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REVISION HISTORY 

This manual is the APMATH64 Manual, Volume 3, 86H-7482-HH1. The letter 
shown under the revision number column indicates the portion of the 
part number that changes for each revision. The last entry is the 
latest revision to this manual. 

REV. NO. 

-HHlA 

-HHlB 

I I 

DESCRIPTION 

The revision history begins with this manual. 

Deleted Utilities Library, deleted the 
LPSPFI subroutine, added internal subroutine 
information, and added 16 new routines. 

Added routines to Basic Math Library 
Double Precison Library, and Matrix 
Algebra Accelerated Math Library. 

8/86 

1/87 

12/87 

NOTE: For revised manuals, a vertical line "I" outside the left 
margin of the text signifies where changes have been made. 



NOTE TO READER 

This is the third volume of the APMATH64 Manual. It 
is comprised of part 3 of Appendix A and Appendix B 
through Appendix J. Note that Appendix A continues 
through Volumes l, 2, and 3. The page numbers are 
listed consecutively through the volumes. 

The APMATH64 Manual has three indices located at the 
end of Volume 3 and two at the end of Volume 4. The 
first index (Appendix I) is a list of the APMATH64 
routines in page order by type= The second index 
(Appendix J) is an alphabetical list of all the 
APMATH64 routines. The third index is a key word 
index of the APMATH64 routines. The fourth index 
(Appendix L) is an alphabetical list of the 
APMATH64/MAX routines. The fifth index is a key word 
index of the APMATH64/MAX routines. 
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APPENDIX A 

********** ********** 
* * * * 
* MMTMUL * - VECTOR MULTIPLY (MD*MD TO TM) --

* * * * 
********** ********** 

PURPOSE: To multiply the elements of two vectors in Main 
Memory and store the resultant vector in Table 
Memory. 

CALL FORMAT: CALL MMTMUL(A,I,B,J,ITMC,K,N) 

PARAMETERS: A = Floating-point Main Memory input vector 
I = Integer element step for A 

B = Floating-point Main Memory input vector 
J = Integer element step for B 
!TMC = Tnf-i::ani::ar base address of TM output vector -··--"='--
K = Integer element step for c 
N = Integer element count 

c 

DESCRIPTION: MMTMUL multiplies N elements of the vector A with N 
elements of the vector B, where A and B are in Main 
Memory, and stores the results in a vector with base 
address ITMC and increment K in Table Memory. 

NOTE: Writable Table Memory begins at address 8192. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMC = 8192 

A 

B 

TMLOC: 
c 

1..0' 
3 • .0' 

8192 
3 • .0' 

FPS 863-7482-931C 

2 • .0' 
4 • .0' 

8193 
8 • .0' 

8194 
15 • .0' 
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APPENDIX A 

********** ********** 
* * * * 
* MTIMOV * - VECTOR MOVE WITH INCREMENT (MD TO TM) - * M'rIMOV * 
* * * * 
********** ********** 

PURPOSE: To move elements of a vector from Main Memory 
to Table Memory, where the increments betwee~ the 
elements are specified. 

CALL FORMAT: CALL MTIMOV(A,I,ITMC,K,N) 

PARAMETERS: A = Floating-point Main Memory input vector 
I = Integer element step for A 
ITMC = Integer base address of TM output vector c 
K = Integer element step for c 
N = Integer element count 

DESCRIPTION: MTIMOV moves the elements of an input vector A with 
increment I in Main Memory to an output vector with 
base address ITMC and increment K in Table Memory. 

NOTE: Writable Table Memory begins at address 8192. 

EXAMPLE: 
N = 3 
K = 2 
ITMC = 8192 

A 1..0 2 • .0 3 • .0 

TMLOC: 8192 8193 8194 8195 8196 8197 
c 1 . .0 x 2 • .0 x 3 • .0 x 

X represents unchanged values. 

FPS 869-7482-HSlC Page A - 479 



APPENDIX A 

********** ********** 
* * * * 
* MTMMUL * - VECTOR MULTIPLY (MD*'l'M TO MD) -- * M'1'MMUL * 
* * * * 
********** ********** 

PURPOSE: To multiply elements of a vector in Main Memory 
by elements of a vector in Table Memory and 
store the products in Main Memory. 

CALL FORMAT: CALL MTMMUL(A,I,ITMB,J,C,K,N) 

PARAMETERS: A = Floating-point Main Memory input vector 
I = Integer element step for A 

ITMB = Integer base address of TM input vector 
J = Integer element step for B 
c = Floating-point Main Memory output vector 
K = Integer element step for c 
N = Integer element count 

B 

DESCRIPTION: MTMMUL multiplies N elements of the vector A in Main 
Memory by N elements of the vector with base address 
ITMB in Table Memory, and stores the products in N 
elements of the vector C in Main Memory. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMB=8192 

A 1.-'J 2.-'J 3.fJ 

TMLOC: 8192 8193 8194 
B 2.-'J 3.-'J 4 .-'J 

c 2.'1 6.kI 12.-'J 
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APPENDIX A 

********** ********** 
* * * 

* MTMSUB * - VECTOR SUBTRACT (MD-TM TO MD) -

* * * * 
********** ********** 

PURPOSE: To subtract the elements of a vector in Table 
Memory from the elements of a vector in Main 
Memory and store the results in a vector in 
Main Memory. 

CALL FORMAT: CALL MTMSUB(A,I,ITMB,J,C,K,N) 

PARAMETERS: A = Floating-point Main Memory input vector 
I = Integer element step for A 

ITMB = Integer base address of TM input vector 
J ~ Tn+-on.co1"' element c:+-on Fnr B ....... ""'"-":S ......... 

._. __ !:"' _..,._ 
c = Floating-point Main Memory output vector 
K = Integer element step for c 
N = Integer element count 

B 

DESCRIPTION: MTMSUB subtracts N elements of a vector with base 
address ITMB in Table Memory from N elements of the 
vector A in Main Memory, and stores the results in N 
elements of the vector C in Main Memory. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMB = 8192 

A 3. g 4 • .0' 5.0 

TMLOC: 8192 8193 8194 
B 2 • .0' 1..0' 1.0 

c 1..0' 3 • .0' 4 • .0' 
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APPENDIX A 

********** ********** 
* * * * 
* M'.rTMUL * - VECTOR MULTIPLY (MD*TM TO TM) - * MT'rMUL * 
* * * * 
********** ********** 

PURPOSE: To multiply the elements of a vector in Main 
Memory by the elements of a vector in Table 
Memory and store the products in a vector in 
Table Memory. 

CALL FORMAT: CALL MTTMUL(A,I,ITMB,J,ITMC,K,N) 

PARAMETERS: A = Floating-point Main Memory input vector 
I = Integer element step for A 
ITMB = Integer base address of TM input vector 
J = Integer element step for B 

B 

ITMC = Integer base address of TM output vector C 
K = Integer element step for c 
N = Integer element count 

DESCRIPTION: MTTMUL multiplies N elements of the vector A in Main 
Memory by N elements of the vector with base address 
ITMB in Table Memory, and stores the products in N 
elements of a vector with base address ITMC in Table 
Memory. 

NOTE: Writable Table Memory begins at address 8192. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMB = 8192 
ITMC = 8292 

A 

TMLOC: 
B 

TMLOC: 
c 

3. kJ 

8191 
2. kJ 

8292 
6.0 
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4 • .0 5 • .0 

8193 8194 
1..0 3 • .0' 

8293 8294 
4. 0 15 • .0' 
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APPENDIX A 

********** ********** 
* * * * 
* TMDOT * - REAL DOT-PRODUC'l' {TM AND MD) - * TMDOT * 
* * * * 
********** ********** 

PURPOSE: Computes the real dot-product of two vectors 
where one vector is stored in Main Memory and 
the other vector is stored in Table Memory. 
Both vectors are assumed to be stored compactly. 

CALL FORMAT: CALL TMDOT (ITMA,B,C,N) 

PARAMETERS: ITMA = Integer base address of TM input vector A 
B = Floating-point Main Memory input vector 
c = Floating-point Main Memory output scalar 
N = Integer element count 

DESCRIPTION: TMDOT computes the real dot-product of N elements of 
the vector with base address ITMA in Table Memory with 
N elements of the vector B in Main Memory, and stores 
the resultant scalar in Main Memory. 

EXAMPLE: 

Formula: 
C = A(l)*B(l) + A(2)*B(2) + ••• + A(N)*B(N) 
C = 0.0, if N < 1 

N = 3 
ITMA = 8192 

TMLOC: 8192 8193 8194 
A 1.0 2 .kJ 3.0 

B 3.0 4 .kJ 5 .kJ 

c = 26.kJ 
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APPENDIX A 

********** ********** 
* * * 
* TMMM * - MATRIX MULTIPLY (TM WORKSPACE) --- * TMMM * 
* * * * 
********** ********** 

PURPOSE: Multiplies two matrices A and B in Main Memory 
to form a matrix C in Main Memory. This routine 
uses a workspace in Table Memory to achieve high 
speed. 

CALL FORMAT: CALL TMMM (A,B,C,MC,NC,NA,ITMW) 

PARAMETERS: A = Floating-point Main Memory input matrix 
B = Floating-point Main Memory input matrix 
c = Floating-point Main Memory output matrix 
MC = Integer number of rows in output matrix C 

(and input matrix A) 
NC = Integer number of columns in output matrix 

(and input matrix B) 
NA = Integer number of columns in input matrix A 

(and number of rows of input matrix B) 

c 

ITMW = Integer base address of TM work area of length 

DESCRIPTION: TMMM computes the product of the MC-row by NA-column 
matrix A and the NA-row by NC-column matrix B (both in 
Main Memory) and stores the result in the MC-row by 
NC-column matrix B in Main Memory. This routine 

NA 

uses a workspace of length NA in Table Memory to achieve 
high speed. All matrices are assumed to be stored in 
column order. 

NOTE: Writable Table Memory begins at location 8192. 

EXAMPLE: 
A = 

FPS 869-7482-iHlC 

1..0 2.'1 
3 • .0 4 • .0' 

B = 2 • .0' 6 • .0 9 • .0 
3 • .0' 7 • .0 4 • .0' 
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********** 
* * 
* TMMSUB * 
* * 
********** 

PURPOSE: 

- VECTOR SUBTRACT (TM-MD TO MD) -

To subtract the elements of a vector in Main 
Memory from the elements of a vector in Table 
Memory and store the results in a vector in 
Main Memory. 

CALL FORMAT: CALL TMMSUB(ITMA,I,B,J,C,K,N) 

PARAMETERS: ITMA = Integer base address of TM input vector 
I = Integer element step for A 
B = Floating-point Main Memory input vector 
J = Integer element 

_ .... __ 
~ ..... - D 

o::>l..l::}:I .LU.I. D 

c = Floating-point Main Memory output vector 
K = Integer element step for c 
N - Integer element count 

APPENDIX A 

****'****** 
* * 
* TMMSUB * 
* * 
***'******* 

A 

DESCRIPTION: TMMSUB subtracts N elements of the vector B in Main 
Memory from N elements of the vector with base address 
ITMA in Table Memory, and stores the differences in the 
vector C in Main Memory. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMA=8192 

TMLOC: 8192 8193 8194 
A 3 • .0 4 • .0 5 • .0 

B 1..0 3 • .0 2 • .0 

c 2 • .0 1..0 3 • .0 
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APPENDIX A 

********** ********** 
* * * * 
* TMVLC2 * - VECTOR LINEAR COMBINATION -- * TMVLC2 * 
* * * * 
********** ********** 

PURPOSE: To compute the linear combination of two vectors, 
one in Table Memory and the other in main memory, 
and store the resultant vector in main memory. 

CALL FORMAT: CALL TMVLC2 (Sl, ITMA, 52, B, J, C, K, N) 

PARAMETERS: 51 = Floating-point scalar coefficient 
for the TM input vector A 

ITMA = Integer base address of the TM input 
vector A 

~., = ,.., ....... ~ ~.: "",.._....,,...,.; "" .. scalar coefficient ~~ J: .J.VCL ,,_ .J.,U':f ~ J:o'V .A..U '-

for the MD input vector B 
B = Floating-point MD input vector 
J = Integer element step for B 
c = Floating-point MD output vector 
K = Integer element step for c 
N = Integer element count 

DESCRIPTION: C(m) = 51 * A(m) + 52 * B(m); for m = l to N 

EXAMPLE: 

Where A is in Table Memory, and B, 51, 52, and C 
are in main memory. 

N = 3 
Sl = -1..0' 
S2 = 2 • .0' 
J = l 
K = 1 
ITMA = 8192 

TMLOC: 8192 8193 8194 
A 1..0' 2 • .0' 3 • .0' 

B 4 • .0' .0'.5 .0' • .0' 

c 7 • .0' -1..0 -3 • .0' 
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********** 
* * 
* ir-I'MADD * 

* * 
********** 

PURPOSE: 

VECTOR ADD (TM+TM TO MD) --

To add the elements of two vectors in Table 
Memory and store the sums in Main Memory. 

CALL FORMAT: CALL TTMADD(ITMA,I,ITMB,J,C,K,N) 

PARAMETERS: ITMA = Integer base address of TM input vector 
I = Integer element step for A 
ITMB = Integer base address of TM input vector 
J = Integer element step for B 
c = Floating-point Main Memory output vector 
TJ' = T..,..._"",.." ... element step 4=,... ... ,.. 
" .............. '=' .... .... ...,. ..... 

N = Integer element count 

APPENDIX A 

********** 
* * 
* T'l'MADD * 
* * 
********** 

A 

B 

DESCRIPTION: TTMADD adds N elements of the vector with base address 
ITMA in Table Memory to N elements of the vector with 
base address ITMB in Table Memory, and stores the sums 
in N elements of the vector C in Main Memorye 

EXAMPLE: 
N=3 
I=J=K=l 
ITMA = 8192 
ITMB = 8292 

TMLOC: 8192 8193 8194 
A 1..0' 2 • .0' 3 • .0' 

TMLOC: 8292 8293 8294 
B 4 • .0' 5 • .0' 6 • .0' 

c 5 • .0' 7 • .0' 
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APPENDIX A 

********** *'*'*'*'****** 
* * * * 
* T'1'MSUB * -- VEC'l'OR SUBTRACT (TM-TM TO MD) - * 'l"l'MSUB * 
* * * * 
******'**** ********** 

PURPOSE: To subtract the elements of two vectors in Table 
Memory and store the differences in a vector in 
Main Memory. 

CALL FORMAT: CALL TTMSUB(ITMA,I,ITMB,J,C,K,N) 

PARAMETERS: ITMA = Integer base address of TM input vector A 

I = Integer element step for A 

ITMB = Integer base address of TM input vector B 
J = Integer element step for B 

c ~ Floating-point Main Memory ,-.11rn11r vector ....,,., ...... t""' ... -

K = Integer element step for c 
N = Integer element count 

DESCRIPTION: TTMSUB subtracts N elements of the vector with base 
address ITMB in Table Memory from N elements of the 
vector with base address ITMA in Table Memory, and 
stores the resulting differences in a vector C in Main 
Memory. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMA = 8192 
ITMB = 8292 

TMLOC: 8192 
A 3 • .0 

TMLOC: 8292 
B 2 • .0 

c 1..0 

FPS 866-7482-HHlC 

8193 8194 
4 . .0 5 • .0 

8293 8294 
1..0 1..0 

3 • .0' 4 • .0' 
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APPENDIX A 

********** ********** 
* * * * 
* T'l'TMUL * --- VECTOR MULTIPLY (TM*TM TO TM) - * T'l'TMUL * 
* * * * 
********** ********** 

PURPOSE: To multiply the elements of two vectors in Table 
Memory and store the resulting products in a 
vector in Table Memory. 

CALL FORMAT: CALL TTTMUL(ITMA,I,ITMB,J,ITMC,K,N) 

PARAMETERS: ITMA = Integer base address of TM input vector A 
I = Integer element step for A 
ITMB = Integer base address of TM input vector B 
J = Integer element step for B 
ITMC = 

.,._,,_ ____ 1---- _..;i..;i ____ 
-$: m-. • -··'--··~ ··--~ -- ,,.. 

~.u1..cy1::J. LJClQC ClUUJ.C;::)Q Vl.. .LL"l UUl..,l:JUI.. VC\,,,l..U.L "" K = Integer element step for c 
N = Integer element count 

DESCRIPTION: TTTMUL multiplies N elements of the vector with base 
address ITMA in Table Memory by N elements of the 
vector with base address ITMB in Table Memory, and 
stores the resultant products in the vector with base 
address ITMC in Table Memory. 

NOTE: Writable Table Memory begins at address 8192. 

EXAMPLE: 
N=3 
I=J=K=l 
ITMA = 8192 
ITMB = 8292 
ITMC = 8392 

TMLOC: 8192 
A 1..0' 

TMLOC: 8292 
B 3 • .0' 

TMLOC: 8392 
c 3 • .0' 
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8193 8194 
2 • .0' 3 • .0' 

8293 8294 
4 • .0' 5 • .0' 

8393 8394 
8 • .0' 15 • .0' 
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********** 
* * 
* 'l'TVLC2 * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* 

- VECTOR LINEAR COMBINATION -- * TTVLC2 * 
* * 
********** 

To compute the linear combination of two vectors, 
one in Table Memory and the other in main memory: 
and store the resultant vector in Table Memory. 

CALL FORMAT: CALL TTVLC2 (51, ITMA, 52, B, J, ITMC, N) 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

51 = Floating-point scalar coefficient for the 
TM input vector A 

ITMA = Integer base address of the TM input 
vector A 

S2 = Floating-point scalar coefficient 
,e __ 

J:.0.[" 

MD input vector B 
B = Floating-point MD input vector 
J = Integer element step for B 
ITMC = Integer base address of the TM output 

vector c 
N = Integer element count 

C(m) = Sl * A(m) + 52 * B(m); for m = 1 to 

Where A and C are in Table Memory, and B, Sl, 
and S2 are in main memory. 

the 

N 

Note: Writable Table Memory begins at address 8192. 

N = 3 
Sl = -l.kl 
S2 = 2.kl 
J = 1 
ITMA = 8192 
ITMC = 8195 

TMLOC: 8192 8193 8194 
A l.kl 2.kl 3.kl 

B 4 .kl kl.5 kl.kl 

TMLOC: 8195 8196 8197 
c 7.kl -l.kl -3.kl 
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APPENDIX A 

SPECIAL UTILITIES LIBRARY 

FPS 86H-7482-S&lC Page A - 5.9'3 



********** 
* 

* PEEK * 
* * 
********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

APPENDIX A 

********** 

- MF.MORY FE'1'CB - * PEEK * 
* * 
********** 

To fetch the contents of a specified memory word. 

Function Value = PEEK(Addr) 

Function Value = The unformatted contents of the 
specified memory location 

Addr = An integer specifying the address 
to be accessed 

The specified memory location is accessed and its 
contents returned as the function-value output. ~ne 

output is the unformatted word. That is, no format 
conversion is performed by the function. 

(Assuming location 1000 contains 
01 23 34 56 78 9A BC DE (hex) ) 

Addr 1000 
Function Value gi 23 34 56 78 9A BC DE 
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APPENDIX A 

DATA FORMATTING LIBRARY 
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APPENDIX A 

********** ********** 

* * * * 
* VIFIX * - VECTOR INTEGER FIX -- * VIFIX * 
* * * * 
********** ********** 

PURPOSE: To fix to 53-bit integers the elements of a 

CALL FORMAT: CALL VIFIX(A,I,C,K,N,F) 

PARAMETERS: A = Floating-point input vector 
I = Integer element step for A 
c = Long-integer output vector 
K = Integer element step for c 
N = Integer element count 
F = Integer flag (J to round, l to truncate) 

DESCRIPTION: C(m)=FIX(A(m)); for m=l to N 

EXAMPLE: 

N = 4 
F = 0 

A 1. 7 -1.5 -3.2 3.5 
c 2 -2 -3 4.0 

N = 4 
F = l 

A 1. 7 -1.5 -3.2 3.5 
c l -1 -3 3.0 
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********** 
* 

* VPK16 * 

* 
********** 

PURPOSE: 

APPENDIX A 

********** 
* 

- VECTOR 16-BIT BYTE PACK - * VPK16 * 
* 
********** 

To pack each four 64-bit floating-point numbers 
into one destination word as 16-bit quarter words. 

CALL FORMAT: CALL VPK16(A,I,C,K,N,F) 

PARAMETERS: A = Floating-point input vector 
I = Integer element step for A 
c = Signed-quarterword-integer output vector 
K = Integer element step for c 
N = Integer element count (destination words) 
F - Integer flag (XI to round, l to truncate; 

DESCRIPTION: VPK16 fixes and packs four floating-point numbers from 
vector A into 16-bit quarter words in a single word of 
vector C, packing an array of positive integers with 
values from .0' to 65535, or an array of signed two's 
complement integers with values from -32768 to 32767, 
but does not check for out-of-range values. 

EXAMPLE: 

N = 2 
F = ff 

A 8.3 -7e9 6.5 5.6 4.1 3.4 -2.5 1.1 

c ffff08FFF80.0'ff 6ffff06 .0'.0'ff 4.0'.0'.0'3FFFEHffkH 

F = 1 

A 8.3 -7.9 6.5 5.6 4.1 3.4 -2.5 1.1 

c .0'.0'.0'8FFF9.0'.0'ff 6.0'.0'.0'5 .0'HH 4 .0'H.0' 3FFFE0HfH 
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**'*'******* ********** 

* * * * 
* VPKI32 * - VECTOR 32-BI'l' INTEGER PACK -- * VPKI32 * 
* * * * 
********** ********** 

PURPOSE: To pack each two 32 bit halfword integer source words 
;,...P,.. ,......,,,,. ,:i.,..,,p;,..,,,.p;,..,.. •. ,,..,,.,:i ::>e! h::.l;:Y_,,..,,.,.,_;T'l+-onol'"C!-n:ii,..~o,., 
.i..i..i.i.V V.6.£~ .....,li;"._lii.o..i..i.4~V.i.'1J.&..i. "9'-1..,,,_,. .,...,. ••"'4•.-""''-'~'lltoioC. •~•'-.-.,.'::J'-"-....., ,t-'....,..._. .. ,..._-.. 

CALL FORMAT: CALL VPKI32(A,I,C,K,N) 

PARAMETERS: A = Halfword integer input vector 
I = Integer element step for A 
C = Halfword-integer-packed output vector 
K = Integer element step for C 
N = Integer element count (destination words) 

DESCRIPTION: C(m) bits f1 to 31 = A(2m-l) 
C(m) bits 32 to 63 = A(2m) 

for m=l to N 

bits 32 to 63 
bits 32 to 63 

EXAMPLE: 

(Bits are numbered fI-63 from left to right). 

VPKI32 packs two halfword integers from vector A into 
32-bit halfwords in a single word of vector C. It 
packs an array of positive integers with values from 
f1 to 4294967295, or an array of signed 2's complement 
integers with values from -2147483648 to 2147483647. 
VPKI32 does not check for values out of range. 

N = 3 

I = 2 

K = 3 (XXX indicates 'undefined') 

A: 8f1Cf1f1f1f1f1f1f1f1f1f1HH6 C: f1f1f1Hf1f1f16f1f1f1f1f1f1H4 
8f1Af1f1f1f1f1f1f1f1f1f1Hf15 xxxxxxxxxxxxxxxx 
8f18f1f1f1f1f1f1f1f1tJf1Hf14 xxxxxxxxxxxxxxxx 
8f16f1f1f1f1f1fJf1f1f1f1f1f13 f1f1f1f1f1f102f1f1f1f1f1f1f1f1 
f1f1f1f1fJf1f1f1f1f1f1f1f1f1fJ2 xxxxxxxxxxxxxxxx 
f1 fifififififI f1 f1 ggg f1 fifil xxxxxxxxxxxxxxxx 
80f1f1f1f1f1f1f1f1f1f10f1f1f1 FFFFFFFEFFFFFFFC 
7FFFFFFFFFFFFFFF 
7FDFFFFFFFFFFFFE 
f10f1fifif1f1fIFFFFFFFD 
f10fJfifJf100FFFFFFFC 
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********** 
* * 
* VSCALE * 
* * 
********** 

PURPOSE: 

APPENDIX A 

********** 
* * 

- VECTOR SCALE AND FIX -- * VSCALE * 
* * 
********** 

To scale the elements of a vector by a power of 2 such 
that a selected scalar will just fit into a specified 
integer bit width, and then fix the scaled elements 
to integers. 

CALL FORMAT: CALL VSCALE(A,I,B,C,K,N,NB,IEXP) 

PARAMETERS: A = Floating-point input vector 
I = Element step for A 
B = Floating-point input scalar 
C - Long-integer output vector 
K = Element step for C 
N = Element count 
NB = Long-integer input scalar 

(Desired width, 2 to 28 bits, of integers) 
!EXP = Long-integer output scalar 

(Exponent of scale factor used) 

DESCRIPTION: C(m) = FIX (A(m)*{2**IEXP}) for m=.0' to N-1 
where IEXP=NB-E-1, 

EXAMPLE: 

and B = FRAC*(2**E). 
VSCALE scales by a power of 2 every element of the 
vector A so that the scalar B will just fit into an 
NB-bit width integer, and then fixes the scaled elements 
and stores them in vector c. !EXP is set to the scale 
factor chosen. If the scalar is larger in magnitude 
than any element of A, no fixing overflows will occur. 

(with N=S, NB=l2) 

B HJ • .0' 
A ig • .0' 5 • .0' g.2 -4 • .0' .0'.gl 
c 128.0' 64.0' 25 -512 1 
!EXP : 7 
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********** 
* * 
* VSBFX * 

* * 
********** 

PURPOSE: 

- VECTOR SHIFT AND FIX --

To shift (multiply by a power of 2) and then 
fix (truncate) to integers the elements of a 
floating-point vector. 

CALL FORMAT: CALL VSHFX(A,I,C,K,N,NS) 

PARAMETERS: A = Floating-point input vector 
I = Integer element step for A 

c = Long-integer output vector 
K = Integer element step for c 
N - Integer element count 
NS = Integer power of 2 (May be negative) 

DESCRIPTION: C(m)=FIX{A(m)*(2**NS)}; for m=l to N 

EXAMPLE: 

N = 3 
NS = 2 

A l.g 2.g 3.2 
c 4 8 12 

FPS 86i-7482-i91C 

APPENDIX A 

********** 
* * 
* VSHFX * 
* * 
********** 
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********** ********** 
* * * * 
* VUP8 * - VECTOR 8-BIT BYTE UNPACK --- * VUP8 * 
* * * * 
********** ********** 

PURPOSE: To unpack eight 8-bit unsigned bytes from each 

words as 64-bit floating-point numbers. 

CALL FORMAT: CALL VUP8(A,I,C,K,N) 

PARAMETERS: A = Unsigned-byte-integer input vector 
I = Integer element step for A 
c = Floating-point output vector 
K = Integer element step for C 
N = Integer element count (source words) 

DESCRIPTION: Unpacks eight 8-bit bytes from a single word of 

EXAMPLE: 

vector A storing them as eight floating-point numbers 
in vector C. The unpacked bytes have values from .0 to 
255. 

N = 2 

c 8 • .0 
8 • .0 

6 • .0 
6 • .0 

5 • .0 
5 • .0 

2.H 
2.kJ 
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********** ********** 
* * * * 
* VUP32 * - VECTOR 32-BIT BYTE UNPACK - * VUP32 * 

* * * * 
********** ********** 

PURPOSE: To unpack two 32-bit unsigned halfwords 
from each source word and store them in 
two destination words as 64-bit floating-point 
positive numbers. 

CALL FORMAT: CALL VUP32(A,I,C,K,N) 

PARAMETERS: A = Unsigned-halfword-integer input vector 
I = Integer element step for A 

c = Floating-point output vector 
K = .!.m:eger element step for c 
N = Integer element count (source words) 

DESCRIPTION: VUP32 unpacks two 32-bit halfwords from a single 
word of vector A, storing them as two positive 64-bit 
floating-point integers in vector c. The unpacked 
halfwords have values from 0 to 4294967295. 

EXAMPLE: 

N = 4 

A 0000000800000007 
0000000600000005 
0000000400000003 
0000000200000001 

c 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 
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********** 
* * 
* VUPS8 * 
* * 
********** 

PURPOSE: 

********** 
* * 

- VECTOR 8-BIT SIGNED BYTE UNPACK - * VUPSS * 

* * 
********** 

To unpack eight 8-bit signed bytes from 
each source-word and store them in eight destination 
words as 64-bit floating-point numbers. 

CALL FORMAT: CALL VUPS8(A,I,C,K,N) 

PARAMETERS: A = Signed-byte-integer input vector 
I = Integer element step for A 
c = Floating-point output vector 
K = Integer element step for C 
N = Integer element count (source words) 

DESCRIPTION: VUPS8 unpacks eight 8-bit signed bytes from 

EXAMPLE: 

a single word of vector A, storing them as eight 
floating-point numbers in vector C. The unpacked 
bytes have values from -128 to 127. 

N = 2 

c a.g -1.g 6.g 
a.g 1.g -6.g 

5 • .0 
s.g 

4 • .0 -3.g 
4.g 3.g 

2.f! 
-2.f! 

l.f! 
1..0 
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********** ********** 
* * * * 
* VUPS32 * - VECTOR 32-BIT SIGNED BYTE UNPACK - * WPS32 * 
* * * * 
********** ********** 

PURPOSE: To unpack two 32-bit signed two's complement 
halfwords from each source word and store them 
in two destination words as signed 64-bit 
floating-point numbers. 

CALL FORMAT: CALL VUPS32(A,I,C,K,N) 

PARAMETERS: A = Signed-halfword-integer input vector 
I = Integer element step for A 
c = Floating-point output vector 
K - Integer element -.L.-- ~--

,.. 
::Ii I.. CJ:I .LVJ. '-

N = Integer element count (source words) 

DESCRIPTION: VUPS32 unpacks two 32-bit signed two's complement 
halfwords from a single word of vector A, storing 
them as two floating-point numbers in vector c. The 
unpacked halfwords have values from -2147483648 to 
2147483647. 

EXAMPLE: 

N = 4 

A gggggggsFFFFFFF9 
ggggggg6HkJHHHHH5 
FFFFFFFCFFFFFFFD 
FFFFFFFEH'1000HH1 
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********** 
* 

* VUUI32 * 
* * 
********** 

PURPOSE: 

********** 
* * 

- VEC'l'OR 32-BI'l' UNSIGNED UNPACK - * VUUI32 * 
* * 
********** 

To unpack two 32-bit halfword integers from each 
source word and store them as two destination words, 
in unsigned integer format. 

CALL FORMAT: CALL VUUI32(A,I,C,K,N) 

PARAMETERS: A = Halfword integer packed input vector 
I = A address increment 
c = 32 bit integer output vector 
K = C address increment 
N = Integer element count (source words) 

DESCRIPTION: C(2m-l) = A(m) bits g to 31 
C(2m) = A(m) bits 32 to 63 

for m=g to N-1 

EXAMPLE: 

(Bits are numbered g-63 from left to right). 

VUUI32 unpacks two 32-bit unsigned halfword integers 
from a single word of vector A and stores them as 
two unsigned halfword integers in vector C. The 
unpacked halfwords have values from g to 4294967295. 

N = 3 

I = 3 

K = 2 

A: gggggggaggggggg7 C: 

HHH'1HHH6HH'1HHH05 
eeeeee04eemrne0J 
ggggggg2ggggggg1 
FFFFFFFFFFFFFFFE 
FFFFFFFDFFFFFFFC 
FFFFFFFBFFFFFFFA 

(XXX indicates 'undefined') 

gg&Jgggggggggg&Jea 
xxxxxxxxxxxxxxxx 
'1'10ftJH'1HftJH0HHHH01 
xxxxxxxxxxxxxxxx 
gg&jgggggggggg&Jg2 
xxxxxxxxxxxxxxxx 
'1'1'100'1HH'1fiHrnHH'11 
xxxxxxxxxxxxxxxx 
H'1'10HHH'1FFFFFFFB 
xxxxxxxxxxxxxxxx 
'1'10000HHFFFFFFFA 
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********** ********** 
* * * * 
* DADD * - DOUBLE TO DOUBLE-PRECISION ADD * DADD * 
* * * 
********** ******"**** 

PURPOSE: To form a double-precision sum of two 

CALL FORMAT: CALL DADD(XDBLE,YDBLE,ZDBLE) 

PARAMETERS: XDBLE = Real vector input (double precision) 
YDBLE = Real vector input (double precision) 
ZDBLE = Real vector output (double precision) 

(A double-precision value is stored in a 
2-element real array. First element contains 
high word, second element contains low word.) 

DESCRIPTION: Adds the double-precision number in XDBLE to the 
double-precision number in YDBLE and stores the high 
word of the double-precision sum in ZDBLE(l) and the 
low word in ZDBLE(2). 

FPS 86H-7482-HS1C Page A - 529 



I********** 
I* * 
I* DAOO'l' * 
I* * 
I********** 

I PURPOSE: 
I 
I 

I 

!CALL FORMAT: 

I PARAMETERS: 
I 
I 
I 
i 
I 

I DESCRIPTION: 
I 
I 
I 
I 
I 

-- DOUBLE ACCUMULATE DOT PRODUCT ---

APPENDIX A 

********** 
* * 
* DADOT * 
* * 
********** 

To perform the dot product of two real vectors, 
accumulating the result in double precision (128 hit-c:'. ----# T 

and returning the result in single precision (64 bits). 

SW 

N 
A 

I 
B 
J 
SW 

= 

= 
= 
= 
= 
= 
= 

DADOT(N,A,I,B,J) 

Integer element count 
Real input vector 
Integer element step for A 
Real input vector 
Integer element step for B 

Real output result 

SW= SUM(A(m) * B(m)) form= 1 to N 
SW = 0.0 for N < 1 
If the element increment, INC, of a vector is negative, 
then the vector is indexed in reverse order, i.e 
element (N-1) * INC + 1 to the first element (BLAS 
convent ion). 
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********** ********** 
* * * * 
* DMUL * - DOUBLE TO DOUBLE-PRECISION MULTIPLY - * DMUL * 
* * 
********** 

PURPOSE: To form a double-precision product of two 
double-precision numbers. 

* * 

CALL FORMAT: CALL DMUL(XDBLE,YDBLE,ZDBLE) 

PARAMETERS: XDBLE = Real vector input (double precision) 
YDBLE = Real vector input (double precision) 
ZDBLE = Real vector output (double precision) 

(A double-precision value is stored in a 
2-element real array. First element contains 
high word, second element contains low word.) 

DESCRIPTION: Multiplies the double-precision number in XDBLE by the 
double-precision number in YDBLE and stores the high 
word of the double-precision product in ZDBLE(l) and 
the low word in ZDBLE(2). 
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********** ********** 
* * * * 
* DNEG * - NEGATE DOUBLE-PRECISION NUMBER -- * DNEG * 

* * 
********** ********** 

PURPOSE: To negate a double-precision number. 

CALL FORMAT: CALL DNEG(XDBLE,ZDBLE) 

PARAMETERS: XDBLE = Real vector input (double precision) 
ZDBLE = Real vector output ·(double precision) 

(A double-precision value is stored in a 
2-element real array. First element contains 
high word, second element contains low word.) 

DESCRIPTION: Negates the double-precision number in XDBLE and stores 
the high word of the double-precision result in ZDBLE(l) 
and the low word in ZDBLE(2). 
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********** ********** 
* * * * 
* DSUBRR * - SINGLE TO DOUBLE-PRECISION SUBTRACT -- * DSUBRR * 
* * * * 
********** ********** 

PURPOSE: To form a double-precision difference of two 
single-precision numbers. 

CALL FORMAT: CALL DSUBRR(X,Y,ZDBLE) 

PARAMETERS: x 
y 

ZDBLE 

= Real scalar input 
= Real scalar input 
= Real vector output (double precision) 

(A double-precision value is stored in a 
2-element real array. First element contains 
high wordi second element contains low word.) 

DESCRIPTION: Subtracts the single-precision number in Y from the 
single-precision number in X and stores the high word of 
the double-precision difference in ZDBLE(l) and the low 
word in ZDBLE(2). 
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********** ********** 
* * 
* ABS 

* 

* 
* 
* 

- REAL NUMBER ABSOLU'l'E VALUE -- * ABS 

* 

* 
* 
* 

********** 

PURPOSE: To compute the absolute value of a real number. 

CALL FORMAT: Function-value = ABS(arg) 

PARAMETERS: Function-value = Real Floating-point scalar output 
Arg = Real Floating-point scalar input 

DESCRIPTION: Function-value = largl 

FPS 86H-7482-WilC Page A - 539 



APPENDIX A 

********** ********** 
* * * * 
* AINT * -- TRUNCATE REAL NUMBER -- * AINT * 
* * * * 
********** ********** 

PURPOSE: To truncate a real number. 

CALL FORMAT: Function-value = AINT(arg) 

PARAMETERS: Function-value 
Arg 

= Real floating-point scalar output 
= Real floating-point scalar input 

DESCRIPTION: Function-value= FLOAT(FIXT(arg)) 
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********** ********** 
* * * * 
* ALOGl.0' * - REAL NUMBER LOGARITHM - * ALOGl.0' * 
* * * * 
********** ********** 

PURPOSE: To compute the logarithm of a real number. 

CALL FORMAT: Function-value = ALOG(arg) or ALOG1.0'(arg) 

PARAMETERS: Function-value = Real Floating-point scalar output 
Arg = Real Floating-point scalar input 

DESCRIPTION: Function-value = Ln(arg); for ALOG 
= Log ( 1.0') ( arg); for ALOGl.0' 

FPS 868-7482-HHlC Page A - 543 



APPENDIX A 

********** ********** 
* * * * 
* ARIN'? * - ROUND REAL NUMBER TO NEAREST WHOLE - * ANINT * 
* * * * 
********** ********** 

PURPOSE:. To round a real number to the nearest whole number. 

CALL FORMAT: Function-value = ANINT(arg) 

PARAMETERS: Function-value = Real floating-point scalar output 
= Real floating-point scalar input Arg 

DESCRIPTION: Function-value= FLOAT(FIX(arg)) 
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********** ********** 
* * * * 
* ATAR * - ARCTANGEN'.r OF REAL NUMBER - * ATAN * 
* * * * 
********** ********** 

PURPOSE: To compute the arctangent of a real number 
or of the ratio of two real numbers. 

CALL FORMAT: Function-value = ATAN(argl) or ATAN2(argl,arg2) 

PARAMETERS: Function-value = Real Floating-point scalar output 
Argl = Real Floating-point scalar input 
Arg2 = Real Floating-point scalar input 

DESCRIPTION: Function-value = ATAN(argl) or ATAN(argl/arg2) 
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********** ********** 
* * * * 
* CABS * - COMPLEX NUMBER ABSOLUTE VALUE --- * CABS * 

* * * * 
********** ********** 

PURPOSE: To compute the absolute value (magnitude) of a complex 
number. 

CALL FORMAT: Function-value = CABS(arg) 

PARAMETERS: 

DESCRIPTION: 

Function-value 
Arg 

Function-value 

= Floating-point scalar output 
= Complex floating scalar input 

= SQRT (R(arg)**2+I(arg)**2) 

Page A - 549 



APPENDIX A_ 

********** ********** 
* * * * 
* CDIV * - COMPLEX/COMPLEX DIVIDE --- * CDIV * 

* * * * 
********** ******•*** 

PURPOSE: To divide a complex number into a complex number. 

CALL FORMAT: Function Value = Arg2/Argl 

PARAMETERS: Function Value = Complex Floating scalar output 
Argl = Complex Floating scalar input 
Arg2 = Complex Floating scalar input 

DESCRIPTION: Function Value = {R(arg2)+I(arg2)}/{R(argl)+I(argl)} 
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****'*'***** ***'******* 
* * * 
* CDIVRC * - COMPLEX/REAL DIVIDE - * CDIVRC * 
* * * * 
***'******* ****'****** 

PURPOSE: To divide a real number into a complex number. 

CALL FORMAT: Function Value = Arg2/Argl 

PARAMETER: Function Value = Complex Floating scalar output 
Argl = Real Floating-point scalar input 
Arg2 = Complex Floating scalar input 

DESCRIPTION: Function Value = R(arg(2))+I(arg(2))/arg(l) 
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********** ********** 
* * * * 
* CLOG * - COMPLEX NUMBER LOGARITHM -- * CLOG * 
* * * * 
********** ********** 

PURPOSE: To compute the natural logarithm of a complex number. 

CALL FORMAT: Function-value = CLOG(arg) 

PARAMETERS: Function-value = Complex floating scalar output 
Arg = Complex floating scalar input 

DESCRIPTION: R(Function-value) = ALOG( (CABS(arg)) 
I(Function-value) = ATAN(I(arg)/R(arg)) 
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********** *"********* 
* * * * 
* CONJG * - CONJUGATE OF COMPLEX NUMBER - * CONJG * 
* * * * 
********** ********** 

PURPOSE: To compute the conjugate of a complex number. 

CALL FORMAT: Function-value = CONJG(arg) 

PARAMETERS: Function-value = Complex floating scalar output 
Arg = Complex floating scalar input 

DESCRIPTION: Function-value = R(arg)-I(arg) 
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********** ********** 
* * * * 
* COSH * - REAL NUMBER HYPERBOLIC COSINE - * COSH * 

* * * * 
********** ********** 

PURPOSE: To compute the hyperbolic sine or cosine of a real 
----t-.--.UUUU.lt::.L • 

CALL FORMAT: Function-value = SINH(arg) or COSH(arg) 

PARAMETERS: Function-value = Real Floating-point scalar output 
= Real Floating-point scalar input Arg 

DESCRIPTION: Function-value = SINH(arg) or COSH(arg) 
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********** ********** 
* * * * 
* CPOWCI * -- COMPLEX TO INTEGER POWER -- * CPOWCI * 
* * * * 
********** ********** 

PURPOSE: To raise a complex number to an integer power. 

CALL FORMAT: Function Value = Argl**Arg2 

PARAMETERS: Function Value = Complex Floating scalar output 
Argl = Complex Floating scalar input 
Arg2 = Integer scalar input 

DESCRIPTION: Function Value = {R(argl)+I(argl)}**arg2 
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********** 
* * 
* CPOWRC * 
* * 
********** 

PURPOSE: 

CALL FORMAT 

PARAMETERS: 

APPENDIX A 

********** 
* * 

- REAL TO COMPLEX POWER -- * CPOWRC * 
* * 
********** 

To raise a real number to a complex power. 

Function Value = Argl**Arg2 

Function Value 
Argl 

= Complex Floating scalar output 

Arg2 
= Real Floating-point scalar input 
= Complex Floating scalar input 

DESCRIPTION: Function Value= argl**(R(arg2)+I(arg2)) 
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********** ********** 
* * * * 
* CSQRT * - SQUARE ROOT OF COMPLEX NUMBER - * CSQRT * 
* * * 
********** ********** 

PURPOSE: To compute the square root of a complex number. 

CALL FORMAT: Function-value = CSQRT(arg) 

PARAMETERS: 

DESCRIPTION: 

Function-value 
Arg 

if R(arg) > g 

if R(arg) < g 

= Complex floating scalar output 
= Complex floating scalar input 

R(function value) = F 
!(function value) = I(arg)/(2*F) 
R(function value) = I(arg)/(2*F) 
!(function value) = SIGN(I(argjj*F 

where F = SQRT((ABS(R(arg))+CABS(arg))/2) 
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********** 
* 
* EXP 

* 

* 
* 
* 

********** 

PURPOSE: 

- EXPONENTIAL OF REAL NUMBER -

To compute the exponential of a real number. 

********** 
* 
* EXP 
* 

* 
* 

* 
********** 

CALL FORMAT: Function-value = EXP(arg) 

PARAMETERS: Function-value 
Arg 

= Real Floating-point scalar output 
= Real Floating-point scalar input 

DESCRIPTION: Function-value = Exp(arg) 

NOTE: arg>7g9.g99 traps with an overflow error 
condition. 
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********** 
* * 
* !DIM * 
* * 
********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

********** 
* * 

- INTEGER/INTEGER POSITIVE DIFFERENCE - * !DIM * 
* 

********** 

To compute the integer positive difference of two 
integers. 

Function-value = IDIM(argl,arg2) 

Function-value = Integer scalar output 
Argl = Integer scalar input 
Arg2 = Integer scalar input 

Function-value = MAX((argl-arg2),g) 
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********** ********** 

* * * * 
* !POW * - INTEGER TO INTEGER POWER -- * !POW * 
* * * * 
********** ********** 

PURPOSE: To raise an integer number to an integer power. 

CALL FORMAT: Function Value = Argl**Arg2 

PARAMETERS: Function Value = Integer scalar output 
Argl = Integer scalar input 
Arg2 = Integer scalar input 

DESCRIPTION: Function Value = argl**arg2 
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********** 
* 
* MOD 

* 

* 
* 
* 

********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

- INTEGER/INTEGER DIVIDE REMAINDER -

APPENDIX A 

********** 
* 
* MOD 
* 

* 
* 
* 

********** 

To compute the remainder when one integer is divided 
by another. 

Function-value = MOD(argl,arg2) 

Function-value = Integer scalar output 
Argl = Integer scalar input 
Arg2 = Integer scalar input 

Function-value = Argl-INT(argl/arg2)*arg2 
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********** 
* 
* 
* 

* 
RAN * 

* 
********** 

PURPOSE: 

-- SCALAR RANDOM NUMBER GENERATOR --

To generate one pseudo-random number. 

APPENDIX A 

********** 
* 
* 
* 

* 
RAN * 

* 
********** 

CALL FORMAT: Function-value = RAN(SEED) 

PARAMETERS: Function-value = Floating-point output scalar 
Output random number 

SEED = Integer input/output scalar 
Input: random number seed 
Output: last integer generated 

DESCRIPTION: RAN returns one pseudo-random floating-point 
number between 0.H and 1.0. The routine uses 

EXAMPLE: 

a linear congruential generator initialized by 
SEED to generate an integer, which is then scaled 
to produce the function-value. SEED is replaced 
with the integer generated. SEED may be any 
integer between 0 and 2**26-1. 

RAN generates the same sequence of integers as VRAND. 
Thus the two statements 

C = RAN(SEED) 
and 

,.. ,., ,.. 'P' 'f'TT"'l" -..TT"\. I ~'t:l"r:'IT'\ rt 1 , \ 
~ft~~ v~~UU\~~~u,~ 1 •i•J 

are equivalent. 

SEED = 1000 

RAN(SEED): 0.8004849404H96603 
SEED 53719635 
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********** 
* * * * 
* RPOW * REAL TO REAL POWER --- * RPOW * 
* * * * 
********** ********** 

PURPOSE: To raise a non-negative real number to a real power. 

CALL FORMAT: Function Value = Argl**Arg2 

PARAMETERS: Function Value = Real Floating-point scalar output 
Argl = Real Floating-point scalar input 
Arg2 = Real Floating-point scalar input 

DESCRIPTION: Function Value = argl**arg2 

(If Arg2 is a whole number, Argl can be negative .. j 
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********** ********** 
* * * * 
* RRCP * - RFAL RECIPROCAL -- * RRCP * 
* * * * 
********** ********** -

PURPOSE: To divide a real number into a real number or into 1. 

CALL FORMAT: Function Value = Arg2/Argl 
or l.iJ/Argl 

PARAMETERS: Function Value = Real Floating-point 
Argl = Real Floating-point 
Arg2 = Real Floating-point 

DESCRIPTION: Function Value = arg2/argl for RDIV 
or , fYJ _ _._, 

~- ... RRCP .J. e/lJ/ Q.l.':::f.J.. ... v ... 

scalar output 
scalar input 
scalar input 
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********** ********** 
* * * * 
* SIGN * - REAL NUMBER SIGN TRANSFER * SIGN * 
* * * 
********** ********** 

PURPOSE: To give the magnitude of a real number with the sign 
-.1: - -----~ UL. Cl ;:)f::\..VUU real 

CALL FORMAT: Function-value = SIGN(argl,arg2) 

PARAMETERS: Function-value = Real Floating-point scalar output 
Argl = Real Floating-point scalar input 
Arg2 = Real Floating-point scalar input 

DESCRIPTION: Function-value = Sign(arg2)*ABS(argl) 
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********** 
* * 
* SINCOS * 
* * 
********** 

PURPOSE: 

CALL FORMAT: 

PARAMETERS: 

DESCRIPTION: 

EXAMPLE: 

********** 
* * 

- REAL SINE AND COSINE -- * SINCOS * 
* * 
********** 

To compute the sine and cosine of a real number. 

CALL SINCOS(A,CA,SA) 

A = Floating-point input scalar 
CA = Floating-point output scalar 
SA = Floating-point output scalar 

CA = COS(A) 
SA = SIN(A) 

SINCOS computes both the sine and the cosine in 
about the same time as the SIN function alone. 

NOTE: A 32-bit integer overflow exception is generated 
if the input argument is too large (greater 
than approximately 8.HE+5). In this case, the 
output result has less than six decimal digits of 
precision. 

An added feature of this routine is that it can also 
be called as a complex function. If FIFSPR_SINCOS 
is declared as complex, the call 

Function-value = FIF$PR_SINCOS(A) 

returns the complex value 

Function-value= CMPLX(COS(A),SIN(A)). 

This is convenient for converting polar coordinates 
to rectangular coordinates. 

A = fiJ./iJ 

CA = l./iJ 
SA = /iJ./iJ 
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********** ********** 
* * * * 
* SQRT * - SQUARE ROO'l' OF REAL NUMBER - * SQRT * 
* * * * 
********** ********** 

PURPOSE: To compute the square root of a real number. 

CALL FORMAT: Function-value = SQRT(arg) 

PARAMETERS: Function-value = Real Floating-point scalar output 
Arg = Real Floating-point scalar input 

DESCRIPTION: Function-value = SQRT(arg) 
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********** ********** 
* * * * 
* TANH * - REAL NUMBER HYPERBOLIC TANGENT * TANH * 

* * * 
********** ********** 

PURPOSE: To compute the hyperbolic tangent of a real number. 

CALL FORMAT: Function-value = TANH(arg) 

PARAMETERS: Function-value = Real Floating-point scalar output 
Arg = Real Floating-point scalar input 

DESCRIPTION: Function-value = TANH(arg) 
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B.1 IN'l'RODUCTION 

APPENDIX B 

DATA REPRESEN'l'ATIONS FOR STORING 
SPARSE VECTORS AND MATRICES 

This appendix presents information to help the user understand and use 
the sparse vector and sparse matrix subroutines. It describes the data 
representations (or formats) both accepted as input and produced as 
output by these routines. This appendix also spells out parameter 
naming conventions common to many of these subroutines. 

There are four subroutines that convert sparse vectors and matrices 
between their packed and full representations: Sparse Vector Pack 
(S'VPACK), Sparse Vector Unpack (S\"JPCK), Sparse Matrix Pack {SMPACK), 
and Sparse Matrix Unpack (SMUPCK). 

B.2 SPARSE VECTOR S'l'ORAGE 

An N-dimensional sparse vector V is represented in packed-vector format 
by N, NS, s, and IEN where: 

N a scalar, is the dimension of v. 
NS a scalar, is the _number of nonzero values in v. 
S a vector of length NS. contains the nonzero values of V. 
IEN a vector of length NS, contains the location in V of each 

corresponding element in S [i.e., V(IEN(k)) = S{k) for k=l,NS]. 

For example, the following sparse vector 

can be represented in packed-vector format as follows: 

N: 8 
NS: 3 

S: [3.2 7.8 -19.3] 
IEN: [2 4 8 

So, S(l)'s location in V can be found in IEN(l), S(2)'s in IEN(2), .•• , 
S(NS)'s in IEN(NS). 

The nonzero values in S are generally ordered as they appear in V. 
However: they can be ordered differently if the order is compatible 
with the subroutine to be used. 
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Except for differences in the IP vector, formats I and III are the 
same, as are formats II and IV. 

Each attribute associated with a particular format type and the 
consequences of using that attribute are explained in detail 
in the sections that follow. 

B.3~1 Matrix Format Type I (COL=OP..DER PTRS-ONLY) 

A sparse matrix A is represented by M, N, NS, s, IN, and IP, 
in format I where: 

M a scalar, is the number of rows in A. 
N a scalar, is the number of columns in A. 
NS a scalar, is the number of nonzero values in A. 
s a real vector of length NS, contains the nonzero values 

in column order. 
IN an integer vector of length NS, contains the row in A of 

of A 

each corresponding value in s [i.e., IN(k) = row in A of S(k) 
for k=l, NS] • 

IP an integer vector of length N+l, contains one element for every 
column in A. 
Each element indicates the location in S that holds that column's 
first nonzero value (exception: empty columns). 
IP's N+lst element is a sentinel. 

The sentinel element IP(N+l) holds the number NS+l. 
In general, IP(i) contains the location in S that refers to A's 
i-th ; :1 lJ ..., - .._I ..... • 

If a column in A is empty, then the entry in IP for that column 
is the same as the entry for the next nonempty column, or if 
there is no such column, 
sentinel value in IP(N+l) is used. 

The matrix: !J.g !J.H !J.H g _g g _g '1. g 
!J.g 4.5 !J.g '1. 2 3 .!J '1. fJ 
!J.!J !J.0 fJ .0 '1.0 '1. fJ '1. fJ 
fJ .0 9.9 7.1 5.8 '1.0 '1.0 
fJ .0 1.3 0.0 8.3 '1. '1 '1. fJ 

as expressed in Type I Format: 

M: 5 
N: 6 

NS: 8 

FPS 86H-7482-H&lC Page B - 3 



APPENDIX B 

B.3.3 Matrix Format Type III (COL-ORDER PTRS-SUMS) 

A sparse matrix A is represented by M, N, NS, S, IN, and IP, in format 
III where: 

M a scalar, is the number of rows in A. 
N a scalar, is the number of columns in A. 
NS a scalar, is the number of nonzero values in A. 
S a real vector of length NS, contains the nonzero values of A in 

IN an integer vector of length NS, contains the row in A of each 
corresponding value in S [i.e., IN(k) =row in A of S(k) for 
k=l, NS]. 

IP an integer vector of length 2*N, contains two elements for every 
column in A: 

(a) the location in S that holds that column's first 
nonzero value (exception: an empty column)e 

(b) that column's total number of nonzero elements. 

IP(i) and IP(i+N) always refer to the i-th column in A, for i=l,N. 
IP(l) to IP(N) holds locations as in {a) above and IP(N+l) to IP(2*N) 
holds sums as in (b) above. 

If a column in A is empty, then the (a)-entry in IP for that column is 
the same as the (a)-entry for the next nonempty column, or if there is 
no such column, the number NS+l. (Note that the (b)-entry is zero.) 

The matrix: H.H H.H 0.0 H.H 0.H 0.H 
H.H 4.5 0.H .0'.2 3.H 0.H 
g_g 0.H 0.0 .0'.H 0.H 0.H 
r.r r.r 0 0 ., , c 0 fX r.t 0.{J XJ. u ;I. ;I 1•4 .J. u JU • IJ 

g_g 1.3 H.H 8.3 0.H 0.H 

as expressed in Type III Format: 

M: 5 
N: 6 

NS: 8 

S: T 4. 5 9.9 1.3 7.1 0.2 5.8 8.3 3 • .0'] 
IN: [2 4 5 4 2 4 5 2 ] 

IP: [l l 4 5 8 9 g 3 1 3 l .0'] 

Note that lengths of Sand IN equal NS (=8); S is in column order; the 
length of IP equals 2*N (=12); IP contains both locations and sums; IN 
contains row numbers. 
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APPENDIX C 

SPARSE LINEAR SYSTF.M ROU'l'INES 

C.l IN'l'RODUCTION 

mi....:- ----... ~.: ... _ _...__ ...... .;_,... .;"',,,:"" ....... ~ ... ..:,........, ......... i... ..... i- '-""'- ··--- ··-~---•--..: --~ ··--.&.U.&.i:::I CltJtJ'CUU.&.n. "-VUl..CL.&.J.J..:2 .i.U.L.V•iUCLi...&.V.U lo.I.I liO::.&..tJ 1..UO:: l.Li:::IO::J. U..UUO::J.i:::l\.CLJ..lU CIJ.J.l.i U.i:::IC 

the sparse linear system routines in the Advanced Math Library. The 
sparse linear system routines are APAL64 routines that provide an 
efficient method for solving the linear system Ax = b where the 
coefficient matrix is sparse and is stored in packed form. 

There are twelve generic sparse linear system routines in all. The 
name of each routine consists of a four-letter generic name followed by 
the single digit "2". The first two letters of the name indicate the 
coefficient matrix type (i.e., the problem domain), and the last two 
letters indicate its function. The single digit is a version number 
and is not included on the names of the original routines, which were 
superseded as of the FH3 release (see Appendix G). 

The types of coefficient matrices are: 

RU A is real. 

RS A is real and symmetric. 

cu A is complex. 

cs A is complex and symmetric. 

The functions performed are: 

FR Factor the coefficient matrix. 

SV Solve the system given the factorization of the 
coefficient matrix. 

FS Factor and solve (combines FR and SV)~ 

In general, the time required to factor the coefficient matrix is much 
greater than the time required to solve the factored system. 
Therefore, by having separate routines for each of ~hese functions, the 
factorization need only be performed once when solving a number of 
systems that all have the same coefficient matrix. 
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Denote the determinant of a square matrix A by Det(A). The "not equal" 
relation will be denoted by the symbol "#". 

Assume an n x n lower-triangular matrix L, and n x n upper-triangular 
matrix U, such that A = LU. Then the system Ax = b is equivalent to 
LUx = b. Letting Ux = y, where y is an n-dimensional vector, then the 
system becomes Ly = b. Thus, it is possible to decompose the original 
system into two triangular systems which, in general, are easier to 
solve. It is then possible to find the solution to the original system 
x, by the following two steps: 

l) Solve Ly = b for y by forward elimination 

2) Solv·e Ux = y for x by backward substitution 

If there does exist an L and U such that LU = A, then L and U are not 
uniquely determined unless additional conditions are imposed. One such 
set of conditions is to require the following: 

U(i,i) = l for i = 1 to n. 

By imposing this restriction on U, the remaining elements of L and U 
can now be solved obtaining the following: 

L(i,j) = A(i,j) - Sum[L(i,k) * U(k,j), k=l,j-1] 
for i = l to n, j = l to n, and i >= j eq(la) 

U(i,j) = (A(i,j) - Sum[L(i,k) * U(k,j), k=l,i-1]) / L(i,i) 
for i = 1 to n-1, j = 2 to n, and j > i eq(lb) 

It is clear from an examination of the expressions above that a unique 
L and U exist if and only if L(i,i) # g for i = 1 to n-1. Letting A{k} 
denote the k-th order principle submatrix of A (i.e., the submatrix 
formed by the intersection of the first k rows and the first k columns 
of A), then it follows from equation (1) that A{k} = L{k}U{k}. Recall 
from elementary linear algebra that: 

(a) if A= BC, then Det(A) = Det(B)Det(C); and 
(b) if T is an n x n triangular matrix, 

then Det(T) = Prod[T(i,i), i=l,n]. 
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A common variation of the method of LU factorization involves the 
further factorization of L into MD where M is a lower-triangular matrix 
with M(i,i) = 1 for i=l ton and D is a diagonal matrix. The elements 
of M and D are found to be: 

M(i,j) = L(i,j) / L(j,j) eq(2a) 

D(i,i) = L(i,i) eq(2b) 

Equations (l) and (2) can be used to show that M is the transpose of U 
if A is symmetric. The LOU theorem can now be stated. 

C.3.2 LDU Theorem 

If A is an n x n matrix, then there exist unique matrices L, o, and U, 
where L is lower-triangular with L(i,i) = 1, D is diagonal with D(i,i) 
# g, and U is upper-triangular with U(i,i) = 1 such that A= LOU if and 
only if Det(A{k}) # ~ ~or k = i to n. Furtnermore, if A = LDU and A is 
symmetric, then L is the transpose of U. 

If A is factored into LDU, then the original system, Ax = b, is 
equivalent to LDUx = b. Letting Ux = y and Dy = z where y and z are 
n-dimensional vectors, then the original system decomposes into two 
triangular systems and a diagonal system that are solved by the 
following three steps: 

1) Solve Lz = b for z by forward elimination. 

2) Solve Dy = z for y. 

3) Solve Ux = y for x by backward substitution. 

Since LDU-factorization requires more work than LU-factorization, the 
later is preferable unless A is symmetric. In that case, the direct 
computation and storage of U is unnecessary since U is the transpose of 
Land the factors are written LDL'. 

C.4 FILL-IN 

If the coefficient matrix A is sparse, (this is assumed when using the 
sparse system routines) store only the nonzero elements of A with 
information about the location of the nonzero elements. (The manner in 
which this is done is described in Section C.5.) It is very desirable 
to do this since both storage requirements and execution time can be 
greatly reduced. 
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The following algorithm is given in the form of a FORTRAN subroutine 
for determining fill-in: 

SUBROUTINE FILLIN(N, A, IA) 
c 
C GIVEN AN N BY N MATRIX, A, THIS ROUTINE RETURNS AN N BY 
C N LOGICAL MATRIX, IA, WHERE IA(I,J) IS TRUE IF A(I,J) IS 
C A SPARSE ELEMENT AND FALSE OTHERWISE 
c 

c 

ll!J 
c 

n 'Cl 'I\ T 'I\ I 11.T 11.T \ 
J:'-~ n\""'""I 
LOGICAL IA(N,N) 

DO lHJ I = l, N 
IA(I,l) = .FALSE. 
IA(l,I) = .FALSE. 
IF(A(I,l) • NE. JJ.!J) 
IF(A(l,I) .NE. JJ.!J) 

CONTINUE 

DO lS!J J = 2, N 
DO 14!J I = 2, N 

IA(I,l) = .TRUE • 
IA(l,I) = .TRUE. 

IF(A(I,J) .NE. !J.!J) GO TO 13JJ 
K2 = MIN!J(I,J) -1 
DO 12!J K = 1, K2 

IF(IA(I,K) .AND. !A(K,J)) GO TO l3g 
12!J CONTINUE 

13JJ 

IA(I,J) = .FALSE. 
GO TO 14!J 
CONTINUE 
IA(I,J) = .TRUE. 

lS!J CONTINUE 
RETURN 
END 

The amount of fill-in varies as the rows and columns a A are permuted 
and algorithms exist to minimize the fill-in. However, any permuting 
of the rows and columns of A to decrease fill-in may be detrimental to 
the numerical stability. 

Before leaving the subject of fill-in, note that if A is a band matrix, 
then the superposition of L and U will also be .a band matrix and will 
have the same bandwidth as A. Therefore, if A is a band matrix where 
the nonzero elements are dense within the band consider every element 
within the band to be sparse without introducing a great number of 
unnecessary sparse elements. 
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Finally, if A if unsymmetric, then an additional integer vector IDP of 
length N is requirea for pointers into s to the diagonal elements of A. 
For example, 

• If A is real and A(j,j) is stored in S(k), then IDP(j) = k. 

• If A is complex and A(j,j) is stored in S(2*k-l) and 5(2*k), 
then IDP(j) = k. 

Consider the following example; let A be the real matrix • 

2 • .0' .0' • .0' .0' • .0' 4 • .0' .0' .. !J 
fJ .. .0' 1.fJ .0' .fJ f1 .. fJ 2.!J 
fJ.fJ fJ • .0' ~- -1..0 .0 • .0 g .!J 
fJ .!J 3 .k1 k1.k1 1..0 g .H 
fJ.kJ fJ.kJ .0' .kJ .0' .kJ 5.kJ 

Note that A(4,5) is a sparse element since it is a fill-in element. 

The vectors s, IRN, ICP, and IDP that are required to represent A are: 

WORD s IRN ICP IDP 

l 2. g l 1 1 
2 1..0' 2 2 2 
3 3. g 4 4 4 
4 -1..0' 3 5 6 
5 4 • .0' 1 7 9 
6 l.kJ 4 l/J 
7 2 • .0' 2 
8 ».» 4 

9 5 • .0' 5 

The output from the factorization routines and the input to the 
solution routines require these same vectors except that S then 
contains the sparse elements of the superposition of Land U on A (L', 
D, and U if A is symmetric) with the diagonal elements replaced by 
their reciprocals. (See the example above.) 

2 • .0' .0'. fJ fJ • .0' .0' • .0' .0' .kJ 1..0 .0' • .0' g .!J 2 • .0' k1.k1 
g_g 1..0' .0' • .0' .0' • .0' g • .0' g • .0' 1..0' 9.H 9 . .0' 2 .H 

L = .0'. fJ g .fJ -1.kJ g .fJ g • .0' u = k1.k1 0.kJ 1..0' 0.kJ 0.kJ 
g .fJ 3 .kJ k1.k1 1.0 .0' .kJ .0'. fJ .0' .kJ .0'. fJ 1..0' -6.kJ 
.0' • .0' k1.k1 fJ .kJ g .!J 5.kJ .0'. fJ .0'. fJ 0 • .0' .0' • .0' 

Therefore, the superposition of L and U with the diagonal elements 
replaced with their reciprocals is 

.0'.S ff .kJ 
IYIY, rl 
iti .10 J. • .;o 

fJ • .0' fJ.fJ 
fJ • .0' 3.fJ 
fJ.fJ kJ • .0' 
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ff • .0' 2 • .0' 

-1..0' fJ .fJ 
kJ.fJ 1..0' 
fJ • .0' .0' • .0' 

ff. fJ 
2. [J 

g • .0' 
-6 • .0 
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APPENDIX D 

BASIC LINEAR ALGEBRA SUBPROGRAMS 

D.l IN'.rRODUC'l'ION 

This appendix contains information to help the user understand and use 
the routines, which constitute the basic linear algebra subprograms 
(BLAS) as implemented within the LINPACK Users' Guide Manual, Appendix 
A. These routines are a subset of the basic linear algebra subprograms 
developed by Lawson, Hanson, Kincaid, and Krogh (refer to ACM Trans. 
Mat:h. Software 5, 3 (Sept. 1979) pp. 324-325) for many of the basic 
vector operations of numerical linear algebra. The package was 
intended to be called from FORTRAN programs, and was developed to focus 
on performance improvements of the well known set of LINPACK routines 
(refer to the LINPACK Users' Guide, Appendix A). 

In addition, four routines have been added which are extensions to four 
of the BLAS routines (real and complex versions of the dot product and 
scalar times vector plus vector) which provide for repeated invocations 
with only one subroutine call. These are useful in many applications 
including matrix multiply and matrix factoring (refer to examples 
0.4.9, 0.4.19, and 0.4.11). 

Double precision entry points allow the routines to handle standard 
calls to BLAS double-precision routines. There are no specific 
double-precision routines implemented, since the single precision 
routines use the standard 64-bit wide floating-point numbers. 

When called from FORTRAN, the BLAS routines perform according to the 
algorithmic description in Appendix A, LINPACK User's Guide. In 
particular, negative subscript increment specification results in 
adjustment of the vector base address, as described in Section D.2. 
(No such base address adjustment needs to take place when the MLSP 
entries are used. However, when calling the routines from APAL64 base 
address adjustment is used.) 

Much of the information in Sections 0=2 and 0:4 is taken from Appendix 
3 of the NTIS-distributed Sandia National Labs. report, SAND77-0898, 
Basic Linear Algebra Subprograms for Fortran Usage, by Lawson, Hanson, 
Kincaid, and Krogh, and is reprinted with their kind permission. 
Floating Point Systems, Inc., gratefully acknowledges the suggestions 
given by R. J. Hanson. 
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D.3 ROUTINE CALLING SEQUENCES, ALGORITHMS, TIMINGS 

The names of entities used in BLAS calls conform in general to standard 
FORTRAN conventions. In particular, names that begin with I or N 
pertain t-0 integer data types; names that begin with C pertain to 
complex data types, and names that begin with S (for ~calar) pertain to 
real (floating-point) data types. 

The roots of the names pertain to function. The routines with -DOT- as 
root calculate different versions of the dot product, SDOT calculating 
the inner product of real vectors, CDOTC and CDOTU calculating complex 
inner products £Onjugated and ~nconjugated respectively. 

COPY Replaces (moves or £QEYS) elements of a vector with elements 
of another. 

AXPY Stands for "aX+Y". It is intended to perform the elementary 
matrix operation of adding to the elements of a vector the 
scalar multiple of another vector. 

SCAL Multiplies a vector by a scalar. 

SWAP Interchanges (or swaps) elements of two vectors. 

ASUM Calculates the ~bsolute sum of a vector; that is, the sum of 
the absolute values of each element. 

I-AMAX Calculates the index, or subscript, of the component of a 
vector of the largest absolute value. 

S-NRM2 Calculates the I-~o!.!!!, or Euclidean length of a vector. It 
carefully concerns itself with scaling problems to maintain 
accuracy and exponent range, by testing each component before 
adding its square to the accumulating partial sum. Usually it 
would be appropriate to use SORT(DOT) for the same operation 
with greater speed but less robustness. 

ROT Rotates a vector of pairs of points. 

The parameter names are also standardized. These routines all deal 
with one or two vectors, usually coming from matrix rows or columns. 
The first vector is X; the second, -Y. Increments between consecutive 
elements of a vector are named INCX and INCY. Scalars are named 
A and -B. 

Speed values reflect average values, without regard for vector 
placement, for typical APFTN64 compilations. Often much improvement is 
possible by judicious placement of elements among memory modules. 
Also, initial setup times are not included, only the loop values; which 
results in a value which is a constant multiple of N, the number of 
elements in the destination vector. 
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D.3.4 Complex Function CDOTU(N,CX,INCX,CY,INCY) 

Function value= sum( CX(m)*CY(m), for the N vector elements 
indexed by m). 

D.3.5 Subroutine CROI'G(CA,CB,SC,CSIN) 

SC := ICAl/r, CSIN := conjugate(CB)*CA/ICAl/r, CA := CR 
where: r=sqrt(ICAl**2 + ICBl**2) and SC,CSIN chosen to satisfy 

CR = SC*CA+CSIN*CB 
H = CSIN'*CA+ SC*CB. 

D.3.6 Subroutine CSCAL(N,CA,CX,INCX) 

CX(m) := CA*CX(m), for the N vector elements indexed by m. 

D.3.7 Subroutine CSSCAL(N,SA,CX,INCX) 

CX(m) := SA*CX(m), for the N vector elements indexed by m. 

D.3.8 Subroutine CSROT(N,CX,INCX,CY,INCY,SC,SS) 

CX(m):= SC*CX(m)+SS*CY(m) 
CY(m):=-SS*CX(m)+SC*CY(m), for the N vector elements indexed by m. 

D.3.9 Subroutine CSWAP(N,CX,INCX,CY,INCY) 

CX(m) :=: CY(m), for the N vector elements indexed by m. 

D.3.lB Integer Function ICAMAX(N,CX,INCX) 

Function value= I such that IRe CX(I)l+IIm CX(I)I is largest of 
the N values IRe CX(m)l+IIm CX(m)j. 

D.3.11 Integer Function ISAMAX(N,SX,INCX) 

Function value= smallest I such that ISX(I)I is largest of all N 
values ISX(m)I. 

D.3.12 Real Function SASUM(N,SX,INCX) 

Function value= sum( ISX(m)I, for the N values indexed by m). 
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D.3.21 Subroutine SROTM(N,SX,INCX,SY,INCY,PARAMJ 

If PARAM(l) = l.g then 

:= PARAM(2)*SX(m) + SY(m) SX(m) 
SY(m) : = -SX(m) + PARAM(S)*SY(m), 

for the N vector elements indexed by m. 

•..e .,...,.._,...,.., ... ,, " - IY tY .&...1---
.1.J: ~l"U'U"U"l\J.J - JOeJO 1..Ut::.U 

SX(m) + PARAM(4)*SY(m) SX(m) : = 
SY(m) := PARAM(3)*SY(m) + SY(m), 

for the N vector elements indexed by m. 

If PARAM(l) = -1.g then 

SX(m) := PARAM(2)*SX(m) + PARAM(4)*SY(m) 
SY(m) := PARAM(3)*SY(m) + PARAM(S)*SY(m), 

for the N vector elements indexed by m. 

If PARAM(l) is not 1, g, or -1, the routine returns without modifying 
the vector elements. It thus becomes equivalent to an identity 
transformation. 

D.3.22 Subroutine SRO'l'MG(Dl,D2,Bl,B2,PARAM) 

If IDl*Bl*Bll > ID2*B2*B21 and D2*B2 <> G then 

PARAM(l) := g_g 
PARAM(3,4) := -B2/Bl, 02*B2 / Ol*Bl, so that the SROTM matrix 
becomes (Hll,H21,Hl2,H22) = (l,-B2/Bl,02*B2/0l*Bl,l). 

01 := 01/U 
02 := 02/U 
Bl := Bl*U where U = l.g + (Ol*Bl*Bl)/(02*B2*B2). 

If !Dl*Bl*Bl! =< ID2*B2*B21 and D2*B2 <> H then 

PARAM(l) := i.g 
PARAM(2,5) := Ol*Bl/(D2*B2) , Bl/B2 so that the SROTM matrix 
becomes (Hll,H21,Hl2,H22) = (Ol*Bl/D2*B2,-l,l,Bl/B2). 

01,02,Bl := 02/U,Ol/U,B2*U where U = 1 + Ol*Bl*Bl/(02*B2*B2). 

If 02*82 = 0, then 

the rotation matrix in SROTM becomes the identity, PARAM(l) 
:= -2.0 
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Memory words occupied by X may intersect those occupied by Y. In fact, 
x and Y may coincide. However, memory occupied by Z should not, in 
general, intersect that occupied by X or Y. 

If N < 1, SDOTN returns with no action taken. 

If M < 1 and ISW[l] = 1, SDOTN returns with no action taken. 

If M < 1 and ISW[l] = g, SDOTN returns with Z(j) = g_g for j = l to N. 

In general, M < 1 implies a zero sum of products. 

D.3.26 Complex Subroutine CDO'l'N(ISW,N,M,X,IXI,IXO,Y,IYI,IYO,Z,IZO) 

Z(jz) = r * C(jz) + s * SUM[ A( ix) * B( iy), i=l,M] j=l,N 

where: ix = (j-1) * IXO + (i-1) * IXI + l 
iy = (j-1) * IYO + (i-1) * IYI + l 
jz = (j-1) * IZO + 1 

s = l.kJ, if ISW[kf] = g 

= -1.kJ, if ISW(g) = 1 

r = fJ .!J, if ISW[l] = fI 
= l.kJ, if ISW[ l] = l 

A = x I if ISW[2] = g 

= Conjg(X), if ISW[ 2] = 1 

B - y ~ .i= 'T ,-.-P • ., r .., , = IT 
I ..L.L. ..L.:>WL .J J J(] 

= Conjg(Y), if ISW[ 3] = l 

c = z I if ISW[ 4] = g 

= Conjg(Z), if ISW[ 4] = 1 

and !SW[ k] = bit k of ISW. 

ISW is a one word function selector switch and is treated as a bit 
string with the bits numbered from the least significant bit (bit fJ). 
If a given bit is set (equal to one), then the function option that 
corresponds to that bit is selected. 

If IZO = g, then CDOTN sets Z(l) equal to the accumulated sum of all N 
dot products. If ISW[l] = 1 also, then input Z(l) is added to this 
sum. 

Memory words occupied by X may intersect those occupied by Y. In fact, 
X and Y may coincide. However, memory occupied by z should not, in 
general, intersect that occupied by X or Y. 
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D.3.28 Subroutine CAXPYN(ISW,N,M,A,IAO,X,IXI,IXO,Y,IYI,IYO) 

Y(iy} = s * B( ja) * Z(ix) + y { iy) 1 i=l,M j=l,N 

where: ja = (j-1) * IAO + l 
ix = (j-1) * IXO + (i-1) * !XI + 1 
iy = (j-1) * IYO + (i-1) * !YI + 1 

s = 1..0' if ISW[.0'] = g 

= -1..0' if ISW[.0"] = l 

B = A if ISW[2] = g 

= Conjg(A), if ISW[2] = 1 

z = x , if ISW[3] = g 

= Conjg(X), if ISW[ 3] = 1 

and ISW[k] = bit k of ISW. 

!SW is a one word function selector switch and is treated as a bit 
string with the bits numbered from the least significant bit (bit .0'). 
If a given bit is set (equal to one), then the function option that 
corresponds to that bit is selected. 

Memory words occupied by A may intersect those occupied by X. However, 
memory occupied by Y should not, in general, intersect that occupied by 
A or X. 

Furthermore, the user will not get meaningful results when distinct 
"columns" of Y intersect. For instance, if M = 1.0'.0', IYI = 1 and IYO = 
96, then Y(97,l) = Y(l,2), Y(98,l) = Y(2,2) etc. 

However, cases involving IYO = .0' produce meaningful results in that the 
products are accumulated to Y. That is, successive results bound for 
the same storage location in Y are added together rather than stored 
over each other. In this case, the calculation is reduced to a single 
call to CDOTN which executes much faster than the general case speeds 
given in the routine documentation. 

IYI = .0' is of no real value and is omitted for speed and simplicity. 

If N < l, CAXPYN returns with no action. 

If M < 1, CAXPYN returns with no action. 

If IYI = .0', CAXPYN returns with no action. 
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D.4.5 Set to Identity 

Given an N by N matrix A, to set A = the identity matrix and then 
B = A. 

5'1 

6Z 

D.4.6 

DO 5'1 J=l,N 
CALL SCOPY(N,'1.EkJ,H,A(l,J),l) 
CALL SCOPY(N,l.EH,H,A,MDA+l) 
DO 6'1 J=l,N 

Matrix Columns Interchange 

To interchange the columns of an M by N matrix c, where the column to 
be interchanged with column J is in a type INTEGER array IP(*), and has 
the value IP(J). 

DO 7'1 J=l,N 
L=IP(J) 
IF(J.NE.L) CALL SSWAP(M,C(l,J),l,C(l,L),l) 

7'1 CONTINUE 

D.4.7 Matrix Transposition 

To transpose an N by N matrix A in-place, where MDA is the first 
dimensioning parameter of the array A(*,*). 

IF(N.EQ.l) GOTO 85 
DO SG J:l,N-1 

8'1 CALL SSWAP(N-J,A(J,J+l),MDA,A(J+l,J),l) 
85 CONTINUE 

D.4.8 Column Vector Circular Shift 

Finally, an inefficient but illustrative code segment which swaps 
in-place the components of the column vector 

(xl, ..• :xK,xK+l, ••• ,xN) 
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D.4.lB Matrix Factorization Using SAXPYN 

This subroutine performs matrix factorization A=LU without pivoting 
using SAXPYN. L replaces the lower part of A excluding the diagonal. 
L is assumed implicitly to have l's on· its diagonal. U replaces the 
upper part of A including the diagonal. A itself is treated as a 
doubly dimensioned array with first dimension NO. A is assumed to 
contain an NI x NI matrix stored by rows rather than the usual storage 
by columns. This storage scheme allows SAXPYN to more efficiently 
process 

c 

c 

c 

.a..1..- -·-----~ 1..HC: ~UJ.J.t:'UI.. row being used 

SUBROUTINE MFBGE(A,NI,NO) 
REAL A(l) 
INTEGER NI,NO 

IF(NI.LE.l) RETURN 
JINV=l 
NOP=NO+l 

DO HHJ I=l,NI-1 
AINV=l • .0'/A(JINV) 
JC=JINV+NO 

.t:-- _, .:-.:-- .. :-­
~Vi. t:.J...i.1u.i.11a.1.. .i.vu. 

C COMPUTE THE NEXT COLUMN OF L 
c 

c 

CALL VSMUL(A(JC),NO,AINV,A(JC),NO,NI-I) 
MN=NI-I 

C PERFORM THE ELIMINATION GETTING A NEW LOWER RIGHT MINOR 
c 

CALL SAXPYN(l,~ii,MN,A(JC),NO,A(JI1~v+l),l,G,A(JC+l),l,NO) 
c 

c 

JINV=JINV+NOP 
1.0'.0' CONTINUE 

RETURN 
END 

D.4.11 Matrix Factorization Using SDO'l'R 

This subroutine performs matrix factorization A=LU without pivoting 
using SDOTN. L replaces the lower part of A excluding the diagonal. 
L is assumed implicitly to have l's on its diagonal. U replaces the 
upper part of A including the diagonal. A itself is treated as a 
doubly dimensioned array with first dimension NO. A is assumed to 
contain an NI x NI matrix stored by columns. Doolittle's method is 
used. 
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APPENDIX E 

APMA'l'H64 FUNC'l'ION GENERATION ROUTINES 

E.l IN'I'RODUCTION 

This appendix presents information to help the programmer understand 
and use the function generation routines of the Advanced Math Library= 
The function generation routines are APAL64 routines that provide a 
flexible and efficient way of evaluating functions of one, two, three, 
or four variables. They do this using table lookup with linear 
interpolation. Lookup is performed by searching for the breakpoints, 
using either a binary search (successive interval halving) or a step 
search (nearest neighbor), depending on whether the user expects the 
values of the input variables to be rapidly or slowly changing from 
call to call. 

Function generation. is described in the following manner: 

Given the function F of one input variable x, for which the 
value of F is known at specific values of x (breakpoints) 
(x(l), x(2), ••. ),calculate the value of the function for an 
arbitrary value of x by linearly interpolating between the 
values of Fat the pair of breakpoints x(i) <= x <= x(i+l). 

After determining the pair of breakpoints (x(i), x(i+l)), between which 
the value of x lies, calculate the function by the following formula: 

F(x} ~ F(x(i))+(F(x(i+l))-F{x(i)))*(x-x(i))/(x(i+l)-x(i)) 

This process is extended to two-variable functions by three 
applications of the above formula, to three-variable functions by seven 
applications, and four-variable functions by 15 applications. 

The function generation routines are listed below (refer to Appendix A 
for detailed descriptions): 

breakpoi~t search routines: BIN 
STEP 

function evaluation routines: FUNl 
FUN2 
FUNJ 
FUN4 
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2 variable·s: x, Y. 

3 functions: Fl(X,Y), F2(X,Y), E'3(X,Y) 

3 x breakpoints: Xl, X2, X3 

4 Y breakpoints: Yl, Y2, Y3, Y4 

Coordinate value breakpoint tables: 

XBRK(l,l) = Xl YBRK(l,l) = n 
(2,l) = X2 (2,1) = Y2. 
(3,l) = X3 (3,l) = Y3 
(1~2) = l. 0/ ( X2-Xl) (4,1) = Y4 
(2,2) = l. 0/ ( X3-X2) (1,2) = l. 0/(Y2-Yl) 
(3,2) = o.o (2,2) = l. 0/ ( Y3-Y2) 

( 3 .. 2) = l. 0/ ( Y4-Y3) 
Xl < X2 < X3 ( 4 .. 2 j = 0.0 

Yl < Y2 < Y3 < Y4 

Taken together, these two breakpoint tables specify a 3 X 4 rectangular 
grid of points in the X-Y plane. 

:'unction value breakpoint table: 

FBRK(l,1,1) = Fl ( Xl, Yl) 
(2,1,1) = Fl(X2,Yl) 
(3,1,l) = Fl(X3, Yl) 
(1,2,1) = Fl(Xl,Y2) 
(2~2~1) = Fl(X2,Y2) 
(3,2,1) = Fl(X3,Y2) 
(1,3,l) = Fl(Xl,Y3) 
(2,3,.l) = Fl(X2,Y3) 
(3,3,l) = Fl ( XJ, Y3) 
(1,4,l) = E'l(Xl,Y4) 
(2,4,l) = E'l(X2,Y4) 
(3,4,l) = Fl(X3,Y4) 
(1,1,2) = F2(Xl,Yl) 

(3,4,2) = .F2(X3,!4) 
(1,1,3) = F3(Xl,Yl) 

(3,4,3) = F3(X3,Y4) 
-6747-

Figure E-1 Example Coordinate and Function Value Breakpoint Tables 
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where 

XY(l,l) = X coordinate value of the first input point 

XY(2,l) = Y coordinate value of the first input point 

E.3 CALLING APMATH64 FUNC'l'ION GENERATION ROUTINES 

The function generation package is used with System Job Executive (SJE) 
as follows: 

APFTN64 
driver 

<----> Advanced Math 
Library routines 

The user must supply the APFTN64 driver, which contains calls to the 
appropriate Advanced Math Library routines. The coordinate value 
tables, function value table, and the input points are generated in the 
APFTN64 driver. The APFTN64 driver routine does the following: 

• Generates the coordinate value breakpoint tables. 

• Generates the function value breakpoint table. 

• Specifies the input points. 

• Sets up a loop to process the input points. 

• For each input point, determines the appropriate breakpoint 
pair for each of the coordinates of the input point by calling 
the BIN or STEP routine for each coordinate. (This feature 
makes input point data structure arbitrary.) 

• Calls the appropriate function evaluation routine (i.e., FUNl, 
FUN2, FUNJ, or FUN4 from the Advanced Math Library). 

Refer to the Advanced Math Library documentation and the individual 
program headers for descriptions of these programs. 
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The structure of the output function value array FVAL is arbitrary to 
the extent that each call to the Advanced Math Library function 
generation routine returns the interpolated values for all of the 
functions at the given input point in one array. For this reason, FVAL 
is perhaps most conveniently dimensioned FVAL(NF,NIP). 

Lines 35 through 61 load the coordinate value breakpoint tables. In 
the FUN4 example below, the program assumes the function values to be 
known (i.e., generated by the user) on the four-dimensional grid of 
points as specified by the coordinate tables. 

Lines 65 through 73 load the function value breakpoint table. In this 
example, it is done by simply cycling through all possible coordinate 
value combinations, evaluating the four functions at each point. 

Lines 77 through lHH specify the input points calling for interpolated 
values for each of the four functions. 

Lines ig2 through 120 call the APMATH64 BIN and FUN4 subroutines, pass 
the tables and other arrays as arguments, and write out the resultso 
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( .0'.0'55) 
{.0'.0'56) 
( .0'.0'57) 
( .0'.0'58) 
( .0'.0'59) 
( .0'.0'6.0') 
(.0'.0'61) 
(.0'.0'62) 
(.0'.0'63) 
I f%f%t: A \ 
\JUJUU"Sj 

(.0'.0'65) 
(.0'.0'66) 
(.0'.0'67) 
(.0'.0'68) 
(.0'.0'69) 
(.0'.0'7.0') 
(.0'.0'71) 
(.0'.0'72) 
(fHJ73) 
(.0'.0'74) 
(.0'.0'75) 
UHJ76 > 
(.0'.0'77) 
(.0'.0'78) 
OH179) 
( 008.0') 
( .0'9'81) 
(9'9'82) 
( .0'9'83) 
( H.0'84) 
1 rrrzo c ' 
\XJ.UO.JJ 

( H.0'86) 
(.0'.0'87) 
(9'088) 
(9'9'89) 
(iJ.0'9.0') 
(.0'.0'91) 
(.0'.0'92) 
( .0'.0'93) 
(.0'.0'94) 
(0'.0'95) 
(.0'.0'96) 
(.0'.0'97) 
(.0.0'98) 
(.0'.0'99) 
( .0'1.0'.0') 
(.0'1.0'1) 
( .0'1.0'2) 
( .0'1.0'3) 
I l1'1 lf A' \. u -4.U,.; 

(.0'1.0'5) 
( Hl.0'6) 
(.0'1.0'7) 
( Hl.0'8) 

WBRK(l,l)=-25 • .0' 
WBRK(2,l)=-15 • .0' 
WBRK ( 3 I 1 ) = .0' • .0' 
WBRK(l,2)=1 • .0'/(WBRK(2,l)-WBRK(l,l)) 
WBRK(2,2)=1 • .0'/(WBRK(3,l)-WBRK(2,l)) 
WBRK ( 3 , 2 ) = .0' • .0' 

C LOAD FBRK ARRAY 

DO 1.0'.0' I4=1, NW 
DO 1.0'.0' I3=1, NZ 
DO 1.0'.0' I2=1,NY 

APPENDIX E 

DO 1.0'.0' Il=l,NX 
FBRK(Il,I2,I3,I4,l)=XBRK(Il,l)+YBRK(I2,l)+ZBRK(I3,l)*WBRK(I4,l) 
FBRK(Il,I2,I3,I4,2)=XBRK(Il,l)*WBRK(I4,l)+YBRK(I2,l)+ZBRK(I3,l) 
FBRK(Il,I2,I3,I4,3)=XBRK(Il,l)+WBRK(I4,l)*YBRK(I2,l)+ZBRK(I3,l) 
FBRK(Il,I2,I3,I4,4)=XBRK(Il,l)*ZBRK(I3,l)+WBRK(I4,l)*YBRK(I2,l) 

1.0'.0' CDr-4'J.'H·m·E 

C LOAD X,Y,Z,W ARRAYS 

x ( 1) =.0'. 3 
Y(l)=-5 • .0' 
Z(l)=S.l 
W(l)=-1.5 

X(2)=1.l 
Y(2)=-3 • .0' 
Z(2)=4.H 

X(3)=H.9 
Y(3)=-9 • .0 
Z(3)=7.5 
W(3)=-13 • .0' 

X(4)=2.9 
Y(4)=-6 • .0' 
z ( 4) =6 • .0' 
W(4)=-15 • .0' 

X(5)=H.4 
Y(5)=-5 • .0' 
Z(5)=4.5 
W(5)=-7.5 

DO 15.0' Il=l,NIP 
CALL BIN(XBRK,X(Il),IX,DRX,NX) 
CALL BIN(YBRK;Y(Il):IY:DRY,NY) 
CALL BIN(ZBRK,Z(Il),IZ,DRZ,NZ) 
CALL BIN(WBRK,W(Il),IW,DRW,NW) 
CALL FUN4(FBRK,NX,NY,NZ,NW,NF,IX,IY,IZ,IW, 

DRX,DRY,DRZ,DRW,FVAL(l,Il)) 
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APPENDIX F 

SIMULATION LIBRARY ROUTINES 

F.l INTRODUCTION 

The Simulation Library contains a set of routines which are useful in 
modeling various continuous systems. These continuous systems are 
characterized by ordinary differential equations (ODE) and 
three-dimensional coordinate transformations of rigid bodies, which 
simulate physical models. 

The methods provided for solving ·ODE's include Runge-Kutta and Euler 
explicit methods, which require no previous evaluation of functions or 
derivatives, as well as multistep Adams implicit and explicit methods, 
which require previous evaluation of the function and one or more 
previous derivatives. These multistep methods can be started with 
lower order methods or with the Runge-Kutta routine. Once started, the 
multistep routines require only a single evaluation of the derivative 
functions per call. The fourth order Runge-Kutta method requires four 
evaluations per time step. 

The thiee-dimensional rotation matrix routine forms a rotation matrix 
from a sequence of rotational specifications and can be used in 
conjunction with routine CTRN3 to perform three-dimensional coordinate 
transformations consisting of rotation plus translation. 

is provided to rapidly calculate the 
cosine and sine of an angle, both of which are often required in 
geometric transformations and graphic output. 

P.2 SINGLE STEP METHODS 

RKGTF Runge-Kutta-Gill-Thompson: a fourth order single step method 
to solve a system of ordinary differential equations (ODE's) 
using Thompson's numerical enhancement of the Runge-Kutta-Gill 
method. The routine requires an APFTN64 user subroutine to 
evaluate the derivatives. 

ABPl Adams-Bashforth predictor order one: a single step predictor 
method, also known as Euler's method, for solving ODE's. 

AMCl Adams-Moulton corrector order one: a single step predictor 
method, also known as the backward Euler method, used for 
corrections to "stiff" ODE's. 
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APFTN64 ROUTINE FOR USE WITH RKGTF 

SUBROUTINE DFUN(T,N,Y,F) 
·c 

C *** DFUN *** SAMPLE APFTN64 ROUTINE *** 
c 

c 

c 

DIMENSION Y(N), F(N) 

00 Hf I=l,N 
F(I)=Y(I) 

HJ CONTINUE 

C CORRESPONDS TO SOLUTIONS OF FORM: 
c 
C Y(I) = yg * EXP(T) 
c 

RETURN 
END 

APPENDIX F 
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APPENDIX G 

LIST OP SUPERSEDED ROUTINES 

F!J!J RELEASE 

OLD ROUTINES NEW ROU'l'INES 

FMMM32 FMMM or FMMMV 
MMUL32 MMUL, FMMM, or FMMMV 
ZVABS, VABS VABS 
ZVADD, VADD VADD 
ZVFLT, VFLOAT VFLOAT 
ZVIFIX, VIFIX VI FIX 
ZVMSA, VMSA VMSA 
ZVMUL, VMUL VMUL 
ZVNEG, VNEG VNEG 
ZVRVRS, VRVRS VRVRS 
ZVSADD, VSADD VS ADD 
ZVSMA, VSMA VSMA 
ZVSMSA, VSMSA VSMSA 
ZVSMSB, VSMSB VSMSB 
ZVSMUL, VSMUL VSMUL 
ZVSQ, VSQ VSQ 
ZVSUB, VSUB VSUB 
ZVSWAP, VSWAP VSWAP 

The replacement routines for FMMM32 and MMUL32 include cne same 
functionality as FMMM32 and MMUL32 and are also more general. 

F!JJ .RELEASE 

OLD ROUTINES 

AI MAG 
CSFR 
CSFS 
cssv 
CUFR 

CUFS 
cusv 
EXTRU 
FLOAT 
!FIX 
INSERT 
LOC 
RSFR 
RSFS 
RSSV 

FPS 86B-7482-SB1C 

NEW ROUTINES 

AIMAG (APFTN64 intrinsic) 
CSFR2 
CSFS2 
CSSV2 
CUFR2 
CUFS2 
CUSV2 
EXTRACT (APFTN64 intrinsic) 
FLOAT (APFTN64 intrinsic) 
IFIX (APFTN64 intrinsic) 
INS~KT {APFTN64 intrinsic) 
LOC (APFTN64 intrinsic) 
RSFR2 
RSFS2 
RSSV2 
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APPENDIX H 

EXCEPTIONS ENABLED ROU'rINES INFORMATION AND INTERNAL SUBROUTINES 

H.l EXCEPTIONS ENABLED ROUTINES INFORMATION 

Beginning with the GGG Release, all APMATH64 
exceptions. 

report valid 

H.2 IN'l'ERNAL SUBROUTINES 

The following routines are used only as internal subroutines by other 
APMATH64 routines. These routines are listed here to facilitate 
interpretation of program tracebacks. 

INTERNAL SUBROUTINE 

ADV2 
ADV4 
ALT I NP 
BI TREV 
CBEAJY 
CBEDH 
CBEDJ 
CBERHY 
CBERJS 
CBERYH 
CLSTAT 

CTOR 
ENTVAR 
FFT2 
FFT2B 
FFT4 
FFT4B 
IFFT4 
IIRELT 
INTEG 
IREALT 
LP SPF I 
PHAUNW 
PHCHCK 
REALTR 
RKGTF 
RTOC 
SET24B 
SPCVAL 
STSTAT 

FPS 861-7482-HHlC 

CALLING ROUTINE(S) 

CFFT, CFFTB, CFFTI, XCFFT 
CFFT, CFFTB, CFFTI, XCFFT 
CCEPS 
CFFT, CFFTI 
CBEJYH 
RKGTF 
RKGTF 
CBEJYH 
CBEJYH 
CBEJYH 
CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN, 
HANN, CFFTI, IIRELT, IREALT, XCFFT 
RFFT2D 
SIMPLE 
CFFT, CFFTB, FFT2B, CFFTI, XCFFT 
CFFTB 
CFFT, CFFTB, FFT4B, CFFTI 
CFFTB 
CFFTI 
RFTII 
CBEJYH 
RFFTI, RFTII, IIRELT 
SIMPLE 
CCEPS 
PHAUNW 
RFFT, RFFTB, RFFTI, RFTII 
INTEG 
RFFT2D 
FFT2B, FFT4B 
PHAUNW 
CFFT, CFFTB, HAMM, REALTR, STSTAT, BLKMAN, 
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APPENDIX I 

APMATH64 ROUTINES IN PAGE ORDER AND BY TYPE 

BASIC MATH LIBRARY (VOLUME 1) 

CCMMUL COMPLEX MATRIX MULTIPLY A - 2 
CDET COMPLEX MATRIX DETERMINANT A - 4 
COOT PR COMPLEX DOT PRODUCT A - 6 
CFFT COMPLEX-TO-COMPLEX FFT (IN PLACE) A - 7 
CFFTB COMPLEX-TO-COMPLEX FFT (NOT IN PLACE) A - 8 
CFFTM MIXED-RADIX COMPLEX FFT (NOT-IN-PLACE) A - 9 
CFFTSC COMPLEX FFT SCALE A - 11 
CGMMUL COMPLEX ,..~ .. 'T'!IT'>aT" 11•amnTv 'l"1'TTmTT'\T'U' 

~~~~~~ ~U".\~A~A ~U~•·~~· A - 12 
CMATIN COMPLEX MATRIX INVERSE A ~ 14 
CMDET COMPLEX MATRIX DETERMINANT A - 15 
CMFACT COMPLEX MATRIX L/U FACTORIZATION A - 17 
CMMTRC COMPLEX MATRIX MULTIPLY TRACE A - 19 
CMMUL COMPLEX MATRIX MULTIPLY A - 20 
CMSOLV COMPLEX MATRIX EQUATION SOLVER A - 21 
CMTRAC COMPLEX SUB-MATRIX TRACE A - 23 
CM TRAN COMPLEX SUB-MATRIX TRANSPOSE A - 24 
CMVML3 COMPLEX 3X3 MATRIX MULT. 3D VECTORS A - 25 
CMVML4 COMPLEX 4X4 MATRIX MULT. 4D VECTORS A - 26 
CONV CONVOLUTION (CORRELATION) A - 27 
CP~MMTJL COMPLEX-RE-~L ~-~TRIX MULTIPLY A - 28 
CROSSP COMPLEX 3D CROSS PRODUCT A - 30 
CRVADD COMPLEX AND REAL VECTOR ADD A - 31 
CRVDIV COMPLEX AND REAL VECTOR DIVIDE A - 32 
CRVMUL COMPLEX AND REAL VECTOR MULTIPLY A - 33 
CRVSUB COMPLEX AND REAL VECTOR SUBTRACT A - 34 
CSOLV COMPLEX SYSTEM SOLVER A - 35 
CSOLVQ COMPLEX MATRIX EQUATION SOLVER A - 36 
CTRN2 2-D COORDINATE TRANSFORM A - 39 
CTRNJ 3-DIMENSIONAL COORDINATE TRANSFORMATION A - 40 
CVABS COMPLEX VECTOR ABSOLUTE VALUE A - 42 
CVADD COMPLEX VECTOR ADD A - 43 
CV COMB COMPLEX VECTOR COMBINE A - 44 
CVCONJ COMPLEX VECTOR CONJUGATE A - 45 
CVEXP COMPLEX VECTOR EXPONENTIAL A - 46 
CVFILL COMPLEX VECTOR FILL A - 47 
CVMA COMPLEX VECTOR MULTIPLY AND ADD A - 48 
CVMAGS COMPLEX VECTOR MAGNITUDE SQUARED A - 50 
CVMEXP COMPLEX VECTOR MULTIPLY EXPONENTIAL A - 51 
CVMOV COMPLEX VECTOR MOVE A - 52 
CVMUL COMPLEX VECTOR MULTIPLY A - 53 
CVNEG COMPLEX VECTOR NEGATE A - 54 
CVRCIP COMPLEX VECTOR RECIPROCAL A - 55 
CVR EAL FORM COMPLEX VECTOR OF REALS A - 56 
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RMSQV 
SCJMA 
SGEFA 
SGESL 
SGT SL 

SMMMV 
SN2 
SOLVEQ 
STMM 
SVE 
SVEMG 
SVESQ 
svs 
TRI DIA 
VAAM 
VABS 
VACOS 
VADD 
VAINT 
VALG 
VALGl.0' 
VAM 
VAS IN 
VASM 
VATAN· 

VCLIP 
VCLR 
vcos 
VCOSH 
VDIV 
VEUCL2 
VEXP 
VEXPl.0' 
VF ILL 
VFRAC 

VI ABS 
VI ADD 
VI CLIP 
VI DIV 
VI MAG 
VIMUL 
VINDEX 
VI NEG 
VI SUB 
VLAND 
VLEOV 
VLIM 
VLMERG 

BASIC MATH LIBRARY (cont.) 

ROOT-MEAN-SQUARE OF VECTOR ELEMENTS 
SELF-CONJUGATE MULTIPLY AND ADD 
REAL-GENERAL MATRIX FACTOR 
REAL GENERAL MATRIX SOLVE 
TRIDIAGONAL MATRIX SOLVER 
SUB~-~TR!X MtTLT!PLY 
SUBMATRIX MULTIPLY 
SQUARED DISTANCE BETWEEN TWO VECTORS 
LINEAR EQUATION SOLVER 
SUBMATRIX TRANSPOSE & MULTIPLY 
SUM OF VECTOR ELEMENTS 
SUM OF VECTOR ELEMENT MAGNITUDES 
SUM OF VECTOR ELEMENT SQUARES 
SUM OF VECTOR SIGNED SQUARES 
TRIDIAGONAL MATRIX SOLVER 
VECTOR ADO, ADD, AND MULTIPLY 
VECTOR ABSOLUTE VALUE 
VECTOR ARCCOSINE 
VECTOR ADD 
VECTOR TRUNCATE 
VECTOR LOGARITHM 
VECTOR BASE HJ LOGARITHM 
VECTOR ADD AND MULTIPLY 
VECTOR ARCSINE 
VECTOR ADD ANO SCALAR MULTIPLY 
VECTOR ARCTANGENT 
VECTOR ARCTA..""IGENT ( 2 J13GUMENTS) 

VECTOR CLIP 
VECTOR CLEAR 
VECTOR COSINE 
VECTOR COSINE (HYPERBOLIC) 
VECTOR DIVIDE 
VECTOR EUCLIDEAN DISTANCE 
VECTOR EXPONENTIAL 
VECTOR EXPONENTIAL (BASE 1.0') 
VECTOR FILL 
VECTOR TRUNCATE TO FRACTION 
VECTOR ABSOLUTE VALUE 
VECTOR INTEGER ADD 
VECTOR INVERTED CLIP 
VECTOR INTEGER DIVIDE 
EXTRACT IMAGINARIES OF COMPLEX VECTOR 
VECTOR INTEGER MULTIPLY 
VECTOR INDEX 
VECTOR INTEGER NEGATE 
VECTOR INTEGER SUBTRACT 
VECTOR LOGICAL ADD 
VECTOR LOGICAL EQUIVALENCE 
VECTOR LIMIT 
LOGICAL VECTOR MERGE 

FPS 863-7482-&&lC 
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A - 125 
A - 126 
A - 127 
A - 129 
A - 131 
A - 133 
A - 135 
A - 137 
A - 138 
A - 14.0' 
A - 142 
A - 143 
A - 144 
A - 145 

A - 147 
A - 148 
A - 149 
A - 15.0' 
A - 151 
A - 152 
A - 153 
A - 154 
A - 155 
A - 156 
A - 157 
A - 158 
A - 159 
A - 16.0' 
A - 161 
A - 162 
A - 163 
A - 164 
A - 165 
A - 166 
A - 167 
A - 168 
A - 169 
A - 17.0' 
A - 171 
A - 172 
A - 173 
A - 174 
A - 175 
A - 176 
A - 177 
A - 178 
A - 179 
A - 18.0' 
A - 181 
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VTSADD 
VTSMA 
VTSMUL 

CH 
EIGRS 
HTRIBK 
HTRIDI 
IMTQLl 
IMTQL2 
RS 
SIMPLE 
SKY SOL 
TREDl 
TRED2 
VASORT 
VI SORT 
VSORT 

A CORF 
ACORT 
A SPEC 
BLKMAN 
CCEPS 
CCORF 
CCORT 
CFFTI 
COHER 
CSP EC 
DECFIR 
ENVEL 

HAMM 
HANN 
HIST 
HLBRT 
LPAUTO 
PKVAL 
RDFT 
RFFTI 

BASIC MATH LIBRARY (cont.) 

VECTOR TM SCALAR ADD 
VECTOR TM SCALAR MULTIPLY AND ADD 
VECTOR TM SCALAR MULTIPLY 

J'...DVA.JlCED M...l\TH L!'RD_A...RY ( VOLm«R 2) 

COMPLEX HERMITIAN EIGENSYSTEM SOLVER 
REAL SYMMETRIC EIGENSYSTEM SOLVER 
COMPLEX HERMITIAN EIGENVECTORS 
COMPLEX HERMITIAN TRIDIAGONALIZATION 
DIAGONALIZE TRIDIAGONAL MATRIX 
DIAGONALIZE A TRIDIAGONAL MATRIX 
REAL SYMMETRIC E!GENSYSTEM SOLVER 
REVISED SIMPLEX 
SKYLINE FORMAT EQUATION SOLVER 
TRIDIAGONALIZE SYMMETRIC MATRX 
TRIDIAGONALIZE A SYMMETRIC MATRIX 
VECTOR SORT ALGEBRAIC VALUES 
VECTOR SORT INTEGER VALUES 
VECTOR SORT WITH INDICES 

SIGNAL PROCESSING LIBRARY 

AUTO-CORRELATION (FREQUENCY-DOMAIN) 
AUTO-CORRELATION (TIME-DOMAIN) 
ACCUMULATING AUTO-SPECTRUM 
BLACKMAN WINDOW MULTIPLY 
PHASE UNWRAP AND COMPLEX CEPSTRUM 
CROSS-CORRELATION (FREQUENCY-DOMAIN) 
CROSS-CORRELATION (TIME-DOMAIN) 
COMPLEX FFT WITH INTERPOLATION 
COHERENCE FUNCTION 
ACCUMULATING CROSS-SPECTRUM 
DECIMATION 
ENVELOPE DETECTOR 
HAMMING WINDOW MULTIPLY 
HANNING WINDOW MULTIPLY 
HISTOGRAM 
HILBERT TRANSFORMER 
LINEAR PREDICTION AUTOCORRELATION 
PEAK AND VALLEY PICKING 
REAL DISCRETE FOURIER TRANSFORM 
REAL FFT WITH INTERPOLATION 

FPS 86S-7482-sg1c 
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A - 230' 
A - 231 
A - 232 

A - 234 
A - 237 
A - 239 
A ~ 241 
A - 243 
A - 245 
A - 247 
A - 249 
A - 254 
A - 256 
A - 258 
A - 259 
A - 260' 
A - 261 

A - 264 
A - 265 
A - 266 
A - 267 
A - 268 
A - 272 
A - 273 
A - 274 
A - 275 
A - 276 
A - 277 
A - 279 
A - 28.0' 
A - 281 
A - 282 
A - 283 
A - 284 
A - 286 
A - 288 
A - 29fJ 
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SROT 
SROTG 
SROTM 
SROTMG 
SSCAL 
SSWAP 

ABPl 
ABP2 
ABP3 
ABP4 
ADAMS4 
AMCl 
AMC2 
AMC3 
AMC4 
BIN 
CBEIK 
CBEJYH 
FUN! 
FUN2 
FUN3 
FUN4 
RKGIL 
RKGTF 
ROT3 
SCSl 
STEP 

CONNMO 
IIR3fJ 
KSMLV 
NMOLI 
NMOOI 
POST64 
RESNMO 
TMCONV 
VfJl 
VARNMO 
VRNAVG 
VSCANfJ 

LINPACK BLAS LIBRARY (cont.) 

PLANE ROTATION 
GIVENS PLANE ROTATION 
MODIFIED GIVENS ROTATIONS 
MODIFIED1 GIVENS PLANE ROTATION SETUP 
REAL SCALAR TIMES VECTOR 
INTERCHANGES VECTORS 

SIMULATION LIBRARY 

ADAMS-BASHFORTH PREDICTOR (ORDER l) 
ADAMS-BASHFORTH PREDICTOR (ORDER 2) 
ADAMS-BASHFORTH PREDICTOR (ORDER 3) 
~J)~_MS-BASHFORTH PREDICTOR (ORDER 4) 
ADAMS VARIABLE STEP INTEG.(ORD 4) 
ADAMS-MOULTON CORRECTOR (ORDER 1) 
ADAMS-MOULTON CORRECTOR (ORDER 2) 
ADAMS-MOULTON CORRECTOR (ORDER 3) 
ADAMS-MOULTON CORRECTOR (ORDER 4) 
BINARY SEARCH 
COMPLEX BESSEL I AND K 
COMPLEX BESSEL J, Y, AND H 
FUNCTION OF ONE VARIABLE 
FUNCTION OF TWO VARIABLES 
FUNCTION OF THREE VARIABLES 
FUNCTION OF FOUR VARIABLES 
RUNGE-KUTTA-GILL INTEGRATION 
R-K-GILL-THOMPSON INTEG. (ORDER 4) 
3D ROTATION MATRIX, 3-ANGLE 
SCALAR COS/SIN, TM INTERP.(ORD 1) 
STEP SEARCH 

GEOPHYSICAL LIBRARY 

NMO 'W-ITH CONSTANT VELOCITY 
RECURSIVE FILTER 
K-TH SMALLEST ELEMENT IN VECTOR 
NMO LINEAR INTERPOLATION 
NMO QUADRATIC INTERPOLATION 
POST BITS TO RASTER 
RESIDUAL NORMAL MOVEOUT 
CONVOLUTION (CORRELATION) 
VECTOR ZERO TRENDS 
NMO WITH VARIABLE VELOCITY 
VECTOR RUNNING AVERAGE 
VECTOR SCAN FOR ZEROS 
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A - 355 
A - 356 
A - 357 
A - 358 
A - 36fJ 
A - 361 

A - 363 
A - 364 
A - 365 
A - 366 
A - 368 
A - 371 
A - 372 
A - 373 
A - 374 
A - 376 
A - 378 
A - 381 
A - 384 
A - 386 
A - 388 
A - 39fJ 
A - 392 
A - 395 
A - 397 
A - 399 
A - 4fJfJ 
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A = 4.0'3 
A - 4fJ5 
A - 4fJ7 
A - 4.0'8 
A - 41.0' 
A - 412 
A - 413 
A - 415 
A - 417 
A - 418 
A - 42.0' 
A - 421 
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TTTSUB 
TTVLC2 
TVCLR 

EXTRS 
PEEK 
POKE 

VFLOAT 
VI FIX 
VPK8 
VPK16 
VPK32 
VPKI32 
VPKR32 
VSCALE 
VSCSCL 
VSHFX 
VS!vt~FX 

VUP8 
VUP16 
VUP32 
VUPR32 
VUPS8 
VUPS16 
VUPS32 
VUSI32 
VUUI32 

DADD 
DADD RR 
DADOT 
DOOTRR 
DMUL 
DMULRR 
DNEG 
DSUB 
DSUBRR 

TABLE MEMORY LIBRARY (cont.) 

VECTOR SUBTRACT (TM-TM TO TM) 
VECTOR LINEAR COMBINATION 
TABLE MEMORY VECTOR CLEAR 

SPECIAL UTILITIES LIBRARY 

EXTRACT A SIGNED BIT-FIELD 
MEMORY FETCH 
STORE INTO MEMORY 

DATA FORMA'l"l'ING LIBRARY 

CONVERT INTEGER TO FLOATING-POINT 
VECTOR INTEGER FIX 
VECTOR 8-BIT BYTE PACK 
VECTOR 16-BIT BYTE PACK 
VECTOR 32-BIT BYTE PACK 
VECTOR 32-BIT INTEGER PACK 
VECTOR REAL HALFWORD PACK 
VECTOR SCALE AND FIX 
VECTOR SCAN SCALE AND FIX 
VECTOR SHIFT AND FIX 
VECTOR SC~L~...R MULTIPLY: ADD AND FIX 
VECTOR 8-BIT BYTE UNPACK 
VECTOR 16-BIT BYTE UNPACK 
VECTOR 32-BIT BYTE UNPACK 
VECTOR HALFWORD REAL UNPACK 
VECTOR 8-BIT SIGNED BYTE UNPACK 
VECTOR 16-BIT SIGNED BYTE UNPACK 
VECTOR 32-BIT SIGNED BYTE UNPACK 
VECTOR 32-BIT SIGNED INTEGER UNPACK 
VECTOR 32-BIT UNSIGNED UNPACK 

DOUBLE PRECISION LIBRARY 

DOUBLE TO DOUBLE-PRECISION ADD 
SINGLE TO DOUBLE-PRECISION ADD 
DOUBLE ACCUMULATE DOT PRODUCT 
DOUBLE DOT PRODUCT REAL REAL 
DOUBLE TO DOUBLE-PRECISION MULTIPLY 
SINGLE TO DOUBLE PRECISION MULTIPLY 
NEGATE DOUBLE-PRECISION NUMBER 
DOUBLE TO DOUBLE-PRECISION SUBTRACT 
SINGLE TO DOUBLE-PRECISION SUBTRACT 

FPS 86H-7482-HH1C Page I 

A - 5fffJ 
A - 5fJl 
A - 5fJ2 

A - 5fJ4 
A - 5fJ5 
A - 5fJ6 

A - 5fJ8 
A - 5fJ9 
A - 5lfJ 
A - 511 
A - 512 
A - 513 
A - 514 
A - 515 
A - 516 
A - 517 
A - 518 
A - 519 
A - 52fJ 
A - 521 
A - 522 
A - 523 
A - 524 
A - 525 
A - 526 
A - 527 

A - 529 
A - 53fJ 
A - 531 
A - 532 
A - 533 
A - 534 
A - 535 
A - 536 
A - 537 
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ABPl 
ABP2 
ABP3 
ABP4 
ABS 
A CORF 
ACORT 
ACOS 
ADAMS4 
AINT 
ALOGl.0' 
ALOG 
AMC! 
AMC2 
AMCJ 
AMC4 
AMOD 
AN INT 
ASIN 
ASPEC 
ATAN2 
ATAN 
BIN 
BL KMAN 
CABS 
CAXPY 

CAXPYN 
CBEIK 
CBEJYH 
CCEPS 
CCMMUL 
CCOPY 
CCORF 
CCORT 
ccos 
CDET 
CDIV 
CDIVCR 
CDIVRC 
COOTC 
CDOTN 
CDOTPR 
CDOTU 

APPENDIX J 

APMATH64 ROUTINES IN ALPHABETICAL ORDER 

DESCRIPTION 

ADAMS-BASHFORTH PREDICTOR (ORDER l) 
ADAMS-BASHFORTH PREDICTOR (ORDER 2) 
ADAMS-BASHFORTH PREDICTOR (ORDER 3) 
ADAMS-BASHFORTH PREDICTOR (ORDER 4) 
REAL NUMBER ABSOLUTE VALUE 
AUTO-CORRELATION (FREQUENCY-DOMAIN) 
AUTO-CORRELATION (TIME-DOMAIN) 
REAL lli'"UMBER ARCCOSINE 
ADAMS VARIABLE STEP INTEG.(ORD 4) 
TRUNCATE REAL NUMBER 
REAL NUMBER LOGARITHM 
REAL NUMBER LOGARITHM 
ADAMS-MOULTON CORRECTOR (ORDER 1) 
ADAMS-MOULTON CORRECTOR (ORDER 2) 
ADAMS-MOULTON CORRECTOR (ORDER 3) 
ADAMS-MOULTON CORRECTOR (ORDER 4) 
REAL/REAL DIVIDE REMAINDER 
ROUND REAL NUMBER TO NEAREST WHOLE 
REAL NUMBER ARCSINE 
ACCUMULATING AUTO-SPECTRUM 
ARCTANGENT OF RATIO OF REAL NUMBERS 
ARCTANGENT OF REAL NUMBER 
BINARY SEARCH 
BLACKMAN WINDOW MULTIPLY 
COMPLEX NUMBER ABSOLUTE VALUE 
COMPLEX A * X + Y 
NESTED COMPLEX A * X + Y 
COMPLEX BESSEL I AND K 
COMPLEX BESSEL J, Y, AND H 
PHASE UNWRAP AND COMPLEX CEPSTRUM 
COMPLEX MATRIX MULTIPLY 
COMPLEX VECTOR COPY 
CROSS-CORRELATION (FREQUENCY-DOMAIN) 
CROSS-CORRELATION (TIME-DOMAIN) 
COMPLEX NUMBER COSINE 
COMPLEX MATRIX DETERMINANT 
COMPLEX/COMPLEX DIVIDE 
REAL/COMPLEX DIVIDE 
COMPLEX/REAL DIVIDE 
COMPLEX INNER PRODUCT 
NESTED COMPLEX DOT PRODUCT 
COMPLEX DOT PRODUCT 
COMPLEX DOT PRODUCT 
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PAGE 

A - 363 
A - 364 
A - 365 
A - 366 
A - 539 
A - 264 
A - 265 
A 
A - 368 
A - 541 
A - 543 
A - 542 
A - 371 
A - 372 
A - 373 
A - 374 
A - 544 
A - 545 
A - 546 
A - 266 
A - 548 
A - 547 
A - 376 
A - 267 
A - 549 
A - 326 
A - 327 
A - 378 
A - 381 
A - 268 
A - 2 
A - 33.0' 
A ·- 272 
A - 273 
A - 55.0' 
A - 4 
A - 551 
A - 552 
A - 553 
A - 331 
A - 332 
A - 6 
A - 335 
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CUFS2 
CUSV2 
CVABS 
CVADD 
CV COMB 
CV CONJ 
CVEXP 
CVFILL 
CVMA 
CVMAGS 
CVMEXP 
CVMOV 
CVMUL 

CVNEG 
CVRCIP 
CVR EAL 
CVSMA 
CVSMUL 
CV SUB 

DADD 
DADD RR 
DADOT 
DOOTRR 
DEC FIR 
DEQ22 
DIM 
DMUL 
DMULRR 
DNEG 
DOT PR 
DSUB 
DSUBRR 
EIGRS 
ENVEL 
EXP 
EXTRS 
FMMM 
FMMMV 
FUN! 
FUN2 
FUN3 
FUN4 
GENTAB 
GRAD2D 
GRD2DB 
HAMM. 

HANN 
HIST 
HLBRT 
HTRIBK 
HTRIDI 
IABS 
ICAMAX 
IDIM 

SPARSE COMPLEX UNSYM FACTOR & SOLVE 
SPARSE COMPLEX UNSYMMETRIC SOLVE 
COMPLEX VECTOR ABSOLUTE VALUE 
COMPLEX VECTOR ADD 
COMPLEX VECTOR COMBINE 
COMPLEX VECTOR CONJUGATE 
COMPLEX VECTOR EXPONENTIAL 
COMPLEX VECTOR FILL 
COMPLEX VECTOR MULTIPLY AND ADD 
COMPLEX VECTOR MAGNITUDE SQUARED 
COMPLEX VECTOR MULTIPLY EXPONENTIAL 
COMPLEX VECTOR MOVE 
COMPLEX VECTOR MULTIPLY 
COMPLEX VECTOR NEGATE 
COMPLEX VECTOR RECIPROCAL 
FORM COMPLEX VECTOR OF REALS 
COMPLEX VECTOR SCALAR MULTIPLY AND ADD 
COMPLEX VECTOR SCALAR MULTIPLY 
COMPLEX VECTOR SUBTRACT 
DOUBLE TO DOUBLE-PRECISION ADD 
SINGLE TO DOUBLE-PRECISION ADD 
DOUBLE ACCUMULATE DOT PRODUCT 
DOUBLE DOT PRODUCT REAL REAL 
DECIMATION 
DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 
REAL/REAL POSITIVE DIFFERENCE 
DOUBLE TO DOUBLE-PRECISION MULTIPLY 
SINGLE TO DOUBLE PRECISION MULTIPLY 
NEGATE DOUBLE-PRECISION NUMBER 
DOT PRODUCT 
DOUBLE TO DOUBLE-PRECISION SUBTRACT 
SINGLE TO DOUBLE-PRECISION SUBTRACT 
REAL SYMMETRIC EIGENSYSTEM SOLVER 
ENVELOPE DETECTOR 
EXPONENTIAL OF REAL NUMBER 
EXTRACT A SIGNED BIT-FIELD 
FAST MATRIX MULTIPLY 
FAST MATRIX MULTIPLY 
FUNCTION OF ONE VARIABLE 
FUNCTION OF TWO VARIABLES 
FUNCTION OF THREE VARIABLES 
FUNCTION OF FOUR VARIABLES 
GENERATE TWIDDLE FACTOR TABLE 
MAXIMUM GRADIENT FILTER 
MAXIMUM GRADIENT FILTER WITH BOUND 
HAMMING WINDOW MULTIPLY 
HANNING WINDOW MULTIPLY 
HISTOGRAM 
HILBERT TRANSFORMER 
COMPLEX HERMITIAN EIGENVECTORS 
COMPLEX HERMITIAN TRIDIAGONALIZATION 
INTEGER ABSOLUTE VALUE 
INDEX OF LARGEST COMPLEX ELEMENT 
INTEGER/INTEGER POSITIVE DIFFERENCE 
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A - 434 
A - 437 
A - 42 
A - 43 
A - 44 
A - 45 
A - 46 
A - 47 
A - 48 
A - 50' 

A - 51 
A - 52 
A - 53 
A - 54 
A - 55 
A - 56 
A - 57 
A - 58 
A - 59 
A - 529 
A - 53.0' 
A - 531 
A - 532 
A - 277 

A - 6.0' 
A - 566 
A - 533 
A - 534 
A - 535 
A - 62 
A - 536 
A - 537 
A - 237 
A - 279 
A - 567 
A - 5.0'4 
A - 63 
A - 64 
A - 384 
A - 386 
A - 388 
A - 39.0' 
A - 65 
A - 3HJ 
A - 312 
A - 28.0' 
A - 281 
A - 282 
A - 283 
A - 239 

A - 241 
A - 568 
A - 341 
A - 569 
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PAS3F 
PAS3I 
PAS4F 
PAS4I 
PAS SF 
PASSI 
PEEK 
PF INV 
PKVAL 
POKE 
POLAR 
POST64 
RAN 
RCMMUL 
RDFT 
RDIV 
RECT 
RESNMO 
RFFT2D 
RFFT 
RFFTB 
RFFTI 
RFFTM 
RFFTSC 
RFTII 
RGMMUL 
RKGIL 
RKGTF 
RMSQV 
ROT3 
RPOW 
RPOWRI 
RRCP 
RS 
RSFR2 
RSFS2 
RSQRT 
RSSV2 
RUFR2 
RUFS2 
RUSV2 
SASUM 
SAXPY 
SAXPYN 
SCASUM 
SCJMA 
SCNRM2 
SCOPY 
SCSl 
SOOT 
SOOTN 
SDOTPR 
SGEFA 
SGESL 

RADIX-3 FORWARD COMPLEX FFT PASS 
RADIX-3 INVERSE COMPLEX FFT PASS 
RADIX-4 FORWARD COMPLEX FFT PASS 
RADIX-4 INVERSE COMPLEX FFT PASS 
RADIX-5 FORWARD COMPLEX FFT PASS 
RADIX-5 INVERSE COMPLEX FFT PASS 
MEMORY FETCH 
MATRIX INVERSE (PRODUCT FORM) 
PEAK AND VALLEY PICKING 
STORE INTO MEMORY 
RECTANGULAR TO POLAR CONVERSION 
POST BITS TO RASTER 
SCALAR RANDOM NUMBER GENERATOR 
REAL-COMPLEX MATRIX MULTIPLY 
REAL DISCRETE FOURIER TRANSFORM 
REAL/REAL DIVIDE 
POLAR TO RECTANGULAR CONVERSION 
RESIDUAL NORMAL MOVEOUT 
REAL TO COMPLEX 2-DIMENSIONAL FFT 
REAL-TO-COMPLEX FFT (IN PLACE) 
REAL-TO-COMPLEX FFT (NOT IN PLACE) 
REAL FFT WITH INTERPOLATION 
MIXED-RADIX REAL FFT (NOT-IN-PLACE) 
REAL FFT SCALE AND FORMAT 
REAL FFT WITH QUARTER INTERPOLATION 
REAL GENERAL MATRIX MULTIPLY 
RUNGE-KUTTA-GILL INTEGRATION 
R-K-GILL-THOMPSON INTEG. (ORDER 4) 
ROOT-MEAN-SQUARE OF VECTOR ELEMENTS 
JD ROTATION MATRIX, 3-ANGLE 
REAL TO REAL POWER 
REAL TO INTEGER POWER 
REAL RECIPROCAL 
REAL SYMMETRIC EIGENSYSTEM SOLVER 
SPARSE REAL SYMMETRIC FACTOR 
SPARSE REAL SYMM FACTOR & SOLVE 
RECIPROCAL SQUARE ROOT 
SPARSE REAL SYMMETRIC SOLVE 
SPARSE REAL UNSYMMETRIC FACTOR 
SPARSE REAL UNSYM FACTOR & SOLVE 
SPA..qSE REAL UNSY~..ETRIC SOLVE 
SUM OF MAGNITUDES 
REAL A * X + Y 
NESTED REAL A * X + Y 
SUM OF REAL AND IMAGINARY MAGNITUDES 
SELF-CONJUGATE MULTIPLY AND ADD 
COMPLEX EUCLIDEAN NORM 
VECTOR COPY 
SCALAR COS/SIN, TM INTERP.(ORD 1) 
DOT PRODUCT OF REAL VECTORS 
NESTED REAL DOT PRODUCT 
SPARSE DOT PRODUCT 
REAL GENERAL MATRIX FACTOR 
REAL GENERAL MATRIX SOLVE 
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A - 99 
A - HH 
A - HD 
A - 1.0'5 
A - 1.0'7 
A - 1.0'9 
A - 5.0'5 
A - 111 
A - 286 
A - 5Z6 
A - 112 
A - 412 
A - 575 
A - 113 
A - 288 
A - 576 
A - 115 
A - 413 
A - 323 
A - 116 
A - 117 
A - 29.0' 
A - 119 
A - 121 
A - 291 
A - 123 
A - 392 
A - 395 
A - 125 
A - 397 
A - 577 
A - 578 
A - 579 
A - 247 
A - 439 
A - 442 
A - 58.0' 
A - 446 
A - 449 
A - 452 
A - 456 
A - 343 
A - 344 
A - 345 
A - 348 
A - 126 
A - 349 
A - 35.0' 
A - 399 
A - 351 
A - 352 
A - 459 
A - 127 
A - 129 
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TTTSUB 
TTVLC2 
TVCLR 
V.0'1 
VAAM 
VABS 
VACOS 
VADD 
VAINT 
VALGl.0' 
VALG 
VAM 
VARNMO 
VAS IN 
VASM 
VASORT 
VATAN2 
VAT AN 
VAVEXP 
VAVLIN 
VCLIP 
VCLR 
vcos 
VCOSH 
VDBPWR 
VDIV 
VEUCL2 
VEXPl.0' 
VEXP 
VFILL 
VFLOAT 
VFRAC 
VI ABS 
VI ADD 
VI CLIP 
VI DIV 
VI FIX 
VI MAG 
VIMUL 
VINDEX 
VI NEG 
VI SORT 
VI SUB 
VLAND 
VLEQV 
VLIM 
VLMERG 
VLNOT 
VLOR 
vi.XOR 
VMA 
VMAX 
VMAXMG 
VMIN 

VECTOR SUBTRACT (TM-TM TO TM) 
VECTOR LINEAR COMBINATION 
TABLE· MEMORY VECTOR CLEAR 
VECTOR ZERO TRENDS 
VECTOR ADD, ADD, AND MULTIPLY 
VECTOR ABSOLUTE VALUE 
VECTOR ARCCOSINE 
VECTOR ADD 
VECTOR TRUNCATE 
VECTOR BASE lG LOGARITHM 
VECTOR LOGARITHM 
VECTOR ADD AND MULTIPLY 
NMO WITH VARIABLE VELOCITY 
VECTOR ARCSINE 
VECTOR ADD AND SCALAR MULTIPLY 
VECTOR SORT ALGEBRAIC VALUES 
VECTOR ARCTANGENT ( 2 ARGUMENTS) 
VECTOR ARCTANGENT 
VECTOR EXPONENTIAL AVERAGING 
VECTOR LINEAR AVERAGING 
VECTOR CLIP 
VECTOR CLEAR 
VECTOR COSINE 
VECTOR COSINE (HYPERBOLIC) 
VECTOR CONVERSION TO DB (POWER) 
VECTOR DIVIDE 
VECTOR EUCLIDEAN DISTANCE 
VECTOR EXPONENTIAL (BASE 1.0') 
VECTOR EXPONENTIAL 
VECTOR FILL 
CONVERT INTEGER TO FLOATING-POINT 
VECTOR TRUNCATE TO FRACTION 
VECTOR ABSOLUTE VALUE 
VECTOR INTEGER ADD 
VECTOR INVERTED CLIP 
VECTOR INTEGER DIVIDE 
VECTOR INTEGER FIX 
EXTRACT IMAGINARIES OF COMPLEX VECTOR 
VECTOR INTEGER MULTIPLY 
VECTOR INDEX 
VECTOR INTEGER NEGATE 
VECTOR SORT INTEGER VALUES 
VECTOR INTEGER SUBTRACT 
VECTOR LOGICAL ADD 
VECTOR LOGICAL EQUIVALENCE 
VECTOR LIMIT 
LOGICAL VECTOR MERGE 
VECTOR LOGICAL NOT 
VECTOR LOGICAL OR 
VECTOR LOGICAL EXCLUSIVE OR 
VECTOR MULTIPLY AND ADD 
VECTOR MAXIMUM 
VECTOR MAXIMUM MAGNITUDE 
VECTOR MINIMUM 
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A - 5.0'.0' 
A - 5.0'1 
A - 5.0'2 
A - 417 
A - 147 
A - 148 
A - 149 
A - 15.0' 
A - 151 
A -
A - 152 
A - 154 
A - 418 
A - 155 
A - 156 
A - 259 
A - 158 
A - 157 
A - 296 
A - 297 
A - 159 
A - 16.0' 
A - 161 
A - 162 
A - 298 
A - 163 
A - 164 
A - 166 
A - 165 
A - 167 
A - 5.08 
A - 168 
A - 169 
A - 17.0' 
A - 171 
A - 172 
A - 5.0'9 
A - 173 
A - 174 
A 175 
A - 176 
A - 26.0' 
A - 177 
A - 178 
A - 179 
A - 18.0' 
A - 181 
A - 182 
A - 183 
A - 184 
A - 185 
A - 186 
A - 187 

·A - 188 
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VTSMA VECTOR TM SCALAR MULTIPLY AND ADD A - 231 
VTSMUL VECTOR TM SCALAR MULTIPLY A - 232 
VUP16 VECTOR 16-BIT BYTE UNPACK A - 52.0' 
VUP32 VECTOR 32-BIT BYTE UNPACK A - 521 
VUP8 VECTOR 8-BIT BYTE UNPACK A - 519 
VUPR32 VECTOR HALFWORD REAL UNPACK A - 522 
VUPS16 VECTOR 16-BIT SIGNED BYTE UNPACK A - 524 
VUPS32 VECTOR 32-BIT SIGNED BYTE UNPACK A - 525 
VUPSS VECTOR 8-BIT SIGNED BYTE UNPACK A - 523 
'rusI32 VECTOR 32-BIT SIGNED INTEGER UNPACK A ~ 526 
VUUI32 VECTOR 32-BIT UNSIGNED UNPACK A - 527 
vxcs VECTOR MULTIPLIED BY SIN AND cos A - 299 
WIENER WIENER LEVINSON ALGORITHM A - 3.0'1 
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APMA'l'H64 KEY WORD INDEX 

This index of AP~ATH64 routines is sorted by key words that appear in 
each routine title. Each title can contain more than one key word. 
The key words are listed alphabetically to the right of the gap running 
down the center of each page. 

To use the key word index, locate a key word that is representative of 
the desired APMATH64 function. Applicable APMATH64 routine names and 
titles can be found on the same line with each occurrence of the key 
word. The routine name appears in brackets ([ ]). The routine title 
immediately follows the routine name and continues on the other side of 
the gap when necessary. The ellipsis ( ••• ) is placed directly after 
the last word in the title if the line wraps around. The page where a 
particular routine is documented can be found in Appendix J. 

[VSIMPS]VECTOR SIMPSON'S 
EXPONENTIAL BASE 

[VALGlH]VECTOR BASE 
[VPK16]VECTOR 
(VUP16]VECTOR 

[VUPS16]VECTOR 
[CSROT]COMPLEX 

[CFFT2D]COMPLEX TO COMPLEX 
[RFFT2D]REAL TO COMPLEX 

[RQT3]3D ROTATION MATRIX, 
[VPK32]VECTOR 
[VUP32]VECTOR 

[VPKI32]VECTOR 
[VUPS32]VECTOR 
[VUSI32]VECTOR 
[VUUI32]VECTOR 

[CROSSP]COMPLEX 
3X3 MATRIX MULT. 

[MVML3]MATRIX VECTOR MULTIPLY 
[CMVML3]COMPLEX 

4X4 MATRIX MULT. 
[MVML4]MATRIX VECTOR MULTIPLY 

[CMVML4]COMPLEX 
[VPK8]VECTOR 
[VUPS]VECTOR 

[VUPS8]VECTOR 
[ABS]REAL NUMBER 

[CABS]COMPLEX NUMBER 
[CVABS]COMPLEX VECTOR 

[IABS]INTEGER 
[ISAMAX]INDEX OF MAXIMUM 

[VABS]VECTOR 
[VIABS]VECTOR 
[DAOOT]DOUBLE 

1/3 RULE INTEGRATION 
lH ••. [VEXPlH]VECTOR 
lH LOGARITHM 
16-BIT BYTE PACK 
16-BIT BYTE UNPACK 
16-BIT SIGNED BYTE UNPAC~ 
2-D ROTATION 
2-DIMENSIONAL FFT 
2-DIMENSIONAL FFT 
3-ANGLE 
32-BIT BYTE PACK 
32-BIT BYTE UNPACK 
32-BIT INTEGER PACK 
32-BIT SIGNED BYTE UNPACK 
32-BIT SIGNED INTEGER UNPACK 
J2-BIT UNSIGNED UNPACK 
JD CROSS PRODUCT 
JD VECTORS ••• [CMVML3]COMPLEX 
JXJ 
JX3 MATRIX MULT. 30 VECTORS 
4D VECTORS ••• [CMVML4]COMPLEX 
4X4 
4X4 MATRIX MOLT. 40 VECTORS 
8-BIT BYTE PACK 
8-BIT BYTE UNPACK 
8-BIT SIGNED BYTE UNPACK 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ABSOLUTE VALUE 
ACCUMULATE DOT PRODUCT 
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[VUP16]VECTOR 16-BIT B~TE UNPACK 
[VUP32]VECTOR 32-BIT BYTE UNPACK 

[VUP8]VECTOR 8-BIT BYTE UNPACK 
[VUPS16]VECTOR 16-BIT SIGNED BYTE UNPACK 
[VTJPS32]VECTOR 32-BIT SIGNED BYTE UNPACK 

[VUPSS]VECTOR 8-BIT SIGNED BYTE UNPACK 
UNWRAP AND COMPLEX CEPSTRUM ••• [CCEPS]PHASE 

[TVCLR]TABLE MEMORY VECTOR CLEAR 
[VCLR]VECTOR CLEAR 

[VCLIP]VECTOR CLIP 
[VICLIP]VECTOR INVERTED CLIP 

[TMVLC2]VECTOR LINEAR COMBINATION 
[TTVLC2]VECTOR LINEAR COMBINATION 

[CVCOMB]COMPLEX VECTOR COMBINE 
[CFFT2D]COMPLEX TO COMPLEX 2-DIMENSIONAL FFT 

[RFFT2D]REAL TO COMPLEX 2-DIMENSIONAL FFT 
[CAXPYN]NESTED COMPLEX A * X + Y 

[CCEPS]PHASE UNWRAP AND COMPLEX CEPSTRUM 
[COOTN]NESTED COMPLEX DOT PRODUCT 

[ICAMAX]INDEX OF LARGEST 
[CFFTM]MIXED-RADIX 

[PAS2F]RADIX-2 FORWARD 
[PAS2I]RADIX-2 INVERSE 
[PAS3F]RADIX-3 FORWARD 
[PAS3I]RADIX-3 INVERSE 
[PAS4F]RADIX-4 FORWARD 
[PAS4I]RADIX-4 INVERSE 
[PAS5F]RADIX-5 FORWARD 
[PAS5I]RADIX-5 INVERSE 

[CEXP]EXPONENTIAL OF 
[CONJG]CONJUGATE OF 

[CSQRT]SQUARE ROOT OF 

COMPLEX ELEMENT 
COMPLEX FFT NOT-IN-PLACE 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX FFT PASS 
COMPLEX NUMBER 
COMPLEX NUMBER 
COMPLEX NUMBER 

[CPOWRC]REAL TO COMPLEX POWER 
[CPOW]COMPLEX TO COMPLEX POWER 

[CSFS2]SPARSE COMPLEX SYMM FACTOR & SOLVE 
[CSFR2]SPARSE COMPLEX SYMMETRIC FACTOR 
[CSSV2]SPARSE COMPLEX SYMMETRIC SOLVE 
[CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE 
[CUFR2]SPARSE COMPLEX UNSYMMETRIC FACTOR 
[CUSV2]SPARSE COMPLEX UNSYMMETRIC SOLVE 

[VIMAG]EXTRACT IMAGINARIES OF COMPLEX VECTOR 
[VREAL]EXTRACT REALS OF COMPLEX VECTOR 

[CVREAL]FORM COMPLEX VECTOR OF REALS 
[CSSCAL]REAL TIMES COMPLEXES 

[CVCONJ]COMPLEX VECTOR CONJUGATE 
[CONNMO]NMO WITH CONSTANT VELOCITY 

[POLAR]RECTANGULAR TO POLAR CONVERSION 
[RECT]POLAR TO RECTANGULAR CONVERSION 

[VDBPWR]VECTOR CONVERSION TO DB POWER 
[CONV2Dj2-D CON-vOLUTION AND CORRELATION 

[TCONV]POST-TAPERED CONVOLUTION CORRELATION 
[CTRN2]2-D COORDINATE TRANSFORM 

[CTRN3]3-DIMENSIONAL COORDINATE TRANSFORMATION 
[CCOPY]COMPLEX VECTOR COPY 
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APMATH64 KEY WORD INDEX 

[DNEG]NEGATE DOUBLE-PRECISION NUMBER 
[DSUBRR]SINGLE TO DOUBLE-PRECISION SUBTRACT 

[DSUB]DOUBLE TO DOUBLE-PRECISION SUBTRACT 
[CH]COMPLEX HERMITIAN EIGENSYSTEM SOLVER 
[EIGRS]REAL SYMMETRIC EIGENSYSTEM SOLVER 

[RS]REAL SYMMETRIC EIGENSYSTEM SOLVER 
[HTRIBK]COMPLEX HERMITIAN EIGENVECTORS 

OF LARGEST COMPLEX ELEMENT ••• [ICAMAX]INDEX 
[KSMLV]K-TH SMALLEST ELEMENT IN VECTOR 

EL~..ENT IN VECTOR 
[MAXV]MAXIMUM ELEMENT IN VECTOR 

[MINMGV]MINIMUM MAGNITUDE ELEMENT IN VECTOR 
[MINV]MINIMUM ELEMENT IN VECTOR 

[MEAMGV]MEAN OF VECTOR ELEMENT MAGNITUDES 
[SVEMG]SUM OF VECTOR ELEMENT MAGNITUDES 

[MEASQV]MEAN OF VECTOR ELEMENT SQUARES 
[SVESQ]SUM OF VECTOR ELEMENT SQUARES 

[MEANV]MEAN VALUE OF VECTOR ELEMENTS 
OF VECTOR ELEMENTS ••• [RMSQVJROOT-MEAN-SQUARE 

[SVE]SUM OF VECTOR ELEMENTS 
[VSUM]VECTOR SUM OF ELEMENTS INTEGRATION 

[LVEQ]LOGICAL VECTOR EQUAL 
VECTOR GREATER THAN OR EQUAL ••• [LVGE]LOGICAL 

[LVNE]LOGICAL VECTOR NOT EQUAL 
[CMSOLV]COMPLEX MATRIX EQUATION SOLVER 
[CSOLVQ]COMPLEX MATRIX EQUATION SOLVER 
[SKYSOL]SKYLINE FORMAT EQUATION SOLVER 

[SOLVEQ]LINEAR EQUATION SOLVER 
[DEQ22]DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 

[VLEQV]VECTOR LOGICAL EQUIVALENCE 

[SCNRM2]COMPLEX EUCLIDEAN NORM 
[VPOLY]VECTOR POLYNOMIAL EVALUATION 

[VLXOR]VECTOR LOGICAL EXCLUSIVE OR 
[CVEXP]COMPLEX VECTOR EXPONENTIAL 

VECTOR MULTIPLY EXPONENTIAL ••• [CVMEXP]COMPLEX 
[VEXP]VECTOR EXPONENTIAL 

[VAVEXP]VECTOR EXPONENTIAL AVERAGING 
[VEXPlg]VECTOR EXPONENTIAL BASE lg 

COMPLEX SYMMETRIC FACTOR ••• [CSFR2]SPARSE 
COMPLEX UNSYMMETRIC FACTOR ••. [CUFR2]SPARSE 

[RSFR2]SPARSE REAL SYMMETRIC FACTOR 
[RUFR2]SPARSE REAL UNSYMMETRIC FACTOR 

[SGEFA]REAL GENERAL MATRIX FACTOR 
[CSFS2]SPARSE COMPLEX SYMM FACTOR & SOLVE 

[CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE 
[RSFS2]SPARSE REAL SYMM FACTOR & SOLVE 

[RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE 
[GENTAB]GENERATE TWIDDLE FACTOR TABLE 

(CMFACT]COMPLEX MATRIX L/U FACTORIZATION 
[LUF]LU MATRIX FACTORIZATION CROUT 

[PEEK]MEMORY FETCH 
TO COMPLEX 2-DIMENSIONAL FFT ••• [CFFT2D]COMPLEX 
TO COMPLEX 2-DIMENSIONAL FFT ••• [RFFT2D]REAL 
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[GRAD2D]MAXIMUM GRADIENT FILTER 
[GRD2DB]MAXIMUM GRADIENT FILTER WITH BOUND 

[LVGT]LOGICAL VECTOR GREATER THAN 
[LVGE]LOGICAL VECTOR GREATER THAN OR EQUAL 

[VPKR32]VECTOR REAL HALFWORD PACK 
[VUPR32iVECTOR HALFWORD REAL UNPACK 

[CH]COMPLEX HERMITIAN EIGENSYSTEM SOLVER 
[HTRIBK]COMPLEX HERMITIAN EIGENVECTORS 
[HTRIDI]COMPLEX HERMITIAN TRIDIAGONALIZATION 

[VCOSH]VECTOR COSINE HYPERBOLIC 
[VSINH]VECTOR SINE HYPERBOLIC 

[VTANH]VECTOR TANGENT HYPERBOLIC 
[COSH]REAL NUMBER HYPERBOLIC COSINE 
[SINH]REAL NUMBER HYPERBOLIC SINE 
[TANH]REAL NUMBER HYPERBOLIC TANGENT 

[VIMAG]EXTRACT IMAGINARIES OF COMPLEX VECTOR 
[SCASUM]SUM OF REAL AND IMAGINARY MAGNITUDES 

[MTIMOV]VECTOR MOVE WITH INCREMENT MD TO TM 
[TMIMOV]VECTCR MOVE WITH INC..~EMENT TM TO MD 

[TTIMOV]VECTOR MOVE WITH 
[VINDEX]VECTOR 

[VSORT]VECTOR SORT WITH 
[COOTC]COMPLEX 

[RKGTF]R-K-GILL-THOMPSON 
[ADAMS4]ADAMS VARIABLE STEP 

REAL NUMBER TO NEAREST 
[VIADD]VECTOR 
[VIDIV]VECTOR 
[VIFIX]VECTOR 

.C VIMUL] VECTOR 
[VINEG]VECTOR 

[VPKI32]VECTOR 32-BIT 
[CPOWCI]COMPLEX TO 

[IPOW]INTEGER TO 
[RPOWRI]REAL TO 

[VISUB]VECTOR 
[VFLOAT]CONVERT 

[VUSI32]VECTOR 32-BIT SIGNED 
[VISORT]VECTOR SORT 

[RKGIL]RUNGE-KUTTA-GILL 
SIMPSON'S 1/3 RULE 

[VSUM]VECTOR SUM OF ELEMENTS 
TRAPEZOIDAL RULE 

[SCSl]SCALAR COS/SIN, TM 
[CFFTI]COMPLEX FFT WITH 

(NMOLI]NMO LINEAR 
[NMOQI]NMO QUADRATIC 
[RFFTI]REAL FFT WITH 

[RFTII]REAL FFT WITH QUARTER 
(CMATIN]COMPLEX MATRIX 

[MATINV]MATRIX 
[VRECIP]VECTOR 
[PAS2I]RADIX-2 
[PAS3I]RADIX-3 
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INCREMENT TM TO TM 

INDEX 
INDICES 
INNER PRODUCT 
INTEG. ORDER 4 
INTEG.ORD 4 

INTEGER .•. [NINT]ROUND 
INTEGER ADD 
INTEGER DIVIDE 
INTEGER FIX 
INTEGER MULTIPLY 
INTEGER NEGATE 
INTEGER PACK 
INTEGER POWER 
INTEGER POWER 
INTEGER POWER 
INTEGER SUBTRACT 
INTEGER TO FLOATING-POINT 
INTEGER UNPACK 
INTEGER VALUES 
INTEGRATION 
INTEGRATION •.. [VSIMPS]VECTOR 
INTEGRATION 
INTEGRATION ... [VTRAPZ]VECTOR 
INTERP.ORD l 
INTERPOLATION 
INTERPOLATION 
INTERPOLATION 
INTERPOLATION 
INTERPOLATION 
INVERSE 
INVERSE 
INVERSE 
INVERSE COMPLEX FFT PASS 
INVERSE COMPLEX FFT PASS 
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[CMMTRC]COMPLEX MATRIX MULTIPLY TRACE 
[SMPACK]SPARSE MATRIX PACK 

[SGESL]REAL GENERAL MATRIX SOLVE 
[LUSN]LU MATRIX SOLVE CROUT 

[SGTSL)TRID!AGONAL MATRIX SOLVER 
[TRIDIA]TRIDIAGONAL MATRIX SOLVER 

[SMUPCK]SPARSE MATRIX UNPACK 
[SMVMUL]SPARSE MATRIX VECTOR MULTIPLY 

[ROT3]3D ROTATION MATRIX, 3-ANGLE 
SYMMETRIC MATRX ••• [TREDl]TRIDIAGONALIZE 

[VMAX]VECTOR MAXIMUM 
[ISAMAX]INDEX OF MAXIMUM ABSOLUTE VALUE 

[VMAXMG]VECTOR MAXIMUM MAGNITUDE 
[MMTMUL]VECTOR MULTIPLY MD*MD TO TM 
[MTMMUL]VECTOR MULTIPLY MD*TM TO MD 

[MTTMUL]VECTOR MULTIPLY MD*TM TO TM 
[MMTADD]VECTOR ADD MD+MD TO TM 
[MTMADD]VECTOR ADD MD+TM TO MD 
[MTTADD]VECTOR ADD MD+TM TO TM 

[MMTSUB]VECTOR SUBTRACT MD-MD TO TM 
[MTMSUB]VECTOR SUBTRACT MD-TM TO MD 
[MTTSUB]VECTOR SUBTRACT MD-TM TO TM 

[POKE]STORE INTO MEMORY 
[TVCLR]TABLE MEMORY VECTOR CLEAR 

[VLMERG]LOGICAL VECTOR MERGE 
[VMIN]VECTOR MINIMUM 

[VMINMG]VECTOR MINIMUM MAGNITUDE 
[CVMOV]COMPLEX VECTOR MOVE 

[SVMOV]SPARSE VECTOR MOVE 
[VMOV]VECTOR MOVE 

[MOVREP]SUB-IMAGE MOVE AND LEVEL REPLACE 
[MTMOV]VECTOR MOVE MD TO TM 
[TMMOV]VECTOR MOVE TM TO MD 

[MTIMOV]VECTOR MOVE WITH INCREMENT MD TO TM 
[TMIMOV]VECTOR MOVE WITH INCREMENT TM TO MD 
[TTIMOV]VECTOR MOVE WITH INCREMENT TM TO TM 

[RESNMO]RESIDUAL NORMAL MOVEOUT 
[VSMA3]THREE VECTOR SCALAR MULT AND ADD 

[VSMA4]FOUR VECTOR SCALAR MULT AND ADD 
[CMVML3]COMPLEX 3X3 MATRIX MULT. JD VECTORS 
[CMVML4]COMPLEX 4X4 MATRIX MULT. 40 VECTORS 

[VXCS]VECTOR MULTIPLIED BY SIN AND COS 
[BLKMAN]BLACKMAN WINDOW MULTIPLY 

[CCMMUL]COMPLEX MATRIX MULTIPLY 
[CGMMUL]COMPLEX GENERAL MATRIX MULTIPLY 

[CMMUL]COMPLEX MATRIX MULTIPLY 
[CMUL]COMPLEX MULTIPLY 

[CRMMUL]COMPLEX-REAL MATRIX MULTIPLY 
AND REAL VECTOR MULTIPLY .•• [CRVMUL]COMPLEX 

[CVMUL]COMPLEX VECTOR MULTIPLY 
[CVSMUL]COMPLEX VECTOR SCALAR MULTIPLY 

TO DOUBLE PRECISION MULTIPLY ••• [DMULRR]SINGLE 
TO DOUBLE-PRECISION MULTIPLY ••• [DMUL]DOUBLE 

[FMMMV)FAST MATRIX MULTIPLY 
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[VNEG]VECTOR NEGATE 
[MNAXB]SUB-MATRIX NEGATIVE MULTIPLY 
[MNATXB]SUBMATRIX NEGATIVE TRANSPOSE MULTIPLY 

[SCNRM2]COMPLEX EUCLIDEAN NORM 
[SNRM2]EUCLIDEAN NORM 
[RESNMO]RESI~UAL NORMAL MOVEOUT 

[LVNOT]LOGICAL VECTOR NOT 
[VLNOT]VECTOR LOGICAL NOT 

[LVNE]LOGICAL VECTOR NOT EQUAL 
[CFFTB]COMPLEX-TO-COMPLEX FFT NOT IN PLACE 

[RFFTB]REAL-TO-COMPLEX FFT NOT IN PLACE 
[CFFTM]MIXED-RADIX COMPLEX FFT NOT-IN-PLACE 

[RFFTM]MIXED-RADIX REAL FFT NOT-IN-PLACE 
[AINT]TRUNCATE REAL NUMBER 

[ATAN]ARCTANG~ OF REAL NUMBER 
[CEXP]EXPONENTIAL OF COMPLEX NUMBER 
[CONJG]~ONJUGATE OF COMPLEX NUMBER 

[CSQRT]SOUARE ROOT OF COMPLEX NUMBER 
[DNEG]NEGATE DOUBLE-PRECISION NUMBER 

[EXP]EXPONENTIAL OF REAL NUMBER 
[SQRT]SQUARE ROOT OF REAL NUMBER 

[ABS]REAL NUMBER ABSOLUTE VALUE 
[CABS]COMPLEX NUMBER ABSOLUTE VALUE 

[ACOS]REAL NUMBER ARCCOSINE 
(ASIN]REAL NUMBER ARCSINE 

[CCOS]COMPLEX NUMBER COSINE 
[COS]REAL NUMBER COSINE 

[RAN]SCALAR RANDOM NUMBER GENERATOR 
[COSH]REAL NUMBER HYPERBOLIC COSINE 
[SINH]REAL NUMBER HYPERBOLIC SINE 
[TANH]REAL NUMBER HYPERBOLIC TANGENT 

[ ALOGl.0'] REAL 
[ALOG]REAL 

[CLOG]COMPLEX 
[SIGN]REAL 

[CSIN]COMPLEX 
[SIN]REAL 
[TAN]REAL 

[NINT]ROUND REAL 

NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 
NUMBER 

LOGARITHM 
LOGARITHM 
LOGARITHM 
SIGN TRANSFER 
SINE 
SINE 
TANGENT 
TO NEAREST INTEGER 

[ANINT]ROUND REAL NUMBER TO NEAREST ~OLE 
OF RATIO OF REAL NUMBERS ••• [ATAN2]ARCTANGENT 

[VRAND]VECTOR RANDOM NUMBERS 
[FUNl]FUNCTION OF ONE VARIABLE 

[VLOR]VECTOR LOGICAL OR 
LOGICAL EXCLUSIVE OR ••• [VLXOR]VECTOR . 

VECTOR GREATER THAN OR EQUAL ••• [LVGE]LOGICAL 
PREDICTOR ORDER l .•• [ABPl]ADAMS-BASHFORTH 

[AMCl]ADAMS-MOULTON CORRECTOR ORDER 1 
PREDICTOR ORDER 2 ••• [ABP2]ADAMS-BASHFORTH 

[AMC2)ADAMS-MOULTON CORRECTOR ORDER 2 
PREDICTOR ORDER 3 ••• [ABP3]ADAMS-BASHFORTH 

[AMC3]ADAMS-MOULTON CORRECTOR ORDER 3 
PREDICTOR ORDER 4 ••• [ABP4]ADAMS-BASHFORTH 

[AMC4]ADAMS-MOULTON CORRECTOR ORDER 4 
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[VRAMP]VECTOR RAMP 
[RAN]SCALAR RANDOM NUMBER GENERATOR 

[~"'D]VECTOR RANDOM NUMBERS 
[POST64]POST BITS TO RASTER 
[ATAN2]ARCTANGENT OF RATIO OF REAL NUMBERS 

[MRRUNR]MIXED-RADIX RFFT RAVEL/UNRAVEL PASS 
DOT PRODUCT REAL REAL ••• [DDOTRR]DOUBLE 

[SAXPYN]NESTED REAL A * X + Y 
[SCASUM]SUM OF REAL AND IMAGINARY MAGNITUDES 

[SDOTN]NESTED REAL DOT PRODUCT 
[RFFTM]MIXED-RADIX REAL FFT NOT-IN-PLACE 

[VPKR32]VECTOR REAL HALFWORD PACK 
[AINT]TRUNCATE REAL NUMBER 

[ATAN]ARCTANGENT OF REAL NtJMBER 
[EXP]EXPONENTIAL OF REAL NUMBER 

[SQRT]SQUARE ROOT OF REAL NUMBER 
[NINT]ROUND REAL NUMBER TO NEAREST INTEGER 

[ANINT]ROUND REAL NUMBER TO NEAREST WHOLE 
[ATAN2]ARCTANGENT OF RATIO OF REAL NUMBERS 

[CPOWCR]COMPLEX TO REAL POWER 
[RPOW]REAL TO REAL POWER 

[DDOTRR]DOUBLE DOT PRODUCT REAL REAL 
[RSFS2]SPARSE REAL SYMM FACTOR & SOLVE 
[RSFR2]SPARSE REAL SYMMETRIC FACTOR 
[RSSV2]SPARSE REAL SYMMETRIC SOLVE 

[VUPR32]VECTOR HALFWORD REAL UNPACK 
[RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE 
[RUFR2]SPARSE REAL UNSYMMETRIC FACTOR 
[RUSV2]SPARSE REAL UNSYMMETRIC SOLVE 

[CRVADD]COMPLEX AN~ REAL VECTOR ADD 
[CRVDIV]COMPLEX AND REAL VECTOR DIVIDE 
[CRVMUL]COMPLEX AND REAL VECTOR MULTIPLY 
[CRVSUB]COMPLEX AND REAL VECTOR SUBTRACT 

[SDOT]DOT PRODUCT OF REAL VECTORS 
[CVREAL]FORM COMPLEX VECTOR OF REALS 

[VREAL]EXTRACT REALS OF COMPLEX VECTOR 
[CVRCIP]COMPLEX VECTOR RECIPROCAL 

[RRCP]REAL RECIPROCAL 
[VRSQRT]VECTOR RECIPROCAL SQUARE ROOT 
[RECT]POLAR TO RECTANGULAR CONVERSION 

[AMOD]REAL/REAL DIVIDE REMAINDER 
[MOD]INTEGER/INTEGER DIVIDE REMAINDER 

MOVE AND LEVEL REPLACE ••• [MOVREP]SUB-IMAGE 
[VRVRS]VECTOR REVERSE ORDERING 

[MRRUNR]MIXED-RADIX RFFT RAVEL/UNRAVEL PASS 
[RSQRT]RECIPROCAL SQUARE ROOT 

RECIPROCAL SQUARE ROOT .•• [VRSQRT]VECTOR 
[VSQRT]VECTOR SQUARE ROOT 

[CSQRT]SQUARE ROOT OF COMPLEX NUMBER 
[SQRTjSQUARE ROOT OF REAL NUMBER 

[CROTG]COMPLEX GIVENS ROTATION 
[CSROT]COMPLEX 2-D ROTATION 

[SROTG]GIVENS PLANE ROTATION 
[SROT]PLANE ROTATION 
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[VSINH]VECTOR SINE HYPERBOLIC 
[KSMLV]K-TH SMALLEST ELEMENT IN VECTOR 

COMPLEX SYMM FACTOR AND SOLVE ••• [CSFS2]SPARSE 
COMPLEX SYMMETRIC SOLVE ••• [CSSV2]SPARSE 

COMPLEX UNSYM FACTOR AND SOLVE===[CUFS2]SPARSE 
COMPLEX UNSYMMETRIC SOLVE ••• [CUSV2]SPARSE 

REAL SYMM FACTOR AND SOLVE ••• [RSFS2]SPARSE 
[RSSV2]SPARSE REAL SYMMETRIC SOLVE 

REAL UNSYM FACTOR AND SOLVE ••• [RUFS2]SPARSE 
[RUSV2]SPARSE REAL UNSYMMETRIC SOLVE 

[SGESL]REAL GENERAL MATRIX SOLVE 
[LUSN]LU MATRIX SOLVE CROUT 

HERMITIAN EIGENSYSTEM SOLVER ••. [CH]COMPLEX 
MATRIX EQUATION SOLVER •.. (CMSOLV]COMPLEX 
MATRIX EQUATION SOLVER ••. [CSOLVQ]COMPLEX 

[CSOLV]COMPLEX SYSTEM SOLVER 
SYMMETRIC EIGENSYSTEM SOLVER ••. [EIGRS]REAL 

[RS]REAL SYMMETRIC EIGENSYSTEM SOLVER 
[SGTSL]TRIDIAGONAL MATRIX SOLVER 

[SITSOL]SPARSE ITERATIVE SOLVER 
FORMAT EQUATION SOLVER •• e[SKYSOL]SKYLINE 

[SOLVEQ]LINEAR EQUATION SOLVER 
[TRIDIA]TRIDIAGONAL MATRIX SOLVER 

[VASORT]VECTOR SORT ALGEBRAIC VALUES 
[VISORT)VECTOR SORT INTEGER VALUES 

[VSORT]VECTOR SORT WITH INDICES 
[VSQ]VECTOR SQUARE 

[VSSQ]VECTOR SIGNED SQUARE 
[RSQRT]RECIPROCAL SQUARE ROOT 

[VRSQRT]VECTOR RECIPROCAL SQUARE ROOT 
[VSQRT]VECTOR SQUARE ROOT 

VECTOR MAGNITUDE SQUARED ••• [CVMAGS]COMPLEX 
[MEASQV]MEAN OF VECTOR ELEMENT SQUARES 

[SVESQ]SUM OF VECTOR ELEMENT SQUARES 
[SVS]SUM OF VECTOR SIGNED SQUARES 

[ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 
[CMTRAC]COMPLEX SUB-MATRIX TRACE 
[CMTRAN]COMPLEX SUB-MATRIX TRANSPOSE 
AND REAL VECTOR SUBTRACT ••• [CRVSUB]COMPLEX 

[CVSUB]COMPLEX VECTOR SUBTRACT 
TO DOUBLE-PRECISION SUBTRACT ..• [DSUBRR]SINGLE 
TO DOUBLE-PRECISION SUBTRACT •.• [DSUB]DOUBLE 

[VISUB]VEC'l'OR INTEGER SUBTRACT 
MULTIPLY, MULTIPLY, AND SUBTRACT ... [VMMSB]VECTOR 

[VMSB]VECTOR MULTIPLY AND SUBTRACT 
SCALAR MULTIPLY AND SUBTRACT •.. [VSMSB]VECTOR 

[VSUB]VECTOR SUBTRACT 
[VSBM]VECTOR SUBTRACT AND MULTIPLY 

[VSBSM]VECTOR SUBTRACT AND SCALAR MULTIPLY 
(MMTSUB]VECTOR SUBTRACT MD-MD TO TM 
[MTMSUB]VECTOR SUBTRACT MD-TM TO MD 
[MTTSUB]VECTOR SUBTRACT MD-TM TO TM 
[TMMSUB]VECTOR SUBTRACT TM-MD TO MD 
[TMTSUB]VECTOR SUBTRACT TM-MD TO TM 
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[TTTADD]VECTOR ADD TM+TM TO TM 
[TMMSUB]VECTOR SUBTRACT TM-MD TO MD 
[TMTSUB]VECTOR SUBTRACT TM-MD TO TM 
[TTMSUB]VECTOR SUBTRACT TM-TM TO MD 
[TTTSUB]VECTOR SUBTRACT TM-TM TO TM 

MATRIX MULTIPLY TRACE ••• [CMMTRC]COMPLEX 
[CMTRAC]COMPLEX SUB-MATRIX TRACE 

[ISIGN]INTEGER SIGN TRANSFER 
[SIGN]REAL NUMBER SIGN TRANSFER 

[CTRN2]2-D COORDINATE TRANSFORM 
[RDFT]REAL DISCRETE FOURIER TRANSFORM 

COORDINATE TRANSFORMATION ••• [CTRN3] 
[HLBRT]HILBERT TRANSFORMER 

[CMTRAN]COMPLEX SUB-MATRIX TRANSPOSE 
[MAXBT]MATRIX A TIMES B TRANSPOSE 

[MTRANS]MATRIX TRANSPOSE 
[STMM]SUBMATRIX TRANSPOSE & MULTIPLY 

[MATXBT]SUBMATRIX TRANSPOSE TRANSPOSE MULTIPLY 
[MNATXB]SUBMATRIX NEGATIVE TRANSPOSE MULTIPLY. 

[MATXBT]SUBMATRIX TRANSPOSE TRANSPOSE MULTIPLY 
[VTRAPZ]VECTOR TRAPEZOIDAL RULE INTEGRATION 

[V.0'l]VECTOR ZERO TRENDS 
[IMTQLl]DIAGONALIZE TRIDIAGONAL MATRIX 

[IMTQL2]DIAGONALIZE A TRIDIAGONAL MATRIX 
[HTRIDI]COMPLEX HERMITIAN TRIDIAGONALIZATION 

[VAINT]VECTOR TRUNCATE 
[VFRAC]VECTOR TRUNCATE TO FRACTION 

[GENTAB]GENERATE TWIDDLE FACTOR TABLE 
[SMUPCK]SPARSE MATRIX UNPACK 
[SVUPCK]SPARSE VECTOR UNPACK 

[VUP16]VECTOR 16-BIT BYTE UNPACK 
[VUP32]VECTOR 32-BIT BYTE UNPACK 

[VUPB]VECTOR 8-BIT BYTE UNPACK 
[VUPR32]VECTOR HALFWORD REAL UNPACK 

16-BIT SIGNED BYTE UNPACK ••• [VUPS16]VECTOR 
32-BIT SIGNED BYTE UNPACK ••• [VUPS32]VECTOR 

8-BIT SIGNED BYTE UNPACK ••• [VUPSS]VECTOR 
32-BIT SIGNED INTEGER UNPACK ••• [VUSI32]VECTOR 

[VUUI32]VECTOR 32-BIT UNSIGNED UNPACK 
[VUUI32]VECTOR 32-BIT UNSIGNED UNPACK 
(CUFS2]SPARSE COMPLEX UNSYM FACTOR & SOLVE 

[RUFS2]SPARSE REAL UNSYM FACTOR & SOLVE 
[CUFR2]SPARSE COMPLEX UNSYMMETRIC FACTOR 

[RUFR2]SPARSE REAL UNSYMMETRIC FACTOR 
[CUSV2]SPARSE COMPLEX UNSYMMETRIC SOLVE 

[RUSV2]SPARSE REAL UNSYMMETRIC SOLVE 
[CCEPS]PHASE UNWRAP AND COMPLEX CEPSTRUM 

[SHPHU]SCHAFER'S PHASE UNWRAPPING 
[PKVAL]PEAK AND VALLEY PICKING 

[VASORT)VECTOR SORT ALGEBRAIC VALUES 
[VISORT]VECTOR SORT INTEGER VALUES 

[FUNl]FUNCTION OF ONE VARIABLE 
[ADAMS4]ADAMS VARIABLE STEP INTEG.ORD 4 

[VARNMO]NMO WITH VARIABLE VELOCITY 
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APMATH64 KEY WORD INDEX 

[SVS]SUM OF VECTOR SIGNED SQUARES 
[CRVSUB]COMPLEX AND REAL VECTOR SUBTRACT 

[CVSUB]COMPLEX· VECTOR SUBTRACT 
[CSWAP]COMPLEX VECTOR SWAP 
[SVUPCK]SPARSE VECTOR UNPACK 

3X3 MATRIX MOLT. 3D VECTORS ••• [CMVML3]COMPLEX 
4X4 MATRIX MOLT. 4D VECTORS ••• [CMVML4]COMPLEX 

[SDOT]DOT PRODUCT OF REAL VECTORS 
DISTANCE BETWEEN TWO VECTORS •• e[SN2]SQUARED 

[SSWAP]INTERCHANGES VECTORS 
[CONNMO]NMO WITH CONSTANT VELOCITY 
[VARNMO]NMO WITH VARIABLE VELOCITY 

REAL NUMBER TO NEAREST WHOLE ••• [ANINT]ROUND 
[BLKMAN]BLACKMAN WINDOW MULTIPLY 

[HAMM]HAMMING WINDOW MULTIPLY 
[HANN]HANNING WINDOW MULTIPLY 

[TMMM]MATRIX MULTIPLY TM WORKSPACE 
[CAXPYN]NESTED COMPLEX A * X + Y 

[CAXPY]COMPLEX A * X + Y 
[SAXPYN]NESTEO REAL A * X + Y 

[SAXPY]REAL A * X + Y 
[CAXPYN]NESTED COMPLEX A * X + Y 

[CAXPY]COMPLEX A * X + Y 
[SAXPYN]NESTED REAL A * X + Y 

[SAXPY]REAL A * X + Y 
(Vgl]VECTOR ZERO TRENDS 

EQUATION, 2 POLES, 2 ZEROS ••. [DEQ22]DIFFERENCE 
[VSCANg]VECTOR SCAN FOR ZEROS 
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------------------------------------------------------------------------------------- ------
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~ 

Your comments wiil heip us improve the quaiity and usefulness of our publications. Please fill 
out and return this form. (The mailing address is on the back.) 

Title of document: -----------------------------
Your Name and Title: Date: ------------------- --------Fi rm: ______________________ Department:-----------~~~~ 

Address: -----------------------------------------
City:----------- State:------------- Zip Code:-------
Telephone Number: _____ .)-----------Extension:----------

I used this manual. . 

0 as an introduction to the subject 

0 as an aid for advanced training 

0 to instruct a class 

0 to learn operating procedures 

0 as a reference manual 

D other -------------

I found this material. 

accurate 

complete 

written clearly 

well illustrated 

well indexed 

Yes 
0 
0 
0 
0 
0 

No 
0 
0 
0 
0 
0 

~ Please indicate below, listing the pages, any errors you found in the manual. Also indicate if 
~ you would have liked more information about a certain subject. 

-< 
~ 
~ 

-------------------------------------------------------------------------------------------

>­
ID 
n: 
n: 
ID 

ARRAY is an independent society of people who use FPS products. Membership is free 
a...11d includes a quarterly newsletter. There is an a.i.1nual conference, as well as other 
activities. If you are interested in becoming an ARRAY member, please fill out and 
return this form. (The mailing address is on the back.) 

Your Name and Title: Date: ------------------------ ----------Fi rm: _______________________ Department:-----------
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