
APMATH64 MANUAL

VOLUME 3 OF 4

MODELS M64/ 40.
M64/50, M64/60

860-7482-001C

FLOATING POINT SYSTEMS, INC.

by FPS Technical Publications Staff

APMATH64 MANUAL

VOLUME 3 OF 4

MODELS M64/ 40.
M64/50, M64/60

860-7482-001C

NOTICE

Publication No. 86g-74a2-gg1c
December, 1987

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright ~ 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may
be reproduced in any form without written permission
from the publisher.

Printed in USA

The postpaid Reader's Comment Form on the last page of this document
requests the user's critical evaluation to assist in preparing and
revising future documents.

REVISION HISTORY

This manual is the APMATH64 Manual, Volume 3, 86H-7482-HH1. The letter
shown under the revision number column indicates the portion of the
part number that changes for each revision. The last entry is the
latest revision to this manual.

REV. NO.

-HHlA

-HHlB

I I

DESCRIPTION

The revision history begins with this manual.

Deleted Utilities Library, deleted the
LPSPFI subroutine, added internal subroutine
information, and added 16 new routines.

Added routines to Basic Math Library
Double Precison Library, and Matrix
Algebra Accelerated Math Library.

8/86

1/87

12/87

NOTE: For revised manuals, a vertical line "I" outside the left
margin of the text signifies where changes have been made.

NOTE TO READER

This is the third volume of the APMATH64 Manual. It
is comprised of part 3 of Appendix A and Appendix B
through Appendix J. Note that Appendix A continues
through Volumes l, 2, and 3. The page numbers are
listed consecutively through the volumes.

The APMATH64 Manual has three indices located at the
end of Volume 3 and two at the end of Volume 4. The
first index (Appendix I) is a list of the APMATH64
routines in page order by type= The second index
(Appendix J) is an alphabetical list of all the
APMATH64 routines. The third index is a key word
index of the APMATH64 routines. The fourth index
(Appendix L) is an alphabetical list of the
APMATH64/MAX routines. The fifth index is a key word
index of the APMATH64/MAX routines.

CON'l'EN'l'S (VOLUME 3)

APPENDIX A APMATH64 ROUTINES

TABLE MEMORY RAM LIBRARY
SPECIAL UTILITIES LIBRARY
DATA FORMATTING LIBRARY
DOUBLE PRECISION LIBRARY
FORTRAN SUPPORT LIBRARY

APPENDIX B DATA REPRESENTATIONS FOR STORING SPARSE VECTORS AND
MATRICES

B.l INTRODUCTION
B.2 SPARSE VECTOR STORAGE
B.3 SPARSE MATRIX STORAGE
ELJ .. l Matrix Format Type I (COL_ORDER PTRS_ONLY)
B.3.2 Matrix Format Type II (ROW_ORDER PTRS_ONLY)
B.3.3 Matrix Format Type III (COL_ORDER PTRS_SUMS)
B.3.4 Matrix Format Type IV (ROW_ORDER PTRS _SUMS)

APPENDIX c SPARSE LINEAR SYSTEM ROUTINES

C.l INTRODUCTION
C.2 SUMMARY OF VERSION 2 FEATURES
C.3 MATHEMATICAL BACKGROUND
C.3.1 LU Theorem
C.3.2 LDU Theorem
C.4 FILL-IN
c.s DATA FORMAT
C.6 NUMERICAL STABILITY

APPENDIX D BASIC LINEAR ALGEBRA SUBPROGRAMS

D.l INTRODUCTION
D.2 DATA STRUCTURES FOR VECTORS AND ARRAYS
0.3 ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS
D.3.1 Subroutine CAXPY(N,CA,CX,INCX,CY,INCY)
D.3.2 Subroutine CCOPY(N,CX,INCX,CY,INCY)
0.3.3 Complex Function CDOTC(N,CX,INCX,CY,INCY)
D.3.4 Complex Function CDOTU(N,CX,INCX,CY,INCY)
0.3.5 Subroutine CROTG(CA,CB,SC,CSIN)
0.3.6 Subroutine CSCAL(N,CA,CX,INCX)
0.3.7 Subroutine CSSCAL(N,SA,CX,INCX)
0.3.8 Subroutine CSROT(N,CX,INCX,CY,INCY,SC,SS)
0.3.9 Subroutine CSWAP(N,CX,INCX,CY,INCY)
O. 3. HI Integer Function ICAMAX(N,CX,INCX)
D. 3 .11 Integer Function ISAMAX(N,SX,INCX)
0.3.12 Real Function SASUM(N,SX,INCX)
0.3.13 Subroutine SAXPY(N,SA,SX,INCX,SY,INCY)

CONTENTS

A~475

A-5.0'3
A-5.0'7
A-528
A-538

B-1
B-1
B-2
B-3
B-4
B-s·
B-6

C-1
C-2
C-2
C-4
C-5
C-5
C-8
C-1.0'

0-1
0-2
0-3
0-4
0-4
D-4
0-5
0-5
0-5
0-5
0-5
0-5
0-5
0-5
0-5
0-6

FPS a6g-74a2-gs1c Page iii

APPENDIX G LIST OF SUPERSEDED ROUTINES

APPENDIX H EXCEPTIONS ENABLED ROUTINES INFORMATION AND
INTERNAL SUBROUTINES

H.l
!L2

EXCEPTIONS ENABLED ROUTINES INFORMATION
INTERNAL SUBROUTINES

APPENDIX I APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE

APPENDIX J APMATH64 ROUTINES IN ALPHABETICAL ORDER

APMAT".d'.6 4 KEY WORD INDEX

ILLUSTRATIONS

CON'l'ENTS

Page

H-1
H-1

Figure No. Title Page

E-1 Example Coordinate and Function Value Breakpoint
Tables E-3

TABLES

Table No. Title Page

B-1 Format Types and Attributes B-2

FPS 86B-7482-BH1C Page v

FPS 86i-7482-i&lC

APMATH64 ROU'l'INES (VOLUME 3)
TABLE MEMORY RAM LIBRARY

APPENDIX A

Page A - 475

APPENDIX A

********** **********
* * * *
* MMTMUL * - VECTOR MULTIPLY (MD*MD TO TM) --

* * * *
********** **********

PURPOSE: To multiply the elements of two vectors in Main
Memory and store the resultant vector in Table
Memory.

CALL FORMAT: CALL MMTMUL(A,I,B,J,ITMC,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A

B = Floating-point Main Memory input vector
J = Integer element step for B
!TMC = Tnf-i::ani::ar base address of TM output vector -··--"='--
K = Integer element step for c
N = Integer element count

c

DESCRIPTION: MMTMUL multiplies N elements of the vector A with N
elements of the vector B, where A and B are in Main
Memory, and stores the results in a vector with base
address ITMC and increment K in Table Memory.

NOTE: Writable Table Memory begins at address 8192.

EXAMPLE:
N=3
I=J=K=l
ITMC = 8192

A

B

TMLOC:
c

1..0'
3 • .0'

8192
3 • .0'

FPS 863-7482-931C

2 • .0'
4 • .0'

8193
8 • .0'

8194
15 • .0'

Page A - 477

APPENDIX A

********** **********
* * * *
* MTIMOV * - VECTOR MOVE WITH INCREMENT (MD TO TM) - * M'rIMOV *
* * * *
********** **********

PURPOSE: To move elements of a vector from Main Memory
to Table Memory, where the increments betwee~ the
elements are specified.

CALL FORMAT: CALL MTIMOV(A,I,ITMC,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A
ITMC = Integer base address of TM output vector c
K = Integer element step for c
N = Integer element count

DESCRIPTION: MTIMOV moves the elements of an input vector A with
increment I in Main Memory to an output vector with
base address ITMC and increment K in Table Memory.

NOTE: Writable Table Memory begins at address 8192.

EXAMPLE:
N = 3
K = 2
ITMC = 8192

A 1..0 2 • .0 3 • .0

TMLOC: 8192 8193 8194 8195 8196 8197
c 1 . .0 x 2 • .0 x 3 • .0 x

X represents unchanged values.

FPS 869-7482-HSlC Page A - 479

APPENDIX A

********** **********
* * * *
* MTMMUL * - VECTOR MULTIPLY (MD*'l'M TO MD) -- * M'1'MMUL *
* * * *
********** **********

PURPOSE: To multiply elements of a vector in Main Memory
by elements of a vector in Table Memory and
store the products in Main Memory.

CALL FORMAT: CALL MTMMUL(A,I,ITMB,J,C,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A

ITMB = Integer base address of TM input vector
J = Integer element step for B
c = Floating-point Main Memory output vector
K = Integer element step for c
N = Integer element count

B

DESCRIPTION: MTMMUL multiplies N elements of the vector A in Main
Memory by N elements of the vector with base address
ITMB in Table Memory, and stores the products in N
elements of the vector C in Main Memory.

EXAMPLE:
N=3
I=J=K=l
ITMB=8192

A 1.-'J 2.-'J 3.fJ

TMLOC: 8192 8193 8194
B 2.-'J 3.-'J 4 .-'J

c 2.'1 6.kI 12.-'J

FPS 86H-7482-HH1C Page A - 481

APPENDIX A

********** **********
* * *

* MTMSUB * - VECTOR SUBTRACT (MD-TM TO MD) -

* * * *
********** **********

PURPOSE: To subtract the elements of a vector in Table
Memory from the elements of a vector in Main
Memory and store the results in a vector in
Main Memory.

CALL FORMAT: CALL MTMSUB(A,I,ITMB,J,C,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A

ITMB = Integer base address of TM input vector
J ~ Tn+-on.co1"' element c:+-on Fnr B ""'"-":S

._. __ !:"' _..,._
c = Floating-point Main Memory output vector
K = Integer element step for c
N = Integer element count

B

DESCRIPTION: MTMSUB subtracts N elements of a vector with base
address ITMB in Table Memory from N elements of the
vector A in Main Memory, and stores the results in N
elements of the vector C in Main Memory.

EXAMPLE:
N=3
I=J=K=l
ITMB = 8192

A 3. g 4 • .0' 5.0

TMLOC: 8192 8193 8194
B 2 • .0' 1..0' 1.0

c 1..0' 3 • .0' 4 • .0'

FPS 86B-7482-SS1C Page A - 483

APPENDIX A

********** **********
* * * *
* M'.rTMUL * - VECTOR MULTIPLY (MD*TM TO TM) - * MT'rMUL *
* * * *
********** **********

PURPOSE: To multiply the elements of a vector in Main
Memory by the elements of a vector in Table
Memory and store the products in a vector in
Table Memory.

CALL FORMAT: CALL MTTMUL(A,I,ITMB,J,ITMC,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A
ITMB = Integer base address of TM input vector
J = Integer element step for B

B

ITMC = Integer base address of TM output vector C
K = Integer element step for c
N = Integer element count

DESCRIPTION: MTTMUL multiplies N elements of the vector A in Main
Memory by N elements of the vector with base address
ITMB in Table Memory, and stores the products in N
elements of a vector with base address ITMC in Table
Memory.

NOTE: Writable Table Memory begins at address 8192.

EXAMPLE:
N=3
I=J=K=l
ITMB = 8192
ITMC = 8292

A

TMLOC:
B

TMLOC:
c

3. kJ

8191
2. kJ

8292
6.0

FPS 86H-7482-HB1C

4 • .0 5 • .0

8193 8194
1..0 3 • .0'

8293 8294
4. 0 15 • .0'

Page A - 485

APPENDIX A

********** **********
* * * *
* TMDOT * - REAL DOT-PRODUC'l' {TM AND MD) - * TMDOT *
* * * *
********** **********

PURPOSE: Computes the real dot-product of two vectors
where one vector is stored in Main Memory and
the other vector is stored in Table Memory.
Both vectors are assumed to be stored compactly.

CALL FORMAT: CALL TMDOT (ITMA,B,C,N)

PARAMETERS: ITMA = Integer base address of TM input vector A
B = Floating-point Main Memory input vector
c = Floating-point Main Memory output scalar
N = Integer element count

DESCRIPTION: TMDOT computes the real dot-product of N elements of
the vector with base address ITMA in Table Memory with
N elements of the vector B in Main Memory, and stores
the resultant scalar in Main Memory.

EXAMPLE:

Formula:
C = A(l)*B(l) + A(2)*B(2) + ••• + A(N)*B(N)
C = 0.0, if N < 1

N = 3
ITMA = 8192

TMLOC: 8192 8193 8194
A 1.0 2 .kJ 3.0

B 3.0 4 .kJ 5 .kJ

c = 26.kJ

Page A - 487

APPENDIX A

********** **********
* * *
* TMMM * - MATRIX MULTIPLY (TM WORKSPACE) --- * TMMM *
* * * *
********** **********

PURPOSE: Multiplies two matrices A and B in Main Memory
to form a matrix C in Main Memory. This routine
uses a workspace in Table Memory to achieve high
speed.

CALL FORMAT: CALL TMMM (A,B,C,MC,NC,NA,ITMW)

PARAMETERS: A = Floating-point Main Memory input matrix
B = Floating-point Main Memory input matrix
c = Floating-point Main Memory output matrix
MC = Integer number of rows in output matrix C

(and input matrix A)
NC = Integer number of columns in output matrix

(and input matrix B)
NA = Integer number of columns in input matrix A

(and number of rows of input matrix B)

c

ITMW = Integer base address of TM work area of length

DESCRIPTION: TMMM computes the product of the MC-row by NA-column
matrix A and the NA-row by NC-column matrix B (both in
Main Memory) and stores the result in the MC-row by
NC-column matrix B in Main Memory. This routine

NA

uses a workspace of length NA in Table Memory to achieve
high speed. All matrices are assumed to be stored in
column order.

NOTE: Writable Table Memory begins at location 8192.

EXAMPLE:
A =

FPS 869-7482-iHlC

1..0 2.'1
3 • .0 4 • .0'

B = 2 • .0' 6 • .0 9 • .0
3 • .0' 7 • .0 4 • .0'

Page A - 489

* *
* TMMSUB *
* *

PURPOSE:

- VECTOR SUBTRACT (TM-MD TO MD) -

To subtract the elements of a vector in Main
Memory from the elements of a vector in Table
Memory and store the results in a vector in
Main Memory.

CALL FORMAT: CALL TMMSUB(ITMA,I,B,J,C,K,N)

PARAMETERS: ITMA = Integer base address of TM input vector
I = Integer element step for A
B = Floating-point Main Memory input vector
J = Integer element

_ __
~ - D

o::>l..l::}:I .LU.I. D

c = Floating-point Main Memory output vector
K = Integer element step for c
N - Integer element count

APPENDIX A

****'******
* *
* TMMSUB *
* *
'****

A

DESCRIPTION: TMMSUB subtracts N elements of the vector B in Main
Memory from N elements of the vector with base address
ITMA in Table Memory, and stores the differences in the
vector C in Main Memory.

EXAMPLE:
N=3
I=J=K=l
ITMA=8192

TMLOC: 8192 8193 8194
A 3 • .0 4 • .0 5 • .0

B 1..0 3 • .0 2 • .0

c 2 • .0 1..0 3 • .0

FPS 86B-7482-i&lC Page A - 491

APPENDIX A

********** **********
* * * *
* TMVLC2 * - VECTOR LINEAR COMBINATION -- * TMVLC2 *
* * * *
********** **********

PURPOSE: To compute the linear combination of two vectors,
one in Table Memory and the other in main memory,
and store the resultant vector in main memory.

CALL FORMAT: CALL TMVLC2 (Sl, ITMA, 52, B, J, C, K, N)

PARAMETERS: 51 = Floating-point scalar coefficient
for the TM input vector A

ITMA = Integer base address of the TM input
vector A

~., = ,.., ~ ~.: "",.._....,,...,.; "" .. scalar coefficient ~~ J: .J.VCL ,,_ .J.,U':f ~ J:o'V .A..U '-

for the MD input vector B
B = Floating-point MD input vector
J = Integer element step for B
c = Floating-point MD output vector
K = Integer element step for c
N = Integer element count

DESCRIPTION: C(m) = 51 * A(m) + 52 * B(m); for m = l to N

EXAMPLE:

Where A is in Table Memory, and B, 51, 52, and C
are in main memory.

N = 3
Sl = -1..0'
S2 = 2 • .0'
J = l
K = 1
ITMA = 8192

TMLOC: 8192 8193 8194
A 1..0' 2 • .0' 3 • .0'

B 4 • .0' .0'.5 .0' • .0'

c 7 • .0' -1..0 -3 • .0'

FPS 86i-7482-i&lC Page A - 493

* *
* ir-I'MADD *

* *

PURPOSE:

VECTOR ADD (TM+TM TO MD) --

To add the elements of two vectors in Table
Memory and store the sums in Main Memory.

CALL FORMAT: CALL TTMADD(ITMA,I,ITMB,J,C,K,N)

PARAMETERS: ITMA = Integer base address of TM input vector
I = Integer element step for A
ITMB = Integer base address of TM input vector
J = Integer element step for B
c = Floating-point Main Memory output vector
TJ' = T..,..._"",.." ... element step 4=,... ... ,..
" '=',.

N = Integer element count

APPENDIX A

* *
* T'l'MADD *
* *

A

B

DESCRIPTION: TTMADD adds N elements of the vector with base address
ITMA in Table Memory to N elements of the vector with
base address ITMB in Table Memory, and stores the sums
in N elements of the vector C in Main Memorye

EXAMPLE:
N=3
I=J=K=l
ITMA = 8192
ITMB = 8292

TMLOC: 8192 8193 8194
A 1..0' 2 • .0' 3 • .0'

TMLOC: 8292 8293 8294
B 4 • .0' 5 • .0' 6 • .0'

c 5 • .0' 7 • .0'

Page A - 495

APPENDIX A

********** *'*'*'*'******
* * * *
* T'1'MSUB * -- VEC'l'OR SUBTRACT (TM-TM TO MD) - * 'l"l'MSUB *
* * * *
******'**** **********

PURPOSE: To subtract the elements of two vectors in Table
Memory and store the differences in a vector in
Main Memory.

CALL FORMAT: CALL TTMSUB(ITMA,I,ITMB,J,C,K,N)

PARAMETERS: ITMA = Integer base address of TM input vector A

I = Integer element step for A

ITMB = Integer base address of TM input vector B
J = Integer element step for B

c ~ Floating-point Main Memory ,-.11rn11r vector,,., t""' ... -

K = Integer element step for c
N = Integer element count

DESCRIPTION: TTMSUB subtracts N elements of the vector with base
address ITMB in Table Memory from N elements of the
vector with base address ITMA in Table Memory, and
stores the resulting differences in a vector C in Main
Memory.

EXAMPLE:
N=3
I=J=K=l
ITMA = 8192
ITMB = 8292

TMLOC: 8192
A 3 • .0

TMLOC: 8292
B 2 • .0

c 1..0

FPS 866-7482-HHlC

8193 8194
4 . .0 5 • .0

8293 8294
1..0 1..0

3 • .0' 4 • .0'

Page A - 497

APPENDIX A

********** **********
* * * *
* T'l'TMUL * --- VECTOR MULTIPLY (TM*TM TO TM) - * T'l'TMUL *
* * * *
********** **********

PURPOSE: To multiply the elements of two vectors in Table
Memory and store the resulting products in a
vector in Table Memory.

CALL FORMAT: CALL TTTMUL(ITMA,I,ITMB,J,ITMC,K,N)

PARAMETERS: ITMA = Integer base address of TM input vector A
I = Integer element step for A
ITMB = Integer base address of TM input vector B
J = Integer element step for B
ITMC =

.,._,,_ ____ 1---- _..;i..;i ____
-$: m-. • -··'--··~ ··--~ -- ,,..

~.u1..cy1::J. LJClQC ClUUJ.C;::)Q Vl.. .LL"l UUl..,l:JUI.. VC\,,,l..U.L "" K = Integer element step for c
N = Integer element count

DESCRIPTION: TTTMUL multiplies N elements of the vector with base
address ITMA in Table Memory by N elements of the
vector with base address ITMB in Table Memory, and
stores the resultant products in the vector with base
address ITMC in Table Memory.

NOTE: Writable Table Memory begins at address 8192.

EXAMPLE:
N=3
I=J=K=l
ITMA = 8192
ITMB = 8292
ITMC = 8392

TMLOC: 8192
A 1..0'

TMLOC: 8292
B 3 • .0'

TMLOC: 8392
c 3 • .0'

FPS 869-7482-BBlC

8193 8194
2 • .0' 3 • .0'

8293 8294
4 • .0' 5 • .0'

8393 8394
8 • .0' 15 • .0'

Page A - 499

* *
* 'l'TVLC2 *
* *

PURPOSE:

APPENDIX A

*

- VECTOR LINEAR COMBINATION -- * TTVLC2 *
* *

To compute the linear combination of two vectors,
one in Table Memory and the other in main memory:
and store the resultant vector in Table Memory.

CALL FORMAT: CALL TTVLC2 (51, ITMA, 52, B, J, ITMC, N)

PARAMETERS:

DESCRIPTION:

EXAMPLE:

51 = Floating-point scalar coefficient for the
TM input vector A

ITMA = Integer base address of the TM input
vector A

S2 = Floating-point scalar coefficient
,e __

J:.0.["

MD input vector B
B = Floating-point MD input vector
J = Integer element step for B
ITMC = Integer base address of the TM output

vector c
N = Integer element count

C(m) = Sl * A(m) + 52 * B(m); for m = 1 to

Where A and C are in Table Memory, and B, Sl,
and S2 are in main memory.

the

N

Note: Writable Table Memory begins at address 8192.

N = 3
Sl = -l.kl
S2 = 2.kl
J = 1
ITMA = 8192
ITMC = 8195

TMLOC: 8192 8193 8194
A l.kl 2.kl 3.kl

B 4 .kl kl.5 kl.kl

TMLOC: 8195 8196 8197
c 7.kl -l.kl -3.kl

FPS 86H-7482-H91C Page A - 591

APPENDIX A

SPECIAL UTILITIES LIBRARY

FPS 86H-7482-S&lC Page A - 5.9'3

*

* PEEK *
* *

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

APPENDIX A

- MF.MORY FE'1'CB - * PEEK *
* *

To fetch the contents of a specified memory word.

Function Value = PEEK(Addr)

Function Value = The unformatted contents of the
specified memory location

Addr = An integer specifying the address
to be accessed

The specified memory location is accessed and its
contents returned as the function-value output. ~ne

output is the unformatted word. That is, no format
conversion is performed by the function.

(Assuming location 1000 contains
01 23 34 56 78 9A BC DE (hex))

Addr 1000
Function Value gi 23 34 56 78 9A BC DE

Page A - 5.9'5

APPENDIX A

DATA FORMATTING LIBRARY

FPS 86H-7482-BS1C Page A - 5S7

APPENDIX A

********** **********

* * * *
* VIFIX * - VECTOR INTEGER FIX -- * VIFIX *
* * * *
********** **********

PURPOSE: To fix to 53-bit integers the elements of a

CALL FORMAT: CALL VIFIX(A,I,C,K,N,F)

PARAMETERS: A = Floating-point input vector
I = Integer element step for A
c = Long-integer output vector
K = Integer element step for c
N = Integer element count
F = Integer flag (J to round, l to truncate)

DESCRIPTION: C(m)=FIX(A(m)); for m=l to N

EXAMPLE:

N = 4
F = 0

A 1. 7 -1.5 -3.2 3.5
c 2 -2 -3 4.0

N = 4
F = l

A 1. 7 -1.5 -3.2 3.5
c l -1 -3 3.0

FPS 86H-7482-0&1C Page A - 5&9

*

* VPK16 *

*

PURPOSE:

APPENDIX A

*

- VECTOR 16-BIT BYTE PACK - * VPK16 *
*

To pack each four 64-bit floating-point numbers
into one destination word as 16-bit quarter words.

CALL FORMAT: CALL VPK16(A,I,C,K,N,F)

PARAMETERS: A = Floating-point input vector
I = Integer element step for A
c = Signed-quarterword-integer output vector
K = Integer element step for c
N = Integer element count (destination words)
F - Integer flag (XI to round, l to truncate;

DESCRIPTION: VPK16 fixes and packs four floating-point numbers from
vector A into 16-bit quarter words in a single word of
vector C, packing an array of positive integers with
values from .0' to 65535, or an array of signed two's
complement integers with values from -32768 to 32767,
but does not check for out-of-range values.

EXAMPLE:

N = 2
F = ff

A 8.3 -7e9 6.5 5.6 4.1 3.4 -2.5 1.1

c ffff08FFF80.0'ff 6ffff06 .0'.0'ff 4.0'.0'.0'3FFFEHffkH

F = 1

A 8.3 -7.9 6.5 5.6 4.1 3.4 -2.5 1.1

c .0'.0'.0'8FFF9.0'.0'ff 6.0'.0'.0'5 .0'HH 4 .0'H.0' 3FFFE0HfH

FPS 86H-7482-HH1C Page A - 511

APPENDIX A

'*'***** **********

* * * *
* VPKI32 * - VECTOR 32-BI'l' INTEGER PACK -- * VPKI32 *
* * * *
********** **********

PURPOSE: To pack each two 32 bit halfword integer source words
;,...P,.. ,......,,,,. ,:i.,..,,p;,..,,,.p;,..,.. •. ,,..,,.,:i ::>e! h::.l;:Y_,,..,,.,.,_;T'l+-onol'"C!-n:ii,..~o,.,
.i..i..i.i.V V.6.£~,li;"._lii.o..i..i.4~V.i.'1J.&..i. "9'-1..,,,_,. .,...,. ••"'4•.-""''-'~'lltoioC. •~•'-.-.,.'::J'-"-....., ,t-'....,..._. .. ,..._-..

CALL FORMAT: CALL VPKI32(A,I,C,K,N)

PARAMETERS: A = Halfword integer input vector
I = Integer element step for A
C = Halfword-integer-packed output vector
K = Integer element step for C
N = Integer element count (destination words)

DESCRIPTION: C(m) bits f1 to 31 = A(2m-l)
C(m) bits 32 to 63 = A(2m)

for m=l to N

bits 32 to 63
bits 32 to 63

EXAMPLE:

(Bits are numbered fI-63 from left to right).

VPKI32 packs two halfword integers from vector A into
32-bit halfwords in a single word of vector C. It
packs an array of positive integers with values from
f1 to 4294967295, or an array of signed 2's complement
integers with values from -2147483648 to 2147483647.
VPKI32 does not check for values out of range.

N = 3

I = 2

K = 3 (XXX indicates 'undefined')

A: 8f1Cf1f1f1f1f1f1f1f1f1f1HH6 C: f1f1f1Hf1f1f16f1f1f1f1f1f1H4
8f1Af1f1f1f1f1f1f1f1f1f1Hf15 xxxxxxxxxxxxxxxx
8f18f1f1f1f1f1f1f1f1tJf1Hf14 xxxxxxxxxxxxxxxx
8f16f1f1f1f1f1fJf1f1f1f1f1f13 f1f1f1f1f1f102f1f1f1f1f1f1f1f1
f1f1f1f1fJf1f1f1f1f1f1f1f1f1fJ2 xxxxxxxxxxxxxxxx
f1 fifififififI f1 f1 ggg f1 fifil xxxxxxxxxxxxxxxx
80f1f1f1f1f1f1f1f1f1f10f1f1f1 FFFFFFFEFFFFFFFC
7FFFFFFFFFFFFFFF
7FDFFFFFFFFFFFFE
f10f1fifif1f1fIFFFFFFFD
f10fJfifJf100FFFFFFFC

FPS 869-7482-SBlC Page A - 513

* *
* VSCALE *
* *

PURPOSE:

APPENDIX A

* *

- VECTOR SCALE AND FIX -- * VSCALE *
* *

To scale the elements of a vector by a power of 2 such
that a selected scalar will just fit into a specified
integer bit width, and then fix the scaled elements
to integers.

CALL FORMAT: CALL VSCALE(A,I,B,C,K,N,NB,IEXP)

PARAMETERS: A = Floating-point input vector
I = Element step for A
B = Floating-point input scalar
C - Long-integer output vector
K = Element step for C
N = Element count
NB = Long-integer input scalar

(Desired width, 2 to 28 bits, of integers)
!EXP = Long-integer output scalar

(Exponent of scale factor used)

DESCRIPTION: C(m) = FIX (A(m)*{2**IEXP}) for m=.0' to N-1
where IEXP=NB-E-1,

EXAMPLE:

and B = FRAC*(2**E).
VSCALE scales by a power of 2 every element of the
vector A so that the scalar B will just fit into an
NB-bit width integer, and then fixes the scaled elements
and stores them in vector c. !EXP is set to the scale
factor chosen. If the scalar is larger in magnitude
than any element of A, no fixing overflows will occur.

(with N=S, NB=l2)

B HJ • .0'
A ig • .0' 5 • .0' g.2 -4 • .0' .0'.gl
c 128.0' 64.0' 25 -512 1
!EXP : 7

FPS 86&-7482-SSlC Page A - 515

* *
* VSBFX *

* *

PURPOSE:

- VECTOR SHIFT AND FIX --

To shift (multiply by a power of 2) and then
fix (truncate) to integers the elements of a
floating-point vector.

CALL FORMAT: CALL VSHFX(A,I,C,K,N,NS)

PARAMETERS: A = Floating-point input vector
I = Integer element step for A

c = Long-integer output vector
K = Integer element step for c
N - Integer element count
NS = Integer power of 2 (May be negative)

DESCRIPTION: C(m)=FIX{A(m)*(2**NS)}; for m=l to N

EXAMPLE:

N = 3
NS = 2

A l.g 2.g 3.2
c 4 8 12

FPS 86i-7482-i91C

APPENDIX A

* *
* VSHFX *
* *

Page A - 517

APPENDIX A

********** **********
* * * *
* VUP8 * - VECTOR 8-BIT BYTE UNPACK --- * VUP8 *
* * * *
********** **********

PURPOSE: To unpack eight 8-bit unsigned bytes from each

words as 64-bit floating-point numbers.

CALL FORMAT: CALL VUP8(A,I,C,K,N)

PARAMETERS: A = Unsigned-byte-integer input vector
I = Integer element step for A
c = Floating-point output vector
K = Integer element step for C
N = Integer element count (source words)

DESCRIPTION: Unpacks eight 8-bit bytes from a single word of

EXAMPLE:

vector A storing them as eight floating-point numbers
in vector C. The unpacked bytes have values from .0 to
255.

N = 2

c 8 • .0
8 • .0

6 • .0
6 • .0

5 • .0
5 • .0

2.H
2.kJ

FPS 86H-7482-fffflC Page A - 519

APPENDIX A

********** **********
* * * *
* VUP32 * - VECTOR 32-BIT BYTE UNPACK - * VUP32 *

* * * *
********** **********

PURPOSE: To unpack two 32-bit unsigned halfwords
from each source word and store them in
two destination words as 64-bit floating-point
positive numbers.

CALL FORMAT: CALL VUP32(A,I,C,K,N)

PARAMETERS: A = Unsigned-halfword-integer input vector
I = Integer element step for A

c = Floating-point output vector
K = .!.m:eger element step for c
N = Integer element count (source words)

DESCRIPTION: VUP32 unpacks two 32-bit halfwords from a single
word of vector A, storing them as two positive 64-bit
floating-point integers in vector c. The unpacked
halfwords have values from 0 to 4294967295.

EXAMPLE:

N = 4

A 0000000800000007
0000000600000005
0000000400000003
0000000200000001

c 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

FPS 869-7482-SSlC Page A - 521

* *
* VUPS8 *
* *

PURPOSE:

* *

- VECTOR 8-BIT SIGNED BYTE UNPACK - * VUPSS *

* *

To unpack eight 8-bit signed bytes from
each source-word and store them in eight destination
words as 64-bit floating-point numbers.

CALL FORMAT: CALL VUPS8(A,I,C,K,N)

PARAMETERS: A = Signed-byte-integer input vector
I = Integer element step for A
c = Floating-point output vector
K = Integer element step for C
N = Integer element count (source words)

DESCRIPTION: VUPS8 unpacks eight 8-bit signed bytes from

EXAMPLE:

a single word of vector A, storing them as eight
floating-point numbers in vector C. The unpacked
bytes have values from -128 to 127.

N = 2

c a.g -1.g 6.g
a.g 1.g -6.g

5 • .0
s.g

4 • .0 -3.g
4.g 3.g

2.f!
-2.f!

l.f!
1..0

FPS 866-7482-iHlC Page A - 523

APPENDIX A

********** **********
* * * *
* VUPS32 * - VECTOR 32-BIT SIGNED BYTE UNPACK - * WPS32 *
* * * *
********** **********

PURPOSE: To unpack two 32-bit signed two's complement
halfwords from each source word and store them
in two destination words as signed 64-bit
floating-point numbers.

CALL FORMAT: CALL VUPS32(A,I,C,K,N)

PARAMETERS: A = Signed-halfword-integer input vector
I = Integer element step for A
c = Floating-point output vector
K - Integer element -.L.-- ~--

,..
::Ii I.. CJ:I .LVJ. '-

N = Integer element count (source words)

DESCRIPTION: VUPS32 unpacks two 32-bit signed two's complement
halfwords from a single word of vector A, storing
them as two floating-point numbers in vector c. The
unpacked halfwords have values from -2147483648 to
2147483647.

EXAMPLE:

N = 4

A gggggggsFFFFFFF9
ggggggg6HkJHHHHH5
FFFFFFFCFFFFFFFD
FFFFFFFEH'1000HH1

Page A - 525

*

* VUUI32 *
* *

PURPOSE:

* *

- VEC'l'OR 32-BI'l' UNSIGNED UNPACK - * VUUI32 *
* *

To unpack two 32-bit halfword integers from each
source word and store them as two destination words,
in unsigned integer format.

CALL FORMAT: CALL VUUI32(A,I,C,K,N)

PARAMETERS: A = Halfword integer packed input vector
I = A address increment
c = 32 bit integer output vector
K = C address increment
N = Integer element count (source words)

DESCRIPTION: C(2m-l) = A(m) bits g to 31
C(2m) = A(m) bits 32 to 63

for m=g to N-1

EXAMPLE:

(Bits are numbered g-63 from left to right).

VUUI32 unpacks two 32-bit unsigned halfword integers
from a single word of vector A and stores them as
two unsigned halfword integers in vector C. The
unpacked halfwords have values from g to 4294967295.

N = 3

I = 3

K = 2

A: gggggggaggggggg7 C:

HHH'1HHH6HH'1HHH05
eeeeee04eemrne0J
ggggggg2ggggggg1
FFFFFFFFFFFFFFFE
FFFFFFFDFFFFFFFC
FFFFFFFBFFFFFFFA

(XXX indicates 'undefined')

gg&Jgggggggggg&Jea
xxxxxxxxxxxxxxxx
'1'10ftJH'1HftJH0HHHH01
xxxxxxxxxxxxxxxx
gg&jgggggggggg&Jg2
xxxxxxxxxxxxxxxx
'1'1'100'1HH'1fiHrnHH'11
xxxxxxxxxxxxxxxx
H'1'10HHH'1FFFFFFFB
xxxxxxxxxxxxxxxx
'1'10000HHFFFFFFFA

FPS 86H-7482-HH1C Page A - 527

APPENDIX A

********** **********
* * * *
* DADD * - DOUBLE TO DOUBLE-PRECISION ADD * DADD *
* * *
********** ******"****

PURPOSE: To form a double-precision sum of two

CALL FORMAT: CALL DADD(XDBLE,YDBLE,ZDBLE)

PARAMETERS: XDBLE = Real vector input (double precision)
YDBLE = Real vector input (double precision)
ZDBLE = Real vector output (double precision)

(A double-precision value is stored in a
2-element real array. First element contains
high word, second element contains low word.)

DESCRIPTION: Adds the double-precision number in XDBLE to the
double-precision number in YDBLE and stores the high
word of the double-precision sum in ZDBLE(l) and the
low word in ZDBLE(2).

FPS 86H-7482-HS1C Page A - 529

I**********
I* *
I* DAOO'l' *
I* *
I**********

I PURPOSE:
I
I

I

!CALL FORMAT:

I PARAMETERS:
I
I
I
i
I

I DESCRIPTION:
I
I
I
I
I

-- DOUBLE ACCUMULATE DOT PRODUCT ---

APPENDIX A

* *
* DADOT *
* *

To perform the dot product of two real vectors,
accumulating the result in double precision (128 hit-c:'. ----# T

and returning the result in single precision (64 bits).

SW

N
A

I
B
J
SW

=

=
=
=
=
=
=

DADOT(N,A,I,B,J)

Integer element count
Real input vector
Integer element step for A
Real input vector
Integer element step for B

Real output result

SW= SUM(A(m) * B(m)) form= 1 to N
SW = 0.0 for N < 1
If the element increment, INC, of a vector is negative,
then the vector is indexed in reverse order, i.e
element (N-1) * INC + 1 to the first element (BLAS
convent ion).

FPS 86H-7482-HH1C Page A - 531

APPENDIX A

********** **********
* * * *
* DMUL * - DOUBLE TO DOUBLE-PRECISION MULTIPLY - * DMUL *
* *

PURPOSE: To form a double-precision product of two
double-precision numbers.

* *

CALL FORMAT: CALL DMUL(XDBLE,YDBLE,ZDBLE)

PARAMETERS: XDBLE = Real vector input (double precision)
YDBLE = Real vector input (double precision)
ZDBLE = Real vector output (double precision)

(A double-precision value is stored in a
2-element real array. First element contains
high word, second element contains low word.)

DESCRIPTION: Multiplies the double-precision number in XDBLE by the
double-precision number in YDBLE and stores the high
word of the double-precision product in ZDBLE(l) and
the low word in ZDBLE(2).

Page A - 533

APPENDIX A

********** **********
* * * *
* DNEG * - NEGATE DOUBLE-PRECISION NUMBER -- * DNEG *

* *
********** **********

PURPOSE: To negate a double-precision number.

CALL FORMAT: CALL DNEG(XDBLE,ZDBLE)

PARAMETERS: XDBLE = Real vector input (double precision)
ZDBLE = Real vector output ·(double precision)

(A double-precision value is stored in a
2-element real array. First element contains
high word, second element contains low word.)

DESCRIPTION: Negates the double-precision number in XDBLE and stores
the high word of the double-precision result in ZDBLE(l)
and the low word in ZDBLE(2).

FPS 86S-7482-g61C Page A - 535

APPENDIX A

********** **********
* * * *
* DSUBRR * - SINGLE TO DOUBLE-PRECISION SUBTRACT -- * DSUBRR *
* * * *
********** **********

PURPOSE: To form a double-precision difference of two
single-precision numbers.

CALL FORMAT: CALL DSUBRR(X,Y,ZDBLE)

PARAMETERS: x
y

ZDBLE

= Real scalar input
= Real scalar input
= Real vector output (double precision)

(A double-precision value is stored in a
2-element real array. First element contains
high wordi second element contains low word.)

DESCRIPTION: Subtracts the single-precision number in Y from the
single-precision number in X and stores the high word of
the double-precision difference in ZDBLE(l) and the low
word in ZDBLE(2).

FPS 86B-7482-BB1C Page A - 537

APPENDIX A

********** **********
* *
* ABS

*

*
*
*

- REAL NUMBER ABSOLU'l'E VALUE -- * ABS

*

*
*
*

PURPOSE: To compute the absolute value of a real number.

CALL FORMAT: Function-value = ABS(arg)

PARAMETERS: Function-value = Real Floating-point scalar output
Arg = Real Floating-point scalar input

DESCRIPTION: Function-value = largl

FPS 86H-7482-WilC Page A - 539

APPENDIX A

********** **********
* * * *
* AINT * -- TRUNCATE REAL NUMBER -- * AINT *
* * * *
********** **********

PURPOSE: To truncate a real number.

CALL FORMAT: Function-value = AINT(arg)

PARAMETERS: Function-value
Arg

= Real floating-point scalar output
= Real floating-point scalar input

DESCRIPTION: Function-value= FLOAT(FIXT(arg))

FPS 866-7482-SSlC Page A - 541

APPENDIX A

********** **********
* * * *
* ALOGl.0' * - REAL NUMBER LOGARITHM - * ALOGl.0' *
* * * *
********** **********

PURPOSE: To compute the logarithm of a real number.

CALL FORMAT: Function-value = ALOG(arg) or ALOG1.0'(arg)

PARAMETERS: Function-value = Real Floating-point scalar output
Arg = Real Floating-point scalar input

DESCRIPTION: Function-value = Ln(arg); for ALOG
= Log (1.0') (arg); for ALOGl.0'

FPS 868-7482-HHlC Page A - 543

APPENDIX A

********** **********
* * * *
* ARIN'? * - ROUND REAL NUMBER TO NEAREST WHOLE - * ANINT *
* * * *
********** **********

PURPOSE:. To round a real number to the nearest whole number.

CALL FORMAT: Function-value = ANINT(arg)

PARAMETERS: Function-value = Real floating-point scalar output
= Real floating-point scalar input Arg

DESCRIPTION: Function-value= FLOAT(FIX(arg))

FPS 86S-7482-991C Page A - 545

APPENDIX A

********** **********
* * * *
* ATAR * - ARCTANGEN'.r OF REAL NUMBER - * ATAN *
* * * *
********** **********

PURPOSE: To compute the arctangent of a real number
or of the ratio of two real numbers.

CALL FORMAT: Function-value = ATAN(argl) or ATAN2(argl,arg2)

PARAMETERS: Function-value = Real Floating-point scalar output
Argl = Real Floating-point scalar input
Arg2 = Real Floating-point scalar input

DESCRIPTION: Function-value = ATAN(argl) or ATAN(argl/arg2)

FPS 863-7482-HBlC Page A - 547

APPENDIX A

********** **********
* * * *
* CABS * - COMPLEX NUMBER ABSOLUTE VALUE --- * CABS *

* * * *
********** **********

PURPOSE: To compute the absolute value (magnitude) of a complex
number.

CALL FORMAT: Function-value = CABS(arg)

PARAMETERS:

DESCRIPTION:

Function-value
Arg

Function-value

= Floating-point scalar output
= Complex floating scalar input

= SQRT (R(arg)**2+I(arg)**2)

Page A - 549

APPENDIX A_

********** **********
* * * *
* CDIV * - COMPLEX/COMPLEX DIVIDE --- * CDIV *

* * * *
********** ******•***

PURPOSE: To divide a complex number into a complex number.

CALL FORMAT: Function Value = Arg2/Argl

PARAMETERS: Function Value = Complex Floating scalar output
Argl = Complex Floating scalar input
Arg2 = Complex Floating scalar input

DESCRIPTION: Function Value = {R(arg2)+I(arg2)}/{R(argl)+I(argl)}

FPS 86B-7482-BB1C Page A - 551

APPENDIX A

****'*'***** ***'*******
* * *
* CDIVRC * - COMPLEX/REAL DIVIDE - * CDIVRC *
* * * *
'**** ****'******

PURPOSE: To divide a real number into a complex number.

CALL FORMAT: Function Value = Arg2/Argl

PARAMETER: Function Value = Complex Floating scalar output
Argl = Real Floating-point scalar input
Arg2 = Complex Floating scalar input

DESCRIPTION: Function Value = R(arg(2))+I(arg(2))/arg(l)

FPS 86H-7482-H91C Page A - 553

********** **********
* * * *
* CLOG * - COMPLEX NUMBER LOGARITHM -- * CLOG *
* * * *
********** **********

PURPOSE: To compute the natural logarithm of a complex number.

CALL FORMAT: Function-value = CLOG(arg)

PARAMETERS: Function-value = Complex floating scalar output
Arg = Complex floating scalar input

DESCRIPTION: R(Function-value) = ALOG((CABS(arg))
I(Function-value) = ATAN(I(arg)/R(arg))

FPS 86H-7482-HH1C Page A - 555

APPENDIX A

********** *"*********
* * * *
* CONJG * - CONJUGATE OF COMPLEX NUMBER - * CONJG *
* * * *
********** **********

PURPOSE: To compute the conjugate of a complex number.

CALL FORMAT: Function-value = CONJG(arg)

PARAMETERS: Function-value = Complex floating scalar output
Arg = Complex floating scalar input

DESCRIPTION: Function-value = R(arg)-I(arg)

FPS 86&-7482-IBlC Page A - 557

APPENDIX A

********** **********
* * * *
* COSH * - REAL NUMBER HYPERBOLIC COSINE - * COSH *

* * * *
********** **********

PURPOSE: To compute the hyperbolic sine or cosine of a real
----t-.--.UUUU.lt::.L •

CALL FORMAT: Function-value = SINH(arg) or COSH(arg)

PARAMETERS: Function-value = Real Floating-point scalar output
= Real Floating-point scalar input Arg

DESCRIPTION: Function-value = SINH(arg) or COSH(arg)

FPS 869-7482-BilC Page A - 559

APPENDIX A

********** **********
* * * *
* CPOWCI * -- COMPLEX TO INTEGER POWER -- * CPOWCI *
* * * *
********** **********

PURPOSE: To raise a complex number to an integer power.

CALL FORMAT: Function Value = Argl**Arg2

PARAMETERS: Function Value = Complex Floating scalar output
Argl = Complex Floating scalar input
Arg2 = Integer scalar input

DESCRIPTION: Function Value = {R(argl)+I(argl)}**arg2

FPS 86S-7482-HS1C Page A - 561

* *
* CPOWRC *
* *

PURPOSE:

CALL FORMAT

PARAMETERS:

APPENDIX A

* *

- REAL TO COMPLEX POWER -- * CPOWRC *
* *

To raise a real number to a complex power.

Function Value = Argl**Arg2

Function Value
Argl

= Complex Floating scalar output

Arg2
= Real Floating-point scalar input
= Complex Floating scalar input

DESCRIPTION: Function Value= argl**(R(arg2)+I(arg2))

Page A - 563

APPENDIX A

********** **********
* * * *
* CSQRT * - SQUARE ROOT OF COMPLEX NUMBER - * CSQRT *
* * *
********** **********

PURPOSE: To compute the square root of a complex number.

CALL FORMAT: Function-value = CSQRT(arg)

PARAMETERS:

DESCRIPTION:

Function-value
Arg

if R(arg) > g

if R(arg) < g

= Complex floating scalar output
= Complex floating scalar input

R(function value) = F
!(function value) = I(arg)/(2*F)
R(function value) = I(arg)/(2*F)
!(function value) = SIGN(I(argjj*F

where F = SQRT((ABS(R(arg))+CABS(arg))/2)

FPS 863-7482-BBlC Page A - 565

*
* EXP

*

*
*
*

PURPOSE:

- EXPONENTIAL OF REAL NUMBER -

To compute the exponential of a real number.

*
* EXP
*

*
*

*

CALL FORMAT: Function-value = EXP(arg)

PARAMETERS: Function-value
Arg

= Real Floating-point scalar output
= Real Floating-point scalar input

DESCRIPTION: Function-value = Exp(arg)

NOTE: arg>7g9.g99 traps with an overflow error
condition.

FPS 86B-7482-BB1C Page A - 567

* *
* !DIM *
* *

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

* *

- INTEGER/INTEGER POSITIVE DIFFERENCE - * !DIM *
*

To compute the integer positive difference of two
integers.

Function-value = IDIM(argl,arg2)

Function-value = Integer scalar output
Argl = Integer scalar input
Arg2 = Integer scalar input

Function-value = MAX((argl-arg2),g)

FPS 86B-7482-WB1C Page A - 569

APPENDIX A

********** **********

* * * *
* !POW * - INTEGER TO INTEGER POWER -- * !POW *
* * * *
********** **********

PURPOSE: To raise an integer number to an integer power.

CALL FORMAT: Function Value = Argl**Arg2

PARAMETERS: Function Value = Integer scalar output
Argl = Integer scalar input
Arg2 = Integer scalar input

DESCRIPTION: Function Value = argl**arg2

FPS 86i-7482-i91C Page A - 571

*
* MOD

*

*
*
*

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

- INTEGER/INTEGER DIVIDE REMAINDER -

APPENDIX A

*
* MOD
*

*
*
*

To compute the remainder when one integer is divided
by another.

Function-value = MOD(argl,arg2)

Function-value = Integer scalar output
Argl = Integer scalar input
Arg2 = Integer scalar input

Function-value = Argl-INT(argl/arg2)*arg2

FPS 869-7482-SSlC Page A - 573

*
*
*

*
RAN *

*

PURPOSE:

-- SCALAR RANDOM NUMBER GENERATOR --

To generate one pseudo-random number.

APPENDIX A

*
*
*

*
RAN *

*

CALL FORMAT: Function-value = RAN(SEED)

PARAMETERS: Function-value = Floating-point output scalar
Output random number

SEED = Integer input/output scalar
Input: random number seed
Output: last integer generated

DESCRIPTION: RAN returns one pseudo-random floating-point
number between 0.H and 1.0. The routine uses

EXAMPLE:

a linear congruential generator initialized by
SEED to generate an integer, which is then scaled
to produce the function-value. SEED is replaced
with the integer generated. SEED may be any
integer between 0 and 2**26-1.

RAN generates the same sequence of integers as VRAND.
Thus the two statements

C = RAN(SEED)
and

,.. ,., ,.. 'P' 'f'TT"'l" -..TT"\. I ~'t:l"r:'IT'\ rt 1 , \
~ft~~ v~~UU\~~~u,~ 1 •i•J

are equivalent.

SEED = 1000

RAN(SEED): 0.8004849404H96603
SEED 53719635

FPS 869-7482-HHlC Page A - 575

APPENDIX A

* * * *
* RPOW * REAL TO REAL POWER --- * RPOW *
* * * *
********** **********

PURPOSE: To raise a non-negative real number to a real power.

CALL FORMAT: Function Value = Argl**Arg2

PARAMETERS: Function Value = Real Floating-point scalar output
Argl = Real Floating-point scalar input
Arg2 = Real Floating-point scalar input

DESCRIPTION: Function Value = argl**arg2

(If Arg2 is a whole number, Argl can be negative .. j

FPS 869-7482-SSlC Page A - 577

APPENDIX A

********** **********
* * * *
* RRCP * - RFAL RECIPROCAL -- * RRCP *
* * * *
********** ********** -

PURPOSE: To divide a real number into a real number or into 1.

CALL FORMAT: Function Value = Arg2/Argl
or l.iJ/Argl

PARAMETERS: Function Value = Real Floating-point
Argl = Real Floating-point
Arg2 = Real Floating-point

DESCRIPTION: Function Value = arg2/argl for RDIV
or , fYJ _ _._,

~- ... RRCP .J. e/lJ/ Q.l.':::f.J.. ... v ...

scalar output
scalar input
scalar input

Page A - 579

APPENDIX A

********** **********
* * * *
* SIGN * - REAL NUMBER SIGN TRANSFER * SIGN *
* * *
********** **********

PURPOSE: To give the magnitude of a real number with the sign
-.1: - -----~ UL. Cl ;:)f::\..VUU real

CALL FORMAT: Function-value = SIGN(argl,arg2)

PARAMETERS: Function-value = Real Floating-point scalar output
Argl = Real Floating-point scalar input
Arg2 = Real Floating-point scalar input

DESCRIPTION: Function-value = Sign(arg2)*ABS(argl)

FPS 86H-7482-HS1C Page A - 581

* *
* SINCOS *
* *

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

EXAMPLE:

* *

- REAL SINE AND COSINE -- * SINCOS *
* *

To compute the sine and cosine of a real number.

CALL SINCOS(A,CA,SA)

A = Floating-point input scalar
CA = Floating-point output scalar
SA = Floating-point output scalar

CA = COS(A)
SA = SIN(A)

SINCOS computes both the sine and the cosine in
about the same time as the SIN function alone.

NOTE: A 32-bit integer overflow exception is generated
if the input argument is too large (greater
than approximately 8.HE+5). In this case, the
output result has less than six decimal digits of
precision.

An added feature of this routine is that it can also
be called as a complex function. If FIFSPR_SINCOS
is declared as complex, the call

Function-value = FIF$PR_SINCOS(A)

returns the complex value

Function-value= CMPLX(COS(A),SIN(A)).

This is convenient for converting polar coordinates
to rectangular coordinates.

A = fiJ./iJ

CA = l./iJ
SA = /iJ./iJ

FPS 86B-7482-9BlC Page A - 583

APPENDIX A

********** **********
* * * *
* SQRT * - SQUARE ROO'l' OF REAL NUMBER - * SQRT *
* * * *
********** **********

PURPOSE: To compute the square root of a real number.

CALL FORMAT: Function-value = SQRT(arg)

PARAMETERS: Function-value = Real Floating-point scalar output
Arg = Real Floating-point scalar input

DESCRIPTION: Function-value = SQRT(arg)

FPS 86B-7482-BH1C Page A - 585

APPENDIX A

********** **********
* * * *
* TANH * - REAL NUMBER HYPERBOLIC TANGENT * TANH *

* * *
********** **********

PURPOSE: To compute the hyperbolic tangent of a real number.

CALL FORMAT: Function-value = TANH(arg)

PARAMETERS: Function-value = Real Floating-point scalar output
Arg = Real Floating-point scalar input

DESCRIPTION: Function-value = TANH(arg)

FPS 86H-7482-HH1C Page A - 587

APPENDIX B

B.1 IN'l'RODUCTION

APPENDIX B

DATA REPRESEN'l'ATIONS FOR STORING
SPARSE VECTORS AND MATRICES

This appendix presents information to help the user understand and use
the sparse vector and sparse matrix subroutines. It describes the data
representations (or formats) both accepted as input and produced as
output by these routines. This appendix also spells out parameter
naming conventions common to many of these subroutines.

There are four subroutines that convert sparse vectors and matrices
between their packed and full representations: Sparse Vector Pack
(S'VPACK), Sparse Vector Unpack (S\"JPCK), Sparse Matrix Pack {SMPACK),
and Sparse Matrix Unpack (SMUPCK).

B.2 SPARSE VECTOR S'l'ORAGE

An N-dimensional sparse vector V is represented in packed-vector format
by N, NS, s, and IEN where:

N a scalar, is the dimension of v.
NS a scalar, is the _number of nonzero values in v.
S a vector of length NS. contains the nonzero values of V.
IEN a vector of length NS, contains the location in V of each

corresponding element in S [i.e., V(IEN(k)) = S{k) for k=l,NS].

For example, the following sparse vector

can be represented in packed-vector format as follows:

N: 8
NS: 3

S: [3.2 7.8 -19.3]
IEN: [2 4 8

So, S(l)'s location in V can be found in IEN(l), S(2)'s in IEN(2), .•• ,
S(NS)'s in IEN(NS).

The nonzero values in S are generally ordered as they appear in V.
However: they can be ordered differently if the order is compatible
with the subroutine to be used.

FPS 86&-7482-&&lC Page B - 1

APPENDIX B

Except for differences in the IP vector, formats I and III are the
same, as are formats II and IV.

Each attribute associated with a particular format type and the
consequences of using that attribute are explained in detail
in the sections that follow.

B.3~1 Matrix Format Type I (COL=OP..DER PTRS-ONLY)

A sparse matrix A is represented by M, N, NS, s, IN, and IP,
in format I where:

M a scalar, is the number of rows in A.
N a scalar, is the number of columns in A.
NS a scalar, is the number of nonzero values in A.
s a real vector of length NS, contains the nonzero values

in column order.
IN an integer vector of length NS, contains the row in A of

of A

each corresponding value in s [i.e., IN(k) = row in A of S(k)
for k=l, NS] •

IP an integer vector of length N+l, contains one element for every
column in A.
Each element indicates the location in S that holds that column's
first nonzero value (exception: empty columns).
IP's N+lst element is a sentinel.

The sentinel element IP(N+l) holds the number NS+l.
In general, IP(i) contains the location in S that refers to A's
i-th ; :1 lJ ..., - .._I •

If a column in A is empty, then the entry in IP for that column
is the same as the entry for the next nonempty column, or if
there is no such column,
sentinel value in IP(N+l) is used.

The matrix: !J.g !J.H !J.H g _g g _g '1. g
!J.g 4.5 !J.g '1. 2 3 .!J '1. fJ
!J.!J !J.0 fJ .0 '1.0 '1. fJ '1. fJ
fJ .0 9.9 7.1 5.8 '1.0 '1.0
fJ .0 1.3 0.0 8.3 '1. '1 '1. fJ

as expressed in Type I Format:

M: 5
N: 6

NS: 8

FPS 86H-7482-H&lC Page B - 3

APPENDIX B

B.3.3 Matrix Format Type III (COL-ORDER PTRS-SUMS)

A sparse matrix A is represented by M, N, NS, S, IN, and IP, in format
III where:

M a scalar, is the number of rows in A.
N a scalar, is the number of columns in A.
NS a scalar, is the number of nonzero values in A.
S a real vector of length NS, contains the nonzero values of A in

IN an integer vector of length NS, contains the row in A of each
corresponding value in S [i.e., IN(k) =row in A of S(k) for
k=l, NS].

IP an integer vector of length 2*N, contains two elements for every
column in A:

(a) the location in S that holds that column's first
nonzero value (exception: an empty column)e

(b) that column's total number of nonzero elements.

IP(i) and IP(i+N) always refer to the i-th column in A, for i=l,N.
IP(l) to IP(N) holds locations as in {a) above and IP(N+l) to IP(2*N)
holds sums as in (b) above.

If a column in A is empty, then the (a)-entry in IP for that column is
the same as the (a)-entry for the next nonempty column, or if there is
no such column, the number NS+l. (Note that the (b)-entry is zero.)

The matrix: H.H H.H 0.0 H.H 0.H 0.H
H.H 4.5 0.H .0'.2 3.H 0.H
g_g 0.H 0.0 .0'.H 0.H 0.H
r.r r.r 0 0 ., , c 0 fX r.t 0.{J XJ. u ;I. ;I 1•4 .J. u JU • IJ

g_g 1.3 H.H 8.3 0.H 0.H

as expressed in Type III Format:

M: 5
N: 6

NS: 8

S: T 4. 5 9.9 1.3 7.1 0.2 5.8 8.3 3 • .0']
IN: [2 4 5 4 2 4 5 2]

IP: [l l 4 5 8 9 g 3 1 3 l .0']

Note that lengths of Sand IN equal NS (=8); S is in column order; the
length of IP equals 2*N (=12); IP contains both locations and sums; IN
contains row numbers.

FPS 86B-7482-B&lC Page B - 5

.I

I

APPENDIX C

APPENDIX C

SPARSE LINEAR SYSTF.M ROU'l'INES

C.l IN'l'RODUCTION

mi....:- ----... ~.: ... _ _...__;_,... .;"',,,:"" ~:,........, i... i- '-""'- ··--- ··-~---•--..: --~ ··--.&.U.&.i:::I CltJtJ'CUU.&.n. "-VUl..CL.&.J.J..:2 .i.U.L.V•iUCLi...&.V.U lo.I.I liO::.&..tJ 1..UO:: l.Li:::IO::J. U..UUO::J.i:::l\.CLJ..lU CIJ.J.l.i U.i:::IC

the sparse linear system routines in the Advanced Math Library. The
sparse linear system routines are APAL64 routines that provide an
efficient method for solving the linear system Ax = b where the
coefficient matrix is sparse and is stored in packed form.

There are twelve generic sparse linear system routines in all. The
name of each routine consists of a four-letter generic name followed by
the single digit "2". The first two letters of the name indicate the
coefficient matrix type (i.e., the problem domain), and the last two
letters indicate its function. The single digit is a version number
and is not included on the names of the original routines, which were
superseded as of the FH3 release (see Appendix G).

The types of coefficient matrices are:

RU A is real.

RS A is real and symmetric.

cu A is complex.

cs A is complex and symmetric.

The functions performed are:

FR Factor the coefficient matrix.

SV Solve the system given the factorization of the
coefficient matrix.

FS Factor and solve (combines FR and SV)~

In general, the time required to factor the coefficient matrix is much
greater than the time required to solve the factored system.
Therefore, by having separate routines for each of ~hese functions, the
factorization need only be performed once when solving a number of
systems that all have the same coefficient matrix.

FPS 86B-7482-B&lC Page C 1

Jl._pPli!JIDIX C

Denote the determinant of a square matrix A by Det(A). The "not equal"
relation will be denoted by the symbol "#".

Assume an n x n lower-triangular matrix L, and n x n upper-triangular
matrix U, such that A = LU. Then the system Ax = b is equivalent to
LUx = b. Letting Ux = y, where y is an n-dimensional vector, then the
system becomes Ly = b. Thus, it is possible to decompose the original
system into two triangular systems which, in general, are easier to
solve. It is then possible to find the solution to the original system
x, by the following two steps:

l) Solve Ly = b for y by forward elimination

2) Solv·e Ux = y for x by backward substitution

If there does exist an L and U such that LU = A, then L and U are not
uniquely determined unless additional conditions are imposed. One such
set of conditions is to require the following:

U(i,i) = l for i = 1 to n.

By imposing this restriction on U, the remaining elements of L and U
can now be solved obtaining the following:

L(i,j) = A(i,j) - Sum[L(i,k) * U(k,j), k=l,j-1]
for i = l to n, j = l to n, and i >= j eq(la)

U(i,j) = (A(i,j) - Sum[L(i,k) * U(k,j), k=l,i-1]) / L(i,i)
for i = 1 to n-1, j = 2 to n, and j > i eq(lb)

It is clear from an examination of the expressions above that a unique
L and U exist if and only if L(i,i) # g for i = 1 to n-1. Letting A{k}
denote the k-th order principle submatrix of A (i.e., the submatrix
formed by the intersection of the first k rows and the first k columns
of A), then it follows from equation (1) that A{k} = L{k}U{k}. Recall
from elementary linear algebra that:

(a) if A= BC, then Det(A) = Det(B)Det(C); and
(b) if T is an n x n triangular matrix,

then Det(T) = Prod[T(i,i), i=l,n].

FPS 86S-7482-SS1C Page C 3

APPENDIX C

A common variation of the method of LU factorization involves the
further factorization of L into MD where M is a lower-triangular matrix
with M(i,i) = 1 for i=l ton and D is a diagonal matrix. The elements
of M and D are found to be:

M(i,j) = L(i,j) / L(j,j) eq(2a)

D(i,i) = L(i,i) eq(2b)

Equations (l) and (2) can be used to show that M is the transpose of U
if A is symmetric. The LOU theorem can now be stated.

C.3.2 LDU Theorem

If A is an n x n matrix, then there exist unique matrices L, o, and U,
where L is lower-triangular with L(i,i) = 1, D is diagonal with D(i,i)
g, and U is upper-triangular with U(i,i) = 1 such that A= LOU if and
only if Det(A{k}) # ~ ~or k = i to n. Furtnermore, if A = LDU and A is
symmetric, then L is the transpose of U.

If A is factored into LDU, then the original system, Ax = b, is
equivalent to LDUx = b. Letting Ux = y and Dy = z where y and z are
n-dimensional vectors, then the original system decomposes into two
triangular systems and a diagonal system that are solved by the
following three steps:

1) Solve Lz = b for z by forward elimination.

2) Solve Dy = z for y.

3) Solve Ux = y for x by backward substitution.

Since LDU-factorization requires more work than LU-factorization, the
later is preferable unless A is symmetric. In that case, the direct
computation and storage of U is unnecessary since U is the transpose of
Land the factors are written LDL'.

C.4 FILL-IN

If the coefficient matrix A is sparse, (this is assumed when using the
sparse system routines) store only the nonzero elements of A with
information about the location of the nonzero elements. (The manner in
which this is done is described in Section C.5.) It is very desirable
to do this since both storage requirements and execution time can be
greatly reduced.

FPS 86g-7482-.9'Sl.C Page C 5

APPENDIX C

The following algorithm is given in the form of a FORTRAN subroutine
for determining fill-in:

SUBROUTINE FILLIN(N, A, IA)
c
C GIVEN AN N BY N MATRIX, A, THIS ROUTINE RETURNS AN N BY
C N LOGICAL MATRIX, IA, WHERE IA(I,J) IS TRUE IF A(I,J) IS
C A SPARSE ELEMENT AND FALSE OTHERWISE
c

c

ll!J
c

n 'Cl 'I\ T 'I\ I 11.T 11.T \
J:'-~ n\""'""I
LOGICAL IA(N,N)

DO lHJ I = l, N
IA(I,l) = .FALSE.
IA(l,I) = .FALSE.
IF(A(I,l) • NE. JJ.!J)
IF(A(l,I) .NE. JJ.!J)

CONTINUE

DO lS!J J = 2, N
DO 14!J I = 2, N

IA(I,l) = .TRUE •
IA(l,I) = .TRUE.

IF(A(I,J) .NE. !J.!J) GO TO 13JJ
K2 = MIN!J(I,J) -1
DO 12!J K = 1, K2

IF(IA(I,K) .AND. !A(K,J)) GO TO l3g
12!J CONTINUE

13JJ

IA(I,J) = .FALSE.
GO TO 14!J
CONTINUE
IA(I,J) = .TRUE.

lS!J CONTINUE
RETURN
END

The amount of fill-in varies as the rows and columns a A are permuted
and algorithms exist to minimize the fill-in. However, any permuting
of the rows and columns of A to decrease fill-in may be detrimental to
the numerical stability.

Before leaving the subject of fill-in, note that if A is a band matrix,
then the superposition of L and U will also be .a band matrix and will
have the same bandwidth as A. Therefore, if A is a band matrix where
the nonzero elements are dense within the band consider every element
within the band to be sparse without introducing a great number of
unnecessary sparse elements.

FPS 86S-7482-S91C Page C 7

~_ppmmrx c

Finally, if A if unsymmetric, then an additional integer vector IDP of
length N is requirea for pointers into s to the diagonal elements of A.
For example,

• If A is real and A(j,j) is stored in S(k), then IDP(j) = k.

• If A is complex and A(j,j) is stored in S(2*k-l) and 5(2*k),
then IDP(j) = k.

Consider the following example; let A be the real matrix •

2 • .0' .0' • .0' .0' • .0' 4 • .0' .0' .. !J
fJ .. .0' 1.fJ .0' .fJ f1 .. fJ 2.!J
fJ.fJ fJ • .0' ~- -1..0 .0 • .0 g .!J
fJ .!J 3 .k1 k1.k1 1..0 g .H
fJ.kJ fJ.kJ .0' .kJ .0' .kJ 5.kJ

Note that A(4,5) is a sparse element since it is a fill-in element.

The vectors s, IRN, ICP, and IDP that are required to represent A are:

WORD s IRN ICP IDP

l 2. g l 1 1
2 1..0' 2 2 2
3 3. g 4 4 4
4 -1..0' 3 5 6
5 4 • .0' 1 7 9
6 l.kJ 4 l/J
7 2 • .0' 2
8 ».» 4

9 5 • .0' 5

The output from the factorization routines and the input to the
solution routines require these same vectors except that S then
contains the sparse elements of the superposition of Land U on A (L',
D, and U if A is symmetric) with the diagonal elements replaced by
their reciprocals. (See the example above.)

2 • .0' .0'. fJ fJ • .0' .0' • .0' .0' .kJ 1..0 .0' • .0' g .!J 2 • .0' k1.k1
g_g 1..0' .0' • .0' .0' • .0' g • .0' g • .0' 1..0' 9.H 9 . .0' 2 .H

L = .0'. fJ g .fJ -1.kJ g .fJ g • .0' u = k1.k1 0.kJ 1..0' 0.kJ 0.kJ
g .fJ 3 .kJ k1.k1 1.0 .0' .kJ .0'. fJ .0' .kJ .0'. fJ 1..0' -6.kJ
.0' • .0' k1.k1 fJ .kJ g .!J 5.kJ .0'. fJ .0'. fJ 0 • .0' .0' • .0'

Therefore, the superposition of L and U with the diagonal elements
replaced with their reciprocals is

.0'.S ff .kJ
IYIY, rl
iti .10 J. • .;o

fJ • .0' fJ.fJ
fJ • .0' 3.fJ
fJ.fJ kJ • .0'

FPS 868-7482-BBlC

ff • .0' 2 • .0'

-1..0' fJ .fJ
kJ.fJ 1..0'
fJ • .0' .0' • .0'

ff. fJ
2. [J

g • .0'
-6 • .0

.0.2

Page C

1..0'

9

APPENDIX D

APPENDIX D

BASIC LINEAR ALGEBRA SUBPROGRAMS

D.l IN'.rRODUC'l'ION

This appendix contains information to help the user understand and use
the routines, which constitute the basic linear algebra subprograms
(BLAS) as implemented within the LINPACK Users' Guide Manual, Appendix
A. These routines are a subset of the basic linear algebra subprograms
developed by Lawson, Hanson, Kincaid, and Krogh (refer to ACM Trans.
Mat:h. Software 5, 3 (Sept. 1979) pp. 324-325) for many of the basic
vector operations of numerical linear algebra. The package was
intended to be called from FORTRAN programs, and was developed to focus
on performance improvements of the well known set of LINPACK routines
(refer to the LINPACK Users' Guide, Appendix A).

In addition, four routines have been added which are extensions to four
of the BLAS routines (real and complex versions of the dot product and
scalar times vector plus vector) which provide for repeated invocations
with only one subroutine call. These are useful in many applications
including matrix multiply and matrix factoring (refer to examples
0.4.9, 0.4.19, and 0.4.11).

Double precision entry points allow the routines to handle standard
calls to BLAS double-precision routines. There are no specific
double-precision routines implemented, since the single precision
routines use the standard 64-bit wide floating-point numbers.

When called from FORTRAN, the BLAS routines perform according to the
algorithmic description in Appendix A, LINPACK User's Guide. In
particular, negative subscript increment specification results in
adjustment of the vector base address, as described in Section D.2.
(No such base address adjustment needs to take place when the MLSP
entries are used. However, when calling the routines from APAL64 base
address adjustment is used.)

Much of the information in Sections 0=2 and 0:4 is taken from Appendix
3 of the NTIS-distributed Sandia National Labs. report, SAND77-0898,
Basic Linear Algebra Subprograms for Fortran Usage, by Lawson, Hanson,
Kincaid, and Krogh, and is reprinted with their kind permission.
Floating Point Systems, Inc., gratefully acknowledges the suggestions
given by R. J. Hanson.

FPS 869-7482-BSlC Page D 1

APPENDIX D

D.3 ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS

The names of entities used in BLAS calls conform in general to standard
FORTRAN conventions. In particular, names that begin with I or N
pertain t-0 integer data types; names that begin with C pertain to
complex data types, and names that begin with S (for ~calar) pertain to
real (floating-point) data types.

The roots of the names pertain to function. The routines with -DOT- as
root calculate different versions of the dot product, SDOT calculating
the inner product of real vectors, CDOTC and CDOTU calculating complex
inner products £Onjugated and ~nconjugated respectively.

COPY Replaces (moves or £QEYS) elements of a vector with elements
of another.

AXPY Stands for "aX+Y". It is intended to perform the elementary
matrix operation of adding to the elements of a vector the
scalar multiple of another vector.

SCAL Multiplies a vector by a scalar.

SWAP Interchanges (or swaps) elements of two vectors.

ASUM Calculates the ~bsolute sum of a vector; that is, the sum of
the absolute values of each element.

I-AMAX Calculates the index, or subscript, of the component of a
vector of the largest absolute value.

S-NRM2 Calculates the I-~o!.!!!, or Euclidean length of a vector. It
carefully concerns itself with scaling problems to maintain
accuracy and exponent range, by testing each component before
adding its square to the accumulating partial sum. Usually it
would be appropriate to use SORT(DOT) for the same operation
with greater speed but less robustness.

ROT Rotates a vector of pairs of points.

The parameter names are also standardized. These routines all deal
with one or two vectors, usually coming from matrix rows or columns.
The first vector is X; the second, -Y. Increments between consecutive
elements of a vector are named INCX and INCY. Scalars are named
A and -B.

Speed values reflect average values, without regard for vector
placement, for typical APFTN64 compilations. Often much improvement is
possible by judicious placement of elements among memory modules.
Also, initial setup times are not included, only the loop values; which
results in a value which is a constant multiple of N, the number of
elements in the destination vector.

FPS 86B-7482-BB1C Page D 3

A_pPENDIX D

D.3.4 Complex Function CDOTU(N,CX,INCX,CY,INCY)

Function value= sum(CX(m)*CY(m), for the N vector elements
indexed by m).

D.3.5 Subroutine CROI'G(CA,CB,SC,CSIN)

SC := ICAl/r, CSIN := conjugate(CB)*CA/ICAl/r, CA := CR
where: r=sqrt(ICAl**2 + ICBl**2) and SC,CSIN chosen to satisfy

CR = SC*CA+CSIN*CB
H = CSIN'*CA+ SC*CB.

D.3.6 Subroutine CSCAL(N,CA,CX,INCX)

CX(m) := CA*CX(m), for the N vector elements indexed by m.

D.3.7 Subroutine CSSCAL(N,SA,CX,INCX)

CX(m) := SA*CX(m), for the N vector elements indexed by m.

D.3.8 Subroutine CSROT(N,CX,INCX,CY,INCY,SC,SS)

CX(m):= SC*CX(m)+SS*CY(m)
CY(m):=-SS*CX(m)+SC*CY(m), for the N vector elements indexed by m.

D.3.9 Subroutine CSWAP(N,CX,INCX,CY,INCY)

CX(m) :=: CY(m), for the N vector elements indexed by m.

D.3.lB Integer Function ICAMAX(N,CX,INCX)

Function value= I such that IRe CX(I)l+IIm CX(I)I is largest of
the N values IRe CX(m)l+IIm CX(m)j.

D.3.11 Integer Function ISAMAX(N,SX,INCX)

Function value= smallest I such that ISX(I)I is largest of all N
values ISX(m)I.

D.3.12 Real Function SASUM(N,SX,INCX)

Function value= sum(ISX(m)I, for the N values indexed by m).

PPS 86B-7482-SS1C Page D 5

APPENDIX D

D.3.21 Subroutine SROTM(N,SX,INCX,SY,INCY,PARAMJ

If PARAM(l) = l.g then

:= PARAM(2)*SX(m) + SY(m) SX(m)
SY(m) : = -SX(m) + PARAM(S)*SY(m),

for the N vector elements indexed by m.

•..e .,...,.._,...,.., ... ,, " - IY tY .&...1---
.1.J: ~l"U'U"U"l\J.J - JOeJO 1..Ut::.U

SX(m) + PARAM(4)*SY(m) SX(m) : =
SY(m) := PARAM(3)*SY(m) + SY(m),

for the N vector elements indexed by m.

If PARAM(l) = -1.g then

SX(m) := PARAM(2)*SX(m) + PARAM(4)*SY(m)
SY(m) := PARAM(3)*SY(m) + PARAM(S)*SY(m),

for the N vector elements indexed by m.

If PARAM(l) is not 1, g, or -1, the routine returns without modifying
the vector elements. It thus becomes equivalent to an identity
transformation.

D.3.22 Subroutine SRO'l'MG(Dl,D2,Bl,B2,PARAM)

If IDl*Bl*Bll > ID2*B2*B21 and D2*B2 <> G then

PARAM(l) := g_g
PARAM(3,4) := -B2/Bl, 02*B2 / Ol*Bl, so that the SROTM matrix
becomes (Hll,H21,Hl2,H22) = (l,-B2/Bl,02*B2/0l*Bl,l).

01 := 01/U
02 := 02/U
Bl := Bl*U where U = l.g + (Ol*Bl*Bl)/(02*B2*B2).

If !Dl*Bl*Bl! =< ID2*B2*B21 and D2*B2 <> H then

PARAM(l) := i.g
PARAM(2,5) := Ol*Bl/(D2*B2) , Bl/B2 so that the SROTM matrix
becomes (Hll,H21,Hl2,H22) = (Ol*Bl/D2*B2,-l,l,Bl/B2).

01,02,Bl := 02/U,Ol/U,B2*U where U = 1 + Ol*Bl*Bl/(02*B2*B2).

If 02*82 = 0, then

the rotation matrix in SROTM becomes the identity, PARAM(l)
:= -2.0

FPS 868-7482-SSlC Page D 7

APPENDIX D

Memory words occupied by X may intersect those occupied by Y. In fact,
x and Y may coincide. However, memory occupied by Z should not, in
general, intersect that occupied by X or Y.

If N < 1, SDOTN returns with no action taken.

If M < 1 and ISW[l] = 1, SDOTN returns with no action taken.

If M < 1 and ISW[l] = g, SDOTN returns with Z(j) = g_g for j = l to N.

In general, M < 1 implies a zero sum of products.

D.3.26 Complex Subroutine CDO'l'N(ISW,N,M,X,IXI,IXO,Y,IYI,IYO,Z,IZO)

Z(jz) = r * C(jz) + s * SUM[A(ix) * B(iy), i=l,M] j=l,N

where: ix = (j-1) * IXO + (i-1) * IXI + l
iy = (j-1) * IYO + (i-1) * IYI + l
jz = (j-1) * IZO + 1

s = l.kJ, if ISW[kf] = g

= -1.kJ, if ISW(g) = 1

r = fJ .!J, if ISW[l] = fI
= l.kJ, if ISW[l] = l

A = x I if ISW[2] = g

= Conjg(X), if ISW[2] = 1

B - y ~ .i= 'T ,-.-P • ., r .., , = IT
I ..L.L. ..L.:>WL .J J J(]

= Conjg(Y), if ISW[3] = l

c = z I if ISW[4] = g

= Conjg(Z), if ISW[4] = 1

and !SW[k] = bit k of ISW.

ISW is a one word function selector switch and is treated as a bit
string with the bits numbered from the least significant bit (bit fJ).
If a given bit is set (equal to one), then the function option that
corresponds to that bit is selected.

If IZO = g, then CDOTN sets Z(l) equal to the accumulated sum of all N
dot products. If ISW[l] = 1 also, then input Z(l) is added to this
sum.

Memory words occupied by X may intersect those occupied by Y. In fact,
X and Y may coincide. However, memory occupied by z should not, in
general, intersect that occupied by X or Y.

Page D 9

~..PPEND!X D

D.3.28 Subroutine CAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO)

Y(iy} = s * B(ja) * Z(ix) + y { iy) 1 i=l,M j=l,N

where: ja = (j-1) * IAO + l
ix = (j-1) * IXO + (i-1) * !XI + 1
iy = (j-1) * IYO + (i-1) * !YI + 1

s = 1..0' if ISW[.0'] = g

= -1..0' if ISW[.0"] = l

B = A if ISW[2] = g

= Conjg(A), if ISW[2] = 1

z = x , if ISW[3] = g

= Conjg(X), if ISW[3] = 1

and ISW[k] = bit k of ISW.

!SW is a one word function selector switch and is treated as a bit
string with the bits numbered from the least significant bit (bit .0').
If a given bit is set (equal to one), then the function option that
corresponds to that bit is selected.

Memory words occupied by A may intersect those occupied by X. However,
memory occupied by Y should not, in general, intersect that occupied by
A or X.

Furthermore, the user will not get meaningful results when distinct
"columns" of Y intersect. For instance, if M = 1.0'.0', IYI = 1 and IYO =
96, then Y(97,l) = Y(l,2), Y(98,l) = Y(2,2) etc.

However, cases involving IYO = .0' produce meaningful results in that the
products are accumulated to Y. That is, successive results bound for
the same storage location in Y are added together rather than stored
over each other. In this case, the calculation is reduced to a single
call to CDOTN which executes much faster than the general case speeds
given in the routine documentation.

IYI = .0' is of no real value and is omitted for speed and simplicity.

If N < l, CAXPYN returns with no action.

If M < 1, CAXPYN returns with no action.

If IYI = .0', CAXPYN returns with no action.

FPS 86H-7482-HH1C Page D 11

APPENDIX D

D.4.5 Set to Identity

Given an N by N matrix A, to set A = the identity matrix and then
B = A.

5'1

6Z

D.4.6

DO 5'1 J=l,N
CALL SCOPY(N,'1.EkJ,H,A(l,J),l)
CALL SCOPY(N,l.EH,H,A,MDA+l)
DO 6'1 J=l,N

Matrix Columns Interchange

To interchange the columns of an M by N matrix c, where the column to
be interchanged with column J is in a type INTEGER array IP(*), and has
the value IP(J).

DO 7'1 J=l,N
L=IP(J)
IF(J.NE.L) CALL SSWAP(M,C(l,J),l,C(l,L),l)

7'1 CONTINUE

D.4.7 Matrix Transposition

To transpose an N by N matrix A in-place, where MDA is the first
dimensioning parameter of the array A(*,*).

IF(N.EQ.l) GOTO 85
DO SG J:l,N-1

8'1 CALL SSWAP(N-J,A(J,J+l),MDA,A(J+l,J),l)
85 CONTINUE

D.4.8 Column Vector Circular Shift

Finally, an inefficient but illustrative code segment which swaps
in-place the components of the column vector

(xl, ..• :xK,xK+l, ••• ,xN)

FPS 86S-7482-991C Page D 13

APPENDIX D

D.4.lB Matrix Factorization Using SAXPYN

This subroutine performs matrix factorization A=LU without pivoting
using SAXPYN. L replaces the lower part of A excluding the diagonal.
L is assumed implicitly to have l's on· its diagonal. U replaces the
upper part of A including the diagonal. A itself is treated as a
doubly dimensioned array with first dimension NO. A is assumed to
contain an NI x NI matrix stored by rows rather than the usual storage
by columns. This storage scheme allows SAXPYN to more efficiently
process

c

c

c

.a..1..- -·-----~ 1..HC: ~UJ.J.t:'UI.. row being used

SUBROUTINE MFBGE(A,NI,NO)
REAL A(l)
INTEGER NI,NO

IF(NI.LE.l) RETURN
JINV=l
NOP=NO+l

DO HHJ I=l,NI-1
AINV=l • .0'/A(JINV)
JC=JINV+NO

.t:-- _, .:-.:-- .. :-­
~Vi. t:.J...i.1u.i.11a.1.. .i.vu.

C COMPUTE THE NEXT COLUMN OF L
c

c

CALL VSMUL(A(JC),NO,AINV,A(JC),NO,NI-I)
MN=NI-I

C PERFORM THE ELIMINATION GETTING A NEW LOWER RIGHT MINOR
c

CALL SAXPYN(l,~ii,MN,A(JC),NO,A(JI1~v+l),l,G,A(JC+l),l,NO)
c

c

JINV=JINV+NOP
1.0'.0' CONTINUE

RETURN
END

D.4.11 Matrix Factorization Using SDO'l'R

This subroutine performs matrix factorization A=LU without pivoting
using SDOTN. L replaces the lower part of A excluding the diagonal.
L is assumed implicitly to have l's on its diagonal. U replaces the
upper part of A including the diagonal. A itself is treated as a
doubly dimensioned array with first dimension NO. A is assumed to
contain an NI x NI matrix stored by columns. Doolittle's method is
used.

FPS 868-7482-BBlC Page D 15

APPENDIX E

APPENDIX E

APMA'l'H64 FUNC'l'ION GENERATION ROUTINES

E.l IN'I'RODUCTION

This appendix presents information to help the programmer understand
and use the function generation routines of the Advanced Math Library=
The function generation routines are APAL64 routines that provide a
flexible and efficient way of evaluating functions of one, two, three,
or four variables. They do this using table lookup with linear
interpolation. Lookup is performed by searching for the breakpoints,
using either a binary search (successive interval halving) or a step
search (nearest neighbor), depending on whether the user expects the
values of the input variables to be rapidly or slowly changing from
call to call.

Function generation. is described in the following manner:

Given the function F of one input variable x, for which the
value of F is known at specific values of x (breakpoints)
(x(l), x(2), ••.),calculate the value of the function for an
arbitrary value of x by linearly interpolating between the
values of Fat the pair of breakpoints x(i) <= x <= x(i+l).

After determining the pair of breakpoints (x(i), x(i+l)), between which
the value of x lies, calculate the function by the following formula:

F(x} ~ F(x(i))+(F(x(i+l))-F{x(i)))*(x-x(i))/(x(i+l)-x(i))

This process is extended to two-variable functions by three
applications of the above formula, to three-variable functions by seven
applications, and four-variable functions by 15 applications.

The function generation routines are listed below (refer to Appendix A
for detailed descriptions):

breakpoi~t search routines: BIN
STEP

function evaluation routines: FUNl
FUN2
FUNJ
FUN4

FPS 869-7482-BSlC Page E - 1

APPENDIX E

2 variable·s: x, Y.

3 functions: Fl(X,Y), F2(X,Y), E'3(X,Y)

3 x breakpoints: Xl, X2, X3

4 Y breakpoints: Yl, Y2, Y3, Y4

Coordinate value breakpoint tables:

XBRK(l,l) = Xl YBRK(l,l) = n
(2,l) = X2 (2,1) = Y2.
(3,l) = X3 (3,l) = Y3
(1~2) = l. 0/ (X2-Xl) (4,1) = Y4
(2,2) = l. 0/ (X3-X2) (1,2) = l. 0/(Y2-Yl)
(3,2) = o.o (2,2) = l. 0/ (Y3-Y2)

(3 .. 2) = l. 0/ (Y4-Y3)
Xl < X2 < X3 (4 .. 2 j = 0.0

Yl < Y2 < Y3 < Y4

Taken together, these two breakpoint tables specify a 3 X 4 rectangular
grid of points in the X-Y plane.

:'unction value breakpoint table:

FBRK(l,1,1) = Fl (Xl, Yl)
(2,1,1) = Fl(X2,Yl)
(3,1,l) = Fl(X3, Yl)
(1,2,1) = Fl(Xl,Y2)
(2~2~1) = Fl(X2,Y2)
(3,2,1) = Fl(X3,Y2)
(1,3,l) = Fl(Xl,Y3)
(2,3,.l) = Fl(X2,Y3)
(3,3,l) = Fl (XJ, Y3)
(1,4,l) = E'l(Xl,Y4)
(2,4,l) = E'l(X2,Y4)
(3,4,l) = Fl(X3,Y4)
(1,1,2) = F2(Xl,Yl)

(3,4,2) = .F2(X3,!4)
(1,1,3) = F3(Xl,Yl)

(3,4,3) = F3(X3,Y4)
-6747-

Figure E-1 Example Coordinate and Function Value Breakpoint Tables

FPS 86B-7482-gs1c Page E - 3

APPENDIX E

where

XY(l,l) = X coordinate value of the first input point

XY(2,l) = Y coordinate value of the first input point

E.3 CALLING APMATH64 FUNC'l'ION GENERATION ROUTINES

The function generation package is used with System Job Executive (SJE)
as follows:

APFTN64
driver

<----> Advanced Math
Library routines

The user must supply the APFTN64 driver, which contains calls to the
appropriate Advanced Math Library routines. The coordinate value
tables, function value table, and the input points are generated in the
APFTN64 driver. The APFTN64 driver routine does the following:

• Generates the coordinate value breakpoint tables.

• Generates the function value breakpoint table.

• Specifies the input points.

• Sets up a loop to process the input points.

• For each input point, determines the appropriate breakpoint
pair for each of the coordinates of the input point by calling
the BIN or STEP routine for each coordinate. (This feature
makes input point data structure arbitrary.)

• Calls the appropriate function evaluation routine (i.e., FUNl,
FUN2, FUNJ, or FUN4 from the Advanced Math Library).

Refer to the Advanced Math Library documentation and the individual
program headers for descriptions of these programs.

FPS 86S-7482-SS1C Page E - 5

APPENDIX E

The structure of the output function value array FVAL is arbitrary to
the extent that each call to the Advanced Math Library function
generation routine returns the interpolated values for all of the
functions at the given input point in one array. For this reason, FVAL
is perhaps most conveniently dimensioned FVAL(NF,NIP).

Lines 35 through 61 load the coordinate value breakpoint tables. In
the FUN4 example below, the program assumes the function values to be
known (i.e., generated by the user) on the four-dimensional grid of
points as specified by the coordinate tables.

Lines 65 through 73 load the function value breakpoint table. In this
example, it is done by simply cycling through all possible coordinate
value combinations, evaluating the four functions at each point.

Lines 77 through lHH specify the input points calling for interpolated
values for each of the four functions.

Lines ig2 through 120 call the APMATH64 BIN and FUN4 subroutines, pass
the tables and other arrays as arguments, and write out the resultso

FPS 868-7482-BBlC Page E - 7

(.0'.0'55)
{.0'.0'56)
(.0'.0'57)
(.0'.0'58)
(.0'.0'59)
(.0'.0'6.0')
(.0'.0'61)
(.0'.0'62)
(.0'.0'63)
I f%f%t: A \
\JUJUU"Sj

(.0'.0'65)
(.0'.0'66)
(.0'.0'67)
(.0'.0'68)
(.0'.0'69)
(.0'.0'7.0')
(.0'.0'71)
(.0'.0'72)
(fHJ73)
(.0'.0'74)
(.0'.0'75)
UHJ76 >
(.0'.0'77)
(.0'.0'78)
OH179)
(008.0')
(.0'9'81)
(9'9'82)
(.0'9'83)
(H.0'84)
1 rrrzo c '
\XJ.UO.JJ

(H.0'86)
(.0'.0'87)
(9'088)
(9'9'89)
(iJ.0'9.0')
(.0'.0'91)
(.0'.0'92)
(.0'.0'93)
(.0'.0'94)
(0'.0'95)
(.0'.0'96)
(.0'.0'97)
(.0.0'98)
(.0'.0'99)
(.0'1.0'.0')
(.0'1.0'1)
(.0'1.0'2)
(.0'1.0'3)
I l1'1 lf A' \. u -4.U,.;

(.0'1.0'5)
(Hl.0'6)
(.0'1.0'7)
(Hl.0'8)

WBRK(l,l)=-25 • .0'
WBRK(2,l)=-15 • .0'
WBRK (3 I 1) = .0' • .0'
WBRK(l,2)=1 • .0'/(WBRK(2,l)-WBRK(l,l))
WBRK(2,2)=1 • .0'/(WBRK(3,l)-WBRK(2,l))
WBRK (3 , 2) = .0' • .0'

C LOAD FBRK ARRAY

DO 1.0'.0' I4=1, NW
DO 1.0'.0' I3=1, NZ
DO 1.0'.0' I2=1,NY

APPENDIX E

DO 1.0'.0' Il=l,NX
FBRK(Il,I2,I3,I4,l)=XBRK(Il,l)+YBRK(I2,l)+ZBRK(I3,l)*WBRK(I4,l)
FBRK(Il,I2,I3,I4,2)=XBRK(Il,l)*WBRK(I4,l)+YBRK(I2,l)+ZBRK(I3,l)
FBRK(Il,I2,I3,I4,3)=XBRK(Il,l)+WBRK(I4,l)*YBRK(I2,l)+ZBRK(I3,l)
FBRK(Il,I2,I3,I4,4)=XBRK(Il,l)*ZBRK(I3,l)+WBRK(I4,l)*YBRK(I2,l)

1.0'.0' CDr-4'J.'H·m·E

C LOAD X,Y,Z,W ARRAYS

x (1) =.0'. 3
Y(l)=-5 • .0'
Z(l)=S.l
W(l)=-1.5

X(2)=1.l
Y(2)=-3 • .0'
Z(2)=4.H

X(3)=H.9
Y(3)=-9 • .0
Z(3)=7.5
W(3)=-13 • .0'

X(4)=2.9
Y(4)=-6 • .0'
z (4) =6 • .0'
W(4)=-15 • .0'

X(5)=H.4
Y(5)=-5 • .0'
Z(5)=4.5
W(5)=-7.5

DO 15.0' Il=l,NIP
CALL BIN(XBRK,X(Il),IX,DRX,NX)
CALL BIN(YBRK;Y(Il):IY:DRY,NY)
CALL BIN(ZBRK,Z(Il),IZ,DRZ,NZ)
CALL BIN(WBRK,W(Il),IW,DRW,NW)
CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW,

DRX,DRY,DRZ,DRW,FVAL(l,Il))

FPS 866-7482-B&lC Page E - 9

APPENDIX F

APPENDIX F

SIMULATION LIBRARY ROUTINES

F.l INTRODUCTION

The Simulation Library contains a set of routines which are useful in
modeling various continuous systems. These continuous systems are
characterized by ordinary differential equations (ODE) and
three-dimensional coordinate transformations of rigid bodies, which
simulate physical models.

The methods provided for solving ·ODE's include Runge-Kutta and Euler
explicit methods, which require no previous evaluation of functions or
derivatives, as well as multistep Adams implicit and explicit methods,
which require previous evaluation of the function and one or more
previous derivatives. These multistep methods can be started with
lower order methods or with the Runge-Kutta routine. Once started, the
multistep routines require only a single evaluation of the derivative
functions per call. The fourth order Runge-Kutta method requires four
evaluations per time step.

The thiee-dimensional rotation matrix routine forms a rotation matrix
from a sequence of rotational specifications and can be used in
conjunction with routine CTRN3 to perform three-dimensional coordinate
transformations consisting of rotation plus translation.

is provided to rapidly calculate the
cosine and sine of an angle, both of which are often required in
geometric transformations and graphic output.

P.2 SINGLE STEP METHODS

RKGTF Runge-Kutta-Gill-Thompson: a fourth order single step method
to solve a system of ordinary differential equations (ODE's)
using Thompson's numerical enhancement of the Runge-Kutta-Gill
method. The routine requires an APFTN64 user subroutine to
evaluate the derivatives.

ABPl Adams-Bashforth predictor order one: a single step predictor
method, also known as Euler's method, for solving ODE's.

AMCl Adams-Moulton corrector order one: a single step predictor
method, also known as the backward Euler method, used for
corrections to "stiff" ODE's.

FPS 86a-7482-SS1C Page F 1

APFTN64 ROUTINE FOR USE WITH RKGTF

SUBROUTINE DFUN(T,N,Y,F)
·c

C *** DFUN *** SAMPLE APFTN64 ROUTINE ***
c

c

c

DIMENSION Y(N), F(N)

00 Hf I=l,N
F(I)=Y(I)

HJ CONTINUE

C CORRESPONDS TO SOLUTIONS OF FORM:
c
C Y(I) = yg * EXP(T)
c

RETURN
END

APPENDIX F

Page F 3

1'._pPENDIX G

APPENDIX G

LIST OP SUPERSEDED ROUTINES

F!J!J RELEASE

OLD ROUTINES NEW ROU'l'INES

FMMM32 FMMM or FMMMV
MMUL32 MMUL, FMMM, or FMMMV
ZVABS, VABS VABS
ZVADD, VADD VADD
ZVFLT, VFLOAT VFLOAT
ZVIFIX, VIFIX VI FIX
ZVMSA, VMSA VMSA
ZVMUL, VMUL VMUL
ZVNEG, VNEG VNEG
ZVRVRS, VRVRS VRVRS
ZVSADD, VSADD VS ADD
ZVSMA, VSMA VSMA
ZVSMSA, VSMSA VSMSA
ZVSMSB, VSMSB VSMSB
ZVSMUL, VSMUL VSMUL
ZVSQ, VSQ VSQ
ZVSUB, VSUB VSUB
ZVSWAP, VSWAP VSWAP

The replacement routines for FMMM32 and MMUL32 include cne same
functionality as FMMM32 and MMUL32 and are also more general.

F!JJ .RELEASE

OLD ROUTINES

AI MAG
CSFR
CSFS
cssv
CUFR

CUFS
cusv
EXTRU
FLOAT
!FIX
INSERT
LOC
RSFR
RSFS
RSSV

FPS 86B-7482-SB1C

NEW ROUTINES

AIMAG (APFTN64 intrinsic)
CSFR2
CSFS2
CSSV2
CUFR2
CUFS2
CUSV2
EXTRACT (APFTN64 intrinsic)
FLOAT (APFTN64 intrinsic)
IFIX (APFTN64 intrinsic)
INS~KT {APFTN64 intrinsic)
LOC (APFTN64 intrinsic)
RSFR2
RSFS2
RSSV2

Page G - 1

APPENDIX H

APPENDIX H

EXCEPTIONS ENABLED ROU'rINES INFORMATION AND INTERNAL SUBROUTINES

H.l EXCEPTIONS ENABLED ROUTINES INFORMATION

Beginning with the GGG Release, all APMATH64
exceptions.

report valid

H.2 IN'l'ERNAL SUBROUTINES

The following routines are used only as internal subroutines by other
APMATH64 routines. These routines are listed here to facilitate
interpretation of program tracebacks.

INTERNAL SUBROUTINE

ADV2
ADV4
ALT I NP
BI TREV
CBEAJY
CBEDH
CBEDJ
CBERHY
CBERJS
CBERYH
CLSTAT

CTOR
ENTVAR
FFT2
FFT2B
FFT4
FFT4B
IFFT4
IIRELT
INTEG
IREALT
LP SPF I
PHAUNW
PHCHCK
REALTR
RKGTF
RTOC
SET24B
SPCVAL
STSTAT

FPS 861-7482-HHlC

CALLING ROUTINE(S)

CFFT, CFFTB, CFFTI, XCFFT
CFFT, CFFTB, CFFTI, XCFFT
CCEPS
CFFT, CFFTI
CBEJYH
RKGTF
RKGTF
CBEJYH
CBEJYH
CBEJYH
CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN,
HANN, CFFTI, IIRELT, IREALT, XCFFT
RFFT2D
SIMPLE
CFFT, CFFTB, FFT2B, CFFTI, XCFFT
CFFTB
CFFT, CFFTB, FFT4B, CFFTI
CFFTB
CFFTI
RFTII
CBEJYH
RFFTI, RFTII, IIRELT
SIMPLE
CCEPS
PHAUNW
RFFT, RFFTB, RFFTI, RFTII
INTEG
RFFT2D
FFT2B, FFT4B
PHAUNW
CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN,

Page H 1

APPENDIX I

APPENDIX I

APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE

BASIC MATH LIBRARY (VOLUME 1)

CCMMUL COMPLEX MATRIX MULTIPLY A - 2
CDET COMPLEX MATRIX DETERMINANT A - 4
COOT PR COMPLEX DOT PRODUCT A - 6
CFFT COMPLEX-TO-COMPLEX FFT (IN PLACE) A - 7
CFFTB COMPLEX-TO-COMPLEX FFT (NOT IN PLACE) A - 8
CFFTM MIXED-RADIX COMPLEX FFT (NOT-IN-PLACE) A - 9
CFFTSC COMPLEX FFT SCALE A - 11
CGMMUL COMPLEX ,..~ .. 'T'!IT'>aT" 11•amnTv 'l"1'TTmTT'\T'U'

~~~~~~ ~U".\~A~A ~U~•·~~· A - 12 
CMATIN COMPLEX MATRIX INVERSE A ~ 14 
CMDET COMPLEX MATRIX DETERMINANT A - 15 
CMFACT COMPLEX MATRIX L/U FACTORIZATION A - 17 
CMMTRC COMPLEX MATRIX MULTIPLY TRACE A - 19 
CMMUL COMPLEX MATRIX MULTIPLY A - 20 
CMSOLV COMPLEX MATRIX EQUATION SOLVER A - 21 
CMTRAC COMPLEX SUB-MATRIX TRACE A - 23 
CM TRAN COMPLEX SUB-MATRIX TRANSPOSE A - 24 
CMVML3 COMPLEX 3X3 MATRIX MULT. 3D VECTORS A - 25 
CMVML4 COMPLEX 4X4 MATRIX MULT. 4D VECTORS A - 26 
CONV CONVOLUTION (CORRELATION) A - 27 
CP~MMTJL COMPLEX-RE-~L ~-~TRIX MULTIPLY A - 28 
CROSSP COMPLEX 3D CROSS PRODUCT A - 30 
CRVADD COMPLEX AND REAL VECTOR ADD A - 31 
CRVDIV COMPLEX AND REAL VECTOR DIVIDE A - 32 
CRVMUL COMPLEX AND REAL VECTOR MULTIPLY A - 33 
CRVSUB COMPLEX AND REAL VECTOR SUBTRACT A - 34 
CSOLV COMPLEX SYSTEM SOLVER A - 35 
CSOLVQ COMPLEX MATRIX EQUATION SOLVER A - 36 
CTRN2 2-D COORDINATE TRANSFORM A - 39 
CTRNJ 3-DIMENSIONAL COORDINATE TRANSFORMATION A - 40 
CVABS COMPLEX VECTOR ABSOLUTE VALUE A - 42 
CVADD COMPLEX VECTOR ADD A - 43 
CV COMB COMPLEX VECTOR COMBINE A - 44 
CVCONJ COMPLEX VECTOR CONJUGATE A - 45 
CVEXP COMPLEX VECTOR EXPONENTIAL A - 46 
CVFILL COMPLEX VECTOR FILL A - 47 
CVMA COMPLEX VECTOR MULTIPLY AND ADD A - 48 
CVMAGS COMPLEX VECTOR MAGNITUDE SQUARED A - 50 
CVMEXP COMPLEX VECTOR MULTIPLY EXPONENTIAL A - 51 
CVMOV COMPLEX VECTOR MOVE A - 52 
CVMUL COMPLEX VECTOR MULTIPLY A - 53 
CVNEG COMPLEX VECTOR NEGATE A - 54 
CVRCIP COMPLEX VECTOR RECIPROCAL A - 55 
CVR EAL FORM COMPLEX VECTOR OF REALS A - 56 

FPS 866-7482-BBlC Page I 1 



RMSQV 
SCJMA 
SGEFA 
SGESL 
SGT SL 

SMMMV 
SN2 
SOLVEQ 
STMM 
SVE 
SVEMG 
SVESQ 
svs 
TRI DIA 
VAAM 
VABS 
VACOS 
VADD 
VAINT 
VALG 
VALGl.0' 
VAM 
VAS IN 
VASM 
VATAN· 

VCLIP 
VCLR 
vcos 
VCOSH 
VDIV 
VEUCL2 
VEXP 
VEXPl.0' 
VF ILL 
VFRAC 

VI ABS 
VI ADD 
VI CLIP 
VI DIV 
VI MAG 
VIMUL 
VINDEX 
VI NEG 
VI SUB 
VLAND 
VLEOV 
VLIM 
VLMERG 

BASIC MATH LIBRARY (cont.) 

ROOT-MEAN-SQUARE OF VECTOR ELEMENTS 
SELF-CONJUGATE MULTIPLY AND ADD 
REAL-GENERAL MATRIX FACTOR 
REAL GENERAL MATRIX SOLVE 
TRIDIAGONAL MATRIX SOLVER 
SUB~-~TR!X MtTLT!PLY 
SUBMATRIX MULTIPLY 
SQUARED DISTANCE BETWEEN TWO VECTORS 
LINEAR EQUATION SOLVER 
SUBMATRIX TRANSPOSE & MULTIPLY 
SUM OF VECTOR ELEMENTS 
SUM OF VECTOR ELEMENT MAGNITUDES 
SUM OF VECTOR ELEMENT SQUARES 
SUM OF VECTOR SIGNED SQUARES 
TRIDIAGONAL MATRIX SOLVER 
VECTOR ADO, ADD, AND MULTIPLY 
VECTOR ABSOLUTE VALUE 
VECTOR ARCCOSINE 
VECTOR ADD 
VECTOR TRUNCATE 
VECTOR LOGARITHM 
VECTOR BASE HJ LOGARITHM 
VECTOR ADD AND MULTIPLY 
VECTOR ARCSINE 
VECTOR ADD ANO SCALAR MULTIPLY 
VECTOR ARCTANGENT 
VECTOR ARCTA..""IGENT ( 2 J13GUMENTS) 

VECTOR CLIP 
VECTOR CLEAR 
VECTOR COSINE 
VECTOR COSINE (HYPERBOLIC) 
VECTOR DIVIDE 
VECTOR EUCLIDEAN DISTANCE 
VECTOR EXPONENTIAL 
VECTOR EXPONENTIAL (BASE 1.0') 
VECTOR FILL 
VECTOR TRUNCATE TO FRACTION 
VECTOR ABSOLUTE VALUE 
VECTOR INTEGER ADD 
VECTOR INVERTED CLIP 
VECTOR INTEGER DIVIDE 
EXTRACT IMAGINARIES OF COMPLEX VECTOR 
VECTOR INTEGER MULTIPLY 
VECTOR INDEX 
VECTOR INTEGER NEGATE 
VECTOR INTEGER SUBTRACT 
VECTOR LOGICAL ADD 
VECTOR LOGICAL EQUIVALENCE 
VECTOR LIMIT 
LOGICAL VECTOR MERGE 

FPS 863-7482-&&lC 

APPENDIX I 

A - 125 
A - 126 
A - 127 
A - 129 
A - 131 
A - 133 
A - 135 
A - 137 
A - 138 
A - 14.0' 
A - 142 
A - 143 
A - 144 
A - 145 

A - 147 
A - 148 
A - 149 
A - 15.0' 
A - 151 
A - 152 
A - 153 
A - 154 
A - 155 
A - 156 
A - 157 
A - 158 
A - 159 
A - 16.0' 
A - 161 
A - 162 
A - 163 
A - 164 
A - 165 
A - 166 
A - 167 
A - 168 
A - 169 
A - 17.0' 
A - 171 
A - 172 
A - 173 
A - 174 
A - 175 
A - 176 
A - 177 
A - 178 
A - 179 
A - 18.0' 
A - 181 

Page I 3 



VTSADD 
VTSMA 
VTSMUL 

CH 
EIGRS 
HTRIBK 
HTRIDI 
IMTQLl 
IMTQL2 
RS 
SIMPLE 
SKY SOL 
TREDl 
TRED2 
VASORT 
VI SORT 
VSORT 

A CORF 
ACORT 
A SPEC 
BLKMAN 
CCEPS 
CCORF 
CCORT 
CFFTI 
COHER 
CSP EC 
DECFIR 
ENVEL 

HAMM 
HANN 
HIST 
HLBRT 
LPAUTO 
PKVAL 
RDFT 
RFFTI 

BASIC MATH LIBRARY (cont.) 

VECTOR TM SCALAR ADD 
VECTOR TM SCALAR MULTIPLY AND ADD 
VECTOR TM SCALAR MULTIPLY 

J'...DVA.JlCED M...l\TH L!'RD_A...RY ( VOLm«R 2) 

COMPLEX HERMITIAN EIGENSYSTEM SOLVER 
REAL SYMMETRIC EIGENSYSTEM SOLVER 
COMPLEX HERMITIAN EIGENVECTORS 
COMPLEX HERMITIAN TRIDIAGONALIZATION 
DIAGONALIZE TRIDIAGONAL MATRIX 
DIAGONALIZE A TRIDIAGONAL MATRIX 
REAL SYMMETRIC E!GENSYSTEM SOLVER 
REVISED SIMPLEX 
SKYLINE FORMAT EQUATION SOLVER 
TRIDIAGONALIZE SYMMETRIC MATRX 
TRIDIAGONALIZE A SYMMETRIC MATRIX 
VECTOR SORT ALGEBRAIC VALUES 
VECTOR SORT INTEGER VALUES 
VECTOR SORT WITH INDICES 

SIGNAL PROCESSING LIBRARY 

AUTO-CORRELATION (FREQUENCY-DOMAIN) 
AUTO-CORRELATION (TIME-DOMAIN) 
ACCUMULATING AUTO-SPECTRUM 
BLACKMAN WINDOW MULTIPLY 
PHASE UNWRAP AND COMPLEX CEPSTRUM 
CROSS-CORRELATION (FREQUENCY-DOMAIN) 
CROSS-CORRELATION (TIME-DOMAIN) 
COMPLEX FFT WITH INTERPOLATION 
COHERENCE FUNCTION 
ACCUMULATING CROSS-SPECTRUM 
DECIMATION 
ENVELOPE DETECTOR 
HAMMING WINDOW MULTIPLY 
HANNING WINDOW MULTIPLY 
HISTOGRAM 
HILBERT TRANSFORMER 
LINEAR PREDICTION AUTOCORRELATION 
PEAK AND VALLEY PICKING 
REAL DISCRETE FOURIER TRANSFORM 
REAL FFT WITH INTERPOLATION 

FPS 86S-7482-sg1c 

APPENDIX I 

Page I 

A - 230' 
A - 231 
A - 232 

A - 234 
A - 237 
A - 239 
A ~ 241 
A - 243 
A - 245 
A - 247 
A - 249 
A - 254 
A - 256 
A - 258 
A - 259 
A - 260' 
A - 261 

A - 264 
A - 265 
A - 266 
A - 267 
A - 268 
A - 272 
A - 273 
A - 274 
A - 275 
A - 276 
A - 277 
A - 279 
A - 28.0' 
A - 281 
A - 282 
A - 283 
A - 284 
A - 286 
A - 288 
A - 29fJ 

5 



SROT 
SROTG 
SROTM 
SROTMG 
SSCAL 
SSWAP 

ABPl 
ABP2 
ABP3 
ABP4 
ADAMS4 
AMCl 
AMC2 
AMC3 
AMC4 
BIN 
CBEIK 
CBEJYH 
FUN! 
FUN2 
FUN3 
FUN4 
RKGIL 
RKGTF 
ROT3 
SCSl 
STEP 

CONNMO 
IIR3fJ 
KSMLV 
NMOLI 
NMOOI 
POST64 
RESNMO 
TMCONV 
VfJl 
VARNMO 
VRNAVG 
VSCANfJ 

LINPACK BLAS LIBRARY (cont.) 

PLANE ROTATION 
GIVENS PLANE ROTATION 
MODIFIED GIVENS ROTATIONS 
MODIFIED1 GIVENS PLANE ROTATION SETUP 
REAL SCALAR TIMES VECTOR 
INTERCHANGES VECTORS 

SIMULATION LIBRARY 

ADAMS-BASHFORTH PREDICTOR (ORDER l) 
ADAMS-BASHFORTH PREDICTOR (ORDER 2) 
ADAMS-BASHFORTH PREDICTOR (ORDER 3) 
~J)~_MS-BASHFORTH PREDICTOR (ORDER 4) 
ADAMS VARIABLE STEP INTEG.(ORD 4) 
ADAMS-MOULTON CORRECTOR (ORDER 1) 
ADAMS-MOULTON CORRECTOR (ORDER 2) 
ADAMS-MOULTON CORRECTOR (ORDER 3) 
ADAMS-MOULTON CORRECTOR (ORDER 4) 
BINARY SEARCH 
COMPLEX BESSEL I AND K 
COMPLEX BESSEL J, Y, AND H 
FUNCTION OF ONE VARIABLE 
FUNCTION OF TWO VARIABLES 
FUNCTION OF THREE VARIABLES 
FUNCTION OF FOUR VARIABLES 
RUNGE-KUTTA-GILL INTEGRATION 
R-K-GILL-THOMPSON INTEG. (ORDER 4) 
3D ROTATION MATRIX, 3-ANGLE 
SCALAR COS/SIN, TM INTERP.(ORD 1) 
STEP SEARCH 

GEOPHYSICAL LIBRARY 

NMO 'W-ITH CONSTANT VELOCITY 
RECURSIVE FILTER 
K-TH SMALLEST ELEMENT IN VECTOR 
NMO LINEAR INTERPOLATION 
NMO QUADRATIC INTERPOLATION 
POST BITS TO RASTER 
RESIDUAL NORMAL MOVEOUT 
CONVOLUTION (CORRELATION) 
VECTOR ZERO TRENDS 
NMO WITH VARIABLE VELOCITY 
VECTOR RUNNING AVERAGE 
VECTOR SCAN FOR ZEROS 

FPS 86B-7482-BB1C 

APPENDIX I 

A - 355 
A - 356 
A - 357 
A - 358 
A - 36fJ 
A - 361 

A - 363 
A - 364 
A - 365 
A - 366 
A - 368 
A - 371 
A - 372 
A - 373 
A - 374 
A - 376 
A - 378 
A - 381 
A - 384 
A - 386 
A - 388 
A - 39fJ 
A - 392 
A - 395 
A - 397 
A - 399 
A - 4fJfJ 

Page I 

A = 4.0'3 
A - 4fJ5 
A - 4fJ7 
A - 4.0'8 
A - 41.0' 
A - 412 
A - 413 
A - 415 
A - 417 
A - 418 
A - 42.0' 
A - 421 

7 



TTTSUB 
TTVLC2 
TVCLR 

EXTRS 
PEEK 
POKE 

VFLOAT 
VI FIX 
VPK8 
VPK16 
VPK32 
VPKI32 
VPKR32 
VSCALE 
VSCSCL 
VSHFX 
VS!vt~FX 

VUP8 
VUP16 
VUP32 
VUPR32 
VUPS8 
VUPS16 
VUPS32 
VUSI32 
VUUI32 

DADD 
DADD RR 
DADOT 
DOOTRR 
DMUL 
DMULRR 
DNEG 
DSUB 
DSUBRR 

TABLE MEMORY LIBRARY (cont.) 

VECTOR SUBTRACT (TM-TM TO TM) 
VECTOR LINEAR COMBINATION 
TABLE MEMORY VECTOR CLEAR 

SPECIAL UTILITIES LIBRARY 

EXTRACT A SIGNED BIT-FIELD 
MEMORY FETCH 
STORE INTO MEMORY 

DATA FORMA'l"l'ING LIBRARY 

CONVERT INTEGER TO FLOATING-POINT 
VECTOR INTEGER FIX 
VECTOR 8-BIT BYTE PACK 
VECTOR 16-BIT BYTE PACK 
VECTOR 32-BIT BYTE PACK 
VECTOR 32-BIT INTEGER PACK 
VECTOR REAL HALFWORD PACK 
VECTOR SCALE AND FIX 
VECTOR SCAN SCALE AND FIX 
VECTOR SHIFT AND FIX 
VECTOR SC~L~...R MULTIPLY: ADD AND FIX 
VECTOR 8-BIT BYTE UNPACK 
VECTOR 16-BIT BYTE UNPACK 
VECTOR 32-BIT BYTE UNPACK 
VECTOR HALFWORD REAL UNPACK 
VECTOR 8-BIT SIGNED BYTE UNPACK 
VECTOR 16-BIT SIGNED BYTE UNPACK 
VECTOR 32-BIT SIGNED BYTE UNPACK 
VECTOR 32-BIT SIGNED INTEGER UNPACK 
VECTOR 32-BIT UNSIGNED UNPACK 

DOUBLE PRECISION LIBRARY 

DOUBLE TO DOUBLE-PRECISION ADD 
SINGLE TO DOUBLE-PRECISION ADD 
DOUBLE ACCUMULATE DOT PRODUCT 
DOUBLE DOT PRODUCT REAL REAL 
DOUBLE TO DOUBLE-PRECISION MULTIPLY 
SINGLE TO DOUBLE PRECISION MULTIPLY 
NEGATE DOUBLE-PRECISION NUMBER 
DOUBLE TO DOUBLE-PRECISION SUBTRACT 
SINGLE TO DOUBLE-PRECISION SUBTRACT 

FPS 86H-7482-HH1C Page I 

A - 5fffJ 
A - 5fJl 
A - 5fJ2 

A - 5fJ4 
A - 5fJ5 
A - 5fJ6 

A - 5fJ8 
A - 5fJ9 
A - 5lfJ 
A - 511 
A - 512 
A - 513 
A - 514 
A - 515 
A - 516 
A - 517 
A - 518 
A - 519 
A - 52fJ 
A - 521 
A - 522 
A - 523 
A - 524 
A - 525 
A - 526 
A - 527 

A - 529 
A - 53fJ 
A - 531 
A - 532 
A - 533 
A - 534 
A - 535 
A - 536 
A - 537 

9 



ABPl 
ABP2 
ABP3 
ABP4 
ABS 
A CORF 
ACORT 
ACOS 
ADAMS4 
AINT 
ALOGl.0' 
ALOG 
AMC! 
AMC2 
AMCJ 
AMC4 
AMOD 
AN INT 
ASIN 
ASPEC 
ATAN2 
ATAN 
BIN 
BL KMAN 
CABS 
CAXPY 

CAXPYN 
CBEIK 
CBEJYH 
CCEPS 
CCMMUL 
CCOPY 
CCORF 
CCORT 
ccos 
CDET 
CDIV 
CDIVCR 
CDIVRC 
COOTC 
CDOTN 
CDOTPR 
CDOTU 

APPENDIX J 

APMATH64 ROUTINES IN ALPHABETICAL ORDER 

DESCRIPTION 

ADAMS-BASHFORTH PREDICTOR (ORDER l) 
ADAMS-BASHFORTH PREDICTOR (ORDER 2) 
ADAMS-BASHFORTH PREDICTOR (ORDER 3) 
ADAMS-BASHFORTH PREDICTOR (ORDER 4) 
REAL NUMBER ABSOLUTE VALUE 
AUTO-CORRELATION (FREQUENCY-DOMAIN) 
AUTO-CORRELATION (TIME-DOMAIN) 
REAL lli'"UMBER ARCCOSINE 
ADAMS VARIABLE STEP INTEG.(ORD 4) 
TRUNCATE REAL NUMBER 
REAL NUMBER LOGARITHM 
REAL NUMBER LOGARITHM 
ADAMS-MOULTON CORRECTOR (ORDER 1) 
ADAMS-MOULTON CORRECTOR (ORDER 2) 
ADAMS-MOULTON CORRECTOR (ORDER 3) 
ADAMS-MOULTON CORRECTOR (ORDER 4) 
REAL/REAL DIVIDE REMAINDER 
ROUND REAL NUMBER TO NEAREST WHOLE 
REAL NUMBER ARCSINE 
ACCUMULATING AUTO-SPECTRUM 
ARCTANGENT OF RATIO OF REAL NUMBERS 
ARCTANGENT OF REAL NUMBER 
BINARY SEARCH 
BLACKMAN WINDOW MULTIPLY 
COMPLEX NUMBER ABSOLUTE VALUE 
COMPLEX A * X + Y 
NESTED COMPLEX A * X + Y 
COMPLEX BESSEL I AND K 
COMPLEX BESSEL J, Y, AND H 
PHASE UNWRAP AND COMPLEX CEPSTRUM 
COMPLEX MATRIX MULTIPLY 
COMPLEX VECTOR COPY 
CROSS-CORRELATION (FREQUENCY-DOMAIN) 
CROSS-CORRELATION (TIME-DOMAIN) 
COMPLEX NUMBER COSINE 
COMPLEX MATRIX DETERMINANT 
COMPLEX/COMPLEX DIVIDE 
REAL/COMPLEX DIVIDE 
COMPLEX/REAL DIVIDE 
COMPLEX INNER PRODUCT 
NESTED COMPLEX DOT PRODUCT 
COMPLEX DOT PRODUCT 
COMPLEX DOT PRODUCT 

FPS 86B-7482-BS1C 

APPENDIX J 

PAGE 

A - 363 
A - 364 
A - 365 
A - 366 
A - 539 
A - 264 
A - 265 
A 
A - 368 
A - 541 
A - 543 
A - 542 
A - 371 
A - 372 
A - 373 
A - 374 
A - 544 
A - 545 
A - 546 
A - 266 
A - 548 
A - 547 
A - 376 
A - 267 
A - 549 
A - 326 
A - 327 
A - 378 
A - 381 
A - 268 
A - 2 
A - 33.0' 
A ·- 272 
A - 273 
A - 55.0' 
A - 4 
A - 551 
A - 552 
A - 553 
A - 331 
A - 332 
A - 6 
A - 335 

Page J - 1 



CUFS2 
CUSV2 
CVABS 
CVADD 
CV COMB 
CV CONJ 
CVEXP 
CVFILL 
CVMA 
CVMAGS 
CVMEXP 
CVMOV 
CVMUL 

CVNEG 
CVRCIP 
CVR EAL 
CVSMA 
CVSMUL 
CV SUB 

DADD 
DADD RR 
DADOT 
DOOTRR 
DEC FIR 
DEQ22 
DIM 
DMUL 
DMULRR 
DNEG 
DOT PR 
DSUB 
DSUBRR 
EIGRS 
ENVEL 
EXP 
EXTRS 
FMMM 
FMMMV 
FUN! 
FUN2 
FUN3 
FUN4 
GENTAB 
GRAD2D 
GRD2DB 
HAMM. 

HANN 
HIST 
HLBRT 
HTRIBK 
HTRIDI 
IABS 
ICAMAX 
IDIM 

SPARSE COMPLEX UNSYM FACTOR & SOLVE 
SPARSE COMPLEX UNSYMMETRIC SOLVE 
COMPLEX VECTOR ABSOLUTE VALUE 
COMPLEX VECTOR ADD 
COMPLEX VECTOR COMBINE 
COMPLEX VECTOR CONJUGATE 
COMPLEX VECTOR EXPONENTIAL 
COMPLEX VECTOR FILL 
COMPLEX VECTOR MULTIPLY AND ADD 
COMPLEX VECTOR MAGNITUDE SQUARED 
COMPLEX VECTOR MULTIPLY EXPONENTIAL 
COMPLEX VECTOR MOVE 
COMPLEX VECTOR MULTIPLY 
COMPLEX VECTOR NEGATE 
COMPLEX VECTOR RECIPROCAL 
FORM COMPLEX VECTOR OF REALS 
COMPLEX VECTOR SCALAR MULTIPLY AND ADD 
COMPLEX VECTOR SCALAR MULTIPLY 
COMPLEX VECTOR SUBTRACT 
DOUBLE TO DOUBLE-PRECISION ADD 
SINGLE TO DOUBLE-PRECISION ADD 
DOUBLE ACCUMULATE DOT PRODUCT 
DOUBLE DOT PRODUCT REAL REAL 
DECIMATION 
DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 
REAL/REAL POSITIVE DIFFERENCE 
DOUBLE TO DOUBLE-PRECISION MULTIPLY 
SINGLE TO DOUBLE PRECISION MULTIPLY 
NEGATE DOUBLE-PRECISION NUMBER 
DOT PRODUCT 
DOUBLE TO DOUBLE-PRECISION SUBTRACT 
SINGLE TO DOUBLE-PRECISION SUBTRACT 
REAL SYMMETRIC EIGENSYSTEM SOLVER 
ENVELOPE DETECTOR 
EXPONENTIAL OF REAL NUMBER 
EXTRACT A SIGNED BIT-FIELD 
FAST MATRIX MULTIPLY 
FAST MATRIX MULTIPLY 
FUNCTION OF ONE VARIABLE 
FUNCTION OF TWO VARIABLES 
FUNCTION OF THREE VARIABLES 
FUNCTION OF FOUR VARIABLES 
GENERATE TWIDDLE FACTOR TABLE 
MAXIMUM GRADIENT FILTER 
MAXIMUM GRADIENT FILTER WITH BOUND 
HAMMING WINDOW MULTIPLY 
HANNING WINDOW MULTIPLY 
HISTOGRAM 
HILBERT TRANSFORMER 
COMPLEX HERMITIAN EIGENVECTORS 
COMPLEX HERMITIAN TRIDIAGONALIZATION 
INTEGER ABSOLUTE VALUE 
INDEX OF LARGEST COMPLEX ELEMENT 
INTEGER/INTEGER POSITIVE DIFFERENCE 

FPS 86H-7482-iilC 

APPENDIX J 

A - 434 
A - 437 
A - 42 
A - 43 
A - 44 
A - 45 
A - 46 
A - 47 
A - 48 
A - 50' 

A - 51 
A - 52 
A - 53 
A - 54 
A - 55 
A - 56 
A - 57 
A - 58 
A - 59 
A - 529 
A - 53.0' 
A - 531 
A - 532 
A - 277 

A - 6.0' 
A - 566 
A - 533 
A - 534 
A - 535 
A - 62 
A - 536 
A - 537 
A - 237 
A - 279 
A - 567 
A - 5.0'4 
A - 63 
A - 64 
A - 384 
A - 386 
A - 388 
A - 39.0' 
A - 65 
A - 3HJ 
A - 312 
A - 28.0' 
A - 281 
A - 282 
A - 283 
A - 239 

A - 241 
A - 568 
A - 341 
A - 569 

Page J - 3 



PAS3F 
PAS3I 
PAS4F 
PAS4I 
PAS SF 
PASSI 
PEEK 
PF INV 
PKVAL 
POKE 
POLAR 
POST64 
RAN 
RCMMUL 
RDFT 
RDIV 
RECT 
RESNMO 
RFFT2D 
RFFT 
RFFTB 
RFFTI 
RFFTM 
RFFTSC 
RFTII 
RGMMUL 
RKGIL 
RKGTF 
RMSQV 
ROT3 
RPOW 
RPOWRI 
RRCP 
RS 
RSFR2 
RSFS2 
RSQRT 
RSSV2 
RUFR2 
RUFS2 
RUSV2 
SASUM 
SAXPY 
SAXPYN 
SCASUM 
SCJMA 
SCNRM2 
SCOPY 
SCSl 
SOOT 
SOOTN 
SDOTPR 
SGEFA 
SGESL 

RADIX-3 FORWARD COMPLEX FFT PASS 
RADIX-3 INVERSE COMPLEX FFT PASS 
RADIX-4 FORWARD COMPLEX FFT PASS 
RADIX-4 INVERSE COMPLEX FFT PASS 
RADIX-5 FORWARD COMPLEX FFT PASS 
RADIX-5 INVERSE COMPLEX FFT PASS 
MEMORY FETCH 
MATRIX INVERSE (PRODUCT FORM) 
PEAK AND VALLEY PICKING 
STORE INTO MEMORY 
RECTANGULAR TO POLAR CONVERSION 
POST BITS TO RASTER 
SCALAR RANDOM NUMBER GENERATOR 
REAL-COMPLEX MATRIX MULTIPLY 
REAL DISCRETE FOURIER TRANSFORM 
REAL/REAL DIVIDE 
POLAR TO RECTANGULAR CONVERSION 
RESIDUAL NORMAL MOVEOUT 
REAL TO COMPLEX 2-DIMENSIONAL FFT 
REAL-TO-COMPLEX FFT (IN PLACE) 
REAL-TO-COMPLEX FFT (NOT IN PLACE) 
REAL FFT WITH INTERPOLATION 
MIXED-RADIX REAL FFT (NOT-IN-PLACE) 
REAL FFT SCALE AND FORMAT 
REAL FFT WITH QUARTER INTERPOLATION 
REAL GENERAL MATRIX MULTIPLY 
RUNGE-KUTTA-GILL INTEGRATION 
R-K-GILL-THOMPSON INTEG. (ORDER 4) 
ROOT-MEAN-SQUARE OF VECTOR ELEMENTS 
JD ROTATION MATRIX, 3-ANGLE 
REAL TO REAL POWER 
REAL TO INTEGER POWER 
REAL RECIPROCAL 
REAL SYMMETRIC EIGENSYSTEM SOLVER 
SPARSE REAL SYMMETRIC FACTOR 
SPARSE REAL SYMM FACTOR & SOLVE 
RECIPROCAL SQUARE ROOT 
SPARSE REAL SYMMETRIC SOLVE 
SPARSE REAL UNSYMMETRIC FACTOR 
SPARSE REAL UNSYM FACTOR & SOLVE 
SPA..qSE REAL UNSY~..ETRIC SOLVE 
SUM OF MAGNITUDES 
REAL A * X + Y 
NESTED REAL A * X + Y 
SUM OF REAL AND IMAGINARY MAGNITUDES 
SELF-CONJUGATE MULTIPLY AND ADD 
COMPLEX EUCLIDEAN NORM 
VECTOR COPY 
SCALAR COS/SIN, TM INTERP.(ORD 1) 
DOT PRODUCT OF REAL VECTORS 
NESTED REAL DOT PRODUCT 
SPARSE DOT PRODUCT 
REAL GENERAL MATRIX FACTOR 
REAL GENERAL MATRIX SOLVE 

FPS 86H-7482-gilC 

A - 99 
A - HH 
A - HD 
A - 1.0'5 
A - 1.0'7 
A - 1.0'9 
A - 5.0'5 
A - 111 
A - 286 
A - 5Z6 
A - 112 
A - 412 
A - 575 
A - 113 
A - 288 
A - 576 
A - 115 
A - 413 
A - 323 
A - 116 
A - 117 
A - 29.0' 
A - 119 
A - 121 
A - 291 
A - 123 
A - 392 
A - 395 
A - 125 
A - 397 
A - 577 
A - 578 
A - 579 
A - 247 
A - 439 
A - 442 
A - 58.0' 
A - 446 
A - 449 
A - 452 
A - 456 
A - 343 
A - 344 
A - 345 
A - 348 
A - 126 
A - 349 
A - 35.0' 
A - 399 
A - 351 
A - 352 
A - 459 
A - 127 
A - 129 

Page J 5 



TTTSUB 
TTVLC2 
TVCLR 
V.0'1 
VAAM 
VABS 
VACOS 
VADD 
VAINT 
VALGl.0' 
VALG 
VAM 
VARNMO 
VAS IN 
VASM 
VASORT 
VATAN2 
VAT AN 
VAVEXP 
VAVLIN 
VCLIP 
VCLR 
vcos 
VCOSH 
VDBPWR 
VDIV 
VEUCL2 
VEXPl.0' 
VEXP 
VFILL 
VFLOAT 
VFRAC 
VI ABS 
VI ADD 
VI CLIP 
VI DIV 
VI FIX 
VI MAG 
VIMUL 
VINDEX 
VI NEG 
VI SORT 
VI SUB 
VLAND 
VLEQV 
VLIM 
VLMERG 
VLNOT 
VLOR 
vi.XOR 
VMA 
VMAX 
VMAXMG 
VMIN 

VECTOR SUBTRACT (TM-TM TO TM) 
VECTOR LINEAR COMBINATION 
TABLE· MEMORY VECTOR CLEAR 
VECTOR ZERO TRENDS 
VECTOR ADD, ADD, AND MULTIPLY 
VECTOR ABSOLUTE VALUE 
VECTOR ARCCOSINE 
VECTOR ADD 
VECTOR TRUNCATE 
VECTOR BASE lG LOGARITHM 
VECTOR LOGARITHM 
VECTOR ADD AND MULTIPLY 
NMO WITH VARIABLE VELOCITY 
VECTOR ARCSINE 
VECTOR ADD AND SCALAR MULTIPLY 
VECTOR SORT ALGEBRAIC VALUES 
VECTOR ARCTANGENT ( 2 ARGUMENTS) 
VECTOR ARCTANGENT 
VECTOR EXPONENTIAL AVERAGING 
VECTOR LINEAR AVERAGING 
VECTOR CLIP 
VECTOR CLEAR 
VECTOR COSINE 
VECTOR COSINE (HYPERBOLIC) 
VECTOR CONVERSION TO DB (POWER) 
VECTOR DIVIDE 
VECTOR EUCLIDEAN DISTANCE 
VECTOR EXPONENTIAL (BASE 1.0') 
VECTOR EXPONENTIAL 
VECTOR FILL 
CONVERT INTEGER TO FLOATING-POINT 
VECTOR TRUNCATE TO FRACTION 
VECTOR ABSOLUTE VALUE 
VECTOR INTEGER ADD 
VECTOR INVERTED CLIP 
VECTOR INTEGER DIVIDE 
VECTOR INTEGER FIX 
EXTRACT IMAGINARIES OF COMPLEX VECTOR 
VECTOR INTEGER MULTIPLY 
VECTOR INDEX 
VECTOR INTEGER NEGATE 
VECTOR SORT INTEGER VALUES 
VECTOR INTEGER SUBTRACT 
VECTOR LOGICAL ADD 
VECTOR LOGICAL EQUIVALENCE 
VECTOR LIMIT 
LOGICAL VECTOR MERGE 
VECTOR LOGICAL NOT 
VECTOR LOGICAL OR 
VECTOR LOGICAL EXCLUSIVE OR 
VECTOR MULTIPLY AND ADD 
VECTOR MAXIMUM 
VECTOR MAXIMUM MAGNITUDE 
VECTOR MINIMUM 

FPS 86&-7482-B&lC 

A - 5.0'.0' 
A - 5.0'1 
A - 5.0'2 
A - 417 
A - 147 
A - 148 
A - 149 
A - 15.0' 
A - 151 
A -
A - 152 
A - 154 
A - 418 
A - 155 
A - 156 
A - 259 
A - 158 
A - 157 
A - 296 
A - 297 
A - 159 
A - 16.0' 
A - 161 
A - 162 
A - 298 
A - 163 
A - 164 
A - 166 
A - 165 
A - 167 
A - 5.08 
A - 168 
A - 169 
A - 17.0' 
A - 171 
A - 172 
A - 5.0'9 
A - 173 
A - 174 
A 175 
A - 176 
A - 26.0' 
A - 177 
A - 178 
A - 179 
A - 18.0' 
A - 181 
A - 182 
A - 183 
A - 184 
A - 185 
A - 186 
A - 187 

·A - 188 

Page J 7 



~_ppii!f'l!HX J 

VTSMA VECTOR TM SCALAR MULTIPLY AND ADD A - 231 
VTSMUL VECTOR TM SCALAR MULTIPLY A - 232 
VUP16 VECTOR 16-BIT BYTE UNPACK A - 52.0' 
VUP32 VECTOR 32-BIT BYTE UNPACK A - 521 
VUP8 VECTOR 8-BIT BYTE UNPACK A - 519 
VUPR32 VECTOR HALFWORD REAL UNPACK A - 522 
VUPS16 VECTOR 16-BIT SIGNED BYTE UNPACK A - 524 
VUPS32 VECTOR 32-BIT SIGNED BYTE UNPACK A - 525 
VUPSS VECTOR 8-BIT SIGNED BYTE UNPACK A - 523 
'rusI32 VECTOR 32-BIT SIGNED INTEGER UNPACK A ~ 526 
VUUI32 VECTOR 32-BIT UNSIGNED UNPACK A - 527 
vxcs VECTOR MULTIPLIED BY SIN AND cos A - 299 
WIENER WIENER LEVINSON ALGORITHM A - 3.0'1 

FPS 86H-7482-HH1C Page J 9 



APMA'l'H64 KEY WORD INDEX 

This index of AP~ATH64 routines is sorted by key words that appear in 
each routine title. Each title can contain more than one key word. 
The key words are listed alphabetically to the right of the gap running 
down the center of each page. 

To use the key word index, locate a key word that is representative of 
the desired APMATH64 function. Applicable APMATH64 routine names and 
titles can be found on the same line with each occurrence of the key 
word. The routine name appears in brackets ([ ]). The routine title 
immediately follows the routine name and continues on the other side of 
the gap when necessary. The ellipsis ( ••• ) is placed directly after 
the last word in the title if the line wraps around. The page where a 
particular routine is documented can be found in Appendix J. 

[VSIMPS]VECTOR SIMPSON'S 
EXPONENTIAL BASE 

[VALGlH]VECTOR BASE 
[VPK16]VECTOR 
(VUP16]VECTOR 

[VUPS16]VECTOR 
[CSROT]COMPLEX 

[CFFT2D]COMPLEX TO COMPLEX 
[RFFT2D]REAL TO COMPLEX 

[RQT3]3D ROTATION MATRIX, 
[VPK32]VECTOR 
[VUP32]VECTOR 

[VPKI32]VECTOR 
[VUPS32]VECTOR 
[VUSI32]VECTOR 
[VUUI32]VECTOR 

[CROSSP]COMPLEX 
3X3 MATRIX MULT. 

[MVML3]MATRIX VECTOR MULTIPLY 
[CMVML3]COMPLEX 

4X4 MATRIX MULT. 
[MVML4]MATRIX VECTOR MULTIPLY 

[CMVML4]COMPLEX 
[VPK8]VECTOR 
[VUPS]VECTOR 

[VUPS8]VECTOR 
[ABS]REAL NUMBER 

[CABS]COMPLEX NUMBER 
[CVABS]COMPLEX VECTOR 

[IABS]INTEGER 
[ISAMAX]INDEX OF MAXIMUM 

[VABS]VECTOR 
[VIABS]VECTOR 
[DAOOT]DOUBLE 

1/3 RULE INTEGRATION 
lH ••. [VEXPlH]VECTOR 
lH LOGARITHM 
16-BIT BYTE PACK 
16-BIT BYTE UNPACK 
16-BIT SIGNED BYTE UNPAC~ 
2-D ROTATION 
2-DIMENSIONAL FFT 
2-DIMENSIONAL FFT 
3-ANGLE 
32-BIT BYTE PACK 
32-BIT BYTE UNPACK 
32-BIT INTEGER PACK 
32-BIT SIGNED BYTE UNPACK 
32-BIT SIGNED INTEGER UNPACK 
J2-BIT UNSIGNED UNPACK 
JD CROSS PRODUCT 
JD VECTORS ••• [CMVML3]COMPLEX 
JXJ 
JX3 MATRIX MULT. 30 VECTORS 
4D VECTORS ••• [CMVML4]COMPLEX 
4X4 
4X4 MATRIX MOLT. 40 VECTORS 
8-BIT BYTE PACK 
8-BIT BYTE UNPACK 
8-BIT SIGNED BYTE UNPACK 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ACCUMULATE DOT PRODUCT 

INDEX 1 



[VUP16]VECTOR 16-BIT B~TE UNPACK 
[VUP32]VECTOR 32-BIT BYTE UNPACK 

[VUP8]VECTOR 8-BIT BYTE UNPACK 
[VUPS16]VECTOR 16-BIT SIGNED BYTE UNPACK 
[VTJPS32]VECTOR 32-BIT SIGNED BYTE UNPACK 

[VUPSS]VECTOR 8-BIT SIGNED BYTE UNPACK 
UNWRAP AND COMPLEX CEPSTRUM ••• [CCEPS]PHASE 

[TVCLR]TABLE MEMORY VECTOR CLEAR 
[VCLR]VECTOR CLEAR 

[VCLIP]VECTOR CLIP 
[VICLIP]VECTOR INVERTED CLIP 

[TMVLC2]VECTOR LINEAR COMBINATION 
[TTVLC2]VECTOR LINEAR COMBINATION 

[CVCOMB]COMPLEX VECTOR COMBINE 
[CFFT2D]COMPLEX TO COMPLEX 2-DIMENSIONAL FFT 

[RFFT2D]REAL TO COMPLEX 2-DIMENSIONAL FFT 
[CAXPYN]NESTED COMPLEX A * X + Y 

[CCEPS]PHASE UNWRAP AND COMPLEX CEPSTRUM 
[COOTN]NESTED COMPLEX DOT PRODUCT 

[ICAMAX]INDEX OF LARGEST 
[CFFTM]MIXED-RADIX 

[PAS2F]RADIX-2 FORWARD 
[PAS2I]RADIX-2 INVERSE 
[PAS3F]RADIX-3 FORWARD 
[PAS3I]RADIX-3 INVERSE 
[PAS4F]RADIX-4 FORWARD 
[PAS4I]RADIX-4 INVERSE 
[PAS5F]RADIX-5 FORWARD 
[PAS5I]RADIX-5 INVERSE 

[CEXP]EXPONENTIAL OF 
[CONJG]CONJUGATE OF 

[CSQRT]SQUARE ROOT OF 

COMPLEX ELEMENT 
COMPLEX FFT NOT-IN-PLACE 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX NUMBER 
COMPLEX NUMBER 
COMPLEX NUMBER 

[CPOWRC]REAL TO COMPLEX POWER 
[CPOW]COMPLEX TO COMPLEX POWER 

[CSFS2]SPARSE COMPLEX SYMM FACTOR & SOLVE 
[CSFR2]SPARSE COMPLEX SYMMETRIC FACTOR 
[CSSV2]SPARSE COMPLEX SYMMETRIC SOLVE 
[CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE 
[CUFR2]SPARSE COMPLEX UNSYMMETRIC FACTOR 
[CUSV2]SPARSE COMPLEX UNSYMMETRIC SOLVE 

[VIMAG]EXTRACT IMAGINARIES OF COMPLEX VECTOR 
[VREAL]EXTRACT REALS OF COMPLEX VECTOR 

[CVREAL]FORM COMPLEX VECTOR OF REALS 
[CSSCAL]REAL TIMES COMPLEXES 

[CVCONJ]COMPLEX VECTOR CONJUGATE 
[CONNMO]NMO WITH CONSTANT VELOCITY 

[POLAR]RECTANGULAR TO POLAR CONVERSION 
[RECT]POLAR TO RECTANGULAR CONVERSION 

[VDBPWR]VECTOR CONVERSION TO DB POWER 
[CONV2Dj2-D CON-vOLUTION AND CORRELATION 

[TCONV]POST-TAPERED CONVOLUTION CORRELATION 
[CTRN2]2-D COORDINATE TRANSFORM 

[CTRN3]3-DIMENSIONAL COORDINATE TRANSFORMATION 
[CCOPY]COMPLEX VECTOR COPY 

FPS a6g-74a2-gg1c INDEX - 3 



APMATH64 KEY WORD INDEX 

[DNEG]NEGATE DOUBLE-PRECISION NUMBER 
[DSUBRR]SINGLE TO DOUBLE-PRECISION SUBTRACT 

[DSUB]DOUBLE TO DOUBLE-PRECISION SUBTRACT 
[CH]COMPLEX HERMITIAN EIGENSYSTEM SOLVER 
[EIGRS]REAL SYMMETRIC EIGENSYSTEM SOLVER 

[RS]REAL SYMMETRIC EIGENSYSTEM SOLVER 
[HTRIBK]COMPLEX HERMITIAN EIGENVECTORS 

OF LARGEST COMPLEX ELEMENT ••• [ICAMAX]INDEX 
[KSMLV]K-TH SMALLEST ELEMENT IN VECTOR 

EL~..ENT IN VECTOR 
[MAXV]MAXIMUM ELEMENT IN VECTOR 

[MINMGV]MINIMUM MAGNITUDE ELEMENT IN VECTOR 
[MINV]MINIMUM ELEMENT IN VECTOR 

[MEAMGV]MEAN OF VECTOR ELEMENT MAGNITUDES 
[SVEMG]SUM OF VECTOR ELEMENT MAGNITUDES 

[MEASQV]MEAN OF VECTOR ELEMENT SQUARES 
[SVESQ]SUM OF VECTOR ELEMENT SQUARES 

[MEANV]MEAN VALUE OF VECTOR ELEMENTS 
OF VECTOR ELEMENTS ••• [RMSQVJROOT-MEAN-SQUARE 

[SVE]SUM OF VECTOR ELEMENTS 
[VSUM]VECTOR SUM OF ELEMENTS INTEGRATION 

[LVEQ]LOGICAL VECTOR EQUAL 
VECTOR GREATER THAN OR EQUAL ••• [LVGE]LOGICAL 

[LVNE]LOGICAL VECTOR NOT EQUAL 
[CMSOLV]COMPLEX MATRIX EQUATION SOLVER 
[CSOLVQ]COMPLEX MATRIX EQUATION SOLVER 
[SKYSOL]SKYLINE FORMAT EQUATION SOLVER 

[SOLVEQ]LINEAR EQUATION SOLVER 
[DEQ22]DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 

[VLEQV]VECTOR LOGICAL EQUIVALENCE 

[SCNRM2]COMPLEX EUCLIDEAN NORM 
[VPOLY]VECTOR POLYNOMIAL EVALUATION 

[VLXOR]VECTOR LOGICAL EXCLUSIVE OR 
[CVEXP]COMPLEX VECTOR EXPONENTIAL 

VECTOR MULTIPLY EXPONENTIAL ••• [CVMEXP]COMPLEX 
[VEXP]VECTOR EXPONENTIAL 

[VAVEXP]VECTOR EXPONENTIAL AVERAGING 
[VEXPlg]VECTOR EXPONENTIAL BASE lg 

COMPLEX SYMMETRIC FACTOR ••• [CSFR2]SPARSE 
COMPLEX UNSYMMETRIC FACTOR ••. [CUFR2]SPARSE 

[RSFR2]SPARSE REAL SYMMETRIC FACTOR 
[RUFR2]SPARSE REAL UNSYMMETRIC FACTOR 

[SGEFA]REAL GENERAL MATRIX FACTOR 
[CSFS2]SPARSE COMPLEX SYMM FACTOR & SOLVE 

[CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE 
[RSFS2]SPARSE REAL SYMM FACTOR & SOLVE 

[RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE 
[GENTAB]GENERATE TWIDDLE FACTOR TABLE 

(CMFACT]COMPLEX MATRIX L/U FACTORIZATION 
[LUF]LU MATRIX FACTORIZATION CROUT 

[PEEK]MEMORY FETCH 
TO COMPLEX 2-DIMENSIONAL FFT ••• [CFFT2D]COMPLEX 
TO COMPLEX 2-DIMENSIONAL FFT ••• [RFFT2D]REAL 

FPS 86H-7482-SH1C INDEX 5 



APMATH64 KEY WORD INDEX 

[GRAD2D]MAXIMUM GRADIENT FILTER 
[GRD2DB]MAXIMUM GRADIENT FILTER WITH BOUND 

[LVGT]LOGICAL VECTOR GREATER THAN 
[LVGE]LOGICAL VECTOR GREATER THAN OR EQUAL 

[VPKR32]VECTOR REAL HALFWORD PACK 
[VUPR32iVECTOR HALFWORD REAL UNPACK 

[CH]COMPLEX HERMITIAN EIGENSYSTEM SOLVER 
[HTRIBK]COMPLEX HERMITIAN EIGENVECTORS 
[HTRIDI]COMPLEX HERMITIAN TRIDIAGONALIZATION 

[VCOSH]VECTOR COSINE HYPERBOLIC 
[VSINH]VECTOR SINE HYPERBOLIC 

[VTANH]VECTOR TANGENT HYPERBOLIC 
[COSH]REAL NUMBER HYPERBOLIC COSINE 
[SINH]REAL NUMBER HYPERBOLIC SINE 
[TANH]REAL NUMBER HYPERBOLIC TANGENT 

[VIMAG]EXTRACT IMAGINARIES OF COMPLEX VECTOR 
[SCASUM]SUM OF REAL AND IMAGINARY MAGNITUDES 

[MTIMOV]VECTOR MOVE WITH INCREMENT MD TO TM 
[TMIMOV]VECTCR MOVE WITH INC..~EMENT TM TO MD 

[TTIMOV]VECTOR MOVE WITH 
[VINDEX]VECTOR 

[VSORT]VECTOR SORT WITH 
[COOTC]COMPLEX 

[RKGTF]R-K-GILL-THOMPSON 
[ADAMS4]ADAMS VARIABLE STEP 

REAL NUMBER TO NEAREST 
[VIADD]VECTOR 
[VIDIV]VECTOR 
[VIFIX]VECTOR 

.C VIMUL] VECTOR 
[VINEG]VECTOR 

[VPKI32]VECTOR 32-BIT 
[CPOWCI]COMPLEX TO 

[IPOW]INTEGER TO 
[RPOWRI]REAL TO 

[VISUB]VECTOR 
[VFLOAT]CONVERT 

[VUSI32]VECTOR 32-BIT SIGNED 
[VISORT]VECTOR SORT 

[RKGIL]RUNGE-KUTTA-GILL 
SIMPSON'S 1/3 RULE 

[VSUM]VECTOR SUM OF ELEMENTS 
TRAPEZOIDAL RULE 

[SCSl]SCALAR COS/SIN, TM 
[CFFTI]COMPLEX FFT WITH 

(NMOLI]NMO LINEAR 
[NMOQI]NMO QUADRATIC 
[RFFTI]REAL FFT WITH 

[RFTII]REAL FFT WITH QUARTER 
(CMATIN]COMPLEX MATRIX 

[MATINV]MATRIX 
[VRECIP]VECTOR 
[PAS2I]RADIX-2 
[PAS3I]RADIX-3 

FPS 869-7482-BBlC 

INCREMENT TM TO TM 

INDEX 
INDICES 
INNER PRODUCT 
INTEG. ORDER 4 
INTEG.ORD 4 

INTEGER .•. [NINT]ROUND 
INTEGER ADD 
INTEGER DIVIDE 
INTEGER FIX 
INTEGER MULTIPLY 
INTEGER NEGATE 
INTEGER PACK 
INTEGER POWER 
INTEGER POWER 
INTEGER POWER 
INTEGER SUBTRACT 
INTEGER TO FLOATING-POINT 
INTEGER UNPACK 
INTEGER VALUES 
INTEGRATION 
INTEGRATION •.. [VSIMPS]VECTOR 
INTEGRATION 
INTEGRATION ... [VTRAPZ]VECTOR 
INTERP.ORD l 
INTERPOLATION 
INTERPOLATION 
INTERPOLATION 
INTERPOLATION 
INTERPOLATION 
INVERSE 
INVERSE 
INVERSE 
INVERSE COMPLEX FFT PASS 
INVERSE COMPLEX FFT PASS 

INDEX - 7 



[CMMTRC]COMPLEX MATRIX MULTIPLY TRACE 
[SMPACK]SPARSE MATRIX PACK 

[SGESL]REAL GENERAL MATRIX SOLVE 
[LUSN]LU MATRIX SOLVE CROUT 

[SGTSL)TRID!AGONAL MATRIX SOLVER 
[TRIDIA]TRIDIAGONAL MATRIX SOLVER 

[SMUPCK]SPARSE MATRIX UNPACK 
[SMVMUL]SPARSE MATRIX VECTOR MULTIPLY 

[ROT3]3D ROTATION MATRIX, 3-ANGLE 
SYMMETRIC MATRX ••• [TREDl]TRIDIAGONALIZE 

[VMAX]VECTOR MAXIMUM 
[ISAMAX]INDEX OF MAXIMUM ABSOLUTE VALUE 

[VMAXMG]VECTOR MAXIMUM MAGNITUDE 
[MMTMUL]VECTOR MULTIPLY MD*MD TO TM 
[MTMMUL]VECTOR MULTIPLY MD*TM TO MD 

[MTTMUL]VECTOR MULTIPLY MD*TM TO TM 
[MMTADD]VECTOR ADD MD+MD TO TM 
[MTMADD]VECTOR ADD MD+TM TO MD 
[MTTADD]VECTOR ADD MD+TM TO TM 

[MMTSUB]VECTOR SUBTRACT MD-MD TO TM 
[MTMSUB]VECTOR SUBTRACT MD-TM TO MD 
[MTTSUB]VECTOR SUBTRACT MD-TM TO TM 

[POKE]STORE INTO MEMORY 
[TVCLR]TABLE MEMORY VECTOR CLEAR 

[VLMERG]LOGICAL VECTOR MERGE 
[VMIN]VECTOR MINIMUM 

[VMINMG]VECTOR MINIMUM MAGNITUDE 
[CVMOV]COMPLEX VECTOR MOVE 

[SVMOV]SPARSE VECTOR MOVE 
[VMOV]VECTOR MOVE 

[MOVREP]SUB-IMAGE MOVE AND LEVEL REPLACE 
[MTMOV]VECTOR MOVE MD TO TM 
[TMMOV]VECTOR MOVE TM TO MD 

[MTIMOV]VECTOR MOVE WITH INCREMENT MD TO TM 
[TMIMOV]VECTOR MOVE WITH INCREMENT TM TO MD 
[TTIMOV]VECTOR MOVE WITH INCREMENT TM TO TM 

[RESNMO]RESIDUAL NORMAL MOVEOUT 
[VSMA3]THREE VECTOR SCALAR MULT AND ADD 

[VSMA4]FOUR VECTOR SCALAR MULT AND ADD 
[CMVML3]COMPLEX 3X3 MATRIX MULT. JD VECTORS 
[CMVML4]COMPLEX 4X4 MATRIX MULT. 40 VECTORS 

[VXCS]VECTOR MULTIPLIED BY SIN AND COS 
[BLKMAN]BLACKMAN WINDOW MULTIPLY 

[CCMMUL]COMPLEX MATRIX MULTIPLY 
[CGMMUL]COMPLEX GENERAL MATRIX MULTIPLY 

[CMMUL]COMPLEX MATRIX MULTIPLY 
[CMUL]COMPLEX MULTIPLY 

[CRMMUL]COMPLEX-REAL MATRIX MULTIPLY 
AND REAL VECTOR MULTIPLY .•• [CRVMUL]COMPLEX 

[CVMUL]COMPLEX VECTOR MULTIPLY 
[CVSMUL]COMPLEX VECTOR SCALAR MULTIPLY 

TO DOUBLE PRECISION MULTIPLY ••• [DMULRR]SINGLE 
TO DOUBLE-PRECISION MULTIPLY ••• [DMUL]DOUBLE 

[FMMMV)FAST MATRIX MULTIPLY 

INDEX - 9 



[VNEG]VECTOR NEGATE 
[MNAXB]SUB-MATRIX NEGATIVE MULTIPLY 
[MNATXB]SUBMATRIX NEGATIVE TRANSPOSE MULTIPLY 

[SCNRM2]COMPLEX EUCLIDEAN NORM 
[SNRM2]EUCLIDEAN NORM 
[RESNMO]RESI~UAL NORMAL MOVEOUT 

[LVNOT]LOGICAL VECTOR NOT 
[VLNOT]VECTOR LOGICAL NOT 

[LVNE]LOGICAL VECTOR NOT EQUAL 
[CFFTB]COMPLEX-TO-COMPLEX FFT NOT IN PLACE 

[RFFTB]REAL-TO-COMPLEX FFT NOT IN PLACE 
[CFFTM]MIXED-RADIX COMPLEX FFT NOT-IN-PLACE 

[RFFTM]MIXED-RADIX REAL FFT NOT-IN-PLACE 
[AINT]TRUNCATE REAL NUMBER 

[ATAN]ARCTANG~ OF REAL NUMBER 
[CEXP]EXPONENTIAL OF COMPLEX NUMBER 
[CONJG]~ONJUGATE OF COMPLEX NUMBER 

[CSQRT]SOUARE ROOT OF COMPLEX NUMBER 
[DNEG]NEGATE DOUBLE-PRECISION NUMBER 

[EXP]EXPONENTIAL OF REAL NUMBER 
[SQRT]SQUARE ROOT OF REAL NUMBER 

[ABS]REAL NUMBER ABSOLUTE VALUE 
[CABS]COMPLEX NUMBER ABSOLUTE VALUE 

[ACOS]REAL NUMBER ARCCOSINE 
(ASIN]REAL NUMBER ARCSINE 

[CCOS]COMPLEX NUMBER COSINE 
[COS]REAL NUMBER COSINE 

[RAN]SCALAR RANDOM NUMBER GENERATOR 
[COSH]REAL NUMBER HYPERBOLIC COSINE 
[SINH]REAL NUMBER HYPERBOLIC SINE 
[TANH]REAL NUMBER HYPERBOLIC TANGENT 

[ ALOGl.0'] REAL 
[ALOG]REAL 

[CLOG]COMPLEX 
[SIGN]REAL 

[CSIN]COMPLEX 
[SIN]REAL 
[TAN]REAL 

[NINT]ROUND REAL 

NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 

LOGARITHM 
LOGARITHM 
LOGARITHM 
SIGN TRANSFER 
SINE 
SINE 
TANGENT 
TO NEAREST INTEGER 

[ANINT]ROUND REAL NUMBER TO NEAREST ~OLE 
OF RATIO OF REAL NUMBERS ••• [ATAN2]ARCTANGENT 

[VRAND]VECTOR RANDOM NUMBERS 
[FUNl]FUNCTION OF ONE VARIABLE 

[VLOR]VECTOR LOGICAL OR 
LOGICAL EXCLUSIVE OR ••• [VLXOR]VECTOR . 

VECTOR GREATER THAN OR EQUAL ••• [LVGE]LOGICAL 
PREDICTOR ORDER l .•• [ABPl]ADAMS-BASHFORTH 

[AMCl]ADAMS-MOULTON CORRECTOR ORDER 1 
PREDICTOR ORDER 2 ••• [ABP2]ADAMS-BASHFORTH 

[AMC2)ADAMS-MOULTON CORRECTOR ORDER 2 
PREDICTOR ORDER 3 ••• [ABP3]ADAMS-BASHFORTH 

[AMC3]ADAMS-MOULTON CORRECTOR ORDER 3 
PREDICTOR ORDER 4 ••• [ABP4]ADAMS-BASHFORTH 

[AMC4]ADAMS-MOULTON CORRECTOR ORDER 4 

FPS 86H-7482-&&1C INDEX - 11 



[VRAMP]VECTOR RAMP 
[RAN]SCALAR RANDOM NUMBER GENERATOR 

[~"'D]VECTOR RANDOM NUMBERS 
[POST64]POST BITS TO RASTER 
[ATAN2]ARCTANGENT OF RATIO OF REAL NUMBERS 

[MRRUNR]MIXED-RADIX RFFT RAVEL/UNRAVEL PASS 
DOT PRODUCT REAL REAL ••• [DDOTRR]DOUBLE 

[SAXPYN]NESTED REAL A * X + Y 
[SCASUM]SUM OF REAL AND IMAGINARY MAGNITUDES 

[SDOTN]NESTED REAL DOT PRODUCT 
[RFFTM]MIXED-RADIX REAL FFT NOT-IN-PLACE 

[VPKR32]VECTOR REAL HALFWORD PACK 
[AINT]TRUNCATE REAL NUMBER 

[ATAN]ARCTANGENT OF REAL NtJMBER 
[EXP]EXPONENTIAL OF REAL NUMBER 

[SQRT]SQUARE ROOT OF REAL NUMBER 
[NINT]ROUND REAL NUMBER TO NEAREST INTEGER 

[ANINT]ROUND REAL NUMBER TO NEAREST WHOLE 
[ATAN2]ARCTANGENT OF RATIO OF REAL NUMBERS 

[CPOWCR]COMPLEX TO REAL POWER 
[RPOW]REAL TO REAL POWER 

[DDOTRR]DOUBLE DOT PRODUCT REAL REAL 
[RSFS2]SPARSE REAL SYMM FACTOR & SOLVE 
[RSFR2]SPARSE REAL SYMMETRIC FACTOR 
[RSSV2]SPARSE REAL SYMMETRIC SOLVE 

[VUPR32]VECTOR HALFWORD REAL UNPACK 
[RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE 
[RUFR2]SPARSE REAL UNSYMMETRIC FACTOR 
[RUSV2]SPARSE REAL UNSYMMETRIC SOLVE 

[CRVADD]COMPLEX AN~ REAL VECTOR ADD 
[CRVDIV]COMPLEX AND REAL VECTOR DIVIDE 
[CRVMUL]COMPLEX AND REAL VECTOR MULTIPLY 
[CRVSUB]COMPLEX AND REAL VECTOR SUBTRACT 

[SDOT]DOT PRODUCT OF REAL VECTORS 
[CVREAL]FORM COMPLEX VECTOR OF REALS 

[VREAL]EXTRACT REALS OF COMPLEX VECTOR 
[CVRCIP]COMPLEX VECTOR RECIPROCAL 

[RRCP]REAL RECIPROCAL 
[VRSQRT]VECTOR RECIPROCAL SQUARE ROOT 
[RECT]POLAR TO RECTANGULAR CONVERSION 

[AMOD]REAL/REAL DIVIDE REMAINDER 
[MOD]INTEGER/INTEGER DIVIDE REMAINDER 

MOVE AND LEVEL REPLACE ••• [MOVREP]SUB-IMAGE 
[VRVRS]VECTOR REVERSE ORDERING 

[MRRUNR]MIXED-RADIX RFFT RAVEL/UNRAVEL PASS 
[RSQRT]RECIPROCAL SQUARE ROOT 

RECIPROCAL SQUARE ROOT .•• [VRSQRT]VECTOR 
[VSQRT]VECTOR SQUARE ROOT 

[CSQRT]SQUARE ROOT OF COMPLEX NUMBER 
[SQRTjSQUARE ROOT OF REAL NUMBER 

[CROTG]COMPLEX GIVENS ROTATION 
[CSROT]COMPLEX 2-D ROTATION 

[SROTG]GIVENS PLANE ROTATION 
[SROT]PLANE ROTATION 

FPS a6g-74a2-ss1c INDEX - 13 



[VSINH]VECTOR SINE HYPERBOLIC 
[KSMLV]K-TH SMALLEST ELEMENT IN VECTOR 

COMPLEX SYMM FACTOR AND SOLVE ••• [CSFS2]SPARSE 
COMPLEX SYMMETRIC SOLVE ••• [CSSV2]SPARSE 

COMPLEX UNSYM FACTOR AND SOLVE===[CUFS2]SPARSE 
COMPLEX UNSYMMETRIC SOLVE ••• [CUSV2]SPARSE 

REAL SYMM FACTOR AND SOLVE ••• [RSFS2]SPARSE 
[RSSV2]SPARSE REAL SYMMETRIC SOLVE 

REAL UNSYM FACTOR AND SOLVE ••• [RUFS2]SPARSE 
[RUSV2]SPARSE REAL UNSYMMETRIC SOLVE 

[SGESL]REAL GENERAL MATRIX SOLVE 
[LUSN]LU MATRIX SOLVE CROUT 

HERMITIAN EIGENSYSTEM SOLVER ••. [CH]COMPLEX 
MATRIX EQUATION SOLVER •.. (CMSOLV]COMPLEX 
MATRIX EQUATION SOLVER ••. [CSOLVQ]COMPLEX 

[CSOLV]COMPLEX SYSTEM SOLVER 
SYMMETRIC EIGENSYSTEM SOLVER ••. [EIGRS]REAL 

[RS]REAL SYMMETRIC EIGENSYSTEM SOLVER 
[SGTSL]TRIDIAGONAL MATRIX SOLVER 

[SITSOL]SPARSE ITERATIVE SOLVER 
FORMAT EQUATION SOLVER •• e[SKYSOL]SKYLINE 

[SOLVEQ]LINEAR EQUATION SOLVER 
[TRIDIA]TRIDIAGONAL MATRIX SOLVER 

[VASORT]VECTOR SORT ALGEBRAIC VALUES 
[VISORT)VECTOR SORT INTEGER VALUES 

[VSORT]VECTOR SORT WITH INDICES 
[VSQ]VECTOR SQUARE 

[VSSQ]VECTOR SIGNED SQUARE 
[RSQRT]RECIPROCAL SQUARE ROOT 

[VRSQRT]VECTOR RECIPROCAL SQUARE ROOT 
[VSQRT]VECTOR SQUARE ROOT 

VECTOR MAGNITUDE SQUARED ••• [CVMAGS]COMPLEX 
[MEASQV]MEAN OF VECTOR ELEMENT SQUARES 

[SVESQ]SUM OF VECTOR ELEMENT SQUARES 
[SVS]SUM OF VECTOR SIGNED SQUARES 

[ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 
[CMTRAC]COMPLEX SUB-MATRIX TRACE 
[CMTRAN]COMPLEX SUB-MATRIX TRANSPOSE 
AND REAL VECTOR SUBTRACT ••• [CRVSUB]COMPLEX 

[CVSUB]COMPLEX VECTOR SUBTRACT 
TO DOUBLE-PRECISION SUBTRACT ..• [DSUBRR]SINGLE 
TO DOUBLE-PRECISION SUBTRACT •.• [DSUB]DOUBLE 

[VISUB]VEC'l'OR INTEGER SUBTRACT 
MULTIPLY, MULTIPLY, AND SUBTRACT ... [VMMSB]VECTOR 

[VMSB]VECTOR MULTIPLY AND SUBTRACT 
SCALAR MULTIPLY AND SUBTRACT •.. [VSMSB]VECTOR 

[VSUB]VECTOR SUBTRACT 
[VSBM]VECTOR SUBTRACT AND MULTIPLY 

[VSBSM]VECTOR SUBTRACT AND SCALAR MULTIPLY 
(MMTSUB]VECTOR SUBTRACT MD-MD TO TM 
[MTMSUB]VECTOR SUBTRACT MD-TM TO MD 
[MTTSUB]VECTOR SUBTRACT MD-TM TO TM 
[TMMSUB]VECTOR SUBTRACT TM-MD TO MD 
[TMTSUB]VECTOR SUBTRACT TM-MD TO TM 

FPS 86&-7482-B&lC INDEX - 15 



[TTTADD]VECTOR ADD TM+TM TO TM 
[TMMSUB]VECTOR SUBTRACT TM-MD TO MD 
[TMTSUB]VECTOR SUBTRACT TM-MD TO TM 
[TTMSUB]VECTOR SUBTRACT TM-TM TO MD 
[TTTSUB]VECTOR SUBTRACT TM-TM TO TM 

MATRIX MULTIPLY TRACE ••• [CMMTRC]COMPLEX 
[CMTRAC]COMPLEX SUB-MATRIX TRACE 

[ISIGN]INTEGER SIGN TRANSFER 
[SIGN]REAL NUMBER SIGN TRANSFER 

[CTRN2]2-D COORDINATE TRANSFORM 
[RDFT]REAL DISCRETE FOURIER TRANSFORM 

COORDINATE TRANSFORMATION ••• [CTRN3] 
[HLBRT]HILBERT TRANSFORMER 

[CMTRAN]COMPLEX SUB-MATRIX TRANSPOSE 
[MAXBT]MATRIX A TIMES B TRANSPOSE 

[MTRANS]MATRIX TRANSPOSE 
[STMM]SUBMATRIX TRANSPOSE & MULTIPLY 

[MATXBT]SUBMATRIX TRANSPOSE TRANSPOSE MULTIPLY 
[MNATXB]SUBMATRIX NEGATIVE TRANSPOSE MULTIPLY. 

[MATXBT]SUBMATRIX TRANSPOSE TRANSPOSE MULTIPLY 
[VTRAPZ]VECTOR TRAPEZOIDAL RULE INTEGRATION 

[V.0'l]VECTOR ZERO TRENDS 
[IMTQLl]DIAGONALIZE TRIDIAGONAL MATRIX 

[IMTQL2]DIAGONALIZE A TRIDIAGONAL MATRIX 
[HTRIDI]COMPLEX HERMITIAN TRIDIAGONALIZATION 

[VAINT]VECTOR TRUNCATE 
[VFRAC]VECTOR TRUNCATE TO FRACTION 

[GENTAB]GENERATE TWIDDLE FACTOR TABLE 
[SMUPCK]SPARSE MATRIX UNPACK 
[SVUPCK]SPARSE VECTOR UNPACK 

[VUP16]VECTOR 16-BIT BYTE UNPACK 
[VUP32]VECTOR 32-BIT BYTE UNPACK 

[VUPB]VECTOR 8-BIT BYTE UNPACK 
[VUPR32]VECTOR HALFWORD REAL UNPACK 

16-BIT SIGNED BYTE UNPACK ••• [VUPS16]VECTOR 
32-BIT SIGNED BYTE UNPACK ••• [VUPS32]VECTOR 

8-BIT SIGNED BYTE UNPACK ••• [VUPSS]VECTOR 
32-BIT SIGNED INTEGER UNPACK ••• [VUSI32]VECTOR 

[VUUI32]VECTOR 32-BIT UNSIGNED UNPACK 
[VUUI32]VECTOR 32-BIT UNSIGNED UNPACK 
(CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE 

[RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE 
[CUFR2]SPARSE COMPLEX UNSYMMETRIC FACTOR 

[RUFR2]SPARSE REAL UNSYMMETRIC FACTOR 
[CUSV2]SPARSE COMPLEX UNSYMMETRIC SOLVE 

[RUSV2]SPARSE REAL UNSYMMETRIC SOLVE 
[CCEPS]PHASE UNWRAP AND COMPLEX CEPSTRUM 

[SHPHU]SCHAFER'S PHASE UNWRAPPING 
[PKVAL]PEAK AND VALLEY PICKING 

[VASORT)VECTOR SORT ALGEBRAIC VALUES 
[VISORT]VECTOR SORT INTEGER VALUES 

[FUNl]FUNCTION OF ONE VARIABLE 
[ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 

[VARNMO]NMO WITH VARIABLE VELOCITY 

FPS 86S-7482-BB1C INDEX - 17 



APMATH64 KEY WORD INDEX 

[SVS]SUM OF VECTOR SIGNED SQUARES 
[CRVSUB]COMPLEX AND REAL VECTOR SUBTRACT 

[CVSUB]COMPLEX· VECTOR SUBTRACT 
[CSWAP]COMPLEX VECTOR SWAP 
[SVUPCK]SPARSE VECTOR UNPACK 

3X3 MATRIX MOLT. 3D VECTORS ••• [CMVML3]COMPLEX 
4X4 MATRIX MOLT. 4D VECTORS ••• [CMVML4]COMPLEX 

[SDOT]DOT PRODUCT OF REAL VECTORS 
DISTANCE BETWEEN TWO VECTORS •• e[SN2]SQUARED 

[SSWAP]INTERCHANGES VECTORS 
[CONNMO]NMO WITH CONSTANT VELOCITY 
[VARNMO]NMO WITH VARIABLE VELOCITY 

REAL NUMBER TO NEAREST WHOLE ••• [ANINT]ROUND 
[BLKMAN]BLACKMAN WINDOW MULTIPLY 

[HAMM]HAMMING WINDOW MULTIPLY 
[HANN]HANNING WINDOW MULTIPLY 

[TMMM]MATRIX MULTIPLY TM WORKSPACE 
[CAXPYN]NESTED COMPLEX A * X + Y 

[CAXPY]COMPLEX A * X + Y 
[SAXPYN]NESTEO REAL A * X + Y 

[SAXPY]REAL A * X + Y 
[CAXPYN]NESTED COMPLEX A * X + Y 

[CAXPY]COMPLEX A * X + Y 
[SAXPYN]NESTED REAL A * X + Y 

[SAXPY]REAL A * X + Y 
(Vgl]VECTOR ZERO TRENDS 

EQUATION, 2 POLES, 2 ZEROS ••. [DEQ22]DIFFERENCE 
[VSCANg]VECTOR SCAN FOR ZEROS 

FPS 86i-7482-HilC INDEX - 19 



Please detach cards along perforations. 

------------------------------------------------------------------------------------- ------

C/J. -
~ 

Your comments wiil heip us improve the quaiity and usefulness of our publications. Please fill 
out and return this form. (The mailing address is on the back.) 

Title of document: -----------------------------
Your Name and Title: Date: ------------------- --------Fi rm: ______________________ Department:-----------~~~~ 

Address: -----------------------------------------
City:----------- State:------------- Zip Code:-------
Telephone Number: _____ .)-----------Extension:----------

I used this manual. . 

0 as an introduction to the subject 

0 as an aid for advanced training 

0 to instruct a class 

0 to learn operating procedures 

0 as a reference manual 

D other -------------

I found this material. 

accurate 

complete 

written clearly 

well illustrated 

well indexed 

Yes 
0 
0 
0 
0 
0 

No 
0 
0 
0 
0 
0 

~ Please indicate below, listing the pages, any errors you found in the manual. Also indicate if 
~ you would have liked more information about a certain subject. 

-< 
~ 
~ 

-------------------------------------------------------------------------------------------

>­
ID 
n: 
n: 
ID 

ARRAY is an independent society of people who use FPS products. Membership is free 
a...11d includes a quarterly newsletter. There is an a.i.1nual conference, as well as other 
activities. If you are interested in becoming an ARRAY member, please fill out and 
return this form. (The mailing address is on the back.) 

Your Name and Title: Date: ------------------------ ----------Fi rm: _______________________ Department:-----------

Address: ---~~~------------~--~~--~~~----------------------
City: ---------- State: ------------ Zip Code: -------­
Telephone Number: Extension: -----------



r:1 .Lci,-1d '3'TJ<.:-v.:.:. v: :x~\~l, 
/\V38: ~'IOdIVOll GLtiJ% :x2~~1_ 

1SIS-Tt91£0S ·Ftl 
(''...,ry ;,- rrn_9'"""'..i:r--,. 1 nrrr1t'\1!\T 1 r~--..1....r.,..., -._rr,.rT .,--,,_,..,.. 
~cL.:..r:..' ... ..,...,"' .. \.....' t-''"'"'!4 .. '-'d. 0 ~ vt.G .l\.Vtl 'Ja 

'8NI 'Sl/\l31SAS 
lNIOd 8Nl1V'Ol:f 


