APMATH64/MAX MANUAL

VOLUME 4 OF 4
MODELS M64/140, M64/145

860—7482-001C

F F E = FLOATING POINT SYSTEMS, INC.




APMATH64/MAX MANUAL

VOLUME 4 OF 4
MODELS M64/140, M64/145

860—-7482-001C

by FPS Technical Publications Staff



Publication No. 864-7482-361C
December, 1987

NOTICE

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright © 1987 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may
be reproduced in any form without written permission
from the publisher.

Printed in USA

The postpaid Reader's Comment Form on the last page of this document
requests the user's critical evaluation to assist in preparing and
revising future documents.



REVISION HISTORY

This manual is the APMATH64/MAX Manual, Volume 4, 863-7482-g@l. The
letter shown under the revision number column indicates the portion of
the part number that changes for each revision. The last entry is the
latest revision to this manual.

REV. NOC. DESCRIPTION DATE
-ga1iAa The revision history begins with this manual. 8/86
- -g4d1B Deleted Utilities Library, deleted the
LPSPFI subroutine, added internal subroutine
information, and added 16 new routines. 1/87
-391C Added new routines to Basic Math Library,
Double Precision Library, and Matrix Algebra
Accelerated Math Library. 12/87

NOTE: For revised manuals, a vertical line "|" outside the left
margin of the text signifies where changes have been made.



NOTE TO READER

This is the fourth volume of the APMATH64 Manual. It
is comprised of Appendix K, Appendix L, and a key
word index for the APMATH64/MAX routines. Note that
Appendix A continues through Volumes 1, 2, and 3.
The page numbers are listed consecutively through the
volumes.

The APMATH64 Manual has three indices located at the
end of Volume 3 and two at the end of Volume 4. The
first index (Appendix I) 1is a list of the APMATH64
routines in page order by type. The second index
(Appendix J) 1is an alphabetical list of the APMATH64
routines. The third index is a key word index of the
APMATH64 routines. The fourth index (Appendix L) is
an alphabetical 1list of the APMATH64/MAX routines.
The fifth index is a key word index of the
APMATH64/MAX routines.



CONTENTS (VOLUME 4)

APPENDIX K MATRIX ALGEBRA ACCELERATOR MATH LIBRARY ROUTINES

K.l INTRODUCTION

K.2 SYSTEM OVERVIEW

K.3 BASIC MAX ROUTINES

K.3.1 Overview

K.3.2 Examples

K.3.3 Routine Documentation
K.4 MATRIX ORIENTED MAX ROUTINES
K.4.1 Overview ’

K.4.2 Architectural Details
K.4.3 Examples

K.4.4 Routine Documentation

APPENDIX L MAX ROUTINES IN APPHABETICAL ORDER

APMATH64/MAX KEY WORD INDEX

ILLUSTRATIONS
Figure No. ' Title
k-1 Sample Calculations of Matrix Multiply
K-2 MAX Vector Memory Submatrix
R-3 TMRAM Simulated Vector Memories
TABLES
Table No. Title
K-1 Real Vector Mapping
K-2 Complex Vector Mapping

FPS 863-7482-g91C

CONTENTS

Page
K-11

K-77
K-81

Page

K-84
K-82

Page iii



APPENDIX K

MATRIX ALGEBRA ACCELERATOR MATH LIBRARY ROUTINES

K.1 INTRODUCTION

This appendix contains documentation for the Matrix Algebra Accelerator
(MAX) Math Library routines. A high-level description of the MAX
system is presented, followed by documentation for the two categories
of MAX Math Library routines: the Basic MAX routines and the Matrix
Oriented MAX routines.

3

K.2 SYSTEM QVERVIEW

A M64/14F or M64/145 MAX system consists of a Central Processing Unit
(CPU), a memory unit, and one or more MAX modules. The MAX modules are
collectively referred to as the "MAX". Each MAX module is capable of
performing calculations in parallel with the M64/148 or M64/145 CPU as
well as with other MAX modules.

The MAX Math Library software requires an M64/14@ or M64/145 that has
been configured with at least 16K Table Memory RAM (TMRAM). The
software can utilize an arbitrary number of MAX modules up to and
including the maximum configuration of fifteen.

An individual MAX module contains eight vector memories, each 2K (2448)
words in length. The Basic MAX routines are restricted to usage of the
first 2K-1 (2047) locations of each vector memory. The Matrix Oriented
MAX routines restrict usage as appropriate to the particular operation
{refer to the manual page).

The hardware on a MAX module directly supports the basic vector
operations real and complex dot product, real vector scalar multiply
and add (VSMA), and real vector multiply and scalar add (VMSA). Since
the dot product operation is a vector to scalar operation, up to eight
separate real dot products or four separate complex dot products can be
performed on a single MAX module. That is, all eight vector memories
can contain input vectors for dot products. Since the VSMA and VMSA
operations are vector to vector operations, up to four separate VSMA's
or VMSA's can be performed on a single MAX module. For VSMA and VMSA
operations, the vector memories on each MAX module are grouped into two
banks of four vector memories each. One bank of four vector memories
contains the input vectors, while the other bank of four vector
memories contains the resulting output vectors.

The CPU supplements the MAX performance by using TMRAM as an additional
set of vector memories. In this way, the CPU can perform up to four
real dot products, two complex dot products, one VSMA, or one VMSA in
parallel with the MAX modules. Most of the MAX Math Library routines

FPS 860-7482-801C Page K - 1



APPENDIX K

The ranges of values which will produce overflow or underflow during
conversion from FPS to IEEE and back to FPS format are given below.
This conversion could be obtained by a vector move of data from Main
Memory to a MAX vector register followed by a vector move of the data
from the MAX vector register back to Main Memory. Both the standard
scientific notation and the FPS internal binary representation (in
hexadecimal) is given for each number.

4.898846567431157750E+348 ~--+
FFEF FFFF FFFF FFFF

Positive overflow

§.449423283715578980E+348

Fo——— e

FFE8 0000 00993 29494

]
]
+

4.449423283715578884E+348

FFCF FFFF FFFF FFFF

°

No overflow/underflow

.

9.2225073858507291409E-347

B e R e —

g068 0009 0080 9900

9.222507385850720990E~-347

|
1
+

@@4F FFFF FFFF FFFF

Positive underflow

9.278134232313403179E-348

|
|
+

d9098 006E 2993 9d0d

g.g9
, True zero
9999 000 998F @804a

-#.278134232313409399E-358 --+
I

@917 FFFF FFFF FFFF |

. !
I

Negative underflow

FPS 864-7482-991C Page K - 3



MAX formatter exception ihterrupts can be selectively enabled or
disabled in a manner similar to the arithmetic exception interrupts.
The default disables all MAX formatter exception interrupts.

The following code fragment enables all MAX formatter exception
interrupts:

INTEGER UNFL, UNNORM, DENCRM, OVFL

UNFL =
UNNORM = 1

DENORM = 1

OVFL = 1

CALL SYSSENA_ FMTERR(UNFL, UNNORM, DENORM, OVFL)

—

The following code fragment disables all MAX formatter exception
interrupts.

INTEGER UNFL, UNNORM, DENORM, OVFL

.

UNFL = 1
UNNORM = 1
DENORM = 1
OVFL = 1

CALL SYSSDIS_FMTERR(UNFL, UNNORM, DENORM, OVFL)

For more information on enabling and disabling exception interrupts,
refer to the documentation for routines SYSSENAEXC, SYSSDISEXC,
SYSSENA_FMTERR, SYS$DIS_FMTERR in the Operating System Manual, Volume
3, File and Memory Management, listed in Section 1.5.

K.3 BASIC MAX ROUTINES

The Basic MAX routines provide for basic functional utilization of the
MAX system and are vector oOriented.

K.3.1 OQverview

The Basic MAX routines are designed to access the basic functionality
of the MAX modules. These routines are not as flexible as the Matrix
Oriented MAX routines in terms of data management in the MAX system.
The configuration table used by the Basic MAX routines references the
available MAX modules. The table is always placed into the 17 highest
addressable locations in TMRAM regardless of the base address of the
TMRAM workspace. Hence, for 16K TMRAM systems, the table will be
situated in locations 24559-24575.

FPS 860-7482-941C Page K -



APPENDIX K

Mathematically, the operations to be performed are:
S(i) = SUM[A(]j) * B(i,]j):; 3J = 1,4]; i=1,14

The following is the APFTN64 code to perform the desired operation.
Briefly, the PLOADD routine is called to load the array of vectors B
into TMRAM and the MAX vector memories. The PDOT routine is then
called to compute the dot products and return the results into the
array S. (Refer to the documentation on PLOADD and PDOT for a
discussion of the parameter values.)

REAL A(4),B(14,4),S5(14)
INTEGER I,J,N,M,ITMA,ISTART,IFUN,IERR

I =14
J=1

N =4

M= 14
ITMA = 8192
ISTART =1

CALL PLOADD(B,I,J,N,M,ITMA,ISTART,IERR)
IF(IERR.NE.J) GO TO 949

I=1

J =1

N = 4

M= 14
ITMA = 8192
ISTART = 1
IFUN = ¢

CALL PDOT(A,I,N,S,J,M,ITMA,ISTART,IFUN, IERR)
IF(IERR.NE.J) GO TO 949

944 CONTINUE

FPS 868-7482-991C Page K - 7



APPENDIX K

resulting output vectors and store them in the array of vectors C.
{Refer to the documentation on PLOADV, PVSMA, and PUNLDV for a
discussion of the parameter values.)

REAL A(4),S(7),B(7,4),C(7,4)
INTEGER I,J,N,M,ITMA,ISTART,IFUN,IERR,IBANK

I =7

J=1

N =4

M=7

IBANK = @
ITMA = 8192
ISTART = 1

CALL PLOADV(B,I,J,N,M,IBANK,ITMA,ISTART,IERR)
IF(IERR.NE.J) GO TO 944

J=1

N = 4

M=7

ITMA = 8192
ISTART = 1
IFUN = &

CALL PVSMA(A,I,S,J,N,M,IBANK,ITMA,ISTART,IFUN,IERR)
IF(IERR.NE.J) GO TO 949

I=7
J=1
N =4
M =7
ITMA = 8192
ISTART =1

CALL PUNLDV(C,I,J,N,M,IBANK,ITMA,ISTART,IERR)
IF(IERR.NE.J) GO TO 9949

9949 CONTINUE

Upon successful execution of PLOADV, PVSMA, and PUNLDV, the array C
contains the following:

C= g.0 4.0 0.9 9.4
g.9 4.8 4.7 @.6
1.8 1.6 1.4 1.2
2.7 2.4 2.1 1.8
3.6 3.2 2.8 2.4
4.5 4.9 3.5 3.9
5.4 4.8 4.2 3.6

FPS 864-7482-941C Page K - 9



APPENDIX K

Basically, PLOADD is called to load M rows of the matrix A into TMRAM
and the MAX vector memories. Each call to PDOT performs the M dot

products of one column of the matrix B with the M rows of the matrix A
loaded by PLOADD. These calculations are shown in Figure K-1.

+ + + + + +
| | | | | x |
| x | |l xxx . . .xxx | | X |
| x | | x xx . . . xx x| | X I
| hd | | L e s o . . e o I I . I
| | = 1. A . [
| . | P | . |
| X | | xxx . . . xx x| | X

| x | | xxx . . .xxx | | x

| | | | | x |
+ + + + + +

C A B
N1l x N3 N1l x N2 N2 x N3

Figure K-1 Sample Calculations of Matrix Multiply

In general, the number of rows of the matrix A (N1 above) is not an
integral multiple of the number of dot products that a given system can
perform at the same time (M above). It is straightforward to add
APFTN64 code to handle the remaining MOD(N1,M) rows of the matrix A, as
well as to handle the case where N1l is less than M.

K.3.3 Routine Documentation

This section contains the descriptions of the Basic MAX routines.

FPS 864-7482-841C Page K - 11



APPENDIX K

Ex XXX 22 22 % tx 2222222223
* * * *
* PCDOT * ——— PARALLEL COMPLEX DOT PRODUCT ——— * PCDOT *
* * * *
22212222254 tkkkkkkikkki
PURPOSE: To compute the complex dot products of a single vector

with each of a set of vectors that were loaded by PLDCD.

CALL FORMAT: CALL PCDOT(A, I, N, S, J, M, ITMA, ISTART, IFUN, IERR)

PARAMETERS: A = Floating-point input complex vector.
I = Integer input element stride for A.
N = Integer input number of elements in A.
S = Floating-point output complex vector.
J = Integer input element stride for S.
M - minar AF eram~dtAe TAaA e PLDCD.
I

Integer input number of wvectors lcaded by
TMA = Integer input TMRAM workspace base address
from the most recent call to PLDCD.

ISTART = Integer input starting index into the TMRAM
workspace and the MAX vector memories to begin
loading vectors. The first location of the MAX
vector memories and the TMRAM workspace has an
index value equal to one.

IFUN = Integer input addition/subtraction flag.

IFUN = f@: Use addition.
IFUN <> f: Use subtraction.
IERR = Integer output error flag.

DESCRIPTION: PCDOT performs the M complex dot products of the vector
contained in A with the M vectors loaded by a previous
call to PLDCD. There is no check as to whether or not
the vectors were actually loaded by PLDCD. The results
are stored in the vector S.

1]

S(J*(23-1)) SUM(s * A(I*(2i-1),]) *

W(i+ISTART-1),3j); 1 =1 to N]

S(J*(2j-1)+1) = SUM[s * A(I*(2i),3) *

W(i+ISTART-1),j); i = 1 to N]

j =1toM

where
s = 1.4 if IFUN =@
s = -1.8 if IFUN <> @

and W(*,1:M) are the M vectors loaded by PLDCD.

FPS 860-7482-g91C Page K - 13



- APPENDIX K

MAX module #2

Vector memory A: 6.1 6.3 6.5
: 6.2 6.4 6.6
: 7.1 7.3 7.5
D: 7.2 7.4 7.6
: 8.1 8.3 8.5
F: 8.2 8.4 8.6
G: 9.1 9.3 9.5
H: 9.2 9.4 9.6
TMRAM
T™ (8192): 1.1
T (8193): 1.2
T (8194): 4.9
T (8195): 4.9
T (8196): 1.3
™ (8157): 1.4
™ (8198): 4.4
TM (8199): 4.4
T™ (8284): 1.5
TM (8241): 1.6
T™ (8202): 4.9
TM (8283): 4.9
™ (8294): x.x
TM(24558): x.x
TM(24559): MAX
. Configuration
TM(24575): Table

Given the following input parameters to PCDOT:

N =3
M =9
I = 2
J =2
IT™MA = 8192
ISTART = 1
IFUN =g

A= (1.9,8.8) (1.9,9.9) (1.9,4.9)

FPS 869-7482-941C Page K - 15



APPENDIX K

Ittt******* . EEREREEERE
|* * * *
|* PCNV2D * — PARALLEL 2-D CONVOLUTION AND CORRELATION — * PCNV2D *
l* * * *
it’t*****t* AERARAAEER
| PURPOSE: To perform a 2-D convolution or correlation operation

| on two matrices using the M64/144 or M64/145.

|CALL FORMAT: CALL PCNV2D(A,MA,IA,JA,M,N,B,MB,NB,IBl,C,MC,IC,JC,IR,ITMA)

PARAMETERS: A = Floating-point input operand matrix. (column
ordered)
MA = Integer input number of rows of A

IA = Integer input initial row of the submatrix A'
of A to be processed (1 <= IA <= MA)

JA = Integer input initial column of the submatrix
A' of A to be processed (JA >= 1)

M = Integer input number of rows in A'
(1 <= M <= MA)

N = Integer input number of colummns in A'
(N >= 1)

B = Floating-point input operator matrix. (column
ordered)

MB = Integer input number of rows of B

NB = Integer input number of columns of B

IBl = Integer index of the operator element B that

I

I

I

I

I

i

|

I

I

I

I

I

|

|

|

|

| is to coincide with the first operand element
l of A' to be processed and output as the

| corresponding element of C'. For correlation,
| this index is counted columnwise relative to
| the upper left-hand corner element of B.

| For convolution, this index is counted

| columnwise relative to the lower right-hand
| corner element of B, since B is reversed.

| (1 <= IBl1 <= MB*NB)

| Cc = Floating-point output matrix. (column ordered)
|

|

I

I

I

|

I

I

I

I

MC = Integer input number of rows of C
IC = Integer input initial row of C which locates the
submatrix C' or C; C' will be the processed A'
(1 <= IC <= MC)
Jc = Integer input initial column of C which locates
the submatrix C' of C (JC >= 1)
IR = Integer input scalar flag
IR = g: Perform convolution
IR <> f: Perform correlation
ITMA = Integer input TMRAM workspace base address

IDESCRIPTION: C(ic,jc) = SUM[SUM[A(ka,la) * B(k,1l); k=1,MB]; 1l=1,NB]
| for i=1 to M

| ' j=1 to N

| where ic = i+IC-1

FPS 869-7482-9081C Page K - 17



APPENDIX K

® ® sasannsnaN
S S LR
5w saanaEnsEaN
SIS S Y
SRS snannE8e®
SIS POomDEE S S S
8w snanasanS
SIS LR EES
NN
w ® snsannEnaaS
S PR RS
NN
SRS snunas Y.
S LR
N~
o w I LR
S NN
o e B B I |
SRS SnnnnE R8s
S R RGN
SnonnnaRaNRNENN
SS1rsnneas s SN
—~
HEOC

19

Page K

FPS 864-7482-441C



APPENDIX K

If N is less than one, then

§(j) =

Summary of

IERR =

IERR =

IERR =

IERR =

IERR =

g.9;

j=1, M

error conditions:

g

1

Normal return.

Insufficient MAX vector memories and
T!&RAM = hn'IR +fha miimhar Af wram+rAra

designated by M. Each MAX module can
hold eight vectors. TMRAM can hold four
vectors.

Vector length too large. N+ISTART-1
must be less than or equal to 2847.

ISTART or M is less than or equal to
zero. Both of these parameters must
be positive.

Insufficient TMRAM space available.
There must be enough TMRAM available to
hold 4*(N+ISTART-1) + 17 words, starting
at the TMRAM workspace base address,
ITMA. Although PDOT does not load TMRAM,
it does check for consistency between N,
ISTART, and ITMA.

ITMA less than 819 ITMA must be
e

.
~esa 1l 109
greater than or quaL toc 8192.

EXAMPLE: Given a

system

TMRAM that has

MAX module #1

with two available MAX modules and 16K
been initialized by PLOADD as follows:

Vector memory A:

MAX module #2

v

FPS 864-7482-g41C

Vactor memars
eCtor memor

7

B:

-
.

D:
B:
F:
G:
H:

3.1 3.2 3.3 3.4
4.1 4.2 4.3 4.4
5.1 5.2 5.3 5.4
6.1 6.2 6.3 6.4
7.1 7.2 7.3 7.4
8.1 8.2 8.3 8.4
9.1 9.2 9.3 9.4

19.1 14.2 16.3 10.4

11.1 11.2 11.3 11.4

12.1 12.2 12.3 12.4

13.1 13.2 13.3 13.4

14.1 14.2 14.3 14.4

Page K - 21



APPENDIX K

Upon RETURN from PDOT, S contains:

o WWwWNNN
HNWOOuWULHNSWOWM
. e o & & .0

e

N

45.8
49.9
53.9
57.9

FPS 864-7482-g41C Page K -~ 23



APPENDIX K

S(1+(j-1)*I+(k=1)*J) = (c*S(l+(j-1)*I+(k-1)*J)

+ SUM[s*A((i-1)*IA+1)*V(INDEX(i)+j-1,k); i=1,NA); k=1,M)

j = 1,NP
where
c= 1.9 if I1ACC = 4
c = f#.4 if IACC <> §
s = if TFUN =@

= 1.9
s = ~-1.9 if IFUN <> ¢
and V(*,1:M) are the M vectors loaded by PILOAD.
If NA is less than one, then

2 h] Lo AT
r J T 4L LU NE

=

5{(i,j) = 98.8; i = 1 to
Summary of error conditions:
IERR = @ Normal return.

IERR = 1 Insufficient MAX vector memories to hold
the number of vectors designated by M.
Each MAX module can hold 8 vectors.

IERR = 2 NA, NP, or M is less than or equal to
zero. Each of these parameters must be
pnGif-'ivn_

IERR = 3 Insufficient TMRAM space available.
There must be enough TMRAM to hold 17
words starting at the TMRAM workspace
base address ITMA.

IERR = 4  ITMA less than 8192. ITMA must be
greater than or equal to 8192.

EXAMPLE: Given a system with one available MAX module and 16K TMRAM
that has been initialized by PILOAD as follows:

FPS 869-7482-981C Page K - 25



Xkttt hd
* *

* PILOAD *
% *

kkktkhkkkd

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

FPS 860-7482-441C

APPENDIX K

tkkkttthed
* *

* PILOAD *
* *

-—— PARALLEL LOAD FOR PIDOT -—

kit itt

To load vectors from Main Memory into the MAX vector
cries i tion for DC

L

=]

CALL PILOAD (A, I, J, N, M, ITMA, IPTR, IERR)

A = Floating-point input array of vectors.

I = Integer input element stride for vectors in A.

J = Integer input element stride between
vectors in A.

N = Intedger input number of elements per vector
in A.

M = Integer input number of vectors to transfer.

ITMA = Integer input TMRAM workspace base address.

IPTR = Integer input offset into the MAX vector
memories to begin accessing vector elements.
This parameter is different than the ISTART
parameter in PLOADD.

IERR = Integer output error flag.

PILOAD loads the wvectors contained in A into the MAX

vector memories in preparation for calls to PIDOT.

MAX vector memory location zero is reserved for PIDOT,
therefore requiring the IPTR parameter to be greater
than zero. PILOAD also sets up the MAX configuration
table in TMRAM.

Summary of Error Conditions:

IERR = & Normal return.

IERR =1 Insufficient number of MAX vector
memories to hold the number of vectors
designated by M. Each MAX module can
hold 8 vectors.

IERR = 2 Vector length too large. N+IPTR must be
less than or equal to 2447.

IERR = 3 One or more of IPTR, N, or M is less

than or equal to zero. Each of these
parameters must be positive.

Page K - 27



APPENDIX K

MAX module #2

Vector memory A: X.X 9.1 9.2 9.3 9.4
B: x.x 1.1 1@8.2 18.3 19.4
C: x.x 11.1 11.2 11.3 11.4
D: x.x 12.1 12.2 12.3 12.4
E: x.x 13.1 13.2 13.3 13.4
F: x.x 14.1 14.2 14.3 14.4

TMRAM
T™M (8192): MAX
. Configuration
TM (8248): Table

FPS 868-7482-3d1C Page K - 29



IERR = 2
IERR = 3
IERR = 4
IERR = 5

APPENDIX K

Vector length too large. N+ISTART-1 must
be less than or equal to 2047.

One or more of ISTART, N, or M is less
than or equal to zero. Each of these
parameters must be positive.

Insufficient TMRAM space available.
There must be enough TMRAM available to

hold 4*({N+ISTART-1} + 17 words, starting

at the TMRAM workspace base address,
ITMA.

ITMA less than 8192. ITMA must be
greater than or equal to 8192.

EXAMPLE: Given a system with two available MAX modules and 16K TMRAM
and the following input parameters to PLDCD:

HOHZZ

TMA

=3
=9
= 18
2
8192

ISTART =1

A =

Note that in this example, A is a two-dimensional complex
matrix whose elements are stored in column major order.

FPS 864-7482-941C

(1.1,1.2)
(2.1,2.2)
(3.1,3.2)
{4.1,4.2)
(5.1,5.2)
(6.1,6.2)
(7.1,7.2)
(8.1,8.2)
(9.1,9.2)

(1.3,1.4) (1.5,1.6)
(2.3,2.4) (2.5,2.6)
(3.3,3.4) (3.5,3.6)
{4.3,4.4%) {(4.5,4.6)
(5.3,5.4) (5.5,5.6)
(6.3,6.4) (6.5,6.6)
(7.3,7.4) (7.5,7.6)
(8.3,8.4) (8.5,8.6)
(9.3,9.4) (9.5,9.6)

Page K

31



APPENDIX K

The vectors are loaded into the MAX vector memories as real
and imaginary pairs as well with the real part of the first
number loaded into memory A and the imaginary part in vector
vector memory B. The next number will be loaded into vector
memories C (real part) and D (imaginary part), etc.

FPS 869-7482-801C Page K - 33



APPENDIX K

IERR

1]
N

Vector length too large. N+ISTART-1
must be less than or equal to 2g47.

IERR = 3 One or more of ISTART, N, or M is less
than or equal to zero. Each of these
parameters must be positive.

IERR = 4 Insufficient TMRAM space available.
There must be enough TMRAM available to
hold 4*{N+ISTART-1) + 17 words, starting

at the TMRAM workspace base address,
ITMA.

IERR = 5 ITMA less than 8192. ITMA must be
greater than or equal to 8192.

EXAMPLE: Given a system with two available MAX modules and 16K TMRAM
and the following input parameters to PLOADD:

N = 4

M = 14

I = 14

J = 1

ITMA = 8192

ISTART = 1

A= 1.1 1.2 1.3 1.4
2.1 2.2 2.3 2.4
3.1 3.2 3.3 3.4
4.1 4.2 4.3 4.4
5.1 5.2 5.3 5.4
6.1 6.2 6.3 6.4
7.1 7.2 7.3 7.4
8.1 8.2 8.3 8.4
9.1 9.2 9.3 9.4
19.1 19.2 14.3 14.4
11.1 11.2 11.3 11.4
12.1 12.2 12.3 12.4
13.1 13.2 13.3 13.4
14.1 14.2 14.3 14.4

Note that in this example, A is a two—-dimensional
array whose elements are stored in column major order.

FPS 869-7482-g441C Page K - 35




t 222222 2 %1 E 22123223 % 24
* ®* * *
* PLOADV * ~—— PARALLEL LOAD FOR —— * PLOADV *
* * PVSMA AND PVMSA * *
kit d t 222222 2 2 1
PURPOSE: To load vectors from Main Memory into TMRAM and

11 o

the MAX vector memories in preparation for calls
to PVSMA or PVMSA.

CALL FORMAT: CALL PLOADV(A, I, J, N, M, IBANK, ITMA, ISTART, IERR)

PARAMETERS: A = Floating-point input array of vectors.
I = Integer input element stride for vectors in A.
J = Integer input element stride between
vectors in A.
N = Integer input number of elements per vector
in A.
M = Integer input number of vectors to transfer.
IBANK = Integer input TMRAM region and bank of MAX

vector memories to load.
IBANK = #@: Load first TMRAM region and MAX
vector memories A,B,C,D.
IBANK <> @: Load second TMRAM region and
MAX vector memories E,F,G,H.
ITMA = Integer input TMRAM workspace base address.
ISTART = Integer input starting index into the TMRAM
region and the MAX vector memories to begin
loading vector elements. The first location
of the TMRAM region and the MAX vector
memories has an index of one.
IERR = Integer output error flag.

DESCRIPTION: PLOADV loads the vectors contained in A into TMRAM
and the MAX vector memories in preparation for calls
to PVSMA or PVMSA. TMRAM is loaded first, so that if
M equals 1, then only TMRAM is loaded. The remaining
vectors are loaded into the MAX vector memories.
PLOADV also sets up the MAX configuration table in
the high end of TMRAM. The rest of the TMRAM
workspace is partitioned into two regions. The first
region corresponds functionally to MAX vector memories
a,B,C,D, while the second region corresponds
functionally to MAX vector memories E,F,G,H.

FPS 864-7482-g01C Page K -

37



APPENDIX K
Note that in this example, A is a two-dimensicnal array
whose elements are stored in column major order.
Upon RETURN from PLOADV, the MAX modules and TMRAM contain:

MAX module #1

Vector memory

~ oW
.
[

0
.
o
©

.

MAX module #2

Vector memory E: 11.1 11.2 11.3 11.4
F: 13.1 13.2 13.3 13.4

TMRAM
TM (8192): x.x First

: TMRAM
TM(16§74): X.X Region

TM(16375): 1.1
TM(16376): 1.2
TM(16377): 1.3 Second
TM(16378): 1.4
TM(16379): =x.x

. Region

TMRAM

TM(24558): x.x

TM(24559): MAX
. Configuration
TM(24575): Table

FPS 864-7482-g41C Page K -~ 39



EXAMPLE:
INPUT:
Let the input matrix A be:
1.06 -1.0¢ -1.0¢ 1.0 1.8 1.0 1.8 9.99
-2.90 9.9 1.9¢ -1.96 -1.0¢0 -1.2¢ 1.80 9.99
1.0 -1.9¢ 0.90 1.00 1.0¢ 1.8d 1.99 9.99
1.66 1.6 1.0 6.66 1.66 1.80 -1.96 9.99
-1.906 1.9¢ -1.90 -2.06 .06 1.90 1.99 9.99
1.0 -1.8¢ 1.90 1.0¢0 -1.0¢ 0.9¢ 1.0¢ 9.99
g.99 1.0¢ 1.99 -1.96 1.90 1.9¢ 9.2¢ 09.99
9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99
LA =8
N =7
QUTPUT:

Output matrix A:

-4.54 9.99 1.9 -1.99 -1.99 -1.84 1.99 9.99
-g.54 -1.9¢ -9.59 9.5 @.54 @8.54 1.54 9.99
g.56 -1.490 -4.50 -1.09 1.96 2.08 2.00 9.99
-@.54 1.99 =-1.08 -1.99 -1.94 1.99 2.49 9.99
g.08 -1.88 -8.25 g.75 g.44 1.25 g.59 9.99
-g.56 -1.99 -g4.54 @4.54 @.84 2.9 @.68 9.99
-@.54 1.99 -8.58 g.58 .46 @.99 -5.08 9.99
9.99 9.99 9.99 9. 9.99 95.99 9.99 9.99

(Vo]
[V

IPVT 2256767

INFO = 4

FPS 864-7482-941C Page K - 41




The pivot vector IPVT contains the row interchange
information that was generated by PLUFAC while
performing partial pivoting. ’

EXAMPLE:
INPUT:
Let the factored input matrix A be:
-34.58 9.94 1.09 -1.49 -1.99 -1.94 1.99 9.99
-4.54 -1.99 -g.54 @.58 F.58 g.59 1.5 9.99
g.54 -1.86 -4.58 -1.39 1.29 2.09 2.92 9.99
-3.54 1.9 -1.99 -1.69 -1.94 1.99 2.98 9.99
9.99 -1.99 -g.25 g.75 g.49 1.25 g.59 9.99
-#.56 -1.48 -8.54 g.38 @.89 2.9 @.69 9.99
-2.54 1.99 -8.54 g.58 9.49 g.96 -5.88 9.99
9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99
LA =8
X = 3.9 6.9 -3.94 9.99 -3.99 1.09 -1.48 9.99
LX = 8
N =7
M =1
IPVT =2 256 7 6 7
OUTPUT:

Solution matrix X:

-8.48 75.99 -6.94 56.99 4.9 -18.99 38.40 9.99

FPS 86§-7482-9@1C Page K - 43



where

s = +1.4 ( when IFUN = J )
= -1.9 ( when IFUN <> & )

TMRAM is used by this routine to hold up to 4 vectors of
length MIN(NA,2047), and also to hold a compressed MAX
module configuration table of up to 17 words. The
routine checks the amount of TMRAM on the system and
returns an error code {see Summary Of Error Conditions
below) if the above requirement is not met.

Implementation Note:

Vector lengths are not restricted to the length of the
MAX vector memories. When the vector length exceeds this
length (i.e., NA > 2047), partial dot products are
calculated in the MAX and TMRAM and are accumulated on
the M64/144 or M64/14S5.

Summary of Error Conditions:

IERR = 4 Normal return.

IERR

1]
[

One or more of LA, LB, LC, MC, NC, or
NA is less than or equal to zero.
BEach of these parameters must be
positive.

IERR = 2 ITMA less than 8192. ITMA must be

greater than or equal to 813Z.

IERR = 3 Insufficient TMRAM scratch space. See
DESCRIPTION section for details of TMRAM
requirements.

EXAMPLE:

INPUT:
A: 1.9 1.9 1.6 1.9
2.8 2.8 2.9 2.9
3.4 3.9 3.9 3.9
4.9 4.9 4.9 4.9
5.4 5.4 5.4 5.4
2.9 9.9 0.8 9.9
B: 1.9 2.4 3.9 4.9
1.8 2.8 3.8 4.8
1.9 2.4 3.9 4.9
1.9 2.4 3.9 4.9

FPS 860~-7482-841C Page K - 45



APPENDIX K

AR E kkkkkhkkkhhx

* * * *

* PMOVE * ——— PARALLEL MOVE —— * PMOVE *

* * * *

ket htnR t 222222221 3

PURPOSE: To move a row of elements across the MAX modules and
to move a single element in TM.

s v = peye B

CALL FORMAT: CALL PMOVE(A, IROW1l, IROW2, ISTEP, N, IBANK, ITMA, IERR)

n

PARAMETERS: A Floating-point output matrix.

IROWlL = Integer input element row index.

IROW2 = Integer input element row index.

ISTEP = Integer input element stride for A.

N = Integer input number of elements to move.

IBANK = Integer input bank switch (¥ or 1j.

ITMA = Integer input base address of the TMRAM
workspace.

IERR = Integer output error flag.

DESCRIPTION: PSWAP moves the element in TM indexed by IROW2 out to
Main Memory (matrix A) and moves the element indexed by
IROW1 to the location indexed by IROW2. The elements
indexed by IROW2 in the MAX vector memories are also
moved out to Main Memory (matrix A) and the elements
indexed by IROWl across the MAX vector memories are moved
to the location indexed by IROW2.

If IBANK = g, then only elements in vector memories A, B,
C, and D of the MAX vector memories are moved. If

IBANK = 1 then only elements in vector memories E, F, G,
and H are moved.

This routine can be used in matrix factorization.

Summary of error conditions:

IERR g Normal return.

IERR 1 Insufficient MAX vector memories and
TMRAM to hold the number of elements
designated by N. Each MAX module
can hold four vectors. TMRAM can hold

one vector.

IERR

[}
w

One or more of IROW1l, IROW2, or N is
less than or equal to zero. Each of

these parameters must be positive.

IERR

1]
(5}

ITMA less than 8192. ITMA must be
greater than or equal to 8192.

FPS 864-7482-041C Page K - 47



APPENDIX K

g.9 8.9 4.9 4.9 ¢.9 4.9 9.9 @.§ 6.9

q.9
5.9

6.2
6.4
6.5
6.6

5.8
2.3 6.3

2.4

2.7 6.7
2.8 6.8
2.9 6.9

2.2
2.6

5.6 5.7
4.2
4.3
4.7
4.8
4.9

3.5 4.5 2.5
3.6 4.6
2.7 3.7

2.8
2.9

3.2
3.4 4.4

4.8 4.4 4.4 4.4 8.4
3.3

9.9 9.9 @¢.9 @.4 €. 0.9 9.4 0.4 9.4
5.5
2.2
2.4
2.5
2.6

a.4
5.4
1.3 2.3
1.4
1.5
1.7

5.3
2.1
Table

B =
C =

D
B

MAX

5.1 5.2
g.¢ 2.4 9.9 #.9 9.8 2.9 4.8 9.8 4.9

g.9 8.4 4.8 6.9 ¢.9 0.9 9.9 G.84 @.9
g.2 g.4 4.9 @.9 4.9 4.9 9.9 4.9 @.9
g.9 9.9 .9 ¢.9 .9 B.9 4.9 4.9 9.9
g.0 9.9 4.0 @.8 4.0 9.9 ¢.8 G.9 9.9
¢g.9 4.0 6.9 9.9 g.09 9.4 g.6 4.9

g.0 6.9 2.0 9.6 2.9 4.0 9.4 9.9 9.9
g.0 9.9 9.9 9.9 9.9 4.9 8.4 2.4 G.9

T™™ (8193)
T™ (8194)
T (8195)
T™ (8196):
T™ (8197)
TM(24559)

TM(24575)
Vector Memory: A = 1.6

Upon RETURN from PMOVE, A contains
Vector Memory: A = 1.2

The MAX vector memories contain:

TMRAM contains

MAX Module #1
MAX module #2

3.8
3.9

.8
1.9

49

Page K

D =

FPS 864-7482-@41C



APPENDIX K

INFO=K indicates that the K-th diagonal element
became #.4. This does not cause the routine to
return, but indicates that a divide by # occurs
if the matrix-solving routine SGESL is called
with this output. If more that one diagonal
element becomes @.4, then INFO is set to the last
one to do so.

The original input matrix A is overwritten by
the factored matrix.

For further information, see the LINPACK routine
by the same name. Dongarra, J.J., Bunch, J.R.,
Moler, C.B., and Stewart, G.W. LINPACK User's
Guide. Society for Industrial and Applied
Mathematics, Philadelphia, Pa., 1979

Pa., 1979.

EXAMPLE:
INPUT:
Let the input matrix A be:
1.9 -1.96 -1.69 1.89 1.9 1.9 1.60 9.99
-2.00 9.99 1.9 -1.49 -1.99 -1.99 1.6 9.99
l.99 -1.0¢ 9.d9 1.9¢ 1.8 1.49 1.88 9.99
1.0 1.86¢ 1.0¢ ©.99 1.6 1.49 -1.68 9.99
-1.06 1.0 -1.99 -2.90 9.99 1.06 1.9 9.99
i.66 =-i1.06 1.96 1.909 -i1.96 G.88 1.8d G5.S5
g.g@ 1.99 1.99 -1.48 1.99 1.89 d.8d 9.99
9.99 9.9%9 9.99 9.99 9.99 9.99 9.99 9.99
LDA = 8
N =7
OUTPUT:

Qutput matrix A:

-2.98 92.99 1.6 -1.60 -1.99 -1.08 1.94 9.99
g.5¢ -1.99 -9.58 9.5 4.58 g.54 1.54 9.99
g.5¢ -1.9¢ -2.99 -1.40 1.09 2.09 2.0@ 9.99
g.54 1.06 @.50 -1.9¢0 -1.40 l1.99  2.99 9.99

-g.50 1.9 @.54 -@.59 2.59 1.25 g.59 9.99
g.584 -1.99 1.9 -4.58 -0.84 g.58 9.64 9.99

g.09 1.0 8.25 -9.75 -§.40 0.098 -9.28 9.99
$.99 9.9 9.99 9.9 9.9 9.9 9.99 3.99
IPVT = 2256767

INFO = @

FPS 868-7482-8d1C Page K - 51



APPENDIX K

In terms of the input parameters, the computation
performed by PTSLVK can be described by the following
equation, where V(I,J) represents element I in the J-th

vector memory:

V(IEND,J)

where

and

J ranges from
example, with

1
N

{ V(IEND,J) + s*T(1)*V(IBEG,J) +
s*T(1l+I)*V(IBEG+1,J) + ... +
T(I*(IEND-IBEG-1)+1)*V(IEND-1,J) ] * Q

+1.8 {when IFUN = #&)
-1.9 (when IFUN <> §)
1.9 (if IUD = #)

T(I*(IEND-IBEG)+1l) (if IUD <> &)

to the number of vectors available. For
MAX modules, 8*N+4 values of V(IEND,J)

would be computed on each call to PTSLVK.

Implementation note:

When the user's data structure is in the form of a 2-D

FORTRAN array, the higher level routine PTSOLV should be
called to solve for the entire solution matrix X with a
PTSLVK may also be called directly by the

single call.

user to handle matrix data structures that are not in

this form.

Summary of

IERR =

IERR =

IERR =

IERR =

FPS 868-7482-g41C

error conditions:

a

1

Normal return.

Insufficient MAX vector memories and
TMRAM to hold the number of vectors
designated by NV. Each MAX module can
hold eight wvectors. TMRAM can hold four
vectors.

Invalid vector specification.
(IEND-IBEG) must be greater than or equal
to zere; and less than 2448,

IBEG or IEND M is less than or equal to
zero. Both of these parameters must
be positive.

Insufficient TMRAM space available.

There must be enough TMRAM available

to hold 4*(IEND-IBEG+l) + 17 words,
starting at the TMRAM workspace base
address, ITMA. Although PTSLVK does not
load TMRAM, it does check for consistency
between IEND, IBEG, and ITMA.

Page K - 53



APPENDIX K

T™(24559): MAX
. Configuration
TM(24575): Table

Given the following input parameters to PTSLVK:

I
IBEG
IEND
NV
IUD
IFUN
IT™MA

wnononom
'—l
N N

8192

T= 1.9 1.4 1.9 -1.98

TTmAan DRDEMITOA fyraAm DM
Uy\lll ANdd b ALY Ao de WL & &

o wn

their values would

MAX module #1

Vector memory A: 6.2
B: 8.2
C: 19.2
D: 12.2
E: 14.2
F: 16.2
G: 18.2
H: 24.2
MAX module #2
Element Number 4
Vector memory A: 29.2
B: 22.2
C: 24.2
D: 26.2

TMRAM

™ (8204): 2.2
TM (8285): 4.2

FPS 864-7482-941C Page K - 55



APPENDIX K

DESCRIPTION: PTSOLV should be used to solve for the unknown matrix X
in the matrix equations TX = B or XT = B (where T is
upper or lower triangular), whenever the matrices are
in the form of a 2-D FORTRAN array. For other data
structures, routine PTSLVK can be used in conjunction
with PLOADD and PUNLDD.

The matrix B is first loaded into the MAX and TMRAM

vector memories, and is overwritten and reused as the
forward elimination or back substitution pProcess

(e Ll02al Ll Lo sl iLlL il L 2]

continues (termed growing the solution matrix).

In terms of the input parameters, the computation
performed by PTSOLV can be described by the equations
below, which applies to solving TX = B when T is lower
triangular. V(I,J) represents element I in the J-th
vector memory. Also, T(I,I) has been reciprocated when
IUD<>§.

V(I,J) = [ V(I,J) +
s*T(I,1)*V(1,J) + s*T(I,2)*V(2,J) + ... +
S*P(I,I-1)*V(I-1,J) ] * Q

where s = +1.9 (when IFUN = {)
= -1.9 (when IFUN <> #)
and Q=1 (if IUD = @)
= T™I,I) (if IUD <> @)
and I1=1,2,...,N

<]
]

1,2,...,(8*NMAXM+4),
where NMAXM = number of MAX modules available. When
the solution is completed, matrix V is copied from MAX
and TMRAM memory to the solution matrix X.
Summary of error conditions:

IERR = & Normal return.

IERR = 1 One or more of N, LT, LB, or LX is less

than or equal to zero. Each of these
parameters must be positive.

IERR = 2 ITMA less than 8192. ITMA must be
greater than or equal to 8192.
IERR = 3 Insufficient TMRAM space available.

There must be enough TMRAM available to
hold 4*N + 17 words; starting at the

TMRAM workspace base address, ITMA.

FPS 868-7482-g041C Page K - 57



APPENDIX K

ARk ER t 2 22 222X X 23
* * ' * *
* PUNLDD * ——— PARALLEL UNLOAD FOR PTSLVK ——— * PUNLDD *
* * * *
E2 2222221 %3 ARRREERERES
PURPOSE: To unload a set of vectors from TMRAM and the MAX

vector memories after calls to PTSLVK.

CALL FORMAT: CALL PUNLDD (A, I, J, N, M, ITMA, ISTART, IERR)

PARAMETERS: A = Floating-point output matrix into which
TMRAM and the MAX vector memories are unloaded.
I = Integer input element stride for vectors in A.
J = Integer input element stride between

vectors in A.

N = Integer input number of elements per vector.

M = Integer input number of vectors to unload.

ITMA = Integer input base address of the TMRAM
workspace.

ISTART = Integer input starting index into the TMRAM

workspace and the MAX vector memories to begin
loading vectors. The first location of the
TMRAM workspace and the MAX vector memories has
an index value equal to one.
IERR = Integer output error flag. See "Summary of
Error Conditions" below.
DESCRIDTION: This routine performs the reverse of routine PLOADD,
unloading the vectors contained in TMRAM and the MAX
vector memories into A. Vectors are unloaded with the
constraints that TMRAM is unloaded first, and the MAX
is unloaded with multiples of four vectors. PUNLDD
assumes that PLOADD. has set up the MAX configuration
table in the high end of TMRAM.

Summary of Error Conditions:

IERR a Normal return.

IERR 1 Insufficient TMRAM and MAX vector
memories to hold the number of vectors
designated by M. Each MAX module can
hold eight vectors. TMRAM can hold four

vectors.

IERR = 2 Vector length too large. N+ISTART-1 must
be less than or equal to 2047.

IERR = 3 One or more of ISTART, N, or M is less

than cor equal to zero. Each of these
parameters must be positive.

FPS 864-7482-941C Page K - 59



APPENDIX K

XX.X

1.2

2.2

. XX.X

. XX.X

. 1.3

2.3

XX.X

XX.X

1.4

T™ (8245): 2.4
TM (8246): xxX.X

TM(24558): xx.Xx

TM(24559): MAX
. Configuration
TM(24575): Table

Given the following input parameters to PUNLDD:

TMA = 819
START

HHOQHZRXZ
|

Upon RETURN from PUNLDD, Main Memory contains:

A=

.
WWwWwwwwwwwwww

.
.
.
.

[
—
[
NHFEFRWONAaWUM&EWN -
.

—

.
.
.
.

.
-
—
.
-
N =R WO UEeWN
. .

[l

.

NHEFRWOVWONOWU & WN -
L] L]

Ol i i i i
NHFROVUOBNIOWU & WN
. *
NOVMNMNNNNNNNNDNDR
.

O N N N N N N N O NS

-
—
—
—

[

13.2
14.2

—
w
.

w
-
w
=3

14.4

—
- W

H
H
'S
()

Note that in this example, A is a two-dimensional array
whose elements are stored in column major order.

FPS 864-7482-g41C Page K - 61



APPENDIX K

IERR =1 Insufficient MAX vector memories and
TMRAM to hold the number of vectors
designated by M. Each MAX module can
hold four vectors. TMRAM can hold one
vector.

IERR = 2 Vector length too large. N+ISTART-1
must be less than or equal to 2047.

IERR = 3 One or more of ISTART, N, or M is less
than or equal to zero. Each of these
parameters must be positive.

IERR = 4 Insufficient TMRAM space available.
There must be enough TMRAM available
to hold 2*(N+ISTART-1) + 17 words,
starting at the TMRAM workspace base
address, ITMA. Although PUNLDV does not
load TMRAM, it does check for
consistency between N, ISTART, and ITMA.

IERR =5 ITMA less than 8192. ITMA must be
greater than or equal to 8192.

EXAMPLE: Given a system with two available MAX modules and 16K TMRAM
that contains the following:

MAX module #1

Vector memory A: ©.5 £.8 gZ.7 £.6
B: 1.8 1.6 1.4 1.2
C: 2.7 2.4 2.1 1.8
D: 3.6 3.2 2.8 2.4
MAX module #2
Vector memory A: 4.5 4.8 3.5 3.9
B: 5.4 4.8 4.2 3.6
TMRAM
T™ (8192): Q.4
T™ (8193): 4.4
™ (8194): 4.4 First
T™ (8195): 0.9
™ (8196): x.X TMRAM
. Region

T™™(16374): x.X

FPS 864-7482-941C Page K - 63



ExRERERRES EkEERAkRRER
* ® * *
* PUMSA * ——— PARALLEL VMSA ——— * PYMSA *
* * * *
EIX 22222 2% t 22222222 1 4
PURPOSE: To compute the vector multiply and scalar add (VMSA) of

a singie vector with a set of vectors residing in
TMRAM and the MAX vector memories.

CALL FORMAT: CALL PVMSA(B, K, S, J, N, M, IBANK, ITMA, ISTART,
IFUN, I1IERR}
PARAMETERS: = Floating-point input vector.
Integer input element stride for B.
Floating-point input array of scalars.
= Integer input element stride for S.
= Integer input number of elements per vector.
Integer input number of VMSA's to perform.
Integer input TMRAM region and bank of MAX
vector memories containing the input set of
vectors. Integer output TMRAM region and
bank of MAX vector memories containing the
output set of vectors.
IBANK = f@: Reference the first TMRAM
region and MAX vector
memories A,B,C,D.
IBANK <> {: Reference the second TMRAM
region and MAX vector memories
E,F,G,H.
ITMA = Integer input TMRAM workspace base address
from the most recent call to PLOADV.
Integer input starting index into the
TMRAM region and the MAX vector memories
to begin accessing/storing vector elements.
The first location of the TMRAM region and
the MAX vector memories has an index of one.
IFUN = Integer input addition/subtraction flag.
IFUN = fg: Use additionm.
IFUN <> g: Use subtraction.
IERR = Integer output error flag.

2Z200ARW
" nonou

IBANK

ISTART

DESCRIPTION: PVMSA computes the M VMSA's of the vector B with
the set of M vectors residing in TMRAM and the MAX
vector memories, using the elements of S as the M
scalar values. The results are stored in the
other region of TMRAM and bank of MAX vector
memories as indicated by toggiing the value of
IBANK.

FPS 864-7482-801C Page K - 65



APPENDIX K

EXAMPLE: Given a system with two available MAX modules and 16K TMRAM
that contains the following:

MAX module #1

Vector memory BE: 3.1 3.2 3.3 3.4
‘ F: 5.1 5.2 5.3 5.4

G: 7.1 7.2 7.3 7.4

H: 9.1 9.2 9.3 9.4

MAX module #2

Vector memory E: 11.1 11.2 11.3 11.4
F: 13.1 13.2 13.3 13.4

TMRAM
TM (8192): x.x First

: TMRAM
TM(16;74)= X.X Region

TM(16375): 1.1
TM(16376): 1.2
TM(16377): 1.3 Second
TM(16378): 1.4
X.X

TM(16379): . TMRAM

: Region
TM(24;58): X.X
TM(24559): MAX

: Configuration
TM(24;75): Table

Given the following input parameters to PVMSA:

B -1.1 -1.2 -1.3 ~-1l.4

K=1

NV e WN -
[SIRSTC ISR IR

FPS 864-7482-401C Page K - 67



APPENDIX K

TM(24559): MAX
. : Configuration
TM(24575): Table

FPS 864-7482-841C Page K - 69



APPENDIX K
IF(IBANK .EQ. #) IBANK = 1

ELSE IBANK = §

V(ISTART+i,j) = W(ISTART+i,j) +s*B(i+1)*S(j);

i=g,N-1;
j 1,M

14

where

s 1.9 if IFUN = &
s = -1.4 if IFUN <> ¢

and W(*,1:M) are the input set of vectors and
V(*,1:M) are the output set of vectors.

PUNLDV is called by the user to retrieve the
resulting vectors V(*,1:M), when appropriate.

Summary of error conditions:
IERR = 4§ Normal return.

IERR =1 Insufficient MAX vector memories and
TMRAM to hold the number of vectors
designated by M. Each MAX module can
hold four vectors. TMRAM can hold one
vector.

IERR = 2 Vector length too large. N+ISTART-1

—n | SN 1 | 2 PuTp | -~ xXA"
must be less than or equal to 2047.

IERR = 3 One or more of ISTART, N, or M is less
than or equal to zero. Each of these
parameters must be positive.

IERR = 4 Insufficient TMRAM space available.
There must be enough TMRAM available
to hold 2*(N+ISTART-1) + 17 words,
starting at the TMRAM workspace base
address, ITMA.  Although PVSMA does not
load TMRAM, it does check for
consistency between N, ISTART, and ITMA.

IERR =5 ITMA less than 8192. ITMA must be
greater than or equal to 8192.

FPS 864-7482-941C Page K - 71



J

N

M
IBANK
I™A
ISTART
IFUN

non

819

Upon RETURN from PVSMA, IBANK is equal to zero,

1
4
7
1
2
1
"]

and the MAX modules and TMRAM contain:

MAX module #1

3.9
3.6

Vector memory A: 2.9 g.8 4.7

B: 1.8 1.6 1.4
s 2.7 2.4 2.1
D: 3.6 3.2 2.8
E: 3.1 3.2 3.3
F: 5.1 5.2 5.3
G: 7.1 7.2 7.3
H: 9.1 9.2 9.3
MAX module #2

Vector memory A: 4.5 4.4 3.5
B: 5.4 4.8 4.2
E: 11.1 11.2 11.3 11l.4
F: 13.1 13.2 13.3 13.4

TMRAM

™ (8192): 4.9

™ (8193): 4.4

T (8194): 2.4 First

.T™ (8195): 4.4

™ (8196): x.Xx TMRAM

. Partition

T™(16374): x.Xx

T™(16375): 1.1

TM(16376): 1.2

T™M(16377): 1.3 Second

T™™(16378): 1.4

T™™(16379): x.X TMRAM

. Partition

TM(24558):

FPS 869-7482-g41C

Page K -

73



APPENDIX K

K.4 MATRIX ORIENTED MAX ROUTINES

The Matrix Oriented MAX routines emphasize matrix processing and
provide for expanded utilization of the MAX system.

K.4.1 Overview

The Matrix Oriented MAX routines were written to enhance the basic
functionality of the MAX modules. These routines are more flexible
than the Basic MAX routines in terms of data management in the MAX
system. They are also more efficient in performing matrix-matrix
operations, particularly for small matrices.

There are two major differences between the Matrix Oriented MAX
routines and the Basic MAX routines, resulting in increased performance
and improved user interfaces. First, the Matrix Oriented MAX routines
accept submatrices as input. Second, they present a familiar,
consistent model of the MAX vector memories.

A minor difference between the Basic MAX routines and the Matrix
Oriented MAX routines is that the Matrix Oriented MAX routines check
for the correct number of parameters and exit with no action if the
check fails. If the parameter check succeeds, the IERR flag will be
set to a code upon exit from the routine. An incorrect number of
parameters can be detected by setting IERR to an unused error code,
e.g., 999, before calling a Matrix Oriented MAX routine. If IERR is

- unchanged when the routine exits, then there are an incorrect number of
parameters.

The configuration table used by the Matrix Oriented MAX routines is
used to reference the available MAX modules. Because the Matrix
Oriented MAX routines permit operations with individual vector
memories, the configuration table is more extensive than the one used
by the Basic MAX routines. The table is always placed into the 254
highest addressable locations in TMRAM regardless of the base address
of the TMRAM workspace. Hence, for 16K TMRAM systems, the table will
be situated in locations 24322-24575. Similarly, for 32K TMRAM
systems, the table will be situated in locations 48746-44959. The rest
of the TMRAM workspace is used to store input/output vectors.

K.4.1.1 Submatrix Input

All floating—-point data passed to the Matrix Oriented MAX routines can
be organized as submatrices. This results in improved performance for
small matrices. With a single call to a Matrix Oriented MAX routine,
computations can be performed on an entire submatrix.

Each submatrix is defined by a starting element, an intra-vector
element stride, an inter-vector element stride, the number of elements
per vector, and the number of vectors. A single vector is a degenerate
case of a submatrix, where the number of vectors is one. A single

element is also a degenerate submatrix, where both the number of

S
t

m Q0

FPS 864-7482-4081C Page K - 75



If VECMEM is interpreted as a matrix of column vectors, then IVM is the
starting row, IVN is the starting column, NEV is the number of rows,
and NVB is the number of columns as shown in Figure K-2.

[ I (R I (A E IR I A R R
[ T Y E I (R I R R A R
il dixdixixixi 01 1 1 0 1 <—1ve
I I=xl=xi=xtx!l 1 | | | | |
I I=xl=xl=xlx! 1 | [ | | |
Il I=xIl=x|l<|l=<! 1 | | 1 | |
I =ttt x! 4+ 1 | |
I 1 Ixl=x!x!=x! 1 | | | | | <= IVMHNEV-1
[N I N I A A R I e I N N
[ T R A AN (R I R A R R
NS T R E A (A R R T A N B
/NN N R KN N EN I I A R R
N TR R E E N A Y R R
| |
IVN IVN+NVB-1

Figure K-2 MAX Vector Memory Submatrix

There are several advantages to using this model with the Matrix
Oriented MAX routines.

e The user is insulated from the hardware details of the machine
and can use familiar concepts to visualize the operations;
thus the routines are easy to use.

e All the routines permit operations with a single element, a
single vector, or a submatrix in the vector memories; thus
they are general.

e In most cases, results from one routine can be used as input

to another routine without moving data in the vector memories;
thus the data management is consistent.

FPS 864-7482-g41C Page K - 77



APPENDIX K

K.4.2.1 Real Vector Mapping

A set of real vectors is mapped one-to-one to the vector memories. The
first four vectors are mapped to the A, B, C, D vector memories of the
lowest addressed MAX module. The second four vectors are mapped to the
A, B, C, D vector memories of the next lowest addressed MAX module and
so on, until there are no more available MAX modules. The next two
vectors are mapped to the A and B vector memories simulated in TMRAM.
The next four vectors are mapped to the E, F, G, H vector memories of
the lowest addressed MAX module. The next four vectors are mapped to
the E, F, G, H vector memories of the next lowest addressed MAX module
and so on, until as before, there are no more available MAX modules.
The last two vectors are mapped to the C and D vector memories
simulated in TMRAM.

FPS 868-7482-g41C Page K - 79



The vector memories simulated in TMRAM begin at the address ITMA, and
are interleaved as shown in Figure K-3.

TMRAM Address
tom—————— +
| A(l) | ITMA
ot o e +
| B(1l) | ITMA+1
tom———————— +
| ¢y [ ITMA+2
e +
| D(1) | ITMA+3
e +
| a(2) | ITMA+4
tmm—— +
|  B(2) i ITMA+S
tm————————— +
| c2) | ITMA+6
o +
| D(2) | ITMA+7
tomm—— +

Figure K—-3 TMRAM Simulated Vector Memories

K.4.2.2 Complex Vector Mapping

Mapping a set of complex vectors to the MAX vector memories is similar
to the real vector mapping, except that a pair of vector memories is
needed for each complex vector. The real part of each complex vector
is mapped to the first vector memory of a pair. The imaginary part of
a complex vector is mapped to the second vector memory of a pair.

The first two vectors in the set are mapped to the A, B, C, D vector
memories of the lowest addressed MAX module. The second two vectors
are mapped to the A, B, C, D vector memories of the next lowest
addressed MAX module, and so on, until there are no more available MAX
modules. The next vector is mapped to the A and B vector memories
simulated in TMRAM. The next two vectors are mapped to the E, F, G, H
vector memories of the lowest addressed MAX module. The next two

addressed MAX module, and so on, until as before, there are no more

available MAX modules. The last vector is mapped to the C and D vector
memories simulated in TMRAM.

FPS 864-7482-941C Page K - 81




APPENDIX K

K.4.3 Examples

The following examples all involve real data. The applicable complex
counterparts are similar. The major difference between the complex
cases and the real is that the complex case has one-half the available
vector memories as the real case.

Assume for the purpose of these examples that:

- Ml
- LQLT

T e d
number of vector memories is given by

I Ao mer=m3 Tl alal MAY o=
49 VIR avaliauvl [T ¥:8

NVEC =8 * 1 + 4 = 12
As in Section K.4.1.2, the vector memories will be modeled as
a matrix of column vectors represented by a FORTRAN matrix
VECMEM declared as follows:

REAL VECMEM(2448,NVEC)
Note again that VECMEM is never actually declared in any of
the code and is used solely to model operations performed with
the MAX vector memories.

® The matrix B, denoted by [B], is declared as

REAL B (3, 4)

and is initialized as follows:

W N
.
-
W
L]
NN
W N
.
www
W N
.
P

e The matrix A, denoted by [A], is declared as
REAL A (2, 3)
and is initialized as follows:

A: 11.1 11.2 11.3
12.1 12.2 12.3

e The matrix C, denoted by [C], is declared as
REAL C (2, 4)

The examples in Sections K.4.3.1 through K.4.3.6 illustrate how various
data structures can be moved to and from the MAX vector memories. The
examples in Sections K.4.3.7 and K.4.3.8 illustrate how dot products
can be performed between various data structures. The examples in
Sections K.4.3.9 and K.4.3.14 illustrate how VSMA's can be performed
between various data structures.

FPS 868-7482-gd1C Page K - 83



K.4.3.1 Matrix Load

[B] can be loaded into the vector memories by a single call to MLOAD.

If input parameters to MLOAD are set up as follows:

IBE 1
IBV 3
™ =1
IVN =1
=3

4

8

3

192

:

then the sequence

IERR = 999

CALL MLOAD (B, IBE, IBV,

IF (IERR .NE. @) THEN
WRITE (6, 1980) IERR

IvM,

1008 FORMAT (1X, 'MLOAD ERROR =

ENDIF

IVN,

'+14)

NEV,

NVB,

APPENDIX K

ITMA, IERR)

will load [B] by columns into the vector starting at the first row and
first column of VECMEM, and will also check to make sure that MLOAD did
not detect an error. After this sequence the vector memories will

contain the following:

MAX vector memories (VECMEM):

1.1 1.2 1.3 1.4 x.x
2.1 2.2 2.3 Z.4 x.X
3.1 3.2 3.3 3.4 x.x
XX X.X X.X X.X X.X
X.X X.X X.X X.X X.X
X.X X.X X.X X.X X.X

FPS 864-7482-891C

X.X X.X
X.X X.X
X.X X.X
X.X X.X
X.X X.X
X.X X.X
X.X X.X

Page K -

85



K.4.3.3 Single Column Load

A single column of [B] can be loaded into a vector memory by a single
call to MLOAD. To locad column 2 into vector memory 3, the parameters
are set up as follows:

i
< m
(]

b=
S
nn
0 W Wk W

192
The sequence

IERR = 999
CALL MLOAD (B(1l,2), IBE, IBV, IVM, IVN, NEV, NVB, ITMA, IERR)
IF (IERR .NE. #) THEN
WRITE (6, 194d) IERR
1998 FORMAT (1X, 'MLOAD ERROR = ',I4)
ENDIF

leaves the vector memories as follows:
MAX vector memories (VECMEM):
X.X X.x 1.2
X.X X.X 2.2
XeX X.X 3.2 X.X X.X X.X X.X X.X X.X X.X X.X X.X
X.X
X.X

X.X X.X
X.X X.X

FPS 864-7482-g01C Page K -

87



APPENDIX K

K.4.3.5 Single Element Load

A single element of [B] can be loaded into an element of a vector
memory by a call to MLOAD. To load B(1l,2) into the vector memories at
row 4 and column 3, the parameters are set up as follows:

g -
5‘

2

nonow
W W

han
w
N

The sequence

IERR = 999
CALL MLOAD (B(l,2), IBE, IBV, IVM, IVN, NEV, NVB, ITMA, IERR)
WRITE (6, 1084) IERR
1984 FORMAT (1X, 'MLOAD ERROR = ',I4)
ENDIF

leaves the vector memories as follows:

MAX vector memories (VECMEM):

XeX XX XeX XoX XoX XeX XeX XoX X.X X.X X.X X.X
XeX XeX XoeX XeX XeX XuoX XoX XoX XX X.X X.X X.X
XX XoX XoX XuX XoX X.X XoX X.X X.X X.X X.X X.X
XX XX 1.2 X.x X.Xx X.X X.X X.X X.X X.X X.X X.X
XeX XX XX XoeX XoX XoX XX XoX XX X.X X.X X.X
XeX XoX XoX XoX XoX XoX XeX X.X X.X X.X X.X X.X

FPS 864-7482-481C Page K - 89



K.4.3.7 Matrix Multiplication: [A]*[B] (Dot Products)

To illustrate the flexibility of the Matrix Oriented MAX routines, two
examples of matrix multiplication using dot product operations are
given below.

Matrix multiplication using dot products can be performed using the MAX
in two different ways: either load [B] into the vector memories or
load [A] into the vector memories. The preferred method depends on the
dimensions of the matrices.

The matrix loaded should maximize three parameters: reuse, vector
length, and fit. Reuse is the number of times each element of data
loaded into a vector memory is used in subsequent computations. Vector
length is the number of elements used per vector operation. Fit is a
measure of the average number of vector memories used per vector

operation.

Note that by setting the strides and counts appropriately, [A]T*[B] or
(A}*[B]T or [A]T*[B]T can also be performed.

The first example loads columns of [B] into the vector memories. The
sequence

IBE
IBV
I™
IVN
NEV
NVB =
ITMA = 8192
IERR = 999
CALL MLOAD (B, IBE, IBV, IVM, IVN, NEV, NVB, ITMA, IERR)
IF (IERR .NE. #) THEN

WRITE (6,100d) IERR

1909 FORMAT (1X, 'MLOAD ERROR = ',I4)

nouon

il
W s W~ W

ELSE
IAE =2
Iav =1
ICE =2
Icv =1
NVA = 2
IFUN = 4
IERR = 999

CALL MDOT (A, IAE, IAV, IVM, IVN, C, ICE, ICV,
NEV, NVA, NVB, IFUN, IERR)
IF (IERR .NE. ) THEN
WRITE (6,1891) IERR
1901 FORMAT (1X, 'MDOT ERROR = ',I4)
ENDIF

FPS 860-7482-gd1C Page K - 91



APPENDIX K

K.4.3.8 Vector Dot Product

By restricting the vector count of one of the matrices to one, the dot
products between that vector and the other matrix can be calculated.
This mode of operation is similar to the functionality of the Basic MAX
routines. This example performs the dot products between the second
row of [A] and all the columns of [B]. Note that by simply changing
the element strides for [A], a column of [A] could be used instead.

The segquence

IBE =1
IBV =3
I =1
IVN =1
NEV =3
NVB = 4
ITMA = 8192
IERR = 999

CALL MLOAD (B, IBE, IBV, IVM, IVN, NEV, NVB, ITMA, IERR)
IF (IERR .NE. g) THEN
WRITE (6,1944d) IERR
16909 FORMAT (1X, 'MLOAD ERROR = ',I4)
ELSE
IAE
IAV
ICE
ICV
NVA =
IFUN
IERR
CALL MDOT (A{(2,1), IAB, IaAV, IWM, I
NEV, NVA, NVB, IFUN, IERR)
IF (IERR .NE. 4) THEN
WRITE (6,14d1) IERR
1991 FORMAT (1X, 'MDOT ERROR = ',I4)
ENDIF
ENDIF

n o0
S )

n
Yol
o]
[\=]

e

» ~ ™ T
VN, L, 1lUlL, 1LV,

writes the results into [C] as follows:

C: 77.46 84.72 84.38 88.04
X.X X.X X.X X.X

FPS 869-7482-8@1C Page K - 93



APPENDIX K

The first example clears the appropriate submatrix of the vector
memories, uses [B] as the scalars, and columns of [A] as the vectors
for. VSMA operations.

The sequence

IVM =1
IVN =1
NEV = 2
NVB =4
ITMA = 8192
IERR = 999

CALL MLOAD (4.4, 4, 4, IVM, IVN, NEV, NVB, ITMA, IERR)
IF (IERR .NE. @) THEN
WRITE (6,1924) IERR

190% FORMAT (1X, °'MLOAD ERROR = ',I4)
ELSE
IAE =1
IaV =2
IBE = 3
IBV =1
NVA = 3
IFUN = 4
IERR = 999

CALL MVSMA (A, IAE, IAvV, 1VM, IVN, B, IBE, IBV,
NEV, NVA, NVB, IFUN, IERR)
IF (IERR .NE. @) THEN
WRITE (6,1841) IERR

1991 FORMAT (1X, 'MVSMA ERROR = ',I4)
ELSE
ICE = 1
ICv = 2
IERR = 999

CALL MUNLD (IVM, IVN, C, ICE, ICV, NEV, NVB, IERR)
IF (IERR .NE. 4) THEN
WRITE (6,1442) IERR
1992 FORMAT (1X, 'MUNLD ERROR = ',I4)
ENDIF
ENDIF
ENDIF

writes the results into [C] as follows:

C: 74.76 74.12 77.48 84.84
77.96 B89.72 84.38 88.44

Notice the call to MVSMA changes the value of IVN, meaning that the
column of VECMEM containing the results is not the same as the column
of VECMEM containing the inputs. Since MUNLD can unload from any
column, it receives the modified IVN value for copying results out to
C.

FPS 864-7482-981C Page K - 95



APPENDIX K

K.4.3.14 Vector VSMA's

Just as the dot product routines can be used to compute vector-matrix
dot products, the VSMA/VMSA routines can also be used to compute
VSMA/VMSA vector-matrix operations. This example uses the second
column of [A] as the scalars, the third row of [B] as the vector, and
[C] as the matrix. Assume that [C] is initialized as follows:

.
[

C:

.
NN

.
w W

[ 36 ]
.
L

[ 9]
.

'-l
[< 30 8]
[+ Y %) ]
.

The sequence

ICE =
Icv
IVM
IVN
NEV =
NVB = 4
ITMA = 8192
IERR = 999
CALL MLOAD (C, ICE, ICvV, IVM, IVN, NEV, NVB, ITMA, IERR)
IF (IERR .NE. @) THEN

WRITE (6,1909) IERR

1399 FORMAT (1X, 'MLOAD ERROR = ',I4)

0
NN e

ELSE
IAE =1
IAV = 2
IBE =3
IBV =1
NvaA =1
IFUN = &
IERR = 999

CALL MVSMA (A(l,2), IAE, IAV, IVM, IVN, B(3,1), IBE, IBV,
NEV, NVA, NVB, IFUN, IERR)
IF (IERR .NE. &) THEN
WRITE (6,1841) IERR

1991 FORMAT (1X, 'MVSMA ERROR = ',I4)
ELSE
IERR = 999

CALL MUNLD (IVM, IVN, C, ICE, ICV, NEV, NVB, IERR)
IF (IERR .NE. @) THEN
WRITE (6,1992) IERR
1992 FORMAT (1X, 'MUNLD ERROR = ',6I4)
ENDIF
ENDIF
ENDIF

writes the results into [C] as follows:

C: 39.82 41.94 42.26 43.48
43.92 45.24 46.56 47.88

FPS 868-7482-g91C Page K - 97



APPENDIX K

MATRIX ORIENTED MAX ROUTINES

FPS 864-7482-441C Page K - 99



APPENDIX K

associated with A and B. The operation of CMDOT can
be conveniently described if the set of MAX vector
memories is considered to be a complex matrix VECMEM,
and A and C are also considered to be complex matrices.
Using this matrix convention, CMDOT performs the matrix
multiplication

(9]
1]

g*C + r * A * VECMEM

AE, IAV, IVM, IVN, ICE, ICV, NEV, NVA, and NVB

o I
allow the user to select subsets of A, VECMEM, and C
as appropriate.

To illustrate the flexibility of the data structures
that can be associated with the data, suppose A and C
are one~dimensional complex arrays, and that VECMEM is
a complex matrix VECMEM(2048,4*NMAX+2) where NMAX is
the number of available MAX modules. 1In this case, the
computations performed by CMDOT can be described in
FORTRAN by:

DO 39 i = 1, NVA
DO 28 j = 1, NVB
TEMP = CMPLX(%.9,8.0)
DO 18 k = 1, NEV

TEMP = TEMP + r * A((i-1)*IAV+(k-1)*IAE+1l) *
+ - VECMEM( IVM+k—-1,IVN+j-1)
19 CONTINUE
C((i-1)*ICE+(j-1)*ICV+l) = TEMP +
+ q * C((i-1)*ICE+(j-1)*ICV+l)

CONTINUR

T

2g
39 CONTINUE
Care should be taken if A and C overlap. There are no
checks that ensure the integrity of A is maintained,
so values of A could be overwritten before they are
used in subsequent calculations.
Summary of error conditions:

IERR = -3 NVA <= 4.

IERR = -2 NVB <= 4.

IERR = -1 NEV <= . C is cleared when IFUN = @
' or IFUN = 1.

IERR = §#& No error occurred. Normal completion.
TERR = 1 No TMRAM on the svstem.
IERR = 4 IVM <= 7.

IERR = 5 IVM + NEV - 1 greater than 2047.

FPS 864-7482-941C Page K - 141



APPENDIX K

IVM = 3
IVN = 2
NVB = 5
Input C:
(1.8,1.9)
(2.4,2.9)
(3.4,3.9)
{4.04.4.8)
(5.9,5.9)
(1.9,1.9)
(1.4,1.8)
(2.9,2.9)
(3.9,3.9)
(4.9,4.9)
(1.9,1.9)
(1.4,1.9)
{(1.2,1.8)
(2.9,2.4)
(3.9,3.9)
ICE = 2
Icv = 14
NEV = 4
IFUN = 3
IERR = 999

(13.9, -87.9)
(18.4,-126.49)
( 5.9, -55.9)
( 6.8, -66.9)
( 8.4, -99.9)
(12.9,-128.9)
(17.9,-183.49)

IERR = @&

FPS 864-7482-9@1C Page K - 143



APPENDIX K

To illustrate the flexibility of the data structures
that can be associated with the data, suppose B is

a one-dimensional complex array, and that VECMEM is

a complex matrix VECMEM(2d48,4*NMAX+2) where NMAX is
the number of available MAX modules. In this case,

the operations performed by CMLOAD can be described
in FORTRAN by: -

DO 28 i = 1, NVB

DO 18 j = 1, NEV
VECMEM(IVM+3j-1,IVN+i-1) = B((i-1)*IBV+(j-1)*IBE+1)

14  CONTINUE
29 CONTINUE

Summary of error conditions:
IERR = -2 NVB <= 4.

TERR = -1 NEV <= &

-
I
a

No error occurred. Normal completion.

IERR = 1 No TMRAM on the system.

IERR = 2 ITMA <= 8191.

IERR = 3 ITMA > LASTTM-8192-254-4*(IVM+NEV-1)
where LASTTM is the highest valid TMRAM
address. Refer to Section K.2.

IERR = 4 IVM <= g.

IERR = 5 IVM + NEV - 1 greater than 2048.

IERR = 6 IVN <= 4.

IERR = 7 IVN + NVB - 1 greater than NMAX*4 + 2

where NMAX is the number of available

MAX modules. Refer to Section K.2.

If there are too many or too few formal parameters, then
IERR is left unchanged.

For more information on the Matrix Oriented MAX
routines, refer to Section K.4.

FPS 864-7482-4d1C Page K - 185




ltt*t*t**it

* *

* CMUNLD *
* *
AEkhkkkk2thtk

PURPOSE:

CALL FORMAT:

DESCRIPTION:

APPENDIX K

kkkkkhkkth®
* *
——— COMPLEX MATRIX UNLOAD ——— * CMUNLD *
* *
thkkkhthtkkh®

To unload a matrix of complex vectors from the MAX vector
memories into Main Memory.

CALL CMUNLD (IVM, IVN, B, IBE, IBV, NEV, NVB, IERR)

IVM' = Integer input starting element in the MAX
vector memories.

IVN = Integer input starting vector in the MAX
vector memories.

B = Floating—-point output matrix of complex
vectors in Main Memory.

IBE = Integer input element stride for vectors in B.

IBV = Integer input element stride between

vectors in B.

NEV = Integer input number of complex elements
per vector.

NVB = Integer input number of complex vectors.

IERR = Integer input/output error flag. See
DESCRIPTION for a list of error conditions.

CMUNLD unloads the NVB vectors contained in the MAX
vector memories to Main Memory defined by B, IBE, IBV,
and NEV. An arbitrary data structure can be associated
with B. The operation of CMUNLD can be conveniently
described if the set of MAX vector memories is considered
to be a matrix VECMEM and B is also considered to be a
matrix. Using this matrix convention, CMUNLD performs
the matrix transfer
B = VECMEM
where IBE, IBV, IVM, IVN, NVB, and NEV allow the user to
select subsets of B and VECMEM as appropriate.
To illustrate the flexibility of the data structures that
can be associated with the data, suppose B is a one-
dimensional array, and that VECMEM is a matrix
VECMEM(2048,8*NMAX+4) where NMAX is the number of
available MAX modules. 1In this case, the operations
performed by CMUNLD can be described in FORTRAN by:
DO 24 i = 1, NVB

DO 14 j = 1, NEV

B((i-1)*IBV+(j-1)*IBE+1) = VECMEM(IVM+j-1,IVN+i-1)
13 CONTINUE
2d CONTINUE

Summary of error conditions:
IERR = -2 NVB <= §.

IERR

-1 NEV <= 4.

IERR = 4 No error occurred. Normal completion.

FPS 868-7482-991C Page K - 187




APPENDIX K

It*tt!t**** FE T TS T T T
|* % * *
|* CMUVSMA * ———— COMPLEX VECTOR MULTIPLY SCALAR ADD — * CMVSMA *
|* ® * *
|tt*ttttttt FTTZI T T LY
PURPOSE: To perform complex vector scalar multiply add (CVSMA)

I

| operations between a matrix of vectors in Main Memory,
| a matrix of vectors in the MAX vector memories, and

| a matrix of scalars in Main Memory.

ICALL FORMAT: CALL CMVSMA (A, IAE, IAV, IVM, IVN, C, ICE, ICV,

i NEV, NVA, NVB, IFUN, IERR)

PARAMETERS: A Floating-point input matrix of complex vectors

in Main Memory.

IAE = Integer input element stride for vectors in A.
IAV = Integer input element stride between vectors
in A.

IVM = Integer input starting element in the MAX
vector memories.

IVN = Integer input/output starting vector for the
input/output vectors in the MAX vector memories.

Cc = Floating-point input matrix of scalars in Main
Memory.

ICE = Integer input element stride for C.

ICV = Integer input element stride between vectors

NEV = Integer input CVSMA length.

Integer input number of vectors in A to be used.
NVB = Integer input number of vectors in the MAX
vector memories to be used as input. Also

the number of scalars per vector of C to be used.
Integer input function flag.

IFUN = @: r = 1.9

IFUN =1: r = -1.4

Note that IFUN is a bit-mapped function flag:
IFUN = 2 is equivalent to IFUN = g, IFUN = 3
is-equivalent to IFUN = 1, etc.

See DESCRIPTION for the usage of r.

Integer input/output error flag.

See DESCRIPTION for a list of error conditions.

g

IFUN

IERR

|
l
!
i
l
|
|
|
|
|
I
l
!
| in C.
|
[
l
|
|
|
|
|
|
I
|
|
|
!

|DESCRIPTION: CMVSMA performs complex VSMA operations of length NEV

| between the NVA vectors in Main Memory defined by A, IAE,
| and IAV with the NVB vectors in the MAX vector memories

i defined by IVM and IVN, using the elements of C in Main

| Memory defined by ICE and ICV as the scale factors. The
| output of the VSMA operations is written into the MAX

| vector memories.

| A system with NMAX available MAX modules has

| NVEC = 4 * NMAX + 2

FPS 860-7482-941C Page K - 149



APPENDIX K

19 CONTINUE
29  CONTINUE
39 CONTINUE

Summary of error conditiocns:

IERR = -3 NVA <= 4.

IERR = =2 NVB <= 4.

IERR = -1 NEV <= g, C is cleared.

IERR = 1 No TMRAM on the system.

IERR = 4 No error occurred. Normal completion.
IERR = 4 IVM <= g.

IERR = 5 IVM + NEV - 1 greater than 2048.

IERR = 6 IVN <= g,

IERR = 7 IVN + NVB - 1 greater than NMAX*4.

If there are too many or too few formal parameters then
IERR is unchanged and no other action is taken.

For more information on the Matrix Oriented MAX routines,
refer to Section K.4.

|EXAMPLE: Assume one available MAX module and that the data in

|
I
I
I
|
I
I
I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
|
I
|
I
|
I
I
|
|
I
I
I

A and C is stored in column major order (normal FORTRAN).
Perform the complex VSMA operations of the rows of a
submatrix of A with a subset of the MAX vector memories,
using the scalars contained in the columns of a submatrix
of C.

Input matrix A:

(1.9,1.8)
(X.X,X.X)
(2.4,2.9)
(X.X,X.X)
(X.X,X.X)
(X.X,X.X)

(1.9,1.9)
(X.X,X.X)
(1.9,1.9)
(X.X,X.X)
(X.xX,X.X)
(x.x,%x.X)

(1.9,1.2)
(X.X,X.X)
(1.9,1.9)
(X.X,X.X)
(x.%X,%X.X)
(X.X,%X.X)

(1.4,1.9)
(X.X,X.X)
(1.4,1.9)
(x.%X,x.X)
(X.X,X.X)
(X.X,X.X)

IAE = 12
IAV = 4
NVA = 2
Input matrix C:

(1.9,8.9)
(X.X,X.X)
(X.X,X.X)
(3.9,8.9)
(X.X,X.X)
(X.%X,X.X)
(X.x,X.X)

(xX.x,X.X)
(X.x,X.X)
(X.%X,X.X)
(X.X,%.X)
(X.x,%x.%X)
(X.X,X.X)
(X.X,X.X)

(2.9,9.9)
(Xx.%X,X.X)
(X.X,%X.X)
(L.4,9.9)
(X.X,X.X)
(X.X,X.X)
(X.X,X.X)

(X.X,%x.X)
(X.x,x.X%)
(X.X,x.X)
(X.X,X.X)
(x.X,X.X)
(X.X,x.X%)
(X.X,X.X)

ICE = 6
Icy = 28
MAX vector memories (VECMEM):

(XeX,X.X)
(X.X,X.X)
(1.4,1.9)
(1.9,1.9)
(1.9,1.9)
(1.4,1.9)
(Xx.X,%x.x)

FPS 864-7482-9Q1C

(X.%X,X.X)
(X.X,%x.X)
(2.4,2.9)
(L.8,1.8)
(1.9,1.9)
(1.9,1.9)
(x.x,%x.%)

(X.XsX.X)
(X.X,X.X)
(x.X,x.x)
{X.X,X.X)
(X.X,X.X)
(x.x,x.x)
(X.X,X.X)

(X.X,X.X)
(X.X,X.X)
(X.%X,X.X)
{(X.X,x.%)
(X.%X,X.X)
(x.X,X.X)
(X.%X,%x.%)

(x.x,%.%)
(x.%,X.X)
(x.%X,xX.X)
(X.%X,X.X%)
(Xx.X,X.X)
(x.x,x.X%)
(X.X,X.X)

Page K

(Xx.%X,%X.X)
(X.X,%X.X)
(X.%X,X.X)
(x.x,%x.X)
(X.X,X.X)
(X.X,X.X%)
(X.X,X.X)

- 111



APPENDIX K

EZ 22222 5 & 3 ’ kkkkktthkkk
* * A% *
* MDOT * --- MATRIX DOT PRODUCT —— * MDOT *
* * * *
t 22222222 2 kkkkkhkkkkk
PURPOSE: To perform dot products between a matrix of vectors

in Main Memory and a matrix of vectors in the MAX
vector memories.

CALL FORMAT: CALL MDOT(A, IAE, Iav, IVM, IVN, C, ICE, ICV, NEV,
NVA, NVB, IFUN, IERR)

PARAMETERS: A

Floating-point input matrix of vectors in
Main Memory.
IAE = Integer input element stride for vectors in A.
IAV Integer input element stride between

vectors in A.
IVM = Integer input starting element in the MAX
vector memories.

IVN = Integer input starting vector in the MAX
vector memories.

C = Floating-point output matrix of results.

ICE = Integer input element stride for vectors in C.

ICV = Integer input element stride between
vectors in C.
NEV = Integer input dot product length.
NVA = Integer input number of vectors in A to be used.
NVB = Integer input number of vectors in the MAX
vector memories to be used.
IFUN = Integer input function flag.
IFUN=4d: r= 1.8, gq= 0.9
IFUN = 1: r =-1.9, gq= 2.0
IFUN = 2: r = 1.4, q= 1.9
IFUN = 3: r = -1.4, gq= 1.8

Note that IFUN is a bit-mapped function flag:
IFUN = 4 is equivalent to IFUN = g; IFUN = 5
is equivalent to IFUN = 1, etc.
See DESCRIPTION for the usage of g and r.
IERR = Integer input/output error flag.
See DESCRIPTION for a list of error conditions.

DESCRIPTION: MDOT performs dot products of length NEV between the
NVA vectors in Main Memory defined by A, IAE, and IAV
with the NVB vectors in the MAX vector memories defined
by IVM and IVN. The NVA*NVB results are written to
locations in Main Memory defined by C, ICE, and ICV.

Specifically, for each vector in A, MDOT performs

the NVB dot products between that vector and the NVB
vectors in the MAX vector memories, and then writes the
NVB results into C. Arbitrary data structures can be

FPS 860-7482-gd1C Page K - 113



APPENDIX K

IERR

7 IVN + NVB - 1 greater than NMAX*8 + 4
where NMAX i; the number of available
MAX modules. Refer to Section K.2.

If there are too many or too few formal parameters, then
IERR is left unchanged.

For more information on the Matrix Oriented MAX
routines, refer to Appendix K.4.

EXAMPLE: Assume one available MAX module, that the MAX vector
memories (VECMEM) have been loaded by MLOAD as indicated,
and that the data in A is stored in column major order
(normal FORTRAN). Multiply the transpose of a submatrix of
A by a subset of the MAX vector memories, negate the
result and accumulate to C.

Input matrix A:

1.4 x.x x.x 3.8 x.x X.Xx 5.0 x.x X.X
XeX X.X X.X X.X X.X X.X X.X X.X X.X
2.8 x.x x.x 4.8 x.Xx X.Xx 6.8 x.x x.Xx
X.X X.X X.X X.X X.X X.X X.X X.X X.X
2.4 x.x x.x 4.8 x.x x.x 6.8 x.x x.X
XeX XoX XoX XoX X.X X.X X.X X.X X.X
3.4 x.x x.x 5.8 x.x x.x 7.8 x.x x.Xx
XeX X.X X.X X.X X.X X.X X.X X.X X.X
3.4 x.x x.x 5.8 x.x x.x 7.8 x.x X.Xx
X.X ¥X.¥ ¥X.X ¥X.X X.X X.X ¥X.X ¥X.X X.X
4.9 xX.Xx X.Xx 6.0 xX.x x.x 8.8 x.x xX.x
X.X X.X X.X X.X X.X X.X X.X X.X X.X
4.4 x.x x.Xx 6.0 x.x Xx.x 8.8 x.Xx X.x
XeX X.X X.X X.X X.X X.X X.X X.X X.X
5.4 x.x x.x 7.8 x.x x.x 9.9 X.x X.x
XeX X.X X.X XX X.X X.X X.X X.X X.X

IAE = 2

IAV = 48

NVA = 3

FPS 864-7482-901C Page K - 115



APPENDIX K

Upon return from MDOT, C contains:

-23.49
-25.9
-32.49
-46.4
-69.4
-39.9
-46.4
-61.4
-87.4
-126.49
-55.4
~-66.4
-99.4
-128.9
-183.49

TERR = &

FPS 864-7482-9091C Page K - 117



APPENDIX K

VECMEM(2048,8*NMAX+4) where NMAX is the number of
available MAX modules. In this case, the operations
performed by MLOAD can be described in FORTRAN by:

DO 20 i = 1, NVB
DO 12 j = 1, NEV

VECMEM( IVM+3j-1,IVN+i-1) = B((i-1)*IBV+(j-1)*IBE+l)

14  CONTINUE
29 CONTINUE

Summary of error conditions:
IERR = -2 NVB <= 4.

IERR -1 NEV <= §.

IERR = § No error occurred. Normal completion.
IERR = 1 No TMRAM on the system.
IERR = 2 ITMA <= 8191.

IERR = 3 ITMA > LASTTM-8192-254-4*(IVM+NEV-1)

where LASTTM is the highest valid TMRAM

address. Refer to Section K.2.
IERR = 4 IVM <= §.
IERR = 5 IVM + NEV - 1 greater than 2448.
IERR = 6 IVN <= 4.
IERR = 7 IVN + NVB - 1 greater than NMAX*8 + 4

where NMAX is the number of available
MAX modules. Refer to Section K.2.

If there are too many or too few formal parameters, then

IERR is left unchanged.

For more information on the Matrix Oriented MAX
routines, refer to Section K.4.

EXAMPLE:

FPS 860-7482-3d1C Page K - 119

Assume one available MAX module and that the data in

B is stored in column major order (normal FORTRAN).

Load the rows of a submatrix of B into a subset of the MAX
vector memories.




ki ®
* *

* MUNLD *
* *
ktkkkkkidd

PURPOSE:

CALL FORMAT:

PARAMETERS:

DESCRIPTION:

APPENDIX K

E2 2 S22 5L & 3]
* *
~—— MATRIX UNLOAD —- * MUNLD *
* *
REXRXRREREE

To unload a matrix of vectors from the MAX vector
memories intoc Main Memory.

CaALL MUNLD(IVM, IVN, B, IBE, IBV, NEV, NVB, IERR)

IVM = Integer input starting element in the MAX
vector memories.

IVN = Integer input starting vector in the MAX
vector memories.

B = Floating-point output matrix of vectors in
Main Memcry.

IBE = Integer input element stride for vectors in B.

IBV = Integer input element stride between

vectors in B.
NEV Integer input number of elements per vector.
NVB = Integer input number of vectors.
IERR Integer input/output error flag. See
DESCRIPTION for a list of error conditions.

MUNLD unloads the NVB vectors contained in the MAX

vector memories to Main Memory defined by B, IBE, IBV,
and NEV. An arbitrary data structure can be associated
with B. The operation of MUNLD can be conveniently
described if the set of MAX vector memories is considered
to be a matrix VECMEM, and, B is also considered to be a
matrix. Using this matrix convention, MLOAD performs

the matrix transfer

B = VECMEM

where IBE, IBV, IVM, IVN, NVB, and NEV allow the user
to select subsets of B and VECMEM as appropriate.

To illustrate the flexibility of the data structures
that can be associated with the data, suppose B is
a one-dimensional array, and that VECMEM is a matrix
VECMEM(2648,8*NMAX+4) where NMAX is the number of
available MAX modules. In this case, the operations
performed by MUNLD can be described in FORTRAN by:

DO 24 i = 1, NVB
DO 14 j = 1, NEV
B((i-1)*IBV+(j-1)*IBE+l1) = VECMEM(IVM+j-1,IVN+i-1)
19 CONTINUE
29 CONTINUE

FPS 864-7482-991C Page K - 121



APPENDIX K

MAX vector memories (VECMEM):

X.X

X.X

X.X X.X

X.X

X.X
X.X

X.X

1.4 2.9 3.8 4.9 5.9 x.x

X.X
X.X

X.X
X.X

X

X

X.X
X

X.X
X.X
X.X
X.X
X.X
X.X

1.9 1.8 2.4 3.8 4.9
1.9 1.8 2.4 3.9 4.8
1.4 1.9 1.4 2.9 3.4
1.4 1.4 1.4 2.9 3.8
1. 1.4 1.4 1.9 2.9
1.4 1.4 1.4 1.9 2.4

X.X
X.X
X.X
X.X
X.X
X.X

X.X
X.X
X.X
X.X
X.X
X.X

X.X
X.X
X.X
X.X

X

X.X X

X

X

X.X X.X

X.X

X.X X.X X.X

X.X

1.9

1. 1.4 1.4 1. 1.9 1.4 1.4,

XeX X.X X.X X.X X.X
2.¢ 2. 1.9 1.4 1.8 1.8 1.0 1.9

3.4 3.4 2.4 2.4 1.4 1.4 1.8 1.9

4.9 4.9 3.9 3.9 2.4 2.9 1.4 1.4

5.9 5.9 4.9 4.9 3.9 3.8 2.4 2.4

IERR = @

- 123

Page K

FPS 868-7482-941C



APPENDIX K

A system with NMAX available MAX modules has
NVEC = 8 * NMAX + 4

MAX vector memories, numbered from 1 to NVEC, which are
partitioned into two banks cf NVEC/2 vector memories
each. Vector memories 1 through NVEC/2 make up one bank,
and vector memories NVEC/2+1 through NVEC make up the
other. The two banks of vector memories can be thought
of as complementary, where vector memories 1 and NVEC/2+1
are complements, 2 and NVEC/2+2 are complements, and so
forth.

Vector memories NVEC/2 and NVEC are not accessible for
VMSA operations and hence are not used.

For each vector in A, MVMSA performs the NVB VMSA
operations between that vector and the NVB vectors
residing in one bank of the MAX vector memories,
using the scale factors contained in C. The NVB
resultant vectors are written into the complementary
bank of MAX vector memories. IVN is toggled to point

to the starting vector memory in the output bank.
IVN = MOD(IVN+NVEC/2, NVEC)

The NVB resultant vectors then become the input for the
VMSA operations with the next vector of A.

Note that due to the parallel operation of the MAX, all
NVEC/2 - 1 vector memories in the output bank will be
overwritten. The unused NVEC/2 - 1 - NVB vector memories
will contain extraneous results. Refer to EXAMPLE

for more details.

FPS 869-7482-941C Page K - 125



APPENDIX K

IERR

]
[5)]

IVM + NEV - 1 greater than 2448,

IERR = 6 IVN <= 4.

IERR = 7 NVB > NVEC/2 - 1 or
MOD(IVN,NVEC/2) + NVB - 1 > NVEC/2 - 1
or
IVN = NVEC/2 or
IVN = NVEC

where NVEC = 8*NMAX+4 and NMAX is the
number of available MAX modules. Refer
to Section K.2.

If there are too many or too few formal parameters, then
IERR is left unchanged.

For more information on the Matrix Oriented MAX
routines, refer to Section K.4.

EXAMPLE: Assume one available MAX module and that the data in A and
C is stored in column major order (normal FORTRAN). Perform
the VMSA operations of the rows of a submatrix of A with a
subset of the MAX vector memories using the scalars
contained in the columns of a submatrix of C.

Input matrix A:

1.4 x.x 1.9 x.x 1.4 x.x 1.4 x.x 1.9
X.X X.X X.X X.X X.X X.X X.X X.X X.X
1.9 x.x 2.4 x.x 3.8 x.x 4.9 x.x 5.4
XeX XeX XoeX XX X.X X.X X.X X.X X.X
1.4 x.x 2.9 x.x 3. x.x 2.9 x.x 1.9
X.X X.X X.X X.X X.X X.X X.X X.X X.X

IAE = 12

IAV = 2

NVA = 3

Input matrix C:

1.9 x.x x.x 2.8 x.x x.x 1.9
XeX X.X X.X X.X X.X X.X X.X
2.8 =x.x x.x 1.8 =x.x x.x @.9
X.X X.X X.X X.X X.X X.X X.X
3.8 x.x x.x @. x.x x.x 2.9
XeX XoX X.X X.X X.X X.X X.X
4.9 x.x x.x 3.8 x.x x.x 3.9
X.X X.X X.X X.X X.X X.X X.X

ICE = 2

ICV = 24

FPS 864-7482-991C Page K - 127



APPENDIX K

ERERREEELE . REXXEREEEE
x * * *
* MUSMA * —— MATRIX VECTOR SCALAR MULTIPLY ADD ——— * MVSMA *
* * * *
E2 T2 2 2 2 % & X . tkkkkkithE®
PURPOSE: To perform vector scalar multiply add (VSMA) operations

between a matrix of vectors and a matrix of scalars in
Main Memory and a matrix of vectors in the MAX vector
memories.

CALL FORMAT: CALL MVSMA(A, IAE, IAvV, IVM, IVN, C, ICE, ICV,
NEV, NVA, NVB, IFUN, IERR)

PARAMETERS: A = Floating-point input matrix of vectors in
Main memory.
IAE = Integer input element stride for vectors in A.
IAV = Integer input element stride between

vectors in A.
IVM = Integer input starting element in the MAX
vector memories.

IVN = Integer input/output starting vector for the
input/output vectors in the MAX vector memories.

c = Floating-point input matrix of scalars.

ICE = Integer input element stride for C.

ICV = Integer input element stride between

vectors in C.
NEV = Integer input VSMA length.
NVA = Integer input number of vectors in A to be used.
NVB = Integer input number of vectors in the MAX
vector memories to be used as input. Also
the number of scalars per vector of C to be used.
Integer input function flag.
IFUN = §: r = 1.9
IFUN = 1: r = -1.4
Note that IFUN is a bit-mapped function flag:
IFUN = 2 is equivalent to IFUN = g, IFUN = 3
is equivalent to IFUN = 1, etc.
See DESCRIPTION for the usage of r.
Integer input/ocutput error flag.
See DESCRIPTION for a list of error conditions.

IFUN

IERR

DESCRIPTION: MVSMA performs VSMA operations of length NEV between
the NVA vectors in Main Memory defined by A, IAE, and
IAV with the NVB vectors in the MAX vector memories
defined by IVM and IVN, using the elements of C in
Main Memory defined by ICE and ICV as the scale factors.
The output of the VSMA operations is written into the
MAX vector memories.

FPS 864-7482-441C Page K - 129



APPENDIX K

The operation of MVSMA can be conveniently described if
the set of MAX vector memories is considered to be a
matrix VECMEM(2448,NVEC). Arbitrary data structures
can be associated with A and C. For simplicity, assume
that A and C are also matrices, dimensioned A(IAV,NVA)
and C(ICV,NVA), respectively. Further, assume that IAE
and ICE are both equal to one. Given these assumptions,
the computations performed by MVSMA can be described

in FORTRAN by:

DO 30 i = 1, NVA
= MOD(IVN+NVEC/2, NVEC)
DO 28 j = 1, NVB
DO 14 k = 1, NEV
VECMEM(IVM+k-1,IVO+j-1) = r * C(j,i) * A(k,i) +
+ VECMEM( IVM+k-1, IVN+3j-1)
19 CONTINUE
29 CONTINUE
IVN = IVO

39 CONTINUE

To illustrate the generality and the flexibility of the
data structures that can be associated with the data,
suppose that A and C are one-dimensional arrays. In this
case, the operations performed by MVSMA can be described
in FORTRAN by:

DO 38 i = 1, NVA
IVO = MOD(IVN+NVEC/2, NVEC)
DO 29 j = 1, NVB
DO 14 k = 1, NEV
VECMEM( IVM+k~1,IVO+j-1) = r *

+ C((j=l)*ICE+(i-1)*ICV+l) *
+ A((k=1)*IAE+(i-1)*IAV+1l) +
+ VECMEM ( IVM+k~1, IVN+j-1)
19 CONTINUE
20  CONTINUE
IVN = IVO
39 CONTINUE

Summary of error conditions:
IERR = -3 NVA <= §.
IERR = -2 NVB <= d.
IERR ; -1 NEV <= g.
IERR = & No error occurred. Normal completion.
IERR = 1 No TMRAM on the system.

IERR = 4 IVM <= 0.

FPS 864-7482-991C Page K - 131



APPENDIX K

MAX vector memories (VECMEM):

X.X X.X

XX

X.X X.X X.X X.X

X.X

XX
X.X
XX

X.X

1.9 2.8 3.9 4.9 x.x

X.X X.X

1.9 1.8 1.9 2.8 x.x

X.X X.X

X.X

X.X X.X

X.X

X.X X.X
X.X

X.X
X

1.9 1.9 1. 1.9 x.x

x.x 1.9 1.¢ 1.6 1.9

X.X

X

X.X X

X

X

X

X

X

X.X

X.X X.X . X.X X.X

X.X

NEV
IFUN
IERR

999

Upon return from MVSMA, the MAX vector memories (VECMEM)

contain:

X.X
X.X

4.8 5.4 6.0 11.8

6.8 5.9
y.y 8.8 6.9 4.0 15.9

X.X
y.y 16.9 7.9 4.9 17.9

X.X X.X

X.X

. X.X . . X.X .
v.y 5.4 5.4 8.4 14.9

X.X

X.X
8.8 5.4 9.4 19.4 x.x

y.y 11.9 6.9 19.9 24.9 x.x

v.y 12.9 7.4 8.4 23.9
y.y 13.9 8.4 6.4 23.4

Y.y

X.X
X.X

5.9 13.9

-y
4

y
Yy

X.X

X.X
X.X

X.X
X.X

vy.y 12.8 8.9 4.9 28.9

X.X X.X

X.X

and 7 contain extraneous results,

and that vector memories 6 and 12 remain unchanged because

1
they are not accessible for VSMA operations.

Note that vector memories

- 133

Page K

FPS 864-7482-441C



APPENDIX L

APPENDIX L

MAX ROUTINES IN ALPHABETICAL ORDER

NAME DESCRIPTION PAGE
CMDQOT COMPLEX MATRIX DOT PRODUCT K - 168
CMLOAD COMPLEX MATRIX LOAD K - 194
CMUNLD COMPLEX MATRIX UNLOAD K - 187
CMVSMA COMPLEX VECTOR MULTIPLY SCALAR ADD K - 145
MDOT MATRIX DOT PRODUCT K - 113
MLOAD MATRIX LOAD K - 118
MUNLD MATRIX UNLOAD K - 121
MVMSA MATRIX VECTOR MULTIPLY SCALAR ADD K - 124
MVSMA MATRIX VECTOR SCALAR MULTIPLY ADD K - 129
PCDOT PARALLEL COMPLEX DOT PRODUCT K - 13
PCNV2D PARALLEL 2-D CONVOLUTION AND CORRELATION K - 17
PDOT PARALLEL DOT PRODUCT K - 2@
PIDOT PARALLEL INDEXED DOT PRODUCT K - 24
PILOAD PARALLEL LOAD FOR PIDOT K - 27
PLDCD PARALLEL COMPLEX LOAD K - 34
PLOADD PARALLEL LOAD FOR PDOT/PTSLVK K - 34
PLOADV PARALLEL LOAD FOR PVSMA AND PVMSA K - 37
PLUFAC PARALLEL LU MATRIX FACTORIZATION K - 49
PLUSLV SOLVER FOR PLUFAC K - 42
PMMUL PARALLEL MATRIX MULTIPLY K - 44
PMOVE PARALLEL MOVE K - 47
PSGEFA PARALLEL REAL GENERAL MATRIX FACTOR K - 58
PTSLVK PARALLEL TRIANGULAR SOLVE KERNEL K - 52
PTSOLV PARALLEL TRIANGULAR SOLVE K - 56
PUNLDD PARALLEL UNLOAD FOR PTSLVK K - 59
PUNLDV PARALLEL UNLOAD FOR PVSMA AND PVMSA K - 62
PVMSA PARALLEL VMSA K - 65
PVSMA PARALLEL VSMA K - 74

FPS 860-7482-841C Page L - 1



APMATH64/MAX KEY WORD INDEX

APMATH64/MAX KEY WORD INDEX

This index of APMATH64/MAX routines is sorted by key words that appear

in each routine title. Each title can contain more than one key word.

The key words are listed alphabetically to the right of the gap running
down the center of each page.

To use the key word index, locate a key word that is representative of
the desired APMATH64/MAX function. Applicable APMATH64/MAX routine
names and titles can be found on the same line with each occurrence of
the key word. The routine name appears in brackets ([ ]). The routine
title immediately follows the routine name and continues on the other
side of the gap when necessary. The ellipsis (...) 1is placed directly
after the last word in the title if the line wraps around. The page

where a particular routine is documented can be found in Appendix L.

[PCNV2D] PARALLEL 2-D CONVOLUTION AND CORRELATION
COMPLEX VECTOR MULTIPLY SCALAR ADD...[CMVSMA]
MATRIX VECTOR MULTIPLY SCALAR ADD...[MVMSA]
MATRIX VECTOR SCALAR MULTIPLY ADD...[MVSMA]
{PCDOT] PARALLEL COMPLEX DOT PRODUCT
(PLDCD] PARALLEL COMPLEX LOAD
(CMDOT] COMPLEX MATRIX DOT PRODUCT
(CMLOAD] COMPLEX MATRIX LOAD
(CMUNLD] COMPLEX MATRIX UNLOAD

ADD...[CMVSMA] A COMPLEX VECTOR MULTIPLY SCALAR
{DCNYV2D] PARALLEL 2-D CONVOLUTION AND CORRELATION

et e &2 LRIV N e SN

PARALLEL 2-D CONVOLUTION AND CORRELATION...[PCNV2D]
[CMDOT] COMPLEX MATRIX DOT PRODUCT
[MDOT] MATRIX DOT PRODUCT
[PCDOT] PARALLEL COMPLEX DOT PRODUCT
(PDOT} PARALLEL DOT PRODUCT
(PIDOT] PARALLEL INDEXED DOT PRODUCT

PARALLEL REAL GENERAL MATRIX FACTOR...[PSGEFA]
[PLUFAC] PARALLEL LU MATRIX FACTORIZATION

[PSGEFA] PARALLEL REAL
[PIDOT] PARALLEL
PARALLEL TRIANGULAR SOLVE
[CMLOAD] COMPLEX MATRIX
[MLOAD] MATRIX

(PLDCD] PARALLEL COMPLEX
[PLOADD] PARALLEL
(PILOAD]} PARALLEL
[PLOADV] PARALLEL
[PLUFAC] PARALLEL

[CMDOT] COMPLEX

[MDOT]

[PSGEFA] PARALLEL REAL GENERAL
[PLUFAC] PARALLEL LU
[CMLOAD] COMPLEX

FPS 868-7482-gg1C

GENERAL MATRIX FACTOR
INDEXED DOT PRODUCT
KERNEL. .. [PTSLVK]

LOAD

LOAD

LOAD

LOAD FOR PDOT/PTSLVK
LOAD FOR PIDOT

LOAD FOR PVSMA AND PVMSA
LU MATRIX FACTORIZATION
MATRIX DOT PRODUCT
MATRIX DOT PRODUCT
MATRIX FACTOR

MATRIX FACTORIZATION
MATRIX LOAD

INDEX

l”\\\



[PUNLDV] PARALLEL
{CMVSMA] COMPLEX
[MVMSA] MATRIX
[MVSMA] MATRIX
(PVMSA] PARALLEL
[PVSMA] PARALLEL

FPS 860-7482-981C

APMATHG64/MAX KEY WORD INDEX

UNLOAD FOR PVSMA AND PVMSA
VECTOR MULTIPLY SCALAR ADD
VECTOR MULTIPLY SCALAR ADD
VECTOR SCALAR MULTIPLY ADD
VMSA
VSMA

INDEX

A

"-;,._\



Please detach cards along perforations.

Your comments will help us improve the quality and usefulness of our publications.
out and return this form. (The mailing address is on the back.)

Title of document:

Please fill

Your Name and Title: Date:
Firm: Department:

Address:

City: State: Zip Code:
Telephone Number: ( ) Extension:

I used this manual. . .

O as an introduction to the subject
Q as an aid for advanced training
U to instruct a class

U to learn operating procedures

O as a reference manual

O other

READER'S COMMENT FORM

and includes a quarterly newslett

I found this material. . .

Yes No
accurate D D
complete Q Q
written clearly a Q
well illustrated & O
well indexed a Q

Please indicate below, listing the pages, any errors you found in the manual. Also indicate if
you would have liked more information about a certain subject.

ARRAY is an independent society of people who use FPS products. Membership is free

er. There is an annual conference, as well as other

activities. If you are interested in becoming an ARRAY member, please fill out and
return this form. {(The mailing address is on the back.)

Your Name and Title: Date:
Firm: Department:

Address:

City: State: Zip Code:
Telephone Number: ( ) Extension:




01 1d 1 §I0ETLY wepe

"ONI 'SINJLSAS
INIOd ONILVO

O




