APMATH64 MANUAL

VOLUME 3 OF 4

MODELS M64/40,
M64/50, M64/60

860-7482-001C

F F E - FLOATING POINT SYSTEMS, INC.

by FPS Technical Publications Staff

APMATHG64 MANUAL

VOLUME 3 OF 4

MODELS M64/40.
M64/50, M64/60

860-7482-001C

Publication No. 864-7482-341C
December, 1987

NOTICE

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright © 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may

be reproduced in any form without written permission
from the publisher.

Printed in USA

The postpaid Reader's Comment Form on the last page of this document

requests the user's critical evaluation to assist in preparing and
revising future documents.

REVISION HISTORY

This manual is the APMATH64 Manual, Volume 3, 864-7482-941.
shown under the revision number column indicates the portion of the

part number that changes for each revision.

latest revision to this manual.

The letter

The last entry is the

REV. NO. DESCRIPTION DATE
-gg1A The revision history begins with this manual. 8/86
-941B Deleted Utilities Library, deleted the

LPSPFI subroutine, added internal subroutine
information, and added 16 new routines. 1/87
-gg1c Added routines to Basic Math Library
Double Precison Library, and Matrix
Algebra Accelerated Math Library. 12/87
NOTE: For revised manuals, a vertical line "|" outside the left

margin of the text signifies where changes have been made.

NOTE TO READER

This is the third volume of the APMATH64 Manual. It
is comprised of part 3 of Appendix A and Appendix B
through Appendix J. Note that Appendix A continues
through Volumes 1, 2, and 3. The page numbers are
listed consecutively through the volumes.

The APMATH64 Manual has three indices located at the
end of Volume 3 and two at the end of Volume 4. The
first index (Appendix I) is a list of the APMATH64
routines in page order by type. The second index
(Appendix J) is an alphabetical 1list of all the
APMATH64 routines. The third index 1is a key word
index of the APMATH64 routines. The fourth index
(Appendix L) is an alphabetical 1list of the
APMATH64/MAX routines. The fifth index is a key word
index of the APMATH64/MAX routines.

CONTENTS

CONTENTS (VOLUME 3)

APPENDIX A APMATH64 ROUTINES

TABLE MEMORY RAM LIBRARY A—-475
SPECIAL UTILITIES LIBRARY A-543
DATA FORMATTING LIBRARY A-537
DOUBLE PRECISION LIBRARY A-528
FORTRAN SUPPORT LIBRARY A-538

APPENDIX B DATA REPRESENTATIONS FOR STORING SPARSE VECTORS AND

MATRICES
B.1 INTRODUCTION B-1
B.2 SPARSE VECTOR STORAGE B-1
B.3 SPARSE MATRIX STORAGE B-2
B.3.1 Matrix Format Type I (COL_ORDER PTRS_ONLY) B-3
B.3.2 Matrix Format Type II (ROW_ORDER PTRS_ONLY) B-4
B.3.3 Matrix Format Type III (COL_ORDER PTRS_SUMS) B-5
B.3.4 Matrix Format Type IV (ROW_ORDER PTRS_SUMS) B-6

APPENDIX C SPARSE LINEAR SYSTEM ROUTINES

INTRODUCTION c-1
SUMMARY OF VERSION 2 FEATURES Cc-2
MATHEMATICAL BACKGROUND c-2
LU Theorem Cc-4
Cc-5
Cc-5

.

LDU Theorem
FILL-IN
DATA FORMAT c-8
NUMERICAL STABILITY c-14

0OOO0OO0O0O0O00n0n
¢ o

AU e WWwWwN
N

.

APPENDIX D BASIC LINEAR ALGEBRA SUBPROGRAMS

D.1 INTRODUCTION D-1
D.2 DATA STRUCTURES FOR VECTORS AND ARRAYS D-2
D.3 ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS D-3
D.3.1 Subroutine CAXPY(N,CA,CX,INCX,CY,INCY) D-4
D.3.2 Subroutine CCOPY(N,CX,INCX,CY,INCY) D-4
D.3.3 Complex Function CDOTC(N,CX,INCX,CY,INCY) D-4
D.3.4 Complex Function CDOTU(N,CX,INCX,CY,INCY) D-5
D.3.5 Subroutine CROTG(CA,CB,SC,CSIN) D-5
D.3.6 Subroutine CSCAL(N,CA,CX,INCX) D-5
D.3.7 Subroutine CSSCAL(N,SA,CX,INCX) D-5
D.3.8 Subroutine CSROT(N,CX,INCX,CY¥,INCY,SC,SS) D-5
D.3.9 Subroutine CSWAP(N,CX,INCX,CY,INCY) D-5
D.3.19 Integer Function ICAMAX(N,CX,INCX) D-5
D.3.11 Integer Function ISAMAX(N,SX,INCX) D-5
D.3.12 Real Function SASUM(N,SX, INCX) D=5
D.3.13 Subroutine SAXPY(N,SA,SX,INCX,SY,INCY) D—-6

FPS 864-7482-g41C Page

e
[
[

CONTENTS

APPENDIX G LIST OF SUPERSEDED ROUTINES Page
APPENDIX H EXCEPTIONS ENABLED ROUTINES INFORMATION AND
INTERNAL SUBROUTINES

EXCEPTIONS ENABLED ROUTINES INFORMATION H-1
INTERNAL SUBROUTINES H-1

111!11
(N

APPENDIX I APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE

APPENDIX J APMATH64 ROUTINES IN ALPHABETICAL ORDER

ILLUSTRATIONS
Figure No. Title Page
E-1 Example Coordinate and Function Value Breakpoint
Tables E-3
TABLES
Table No. Title Page
B-1 Format Types and Attributes B-2

FPS 864-7482-941C Page v

APPENDIX A

APMATH64 ROUTINES (VOLUME 3)
TABLE MEMORY RAM LIBRARY

FPS 864-7482-g41C Page A - 475

APPENDIX A

thkktkktt® t 2 2 X2 2 L2 % X
* g , * *
* MMTMUL * —— VECTOR MULTIPLY (MD*MD TO TM) ——- * MMTMUL *
* * x *
tEx 2222222 41 TERLELLEES
PURPOSE: To multiply the elements of two vectors in Main

Memory and store the resultant vector in Table

Memory.
CALL FORMAT: CALL MMTMUL(A,I,B,J,ITMC,K,N)
PARAMETERS: A = Floating-point Main Memory input vector

I = Integer element step for a

B = Floating-point Main Memory input vector

J = Integer element step for B

ITMC = Integer base address of TM output vector C

K = Integer element step for C

N = Integer element count
DESCRIPTION: MMTMUL multiplies N elements of the vector A with N

elements of the vector B, where A and B are in Main

Memory, and stores the results in a vector with base

address ITMC and increment K in Table Memory.

NOTE: Writable Table Memory begins at address 8192.
EXAMPLE:

N=3

I=J=K=1

ITMC = 8192

A : 1.9 2.9 3.9

B : 3.9 4.9 5.9

TMLOC: 8192 8193 8194

C : 3.9 8.9 15.9

FPS 864-7482-941C

Page A

- 477

L2222 2 2 £ X 23
* *
* MTIMOV *
* *
2222 £ 5 %4

PURPOSE:

CALL FORMAT:

APPENDIX A

*kkkkkkkkh
* *

——— VECTOR MOVE WITH INCREMENT (MD TO TM) —- * MTIMOV *

* *
2ERETRETELE

To move elements of a vector from Main Memory
to Table Memory, where the increments between the
elements are specified.

CALL MTIMOV(A,I,ITMC,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A
ITMC = Integer base address of TM output vector C
K = Integer element step for C
N = Integer element count
DESCRIPTION: MTIMOV moves the elements of an input vector A with
increment I in Main Memory to an output vector with
base address ITMC and increment K in Table Memory.
NOTE: Writable Table Memory begins at address 8192.
EXAMPLE:
N =3
K = 2
ITMC = 8192
A : 1.0 2.9 3.9
TMLOC: 8132 8193 8194 8195 8196 8197
C : 1.8 X 2.9 X 3.8 X

X represents unchanged values.

FPS 860-7482-#41C

Page A - 479

APPENDIX A

E 2222222 2 24 thkhkkkkhktddk
* * * *
* MTMMUL * —— VECTOR MULTIPLY (MD*TM TO MD) —- * MTMMUL *
* * * *
t 222225552 b2 222222 X 1 2
PURPOSE: To multiply elements of a vector in Main Memory

by elements of a vector in Table Memory and
store the products in Main Memory.

CALL FORMAT: CALL MTMMUL(A,I,IT™MB,J,C,K,N)
PARAMETERS: = Floating-point Main Memory input vector

= Integer element step for A

TMB = Integer base address of TM input vector B
Integer element step for B

= Floating-point Main Memory output vector
= Integer element step for C

= Integer element count

2 RN 0D G H H >
1]

DESCRIPTION: MTMMUL multiplies N elements of the vector A in Main
Memory by N elements of the vector with base address
ITMB in Table Memory, and stores the products in N
elements of the vector C in Main Memory.

EXAMPLE:

>
P
=

2.9 3.9

TMLOC: 8192 8193 8194
B : 2.4 3.9 4.9

Q
[§
=

6.4 12.9

FPS 864-7482-941C Page A - 481

APPENDIX A

t 22232222 £ L2 22 &2 2 1
* * * *
* MTMSUB * ——— VECTOR SUBTRACT (MD-TM TO MD) —— * MTMSUB *
* * * *
kR ER EREEXELELEES
PURPOSE: - To subtract the elements of a vector in Table

Memory from the elements of a vector in Main
Memory and store the results in a vector in
Main Memory.

CALL FORMAT: CALL MTMSUB(A,I,ITMB,J,C,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A
ITMB = Integer base address of TM input vector B
J = Integer element step for B
c = Floating—-point Main Memory output vector
K = Integer element step for C
N = Integer element count

DESCRIPTION: MTMSUB subtracts N elements of a vector with base
address ITMB in Table Memory from N elements of the
vector A in Main Memory, and stores the results in N
elements of the vector C in Main Memory.

EXAMPLE:
N=3
I=J=K=1
ITMB = 8192

TMLOC: 8192 8193 8194
B : 2.9 1.9 1.

=R

(@]
.—l
R

3.9 4.0

FPS 86d-7482-gd1C Page A - 483

kAT E
* *

* WITMUL *
* *
t 2 232222 £ 24

PURPOSE:

CALL FORMAT:

APPENDIX A

Rhktkkkhkkk®
* *
-—— VECTOR MULTIPLY (MD*TM TO TM) ——- + MTTMUL *
: *
t 2222222 X

To multiply the elements of a vector in Main
Memory by the elements of a vector in Table

Memory and store the products in a vector in
Table Memory.

CALL MTTMUL(A,I,ITMB,J,ITMC,K,N)

PARAMETERS: A = Floating-point Main Memory input vector
I = Integer element step for A
ITMB = Integer base address of TM input vector B
J = Integer element step for B
ITMC = Integer base address of TM output vector C
K = Integer element step for C
N = Integer element count
DESCRIPTION: MTTMUL multiplies N elements of the vector A in Main
Memory by N elements of the vector with base address
ITMB in Table Memory, and stores the products in N
elements of a vector with base address ITMC in Table
Memory.
NOTE: Writable Table Memory begins at address 8192.
EXAMPLE:

N=3

I=J=K=1
ITMB = 8192
ITMC = 8292

A : 3.9 4.9 5.9

TMLOC: 8191 8193 8194
B : 2.9 1.9 3.9

¢ 8292 8293 8294
C : 6.0 4.0 15.4

FPS 864-7482-g41C Page A - 485

APPENDIX A

E 2 22T 22 2 & 2 Rk ERE
* 4 * *
* TMDOT * —— REAL DOT-PRODUCT (TM AND MD) —- * TMDOT *
* * * *
XREEERETTEL t2 2222 222 1]
PURPOSE: Computes the real dot-product of two vectors

where one vector is stored in Main Memory and
the other vector is stored in Table Memory.
Both vectors are assumed to be stored compactly.

CALL FORMAT: CALL TMDOT (ITMA,B,C,N)
PARAMETERS: ITMA = Integer base address of TM input vector A

= Floating-point Main Memory input vector
= Floating-point Main Memory output scalar

Z 0w
[l

DESCRIPTION: TMDOT computes the real dot-product of N elements of
the vector with base address ITMA in Table Memory with
N elements of the vector B in Main Memory, and stores
the resultant scalar in Main Memory.

Formula:
C = A(1)*B(l) + A(2)*B(2) + ... + A(N)*B(N)
C=4g.8, if N<1

EXAMPLE:
N =3
ITMA = 8192
TMLOC 8192 8193 8194

A : 1.9 2.9 3.9

FPS 864-7482-441C Page A - 487

APPENDIX A

(2 X222 2 2 & £ kRt
* * * *
* TMMM * ——— MATRIX MULTIPLY (TM WORKSPACE) —— * TMMM *
k * * *
Xkkhkktt i kkkEXRREEE
PURPOSE: Multiplies two matrices A and B in Main Memory

to form a matrix C in Main Memory. This routine
uses a workspace in Table Memory to achieve high
speed.

CALL FORMAT: CALL TMMM (A,B,C,MC,NC,NA,ITMW)

PARAMETERS: A = Floating-point Main Memory input matrix

B = Floating-point Main Memory input matrix

C = Ploating-point Main Memory output matrix

MC = Integer number of rows in output matrix C
(and input matrix 3a)

NC = Integer number of columns in cutput matrix C
(and input matrix B)

NA = Integer number of columns in input matrix A

(and number of rows of input matrix B)
ITMW = Integer base address of TM work area of length NA

DESCRIPTION: TMMM computes the product of the MC-row by NA-column
matrix A and the NA-row by NC-column matrix B (both in
Main Memory) and stores the result in the MC-row by
NC-column matrix B in Main Memory. This routine
uses a workspace of length NA in Table Memory to achieve
high speed. All matrices are assumed to be stored in
column order.

NOTE: Writable Table Memory begins at location 8192.

EXAMPLE:

W
(SIS

FPS 864-7482-491C _ Page A - 489

APPENDIX A

kit d kkkktthkkhk
k * * *
* TMMSUB * ——— VECTOR SUBTRACT (TM-MD TO MD) ——— * TMMSUB *
* * * *
thkkkkhkhhth® kAR ERR
PURPOSE: To subtract the elements of a vector in Main

Memory from the elements of a vector in Table

Memory and store the results in a vector in

Main Memory.

CALL FORMAT: CALL TMMSUB(ITMA,I,B,J,C,K,N)

PARAMETERS: ITMA =

2RO WH
"

DESCRIPTION: TMMSUB
Memory

Integer base address of TM input vector A
Integer element step for A

Floating-point Main Memory input vector
Integer element step for B

Floating-point Main Memory output vector
Integer element step for C

Integer element count

subtracts N elements of the vector B in Main
from N elements of the vector with base address

ITMA in Table Memory, and stores the differences in the
vector C in Main Memory.

EXAMPLE:

N=3

I=J=K=
ITMA=8
TMLOC:
a H
B :
Cc :

FPS 860-7482-gd1C

Page A - 491

APPENDIX A

REREEE AR kkkktkkkt®
* * * *
* TMVLC2 * ~—— VECTOR LINEAR COMBINATION -—- * TMVLC2 *
* * * *
ARRRRERERR REERREET AR
PURPOSE: To compute the linear combination of two vectors,

one in Table Memory and the other in main memory,
and store the resultant vector in main memory.

CALL FORMAT: CALL TMVLC2 (Sl, ITMA, S2, B, J, C, K, N)

PARAMETERS: Sl = Floating-point scalar coefficient
for the TM input vector A
ITMA = Integer base address of the TM input
vector A

82 = Floating-pcint scalar ccefficient
for the MD input vector B
Floating-point MD input vector
Integer element step for B
Floating-point MD output vector

= Integer element step for C

= Integer element count

ZR0O04qgw
]

DESCRIPTION: C(m) S1 * A(m) + S2 * B(m); form =1 to N

Where A is in Table Memory, and B, Sl1, S2, and C
are in main memory.

EXAMPLE:
N = 3
Sl = -1.4
S2 = 2.9
J = 1
K = 1
ITMA = 8192

TMLOC: 8192 8193 8194
a : 1.9 2.9 3.8

FPS 864-7482-491C Page A - 493

APPENDIX A

ERREEEEEERR . ket E
* ® * *
* TTMADD * —— VECTOR ADD (TM+TM TO MD) ——— * TTMADD *
* * * *
EEXERRREERT Xkhkkdkkxhtitd
PURPQSE: To add the elements of two vectors in Table

Memory and store the sums in Main Memory.
CALL FORMAT: CALL TTMADD(ITMA,I,ITMB,J,C,K,N)

PARAMETERS: ITMA = Integer base address of TM input vector A

I = Integer element step for A

ITMB = Integer base address of TM input vector B
J = Integer element step for B

C = Floating—-point Main Memory output vector
4 = Intsger element step for C

N = Integer element count

DESCRIPTION: TTMADD adds N elements of the vector with base address
ITMA in Table Memory to N elements of the vector with
base address ITMB in Table Memory, and stores the sums
in N elements of the vector C in Main Memory.

EXAMPLE:
N=3
I=J=K=1
ITMA = 8192
ITMB = 8292

TMLOC: 8192 8193 8194

TMLOC: 8292 8293 8294

C : 5.4 7.9 9.9

FPS 864-7482-991C Page A - 495

APPENDIX A

tFX X222 2 2] 2222522 2 %)
* : * *
* TTMSUB * ——— VECTOR SUBTRACT (TM—TM TO MD) —-— * TTMSUB *
* * * *
kR EE EXREXTLEEE
PURPOSE: To subtract the elements of two vectors in Table

Memory and store the differences in a vector in
Main Memory.

CALL FORMAT: CALL TTMSUB(ITMA,I,ITMB,J,C,K,N)

PARAMETERS : ITMA = Integer base address of TM input vector A

I = Integer element step for A

ITMB = Integer base address of TM input vector B
J = Integer element step for B

C = Flcating-point Main Memory cutput vector
K = Integer element step for C

N = Integer element count

DESCRIPTION: TTMSUB subtracts N elements of the vector with base
address ITMB in Table Memory from N elements of the
vector with base address ITMA in Table Memory, and
stores the resulting differences in a vector C in Main
Memory.

EXAMPLE:
N=3
I=J=K=1
ITMA = 8192
ITMB = 8292

TMLOC: 8192 8193 8194
A : 3.9 4.9 5.9

TMLOC: 8292 8293 8294

O
[
[~
[%¥]
[\~
>
[\

FPS 864-7482-941C Page A - 497

APPENDIX A

Rkttt E 22222 % & &]
* * . * *
* PPTMUL * —-—— VECTOR MULTIPLY (TM*TM TO TM) —— * TPTMUL *
* & * *
kit REXEREEETERR
PURPOSE: To multiply the elements of two vectors in Table

Memory and store the resulting products in a

vector in Table Memory.
CALL FORMAT: CALL TTTMUL(ITMA,I,ITMB,J,ITMC,K,N)
PARAMETERS: ITMA = Integer base address of TM input vector A

I = Integer element step for A

ITMB = Integer base address of TM input vector B

J = Integer element step for B

ITMC = Integer base address of TM output vector C

K = Integer element step for C

N = Integer element count
DESCRIPTION: TTTMUL multiplies N elements of the vector with base

address ITMA in Table Memory by N elements of the

vector with base address ITMB in Table Memory, and

stores the resultant products in the vector with base

address ITMC in Table Memory.

NOTE: Writable Table Memory begins at address 8192.
EXAMPLE:

N=3

I=J=K=1

ITMA = 8192

ITMB = 8292

ITMC = 8392

TMLOC: 8192 8193 8194

A : 1.9 2.9 3.4

TMLOC: 8292 8293 8294

B : 3.4 4.9 5.9

TMLOC: 8392 8393 8394

C : 3.9 8.4 15.4

FPS 864-7482-991C

Page A - 499

APPENDIX A

E 23222222 2 t 22222222 23
* * * *
* TTVLC2 * ——— VECTOR LINEAR COMBINATION —— * TTVLC2 *
* E * *
REERXREEETES t 22 22225 2 1]
PURPOSE: To compute the linear combination of two vectors,

one in Table Memory and the other in main memory.

and store the resultant vector in Table Memory.
CALL FORMAT: CALL TTVLC2 (S1, ITMA, S2, B, J, ITMC, N)
PARAMETERS: Sl = Floating-point scalar coefficient for the

TM input vector A
ITMA = Integer base address of the TM input

vector A

52 = Floating-point scalar coefficient for the
MD input vector B

B = Floating-point MD input vector

J = Integer element step for B

ITMC = Integer base address of the TM output
vector C

N = Integer element count

DESCRIPTION: C(m) = S1 * A(m) + S2 * B(m); form =1 to N

Where A and C are in Table Memory, and B, S1,
and S2 are in main memory.

Note: Writable Table Memory begins at address 8192.

EXAMPLE:

TMLOC: 8192 8193 8194
A : 1.9 2.9 3.

=

TMLOC 8195 8196 8197

-1l.9 -3.8

(@]
~
[~

FPS 860-7482-981C Page A - 541

APPENDIX A

SPECIAL UTILITIES LIBRARY

FPS 86@-7482-981C Page A - 543

APPENDIX A

kit rd i 222222 & £
* * * *
* PEERK * ——— MEMORY FETCH ——- * PEERK *
* : 3 * *
tx 22222 222 khkkkktthkkt®x
PURPOSE: To fetch the contents of a specified memory word.

CALL FORMAT: Function Value

PEEK(Addr)

PARAMETERS: Function Value The unformatted contents of the
specified memory location
An integer specifying the address

to be accessed

Addr

DESCRIPTION: The specified memory location is accessed and its
contents returned as the function-value output. The
output is the unformatted word. That is, no format
conversion is performed by the function.

EXAMPLE:

(Assuming location 10604 contains
@1 23 34 56 78 9A BC DE (hex))

Addr : 1909
Function Value : g1 23 34 56 78 9A BC DE

FPS 864-7482-491C Page A - 585

APPENDIX A

DATA FORMATTING LIBRARY

FPS 868-7482-891C Page A - 587

APPENDIX A

ikttt h kRt

* * * *

* VIFIX * ——— VECTOR INTEGER FIX -——- * VIFIX *

* * * *

L2222 22222 kkkkkEkrtk

PURPOSE: To £ix to 53-bit integers the elements of a
floating-point vector.

CALL FORMAT: CALL VIFIX(A,I,C,K,N,F)
PARAMETERS: = Ploating—-point input vector

Integer element step for A

Long-integer output vector

Integer element step for C

Integer element count

= Integer flag (4 to round, 1 to truncate)

A
I
c
K
N
F

DESCRIPTION: C(m)=FIX(A(m)); for m=1 to N

EXAMPLE:
N =4
F=2g
A:1.7 -1.5 =-3.2 3.5
cC 2 =2 -3 4.9
N = 4
F=1
a:1l.7 -1.5 -3.2 3.5
cC:1 -1 -3 3.9

FPS 864-7482-941C Page A - 509

APPENDIX A

htkkkhktktd *htkkkkthkd
* x* * *
* VPR16 * —— VECTOR 16-BIT BYTE PACK —— * VPK16 *
* * * *
E2 22225222 tx 22222 2 2
PURPOSE: To pack each four 64-bit floating-point numbers

into one destination word as l6-bit quarter words.

CALL FORMAT: CALL VPK1l6(A,I,C,K,N,F)
PARAMETERS: A = Floating-point input vector
I = Integer element step for A
C = Signed-quarterword-integer output vector
K = Integer element step for C
N = Integer element count {(destination words)
F Integer flag (4 to round, 1 to truncate)

¥

DESCRIPTION: VPK16 fixes and packs four floating-point numbers from
vector A into 1l6-bit quarter words in a single word of
vector C, packing an array of positive integers with
values from & to 65535, or an array of signed two's
complement integers with values from -32768 to 32767,
but does not check for ocut-of-range values.

EXAMPLE:

& I
]
SIS

A :8.3 -7.9 6.5 5.6 4.1 3.4 -2.5 1.1

C : JGQ8FFFr8000600d6 Q0040933 FFFESAIL

A:8.3 -7.9 6.5 5.6 4.1 3.4 -2.5 1.1

C : (UO8FFFI00d60005 PQOF40993FFFEGGI]1

FPS 864-7482-g401C Page A - 511

APPENDIX A

kRt hkvhkh kkkkhkihh®
* * * *
* YPRI32 * ——— VECTOR 32-BIT INTEGER PACK —— * VPKI32 *
* * * *
kkkkkkkkt R F2 222222234
PURPOSE: To pack each two 32 bit halfword integer source words
* into one destination word as halfword-integers-packed.

CALL FORMAT: CALL VPKI32(A,I.C,K,N)

PARAMETERS : A = Halfword integer input vector
I = Integer element step for A
C = Halfword-integer-packed output wvector
K = Integer element step for C
N = Integer element count (destination words)
DESCRIPTION: C(m) bits & to 31 = A(2m-1) bits 32 to 63
C(m) bits 32 to 63 = A(2m) bits 32 to 63

for m=1 to N
(Bits are numbered #-63 from left to right).

VPKI32 packs two halfword integers from vector A into
32-bit halfwords in a single word of vector C. It
packs an array of positive integers with values from
g to 4294967295, or an array of signed 2's complement
integers with values from -2147483648 to 2147483647.
VPKI32 does not check for values out of range.

EXAMPLE: N =3
I =2
K =3 (XXX indicates 'undefined')

A: 80CJQ0d009da09d86 C: 0O0OPI0GA609003004

8QAQIEBA0IEAABAS XXXXXXXXKAXXXXXX
808003000 390033 4 XXXXXXXXXXXXXXXX
80609900090993493 0P2e0da230930839
J08089092329933422 XXXXXXXXXXXXXXXX
BI93009339808841 XXXXXXXKXXXKXXXXXX
8003000049000033 FFFFFFFEFFFFFFFC
7FFFFFFFFFFFFFEFF

7FDFFFFFFFFFFFFE

J9093393FFFFFFFD

J003G0A3dFFFFFFFC

FPS 868-7482-4d1C Page A - 513

APPENDIX A

kbt kth® khkkhhthht®
* * * *
* VSCALE * ——— VECTOR SCALE AND FIX -—— * VSCALE *
® * * *
E 22322222 2 4 RAERERRREER
PURPOSE: To scale the elements of a vector by a power of 2 such

that a selected scalar will just fit into a specified

integer bit width, and then fix the scaled elements
to integers.

CALL FORMAT: CALL VSCALE(A,I,B,C,K,N,NB,IEXP)

PARAMETERS: = Floating-point input vector
Element step for A

Floating-point input scalar

[
[
e}
=]

[te]

I
[
=]
cr
4]

[Te]
[11]
[
(o]
[
(a3

Le]
c
r
<
1)
(9]
oF
(o]
[

= Element step for C
= Element count
= Long-integer input scalar
(Desired width, 2 to 28 bits, of integers)
IEXP = Long-integer output scalar
(Exponent of scale factor used)

5 ZROWH >

DESCRIPTION: C(m) = FIX (A(m)*{2**IEXP}) for m=0 to N-1
where IEXP=NB-E-1,
and B = FRAC*(2**E).
VSCALE scales by a power of 2 every element of the
vector A so that the scalar B will just fit into an
NB-bit width integer, and then fixes the scaled elements
and stores them in vector C. IEXP is set to the scale
factor chosen. TIf the scalar is larger in magnitude

than any element of A, no fixing overflows will occur.

EXAMPLE:

(with N=5, NB=12)

B : 19.9
A: 19.9 5.4 @8.2 -4.7 g4.41
C : 1289 6449 25 =512 1
IEXP : 7

FPS 864-7482-d91C Page A - 515

APPENDIX A

t 22222222 23 tE2 22222 2 % %]
* * * *
* YSHFX * —— VECTOR SHIFT AND FIX —— * YSHFX *
* * * *
kit x t 222222222
PURPOSE: To shift (multiply b

power
rs the elements of a

2o e

y a
fix (truncate) to intege
floating-point vector.

CALL FORMAT: CALL VSHFX(A,I,C,K,N,NS)

n

PARAMETERS: Floating-point input vector
= Integer element step for A
= Long~-integer output vector
= Integer element step for C
= Integer element count
S = Integer power of 2 (May be negative)

Z 2RO

DESCRIPTION: C(m)=FIX{A(m)*(2**NS)}; for m=1 to N

EXAMPLE:
N =3
NS = 2
A:1.8 2.9 3.2
Cc: 4 8 12

FPS 864-7482-4d1C Page A - 517

APPENDIX A

Rkttt td tE 2222222 2 1]
* *® * ®
* VOP8 * -—— VECTOR 8-BIT BYTE UNPACK -— * yUP8 *
x* * R * *
t 22222222 £ kit k
PURPOSE: To unpack eight 8-bit unsigned bytes from each

X A -1 L 4= 3 a2 el
SCUICe WOIG and scdre cTaem 1n €igiic a&s

words as 64-bit floating-point numbers.

Ammd fomal da
Ldillav LUil

CALL FORMAT: CALL VUP8(A,I,C,K,N)

PARAMETERS: Unsigned-byte-~integer input vector
Integer element step for A
Floating-point output vector
Integer element step for C

Integer element count (source words)

ZNOHB P
"

DESCRIPTION: Unpacks eight 8-bit bytes from a single word of
vector A storing them as eight floating-point numbers
in vector C. The unpacked bytes have values from # to

255.
EXAMPLE:
N =2
A : g807860558468302461 0887468504836251
cC:8.9 7.9 6.9 5.4 4.8 3.9 2.9 1.8
8.4 7.4 6.6 5.4 4.8 3.9 2.9 1.4

FPS 864-7482-g01C Page A - 519

APPENDIX A

tkkkkkdEth Xkt -
* * . * *
* YUP32 * -— VECTOR 32-BIT BYTE UNPACK —- * YUP32 *
* * * *

E 22222 2 X & & *hkkkkkittd
PURPOSE: To unpack two 32-bit unsigned halfwords

.
from each source word and store them in

two destination words as 64-bit floating-point
positive numbers. :

CALL FORMAT: CALL VUP32(A,I,C,K,N)
PARAMETERS: = Unsigned-halfword-integer input vector
Integer element step for A

= Floating—-point output vector

Integer element step for C

Integer element count (source words)

ZAOHD
\

DESCRIPTION: VUP32 unpacks two 32-bit halfwords from a single
word of vector A, storing them as two positive 64-bit
floating-point integers in vector C. The unpacked
halfwords have values from @ to 4294967295.

EXAMPLE:
N =4
A : 9008939800038847
d033290603308995
g0020934003038433
09000393280530841

€:8.0 7.0 6.8 5.0 4.8 3.9 2.0 1.9

FPS 8694-7482-401C Page A - 521

E2 2222222 % kkkktkkhk®
* * * *
* VUPS8 * ——— VECTOR 8-BIT SIGNED BYTE UNPACK —— * yOgpPsS8 *
* * * *
kit d kkkkhthhhh
PURPOSE: To unpack eight 8-bit signed bytes from

——— =t~

each socurce word and store them in eigh
words as 64-bit floating-point numbers.

cr
Cu
[17)
i
o
e
ja

CALL FORMAT: CALL VUPS8(A,I,C,K,N)

PARAMETERS: Signed-byte-integer input vector
Integer element step for A
Floating-point output vector

= Integer element step for C

= Integer element count (source words)

Z RO H P
]

DESCRIPTION: VUPS8 unpacks eight 8-bit signed bytes from
a single word of vector A, storing them as eight
floating-point numbers in vector C. The unpacked
bytes have values from -128 to 127.

EXAMPLE:
N =2
A : PBF9060504FD@201 GBET7FAGSH403FEDL
C:8.84 -7.9 6.4 5.6 4.9 -3.8 2.8 1.9
8.9 7.4 -6.4 5.8 4.9 3.4 -2.6 1.9

FPS 864-7482-8941C Page A - 523

APPENDIX A

Rkt tR kkkkkkkkt®
* * * *
* YUPS32 * —— VECTOR 32-BIT SIGNED BYTE UNPACK —— *+ YUPS32 *
* * * | *
*hkkkkktthE tkkkhkhkkik
PURPOSE: To unpack two 32-bit signed two's complement

halfwords from each source word and store them
in two destination words as signed 64-bit
floating-point numbers.

CALL FORMAT: CALL VUPS32(A,I,C,K,N)
PARAMETERS: = Signed-halfword-integer input vector
Integer element step for A

= Floating-point output vector

Integer element step for C

Integer element count (source words)

25O H D
]

0w

DESCRIPTION: VUPS32 unpacks two 32-bit signed two's complement
halfwords from a single word of vector A, storing
them as two flocating—-point numbers in vector C. The
unpacked halfwords have values from -2147483648 to
2147483647.

EXAMPLE:

N =4

A : JOUQOQUII8FFFFFFF9
00909993600990305
FFFFFFFCEFFFFFFFD
FFFFFFFEJAO0Q041

c:8.89 -7.9 6.8 5.4 -4.9 -3.9 -2.4 1.9

FPS 860-7482-@01C Page A - 525

kkkkkhrtrrd khkkkkhkhkk®
* * *
* VOUI32 * ——— VECTOR 32-BIT UNSIGNED UNPACK -—— * VUUI32 *
* * * *
t X222 222 L L L2222 22 2
PURPOSE: To unpack two 32-bit halfword integers from each

CALL FORMAT:

source word and store them as two destination words,
in unsigned integer format.

CALL VUUI32(A,I,C,K,N)

FPS 869-7482-491C

Page A

PARAMETERS: A = Halfword integer packed input vector
I = A address increment
C = 32 bit integer output vector
K = C address increment
N = Integer element count (source words)
DESCRIPTION: C(2m-1) = A(m) bits 4 to 31
C(2m) = A(m) bits 32 to 63
for m=g to N-1
(Bits are numbered g-63 from left to right).
VUUI32 unpacks two 32-bit unsigned halfword integers
from a single word of vector A and stores them as
two unsigned halfword integers in vector C. The
unpacked halfwords have values from § to 4294967295.
EXAMPLE: N =3
I =3
K =2 (XXX indicates 'undefined')
A: Q0090098009398087 C: (JJ090d0003340908
29500056 808509005 XXXXXXXXXXXXXXXX
9099080094000833293 g9000909003039937
00094d09200335801 XXXXXXXXXXXXXXXX
FFFFFFFFFFFFFFFE 900999 309923392
FFFFFFFDFFFFFFFC XXXXXXXXXXXXXXXX
FFFFFFFBFFFFFFFA J0000000038943G1
AXXXXAXXXXXXXXXX
JJ00039dFFFFFFFB
XXXXXXXXXXXXXXXX
JJ00I0ddFFFFFFFA

- 527

APPENDIX A

ki h Ahkkkkhktk®
* * . * *
* DADD * ——— DOUBLE TO DOUBLE-PRECISION ADD —— * DADD *
* * * *
kkkkthktkk®d t: 22222 X2 24
PURPOSE: To form a double-precision sum of two

double-precision numbers.

CALL FORMAT: CALL DADD(XDBLE,YDBLE,ZDBLE)

PARAMETERS: XDBLE
YDBLE
ZDBLE

Real vector input (double precision)

Real vector input (double precision)

Real vector output (double precision)

(A double-precision value is stored in a
2-element real array. First element contains
high word, second element contains low word.)

DESCRIPTION: Adds the double-precision number in XDBLE to the
double-precision number in YDBLE and stores the high
word of the double-precision sum in ZDBLE(l) and the
low word in ZDBLE(2).

FPS 864-7482-901C Page A - 529

|t*********
lt *

|* papor *
|t *
|*****t****

PURPOSE:

|CALL FORMAT:

DESCRIPTION:

APPENDIX A

tx 22222222
* *
——— DOUBLE ACCUMULATE DOT PRODUCT ———— * DADOT *
* *
tx 22X & 22 £ £

To perform the dot product of two real vectors,
accumulating the result in double precision (128 bits);

and returning the result in single precision (64 bits).

SW DADOT(N,A,I,B,J)

= Integer element count

= Real input vector

= Integer element step for A
= Real input vector

= Integer element step for
= Real output result

v 9]

= SUM(A(m) * B(m)) form =1 to N

= g.8 for N < 1
If the element increment, INC, of a vector is negative,
then the vector is indexed in reverse order, i.e
element (N-1) * INC + 1 to the first element (BLAS
convention).

g% %QWH{PZ
|

FPS 864-7482-gd1C Page A - 531

kR EER
* *

* DMUL *
* *
E2 222222 ¢%]

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A

SRR RETREE
%*] *

—— DOUBLE TO DOUBLE-PRECISION MULTIPLY ——— * DMUL *

* *
ARARREREREL

To form a double-precision product of two
recision numbers.

CALL DMUL(XDBLE, YDBLE, ZDBLE)

XDBLE = Real vector input (double precision)

YDBLE Real vector input (double precision)

ZDBLE Real vector output (double precision)
(A double-precision value is stored in a
2-element real array. First element contains

ol le o3 P | 1 3
high word, second element contains low word.)

Multiplies the double-precision number in XDBLE by the
double-precision number in YDBLE and stores the high
word of the double-precision product in ZDBLE(l) and
the low word in ZDBLE(2)}.

FPS 864-7482-gd1C Page A - 533

t2 2 X 22 L X £ 27
* *

* DNEG *
* *
E2 22222 5 5

PURPOSE:
CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A

Ex X2 £ 5 2 X
* *

——— NEGATE DOUBLE-PRECISION NUMBER -—— * DNEG *
* *

XX TS

To negate a double-precision number.

CALL DNEG(XDBLE,ZDBLE)

XDBLE
ZDBLE

Real vector input (double precision)

Real vector output (double precision)

(A double-precision value is stored in a
2-element real array. First element contains
high word, second element contains low word.)

v -

the high word of the double-precision result in ZDBLE(1l)
and the low word in ZDBLE(2).

FPS 864-7482-g@1C Page A - 535

*RhEREEEER
* *

*+ DSUBRR *
* k]
kikkkkhkkktidd

PURPOSE:

CALL FORMAT:

PARAMETERS :

DESCRIPTION:

APPENDIX A

EEXERERELE
* *

——— SINGLE TO DOUBLE-PRECISION SUBTRACT —— * DSUBRR *

* *
L2 X2+ £ 53 %3

To form a double-precision difference of two
single-precision numbers.

CALL DSUBRR(X,Y,ZDBLE)

X = Real scalar input

Y Real scalar input

ZDBLE Real vector output (double precision)
(A double-precision value is stored in a
2-element real array First element contains

.
high word,; second element contains low word.)

1 wiOLl .

]

Subtracts the single-precision number in Y from the
single-precision number in X and stores the high word of
the double-precision difference in ZDBLE(l) and the low
word in ZDBLE(2).

FPS 864-7482-#841C Page A - 537

APPENDIX A

t 222222 & 2] kit hd
® * * *
* ABS * ——— REAL NUMBER ABSOLUTE VALUE ——— * ABS *
* * * *
kX EEEER kit ®
PURPOSE: To compute the absolute value of a real number.

CALL FORMAT: Function-value ABS(arg)

PARAMETERS: Function-value
Arg

Real Floating—-point scalar output
Real Floating-point scalar input

DESCRIPTION: Function-value = |arg]|

FPS 864-7482-941C Page A - 539

APPENDIX A

k*hkkktkhERR E2 22222 2 2
* * * *
* AINT * ——— TRUNCATE REAL NUMBER ~—— * AINT *
* * * *
kkkkkhkdiitd tE 222222 2 £ 4
PURPOSE: To truncate a real number.
CALL FORMAT: Function-value = AINT(arg)
PARAMETERS : Function-value = Real floating-point scalar output

aArg = Real floating-point scalar input
DESCRIPTION: Function-value = FLOAT(FIXT(arg))

FPS 868-7482-841C Page A - 541

APPENDIX A

kXt E : tEs 222222 3 % 2
* . * * *
* ALOGld * ——— REAL NUMBER LOGARITHM —— * ALOGlg *
* * * *
kkhhkkRtRrtR EXREREEERR
PURPOSE: To compute the logarithm of a real number.

CALL FORMAT: Function-value ALOG(arg) or ALOGl@(arg)

PARAMETERS: Function-value
Arg

Real Floating-point scalar output
Real Floating-point scalar input

DESCRIPTION: Function-value = Ln(arg); for ALOG
Log(14)(arg); for ALOGlgd

FPS 864d-7482-401C Page A - 543

APPENDIX A

E 22222222 %4 t i x22 22 2 2 1]
* * * *
* ANINT * —-—— ROUND REAL NUMBER TQO NEAREST WHOLE —— * ANINT *
* * * *
tE 2222222234 XXX RES
PURPQSE: To round a real number to the nearest whole number.

CALL FORMAT: Function-value ANINT(arg)

Function-value =
Arg

PARAMETERS: Real floating-point scalar output

Real floating—-point scalar input

DESCRIPTION: Function-value FLOAT(FIX(arg))

FPS 864-7482-941C Page A - 545

E2 22222 22 24
* *

* ATAN *
% *
REXRERRRER

PURPOSE:

CALL FORMAT:

DARAMETERS :

DESCRIPTION:

APPENDIX A

*Ekkkkiktithdk
* *
—— ARCTANGENT OF REAL NUMBER ——— * ATAN +
k *
khkkkktthhd

To compute the arctangent of a
R oY s
ol

£
i

(1]
(]
i

Or ©

Function-value = ATAN(argl) or ATAN2(argl,arg2?)

Function-value = Real Floating-point scalar output
Argl = Real Floating-point scalar input

Arg2 = Real Floating-point scalar input

Function-value = ATAN(argl) or ATAN(argl/arg2)

FPS 864-7482-g41C

Page A

- 547

APPENDIX A

t 22221 22 214 khkkkkktkxk
* * * *
* CaBS * —— COMPLEX NUMBER ABSOLUTE VALUE ——— * CABS *
* * * *
kkkkkktkthd tE 222222 21 2
PURPOSE: To compute the absolute value (magnitude) of a complex

P L P
numoer.

CALL FORMAT: Function-value

PARAMETERS : Function-value
Arg

DESCRIPTION: Function-value

CABS(arg)

Floating-point scalar output
Complex floating scalar input

SQRT (R(arg)**2+I(arg)**2)

FPS 860-7482-941C

Page A - 549

APPENDIX A.

kkkkkkkthk hkkkhhhkkhh
* * * *
* CDIV * —— COMPLEX/COMPLEX DIVIDE -——- * CDIV *
* * * *
t 222222222 Rtk hst
PURPOSE: To divide a complex number into a complex number.

CALL FORMAT: Function Value Arg2/Argl

PARAMETERS: Function Value = Complex Floating scalar output
Argl Complex Floating scalar input
Arg2 Complex Floating scalar input

{R(arg2)+I1(arg2)}/{R(argl)+I(argl)}

DESCRIPTION: Function Value

FPS 864-7482-941C Page A -~ 551

APPENDIX A

kbt kd thkkkkhtkkex
4 x * *
* CDIVRC * -—— COMPLEX/REAL DIVIDE —— * CDIVRC *
* * * *
hkkkktrtkd ktkkxkhihrd
PURPOSE: To divide a real number into a complex number.

CALL FORMAT: Function Value Arg2/Argl

PARAMETER: Function Value = Complex Floating scalar output
Argl = Real Floating-point scalar input
Arg2 = Complex Floating scalar input

DESCRIPTION: Function Value R(arg(2))+I(arg(2))/arg(l)

FPS 864-7482-481C Page A - 553

t 22222222 24 XXX A REE
* * . x *
* CLOG * -— COMPLEX NUMBER LOGARITHM —— * CLOG *
* * * *
E2 X1 22222 24 t 22222 22 X
PURPOSE: To compute the natural logarithm of a complex number.
CALL FORMAT: Function-value = CLOG(arg)

PARAMETERS: Function-value = Complex floating scalar output

Arg Complex floating scalar input

DESCRIPTION: R(Function-value)
I(Function-value)

ALOG((CABS(arg))
ATAN(I(arg)/R(arg))

FPS 864-7482-g01C Page A - 555

APPENDIX A

Ez 212222 2 24 Ex 222122 % 2
* * * *
* CONJG * —— CONJUGATE OF COMPLEX NUMBER —— * CONJG *
* * * *
tx 22222825 kkkdkktttitdx
PURPOSE: To compute the conjugate of a complex number.

CALL FORMAT: Function-value

PARAMETERS : Function-value
Arg

DESCRIPTION: Function-value

CONJG(arg)

Complex floating scalar output
Complex floating scalar input

R(arg)-I(arg)

FPS 869-7482-441C

Page A - 557

E2 22 222 22 24
* *

* COSH *
* x

XA RRREEE

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

—— REAL NUMBER HYPERBOLIC COSINE —

To compute the

el - -
llulivel «
Function-value

Function-value
Arg

Function-value

hyperbolic sine or cosine of

= SINH(a;g) or COSH(arg)

|

= Real Floating—-point scalar
Real Floating-point scalar

SINH(arg) or COSH(arg)

APPENDIX A

ke d
* *
* COSH *
k *
kit h®
a real
output
input

FPS 860-7482-441C

Page A - 559

APPENDIX A

t2 22222 2 %24 k*kkhkkkkkhr
* * * *
* CPOWCI * ——— COMPLEX TO INTEGER POWER -— * CPOWCI *
* * * *
bkttt d kkkkkthkhh®
PURPOSE: To raise a complex number to an integer power.
CALL FORMAT: Function Value = Argl**Arg2
PARAMETERS: Function Value = Complex Floating scalar output

Argl = Complex Floating scalar input

Arg2 = Integer scalar input
DESCRIPTION: Function Value = {R(argl)+I(argl)l}**arg2

FPS 864-7482-991C

Page A - 561

t 2 22 2 2245 2 2] kx2S 222 L
* * . * *
* CPOWRC * —= REAL TO COMPLEX POWER -— * CPOWRC *
* * * *
kit ktkkkkkkth
PURPOSE: To raise a real number to a complex power.

il

CALL FORMAT Function Value Argl**Arg2

PARAMETERS : Function Value = Complex Floating scalar output
Argl Real Floating-point scalar input
Arg2 Complex Floating scalar input

DESCRIPTION: Function Value = argl**(R(arg2)+I(arg2))

FPS 860-7482-441C Page A - 563

APPENDIX A

tkkhkkkREtR *hkkkhkkktik
® * * *
* CSQRT * ——— SQUARE ROOT OF COMPLEX NUMBER —— * CSQRT *
* * * *
kbt RER k2222225 2
PURPOSE: To compute the square root of a complex number.

CALL FORMAT: Function-value CSQRT(arg)

PARAMETERS: Function-value
Arg

Complex floating scalar output
Complex floating scalar input

DESCRIPTION: 1if R(arg) > 4 R(function value) = F
I(function value) I(arg)/(2*F)
if R(arg) < & R(function value) I(arg)/(2*F)
I(function valiue) SIGN(I(arg))*F

where F = SQRT((ABS(R(arg))+CABS(arg))/2)

FPS 860-7482-#41C Page A - 565

E2 22 222 & £ 3]
* *

*+ EXp *
* *
tE 222222224

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX A
REkEkERETES
* Tox
-— EXPONENTIAL OF REAL NUMBER ——- *+ EXp *
* *
kR ERERER

To compute the
Function-value

Function-value
Arg

Function-value

NOTE: arg>749.

exponential of a real number.

EXP(arg)

Real Floating-point scalar output
Real Floating-point scalar input

Exp(arg)

289 traps with an overflow error

condition.

FPS 869-7482-891C

Page A - 567

ki ® ki kkd
* * * *
* IDIM * ——— INTEGER/INTEGER POSITIVE DIFFERENCE —-— * IDIM *
%* * * *
ki itik t 2 222 2 &£]
PURPOSE: 1o compute the integer positive difference of two
integers.
CALL FORMAT: Function-value = IDIM(argl,arg2)
PARAMETERS: Function-value = Integer scalar output
Argl = Integer scalar input
Arg2 = Integer scalar input
DESCRIPTION: Function-value = MAX((argl-arg2),d)
FPS 868-7482-441C Page A - 569

APPENDIX A

thkkkkkthxd t 2 222225 21]
* * . *® *
* TPOW * —— INTEGER TO INTEGER POWER —- * TPOW *
* * * *
kkkkkkEtER E2 222222 2 24
PURPOSE: To raise an integer number to an integer power.

CALL FORMAT: Function Value Argl**Arg2

PARAMETERS: Function Value
Argl
Arg2

Integer scalar output
Integer scalar input
Integer scalar input

DESCRIPTION: Function Value = argl**arg2

FPS 864-7482-491C Page A - 571

kit AXRRREREREE
* * 3 *
* MOD * —— INTEGER/INTEGER DIVIDE REMAINDER -—— * MOD *
* * * *
EX 222222+ %] kkkhkhktht
PURPOSE: To compute the remainder when one integer is divided

by another.

CALL FORMAT: Function-value MOD(argl,arg2)

PARAMETERS: Function-value = Integer scalar output
Argl = Integer scalar input
Arg2 Integer scalar input

DESCRIPTION: Function-value Argl-INT(argl/arg2)*arg2

FPS 864-7482-841C Page A - 573

APPENDIX A

AR ERER EE 222222 1]
* * * *
* RAN * ——— SCALAR RANDOM NUMBER GENERATOR ——— * RAN *
* ® * *
ket k22222222 2
PURPOSE: To generate one pseudo-random number.

CALL FORMAT: Function-value RAN(SEED)

PARAMETERS: Function-value = Floating-point output scalar
Output random number

Integer input/output scalar
Input: random number seed
Qutput: last integer generated

SEED

DESCRIPTION: RAN returns one pseudo-random floating-point
number between #.4 and 1.8. The routine uses
a linear congruential generator initialized by
SEED to generate an integer, which is then scaled
to produce the function-value. SEED is replaced
with the integer generated. SEED may be any
integer between & and 2**26-1.

RAN generates the same sequence of integers as VRAND.
Thus the two statements

C = RAN(SEED)
and

CALL VRAND({SEED

are equivalent.

o DR
ter i)

EXAMPLE:
SEED = 14640

RAN(SEED): £.80948494440496643
SEED : 53719635

FPS 860-7482-g41C Page A -~ 575

APPENDIX A

kkkkkkkkidk . kkkkkkhkkkh
* 4 * *
* RPOW * ——— REAL TO REAL POWER ——-— * RPOW *
* * * *
kit t t 21222 2 2 2 13
PURPOSE: To raise a non-negative real number to a real power.

CALL FORMAT: Function Value Argl**Arg2

PARAMETERS: FPunction Value = Real Floating-point scalar output
Argl Real Floating—-point scalar input
Arg2 Real Floating-point scalar input

DESCRIPTION: Function Value = argl**arg2

{If ArgZ is a whole number, Argl can be negative.)

FPS 860-7482-491C Page A - 577

APPENDIX A

t 22222222 2 REkkkhkkkhix
* * * *
* RRCP * —— REAL RECIPROCAL -—— * RRCP *
*_ * * *
ki hE t 22 2222 2 % X1
PURPOSE: To divide a real number into a real number or into 1.
CALL FORMAT: Function Value = Arg2/Argl
or 1.4/Argl
PARAMETERS: Function Value = Real Floating-point scalar output
Argl = Real Floating-point scalar input
Arg2 = Real Floating-point scalar input
DESCRIPTION: Function Value = arg2/argl for RDIV
or l.8/argl for RRCP
FPS 864-7482-gd1C Page A - 579

APPENDIX A

E 2222 22 2 & ¢ kkkkkkktttdh
* * * *
* SIGN * —— REAL NUMBER SIGN TRANSFER ——- * SIGN *
* * * *
E 22212222 £ xRS
PURPOSE: To give the magnitude of a real number with the sign
of a second real number.
CALL FORMAT: Function-value = SIGN(argl,arg2)
PARAMETERS: Function-value = Real Floating-point scalar output
Argl = Real Floating-point scalar input
Arg2 = Real Floating-point scalar input
DESCRIPTION: Function-value = Sign(arg2)*ABS(argl)

- 581

FPS 864-7482-9d1C Page A

t 2 222221 3] A kkkkkkkthh
* * * *
* SINCOS * —— REAL SINE AND COSINE -— * SINCOS *
* x* k 3 *
RRERERXXED kkkkkkhkthtR
PURPOSE: To compute the sine and cosine of a real number.

CALL FORMAT: CALL SINCOS(A,CA,SA)

PARAMETERS: A = Floating-point input scalar
CA = Floating-point output scalar
SA = Floating-point output scalar

DESCRIPTION: CA = COS(A)
SA = SIN(A)

SINCOS computes both the sine and the cosine in
about the same time as the SIN function alone.

NOTE: A 32-bit integer overflow exception is generated
if the input arqument is too large (greater
than approximately 8.4E+5). In this case, the
output result has less than six decimal digits of
precision.

An added feature of this routine is that it can also
be called as a complex function. If FIFSPR_SINCOS
is declared as complex, the call

Function-value = FIF$PR_SINCOS(A)
returns the complex value

Function-value = CMPLX(COS(A),SIN(A)).

This is convenient for converting polar coordinates
to rectangular coordinates.

EXAMPLE:

»
"
o
=

1]
=

SA

FPS 864-7482-g01C Page A - 583

Es 222222 %23
* *

* SQRT *
® *
E2 I T2 T I

PURPOSE:
CALL FORMAT:

PARAMETERS :

DESCRIPTION:

APPENDIX A

b 22222 22 T
* *

——— SQUARE ROOT OF REAL NUMBER -—— * SQRT *

To compute the
Function-value

Function-value
Arg

Function-value

* *
kXkkkkkkkk

square root of a real number.

SQRT(arg)

= Real Floating-point scalar output
Real Floating-point scalar input

SQRT(arg)

FPS 864-7482-441C

Page A - 585

APPENDIX A

t 3222252 27 t X 22222 L 2
* * k *
* TANH * -— REAL NUMBER HYPERBOLIC TANGENT -—-— * TANH *
* * * *
t2 21222 5 %24 t 2 3 22222 24
PURPOSE: To compute the hyperbolic tangenf of a real number.
CALL FORMAT: Function-value = TANH(arg)

PARAMETERS: Function-value = Real Floating-point scalar output

Arg = Real Floating-point scalar input

DESCRIPTION: Function-value = TANH(arg)

FPS 8640-7482-g41C Page A - 587

APPENDIX B

APPENDIX B

'DATA REPRESENTATIONS FOR STORING
SPARSE VECTORS AND MATRICES

B.1l INTRODUCTION

This appendix presents information to help the user understand and use
the sparse vector and sparse matrix subroutines. It describes the data
representations (or formats) both accepted as input and produced as
output by these routines. This appendix also spells out parameter
naming conventions common to many of these subroutines.

There are four subroutines that convert sparse vectors and matrices
between their packed and full representations: Sparse Vector Pack
{SVPACK), Sparse Vector Unpack {(SVUPCK), Sparse Matrix Pack {SMPACK),

and Sparse Matrix Unpack (SMUPCK).

B.2 SPARSE VECTOR STORAGE

An N-dimensional sparse vector V is represented in packed-vector format
by N, NS, S, and IEN where:

N a scalar, is the dimension of V.

NS a scalar, is the number of nonzero values in V.

s a vector of length NS, contains the nonzero values of V.
IEN a vector of length NS, contains the location in V of each

corresponding element in S [i.e., V(IEN(k)) = S(k) for k=1,NS].
For example, the following sparse vector
(.0 3.2 9.6 7.8 9.8 F.0 £#.4 -19.3]

can be represented in packed-vector format as follows:

N: 8
NS: 3

S: (3.2 7.8 -19.3]
IEN: [2 4 8 1]

So, S(1)'s location in V can be found in IEN(1l), S(2)'s in IEN(2), ...,
S(NS)'s in IEN(NS).

The nonzero values in S are generally ordered as they appear in V.

However. they can be ordered differently if the order is compatible
with the subroutine to be used.

FPS 860-7482-A41C Page B - 1

APPENDIX B

 Except for differences in the IP vector, formats I and III are the
same, as are formats II and IV.

Each attribute associated with a particular format type and the
consequences of using that attribute are explained in detail
in the sections that follow.

trix Format Tvne I (COL_ORDER PTRS_ONLY)

A sparse matrix A is represented by M, N, NS, S, IN, and IP,
in format I where:

M a scalar, is the number of rows in A.

N a scalar, is the number of columns in A.

NS a scalar, is the number of nonzero values in A.

S a real vector of length NS, contains the nonzero values of A

in column order.
IN an integer vector of length NS, contains the row in A of
each corresponding value in S [i.e., IN(k) = row in A of S(k)
for k=1,NS].
IP an integer vector of length N+l, contains one element for every
column in A.
Each element indicates the location in S that holds that column's
first nonzero value (exception: empty columns).
IP's N+lst element is a sentinel.

The sentinel element IP(N+l1) holds the number NS+1.
In general, IP(i) contains the location in S that refers to A's

S=bkh ~ i=
i-th column, for i=1, N,

If a column in A is empty, then the entry in IP for that column
is the same as the entry for the next nonempty column, or if
there is no such column,

sentinel value in IP(N+l) is used.

The matrix: .

g
a
a
a
g

NN

as expressed in Type I Format:

M: 5
N: 6
NS: 8

FPS 864-7482-991C Page B - 3

APPENDIX B

B.3.3 Matrix Format Type IIT (COL-ORDER PTRS_SUMS)

A sparse matrix A is represented by M, N, NS, S, IN, and IP, in format
III where:

M
N
NS
S

IN

Ip

[)

scalar, is the number of rows in A.

scalar, is the number of columns in A.

scalar, is the number of nonzero values in A.

real vector of length NS, contains the nonzero values of A in

~Aaliymn Ardar
CULUNUL UalUT e o

an integer vector of length NS, contains the row in A of each
corresponding value in S [i.e., IN(k) = row in A of S(k) for

k=

1,NS].

an integer vector of length 2*N, contains two elements for every

column in A:

(a) the location in S§ that holds that column's first
nonzero value (exception: an empty column).
(b) that column's total number of nonzero elements.

IP(i) and IP(i+N) always refer to the i-th column in &, for i=1,N.
IP(1l) to IP(N) holds locations as in (a) above and IP(N+1l) to IP(2*N)
holds sums as in (b) above.

If a column in A is empty, then the (a)-entry in IP for that column is
the same as the {a)—entry for the next nonempty c¢olumn, or if there is
no such column, the number NS+1. (Note that the (b)-entry is zero.)

The matrix: g.9 9.4 g.9 6.9 8.8 9.9
g.4 4.5 9.9 §g.2 3.9 9.9
g.4 8.9 9.9 6.9 9.8 F.9
g.g 9.9 7.1 5.8 g.2 2.2
g.4 1.3 @¢g.4 8.3 4.8 9.9
as expressed in Type III Format:
M: 5
N: 6
NS: 8
: T4.5 9.9 1.3 7.1 4.2 5.8 8.3 3.4]
IN: [2 4 5 4 2 4 5 2]
IP: [1 1 4 5 8 9 g 3 1 3 1 g]

Note that lengths of S and IN equal NS (=8); S is in column order; the
length of IP equals 2*N (=12); IP contains both locations and sums; IN
contains row numbers. ’

FPS 864-7482-9d1C Page B - 5

APPENDIX C
APPENDIX C

SPARSE LINEAR SYSTEM ROUTINES

C.l1 INTRODUCTION
1is appendix contains in xd U
the sparse linear system routines in the Advanced Math Library. The
sparse linear system routines are APAL64 routines that provide an
efficient method for solving the linear system Ax = b where the
coefficient matrix is sparse and is stored in packed form.

~ al
7 a S L

There are twelve generic sparse linear system routines in all. The
name of each routine consists of a four-letter generic name followed by
the single digit "2". The first two letters of the name indicate the
coefficient matrix type (i.e., the problem domain), and the last two
letters indicate its function. The single digit is a version number
and is not included on the names of the original routines, which were
superseded as of the Fg3 release (see Appendix G).

" The types of coefficient matrices are:

RU A is real.

RS A is real and symmetric.
Ccu A is complex.

cs A is complex and symmetric.

The functions performed are:
FR Factor the coefficient matrix.

sv Solve the system given the factorization of the
coefficient matrix.

FS " Factor and solve (combines FR and SV).

In general, the time required to factor the coefficient matrix is much
greater than the time required to solve the factored system.

Therefore, by having separate routines for each of these functions, the
factorization need only be performed once when solving a number of
systems that all have the same coefficient matrix.

FPS 868-7482-g01C Page C - 1

Denote the determinant of a square matrix A by Det(A). The "not equal"
relation will be denoted by the symbol "§".

Assume an n X n lower-triangular matrix L, and n x n upper-triangular
matrix U, such that A = LU. Then the system Ax = b is equivalent to
LUx = b. Letting Ux = y, where y is an n-dimensional vector, then the
system becomes Ly = b. Thus, it is possible to decompose the original
system into two triangular systems which, in general, are easier to
solve. It is then possible to find the solution to the original system
X, by the following two steps:

1) Solve Ly b for y by forward elimination

2) Solve Ux = y for x by backward substitution

If there does exist an L and U such that LU = A, then L and U are not
uniquely determined unless additional conditions are imposed. One such
set of conditions is to require the following:

U(i,i) = 1 for i =1 to n.

By imposing this restriction on U, the remaining elements of L and U
can now be solved obtaining the following:

L(i,j) = A(i,3) - sum{L(i,k) * U(k,j), k=1,j-1]
for i =1 ton, j=1¢ton, and i >= j eq(la)
U(i,j) = (A(i,j) - Sum[L(i,k) * U(k,j), k=1,i-1]) / L(i,i)

for i =1 ton-1, j=2 ton, and j > 1 eq(1lb)

It is clear from an examination of the expressions above that a unique
L and U exist if and only if L(i,i) # @ for i = 1 to n-1. Letting A{k}
denote the k-th order principle submatrix of A (i.e., the submatrix
formed by the intersection of the first k rows and the first k columns
of A), then it follows from equation (1) that A{k} = L{k}u{k}. Recall
from elementary linear algebra that:

(a) if A = BC, then Det(A) = Det(B)Det(C); and
(b) if T is an n x n triangular matrix,

then Det{(T) = Prod[T{(i,i), i=1l,n].

FPS 860-7482-841C Page C - 3

APPENDIX C

A common variation of the method of LU factorization involves the
further factorization of L into MD where M is a lower-triangular matrix
with M(i,i) = 1 for i=1 to n and D is a diagonal matrix. The elements
of M and D are found to be:

M(i,3) = L(i,3) / L{3.3) eq(2a)

D(i,i) = L(i,i) eq(2b)
Eguaticns (1) and {2) can be used to show that M is the transpose cf U
if A is symmetric. The LDU theorem can now be stated.

C.3.2 LDU Theorem

If A is an n x n matrix, then there exist unique matrices L, D, and U,
where L is lower-triangular with L(i,i) = 1, D is diagonal with D(i,1i)
4 @, and U is upper-triangular with U(i,i) = 1 such that A = LDU if and
only if Det(A{k}) # @ for k = 1 to n. Furthermore, if A = LDU and A is
symmetric, then L is the transpose of U.

If A is factored into LDU, then the original system, Ax = b, is
equivalent to LDUx = b. Letting Ux = y and Dy = z where y and z are
n-dimensional vectors, then the original system decomposes into two
triangular systems and a diagonal system that are solved by the
following three steps:

1) Solve Lz = b for z by forward elimination.

2) Solve Dy = z for y.

3) Solve Ux y for x by backward substitution.

Since LDU-factorization requires more work than LU-factorization, the
later is preferable unless A is symmetric. 1In that case, the direct
computation and storage of U is unnecessary since U is the transpose of
L and the factors are written LDL'.

C.4 FILL-IN

If the coefficient matrix A is sparse, (this is assumed when using the
sparse system routines) store only the nonzero elements of A with
information about the location of the nonzero elements. (The manner in
which this is done is described in Section C.5.) It is very desirable
to do this since both storage requirements and execution time can be
greatly reduced.

FPS 864-7482-901C Page C - 5

APPENDIX C

The following algorithm is given in the form of a FORTRAN subroutine
for determining £ill-in:

SUBROUTINE FILLIN(N, A, IA)

C
C GIVEN AN N BY N MATRIX, A, THIS ROUTINE RETURNS AN N BY
C N LOGICAL MATRIX, IA, WHERE IA(I,J) IS TRUE IF A(I,J) IS
(o A SPARSE ELEMENT AND FALSE OTHERWISE
C

REAL A{(N,N)

LOGICAL IA(N,N)
C

DO11g 1 =1, N
IA(I,l1) = .FALSE.
Ia(l,I) = .FALSE.
IF(A(I,1) .NE. 4.9) IA(I,1) = .TRUE.
IF(A(1,I) .NE. gd.8) IA(1l,I) .TRUE.
114 CONTINUE

C
DO 150 J = 2, N
DO 146 I = 2, N
IF(A(I,J) .NE. g.9) GO TO 13d
K2 = MING(I,J) -1
DO 120 K = 1, K2
IF(IA(I,K) .AND. TIA(X,J)) GO TO 134
129 CONTINUE
IA(I,J) = .FALSE.
GO TO 149
139 CONTINUE
~ IA(I,J) = .TRUE.
147 CONTINUE
154 CONTINUE
RETURN

END

The amount of fill-in varies as the rows and columns a A are permuted
and algorithms exist to minimize the fill-in. However, any permuting
of the rows and columns of A to decrease fill-in may be detrimental to
the numerical stability.

Before leaving the subject of fill-in, note that if A is a band matrix,
then the superposition of L and U will also be a band matrix and will
have the same bandwidth as A. Therefore, if A is a band matrix where
the nonzero elements are dense within the band consider every element
within the band to be sparse without introducing a great number of
unnecessary sparse elements.

FPS 860-7482-901C Page C - 7

Finally, if A if unsymmetric, then an additional integer vector IDP of
length N is required for pointers into S to the diagonal elements of A.
For example,

e If A is real and A(j,j) is stored in S(k), then IDP(jJ) k.

e If A is complex and A(j,j) is stored in S(2*k-1) and S(2*k),
then IDP(Jj) = k.

Consider the following example; let A be the real matrix.
2.8 4.9 g.9 4.9 g.g9
g.9 1.9 g.g9 7.9 2.9
g.9 9.9+ -1.8 3.8 .9
g.9 3.8 9.9 1.9 g4
g.9 g.9 g.9 4.9 5.9

Note that A(4,5) is a sparse element since it is a fill-in element.
The vectors S, IRN, ICP, and IDP that are required to represent A are:

WORD S IRN Icp IDP

VRN - - WHN
S m

.
D W N
(Yol R S I

WO WU & W
U N W

The output from the factorization routines and the input to the
solution routines require these same vectors except that § then
contains the sparse elements of the superposition of L and U on A (L',
D, and U if A is symmetric) with the diagonal elements replaced by
their reciprocals. (See the example above.)

Therefore, the superposition of L and U with the diagonal elements
replaced with their reciprocals is

FPS 864-7482-441C Page C - 9

APPENDIX D

APPENDIX D

BASIC LINEAR ALGEBRA SUBPROGRAMS

D.1 INTRODUCTION

- cl1Gil

the routines, which constitute the sic linear algebra subprograms
(BLAS) as implemented within the LINPACK Users' Guide Manual, Appendix
A. These routines are a subset of the basic linear algebra subprograms
developed by Lawson, Hanson, Kincaid, and Krogh (refer to ACM Trans.
Math. Software 5, 3 (Sept. 1979%) pp. 324-325) for many of the basic
vector operations of numerical linear algebra. The package was
intended to be called from FORTRAN programs, and was developed to focus
on performance improvements of the well known set of LINPACK routines
(refer to the LINPACK Users' Guide, Appendix A).

In addition, four routines have been added which are extensions to four
of the BLAS routines (real and complex versions of the dot product and
scalar times vector plus vector) which provide for repeated invocations
with only one subroutine call. These are useful in many applications
including matrix multiply and matrix factoring (refer to examples
D.4.9, D.4.14, and D.4.11).

Double precision entry points allow the routines to handle standard
calls to BLAS double-precision routines. There are no specific
double-precision routines implemented, since the single precision
routines use the standard 64-bit wide floating-point numbers.

When called from FORTRAN, the BLAS routines perform according to the
algorithmic description in Appendix A, LINPACK User's Guide. 1In
particular, negative subscript increment specification results in
adjustment of the vector base address, as described in Section D.2.
(No such base address adjustment needs to take place when the MLSP
entries are used. However, when calling the routines from APAL64 base
address adjustment is used.)

Much of the information in Sections D.2 and D.4 is taken from Appendix
3 of the NTIS-distributed Sandia National Labs. report, SAND77-0898,
Basic Linear Algebra Subprograms for Fortran Usage, by Lawson, Hanson,
Kincaid, and Krogh, and is reprinted with their kind permission.
Floating Point Systems, Inc., gratefully acknowledges the suggestions
given by R. J. Hanson.

FPS 860-7482-401C Page D - 1

APPENDIX D

D.3 ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS

The names of entities used in BLAS calls conform in general to standard
FORTRAN conventions. In particular, names that begin with I or N
pertain to integer data types; names that begin with C pertain to
complex data types, and names that begin with S (for scalar) pertain to
real (floating-point) data types.

The roots of the names pertain to function. The routines with -DOT- as

root calculate different versions of the dot product, SDOT calculating
the inner product of real vectors, CDOTC and CDOTU calculating complex
inner products conjugated and unconjugated respectively.

COPY Replaces (moves or copys) elements of a vector with elements
of another.

AXPY Stands for "aX+¥". It is intended to perform the elementary
matrix operation of adding to the elements of a vector the

scalar multiple of another vector.

SCAL Multiplies a vector by a scalar.

SWAP Interchanges (or swaps) elements of two vectors.

ASUM Calculates the absolute sum of a vector; that is, the sum of
: the absolute values of each element.

I-AMAX Calculates the index, or subscript, of the component of a
vector of the largest absolute value.

S-NRM2 Calculates the 2-norm, or Euclidean length of a vector. It
carefully concerns itself with scaling problems to maintain
accuracy and exponent range, by testing each component before
adding its square to the accumulating partial sum. Usually it
would be appropriate to use SQRT(DOT) for the same operation
with greater speed but less robustness.

ROT Rotates a vector of pairs of points.

The parameter names are also standardized. These routines all deal
with one or two vectors, usually coming from matrix rows or columns.
The first vector is X; the second, -Y. Increments between consecutive
elements of a vector are named INCX and INCY. Scalars are named

A and -B.

Speed values reflect average values, without regard for vector
placement, for typical APFTNG64 compilations. Often much improvement is
possible by judicious placement of elements among memory modules.
Alsso, initial setup times are not included, only the loocp wvalues,
results in a value which is a constant multiple of N, the number o
elements in the destination vector.

[

FPS 868-7482-991C Page D - 3

APPENDIX D

D.3.4 Complex Function CDOTU(N,CX,INCX,CY,INCY)

Function value = sum(CX(m)*CY¥(m), for the N vector elements
indexed by m).

D.3.5 Subroutine CROTG(CA,CB,SC,CSIN)

SC := |CA|/r, CSIN := conjugate(CB)*CA/|CA|/r, CA := CR

where: r=sqrt(|CA{**2 + |CB|**2) and SC,CSIN chosen to satisfy
CR = SC*CA+CSIN*CB
g = CSIN'*CA+ SC*CB.

D.3.6 Subroutine CSCAL(N,CA,CX,INCX)

CX(m) := CA*CX(m), for the N vector elements indexed by m.

D.3.7 Subroutine CSSCAL(N,SA,CX,INCX)

CX(m) := SA*CX(m), for the N vector elements indexed by m.

D.3.8 Subroutine CSROT(N,CX,INCX,CY,INCY,SC,SS)

CX(m):= SC*CX(m)+SS*CY(m)
CY(m) :=-SS*CX(m)+SC*CY¥(m), for the N vector elements indexed by m.

D.3.9 Subroutine CSWAP(N,CX,INCX,CY,INCY)

CX(m) :=: CY(m), for the N vector elements indexed by m.

D.3.18 Integer Function ICAMAX(N,CX,INCX)

Function value = I such that |Re CX(I)|+|Im CX(I)| is largest of
the N values |Re CX(m)|+|Im CX(m)]|.

D.3.11 Inteqger Function ISAMAX(N,SX,INCX)

Function value = smallest I such that |SX(I)| is largest of all N
values |SX(m)]. '

D.3.12 Real Function SASUM(N,SX,INCX)

Function value = sum(|SX(m)|, for the N values indexed by m).

FPS 864-7482-901C Page D - 5

APPENDIX D

D.3.21 Subroutine SROTM(N,SX,INCX,SY,INCY,PARAM)

If PARAM(1l) = 1.4 then

= PARAM(2)*SX(m) + S¥(m)
= -SX(m) + PARAM(5)*S¥(m),

for the N vector elements indexed by m.

If PARAM(1l) = .7 then
SX(m) := SX(m) + PARAM(4)*SY(m)
SY(m) := PARAM(3)*SY(m) + S¥(m),

for the N vector elements indexed by m.

If PARAM(1) = ~-1.4 then

PARAM(2)*SX(m) + PARAM(4)*SY(m)

SX(m)
:= PARAM(3)*SY(m) + PARAM(S5)*SY¥(m),

SY(m)
for the N vector elements indexed by m.
If PARAM(1l) is not 1, @, or -1, the routine returns without modifying

the vector elements. It thus becomes equivalent to an identity
transformation.

D.3.22 Subroutine SROTMG(D1,D2,Bl,B2,PARAM)

- [l el 1 ~ o~ -
If |D1*B1*Bl| > |DZ*B2*B2| and D2*B2 <> § then

PARAM(1l) := #.4
PARAM(3,4) := -B2/Bl, D2*B2 / D1*Bl, so that the SROTM matrix
becomes (Hl1ll1l,H21,H12,H22) = (1,-B2/B1,D2*B2/D1*Bl1l,1l).

Dl := D1/U
D2 := D2/U
Bl := Bl*U where U = 1.4 + (D1*B1*Bl)/(D2*B2*B2).

If |D1*B1*Bl| =< |D2*B2*B2| and D2*B2 <> # then

PARAM(1l) := 1.0

PARAM(2,5) := D1*Bl/(D2*B2) , B1l/B2 so that the SROTM matrix
becomes (H11l,H21,H12,H22) = (Dl1*Bl1/D2*B2,-1,1,B1/B2).
p,,p2,B1 := D2/U,D1/U,B2*U where U = 1 + D1*B1*Bl/(D2*B2*B2).
If D2*B2 = g3, then

the rotation matrix in SROTM becomes the identity, PARAM(1l)
= -2.9

FPS 860-7482-081C Page D - 7

APPENDIX D

Memory words occupied by X may intersect those occupied by Y. 1In fact,
X and Y may coincide. However, memory occupied by Z should not, in
general, intersect that occupied by X or Y.

If N < 1, SDOTN returns with no action taken.

If M < 1 and ISW(1l] 1, SDOTN returns with no actiqn taken.

If M < 1 and ISW([1] g, SDOTN returns with 2Z(j) = 2.4 for j = 1 to N.

In general, M < 1 implies a zero sum of products.

D.3.26 Complex Subroutine CDOTN(ISW,N.,M,X,IXI,IXO,Y,IYI,IYO0,Z,IZ0)

Z(jz) = r * C(jz) + s * SUM[A(ix) * B(iy), i=1,M] j=1,N

where: ix = (j-1) * IXO + (i-1) * IXI + 1

»

iy = (j=1) * IYO + (i-1) * IYI + 1
jz = (j=1) * IZ0 + 1
s = 1.9, if ISW[(gZ] = &
= -1.4, if ISW(gd] =1
r = g.8, if ISW(l] =@
= 1.9, if ISW[1l] =1
A = X , if ISwW(2] = @
= Conjg(X), if ISW([2] =1
B = ¥ , if IsW[(3] = &
= Conjg(Y), if Isw(3] =1
c = Z , if ISW(4] = &
= Conjg(z), if ISW(4] =1 '
and ISW(k] = bit k of ISW.

ISW is a one word function selector switch and is treated as a bit
string with the bits numbered from the least significant bit (bit 2).
If a given bit is set (equal to one), then the function option that
corresponds to that bit is selected.

If 1Z0 = 4, then CDOTN sets Z(l) equal to the accumulated sum of all N
dot products. If ISW[1l] = 1 also, then input Z(1l) is added to this
sumO

Memory words occupied by X may intersect those occupied by Y. 1In fact,
X and Y may coincide. However, memory occupied by Z should not, in

e e o= = Y 2 [) TP LY :
general, intersect that occupied by ¥ or Y.

FPS 860-7482-84d1C Page D - 9

D.3.28 Subroutine CAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IY0)

j=1 ,N

Y(iy) = s * B(3ja) * 2(ix) + ¥(iy), i=1,M

where: Jja (j-1) * IAO + 1

ix = (j=1) * IXO + (i=-1) * IXI + 1
iy = (j=1) * IYO + (i-1) * IYI + 1
s = 1.9 , if Isw(@] = &
= -l.4 ’ if ISWIﬁ] =1
B = A, if ISW(2] = &
= Conjg(A), if ISW(2] =1
zZ = X , if ISW[3] = &
= Conjg(X), if ISW(3] =1
and ISW[k] = bit k of ISW.

ISW is a one word function selector switch and is treated as a bit
string with the bits numbered from the least significant bit (bit #).
If a given bit is set (equal to one), then the function option that
corresponds to that bit is selected.

Memory words occupied by A may intersect those occupied by X. However,
memory occupied by Y should not, in general, intersect that occupied by
A or X.

Furthermore, the user will not get meaningful results when distinct
"columns”" of Y intersect. For instance, if M = 1¢4, IYI = 1 and IYO =
96, then Y{(97,1) = ¥(1,2), Y(98,1) = ¥(2,2) etc.

However, cases involving IY0 = § produce meaningful results in that the
products are accumulated to Y. That is, successive results bound for
the same storage location in Y are added together rather than stored
over each other. 1In this case, the calculation is reduced to a single
call to CDOTN which executes much faster than the general case speeds
given in the routine documentation.

IYI = 34 is of no real value and is omitted for speed and simplicity.
If N < 1, CAXPYN returns with no action.

If M < 1, CAXPYN returns with no action.

If IYI = g, CAXPYN returns with no action.

FPS 864-7482-441C Page D - 11

APPENDIX D

D.4.5 Set to Identity

Given an N by N matrix A, to set A = the identity matrix and then
B = A.

DO 58 J=1,N

5§ CALL SCOPY(N,4.E9,8,A(1,J),1)
CALL SCOPY(N,1.Ef,4,A,MDA+1)
DO 64 J=1,N

MATT AT AT ALY Ty 1
CALL SCOPY(N,A{1,3),1,B(1,3).,1)

]
W

D.4.6 Matrix Columns Interchange

To interchange the columns of an M by N matrix C, where the column to
be interchanged with column J is in a type INTEGER array IP(*), and has
the value IP(J).

DO 79 J=1,N

L=IP(J)

IF(J.NE.L) CALL SSWAP(M,C(1,J),1,C(l,L),1)
78 CONTINUE

D.4.7 HMatrix Transposition

To transpose an N by N matrix A in-place, where MDA is the first
dimensioning parameter of the array A(*,*).

IF(N.EQ.1l) GOTO 85
DG 84 J=1,N-1
8¢ CALL SSWAP(N-J,A(J,J+1),MDA,A(J+1,J),1)
85 CONTINUE

D.4.8 Column Vector Circular Shift

Finally, an inefficient but illustrative code segment which swaps
in-place the components of the column vector

(xl,....xK,xK+1.,...,xN)

FPS 868-7482-981C Page D - 13

APPENDIX D

D.4.19 Matrix Pactorization Using SAXPYN

This subroutine performs matrix factorization A=LU without pivoting "
using SAXPYN. L replaces the lower part of A excluding the diagonal.
L is assumed implicitly to have 1's on its diagonal. U replaces the
upper part of A including the diagonal. A itself is treated as a
doubly dimensioned array with first dimension NO. A is assumed to
contain an NI x NI matrix stored by rows rather than the usual storage
by columns. This storage scheme allows SAXPYN to more efficiently
) o8

_______ e e - e -y :—‘- 2T demde o~

procsess the current row being used for elimination.

SUBROUTINE MFBGE(A,NI,NO)
REAL A(1l)
INTEGER NI,NO

C
IF(NI.LE.l1) RETURN
JINV=1
NOP=NO+1
C
DO 144 I=1,NI-1
AINV=1.4/A(JINV)
JC=JINV+NO
C
C COMPUTE THE NEXT COLUMN OF L
C
CALL VSMUL(A(JC),NO, AINV A(JC),NO,NI-I)
MN=NI-I
C

C PERFORM THE ELIMINATION GETTING A NEW LOWER RIGHT MINOR

Hal'

)

-

CALL SAXPYN(1l,MN,MN,A{(JC),NC,A(JINV+1),1,8,A(JC+1),1,

C
JINV=JINV+NOP
199 CONTINUE
C
RETURN
END

D.4.11 Matrix Factorization Using SDOTN

This subroutine performs matrix factorization A=LU without pivoting
using SDOTN. L replaces the lower part of A excluding the diagonal.
L is assumed implicitly to have 1's on its diagonal. U replaces the
upper part of A including the diagonal. A itself is treated as a
doubly dimensioned array with first dimension NO. A is assumed to
contain an NI x NI matrix stored by columns. Doolittle's method is
used.

FPS 864-7482-481C Page D - 15

APPENDIX E

APPENDIX E

APMATH64 FUNCTION GENERATION ROUTINES

E.1 INTRODUCTION

This appendix presents information to help the programmer understand

1iction generation routines of the Advanced Math Library.
The function generation routines are APAL64 routines that provide a
flexible and efficient way of evaluating functions of one, two, three,
or four variables. They do this using table lookup with linear
interpolation. Lookup is performed by searching for the breakpoints,
using either a binary search (successive interval halving) or a step
search (nearest neighbor), depending on whether the user expects the
values of the input variables to be rapidly or slowly changing from
call to call.

N N
and use the function generation

Function generation. is described in the following manner:

Given the function F of one input variable x, for which the
value of F is known at specific values of x (breakpoints)
(x(1), x(2), ...), calculate the value of the function for an
arbitrary value of x by linearly interpolating between the
values of F at the pair of breakpoints x(i) <= x <= x(i+l).

After determining the pair of breakpoints (x(i), x(i+l)), between which
the value of x lies, calculate the function by the following formula:

= -F(v 1)

. : - ; vt el Vmed i
F{x) = F{x{1))+(F{x{i+1))-F(x (1))) *{x-x(1}))/{x(i+1)-x{i}}

\

7’ /

This process is extended to two-variable functions by three
applications of the above formula, to three-variable functions by seven
applications, and four-variable functions by 15 applications.

The function generation routines are listed below (refer to Appendix A
for detailed descriptions):

breakpoint search routines: BIN
' STEP

function evaluation routines: FUNL
FUN2
FUN3
FUN4

FPS 868-7482-801C Page E - 1

(W}

4

APPENDIX E

variables: X, ¥
functicns: FLIX,¥Y), F2(X.¥), F3(X,7)
X breakpoints: X1, X2, X3

Y breakpoints: Y1, ¥2, ¥3, Y4

Coordinate value breakpoint tables:

XBRK(1l,l) = X1 YBRK(1,1) = Y1

(2,1) = X2 (2,1) = ¥2.

{3,1) = X3 (3,1) = ¥3

(L,2) = 1.0/(X2-X1) (4,1) = Y4
(2,2) = 1.0/(X3-X2) (1,2) = 1.0/(¥2-¥L)
(3,2) = 0.0 (2,2) = 1.0/(¥3-¥2)
(3,2) = 1.0/(¥4-Y3)

X1l < X2 < X3 (4,2) = 0.0

¥l < ¥2 < Y3 < Y4

Taken together, these two breakpoint tables specify a 3 X 4 rectangular
grid of points in the X-Y plane.

Function value breakpoint table:

FBRK(L,1,1) = F1(XL,Yl)
(2,1,1) = F1(X2,¥1)
(3,1,1) = FL(X3,¥l)
(1,2,1) = F1(X1,¥2)
(2,2,1) = F1(X2,¥2)
(3,2,1) = FL(X3,Y2)
(1,3,1) = FL(X1,¥3)
(2,3,1) = FL(X2,¥3)
(3,3,1) = F1(X3,¥3)
(L,4,1) = FL(X1,74)
(2,4,1) = FL(X2,Y4)
(3,4,1) = F1(X3,Y4)
(1,1,2) = F2(X1,¥1)
(3,4,2) = F2(X3,Y4)
(1,1,3) = F3(X1,¥Y1)

. -6747-
(3,4,3) = F3(X3,¥4)

Figure E-1 Example Coordinate and Function Value Breakpoint Tables

FPS 864-7482-d41C

Page E - 3

APPENDIX E

where

X¥(1,1) X coordinate value of the first input point

X¥(2,1) Y coordinate value of the first input point

E.3 CALLING APMATH64 FUNCTION GENERATION ROUTINES

The function generation package is used with System Job Executive (SJE)
as follows:

APFTN64 C====> Advanced Math
driver Library routines

The user must supply the APFTN64 driver, which contains calls to the
appropriate Advanced Math Library routines. The coordinate value
tables, function value table, and the input points are generated in the
APFTN64 driver. The APFTN64 driver routine does the following:
® Generates the coordinate value breakpoint tables.
® Generates the function value breakpoint table.
® Specifies the input points.
® Sets up a loop to process the input points.
® For each input point, determines the appropriate breakpoint
pair for each of the coordinates of the input point by calling
the BIN or STEP routine for each coordinate. (This feature

makes input point data structure arbitrary.)

e Calls the appropriate function evaluation routine (i.e., FUNL,
FUN2, FUN3, or FUN4 from the Advanced Math Library).

Refer to the Advanced Math Library documentation and the individual
program headers for descriptions of these programs.

FPS 860-7482-g01C Page E - 5

APPENDIX E

The structure of the output function value array FVAL is arbitrary to
the extent that each call to the Advanced Math Library function
generation routine returns the interpolated values for all of the
functions at the given input point in one array. For this reason, FVAL
is perhaps most conveniently dimensioned FVAL(NF,NIP).

Lines 35 through 61 load the coordinate value breakpoint tables. 1In
the FUN4 example below, the program assumes the function values to be
known (i.e generated by the user) on the four-dimensional grid of

< i

o7
points as specif kpoint tables.

a
QAN

Lines 65 through 73 load the function value breakpoint table. In this
example, it is done by simply cycling through all possible coordinate
value combinations, evaluating the four functions at each point.

Lines 77 through 199 specify the input points calling for interpolated
values for each of the four functions.

Lines 182 through 124 call the APMATH64 BIN and FUN4 subroutines, pass
the tables and other arrays as arguments, and write out the results.

FPS 864-7482-981C Page E - 7

(94855)
(9456)
(9957)
(8858)
(99859)
(22649)
(9961)
(9962)
(2863)

f
(8664

(4865)
(2466)
(2967)
(2968)
(2469)
(9873)
(2871)
(2872)
(9473)
(9974)
(9475)
(2278)
(9877)
(9978)
(2879)
(9884)
(8481)
(29982)
(2483)
(9284)
(2885)
(2286)
(90887)
(2688)
(9489)
(99949)
(4891)
(4892)
(29993)
(9994)
(4895)
(9996)
(2997)
(4498)
(9999)
(2147)
(4161)
(9142)
(9143)
(9124}
(2145)
(414d6)
(8187)
(491428)

C LOAD

.—.l
I
[\

C LOAD

APPENDIX E

WBRK(1,1)=-25.9

WBRK(2,1)=-15.4

WBRK(3,1)=0.4
WBRK(1,2)=1.8/(WBRK(2,1)~WBRK(1,1))
WBRK(2,2)=1.9/(WBRK(3,1)-WBRK(2,1))
WBRK(3,2)=0.9

FBRK ARRAY

DO 164 I4=1,NW
DO 144 I3=1,NZ
DO 164 I12=1,NY
DO 194 Il=1,NX
FBRK(Il1,I2,I3,I4,1)=XBRK(Il,1)+YBRK(I2,1)+ZBRK(I3,1)*WBRK(I4, 1)
FBRK(I1,I2,1I3,14,2)=XBRK(Il1l,1)*WBRK(I4,1)+YBRK(I2,1)+ZBRK(I3,1)
FBRK(I1,I2,13,I4,3)=XBRK(I1,1)+WBRK(I4,1)*YBRK(I2,1)+2ZBRK(I3,1)
FBRK(I1,I2,I3,I4,4)=XBRK(Il,1)*ZBRK(I3,1)+WBRK(I4,1)*YBRK(I2,1)

CONTINUE
X,¥,Z,W ARRAYS

X(1)=4.3
Y(1l)=-5.4
2{l)=5.1
W(l)=-1.5

X(2)=1l.1
Y(2)=-3.4
2(2)=4.9
W{2)=-2.2
X(3)=4.9
Y(3)=-9.9
2(3)=7.5
W(3)=-13.9

X(4)=2.9
Y(4)=-6.9
2(4)=6.4
W(4)=-15.4

X(5)=94.4
Y(5)==5.9
Z2(5)=4.5
W(5)=-7.5

DO 154 I1=1,NIP

CALL BIN(XBRK,X(Il),IX,DRX,NX)

CALL BIN{VBRK,Y¥(Il),IY,DRY.NY)

CALL BIN(ZBRK,Z(Il),IZ,DRZ,NZ)

CALL BIN(WBRK,W(Il),IW,DRW,NW)

CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,I1Y,12,IW,
DRX,DRY,DRZ,DRW,FVAL(1,I1))

FPS 860-7482-891C Page E - 9

APPENDIX F
APPENDIX F

SIMULATION LIBRARY ROUTINES

F.1l INTRODUCTION

mk\a simn

The ulation Library contains a set of routines which are useful in

¥ con s a utin
modeling various continuous systems. These continuous systems are
characterized by ordinary differential equations (ODE) and
three-dimensional coordinate transformations of rigid bodies, which

simulate physical models.

The methods provided for solving ODE's include Runge-Kutta and Euler
explicit methods, which require no previous evaluation of functions or
derivatives, as well as multistep Adams implicit and explicit methods,
which require previous evaluation of the function and one Gr mOLe
previous derivatives. These multistep methods can be started with
lower order methods or with the Runge-Kutta routine. Once started, the
multistep routines require only a single evaluation of the derivative
functions per call. The fourth order Runge-Kutta method requires four
evaluations per time step.

The three-dimensional rotation matrix routine forms a rotation matrix
from a sequence of rotational specifications and can be used in
conjunction with routine CTRN3 to perform three—-dimensional coordinate
transformations consisting of rotation plus translation.

ARvm =

An additiocnal ne is provided to rapidly calculate the

v Al e=a (o2~ ¥

P4
cosine and sine of an angle, both of which are often required in
geometric transformations and graphic output.

F.2 SINGLE STEP METHODS

RKGTF Runge-Kutta-Gill-Thompson: a fourth order single step method
to solve a system of ordinary differential equations (ODE's)
using Thompson's numerical enhancement of the Runge-Kutta-Gill
method. The routine requires an APFTN64 user subroutine to
evaluate the derivatives.

ABP1l Adams-Bashforth predictor order one: a single step predictor
method, also known as Euler's method, for solving ODE's.

AMC1 Adams-Moulton corrector order one: a single step predictor

method, also known as the backward Euler method, used for
corrections to "stiff" QDE's.

FPS 860-7482-g41C Page F - 1

APPENDIX F

APFTN64 ROUTINE FOR USE WITH RKGTF

SUBROUTINE DFUN(T,N,Y,F)

-C
C *** DFUN *** SAMPLE APFTN64 ROUTINE ***
c .

DIMENSION Y(N), F(N)
o

DO 14 I=i,N

F(I)=Y(I)
13 CONTINUE

C
C CORRESPONDS TC SOLUTIONS OF FORM:
C
Cc Y(I) = ¥4 * EXP(T)
c

RETURN

END

FPS 868-7482-4F1C Page F - 3

F29 RELEASE

OLD ROUTINES

FMMM32

MMUL32

ZVABS, VABS
ZVaDD, VADD
ZVFLT, VFLOAT
ZVIFIX, VIFIX
ZVMSA, VMSA
ZVMUL, VMUL
ZVNEG, VNEG
ZVRVRS, VRVRS
ZVSADD, VSADD
ZVSMA, VSMA
ZVSMSA, VSMSA
ZVSMSB,; VSMSB
ZVSMUL, VSMUL
ZVsQ, VsQ
ZVSUB, VSUB
ZVSWAP, VSWAP

APPENDIX G

LIST OF SUPERSEDED ROUTINES

NEW ROUTINES
FMMM or FMMMV
MMUL, FMMM, or FMMMV
VABS

VADD

VFLOAT

VIFIX

VMSA

VMUL

VNEG

VRVRS

VSADD

VSMA

VSMSA

VSMSB

VSMUL

vsQ

VSUB

VSWAP

APPENDIX G

The replacement routines for FMMM32 and MMUL32Z include the same
functionality as FMMM32 and MMUL32 and are also more general.

F@3 RELEASE

OLD ROUTINES

AIMAG
CSFR
CSFS
CSssv
CUFR
CUFsS
Cusv
EXTRU
FLOAT
IFIX
INSERT
LOC
RSFR
RSFS
RSSV

FPS 864-7482-441C

NEW ROUTINES

AIMAG (APFTN64 intrinsic)

CSFR2
CSFs2
Ccssv2
CUFR2
CUFSs2
cusv2

EXTRACT (APFTN64 intrinsic)
FLOAT (APFTN64 intrinsic)
IFIX (APFTN64 intrinsic)
INSERT (APFTN64 intrinsic)
LOC (APFTN64 intrinsic)

RSFR2
RSFSs2
RSSV2

Page G - 1

APPENDIX H

APPENDIX H

EXCEPTIONS ENABLED ROUTINES INFORMATION AND INTERNAL SUBROUTINES

H.1l EXCEPTIONS ENABLED ROUTINES INFORMATION

. . PR ~ JRE R - PO 3
Beginning with the GZF Release, all APMATHS4 routines report valid

exceptions.

H.2 INTERNAL SUBROUTINES

The following routines are used only as internal subroutines by other
APMATH64 routines. These routines are listed here to facilitate
interpretation of program tracebacks.

INTERNAL SUBROUTINE CALLING ROUTINE(S)

ADV2 CFFT, CFFTB, CFFTI, XCFFT

aADV4 CFFT, CFFTB, CFFTI, XCFFT

ALTINP CCEPS

BITREV CFFT, CFFTI

CBEAJY CBEJYH

CBEDH RKGTF

CBEDJ RKGTF

CBERHY CBEJYH

CBERJS CBEJYH

CBERYH CBEJYH

CLSTAT CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN,
HANN, CFFTI, IIRELT, IREALT, XCFFT

CTOR RFFT2D

ENTVAR . SIMPLE

FFT2 CFFT, CFFTB, FFT2B, CFFTI, XCFFT

FFT2B CFFTB

FFT4 CFFT, CFFTB, FFT4B, CFFTI

FFT4B CFFTB

IFFT4 CFFTI

IIRELT RFTII

INTEG CBEJYH :

IREALT RFFTI, RFTII, IIRELT

LPSPFI SIMPLE

PHAUNW CCEPS

PHCHCK PHAUNW

REALTR RFFT, RFFTB, RFFTI, RFTII

RRGTF INTEG

RTOC RFFT2D

SET24B FFT2B, FFT4B

SPCVAL PHAUNW

STSTAT CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN,

FPS 868-7482-891C Page H -

1

APPENDIX I
APPENDIX I

APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE

BASIC MATH LIBRARY (VOLUME 1)

CCMMUL COMPLEX MATRIX MULTIPLY A -2

CDET COMPLEX MATRIX DETERMINANT A -4

CDOTPR COMPLEX DOT PRODUCT A -6

CFFT COMPLEX-TO-COMPLEX FFT (IN PLACE) A -7

CFFTB COMPLEX~-TO-COMPLEX FFT (NOT IN PLACE) A-38

CFFTM MIXED-RADIX COMPLEX FFT (NOT-IN-PLACE) A-9

CFFTSC COMPLEX FFT SCALE a-11
CGMMUL COMPLEX GENERAL MATRIX MULTIPLY A~ 12
CMATIN COMPLEX MATRIX INVERSE A - 14
CMDET COMPLEX MATRIX DETERMINANT A - 15
CMFACT COMPLEX MATRIX L/U FACTORIZATION a - 17
CMMTRC COMPLEX MATRIX MULTIPLY TRACE A -19
CMMUL COMPLEX MATRIX MULTIPLY A - 29
CMSOLV COMPLEX MATRIX EQUATION SOLVER a - 21
CMTRAC COMPLEX SUB-MATRIX TRACE A - 23
CMTRAN COMPLEX SUB-MATRIX TRANSPOSE A - 24
CMVML3 COMPLEX 3X3 MATRIX MULT. 3D VECTORS A - 25
CMVML4 COMPLEX 4X4 MATRIX MULT. 4D VECTORS A - 26
CONV CONVOLUTION (CORRELATION) A - 27
CRMMUL COMPLEX-REAL MATRTIX MULTIPLY A - 28
CROSSP COMPLEX 3D CROSS PRODUCT A - 348
CRVADD COMPLEX AND REAL VECTOR ADD A - 31
CRVDIV COMPLEX AND REAL VECTOR DIVIDE a - 32
CRVMUL COMPLEX AND REAL VECTOR MULTIPLY A - 33
CRVSUB COMPLEX AND REAL VECTOR SUBTRACT A - 34
CsOoLv COMPLEX SYSTEM SOLVER A - 35
CSOLVQ COMPLEX MATRIX EQUATION SOLVER A - 36
CTRN2 2-D COORDINATE TRANSFORM A - 39
CTRN3 3-DIMENSIONAL COORDINATE TRANSFORMATION A - 49
CVABS COMPLEX VECTOR ABSOLUTE VALUE A - 42
CVADD COMPLEX VECTOR ADD A - 43
cvcoMB COMPLEX VECTOR COMBINE A ~ 44
CVCONJ COMPLEX VECTOR CONJUGATE A - 45
CVEXP COMPLEX VECTOR EXPONENTIAL A - 46
CVFILL COMPLEX VECTOR FILL A - 47
CVMA COMPLEX VECTOR MULTIPLY AND ADD A - 48
CVMAGS COMPLEX VECTOR MAGNITUDE SQUARED A - 54
CVMEXP COMPLEX VECTOR MULTIPLY EXPONENTIAL A - 51
cvMov COMPLEX VECTOR MOVE A - 52
CVMUL COMPLEX VECTOR MULTIPLY A - 53
CVNEG COMPLEX VECTOR NEGATE A - 54
CVRCIP COMPLEX VECTOR RECIPROCAL A - 55
CVREAL FORM COMPLEX VECTOR OF REALS A - S6

FPS 868-7482-441C Page I

1
[

APPENDIX I

BASIC MATH LIBRARY (cont.)

RMSQV
SCIMA
SGEFA
SGESL
SGTSL
s
SMMMV
SN2
SOLVEQ
STMM
SVE
SVEMG
SVESQ
SVs
TRIDIA
VAAM
VABS
VACOS
VADD
VAINT
VALG
VALGld
vVaM
VASIN
VASM
VATAN-
VATANZ
VCLIP
VCLR
vVCos
VCOSH
VDIV
VEUCL2
VEXP
VEXP14
VFILL
VFRAC
VIABS
VIADD
VICLIP
VIDIV
VIMAG
VIMUL
VINDEX
VINEG
VLAND
VLEQV
VLIM
VLMERG

ROOT-MEAN-SQUARE OF VECTOR ELEMENTS
SELF-CONJUGATE MULTIPLY AND ADD
REAL -GENERAL MATRIX FACTOR

REAL GENERAL MATRIX SOLVE

TRIDIAGONAL MATRIX SOLVER
SUBMATRTY MULTIDLY

W ILIL I DL I Er LW I s and

SUBMATRIX MULTIPLY

SQUARED DISTANCE BETWEEN TWO VECTORS
LINEAR EQUATION SOLVER
SUBMATRIX TRANSPOSE & MULTIPLY
SUM OF VECTOR ELEMENTS

SUM OF VECTOR ELEMENT MAGNITUDES
SUM OF VECTOR ELEMENT SQUARES
SUM OF VECTOR SIGNED SQUARES
TRIDIAGONAL MATRIX SOLVER
VECTOR ADD, ADD, AND MULTIPLY
VECTOR ABSOLUTE VALUE

VECTOR ARCCOSINE

VECTOR ADD

VECTOR TRUNCATE

VECTOR LOGARITHM

VECTOR BASE 14 LOGARITHM
VECTOR ADD AND MULTIPLY

VECTOR ARCSINE

VECTOR ADD AND SCALAR MULTIPLY
VECTOR ARCTANGENT

VECTOR ARCTANGENT (2 ARCUMENTS)
VECTOR CLIP

VECTOR CLEAR

VECTOR COSINE

VECTOR COSINE (HYPERBOLIC)
VECTOR DIVIDE

VECTOR EUCLIDEAN DISTANCE
VECTOR EXPONENTIAL

VECTOR EXPONENTIAL (BASE 14)
VECTOR FILL

VECTOR TRUNCATE TO FRACTION
VECTOR ABSOLUTE VALUE

VECTOR INTEGER ADD

VECTOR INVERTED CLIP

VECTOR INTEGER DIVIDE

EXTRACT IMAGINARIES OF COMPLEX VECTOR
VECTOR INTEGER MULTIPLY

VECTOR INDEX

VECTOR INTEGER NEGATE

VECTOR INTEGER SUBTRACT

VECTOR LOGICAL ADD

VECTOR LOGICAL EQUIVALENCE
VECTOR LIMIT

LOGICAL VECTOR MERGE

FPS 860-7482-901C

b =T T T T~~~ I T I I S S B i i i i B B B B i

Page I

125
126
127
129
131
133
135
137
138
149
142
143
144
145

146

147
148
149
159
151
152
153
154
155
156
157
158
159
169
161
162
l63
164
165
166
167
168
169
179
171
172
173
174
175
176
177
178
179
184
181

APPENDIX I

BASIC MATH LIBRARY (cont.)

VTSADD VECTOR TM SCALAR ADD A 234
VTSMA VECTOR TM SCALAR MULTIPLY AND ADD A 231
VTSMUL VECTOR TM SCALAR MULTIPLY A 232
ADVANCED MATH LIBRARY (VQLIME 2)
CH COMPLEX HERMITIAN EIGENSYSTEM SOLVER A 234
EIGRS REAL SYMMETRIC EIGENSYSTEM SOLVER A 237
HTRIBK COMPLEX HERMITIAN EIGENVECTORS A 239
HTRIDI COMPLEX HERMITIAN TRIDIAGONALIZATION A 241
IMTQL1 DIAGONALIZE TRIDIAGONAL MATRIX A 243
IMTQL2 DIAGONALIZE A TRIDIAGONAL MATRIX A 245
RS REAL SYMMETRIC EIGENSVYSTEM SQLVER A 247
SIMPLE REVISED SIMPLEX A 249
SKYSOL SKYLINE FORMAT EQUATION SOLVER A 254
TRED1 TRIDIAGONALIZE SYMMETRIC MATRX A 256
TRED2 TRIDIAGONALIZE A SYMMETRIC MATRIX A 258
VASORT VECTOR SORT ALGEBRAIC VALUES A 259
VISORT VECTOR SORT INTEGER VALUES A 264
VSORT VECTOR SORT WITH INDICES A 261
SIGNAL PROCESSING LIBRARY
ACORF AUTO-CORRELATION (FREQUENCY-DOMAIN) A 264
ACORT AUTO-CORRELATION (TIME-DOMAIN) A 265
ASPEC ACCUMULATING AUTO-SPECTRUM A 266
BLEKMAN BLACKMAN WINDOW MULTIPLY A 267
CCEPS PHASE UNWRAP AND COMPLEX CEPSTRUM A 268
CCORF CROSS~CORRELATION (FREQUENCY-DOMAIN) . 272
CCORT CROSS—-CORRELATION (TIME-DOMAIN) A 273
CFFTI COMPLEX FFT WITH INTERPOLATION A 274
COHER COHERENCE FUNCTION A 275
CSPEC ACCUMULATING CROSS-SPECTRUM A 276
DECFIR DECIMATION a 277
ENVEL ENVELOPE DETECTOR A 279
HAMM HAMMING WINDOW MULTIPLY A 284
HANN HANNING WINDOW MULTIPLY A 281
HIST HISTOGRAM A 282
HLBRT HILBERT TRANSFORMER A 283
LPAUTO LINEAR PREDICTION AUTOCORRELATION A 284
PKVAL PEAK AND VALLEY PICKING A 286
RDFT REAL DISCRETE FOURIER TRANSFORM A 288
RFFTI REAL FFT WITH INTERPOLATION -\ 294

FPS 860-7482-991C

Page 1

APPENDIX I

LINPACK BLAS LIBRARY (cont.)

SROT PLANE ROTATION A - 355
SROTG GIVENS PLANE ROTATION A - 356
SROTM MODIFIED GIVENS ROTATIONS A - 357
SROTMG MODIFIED- GIVENS PLANE ROTATION SETUP A -~ 358
SSCAL REAL SCALAR TIMES VECTOR A - 364
SSwap INTERCHANGES VECTORS A - 361
SIMULATION LIBRARY
ABPl ADAMS-BASHFORTH PREDICTOR (ORDER 1) A - 363
ABP2 ADAMS-BASHFORTH PREDICTOR (ORDER 2) A - 364
ABP3 ADAMS-BASHFORTH PREDICTOR (ORDER 3) A - 365
ARP4 ADAMS-BASHFORTH PREDICTOR (ORDER 4) A - 366
ADAMS4 ADAMS VARIABLE STEP INTEG.(ORD 4) A - 368
AMC1 ADAMS~-MOULTON CORRECTOR (ORDER 1) A - 371
AMC2 ADAMS-MOULTON CORRECTOR (ORDER 2) A - 372
AMC3 ADAMS-MOULTON CORRECTOR (ORDER 3) A - 373
AMC4 ADAMS-MOULTON CORRECTOR (ORDER 4) A - 374
BIN BINARY SEARCH A - 376
CBEIK COMPLEX BESSEL I AND K A - 378
CBEJYH COMPLEX BESSEL J, Y, AND H A - 381
FUN1 FUNCTION OF ONE VARIABLE A - 384
FUN2 FUNCTION OF TWO VARIABLES A - 386
FUN3 FUNCTION OF THREE VARIABLES A - 388
FUN4 FUNCTION OF FOUR VARIABLES A - 399
RKGIL RUNGE-KUTTA-GILL INTEGRATION A - 392
RKGTF R-K-GILL-THOMPSON INTEG. (ORDER 4) A - 395
ROT3 3D ROTATION MATRIX, 3-ANGLE A - 397
SCs1 SCALAR COS/SIN, TM INTERP.(ORD 1) A - 399
STEP STEP SEARCH A - 499
GEOPHYSICAL LIBRARY
CONNMO NMO WITH CONSTANT VELOCITY A - 4323
IIR34 RECURSIVE FILTER A - 445
RKSMLV K-TH SMALLEST ELEMENT IN VECTOR A - 4737
NMOLI NMO LINEAR INTERPOLATION A - 448
NMOQI NMO QUADRATIC INTERPOLATION A - 419
POST64 POST BITS TO RASTER A - 412
RESNMO RESIDUAL NORMAL MOVEOQUT A - 413
TMCONV CONVOLUTION (CORRELATION) A - 415
Vgl VECTOR ZERO TRENDS A - 417
VARNMO NMO WITH VARIABLE VELOCITY A - 418
VRNAVG VECTOR RUNNING AVERAGE A - 429
VSCANZ VECTOR SCAN FOR ZEROS A - 421
FPS 860-7482-g41C Page I - 7

TABLE MEMORY LIBRARY (cont.)

TTTSUB VECTOR SUBTRACT (TM-TM TO TM) A - 500
TTVLC2 VECTOR LINEAR COMBINATION A - 541
TVCLR TABLE MEMORY VECTOR CLEAR A - 582
SPECIAL UTILITIES LIBRARY
EXTRS EXTRACT A SIGNED BIT-FIELD A - 544
PEEK MEMORY FETCH A - 5@5
POKE STORE INTO MEMORY A - 506
DATA FORMATTING LIBRARY
VFLOAT CONVERT INTEGER TO FLOATING-POINT A - 548
VIFIX VECTOR INTEGER FIX A - 5949
VPK8 VECTOR 8-BIT BYTE PACK A - 518
VPK16 VECTOR 16-BIT BYTE PACK A - 511
VPK32 VECTOR 32-BIT BYTE PACK A - 512
VPKI32 VECTOR 32-BIT INTEGER PACK A - 513
VPKR32 VECTOR REAL HALFWORD PACK A - 514
VSCALE VECTOR SCALE AND FIX A - 515
VSCSCL VECTOR SCAN SCALE AND FIX A - 516
VSHFX VECTOR SHIFT AND FIX A - 517
VSMAFX VECTOR SCALAR MULTIPLY, ADD AND FIX A - 518
VUP8 VECTOR 8-BIT BYTE UNPACK A - 519
VUP16 VECTOR 16-BIT BYTE UNPACK A - 5249
VuP32 VECTOR 32-BIT BYTE UNPACK A - 521
VUPR32 VECTOR HALFWORD REAL UNPACK A - 522
VUPS8 VECTOR 8-BIT SIGNED BYTE UNPACK A - 523
VUPS16 VECTOR 16-BIT SIGNED BYTE UNPACK A - 524
VUPS32 VECTOR 32-BIT SIGNED BYTE UNPACK A - 525
VUSI32 VECTOR 32~-BIT SIGNED INTEGER UNPACK A - 526
VUUI32 VECTOR 32-BIT UNSIGNED UNPACK A - 527
DOUBLE PRECISION LIBRARY
DADD DOUBLE TO DOUBLE-PRECISION ADD A - 529
DADDRR SINGLE TO DOUBLE-PRECISION ADD A - 530
DADOT DOUBLE ACCUMULATE DOT PRODUCT A - 531
DDOTRR DOUBLE DOT PRODUCT REAL REAL A - 532
DMUL DOUBLE TO DOUBLE-PRECISION MULTIPLY A - 533
DMULRR SINGLE TO DOUBLE PRECISION MULTIPLY A - 534
DNEG NEGATE DOUBLE-PRECISION NUMBER A - 535
DSUB DOUBLE TO DOUBLE-PRECISION SUBTRACT A - 536
DSUBRR SINGLE TO DOUBLE-PRECISION SUBTRACT A - 537
FPS 869-7482-gd1C Page I - 9

APPENDIX J

APPENDIX J

APMATH64 ROUTINES IN ALPHABETICAL ORDER

NAME DESCRIPTION PAGE
ABP1 ADAMS-BASHFORTH PREDICTOR (ORDER 1) A - 363
ABP2 ADAMS-BASHFORTH PREDICTOR (ORDER 2) A - 364
ABP3 ADAMS-BASHFORTH PREDICTOR (ORDER 3) A - 365
ABP4 ADAMS-BASHFORTH PREDICTOR (ORDER 4) A - 366
ABS REAL NUMBER ABSOLUTE VALUE A - 539
ACORF AUTO~-CORRELATION (FREQUENCY-DOMAIN) A - 264
ACORT AUTO-CORRELATION (TIME-DOMAIN) A - 265
aCos REAL NUMBER ARCCGOSINE A - 54
ADAMS4 ADAMS VARIABLE STEP INTEG.(ORD 4) A - 368
AINT TRUNCATE REAL NUMBER A - 541
ALOG14 REAL NUMBER LOGARITHM A - 543
ALOG REAL NUMBER LOGARITHM A - 542
AMC1 ADAMS-MOULTON CORRECTOR (ORDER 1) A - 371
AMC2 ADAMS~-MOULTON CORRECTOR (ORDER 2) A - 372
AMC3 ADAMS-MOULTON CORRECTOR (ORDER 3) A - 373
AMC4 ADAMS-MOULTON CORRECTOR (ORDER 4) A - 374
AMOD REAL/REAL DIVIDE REMAINDER A - 544
ANINT ROUND REAL NUMBER TO NEAREST WHOLE A - 545
ASIN REAL NUMBER ARCSINE A - 546
ASPEC ACCUMULATING AUTO-SPECTRUM A -~ 266
ATAN2 ARCTANGENT OF RATIO OF REAL NUMBERS A - 548
ATAN ARCTANGENT OF REAL NUMBER A - 547
BIN) BINARY SEARCH A - 376
BLKMAN BLACKMAN WINDOW MULTIPLY A - 267
CABS COMPLEX NUMBER ABSOLUTE VALUE A - 549
CAXPY COMPLEX A * X + Y A - 326
CAXPYN NESTED COMPLEX A * X + Y A - 327
CBEIK COMPLEX BESSEL I AND K A - 378
CBEJYH COMPLEX BESSEL J, Y, AND H A - 381
CCEPS PHASE UNWRAP AND COMPLEX CEPSTRUM A - 268
CCMMUL COMPLEX MATRIX MULTIPLY A -2
CCopPY COMPLEX VECTOR COPY A - 339
CCORF CROSS~CORRELATION (FREQUENCY-DOMAIN) A - 272
CCORT CROSS—-CORRELATION (TIME-DOMAIN) A - 273
CCos COMPLEX NUMBER COSINE A - 554
CDET COMPLEX MATRIX DETERMINANT A -4
CDIV COMPLEX/COMPLEX DIVIDE A - 551
CDIVCR REAL/COMPLEX DIVIDE A - 552
CDIVRC COMPLEX/REAL DIVIDE A - 553
CDOTC COMPLEX INNER PRODUCT A - 331
CDOTN NESTED COMPLEX DOT PRODUCT A - 332
CDOTPR COMPLEX DOT PRODUCT A -6
CDOTU COMPLEX DOT PRODUCT A - 335

FPS 864-7482-g@1C Page J

I
Pt

CUFS2
cusv2
CVABS
CVADD
CVCOMB
CVCONJ
CVEXP
CVFILL
CVMA
CVMAGS
CVMEXP
CVMOV
CVMUL
CVNEG
CVRCIP
CVREAL
CVSMA
CVSMUL
CVSUB
DADD
DADDRR
DADOT
DDOTRR
DECFIR
DEQ22
DIM
DMUL
DMULRR
DNEG
DOTER
DSUB
DSUBRR
EIGRS
ENVEL
EXP
EXTRS
FMMM
FMMMV
FUNL
FUN2
FUN3
FUN4
GENTAB
GRAD2D
GRD2DB
HAMM
HANN
HIST
HLBRT
HTRIBK
HTRIDI
IABS
ICAMAX
IDIM

SPARSE COMPLEX UNSYM FACTOR & SOLVE
SPARSE COMPLEX UNSYMMETRIC SOLVE
COMPLEX VECTOR ABSOLUTE VALUE
COMPLEX VECTOR ADD

COMPLEX VECTOR COMBINE

COMPLEX VECTOR CONJUGATE

COMPLEX VECTOR EXPONENTIAL

COMPLEX VECTOR FILL

COMPLEX VECTOR MULTIPLY AND ADD
COMPLEX VECTOR MAGNITUDE SQUARED
COMPLEX VECTOR MULTIPLY EXPONENTIAL
COMPLEX VECTOR MOVE

COMPLEX VECTOR MULTIPLY

COMPLEX VECTOR NEGATE

COMPLEX VECTOR RECIPROCAL

FORM COMPLEX VECTOR OF REALS
COMPLEX VECTOR SCALAR MULTIPLY AND ADD
COMPLEX VECTOR SCALAR MULTIPLY
COMPLEX VECTOR SUBTRACT

DOUBLE TO DOUBLE-PRECISION ADD
SINGLE TO DOUBLE-PRECISION ADD
DOUBLE ACCUMULATE DOT PRODUCT
DOUBLE DOT PRODUCT REAL REAL
DECIMATION

DIFFERENCE EQUATION, 2 POLES, 2 ZEROS
REAL/REAL POSITIVE DIFFERENCE
DOUBLE TO DOUBLE-PRECISION MULTIPLY
SINGLE TO DOUBLE PRECISION MULTIPLY
NEGATE DOUBLE-PRECISION NUMBER

DOT PRODUCT

DOUBLE TO DOUBLE-PRECISION SUBTRACT
SINGLE TO DOUBLE-PRECISION SUBTRACT
REAL SYMMETRIC EIGENSYSTEM SOLVER
ENVELOPE DETECTOR

EXPONENTIAL OF REAL NUMBER

EXTRACT A SIGNED BIT-FIELD

FAST MATRIX MULTIPLY

FAST MATRIX MULTIPLY

FUNCTION OF ONE VARIABLE

FUNCTION OF TWO VARIABLES

FUNCTION OF THREE VARIABLES
FUNCTION OF FOUR VARIABLES

GENERATE TWIDDLE FACTOR TABLE
MAXIMUM GRADIENT FILTER

MAXIMUM GRADIENT FILTER WITH BOUND
HAMMING WINDOW MULTIPLY

HANNING WINDOW MULTIPLY

HISTOGRAM

HILBERT TRANSFORMER

COMPLEX HERMITIAN EIGENVECTORS
COMPLEX HERMITIAN TRIDIAGONALIZATION
INTEGER ABSOLUTE VALUE

INDEX OF LARGEST COMPLEX ELEMENT
INTEGER/INTEGER POSITIVE DIFFERENCE

FPS 86d-7482-4d1C

b T I B R R - i i B B R I I I T S
|

Page J -

434

42
43
44
45
46
47
48
59
51
52
53
54
55
56
57
58
59
529
534
531
532
277
64
566
533
534
535
62
536
537
237
279
567
504
63
64
384
386
388
399
65
319
312
280
281
282
283
235
241
568
341
569

PAS3F
PAS3I
PAS4F
PAS4I
PASSF
PAS5I
PEEK
PFINV
PKVAL
POKE
POLAR
POST64
RAN
RCMMUL
RDFT
RDIV
RECT
RESNMO
RFFT2D
RFFT
RFFTB
RFFTI
RFFTM
RFFTSC
RFTII
RGMMUL
RKGIL
RKGTF
RMSQV
ROT3
RPOW
RPOWRI
RRCP
RS
RSFR2
RSFS2
RSQRT
RSSV2
RUFR2
RUFS2
RUSY2
SASUM
SAXPY
SAXPYN
SCASUM
SCJMA
SCNRM2
SCOPY
SCsl
S0OT
SDOTN
SDOTPR
SGEFA
SGESL

RADIX-3 FORWARD COMPLEX FFT PASS
RADIX-3 INVERSE COMPLEX FFT PASS
RADIX-4 FORWARD COMPLEX FFT PASS
RADIX-4 INVERSE COMPLEX FFT PASS
RADIX-5 FORWARD COMPLEX FFT PASS
RADIX-5 INVERSE COMPLEX FFT PASS
MEMORY FETCH

MATRIX INVERSE (PRODUCT FORM)

PEAK AND VALLEY PICKING

STORE INTG MEMORY

RECTANGULAR TO POLAR CONVERSION
POST BITS TO RASTER .

SCALAR RANDOM NUMBER GENERATOR
REAL-COMPLEX MATRIX MULTIPLY

REAL DISCRETE FOURIER TRANSFORM
REAL/REAL DIVIDE

POLAR TO RECTANGULAR CONVERSION
RESIDUAL NORMAL MOVEOUT

REAL TO COMPLEX 2-DIMENSIONAL FFT
REAL-TO-COMPLEX FFT (IN PLACE)
REAL-TO-COMPLEX FFT (NOT IN PLACE)
REAL FFT WITH INTERPOLATION
MIXED-RADIX REAL FFT (NOT-IN-PLACE)
REAL FFT SCALE AND FORMAT

REAL FFT WITH QUARTER INTERPOLATION
REAL GENERAL MATRIX MULTIPLY
RUNGE-KUTTA-GILL INTEGRATION
R-K~-GILL-THOMPSON INTEG. (ORDER 4)
ROOT-MEAN-SQUARE OF VECTOR ELEMENTS
3D ROTATION MATRIX, 3-ANGLE

REAL TO REAL POWER

REAL TO INTEGER POWER

REAL RECIPROCAL

REAL SYMMETRIC EIGENSYSTEM SOLVER
SPARSE REAL SYMMETRIC FACTOR
SPARSE REAL SYMM FACTOR & SOLVE
RECIPROCAL SQUARE ROOT

SPARSE REAL SYMMETRIC SOLVE
SPARSE REAIL UNSYMMETRIC FACTOR
SPARSE REAL UNSYM FACTOR & SOLVE
SPARSE REAL UNSYMMETRIC SOLVE

SUM OF MAGNITUDES

REAL A * X + Y

NESTED REAL A * X + Y

SUM OF REAL AND IMAGINARY MAGNITUDES
SELF~-CONJUGATE MULTIPLY AND ADD
COMPLEX EUCLIDEAN NORM

VECTOR COPY

SCALAR COS/SIN, TM INTERP.(ORD 1)
DOT PRODUCT OF REAL VECTORS
NESTED REAL DOT PRODUCT

SPARSE DOT PRODUCT

REAL GENERAL MATRIX FACTOR

REAL GENERAL MATRIX SOLVE

FPS 860-7482-8d1C

T R T R R R R R R R R R R R N R Y

Page J

TTTSUB VECTOR SUBTRACT (TM-TM TO TM)
TTVLC2 VECTOR LINEAR COMBINATION
TVCLR TABLE MEMORY VECTOR CLEAR

val VECTOR ZERO TRENDS

VAAM VECTOR ADD, ADD, AND MULTIPLY
VABS VECTOR ABSOLUTE VALUE

VACOS VECTOR ARCCOSINE

VADD VECTOR ADD

VAINT VECTOR TRUNCATE

VALG1H VECTOR BASE 16 LOGARITHM

VALG VECTOR LOGARITHM

vaM VECTOR ADD AND MULTIPLY
VARNMO NMO WITH VARIABLE VELOCITY
VASIN VECTOR ARCSINE

VASM VECTOR ADD AND SCALAR MULTIPLY
VASORT VECTOR SORT ALGEBRAIC VALUES
VATAN2 VECTOR ARCTANGENT (2 ARGUMENTS)
VATAN VECTOR ARCTANGENT

VAVEXP VECTOR EXPONENTIAL AVERAGING
VAVLIN VECTOR LINEAR AVERAGING

VCLIP VECTOR CLIP

VCLR VECTOR CLEAR

VCos VECTOR COSINE

VCOSH VECTOR COSINE (HYPERBOLIC)
VDBPWR VECTOR CONVERSION TO DB (POWER)
VDIV VECTOR DIVIDE

VEUCL2 VECTOR EUCLIDEAN DISTANCE
VEXP14 VECTOR EXPONENTIAL (BASE 14)
VEXP VECTOR EXPONENTIAL

VFILL VECTOR FILL

VFLOAT CONVERT INTEGER TO FLOATING-POINT
VFRAC VECTOR TRUNCATE TO FRACTION
VIABS VECTOR ABSOLUTE VALUE

VIADD VECTOR INTEGER ADD

VICLIP VECTOR INVERTED CLIP

VIDIV VECTOR INTEGER DIVIDE

VIFIX VECTOR INTEGER FIX

VIMAG EXTRACT IMAGINARIES OF COMPLEX VECTOR
VIMUL VECTOR INTEGER MULTIPLY
VINDEX VECTOR INDEX

VINEG VECTOR INTEGER NEGATE

VISORT VECTOR SORT INTEGER VALUES
VISUB VECTOR INTEGER SUBTRACT

VLAND VECTOR LOGICAL ADD

VLEQV VECTOR LOGICAL EQUIVALENCE
VLIM VECTOR LIMIT

VLMERG LOGICAL VECTOR MERGE

VLNOT VECTOR LOGICAL NOT

VLOR VECTOR LOGICAL OR

VLXOR VECTOR LOGICAL EXCLUSIVE OR
VMA VECTOR MULTIPLY AND ADD

VMAX VECTOR MAXIMUM

VMAXMG VECTOR MAXIMUM MAGNITUDE

VMIN VECTOR MINIMUM

FPS 864-7482-801C

Pl B B i i i B SR i i i i i i B B i i i N O

Page J

VTSMA
VTSMUL
VUP16
VUP32
VUP8
VUPR32
VUPS16
VUPS32
VUPS8
VUS1i3z
VUuU132
VXCSs
WIENER

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTCR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
WIENER

FPS 864-7482-941C

TM SCALAR MULTIPLY AND ADD
TM SCALAR MULTIPLY

16-BIT BYTE UNPACK

32-BIT BYTE UNPACK

8-BIT BYTE UNPACK

HALFWORD REAL UNPACK
16-BIT SIGNED BYTE UNPACK
32-BIT SIGNED BYTE UNPACK
8-BIT SIGNED BYTE UNPACK
32-BIT SIGNED INTEGER UNPACK
32-BIT UNSIGNED UNPACK
MULTIPLIED BY SIN AND COS
LEVINSON ALGORITHM

o i O B I i

Page J

APMATH64 KEY WORD INDEX

Mhie
AblAO

index of APMATH64 routines is sorted by key words that appear in
each routine title. Each title can contain more than one key word.
The key words are listed alphabetically to the right of the gap running

down the center of each page.

To use the key word index, locate a key word that is representative of
the desired APMATH64 function. Applicable APMATH64 routine names and
titles can be found on the same line with each occurrence of the key
word. The routine name appears in brackets ([]). The routine title
immediately follows the routine name and continues on the other side of

the gap when necessary.

The ellipsis (...)
the last word in the title if the line wraps around.

particular routine is documented can be found in Appendix J.

[VSIMPS]VECTOR SIMPSON'S
EXPONENTIAL BASE

[(VALG14]VECTOR BASE
[VPK16]VECTOR
(VUP16] VECTOR

[VUPS16]VECTOR
[CSROT] COMPLEX

[CFFT2D]COMPLEX TO COMPLEX
[RFFT2D]REAL TO COMPLEX
(ROT3]3D ROTATION MATRIX,
(VPR32]VECTOR

(VUP32]VECTOR

[VPKI32]VECTOR

[VUPS32]VECTOR
[VUSI32]VECTOR

{VUUI32]JVECTOR

[CROSSP]COMPLEX

3X3 MATRIX MULT.

{MUML3]JMATRIX VECTOR MULTIPLY
{ CMVML 3] COMPLEX

4X4 MATRIX MULT.

[MVML4]MATRIX VECTOR MULTIPLY
{ CMVMIL.4] COMPLEX

[VPK8 JVECTOR

{VUP8]VECTOR
[VUPS8] VECTOR

[ABS JREAL NUMBER

[CABS]COMPLEX NUMBER
[CVABS |COMPLEX VECTOR

{ IABS] INTEGER
[ISAMAX]INDEX OF MAXIMUM
[VABS]VECTOR

[VIABS]VECTOR

[DADOT] DOUBLE

FPS 868-7482-941C

1/3 RULE INTEGRATION
19...[VEXP18]VECTOR

14 LOGARITHM

16-BIT BYTE PACK

16-BIT BYTE UNPACK

16-BIT SIGNED BYTE UNPACK
2-D ROTATION '
2-DIMENSIONAL FFT
2-DIMENSIONAL FFT

3-ANGLE
32-BIT
32-BIT
32-BIT
32-BIT

BYTE PACK

BYTE UNPACK

INTEGER PACK

SIGNED BYTE UNPACK
32-BIT SIGNED INTEGER UNPACK
32-BIT UNSIGNED UNPACK

3D CROSS PRODUCT

3D VECTORS...[{CMVML3]JCOMPLEX
3X3

3X3 MATRIX MULT. 3D VECTORS
4D VECTORS...[CMVML4 jCOMPLEX
4X4

4X4 MATRIX MULT.
8-BIT BYTE PACK
8-BIT BYTE UNPACK
8-BIT SIGNED BYTE UNPACK
ABSOLUTE VALUE

ABSOLUTE VALUE

ABSOLUTE VALUE

ABSOLUTE VALUE

ABSOLUTE VALUE

ABSOLUTE VALUE

ABSOLUTE VALUE
ACCUMULATE DOT PRODUCT

4D VECTORS

INDEX

is placed directly after
The page where a

(VUP16]VECTOR 16-BIT
{VUP32]VECTOR 32-BIT

[VUP8 IVECTOR 8-BIT

[VUPS16 JVECTOR 16-BIT SIGNED
[VUPS32]VECTOR 32-BIT SIGNED
(VUPS8]JVECTOR 8-BIT SIGNED
UNWRAP AND COMPLEX

[TVCLR |TABLE MEMORY VECTOR
{ VCLR]VECTOR

{ VCLIP]VECTOR
(VICLIP]VECTOR INVERTED

[TMVLC2]VECTOR LINEAR
[TTVLC2 JVECTOR LINEAR
{CVCOMB |COMPLEX VECTOR
{CFFT2D]COMPLEX TO

[RFFT2D]REAL TO

[CAXPYN |NESTED

[CCEPS]PHASE UNWRAP AND

{ CDOTN]NESTED

[ICAMAX]INDEX OF LARGEST
[CFFTM]MIXED-RADIX
[PAS2F]RADIX~2 FORWARD
(PAS2I]RADIX-2 INVERSE
{PAS3F]RADIX-3 FORWARD
{PAS3I]RADIX-3 INVERSE

[PAS4F JRADIX-4 FORWARD
[PASAI]RADIX-4 INVERSE
[PASSF]RADIX-5 FORWARD
[PASSI|RADIX-5 INVERSE
[CEXP |EXPONENTIAL OF

{ CONJG]CONJUGATE OF

{CSQRT]SQUARE ROOT OF

[CPOWRC]REAL TO

[CPOW]COMPLEX TO
[CSFS2] SPARSE

[CSFR2]SPARSE

{CSSV2]SPARSE

[CUFS2]SPARSE

[CUFR2]SPARSE
{CUSV2] SPARSE

{VIMAG]EXTRACT IMAGINARIES OF
{ VREAL]EXTRACT REALS OF

[CVREAL] FORM

(CSSCAL]REAL TIMES

[CVCONJ JCOMPLEX VECTOR

[CONNMO]NMO WITH

[POLAR |RECTANGULAR TO POLAR
[(RECT]POLAR TO RECTANGULAR
{ VDBPWR]VECTOR

{CONVZD}2-D

[TCONV] POST-TAPERED
[CTRN2]2-D
{CTRN3]3-DIMENSIONAL
{CCOPY]JCOMPLEX VECTOR

FPS 864-7482-041C

BYTE UNPACK

BYTE UNPACK

BYTE UNPACK

BYTE UNPACK

BYTE UNPACK

BYTE UNPACK
CEPSTRUM. . . [CCEPS]PHASE
CLEAR

CLEAR

CLIP

CLIP

COMBINATION

COMBINATION

COMBINE
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX
COMPLEX VECTOR

COMPLEX VECTOR OF REALS
COMPLEXES

CONJUGATE

CONSTANT VELOCITY
CONVERSION

CONVERSION

CONVERSION TO DB POWER
CONVOLUTIOR AND CORRELATIOR
CONVOLUTION CORRELATION
COORDINATE TRANSFORM
COORDINATE TRANSFORMATION
COPY

2-DIMENSIONAL FFT
2-DIMENSIONAL FFT
A*X + Y
CEPSTRUM

DOT PRODUCT
ELEMENT

FFT NOT-IN-PLACE
FFT PASS

FFT PASS

FFT PASS

FFT PASS

FFT PASS

FFT PASS

FFT PASS

FFT PASS

NUMBER

NUMBER

NUMBER

POWER

POWER

SYMM FACTOR & SOLVE
SYMMETRIC FACTOR
SYMMETRIC SOLVE
UNSYM FACTOR & SOLVE
UNSYMMETRIC FACTOR
UNSYMMETRIC SOLVE
VECTOR

INDEX

[DNEG]NEGATE
[DSUBRR]SINGLE TO
[DSUBIDOUBLE TO
[CH]COMPLEX HERMITIAN
[EIGRS JREAL SYMMETRIC
{RS]REAL SYMMETRIC
[HTRIBK]JCOMPLEX HERMITIAN
OF LARGEST COMPLEX

[KSMLV]JK-TH SMALLEST

FASA SPALACY T RAR WP T MTTAS AINITIMTITY
[MAXMGV JMAXIMUM MAGNITUDE

[MAXV]MAXIMUM

[MINMGV]JMINIMUM MAGNITUDE
{MINV IMINIMUM

[MEAMGV]MEAN OF VECTOR
[SVEMG]SUM QF VECTOR
[MEASQV JMEAN OF VECTOR
[SVESQ]SUM OF VECTOR

[MEANV JMEAN VALUE OF VECTOR
. VECTOR
[SVE]SUM OF VECTOR
[VSUM]VECTOR SUM OF
[LVEQ]LOGICAL VECTOR
VECTOR GREATER THAN OR
{LVNE]LOGICAL VECTOR NOT
{ CMSOLV]COMPLEX MATRIX
[CSOLVQ]COMPLEX MATRIX

[SKYSOL] SKYLINE FORMAT

[SOLVEQ]LINEAR

[DEQ22 |DIFFERENCE

{VLEQV]VECTOR LOGICAL

f ormvrr 2 1 ermeoameny
{VEUCL2 JVECTCR

[SCNRM2]COMPLEX

[VPOLY]VECTOR POLYNOMIAL
{VLXOR]VECTOR LOGICAL
{CVEXP] COMPLEX VECTOR
VECTOR MULTIPLY

{ VEXP]VECTOR

{ VAVEXP] VECTOR

[VEXP14]VECTOR

COMPLEX SYMMETRIC

COMPLEX UNSYMMETRIC

[RSFR2]SPARSE REAL SYMMETRIC
[RUFR2] SPARSE REAL UNSYMMETRIC
[SGEFAIREAL GENERAL MATRIX
(CSFS2]SPARSE COMPLEX SYMM
[CUFS2]SPARSE COMPLEX UNSYM
[RSFS2 |SPARSE REAL SYMM
{RUFS2]SPARSE REAL UNSYM

(GENTAB |GENERATE TWIDDLE
[CMFACTICOMPLEY MATRIY L/U
[LUF]LU MATRIX

[PEEK | MEMORY

TO COMPLEX 2-DIMENSIONAL
TO COMPLEX 2-DIMENSIONAL

FPS 860-7482-841C

APMATH64 KEY WORD INDEX

DOUBLE-PRECISION NUMBER
DOUBLE-PRECISION SUBTRACT
DOUBLE-PRECISION SUBTRACT
EIGENSYSTEM SOLVER
EIGENSYSTEM SOLVER
EIGENSYSTEM SOLVER
EIGENVECTORS
ELEMENT. .. [ICAMAX] INDEX
ELEMENT IN VECTOR

ELEMENT TN URCTOD

ek dad el S S e e W Nt ol NF

ELEMENT IN VECTOR
ELEMENT IN VECTOR
ELEMENT IN VECTOR
ELEMENT MAGNITUDES
ELEMENT MAGNITUDES
ELEMENT SQUARES
ELEMENT SQUARES
ELEMENTS
ELEMENTS...{
ELEMENTS
ELEMENTS INTEGRATION
EQUAL
EQUAL...[LVGE]LOGICAL
EQUAL

EQUATICN SOLVER
EQUATION SOLVER
EQUATION SOLVER
EQUATION SOLVER
EQUATION, 2 POLES,
EQUIVALENCE

i
EUCLIDEAN DISTANCE

EUCLIDEAN NORM

EVALUATION

EXCLUSIVE CR

EXPONENTIAL
EXPONENTIAL...[CVMEXP]COMPLEX
EXPONENTIAL

EXPONENTIAL AVERAGING
EXPONENTIAL BASE 14
FACTOR...[CSFR2 |SPARSE
FACTOR...[CUFR2]SPARSE

FACTOR
FACTOR
FACTOR
FACTOR
FACTOR
FACTOR

2 ZEROS

& SOLVE
& SOLVE

& SOLVE

FACTOR & SOLVE

FACTOR TABLE
FACTORIZATION
FACTORIZATION CROUT
FETCH

FFT. . .[CFFT2D]COMPLEX
FFT...[RFFT2DREAL

INDEX

RMSQV JROOT-MEAN-SQUARE

[GRAD2D |MAXIMUM

[GRD2DB]MAXIMUM

[LVGT]LOGICAL VECTOR

[LVGE]LOGICAL VECTOR
[VPKR32][VECTOR REAL

{ VUPR32]JVECTOR

{ CH]COMPLEX

{ HTRIBK]JCOMPLEX

[HTRIDI]JCOMPLEX
[VSINH]VECTOR SINE
[VTANH]VECTOR TANGENT
[COSH]REAL NUMBER

[SINH |REAL NUMBER

{ TANH |REAL NUMBER

[VIMAG] EXTRACT
[SCASUM]SUM OF REAL AND
[MTIMOV]VECTOR MOVE WITH

 my; Ui'e) mT
{ TMIMOV]VECTCR MOVE WITH

[TTIMOV]VECTOR MOVE WITH

[VINDEX] VECTOR

[VSORT]VECTOR SORT WITH

{ CDOTC]COMPLEX

{RKGTF]R-K-GILL-THOMPSON
[ADAMS4]ADAMS VARIABLE STEP
REAL NUMBER TO NEAREST

[VIADD] VECTOR

{VIDIV]VECTOR

[(VIFIX]VECTOR

[VIMUL]VECTOR

{ VINEG]VECTOR
{VPKI32]VECTOR 32-BIT
[CPOWCI JCOMPLEX TO
(IPOW]INTEGER TO

[RPOWRI]REAL TO
[(VISUB]VECTOR

[VFLOAT] CONVERT
{VUSI32]VECTOR 32-BIT SIGNED
[VISORT]VECTOR SORT

[RKGIL]JRUNGE-KUTTA-GILL
SIMPSON'S 1/3 RULE
[VSUM]VECTOR SUM OF ELEMENTS
TRAPEZOIDAL RULE
{SCS1]SCALAR COS/SIN, TM
[CFFTI|COMPLEX FFT WITH
[NMOLI JNMO LINEAR

{ NMOQI]NMO QUADRATIC

[RFFTI JREAL FFT WITH
[RFTII]REAL FFT WITH QUARTER
{CMATIN]COMPLEX MATRIX
[MATINV |MATRIX

[VRECIP JVECTOR
[PAS2I]RADIX-2
(PAS3I]RADIX-3

FPS 860-7482-941C

APMATH64 KEY WORD INDEX

GRADIENT FILTER

GRADIENT FILTER WITH BOUND
GREATER THAN

GREATER THAN OR EQUAL
HALFWORD PACK

HALFWORD REAL UNPACK
HERMITIAN EIGENSYSTEM SOLVER
HERMITIAN EIGENVECTORS
HERMITIAN TRIDIAGONALIZATION
HYPERBOLIC

HYPERBOLIC

HYPERBOLIC

HYPERBOLIC COSINE

HYPERBOLIC SINE

HYPERBOLIC TANGENT
IMAGINARIES OF COMPLEX VECTOR
IMAGINARY MAGNITUDES

INCREMENT MD TO TM
TNCREMENT TM T MD

P LDV ¥ at i oL 1N i S N U R 5

INCREMENT TM TO TM

INDEX

INDICES

INNER PRODUCT

INTEG. ORDER 4

INTEG.ORD 4
INTEGER. .. [NINT JROUND
INTEGER ADD

INTEGER DIVIDE

INTEGER FIX

INTEGER MULTIPLY

INTEGER NEGATE

INTEGER PACK

INTEGER POWER

INTEGER POWER

INTEGER POWER

INTEGER SUBTRACT

INTEGER TO FLOATING-POINT
INTEGER UNPACK

INTEGER VALUES
INTEGRATION
INTEGRATION. .. [VSIMPS]JVECTOR
INTEGRATION
INTEGRATION. .. [VTRAPZ]JVECTOR
INTERP.ORD 1
INTERPOLATION
INTERPOLATION
INTERPOLATION
INTERPOLATION
INTERPOLATION

INVERSE

INVERSE

INVERSE

INVERSE COMPLEX FFT PASS
INVERSE COMPLEX FFT PASS

INDEX - 7

[CMMTRC] COMPLEX

[SMPACK] SPARSE

{ SGESL]JREAL GENERAL
{LUSN]LU

[SGTSL]TRIDIAGONAL
[TRIDIAITRIDIAGONAL

[SMUPCK] SPARSE

[SMVMUL] SPARSE

[ROT3]13D ROTATION
SYMMETRIC

[VMAX]VECTOR

(ISAMAX]INDEX OF

{ VMAXMG] VECTOR

[MMTMUL] VECTOR MULTIPLY

[MTMMUL] VECTOR MULTIPLY
{MTTMUL] VECTOR MULTIPLY

[MMTADD]VECTOR ADD

[MTMADD]VECTOR ADD

(MTTADD JVECTOR ADD

[MMTSUB]VECTOR SUBTRACT
(MTMSUB]VECTOR SUBTRACT
[MTTSUB]VECTOR SUBTRACT
[POKE]STORE INTO

[TVCLR]TABLE

[VLMERG] LOGICAL VECTOR
{VMIN]VECTOR

{ VMINMG] VECTOR

[CVMOV]COMPLEX VECTOR

[SVMOV] SPARSE VECTOR

[VMOV] VECTOR

[MOVREP] SUB-IMAGE

[MTMOV] VECTOR

[TMMOV] VECTOR

[MTIMOV] VECTOR

(TMIMOV] VECTOR

{ PTIMOV] VECTOR

{RESNMO |RESIDUAL NORMAL
[VSMA3]THREE VECTOR SCALAR
[VSMA4]FOUR VECTOR SCALAR
[CMVML3 JCOMPLEX 3X3 MATRIX
{CMVML4 JCOMPLEX 4X4 MATRIX
[VXCS]VECTOR

{ BLKMAN | BLACKMAN WINDQOW

[CCMMUL]COMPLEX MATRIX

[CGMMUL]JCOMPLEX GENERAL MATRIX
[CMMUL]JCOMPLEX MATRIX

[CMUL] COMPLEX

{ CRMMUL] COMPLEX-REAL MATRIX
AND REAL VECTOR

[CVMUL]COMPLEX VECTOR
[CVSMUL]COMPLEX VECTOR SCALAR
TO DOUBLE PRECISION

TO DOUBLE-PRECISION

[FMMMV] FAST MATRIX

FPS 868-7482-4d1C

MATRIX MULTIPLY TRACE
MATRIX PACK

MATRIX SOLVE

MATRIX SOLVE CROUT
MATRIX SOLVER

MATRIX SOLVER

MATRIX UNPACK

MATRIX VECTOR MULTIPLY
MATRIX, 3-ANGLE
MATRX...[TRED1 JTRIDIAGONALIZE
MAXIMUM

MAXIMUM ABSOLUTE VALUE
MAXIMUM MAGNITUDE

MD*MD TG TM
MD*TM TO MD
MD*TM TO TM

MD+MD TO TM
MD+TM TO MD

MD+TM TO TM

MD-MD TO TM

MD-TM TO MD
MD-TM TO TM
MEMORY

MEMORY VECTOR CLEAR
MERGE

MINIMUM

MINIMUM MAGNITUDE
MOVE

MOVE

MOVE

MOVE AND LEVEL REPLACE

MOVE MD TO TM

MOVE TM TO MD

MOVE WITH INCREMENT MD TO TM
MOVE WITH INCREMENT TM TO MD
MOVE WITH INCREMENT TM TO TM
MOVEOUT

MULT AND ADD

MULT AND ADD

MULT. 3D VECTORS

MULT. 4D VECTGRS

MULTIPLIED BY SIN AND COS
MULTIPLY

MULTIPLY

MULTIPLY

MULTIPLY

MULTIPLY

MULTIPLY

MULTIPLY...[CRVMUL]JCOMPLEX
MULTIPLY

MULTIPLY

MULTIPLY...[DMULRR]SINGLE
MULTIPLY...[DMUL]DOUBLE
MULTIPLY

INDEX

[VNEG] VECTOR
[MNAXB] SUB-MATRIX

[MNATXB] SUBMATRIX

[SCNRM2]COMPLEX EUCLIDEAN

[SNRM2]EUCLIDEAN

[RESNMO |RESIDUAL

[LVNOT]LOGICAL VECTOR

[VLNOT JVECTOR LOGICAL
[(LVNE]LOGICAL VECTOR

[CFFTB]COMPLEX~TO~-COMPLEX FFT
[{RFFTB JREAL-TO-COMPLEX FFT
[CFFTM]MIXED-RADIX COMPLEX FFT
[RFFTM]MIXED-RADIX REAL FFT
[AINT]TRUNCATE REAL

[ATAN]ARCTANGENT OF REAL
[CEXP]EXPONENTIAL OF COMPLEX
[CONJG]CONJUGATE OF COMPLEX
[CSORT]1SQUARE ROOT OF COMPLEX
[DNEG]NEGATE DOUBLE-PRECISION
[EXP]EXPONENTIAL OF REAL
[SQRT]SQUARE ROOT OF REAL
{ABS]REAL

[CABS] COMPLEX

[ACOS]REAL

{ASIN]REAL

[CCOS]COMPLEX

[COS]REAL

[RAN]SCALAR RANDOM

[COSH]REAL

{ SINH]REAL

{ TANH] REAL

[ALOG14]REAL

[ALOG]REAL

{CLOG]COMPLEX

[SIGN]REAL

[CSIN]COMPLEX

[SIN]REAL

[TAN]REAL

[NINT]JROUND REAL

{ANINT JROUND REAL

OF RATIO OF REAL

[VRAND JVECTOR RANDOM

[FUN1 |FUNCTION OF
[VLOR]VECTOR LOGICAL

LOGICAL EXCLUSIVE

VECTOR GREATER THAN
PREDICTOR

{ AMC1]ADAMS-MOULTON CORRECTOR
PREDICTOR

[AMC2 | ADAMS-MOULTON CORRECTOR
PREDICTOR

[AMC3]ADAMS-MOULTON CORRECTOR
PREDICTOR

{ AMC4]ADAMS-MOULTON CORRECTOR

FPS 864-7482-941C

NEGATE

NEGATIVE MULTIPLY

NEGATIVE TRANSPOSE MULTIPLY
NORM

NORM

NORMAL MOVEQUT

NOT

NOT

NOT EQUAL

NOT IN PLACE

NOT IN PLACE

NOT-IN-PLACE

NOT-IN-PLACE

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER ABSOLUTE VALUE
NUMBER ABSOLUTE VALUE
NUMBER ARCCOSINE

NUMBER ARCSINE

NUMBER COSINE

NUMBER COSINE

NUMBER GENERATOR

NUMBER HYPERBOLIC COSINE
NUMBER HYPERBOLIC SINE
NUMBER HYPERBOLIC TANGENT
NUMBER LOGARITHM

NUMBER LOGARITHM

NUMBER LOGARITHM

NUMBER SIGN TRANSFER
NUMBER SINE

NUMBER SINE

NUMBER TANGENT

NUMBER TO NEAREST INTEGER
NUMBER TO NEAREST WHOLE
NUMBERS. . . [ATAN2] ARCTANGENT
NUMBERS

ONE VARIABLE

OR

OR...[VLXOR]VECTOR

OR EQUAL...[LVGE]LOGICAL
ORDER 1...[ABPl]ADAMS-BASHFORTH
ORDER 1

ORDER 2...[ABP2]ADAMS-BASHFORTH
ORDER 2

ORDER 3...[ABP3]ADAMS-BASHFORTH
ORDER 3

ORDER 4...[ABP4]ADAMS-BASHFORTH
ORDER 4

INDEX

11

{ VRAMP]VECTOR
[RAN]SCALAR

[VRAND]VECTOR

[POST64]POST BITS TO
[ATAN2]ARCTANGENT OF

{ MRRUNR]JMIXED-RADIX RFFT
DOT PRODUCT REAL

[SAXPYN]NESTED
[SCASUM]SUM OF

[SDOTN JNESTED

[RFFTM |MIXED-RADIX
[(VPKR32]VECTOR
{AINT] TRUNCATE

{ ATAN JARCTANGENT OF

[EXP]EXPONENTIAL OF

[SQRT] SQUARE ROOT OF

[NINT]ROUND

[ANINT]ROUND

[ATAN2 JARCTANGENT OF RATIO OF
[CPOWCR]COMPLEX TO
(RPOW]REAL TO

{ DDOTRR]DOUBLE DOT PRODUCT
[RSFS2]SPARSE
[RSFR2] SPARSE
{RSSV2]SPARSE

[VUPR32]VECTOR HALFWORD
{RUFS2]SPARSE

{RUFR2]SPARSE

[RUSV2]SPARSE

[CRVADD JCOMPLEX AND
{CRVDIV]COMPLEX AND

{ CRVMUL]JCOMPLEX AND
{CRVSUB]JCOMPLEX AND
(SDOT]DOT PRODUCT OF
[CVREAL]JFORM COMPLEX VECTOR OF
[VREAL] EXTRACT
{CVRCIP|COMPLEX VECTOR
{(RRCP |REAL

[VRSQRT] VECTOR

(RECT |POLAR TO

{ AMOD]REAL/REAL DIVIDE
[MOD]INTEGER/INTEGER DIVIDE
MOVE AND LEVEL

{ VRVRS]VECTOR

{MRRUNR]MIXED-RADIX
[RSQRT]RECIPROCAL SQUARE
RECIPROCAL SQUARE

{VSQRT]VECTOR SQUARE
[CSQRT] SQUARE

[SQRT | SQUARE

{CROTG]COMPLEX GIVENS
(CSROT]COMPLEX 2-D
[SROTG]GIVENS PLANE

{ SROT | PLANE

FPS 864-7482-901C

RAMP
RANDOM NUMBER GENERATOR
RANDOM NUMBERS

RASTER

RATIO OF REAL NUMBERS
RAVEL/UNRAVEL PASS

REAL. . . [DDOTRR] DOUBLE
REAL A * X + Y

REAL AND IMAGINARY MAGNITUDES
REAL DOT PRODUCT

REAL FFT NOT-IN-PLACE
REAL HALFWORD PACK

REAL NUMBER

REAL NUMBER

REAL NUMBER

REAL NUMBER

REAL NUMBER TO NEAREST INTEGER
REAL NUMBER TO NEAREST WHOLE
REAL NUMBERS

REAL POWER

REAL POWER

REAL REAL

REAL SYMM FACTOR & SOLVE
REAL SYMMETRIC FACTOR
REAL SYMMETRIC SOLVE

REAL UNPACK

REAL UNSYM FACTOR & SOLVE
REAL UNSYMMETRIC FACTOR
REAL UNSYMMETRIC SOLVE
REAL VECTOR ADD

REAL VECTOR DIVIDE

REAL VECTOR MULTIPLY

REAL VECTOR SUBTRACT
REAL VECTORS

REALS

REALS OF COMPLEX VECTOR
RECIPROCAL

RECIPROCAL

RECIPROCAL SQUARE ROOT
RECTANGULAR CONVERSION
REMAINDER

REMAINDER
REPLACE. . . { MOVREP | SUB-IMAGE
REVERSE ORDERING ’
RFFT RAVEL/UNRAVEL PASS
ROOT

ROOT. .. [VRSQRT] VECTOR
ROOT

ROOT OF COMPLEX NUMBER
ROOT OF REAL NUMBER
ROTATION

ROTATION

ROTATION

ROTATION

INDEX

13

[VSINH]VECTOR

[KSMLV]K-TH

COMPLEX SYMM FACTOR AND
COMPLEX SYMMETRIC

COMPLEX UNSYM FACTOR AND
COMPLEX UNSYMMETRIC

REAL SYMM FACTOR AND
[RSSV2]SPARSE REAL SYMMETRIC
REAL UNSYM FACTOR AND
[RUSV2]SPARSE REAL UNSYMMETRIC
[SGESL |REAL GENERAL MATRIX
(LUSN]LU MATRIX

HERMITIAN EIGENSYSTEM
MATRIX EQUATION

MATRIX EQUATION

{CSOLV]COMPLEX SYSTEM
SYMMETRIC EIGENSYSTEM
[RS]REAL SYMMETRIC EIGENSYSTEM
[SGTSL]TRIDIAGONAL MATRIX
{SITSOL]SPARSE ITERATIVE
FORMAT EQUATION

{ SOLVEQ]LINEAR EQUATION
(TRIDIA]TRIDIAGONAL MATRIX
[VASORT]JVECTOR

[VISORT] VECTOR

[VSORT] VECTOR

[VSQ]VECTOR

[VSSQ]VECTOR SIGNED

[RSQRT]RECIPROCAL

[VRSQRT]VECTOR RECIPROCAL
[VSQRT] VECTOR

VECTOR MAGNITUDE
{MEASQV]MEAN OF VECTOR ELEMENT
[SVESQ]SUM OF VECTOR ELEMENT
[SVS]SUM OF VECTOR SIGNED
[ADAMS4]ADAMS VARIABLE

{ CMTRAC]COMPLEX

[CMTRAN | COMPLEX

AND REAL VECTOR

{CVSUB]COMPLEX VECTOR

TO DOUBLE-PRECISION

TO DOUBLE-PRECISION
(VISUB]VECTOR INTEGER
MULTIPLY, MULTIPLY, AND
[VMSB]VECTOR MULTIPLY AND
SCALAR MULTIPLY AND

[VSUB] VECTOR

[VSBM]VECTOR

{ VSBSM]VECTOR

{ MMTSUB] VECTOR

[MTMSUB]VECTOR

[MTTSUB] VECTOR

(TMMSUB]JVECTOR

[TMTSUB] VECTOR

FPS 864-7482-gF1C

SINE HYPERBOLIC

SMALLEST ELEMENT IN VECTOR
SOLVE...[CSFS2]SPARSE
SOLVE...[CSSV2]SPARSE
SOLVE...[CUFS2]SPARSE
SOLVE...[CUSV2]SPARSE
SOLVE...[RSFS2]SPARSE
SOLVE
SOLVE...[RUFS2]SPARSE
SOLVE

SOLVE

SOLVE CROUT
SOLVER...[CH]COMPLEX
SOLVER. . . { CMSOLV | COMPLEX
SOLVER. . . [CSOLVQ]COMPLEX
SOLVER
SOLVER...[EIGRS]REAL
SOLVER

SOLVER

SOLVER
SOLVER. .. [SKYSOL]SKYLINE
SOLVER

SOLVER

SORT ALGEBRAIC VALUES
SORT INTEGER VALUES

SORT WITH INDICES

SQUARE

SQUARE

SQUARE ROQT

SQUARE ROQT

SQUARE ROOT
SQUARED. . . [CVMAGS]COMPLEX
SQUARES

SQUARES

SQUARES

STEP INTEG.ORD 4
SUB-MATRIX TRACE
SUB-MATRIX TRANSPOSE
SUBTRACT. . .[CRVSUB]COMPLEX
SUBTRACT
SUBTRACT. .. { DSUBRR]SINGLE
SUBTRACT. .. [DSUB]DOUBLE

SUBTRACT
SUBTRACT. . . [VMMSB] VECTOR
SUBTRACT '
SUBTRACT...[VSMSB]VECTOR
SUBTRACT

SUBTRACT AND MULTIPLY
SUBTRACT AND SCALAR MULTIPLY
SUBTRACT MD-MD TO TM
SUBTRACT MD-TM TO MD
SUBTRACT MD-TM TO TM
SUBTRACT TM-MD TO MD
SUBTRACT TM-MD TO T™M

INDEX

15

[TTTADD]VECTOR ADD

[TMMSUB]VECTOR SUBTRACT

{ TMTSUB] VECTOR SUBTRACT

[TTMSUB] VECTOR SUBTRACT

[TTTSUB]VECTOR SUBTRACT
MATRIX MULTIPLY

[CMTRAC]COMPLEX SUB-MATRIX
[{ISIGN]INTEGER SIGN
[SIGN]REAL NUMBER SIGN
{CTRN2]2-D COORDINATE

[RDFT JREAL DISCRETE FOURIER
COORDINATE

{HLBRT |HILBERT

[CMTRAN] COMPLEX SUB-MATRIX
[MAXBT |MATRIX A TIMES B

[MTRANS]JMATRIX

[STMM] SUBMATRIX
[MATXBT] SUBMATRIX TRANSPOSE
[MNATXB] SUBMATRIX NEGATIVE
[MATXBT] SUBMATRIX

[VTRAPZ] VECTOR

[VF1L]VECTOR ZERO

[IMTQLL]DIAGONALIZE

{ IMTQL2]DIAGONALIZE A
[{HTRIDI]COMPLEX HERMITIAN
[VAINT] VECTOR

{ VFRAC]VECTOR

[GENTAB]GENERATE

[SMUPCK] SPARSE MATRIX

{ SVUPCK]SPARSE VECTOR
{VUP16]VECTOR 16-BIT BYTE
(VUP32 JVECTOR 32-BIT BYTE
[VUP8 JVECTOR 8-BIT BYTE
(VUPR32]JVECTOR HALFWORD REAL
16-BIT SIGNED BYTE

32-BIT SIGNED BYTE

8-BIT SIGNED BYTE

32-BIT SIGNED INTEGER
[VUUI32]VECTOR 32-BIT UNSIGNED
[(VUUI32]VECTOR 32-BIT
[CUFS2]SPARSE COMPLEX
[RUFS2]SPARSE REAL

[CUFR2]SPARSE COMPLEX
[RUFR2]SPARSE REAL

[CUSV2]SPARSE COMPLEX
[RUSV2]SPARSE REAL
(CCEPS | PHASE

[SHPHU] SCHAFER'S PHASE
[PKVAL]PEAK AND

[VASORT]VECTOR SORT ALGEBRAIC
[VISORT]JVECTOR SORT INTEGER
(FUN1 JFUNCTION OF ONE

[ADAMS4]ADAMS

[VARNMO INMO WITH

FPS 860-7482-941C

TM+TM TO TM

TM-MD TO MD

T™M-MD TO TM

TM-TM TO MD

T™™-TM TO TM .
TRACE. .. [CMMTRC]JCOMPLEX
TRACE

TRANSFER

TRANSFER

TRANSFORM

TRANSFORM
TRANSFORMATION. ..[CTRN3]
TRANSFORMER

TRANSPOSE

TRANSPOSE

TRANSPOSE

TRANSPOSE & MULTIPLY
TRANSPOSE MULTIPLY
TRANSPOSE MULTIPLY
TRANSPOSE TRANSPOSE MULTIPLY
TRAPEZOIDAL RULE INTEGRATION
TRENDS

TRIDIAGONAL MATRIX
TRIDIAGONAL MATRIX
TRIDIAGONALIZATION
TRUNCATE

TRUNCATE TO FRACTION
TWIDDLE FACTOR TABLE
UNPACK

UNPACK

UNPACK

UNPACK

UNPACK

UNPACK
UNPACK. . .{VUPS16]VECTOR
UNPACK. . .[VUPS32]VECTOR
UNPACK. . .[VUPS8 JVECTOR
UNPACK...[VUSI32]VECTOR
UNPACK

UNSIGNED UNPACK

UNSYM FACTOR & SOLVE
UNSYM FACTOR & SOLVE
UNSYMMETRIC FACTOR
UNSYMMETRIC FACTOR

 UNSYMMETRIC SOLVE

UNSYMMETRIC SOLVE

UNWRAP AND COMPLEX CEPSTRUM
UNWRAPPING

VALLEY PICKING

VALUES

VALUES

VARIABLE

VARIABLE STEP INTEG.ORD 4
VARIABLE VELOCITY

INDEX

- 17

[SVS]1SUM OF
[CRVSUB]JCOMPLEX AND REAL

{CVSUB JCOMPLEX

{ CSWAP] COMPLEX

{ SVUPCK] SPARSE

3X3 MATRIX MULT. 3D

4X4 MATRIX MULT. 4D
[SDOT]DOT PRODUCT OF REAL
DISTANCE BETWEEN TWO

[SSWAP] INTERCHANGES
[CONNMO]NMO WITH CONSTANT
{ VARNMO]NMO WITH VARIABLE
REAL NUMBER TO NEAREST

[BLRMAN] BLACKMAN

[HAMM |HAMMING

[HANN | HANNING

[TMMM]MATRIX MULTIPLY TM
[CAXPYNINESTED COMPLEX A *
[CAXPY JCOMPLEX A *

[SAXPYN]NESTED REAL A *
[SAXPY]REAL A *
[CAXPYNINESTED COMPLEX A * X +
[CAXPY]COMPLEX A * X +
[SAXPYN]NESTED REAL A * X +
[SAXPY]REAL A * X +
{V@1]VECTOR

EQUATION, 2 POLES, 2
[VSCANg]JVECTOR SCAN FOR

FPS 864-7482-441C

VECTOR SIGNED SQUARES
VECTOR SUBTRACT

VECTOR SUBTRACT

VECTOR SWAP

VECTOR UNPACK
VECTORS. . . [CMVML3] COMPLEX
VECTORS. . . [CMVML4] COMPLEX
VECTORS
VECTORS. . . [SN2]SQUARED
VECTORS

VELOCITY

VELOCITY
WHOLE. . . [ANINT]ROUND
WINDOW MULTIPLY

WINDOW MULTIPLY

WINDOW MULTIPLY

WORKSPACE

X+Y

+ + +

Y
Y
Y

KKK KK

ZERO TRENDS
ZEROS...[DEQ22 |DIFFERENCE
ZEROS

INDEX - 19

Please detach cards along perforations.

fill

(¢

Your comments will help us improve the quality and usefulness of our publications. Pleas
out and return this form. (The mailing address is on the back.)

Title of document:

Your Name and Title: Date:

Firm: Department:

Address:

City: State: Zip Code:

Telephone Number: () Extension:

I used this manual. . . I found this material. . .
Yes

O as an introduction to the subject accurate

O to instruct a class written clearly
O to learn operating procedures well illustrated

oocoodo
coooos

Q as a reference manual well indexed

| [T
= oiher

Please indicate below, listing the pages, any errors you found in the manual. Also indicate if
you would have liked more information about a certain subject.

=
o
-
=
E—
~
=]
§ O as an aid for advanced training complete
-
-
L
o=
=
@
=T
=
=

ARRAY is an independent society of people who use FPS products. Membership is free
and includes a quarterly newsletter. There is an annual conference, as well as other
activities. If you are interested in becoming an ARRAY member, please fill out and

return this form. (The mailing address is on the back.)

Your Name and Title: Date:
Firm: Department:

Address:

City: State: Zip Code:

Telephone Number: () Extension:

I0 LdTd §10C7i7 %
AVEE NIOdIVOTd 04058 o]
ISTE-[F9/€05 13]

At AT IA T Th oo T T
VDS 3 puniiavudq OxVL e AV 'Ua

"ONI "SIN3LSAS
INIOd ONILVO4

