may be controlled with the
I 1initialize the PIOP

R run a PIOP program
X exit to the host operating system

8.6.1 "I", Initialize the PIOP

To initialize (reset) the AP:

I (er)

In PPDBUG, an interface reset is done to the AP.
stop a program that has "run away."

8.6.2 "R", Run a PIOP Program

To run a PIOP program:

R
location
R

10
*

PPDBUG signals program return merely by a

8.6.3 "X", Exit to PPDBUG

(cr)
(er)
(er)
(cr)

Mgt

following commands:

This is necessary to

To complete a PIOP debugging session and exit to APDBUG:

X (er)

PPDBUG types "EXIT PPDBUG".

FPS 7350-01

17

APPENDIX A

INSTRUCTION SET

This appendix presents the PIOP instruction set in tabular form as
follows:

Table A-1 (7 pages) Basic Instruction Set
Table A-2 (1l page) Expanded Instructions
Table A~3 (1 page) Symbols for Table A-2
Table A-4 (2 pages) Cross-Reference Set

FPS 7350-01 A - 1

Table A-l

PIOP Instructions

OCTA
FIELD cooe

MNEMONIC

MEANING

DESCRIPTION

SHORTHAND
NOTATION

OTHER
FIELDS
{ARGUMENT)

10CMD Q

SETMAR

SETMAW

SETDA

set memory
address,
read

set memory
address,
write

set device
address

No operation.

Initates a DMA read cycle to fetch
data from the AP's main data memory
at the address specified by the ALU
output. Data is not available until
6 cycles later. The sequence is:

1. SETMAR instruction

2. MOCR2* true (request to AP DMA
channel)

3. MDCA2 true (acknowledge from
AP DMA channel) .

4. WAIT

5. DCHO2 (loads data into FIFO
input buffer)

6. FIFO

7. DATA AVAILABLE (If FIFQ was
empty)

Initiates a OMA write cycle at the
Jocation specified by the ALU output.
Data is written into the AP's main
data memory. Data is available in
memory after the third cycle. The
sequence is:

1. SETMAW instruction

2. CYCLE REQUEST (data in FIFO
output buffer taken)

3. CYCLE ACKNOWLEDGE (data now in
(memory)

Loads the device control

register with data present on the

ALU bus at the end of the instruction
cycle. The device control register

is a write-only register.

Read @ APMA

Write @ APMA

ALU > OVCMD

FPS 7350-01

0039

FPS 7350-01

Table A-1 PIOP Instructions (cont.)
OTHER |
QCTAL SHORTHAND FIELDS |
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION (ARGUMENT) |
‘ l
EXPAN Q - - No operation. - - ;
1 CF A |clear flag Clears the flag specified by A (A is [Clear flag 3IT # BIT +4 |
specified in the BIT # field).
2 RFF reset FIFQ Resets the FIFQ pointers. Causes - -
DATA VALID and FIFQ FULL to go false
(clear).
New data entering FIFO (through IN or
SETMAR instructions or external
handshake) falls through to the
output buffer and causes DATA VALID
to be true (set).
3 AFF advance FIFQ | Advances FIFQ read pointer. New data is - -
written into FIFQ output buffer at the
end of the instruction cycle. If no
valid words are in the FIFQ, DATA VALID
goes false (clear).
4 SF x | set flag Sets the flag specified by x (x is Set flag B8IT ¢ BIT #
specified in the BIT # field).
5 SINT x | set interrupt| Sets interrupt x. The interrupt that |Set interrupt BIT ¢
is set executes in the second cycle 8IT #
after the SINT instruction.
6 ENINT enable Enables interrupt logic. Pending - -
interrupts interrupts start executing on the
next cycle.
7 DISINT | disable Disables interrupt logic. - -
interrupts
10 NOP - No operation. - -
11 START start Begin program execution at current Start -
PSA location.
12 HALT halt Stop immediately. Nothing else PSA < PSA + 1 -
in the instruction executes.
13 PSAB program Causes the four least significant PSA > 8 -
source bits of the PSA to be used as ALU
address, register address B. Can be used for
register 8 sequential loading of ALU registers
while PIOP is halted.
14 TVCR x | transmit Transfers the value x (from VALUE VALUE > CR VALUE
value to field) on to the data bus and loads
control the control register (CR) with that
register value at the end of this cycle.
15 TVOB x | transmit Transfers the value x (from VALUE VALUE > 0B VALUE
value to field) on to the data bus.
data bus
16 - - Not used. - -
17 - - Indicates expanded ALU instruction - ALU EXPAN
format.
0040

Table A-l PIOP Instructions (comnt.)
OTHER
OCTAL SHORTHAND FIELDS
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION USED
A 1-17 - - Contains address of one of 16 - -
internal ALU registers.
8 1-17 - - Contains address of one of 16 - -
internal ALU registers.

ALU 0 - - No operation. - -
1 MOVD 8 move data Move data bus contents to ALU 08 > 8B 8
register B. ALU output is that

data.
2 |ADDD A,B add data Add the data bus contents to the 08 + A > A,B
contents of register A and store
results in register B. ALU output
is (DATA)+(A).
3 IANDD A,B logical "and" Logically "and" the data bus 0B and A > A,B
: of data contents with the contents of
register A and store results in
register 8. ALU output is
(DATA)"and"(A).
4 ORD A,B8 Togical “or" Logically "or" the data bus 08 or A > 4,8
of data contents with the contents of
register A and store results in
register B. ALU output is
(DATA)"or" (A).
S XORD A,B Togical Logically "exclusive or” the 08 xor A > A,B
"exclusive or" data bus contents with the
of data contents of register A and store
results in register B. ALU output
is (DATA)"xor"(A).
6 PASSD pass data Data on data bus passes through 0B >V -
the ALU unchanged and unsaved. The
data appears on ALU outputs.
7 PASSA A,B | pass register A Data in register A is gated to ALU A > Y A,B
outputs. Data in register B is B > 8
written in to itself. PASSA is a
fast ALU path.
10 INCB 8 increment Increment register 8 contents. 8 +1>7Y 3
register B ALU output is (B) + 1.
11 DECB 8 decrement Decrement the ALU register 8 B -1>Y 8
register 8 contents. ALU output is (8) - 1.
12 INCD increment Increment data on the data bus (D) 0B +#1->%Y -
data bus and pass through the ALU (not
saved).
13 DECO decrement Decrement data on the data bus (D) 0B -1>Y -
data bus and pass through the ALU (not
saved).
14 ADD A,8 add register Add register A to register B, A+ 8 > A8
A to register B store the results in register 8.
ALU outputs = (A) + (B).
15 SUB A,B subtract Subtract register A from register B - A >Y A8
register A from B and store results in register
register 8 B. ALU outputs = (B) - (A).
16 PASSB pass register B Pass register B contents unchanged 8 »>Y 8
on to the Y bus.
17 PASSQ pass register Q Pass Q register contents to ALU Q >V -
BUS (Y).
0041

FPS 7350-01

Table A-1 PIOP Instructioms (cont.)
OTHER
aCTaL SHORTHAND FIELDS
FIELD CODE | MNEMONIC MEANING OESCRIPTION NOTATION USED
TRANSFER 0 |TR ALU,_ | arithmetic and Source of the data bus is 08 <Y -
(SRC) Jogic unit the ALU output (Y).
TR (DISPY| displacement 8 Source of the data bus is DB < DISPR | DISP8
' the contents of the DISP8
field.
NOTE 1 TR FF,_ FIFO Source of the data bus is 0B < IB -
FIFQ input buffer.
TR I0R,_ | input/output Source of the data bus is 08 < IOR -
register the contents of the [/0
register.
TR PSA,_ | program source Source of the data bus is 0B < PSA -
address the program source address
register.
TR CR,_ control register | Source of the data bus is 0B < (R -
the contents of the control
register.
7 - - Indicates that the SPEC GO TO SPEC -
(special) field is to be used
as the next field in the
instruction word.
TRANSFER 0 - - No operation. - -
(0ST)
NOTE 2
TR_, FF FIFO Destination is the FIFQ 08 > 08 -
- output buffer.
TR_, IOR | input/output Destination is the I/0 08 > IOR -
register register.
TR_, AR address register Destination is the address 0B > AR -
register of the CPU.
6 |[TR_, CR control register | Destination is the control 08 > CR -
register.
SPEC 0 |TR PS, IOR program source, Transfers program source I0R < PS ! PSA CONTROL
Input/output word into the I/0 register
register (2-cycle instruction).
TR IOR,PS; see above Transfers contents of 1/0 PS < IOR [PSA CONTROL
register to program source
(2-cycle instruction).
NOTES
1. Source loaded on data bus at beginning of cycle.
2. Destination loaded on data bus at end of cycle.

FPS 7350-01

0042

FIELD

OCTAL
COOE

MNEMONIC

Table A-~1l

PIOP Instructions (cont.)

MEANING

DESCRIFTION

|
|

SHORTHAND
NOTATION

PSA
CONTROL

10

11

12

13

14

JMPAR

JMPST

JMPA v

poP

PUSH

RTN

JSR V

BDSC x, y

80SS x, ¥

BFC x, ¥

BFS x, y

BISC x, v

jump to address
register

jump to stack

Jump absolute

pop the stack

push the stack

return

Jump to
subroutine,
relative

branch if device
status is clear

branch
status

if device
is set

branch

br if flag
clear

branch
set

if flag

branch if ALU
status is clear

No Operation.

Absolute jump to address contained in
the PIOP address register (AR).
Address register can be loaded as a
data bus destination. The contents of
the register is the 8 LSB's of the
data bus.

This instruction uses no other fields
and is, therefore, useful for tight
loops and computed GO TO's.

Jump to address at top of stack. Does
not change stack contents so is not a
subroutine return instruction. This
instruction uses no other fields.

Jump to absolute address V which is
contained in the DISP8 field.

Advance subroutine return stack to
the next address. This instructiocn
does not change PSA.

Enter the current address plus one
in to the subroutine return stack.
This instruction does not change the
PSA.

Jump to address at the top of the
stack and advance the stack to the
next address (POP the stack).

Jump by the relative location V as
specified by the DISP8 field. Enter
the current location plus one into
the stack.

If device status BIT # x is clear,
branch relative as specified by y. The
maximum displacement is +17 to -20 octal
locations. If x=7, then a high level on
DS@7* was sampled at the beginning of
this instruction. y may be specified

as a relative argument.

NOTE

DS@7* is one of eight sense lines

(0Sp@* - DSP7*) that allow the PIOP
to be controlled
externally.

Same as above except BIT # x must be
set for the branch to occur (DSP7*
Tine low if x=7).

If flag BIT # x is clear, branch rela-
tive as specified by y (DISPS). The
maximum displacement is +17 to -20
octal locations.

Same as above, except branch occurs
if flag is set.

If internal status BIT #x is clear
(zero), branch as specified by ¥y
(DISPS). Maximum displacement is +17
to -20 octal locations.

Internal status BIT # is defined as
follows:

If set: 0 = FIFO data valid
FIFQ full

R shift out

Q shift out

ALU carry

ALU zero

= ALU sign

7 = ALU overflow

o s W
"

Note that bits 2 through 7 above also
appear in the control register (CR).

PSA < AR

PSA < ST

PSA - DISPs

PSA + 1 > ST

POP AND JMPST

PSA < PSA + QISP8 ,
PUSH

If condition is
true, then:

PSA < PSA + DISPS

If condition is
not true, then:

PSA < PSA + 1

o1sPy

o1se8

81T =, DISPS

8IT =, DISPS

BIT #, OISPS

8IT =, OISPS

BIT s, DISPS

FPS 7350-01

A - 6

0043

Table A-1

PIOP Instructions (cont.)

FIELD

OCTAL
CooE

MNEMONIC

MEANING

DESCRIPTION

SHORTHAND
NOTATION

OTHER
FIELDS
USED

PSA
CONTROL

15

16

17

BISS x, y

BNZST

JMP X

branch if ALU
status is set

branch if ALU
not zero, stack

Jjump.

Same as BISC except that status
must be set (1) for the branch
to occur.

These instructions are alternate mnemonics

for the eight BISS and eight BISC mnemonics.

8FV DISP
BFF DISP
8FOT DISP
BQOT DISP
BC DIsP
8Z DISP
8M DISP
8OVF DISP

Branch if FIFO data valid
Branch if FIFO full
Branch if R-shift output
Branch if Q-shift output =1
Branch if carry set

Branch if ALU=0

Branch if ALU is minus

"
—

Branch if overflow = 1

BNFY DISP
BNFF DISP
BNFOT OISP
BNQOT DISP
8NC DISP
BNZ DISP
8P DISP
BNOVF DISP
If ALU output is non-zere, branch to the

location at the top of the stack. For
example:

Branch if FIFQ data not valid
Branch if FIFO not full
Branch if R-shift output =0
Branch if Q-shift output = @
8ranch if ALU carry out is 0
8ranch if ALU is not O

8ranch if ALU is positive
8ranch if ALU overflow = 0

TVDB 1@; MOVD CNT
PUSH
DEC CNT
8NZST
HALT
The above loops 10 times before halting.

Jump unconditionally to the relative
address specified by X.

If condition
is true, then:
PSA < PSA + DISPS

If condition is
not true, then:

PSA < PSA + 1

PSA < ST

PSA < PSA + DISP8

8IT #,

DIsSP8

0ISPS

FPS 7350-01

0044

Table A-l

PIOP Instructions (cont.)

QCTAL
cooe

MNEMONIC

MEANING

DESCRIPTION

SHORTHAND
NOTATION

OTHER
FIELDS
USED

ouT

IN

[ORST

output

input

input/output
reset

No operation.

Places FIFQ output buffer contents on external
device bus (DEYP2* through DEY39*) and advances
format logic. The format is specified by the
FORMAT field in the control register.

Loads the FIFQ input buffer with data on the
external device bus (DEV@2* through DEV39*)

at the end of the present cycle. This instruction
also advances the format logic. The format is
specified by the FORMAT field in the control
register.

Causes PIORST* (PIOP reset) to go true (low)
which, by convention, resets all devices
connected to the PIOP bus.

SPIN

BIT 37

BIT 38

8IT 39

SDSC x

SOSS x

SDAV

spin until
device status
is ¢lear

spin until
device status
is set

spin until
data
available

Spin until device status (BIT #) is clear. PIOP

spins (waits) until device status line

referenced by x (in BIT # field) is clear (high

level) and then executes the remainder of that

instruction. Device status state js sampled at
" the beginning of the instruction cycle.

i6ins
[$0sC 7 ‘
! psere ! ' !

I ;
PN)
) I

1]

E2ECUTE
um:ma

0
INSTRUCTION

EXECUTE
NERT
LHSTRUCTION

- e~

Only INT@ (interrupt) interrupts spins. If
interrupted, the remainder of the instruction is
not executed. Upon return from the interrupt, the
next instruction is executéd. The SPIN is not
reentered.

Same as above, except the DSP7* level is
inverted.

Spin until FIFO data is available. The PIOP spins
(waits) until the FIFQ contains valid data.

SETMAR; PASSB BUF; RFF

SOAV; TRFF,DB; WORD 3; MOVD @; AFF
The above instruction sequence puts valid data
from the AP's main data location (buffer) into ALU

register § and then the AFF resets the data valid
flag. The spin is a minimum of five cycles.

8IT ¢

BIT #

FPS 7350-01

INPUT/QUTPUT DATA FORMAT

FIELD

CODE WORD DB TRANSFERS BITS

WORD

24-39
12-23
2-11
2-39

Tow mantissa (ML)
high mantissa (MH)
exponent
full word

Q WORD 0
WORD 1
WORD 2
WORD 3

W N

A - 8

Q045

Table A-2

PIOP Expanded Instructions

FPS 7350-01

5 OTHER
OCTAL . SHORTHAND FIELDS
FIELD | CODE | MNEMONIC MEANING DESCRIPTION NOTATION USED
ALUSRC o] AQ - A >R, Q >S5S A
: 1 AB - A >R, B >§ 8
! 2 29 - A1l of these codes are used to g>R, Q >S5S -
select the data source for the
3 8 - R and S input fields of the ALU. 2>R, B >5§ 8
4 IA - Note that A and 8 fields are >R, A >S5S A
deferred. That is, the A (or B)
5 DA - field selects one of 16 B>R, A >S5S A
registers. The contents of the
6 0Q - selected register is then moved 0B>R, Q@ >5S -
into either the S or R input
7 0Z - field of the ALU. DB>R, 8>S -
ALUDST b} Q Internal work
register F>Q, F>¥Y ALUFCN
1 NP - A1l of these codes are used to F>Y ALUFCN
select the destination that is
2 A A field to receive the ALU output F> 8, A >Y A, ALUFCH
function.
3 F ALU function F> 8,F>Y 3, ALUFCN
Mnemonics are:
4 RQ Right shift Q Fl2> 8, Q2
Q = internal work register q,F> B, ALUFCN
5 RF Right shift F = ALU function
ALU function F/l2> B8 ,F>Y 8, ALUFCN
Y = ALU output bus
6 LQ Left shift Q 2F> 8, 20 »>
Note that a right shift is a qQ,F>Y 8, ALUFCN
divide by 2 while a left shift
7 LF Left shift is a multiply by 2.
ALU function 2F> B ,F>Y B, ALUFCN
ALUFCN 0 AD add F=R+S+¢C ALUSRC, ALUOST
1 SB subtract F=5-R ALUSRC, ALUDST
2 SR subtract, These codes are the function F=R-S§ ALUSRC, ALUDST
reverse performed by the ALU.
3 0R logical "or" R and § are ALU input operands. F=Rors ALUSRC, ALUOST
4 AN logical "and" The ALUSRC field selects the F=Rand S ALUSRC, ALUOST
source for R and S; the ALUDST
5 NA logical "nand" selects the destination for the F = "not" R and § ALUSRC, ALUDST
ALU output after the selected
6 X0 exclusive "or" | function has been performed. F =R xor$S ALUSRC, ALUDST
7 XN "exclusive "nor” F = "not" R xor S ALUSRC, ALUDST
SH 0 - default Shift in zeros - -
1 N - Shift in ones. - -
2 R rotate Raotate (shift out becomes shift in) - -
3 A arithmetic Sign extend on right shift; fill - -
shift with zeros on left shift.
c] - default - F=F ALUFCN
1 I - - F=F+1 ALUFCN
0046

Table A-3 Symbol Definitions

SYMBOL DESCRIPTION

Register A - one of 16 internal registers (scratch-

A pad memory of ALU). The specific register to he
used is specified by a 4-bit binary numher in the
A field.

8 Register B address - one of 16 internal reqisters

(scratchpad memory of ALU). The specific register
to be used is specified by a 4-bit binary number
in the B field.

NOTE

The same 16 registers are used by
both A and 8 fields. For

example, the A field may specify
register 42 while the B8 field

may specify register #14.

Data Bus - the bi-directional bus connecting
08 the transceiver to the other PIOP circuits.
The mnemonic DB is also used for data bus.

Q Register Q - an internal work register.

R ALU Input Register R - one of two inputs to
the ALU. Designates the left-hand input in a
double-gperand statement.

S ALU Input Register S - One of two inputs to
the ALU. Designates the right-hand input in a
double-operand statement. .

Y ALU Output Bus Y - indicates the output bus of

the ALU. More specifically, the output of the-
ALU Bus Select Logic.

7 Represents binary 0's. For example, the
expression Z > R indicates that all zeros
are loaded into the ALU R input register.

F Results of the ALU function which are applied
to the ALU destination.

Q047

FPS 7350-01 A - 10

Table A-4

Cross-Reference List

OCTAL SHORTHAND OCTAL SHORTHANO
MNEMONIC FIELD COO0E NOTATION MNEMONIC FIELD CODE NOTATION
A ALUDST 2 F>8,A>Y ENINT EXPAN 6 -
A SH 3 -
A8 ALUSRC 1 A>R,8>5S F ALUDST 3 F>18, F>1Y
AD ALUFCN 0 R+S+C
ADD ALY 14 A+B8>8 HALT EXPAN 12 Halt, PSA < PSA + 1
ADDD ALY 2 0B +A>38
AFF EXPAN 3 - IN 10 1 -
AN ALUFCN 4 R and S INCB ALU 10 8+1>8
ANDD ALU 3 0Band A> 8 INCD ALU 12 0B +15>Y
AQ ALUSRC 0 A>R,Q>S IORST 10 7 -
8DsC PSA 10 JMP PSA 17 PSA < PSA + DISP8
80SS PSA 11 [f condition is JMPA PSA 3 PSA < DISP8
true, then:
8FC PSA 12 PSA < PSA + DISPS JMPAR PSA 1 PSA < AR
8FS PSA 13 If condition is JMPST PSA 2 PSA < ST
8{sC PSA 14 3°—s§ :.r:; Ehim JSR PSA 7 PSA < PSA + DISP8, PUSH
BISS PSA 15
BNZST PSA 16 PSA < ST LF ALUDST 7 2F > B, F>Y
LQ ALUDST 6 2F>8,20>Q F>Y
CF EXPAN 1 clear flag BIT ¢
MOVD ALU 1 08 > 8
DA ALUSRC 5 0B> R, A> S
08 0sT 0 - N SH 1 -
DECB ALY 1 B-1>8 NA ALUFCN 5 "not" R and S
0ECD ALY 13 08 -1>Y NP ALUDST 1 F>Y
DISINT EXPAN 7 -
oq ALUSRC 6 0B >R, Q>S5S
0z ASUSRC 7 0B>R, 8>S
0048
FPS 7350-01 A 11

Table A~4 Cross-Reference List (cont.)
mexowic | FlELD | GoOE NOTATION wewonc | Fieo | Cooe AOTATION.
R ALUFCN 3 Ror S TR AW, -- |TR(SRC) 0 DB < Y
080 ALU 4 DB or A> 8B TR,CR, -- | TR(SRC) 5 08 < (CR)
out 10 2 - TR(DISP8),--| TR(SRC) 1 08 < (DISPS)
TR FF, -- | TR(SRC) 2 08 < (I8)
PASSA ALY 7 A>Y,8>8 TR IOR, -- | TR(SRC) 3 08 < (I0R)
PASSB ALY 16 B> Y TR IOR, PS | SPEC 1 PS < (I0R)
PASSD ALY 6 08> Y TR PS, IOR |SPEC 0 (I0R) < PS
PASSQ ALY 17 qQ >y TR PSA, -- | TR(SRC) 4 08 < (PSA)
poP PSA s - TR --, AR | TR(DST) 4 08 > (AR)
P3AB EXPAN 13 PSA > B TR --, CR | TR(DST) 6 08 > (CR)
PUSH PSA 5 PSA + 1 >ST TR --, FF | TR(DST) 2 08 > (08)
TR --, IOR |TR(DST) 3 08 > (I0R)
q ALUDST 0 F>Q, F>Y TVCR EXPAN 14 VALUE > CR
VD8 EXPAN 15 VALUE > 08
R SH 2 - TVEX EXPAN 16 VALUE > EXP
RF ALUDST 5 F/2>8,F>Y
RFF EXPAN 2 - WORD 0 WORD 0 -
RQ ALUOST 3 F/2>8,Q/2>Q, F>Y WORD 1 WORD 1 -
RTY PSA 6 POP and JMPST WORD 2 WORD 2 -
WORD 3 WORD 3 -
S8 ALUFCN 1 s-R
SDAV SPIN - - XN ALUFCN 7 "not" R xor S
sbs¢ SPIN - - %0 ALUFCN 6 R xor S
SDSS SPIN - - XORD ALU 5 08 xor A > B
SETDA 10cMD 3 ALU > DVCMD
SETMAR 10cMD 1 Read APMA A ALUSRC 4 p>R,A>S
SETMAW 10CMD 2 Write APMA 28 ALUSRC 3 p>R, B8>S
SF EXPAN 4 Set flag BIT ¥ 0 ALUSRC 2 p>R, Q>
SINDC 10 3 -
SINDS 10 3 -
SINT EXPAN S Set interrupt 31T #
50T0C 10 6 -
SOTOS 10 5 -
SR ALUFCN 2 R-S
START EXPAN 11 Start
sus ALU 15 B-A>8
FPS 7350-01 A 12 .

APPENDIX B

PIOP INTERCONNECTIONS

Figure B-l1 illustrates the lines and buses that connect the PIOP to the
AP and that connect the PIOP to the external device. This diagram is
not intended to be a complete schematic but, rather, is presented to
aid the programmer in understanding how the PIOP communicates with the
outside world.

FPS 7350-01 B - 1

¢0-06€. sdid

DEVICE CONTROL
REGISTER QUTPUTS
(8641 OUTPUTS)

Dspp*

7414 INPUTS
DSp7*
DEVICE DATA BUS i
OUTPUT FROM FIFO 0B 8641 "l:UT1
LOADED INTO FIFO IB +5 OUTPUY
(FORMAT DEPENDENT) -

39

INTP 5
INT1

b O URTLTS %IK
INT3

AP PIOP EXTERNAL DEVICE
DA 100 (I0R) SETDA
oUT (DPBS - I0R) comianp > bCpp* - DC19*
IN (IOR - INBS)
SNSA (DEPOSIT)
PROGRAMMED SNSB (EXECUTE)
I/0 SENSED
BY
SDSS
DAIOI sDSC
BUSY T0 10DRDY BDSS
OUT SETS INT3 BDSC
SNSB RESETS PIOP
DAI10 - DA117 (FLAGS)
FLAG GATED TO IODRDY 0‘:"‘
OUT SETS FLAG N
SNSB RESETS FLAG L HAADSHAKE < DEvezs - DEVS
THE PIOP
ANY ADDRESS CONTROL REG
JORST RESETS PIOP ‘5
1K TYP
F1F0 W VECTORS
18 IF ARMED 10
MDP2* - MD3g FULL ‘ ps
DMA WORDS ey hey
NABLED Ps2
(SEE AP MAINTENANCE Ps3
MANUAL FOR BUS FIF
CHARACTERISTICS) os 0 > AR
MDIP2 - MDI39 FULL
WORDS
/ >
MDCR2* < >
MDCA2
DCHP2 >
MDUWRT* <

- - - -

Figure B-1 PIOP Interconnection Diagram

+5
PIORST* 330
22;, 74538
1B BUSY* 390
18 LOAD*

"\

K92

APPENDIX C

SPECTAL STORAGE ELEMENTS

C.1 INTRODUCTION

Certain hardware elements are used to store data in a specific manner.
One such element stores data on a first-in, first-out basis and is,
therefore, referred to as a FIFO memory element. Another such element

stores data on a last-in, first-out basis and is referred to as a
"stack."

Both of these elements are used in the PIOP. One element is the FIFO
memory which is part of the transceiver. The other element is the
subroutine return stack. Each of these elements 1is discussed in a
subsequent paragraph.

FPS 7350-01 c - 1

C.2 FIFQO MEMORY ELEMENT

A first-in, first-out (FIFO) memory element allows information to be
retrieved in the same sequence as it was stored. Thus, a FIFO memory
might be thought of as a buffer between elements that operate at
different speeds. One -element might load the memory slowly while
another element might retrieve data from the memory in a high-speed
transfer. A FIFO memory is often referred to as a "fall through"
memory because data is entered at the top of the memory and is allowed
to "fall through" to the bottom of the memory where it can then be
retrieved.

Operation of a FIFO memory is dependent on two pointers: a write
pointer and a read pointer. Whenever data is to be loaded into the
memory, the write pointer indicates the first available memory
location. After the data is loaded, the pointer moves to the next
sequential location. This process is repeated as often as necessary to
load the required data, or until the memory becomes full. During read
operations, the read pointer 1is 1initially positioned at the memory
location where the first data item has been stored. After the data
item 1is read, the read pointer moves to the next sequential memory
location. This process is continued until all of the required data
items have been read.

Operation of a typical FIFO memory is shown in Figure C-l. As shown on
the figure, both the read pointer (RP) and the write pointer (WP) are
initially equal.)

As shown in Step 1l in the figure, the first data item (lst) is loaded
into the memory location indicated by the write pointer (WP) and then
the pointer is incremented to move it to the next sequential 1location.
Note that the read pointer (RP) never moves during a write operation.

During Step 2, the second data item (2nd) is loaded and then the write
pointer- is incremented to move it to the next sequential location.
During Step 3, the third data item is loaded and the pointer advanced
again. This operation can continue as long as data items are to be
entered or until the memory is full.

When unloading the memory (reading), the first data item 1is read
(retrieved from memory) and the read pointer (RP) is then incremented
to advance it to the next location. This process is continued until
all items have been read. Note that the data items are read in the
same order as they were written. That is, the data loaded first (lst)
is the data that is unloaded first.

FPS 7350-01 c - 2

-
Y ep ’ 1st : Ist
o ’ WP
PREEELLY et
LR ist N LRP Ist
’ 2nd (WP 2nd

........ et

! b VRP
LRP AL ist Ay B
2nd 2nd

3rd 3rd

i RP) 1st
2nd 2nd

3rd 3rd

2nd
. Ird 3rd

0093

Figure C-1 Operation of a Typical FIFO Memory

FPS 7350-01 c - 3

C.3 STACK

A last-in, first-out stack is used to provide return address linkage
when executing subroutines. This type of stack allows items to be
added in sequential order and then be retrieved' or deleted from the
stack 1in the reverse order. It is not necessary for the programmer to
keep track of the actual locations that data is loaded into; this 1is
handled automatically by a "stack pointer.”

A last-in, first-out stack is also referred to as a '"pushdown" stack.
As each item is added to the stack, the previous item is "pushed" down
into the stack, and the last item added takes the top position on the
stack. The words "push" (moved down into the stack) and "pop"
(retrieve the most recently stored item from the top of the stack) are
used to describe stack operationms.

Whenever a subroutine call is made (a JSR) imstruction, the JSR saves
the current program counter by pushing it om to the stack. Once the
program counter is saved, the JSR causes the program to jump to the
specified locatiom.

Whenever a return from subroutine call is made (an RIN instruction),
the RIN instruction pops the stored program counter from the top of the
stack and then causes the program to jump to the location specified by
the popped word. 1In other words, the program jumps back to the same
location it was prior to the JSR execution.

When a subroutine call is made within a subroutine, it is referred to
as '"nesting." In this case, the program counter from the first
subroutine call is pushed on the stack first, then the program counter
from the second subroutine call 1is pushed on the stack, etc. When
returning to the main program, the 1last program counter stored is
popped first to return to the last subroutine called. Then the next
program counter is popped, etc. The last word to be popped is the
first program stored. Because a 4-word stack is used in the PIOP, up
to four subroutines can be nested.

Figure C-2 illustrates how the stack functions. WNote that unlike the
FIFO memory, the stack has only one pointer which is referred to as the
"stack pointer" or "SP." This pointer initially points to some
location. When a word is loaded into this location, the pointer moves
down to the next sequential location. This process may continue until
the stack is full.

When a word is to be popped, it is retrieved from the current location
of the stack pointer and the pointer then moves to the preceding
location. This process may continue until the stack 1is empty. Note
that the last word pushed omn to the stack (4th word) is the first word
popped from the stack.

FPS 7350-01 C - 4

lst 1st

2nd
3rd

2nd { SP\ 2nd
gy

1st Ist

ond 2
3rd @‘Eﬂ

1st 1st

2nd

3rd

4th

DIRECTION DIRECTION
QF STACK OF STACK

POINTER POINTER {

0094

Figure C-2 Stack Operation

FPS 7350-01 c - 5

APPENDIX D

SUMMARY OF PPDBUG COMMANDS

D.l INTRODUCTION

Abbreviations used in the following appendix:

Symbol

(cr)
loc
count
val
fpn
mem
reg

Debug types

Meaning

carriage return

an integer location number

an integer count

an integer value

a floating=point number in form acceptable to FORTRAN

the name of a PIOP internal memory (or AP main data memory)
the name of a PIOP internal register

an "*" when ready for further action. An "ERROR MESSAGE"

is typed when a command is not understood.

FPS 7350-01

D.2 PROGRAM EXECUTION COMMANDS

I (cr) Initialize. Reset the PIOP before program execution
is resumed next.

R (cr) Run. Begin program execution at PIOP program source
loc (er) location LOC.
X (er) Exit to AFDBUG.

[]

FPS 7350-01 D -

D.3 REGISTER EXAMINATION/MODIFICATION COMMANDS

tx

reg

mem
loc

val

val

VAL

(ecr)
(cr)

(cr)
(cr)
(cx)
(cr)
(cr)

(cr)

(cr)
(cr)

(cr)
(er)

(er)
(cr)

(cr)

FPS 7350-01

Examine register. Print out the contents of PIOP
register REG.

Examine memory. Print out the contents of PIOP
memory MEM (or APMD), location LOC.

Re-examine the currently open register or memory
location (the last location examined).

Examine the next higher sequential memory location
of the memory that is currently open.

Examine the next lower sequential memory location
of the memory that is currently open.

Floating Point Flag, affects the input/output of
38-bit wide registers and memory locatioms.

VAL=0 3 integers (exponent, high mantissa, low
mantissa)

VAL=1 floating-point.
Change. Change the contents of the currently open
register of memory location to VAL. The format of
VAL depends on the width of the current open locations
as follows:
16-bit wide registers: an integer of the current radix
38-bit wide registers:
F=0 VAL (cr) three integers in the current radix

VAL (cr) which represents the exponent, high

VAL (cr) mantissa, and low mantissa
F=l: FPN (cr) a floating point number legal to FORTRAN
Number radix. Set the radix for integer user
I/0 to VAL, which must be 8 (for octal), 10 (for

decimal) or 16 (for hexadecimal).

Zero. Zero out all ALU registers and PIOP program
source memory.

D.4 MEMORY LOAD/DUMP COMMANDS

Y

MEM

LoC
filename

W

MEM
START
STOP
filename

FPS 7350-01

(cr)
(cr)
(er)

(cr)

(cr)
(cr)
(cr)
(cr)
(cr)

Yank. Load memory MEM starting at location
LOC from an external data FILENAME.

Write. Dump memory MEM starting at location
(START) and ending at location (STOP) to
external data FILENAME.

MEM can be PS or MD.

D.5 ACCESSIBLE FUNCTIONAL UNITS

AP Functional Units that may be examined or changed with PPDBUG:

MEMORIES

Mnemonic

PS
MD
ALU

REGISTERS

Mnemonic

AR
FF
FLAG

IOR
PSA
CR

FPS 7350-01

Name

PIOP program source memory
AP main data memory
ALU registers

Name

address register

FIFO register

8 PIOP flags

(flags 0-7, left=-to-right)
I1/0 register

program source address
control register

Q register

Width
38

38
20

38

20
20

Notice to the Reader

8 Help us improve the cuality and usefulness
of this manual.

Your comments and answers to the following
READERS COMMENT form would be appreciated.

¢ Tomail: fold the form in three parts so
that Floating-Point Systems’
mailing address is visible for
the post office carrier; seal.

Thank You

READERS COMMENT FORM

Document Title

Your comments and answers will help Did vou find this material . . .

us improve the gquality and usefulness
of our publications. If your answers

N . N N i g

require qualification or additional YES NO
explanation, please comment in the
space provided below. e USEFUL? () (
o COMPLETE? () (
' , o ACCURATE? ()|
How did you use this manual? o WELL ORGANIZED? ()
(') AS AN INTRODUCTION TO THE SUBJECT ¢ WELL ILLUSTRATED?)y
o
(') AS AN AID FOR ADVANCED TRAINING o WELL INDEXED?)y
.)
() TO LEARN OF OPERATING PROCEDURES ¢ EASY TO READ? ()
() AS A STUDENT IN A CLASS Please indicate below whether your
/ comment pertains to an addition,
() As A REFERENCE MANUAL deletion, change or error; and, where
() OTHER applicable, please refer to specific

page numbers.

Page | Description of error or defliciency
From:
Name Title
Firm Department
Address City, State

Telephone Date

First Class
Permit No. A-737 3
Parttand,
Qregon

BUSINESS REPLY

No pastage stamp necsssary if mailed in the United States

Postage will ds paid dy:

FLOATING POINT SYSTEMS, INC.

P.Q.B0x 23489
Partland, Cregen 87223

Attention: Technical Puhiications

» R D Gme U wRES I S D GNP A D N Ui S N D N WP D D D A N — D D A ———— - — —— ww — — — =

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX: 360470 FLOATPOINT PTL

