APMATH64 MANUAL

VOLUME 2 OF 4

MODELS Mé64/40,
M64/50, M64/60

860-7482-001C

FLOATING POINT SYSTEMS, INC.

by FPS Technical Publications Staff

APMATH64 MANUAL

VOLUME 2 OF 4

MODELS Mé64/40,
M64/50, M64/60

860-7482-001C

Publication No. 864-7482-881C
December, 1987

NOTICE

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright © 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may
be reproduced in any form without written permission
from the publisher.

Printed in USA

The postpaid Reader's Comment Form on the last page of this document
requests the user's critical evaluation to assist in preparing and
revising future documents.

REVISION HISTORY

This manual is the APMATH64 Manual, Volume 2, 864-7482-201. The letter
shown under the revision number column indicates the portion of the
part number that changes for each revision. The last entry is the
latest revision to this manual.

REV. NO, DESCRIPTION DATE
-gF1A The revision history begins with this manual. 8/86
-341B Deleted Utilities Library, deleted the

LPSPFI subroutine, added internal subroutine

information, and added 16 new routines. 1/87
-gg1cC Added new routines to Basic Math Library,

Double Precision Library, and Matrix

Algebra Accelerated Math Library. 12/87

NOTE: For revised manuals, a vertical line "|" outside the left
margin of the text signifies where changes have been made.

NOTE TO READER

This is the second volume of the APMATH64 Manual.
Volume 2 is comprised of part 2 of Appendix A. Note
that Appendix A continues through Volumes 1, 2, and
3. The page numbers are listed consecutively through
the volumes.

The APMATH64 Manual has three indices located at the
end of Volume 3 and two at the end of Volume 4. The
first index (Appendix I) is a list of the APMATH64
routines in page order by type. The second index
(Appendix J) is an alphabetical 1list of all the
APMATH64 routines. The third index 1is a key word
index of the APMATH64 routines. The fourth index
(Appendix L) 1is an alphabetical 1list of the
APMATH64/MAX routines. The fifth index is a key word -
index of the APMATH64/MAX routines.

CONTENTS

CONTENTS (VOLUME 2)

APPENDIX A APMATH64 ROUTINES

ADVANCED MATH LIBRARY A-233
SIGNAL PROCESSING LIBRARY A-263
IMAGE PROCESSING LIBRARY A-393
LINPACK BLAS LIBRARY A-325
STMULATION LIBRARY A-362
GEOPHYSICAL LIBRARY A-492
SPARSE LINEAR SYSTEM LIBRARY A-422
ILLUSTRATIONS
Figure No. Title Page
A-1l Correlation A-309
A-2 Convolution A-309

FPS 869-7482-941C Page iii

APPENDIX A

APMATH64 ROUTINES (VOLUME 2)
ADVANCED MATH LIBRARY

FPS 868-7482-941C Page A - 233

APPENDIX A

DESCRIPTION® This routine first calls HTRIDI to reduce A to a
real symmetric tridiagonal matrix using unitary
similarity transformations. IMTQL2 is then called to
determine the eigenvalues and eigenvectors of the
real tridiagonal matrix. IMTQL2 uses the implicit QL
method to compute the eigenvalues and accumulates the
QL transformations to compute the eigenvectors.
Finally, HTRIBK is called to backtransform the eigen-
vectors to those of the original matrix.

If N is less than or equal to zero, then IERR is set to
999999. If N is greater than NM, then IERR is set to
1g*N. If more than 3§ iterations are required to
determine an eigenvalue, the subroutine terminates

with IERR set equal to the index of the eigenvalue

for which the failure occurs. 1In this case, the
eigenvalues in W should be correct for indices

1, 2,..., 1IERR-1, but no eigenvectors are computed.

k31

TF all Af {-he Q‘:ﬂéﬁ!’:]l!ﬁs ara Ag#grm{neﬂ wikthin
+L ais O T eigenva.use are cegternin S witoiin

iterations, then IERR is set to zero.

The function selector, MATZ, may be made functional
in a future release as follows: If MATZ = &, then
only the eigenvalues will be determined; otherwise,
both the eigenvalues and eigenvectors will be
determined.

With the exception of error code 999999 and the
nonfunctionality of the selector flag, this routine is
functionally the same as the FORTRAN routine of the
same name found in the "Matrix Eigensystem Routines -
EISPACK Guide"”, 2nd edition, by B.T. Smith, et al.,
Springer-Verlag (1976). For further information,

refer to pages 235-239 of the EISPACK Guide.

The execution time for this routine is highly data

dependent.
EXAMPLE:
Input:
NM = 4
N =4
AR : 3.9 1.9 g.9 g.g9
1.9 3.9 g.g g.g
g.a g.9 1.9 1.9
a.g9 g.9 1.4 1.8

FPS 864-7482-g41C Page A - 235

kAR EREEE
* *

* EIGRS *
* *

EERERER TR

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A

Akt kkked
* *

——— REAL SYMMETRIC EIGENSYSTEM SOLVER —~—— * EIGRS *

* *
tkkkkktkkx

To determine eigenvalues and eigenvectors of a real
symmn#rﬁﬁ matrix

LUL-SEp AR elE . -1 9P 9

CALL EIGRS(NM,N,A,D,E,Z,IERR)

= Integer row dimension of matrices A and 2

= Integer order of matrix (N .LE. NM)

= Floating-point input matrix

= Floating-point output vector (eigenvalues)

= Floating-point scratch vector

= Floating-point output matrix (eigenvectors)

IERR = Integer error flag set if routine does not converge
within 39 iterations (refer to IMTQL2).

N O %

NOTE: The dimension of matrices A and Z is NM*N.
The dimension of matrices D and E is N.

EIGRS first reduces the full matrix to tridiagonal

form by Householder's method, diagonalizing the resulting
matrix by the QL algorithm (using implicit origin
shifts). The APAL subroutines used to accomplish this,
TRED2 and IMTQL2, are based on the FORTRAN programs of

the same name foun

n n the "Matrix :‘§ngnetvstem RBAnte 3

nac
a1 1< VMiQLl A LAYTUSy W ARUUL LSO

.T. Smith et al., Springer-Verlag

s WS LS LU

a

ud

EISPACK Guide"” by B
(1976).

EXAMPLE:

D: 1.0 2.4 5.4 12.9

FPS 860-7482-g@1C Page A - 237

APPENDIX A

thkkkttthtd *EEREEXRER

* * * *
* HTRIBK * ——— COMPLEX HERMITIAN EIGENVECTORS -— * HTRIBK *
* * . * *
RRRERERRER RARTRETRXEE®
PURPOSE: To form the eigenvectors of a complex Hermitian matrix,

A, by back transforming those of the corresponding
real symmetric tridiagonal matrix determined by the
routine HTRIDI.

CALL FORMAT: CALL HTRIBK(NM, N, AR, AI, TAU, M, 2ZR, 2ZI)

PARAMETERS: NM = Integer input scalar

Row dimension of the matrices

N = Integer input scalar
Order of matrix A and column dimension of
the matrices. N must be less than or equal
to NM.

AR = Floating-point NM by N input matrix
The strict lower triangle of the first N rows
contains information about the unitary trans-
formations used in the reduction by HTRIDI.
The remaining elements are ignored.

AI = Floating-point NM by N input matrix
The full lower triangle of the first N rows
contains information about the unitary trans-
formations used in the reduction by HTRIDI.
The remaining elements are ignored.

TAU = Floating-point 2 by N input matrix
Contains the remaining information about the
unitary transformations.

M = Integer input scalar
Number of eigenvectors to be back transformed.

ZR = Floating-point NM by N input/output matrix
On input, the columns of ZR contain the eigen-
vectors to be back transformed in their first N
elements. On output, the first M columns and N
rows contain the real parts of the transformed
eigenvectors.

ZI = Floating-point NM by N output matrix
The first M columns and N rows contain the
imaginary parts of the transformed
eigenvectors.

FPS 860-7482-801C Page A - 239

APPENDIX A

E 222222 2 2 2] kit

® k * *

*+ HTRIDI * -— COMPLEX HERMITIAN TRIDIAGONALIZATION -— * HTRIDI *

*) * * *

ERREREXEER *i****ii*f

PURPOSE: To reduce a complex Hermitian matrix, A, to a real
symmetric tridiagonal matrix using unitary similarity
transformations.

CALL FORMAT: CALL HTRIDI(NM, N, AR, AI, D, E, E2, TAU)

PARAMETERS: NM = Integer input scalar
Row dimension of the matrices

N = Integer input scalar
Order of matrix A and column dimension of
the matrices . N must be less than or egual
to NM.

AR = Floating-point NM by N input/output matrix
On input, the first N rows of AR contain the
real parts of the elements of A. The last
NM - N rows are ignored. Only the full lower
triangle of AR need be supplied. On output,
the strict lower triangle of AR contains
information about the unitary transformations
used in the reduction. The full upper
triangle of AR is unaltered.

Al = Floating-point NM by N input/output matrix
On input, the first N rows of AI contain the
imaginary parts of the elements of A. The
last NM - N rows are ignored. Only the strict
lower triangle of AI need be supplied. On
output, the full lower triangle of AI contains
information about the unitary transformations
used in the reduction. The strict upper
triangle of AI is unaltered.

D = Floating-point output vector of length N
Contains the diagonal elements of the
tridiagonal matrix.

E = Floating-point output vector of length N
Contains the subdiagonal elements of the
tridiagonal matrix in its last N-1 elements.
The element E(l) is set to zero.

E2 = Floating-point output vector of length N
Contains the squares of the corresponding
elements of E.

TAU = Floating-point 2 by N output matrix
Contains the remaining information about the
unitary transformations.

FPS 868-7482-8d1C Page A - 241

APPENDIX A

l

I kkEREREERR it 22 2222212 24
|* * * *
|* IMTQLL * —— DIAGONALIZE TRIDIAGONAL MATRIX -—— * IMTQL] *
|t * * *
i*tt**t**** EERRRRERRE
|
|
| PURPOSE: To determine the eigenvalues of an N by N

real symmetric tridiagonal matrix using the

implicit QL method.
CALL FORMAT: CALL IMTQL1l (N, D, E, IERR)
PARAMETERS: N = Integer input order of the matrix

D = Floating-point input/output vector

Vector of length N containing the diagonal
elements of the symmetric matrix on input;
vector of length N containing the eigenvalues
on output.

E = Floating-point input vector
Vector of length N containing the subdiagonal
elements of the symmetric matrix. The
subdiagonal is contained in elements E(2)
through E(N); E(l1) is arbitrary.

IERR = Integer output error status

IERR = g: No errors encountered, normal
completion.
IERR = -1: The routine received an invalid

input argument, N < 1.

IERR > J: The routine was unable to finish
because more than 39 iterations
were required to determine an
eigenvalue. IERR is set to the
index of the offending eigenvalue.
The eigenvalues in D are correct
for all preceding indices, but are
unordered.

DESCRIPTION: IMTQL1 determines the eigenvalues of a symmetric
tridiagonal matrix using the QL algorithm with
implicit origin shifts at each iteration.

Upon convergence, the eigenvalues are ordered in
ascending order.

The vector E is destroyed by this routine.

IMTQL1 is based on the FORTRAN program found in
the EISPACK GUIDE,; 2nd ed.. B.T. Smith, et al..
Springer-Verlag, 1976. That program in turn is
based on an Algol procedure discussed by Martin
and Wilkinson, NUM. MATH.,12, 1968, pg. 377.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|

FPS 86d-7482-g01C Page A - 243

kkkkkkkrtR
* *

* IMTQL2 *

® *
E2 222222 2 2

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

To determine

APPENDIX A

kX2 X £ 5 £]
® *

——— DIAGONALIZE A TRIDIAGONAL MATRIX -—- * IMTQL2 *

* *
T 3

igenvalues and eigenvectors of a real
agonal matrix

e
symmetric tridi

CALL IMTQL2(NM,N,D,E,Z,IERR)

NM = Integer row dimension of matrices A and Z
N = 1Integer order of matrix (N .LE. NM)
D = Floating-point input/output vector
Diagonal elements on input;
Eigenvalues in ascending order on output
E = Floating-point input vector

Codiagonal elements
Z = Floating-point input/output matrix
For eigenvectors of sym.tridiag. matrix:
Nth-order identity matrix on input;
Eigenvectors on output
For eigenvectors of full sys. matrix:
Trans.matrix from TRED2 on input;
Eigenvectors on output :
Integer index of eigenvalue if convergence not

IERR =
obtained by 39 iterations, else g
NOTE: The mension of arrays A an is NM*N,

di si £ 4 Z
The dimension of arrays D and E is N.

IMTQL2 diagonalizes an N-by-N tridiagonal matrix

using the implicit QL algorithm (Martin and Wilkinson,
Num. Math. 12, 377(1968); Dubrulle, Num. Math. 15, 454
(1974)). The initial diagonal begins at D(1l), and the
codiagonal at E(2). At each iteration, a new tridiagonal
matrix is formed, is stored by overwriting the previous
result, and continues until convergence, or 39 iterations
have passed. If convergence does not occur by 34
iterations, IERR is set equal to the index of the sought
eigenvalue, and the routine is exited. Previously
calculated results are valid. The transformation
matrices are accumulated and the results stored in column
order in matrix Z.

FPS 864~7482-941C Page A - 245

APPENDIX A

AREEERRRER k22 2222 21 2]
* * * *
* RS * ——— REAL SYMMETRIC EIGENSYSTEM SOLVER — * RS *
* * * *
RRERETRERS EXXXRXXTRRT
PURPOSE: To determine the eigenvalues and eigenvector of a

real symmetric matrix, A.

CALL FORMAT: CALL RS(NM, N, A, W, MATZ, Z, FV1l, FV2, IERR)

PARAMETERS: NM = Integer input scalar
Number of rows of matrices A and Z
N = Integer input scalar

Order of matrix A and column dimension of
matrices A and Z. N must be less than or equal
to NM.

A = Floating-point NM by N input matrix
The first N rows contain the matrix and the
last NM - N rows are ignored. Only the full
lower triangle of the matrix need be supplied.

W = Floating-point output vector of length N
Contains the eigenvalues of A in ascending
order.

MATZ = Integer input scalar
MATZ is not currently used.
YA = Floating-point NM by N output matrix
The first N elements of the j-th column of 2
is the eigenvector that corresponds to the
j-th eigenvalue in W. The last NM - N
elements in each column are not altered.
FV1l = Floating-point work area vector of length N
FV2 = Floating-point work area vector of length N
IERR = Integer output scalar
Error code as described below.

DESCRIPTION: This routine first calls TRED2 to reduce A to a
symmetric tridiagonal matrix using and accumulating
orthogonal similarity transformations. IMTQL2 is
then called to determine the eigenvalues and eigen-
vectors of the original matrix from the symmetric
tridiagonal matrix. IMTQL2 uses the implicit QL
method to compute the eigenvalues and accumulates the
QL transformations to compute the eigenvectors.

If N is less than or equal to zero, then IERR is set to
999999, 1If N is greater than NM, then IERR is set to
1d*N. If more than 34 iterations are required to
determine an eigenvalue, the subroutine terminates with
IERR set equal to the index of the eigenvalue for which
the failure occurs.

FPS 864-7482-941C Page A - 247

APPENDIX A

Rtk hd Ltk 2225 2 X2 &]
® * * *
*+ SIMPLE * —— REVISED SIMPLEX —— * SIMPLE *
* * * *
ERERRRTERR RERRXXRXRR
PURPOSE: To solve a linear programming problem that is in the

standard form:
maximize Z = C'* X

subject to A*X =8B

and X(j) >= 4, for j =1 to N
where B(i) >= &, for i =1 to M
CALL FORMAT: CALL SIMPLE(M,N,MP2,NP1,KI,NS,S,IRN,ICP,B,C,WRK,
X,Y,Z2,IB,K0)
PARAMETERS: M = Integer input scalar
Number of constraints (rows in A).
N = Integer input scalar

Number of variables (columns in A).
MP2 = Integer input scalar

MP2 = M + 2
NP1 = Integer input scalar
NP1 = N + 1
KI = Integer input vector of length 14

Contains the program control parameters. If

any of these parameters is less than or equal

to zero, then a default value is supplied for

that parameter. The parameters are:

KI(l) = Input basis flag. KI(l) > @4 indicates
that an initial basis is supplied in
IB. Default = No initial basis.

KI(2) = Iteration limit. Default =4 * N + 14

KI(3) = Inversion interval. Default = M/2 + 5

KI(4) = Zero tolerance exponent. The zero
tolerance value = Z.5 ** KI(4).
Default = 24.

KI(S5) = Partial pricing step size.

Default = min (N, max(296,N/24)).
NOTE: The default value is also used
if RI(5) > N and a value of 24 is
used if 4 < KI(5) < 24.

RKI(6) to RI(1d) are reserved for future use.

NS = Integer input scalar
Number of nonzero elements in A.

S = Floating-point input array of length NS
Contains the nonzero elements of A stored by
columns.

IRN = Integer input array of length NS
Contains the row numbers (in A) that
correspond to the nonzero elements in S.

FPS 863-7482-941C Page A - 249

APPENDIX

The problem must be stated in the standard form:
maximize Z = C'* X

subject to A* X =B
and X(j) >= @, for j

1l to N

where B(i) >= @, for i ltoM

Therefore, it is the res
....... 7 1t 1s the res

onsibility of the user to:

(a) Convert a minimization problem to a maximization
problem by replacing C with -C.

(b) Convert inequality constraints to equality con-
straints by adding a slack variable or sub-
tracting a surplus variable.

(c) Ensure that B(i) >= 4 by multiply the i-th con-
straint by -1.9 if B(i) < 4.

(d) Ensure that the decision variables are con-
strained to be nonnegative. If X(j) is uncon-
strained in sign then replace it by the
difference of two new nonnegative variables.

In this variation of the two phase, revised simplex
method, a composite problem is formed (virtually) in
SIMPLE that includes both the actual (phase 2)
objective equation and the artificial (phase 1)
objective equation as constraints making a total of
MP2 constraints. The variables for the internal com-
posite problem are:

x(g) - The actual gcbhiectiv 7

The actual gbjective; i.e., Z
X(1l) to X(N) - The actual decision variables
X(N+1) - The artificial objective
X(N+2) to X(N+M+l) - The artificial variables
where X(N+1l+i) is the artificial variable for the
i-th constraint.

The variables X(4) and X(N+1l) to X(N+M+l) are virtual
variables and, thus, do not use any storage space.

X(d) must always be a basic variable and IB(l) must
always be zero. X(N+1l) must be a basic variable
during phase one and IB(2) must equal N+1 whenever
X(N+1l) is basic. At least one artificial variable
(including X(N+1l)) must always be basic. During
phase two, any artificial variables in the basis will
have a value of zero. Generally, during phase two,
only one artificial variable will be basic and it
will be X(N+l); however, this need not be the case.

FPS 864-7482-4091C Page A - 251

EXAMPLE:

Given a problem in standard form where

Az

the

MP2
NP1

KI

NS

IRN

ICP

]

IB

The

IB

RO

g.
g.
2.
2.
g.

3.,
1.,

1,
1,

12,

34.

7

a.
a.
a.
3.
1.

3.,
1.,

4,
2,

14,

=g

1.
g.
g.
g.
g.

3.,
l.,

2,
3,

16,

13.,

APPENDIX A

g. 8. g. 4.
1. g. 4. 4@.
g. 1. 4. 4.
g. g. 1. 4.
g. 4. @. 1.
2.' lo’ 5-' 2'1
1., 1.

3, 2, 4, 2,
4, 5

18, 19, 24, 21,
. i 6., g-y
4-[ﬁ., Hor

: 2.0099, 9.6667, 3.9989, 1.4815, 1.5556, y6, y7

where y6 and y7 not of interest (scratch)

4,

6

1. 2. 3. @. 4. 4.
g. 4. 4. 3. 1. 2.
2. 3. 9. 2. @. 4.
g. 4. 3. 4. 5. 4.
3. 4. 9. 9. @. 3.
inputs are:
=5
= 13
=7
= 14
: 9, 9, 9, @
= 22
. l., ‘2., 3.’ 2-, 3-'
3., 2.' 2.’ 3-, l-’
H l, 3' 5' l, 3'
5, 3, 4, 4, 5,
H 1, 4, 61 81 lgl
22, 23
: 14., 25., 21., 34.,
: 9;; 9; 4ii 86:‘
g'l ﬁc' g-' g-
: Don't care since KI(1l)
outputs are:
: 4., 5., 9., 3., ., 8., &.,
g., 4.
= 177.9
: ﬂ' 14' 9' 2' 8'
: g, 7y 7’ gl 7’

FPS 864-7482-g41C

4

Page A

- 253

APPENDIX A

EXAMPLE:

A(INPUT)

V(QUTPUT)

FPS 864-7482-901C

1.0049
8.009

2.377

1.7426

N -~

g.245

1741
LS55

9.009

-2.984

9.904

-g.425

sSao
L4

o

(S]

g.40@3

7.90@

-7.298

4.706

-g.778

XX
Py g7

0 R

11

g.315

Page A - 255

APPENDIX A

mmmam [~ =] =
= ﬂ o - d o~
IR B R B] = =
- | W ﬂ = o~ % (o))
(IR BRI] =]
(S BT R IR [1a] ﬂ <
Hﬁﬂﬂﬂw = = =
[N S A ~ Lo 0]
! i] —
LIRS IR BRI s~] = =
ATN YW o = =
n n | |
nn
o~
NW < [a] <] m
.- o
P =
=} [N
o} +
= =]
H (o]

- 257

Page A

FPS 864-7482-441C

APPENDIX A

Rkt h® t 22222221 3
* * * *
* VASORT * ——— VECTOR SORT ALGEBRAIC VALUES —— * VASORT *
* * * *
BRREREERTEER ts 2 5 X2 & % £
PURPOSE: To sort a vector into an ascending vector

of algebraic values using Quicksort.
CALL FORMAT: CALL VASORT(A,I,N,W)
PARAMETERS: = Floating-point vector to be sorted in place
Integer element step for A
Integer element count

= Floating-point vector of at most 2*log2(N) words
of contiguous space for working stack of

EZHp
"

il S

DESCRIPTION: VASORT sorts elements of a vector into an ascending
vector of algebraic values by the method of
Quicksort (Hoare's partition-exchange sort) in
place. The procedure iteratively partitions
the vector creating two subvectors, one whose
values are less than or equal to the value
initially at the middle location, and the other with
elements greater than or equal to that value.

This chosen value ends up in its true
(post-sorted) position between the two subvectors.
The half-way location was chosen for initial trial
comparison in order to speed the sort when the
original vector is already partly ordered.

After each partition, first and last locations of
the larger subvector are stored in a pointer stack,
which can accumulate no more than log2(N) pairs,
and the process of partitioning is continued on the
smaller subvector. The process of comparison and
partitioning is continued until no subvectors
remain. The vector is then completely sorted.

EXAMPLE:
N=25
A(input) : 5.9 4.9 -9.5 -1.4 8.4
A(output) : -1.4 -#.5 4.9 5.9 8.4

FPS 864-7482-g4d1C Page A - 259

E2 22222 22 %
* *

* VSORT *
* *
EEEREEEEES

PURPOSE:

CALL FORMAT:

PARAMETERS :

DESCRIPTION:

APPENDIX A

t 2222222 L 23
* ®
-— VECTOR SORT WITH INDICES ——- * VSORT *
* *
22222 2 2 3

To sort a vector into an ascending vector of
algebraic values using Quicksort. When the elements
of the A vector are swapped, corresponding elements
of the P vector are also swapped. Typical use of

the P vector is to record the original indices of the
sorted vector.

CALL VSORT(A,I,P,J,N)

Floating-point vector to be sorted in place
Integer element step for A

Integer or real vector of starting indices
Integer element step for P

= Integer element count

2 G H P
i

VSORT sorts elements of a vector into an ascending
vector of algebraic values by the method of
Quicksort (Hoare's partitiom—exchange sort) in
place. The procedure iteratively partitions

the vector creating two subvectors, one whose
values are less than or equal to the value
initially at the middle location, and the other with
elements greater than or equal to that wvalue.

This chosen value ends up in its true
(post-sorted) position between the two subvectors.
The half-way location was chosen for initial trial
comparison in order to speed the sort when the
original vector is already partly ordered.

After each partition, first and last locations of
the larger subvector are stored in a pointer stack,
which can accumulate no more than log2(N) pairs,
and the process of partitioning is continued on the
smaller subvector. The process of comparison and
partitioning is continued until no subvectors
remain. The vector is then completely sorted.

FPS 864-7482-941C Page A - 261

APPENDIX A

SIGNAL PROCESSING LIBRARY

FPS 864-7482-941C Page A - 263

APPENDIX A

*RERREETERR ket R
* * * *
* ACORT * —— AUTO-CORRELATION (TIME-DOMAIN) —— * ACORT *
* * * *
RREREXLERER BRXEXEXERERR
PURPOSE: To perform an auto-correlation operation on a vector

using time-domain technigques.

CALL FORMAT: CALL ACCRT(A,C,N,M)
PARAMETERS: = Floating-point input vector
Floating—-point output vector
= Integer element count for C

(Number of lags)

M = Integer element count for A
€ P

T mwna

{Note vector e b Ammsasmee mmemow o mesde & x
LoLE VEeULUL suigmelivd UCCuUpy COnsSeCuciv

A
c
N

addresses.)

DESCRIPTION: C(m)=SUM(A(m+qg~-1)*A(q)),
for g=1 to M—-m+l
m=1 to N

ACORT uses time-domain techniques (compare with ACORF)
to compute the auto-correlation function. This routine
needs less storage than ACORF, and runs faster when N
and/or M is small. The resultant vector C must not
overlay the source vector A.

EXAMPLE:
N =3
M=2>5
A: 1.9 2.4 3.9 4.8 5.9
C : 55.8 49.9 26.9

FPS 864-7482-901C Page A -~ 265

APPENDIX A

t 22222 & & X 4 E 22T 222 22§]
* * * *
* BLKMAN * —— BLACKMAN WINDOW MULTIPLY —— * BLKMAN *
® *) * *
kTR ERR 22T 222X 22
PURPOSE: To multiply a vector by a Blackman window.

CALL FORMAT: CALL BLKMAN(A,I,C,K,N)

PARAMETERS: A = Floating-point input wvector
I = Integer element step for A
C = Floating-point output vector
K = Integer element step for C
N = Integer element count (a power of 2)
DESCRIPTION: C{m) = A{m)*{Z.42-F.58*CCS{{m=1)*{2*PI/N))
+3.08*COS((m—1)*(4*PI/N)))
for m=1 to N
Multiplies the elements of the vector A by
an N element Blackman window function, and
stores the results in the vector C. N must be
a power of 2.
EXAMPLE:
I =1
K=1
N =38
A: 1.9 1.8 1.9 1.9
1.9 1.9 1.9 1.9

C: g.99¢ g.966 @.340 2.774
1.460 2.774 @4.349 g.966

FPS 860-7482-941C Page A - 267

APPENDIX A

THLINC = Floating-point input scalar containing

the phase increment threshold (used to
obtain more confident phase estimates near
sharp zeros)

THLCON = Floating-point input scalar containing

the phase consistency threshold

= Integer work area vector of length 39
used for various software stacks during phase
unwrapping

IXCXST = Integer input scalar X and CX input status:

g if X is provided as input and
CX is not provided as input
1 if X is not provided as input and
CX is provided as input
2 if both X and CX are provided as input

IAUXST = Integer input scalar AUX input status:

g if AUX is not provided as input
1 if AUX is provided as input

IPHWST = Integer input scalar phase unwrapping only

status:
g if complex cepstrum is desired
1 if phase unwrapping only is desired

NOTE: For APFTN64 calls to CCEPS, the dimension

DESCRIPTION:

1L

2)
3)

4)
5)

6)

7)

FPS 864-7482-g01C Page A - 269

of arrays X, CX, and AUX must be greater
than or equal to NFFT2 and the dimension
of array WMD must be greater than or equal
39.

See "Programs for Digital Signal Processing”,

IEEE Press, 1979.

Input parameters are checked for out of range
conditions. If any errors are detected, then
SSUC gets the appropriate error code (2.9 - 9.9)
and CCEPS returns.

If IXCXST=8 then X is used to compute CX.

If IXCXST=1] then CX is used to compute X.

Note that in this case the vector X will occupy
NFFT2 words in Main Memory but only the first NX
elements of X will be used in further calculations.
If TAUXST=4 then X is used to compute AUX.

Each of the NFFT2 elements of CX and AUX are
divided by 2.4 to match IEEE formulation.

If the first element of CX is less than 7.2

then SNX = -1.0

else SNX = +1.9 .

The magnitude of the spectrum is computed and
stored in the real positions of AUX;

the phase derivative of the spectrum is computed
and stored in the imaginary positions of AUX;
and twice the linear phase estimate (mean of the
phase derivative) is computed for use in the
phase unwrapping computation.

CX(OUT) : -1.6638
g.9543
3.5771

AUX(0UT): g.9359

6.7434

1279.4929
SNX = 1.0000
SFX = -2.1900
SsuC = 0.9909

FPS 864d-7482-d41C

9.9809
1.4485
4.0988

-2.61480
-2.7728

-2.9325

-5.9134
3.9149

g.04@e0
415.6262

APPENDIX A

g.7447
g.7278

Page A

- 271

kLR REEE
* *

* CCORT *
% *

ARERREREEE

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A

kRt hR
* *
—— CROSS-CORRELATION (TIME-DOMAIN) —— * CCORT *
* *
Rkkkhkekthi

To perform a cross—correlation operation on two
vectors using time-domain techniques.

CALL CCORT(A,B,C,N,M)

Floating-point input vector (operand)
Floating-point input vector (operator)
Floating—-point output vector

Integer element count for C (number of lags)
Integer element count for A and B

{Note vector elements coccupy consecutive

addresses.)

2200
('}

C(m)=SUM(A(m+g-1)*B(q));
for g=1 to M—m+1l
and m=1 to N

CCORT uses time-domain techniques (compare with CCORF) to
compute the cross-correlation function. This routine
needs less storage than CCORF, and runs faster when N
and/or M is small.

EXAMPLE:

N =3

M= 4

A 1.9 2.9 3.2 4.9
B: 19.8 20.¢ 38.80 44.9
C : 349.9 206.9 118.9

FPS 864-7482-4091C Page A -~ 273

APPENDIX A

E2 22222 22 %] ki

* * * *
* COHER * ——— COHERENCE FUNCTION —-— * COHER *
* k k] *
t 2 222222 % £ 4 E 2222 22 2 5 &3
PURPOSE: To compute the coherence function, given the

auto-spectra of two signals and the cross-spectrum
between them.

CALL FORMAT: CALL COHER(A,B,C,D,N)

PARAMETERS: A = Flcoating-point input vector

(Auto-spectrum)

B = Floating-point input vector
(Auto-spectrum)

C = Complex-floating-point input vector
(Cross-spectrum)

D = Floating-point output vector
(Coherence function)

N = Integer element count

(Note vector elements occupy consecutive
addresses.)

DESCRIPTION: D(m)= (R{C(m))**2+I(C(m))**2)/(A(m)*B(m)); for m=1 to N

EXAMPLE:
N =3
A: 1.4 2.9 3.4
B: 4.9 5.8 6.9
C: (1.9,2.9) (3.9,4.9) (5.8,6.9)
D: 1.25 2.5 3.39

FPS 864-7482-441C Page A - 275

APPENDIX A

Rkt EE tkkktkkhhd
x * * *
* DECFIR * -~—— DECIMATION —— * DECFIR *
k3 * * *
kkkEkkEXERE RXEREEEEER
PURPQOSE: To FIR filter an input vector using a convolution

technique incorporating decimation by a factor D.
Typically, the input vector is a digital signal
requiring low pass filtering and the operator vector
is the array of pre-determined filter coefficients.

CALL FORMAT: CALL DECFIR(A,B,C,D,N,M)

PARAMETERS: Floating—point input (undecimated) vector

Floating-point input operator vector

= Fleoating-peint output vector

= Integer input decimation factor (D > §)

Integer input element count expected for C

when convolving without decimation

(NOTE: the actual size of the ocutput vector
C will be [(N-1)/D]+1)

M = Integer input element count for B

(NOTE: element count for A must be N+M-1)

200 ww
|

DESCRIPTION: C(m) = SUM (A(D*(m-1)+g) * B(q) for g=1 to M
and m=1 to [(N-1)/D]+1
(NOTE: This assumes that the operator array B
is loaded with the elements arranged in
reverse order. Thus:
B(l) = Mth operator point
B(2) (M-1)th operator point

B(M)

lst operator point)

For references see:

(1) A. Peled and B. Liu, "Digital Signal Processing:
Theory, Design and Implementation." John Wiley,
1976.

(2) R. E. Crochiere and L. R. Rabiner, "Optimum FIR
digital filter implementation for decimation,
interpolation, and narrow band filtering," IEEE
Trans. Acoust. Speech Signal Processing,
vol ASSP-23 pp 444-456, Oct. 1975.

This routine performs a convolution on the decimated

operand A with the operator B. The results are
stored in [(N-1)/D]+1 elements of vector C.

FPS 864-7482-9491C Page A -~ 277

APPENDIX A

t k225222 £ 3] t 222 22 L X5 J
* * * *
* ENVEL * —-—— ENVELOPE DETECTOR -— * ENVEL *
* * * *
kit Rd kit
PURPOSE: To obtain the envelope of a vector X(t).

CALL FORMAT: CALL ENVEL(X,E,N)
PARAMETERS: = Floating-point input vector
Floating-point output envelope vector
Integer element count (a power of 2)

X
E
N

DESCRIPTION: E(t) = SQRT { X(t)**2 + H{X(t)}**2 } for t=1 to N
where: H{X(t)} = Hilbert transform of X(t).

For references see any standard text on
communication theory, viz. "Communications Systems
and Techniques," M.Schwartz, W.Bennet, & Stein,
McGraw Hill.

This routine starts by obtaining the Hilbert
transform of the input vector. The formula shown
above is then used to extract the envelope.

EXAMPLE:

X : 2.7 1.6 8.3 4.2 9.7 14.1 3.6 g.5

2.72 4.32 8.82 4.39 11.33 14.73 9.21 4.85

td

FPS 864-7482-941C Page A - 279

kkkkkkttid
* *

*+ HANN +
* *
ThE2TLTRITRES

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

——— HANNING WINDOW MULTIPLY -—

To multiply a vector by a Hanning window.
CALL HANN(A,I,C,K,N,F)

= Floating-point input vector

= Integer element step for A

= Floating-point output vector

Integer element step for C

= Integer element count (a power of 2)
= Integer normalization flag

for unnormalized Hanning window
(peak window value=1l.4)

1 for normalized Hanning window
(peak window value=1.63)

M ZROHY
]

N should be a power of 2. If not,

next lower power of 2.

APPENDIX A

E2 RS 22 22 4 £ 3

HANN sets N to the
For further information see

Digital Time Series Analyses, Otnes and Enochsen, John

Wiley '72, page 294.

C(m)=W*A(m)*(1.4-COS(2*PI*(m-1)/N); for m=1] to N

where:

W =0.5 for F=8

W = g.8165 for F=1
EXAMPLE:

N = 4

F=240

A:1.8 1.9 1.9 1.9

cC:0.9 ¢g.5 1.3 4.5

N =4

F=1

A : 1.00 1.99 1.99 1.39

C : g.00 g.82 1.63 .82

FPS 868-7482-9d1C

Page A - 281

APPENDIX A

Rkttt kkkhkhkhktttd

* * * *

* HLBRT * ——— HILBERT TRANSFORMER —— * HLBRT *

x* * * *

hEkEtktRR kkkhkkkt kR

PURPOSE: To obtain the Hilbert transform of an analytic
signal.

CALL FORMAT: CALL HLBRT(X,H,N)

PARAMETERS:

Floating-point input vector
Floating-point output Hilbert transformed vector
Integer element count (a power of 2)

X
H
N

DESCRIPTION: F{H{X(t) = -J * F{X(t)} for t=1 to N
where: F{X(t)} = Fourier transform of X(t).
H{X(t)} = Hilbert transform of X(t).
J SQRT(-1)

n

(1) A real to complex FFT of X(t) is obtained.

(2) Real components of the result are multiplied by

-1.

Positions of the real and imaginary components

are switched.

(4) A complex to real inverse FFT is performed on the
results of step 3.

—~
w
~

EXAMPLE:

X 2.7 1.6 8.3 4.2 9.7 14.1 3.6 g.5

H: 9.4 -4.9 -3.4 -8.9 -5.9 4.3 8.5 g.7

FPS 860-7482-4d1C Page A - 283

APPENDIX A

EXAMPLE:

128
M =1ig

2z
1]

X(i) : 18 * SIN(i * 19 * 2*PI/128) +
20 * SIN(i * 29 * 2*PI/128) +
36 * SIN(i * 34 * 2*PI1/128)
for i = 1 to 128

3 RC(]) A(]) AL(3) R(3)
1 ~7.2847 1.04999 89599.9 89599.9
2 4.8183 -g.8897 82335.4 25512.8
3 -4.52089 1.04494 27198.6 -64112.8
4 #.5443 -g.2589 19844.6 -37858.5
5 g.1863 g.1824 14g851.1 32228.¢9
6 -@.2451 g.2485 13563.2 24552.1
7 -@.92955 F.1145 12748.7 -360917.1
8 g.3127 g.g4661 12632.4 -18949.6
9 g.4627 @.1481 11397.1 35262.2
19 g.3954 4.1478 8957.3 18797.9
11 g.3854 8121.7 =52577.9
ER = 4

FPS 869-7482-941C Page A - 285

APPENDIX A

EXAMPLE:
N =38
NP =5
R = 4.7
MODE = 1
A: @#.9 19.8 29.9 3.9 4.9 50.9 6.9 79.4
B:28.4 3.9 54.9 6.9
c: 3.8 4.4 6.4 7.9
R = 4.8

FPS 864-7482-981C Page A - 287

APPENDIX A

Inverse transform:
x(k) = SuM { X((r-1)*df-F1l*df) *
EXP(j*2*pi*(r-1)*df*(k-1)*dt) }
for r = 1 to NF
where dt = 1/XM.

Thus the same formula used for the forward transform
may be used for the inverse transform if here

W = -2*pi*(k-1)/XM and F1 and NF replace Tl and

NT respectively. If the r=1 component X(1l) is
input, it must have an imaginary part equal to 4.

The DFT is produced by the modified Goertzel algorithm

as described in

(1) A.V. Oppenheim and Schafer, "Digital Signal
Processing," Prentice Hall, 1975

and

(2) F. Bonzanigo, "An improvement of Tribolet'
phase unwrapping algerithm," IEEE Tr
Feb. 1978, pp. 144-185

Additionally, an exponential factor has been used

to account for any offset of the input values from

zero (Tl or Fl).

& il

Inverse times are approximately double for forward
times after the NT and NF values are interchanged.

EXAMPLE:

Fl =
Tl =
NT =

-

[

& 0 R
[SEE

A(INPUT) : 1.4 ©.84 -1.0 9.9 1.4 @G.9 -1.89 g.9

B(OUTPUT) : (4.4, 9.8)(2.4, 9.9)(9.9,-4.9)(2.08, 4.9)

F1 = 2.9
TL = 4.8
NT = 8
NF 2
XM = 8.4
I =-1

B(INPUT) : (4.4, 9.8)(9.8, 4.9)

A(OUTPUT) : 8.4 @A.9 -8.0 4.4 8.4 @.9 -8.9 4.9

FPS 864-7482-g91C Page A - 289

XEERRREEEE
* ®

* RFTII *
* ®

k2 4 5 5 X4 k]

PURPOSE:

CALL FORMAT:

APPENDIX A

EkkkkktRR
* *

——— REAL FFT WITH QUARTER INTERPOLATION ——— * RFTII *

* *
EX XX & &5 &5

To perform an in-place real-to—-complex forward or

a complex-to-real inverse fast Fourier transform (FFT)
including the case of N=64K via quarter interpolation
in the 4K cosine table.

CALL RFTII(C,N,F)

PARAMETERS: C = Floating-point input/output vector
N = Integer input element count (power of 2)
F = Integer input direction flag:
+1 for forward
-1 for inverse
DESCRIPTION: See RFFT.
EXAMPLE:
N =4
F = 1 (Forward)
C(IN) : 19.9 19.9 19.9 19.4
C(OUT) : (BH.H,Q.H) (ﬁ.ﬁ,ﬂ.ﬁ)
N =4
F = -1 (Inverse)
C(IN) : (890.9,0.8) (9.9,9.9)
c(ouT) : 8d.4 89.9 84.9 8d.9

FPS 864-7482-461C Page A - 291

APPENDIX A

t 2222222 2 % XX REXEEER
*® * E 3 *
* PCONV * ——— POST-TAPERED CONVOLUTION (CORRELATION) —— * TCONV *
* * ’ * *
REREBERET R RERXRREARER
PURPOSE: To perform a post-tapered convolution or correlation

operation on two vectors.

CALL FORMAT: CALL TCONV(A,I,B,J,C,K,N,M,L) for correlation
CALL TCONV(A,I,B(N),J,C,K,N,M,L) for convolution

PARAMETERS: = Floating-point input vector (operand)

= Integer element step for A (>4)

= Floating-point input vector (operator)

= Integer element step for B (<g => Convolution)

Floating—-peoint ocutput vector

= Integer element step for C

= Integer element count for C

= Integer element count for B

= Integer element count for A

CRZROQGE AP
1]

FORMULA: C(m)=SUM(A(m+g—-1)*B(q)):
for g=1 to R
and m=1 to N

where:
R=MIN(M,L-M+1)

DESCRIPTION: TCONV performs either a correlation (I and J positive) or
a convolution (I positive and J negative) operation
between the L-element operand (trace) vector A and the
M-element operator (kernel) vector B. The N-element
result vector is stored in C. TCONV automatically
inserts zeros into the calculation if N+M-1 exceeds the
operand length L, thus saving storage and zeroing of
N+M-1-L extra operand elements. (Compare with CONV.)

EXAMPLE:

N =4

M =2

L =4

CORRELATION:

A:98.8 1.9 3.9 5.9
B: 2.4 1.9

C:19 5.4 11.4 19.9

FPS 864-7482-941C Page A - 293

APPENDIX A

kkdkkkkttd tx 2222 2 24
* * * *
* TRANS * ~—— TRANSFER FUNCTION —— * TRANS *
x* * * *
kkkkkhttitt E X E XX S22 2 4
PURPOSE: To perform a complex transfer function calculation by
dividing the cross-spectrum by the auto-spectrum.

CALL FORMAT: CALL TRANS(A,B,C,N)

PARAMETERS: A = Floating-point input vector

(Auto-spectrum)

B = Complex-floating-point input wvector
(Cross-spectrum)

C = Complex-floating-point output vector
{Transfer functionj

N = Integer element count
(Note vector elements occupy consecutive
addresses.)

DESCRIPTION: R(C(m))+I(C(m))=(R(B(m))+I(B(m)))/A(m); for m=1 to N

EXAMPLE:
N =3
a: 1.¢2 2.2 3.9
B: (1.49,2.9) (3.9,4.9) (5.9,6.4)
C: (1.4,2.9) (1.5,2.9) (1.67,2.9)

FPS 868-7482-g#1C Page A - 295

APPENDIX A

tx 2 22 22 % 2 %] kbt k®
* * k *
* VAVLIN * ——— VECTOR LINEAR AVERAGING —— * VAVLIN *
* * * *
RRREXRRERR REXXRERERE
PURPOSE: To update the linear average of a sequence of vectors

to include a new vector.

CALL FORMAT: CALL VAVLIN(A,I,B,C,K,N)

PARAMETERS: A = Floating-point input vector
I = Integer element step for A
B = Floating-point input scalar
(Number of vectors included in current average)
C = Floating-point input/output vector
K = Integer element step for C
N = Integer element count

DESCRIPTION: C(m)=C(m)*B/(B+1.4) + A(m)/(B+1.4); for m=1 to N

EXAMPLE:
N =275
A : 5.008 18.908 20.998 25.400 30.0989
B : 5.808
C(INPUT) :19.003 18.009 19.904 19.404 14.494949

C(OUTPUT) : 9.167 1@4.4909 11.667 12.509 13.333

FPS 860-7482-441C Page A - 297

APPENDIX A

tE 22222222 2 1222222231
] * * *
* VXCS * ——— VECTOR MULTIPLIED BY SIN AND COS —— * VXCS *
* * (TABLE LOOKUP) * *
AT ETE EEXRRREEEEE
PURPOSE: To multiply a vector with the sine and cosine

of a linearly increasing arqument with a given

initial phase.
CALL FORMAT: CALL VXCs(A,C,K,F,P,N)

PARAMETERS: A = Floating-point input vector to be multiplied by
the sine and cosine functions
C = Complex floating-point output vector
K = Integer input element step for C
(K >= 2)
F = Floating—-point input scalar frequency
P = Floating-point input scalar phase at t=§
= Floating-point output scalar initial phase value
for next frame
N = Integer element count

DESCRIPTION: Re(C(m)) = A(m) * COS((m—=1)*F+P)
Im(C(m)) = A(m) * SIN((m-1)*F+P)
form =1 to N

NOTE: The arguments for COS and SIN are expected
to be in radians.

This routine multiplies vector A with a sine and

cosine function defined by frequency F and initial

phase P. Straight ROM table lookup is used for

generating the sine and cosine values and thus this

routine has limited precision. The initial phase

value for the next frame is returned in P.

NOTE: K should be greater than or equal to 2

sO as not to destroy part of the resultant vector

C as it is generated.

EXAMPLE:

415927

Z v R
won
o wmN

>

g.g 1.9 2.8 3.8 4.9 5.9 6.0 7.9

FPS 869-7482-9d1C Page A - 299

APPENDIX A

kkEREEXERR kkkkktkkk®
* * * *
* WIENER * ——— WIENER LEVINSON ALGORITHM —— * WIENER *
t 2 * *]
F2 X2 223 5 % %3 22252 2 £
PURPOSE: To solve a system of single channel normal

equations which arise in least squares filtering
and prediction problems.

CALL FORMAT: CALL WIENER(LR,R,G,F,A,ISW,IERR)

PARAMETERS: LR = Integer filter length

R = Floating—-point input vector (Auto-correlation
coefficients)

G = Floating—-point input vector (Cross
correlation)

F = Floating-point output vector (Filter
weighting coefficients)

A = Floating-point ocutput vector

(Prediction error operator)
ISW = Integer input (algorithm switch)
g = spike deconvolution
1 = general deconvolution
IERR = Integer output scalar (failure flag)

DESCRIPTION: WIENER solves:
1. The following set of LR equations for F;

SUM [F(p)*R(m=-p+1)=G(m);
for p=1 to LR and m=1 to LR

2. The following set of LR equations for A;

SUM (A(p)*R(m-p+1)=V*D;
for p=1 to LR and m=1 to LR

where, A(l)=1.9
D=1.d when m=1
D=g.4 when m not =1
V=A(L)*R{1l)+...+A(LR)*R{LR)
R(-i)=R(1i)

If the algorithm is successful IERR is set to @;

else it is set to the pass number at which the
failure occurred.

FPS 860-7482-841C Page A - 341

APPENDIX A

IMAGE PROCESSING LIBRARY

FPS 864-7482-g41C Page A - 363

APPENDIX A

< =
" u

-~
2z =

-1 (Inverse)

F

C(IN)

(4.0,8.9) (2.9,86.8) (2.9,8.9) (9.8,9.9)

(16.9,0.9) (16.9,8.8) (16.9,8.4)

(9.9,8.9)

C(0ouUT)

(16.9,9.9)

(8.9,08.9)
’
v

- 385

Page A

FPS 868-7482-441C

APPENDIX A

IR = Integer input scalar flag:
" non-zero for correlation
@ for convolution

DESCRIPTION: C((i+IC-1),(3j+JC-1))=
SUM(A((i+IA+k-2-irbias), (j+JA+1-2-icbias))*B(k,1))

where i=1 to M

j=1 to N
for k=1 to MB

1=1 toc NB

and IB1=MB*NB-IBl+1 for convolution
icbias=(IB1-1)/MB
irbias=(IBl1-1)-MB*icbias
(row and column biases are from the
initial B(l,1) position.

CONV2D correlates or convolves a two-dimensional
operand submatrix A' of A with a two-dimensional
operator matrix B, and stores the result in
submatrix C' of C. A one-to-one correspondence
exists between the elements of A' and C'.

This routine does not do boundary testing.
Therefore care must be taken when choosing values
for IA, JA, and IBl for given values of M, N, MB,
NB, and IR to avoid using data outside of A when
computing C'.

EXAMPLE:

MA =9

Ia =1

JA =1

M =7

N =7

MB =3

NB = 3

MC =9

IC =1

JC =1

A: 9.9 5.9 2.4 8.9 @8.0 4.9 9.9 8.9 8.4
g.9 1.9 1.0 1.9 4.9 4.9 8.0 9.8 8.9
g.8 1.8 1.0 1.9 4.9 4.9 8.4 4.9 0.2
4.4 1.8 1.4 1.0 4.4 4.9 8.9 0.9 4.9
g.8 1.6 1.0 1.0 4.9 4.9 8.9 ©@.4 4.9
g.2 9.9 9.0 4.9 9.9 4.9 9.4 0.9 4.9
g.8 g.4 9.8 9.9 9.9 8.9 9.9 9.4 4.4
g.g g.2 2.8 ¢g.¢ 4.9 2.9 2.9 8.2 8.2
g.9 9.9 0.0 F.9 2.8 4.9 2.9 @.9 9.4

FPS 864-7482-4d1C Page A - 347

JA
| IBl=5
T Y .
Procassing
——————
by Bs| By
IA
B 5| B
A'
A
Hera the operator, B, is positioned for processing the inicial
point in A'.
-5455-
Figure A-1 Correlation
JA
| IBl=5
L
T
|
b b,
3 8 é% Processing
————
b b, 1
m__ Bl 5L 2
[
Byl Byl Bl
Al
A
Here the operator, B, is positioned for processing the initial
point in A’.
-5456-

Figure A-2 Convolution

FPS 860-7482-441C

Page A - 349

APPENDIX A

1.9 9.4
1.9 9.9

2.9 1.4 1.9 9.8

1.9 1.9 1.9
1.8 1.9 1.9

g.4 1.9 1.9 1.9 1.9 1.8 1.4 8.4
2.9

1.9

g.4 1.4 1.0 2.9 2.9 1.8 1.9 9.9
1.8

g.9 9.4 9.9 @.9 @¢.9 4.9 2.9 9.9

g.9 1.9 1.9

g.8 1.9
g.9 1.9

00 N N O N NN WY

EXAMPLE:

]
[\

=
-

=
-

L\
-

L]
-

=
-

®
-4

=
™

- 311

Page A

g
9]
)
U
8]
U

3.4 3.9 2.9
2.8 3.9

1.9 2. 2.4 1.4 3.8
2.9
3.4 3.4 3.4 3.9 2.8

3.9 3.4
3.6 1.4 2.4 2.9 1.9 3.9

3.4 2. 2.8 2.9 2.9 3.9
3.4 2.4 2.8

2.9
3.0
2.9

¢)
)
9]
)
U

9.9 9.4 9.9 @.09 @B.9 4.4 2.9 0.9
)

(U indicates unchanged elements of C)

FPS 864-7482-981C

APPENDIX A

This routine differs from GRAD2D in that it can
perform testing for image boundaries, substituting
zeros for values that are needed outside the
boundary. The routine runs somewhat more slowly
than GRAD2D.

If testing is employed, zeros are substituted for
those elements in the formula which fall outside

of A. This is useful in preventing wrap-around

and incorrect processing of the columns and rows on
the borders of A. However, the testing adds pro-
cessing time and is unnecessary when there is a
border of width one around A' which lies totally
within A.

If boundary testing is not employed (i.e. B = J) and
if a boundary of A' coincides with all or part of a
boundary of A, then boundary effects will be observed
in the computation ¢f C'. In the cases of JA=1 cr
JA+N-1=NA these boundary effects may not be pre-
dictable since data stored adjacent to A may not be

predictable.
EXAMPLE:

MA = 8

NA = 8

IA =1

Ja =1

C = 64

MC = 8

NC = 8

IC =1

Jc 1

M 8

N =38

B =1

A: 1.8 1.4 1. 1.4 1.9 1.4 1.4 1.9
1.9 1.4 1.4 1.9 1.4 1.4 1.9 1.9
1.4 1.4 1.4 1.4 1.9 1.4 1.4 1.9
1.4 1.4 1.9 2.8 2.9 1.9 1.4 1.9
1.4 1.4 1.9 2.4 2.8 1.6 1.4 1.8
1.4 1.4 1.4 1.4 1.4 1.9 1.4 1.9
1. 1.9 1.4 1.4 1.8 1.2 1.8 1.9
1.4 1.4 1.4 1.9 1.9 1.8 1.8 1.9

FPS 868-7482-441C Page A - 313

APPENDIX A

kit kk kXA ETEEE
* * * *
* LAPL2D * —— LAPLACIAN FILTER —— * LAPL2D *
* * * *.
Rtk hthiE Rt E
PURPOSE: To filter images for edge enhancement by

applying a two-dimensional Laplacian

operator.

CALL FORMAT: CALL LAPL2D(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX)

PARAMETERS: A = Floating-point input matrix
(column ordered)
MA = Integer number of rows of A
NA = Integer number of columns of A
IA = Integer initial row of the submatrix A’
to be processed (1 < or = IA < or = MA)
JA = Integer initial column of the submatrix A' of A
to be processed (1 < or = JA < or = NA)
C = Floating-point output matrix
(column ordered)

~
QL A

MC = Integer number of rows of C
NC = Integer number of columns of C
IC = Integer initial row of C which locates the-

submatrix C', where C' will be the processed A'
(L < or = IC < or = MC)
JC = Integer initial column of C which locates the

submatrix C' (1 < or = JC < or = NC)
M = Integer number of rows in A

(1 <or =M < or = MA)
N = Integer number of columns in A'

(1 < or = N<or = NA)
IX = Integer distance to filter side from center of
square: side S=2*(IX+1l); filter area = S**2

DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A’'(p+IX,q)
+A' (p,g-IX)+A'(p,q+IX)

Each of the elements in C' is calculated according
to the above formula, which adds to a bias of 128
a weighted combination of each pixel and its 4
horizontal and vertical neighbors at distance IX.

If a boundary of A' coincides with all or part of a
boundary of A, then boundary effects will be observed
in the computation of C'. 1In the cases of JA<=IX or
JA+N-IX>=NA these boundary effects may not be pre-
dictable since data stored adjacent to A may not be
predictable. Boundary effects will be predictable

if A' is initially ringed with a known constant,

such as zero.

FPS 864-7482-g41C Page A - 315

APPENDIX A

kkkkkkkkid tkkkkthitrd
* * * 4
* LPL2DB * ——— LAPLACIAN FILTER WITH BOUNDARY TEST -——— * LPL2DB *
* * * *
ERXEXETEERE REXRXEERRER
PURPOSE: To filter images for edge enhancement by applying

a two-dimensional Laplacian operator. This
routine does special boundary testing.

CALL FORMAT: CALL LPL2DB(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX,B)

PARAMETERS : A = Floating-point input matrix

(column ordered)

MA = Integer number of rows of A

NA = Integer number of columns of A

IA = Integer initial row of the submatrix A' o
to be processed (1 < or = IA < or = MA)

JA = Integer initial column of the submatrix A' of A
to be processed (1 < or = JA < or = NA)

C = Floating-point output matrix
(column ordered)

MC Integer number of rows of C

NC = Integer number of columns of C

IC Integer initial row of C which locates the
submatrix C', where C' will be the processed A'
(1 <or = IC < or = MC)

JC = Integer initial column of C which locates the
submatrix C* (1 < or = JC < or = NC)

M = Integer number of rows in A'
(1 < or =M< or = MA)
N = Integer number of columns in A'

(1 <or =N < or = NA)

IX = Integer distance to filter side from center of
square: side S=2*(IX+1); filter area = S**2

B = Integer input scalar which is & if no boundary
testing is desired; if not = #, values needed
outside of A are evaluated as zeros

DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A'(p+IX,q)
+A' (p,q-IX)+A' (p,q+IX)

Each of the elements in C' is calculated according
to the above formula, which adds to a bias of 128
a weighted combination of each pixel and its 4
horizontal and vertical neighbors at distance IX.

This routine differs from LAPL2D in that it can
perform testing for image boundaries, substituting
zeros for values that are needed outside the
boundary. The routine runs somewhat more slowly
than LAPL2D.

FPS 864-7482-841C Page A - 317

APPENDIX A

khkkhkkkhkirt®x . kkktttixht
® * * *
* MED2D * ~-— MEDIAN FILTER -— *+ MED2D *
* * * *
E2 222222 % % 4 kkkkEhkthE
PURPOSE: To filter out noise in images by replacing

each n1v=1 with the median value of the ?1vels

=113 8§ v&aa

in a square window centered around the pixel.
CALL FORMAT: CALL MED2D(A,MA,IA,JA,C,MC,IC,JC,M,N,IX,H,L)

PARAMETERS: A = Floating-point input matrix
(column ordered)
MA = Integer number of rows of A
{NA = Number of columns of A)
IA = Integer initial row of the submatrix A’ of A
to be processed (1 < or = IA < or = MA)

JA = Integer initial column of the submatrix A' of A
to be processed (1 < or = JA < or = NA)

C = Floating-point output matrix
(column ordered)

MC = Integer number of rows of C

(NC = Number of columns of C)

IC = Integer initial row of C which locates the
submatrix C', where C' will be the processed A'
(L < or = IC < or = MC)

JC = Integer initial column of C which locates the
submatrix C' (1 < or = JC < or = NC)

M = Integer number of rows in A'
(1L <or =M< or = MA)

N = Integer number of columns in A'
(1 <or =N < or = NA)

IX = Integer distance to median filter side from
center of square: side S=(2*IX)+1;
filter area = S**2; IX>4

H = Floating-point vector histogram used as a work
area

L = Integer input scalar length of H =

2**(number of bits per pixel)

DESCRIPTION: C'(p,g)=median of all elements A'(t,u),
p—IX<=t<=p+IX, g-IX<=u<=g+IX

For each of the elements in A' a histogram is
formed from the median of the elements within

+ or - IX row and column distance from the element.
The median is found via a fast algorithm

o)
ian 1s rou riotom pu
in:

FPS 864-7482-g41C Page A -~ 319

APPENDIX A

kkkttkERRE dhktkkktkht

* * * *
* MOVREP * ——— SUB-IMAGE MOVE AND LEVEL REPLA - * MOVREP *
* * . * *
EX 222222 % &3 ARXEEERERERX
PURPOSE: To simply move a sub—image A' of an image A and/or

to replace each pixel value with another wvalue

as specified in the lookup table, vector T, whose
elements are the new values and whose subscripts
are the original pixel values + 1.

CALL FORMAT: CALL MOVREP(A,MA,IA,JA,C,MC,IC,JC,M,N,T,NT)

PARAMETERS: A Floating-point input matrix

{column ordered)
MA = Integer number of rows of A

(NA = Number of columns of A)

IA = Integer initial row of the submatrix A' of A
to be processed (1 < or= IA < or = MA)

JA = Integer initial column of the submatrix A' of A
to be processed (1 < or= JA < or = NA)

C = Floating-point output matrix
(column ordered)

MC = Integer number of rows of C

(NC = Number of columns of C)

IC = Integer initial row of C which locates the
submatrix C' of C; C' will be the processed A'
{1 < or= IC < or = MC)

JC = Integer initial column of C which locates the
submatrix C' of C (1 < or= JC < or = NC)

M = Integer number of rows in A'
(L <or =M< or = MA)

N = Integer number of columns in A’
(1 <or = N< or = NA)

T = Floating-point input vector pixel replacement
table

NT = Integer input scalar length of vector T =

2**(4 of bits per pixel)
(NT = 4 indicates only submatrix move is
desired)

DESCRIPTION: For pixel replacement,
C'(prq)=T(FIX(A'(pP,q))+l)

For submatrix move,
C'(p,9)=A'(p,q)

FPS 864-7482-4d1C Page A - 321

222222 5 %]
* *
* RFFT2D *
*) *
Xhkkkhkkhithkd

PURPOSE:

APPENDIX A

kX 223 X2 2]
* *
-— REAL TO COMPLEX 2-DIMENSIONAL FFT —— * RFFT2D *
* *
t 22 2222 % £

To perform an in-place two-dimensional real-to-
inverse fast

complex forward or a complex—-to-real

=Tdha LW

Fourier transform (FFT).

CALL FORMAT: CALL RFFT2D(C,N1,N2,F)

PARAMETERS:

C = Floating—-point input/output matrix
(column ordered)
N1 = Integer number of rows =
number of real elements per column
{power of Z < or = 16384)
N2 = Integer number of columns =
number of real elements per row
(power of 2 < or = 16384)
NOTE: N1*N2 must be < or = available main data
F = Integer direction flag:
+1 for forward
-1 for inverse

DESCRIPTION: Forward: RFFT2D performs a two-dimensional real to

complex forward FFT on the N1 by N2 real array C,
storing the (N1/2 + 1) by (N2/2 + 1) complex array

: .
result in a special packed complex array form

occupying the same N1 by N2 locations of array C:

Let El1 = N1/2 and E2 = N2/2

R(1,1)
R(El+1,1)
R(2,1)
I(2,1)

R(EL,1)
I(El,1)

R(1,E2+1) R(1,2) I(1,2) ... R(1,E2) I(1,E2)
R(E1+1,E2+1) R(E1+1,2) I(El+l1l,2).. R(E1+1,E2)I(El1+l,E2)
R(2,2) R(2,3) R(2,4) ... R(2,N2-1) R(2,N2)
I(2,2) I(2,3) R(2,4) ... I(2,N2-1) I(2,N2)
R(EL,2) R(EL,3) R(El,4) ... R(E1l,N2-1)I(E1,N2)
I(E1,2) I(El,3) I(El,4) ... I(E1,N2-1)I(El,N2)

The results of a two-dimensional real-to-complex
forward FFT should be multiplied by 1/(2*N1*N2) for
proper scaling.

FPS 864-7482-g91C Page A - 323

APPENDIX A

LINPACK BLAS LIBRARY

FPS 864-7482-gd1C Page A - 325

APPENDIX A

Rk ER i s 2222221
* * * *
* CAXPYN * —— NESTED COMPLEX A * X + Y —— * CAXPYN *
k * * *
kit ikttt ®
PURPOSE: To add a scalar multiple of one complex floating-point

vector to another complex floating—-point vector N times,
each time for a different pair of vectors and a different
complex floating-point scalar. The first vector is a
subset of the vector X, and the second is a subset of the

vector Y. The scalar is an element of the vector A.
CALL FORMAT: CALL CAXPYN(ISW,N,M,A,IAOQ,X,IXI,IXO,Y,IYI,IYO)

PARAMETERS: ISW = Integer input scalar. ISW is a function
selector switch and is treated as a bit
string with the bits numbered from the
least significant bit (bit g). If a given
bit is set (equal to 1), then the function
option that corresponds to that bit is selected.
All options are independent of each other and
are summarized below.

Bit #: Negate A * X.

Bit 1: Not used.

Bit 2: Use conjugate of A.

Bit 3: Use conjugate of X.
All other bits are ignored.

N = Integer input scalar. Number of 4 * X + Y
operations, i.e., outer loop count.

M = Integer input scalar. Number of elements in
each & * X + Y operation, i.e., inner loop
count.

a = Complex floating point input vector. Array of
scalars.

IA0O = Integer input scalar. Outer loop element
increment for A.

X = Complex floating point input vector. First
input vector.

IXI = Integer input scalar. Inner loop element
increment for X.

IX0 = Integer input scalar. Outer loop element
increment for X.

Y = Complex floating point input/output vector.
Second input vector on input. Output vector on
output.

IYI = Integer input scalar. Inner loop element
increment for Y.

IYO = Integer input scalar. Outer loop element

increment for Y.

FPS 864-7482-941C Page A - 327

APPENDIX A

EXAMPLE

mMeN™Mm o~
n o nn
=

Q
1]
H oz e

Input:

IXI

IXO = @

1
3

I¥I

IY0O =

(2.9, 9.9)

(3.ﬁr‘l.g)

A

(=1.9, 8.9)

1.9)

(9.8, 1.9) (2.4,

X

(2.9, 4.9)
(#.8,-2.9)

(9.9, 9.8)

(-1.8, 2.9)
(1.8,-3.9)

(‘Z.gp-l-ﬂ)

1.9)

(_lagl

(7.4, 1.9)

(8.8, 5.49)

Y

Output:

(2.9, 1L.9) (-2.4,-2.9)

(1.8,~-1.9)

- 329

Page A

FPS 860-7482-491C

APPENDIX A

ARRAERXREREEE t 22 222222 £
* * * %
* CDOTC * ——— COMPLEX INNER PRODUCT ——— * CDOTC *
* * * *
t 223222222 tkkktkkkx®
PURPOSE: To sum conjugates of first complex vector

.
times elements of second complex vector.

CALL FORMAT: CW chOoTC(N,CX,I,CY,Jd)

PARAMETERS: N = Integer element count
CX = First complex floating-point input vector
I = Integer element step for CX
CY = Second complex floating-point input vector

J = Integer element step for CY

CW = Complex floating—-point output value
DESCRIPTION: CW = SUM((R(CX(m))-I(CX(m)))*(R(CY(m))+I(C¥{(m))));

for m=1 to N

CW = (9.9,9.9) if N<l.
EXAMPLE:

N =2

I 1

J=1

cX (9.36,0.49) (9.99,1.69)

CY : (9.39,9.49) (8.94,9.489)
: (9.25,-8.9)

FPS 864-7482-441C Page A - 331

APPENDIX A

4 = Complex floating point input/output vector.
An input only if bit 1 of ISW is set.
IZO = Integer input scalar. Element increment

for Z.

DESCRIPTION: Z(3jz) = r * Z(jz) + s * SUM[X(ix) * ¥Y(iy), i=1,M] 3j=1,N

where: ix = (j-1) * IXO + (i-1) * IXI + 1
iy = (j=1) * I¥O + (i~-1l) * IYI + 1
G4 = (9=1Y * T7Z0) <+ 1
Je NJd = s T
s = 1.9, if ISW[@] = &

= -1.8, if IsSw(g] =1

r = g.8, if ISW(l] = &
= 1.9, if ISW(l] =1
X = X , if Isw(2] = @
= Conjg(X), if Iswi{z] =1
Y = Y , if ISW(3] = @

= Conjg(¥), if ISW[(3] =1

z = Z , if ISW[4] = @
= Conig(Z), if ISW[4] = 1

and ISW(k] bit k of ISW.
NOTES: If IZ0 = @, then CDOTN will set Z(l) equal to
the accumulated sum of all N dot products. I

TSYdf'I] == 1 alen than inmad 7
A0V L] T & dALIUy LUTL LIPDULT a4

to this sum.

Memory words occupied by X may intersect those
occupied by Y. In fact, X and Y may coincide.
However, memory occupied by Z should not, in
general, intersect that occupied by X or Y.

If N < 1, CDOTN returns with no action taken.

If M < 1 and ISW[l] = 1, CDOTN returns with
no action taken.

If M <1l and ISW[{l] = g, CDOTN returns with
Z(j) = #.9 for j = 1 to N.

In general, M < 1 implies a zero sum of
products.

FPS 860-7482-991C Page A - 333

APPENDIX A

RRRREERERES kkktkkkkthd
* * * *
* CDOTU * —— COMPLEX DOT PRODUCT ——— * CDOTO *
* * * *
REREEEEERY FXTEXTITT LY
PURPOSE: To compute the inner (unconjugated) product

of two complex vectors.

(9]
=
"

CALL FORMAT: CDOTU(N,CX,I,CY,J)

PARAMETERS: N = Integer element count
CX = First complex floating-point input vector
I = Integer step for CX
CY = Second complex floating-point input vector

J = Integer step for CY
CW = Compiex floating-point scalar output result
DESCRIPTION: CW = SUM(CX(m)*CY¥(m)); for m=1 to N

CW = (9.9,8.9) if N<1.

EXAMPLE:
N =2
I =1
J=1
CcX (9.30,0.40) (4.04,1.99)

CyY (3.339,-.49) (8.64,9.99)

(-8.75,8.44)

se oo o8

FPS 860-7482-g91C Page A - 335

APPENDIX A

t 222 232222 %] t 222222 2 21
* * * *
* CSCAL * —-— COMPLEX SCALING —— * CscaL *
* * * *
E2 2 2222 248 2] RREEEXXRERE
PURPOSE: To multiply each component of a vector

by a complex scalar.
CALL FORMAT: CALL CSCAL(N,CA,CX,I)
PARAMETERS: N = Integer element count

CA = Complex floating-point scalar multiple
CX = Complex floating-point input/output wvector

I = Integer step increment for CX
DESCRIPTION: CX{m) = CA*CX{m); for m=1 to N
EXAMPLE:
N =3
I =1
CA : (8.9, 1.
CX(INPUT) : (1.9, 2.9) (3.9, 4. 5.9, 6.9)
CX(OUTPUT) : (-2.9, 1.9) (-4.49, 3.4 -6.4, 5.9)

FPS 868-7482-@d1C Page A - 337

APPENDIX A

k2221222224 E 222X 22 22 X3
* ® * *
* CSSCAL * ——— REAL TIMES COMPLEXES ——-— * CSSCAL *
* * * *
kRt ithk t 223222222
PURPOSE: To multiply the elements of a complex vector

by a real scalar.

CALL FORMAT: CALL CSSCAL(N,SA,CX,I)

Integer element count for CX

PARAMETERS: N

SA = Floating-point input scalar multiple
CX = Complex floating-point input/output vector
I = Integer element step increment for CX

DESCRIPTION: CX(m) = SA*CX(m); for m=1 to N

EXAMPLE:

sa : 4.5
CX(INPUT) : (2.90,4.9) (6.9,8.9) (9.2,1.49)
CX(OUTPUT) : (1.4,2.9) (3.4,4.9) (9.9,2.5)

FPS 864—7482-981C Page A - 339

L2t 222222 %3
* *
* ICAMAX *
* *
2222222 2 3

PURPOSE:

APPENDIX A

*hkkkkkdtrdk
* *

* ICAMAX *
* *

——— INDEX OF LARGEST COMPLEX ELEMENT ——

L2322 22222 &

To calculate the index of the complex
element of largest real plus imaginary magnitude.

CALL FORMAT: IMAX = ICAMAX(N,CX,I)
PARAMETERS: N = Integer element count
CX = Complex floating-point input vector
I = Integer step increment for CX
IMAX = Integer value of index with largest components
DESCRIPTION: cmag(CX(IMAX)) = MAX(cmag(CX(m)): m=1 for N
where cmag(C) = ABS(R(C))+ABS(I(C)),
with 1 < = IMAX < = N. If N< 1, IMAX = 4.
EXAMPLE:
N=3
I =1
(09 ¢ : (3.4, 3.8) (5.4,-9.9) (9.9,13.9)
IMAX : 2

FPS 860-7482-g91C

Page A

- 341

t 2222222 %]
* *
*+ SASUM *
* *
REEXREETERE

PURPQSE:

APPENDIX A

kkkkthktkit
* *
——— SUM OF MAGNITUDES —- *+ SASUM *
* *
t 22 22222 £ X4

To sum magnitudes of elements of a real

vector.
CALL FORMAT: SW = SASUM(N,SX,I)
PARAMETERS: N = Integer element count
SX = Floating-point source vector
I = Integer incremental step for SX
SW = Floating-point scalar result
DESCRIPTION: SW = SUM{ABS{SX{(m))); for m=1 to N
EXAMPLE:
N =3
SX : -1.4 4.9 5.8
SW: 6.8

FPS 864-7482-g01C Page A -~ 343

APPENDIX A

E 222222 22 2 i 22225222 2 4
* * A k 4 *
* SAXPYN * —— NESTED REAL A * X + Y —— * SAXPYN *
® * * *
ERXEREERLEE t 22222222 £ 3
PURPOSE: To add a scalar multiple of one floating-point vector

to another floating-point vector N times, each time
for a different pair of vectors and a different scalar.
The first vector is a subset of the vector X, and the
second vector is a subset of the vector Y. The scalar
is an element of the vector A.

CALL FORMAT: CALL SAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO)

PARAMETERS: ISW = Integer input scalar. ISW is a function
selector switch and is treated as a bit
string with the bits numbered from the
least significant bit (bit #). If a given
bit is set (equal to 1), then the function
option that corresponds to that bit is selected.
Only bit # is used in SAXPYN.

Bit g: Negate the product term A * X
before adding to Y. That is,
compute - A * X + Y instead of
A* X + Y,

All other bits are ignored.

Integer input scalar. Number of A * X + Y
operations, i.e., outer loop count.
Integer input scalar. Number of elements in
each A * X + Y operation, i.e., inner loop
count.

Floating point input vector.
scalars.

Integer input scalar.
increment for A.
Floating point input vector.
vector.
Integer input
increment for
Integer input scalar.
increment for X.
Floating point input/output vector.
input vector on input.
output.
Integer input

count

Array of

IA0 = Outer loop element

First input

scalar.
X.

IXI = Inner loop element

IXO = Outer loop element

Second
Qutput vector on
IYI =

scalar. Inner loop element

increment for
Integer input
increment for

IYO =

FPS 86d-7482-901C

Y.
scalar.
Y.

Outer loop element

Page A - 345

APPENDIX A

X : 2.4 3.9
Yy : 7.9 6.9 2.4 3.9 5.9 6.9
Qutput: Y : 13.4 15.4 g.9 2.9 9.4 12.9

FPS 864-7482-g01C Page A - 347

khktkdtt2d
* *

* SCNRM2 *
* *
EEREERLRLSE

PURPOSE: To

of

CALL FORMAT: SW

PARAMETERS: N

APPENDIX A

k2222222 22 4
* *

——— COMPLEX EUCLIDEAN NORM —— * SCNRM2 *
* *

TEETRERXLEEEE
compute the square root of sum of squares
elements of a complex floating-point vector.
= SCNRM2(N,CX,I)

= Integer element count

CX = Complex floating—-point input vector

I = Integer step increment

SW = Floating-point scalar output result
DESCRIPTION: SW = SQRT(SUM(R(CX(m))**2 + T(CX(m))**2)):

for m=1 to N

EXAMPLE:

N =2

I=1

CX : (9.9,3.9) (4.9,9.3)

SW : 5.9

FPS 864-7482-491C

Page A - 349

APPENDIX A

t 2222222 224 *REEEEEEES
* * * *
* SDOT * —— DOT PRODUCT OF REAL VECTORS ——— * SDOT *
* * * *
EXRTXLERXELTE kXt hR
PURPOSE: To compute the inner (dot) product

of two vectors.
CALL FORMAT: SW = SDOT(N,SX,I,SY,J)

PARAMETERS: N = Integer element count for SX and SY
SX = Floating-point input vector
I = Integer element step for SX
SY = Floating—-point input vector
J = Integer element step for SY
SW = Floating-point output value

DESCRIPTION: SW=SUM(SX(m)*SY(m)); for m=1 to N

SW=g.d if N<1l.

EXAMPLE
N =23
sX : 1.4 2.8 3.9
Sy : 4.4 @.5 9.9
SW : 5.9

FPS 864-7482-g41C Page A - 351

APPENDIX A

DESCRIPTION: Z(jz) = ¢ * Z(jz) + s * SUM[X(ix) * ¥(iy), i=1,M] j=1,N

where: ix = (j=-1) * IXO + (i-1) * IXI + 1

iy = (j=1) * IYO + (i-1) * I¥YI + 1

jz = (j=1) * 120 + 1

s = 1.4, if ISW[O] = @
= =-1.49, if 1ISW(g] =1

r = @g.9, if IsSW(l] = &
= 1.4, if ISW(l] =1

and ISW(k] = bit k of ISW.
NOTES: If I20 = g, then SDOTN will set Z(1l) equal to

the accumulated sum of all N dot products. If
ISW(1l])] = 1 also, then input Z(l) will be added
to this sum.

Memory words occupied by X may intersect those
occupied by Y. 1In fact, X and Y may coincide.
However, memory occupied by Z should not, in
general, intersect that occupied by X or ¥. For
sample applications, see Sections D.4.9 and D.4.11.

If N < 1, SDOTN returns with no action taken.

If M <1 and ISW[1l] = 1, SDOTN returns with no
action taken.

If M <1 and ISW[(l] = &4, SDOTN returns with
Z(j) = 8.9 for j = 1 to N.

In general, M < 1 implies a zero sum of products.

EXAMPLE:

Input: ISW =

IXI =
IX0
IYI
IYO
I1Z0

H RN WNDR

X : 3.9 2.9 -1.9 1.9 g.9 -2.4

Output: Z : 1.8 -2.0

FPS 868-7482-441C Page A - 353

22 22 2 2 2 % 25
® *

*+ SROT *
* *
kit hkh

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A

kkkkkkikt®
* *
-— PLANE ROTATION —-— * SROT *
* *
kkkkhkkktk

To perform two dimensional rotations.
CALL SROT(N,SX,I,SY,J,C,S)

N = Integer count of elements in SX and SY

SX = Floating-point input vector of first components
= (On output) first components of rotated vector

Integer step increment for SX

Floating-point input vector of second components

= (On output) second components of rotated vector

= Integer step increment for SY

Floating-point input scalar cosine

= Floating-point input scalar sine

wmn 0N
[}

SX(m)
SY(m)

= C*SX(m)+S*SY(m)

=-8*SX(m)+C*SY¥(m); for m=1 to N

EXAMPLE:

FPS 864-7482-941C

. 8

o
-

SX(INPUT)
SY(INPUT)
SX(OUTPUT) :
SY(OUTPUT)

00 eo oo oo

Page A

- 355

t 2 X2 X222 & 1]
* *
* SROTM *
* *
t 22222222 2

PURPOSE:

-—— MODIFIED GIVENS ROTATIONS ——

To perform two-dimensional rotations using

APPENDIX A

khkkkhhkhktkd
* *
* SROTM *
* *
kkkttkthhk®k

the rotation matrix constructed from a
parameter vector according to the modified
Givens scheme.

CALL FORMAT: CALL SROTM(N,SX,INCX,SY,INCY,PARAM)

PARAMETERS: N = Integer element count
SX = Floating-point input/output vector
of first components

INCX Integer element step for SX

of second components
INCY Integer element step for SY
PARAM = Five element floating-point input vector
used to construct the rotation matrix
H = H11l H12
H21 H22.

SX(m) = H11*SX(m) + H12*SY(m)
SY(m) = H21*SX(m) + H22*SY(m),
H11, H12, H21,
PARAM(2), 1.4, -1.4,
1.9, PARAM(4), PARAM(3), 1.9 or
PARAM(2), PARAM(4), PARAM(3), PARAM(5) according to
whether PARAM(1l) = 1.4 or 4.4 or -1.9, respectively.

DESCRIPTION:

for m=1 to N, where
H22 =
PARAM(5) or

If PARAM(1l) is not equal to zero, one, or minus one,
the routine returns with no action performed. This
is equivalent to having the identity matrix as the
rotation matrix. ’

EXAMPLE:
N =25

SX{input)
SY¥(input)
PARAM

SX(output)
SY(output)

FPS 864-7482-881C Page A - 357

APPENDIX A

Rescaling continues until D1 and D2 are within the
window.

OQutput parameters PARAM(1,2,3,4,5) =
(-1.94,811,H421,H12,H22) and D1,D2,Bl are updated
according to the scaling factors above.

EXAMPLE:
D1,D2,Bl1,B2 (input) : 4.99@ 3.999 2.004 1.999

Dl1,D2,Bl (output) : 3.368 2.526 2.375
PARAM (output) : J.900 g.998 -@.580 08.375 4.0

FPS 864-7482-g41C Page A - 359

APPENDIX A

t 222222 2 & 2] Xhkhkkkktekk
* * * *
* SSWAP * —— INTERCHANGES VECTORS —— * SSWAP *
* * * *
E 2 2 22222 5 & Rkt hhitd
PURPOSE: To interchange elements of two real vectors.

CALL FORMAT: CALL SSWAP(N,SX,I,SY.J)

PARAMETERS: N = Integer element count

SX = Floating-point first vector for swap
I = Integer element step for SX
SY = Floating-point second vector for swap
J = Integer element step for SY

DESCRIPTION: SX(m) :=: SY¥(m); for m=1 to N

EXAMPLE:
N=3
SX(INPUT) : 1.8 2.8 3.4
SY(INPUT) : 9.4 8.4 7.4
sx(outpuT) : 9.4 8.4 7.9
SY(OUTPUT) : 1.4 2.8 3.0

FPS 864-7482-441C Page A - 361

APPENDIX A

Rkt ER t s 2 222 £ 5
* * * *
*+ ABP1 * -— ADAMS-BASHFORTH PREDICTOR (ORDER 1) —— * ABPl *
* * * *
kkkkkRthE®k ’ Ex 222 2 2 F 2]
PURPOSE: To solve an initial value problem for a set of

ordinary differential equations, using a first
order predictor (Euler's) method.
CALL FORMAT: ‘CALL ABP1(N,H,Y,F,YP)
PARAMETERS: N = Integer element count, number of equations
H = Floating-point input scalar step size for t
Y = Floating-point input vector of dependent
variables Y(t)
F = Floating-point input ve
elements 4dy/dt =F(t,Y(t
Floating-point output vector of predicted
variables Y(t+H)

inp ctor of derivative
())

YP

DESCRIPTION: For the system of equations d¥/dt=F(t,¥(t)), the
solution at t'=t+H is given by

YP(m) = ¥(m) + H*F(m); for m=1 to N

This provides an explicit first order solution

to the initial value problem for a given function

at time t'=t+H, given the values of the function and
its derivative at time t. The evaluation of the next
derivative, corresponding to F(t+H,¥(t+H)) at the
new time point, t'=t+2*H follows similarly.

EXAMPLE:
N =3
H=4d.1
Y : 1.9 2.8 3.9
F : 1.9 1.9 1.9
YP : 1.1 2.1 3.1

FPS 86d-7482-g01C Page A - 363

APPENDIX A

khktkkthkhkd hkkkhikdhk
* ' ® * *
* ABP3 * ——— ADAMS-BASHFORTH PREDICTOR (ORDER 3) —— * ABP3 *
* * * *
t 22232222 2 1] t2 225222 % £
PURPOSE: To solve an initial value problem for a set of

ordinary differential equations, using Adams' third
order predictor method.
CALL FORMAT: CALL ABP3(N,H,Y,F,Fl,F2,YP)
PARAMETERS: = Integer element count, number of equations
Floating—-point input scalar step size for t
= Floating-point input vector of dependent
variables ¥(t)
F = Floating-point input vector of derivative
elements d¥/4dt=F(t,¥Y(t))
Fl = Floating-point input vector of derivative
functions at preceeding time tl=t-H
F2 = Floating-point input vector of derivative
functions at preceeding time t2=t-2H
YP = Floating-point output vector of predicted
variables Y(t+H)

< =z
1]

" DESCRIPTION: For the system of equations dY/dt=F(t,¥(t)), the
solution at t'=t+H is given by

YP(m) = ¥Y(m) + (H/12)*(23*F(m)-16*F1l(m)+5*F2(m));
for m=1 to N

This provides an explicit third order solution

to the initial value problem for a given function

at time t'=t+H, given the values of the function and
its derivative at t and its derivatives Fl1 and F2 at
times tl=t-H and t2=t-2H, respectively.

Evaluation of the next derivative, corresponding to
F(t+H,Y(t+H)) at the new time point, t'=t+2*H
follows similarly.

EXAMPLE:

Fl
F2

FPS 864-7482-441C Page A - 365

APPENDIX A

EXAMPLE

[aa IR]

zZ

3.9
3.9
2.9

2.0
3.9
2.9

1.9
3.4
2.9

Fl

w
4

w
~y

w
()

o
Fra

4.9 4.9

4.9

F3

3.2

2.2

- 367

Page A

FPS 864-7482-#81C

APPENDIX A

DESCRIPTION: This routine integrates a set of N first order
differential equations from t=A to t=B, given
the initial values Y(t) and the values of the
derivative functions d¥/dt=F(t,¥(t)) calculated
in the user supplied routine DFUNF(T,N,Y,F). The
step size H is requlated to keep the maximum
local error less than EPS. The maximum number of
steps taken per call is limited by MAXIT. The
maximum step size is limited by HMAX. Error
return codes are provided to monitor the progress
of the algorithm.

REFERENCE: Burden,R.L., Faires,J.D., and Reynolds,A.C.,
"Numerical Analysis", Prindle, Weber & Schmidt, Inc.,
Boston, 1978: "Adams Variable Step-size Predictor-
Corrector" Algorithm 6.5

DFUNF (user supplied APFTN64 subroutine):

SUBROUTINE DFUNF(T,N,Y,F)

c
C *** DFUNF *** SAMPLE APFTN64 ROUTINE ***
c
DIMENSION Y(N), F(N)
o
DO 18 I=1,N
F(I) = -Y(I) + T + 1.0
19 CONTINUE
C
C CORRESPONDS TO SOLUTIONS OF THE FORM
o
C Y(T) = YJ * EXP(-T) + T
c
RETURN
END
INPUT: A = 4.9
B = 3.9
N = 5
HMAX = 4.2
MAXIT = 100
EPS = 1.9E-6

Y(1,1), ..., Y(5.,1):
1.9 2.8 3.4 4.9 5.4

FPS 864-7482-991C Page A - 369

APPENDIX A

Rkt EEE®k ‘ t 222222222]
* * * *
* AMC1 * ——— ADAMS-MOULTON CORRECTOR (ORDER 1) —— * AMCl *
* * * *
kR ERREEE ARk ERE
PURPCSE: To solve an initial value problem for a set of

Ardinare Aiffaran+tial amiakinne
grdéinary ciiferential eguations, us:i

corrector (backward Euler) method.

-
[Te}
[

CALL FORMAT: CALL AMC1l(N,H,Y,FP,YP)

PARAMETERS: N = Integer element count, number of equations

H = Floating—-point input scalar step size for t

Y = Floating-point input vector of dependent
variables Y(t)

FP = Floating-point input vector of derivative
elements dY/dt=F(t+H,Y(t+H))

YP = Floating-point output vector of predicted
variables Y(t+H)

DESCRIPTION: For the system of equations d¥/dt=F(t,¥(t)), the
solution at t'=t+H is given by

YP(m) = Y(m) + H*FP(m); for m=1 to N

This provides an implicit first order solution

to the initial value problem for a given function

at time t'=t+H, given the values of the function and
its derivative at time t. The evaluation of the next
derivative, corresponding to F(t+H,Y(t+H)) at the

new time point, t'=t+2*H follows similarly.
EXAMPLE:

N =3

H= 4.1

¥ : 1.4 2.2 3.4

FP : 1.9 1.4 1.4

FPS 864-7482-491C Page A - 371

APPENDIX A

ki ke x
* * * *
* AMC3 * ——— ADAMS-MOULTON CORRECTOR (ORDER 3) ——— * AMC3 *
* * *
EREREEERRR t 22222222 2 3
PURPOSE: To scolve an initial value problem for a set of

ordinary differential equations, using Adams' third
order corrector method.
CALL FORMAT: CALL AMC3(WN,H,Y,F,Fl1,FP,YP)
PARAMETERS: = Integer element count, number of equations
Floating-point input scalar step size for t
= Floating-point input vector of dependent
variables ¥Y(t)
F = Ploating-point input vector o
elements dY/dt=F(t,¥(t))
Fl = Floating—-point input vector of derivative
functions at preceeding time tl=t-H
FP = Floating-point input vector of derivative
functions estimated for t'=t+H
YP = Floating-point output vector of predicted
variables Y(t+H)

N
H
Y

DESCRIPTION: For the system of equations dY¥/dt=F(t,¥(t)), the
solution at t'=t+H is given by

YP(m) = Y(m) + (H/12)*(8*F(m)-Fl(m)+5*FP(m));

=27 == = =g

for m=1 to N

This provides an implicit third order solution

to the initial value problem for a given function

at time t'=t+H, given the values of the function and
its derivative at t, as well as, its derivatives at
times tl=t-H and t'=t+H, corresponding to Fl1 and FP.
Evaluation of the next derivative, corresponding to
F(t+H,Y(t+H)) at the new time point, t'=t+2*H
follows similarly.

EXAMPLE:

N =3

HE=460.1

Y : 1.9 2.4 3.4
F : 2.4 2.9 2.9
F1 : 1.8 1.9 1.4
FP 3.9 3.9 3.9
YP 1.25 2.25 3.25

FPS 864-7482-441C Page A - 373

APPENDIX A

EXAMPLE:

3.9
3.8
2.9

2.9
3.9
2.8

1.9
3.9
2.4

Fl

0
~

=
—

0
4
o

[x}
Fy

4.9 4.9

4.0

3.35 3.35

1.35

YPp

- 375

Page A

FPS 864-7482-g41C

APPENDIX A
BRK(N,2) = 4.4
and an input coordinate value x, BIN uses a binary

1. The index IX that locates x within the
coordinate value breakpoint table such that

x(IX) <= x < x(IX+l)
2. The product DR = D(IX) * R(IX) where

D(IX)

x(IX)-x

R(IX)

1/(x(IX+1)=-x(IX))

When a program makes repeated calls to a breakpoint
search routine (i.e., BIN or STEP), BIN should be used
if it is suspected that the input coordinate x varies
rapidly with respect to the values in the coordinate
value breakpoint table. In this case, the binary
(successive interval halving) search employed by

BIN is more efficient than the step (nearest

neighbor) search used by STEP.

Refer to the function generation in Appendix E for
additional information.

EXAMPLE:
N =3
BRRK = 1.4 2.4 7.9 1.9 .2 4.9
X = 2.1
IX = 2
DR = -3.92

NOTE
If x <= x(1) then IX =1
If x >= x(N) then IX = N-1

FPS 864-7482-941C Page A - 377

APPENDIX A

DESCRIPTION: I(I+l), for I = 4 to N-1, is the value of the Ith
modified Bessel functions of the first kind evaluated at
the point X. Refer to equation 9.6.3 of Abramowitz
and Stegun for the defining equation.

K(I+1l), for I = @ to N-1, is the value of the Ith
modified Bessel functions of the second kind evaluated at
the point X. Refer to equation 9.6.4 of Abramowitz

and Stegun for the defining equation.

Warnings and errors are reported to the calling routine
via IERR. If CBEIK completes normally, then IERR is
set to zero.

Warning condition codes are all between 1 and 99

inclusive. The possible warning values and their

meanings are as follows:

IERR = 1 N is too large

outputs. In most instances, ABS(X)
< 49@.4; this means that the Nth order
outputs exceed the dynamic range of the
machine. A suitable N is calculated,
the Bessel function values are computed
up to this new N, and the new N value
is returned.

Emw mamemitibadlan A8
LUL CUlnmpucacvin O

Error condition codes are all greater than or equal to
144. The possible error values and their meanings
are as follows:

IERR = 1494 ISTEP and/or KSTEP are equal to
-1,4, or 1.
191 X does not lie within the boundary of
(+/-609, +/-680@i).
IERR = 142 N is equal to 1. N must be greater
than or equal to 2.

IERR

References: Abramowitz, M., and Stegun, I., "Handbook
of Mathematical Functions”, Ninth printing,
pp.358-364.

Mason, J.P., "Cylindrical Bessel Functions
for a Large Range of Complex Arguments®,
Computer Physics Communications, 32(1983),
pp.1-11.

FPS 868-7482-g41C Page A - 379

APPENDIX A

*kttkktRdd kkkkkkhkhd
* * . * *
* CBEJYH * -—— COMPLEX BESSEL J, Y, AND H — * CBEJYH *
E * * *
EX T2 222 % 24 Rtk ER
PURPOSE ¢« To compute the complex Bessel functions of integer

order of the first kind, second kind, and one of
the Hankel functions at a point X.

CALL FORMAT: CALL CBEJYH (X, N, J, JSTEP, Y, YSTEP, H, HSTEP, IERR)

PARAMETERS: X = Complex input scalar
The point at which to evaluate all functioms.
This is restricted to the portion of the
complex plane bounded by (+/-684d,+/-684i). It
can take on the values (+/-68¢, +/-6921).

N = Integer input/output scalar

On input, the number of function values to
evaluate. If N <= g, then this routine returns
with no action. If N = 1, then an error is
reported. Note that the zero order function
values are stored in the first elements of the
complgx output vectors.
On output, the actual number of Bessel functions
computed. The input value of N is modified only
in the case where IERR = 1, if too many function
values were requested. If IERR is not equal to
1, then N is not modified on return to the
calling routine.

JSTEP = Integer input scalar
Element step for J. This can be any value
except -1, 4, or 1. This is the number of
words to skip between complex elements.
YSTEP = Integer input scalar
Element step for Y. This can be any value
except -1, 4, or 1. This is the number of
words to skip between complex elements.
HSTEP = Integer input scalar

Element step for H. This can be any value
except -1, 4, or 1. This is the number of
words to skip between complex elements.

J = Complex output vector
The function values of functions # through N-1
for Bessel functions of the first kind.

Y = Complex output vector
The function values of functions # through N-1
for Bessel functions of the second kind.

H = Complex output vector
The function values of functions # through N-1
for one of the Hankel functions. If the sign of
the imaginary part of X is positive, then the

FPS 868-7482-901C Page A - 381

APPENDIX A

Note: If the second Hankel function is desired when
the imaginary part of X is nonnegative, it can be
computed with the following equation:

References:

H2 = J-iY

Similarly, the first Hankel function can be
computed when the imaginary part of X is negative

by the following

H1l = J+iY

ecuation:
equaction

Abramowitz, M., and Stequn, I.,

"Handbook

of Mathematical Functions", Ninth printing,

pp.358-364.

Mason, J.P., "Cylindrical Bessel Functions
for a Large Range of Complex Arguments®,

Computer Physics Communications,

pp.1-11.

39(1983),

EXAMPLE:

JSTEP
YSTEP
HSTEP

(=]

IERR

FPS 868-7482-941C

NN D W

7608476806 F30E+G27,

COLVL S LTS

160334922904E+498,
798869439622E-4491,

g.93
g.614
g.415

—~ o~ e~

(9.445474488934634E+444,
(-9.657694535589279E+444,
(-9.473368020533007E+4484,

(9.227449894804525E+444,
(-9.156406690684427E~-401,
(-9.535757479634719E+0449,

g

-3 .406520047639122E+33 0"

—aTs s e LSy

#.365028028827088E+0494),
#.247397641513306E+909)

g.7149158582401548SE+980),
§.6298010093999987E+8404),
4.577336957578681E+404)

-9.510554586744886E-041),
-3.292666506762191E+4934),
-4.225974379919704E+0089)

Page A - 383

APPENDIX A

EXAMPLE:
See Appendix E for function generation.

FPS 864-7482-g01C Page A - 385

APPENDIX A

F(x)=F(x(1))+H(F(x(1+1))-F(x(1)))*(x-x(1))/(x(i+l)-x(1))

where

x(1) = x-coordinate value at the i-th
x—-coordinate breakpoint

x(i+l) = x-coordinate value at the (i+l)-th
x-coordinate breakpoint

X = Input x-coordinate value where the
interpolated function value is desired

P(x(1)) = Function value at x(i)
F(x(i+l)) = Function value at x({i+l)
F(x) = Interpolated function value at x

and x(i) <= x < x(i+l)

EXAMPLE:
See Appendix E for function generation.

FPS 860-7482-g41C Page A - 387

APPENDIX A

desired functions, storing them in FVAL. Refer to the
function generation in Appendix E for additional
information.

F(x)=F(x(1))+(F(x(i+1))-F(x(1)))*(x=-x(1))/(x(i+1)-x(1))

where

x(1i) = x-coordinate value at the i-th
x-coordinate breakpoint

x(i+l) = x-coordinate value at the (i+l)-th

x-coordinate breakpoint
X = Input x-coordinate value where the
interpolated function value is desired

F(x(1)) = Function value at x(1i)
F(x(i+l)) = Function value at x(i+l)
F(x) = Interpolated function value at x

and x(i) <= x < x(i+l)

EXAMPLE:
See .in Appendix E on function generation.

FPS 86P4-7482-941C Page A - 389

APPENDIX A

DESCRIPTION: FUN4 uses the indexes IX, 1Y, IZ and IW from the
breakpoint searches and the values NX, NY, NZ, and NW
to £ind the first function value pairs in the function
value breakpoint table. It then performs a linear
interpolation between them by applying the formula
given below eight times over the x-axis, four times
over the y-axis, twice over the z-axis, and once
over the w-axis. FUN4 repeats the process for all the
desired functions, storing the computed function
values in FVAL. Refer to the function
generation in Appendix E for additional information.

F(X)=F(x(1))+(F(x(i+1))-F(x(1)))*(x-x(1))/(x(i+1)-x(1i))

where

x-coordinate value at the i-th
x-coordinate breakpoint

= u__non—ainal—n "a‘!"n ad Fha 3
ATOCUUVLULIIQLT vdiuT au LuT (1

x(1)

»"

-~

=

.-‘

~
[

x-coordinate breakpoint
X = Input x-coordinate value where the
interpolated function value is desired
Function value at x(i)
Function value at x(i+l)
Interpolated function value at x
and x(1i) <= x < x(i+l)

F(x(1i))
F(x(i+l))
F(x)

1]

EXAMPLE:
See Appendix E for function generation.

FPS 864-7482-g01C Page A - 391

APPENDIX A

C.W.Gear, "Numerical Initial Value Problem in
Ordinary Differential Equations", Prentice-Hall, 1971.

RKGIL performs integration for given time, step

size, and integration steps. The right-hand subroutine
DFUN can be coded in either APFTN64 or APAL64. The
parameter-passing method employed by RKGIL requires that
DFUN be coded in APFTN64. As such, RKGIL relies on
assumed procedure entry conventions, because APFTN64
automatically generates code using this convention.

If DFUN is written in APAL64, the user must resolve the
parameters correctly.

At output, vector V contains the numerical solutions
while TZ contains the new value of the independent
variable; i.e., T@=TH+M*H.

Repeated calls to RKGIL can cause stability problems.
So the user must be on guard agalnS» instability

and must take care specifying the H parameter.

EXAMPLE:

Solve the following second-order differential equation
Y'' = -4.8*Y
with initial conditions

Y(F.8) = 1.8

Y'(9.9) 9.9
starting at T4 = 4.4 with H = g.1 for 32 iterations.

An equivalent system of first-order dlfferentlal equations
can be written in the form

DV(1l)

V(2)

DV(2)

-4.8*V(1)
with initial conditions at the point .4 of

V(l)

1.9

v(2) a.g

FPS 864-7482-g41C Page A - 393

APPENDIX A

Ex 222222 % &4 XA ER
* * * *
* RKGTF * ——— R-K-GILL-THOMPSON INTEG. (ORDER 4) — * RKGTF *
* * oot * *
REERXEXRERR EXRERRXE AR
PURPOSE: To solve an initial value problem for a set of

ordinary differential equations, using the fourth
order Runge-Kutta-Gill method as described by
Thompson.

CALL FORMAT: CALL RKGTF(T,N,Y,F,Q,H,M)

PARAMETERS: T = Floating-point input scalar independent variable,

initial value of t

N = Integer input element count, number of equations,
dimension of Y, F and @

¥ = Floating-point input/output vector of dependent
variables (Y(t))

F = Floating-point working vector of derivative
functions 4dY/dt=F(t,¥Y(t))

Q = Floating-point working vector used for
temporary storage (must have length N)

H = Floating-point input scalar step size for t

M = Integer input scalar number of integration steps
to be performed

DESCRIPTION: For the system of equations dY/dt=F(t,Y¥(t)), the
solution at each step is given by

Y(m) = Y(m)
+(H/6)*(kl+(2-sqrt(2))fk2+(2+sqrt(2))*k3+k4)

for m=4 to N-1, where
kl=F(T,Y)

k2=F(T+H/2,Y+J.5*H*k]l)

k3 = F(T+H/2,Y+@.5%(-l+sqrt(2))*H*kl
+0.5%(2-sqrt(2))*H*k2)
k4 = F(T+H,Y-0.5*sqrt(2)*H*k2

+J.5*(2+sgrt(2))*H*k3)

while the independent variable is advanced by H
until T = T + M*H.

FPS 864-7482-9081C Page A - 395

APPENDIX A

RRREEEERRE L2222 2% 2 4
* * _ * *
* ROT3 * —-—— 3D ROTATION MATRIX, 3-ANGLE —— * ROT3 *
*) * * *
XREREXREREL REXLREEEDEL
PURPOSE: To form a three-dimentional rotation matrix as a

product of three successive rotations about any three
orthogonal axes.

CALL FORMAT: CALL ROT3(I,A,J,B,K,C,R)

PARAMETERS: I = Integer input scalar axis indicator (plus or
minus 1l=x, 2=y, 3=2)
A = Ploating—-point input scalar angle(radians) of
rotation about axis I

Integer inpunt scalar axis indicator (plus or

..... ger input scalar ax

minus 1=x, 2=y, 3=z)

B = Floating-point input scalar angle(radians) of
rotation about axis J

K = Integer input scalar axis indicator (plus or
minus 1=x, 2=y, 3=z)

C = Floating—-point input scalar angle(radians) of
rotation about axis K

R = Floating-point output rotation matrix

(3x3 matrix stored in column order)

[
]

DESCRIPTION: This routine calculates a 3x3 matrix as a product of
three rotations about any three orthogonal axes:

R(matrix) = R(K,C)xR(J,B)xR(I,A)

1 g q

where R(1l,w)
a cos(w) sin(w)

@ -sin(w) cos(w)

R(2,w) = cos(w) g -sin(w)

g 1 g

sin(w) g cos(w)

and R(3,w) = cos(w) sin(w) a
-sin(w) cos(w) /]

g g 1

FPS 860-7482-941C Page A - 397

APPENDIX A

t 222223123 t2 2222222 2]
* * * *
* SCS1 * ——— SCALAR COS/SIN, TM INTERP.(ORD 1) ———~ * SCS1 *
* * * *
t 22222522 % Rkktktkkhkx

PURPOSE: To rapid
4
\

CALL FORMAT: CALL SCS1(A,CA,SA)

PARAMETERS : A = Floating-point input scalar angle(radians)
ca Floating-point output scalar cosine(A)
Sa Floating-point output scalar sine(Aa)

DESCRIPTION: CA = COS(A), SA = SIN(A)

by interpolation of values stored in TMROM

using a first order Taylor's series approximation.
The returned values are accurate to approximately
seven decimal digits.

NOTE: For 15 decimal digits of accuracy at a slight
decrease in speed, see the routine SINCOS.

EXAMPLE:
A =1.8
CA = 0.5423923
SA = §.8414719

FPS 860-7482-g41C Page A - 399

APPENDIX A

An input coordinate value x, and the index IX from
a previous call to STEP or BIN, STEP uses a step
search to determine the following:

1. The index IX that locates x within the
coordinate value breakpoint table such that

x(IX) <= x < x(IX+1l)

2. The product DR = D{IX) * R{IX) where
D(IX) = x(IX)-x
R(IX) = 1/(x(IX+1)-x(IX))

When a program makes repeated calls to a breakpoint
search routine (i.e., BIN or STEP), STEP should be
used if it is suspected that the input coordinate

x varies slowly with respect to the values in the
coordinate value breakpoint table. STEP's

nearest neighbor searching is more efficient than
the binary (successive interval halving) search used
by BIN.

At the outset, if no a priori knowledge of the value
of x is available, the first call to STEP should

set IX = N/2. An alternative strategy is to

make the first call to BIN, which initializes

IX, and then make subsequent calls to STEP.

efer to the functi
additional informat

e

on generation in Appendix E for
ion.

EXAMPLE:
N=3
BRK = 1.4 2.9 7.8 1.9 @.2 4.9
X = 2.1
IX = 2
DR = -4.482

NOTE
If x <= x(1) then IX =1

If x >= x(N) then IX

1]
4
|
—

FPS 868-7482-441C Page A - 441

APPENDIX A

t2 222221 &2 t 2222221

* k * *

* CONNMO * —~— NMO WITH CONSTANT VELOCITY -—— * CONNMO *

* * * *

E 222 kXL 2 & E X222 &4

PURPOSE: To apply normal moveout (NMO), with constant
velocity, toc a seismic trace.

CALL FORMAT: CALL CONNMO(D,N,X,V,SR,NNMO)

PARAMETERS : D = Floating-point output vector of trace
sample times.

N = Integer input scalar; element count for D.

X = Floating-point input scalar; offset distance
in feet.

v = Floating-point input scalar; velocity in feet.

SR = Floating-point input scalar; sample rate (ms).

NNMO = Integer output scalar; index of initial sample

of zero-fill in destination trace.

DESCRIPTION: The normal moveout computation is described
in seismic signal processing references,
such as:

“Introduction to Geophysical Prospecting”
Dobrin, M.B.,

McGraw-Hill, Inc.,
New York, N.Y., 15

pp. 281-254.

-
70,

"Geophysical Signal Analysis"

Robinson, E.A and Treitel, S.,
Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1984,

pp. 1-35.

The square-root computation inherent in the
process is accomplished with one iteration of
the Newton—-Raphson method.

Using a normal moveout process as defined by X,
Vv, and SR, destination trace D is filled with
the times from which to interpolate the adjusted
trace values.

The initial sample value of zero-f£ill in the

. . . .
destination trace is returned in parameter NNMO.

A value of N+1 for NNMO indicates no zero-fill.

FPS 869-7482-441C Page A - 443

Es & 222 2 2] kXL
* * * * .
* JTIR3G * ——— RECURSIVE FILTER —-— * TIR3G *
* * * *
kiR E 2 2222222 2
PURPOSE: To perform a recursive digital filter with up to 39

—mTlom 2md AN o=
pLULED Aallu Ju LRLUD.

CALL FORMAT: CALL IIR34(A,I,B,C,K,N,NZ,NP)

PARAMETERS: A = Floating-point input vector of length N+NZ.
Contains the data to be filtered. It will be
assumed- that A is indexed from -NZ to N-1.

I = Integer input scalar.

Element step for vector A.

B = Floating-point input vector of length NZ+NP+1.
Contains the coefficients of the filter. It will
be assumed that B is indexed from & to NZ+NP.
B(d) contains the scalar multiple coefficient,
B(l) to B(NZ) contain the coefficients of the
zeros, and B(NZ+l) to B(NZ+NP) contain the
coefficients of the poles.

C = Floating—-point input/output vector of length-
N+NP.

Contains the filtered data. It will be assumed
that C is indexed from -NP to N-1. On input,
C(-NP) to C(-1) contain the initial values. On
output, the computed values are contained in
C(g) to C(N-1).

K = Integer input scalar.
Element step for vector C.
N = Integer input scalar.

Element count.

NZ = Integer input scalar.
Number of zeros.

NP = Integer input scalar.
Number of poles.

DESCRIPTION: Performs a recursive (IIR - Infinite Impulse
Response) digital filtering difference equation as
follows:

C(t) = Sum[B(j) * A(t-j), j = & to NZ]
- Sum{ B(m+N2Z) * C(t-m), m 1l to NP]
for t = 3 to N~-1

where the dimensions of the arrays are A{~-NZ:N-1;,
B(J:NZ+NP), C(-NP:N-1). The second sum equals zero if
NP = 4.

FPS 864-7482-401C Page A - 445

ke hkd
* *

* KSMLV *
* *
REXRAEEXRE

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A

kit d
* *
* RSMLV *
* ®
Rkttt R

—— K-TH SMALLEST ELEMENT IN VECTOR -———

To find the k-th smallest element of a vector.

’

CALL KSMLV(A,N,K,W,C)

Floating-point input vector

Integer element count for A

= Order of the element to be selected; K=1
will select the smallest element; K=N will
select the largest element; K=INT((N+1)/2)
will select the median element.

Work—space vector; the size of the work
space must be equal to N

Floating-point output scalar

A
N
K

k—-th smallest element of A(m), ml to N.

The k-th smallest element of the vector stored
in Main Memory starting at location A is found
using an application of the divide and conquer
strategy. The algorithm implemented is as described
by Aho, Hopcroft, and Ullman: THE DESIGN AND

ANALYSIS OF COMPUTER ALGORITHMS, Addison-Wesley,

1974 ™ry a7-049, The resultant element is stored

iy P 4SS L ¥Suacaiiv an Loa

into Main Memory at location C. The original
contents of the input vector are lost.

The speed of this routine is data dependent.

EXAMPLE:

FPS 864-7482-941C

nn
w oo

5.4 2.4 -1.9 3.4 -39.6 19.7 5.4

Page A - 487

=

APPEND

EXAMPLE

2.8

SR

= <
o~

N
NNMO

6.9 7.9 8.4 9.0 19.9

1.9 2.4 3.4 4.8 5.8

5]
w

w
4

R
(3]

W
(aa]

L]
<

0w
w

w
w

W
t~

L)
o>

o

~
4

(input)
3.9 6.4 9.4 12.9 15.9 18.9 21.9 24.9 27.0 39.9

33.4 36.4 3%.4 9.4 0.4 0.9 6.9 #.0 6.9 4.0

D:

4.9

7.9 5.5

4.4 5.5 7.4 8.5 19.8 9.5

(output)
.5

D:
2

2.5 1.9 9.9 @.4 0.8 9.9 4.4 B.9 @.9 2.4

- 499

Page A

FPS 864-7482-gd1C

APPENDIX A

EXAMPLE:

2.9

SR

R <
N~

nn

(o]

N
NNM

1.4 2.9 3.8 4.4 5.9 6.8 7.9 8.4 9.4 19.8

s}
L]

=

—

]
o~

=
oy

S5y
<

L]
uw

[\
w

&

s
o0

ts)

—l

(input)
3.9 6.9 9.9 12.9 15.9 18.9 21.9 24.4 27.9 38.49

33.9 36.9 39.9 9.9 9.0 9.9 4.4 9.9 0.9 9.4

D:

4.9

4.9 5.5 7.4 8.5 14.9 14.4 7.8 5.5

(output)
.5

D:
2

l.6 #.0 6.0 2.9 9.9 8.9 0.9 B.9 4.8

2.5

- 411

Page A

FPS 869-7482-441C

APPENDIX A

tE 222222 % 2 3] t2 22 22 2 2 &7
* *) * *
* RESNMO * ——— RESIDUAL NORMAL MOVEOUT -—— * RESNMO *
* * * *
EX X XXX 2214 Xk khkkkkknh
PURPOSE: To stretch or squeeze a seismic trace via

linear interpolation.

CALL FORMAT: CALL RESNMO(A, B, C, NI, SR, D, NO, NNMO)

PARAMETERS: A = Floating-point input vector; source trace
of sample values.
B = Floating-point input vector of input
control times (ms).
(o} = Floating-point input vector of output
control times (ms).
NI = Integer element count for B and C.
SR = Floating-point input scalar; sample rate (ms).
D = Floating-point output trace vector

of sample wvalues.

Integer element count for D.

Integer output scalar; index of initial sample
of zero-fill in destination trace D.

NO
NNMO

DESCRIPTION: The normal moveout computation is described
in seismic signal processing references,
such as:

"Introduction to Geophysical Prospecting”
Dobrin, M.B.,

McGraw-Hill, Inc.,

New York, N.Y., 1976,

pp. 201-254.

"Geophysical Signal Analysis"
Robinson, E.A and Treitel, S.,
Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1984,
pp. 1-35.

Using a stretching/squeezing function as defined
by B, C, and SR, source trace C is converted into
destination trace D.

The initial sample value of zero-£fill in the
destination trace is returned in parameter NNMO.

A value of N+1 for NNMQ indicates no zero-fill.

The speed of this routine is data dependent.

FPS 864-7482-g41C Page A - 413

APPENDIX A

Ex 22222k & & t2 2222222 £
* * * *
* TMCONV * ——— CONVOLUTION (CORRELATION) —-— * TMCONV *
* * * *
t 222222 2 2 % kkkktktkk®
PURPOSE: To perform a convolution or correlation

. .
operation on two vectors, with the gperand

YreRaetL allia Vaa W awia LT UpTa

in Main Memory and the operator in TM.

CALL FORMAT: CALL TMCONV (A, ITMB, C, N, M)

PARAMETERS: A = Floating-point input vector (operand)
ITMB = Integer address of B in TM
(o = Floating—-point output wvector
N = Integer element count for C
M = Integer element count for B

(Integer element count for A = N+M-1)

DESCRIPTION: C(m) = SUM(A(m+g-l1)*B(q)):
for g=1 to M and m=1 to N.

NOTE: For convolution, the elements of operator
vector B must be stored in TM in reverse
order.

TMCONV performs either a correlation or a convolution
operation between the (N+M-l)-element operand (trace)

- - f s T\ evmmd n
vector A and the M-element operator (kermel) vector B.

The N—-element result vector is stored in C. The
result vector C may overlay the operand A. Vectors A
and C reside in main data; vector B is in TMRAM.

B must be placed in TMRAM using MTMOV or another
Table Memory Library routine before calling TMCONV.

NOTE: TMCONV is superior to CONV for M greater than
or equal to 128; otherwise, CONV is superior.

FPS 860-7482-g441C Page A -~ 415

APPENDIX A

ket ktd ki ddk
* * * *
* ygl * -—— VECTOR ZERO TRENDS -——— * vglL *
* ® ' * *
REEEREERER t x5 222 2
PURPOSE: To produce an output vector of #'s and 1's
based on zero trends in the input vector.
CALL FORMAT: CALL V41(A,I,B,J,N,NPTS)
PARAMETERS: a = Floating-point input vector
I = Integer element step for A
B = Floating—-point output vector
J = Integer element step for B
N = Integer element count for A and B
NPTS = Number of points of source to be
considered in creating a
destination point
DESCRIPTION: B(m) = .4 if ((A(m-NPTS+l) .EQ. 4.4) .AND.
(A(m-NPTS+2) .EQ. 4.4) .AND.
(A(m) .EQ. 9.4))
B(m) = 1.9 otherwise .
for m = NPTS to N
(Note that B(l) = ... = B(NPTS-1) = 1.49)
The vector A& is scanned. If the current point
of A and the last NPTS-1 points of A are &, then
the current point of B is set to zero. Otherwise
the current point of B is set to 1.9. The
resultant vector B is useful in stacking operations.
EXAMPLE:

FPS 860-7482-gd1C

N = 16

NPTS = 3

a: 1.9 2.4 6.9 9.8 5.9 4.8 2.8 3.9
g.4 1.9 11.9 12.9 13.9 4.9 @.8 9.9

B: 1.4 1.4 1.8 1.4 1.8 1.4 1.8 4.9
g.4 1.4 1.4 1.4 1. 1.8 1.4 @.9

Page A

- 417

APPENDIX A

A(l) should be equal to 4.9, and all other values
of A(i) and B(i), for i = 1 to NC, should be greater -
than 4.49.

The initial sample value of zero-fill in the
destination trace is returned in parameter NNMO.
A value of N+1 for NNMO indicates no zero-fill.

Routine NMOLI (linear interpolation) or NMOQI
{quadratic interpolation) is generally called

subsequent to routine VARNMO.

The speed of this routine is data dependent.

EXAMPLE:
NC = 4
N = 189
SR = 3.0
X = 100.0

A: g.8 75.4 100.9 2089.9
B: 5400.9 6000.3 7084.9 8504.98

NNMO = 68

D(1) D(2) D(3) D(4) D(5) D(6) D(7)
20.99 24.847 29.59 21.53 22.83 24.44 26.39

D(65) D(66) D(67) D(68) D(69) D(149)
192.39 195.38 198.37 g.28 @2.9@ PN 9.99

FPS 864-7482-g01C Page A - 419

E 22222 2 2%
* *
* YSCANG *
* *
E 2222 2 2 & K

PURPOSE:

APPENDIX A

E s X2 2 2% 5
* *

* VSCANG *
* %

-—— VECTOR SCAN FOR ZEROS ——

kR ERETR

To scan a source vector and record in

. . :
a destination vector a2 running total
a gestinatligon vecIior a running wotads

of the number of zeros encountered.

CALL FORMAT: CALL VSCANg(A,B,N)
PARAMETERS : A = Floating-point input vector
B = Floating—-point output vector
N = Integer element count for A and B
DESCRIPTION: B(m) = number of 4°'s in A(1l) through A(m);
form =1 to N
Scans the N values of the source vector A.
Records the cumulative total of zero values
in the N elements of vector B. The resultant
vector B is useful as a mute finder.
EXAMPLE:

FPS 864-7482-d@1C

N = 29

A: 1.6 1.9 9.9 9.9 1.4 g.0 6.9 4.6 1.9 1.9
l.9 9.9 6.9 ¢.4 9.9 9.4 1.4 9.8 4.9 1.9

B: 4.4 9.9 1.8 2.4 2.4 3.4 4.8 5.8 5.9 5.4
5.4 6.4 7.4 8.8 9.4 19.4 1.9 11.8 12.4 12.9

Page A

- 421

t 22222 2 2 2] kRt R
* * * *
* CSFR2 * —— SPARSE COMPLEX SYMMETRIC FACTOR ——— * CSFR2 *
* * * *
kktkkEtEER . kit ®
PURPOSE: To perform an LDL' factorization of a complex,

symmetric matrix A, where A is sparse and is
represented in packed form.

CALL FORMAT: CALL CSFR2(N,NS,S,ICP,IRN,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)
NS = Integer input scalar

Number of sparse elements (i.e., nonzero and
fill-in elements) in the lower triangle of A
] = Complex input/output array of length NS
On input, S contains the sparse elements of
the lower triangle of A in column order. On
output, S contains the superposition of L and
D with the diagonal elements reciprocated.
ICP = Integer input array of length N+1
Contains pointers into S to the first sparse
element of each column with ICP(N+l1) = NS + 1
IRN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in S
Floating-point input scalar
Zero tolerance value
WRK = Complex scratch vector of length N
IERR = Integer output scalar
Error code whose values are:
g - Normal termination
1 - Routine aborted because a diagonal
element was computed to be zero (i.e.,
its absolute value squared was less than
or equal to ZTOL)
2 - Routine aborted because N < 2

ZTOL

DESCRIPTION: This routine factors A into LDL' where L
is a lower triangular matrix with ones on its
diagonal, D is a diagonal matrix, and L' is the
transpose of L. The factorization is performed
without any row or column interchanges.
L and D are superpositioned by suppressing
the ones on the diagonal of L; i.e., if the
superposition of L and D is denoted by C, then
C=L+D-1I. The sparse elements of the super-
position of L and D are stored in the corresponding

FPS 864-7482-901C Page A - 423

Thus the superposition of L and D with the diagonal

elements of D replaced by their reciprocals is

(ﬁ.S;-H.S)
(9.9, 9.9)
(2.9,-1.9)
(9.9, 6.9)
(9.9, 8.2)

FPS 860-7482-441C

(4.5, 8.5)
(9.4, 9.9)
(1.9, 1.9)
(9.8, 8.9)

(4.2,-9.4)

(9.2, 3.9) (-9.25,8.25)

(9.9, 8.9)

(9.9, 1.9)

(8.25,4.9)

Page A

- 425

DESCRIPTION: First CSFR2 is called to factor A into LDL' where L
is a lower triangular matrix with ones on its
diagonal, D is a diagonal matrix, and L' is the
transpose of L. The factorization is performed
without any row or column interchanges.

L and D are superpositioned by suppressing

the ones on the diagonal of L; i.e., if the
superposition of L. and D is denoted by C, then
C=L+D-1I. The sparse elements of the super-
position of L and D are stored in the corresponding
locations of S with the diagonal elements of D
replaced by their reciprocals. L and D may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, CSSV2 is called to solve the system in three
steps:

(1) Solve Lz=b for z (forward elimination)
(2) Solve Dy=z for y
(3) Solve L'x=y for x (backward substitution)

This routine supercedes CSFS and differs from it in
two important respects. First, CSFS2 is much faster
than CSFS. Second, CSFS2 does not check to ensure
that £ill-in has been provided for properly; whereas,
CSFS does. .

The scratch parameter WRK is not used in the current
release of this routine; however, it has been
retained for compatibility with CSFS. Thus, a scalar
may be used in place for a vector for WRK.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

EXAMPLE: Let A be the complex, symmetric matrix
(1.9, 1.9y (9.8, 2.9) (3.9, 1L.9) (9.4, @.8) (4.9, 8.9)
(9.9, 8.9) (1.9,-1.9) (9.9, 8.9) (2.4, 8.9) (6.4, 8.9)
(3.4, 1.94) (9.9, 9.9) (8.9, 1.9) (9.9, #.9) (9.9, 9.9)
(9.9, 8.9) (2.9, 4.9) (9.9, 2.9) (9.4, @8.4) (2.9,-2.9)
(9.8, 8.9 (9.9, #.9) (4.8, 4.8) (2.4,-2.8) (6.9, 2.9)

rin

NOTE: It is known apriori that f£ill-in occurs in

element (4,4).

FPS 868-7482-g41C Page A - 427

APPENDIX A

Rkt d AT R
* * * *
* (CSsv2 * ——— SPARSE COMPLEX SYMMETRIC SOLVE ——-— * (CSSV2 *
* * * *
k2222222 %44 t 2222222 £ %
PURPOSE: To find the soclution to the system Ax = b, where A is

a sparse, complex, symmetric matrix that is LDL'

factored and is represented in packed form.

CALL FORMAT: CALL CSSV2(N,NS,S,ICP,IRN,BX)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)
NS = Integer input scalar

Number of sparse elements (i.e., nonzero and
fill-in elements) in A

S = Complex input array of length NS
Contains the sparse elements of the super-
position of L and D with the diagonal elements
reciprocated. The elements are stored in
column order.

ICP = Integer input array of length N+1
Contains pointers into S to the first sparse
element of each column with ICP(N+1l) = NS + 1

IRN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in S

BX = Complex input/output vector of length N
On input, BX contains the right-hand side
vector b. On output, BX contains the solution

vector Xx.

DESCRIPTION: This routine solves the system Ax = b where A is a
sparse, complex, symmetric matrix that is factored
into LDL'. L is a lower trianqular matrix with ones
on its diagonal, D is a diagonal matrix, and L' is
the transpose of L. L and D are superpositioned
by suppressing the ones on the diagonal
of L; i.e., if the superposition of L and D
is denoted by C, then C =L + D - I.

The solution process consists of three steps:

(1) Solve Lz=b for z (forward elimination)

(2) Solve Dy=z for y

{(3) Solve L'x=y for x (backward substitution)
This routine supercedes CSSV.
For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

FPS 864-7482-441C Page A - 429

APPENDIX A

k222222 2 2 2 kit h
* * * *
* CUFR2 * ——— SPARSE COMPLEX UNSYMMETRIC FACTOR ——— * CUFR2 *
* * * *
ki h ket kirdx
PURPQOSE: To perform an LU factorization of a complex,
unsymmetric matrix A, where A is sparse and is

represented in packed form.

CALL FORMAT: CALL CUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)
NS = Integer input scalar

Number of sparse elements (i.e., nonzero and
fiil-in elements) in A
] = Complex input/output array of length NS
On input, S contains the sparse elements of A
in column order. On output, S contains the
sparse elements of the superposition of L and
U with the diagonal elements reciprocated.
ICP = Integer input array of length N+l
Contains pointers into S to the first sparse
element of each column with ICP(N+1l) = NS + 1
IRN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in S
IDP = Integer input array of 1
Contains pointers into S t
elements
Floating-point input scalar
Zero tolerance value
WRK = Complex scratch vector of length N
IERR = Integer output scalar
Error code whose values are:
g - Normal termination
1 - Routine aborted because a diagonal
element was computed to be zero (i.e.,
its absolute value squared was less than
or equal to ZTOL)
2 - Routine aborted because N < 2

]
=
(o]
(3]
"

FPS 864-7482-941C Page A - 431

(4.5,
(9.4,
(3.9,
(8.4,
(8.4,

The output parameters are:

S = 5-5' -gQSI 3og[
2.4, -1.9, 9.2, -9.4,
2.4, -2.9,

g

IERR

Thus the superposition
elements of L replaced

-4.5) (8.4,
g.3)y (4.5,
1.9) (9.9,
g.2) (2.4,
g.9)y (2.4,

FPS 868-7482-441C

g.9)
g.5)
g.3)
g.3)
4.a)

(2.9,-1.9)
(2.9, 2.49)
(9.2,-48.4)
(2.9, 2.49)
(2.9, 9.49)

APPENDIX A

1.4, 8.5, 8.5, 2.4, 9.4,

l.g' lng' -G.ZS’ g-zs,

g.4, 1.8, 9.25, 9.9

(9.9, 9.9)
(1.4, 1.9)
(9.9, 2.9)
(-9.25,4.25)
(2.“:"2.”)

(9.4,
(9.4,
(9.9,
(2.9,

(9.25,

of L and U with the diagonal
by their reciprocals is

g.9)
g.2)
g.9)
1.9)
g.9)

Page A - 433

APPENDIX A

DESCRIPTION: First CUFR2 is called to factor A into LU where L is
a lower triangular matrix and U is an upper
triangular matrix with ones on its diagonal. The
factorization is performed without any row or column
interchanges. L and U are superpositioned
by suppressing the ones on the diagonal of U; i.e.,
if the superposition of L and U is denoted by C, then
C=L+U--1I. The sparse elements of the super-
position of L and U are stored in the corresponding

TAamaksAanma ~F rrd bl tha Aia~mmnal alamandéae ~AF T

J.Ubdb.l.ulia U.l.. O W&Lli \.ne u;aguua.ﬁ. e.i.cmcuu: Vi
replaced by their reciprocals. L and U may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for £ill-in results in
undetermined action by this routine.

Next, CUSV2 is called to solve the system in two
steps:

(1) Solve Ly=b for y (forward elimination)
(2) Solve Ux=y for x (backward substitution)

This routine supercedes CUFS and differs from it in
two important respects. First, CUFS2 is much faster
than CUFS. Second, CUFS2 does not check to ensure
that fill-in has been provided for properly; whereas,
CUFS does.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

EXAMPLE: Let A be the complex matrix

(1.2, 1.9) (2.9, 8.8) (3.4,
(gog' gog) (logl-log) (ﬁog'

1.8 (8.8, 9.9) (8.4, 8.2)
g.49
(3.9, 1.2) (9.9, 2.9) (8.4, 1.8
g.9
qa.4

)

) (2.4, 9.9) (9.9, 4.9)

) (9.9, 9.8) (4.9, 8.9)

) (9.4, 8.8) (2.4,-2.8)
(2.4,-2.9) (6.4, 2.4)

(9.8, 9.2y (2.9, 8.9) (9.4,
(4.9, 9.9) (9.9, 8.9) (4.9,

NOTE: It is known apriori that fill-in occurs in
element (4,4).

Let b be the complex vector

FPS 864-7482-991C Page A - 435

APPENDIX A

t 2 222222 L X hkkkkhhtt®k

* ® * *

* CUSV2 * ——— SPARSE COMPLEX UNSYMMETRIC SOLVE —— * CUSV2 *

* * * *

i 222223241 2] Akttt i

PURPOSE: To find the solution to the system Ax b, where A is
A enarea ~Aamnl nNneuymmarris madrie ha e T.IT

- I
ax 1 r v a L L

L3 =tl‘lb AN UVLIIE-I- oHp u&xa}mm: o ode &S ke o d o whd - P~ bd NS
form

factored and is represented in packed
CALL FORMAT: CALL CUSV2(N,NS,S,ICP,IRN,IDP,BX)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)
NS = Integer input scalar
Number of sparse elements (i.e., nonzero and
fill-in elements) in A
S = Complex input array of length NS
Contains the sparse elements of the super-
position of L and U with the diagonal elements
reciprocated. The elements are stored in
column order.
ICP = Integer input array of length N+1
Contains pointers into S to the first sparse
element of each column with ICP(N+l1l) = NS + 1
IRN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in §
= Integer input array of 1
Contains pointers into S t
elements
BX = Complex input/output vector of length N
On input, BX contains the right-hand side
vector b. On ocutput, BX contains the solution
vector x.

-
(v}
nJ

[

DESCRIPTION: This routine solves the system Ax = b where A is a
sparse, complex matrix that is factored into LU. L
is a lower triangqular matrix and U is an upper
triangular matrix with ones on its diagonal. L and U
are superpositioned by suppressing the ones on the
diagonal of U; i.e., if the superposition of L and U
is denoted by C, then C = L + U - 1I.

The solution process consists of two steps:

(1) Solve Ly=b for y (forward elimination)
(2) 1 £ ¥ {backward substitution)

This routine supercedes CUSV.

For a more detailed discussion, refer to Appendix C.

FPS 86d-7482-9d1C Page A - 437

t 22122222 2] kRt R
* * * *
* RSFR2 * —— SPARSE REAL SYMMETRIC FACTOR —- * RSFR2 *
x ® * *
k% khkkktttkhk
PURPOSE: To perform an LDL' factorization of a real, symmetric

matrix A, where A is sparse and is represented in
packed form.

CALL FORMAT: CALL RSFR2(N,NS,S,ICP,IRN,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)
NS = Integer input scalar

Number of sparse elements (i.e., nonzero and

fill-in elements) in the lower triangle of A
S = Floating-point input/output array of length NS
: On input, S contains the sparse elements of

the lower triangle of A in column order. On

output, S contains the superposition of L and

D with the diagonal elements reciprocated.
ICP = Integer input array of length N+l

Contains pointers into S to the first sparse

element of each column with ICP(N+1l) = NS + 1
IRN = Integer input array of length NS

Contains the row numbers that correspond to

the elements in S :
ZTOL = Floating-point input scalar

Zero tolerance value
WRK = Floating—-point scratch vector of length N
IERR = Integer output scalar

Error code whose values are:

@ - Normal termination
1 - Routine aborted because a diagonal

element was computed to be zero (i.e.,
its absclute value was less than or
equal to ZTOL)
Routine aborted because N < 2

[V
[

FPS 864-7482-441C Page A - 439

Then the input parameters are:

N = 14

NS = 22

S = 8.4, 8.9, 16.9, 16.4, 32.9, 89.4, 16.4,
24.9, 16.4, 8.4, 24.9, 8.9, 4.4, l6.4,
32.4, 16.9, 89.9, 49.9, 8.8, 4.9, 9.9,
~1.25

icp = 1, 2, 4, ‘6, 8, 11, 14, 17, 24, 22, 23

IRN = 1, 2, 14, 3, 4, 4, 5, 5, 6, 8, 8,
8, 14, 7, 8, 9, 8, 9, 14, 9, 14, 14

ZTOL = 1.4E-6

The output parameters are:

S = ¢.125, #.125, 2.9, 9.9625, 2.4, 2.9625, 1.4,
g.125, 2.4, 1.9, -#.125, 1.4, -9.5, 9.98625,
2.9, 1.2, 9.9625, 4.5, @4.25, -9.9625, 4.125,
-@.43125

IERR g

Thus the superposition of L and D with the diagonal
elements of D replaced by their reciprocals is

g.125

g.9 g.125

g.9 @.9 F.8625

g.9 4.9 2.4 g.2625

g.8 @.2 @.8 1.8 g.125

g.4 2.8 2.9 g.2 2. -4.125

g.8 g.8 0.9 g.a g.8 ©.8 ©B.9625

g.4 g.89 2.9 g.8 1.9 1.4 2.9 g.8625

g.9 g.8 B.9 g.9 g.4 4.8 1.9 g.5 ~-3.08625

g.4 2.9 4.0 g.8 4.8 -@.5 g.a g.25 4.125 -9.93125

FPS 868-7482-9d1C Page A - 441

APPENDIX A

DESCRIPTION: First RSFR2 is called to factor A into LDL' where L
is a lower triangular matrix with ones on its
diagonal, D is a diagonal matrix, and L' is the
transpose of L. The factorization is performed
without any row or column interchanges.

L and D are superpositioned by suppressing

the ones on the diagonal of L; i.e., if the
superposition of L and D is denoted by C, then
C=L+D-1I. The sparse elements of the super-
position of L and D are stored in the corresponding
locations of S with the diagonal elements of D
replaced by their reciprocals. L and D may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, RSSV2 is called to solve the system in three
steps:

(1) Solve Lz=b for z (forward elimination)
(2) Solve Dy=z for y
(3) Solve L'x=y for x (backward substitution)

This routine supercedes RSFS and differs from it in
two important respects. First, RSFS2 is much faster
than RSFS. Second, RSFS2 does not check to ensure
that f£ill-in has been provided for properly; whereas,
RSFS does.

The scratch parameter WRK is not used in the current
release of this routine; however, it has been
retained for compatibility with RSFS. Thus, a scalar
may be used in place for a vector for WRK.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

EXAMPLE: Let A be the symmetric matrix
8.4 9.4 9.9 4.9 @¢.94 @G.9 @g.9 gF.8 dH.9 F.9
g.g 8.8 9.8 9.4 8.6 4.8 2.9 G.9 @F.9 1l6.4
9.4 9.4 l6.8 32.4 @H.84 ©@.9 B.9 ©B.84 F.4 F.8
4.4 2.8 32.4 8.4 l6.4 4.0 9.4 @G.4 0.9 0.9
g.4 9.9 9.2 l6.d 24.4 16.9 9.4 8.4 @#.9 @.9
9.8 g.4 9.8 gd.4 le.d 24.4 HB.4 8.4 F.8 4.9
2.2 g.2 g.2 g.g 2.2 g.2 16.g 22.¢ 8.2 2.8
g. 9.9 4. 9.4 8.0 8.8 32.4 89.9 4.4 8.8
g.4 9.9 g.4 9.4 @G.9 B.4 1l6.4 40.9 4.4 4.9
g.4 6.8 @.4 @.9 8.4 4.4 @J.9 8.4 F.8 -1.25

FPS 864-7482-901C Page A - 443

APPENDIX A

Thus the superposition of L and D with the diagonal

elements of D replaced by their reciprocals is

g.125
g.9
g.g

g.125
g.9
g.8

g.9625
2.8
a.g
g.9

g.9625
1.9
g.9

g.8

g.125

g.9
g.8

g.g
g.8

-g.125

2.9

F.8625

g.5
#.25

2.9
1.9
g.9

1.9
g.g
-@.5

1.9
g.g
g.9

g.9
g.4
g.9

g.2
g.9
g.9

g.8 9.9

g.9
g.9

-#.9625

g.9

g.125 -@.43125

2.9

is

and the solution vector, x,

Do EmEmE®
MHt AN OO W

- 445

Page A

FPS 864-7482-g91C

ADDINNTY A
[T

AsiNLS LA L3

EXAMPLE: Let A

SERanaRRER RS

[STESESEEVIE S B SRS S S SR)
NN oR
[SEESESTR AR S S-S B~ S)

[

Then

be the symmetric matrix

g.9 @9.¢ 9.9 @.9 @G.9 0.9 8. F.9
g.9 2.9 @¢.2 0.9 g.4 2.9 g.8 1l6.9
l16.9 32.9 @9.9 9.9 9.6 @.9 ©B.4 9.8
32.9 89.0 1l6.9 ©B.8 @G.9 9.9 @.9 4.4
g.4 16.9 24.9 16.9 @.4 8.8 @F.8 4.9
g.4 0.9 l1l6.9 24.9 @.4 8.8 4.9 4.9
g.6 9.8 ¢.6 @G.94 1l6.4 32.4 16.5 @.4
g.9 9.9 8.8 8.4 32.4 8.9 48.6 8.9
4g.9 @.9 g.4 J.9 1l6.4 46.4 4.9 @.9
g.9 2.9 g.8 4.9 9.4 8.9 g.4 -1.25

the superposition of L and D with the diagonal

elements of D replaced by their reciprocals is

N
w

(8]
(%]

[+))
~N
wm

.
.
.

°
°
°

SIESESESESECEE
oW

manEnnn g S S -

annooannaam
[S IR N BB S B S S)
SIS IS SIS IS O

Let b

24.9
8.9
96.4
288.9
2890.9
296.9
112.92
392.9
28.9
52.9

Then

NS

ICF
IRN

BX

FPS 864-7482-g41C

=)
N
w

o@D
LIRS I SIS RS IR

g.8625
4.5 ~-8.9625
g.25 g.125 -g.93125

be the vector

the input parameters are:

19

22
g.125, @#.125, 2.4, 4.8625, 2.4, #.9625, 1.4,
4.125, 2.9, 1.9, -¢4.125, 1.9, -8.5, 4.4625,
2.4, 1.9, #.9625, #.5, 9.25, -@.4625, 9.125,
-4.93125

i, 2, 4, o, 8, ii, 14, 17, 24, 22, 23
=1, 2, 14, 3, 4, 4, 5, 5, 6, 8, 6,

8, 14, 7, 8 9, 8, 9,119, 9, 14, 1@

= 24.9, 8.9, 96.9, 288.4, 284.9, 296.9, 112.0,
392.4, 28.9, 52.4

Page A -~ 447

APPENDIX A

t 2222222 % 2] khkkktkhkktk®
* * * *
* RUFR2 * ——— SPARSE REAL UNSYMMETRIC FACTOR -—— * RUFR2 *
* * * *
Rt EkEEERER kkkkktthht
PURPOSE: To perform an LU factorization of a real, unsymmetric
matrix A, where A is sparse and is represented in

aD SppaLIoST eTpeSS S e iz

packed form.

CALL FORMAT: CALL RUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR)

PARAMETERS: N = Integer input scalar
Order of the matrix A (must be greater than 1)
NS = Integer input scalar

Number of sparse elements (i.e., nonzero and
£ili-in eiements) in A
S = Floating-point input/output array of length NS
On input, S contains the sparse elements of A
in column order. On output, S contains the
sparse elements of the superposition of L and
U with the diagonal elements reciprocated.
ICP = Integer input array of length N+1
Contains pointers into S to the first sparse
element of each column with ICP(N+1) = NS + 1
IRN = Integer input array of length NS
Contains the row numbers that correspond to
the elements in S

]
=)
g

[]

;
Integer input array of length N

Contains pointers 1nto S to the diagonal
elements
ZTOL = Floating-point input scalar
Zero tolerance value
WRK = Floating-point scratch vector of length N
IERR = Integer output scalar
Error code whose values are:
g - Normal termination
1 - Routine aborted because a diagonal
element was computed to be zero (i.e.,
its absolute value was less than or
equal to ZTOL)
2 - Routine aborted because N < 2

FPS 860-7482-941C Page A - 449

Then the input parameters are:

N =19

NS = 34

S = 8.9, 8.4, 16.4, 16.9, 32.9, 32.9, 80.4,
l6.4, 16.49, 24.4, 16.4, 8.4, 16.4, 24.49,
8.4, 4.4, 16.4, 32.4, 16.9, 8.4, 8.8,
32.9, 80.9, 40.4, 8.4, 16.9, 49.49, 4.9,
g.94, 16.94, 4.4, 8.9, 8.4, -1.25

e = i, 2, 4, 6, 9, 13, 17, 26, 26, 34, 35

IRN = 1, 2, 14, 3, 4, 3, 4, 5, 4, 5, 6,
8, 5, 6, 8,119, 7, 8, 9, 5, 6, 17,
8, 9,14, 7, 8, 9, 149, 2, 6, 8, 9, 14

Ipp = 1, 2, 4, 7, 19, 14, 17, 23, 28, 34

ZTOL = 1.9E-6

The output parameters are:

S = §.125, 4.125, 16.4, 4.9625, 32.4, 2.4, 9.4625,
l6.9, 1.4, @.125, l6.4, 8.4, 2.4, -4.125,
-8.9, 4.4, 9.9625, 32.4, l6.4, 1.9, 1.4, 2.4,
g.4625, 8.9, 4.4, 1.4, 9.5, -8.4625, -2.4,
2.4, -9.5, #.25, #.125, -§.93125

IERR %]

Thus the superposition of L and U with the diagonal
elements of L replaced by their reciprocals is

g.125 4.4 9.9 g.9 g.9 0.9 B8.9 g.9 g.2 g.2
g.8 @.125 4.9 g.4 g.4 @#.9 @.9 g.9 g.9 2.9
g.9 @4.9 2.4625 2.9 4. @6.4 0.9 g.2 g.8 8.9
g.8 4.8 32.4 g.0625 1.4 0.8 4.4 g.9 2.4 g.9
g.9 @.84 2.4 16.8 9.125 2.8 4.8 1.9 7.8 9.2
g.9a @¢.8 2.9 g.9 l6.4 -9.125 8.4 1.9 g. -8.5
g.8 @.9 2.9 g.9 g.9 @.9 @.9625 2.9 1.9 g.g
g.4 @¢.4 2.9 g.8 8.4 -8.4 32.9 g.9625 4.5 g.25
g.9 @8.4 2.8 g.2 g.8 @.9 1le.4 8.4 -0.8625 #.125
g.9 16.9 9.9 g.2 g.8 4.9 8.9 4.9 -2.9 -4.43125

FPS 864-7482-d01C Page A - 451

DESCRIPTION: First RUFR2 is called to factor A into LU where L is
a lower triangular matrix and U is an upper’
triangular matrix with ones on its diagonal. The
factorization is performed without any row or column
interchanges. L and U are superpositioned
by suppressing the ones on the diagonal of U; i.e.,
if the superposition of L and U is denoted by C, then
C =L+ U-1I. The sparse elements of the super-
position of L and U are stored in the corresponding
locations of S with the diagonal elements of L
replaced by their reciprocals. L and U may contain
nonzero elements where A contains zero elements.
Collectively called "fill-in", these zeros must be
included in S as input sparse elements of A. Failure
to properly provide for fill-in results in
undetermined action by this routine.

Next, RUSV2 is called to solve the system in two
steps:

(1) Solve Ly=b for y (forward elimination)
(2) Solve Ux=y for x (backward substitution)

This routine supercedes RUFS and differs from it in
twc important respects. First, RUFS2 is much faster
than RUFS. Second, RUFS2 does not check to ensure
that fill-in has been provided for properly; whereas,
RUFS does.

For a more detailed discussion, refer to Appendix C.

The execution time for this routine is data dependent.

EXAMPLE: Let A be the matrix
8.4 2.9 a.9 g.9 2.9 .9 g.9 2.9 g.9 g.a
9.9 8.9 g.9 g.g9 g.9 a.9 g9.9 g.9 g.9 16.4
g.9 g.8 1le.g 32.9 a.49 g.9 g.9 g.9 g.9 g.9
g.9 g.4 32.9 80.9 1le6.4 g.9 3.9 a.q g.9 3.4
g.9 a.g .94 le.gd 24.9 16.9 .9 8.9 .9 g.9
3.9 g.a 9.9 9.9 16.8 24.9 g.9 8.9 g.9 4.9
g.9 4.4 9.8 g.4 g.4 g.9 16.9 32.9 16.4 g.a
9.9 9.9 g.9 9.9 8.4 8.9 32.4 8.8 44.49 8.4
g.g g.a .9 2.9 4.9 9.9 1l6.9 49.9 4.9 g.a
g.8 1l6.9 9.9 g.g9 .9 4.9 7.9 8.4 g.8 -1.25

NOTE: It is known apriori that f£ill-in occurs in
elements (14,9) and (9,14).

FPS 864-7482-g81C Page A - 453

Thus the superposition of L and U with the diagonal

elements of L replaced by their reciprocals is

g.9

g.4
a.9
g.49
g.9
g.9
g.9

g.g
g.g
g.4
g.2

g.a
g.a
g.9
g.8
g.8

a.9 2.9
-g.125 @.4

g.9
g.4

g.125 ¢.4 2.8 8.9
g.125 9.8 9.8
4.8 @.9625 2.9

g.9
g.g

2.9
g.2

a.8
7.9
g.9
g.125 2.8

16.49

g.9
g.9
-4.5

g.6625 1.9

16.9

g.8 32.94

g.g
g.3
g.a

1.9
1.9

a.4
g.9

g.9
g.g

g.8

3.9625 4.5

g.25

-8.9 32.8

8.4
g.g9
g.9

g.9
a.8
g.4

g.8
g.4
g.8

g.8
g.2
g.9 16.9

g.4
g.g

-3.9625 3.125

-2.9

8.9

g.9 16.9

-g.43125

4.9

g.8

4.9

is

and the solution vector, x,

[BRSERS B SRR RS TR s B R
M AL AN oD

- 455

Page A

FPS 860-7482-941C

APPENDIX A
g.9
9.9
g.g

g.2 16.4

a.4
a.9
g.2

g.4
g.9
g.9
g.4

9.8
g.g
g.4
g.g

g.4
g.9
g.9
g.8

g.a
g.8
g.9

g.9
g.9

g.9
a4.9

4.9 16.9 32.4
g.9 32.8 88.8 16.4

8.9

The execution time for this routine is data dependent.
g.g8

Let A be the matrix

8.4
g.o9
g.8
g.49

EXAMPLE

=
L\

]
]

L]
-}

w
w

w
()
3]
4
(8}
R
\te]
~
Ls]
R

5]
]

i)
L5

- 457

’

4.9
g

g.2
8.9
a.g
-1.25
2.8
g.9
g.8625,
-4.125,
2.
-2.4,

.25
-J.0625 @.125

-2.9

g.9
a.9

g.9
-4.5

g.9
-g.843125
o
5

Page A

.

g.9
4.9
g.8

1

1.9

g.9625 @4.5

8.9
4.4

8.4
8.4
q.9
g.9
g.8
g.g
7.9
g.g
32.9, 2.4,
2.9,
7 l.g;
-9.4625,

[4
o

g.a
g.g
g.9
g.9
1.9
1.9

!
i

-#.43125

g.9
g.9 l1l6.9 32.4 16.9
8.4,

g.9

32.9 89.9 449.9
g4.5,

o
o

g.9 le.8 49.8
1.9,
g.125,

8.4
4.9
qg.9
g.2
g.4
9.9
g.8
g.8625 2.3

g.9
16.9, 4.9625,

g.d
8.4
g.a
g.9
2.9
g.9
g.9
g.9
g.125 2.9
g.6 16.9
4.9
4.4,

g.9
-8.94 32.9

-4.125 3.8
g.8825,

or
8.4,

ct

F.125,
1.9, 4.125, 16.4,

g.4 16.4 24.9

g.9

g.9
4.%,

g.g
g.4
g.9

g.g
g.9625 1.9

16.4

2.4
16.8
ag.g
8.9
g.g
g.9
he ve
_g-S' 3.25’

g.9
g.8
g.9
a.9
g.9
a.4
g.q
g.4
g.9
g.q9
g.9
a.q9
= 4,125,
16.4,
-8.4,
d.8625,
2.9,

8.9

g.g
g.g
g.9
24.9
96.4
288.9
28.9
52.4

g.9
Then the superposition of L and U with the diagonal

elements of L replaced by their reciprocals is

Then the input parameters are:

280.4
296.9
112.9
392.9

NS

Let b be t

2.9625 2.9

a.4
32.4

g.9 16.8
9.9
é.4
g.4
g.9
g.9
g.8

g.9
a.9
q9.9
a.9

g.125 2.4
g.2
g.8
g.48
g.8
g.9
g.8
g.2
FPS 860-7482-941C

g.125 4.8
g.8 16.4

g.9
g.9
g.8
g.8
g.9
g.8
g.a
g.9

ks 2223 2 £ k& ke
k * * *
* SDOTPR * -—— SPARSE DOT PRODUCT —-— * SDOTPR *
* * * *
E 2 2 2222 2 K &3 k2222222 2 £ 2
PURPOSE: To calculate the dot product of a column of A

with another vector, B, given a real, sparse matrix, A,
that is in packed format.

CALL FORMAT: CALL SDOTPR(M,NP1,NS,S,IRN,ICP,IC,B,J,C)

PARAMETERS: M = Integer input scalar
Number of rows in A.
NP1 = Integer input scalar

Number of columns in A plus one.

NS = Integer input scalar
Number of nonzero elements in A.

] = Floating—-point input array of length NS
Contains the nonzero elements of A stored by
columns.

IRN = Integer input array of length NS
Contains the row numbers (in A) that correspond
to the nonzero elements in S.

ICP = Integer input array of length NP1
Contains pointers to the elements in S that are
the first nonzero elements in each column of A.
ICP(NPl) = NS + 1.

IC = Integer input scalar
Number of the column in A that is to be used.
B = Floating-point input vector of length M
J = Integer input scalar
Element step for B.
C = Floating-point output scalar

DESCRIPTION: C = Sum[B(IRN(k)) * S(k); k=ICP(IC) to ICP(IC+1)-1]

EXAMPLE: Let A :

FPS 868-7482-g441C Page A - 459

EE X2 & & 2 2 i kkhkkktkkEd
* * * *
* SITSOL * ——— SPARSE ITERATIVE SOLVER ——— * SITSOL *
* * * *
kkthkkkrhee khktkkkkhhx
PURPOSE: To solve a real, sparse, linear system A * X = B,

wnere A is in packed, row-order format.

CALL FORMAT: CALL SITSOL(N,NS,S,ICN,IRP,B,W,ZTOL,NCUT,IFLG,
X,ITER,IERR)

PARAMETERS: N = Integer input scalar

Order of A.

NS = Integer input scalar
Number of nonzero elements in A.

S = Real input array of length NS
Contains the nonzero elements of A stored in
row order.

ICN = Integer input array of length NS
Contains the column numbers (in A) of the
corresponding elements in S.

IRP = Integer input array of length N+l
Contains pointers to the first element of each
row of A in S with IRP(N+1) = NS+1.

B = Real input vector of length N
Contains the right-hand side.
W ='Real input scalar

Over relaxation coefficient. If W = 1.4, then
the Gauss-Seidel method is used to solve the
system. Otherwise, the successive over
relaxation (SOR) method is used with a

coefficient of W.

ZTOL = Real input scalar
Zero tolerance value. The solution is
considered to have converged when every
element of X is within ZTOL of its value on
the previous iteration.

NCUT = Integer input scalar
Iteration limit. The routine will return
after NCUT iterations if the solution has not
converged.

IFLG = Integer input scalar

Input flag:

g - Normal input

1 - X contains an initial solution

2 - The routine is being reentered to
perform additional iteratioms and the
vectors S, ICN, IRP, B, and X contain
the values that they had on return from a
previous call to SITSOL.

FPS 868-7482-491C Page A - 461

EXAMPLE:

Given the linear system A * X = B,

A : 4.9 g9.9 2.4 g.48 g.9
g.g 8.8 9.9 3.4 g.9
3.8 9.9 8.9 g.9 1.9
g.9 -3.9 3.9 8.9 1.9
g.9 4.4 5.9 -2.8 16.9
g.89 @#.9 4.8 -2.9 4.9
3.8 %.8 5.8 9.8 6.9
g.8 @90.9 9.9 .9 9.9

and

B : 8.8 -5.9 7.4 18.9 31.4
then the inputs are

N = 8
Ns = 23

S : 4.9, 2.4, 8.9, 3.9, 3.8
8.ﬁy logi 2.“, Soﬂ' _205
"2.“, 4.“, -S.H, log’ 2-5

4, 5' 6' 8' 7
IRP : 1, 3, 5, 8, 12, 17
B : 8.2" -S-ﬁ, 7-%, la.ﬁ', 3l-ﬁ
W = 1.9
ZTOL = g.90941
NCUT = 24
IFLG = &

and the outputs are

X : 2.0999, -1.00889, g.9004,
1.99649, 3.9999, 2.90494d,;

ITER
IERR

8
g

FPS 864-7482-g91C

where
g.8 2.9
g.9 0.9
g.8 2.9
2.9 3.8
3.9 4.4
~-8.4 9.9
g.8 2.8
2.8 4.9
-22.9 4.9
14 B-H' l.g,
14 lG.g, 3-6'
¢ 2.9, 4.9
’ 3, S,
’ 51 61
’ 6, 8
. 21, 22,

1.29049,
9.9909

.

AEQ:-‘QQQQQ
S nannn®

6.9

—3.g'
4-”,

2,
7,

Page A

- 463

EXAMPLE: Input:

ITYPE

2 2 X
/2]

nun unn
N v W

NS =

FPS 864-7482-0@1C

9.9

6.0

4.9

3.8

Page A

- 465

APPENDIX A

EXAMPLE: Input:
ITYPE = 1
M = 4
N =3
NS =5

S: 5.46.9 3.4 2.9 4.9
IN: 1 2 4 1 4

iP: 1 4 4 6

A: 5.46.00.93.00.02.90.90.82.9020.99.94.9

FPS 864-7482-g41C Page A - 467

Then the input is

M =6
NPl = 8
NS = 12
"8 1. 2. -4, -1. 4. -3. 5. -2. 3. 1. 2. -3.

IRN : 1 4 3 2 1 6 3 5 6 1 3 5

ICP : 1 3 4 5 7 19 11 13

IC =4

B : 5.8 =-2.4 1.8 6.4 4.8 2.9
-1.0 -7.9 8.9 3.4 2.9 2.9

4.9 2.8 3.9 -5.9 6.9 3.9

NC =3

Output:

C =14.9 -19.9 7.9

FPS 864-7482-971C Page A - 469

Then the input is

M =6
NP1l = 8
NS = 12
S 1. 2. -4. -1. 4. -3. 5. -2. 3. 1. 2. -3.

IRN : 1 4 3 2 1 6 3 5 6 1 3 5

ICP : 1 3 4 5 7 14 11 13
IC =5
B : bl b2 b3 b4 b5 b6
where bl to b6 are the existing values in B
Output:

B ¢ bl b2 5. b4 -2. 3.

FPS 864-7482-g41C Page A - 471

Output:
NS = 3
IERR = g

S : 1.5 1.25 -4.375

IEN 2 7 149

FPS 864-7482-g01C Page A - 473

Please detach cards along perforations.

Your comments will help us improve the quality and Lsefu'ness of our publications. Please fill
out and return this form. (The mailing address is on the back.) !

Title of document:

Your Name and Title: Date:
Firm: Department: ‘
Address: “
City: State: Zip Code: ‘
Telephone Number: () Extension: '
I used this manual. . . I found this material. .

Yes

U as an introduction to the subject accurate

U to instruct a class written clearly
U 1o learn operating procedures well illustrated
0 a5 a reference manual well indexed

miuiuiuln
coocoo?

Q other

Please indicate below, listing the pages, any errors you found in the manual. Also indicate if
you would have liked more information about a certain subject.

=
o
-
=
-
.
=
§ 0 as an aid for advanced training complete
-
-
/2
oz
==
-
<
=
A=

ARRAY is an independent society of people who use FPS products. Membership is free
and includes a quarterly newsletter. There is an annual conference, as well as other
activities. If you are interested in becoming an ARRAY member, please fill out and
return this form. (The mailing address is on the back.)

Your Name and Title: Date:
Firm: Department:

Address:

City: State: Zip Code:

Extension:

S—

Telephone Number: (

7 LdTd 3T0EoE el
AVEE NIOdIVO 14 04703t X1,
. 1STE-199/8085 (134

"ONI - 'SINJLSAS
INIOd ONILVO

