
APMATH64 MANUAL 

VOLUME 2 OF 4 

MODELS M64/ 40. 
M64/50, M64/60 

860-7482-001C 

FLOATING POINT SYSTEMS, INC. 



by FPS Technical Publications Staff 

APMATH64 MANUAL 

VOLUME 2 OF 4 

MODELS M64/ 40. 
M64/50, M64/60 

860-7482-001C 



NOTICE 

Publication No. 86g-7492-ge1c 
December, 1987 

The information in this publication is 
subject to change without notice. 

Floating Point Systems, Inc. accepts no 
liability for any loss, expense, or damage 
resulting from the use of any information 
appearing in this publication. 

Copyright cg 1987 by Floating Point Systems, Inc. 

All rights reserved. No part of this publication may 
be reproduced in any form without written permission 
from the publisher. 

Printed in USA 

The postpaid Reader's Comaent Form on the last page of this document 
requests the user's critical evaluation to assist in preparing and 
revising future documents. 



REVISION HISTORY 

This manual is the APHATH64 Manual, Volume 2, 860'-7482-0'0'1. The letter 
shown under the revision number column indicates the portion of the 
part number that changes for each revision. The last entry is the 
latest revision to this manual. 

R~l. NO. 

-0'0'1A 

-0'0'1B 

-0'0'1C 

DESCRIPTION 

The revision history begins with this manual. 

Deleted Utilities Library, deleted the 
LPSPFI subroutine, added internal subroutine 
information, and added 16 new routines. 

Added new routines to Basic Math Library, 
Double Precision Library, and Matrix 
Algebra Accelerated Math Library. 

• 

DATE 

8/86 

1/87 

12/87 

NOTE: For revised manuals, a vertical line "I" outside the left 
margin of the text signifies where changes have been made. 



NOTE TO READER 

This is the second volume of the APMATH64 Manual. 
Volume 2 is comprised of part 2 of Appendix A. Note 
that Appendix A continues through Volumes 1, 2, and 
3. The page numbers are listed consecutively through 
the volumes. 

The APMATH64 Manual has three indices located at the 
end of Volume 3 and two at the end of Volume 4. The 
first index (Appendix I) is a list of the APMATH64 
routines in page order by type. The second index 
(Appendix J) is an alphabetical list of all the 
APMATH64 routines. The third index is a key word 
index of the APMATH64 routines. The fourth index 
(Appendix L) is an alphabetical list of the 
APMATH64/MAX routines. The fifth index is a key word 
index of the APMATH64/MAX routines. 
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APPENDIX A 

DESCRIPTION~ This routine first calls HTRIDI to reduce A to a 

EXAMPLE: 

real symmetric tridiagonal matrix using unitary 
similarity transformations. IMTQL2 is then called to 
determine the eigenvalues and eigenvectors of the 
real tridiagonal matrix. IMTQL2 uses the implicit QL 
method to compute the eigenvalues and accumulates the 
QL transformations to compute the eigenvectors. 
Finally, HTRIBK is called to backtransform the eigen­
vectors to those of the original matrix. 

If N is less than or equal to zero, then IERR is set to 
999999. If N is greater than NM, then IERR is set to 
lH*N. If more than 39 iterations are required to 
determine an eigenvalue, the subroutine terminates 
with IERR set equal to the index of the eigenvalue 
for which the failure occurso In this case, the 
eigenvalues in W should be correct for indices 
1, 2, ••• , IERR-1, but no eigenvectors are computed. 
If all of the eigenvalues are determined within 3g 
iterations, then IERR is set to zero. 

The function selector, MATZ, may be made functional 
in a future release as follows: If MATZ = i, then 
only the eigenvalues will be determined: otherwise, 
both the eigenvalues and eigenvectors will be 
determined. 

With the exception of error code 999999 and the 
nonfunctionality of the selector flag, this routine is 
functionally the same as the FORTRAN routine of the 
same name found in the "Matrix Eigensystem Routines -
EISPACK Guide", 2nd edition, by B.T. Smith, et al., 
Springer-Verlag (1976). For further information, 
refer to pages 235-239 of the EISPACK Guide. 

The execution time for this routine is highly data 
dependent. 

Input: 

NM : 4 
N = 4 

AR 3.H l.H 0.H H.i 
l.i 3.H 0.H i.i 
g_g i.H l.H l.H 
g_g i.H 1.0 l.i 
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APPENDIX A 

********** ********** 
* * * * 
* EIGRS * REAL SYMMETRIC EIGENSYSTEM SOLVER -- * EIGRS * 
* * * * 
********** ********** 

PURPOSE: To determine eigenvalues and eigenvectors of a real 
c:ummarri~ m~rriv 
- .i ··-·- - - - - ···- - - - •• ~ 

CALL FORMAT: CALL EIGRS(NM,N,A,O,E,Z,IERR) 

PARAMETERS: NM 
N 
A 

D 
E 

= Integer row dimension of matrices A and z 
= Integer order of matrix (N .LEe NM) 

= Floating-point input matrix 
= Floating-point output vector (eigenvalues) 
= Floating-point scratch vector 

Z = Floating-point output matrix {eigenvectors; 
IERR = Integer error flag set if routine does not converge 

within 30 iterations (refer to IMTQL2). 

NOTE: The dimension of matrices A and z is NM*N. 
The dimension of matrices D and E is N. 

DESCRIPTION: EIGRS first reduces the full matrix to tridiagonal 

EXAMPLE: 

form by Householder's method, diagonalizing the resulting 
matrix by the QL algorithm (using implicit origin 
shifts). The APAL subroutines used to accomplish this, 
TRED2 and IMTQL2, are based on the FORTRAN programs of 
the same name found in 
EISPACK Guide" by B.T. Smith et al., Springer-Verlag 
(1976). 

NM = 5 
N = 4 

A 5 .0 4.0 1.0 1.0 
4 • .0' 5 .fr 1..0' 1..0' 
1..0' l.fr 4 • .0' 2.fr 
1..0' l.fr 2 .0 4 • .0' 
fc1 • .0' fc1 .0 fc1 .0 0.fr 

D 1..0' 2 • .0' 5 • .0' 1.0' • .0' 
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APPENDIX A 

********** ********** 
* * * * 
* B'TRIBK * - COMPLEX HERMITIAN EIGENVEC'l'ORS - * H'l'RIBK * 
* * * * 
********** ********** 

PURPOSE: To form the eigenvectors of a complex Hermitian matrix, 
A, by back transforming those of the corresponding 
real symmetric tridiagonal matrix determined by the 
routine HTRIDI. 

CALL FORMAT: CALL HTRIBK(NM, N, AR, AI, TAU, M, ZR, ZI) 

PARAMETERS: NM = Integer input scalar 
Row dimension of the matrices 

N = Integer input scalar 
Order cf matrix A and 
the matrices. N must be less than or equal 
to NM. 

AR = Floating-point NM by N input matrix 
The strict lower triangle of the first N rows 
contains information about the unitary trans­
formations used in the reduction by HTRIDI. 
The remaining elements are ignored. 

AI = Floating-point NM by N input matrix 
The full lower triangle of the first N rows 
contains information about the unitary trans­
formations used in the reduction by HTRIDI. 
The remaining elements are ignored~ 

TAU = Floating-point 2 by N input matrix 
Contains the remaining information about the 
unitary transformations. 

M = Integer input scalar 
Number of eigenvectors to be back transformed. 

ZR = Floating-point NM by N input/output matrix 
On input, the columns of ZR contain the eigen­
vectors to be back transformed in their first N 
elements. On output, the first M columns and N 
rows contain the real parts of the transformed 
eigenvectors. 

ZI = Floating-point NM by N output matrix 
The first M columns and N rows contain the 
imaginary parts of the transformed 
eigenvectors. 
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APPENDIX A 

********** ********** 
* * * * 
* HTRIDI * - COMPLEX HERMITIAN TRIDIAGOHALIZATION - * HTRIDI * 
* * 
********** 

PURPOSE: 

* * 
********** 

To reduce a complex Hermitian matrix, A, to a real 
symmetric tridiagonal matrix using unitary similarity 
transformations. 

CALL FORMAT: CALL HTRIDI(NM, N, AR, AI, D, E, E2, TAU) 

PARAMETERS: NM = Integer input scalar 
Row dimension of the matrices 

N = Integer input scalar 
Order of matrix A and column dimension of 
the matrices . N must be less than or equal 
to NM. 

AR = Floating-point NM by N input/output matrix 
On input, the first N rows of AR contain the 
real parts of the elements of A. The last 
NM - N rows are ignored. Only the full lower 
triangle of AR need be supplied~ On output, 
the strict lower triangle of AR contains 
information about the unitary transformations 
used in the reduction. The full upper 
triangle of AR is unaltered. 

AI = Floating-point NM by N input/output matrix 
On input; the first N rows of AI contain the 
imaginary parts of the elements of A. The 
last NM - N rows are ignored. Only the strict 
lower triangle of AI need be supplied. On 
output, the full lower triangle of AI contains 
information about the unitary transformations 
used in the reduction. The strict upper 
triangle of AI is unaltered. 

D = Floating-point output vector of length N 
Contains the diagonal elements of the 
tridi.agonal matrix. 

E = Floating-point output vector of length N 
Contains the subdiagonal elements of the 
tridiagonal matrix in its last N-1 elements. 
The element E(l) is set to zero. 

E2 = Floating-point output vector of length N 
Contains the squares of the corresponding 
elements of E. 

TAU = Floating-point 2 by N output matrix 
Contains the remaining information about the 
unitary transformations. 
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********** 
* * 
* IM'l'QLl * 
* * 
********** 

PURPOSE: 

- DIAGONALIZE TRIDIAGONAL MATRIX --

To determine the eigenvalues of an N by N 
real symmetric tridi~gonal matrix using the 
implicit QL method. 

APPENDIX A 

********** 
* * 
* IM'l'QLl * 
* * 
********** 

CALL FORMAT: CALL IMTQLl (N, O, E, IERR) 

PARAMETERS: N 
D 

= Integer input order of the matrix 
= Floating-point input/output vector 

Vector of length N containing the diagonal 
elements of the symmetric matrix on input; 
vector of length M containing the eigenvalues 
on output. 

E = Floating-point input vector 
Vector of length N containing the subdiagonal 
elements of the symmetric matrix. The 
subdiagonal is contained in elements E(2) 
through E(N); E(l) is arbitrary. 

IERR = Integer output error status 
IERR = G: No errors encountered, normal 

completion. 
IERR = -1: The routine received an invalid 

input argument, N < 1. 
!ERR > g: The routine was unable to finish 

because more than 30 iterations 
were required to determine an 
eigenvalue. IERR is set to the 
index of the offending eigenvalue. 
The eigenvalues in D are correct 
for all preceding indices, but are 
unordered. 

DESCRIPTION: IMTQLl determines the eigenvalues of a symmetric 
tridiagonal matrix using the QL algo(ithm with 
implicit origin shifts at each iteration. 

Upon convergence, the eigenvalues are ordered in 
ascending order. 

The vector E is destroyed by this routine. 

IMTQLl is based on the FORTRAN program found in 
the EISPACK GUIDE: 2nd ed.r B.T. Smith: et al.: 
Springer-Verlag, 1976. That program in turn is 
based on an Algol procedure discussed by Martin 
and Wilkinson, NUM. MATH.,12, 1968, pg. 377. 
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********** 
* * 
* IMTQL2 * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

--- DIAGONALIZE A TRIDIAGONAL MATRIX --- * IMTQL2 * 
* * 
********** 

To determine eigenvalues and eigenvectors of a real 
~ummPrrir rrini~nnn~l m~rriY_ 
-.i; ···-- -- -- -- ----~----- -·--- --- -

CALL FORMAT: CALL IMTQL2(NM,N,D,E,Z,IERR) 

PARAMETERS: NM 
N 
D 

z 

= 
= 
= 

= 

IERR = 

NOTE: 

Integer row dimension of matrices A and Z 
Integer order of matrix (N .LE. NM) 
Floating-point input/output vector 
Diagonal elements on input; 
Eigenvalues in ascending order on output 
Floating-point input vector 
Codiagonal elements 
Floating-point input/output matrix 
For eigenvectors of sym.tridiag. matrix: 
Nth-order identity matrix on input; 
Eigenvectors on output 
For eigenvectors of full sys. matrix: 
Trans.matrix from TRED2 on input; 
Eigenvectors on output 
Integer index of eigenvalue if convergence not 
obtained by 30 iterations, else 0 

The dimension of arrays A and Z is NM*N. 
The dimension of arrays D and E is N. 

DESCRIPTION: IMTQL2 diagonalizes an N-by-N tridiagonal matrix 
using the implicit QL algorithm (Martin and Wilkinson, 
Num. Math. 12, 377(1968); Dubrulle, Num. Math. 15, 450 
(197~)). The initial diagonal begins at D(l), and the 
codiagonal at E(2). At each iteration, a ne·w tridiagonal 
matrix is formed, is stored by overwriting the previous 
result, and continues until convergence, or 30 iterations 
have passed. If convergence does not occur by 30 
iterations, !ERR is set equal to the index of the sought 
eigenvalue, and the routine is exited. Previously 
calculated results are valid. The transformation 
matrices are accumulated and the results stored in column 
order in matrix z. 
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********** 
* 
* 
* 

RS 
* 
* 
* 

- REAL SYMMETRIC EIGENSYSTF.M SOLVER -

APPENDIX A 

********** 
* 
* 
* 

RS 
* 

* 
* 

********** ********** 

PURPOSE: To determine the eigenvalues and eigenvector of a 
real symmetric matrix! A. 

CALL FORMAT: CALL RS(NM, N, A, W, MATZ, Z, FVl, FV2, IERR) 

PARAMETERS: NM 

N 

= Integer input scalar 
Number of rows of matrices A and z 

= Integer input scalar 
Order of matrix A and column dimension of 
matrices A and z. N must be less than or equal 

A = Floating-point NM by N input matrix 
The first N rows contain the matrix and the 
last NM - N rows are ignored. Only the full 
lower triangle of the matrix need be supplied. 

w = Floating-point output vector of length N 

Contains the eigenvalues of A in ascending 
order. 

MATZ = Integer input scalar 
MATZ is not currently used. 

z = Floating-point NM by N output matrix 
The first N elements of the j-th column of z 
is the eigenvector that corresponds to the 
j-th eigenvalue in W. The last NM - N 
elements in each column are not altered. 

FVl = Floating-point work area vector of length N 
FV2 = Floating-point work area vector of length N 
IERR = Integer output scalar 

Error code as described below. 

DESCRIPTION: This routine first calls TRED2 to reduce A to a 
symmetric tridiagonal matrix using and accumulating 
orthogonal similarity transformations. IMTQL2 is 
then called to determine· the eigenvalues and eigen­
vectors of the original matrix from the symmetric 
tridiagonal matrix. IMTQL2 uses the implicit QL 
method to compute the eigenvalues and accumulates the 
QL transformations to compute the eigenvectors. 

If N is less than or equal to zero, then IERR is set to 
999999. If N is greater than NM, then IERR is set to 
lg*N. If more than 3g iterations are required to 
determine an eigenvalue, the subroutine terminates with 
IERR set equal to the index of the eigenvalue for which 
the failure occurs. 
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********** 
* * 
* SIMPLE * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

- REVISED SIMPLEX - * SIMPLE * 

* * 
****'****** 

To solve a linear programming problem that is in the 
standard form: 

maximize Z = C'* X 

subject to 
and 

where 

A * X = B 
X(j) >= G, for j = l to N 

B(i) >= G, for i = 1 to M 

CALL FOit.YAT: CALL SIMPLE(M,N,MP2,NP1,KI,NS,S,IRN,ICP,B,C,WRK, 

PARAMETERS: M = 

N = 

MP2 = 

NPl = 

KI = 

X,Y,Z,IB,KO) 

Integer input scalar 
Number of constraints (rows in A). 

Integer input scalar 
Number of variables (columns in A) • 

Integer input scalar 
MP2 = M + 2 
Integer input scalar 
NPl = N + 1 
Integer input vector of length rn 
Contains the program control parameterse If 
any of these parameters is less than or equal 
to zero, then a default value is supplied for 
that parameter. The parameters are: 
KI(l) = Input basis flag. KI(l) > G indicates 

that an initial basis is supplied in 
IB. Default = No initial basis. 

KI(2) = Iteration limit. Default = 4 * N + ig 
KI(J) = Inversion interval. Default = M/2 + 5 
KI(4) = Zero tolerance exponent. The zero 

tolerance value = 0.5 ** KI(4). 
Default = 20. 

KI(S) = Partial pricing step size. 
Default= min (N, max(20,N/20)). 
NOTE: The default value is also used 
if KI(5) > N and a value of 20 is 
used if 0 < KI(S) < 2g. 

KI(6) to KI(lg) are reserved for future use. 
NS = Integer input scalar 

Number of nonzero elements in A. 
S = Floating-point input array of length NS 

Contains the nonzero elements of A stored by 
columns. 

!RN = Integer input array of length NS 
Contains the row numbers (in A) that 
correspond to the nonzero elements in S. 

FPS 86H-7482-9HlC Page A - 249 



APPENDIX A 

The problem must be stated in the standard form: 

maximize z = C' * x 

subject to A * x = B 
and X(j) >= 0, for j = l to N 

where B( i) >= 0, for i = l to M 

Thereforei it is the rac:nnnc: i hi 1 i i-u nr i-ho user to: ---r-·o-------,L -- -0·-
(a) Convert a minimization problem to a maximization 

problem by replacing C with -c. 
(b) Convert inequality constraints to equality con­

straints by adding a slack variable or sub­
tracting a surplus variable. 

(c) Ensure that B(i) >= 0 by multiply the i-th con­
straint by -1.0 if B(i) < 0. 

(dj Ensure that the decision variables are con­
strained to be nonnegative. If X(j) is uncon­
strained in sign then replace it by the 
difference of two new nonnegative variables. 

In this variation of the two phase, revised simplex 
method, a composite problem is formed (virtually) in 
SIMPLE that includes both the actual (phase 2) 
objective equation and· the artificial (phase 1) 
objective equation as constraints making a total of 
MP2 constraints. The variables for the internal com­
posite problem are: 

X(~) - The actual objective; i.e., Z 
X(l) to X(N) - The actual decision variables 
X(N+l) - The artificial objective 
X(N+2) to X(N+M+l) - The artificial variables 
where X(N+l+i) is the artificial variable for the 
i-th constraint. 

The variables X(0) and X(N+l) to X(N+M+l) are virtual 
variables and, thus, do not use any storage space. 

X(0) must always be a basic variable and IB(l) must 
always be zero. X(N+l) must be a basic variable 
during phase one and IB(2) must equal N+l whenever 
X(N+l) is basic. At least one artificial variable 
(including X(N+l)) must always be basic. During 
phase two, ·any artificial variables in the basis will 
have a value of zero. Generally, during phase two, 
only one artificial variable will be basic and it 
will be X(N+l); however, this need not be the case. 
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APPENDIX A 

EXAMPLE: Given a problem in standard form where 

A: l. 2. 3. '1. '1. '1. '1. '1. 1. '1. '1. '1. '1. 
'1. '1. '1. 3. 1. 2. '1. '1. '1. l. '1. '1. '1. 
2. 3. '1. 2. '1. '1. 2. '1. '1. '1. l. '1. '1. 
tr. tr. 3. 0. s. Ji!. 2. 3. '1. {;. {;., l. '1. 
3. '1. g. '1. '1. 3. H. l. '1. '1., '1 .. '1. 1. 

the inputs a.re: 

M = 5 
N = 13 
MP2 = 7 
NP! = 14 

KI '1, '1, '1, '1 

NS = 22 

s 1., 2. , 3., 2., 3 •I 3 .. ' 3. , 3. ' 2. ' 1. ' 5., 2. ' 
3. ' 2. , 2 0 , 3. ' 1. I 1., 1., 1., 1., l. 

IRN 1, 3, 5, 1, 3, 1, 4, 2, 3, 2, 4, 2' 
5, 3, 4, 4, 5, 1, 2, 3, 4, 5 

ICP 1, 4, 6, 8, lH, 12, 14, 16, 18, 19, 2'1, 21, 
22, 23 

B 14., 25.' 21., 3'1.' 34. 

c 9. ; 9.; 4. i 8.; 7 .. i 6 .. i 8. i 
t:; -. ,. a 

Al • ; 

'1.' '1., '1.' H. 

IB Don't care since KI(l) = '1 

The outputs are: 

x '1., 5. , '1., 3., '1.' 8. ' '1.' 1'1., 4 • I '1., '1., 
g., '1. 

y '1. '1'1'1'1' '1.6667, 3. '1'1'1H, 1. 4815, 1.5556, y6, y7 
where y6 and y7 not of interest (scratch) 

z = 177 .0 

IB '1, 14, 9, 2, 8, 4, 6 

KO '1, 7, 7, '1, 7, 4 
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APPENDIX A 

EXAMPLE: 

A( INPUT) = 13.0'0'0' 4.0'0'0' 1.0'0'0' g_ggg 7.fI!JfJ 
g_ggg -3 .!J~Jg 8.fififI -2. mrn -7.f!fI{J 

A( OUTPUT) = 13.0'0'0' 3.923 f!.!J77 g_ggg 4.70'6 
g_ggg -0'.765 1. 7!J6 -xr. 425 -0'. 778 

UI TJJt>fTl"fl\ = g_ggg l.ggg f!.f!gfJ fi!. 5!Jfi! tX r:rrxrx 
.- \ _,. .. _ -- I A.I. JUllJI.I 

MAXA = l 2 4 5 8 11 
NN = 5 
MA = 3 
NWA = HJ 
KKK = 3 

V(OUTPOT) = -!J.0'43 !J.563 !J.245 !J.40'3 !J.315 
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APPENDIX A 

EXAMPLE: 

Input: 

N = 5 
NM = 5 

A : -1..0' .0' • .0' 2 • .0' 4 • .0' .0' • .0' 
ff • .0' 2 • .0' 3 • .0' .0' • .0' -L.0' 
2 • .0' 3 • .0' 5.0' 0'.0' 0' • .0' 
4 • .0' ff • .0' .0'.0' -2.0' ff • .0' 
H • .0' -1..0' .0' • .0' .0' • .0' 1..0' 

Output: 

D -2 • .0' -1..0' 5.0' 2 • .0' 1..0' 

E .0'.0' -4 • .0' -2.0' -3.0' -1..0' 

E2: .0' • .0' 16 • .0' 4.0' 9.0' 1..0' 
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********** ********** 

* * * * 
* VASORT * - VECTOR SORT ALGEBRAIC VALUES - * VASORT * 
* * * 

PURPOSE: To sort a vector into an ascending vector 
of algebraic values using Quicksort. 

CALL FORMAT: CALL VASORT(A,I,N,W) 

PARAMETERS: A 

I 
N 
w 

= 
= 
= 
= 

Floating-point vector to be sorted in place 
Integer element step for A 
Integer element count 
Floating-point vector of at most 2*log2(N) words 
of contiguous space for working stack of 
pointers 

DESCRIPTION: VASORT sorts elements of a vector into an ascending 
vector of algebraic values by the method of 
Quicksort (Hoare's partition-exchange sort) in 
place. The procedure iteratively partitions 

EXAMPLE: 

the vector creating two subvectors, one whose 
values are less than or equal to the value 
initially at the middle location, and the other with 
elements greater than or equal to that value. 
This chosen value ends up in its true 
(post-sorted) position between the two subvectors. 
The half-way location was chosen for initial trial 
comparison in order to speed the sort when the 
original vector is already partly ordered. 

After each partition, first and last locations of 
the larger subvector are stored in a pointer stack, 
which can accumulate no more than log2(N) pairs, 
and the process of partitioning is continued on the 
smaller subvector. The process of comparison and 
partitioning is continued until no subvectors 
remain. The vector is then completely sorted. 

N = 5 

A( input) 
A( output) 

5.H 4.H -g.5 -1.g 
-1.H -H.5 4.g s.g 

8.0 
a.g 

* 
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********** 
* * 
* VSORT * 

* 

PURPOSE: 

APPENDIX A 

********** 
* 

- VECTOR SORT WITH INDICES --- * VSORT * 
* * 
********** 

To sort a vector into an ascending vector of 
algebraic values using Quicksort. When the elements 
of the A vector are swapped, corresponding elements 
of the P vector are also swapped. Typical use of 
the P vector is to record the original indices of the 
sorted vector. 

CALL FORMAT: CALL VSORT(A,I,P,J,N) 

PARAMETERS: A = Floating-point vector to be sorted in place 
I = Integer element step for A 
p = Integer or real vector of starting indices 
J = Integer element step for p 

N = Integer element count 

DESCRIPTION: VSORT sorts elements of a vector into an ascending 
vector of algebraic values by the method of 
Quicksort (Hoare's partition=exchange sort) in 
place. The procedure iteratively partitions 
the vector creating two subvectors, one whose 
values are less than or equal to the value 
initially at the middle location, and the other with 
elements greater than or equal to that value. 
This chosen value ends up in its true 
(post-sorted) position between the two subvectors. 
The half-way location was chosen for initial trial 
comparison in order to speed the sort when the 
original vector is already partly ordered. 

After each partition, first and last locations of 
the larger subvector are stored in a pointer stack, 
which can accumulate no more than log2(N) pairs, 
and the process of partitioning is continued on the 
smaller subvector. The process of comparison and 
partitioning is continued until no subvectors 
remain. The vector is then completely sorted. 
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********** 
* * 
* ACOR'!' * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

- AU'l'O-CORRELATIOH (TIME-DOMAIN) -- * ACORT * 
* * 
********** 

To perform an auto-correlation operation on a vector 
using time-domain techniques. 

CALL FORMAT: CALL ACORT(A,C,N,M) 

PARAMETERS: A = 
c = 
N = 

M = 

Floating-point input vector 
Floating-point output vector 
Integer element count for C 
(Number of lags) 
Integer element count for A 
(Note vector -i----~-'1:'.J.'l:'Ul'l:'lll..QJ occupy 
addresses.) 

-------·~.: ··-'-UUQJ'l:'l,,;U I.. J. V 'I:' 

DESCRIPTION: C(m)=SUM(A(m+q-l)*A(q)), 
for q=l to M-m+l 

EXAMPLE: 

m=l to N 

ACORT uses time-domain techniques (compare with ACORF) 
to compute the auto-correlation function. This routine 
needs less storage than ACORF, and runs faster when N 
and/or M is small. The resultant vector C must not 
overlay the source vector A. 

N = 3 
M = 5 

A 1.0 2. 0 3. 0 4. 0 5 • .'1 
c 55 ··-" 4.'1.0 26.0 
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********** ********** 

* * * * 
* BLKMAN * BLACKMAN WINDOW MULTIPLY - * BLKMAN * 
* * * * 
********** ********** 

PURPOSE: To multiply a vector by a Blackman window. 

CALL FORMAT: CALL BLKMAN(A,I,C,K,N) 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

A = Floating-point input vector 
I = Integer element step for A 
C = Floating-point output vector 
K = Integer element step for C 

N = Integer element count (a power of 2) 

("" ,_, 
'-' \ lU J = A(m)*(Z.42~Z.5Z*COS((m=l)*(2*PI/N)) 

+.0' • .0'8*COS((m-1)*(4*PI/N))) 
for m=l to N 

Multiplies the elements of the vector A by 
an N element Blackman window function, and 
stores the results in the vector C. N must be 
a power of 2. 

I = l 
K = l 
N = 8 

A 1..0' 1..0' l.kJ 1..0' 
l.kJ 1..0' 1..0' 1..0' 

c .0' • .0'.0'.0' ~J. .'166 .0'.34.0' .0'. 774 
l.kJ.0'.0' .0'. 774 .0'.34.0' JL kJ66 
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THLINC = Floating-point input scalar containing 
the phase increment threshold (used to 
obtain more confident phase estimates near 
sharp zeros) 

THLCON = Floating-point input scalar containing 
the phase consistency threshold 

WMD = Integer work area vector of length 39 
used for various software stacks during phase 
unwrapping 

IXCXST = Integer input scalar X and ex input status: 
g if X is provided as input and 

ex is not provided as input 
l if X is not provided as input and 

ex is provided as input 
2 if both X and ex are provided as input 

IAUXST = Integer input scalar AUX input status: 
g if AUX is not provided as input 
l if AUX is provided as input 

IPHWST = Integer input scalar phase unwrapping 
status: 
g if complex cepstrum is desired 
l if phase unwrapping only is desired 

NOTE: For APFTN64 calls to CCEPS, the dimension 
of arrays x, ex, and AUX must be greater 
than or equal to NFFT2 and the dimension 
of array WMD must be greater than or equal 
39. 

DESCRIPTION: See "Programs for Digital Signal Processing", 
IEEE Press, 1979. 

1) Input parameters are checked for out of range 
conditions. If any errors are detected, then 
SSUC gets the appropriate error code (2.g - 9.g) 
and CCEPS returns. 

2) If IXCXST=g then X is used to compute ex. 
3) If IXCXST=l then ex is used to compute x. 

Note that in this case the vector X will occupy 
NFFT2 words in Main Memory but only the first NX 
elements of X will be used in further calculations. 

4) If IAUXST=g then X is used to compute AUX. 
5) Each of the NFFT2 elements of ex and AUX are 

divided by 2.g to match IEEE formulation. 
6) If the first element of ex is less than g • .0' 

then SNX = -1..0' 
else SNX = +1.g • 

7) The magnitude of the spectrum is computed and 
stored in the real positions of AUX: 

FPS 86H-7482-HH1C 

the phase derivative of the spectrum is computed 
and stored in the imaginary positions of AUX; 
and twice the linear phase estimate (mean of the 
phase derivative) is computed for use in the 
phase unwrapping computation. 
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CX(OUT) -1. 6639 
fI.9543 
3.5771 

AUX( OUT): f;.0359 
6.7434 

1279.4929 

SNX = l.ffffffff 
SFX = -2.lffffff 
ssuc = ff .ffffffff 
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g_gggg -5.9134 
l.4fJ85 3.fJ149 
0.};000 

-2.6140 0.fJf10f1 
-2. 7728 415.6262 
-2.9325 
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ff.7447 
g 0 7278 

5.5523 
-2. 9137 
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********** ********** 
* * * 
* CCOR'l' * - CROSS-CORRELA'l'ION ('l'IME-DOMAIN) - * CCORT * 
* * * * 
********** ********** 

PURPOSE: To perform a cross-correlation operation on two 
vectors using time-domain techniques. 

CALL FORMAT: CALL CCORT(A,B,C,N,M) 

A = PARAMETERS: Floating-point input vector (operand) 
B = 
c = 
N = 
M = 

Floating-point input vector (operator) 
Floating-point output vector 
Integer element count for C (number of lags) 
Integer element count for A and B 
(Note vector elements occupy consecutive 
addresses.) 

DESCRIPTION: C(m)=SUM(A(m+q-l)*B(q)); 
for q=l to M-m+l 

EXAMPLE: 

and m=l to N 

CCORT uses time-domain techniques (compare with CCORF) to 
compute the cross-correlation function. This routine 
needs less storage than CCORF, and runs faster when N 
and/or M is small. 

N = 3 
M = 4 

A 1..0' 2 • .0' 3 • .0' 4 • .0 
B 1.0' .kJ 2~J..0 3.0 • .0 4$3'..0 
c 3.0'Iif. IiJ 2IiJiif • .0 11.0 • .0 
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********** ********** 
* * * * 
* CORER * - COHERENCE FUNCTION - * COHER * 
* * * * 

PURPOSE: To compute the coherence function, given the 
auto-spectra of two signals and the cross-spectrum 
between them. 

CALL FORMAT: CALL COHER(A,B,C,D,N) 

PARAMETERS: A = Floating-point input vector 
(Auto-spectrum) 

B = Floating-point input vector 
(Auto-spectrum) 

c = Complex-floating-point input vector 
(Cross-spectrum) 

D = Floating-point output vector 
(Coherence function) 

N = Integer element count 
(Note vector elements occupy consecutive 
addresses.) 

DESCRIPTION: D(m)= (R(C(m))**2+I(C(m))**2)/(A(m)*B(m))~ for m=l to N 

EXAMPLE: 

N = 3 

A l.H 2.H 3.H 
B 4.H 5 .H 6.H 
c (l.H,2.H) (3.H,4.H) (5.H,6.H) 
D : l.25 2.5 3.39 
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********** ********** 
* * * * 
* DECFIR * - DECIMATION - * DECFIR * 
* * * 

PURPOSE: To FIR filter an input vector using a convolution 
technique incorporating decimation by a factor D. 
Typically, the input vector is a digital signal 
requiring low pass filtering and the operator vector 
is the array of pre-determined filter coefficients. 

CALL FORMAT: CALL DECFIR(A,B,C,D,N,M) 

PARAMETERS: A = Floating-point input (undecimated) vector 
B = Floating-point input operator vector 
C = Floating-point output vector 
D = Integer input decimation factor (D > 0) 
N = Integer input element count expected for C 

when convolving without decimation 
(NOTE: the actual size of the output vector 

C will be [(N-1)/D]+l) 
M = Integer input element count for B 

(NOTE: element count for A must be N+M-i) 

DESCRIPTION: C(m) = SUM (A(D*(m-l)+q) * B(q) for q=l to M 
and m=l to [(N-1)/D]+l 

(NOTE: This assumes that the operator array B 
is loaded with the elements arranged in 
reverse order. Thus: 
B(l) = Mth operator point 
B(2) = (M-l)th operator point 

B(M) = 1st operator point) 

For references see: 
(1) A. Peled ana B. Liu, "Digital Signal Processing: 

Theory, Design and Implementation." John Wiley, 
1976. 

(2) R. E. Crochiere and L. R. Rabiner, "Optimum FIR 
digital filter implementation for decimation, 
interpolation, and narrow band filtering," IEEE 
Trans. Acoust. Speech Signal Processing, 
vol ASSP-23 pp 444-456, Oct. 1975. 

This routine performs a convolution on the decimated 
operand A with the operator B. The results are 
stored in [(N-1)/D]+l elements of vector c. 
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********** ********** 
* * * * 
* ENVEL * - ENVELOPE DETECTOR - * ENVEL * 
* * * * 
********** ********** 

PURPOSE: To obtain the envelope of a vector X(t). 

CALL FORMAT: CALL ENVEL(X,E,N) 

PARAMETERS: X = Floating-point input vector 
E = Floating-point output envelope vector 
N = Integer element count (a power of 2) 

DESCRIPTION: E(t) = SQRT { X(t)**2 + H{X(t)}**2 } for t=l to N 
where: H{X(t)} =Hilbert transform of X(t). 

EXAMPLE: 

For references see any standard text on 
communication theory, viz. "Communications Systems 
and Techniques," M.Schwartz, W.Bennet, & Stein, 
McGraw Hill. 

This routine starts by obtaining the Hilbert 
transform of the input vector. The formula shown 
above is then used to extract the envelope. 

N = 8 

x 2.7 1.6 8.3 4.2 9.7 14.1 3.6 0.5 

E 2.72 4.32 8.82 4.30 11.33 14.73 9.21 0.85 
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********** 
* * 
* BANH * - HANNING WINDOW MULTIPLY -
* * 

PURPOSE: To multiply a vector by a Hanning window. 

CALL FORMAT: CALL HANN(A,I,C,K,N,F) 

PARAMETERS: A 
I 
c 
K 
N 
F 

= 
= 
= 
= 
= 
= 

Floating-point input vector 
Integer element step for A 
Floating-point output vector 
Integer element step for C 
Integer element count (a power of 2) 
Integer normalization flag 
g for unnormalized Hanning window 
(peak window value=l • .0') 
1 for normalized Hanning window 
(peak window value=l.63) 

APPENDIX A 

********** 
* * 
* HANN * 
* * 

DESCRIPTION: N should be a power of 2. If not, HANN sets N to the 
next lower power of 2. For further information see 
Digital Time Series Analyses, Otnes and Enochsen, John 
Wiley '72, page 294. 

C(m)=W*A(m)*{l • .0'-COS(2*PI*(m-l)/N); for m=l to N 

EXAMPLE: 

where: 

W = .0'.5 for F=9 
W = .0'.8165 for F=l 

N = 4 
F = .0' 

A 1..0' 1..0' 1..0' 1..0' 
c .0' • .0' .0'. 5 1..0' .0'. 5 

N = 4 
F = 1 

A 1..0'.0' 1..0'.0' 1..0'.0' 
c .0' • .0'.0' .0'.82 1.63 

FPS 861-7482-HilC 

1..0'.0' 
.0'.82 
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********** ********** 
* * * * 
* BLBRT * - HILBERT TRANSFORMER - * HLBRT * 
* * * * 
********** ********** 

PURPOSE: To obtain the Hilbert transform of an analytic 
signal. 

CALL FORMAT: CALL HLBRT(X,H,N) 

PARAMETERS: X = Floating-point input vector 
H = .Floating-point output Hilbert transformed vector 
N = Integer element count (a power of 2) 

DESCRIPTION: F{H{X(t) = -J * F{X(t)} for t=l to N 

EXAMPLE: 

where: F{X(t)} =Fourier transform of X(t). 
H{X(t)} =Hilbert transform of X(t). 
J = SORT(-1) 

(1) A real to complex FFT of X(t) is obtained. 
(2) Real components of the result are multiplied by 

-1. 
(3) Positions of the real and imaginary components 

are switched. 
(4) A complex to real inverse FFT is performed on the 

results of step 3. 

N = 8 

x 2.7 1.6 8.3 4.2 9.7 14.1 3.6 0'. 5 

H 0'.4 -4.0' -3.0' -0'.9 -5.9 4.3 8.5 0'. 7 
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EXAMPLE: 

N = 128 
M = L0' 

X(i) 1.0' * SIN( i * HJ * 2*PI/l28) + 
2.0' * SIN( i * 2f! * 2*PI/128) + 
3.0' * SIN( i * 3g * 2*PI/128) 
for i = l to 128 

j RC( j) A( j) ~L(j) R( j) 

l -.0'.2847 l • .0'f!.0'.0' 89599.9 89599.9 
2 .0'.8183 -.0'.8897 82335 .. 4 25512.8 
3 -.0'.52.0'.0' l.f!4.0'4 27198.6 -6.0112. 8 
4 .0'.54.0'3 -.0'.25.0'9 19844.6 -37858.5 
5 ct i ai:: 'l Cl 1 Cl'> A 1 A etc;. 1 , 322.0'8.9 U • -1.VUJ A.I • .. .u ... , ..-""'Z&.1.J..a. • .-

6 -.0'.2451 .0'. 2.0'85 13563.2 24552.l 
7 -.0' • .0'955 .0' .1145 12748.7 -3.0'.0'17. l 
8 .0'.3127 0 • .0661 12632.4 -189.0'9.6 
9 .0'.4627 .0' .1081 11397.1 35262.2 

1.0' .0'. 3054 0.1478 8957.3 18797.9 
11 0.3054 8121. 7 -52577. 9 

ER = .0' 
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EXAMPLE: 

N = 8 
NP = 5 

" = 4 • .0' .t'\ 

MODE = 1 

A : .0' • .0' 1.0' • .0' 2.0' • .0' 3 • .0' 4 • .0' 5.0' • .0' 6 • .0' 7.0' • .0' 

B 2.0' • .0' 3 • .0' 5.0' • .0' 6 • .0' 
c 3 • .0' 4 • .0' 6 • .0' 7 • .0' 

R = 4 • .0' 
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EXAMPLE: 

Inverse transform: 
x(k) =SUM { X((r-l)*df-Fl*df) * 

EXP(j*2*pi*(r-l)*df*(k-l)*dt) } 
for r = 1 to NF 

where dt = l/XM. 

APPENDIX A 

Thus the same formula used for the forward transform 
may be used for the inverse transform if here 
W = -2*pi*(k-l)/XM and Fl and NF replace Tl and 
NT respectively. If the r=l component X(l) is 
input, it must have an imaginary part equal to .0'. 

The DFT is produced by the modified Goertzel algorithm 
as described in 
(1) A.V. Oppenheim and Schafer, "Digital Signal 

Processing," Prentice Hall, 1975 
and 
(2) F. Bonzanigo, "An improvement of Tribolet's 

phase unwrapping algorithm," IEEE Trans. 
Feb. 1978, pp. l.0'4-1.0'5 

Additionally, an exponential factor has been used 
to account for any offset of the input values from 
zero (Tl or Fl). 

Inverse times are approximately double for forward 
times after the NT and NF values are interchanged. 

Fl = .0' • .0' 
Tl = 1..0' 
NT = 8 
NF = 4 
XM = 8 • .0' 
I = 1 

A( INPUT) 1..0' .0' • .0' -1..0' .0' • .0' 1..0' .0' • .0' -1..0' .0' • .0' 

B(OUTPUT) ( .0' • .0', .0' • .0')(.0' . .0', .0' • .0')(.0' • .0',-4 • .0')(.0' • .0', .0' • .0') 

Fl = 2 • .0' 
Tl - .0' .G 
NT = 8 
NF = 2 
XM = 8 • .0' 
I = -1 

B(INPUT) ( 4 • .0', .0' • .0')(.0' • .0', .0' • .0') 

A( OUTPUT) 8 • .0' .0' • .0' -a .0 .0' • .0' 8 • .0' .0' • .0' -8 . .0' .0' • .0' 
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********** ********** 
* * * * 
* RF'l'II * - REAL FPT WITH QUARTER INTERPOLATION -- * RFTII * 
* * * * 

PURPOSE: To perform an in-place real-to-complex forward or 
a complex-to-real inverse fast Fourier transform (FFT) 
including the case of N=64K via quarter interpolation 
in the 4K cosine table. 

CALL FORMAT: CALL RFTII(C,N,F) 

PARAMETERS: C = Floating-point input/output vector 
N =_Integer input element count (power of 2) 
F = Integer input direction flag: 

+l for forward 
-1 for inverse 

DESCRIPTION: See RFFT. 

EXAMPLE: 

N = 4 
F = 1 (Forward) 

C(IN) HJ.JJ HJ.JJ HJ.JJ 
C(OUT) (8i:f.JJ,i:f .JJ) ( H.i:f ,i:f .i:f) 

N = 4 
F = -1 (Inverse) 

C(IN) (80.JJ,JJ.H) ( H.i:f,JJ.H) 
C(OUT) ag.g a0.g ag.g 
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********** 
* * 
* TCONV * 
* * 
********** 

PURPOSE: 
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********** 
* * 

POST-TAPERED CONVOLUTION (CORRELATION) - * TCONV * 
* * 
********** 

To perform a post-tapered convolution or correlation 
operation on two vectors. 

CALL FORMAT: CALL TCONV(A,I,B,J,C,K,N,M,L) for correlation 
CALL TCONV(A,I,B(N),J,C,K,N,M,L) for convolution 

PARAMETERS: A = Floating-point input vector (operand) 
I = Integer element step for A ( >0') 
B = Floating-point input vector (operator) 
J = Integer element step for B (<.0' => Convolution) 
~ = 

,.., ,..,.,,,.p; .,.,,...._,.. .... ; .,.,p output vector ""' ,I,; .... V'W."'°4"'.6~ f:''-'4•.A.W 

K = Integer element step for c 
N = Integer element count for c 
M = Integer element count for B 

L = Integer element count for A 

FORMULA: C(m)=SUM(A(m+q-l)*B(q)); 
for q=l to R 
and m=l to N 

where: 

R=MIN(M~L-M+l) 

DESCRIPTION: TCONV performs either a correlation (I and J positive) or 
a convolution (I positive and J negative) operation 
between the L-element operand (trace) vector A and the 
M-element operator (kernel) vector B. The N-element 
result vector is stored in C. TCONV automatically 
inserts zeros into the calculation if N+M-1 exceeds the 
operand length L, thus saving storage and zeroing of 
N+M-1-L extra operand elements. (Compare with CONV.) 

EXAMPLE: 

N = 4 

M = 2 
L = 4 

CORRELATION: 

A .0' • .0' 1..0' 3 • .0' 5. kl 
B 2 • .0' 1..0' 
c 1..0' 5 • .0' 11..0' 1.0' • .0' 
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********** ********** 
* * * * 
* TRANS * - TRANSFER FUNCTION - * TRANS * 

* * * * 
********** ********** 

PURPOSE: To perform a complex transfer function calculation by 
niuirfinn rho 1"'1"r"\C:C:-c:norrr11m hu rho ;:a11rn-c::nol"'t-r11m 
-- T -----~ -··- -- --- -.c:--- -- -··· -.i -··- ---- -.c:--- -- -···· 

CALL FORMAT: CALL TRANS(A,B,C,N) 

PARAMETERS: A = Floating-point input vector 
(Auto-spectrum) 

B = Complex-floating-point input vector 
(Cross-spectrum) 

c = Complex-floating-point output vector 
(Transfer function; 

N = Integer element count 
(Note vector elements occupy consecutive 
addresses.) 

DESCRIPTION: R(C(m))+I(C(m))=(R(B(m))+!(B(m)))/A(m); for m=l to N 

EXAMPLE: 

N = 3 

2. !J 3.!J 
B (l.H,2.G) (3.G,4.G) (5.G,6.G) 
C (l.H,2.G) (1.5,2.G) (l.67,2.G) 
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********** 
* * 
* VAVLIN * 
* * 
********** 

PURPOSE: 
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********** 
* 

- VEC'l'OR LINEAR AVERAGING -- * VAVLIN * 
* 

To update the linear average of a sequence of vectors 
to include a new vector. 

CALL FORMAT: CALL VAVLIN{A,I,B,C,K,N) 

PARAMETERS: A 

I 
B 

c 
K 

N 

= 
= 
= 

= 
= 
= 

Floating-point input vector 
Integer element step for A 
Floating-point input scalar 
(Number of vectors included in current average) 
Floating-point input/output vector 
Integer element step for C 
Integer element count 

DESCRIPTION: C(m)=C{m)*B/{B+l.fJ) + A{m)/(B+l.fJ); for m=l to N 

EXAMPLE: 

N = 5 

A : 5.fJfJfJ rn.f!.0'.0' 2g .m:rn 25.fJ.0'fJ 3.0'.fJtJtJ 
B : s. mrn 
C(INPUT) : rn .000 10.0.00 L0'. £HHJ rn = rJrJrJ rn=ggg 
C(OUTPUT) : 9.167 HJ.fJ.0'.0' 11. 667 12. 5.0'0' 13.333 
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********** 
* * 
* vxcs * 
* * 
********** 

PURPOSE: 

VECTOR MULTIPLIED BY SIN AND COS 
(TABLE LOOKUP) 

APPENDIX A 

********** 
* * 
* vxcs * 
* * 
********** 

To multiply a vector with the sine and cosine 
of a linearly increasing argument with a given 
initial phase. 

CALL FORMAT: CALL VXCS(A,C,K,F,P,N) 

PARAMETERS: A = Floating-point input vector to be multiplied by 
the sine and cosine functions 

c = Complex floating-point output vector 
K = Integer input element step for C 

(K >= 2j 

F = Floating-point input scalar frequency 
p = Floating-point input scalar phase at t=.0' 

= Floating-point output scalar initial phase value 
for next frame 

N = Integer element count 

DESCRIPTION: Re(C(m)) = A(m) * COS((m-l)*F+P) 
Im(C(m)) = A(m) * SIN((m-l)*F+P) 

for m = 1 to N 

EXAMPLE: 

NOTE: The arguments for COS and SIN are expected 
to be in radians. 

This routine multiplies vector A with a sine and 
cosine function defined by frequency F and initial 
phase P. Straight ROM table lookup is used for 
generating the sine and cosine values and thus this 
routine has limited precision. The initial phase 
value for the next frame is returned in P. 
NarE: K should be greater than or equal to 2 
so as not to destroy part of the resultant vector 
C as it is generated. 

K = 2 
F = .0'.S 
p = 3.1415927 
N = 8 

A .0'.H 1..0' 2 • .0' 3.H 4 • .0' 5 • .0' 6 • .0' 7 • .0' 
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********** ********** 

* * * * 
* WIENER * - WIENER LEVINSON ALGORITHM - * WIENER * 
* * * * 
********** ********** 

PURPOSE: To solve a system of single channel normal 
equations which arise in least squares filtering 
and prediction problems. 

CALL FORMAT: CALL WIENER(LR,R,G,F,A,ISW,IERR) 

PARAMETERS: LR = 
R = 

G = 

F = 

A = 

ISW = 

IERR = 

Integer filter length 
Floating-point input vector (Auto-correlation 
coefficients) 
Floating-point input vector (Cross 
correlation) 
Floating-point output vector (Filter 
weighting coefficients) 
Floating-point output vector 
(Prediction error operator) 
Integer input (algorithm switch) 
g = spike deconvolution 
1 ~ general deconvolution 
Integer output scalar (failure flag) 

DESCRIPTION: WIENER solves: 

1. The following set of LR equations for F; 

SUM [F(p)*R(m-p+l)=G(m); 
for p=l to LR and m=l to LR 

2. The following set of LR equations 

SUM [A(p)*R(m-p+l)=V*D; 
for p=l to LR and m=l to LR 

where, A( 1) =l. '1 
D=l.B when m=l 
D='1.g when m not = 1 
V=A(l)*R(l)+ ... +A(LR)*R(LR) 
R(-i)=R(i) 

for A; 

If the algorithm is successful IERR is set to 0; 
else it is set to the pass number at which the 
failure occurred. 
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IMAGE PROCESSING LIBRARY 
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Nl = 4 
N2 = 4 
F = -1 (Inverse) 

C(IN) 4 • .0,kJ.kJ) 
4.'1,'1.'1) 
4 • .0,fJ.fJ) 
4 • .0,fJ.fJ) 

C(OUT) (16.J:J,fJ.fJ) 
( fJ • .0,0.fJ) 
( J:J.kf ,J:J • .0) 
( .0.k!,k!.k!) 

FPS 866-7482-gSlC 

J:J.J:J,kJ.kJ) 
kJ.'1,iJ.ff) 
J:J.J:J,0 • .0) 
fJ.fJ,fJ.kJ) 

(16 • .0,0 • .0) 
( .0 • .0,kJ.fJ) 
( J:J.J:J,kJ.kJ) 
( J:J.J:J,J:J.J:J) 

APPENDIX A 

J:J.J:J,J:J • .0) J:J.J:J,J:J.J:J) 
ff.kJ,kJ.ff} ff .kJ ,g .ff) 
J:J.J:J,fJ.fJ) J:J.J:J,fJ.kJ) 
J:J.J:J,iJ.fJ) J:J.J:J,fJ.kJ) 

(16.J:J,fJ.fJ) (16.J:J,.0.kf) 
( J:J • .0,.0.kJ) ( k!.k!,.0 • .0) 
( J:J • .0,.0.J:J) ( J:J.J:J,kJ.kf) 
( J:J.J:J,J:J • .0) ( J:J.k!,kJ.kf) 
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IR = Integer input scalar flag: 
, non-zero for correlation 

.0' for convolution 

APPENDIX A 

DESCRIPTION: C((i+IC-1),(j+JC-l))= 
SUM(A((i+IA+k-2-irbias),(j+JA+l-2-icbias))*B(k,l)) 

where i=l to M 

EXAMPLE: 

j=l to N 
for k=l to MB 

and IBl=MB*NB-IBl+l for convolution 
icbias=(IBl-1)/MB 
irbias=(IBl-1)-MB*icbias 
(row and column biases are from the 
initial B(l,l) position. 

CONV2D correlates or convolves a two-dimensional 
operand submatrix A' of A with a two-dimensional 
operator matrix B, and stores the result in 
submatrix C' of C. A one-to-one correspondence 
exists between the elements of A' and C'. 

This routine does not do boundary testing. 
Therefore care must be taken when choosing values 
for IA, JA, and !Bl for given values of Mr N, MB, 
NB, and IR to avoid using data outside of A when 
computing C' • 

MA = 9 
IA = 1 
JA = 1 
M = 7 

N = 7 
MB = 3 
NB = 3 

MC = 9 
IC = 1 
JC = 1 

A : .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 

.0' • .0' 1 . .0' 1 . .0' 1 . .0' 4 • .0' 

.0' • .0' 1 . .0' 1 • .0' 1 • .0' 4 • .0' 

.0' • .0' 1 . .0' 1 • .0' 1 • .0' 4 • .0' 

.0' • .0' 1 . .0' 1 • .0' 1 • .0' 4 • .0' 

.0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 

.0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 

z.z z.z 
.0' .H .0' .H .0' • .0' 

ff .ff 0.ff 
4. ff 8 • .0' 

4 • .0' 8. ff 
4. ff 8. ff 
4 • .0' 8 • .0' 

ff • .0' ff • .0' 

ff • .0' .0' • .0' 
z.z z.z 
.0'. ff .0' • .0' 

.0' • .0' 

.0' • .0' 
0 • .0' 
0 . .0' 
.0' • .0' 
.0' • .0' 
.0' • .0' 

ff • .0' 
0 • .0' 
0 .ff 
0 • .0' 
.0' .0 
0 . .0' 
0 • .0' 

.0' • .0' 
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IA 

APPENDIX A 

JA 

I IBl2S 

I I 

Proc:essinq 

A 

aere the operator, a, is positioned for proc:essinq the initial 
point in A'. 

-5455-

Figure A-1 Correlation 

JA 

I IBl=-5 

Proc:essinq 

A' 

A 

aere the operator, a, is positioned for processinq the initial 
point in A'. 

-5456-

Figure A-2 Convolution 
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EXAMPLE: 

MA = 8 
IA = 2 
JA = 2 
MC = 8 
IC = 2 
JC = 2 
M = 6 
N = 6 

A : kl. kl kl. kl kl. kl ff .kl ff. ff kl.kl kl.kl ff .kl 
ff .H 1..0' 1..0' l.ff l.kl l.kl l.kl ff • .0' 
kl • .0' 1..0' 1..0' l.ff l.ff 1..0' 1..0' ff .kl 
kl • .0' l.kl 1..0' 2. ff 2 .kl l.kl l.kl ff .kl 
kl.H l.kl l.kl 2. ff 2.kl l.kl l.kl ff .kl 
kl.kl l.ff l.kl 1..0' l.ff 1..0' l.kl ff .kl 
rt rt , rx , rx 1..0' , er l er 1 er rx er 
JU• IU .... JU .... .u ... JU ... JU ••.U JU • .u 

kl • .0' ff • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 

c u u u u u u u u 
u 2.kl 3 • .0' 3 • .0' 3 • .0' 3 • .0' 2.kl u 
u 3 • .0' 1..0' 2 • .0' 2 • .0' 1..0' 3 • .0' u 
u 3 • .0' 2 • .0' 2.H 2 • .0' 2.H 3 • .0' u 
u 3 • .0' 2 • .0' 2 • .0' 2. ff 2 • .0' 3 • .0' u 
u 3 .H 1..0' 2 • .0' 2 • .0' 1..0' 3 .kl u 
u 2 • .0' 3.H 3.H 3 • .0' 3.kl 2.kl u 
u u u u u u u u 

(U indicates unchanged elements of C) 
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EXAMPLE: 

APPENDIX A 

This routine differs from GRAD2D in that it can 
perform testing for image boundaries, substituting 
zeros for values that are needed outside the 
boundary. The routine runs somewhat more slowly 
than GRAD2D. 

If testing is employed, zeros are substituted for 
those elements in the formula which fall outside 
of A. This is useful in preventing wrap-around 
and incorrect processing of the columns and rows on 
the borders of A. However, the testing adds pro­
cessing time and is unnecessary when there is a 
border of width one around A' which lies totally 
within A. 

If boundary testing is not employed (i.e. B = .0') and 
if a boundary of A' coincides with all or part of a 
boundary of A, then boundary effects will be observed 
in the computation of C'. In the cases of JA=l or 
JA+N-l=NA these boundary effects may not be pre­
dictable since data stored adjacent to A may not be 
predictable. 

MA = 8 
NA = 8 
IA = l 
JA = l 
c = 64 
MC = 8 
NC = 8 
IC = 1 
JC = 1 
M = 8 
N = 8 
B = 1 

A 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0 1..0 
1..0 1..0' 1..0' 1..0' 1..0' 1..0' 1..0 1..0' 
1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0 
1..0 1..0' 1..0 2 • .0' 2 • .0' 1..0' 1..0' 1..0' 
1..0' 1..0' 1.ff 2 • .0' 2 • .0' 1..0' 1..0' 1..0' 
1..0 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 1..0' 
1..0' 1..0' 1..0' 1..0 1..0' 1..0' 1..0' l.H 
1..0' 1..0' 1..0' 1..0' 1..0 1..0' 1. kJ 1. kJ 
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********** 
* * 
* LAPL2D * 
* * 
********** 

PURPOSE: 

- LAPLACIAN FILTER -

To filter images for edge enhancement by 
.::.nnlvinn .::. twn-nim,::an~inn.::.1 T..::.nl.::tt"'!i.::.n -JC'"".--J; ---~ - ---- --------------- __ JC"" ______ _ 

operator. 

APPENDIX A 

********** 
* * 
* LAPL2D * 
* * 
********** 

CALL FORMAT: CALL LAPL2D(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX) 

PARAMETERS: A = Floating-point input matrix 
(column ordered) 

MA = Integer number of rows of A 
NA = Integer number of columns of A 
IA - Integer initial row of the submatrix A' of A 

to be processed (l < or = IA < or = MA) 
JA = Integer initial column of the submatrix A' of A 

to be processed (l < or = JA < or = NA) 
C = Floating-point output matrix 

(column ordered) 
MC = Integer number of rows of C 
NC = Integer number of columns of C 
IC = Integer initial row of C which locates the 

submatrix C', where C' will be the processed A' 
(l < or = IC < or = MC) 

JC = Integer initial column of C which locates the 
submatrix C' (1 < or = JC < or = 

M = Integer number of rows in A' 
(l < or = M < or = MA) 

N = Integer number of columns in A' 
(l < or = N < or = NA) 

Mr"' ... ..._I 

IX = Integer distance to filter side from center of 
square: side S=2*(IX+l); filter area= S**2 

DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A'(p+IX,q) 
+A'(p,q-IX)+A'(p,q+IX) 

Each of the elements in C' is calculated according 
to the above formula, which adds to a bias of 128 
a weighted combination of each pixel and its 4 
horizontal and vertical neighbors at distance IX. 

If a boundary of A' coincides with all or part of a 
boundary of A, then boundary effects will be observed 
in the computation of C'. In the cases of JA<=IX or 
JA+N-IX>=NA these boundary effects may not be pre­
dictable since data stored adjacent to A may not be 
predictable. Boundary effects will be predictable 
if A' is initially ringed with a known constant, 
such as zero. 
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********** ********** 
* * * * 
* LPL2DB * - LAPLACIAN FILTER WITH BOUNDARY TEST - * LPL2DB * 
* * * * 
********** ********** 

PURPOSE: To filter images for edge enhancement by applying 
a two-dimensional Laplacian operator. This 
routine does special boundary testing. 

CALL FORMAT: CALL LPL2DB(A,MA,NA,IA,JA,C,MC,NC,IC,JC,M,N,IX,B) 

PARAMETERS: A = Floating-point input matrix 
(column ordered) 

MA = Integer number of rows of A 
NA = Integer number of columns of A 
IA = row of the submatrix A' of A 

to be processed (1 < or = IA < or = MA) 
JA = Integer initial column of the submatrix A' of A 

to be processed (1 < or = JA < or = NA) 
C = Floating-point output matrix 

(column ordered) 
MC = Integer number of rows of C 
NC = Integer number of columns of C 
IC = Integer initial row of C which locates the 

submatrix C', where C' will be the processed A' 
(1 < or = IC < or = MC) 

JC = Integer initial column of C which locates the 
submatrix C' (1 < or = JC < or = NC) 

M = Integer number of rows in A' 
(1 < or = M < or = MA) 

N = Integer number of columns in A' 
(1 < or = N < or = NA) 

IX = Integer distance to filter side from center of 
square: side S=2*(IX+l); filter area= S**2 

B = Integer input scalar which is g if no boundary 
testing is desired; if not = g, values needed 
outside of A are evaluated as zeros 

DESCRIPTION: C'(p,q)= 128 -4*A'(p,q)+A'(p-IX,q)+A'(p+IX,q) 
+A'(p,q-IX)+A'(p,q+IX) 

Each of the elements in C' is calculated according 
to the above formula, which adds to a bias of 128 
a weighted combination of each pixel and its 4 
horizontal and vertical neighbors at distance IX. 

This routine differs from LAPL2D in that it can 
perform testing for image boundaries, substituting 
zeros for values that are needed outside the 
boundary. The routine runs somewhat more slowly 
than LAPL2D. 
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********** ********** 
* * * * 
* MED2D * --- MEDIAN FILTER --- * MED2D * 
* * * 
********** ********** 

PURPOSE: To filter out noise in images by replacing 
each pixel with the 
in a square window centered around the pixel. 

CALL FORMAT: CALL MED2D(A,MA,IA,JA,C,MC,IC,JC,M,N,IX,H,L) 

PARAMETERS: A = Floating-point input matrix 
(column ordered) 

MA = Integer number of rows of A 
(NA= Number of columns.of A) 
IA - Integer initial row of the submatrix A' 

to be processed (1 < or = IA < or = MA) 

JA = Integer initial column of the submatrix 
to be processed ( 1 < or = JA < or = NA) 

c = Floating-point output matrix 
(column ordered) 

MC = Integer number of rows of C 
(NC = Number of columns of C) 

of A 

A' of A 

IC = Integer initial :ow of C which locates the 
submatrix C', where C' will be the processed A' 
(1 < or = IC < O!. = MC) 

JC = 

M = 

N = 

IX = 

H = 

Integer initial column of C which locates the 
submatrix C' (l < or ~ < or = NC) 
Integer number of rows in A' 
(1 < or = M < or = MA) 
Integer number of columns in A' 
(1 < or = N < or = NA) 
Integer distance to median filter side from 
center of square: side S=(2*IX)+l; 
filter area = S**2; Ix>g 
Floating-point vector histogram used as a work 
area 

L = Integer input scalar length of H = 
2**(number of bits per pixel) 

DESCRIPTION: C'(p,q)=median of all elements A'(t,u), 
p-IX<=t<=p+IX, q-IX<=u<=q+IX 

For each of the elements in A' a histogram is 
formed from the median of the elements within 
+ or - IX row and column distance from the element. 
The median is found via a fast algorithm published 
in: 
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********** 
* * 
* MOVREP * 

* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

- SUB-IMAGE MOVE AND LEVEL REPLACE -- * MOVREP * 
* * 
********** 

To simply move a sub-image A' of an image A and/or 
to replace each pixel value with another value 
as specified in the lookup table, vector T, whose 
elements are the new values and whose subscripts 
are the original pixel val~es + 1. 

CALL FORMAT: CALL MOVREP(A,MA,IA,JA,C,MC,IC,JC,M,N,T,NT) 

PARAMETERS: A = Floating-point input matrix 
(column ordered) 

number of rows of A 
(NA = Number of columns of A) 
IA = Integer initial row of the submatrix A' of A 

to be processed (1 < or= IA < or = MA) 
JA = Integer initial column of the submatrix A' of A 

to be processed (1 < or= JA < or = NA) 
C = Floating-point output matrix 

(column ordered) 
MC = Integer number of rows of C 
(NC = Number of columns of C) 
IC = Integer initial row of C which locates the 

submatrix C' of C; C' will be the processed A' 
(1 < or= IC < or = MC) 

JC = Integer initial column of C which locates the 
submatrix C' of C (1 < or= JC < or = NC) 

M = Integer number of rows in A' 
(1 < or = M < or = MA) 

N = Integer number of columns in A' 
(1 < or = N < or = NA) 

T = Floating-point input vector pixel replacement 
table 

NT = Integer input scalar length of vector T = 
2**(# of bits per pixel) 
(NT = kJ indicates only submatrix move is 
desired) 

DESCRIPTION: For pixel replacement, 
C'(p,q)=T(FIX(A'(p,q))+l) 

For submatrix move, 
c I ( p, q) =A I ( p, q) 
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********** ********** 
* * * * 
* RFFT2D * -- REAL TO COMPLEX 2-DIMENSIONAL FFT - * RFFT2D * 
* * * * 
********** ********** 

PURPOSE: To perform an in-place two-dimensional real-to­
complex forward or a complex-to-real inverse fast 
Fourier transform (FFT). 

CALL FORMAT: CALL RFFT2D(C,Nl,N2,F) 

PARAMETERS: C = Floating-point input/output matrix 
(column ordered) 

Nl = Integer number of rows = 
number of real elements per column 
(power of 2 < or ; 16384j 

N2 = Integer number of columns = 
number of real elements per row 
(power of 2 < or = 16384) 
NOTE: Nl*N2 must be < or = available main data 

F = Integer direction flag: 
+l for forward 
-1 for inverse 

DESCRIPTION: Forward: RFFT2D performs a two-dimensional real to 
complex forward FFT on the Nl by N2 real array C, 
storing the (Nl/2 + 1) by (N2/2 + 1) complex array 
result in form 
occupying the same Nl by N2 locations of array C: 

Let El = Nl/2 and E2 = N2/2 

R(l,l) 
R(El+l,1) 
R(2,l) 
!(2,1) 

R(El,l) 
I(El,l) 

R(l,E2+1) R(l,2) 
R(El+l,E2+1) R(El+l,2) 
R(2,2) R(2,3) 
I(2,2) I(2,3) 

R(El,2) 
I(El,2) 

R(El,3) 
I(El,3) 

I(l,2) R(l,E2) I(l,E2) 
I(El+l,2) .. R(El+l,E2)I(El+l,E2) 
R(2,4) R(2,N2-l) R(2,N2) 
R(2,4) I(2,N2-l) I(2,N2) 

R(El,4) 
I(El,4) 

R(El,N2-l)I(El,N2) 
I(El,N2-l)I(El,N2) 

The results of a two-dimensional real-to-complex 
forward FFT should be multiplied by l/(2*Nl*N2) for 
proper scaling. 
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LINPACK BLAS LIBRARY 
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********** 
* * 
* CAXPYN * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

- NESTED COMPLEX A * X + Y -- * CAXPYN * 
* * 
********** 

To add a scalar multiple of one complex floating-point 
vector to another complex floating-point vector N times, 
each time for a different pair of vectors and a different 
complex floating-point scalar. The first vector is a 
subset of the vector X, and the second is a subset of the 
vector Y. The scalar is an element of the vector A. 

CALL FORMAT: CALL CAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO) 

PARAMETERS: ISW = Integer input scalar. ISW is a function 
selector switch and is treated as a bit 

N = 

M = 

A = 

!AO = 

x = 

!XI = 

!XO = 
y = 

!YI = 

string with the bits numbered from the 
least significant bit (bit g). If a given 
bit is set (equal to 1), then the function 
option that corresponds to that bit is selected. 
All options are independent of each other and 
are summarized below. 

Bit g: Negate A * X. 
Bit l: Not used. 
Bit 2: Use conjugate of A. 
Bit 3: Use conjugate of X. 

All other bits are ignored. 
Integer input scalar. Number of A * x + y 

operations, i.e., outer loop count. 
Integer input scalar. Number of elements 
each A * X + Y operation, i.e., inner loop 
count. 

in 

Complex floating point input vector. Array 
scalars. 
Integer input scalar. Outer loop element 
increment for A. 
Complex floating point input vector. First 
input vector. 
Integer input scalar. Inner loop element 
increment for x. 
Integer input scalar. Outer loop element 
increment for x. 
Complex floating point input/output vector. 
Second input vector on input. Output vector 
output. 
Integer input scalar. Inner loop element 
increment for Y. 

of 

on 

IYO = Integer input scalar. Outer loop element 
increment for Y. 
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EXAMPLE: 

Input: ISW = .0' 
N = 2 
M = 3 
IAO = 1 
IXI = 1 
IXO = .0' 
IYI = 1 
IYO = 3 

A 3 • .0',-l..0') 2 • .0', .0' • .0') 

x g • .0', 1..0') 2 • .0', 1..0') (-1.fJ, .0' • .0'} 

y (-1..0, 2.fJ) ( .0' • .0', g • .0') 2 • .0, .0' • .0'} 
( l..0',-3.fJ) (-2 • .0',-l..0') fJ • .0',-2 • .0') 

Output: y g • .0, 5 0 .0) 7 • .0', 1..0) (-1..0' I 1..0') 
1..0,-1..0') 2.kI, 1.kJ) (-2.kJ,-2 • .0') 
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********** ********** 
* * * * 
* COO'l'C * - COMPLEX INNER PRODUCT -- * CDOTC * 

* * * * 
********** ********** 

PURPOSE: To sum conjugates of first complex vector 
times elements of second 

CALL FORMAT: cw = CDOTC(N,CX,I,CY,J) 

PARAMETERS: N = Integer element count 
ex = First complex floating-point input vector 
I = Integer element step for ex 
CY = Second complex floating-point input vector 
J = Integer element step for CY 
Cw = Complex floating-point output value 

DESCRIPTION: cw = SUM((R(CX(m))-I(CX(m)))*(R(CY(m))+I(CY(m)))); 
for m=l to N 

cw = (fiLH,H.JCJ) if N<l. 

EXAMPLE: 

N = 2 
I = 1 
"T = , .., .&. 

ex (!CJ. 3H, !CJ. 4H) (!CJ. gg, 1.0'0') 
CY (!CJ. 3kJ, g. 40') (8.0'0',9.0'0') 
cw (9.25,-8.kJ) 
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DESCRIPTION: 

NOTES: 

APPENDIX A 

z = Complex floating point input/output vector. 
An input only if bit 1 of ISW is set. 

IZO = Integer input scalar. Element increment 
for z. 

Z(jz) = r * Z(jz) + s * SUM[ X(ix) * y ( iy) I i=l,M] 

where: ix = (j-1) * IXO + (i-1) * IXI + l 
iy = (j-1) * IYO + (i-1) * IYI + 1 
.; '7 = I.;_, \ * IZO + l .J ... \ .J ""'"I 

s = 1.0, if ISW[0] = 0 
= -1.fiJ, if ISW(0] = 1 

r = IO .0, if ISW[l] = fiI 
= 1.0, if ISW[l] = 1 

x = x I if ISW(2] = 0 
= Conjg(X), if IS-w[ 2] = l 

y = y , if ISW(J] = IO 

= Conjg(Y), if ISW(J] = 1 

z = z , if ISW(4] = IO 
= Conjg(Z), if ISW[ 4] = 1 

and ISW[k] = bit k of ISW. 

If IZO = IO, then CDOTN will set Z(l) equal to 
the accumulated sum of all N dot products. If 

to this sum. 

Memory words occupied by X may intersect those 
occupied by Y. In fact, X and Y may coincide. 
However, memory occupied by z should not, in 
general, intersect that occupied by X or Y. 

If N < 1, CDOTN returns with no action taken. 

If M < 1 and ISW[l] = 1, CDOTN returns with 
no action taken. 

If M < 1 and ISW[l] = IO, CDOTN returns with 
Z(j) = I0.0 for j = l to N. 

In general, M < 1 implies a zero sum of 
products. 

j=l,N 
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********** 
* * 
* CDOTO * 
* * 
********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

APPENDIX A 

********** 
* * 

- COMPLEX DOT PRODUCT --- * CDO'l'U * 
* * 
********** 

To compute the inner (unconjugated) product 
of two complex vectors. 

cw = CDOTU(N,CX,I,CY,J) 

N = Integer element count 
ex = First complex floating-point input vector 
I = Integer step for ex 
CY = Second complex floating-point input vector 
J = Integer step for CY 
~T' .. T = ,.. ___ , --- floating-point scalar output result "-" \.-UWp..Lt:=X 

cw = SUM(CX(m)*CY(m)); for m=l to N 

cw = (kJ • .0,fJ • .0) if N<l. 

N = 2 
I = 1 
J = 1 

ex (fr. 3.0, fr. 4.0) ( .0. gg, 1. .0f1) 
CY ( .0. 3.0, - • 4.0) (8.f1f1,9.f1f1) 
cw (-8.75,8 • .0.0) 
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********** 
* * 
* CSCAL * 
* * 
********** 

PURPOSE: 

-- COMPLEX SCALING --

To multiply each component of a vector 
by a complex scalar~ 

CALL FORMAT: CALL CSCAL(N,CA,CX,I) 

PARAMETERS: N = Integer element count 

APPENDIX A 

********** 
* 

* CSCAL * 
* * 
********** 

CA 
ex 
I 

= Complex floating-point scalar multiple 
= Complex floating-point input/output vector 
= Integer step increment for ex 

DESCRIPTION; CX(mj = CA*CX(m); ~-- --1 J..- 11.T J.UJ. w-.J.. t..U J.-, 

EXAMPLE: 

N = 3 
I = l 

CA 
CX(INPUT) 
CX(OUTPUT) 

FPS 869-7482-&BlC 

( G.G, l.G) 
( l.G, 2.G) ( 3.G, 4.G) ( 5.G, 6.G) 
(-2.G, l.G) (-4.G, 3.G) (-6.G, S.G) 
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********** ********** 
* * * * 
* CSSCAL * - REAL TIMES COMPLEXES -- * CSSCAL * 
* * * * 
********** ********** 

PURPOSE: To multiply the elements of a complex vector 
by a real scalar. 

CALL FORMAT: CALL CSSCAL(N,SA,CX,I) 

PARAMETERS: N 
SA 
ex 
I 

= 
= 
= 
= 

Integer element count for ex 
Floating-point input scalar multiple 
Complex floating-point input/output vector 
Integer element step increment for CX 

DESCRIPTION: CX(m) = SA*CX(m); for m=l to N 

EXAMPLE: 

N = 3 
I = ! 

SA 
CX(INPUT) 
CX(OUTPUT) 

PPS 86H-7482-HS1C 

H.S 
(2.H,4.H) (6.H,8.H) (H.H,l.H) 
(l.H,2.H) (3.H,4.B) (H.B,H.5) 
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********** ********** 
* * * * 
* ICAMAX * - INDEX OF LARGEST COMPLEX ELEMENT - * ICAMAX * 
* * * * 
'!'********* 

PURPOSE: To calculate the index of the complex 
element of largest real plus imaginary magnitude. 

CALL FORMAT: IMAX = ICAMAX(N,CX,I) 

PARAMETERS: N 
ex 
I 
IMAX 

= Integer 
= Complex 
= Integer 
= Integer 

element count 
floating-point input vector 
step increment for ex 
value of index with largest 

DESCRIPTION: cmag(CX(IMAX)) = MAX(cmag(CX(m)); m=l for N 
where cmag(C) = ABS(R(e))+ABS(I(e)), 

EXAMPLE: 

with l < = IMAX < = N. If N < l, IMAX = g. 

N = 3 
I = l 

ex 
IMAX 

( 3.g, 3.Z) c s.g,-g_g) c z.g,13.Z) 
2 

components 
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********** 
* * 
* SASUM * 

* * 
********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

- SUM OF MAGNITUDES --

To sum magnitudes of elements of a real 
vector~ 

SW = SASUM(N,SX,I) 

N = Integer element count 
sx = Floating-point source vector 
I- = Integer incremental step for sx 
SW = Floating-point scalar result 

~'f'.T = SUM (ABS ( SX ( m ) ) ) i S:--
__ , 

to N .:>n 1.UL. m-.L 

N = 3 

SX -1.H H.H 5.H 
SW 6.H 

FPS 86S-7482-991C 
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********** 
* * 
* SASUM * 
* 
********** 
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********** 
* * 
* SAXPYN * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

-- NESTED REAL A * X + Y - * SAXPYN * 

* 
********** 

To add a scalar multiple of one floating-point vector 
to another floating-point vector N times: each time 
for a different pair of vectors and a different scalar. 
The first vector is a subset of the vector X, and the 
second vector is a subset of the vector Y. The scalar 
is an element of the vector A. 

CALL FORMAT: CALL SAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO) 

PARAMETERS: ISW = Integer input scalar. ISW is a function 
selector switch and is treated as a bit 
string with the bits numbered from the 
least significant bit (bit Z). If a given 
bit is set (equal to 1), then the function 
option that corresponds to that bit is selected. 
Only bit g is used in SAXPYN. 

Bit 0: Negate the product term A * X 
before adding to Y. That is, 
compute - A * X + Y instead of 
A * X + Y. 

All other bits are ignored. 
N = Integer input scalar. Number of A * X + Y 

operations. i.e.; outer loop count. 
M = Integer input scalar. Number of elements in 

each A* X + Y operation, i.e., inner loop 
count. 

A = Floating point input vector. Array of 
scalars. 

IAO = Integer input scalar. Outer loop element 
increment for A. 

X = Floating point input vector. First input 
vector. 

!XI = Integer input scalar. Inner loop element 
increment for x. 

IXO = Integer input scalar. Outer loop element 
increment for x. 

y = Floating point input/output vector. Second 
input vector on input. Output vector on 
output. 

IYI = Integer input scalar. Inner loop element 
increment for Y. 

IYO = Integer input scalar~ Outer loop element 
increment for Y. 
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A 

x 

y 

Output: Y 

FPS a6g-74a2-gs1c 

3.Z -1.Z 2.Z 

2 .z 3 .z 

7.Z 6.Z 2.Z 3.g 

13.Z 15.Z 

APPENDIX A 

9.g 12.Z 
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*******'**'* ********'*'* 
* * * '* 
'* SCNRM2 * - COMPLEX EUCLIDEAN NORM -- * SCNRM2 * 
'* * * * 
'*'*'******** ********** 

PURPOSE: To compute the square root of sum of squares 
of elements of a complex floating-point vector. 

CALL FORMAT: SW = SCNRM2(N,CX,I) 

PARAMETERS: N 
ex 
I 
SW 

= 
= 
= 
= 

Integer element count 
Complex floating-point input vector 
Integer step increment 
Floating-point scalar output result 

DESCRIPTION~ SW= SQRT(SUM(R(CX(m))**2 + I(CX(m))**2)); 
for m=l to N 

EXAMPLE: 

N = 2 
I = l 

ex cg.g,J.g> (4.g,g.g> 
SW s.g 
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********** 
* * 
* SOOT * - 001' PRODUCT OF REAL VECTORS --

* * 
********** 

PURPOSE: To compute the inner (dot) product 
of two vectors. 

CALL FORMAT: SW = SDOT(N,SX,I,SY,J) 

PARAMETERS: N = Integer element count for sx 
sx = Floating-point input vector 
I = Integer element step for sx 
SY = Floating-point input vector 
J = Integer element step for SY 
SW = Floating-point n11 +-n11 +- value ---r---

DESCRIPTION: SW=SUM(SX(m)*SY(m)); for m=l to N 

EXAMPLE: 

N = 3 

SX 
SY 
SW 

FPS 86W-7482-fffflC 

1..0' 2 • .0' 
4 • .0' .0'. 5 
5 • .0' 

3 • .0' 
.0' • .0' 

and 

APPENDIX A 

********** 
* * 
* SOOT * 
* * 
********** 

SY 
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DESCRIPTION: 

NOTES: 

EXAMPLE: 

Input: 

APPENDIX A 

Z(jz) = r * Z(jz) + s * SUM[ X(ix) * Y(iy), i=l,M] 

where: ix = (j-1) * !XO + (i-1) * IXI + l 
iy = (j-1) * IYO + ( i-1·) * IYI + 1 
jz = (j-1) * IZO + 1 

s = 1..0, if ISW[.0] = .0 
= -1..0, if ISW[.0] = 1 

r = .00.0, if ISW[l] = .0 
= 1..0, if ISW[ 1] = 1 

and ISW[k] = bit k of ISW. 

If IZO = .0, then SDOTN will set Z(l) equal to 
the accumulated sum of all N dot products. If 
ISW[l] = l also, then input Z(l) will be added 
to this sum. 

Memory words occupied by X may intersect those 
occupied by Y. In fact, X and Y may coincide. 
However, memory occupied by z should not, in 
general, intersect that occupied by X or Y. For 
sample applications, see Sections D.4.9 and D.4.11. 

If N < 1, SDOTN returns with no action taken. 

If M < 1 and ISW[l] = 1, SDOTN returns with no 
action taken. 

If M < 1 and ISW[l] = .0, SDOTN returns with 
Z(j) = .0 • .0 for j = l to N. 

In general, M < 1 implies a zero sum of products. 

!SW = .0 
N = 2 
M = 3 
IXI = 2 
IXO = 1 
IYI = , 

J. 

IYO = .0 
IZO = 1 

x 3 • .0 2 • .0 -1..0 1..0 .0 • .0 -2 . .0 

y 1..0 2 • .0 3 • .0 

j=l,N 

Output: z 1..0 -2.0 
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********** ********** 
* * * * 
* SROT * - PLANE RO'l'ATION - * SROT * 
* * * * 
********** ********** 

PURPOSE: To perform two dimensional rotations. 

CALL FORMAT: CALL SROT(N,SX,I,SY,J,C,S) 

PARAMETERS: N = Integer count of elements in SX and SY 

DESCRIPTION: 

EXAMPLE: 

SX = Floating-point input vector of first components 
= (On output) first components of rotated vector 

I = Integer step increment for SX 
SY = Floating-point input vector of second components 

= (On output) second components of rotated vector 
J = Integer step increment for SY 
C = Floating-point input scalar cosine 
S = Floating-point input scalar sine 

SX(m) = C*SX(m)+S*SY(m) 
SY(m) =-S*SX(m)+C*SY(m)~ for m=l to N 

N = 3 

c _g. 3 
s .0'. 4 
SX(INPUT) 1..0' 2 • .0' 3 • .0 
SY( INPUT) .0' • .0' 1..0 2 • .0 
SX(OUTPUT) .0'. 3 1..0 17 • .0 
SY(OUTPUT) -.0'.4 -5 • .0' -6 • .0' 

FPS 86B-7482-991C Page A - 355 



APPENDIX A 

********** ********** 
* * * * 
* SROTM * - MODIFIED GIVENS ROTATIONS - * SROTM * 
* * 
********** ********** 

PURPOSE: To perform two-dim~nsional rotations using 
the rotation matrix constructed from a 
parameter vector according to the modified 
Givens scheme. 

CALL FORMAT: CALL SROTM(N,SX,INCX,SY,INCY,PARAM) 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

N 
sx 

INCX 
SY 

INCY 
PARAM 

SX(m) 
SY(m) 

= 
= 

= 
= 

= 
= 

= 
= 

Integer element count 
Floating-point input/output vector 
of first components 
Integer element step for SX 
Floating-point input/output vector 
of second components 
Integer element step for SY 
Five element floating-point input vector 
used to construct the rotation matrix 
H = Hll Hl2 

H21 H22. 

Hll*SX(m) + Hl2*SY(m) 
H2l*SX(m) + H22*SY(m), for m=l to N, where 

Hll, Hl2, H21, H22 = 
PARAM( 2), 1..0', -1..0', PARAM(S) or 

1..0', PARAM( 4), PARAM(3), 1..0' or 
PARAM( 2), PARAM( 4), PARAM( 3), PARAM(S) according to 
whether PARAM(l) = 1..0' or .0' • .0' or -1..0', respectively. 

If PARAM(l) is not equal to zero, one, or minus one, 
the routine returns with no action performed. This 
is equivalent to having the identity matrix as the 
rotation matrix. 

N = 5 

SX( input) .0' • .0 1..0 -2 . .0 2.0 -4.0 
SY( input) 0 • .0' .0'. 0 2 • .0' -2. 0 -2.0 
PARAM -1..0' 1..0' -1..0' 1..0' 1. 0 

SX(output) .0' • .0' 1..0' .0' • .0' .0' • .0' -6 . .0' 
SY( output) 0 . .0' -1..0' 4 • .0' -4 . .0' 2.0 
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EXAMPLE: 

APPENDIX A 

Rescaling continues until 01 and 02 are within the 
window. 

Output parameters PARAM(l,2,3,4,5) = 
(-l.0,Hll,H21,Hl2,H22) and 01,02,Bl are updated 
according to the scaling factors above. 

Ol,02,Bl,B2 (input) 

01,02,Bl 
PARAM 

(output) 
(output) 

3.368 
fJ .f!f!f! 

2.526 2.375 
f!.f!f!f! -fJ.SfJfJ 0.375 
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********** ********** 
* * * 
* SSWAP * - INTERCHANGES VECTORS - * SSWAP * 
* * * * 

PURPOSE: To interchange elements of two real vectors. 

CALL FORMAT: CALL SSWAP(N,SX,I,SY,J) 

PARAMETERS: N = Integer element count 
sx = Floating-point first vector for swap 
I = Integer element step for sx 
SY = Floating-point second vector for swap 
J = Integer element step for SY 

DESCRIPTION: SX(m) :=: SY(m) ! for m=l to N 

EXAMPLE: 

N = 3 

SX(INPUT) 1..0' 2 • .0' 3 • .0' 
SY{INPUT) 9.0 8 .0 7.0 
SX(OUTPUT) 9.0 8 .0 7.0 
SY(OUTPUT) 1.0 2.0 3.0 

FPS 86&-7482-HBlC Page A - 361 



APPENDIX A 

********** ********** 
* * * * 
* ABPl * - ADAMS-BASBFORTH PREDICTOR (ORDER 1) - * ABPl * 
* * * * 
*****~**** ********** 

PURPOSE: To solve an initial value problem for a set of 
ordinary differential equations, using a first 
order predictor (Euler's) method. 

CALL FORMAT: CALL ABPl(N,H,Y,F,YP) 

PARAMETERS: N = Integer element count, number of equations 
H = Floating-point input scalar step size for t 
y = Floating-point input vector of dependent 

variables Y(t) 
F = Floating-point innnr vector of derivative ---c-- -

elements dY/dt =F(t,Y(t)) 
yp = Floating-point output vector of predicted 

variables Y(t+H) 

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the 
solution at t'=t+H is given by 

EXAMPLE: 

YP(m) = Y(m) + H*F(m); for m=l to N 

This provides an explicit first order solution 
to the initial value problem for a given function 
at time t'=t+H, given the values of the function and 
its derivative at time t. The evaluation of the next 
derivative, corresponding to F(t+H,Y(t+H)) at the 
new time point, t'=t+2*H follows similarly. 

N = 3 
H = .0'.l 

y 1..0' 2. g 3. '1 
F 1. .0' l.kJ l. '1 

yp 1.1 2.1 3.1 
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********** ********** 
* * * * 
* ABP3 * - ADAMS-BASHFORTH PREDICTOR (ORDER 3) - * ABP3 * 
* * 
********** ********** 

PURPOSE: To solve an initial value problem for a set of 
ordinary differential equations, using Adams' third 
order predictor method. 

CALL FORMAT: CALL ABP3(N,H,Y,F,Fl,F2,YP) 

PARAMETERS: N = Integer element count, number of equations 
H = Floating-point input scalar step size for t 
y = Floating-point input vector of dependent 

variables Y(t) 
F = Floating-point input vector of derivative 

elements dY/dt=F(t,Y(t)) 
Fl = Floating-point input vector of derivative 

functions at preceeding time tl=t-H 
F2 = Floating-point input vector of derivative 

functions at preceeding time t2=t-2H 
yp = Floating-point output vector of predicted 

variables Y(t+H) 

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the 
solution at t'=t+H is given by 

EXAMPLE: 

YP(m) = Y(m) + (H/12)*(23*F(m)-16*Fl(m)+5*F2(m)); 

for m=l to N 

This provides an explicit third order solution 
to the initial value problem for a given function 
at time t'=t+H, given the values of the function and 
its derivative at t and its derivatives Fl and F2 at 
times tl=t-H and t2=t-2H, respectively. 
Evaluation of the next derivative, corresponding to 
F(t+H,Y(t+H)) at the new time point, t'=t+2*H 
follows similarly. 

N = 3 
H = .0 .1 

y 1..0' 2 • .0 3 • .0 
F 3 • .0 3 • .0 3 • .0 
Fl 2 • .0' 2 • .0 2 • .0 
F2 1..0' 1..0' l.iJ 

yp 1.35 2.35 3.35 
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EXAMPLE.: 

N = 3 
H = 0.1 

y 1..0 2 • .0 3 • .0 
F 3 • .0 3 • .0 3 • .0 
Fl 2 • .0 2 • .0 2.kJ 
~., , fY , fY , fY 
s:" .J.. 1U .J.. 1U .J.. 1fJ 

F3 4 • .0 4 • .0 4.kJ 

yp 1.2 2.2 3.2 
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DESCRIPTION: This routine integrates a set of N first order 
differential equations from t=A to t=B, given 

REFERENCE: 

INPUT: 

the initial values Y(t) and the values of the 
derivative functions dY/dt=F(t,Y(t)) calculated 
in the user supplied routine DFUNF(T,N,Y,F). The 
step size H is regulated to keep the maximum 
local error less than EPS. The maximum number of 
steps taken per call is limited by MAXIT. The 
maximum step size is limited by HMAX. Error 
return codes are provided to monitor the progress 
of the algorithm. 

Burden,R.L., Faires,J.D., and Reynolds,A.C., 
"Numerical Analysis", Prindle, Weber & Schmidt, Inc., 
Boston, 1978: "Adams Variable Step-size Predictor­
Corrector" Algorithm 6.5 

DFUNF (user supplied APFTN64 subroutine): 

SUBROUTINE DFUNF(T,N,Y,F) 
c 
C *** DFUNF *** SAMPLE APFTN64 ROUTINE *** 
c 

DIMENSION Y(N), F(N) 
c 

DO HJ I=l,N 
F(I) = -Y(I) + T + l.g 

L0 CONTINUE 
c 
C CORRESPONDS TO SOLUTIONS OF THE FORM 
c 
C Y(T) = yg * EXP{-T) + T 
c 

A 
B 
N 
HMAX 
MAXIT 
EPS 

RETURN 
END 

= II.II 
= 3 .g 
= 5 
= 0 .2 
= me 
= l.IIE-6 

Y(l,l), ••• , Y(5,l): 
1.0 2.0 3.II 4.II 5.II 
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********** ********** 
* * * * 
* AMCl * ADAMS-MOULTON CORRECTOR (ORDER 1) - * AMCl * 

* * * * 
********** ********** 

PURPOSE: To solve an initial value problem for a set of 
ordinary differential equations, using a first order 
corrector (backward Euler) method. 

CALL FORMAT: CALL AMCl(N,H,Y,FP,YP) 

PARAMETERS: N = Integer element count, number of equations 
H = Floating-point input scalar step size for t 
y = Floating-point input vector of dependent 

variables Y(t) 
FP = Floating-point input vector of derivative 

elements dY/dt=F(t+H,Y(t+H)) 
yp = Floating-point output vector of predicted 

variables Y(t+H) 

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the 
solution at t'=t+H is given by 

EXAMPLE: 

YP(m) = Y(m) + H*FP(m); for m=l to N 

This provides an implicit first order solution 
to the initial value problem for a given function 
-~ .a.!-- •1-•....L.D -.:··-- •lo..- ••-,•·-- --'= .t.'L...- .t= •• _._..._,:.....,_ --..:J. a.1.. 1..iuu: 1,, -1..•or '::f.J.Vcu. 1..uc va...i.uc~ uJ.. 1..u.c J..U.L.Lwl...J.VU. a.uu 

its derivative at time t. The evaluation of the next 
derivative, corresponding to F(t+H,Y(t+H)) at the 
new time point, t'=t+2*H follows similarly. 

N = 3 
H = tJ.l 

y l..kJ 2.'1 3.'1 
FP l.'1 l.'1 l.'1 

yp 1.1 2.1 3.1 
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********** ********** 
* * * * 
* AMCJ * - ADAMS-MOULTON CORRECTOR (ORDER 3) - * AMC3 * 
* * * * 
********** ********** 

PURPOSE: To solve an initial value problem for a set of 
ordinary differential equations, using Adams' third 
order corrector method. 

CALL FORMAT: CALL AMC3(N,H,Y,F,Fl,FP,YP) 

PARAMETERS: N = Integer element count, number of equations 
H = Floating-point input scalar step size for 
y = Floating-point input vector of dependent 

variables Y(t) 
1:t = Floating=point .:--··.&.. ··--~-- -~ derivative I: ..i.u1:1u.1.. Vl:'\.01..U.L. U.L 

elements dY/dt=F(t,Y(t)) 
Fl = Floating-point input vector of derivative 

functions at preceeding time tl=t-H 
FP = Floating-point input vector of derivative 

functions estimated for t'=t+H 
YP = Floating-point output vector of predicted 

variables Y(t+H) 

t 

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the 
solution at t'=t+H is given by 

EXAMPLE: 

YP(m) = Y(m) + (H/12)*(8*F(m)-Fl(m)+5*FP(m))~ 

for m=l to N 

This provides an implicit third order solution 
to the initial value problem for a given function 
at time t'=t+H, given the values of the function and 
its derivative at t, as well as, its derivatives at 
times tl=t-H and t'=t+H, corresponding to Fl and FP. 
Evaluation of the next derivative, corresponding to 
F(t+H,Y(t+H)) at the new time point, t'=t+2*H 
follows similarly. 

N = 3 
H = .0' .1 

y 1..0' 2 . .0' 3 • .0' 
F 2 • .0' 2 . .0' 2. fj 
Fl l.kJ 1.kJ 1.fJ 
FP 3 .kJ 3 .kJ 3. fj 
yp 1.25 2.25 3.25 
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EXAMPLE: 

N = 3 
H = .0' .1 

y 1..0' 2 . .0' 3 • .0' 
F 3 • .0' 3 • .0' 3 • .0' 
Fl 2 • .0' 2 • .0' 2.G ,...., 1..0' 1..0' 1..0' ... 
FP 4 • .0' 4.G 4.G 

yp 1.35 3.35 3.35 
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APPENDIX A 

BRK(N,2) = kJ.kJ 
and an input coordinate value x, BIN uses a binary 

1. The index IX that locates x within the 
coordinate value breakpoint table such that 

x(IX) <= x < x(IX+l) 

2. The product DR = D(IX) * R(IX) where 

D(IX) = x(IX)-x 

R(IX) = l/(x(IX+l)-x(IX)) 

When a program makes repeated calls to a breakpoint 
search routine (i.e., BIN or STEP), BIN should be used 
if it is suspected that the input coordinate x varies 
rapidly with respect to the values in the coordinate 
value breakpoint table. In this case, the binary 
(successive interval halving) search employed by 
BIN is more efficient than the step (nearest 
neighbor) search used by STEP. 

Refer to the function generation in Appendix E for 
additional information. 

N = 3 

BRK = 1.kJ 2.kJ 7.11 1.11 kL2 kl.kl 
x = 2.1 
IX = 2 
DR = -kl.k12 

NOTE 

If x <= x(l) then IX = 1 

If x >= x(N) then IX = N-1 
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DESCRIPTION: I(I+l), for I = g to N-1, is the value of the Ith 
modified Bessel functions of the first kind evaluated at 
the point X. Refer to equation 9.6.3 of Abramowitz 
and Stegun for the defining equation. 

K(I+l), for I = g to N-1, is the value of the Ith 
modified Bessel functions of the second kind evaluated at 
the point X. Refer to equation 9.6.4 of Abramowitz 
and Stegun for the defining equation. 

Warnings and errors are reported to the calling routine 
via IERR. If CBEIK completes normally, then IERR is 
set to zero. 

Warning condition codes are all between l and 99 
inclusive. The possible warning values and their 
meanings are as follows: 

T'C'T'IT'J - , 
..i.~n - ..i. 

lLT .:,.. '-""""'""""- ,_ ... __ &.-...-. _.....__.._••'--..,:-- -J:: 
"" .1,;:, 1..VV .L.Cl.L.'::fC .1..V.L. vVUlt:JUl..Ql...1.VU V.I.. 

outputs. In most instances, ABS(X) 
< 4gg_g; this means that the Nth order 
outputs exceed the dynamic range of the 
machine. A suitable N is calculated, 
the Bessel function values are computed 
up to this new N, and the new N value 
is returned. 

Error condition codes are all greater than or equal to 
igg. The possible error values and their meanings 
are as follows: 

!ERR = igg !STEP and/or KSTEP are equal to 
-1,ff, or l. 

!ERR = lff l X does not lie within the boundary of 
(+/-6gff, +/-GffkJi). 

!ERR = lff 2 N is equal to l. N must be greater 
than or equai to 2. 

References: Abramowitz, M., and Stegun, I., "Handbook 
of Mathematical Functions", Ninth printing, 
pp.358-36ff. 

FPS 863-7482-SSlC 

Mason, J.P., "Cylindrical Bessel Functions 
for a Large Range of Complex Arguments", 
Computer Physics Communications, 3g(l983), 
pp.1-11. 
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********** ********** 

* * * * 
* CBEJYH * - COMPLEX BESSEL J, Y, AND H -- * CBEJYH * 
* * * * 
********** ********** 

PURPOSE:- To compute the complex Bessel functions of integer 
order of the first kind, second kind, and one of 
the Hankel functions at a point X. 

CALL FORMAT: CALL CBEJYH (X, N, J, JSTEP, Y, YSTEP, H, HSTEP, !ERR) 

PARAMETERS: x = Complex input scalar 
The point at which to evaluate all functions. 
This is restricted to the portion of the 
complex plane bounded by (+/-6gg,+;-6ggi). It 
can take on the values (+/-6HH, +/-6HHi). 

N = Integer input/output scalar 
On input, the number of function values to 
evaluate. If N <= g, then this routine returns 
with no action. If N = 1, then an error is 
reported. Note that the zero order function 
values are stored in the first elements of the 
complex output vectors. . . 
On output, the actual number of Bessel functions 
computed. The input value of N is modified only 
in the case where !ERR = 1, if too many function 
values were requested. If !ERR is not equal to 
lf then N is not modified on return to the 
calling routine. 

JSTEP = Integer input scalar 
Element step for J. This can be any value 
except -1, g, or 1. This is the number of 
words to skip between complex elements. 

YSTEP = Integer input scalar 
Element step for Y. This can be any value 
except -1, g, or 1. This is the number of 
words to skip between complex elements. 

HSTEP = Integer input scalar 
Element step for H. This can be any value 
except -1, g, or 1. This is the number of 
words to skip between complex elements. 

J = Complex output vector 
The function values of functions H through N-1 
for Bessel functions of the first kind. 

Y = Complex output vector 
The function values of functions H through N-1 
for Bessel functions of the second kind. 

H = Complex output vector 
The function values of functions g through N-1 
for one of the Hankel functions. If the sign of 
the imaginary part of X is positive, then the 
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N 

APPENDIX A 

Note: If the second Hankel function is desired when 
the imaginary part of X is nonnegative, it can be 
computed with the following equation: 

H2 = J-iY 

Similarly, the first Hankel function can be 
computed when the imaginary part of X is negative 
by the following equation: 

Hl = J+iY 

References: Abramowitz, M., and Stegun, I., "Handbook 
of Mathematical Functions", Ninth printing, 
pp.358-36.0'. 

= 3 

Mason, J.P., "Cylindrical Bessel Functions 
for a Large Range of Complex Arguments!!, 
Computer Physics Communications, 30(1983), 
pp.1-11. 

JSTEP = 2 
YSTEP = 
HS TEP = 

J 

y 

H 

2 
2 

.0'.6141603349229.0'4E+.0'.0'.0', 

.0'.415798869439622E-.0'.0'1, 

( .0'.445474488934634E+.0'.0'.0', 
(-.0'.657694535589279E+.0'.0'.0', 
(-.0'.473368.0'2.0'533.0'.0'7E+.0'.0'.0', 

0.365.0'28028827088E+.0'.0'.0'), 
.0'.247397641513306E+.0'0.0') 

.0'.71.0'158582.0'.0'15.0'5E+0.0'.0'), 

.0'.6298.0'1.0'.0'399.0'9.0'7E+.0'.0'.0'), 

.0'.577336957578681E+.0'.0'.0') 

( .0'.227449894804525E+.0'.0'0, -.0'.510554586744886E-.0'.0'1), 
(-.0'.1564.0'669.0'68.0'.0'27E-.0'.0'1, -.0'.292666506762191E+.0'.0'.0'), 
(-.0'.535757.0'7.0'634719E+.0'.0'.0', -.0'.22597.0'379.0'197.0'.0'E+0.0'.0') 

IERR = .0' 
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EXAMPLE: 
See Appendix E for function generation. 

FPS 86H-7482-iilC Page A - 385 



EXAMPLE: 

APPENDIX A 

F(x)=F(x(i))+(F(x(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i)) 

where 

x(i) 

x(i+l) 

x 

F(x(i)) 
F(x( i+l)) 

F(x) 

= x-coordinate value at the i-th 
x-coordinate breakpoint 

= x-coordinate value at the (i+l)-th 
x-coordinate breakpoint 

= Input x-coordinate value where the 
interpolated function value ls desired 

= Function value at x(i) 
= Function value at x(i+l) 
= Interpolated function value at x 

and x(i) <= x < x(i+l) 

See Appendix E for function generation. 
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APPENDIX A 

desired functions, storing them in FVAL. Refer to the 
function generation in Appendix E for additional 
information. 

F(x)=F(x(i))+(F(x(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i)) 

where 

x(i) 

x(i+l) 

x 

F(x(i)) 
F(x(i+l)) 
F(x) 

= 

= 

= 

= 
= 
= 

x-coordinate value at the i-th 
x-coordinate breakpoint 
x-coordinate value at the (i+l)-th 
x-coordinate breakpoint 
Input x-coordinate value where the 
interpolated function value is desired 
Function value at x(i) 
Function value at x(i+l) 
Interpolated function value at x 
and x(i) <= x < x(i+l) 

See in Appendix E on function generation. 
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DESCRIPTION: FUN4 uses the indexes IX, IY, IZ and IW from the 
breakpoint searches and the values NX, NY, NZ, and NW 
to find the first function value pairs in the function 
value breakpoint table. It then performs a linear 
interpolation between them by applying the formula 
given below eight times over the x-axis, four times 
over the y-axis, twice over the z-axis, and once 

EXAMPLE: 

over the w-axis. FUN4 repeats the process for all the 
desired functions, storing the computed function 
values in FVAL. Refer to the function 
generation in Appendix E for additional information. 

F(x)=F(x(i))+(F(~(i+l))-F(x(i)))*(x-x(i))/(x(i+l)-x(i)) 

where 

x(i) = 
..., I ~..I.. 1 \ = A\ ... I-" J 

x = 

F(x(i)) = 
F(x(i+l)) = 
F(x) = 

x-coordinate value at the i-th 
x-coordinate breakpoint 
x-coordinate value at the 
x-coordinate breakpoint 

I ~..i..1 '-'-I-. 
\ .., r -" J - '- '' 

Input x-coordinate value where the 
interpolated function value is desired 

Function value at x(i) 
Function value at x(i+l) 
Interpolated function value at x 
and x(i) <= x < x(i+l) 

See Appendix E for function generation. 
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C.W.Gear, "Numerical Initial Value Problem in 
Ordinary Differential Equations", Prentice-Hall, 1971. 

RKGIL performs integration for given time, step 
size, and integration steps. The right-hand subroutine 
DFUN can be coded in either APFTN64 or APAL64. The 
parameter-passing method employed by RKGIL requires that 
DFUN be coded in APFTN64. As such, RKGIL relies on 
assumed procedure entry conventions, because APFTN64 
automatically generates code using this convention~ 
If DFUN is written in APAL64, the user must resolve the 
parameters correctly. 

At output, vector V contains the numerical solutions 
while TH contains the new value of the independent 
variable; i.e., TH=TH+M*H. 

Repeated calls to RKGIL can cause stability problems. 
So the user must be on guard against instability 
and must take care specifying the H parameter. 

Solve the following second-order differential equation 

Y'' = -4 .H*Y 

with initial conditions 

Y' (0.0) = H.H 

starting at TH = H.H with H = H.l for 32 iterations. 

An equivalent system of first-order differential equations 
can be written in the form 

DV( 1) = V( 2) 

DV(2) = -4.0*V(l) 

with initial conditions at the point 0.0 of 

V(l) = 1.0 

V(2) = 0.0 
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********** ********** 
* * * * 
* RKGTF * - R-K-GILL-THOMPSON INTEG.(ORDER 4) * RKGTF * 
* * * * 
********** ********** 

PURPOSE: To solve an initial value problem for a set of 
ordinary differential equationsf using the fourth 
order Runge-Kutta-Gill method as described by 
Thompson. 

CALL FORMAT: CALL RKGTF(T,N,Y,F,Q,H,M) 

PARAMETERS: T = Floating-point input scalar independent variable, 
initial value of t 

N = Integer input element count, number of equations, 

Y = Floating-point input/output vector of dependent 
variables (Y(t)) 

F = Floating-point working vector of derivative 
functions dY/dt=F(t,Y(t)) 

Q = Floating-point working vector used for 
temporary storage (must have length N) 

H = Floating-point input scalar step size for t 
M = Integer input scalar number of integration steps 

to be performed 

DESCRIPTION: For the system of equations dY/dt=F(t,Y(t)), the 
solution at each step is given by 

Y(m) = Y(m) 

+(H/6)*(kl+(2-sqrt(2))*k2+(2+sqrt(2))*k3+k4) 

for m=g to N-1, where 

kl=F(T,Y) 

k2=F(T+H/2,Y+0.S*H*kl) 

k3 = F(T+H/2,Y+0.5*(-l+sqrt(2))*H*kl 
+0.5*( 2-sqrt(2))*H*k2) 

k4 = F(T+H,Y-0.5*sqrt(2)*H*k2 
+0.5*(2+sqrt(2))*H*k3) 

while the independent variable is advanced by H 
until T = T + M*H. 
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********** 
* * 
* ROTJ * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

-- 30 ROTATION MATRIX, 3-ANGLE -- * RO'l'3 * 
* * 
****'****** 

To form a three-dimentional rotation matrix as a 
product of three successive rotations about any three 
orthogonal axes. 

CALL FORMAT: CALL ROT3(I,A,J,B,K,C,R) 

PARAMETERS: I = Integer input scalar axis indicator (plus or 
minus l=x, 2=y, J=z) 

DESCRIPTION: 

A = Floating-point input scalar angle{radians) of 
rotation about axis I 

J = Integer input scalar axis indicator (plus or 
minus l=x, 2=y, 3=z) 

B = Floating-point input scalar angle(radians) of 
rotation about axis J 

K = Integer input scalar axis indicator (plus or 
minus l=x, 2=y, 3=z) 

C = Floating-point input scalar angle(radians) of 
rotation about axis K 

R = Floating-point output rotation matrix 
(3x3 matrix stored in column order) 

This routine calculates a 3x3 matrix as a product 
three rotations about any three orthogonal axes: 

R(matrix) = R(K,C)xR(J,B)xR{I,A) 

where R(l,w) = l fJ H 

0 cos(w) sin(w) 

0 -sin(w) cos(w) 

R(2,w) = cos(w) fJ -sin(w) 

fJ 
, 

fJ .1. 

sin(w) fJ cos(w) 

and R(3,w) = cos(w) sin(w) 0 

-sin(w) cos(w) H 

0 fJ 1 

of 
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********** 
* * 
* SCSl * 
* * 
********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

APPENDIX A 

********** 
* * 

- SCALAR COS/SIN, TM IN'l'ERP. (ORD 1) -- * SCSl * 
* * 
********** 

To rapidly calculate the cosine and sine of an 

CALL SCSl(A,CA,SA) 

A = Floating-point input scalar angle(radians) 
CA = Floating-point output scalar cosine(A) 
SA = Floating-point output scalar sine(A) 

CA = COS (A), SA = SIN(A) 

by interpolation of values stored in TMROM 
using a first order Taylor's series approximation. 
The returned values are accurate to approximately 
seven decimal digits. 

NOTE: For 15 decimal digits of accuracy at a slight 
decrease in speed, see the routine SINCOS. 

= l.Z 

CA = .0'. 54.0'3.0'23 
SA = .0'. 8414 71.0' 
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An input coordinate value x, and the index IX from 
a previous call to STEP or BIN, STEP uses a step 
search to determine the following: 

1. The index IX that locates x within the 
coordinate value breakpoint table such that 

x(IX) <= x < x(IX+l) 

D ( IX) = x ( IX) -x 

R(IX) = l/(x(IX+l)-x(IX)) 

When a program makes repeated calls to a breakpoint 
search routine (i.e., BIN or STEP), STEP should be 
used if it is suspected that the input coordinate 
x varies slowly with respect to the values in the 
coordinate value breakpoint table. STEP's 
nearest neighbor searching is more efficient than 
the binary (successive interval halving) search used 
by BIN. 

At the outset, if no a priori knowledge of the value 
of x is available, the first call to STEP should 
set IX = N/2. An alternative strategy is to 
make the first call to BIN, which initializes 
IX, and then make subsequent calls to STEP. 

Refer to the function generation in Appendix E for 
additional information. 

N = 3 

BRK = 1..0' 2 • .0' 7 • .0' 1..0' .0'. 2 .0' • .0' 
x = 2.1 
IX = 2 
DR = -0~02 

NOTE 

If x <= x(l) then IX = l 

If x >= x(N) then IX = N-1 
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********** ********** 
* * * * 
* CONNMO * - NMO WITH CONSTANT VELOCITY - * CONNMO * 
* * * * 
****"****** ******"**** 

PURPOSE: To apply normal moveout (NMO), with constant 

CALL FORMAT: CALL CONNMO(D,N,X,V,SR,NNMO) 

PARAMETERS: D = Floating-point output vector of trace 
sample times. 

N = Integer input scalar; element count for D. 
x = Floating-point input scalar; off set distance 

in feet. 
v = Floating-point input scalar; velocity in feet. 
SR = Floating-point input scalar; sample rate (ms). 
NNMO = Integer output scalar; index of initial sample 

of zero-fill in destination trace. 

DESCRIPTION: The normal moveout computation is described 
in seismic signal processing references, 
such as: 

Mintroduction to Geophysical Prospecting" 
Dobrin, M.B., 
McGraw-Hill, Inc., 
New York, N.Y., , f"t...,,.. 

i:;, 10, 

pp. 2.0'1-254. 

"Geophysical Signal Analysis" 
Robinson, E.A and Treitel, s., 
Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 198.0', 
pp. 1-35. 

The square-root computation inherent in the 
process is accomplished with one iteration of 
the Newton-Raphson method. 

Using a normal moveout process as defined by X, 
V, and SR, destination trace D is filled with 
the times from which to interpolate the adjusted 
trace values. 

The initial sample value of zero-fill in the 
destination trace is returned in parameter ~nJMO. 
A value of N+l for NNMO indicates no zero-fill. 
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********** 
* 

* IIR3.9' * 
* * 
********** 

PURPOSE: 

A_pPRNI>IX A 

********** 
* *· 

- RECURSIVE FILTER - * IIR3.9' * 
* 
********** 

To perform a recursive digital filter with up to 3.0' 
poles and 3Z zeros. 

CALL FORMAT: CALL IIR3.0'(A,I,B,C,K,N,NZ,NP) 

PARAMETERS: A = Floating-point input vector of length N+NZ. 
Contains the data to be filtered. It will be 
assumed· that A is indexed from -NZ to N-1. 

I = Integer input scalar. 
Element step for vector A. 

8 = Floating-point input vector of length NZ+NP+l. 
Contains the coefficients of the filter. It will 
be assumed that 8 is indexed from .0' to NZ+NP. 
8(.0') contains the scalar multiple coefficient, 
8(1) to 8(NZ) contain the coefficients of the 
zeros, and 8(NZ+l) to B(NZ+NP) contain the 
coefficients of the poles. 

C =Floating-point input/output vector of length· 
N+NP. 
Contains the filtered data. It will be assumed 
that C is indexed from -NP to N-1. On input, 
C(-NP) to C(-1) contain the initial values. On 
output, the computed values are contained in 
C( .0') to C(N-1). 

K = Integer input scalar. 
Element step for vector C. 

N = Integer input scalar. 
Element count. 

NZ = Integer input scalar. 
Number of zeros. 

NP = Integer input scalar. 
Number of poles. 

DESCRIPTION: Performs a recursive (IIR - Infinite Impulse 
Response) digital filtering difference equation as 
follows: 

C(t) = Sum[ B(j ) * A(t-j), j = '1 to NZ 
- Sum[ 8(m+NZ) * C(t-m), m = l to NP 

for t = .0' to N-1 

where the dimensions of the arrays are A(-NZ;N-1), 
8(.0':NZ+NP), C(-NP:N-1). The second sum equals zero if 
NP = .0'. 
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********** ********** 
* * * * 
* KSMLV * - K-TH SMALLEST ELEMENT IN VEC'l'OR -- * KSMLV * 

* * * * 
********** ********** 

PURPOSE: To find the k-th smallest element of a vector. 

CALL FORMAT: CALL KSMLV(A,N,K,W,C) 

PARAMETERS: A = Floating-point input vector 
N = Integer element count for A 
K = Order of the element to be selected; K=l 

will select the smallest element; K=N will 
select the largest element; K=INT((N+l)/2) 
will select the median element. 

w = Work-space vector; the size of the work 
space must be equal to N 

c = Floating-point output scalar 

DESCRIPTION: c = k-th smallest element of A( m), ml to N. 

EXAMPLE: 

The k-th smallest element of the vector stored 
in Main Memory starting at location A is found 
using an application of the divide and conquer 
strategy. The algorithm implemented is as described 
by Aho, Hopcroft, and Ullman: THE DESIGN AND 
ANALYSIS OF COMPUTER ALGORITHMS, Addison-Wesley, 
1974, pp. 97-99. The resultant element is stored 
into Main Memory at location C. The original 
contents of the input vector are lost. 

The speed of this routine is data dependent. 

N = 8 
K = 3 

A i.g s.g 2.g -1.g 3.g -3g.6 ig.1 s.g 
c i.g 
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EXAMPLE: 

SR = 2.kJ 
N = 2kJ 
NNMO = 14 

C: 
l.kJ 2.kJ 3 • .0' 4 • .0' 5 • .0' 6 • .0' 7 • .0' 8 • .'1 9 • .'1 1.0' • .0' , , rr a rr .., rr t:: tr c tr " tr ., tr ., rr , rr rr rr 

..&....&.. •llJ u.u I •XI u •llJ .J. u ~.XI ~. XJ '•JO J... JO iO. JO 

D: {input) 
3 • .0' 6 • .'1 9 • .0' 12 • .0' 15 • .0' 18· • .0' 21..0' 24 • .0' 27.kJ 3.0' • .'1 

33 • .0' 36 • .0' 39 • .0' kJ.kJ .0' • .0' .0' • .0' kJ.H .0' .H .0' • .'1 .0'~.'1 

D: (output) 
2.5 4 • .'1 5.5 7 • .0' 8.5 l.'1 • .'1 9.5 7 • .'1 5.5 4 • .0' 
2.5 1..0' kJ • .0' .0' • .'1 .0' • .0' .0' • .'1 g • .0' .0' • .'1 kJ • .'1 .0' • .'1 
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SR = 2.{1 
N = 2{1 
NNMO = 14 

C: 
1.0 2.0 

lL.0' 8 .. k! 

D: (input) 

3. '1 4. '1 
7 _g 6 .. '1 

5 .0 6. '1 7.{1 8 .• 0 9.0 10.0 
5 .. ff 4 .. ff 3 .. .0' 2 • .0' L.0' g_g 

3.0 6.{1 9.{1 12.{1 15.0 18.{1 21.{1 24 • .0 27 • .0 30 • .0 
33.0 36.0 39.{1 '1.'1 '1.'1 '1.'1 '1.{1 .0 • .0 0.0 0.H 

D: (output) 
2.5 4.'1 5.5 7.{1 8.5 1.0.'1 1.0.'1 7.'1 5.5 4.H 
2.5 l.'1 .0 • .0 '1.{1 '1.'1 '1.'1 '1.'1 '1.'1 0.'1 '1.H 

APPENDIX A 
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********** 
* * 
* RESNMO * 
* * 
********** 

PURPOSE: 

APPENDIX A 

* * 
- RESIDUAL NORMAL MOVEOUT - * RESNMO * 

* * 
********** 

To stretch or squeeze a seismic trace via 
linP~r intPrnnl~tinn_ ------- ______ I:" ________ _ 

CALL FORMAT: CALL RESNMO(A, B, C, NI, SR, D, NO, NNMO) 

PARAMETERS: A = Floating-point input vector; source trace 
of sample values. 

B = Floating-point input vector of input 
control times (ms). 

c = Floating-point input vector of output 
control times (ms j. 

NI = Integer element count for B and C. 
SR = Floating-point input scalar; sample rate (ms). 
D = Floating-point output trace vector 

of sample values. 
NO = Integer element count for D. 
NNMO = Integer output scalar; index of initial sample 

of zero-fill in destination trace D. 

DESCRIPTION: The normal moveout computation is described 
in seismic signal processing references, 
such as: 

"Introduction to Geophysical Prospecting" 
Dobrin, M.B., 
McGraw-Hill, Inc., 
New York, N.Y., 1976, 
pp. 2.0'1-254. 

"Geophysical Signal Analysis" 
Robinson, E.A and Treitel, S., 
Prentice-Hall, Inc., 
Englewood Cliffs, N.J., 198.0', 
pp. 1-35. 

Using a stretching/squeezing function as defined 
by B, C, and SR, source trace C is converted into 
destination trace D. 

The initial sample value of zero-fill in the 
destination trace is returned in parameter NNMO. 
A value of N+l for NNMO indicates no zero-fill; 

The speed of this routine is data dependent. 
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********** ********** 
* * * * 
* TMCONV * - CONVOLO'.rION (CORRELATION) - * TMCONV * 
* * * * 
********** ********** 

PURPOSE: To perform a convolution or correlation 
nnc,..;:ii+- inn nn rtJn uar+-n.-C! _ tJi +-}, +-ho ,... .... .,,.,..,,,..,.,,.:i -!:"'------•• ...., .. ., _..,,.,..,, v.._...._"""'.._,_.~, n:r41o'-.;..a. '-'"'4~ ""'.f:"',..,.-..._...,_.._. 

in Main Memory and the operator in TM. 

CALL FORMAT: CALL TMCONV (A, ITMB, C, N, M) 

PARAMETERS: A 
ITMB 
c 
N 

= 
= 
= 
= 

Floating-point input vector (operand) 
Integer address of B in TM 
Floating-point output vector 
Integer element count for C 

M = Integer element count for B 
(Integer element count for A = N+M-1) 

DESCRIPTION: C(m) = SUM(A(m+q-l)*B(q)): 
for q=l to M and m=l to N. 

NOTE: For convolution, the elements of operator 
vector B must be stored in TM in reverse 
order. 

TMCONV performs either a correlation or a convolution 
operation between the (N+M-1)-element operand (trace) 

The N-element result vector is stored in C. The 
result vector C may overlay the operand A. Vectors A 
and C reside in main data: vector B is in TMRAM. 
B must be placed in TMRAM using MTMOV or another 
Table Memory Library routine before calling TMCONV. 

NOTE: TMCONV is superior to CONV for M greater than 
or equal to 128; otherwise, CONV is superior. 
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********** 
* 
* 
* 

* 
vn * 

* 
********** 

PURPOSE: 

- VEC'l'OR ZERO TRENDS 

To produce an output vector of G's and l's 
based on zero trends in the 

APPENDIX A 

********** 
* 

* 
* 

* 
ViJl * 

* 
********** 

CALL FORMAT: CALL VGl(A,I,B,J,N,NPTS) 

P ARAME'l'ERS : A = Floating-point input vector 
I = Integer element step for A 
B . - Floating-point output vector 
J = Integer element step for B 
N = Integer element count for A and B 
NPTS = Number of points of source to be 

considered in creating a 
destination point 

DESCRIPTION: B{m) = G.G if ( (A(m-NPTS+l) .EQ. fJ.fJ) .AND. 
(A(m-NPTS+2) .EQ. fJ.fJ) .AND. 

EXAMPLE: 

(A(m) .EQ. fJ.Z) ) 
B(m) = l.G otherwise. 

for m = NPTS to N 
(Note that B(l) = ••• = B(NPTS-1) = l.G) 

The vector scanned. If the current 
of A and the last NPTS-1 points of A are G, then 
the current point of B is set to zero. Otherwise 
the current point of B is set to l.G. The 
resultant vector B is useful in stacking operations. 

N = 16 
NPTS = 3 

A : l.G 2.G fJ.G G.G 5 .G fJ.fJ G.fJ fJ.fJ 
G.G 1'1.G 11.fJ 12.G 13.fJ fJ.G fJ.fJ fJ.fJ 

B 1.fJ l.G 1.fJ l.fJ 1..0 1..0 l.fJ fJ.fJ 
G.Z l.G 1.fJ 1.0 1.0 l.fJ l. 0 fJ. g 
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EXAMPLE: 

APPENDIX A 

A(l) should be equal to fI.fI, and all other values 
of A(i) and B(i), for i = 1 to NC, should be greater, 
than fO.fJ. 

The initial sample value of zero-fill in the 
destination trace is returned in parameter NNMO. 
A value of N+l for NNMO indicates no zero-fill. 

Routine NMOLI (linear interpolation) or NMOQI 
(quadratic interpolation) is generally called 
subsequent to routine VARNMO. 

The speed of this routine is data dependent. 

NC = 4 
N - , "'"' J.JOJO 

SR = 3. fO 
x = lfifJ.fO 

A: fO. g 75 .fO lHfO .fI 2fifJ.fJ 
B: 5fiftHJ .fI 6fifJfI.fI 7 fJfJfJ. fJ 85fff:J. g 

NNMO = 68 

0( l) 

2fJ. fifO 
O{ 2) 
29.fJ7 

0( 3) 

2f1.59 

0(65) 0(66) 0(67) 
192.39 195.38 198.37 

0( 4) 

21. 53 

0(68) 
fJ. fJfO 

0( 5) 

22.83 

0(69) 
fJ. fJfJ 

0( 6) 

24.44 
0( 7) 

26.39 

O(lfJfI) 
fO. gg 
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********** 
* * 
* VSCANB * - VEC'l'OR SCAN FOR ZEROS 

* * 
********** 

PURPOSE: To scan a source vector and record in 
a destination vector a 
of the number of zeros encountered. 

CALL FORMAT: CALL VSCAN0'(A,B,N) 

PARAMETERS: A = Floating-point input vector 
B = Floating-point output vector 
N = Integer element count for A and B 

DESCRIPTION: B(m) =number of ~;s in A(l) tnrough A(mj; 
for m = l to N 

APPENDIX A 

********** .. * 
* VSCANB * 
* * 
********** 

Scans the N values of the source vector A. 
Records the cumulative total of zero values 
in the N elements of vector B. The resultant 
vector B is useful as a mute findere 

EXAMPLE: 

N = 20' 

A l. .0' 1.0' 0'. 0' .0'. 0' 1..0' 0'. 0' 0'. 0' 0'. 0' 1.0' 1.0' 
1.0' 0'. 0' 0'. 0' 0'. 0' 0'. 0' 0'. 0' 1.0' .0'. 0' 0'. 0' 1.0' 

B 0'. 0' 0'. 0' 1.0' 2. 0' 2. 0' 3. 0' 4. 0' 5. 0' 5. 0' 5. 0' 
5 • .0' 6 • .0' 7 • .0' 8 • .0' 9. 0' 10' • .0' 10' • .0' 11.0' 12. 0' 12. 0' 

FPS 86S-7482-SS1C Page A - 421 



********** 
* * 
* CSFR2 * 
* * 
********** 

PURPOSE: 

Jl..PPEND!X A 

********** 
* * 

SPARSE COMPLEX SYMMETRIC FACTOR - * CSFR2 * 
* 

********** 

To perform an LDL' factorization of a complex, 
symmetric matrix A, where A is sparse and is 
represented in packed form. 

CALL FORMAT: CALL CSFR2(N,NS,S,ICP,IRN,ZTOL,WRK,IERR) 

PARAMETERS: N = Integer input scalar 
Order of the matrix A (must be greater than 1) 

NS = Integer input scalar 
Number of sparse elements (i.e., nonzero and 
fill-in elements) in the lower triangle of A 

S = Complex input/output array of length NS 
On input, S contains the sparse elements of 
the lower triangle of A in column order. On 
output, S contains the superposition of L and 
D with the diagonal elements reciprocated. 

ICP = Integer input array of length N+l 
Contains pointers into S to the first sparse 
element of each column with ICP(N+l) = NS + 1 

IRN = Integer input array of length NS 

ZTOL 

WRK 
IERR 

Contains the row numbers that correspond to 
the elements in S 

= Floating-point input scalar 
Zero tolerance value 

= Complex scratch vector of length N 
= Integer output scalar 

Error code whose values are: 
g - Normal termination 
1 - Routine aborted because a diagonal 

element was computed to be zero (i.e., 
its absolute value squared was less than 
or equal to ZTOL) 

2 ~ Routine aborted because N < 2 

DESCRIPTION: This routine factors A into LDL' where L 
is a lower triangular matrix with ones on its 
diagonal, D is a diagonal matrix, and L' is the 
transpose of L. The factorization is performed 
without any row or column interchanges. 
L and D are superpositioned by suppressing 
the ones on the diagonal of L: i.e., if the 
superposition of L and D is denoted by C, then 
C = L + D - I. The sparse elements of the super­
position of L and D are stored in the corresponding 
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• 

Thus the superposition of L and D with the diagonal 
elements of D replaced by their reciprocals is 

( .0'. 5, -.0'. 5 ) 
(.0' • .0', .0' • .0') 
(2 • .0',-1..0') 
(.0' • .0', .0' • .0') 
(.0' • .0', .0' • .0') 

(.0'.S, .0'.5) 
(.0' • .0', .0' • .0') 
(1..0', 1..0') 
(.0' • .0', .0' • .0') 

( .0'. 2, -.0'. 4) 
(.0' • .0', .0' • .0') (-.0'.25,.0'.25) 
(.0' • .0', .0' • .0') (.0' • .0', 1 • .0') (.0'.25,.0' • .0') 
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DESCRIPTION: First CSFR2 is called to factor A into LDL' where L 
is a lower triangular matrix with ones on its 
diagonal, D is a diagonal matrix, and L' is the 
transpose of L. The factorization is performed 
without any row or column interchanges. 

EXAMPLE: 

( 1..kJ 1 

(.0 • .kl, 

( 3 ·", 
(.kl.fl, 
(.0' • .kl, 

L and D are superpositioned by suppressing 
the ones on the diagonal of L; i.e., if the 
superposition of L and D is denoted by c, then 
C = L + D - I. The sparse elements of the super­
position of L and D are stored in the corresponding 
locations of S with the diagonal elements of D 
replaced by their reciprocals. L and D may contain 
nonzero elements where A contains zero elements. 
Collectively called "fill-in", these zeros must be 
included in S as input sparse elements of A. Failure 
to properly provide for fill-in results in 
undetermined action by this routine. 

Next, CSSV2 ls called to solve the system in three 
steps: 

(1) Solve Lz=b for z (forward elimination) 
(2) Solve Dy=z for y 
(3) Solve L'x=y for x (backward substitution) 

This routine supercedes CSFS and differs from it in 
two important respects. First, CSFS2 is much faster 
than CSFS. Second, CSFS2 does not check to ensure 
that fill-in has been provided for properly; whereas, 
CSFS does. 

The scratch parameter WRK is not used in the current 
release of this routine; however, it has been 
retained for compatibility with CSFS. Thus, a scalar 
may be used in place for a vector for WRK. 

For a more detailed discussion, refer to Appendix C. 

The execution time for this routine is data dependent. 

Let A be the complex, symmetric matrix 

l..kl) (.kl.0, g. 0) (3.0, l. 0) (0.0, 0 • .0) (.0 • .kl, g. g) 

g • .kl) ( 1..0 ,-1..0) ('1 • .0, .kl.'1) (2 • .0, g • .0) (.0 • .kl, g. g) 

1..0') ( .0'. g·, .0' • .0) ( 8 • .kl, l. .0) (.0 • .0, .0 • .0) (.0 • .0, .0 • .kl) 
IL .kl) ( 2. 0, .0. g) (.0.0, .0. g) (.0 • .0, .0 • .0) (2 • .0',-2 • .0) 
.kl.fr) ( g • .0, fJ • .0') ( .0' • .0, fJ • .0) .(2 • .0',-2 • .0) ( 6 • .0', 

NOTE: It is known apriori that fill-in occurs in 
element (4,4). 

2 • .0') 
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********** 
* * 
* CSSV2 * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

- SPARSE COMPLEX SYMMETRIC SOLVE - * CSSV2 * 
* * 

To find the solution to the system Ax = b, where A is 
a sparse: complex: symmetric matrix that is LDL' 
factored and is represented in packed form. 

CALL FORMAT: CALL CSSV2(N,NS,S,ICP,IRN,BX) 

PARAMETERS: N = Integer input scalar 
Order of the matrix A (must be greater than 1) 

NS = Integer input scalar 

s 

ICP 

!RN 

BX 

Number of sparse elements (i.e., nonzero and 
~~,, !- _, ____ ~_, !- ~ 

.L.L.J..J.-.L.U t::.Lt::Ult::Ul.::;J .LU n 

= Complex input array of length NS 

= 

= 

Contains the sparse elements of the super­
position of L and D with the diagonal elements 
reciprocated. The elements are stored in 
column order. 
Integer input array of length N+l 
Contains pointers into s to the first sparse 
element of each column with ICP(N+l) = NS + 1 
Integer input array of length NS 
Contains the row numbers that correspond to 
the elements in S 

= rnmn 1 gy ; nn11 r Inn tn11 t- ugrt-nr nf 1 gnni- h N ----·r----- ---r-- _, -- -r-- - . -- --- -- ----:;J -·- -· 
On input, BX contains the right-hand side 
vector b. On output, BX contains the solution 
vector x. 

DESCRIPTION: This routine solves the system Ax = b where A is a 
sparse, complex, symmetric matrix fhat is factored 
into LDL'. L is a lower triangular matrix with ones 
on its diagonal, D is a diagonal matrix, and L' is 
the transpose of L. L and D are superpositioned 
by suppressing the ones on the diagonal 
of L~ i.e., if the superposition of Land D 
is denoted by c, then C = L + D - I. 

The solution process consists of three steps: 

(1) Solve Lz=b for z (forward elimination) 
(2) Solve Dy=z for y 
(3) Solve L'x=y for x (backward substitution) 

This routine supercedes CSSV. 

For a more detailed discussion, refer to Appendix c. 

The execution time for this routine is data dependent. 
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********** ********** 
* * * * 
* CUFR2 * -- SPARSE COMPLEX UNSYMMETRIC FACTOR -- * CUFR2 * 
* * * * 
********** ********** 

PURPOSE: To perform an LU factorization of a complex, 
where 

represented in packed form. 

CALL FORMAT: CALL CUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR) 

PARAMETERS: N = Integer input scalar 
Order of the matrix A (must be greater than 1) 

NS = Integer input scalar 
Number of sparse elements (i.e., nonzero and 
fill-in elements) in A 

S = Complex input/output array of length NS 
On input, 5 contains the sparse elements of A 
in column order. On output, S contains the 
sparse elements of the superposition of L and 
U with the diagonal elements reciprocated. 

ICP = Integer input array of length N+l 
Contains pointers into 5 to the first sparse 
element of each column with ICP(N+l) = NS + 1 

IRN = Integer input array of length NS 

TT'\n = •~r 

ZTOL = 

WRK = 
IERR = 

Contains the row numbers that correspond to 
the elements in 5 
T ..... .a.. __ .,.._,.., ..: ..... -.. "- array ,,...;: , ---•lo.. 1'..T 
... Ul..'C''::f'C'.I.. .J..Ut:''-' ... VJ.. •cuyi..u L'll 

Contains pointers into s to the diagonal 
elements 
Floating-point input scalar 
Zero tolerance value 
Complex scratch vector of length N 
Integer output scalar 
Error code whose values are: 

fJ - Normal termination 
l - Routine aborted because a diagonal 

element was computed to be zero (i.e .• 
its absolute value squared was less than 
or equal to ZTOL) 

2 - Routine aborted because N < 2 
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The output parameters are: 

s = .0.5, -.0.5, 3 • .0, 1..0, .0.5, .0.5, 2 • .0, .0 • .0, 
2 • .0, -1..0', .0'. 2, -.0.4, 1..0'' 1..0', -.0'. 25, .0'. 25, 
2 • .0', -2 • .0', .0' • .0', 1..0', .0' • 25 I .0' • .0' 

IERR = g 

Thus the superposition of L and U with the diagonal 
elements of L replaced by their reciprocals is 

( .0' • 5 I -.0' • 5) (.0'.IJ, {J • .0') (2.!J,-1..0') (fJ.{J, IJ.!J) ( kJ • .0' I kJ.kJ) 
( g • .0', g • .0') ( .0'. 5, .0'. 5) ( .0' • .0', .0' • .0') ( 1. .0', 1..0') (!J.kJ, kJ.kJ) 
(3 • .0', 1..0') (.0'.IJ, .0' • .0') ( .0' • 2 I -.0' • 4) ( .0' • .0', kJ. .0') ( .0' • .0', .0' • .0') 
(kJ.kJ, g • .0') (2.!J, .0' • .0') OJ..0', .0' .kJ) (-.0'.25,.0'.25) ( .0' • .0', 1..0') 
( .0' • .0'' g • .0') ( .0' .kl, .0'" .0') ( .0' .k!, g .. .0') (2.IJ,-2.IJ) (IJ.25,IJ.IJ) 
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DESCRIPTION: First CUFR2 is· called to factor A into LU where L is 
a lower triangular matrix and U is an upper 
triangular matrix with ones on its diagonal. The 
factorization is performed without any row or column 
interchanges. L and U are superpositioned 

EXAMPLE: 

( 1..0', 
( .0' • .0', 
( 3 • .0', 
(.0' • .0', 
OI.kJ, 

by suppressing the ones on the diagonal of U~ i.e., 
if the superposition of L and U is denoted by C, then 
C = L + U - I. The sparse elements of the super­
position of L and U are stored in the corresponding 
, ___ .._,: ___ -.t:: ~ •.• .:4.\.. .._.,..._ ....::1.: __ ..,....,..,.1 .,..,_....,....,.....,..,,_ ,...._4! T 
..l..V'l.-Cll. .LV.U;::! V.1.. ~ ff.L 1.U 1...1..n: 'W.LCl'::fVUCl..1.. -=:..1..1::au1:::a;;1..;::i VJ. .I.I 

replaced by their reciprocals. L and U may contain 
nonzero elements where A contains zero elements. 
Collectively called "fill-in", these zeros must be 
included in S as input sparse elements of A. Failure 
to properly provide for fill-in results in 
undetermined action by this routine. 

Next, CUSV2 is called to solve the system in two 
steps: 

(1) Solve Ly=b for y 
(2) Solve Ux=y for x 

(forward elimination) 
(backward substitution) 

This routine supercedes CUFS and differs from it in 
two important respects. First, CUFS2 is much faster 
than CUFS. Second, CUFS2 does not check to ensure 
that fill-in has been provided for properly; whereas, 
CUFS does. 

For a more detailed discussion, refer to Appendix C. 

The execution time for this routine is data dependent. 

Let A be the complex matrix 

1..0') (.0' • .0', .0' • .0') ( 3 • .0', 1..0') OJ. .0', .0' • .0') ( liI • .0', liI. /iI) 
liI • .0') (l.0,-1..0') ( liI • .0', liI • .0') ( 2 • .0', liI. liI) ( liI. liI, liI • .0') 
1..0') ( .0' • .0', .0' • .0') ( 8 • .0', 1..0') ( .0' • .0', .0' • .0') ( .0' • .0', .0' • .0') 
liI • .0') ( 2 • .0', .0' • .0') ( liI • .0', .0' • .0') ( .0' • .0', liI • .0') (2 • .0',-2 • .0') 
JCL/iI) ( .0' • .0', .0' .. /iI) (kJ .. .'1, .'1.kJ) (2 • .0,-2./iI) ( 6 .kJ, 

NOTE: It is known apriori that fill-in occurs in 
element (4,4). 

Let b be the complex vector 

( JCL.0', .0' • .0') 
( 3 • .0', 3 • .0') 
(~7 .. Z;~9.Z) 
( 4 • .0', 2 • .0') 
(12 • .0', 4 • .0') 

2 • ..0') 
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********** ********** 
* * * * 
* CUSV2 * -- SPARSE COMPLEX UNSYMMETRIC SOLVE - * CUSV2 * 
* * * * 
********** ********** 

PURPOSE: To find the solution to the system Ax = b, where A is 
a sparse, complex, unSi'mmetric matrix that is LU 
factored and is represented in packed formo 

CALL FORMAT: CALL CUSV2(N,NS,S,ICP,IRN,IDP,BX) 

PARAMETERS: N = Integer input scalar 
Order of the matrix A (must be greater than 1) 

NS = Integer input scalar 
Number of sparse elements (i.e., nonzero and 
fill-in elements) in A 

S = Complex input array of length NS 
Contains the sparse elements of the super­
position of L and U with the diagonal elements 
reciprocated. The elements are stored in 
column order. 

ICP = Integer input array of length N+l 
Contains pointers into S to the first sparse 
element of each column with ICP(N+l) = NS + 1 

IRN = Integer input array of length NS 
Contains the row numbers that correspond to 
the elements in S 

= Integer input array of 1 ---~1... 1"T .Leuy 1.u L't 

Contains pointers into S to the diagonal 
elements 

BX = Complex input/output vector of length N 
On input, BX contains the right-hand side 
vector b. On output, BX contains the solution 
vector x. 

DESCRIPTION: This routine solves the system Ax = b where A is a 
sparse, complex matrix that is factored into LU. L 
is a lower triangular matrix and U is an upper 
triangular matrix with ones on its diagonal. L and U 
are superpositioned by suppressing the ones on the 
diagonal of U; i.e., if the superposition of Land U 
is denoted by c, then C = L + U - I. 

The solution process consists of two steps: 

(1) Solve Ly=b for y (forward elimination) 
I ., \ 
\ ... J Solve Ux=y for x (backward substitution) 

This routine supercedes CUSV. 

For a more detailed discussion, refer to Appendix C. 
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********** 
* * 
* RSFR2 * 
* * 
********** 

PURPOSE: 

********** 
* 

- SPARSE REAL SYMMETRIC FACTOR - * RSFR2 * 
* 
********** 

To perform an LDL' factorization of a real, symmetric 
matrix A, where A is sparse and is represented in 
packed form. 

CALL FORMAT: CALL RSFR2(N,NS,S,ICP,IRN,ZTOL,WRK,IERR) 

PARAMETERS: N = Integer input scalar 
Order of the matrix A (must be greater than 1) 

NS = Integer input scalar 
Number of sparse elements (i.e., nonzero and 
fill-in elements) in the lower triangle of A 

S = Floating-point input/output array of length NS 

ICP = 

IRN = 

ZTOL = 

WRK = 
IERR = 

On input, S contains the sparse elements of 
the lower triangle of A in column order. On 
output, S contains the superposition of L and 
D with the diagonal elements reciprocated. 
Integer input array of length N+l 
Contains pointers into S to the first sparse 
element of each column with ICP(N+l) = NS + 1 
Integer input array of length NS 
Contains the row numbers that correspond to 
the elements in S 
Floating-point input scalar 
Zero tolerance value 
Floating-point scratch vector of length N 
Integer output scalar 
Error code whose values are: 

~ - Normal termination 
l - Routine aborted because a diagonal 

element was computed to be zero (i.e., 
its absolute value was less than or 
equal to ZTOL) 

2 - Routine aborted because N < 2 
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.0'.125 

.0' 0 .0' .0' .125 

.0' • .0' .0' 0 .0' 

.0' • .0' .0'. g 

.0' • .0' .0' • .0' 

.0' 0 .0' .0' 0 .0' 
fJ. fJ fJ. fJ 
g • .0' .0' • .0' 
.0' • .0' fJ • .0' 
.0' • .0' 2 • .0' 

Jl..PPENDIX 

Then the input parameters are: 

N = HJ 
NS = 22 
s = 8 • .ff, 8. ff' 16 o.0' I 16 • .0', 32 • .0', 8.fJ • .0', 16 • .0', 

24 • .0'' 16 • .0', 8 • .0', 24 • .0', 8 • .0', 4 • .0', 16 • .0', 
32 • .0', 16 • .0', 8.0' • .0', 4.0' • .0', 8 • .0', 4 • .0', .0' • .0', 
-1.25 

ICP = 1, 2, 4, 6, 8, 11, 14, 17, 2.0', 22, 23 
IRN = 1, 2, HJ, 3, 4, 4, 5, 5, 6, 8, o, 

8, 1.0', 7, 8, 9, 8, 9, l.fJ, 9, 1.0', 1.0' 
ZTOL = l..fJE-6 

The output parameters are: 

s = .0'.125, .0'.125, 2.fJ, .0'.fJ625, 2.fJ, .0' • .0'625, 1 • .0', 
fJ.125, 2 • .0', 1 • .0', -.0'.125, 1 • .0', -.0'.5, .0' • .0'625, 
2 • .0', 1 • .0', .0' • .0'625, fJ.S, .0'.25, -fJ • .0'625, .0'.125, 
-.0' • .0'3125 

!ERR = .0' 

Thus the superposition of L and D with the diagonal 
elements of D replaced by their reciprocals is 

.0' • .0'625 
2. g .0' • .0625 
.0' • .0' 1..0' .0' .125 
.0' • .0' .0'. kJ 2 • .0' -.0' .125 
g .fJ g .fJ fi.fJ fJ .fJ fJ.fJ625 
.0' • .0' .0' • .0' 1..0' 1..0' 2 0 .0' .0' • .0'625 
.0' • .0' .0'. fJ .0'. fJ .0'. fJ 1. .0' .0'. 5 -.0' • .0'625 
.0' • .0' .0'.0 .0' • .0' -.0'.5 g • .0' .0'.25 .0' .125 -.0' • .0'3125 

A 
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DESCRIPTION: First RSFR2 is called to factor A into LDL' where L 
is a lower triangular matrix with ones on its 
diagonal, D is a diagonal matrix, and L' is the 
transpose of L. The factorization is performed 
without any row or column interchanges. 

EXAMPLE: 

8 • .0' 
.0' • .0' 
.0' • .0' 
.0' • .0' 
.0' • .0' 
.0' • .0' 
r:r r.t 
IC • ;u 

.0' • .0' 

.0' • .0' 

.0' .0 

L and D are superpositioned by suppressing 
the ones on the diagonal of L; i.e., if the 
superposition of L and D is denoted by C, then 
C = L + D - I. The sparse elements of the super­
position of L and D are stored in the corresponding 
locations of S with the diagonal elements of D 
replaced by their reciprocals. L and D may contain 
nonzero elements where A contains zero elements. 
Collectively called "fill-in", these zeros must be 
included in S as input sparse elements of A. Failure 
to properly provide for fill-in results in 
undetermined action by this routine. 

Next, RSSV2 is called to solve the system in three 
steps: 

(1) Solve Lz=b for z (forward elimination) 
(2) Solve Dy=z for y 
(3) Solve L'x=y for x (backward substitution) 

This routine supercedes RSFS and differs from it in 
two important respects. First, RSFS2 is much faster 
than RSFS. Second, RSFS2 does not check to ensure 
that fill-in has been provided for properly; whereas, 
RSFS does. 

The scratch parameter WRK is not used in the current 
release of this routine; however, it has been 
retained for compatibility with RSFS. Thus, a scalar 
may be used in place for a vector for WRK. 

For a more detailed discussion, refer to Appendix C. 

The execution time for this routine is data dependent. 

Let A be the symmetric matrix 

0 • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' .0 .0' • .0' 
8 . .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' .0 16 • .0' 
0 • .0' 16 • .0' 32 • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 
.0' • .0' 32 • .0' 80 • .0' 16 • .0' .0' • .0' 0.0 0.0 .0' .0 .0' • .0' 
.0' • .0' .0' • .0' 16 • .0' 24 • .0' 16.0 .0' .0 8.0 .0' • .0' ~:1. 0 
.0' • .0' .0' • .0' 0 • .0' 16 • .0' 24.0 .0' • .0' 8 • .0' .0' • .0' 4 • .0' 
rx r:r fl IT z.z IT r:r IT r:r 16.Z .., ., r.r , t:: r.t r:r r:r 
JU • :u JU • :u :u • x.; x.; • JU ~ L.. J{J ~u.u x.; • :t,) 

.0'.0 .0' • .0' .0' • .0' 8 • .0' 8 • .0' 32 • .0' 8.0' • .0' 4.0' • .0' 8 • .0' 

.0' • .0' .0' • .0' .0' • .0' .0' • .0' .0' • .0' 16 • .0' 4.0' • .0' 4 • .0' .0' • .0' 
16 • .0' .0' • .0' 0 • .0' .0' • .0' 4 .0 .0' • .0' 8 • .0' .0' • .0' -1.25 
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f(J .125 
f(J. g f(J .125 
g. g f(J. g 
g. g f(J. g 
f(J. f(J f(J. g 
f(J. g g. g 
fJ.;; fJ. fJ 
g .kJ f(J. f(J 

f(J. g f(J .kJ 
g .kJ 2.kJ 

APPENDIX A 

Thus the superposition of L and D with the diagonal 
elements of D replaced by their reciprocals is 

f(J .kJ625 
2 .kJ kJ.fiJ625 
f(J. g l.kJ kJ.125 
g. g g. f(J 2 .l! -kJ.125 
g .;; f1. f1 f1 .fJ 1¥ IY IY IY'--t.~ 

JO. JO iO.JOO~;J 

l!.kJ g .f(J l.fiJ l.fiJ 2.l! 
f(J .kJ g .l! kJ.l! g_g l.l! 
g_g g .ff fJ.kJ -ff .5 ff .ff 

and the solution vector, x, is 

3 • .fiJ 
l.kJ 
4.kJ 
l..fiJ 
5.ff 
9.kJ 
ff .kJ 
ff .If 
7.J! 
kJ.J! 

f(J • .062 5 
fiJ.5 -ff.ff625 
fiJ.25 f!.125 -ff .ff3125 
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EXAMPLE: 

8 .JI 
.0' • .0' 
.0' • .0' 
.0' .JI 
.0'. fJ 
JI.JI 
fj. fj 

.0'. fI 

.0' • .0' 

.0' • .0' 

.0' 0125 
fI • .0' fI .12 5 
.0' • .0' JI • .0' 
.0' • .0' .0' • .0' 
.0' • .0' .0' • .0' 
.0' • .0' .0' • .0' 
.0' • .0' .0' • .0' 
.0' • .0' .0' • .0' 
.0' • .0' .0' • .0' 
fI • .0' 2 • .0' 

APPENDIX A 

Let A be the symmetric matrix 

JI.JI JI.JI JI • .0' .0' • .0' .0' .JI .0' .JI .0' .JI JI.JI .0' .JI 
8.JI .0' • .0' JI • .0' .0' • .0' .0' .JI .0' • .0' .0' .JI .0' .JI 16 • .0' 
JI • .0' 16.JI 32.JI JI.JI .0' .H .0'.JI .0'.H JI.JI g • .0' 
JI.JI 32.fI BfI. fI 16.fI fJ • .0' .0'. fJ fJ .H .0'. fJ fL.0' 
fJ. fI fJ. fI 16.JI 24.fI 16 .fJ fI. fI 8 .fJ fI. fI fJ .JI 
JI.JI JI.JI .0'. fJ 16.fI 24 .fJ fI. fJ 8 .fJ fI. fI 4 .fI 
fj. fj fj. fj ff. fj fj. ff ff. ff 16 • .0' 32 • .0' 16 • .0" ff .J 
fI. fI fI • .0' .0' • .0' 8. fI 8. fI 32 • .0' BfJ.JI 4fI • .0' 8. fI 
fI. fJ fI.fI .0' 0 .0' fI • .0' fI • .0' 16 • .0' 4.0' .JI 4 ofJ .0' 0 .0' 

16.JI .0' • .0' .0' • .0' .0' 0 .0' 4.JI .0' .JI 8 .JI .0' .fJ -1.25 

Then the superposition of L and D with the diagonal 
elements of D replaced by their reciprocals is 

.0'.fI625 
2.JI .0' • .0'625 
.0' .JI 1..0' .0' .12S 
.0' • .0' .0' • .0' 2 • .0' -.0'.125 
.0' • .0' 
.0'. fJ 
.0' • .0' 
fI • .0' 

Let b 

24 • .0' 
8. fI 

96. fI 
288 • .0' 
28.0' • .0' 
296 • .0' 
112 • .0' 
392 • .0' 

28 • .0' 
52 • .0' 

.0' • .0' 

.0' • .0' 
fI. fI 
fI. fI 

be the 

.0' • .0' fI • .0' .0'.fJ625 
1..0' 1..0' 2. fJ 
.0' • .0' fI • .0' 1..0' 
fJ. fI -.0'. 5 fI • .0' 

vector 

Then the input parameters are: 

N = Hf 
NS = 22 

.0'.XJ625 

.0'.5 -.0' • .0'625 
fI.25 .0'.125 -fI • .0'3125 

s = fI.125, .0'.125, 2 • .0', .0' • .0'625, 2 • .0', .0' • .0'625, 1 • .0', 
.0'.125, 2 • .0', 1 • .0', -.0'.125, 1 • .0', -.0'.5, .0' • .0'625, 
2.fI, 1 • .0', .0' • .0'625, .0'.5; .0'.25, -.0' • .0'625, .0'.125, 
-.0'.0'3125 

ICP = l, 2, 4, 6, 8, 11, 14, 17, 2ff, 22, 23 
IRN = 1, 2, 1.0', 3, 4, 4, 5, 5, 6, 8, 6, 

8, 1.0'' 7, 8, 9, 8, 9, 1.0', 9, 1.0', 1.0' 
BX = 2 4 • .0', 8. 0', 96 • .0', 288 • .0', 28.0' • .0', 296 • .0', 112 • .0', 

392.0', 28 • .0', 52 • .0' 
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APPENDIX A 

********** ********** 
* * * * 
* RUFR2 * - SPARSE REAL UNSYMME'l'RIC FACTOR * RUFR2 * 
* * * 
********** ********** 

PURPOSE: To perform an LU factorization of a real, unsymmetric 
matrix 
packed form. 

CALL FORMAT: CALL RUFR2(N,NS,S,ICP,IRN,IDP,ZTOL,WRK,IERR) 

PARAMETERS: N = Integer input scalar 
Order of the matrix A (must be greater than 1) 

NS = Integer input scalar 
Number of sparse elements (ioe., nonzero and 
fill-in elements) in A 

S = Floating-point input/output array of length NS 
On input, S contains the sparse elements of A 

in column order. On output, S contains the 
sparse elements of the superposition of L and 
U with the diagonal elements reciprocated. 

ICP = Integer input array of length N+l 
Contains pointers into S to the first sparse 
element of each column with ICP(N+l) = NS + 1 

!RN = Integer input array of length NS 
Contains the row numbers that correspond to 
the elements in S 

IDP ~ Integer input array cf length N 
Contains pointers into S to the diagonal 
elements 

ZTOL = Floating-point input scalar 
Zero tolerance value 

WRK = Floating-point scratch vector of length N 
IERR = Integer output scalar 

Error code whose values are: 
0 - Normal termination 
1 - Routine aborted because a diagonal 

element was computed to be zero (i.e., 
its absolute value was less than or 
equal to ZTOL) 

2 - Routine aborted because N < 2 
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APPENDIX A 

Then the input parameters are: 

N = HJ 
NS = 34 
s = 8. fi1, 8. fi1, 16 • .0', 16 • .0', 32 • .0', 32 • .0', 8.0' • .0', 

16.JJ, 16.JJ, 24.JJ, 16 • .0'' 8 • .0'' 16 • .0', 24 • .0', 
8. fi1, 4. fi1, 16 .JJ' 32 • .0', 16 • .0', 8 • .0', 8 • .0, 

32 .JJ' 8.0. fi1, 4fi1 • .0'·, 8 • .0'' 16 • .0'' 4.0' • .0', 4 • .0, 
.0 • .0', 16 • .0', 4 • .0', 8 • .0', .0' • .0'' -1.25 

ICP = 1, 2, 4, 6, 9, 13, 17, Ui, 26, 3fi' 35 
IRN = 1, 2' 1.0', 3, 4, 3, 4, 5, 4, 5, 6, 

8, 5, 6, 8, 1.0'' 7, 8, 9, 5, 6, 7, 
8, 9, lJJ, 7, 8, 9, lJJ, 2, 6, 8, 9, lJJ 

IDP = 1, 2' 4, 7, 1.0' I 14, 17, 23, 28, 34 
ZTOL = l..0'E-6 

The output parameters are: 

s = .0'.125, .0.125, 16 • .0', .0' • .0'62 5, 32 • .0'' 2 .JJ, .0.JJ625, 
16 .JJ, 1..0', .0.125, 16 • .0' I 8 • .0', 2 • .0', -.0'.125, 
-8.JJ, 4 • .0', .0' • .0'625, 32 • .0' I 16 • .0' I 1..0', 1..0', 2 • .0'' 
.0' • .0'625, 8 • .0', 4 • .0', l.JJ, .0. 5, -.0 • .0'625, -2.JJ, 
2 • .0', -.0'. 5, .0'.25, .0'.125, -.0' • .0'3125 

IERR = fi1 

Thus the superposition of L and U with the diagonal 
elements of L replaced by their reciprocals is 

.0'.125 .0'.JJ fi1 • .0' .0'. fi1 .0'. fi1 fi1 • .0' .0 • .0' fi1 • .0' .0'. fi1 fi1 • .0' 
fi1. fi1 fi1 .125 fi1 • .0' .0' • .0' .0'. fi1 fi1. fi1 f(J. .0' J;L.0' fi1. fi1 2. fi1 
fJ .JO fJ.fJ fJ.J0625 2.fJ JO. fJ JO. JO JO .fJ fJ. IO IO. 0 JO .0 
fi1 • .0' .0' • .0' 32 • .0' .0' • .0'625 l.JJ fi1. fi1 fi1 • .0' .0'. fi1 fi1. fi1 fi1. fi1 
.0' • .0' JJ.JJ .0. fi1 16 • .0' .0' .125 2.0 fi1. fi1 l.fJ fi1. fi1 fi1 .JJ 
fi1. fi1 .0'. fi1 fi1 • .0' .0'. fi1 16.JJ -fi1 .125 fi1. fi1 1..0' fi1. fi1 -fi1. 5 
.0' • .0' .0' .JJ .0' • .0' .0'. fi1 fi1. fi1 fi1 • .0' JJ.JJ625 2. fi1 l.fJ fi1. fi1 
.0 • .0' .0' • .0' .0' • .0' .0'. fi1 8 • .0' -8 • .0' 32 • .0' .0' • .0'625 fi1. 5 fJ.25 
.0' • .0' .0'.JJ .0' • .0' .0'. fi1 fi1. fi1 fi1 • .0' 16 • .0' 8 • .0' -fJ • .0'625 fJ.125 
fi1 • .0' 16 • .0' .0' • .0' .0'. fi1 fi1 • .0' 4 • .0' fi1 • .0' 4. fi1 -2.fJ -.0' • .0'3125 
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DESCRIPTION: First RUFR2 is called to factor A into LU where L is 
a lower triangular matrix and U is an upper 
trian9ular matrix with ones on its diagonal. The 
factorization is performed without any row or column 
interchanges. L and U are superpositioned 

EXAMPLE: 

8 • .0' 
kl • .0' 
kl • .0' 
{I.kl 
.0' • .0' 
.0' • .0' 
.0' • .0' 
.0' • .0' 
.0' .0 
.0' • .0' 

by suppressing the ones on the diagonal of U; i.e., 
if the superposition of L and U is denoted by C, then 
C = L + U - I. The sparse elements of the super­
position of L and U are stored in the corresponding 
locations of S with the diagonal elements of L 
replaced by their reciprocals. L and U may contain 
nonzero elements where A contains zero elements. 
Collectively called "fill-in", these zeros must be 
included in S as input sparse elements of A. Failure 
to properly provide for fill-in results in 
undetermined action by this routine. 

Next, RUSV2 is called to solve the system in two 
steps: 

(1) Solve Ly=b for y 
(2) Solve Ux=y for x 

(forward elimination) 
(backward substitution) 

This routine supercedes RUFS and differs from it in 
two important respects. First, RUFS2 is much faster 
than RUFS. Second, RUFS2 does not check to ensure 
that fill-in has been provided for properly; whereas, 
RUFS does. 

For a more detailed discussion, refer to Appendix C. 

The execution time for this routine is data dependent. 

Let A be the matrix 

g • .0' g • .0' g_g .0' • .0' .0' .kl kl.kl .0' .kl kl.kl .0' .0 
8 • .0' kl • .0' 0.kl .0' • .0' kl.kl kl • .0' kl.kf 0 .0 16.0 
g • .0' 16.kl 32.kl .0' .kl 0.kl kl.kl kl.kf 0 • .0' 0. 0 
.0' • .0' 32 • .0' 80.kl 16.kl kl.kl .0' .kl .0' .0 0. 0 0 .kl 
ff • .0' ff • .0' 16 • .0' 24 • .0' 16 . .0' {J.fJ 8. ff .0'. ff .0' • .0' 
0 • .0' 0 • .0' 0 • .0' 16 • .0' 24 • .0' 0. 0 8. 0 .0' • .0' 4 • .0' 
0 • .0' .0' • .0' .0' • .0' .0' .0 0 • .0' 16.kl 32 • .0' 16.0 0 • .0' 
0 • .0' 0 • .0' 0 • .0' 8 • .0' 8 • .0' 32 • .0' 8.0' • .0' 4.0' • .0' 8.0 
.0' • .0' .0' .0 0 • .0' .0' • .0' .0' • .0' 16.0 4.0' • .0' 4.0 0 • .0' 

16 • .0' 0 • .0' .0' • .0' .0' • .0' 4 • .0' .0' .0 8 • .0' .0' .0 -1.25 

NOTE: It is known apriori that fill-in occurs in 
elements (lfJ,9) and ( 9, 1.0') • 
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ff .125 ff .ff 
k!.ff ff .125 
ff .H ff. 0 
ff .ff ff .ff 
g • .0 .0 .H 
.0 .ff .0 • .0 
J.J g.,;;; 
0 • .0 .0 .H 
ff. ff .0 .H 
ff .H 16.H 

Thus the superposition of L and U with the diagonal 
elements of L replaced by their reciprocals is 

ff .ff 0.ff 0.0 ff .0 
ff .ff 0.0 f!.ff ff .ff 
ff .H625 2.ff ff. ff 0.ff 

32 • .0 0.ff625 1.0 ff • .0 
g_g 16.ff .0 .125 2.ff 
g_g .0 .ff 16.ff -kr.125 

.kf.G G.G ;r. ff G.G 
.0 • .0 0.ff 8. ff -8.0 
ff. ff g .ff ff. ff ff .ff 
ff .H ff. ff ff .k! 4 .H 

and the solution vector, 

3.k! 
1..0' 
4 0 .0' 
1.kr 
5 • .0' 
9 .ff 
fJ.ff 
ff • .0' 
7 .ff 
ff. ff 

ff .0 
ff .0 
ff .0 
ff .ff 
ff. ff 
ff .ff 
l'Y l'Y,.""" r. 
JOoJOO.i;:J 

32.0 
16. ff 
ff. ff 

x, is 

ff .k! 
ff .k! 
.0. ff 
ff. ff 
l.ff 
l.ff 

fJ.fJ fJ.fJ 
ff.ff 2.fJ 
ff .ff ff .ff 
ff .ff ff .ff 
k!.ff ff .ff 
ff. ff -ff. 5 
, IV IV f'Y 
.LoXl' JOoJO 

ff .ff625 fJ.5 ff .25 
8.ff -ff .ff625 fJ.125 
4.fJ -2.ff -fJ.ff3125 
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EXAMPLE: 

8.kJ 
.0'. ff 
ff. ff 
.0' .kJ 
fj. fj 

.0'. ff 

.0'. ff 

.0' 0 ff 

.0'. f! 

.0'.kJ 

.0'.125 g • .0' 
g • .0' kJ.125 
g • .0' g • .0' 
.0' .'1 .0.'1 
.0 • .0' .0 • .0' 
fJ • .0' .0 • .0' 
g • .0' .0' • .0' 
.0' • .0' .0 • .0' 
.0' • .0' .0.'1 
.0'. ff 16 • .0' 

The execution time for 

Let A be the matrix 

kJ.kJ .0' • .0' .0'.kJ .0'.kJ 
8. ff .0'. ff ff • .0' kJ.kJ 
g .ff 16. ff 32. ff .0' .ff 
ff • .0' 32. ff 8ff • .0' 16 .ff 
fj. fj 

,.., ,.., , ,.. l"L ., A l"L 
JO. JO J..O •JO ~"i .10 

ff. ff .0' • .0' .0' • .0' 16 • .0' 
ff • .0' .0'. ff fJ.kJ ff • .0' 
ff. ff .0'. ff ff. ff 8 .kJ 
ff • .0' .0' • .0' .0'. ff .0' .. kJ 

16 • .0' .0' • .0' g .ff ff .ff 

Then the superposition 
elements of L replaced 

ff 0 .0' .0' • .0' .0'. ff '1 • .0 
g • .0' .0' .'1 .0' • .0' .0' • .0' 
.0' • .0'625 2 • .0' .0' .'1 '1 • .0 

32 • .0' .0' • .0'625 1..0 g • .0' 
ff • .0' 16 • .0' ff.125 2 • .0 

APPENDIX A 

this routine is data dependent. 

kJ.kJ .0' • .0' kJ.kJ ff • .0' kL.0' 
ff. ff ff • .0' ff • .0' .0' • .0' 16 .ff 
ff. ff ff • .0' .0' • .0' ff • .0' ff • .0' 
.0' • .0' .0'. ff g .ff ff • .0' ff • .0' 

, e l"L l"L rr 0 rr rr rr rr rr 
.J..O .JO JO. JO 0 .u XJ • ICI ICI • JCJ 

24.kJ .0'. ff 8 • .0' .0' • .0' 4 • .0' 
ff. ff 16 .ff 32 • .0' 16 • .0' .0' 0 .0' 
8.kJ 32 .ff Bff • .0' 4g • .0' 8 • .0' 
ff .. kJ 16 .ff 4-'J .ff 4 • .0' g • .0' 
4.kJ .0'. ff 8 • .0 .0 .. .0' -1.25 

of L and U with the diagonal 
reciprocals is by their 

.0'. ff kJ • .0' .0' • .0 .0 • .0 

.0' .kJ .0 • .0' .0' • .0' 2 • .0' 

.0 .ff kJ • .0' .0' • .0' '1 • .0' 
ff • .0' '1 • .0' .0' • .0' '1.ff 
.0' • .0' 1 • .0' '1.'1 fJ.'1 

11.G .0' • .0' 16 • .0' -fi.125 g .fI 1 . .0' .0'.'1 -.0'.5 
.0 .ff 
.0' • .0' 
.0 • .0' 
.0.kJ 

Let b 

24.kJ 
8.kJ 

96.kJ 
288.'1 
28kJ.kJ 
296.'1 
112 • .0' 
392 • .0' 

28 • .0 
52 • .0' 

.0 • .0' 

.0' .'1 

.0' • .0' 

.0' .kJ 

be the 

.0 • .0 .0' • .0' .0' • .0625 2 • .0' l.'1 fJ • .0' 
8 • .0' -8 • .0' 32 • .0' '1 • .0'625 fJ.5 '1.25 
.0' • .0' '1 • .0 16 • .0' 8.ff -.0'.'1625 fJ.125 
'1.kJ 4.kJ .0' • .0' 4.kJ -2.kJ -kJ • .0'3125 

vector 

Then the input parameters are: 

N = lkJ 
NS = 34 
s = f!.125, '1.125, 16 • .0', .0' • .0'625, 32 • .0, 2 • .0', '1 • .0'625, 

16 • .0', 1 • .0', .0'.125, 16 • .0', 8.kJ, 2 • .0', -kJ.125, 
-8.Z, 4.3, Z.Z625, 32.Z; 16.Z, l.Z, l.Z, 2.Z, 
.0' • .0'625, 8 • .0', 4 • .0', 1 • .0, '1.5, -'1 • .0'625, -2 • .0', 
2.fJ, -kJ.5, kJ.25, '1.125, -kJ • .0'3125 
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********** 
* * 
* SDOTPR * 
* * 
********** 

PURPOSE: 

********** 
* * 

- SPARSE DOT PRODUCT - * SDO'l'PR * 
* * 
********** 

To calculate the dot product of a column of A 
with another vector, B, given a real, sparse matrix, A, 
that is in packed format. 

CALL FORMAT: CALL SDOTPR(M,NPl,NS,S,IRN,ICP,IC,B,J,C) 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

M = Integer input scalar 
Number of rows in A. 

NPl = Integer input scalar 
Number of columns in A plus one. 

NS = Integer input scalar 
Number of nonzero elements in A. 

S = Floating-point input array of length NS 
Contains the nonzero elements of A stored by 
columns. 

IRN = Integer input array of length NS 
Contains the row numbers (in A) that correspond 
to the nonzero elements in S. 

ICP = Integer input array of length NPl 

IC 

B 
J 

c 

c = 

Let 

= 

= 
= 

= 

Contains pointers to the elements in S that are 
the first nonzero elements in each column of A. 
ICP(NPl) = NS + 1. 
Integer input scalar 
Number of the column in A that is to be used. 
Floating-point input vector of length M 
Integer input scalar 
Element step for B. 
Floating-point output scalar 

Sum[ B( !RN( k)) * S(k); k=ICP(IC) to ICP(IC+l)-1 ] 

A 1..0' .0' • .0' fiJ. .0' 4 • .0' iL.0' 1..0' .0'. f(J 

f(J .kJ f(J .kJ -1.kf f(J. f(J f(J. f(J f(J. f(J f(J. f(J 

f(J .kJ -4.kJ f(J. f(J f(J .kJ 5.kJ g .0 2. f(J 

2. f(J f(J. f(J f(J .kJ f(J. 0 .0' • .0' g .kJ g .f(J 

kJ .H .0' • .0' .0' .kJ H. fJ -2. fJ fJ • .0' -3.0 
0 • .0' 0.kJ 0 • .0' -3.kf 3 • .0' .0' • .0' .0' .0 
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********** 
* 

* SITSOL * 
* * 
********** 

PURPOSE: 

********** 
* * 

SPARSE ITERATIVE SOLVER - * SITSOL * 
* * 
********** 

To solve a real, sparse, linear system A * X = B, 
where A is in packed, row-order format. 

CALL FORMAT: CALL SITSOL(N,NS,S,ICN,IRP,B,W,ZTOL,NCUT,IFLG, 
X, ITER, IERR) 

PARAMETERS: N = Integer input scalar 
Order of A. 

NS = Integer input scalar 
Number of nonzero elements in A. 

s = Real input array of length NS 
Contains the nonzero elements of A stored in 
row order. 

ICN = Integer input array of length NS 
Contains the column numbers (in A) of the 
corresponding elements in s. 

IRP = Integer input array of length N+l 
Contains pointers to the first element of each 
row of A in S with IRP(N+l) = NS+l. 

B = Real input vector of length N 
Contains the right-hand side. 

W =·Real input scalar 
Over relaxation coett1c1ent. If W = l.H, tnen 
the Gauss-Seidel method is used to solve the 
system. Otherwise, the successive over 
relaxation (SOR) method is used with a 
coefficient of W. 

ZTOL = Real input scalar 
Zero tolerance value. The solution is 
considered to have converged when every 
element of X is within ZTOL of its value on 
the previous iteration. 

NCUT = Integer input scalar 
Iteration limit. The routine will return 
after NCUT iterations if the solution has not 
converged. 

IFLG = Integer input scalar 
Input flag: 

0 - Normal input 
1 - X contains an initial solution 
2 - The routine is being reentered to 

perform additional iterations and the 
vectors S, ICN, IRP, B, and X contain 
the values that they had on return from a 
previous call to SITSOL. 
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EXAMPLE: Given the linear system A * X = B, where 

A 4. g g. g 
g. g 8. g 
3. g g. g 
g • .0' -3 • .0' 
g. g g. g 
g. g g. g 

2. g g. g 
.0' • .0' 3 • .0' 
8 • .0' .0' • .0' 
.0' • .0' 8 • .0' 
5 . .0' -2 • .0' 
fJ • .0' -2 • .0' 
fj. fJ fJ .ff 

.0'.H 

.0'.H 
1.kr 
l.H 

16 . .0' 
4.H 
,.,, ,.,, 
JO. JO 

kr • .0' 
.0' • .0' 
kr.H 
2.kr 
3.kr 

-8.kr 

.0'.kr 
kr.kr 
.0'.kr 
.0'.kr 
4.kr 
.0'.kr 

A_pPENDIX A 

.0' • .0' 

.0' • .0' 
kr • .0' 
.0' • .0' 
.0' • .0' 
1..0' 

2 • .0' .0' • .0' 4 • .0' 

and 

B 8 • .0' -5 • .0' 7.0 18.kr 31.kr -22.kr 
then the inputs are 

N = 8 
NS = 23 

s 

ICN 

4.kJ, 2.kJ, 8.kr, 
8.kr, 1.kr, 2 • .0', 

-2 • .0', 4 • .0', -8 • .0', 

1, 
4, 
4, 

3, 
5, 
5, 

2, 
6, 
6, 

3 • .0', 3 • .0', 8.kr, 
5 • .0', -2.kJ, 16 • .0', 
1..0', 2.kr, 2 • .0', 

4, 
3, 
8, 

l, 
4, 
7, 

3' 
5, 
6, 

4.kr 6 • .0' 

l.fJ, -3 • .0', 
3 • .0', 4 • .0', 
4 . .0' 

5, 
6, 
8 

2, 
7, 

IRP 1, 3, 5, 8, 12, 17, 21, 22, 24 

w = 1 . .0' 
ZTOL = .0' • .0'0.0'1 
NCUT = 2.0' 
IFLG = .0' 

and the outputs are 

x 2 • .0'.0'.0'kr, -1 • .0'.0'.0'.0', 
1 . .0'.0'.0'.0', 3.gggg, 

ITER = 8 
IERR = .0' 
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EXAMPLE: Input: 

I TYPE = 3 
M = 4 
N = 5 
NS = 7 

A: 5.0' 6.0' fJ. g 4 • .0 fJ. fJ 
g .H g .H g .H 3 .H JO .0' 
9.kf .0 .0' 0'.0' '1.kI g. '1 
g_g '1. g kf .kf '1 • .0 kf .0' 

Output: 

NS = 5 

S: 5 .kf 9. 0' 6. 0' 4 .0' 3. 0' 

IN: l 3 1 1 2 

IP: 1 3 4 4 6 2 1 2 

IF.RR = kI 
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APPENDIX A 

EXAMPLE: Input: 

I TYPE = l 
M = 4 
N = 3 
NS = 5 

S: 5 .0 6.0 3.0 2.0 4 .0 

'T'-T -
, .., A , A 

.L.L'i. .L "" "ll ~ "I! 

IP: l 4 4 6 

Output: 

IERR = fcJ 
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'111.nTH:ranTv JI. 
C1.IC"".C".a:.a&.,.u~.n. ~ 

Then the input is 

M = 6 
NPl = 8 
NS = 12 

s 1. 2. -4. -1. 4c -3. 5. -2. 3. 1. 2. -3. 

!RN l 4 3 2 l 6 3 5 6 l 3 5 

ICP l 3 4 5 7 HJ 11 13 

IC = 4 

B 5 • .0' -2 • .0' 1..0' 6 • .0' 4 • .0' 2 . .0' 
-1..0' -7 • .0' 8 • .0' 3 • .0' 2 • .0' 2 • .0' 

4 • .0' 2 • .0' 3 • .0' -5 • .0' 6 • .0' 3 . .0' 

NC = 3 

Output: 

c = 14 . .0' -HJ . .0' 7 • .0' 
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Jl..PPENDIX A 

Then the input is 

M = 6 
NPl = 8 
NS = 12 

s 1. 2. -4. -1. 4. -3. 5. -2. 3. 1. 2. -3. 

IRN 1 4 3 2 1 6 3 5 6 1 3 5 

ICP 1 3 4 5 7 1.0' 11 13 

IC = 5 

B bl b2 b3 b4 bS b6 
where bl to b6 are the existing values in B 

Output: 

B : bl b2 5. b4 -2. 3. 
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Output: 

NS = 3 
IERR = g 

s 1.5 1.25 -4.375 

IEN 2 7 lf! 
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Please detach cards along perforations. 

-------------------------------------------------------------------------------------· ----~ 

UJ -o:= 

Your comments wiii heip us improve the quality and usefulness of our publications. Please fill ; 
out and return this form. (The mailing address is on the back.) 

Title of document: --------------------------~~-
Your Name and Title: Date: ------------------ -------
Firm: -----------------Department: ===~~~------
Address: 

--------------------------------~ 
City: ___________ State:---------- Zip Code:------

Telephone Number: Extension: ----------

I used this manual. . 

0 as an introduction to the subject 

0 as an aid for advanced training 

0 to instruct a class 

0 to learn operating procedures 

0 as a reference manual 

0 other -----------

I found this material. 

accurate 

complete 

written clearly 

well illustrated 

well indexed 

Yes 
0 
0 
0 
0 
0 

No 
0 
0 
0 
0 
0 

~ Please indicate below, listing the pages, any errors you found in the manual. Also indicate if 
~ you would have liked more information about a certain subject. 

< 
~ o:= 

>­
ID 
n: 
n: 
m 

ARRAY is an independent society of people who use FPS products. Membership is free 
and includes a quarterly newsletter. There is an annual conference, as well as other 
activities. If you are interested in becoming an ARRAY member, please fill out and 
return this form. (The mailing address is on the back.) 

Your Name and Title:------------------ Date:-----­
Finn: ----------------~Department:-----------

Address: --------~~-------------------------------
City: ---------- State: ---------- Zip Code: -----­
Telephone Number: Extension:---------
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