
APSIM64/ APCEBUG64
MANUAL

860-7489-001 B

by FPS Technical Publications Staff

APSIM64/ APCEBUG64
MANUAL

860-7489-0018

NOTICE

Publication No. 860-7489-00lB
March, 1984

The information in this publication is
subject to change without notice.

Floating Point Systems, Inc. accepts no
liability for any loss, expense, or damage
resulting from the use of any information
appearing in this publication.

Copyright ~ 1984 by Floating Point Systems, Inc.

All rights reserved. No part of this publication may
be reproduced in any form without written permission
from the publisher.

Printed in USA

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE
1.2 CONVENTIONS
1.3 RELATED MANUALS
1.4 TERMS AND ACRONYMS

CHAPTER 2 APSIM64/APDEBUG64 OVERVIEW

2.1
2.2
2.3
2.4

AP S H1ULATION LIBRARY (APS IM64)
AP INTERACTIVE DEBUGGER (APDEBUG64)
USING APSIM64/APDEBCG64
EXAMPLE DEBUGGING SESSIONS

CHAPTER 3 RUNNING APSIM64/APDEBUG64

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.5
3.6
3.7
3.7.1
3.7.2
3.7.3

INTRODUCTION
INVOKING APS H164

Host Program-callable APEX64 Access
Stand-alone Access

INVOKING APDEBUG64
Single Job Executive (SJE) Access
Host Program-callable APEX64 Access
Stand-alone Access

EXIT FROM APDEBUG64 (QUIT)
LOADING THE AP (LOAD)
INITIALIZING THE AP (INIT)
BATCH DEBUGGING

Comment Line (11
)

Command Separator (;)
Command Continuation (%)

CHAPTER 4 SETTING I/O PARAMETERS

4.1
4.2
4.3
4.4
4.5

INTRODUCTION
SET THE LANGUAGE MODE (LANGUAGE)
OPEN OR CLOSE SYMBOL TABLES (SYMBOL)
SET INTEGER RADIX (RADIX)
SET OUTPUT FOR~fAT (FORi'Lt\T)

CHAPTER 5 EXECUTING PROGRAMS

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4

INTRODUCTION
ADDRESS EXPRESSION PARAMETERS

FTN Address Expressions
APAL64 Address Expressions
Local Symbol Overrides
Path Names

FPS 860-7489-00lA

CONTENTS

Page

1-1
1~1

1-2
1-3

2-1
2-2
2-3
2-4

3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-6
3-6
3-6
3-7
3-7
3-7
3-7

4-1
4-1
4-3
4-4
4-5

5-1
5-2
5-2
5-2
5-3
5-3

Page iii

CONTENTS

CHAPTER 5 (cont.)

5.3
5.4
5.5
5.6

5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

SET OR LIST BREAKPOINTS (BREAK)
SET OR LIST TRACEPOINTS (TRACE)
SET OR LIST A WATCHPOINT (WATCH)
CLEAR BREAKPOINTS, TRACEPOINTS, AND WATCHPOINT

(CLEAR)
RUN USER PROGRAM (RUN)
STOP USER PROGRAM (ATTENTION KEY)
SET OR LIST PROGRAM TIME-OUT PERIOD (PTIMEOUT)
SINGLE-STEP THROUGH USER PROGRAM (STEP)
PRINT CURRENT LOCATION (WHERE)
EXECUTE A SUBROUTINE OR FUNCTION (INVOKE)
PRINT ELAPSED EXECUTION TIME (TIME)
PRINT OVERLAY STRUCTURE DIAGRAM (POVERLAY)
PRINT A PROCEDURE CALL TRACEBACK (PTRACE)
FILL COMMAND BUFFER (FBUF)
TOGGLE COMMAND BUFFER SWITCHES (BUFFER)
EXECUTE THE COMMAND BUFFER (XBUF)
OPEN OR CLOSE A LISTING FILE (LIST)
PRINT THE DEBUGGER STATUS (STATUS)

CHAPTER 6 ACCESSING REGISTER AND MEMORY LOCATIONS

6.1
6.2
6. 2 .1
6.2.2
6.2.3
6.2.4
6.2.5
6.3

6.4

6.5
6.6
6.7
6.8
6.9

INTRODUCTION
MEMORY AND REGISTER LOCATION PARAMETERS

AP Functional Units
Field Specifiers (field)
Address Range (addrange)
Value Expressions (value)
Relational Expressions (relexp)

OPEN AND EXAMINE A REGISTER OR MEMORY
LOCATION (EXAMINE)

EXAMINE A SUCCEEDING (+) OR PRECEDING (-)
MEMORY LOCATION

DISPLAY THE VALUE OF AN EXPRESSION (DISPLAY)
SEARCH A ME~ORY (SEARCH)
SET SEARCH MASK (MASK)
DEPOSIT INTO A REGISTER OR MEMORY (DEPOSIT)
ZERO THE AP (ZERO)

APPENDIX A FIELD MNEMONICS

A.1
A.2

PROGRAM SOURCE FIELD MNEMONICS
REGISTER FIELD MNEMONICS

5-4
5-7
5-7

5-9
5-9
5-10
5-10
5-11
5-13
5-13
5-13
5-14
5-14
5-15
5-16
5-16
5-17
5-17

6-1
6-1
6-1
6-4
6-4
6-4
6-5

6-6

6-8
6-9
6-9
6-10
6-12
6-14

A-1
A-4

Page iv FPS 860-7489-00lA

APPENDIX B APDEBUG64 INTERACTIVE COMMANDS

APPENDIX C ERROR MESSAGES

INDEX

ILLUSTRATIONS

Figure No~ Title

5-1 Overlay Structure Diagram

6-1 The Search Mask

Table No.

1-1
1-2
1-3

3-1
3-2

4-1

5-1

6-1
6-2
6-3
6-4

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10

TABLES

Title

Related Manuals
Related ANSI Publications
Terms and Acronyms

Commands for Running APSIM64/APDEBUG64
User-supplied Parameters (Stand-alone Access)

Input/Output Format Commands

Execution Commands for AP Programs

Register and Memory Location Commands
Memory Mnemonics
Register Mnemonics
Relational Operators

PS SPAD Field Mnemonics
PS Adder Field Mnemonics
PS Branch Field Mnemonics
PS Data Pad Field Mnemonics
PS Multiplier Field Mnemonics
PS Memory Field Mnemonics
PS Immediate Value Field Mnemonics
PS Special Operation Field Mnemonics
PS I/O Operation Field Mnemonics
User Status Register Field Mnemonics

FPS 860-7489-00lA

CONTENTS

Page

5-14

6-ii

Page

1-2
1-2
1-3

3-1
3-4

4-1

5-1

6-1
6-2
6-3
6-6

A-1
A-1
A-2
A-2
A-2
A-3
A-3
A-3
A-4
A-4

Page v

CONTENTS

A-11
A-12
A-13
A-14
A-15
A-16

B-1

Page vi

TABLES (cont.)

State Save Status Register Field Mnemonics
Main Memory DED Error Register Field Mnemonics
TM/PS Parity Error Register Field Mnemonics
MD Breakpoint Register Field Mnemonics
PS Breakpoint Register Field Mnemonics
Data Word Field Mnemonics

APDEBUG64 Interactive Commands

A-5
A-6
A-6
A-6
A-7
A-7

B-1

FPS 860-7489-00lA

INTRODUCTION

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This manual explains how to debug AP programs using APSIM64 and
APDEBUG64.

1.2 CONVENTIONS

This manual uses the following conventions:

•

•

•

•

•

•

•

•

•

The Attached Processor is called the AP, and the computer to
which the AP attaches is called the host.

In examples of dialogue at the terminal, user input is
underlined to distinguish it from program or system output.
Also, all user input at the terminal is terminated with a
carriage return.

The syntax of the commands depends upon the host. In this
manual, examples of dialogue at the terminal use a generic
syntax that is not meant to correspond to any existing host.
Host-specific syntax appears in the appropriate host manual
(listed in Table 1-1).

In command syntax, uppercase characters must be entered
exactly as shown.

In command syntax definitions, underlined lowercase characters
represent parameters. These parameters are replaced with
unique, user-defined names.

In command syntax descriptions, the uppercase letters of a
command indicate the shortest legal command name abbreviation.
The lowercase letters following the shortest legal command
name abbreviation are optional.

Square brackets ([]) enclosing a parameter in a command
syntax definition indicate that the parameter is optional.

An ellipsis (...) following a parameter in a command syntax
definition indicates that the parameter can be repeated.

Double asterisks indicate exponents (e.g., 2~:~':3) .

FPS 860-7489-00lA Page 1 1

INTRODUCTION

1.3 RELATED MANUALS

Table 1-1 lists FPS manuals that contain more detailed information
about the AP. Table 1-2 lists related ANSI publications.

Table 1-1 Related FPS Manuals

PUBLICATION PUBLICATION NO.

APFTN64 User's Guide 860-7479-001

APAL64 Programmer's Guide 860-7484-000

APAL64 Programmer's Reference Manual

APLINK64 Manual

FPS-164 Operating System Manual,
Vols. 1, 2, & 3

Volume i
Volume 2
Volume 3

SJE
APEX64/SUM
File and Memory Management

FPS-164 VAX Host Manual

FPS-164 IBM/MVS Host Manual

FPS-164 IBM/CMS Host Manual

860-7485-000

860-7486-000

861-7491-000

860-749i-004
860-7491-005
860-7491-006

860-7493-001

860-7494-003

860-7494-002

Table 1-2 Related ANSI Publications

PUBLICATION PUBLICATION NO.

American National Standard
Programming Language FORTRAN ANSI X3.9-1978

Page 1 2 FPS 860-7489-00lA

INTRODUCTION

1.4 TERMS AND ACRONYMS

Table 1-3 defines terms used throughout this manual.

TERM

APAL64

APEX64

APFTN64

breakpoint

HASI

JDL

main memory

Table 1-3 Terms and Acronyms

MEANING

AP assembly language.

AP executive. A set of host-resident routines that
control data transfer and synchronization between the
host and the AP.

A user-defined PS location at which APDEBUG64 halts a
program, allowing the user to examine and modify the
contents of memories and registers.

Host/AP software interface. Host FORTRAN program created
by APLINK64 to handle communication between AP
subroutines or functions and a host mainline program
running under APEX64.

Job Definition Language. The System Job Executive's
interactive command language, used to transfer data and
programs between the AP and the host and to control
program execution under the SJE operating system.

FPS-164 main memory. Stores the Single User Monitor
(SUM), and data and program instruction words.

Main data. The portion of main memory allocated for data
storage.

FPS 860-7489-00lA Page 1 3

INTRODUCTION

TERM

overlay

PS

SJE

SPAD

SUM

tracepoint

watchpoint

Page 1 4

Table 1-3 Terms and Acronyms (cont.)

MEANING

A logical segment of an AP program called into memory
during processing. Overlaying allows the AP to execute
programs too large for its physical memory.

Program source. The portion of main memory allocated for
storage of program instruction words.

System Job Executive. The operating mode that processes
complete user jobs on the AP, using Job Definition
Language (JDL).

Scratch pad. Performs 32-bit integer and logical
operations.

Single User Monitor. AP-resident portion of the AP
operating system that starts and stops user tasks,
performs memory allocation and initialization, and
provides system services and breakpoint support.

A user-defined PS location at which APDEBUG64 halts a
program, and displays specified memory and register
information.

A user-defined variable reference at wnicn APDEBUG64
halts the program whenever the variable is read and/or
written.

FPS 860-7489-00lA

APSIM64/APDEBUG64 OVERVIEW

CHAPTER 2

APSIM64/APDEBUG64 OVERVIEW

2.1 AP SIMULATION LIBRARY (APSIM64)

APSIM64 is a library of host FORTRAN routines providing a complete
functional simulation of the host-dependent APEX64 software environment
and an exact simulation to the ·bit level of the AP .hardware
environment. This exact duplication allows the APSIM64 library to be
loaded in place of the APEX64 library to provide a simulation of the
complete APEX64/AP software/hardware environment. APSIM64 has no
command set, but it can be used with APDEBUG64 to do interactive
debugging within a simulated AP environment. All APDEBUG64 commands
described in this manual can be used for debugging on the simulator,
exactly as if debugging on the AP.

NOTE

APSIM64 can be used without APDEBUG64 by linking the
APSIM64 library instead of the APEX64 library. Used
alone, the simulator executes AP routines and returns
results exactly as the AP would. However, because
the simulator does not have the execution speed of
the AP, the simulator alone has limited usefulness.

All user applications that access the AP through the standard APEX64
calls can use the simulator with or without the debugger. These
applications include all APMATH64 routines and all code generated by
APAL64 and APFTN64.

APSIM64 includes the following features:

• Accurate bit-wise simulation of the entire AP instruction set .

•

•

Functional simulation of the APEX64 interface and management
functions.

APSIM64 can be used with APDEBUG64 to do interactive debugging
on a simulated AP.

FPS 860-7489-00lA Page 2 1

APSIM64/APDEBUG64 OVERVIEW

APSIM64 has the following restrictions:

• SJE main programs cannot be run on the simulator.

• I/O is not simulated. Therefore, APSIM64 can only be used
with routines meant to run under the APEX64 operating system
option with no I/O.

• Only 64K of AP main memory (MD) is simulated.

• Programs using the synchronized user-directed call (UDC)
method (described in the APLINK64 Manual, listed in Table 1-1)
can cause problems if the AP goes into a busy loop waiting for
data. With the hardware, the loop is· broken when the data is
passed, but with the simulator, the data is never passed and
the simulator loops indefinitely.

2.2 AP INTERACTIVE DEBUGGER (APDEBUG64)

Debugging is the process of locating and removing mistakes in a
program. APDEBUG64 provides an interactive method of debugging AP
application programs. The user can run portions of an AP program, stop
and examine the results, make program modifications, and then continue
program execution.

APDEBUG64 allows the user to do the following:

•

•

•

•

•

•

•

•

Execute programs in single steps .

Interrupt program execution using breakpoints, watchpoints,
and tracepoints.

Display and alter the contents of AP register and memory
locations.

Display and change the values of global and local variables .

Evaluate symbolic expressions .

Display elapsed execution time .

Gain access to overlay modules .

Use APDEBUG64 with APSIM64 to do interactive debugging on a
simulated AP.

APDEBUG64 can be called as a feature of the Single Job Executive (SJE)
operating system, as a host FORTRAN-callable subroutine under APEX64,
or as a stand-alone program from the host operating system.

Page 2 2 FPS 860-7489-00lA

APSIM64/APDEBUG64 OVERVIEW

The SJE versio~ of APDEBUG64 is used to nebug complete programs on the
AP. r~e APEX64 FORTRAN-callable version is used to debug AP load
modules in the host/AP execution environment. The stand-·alone version
is used to debug individual AP load modules.

Both the APEX64 FORTRAN-callable version and the stand-alone version of
the debugger can be used with APSIM64.

2.3 USING APSIM64/APDEBUG64

To use APSIM64/APDEBUG64, use the following procedure:

1. Decide whether to debug on a simulated AP (APSI~64) or on the
actual AP. (If the program is written to run under SJE, it
cannot be run on the simulator.)

2. Compile APFTN64 routines using the DEBUG option. (This
automatically selects the LIN, NAM ALL, and OPT 0 compiler
options.) Assemble APAL64 routines using the NA:! LOCAL UNREF
option. (The APFTN64 User's Guide discusses compiler options,
and the APAL64 Programmer's Guide discusses the assembler
options.)

3. Link the object modules using APLINK64 with the SYM option.
This builds the symbol table used by the debugger. (Refer to
the appropriate host manual, listed in Table 1-1, for the
syntax of the APLINK64 command). The APLINK64 ~anual, listed
in Table 1-1, discusses the linker.)

4. For APEX64 programs, link the desired libraries with the main
program and the host/AP software interface (HASI), using the
host linker. To debug on the simulator, link in both the
APDEBUG64 and the APSIM64 libraries, in that order. To debug
on the AP, link in the APDEBUG64 and APEX64 libraries, in that
order. (Refer to the APLINK64 Manual and the FPS-164
Operating System Manual, Vol 2, APEX/SUM for more information
on the HAS!. Both manuals are listed in Table 1-1.)

5. Start the debugger, using the appropriate invoking procedure,
described in Chapter 3.

6. Open the symbol table for the module to be debugged. Select
the APDEBUG64 SYM option (described in Section 3.3.3) when the
debugger is invoked for stand-alone access or execute the SY
depugger command (described in Section 4.3) for s~~ and host
program-callable access.

7. Set breakpoints, examine the program, and make modifications
as desired.

8. Enter the QUIT command (described in Section 3.4) to end the
debugging session.

FPS 860-7489-00lA Page 2 3

APSIM64/APDEBUG64 OVERVIEW

2.4 EXAMPLE DEBUGGING SESSIONS

The following examples show typical debugging sessions. Lines entered
by the user are underlined. The asterisk (*) prompts the user for
input. A dollar sign ($) precedes predefined memory and register names
on output to distinguish them from any user-defined symbol names with
the same name. Double quotes (11

) precede comment lines.

The following is part of the APFTN64 listing of the program ADDMAT. The
APFTN64 listing shows the source line numbers used by APDEBUG64. (It is
often helpful to refer to a listing while debugging an APFTN64 program.)

SOURCE INPUT FILE: ADDMAT. FOR

LINE NUMBER SOURCE INPUT

(00001)
(00002)
(00003)
(00004)
(OOOOS)
(00006)
(00007)
(00008) so
(00009)
(00010)

PROGRAM ADDMAT
INTEGER XMAT (10), YMAT (10), ZMAT (10)
DO SO I=l, 10
XMAT(I)=I
Y:!AT (I)=10- I
ZMAT(I)=XMAT(I)+YMAT(I)
WRITE(S ;;'•) 'XMAT=' ,XMAT(I), 'YMAT=', YMAT(I), 'ZMAT=' ,ZMAT
CONTINUE
STOP
END

In the following example debugging session, the debugger is invoked in
SJE to debug the program ADDMAT. Notice that the debugger displays the
last location examined each time it encounters a breakpoint.

Page 2 4 FPS 860-7489-00lA

APSIM64/APDEBUG64 OVERVIEW

$ sje
SJE-I-WELCOME, SJE REL E00-000 . VER 2. 00

SJE> attach/wait
SJE-I-ATTACH, Assigned AP number 1.
SJE> copyin/b addmat.img
SJE-I-COPYIN, File copied in.
SJE> debug/defer
SJE-I-DEBUG, Debugger activated.
SJE> addmat.img
APDEBUG64, REL E00-000 VER 3.00
LANGUAGE IS FTN
-.': If

06/22/83 11:45.

-:: "open symbol file 'addmat. asy' and local symbols
*"for the module 'addmat' (Section 4.3)
* sym addmat 'addmat.asy'
;': ''
-.': "check that symbols are open (Sect ion 4. 3)
4': sym
SYMBOL FILE OPEN: ADDMAT.ASY
GLOBAL SYMBOLS OPEN
LOCAL SYMBOLS OPEN: ADDMAT
-;': II

-.':"set a breakpoint at the line labelled 50 (Section 5.3)
-.': b . 50
i: -"--

-;': "run the program ADDMAT (Section 5. 7)

* r
XXAT= 1 YMAT= 9 ZMAT= 10
PROG BREAK IN ADDMAT AT LINE $8 (.50) 6240.667 us.
·l: ''

-.':"examine the first elements of arrays XMAT, YMAT, and ZMAT (Sec. 6.3)
i: e xmat (1)
XMAT(l) = 1
i: e ymat (1)
YMAT(l) = 9
* e zmat(l)
ZMAT(l) = 10
* II

-;': "set a breakpoint at source line 8
-;': "breakpoint to be taken every fourth loop (Section 5. 3)
* b/every:4 $8
-.': "
-.': "run the program ADDMAT
-.': r
XMAT= 2 YMAT=
XMAT= 3 YMAT=
Xi'1AT= 4 YMAT=
XMAT= 5 YMAT=
PROG BREAK IN ADDMAT AT LINE $8
ZMAT(l) = 10
* r
XMAT=
XMAT=

FPS 860-7489-00lA

6 YMAT=
7 YMAT=

8 ZMAT=
7 ZMAT=
6 ZMAT=
5 ZMAT=

(. 50) ; 15501. 000

4 ZMAT=
3 ZMAT=

10
10
10
10

us.

10
10

Page 2 5

APSIM64/APDEBUG64 OVERVIEW

XMAT= 8 YMAT=
XMAT= 9 YMAT=
PROG BREAK IN ADDMAT AT LINE $8
ZMAT(l) = 10
~': ''

2 ZMAT= 10
1 ZMAT= 10

(.50) ; 24761.333 us.

•'• "examine element 6 of the array ZMAT (Section 6. 3)
;':: P. Z~l~~{ §}
ZMAT(6) = 10
·l: ''

•':: "exit from the debugger (Section 3.4)
":.':: g
SJE-I-EXIT, Program exit.
SJE> detach
SJE-I-DETACH, AP detached.
SJE> g
SJE-I-QUIT, SJE stopped.
$

Page 2 6 FPS 860-7489-00lA

APSIM64/APDEBUG64 OVERVIEW

The following example illustrates the debugger being called
automatically from a HASI running under APEX64 control, and invoking a
subroutine.

OK, Run PROGX
APDEBUG64, Release EOO
LANGUAGE IS FTN
-;':"open local symbol table
-;':sy progx. sym
7:"set a breakpoint at line 68 in the module csubi in the overlay
-;':"char (Section 5. 3)
*br char\\csubl\$68
-;':"start program execution (Section 5. 7)
-;':r

PROG BREAK IN CSUBl AT LINE $68 (.LOOOl) 597.833 us.
·-;':"examine array A3 and the variable C9 (Section 6.3)
*e a3(1):a3(4); e c9
A3 (1) = . I A31 I

A3(2) = 'CBA'
A3(3) = '654'
A3(4) = 'FED'
C9 = 'C568 GHI'
-;':"continue program execution (Section 5. 7)
-;':r

PROGRAM RETURN TO HOST ; 600.667 us.
";':"end debugging session (Section 3.4);
";':"return to user program on host (PROGX)
-;':.9.

FPS 860-7489-00lA Page 2 7

APSIM64/APDEBUG64 OVERVIEW

In this example, the simulator is called as a stand-alone· program from the
host operating system and automatically invokes the debugger.

OK, APSIM64 USER.PROG SYM
APDEBUG64, Release EOO
AP 1 ASSIGNED
LANGUAGE IS FTN
;':"put debugger in APAL64 mode (Section 4.2)
7:lang $apal
LANGUAGE IS APAL64
;':"check state of symbol file and local symbol table (Section 4. 3)
;':~

SYMBOL FILE OPEN: USERPROG.SYM
GLOBAL SYMBOLS OPEN
LOCAL SYMBOLS OPEN: PROGl
;':"change local symbol table's load module (Section 4.3)
7:sy vma
*''check state of symbol file and local symbol table (Section 4.3)
;':~

SYMBOL FILE OPEN: USERPROG.SYM
GLOBAL SYMBOLS OPEN
LOCAL SYMBOLS OPEN: VMA
;':"set breakpoint at the location labelled 'loop' (Section 5. 3)
;':b/ every: 2 loop
;':"examine the variable 1 fa 1 (Section 6.3)
-::e fa
$FA= -1.00000000000000000
;':"start program execution, stopping at the second breakpoint
"(Section 5.7)
;':r I 2

PROG BREAK IN VMA AT LOOP+l 17.333 us.
$FA= 8.00000000000000000
PROG BREAK IN VMA AT LOOP+l 19.000 us.
$FA= 9.00000000000000000
*"step and proceed (Section 5.10)
•':s/p/ 100
PROG STEP IN VMA AT LOOP+2 19.167 us.
$FA= 1.00000000000000000
PROG STEP IN VMA AT LOOP+3 19.333 us.
$FA= 9.00000000000000000
PROG STEP IN VMA AT LOOP ; 19.500 us.
$FA= 1.00000000000000000
PROG STEP IN VMA AT LOOP+l 19.667 us.
$FA= 5.090000000000000060
PROG STEP IN VMA AT LOOP+2 19.833 us.
$FA= 0.00000000000000000
PROG STEP IN VMA AT LOOP+3 20.000 us.
$FA= 5.090000000000000060
PROG STEP IN VMA AT DONE ; 20.167 us ..
$FA = 0.000000000000000000
PROG STEP IN USER.FROG AT USER.PROG+19 20.333 us.
$FA= 0.000000000000000000
PROG BREAK IN USER.PROG AT USER.PROG+32 20.500 us.
$FA= 0.000000000000000000

Page 2 8 FPS 860-7489-00lA

APSIM64/APDEBUG64 OVERVIEW

.;.-"examine SPADs 0 through 3 (Section 6.3)
;':~ sp(O) :sp(3)
$SP(OO) = 00000060
$SP(Ol) = 00000001
$SP(02) = 00000065
$SP(03) = 00000001
;'•"zero all SPADs (Section 6.9)
.;,~

.,•:"examine SPADs 0 through 3 (Section 6. 3)
i•e sp(O): sp(3)
$SP(OO) = 00000000
$SP(Ol) = 00000000
$SP(02) = 00000000
$SP(03) = 00000000
,•,"check execution time since last run or step command
;':" (Section 5. 13)
"'•time
2.667 us .
.,•,"examine MA (Section 6.3)
;'•e ma
$MA = 00000026
'" d d b . . (S t. 3 4) "' en e ugging session ec ion .
;':g

FPS 860-7489-00lA Page 2 9

RUNNING APSIM64/APDEBUG64

CHAPTER 3

RUNNING APSIM64/APDEBUG64

3.1 INTRODUCTION

This chapter describes the commands that invoke and exit APSIM64 and
APDEBUG64 and some special features for doing batch debugging. Table
3-1 lists these commands and their functions:

Table 3-1 Commands for Running APSIM64/APDEBUG64

MINIMUM
COMMAND ABBREVIATION FUNCTION

APSIM64 APSIM64 invokes stand-alone version of the debugger
running on the simulator

APDEBUG64 APDEBUG64 invokes stand-alone version of the debugger

DEBUG DEBUG invokes APDEBUG64 from SJE

INIT INI initializes the AP

QUIT Q exits from APDEBUG64 or APSIM64

LOAD LO loads modules into the AP during debugging

" comment line (for batch debugging)

; command separator (for batch debugging)

% command continuation (for batch debugging)

FPS 860-7489-00lB REV March 84 Page 3 1

RUNNING APSIM64/A?DEBUG64

3.2 INVOKING APSIM64

APSIM64 can be invoked in the following two ways:

• Called automatically by APEX routines called in the host
program or HASI.

• Stand-alone access from the host operating system. (This
version of APSIM64 automatically invokes APDEBUG64 on the
simulated AP.)

The next two sections describe how to invoke APSIM64.

3.2.1 Host Program-callable APEX64 Access

Calling the simulator from a host program running under APEX64 allows
the user to develop (and debug) an AP module within its complete
operating environment using a simulated AP, instead of a real AP. In
this case, the simulator is called from within the host program by the
same routines that would normally call the AP.

To access APSIM64 from within a host program, use the host linker to
link the program with the APSI:164 library instead of the APEX64
library. If debugging is desired, link the APDEBUG64 library at the
same time. When the host program is started, the HASI automatically
calls the simulator instead of the AP. The AP routines run on the
simulated AP.

3.2.2 Stand-alone Access

The stand-alone version of APSI:164 combines the simulator with the
debugger, allowing the user to debug individual load modules on a
simulated AP.

The following host system-level command invokes the simulator and the
debugger (refer to the specific host manual, listed in Table 1-1, for
the exact host command syntax):

APSI~64 [loadmodfile] ... (params]

For a description of the parameters (params) used in this command,
refer to Table 3-2 in Section 3.3.3.

The QUIT command (described in Section 3.4) returns control to the host
operating system.

Page 3 2 FPS 860-7489-00lA

RUNNING APSIM64/APDEBUG64

3.3 INVOKING APDEBUG64

APDEBUG64 can be invoked in the following three ways:

• a call from the Single Job Executive (SJE) operating system

• a call from within a HASI program in the APEX64 environment

• stand-alone access from the host operating system

APDEBUG64 functions the same way no matter how it is invoked. The next
three sections describe each method.

3.3.1 Single Job Executive (SJE) Access

Und~r the SJE operating system option, the user can invoke APDEBUG64
before executing the program, after the program is interrupted, or
after completing the program. The SJE ac.cess method supports debugging
with overlays, while the other two methods do not.

The following SJE command invokes the debugger:

DEBUG [/optfon]

In this command, the option is either NOW or DEFER. The NOW option
starts the debugger immediately. The DEFER option defers executioa
until the next user program is initiated. The default is DEFER.

The QUIT command (described in Section 3.4) returns control to SJE.

3.3.2 Host Program-callable APEX64 Access

Calling the debugger from a HASI program running under APEX64 allows
the user to debug an AP module within its complete operating
environment rather than as an isolated load module. In this case, the
debugger is called from within the HASI program after the load module
and data are transferred to the AP.

To access APDEBUG64 from within a HASI, use the host linker to link the
program with the APDEBUG64 library. When the host program is started,
the debugger is automatically called from the HASI just before each
execution of an AP routine, allowing the user to set breakpoints,
examine AP locations, step through the AP code, and make changes where
appropriate.

The user can also call the debugger by inserting a "CALL DBCG64"
statement in the host program at the desired location.

FPS 860-7489-00lA Page 3 3

RUNNING APSIM64/APDEBUG64

CAUTION

Calling APDEBUG64 from within a host program using
the CALL DBUG64 statement is not the pref erred method
and must be used with great care. The user must
transfer all data and load modules to the AP before
the call is executed. In addition, when the user
quits APDEBUG64, control returns to the host FORTRAN
program, which might call APEX64 to start the load
module executing again.

The QUIT command (described in Section 3.4) returns control to the user
program.

3.3.3 Stand-alone Access

The stand-alone version of APDEBUG64 allows the user to debug
individual load modules.

The following host system-level commands invoke the debugger (refer to
the specific host manual, listed in Table 1-1, for the exact host
command syntax):

APDEBUG64 [loadmodfile] ... [params]

The user can supply the parameters (params) defined in Table 3-2.

Table 3-2 User-supplied Parameters (Stand-alone Access)

MINIMUM
PARAMETER ABBREVIATION MEANING

[NO]LIST [filnam] [NO]L [Do not] create a listing
file. The default is NOL.

[NO]SYMBOLS [filnam] [NO]SYM [Do not] obtain symbols
from symbol name file. The
default is NOSYM.

APNUM apnumber AP Select AP number apnumber.
The default is AP 0 (zero),
which means any available
AP.

Page 3 4 FPS 860-7489-00lA

RUN~ING APSIM64/.APDEBUG64

Table 3-2 User-supplied Parameters (Stand-alone Access) (cont.)

PARAMETER

PSSIZE n

MDSIZE g

[NO] TMRAM

[NO] WAIT

MINIMUM
ABBREVIATION

PS

MD

[NO]TM

[NO]W

MEANI:.l'G

Specify the minimum amount
of PS memory needed in the
requested AP. The debugger
rounds up to the nearest 4K
if g is not a multiple of
4096. The default is 4K
words of PS memory.

Specify the minimum amount
of MD memory needed in the
requested AP. The debugger
rounds up to the nearest 4K
if n is greater than zero
and not a multiple of 4096.
If g is -1, the debugger
allocates for MD all memory
remaining after PS is
allocated. The default is
4K words of MD memory.

[Do Not] assign TMRAM to
this job. User cannot
deposit to HIRAM during the
debugging session unless
TMRAM is explicitly
assigned. Default is
NOTMRAM.

[Do Not] wait for the AP if
it is busy. Default is
NOWAIT.

A listing output file can be generated which contains everything shown
on the user's terminal (including error messages). Default output file
extensions depend upon the host.

When the debugger is invoked, it initializes the AP and loads any
specified load module(s) before entering interactive mode.

The stand-alone debugger only allocates 4K words of memory for MD and
PS. If the load modules require more than 4K words of PS or MD memory,
the user must allocate sufficient memory, using the PSSIZE and MDSIZE
parameters, described above. (The debugger displays an error message
if a module too large for the default PS and MD settings is loaded.)

FPS 860-7489-00lA Page 3 5

RUNNING APSIM64/APDEBUG64

The QUIT command (described in Section 3.4) returns control to the host
operating system.

3.4 EXIT FROM APDEBUG64 (QUIT)

To exit from the debugger, enter:

Quit

When running the stand-alone version, the QUIT command returns the
debugger to the host operating system. When running the host
program-callable version, the QUIT command returns the debugger to the
calling routine.

When running under the SJE operating system option, the QUIT command
returns control to SJE.

Before quitting, all files opened by APDEBUG64 are closed, and all
breakpoints are cleared.

3.5 LOADING THE AP (LOAD)

The user can load new load modules into the AP at any time during
interactive debugging using the following command:

LOad ['file']

The file argument specifies the name of the file containing the desired
load module. The file name must be enclosed by apostrophes. If no
file name is entered, the debugger reloads any load modules specified
with the APDEBUG64 command (described in Section 3.3.3).

3.6 INITIALIZING THE AP (!NIT)

Use the INIT command to initialize the AP and reset PS size, MD size,
or TMRAM access during a debugging session.

The INIT command initializes the AP by calling the APEX64 routine
APINIT. To initialize the AP, enter:

INit [/PSSIZE:n] [/MDSIZE:n·] [/TMRAM]

The PSSIZE:n MDSIZE:n, and TMRAM parameters have the meanings described
in Table 3-2.

Page 3 6 REV March 84 FPS 860-7489-00lB

RUNNING APSIM64/APDEBUG64

3.7 BATCH DEBUGGING

APDEBUG64 is meant to be used interactively. Hosts that do not support
interactive dialogue severely restrict the debugger's usefulness. If
the host does not support interactive dialogue, debugging can be done
as a batch job using host command procedures.

The following sections describe APDEBUG64 features which are useful for
doing batch debugging.

3.7.1 Comment Line (")

To indicate a comment line to the debugger, enter the following:

"comments

APDEBUG64 ignores the remainder of the input line, as in the following
example:

-;':£ LIST:LIST+20:5 "Examine the 1st row of LIST

3.7.2 Command Separator(;)

A semicolon (;) separates multiple commands on one line, as in the
following example:

*R LOOPX ; E COUNT

The syntax of a command is checked when it is executed. If a syntax
error is detected in a string of commands, execution stops immediately,
the remaining commands are ignored, and the debugger returns to the
terminal for further input.

3.7.3 Command Continuation(%)

To continue a command on the next line, end the current line with a
percent sign(%). If the line contains a comment, the% must be placed
before the beginning of the comment, as in the following example:

*DEPOSIT VAR100+20: VAR100+30: 2 ~~ "This line continues
=5432.98E+50

FPS 860-7489-00lA Page 3 7

SETTING I/O PARAMETERS

CHAPTER 4

SETTING I/O PARAMETERS

4.1 INTRODUCTION

This chapter describes the commands that select the input and output
formats used when examining and changing registers and memory locations.
Table 4-1 lists these commands and their functions:

Table 4-1 Input/Output Format Commands

COMMAND

LANGUAGE
SYMBOL
RADIX
FORMAT

MINIMUM
ABBREVIATION

LA
SY
RA
FO

FUNCTION

set the language mode
open symbol table
set integer radix
set I/O format

APDEBUG64 selects the proper radix and format for output depending on the
particular register or memory location that is open and the setting of the
above commands. For input, values must be entered in the global radix
unless the radix overrides are used (described in Section 4.4); any format
can be used.

4.2 SET THE LANGUAGE MODE (LANGUAGE)

To set the language mode of APDEBUG64, enter one of the following:

LAnguage [$APAL]

LAnguage [$FTN]

FPS 860-7489-00lA Page 4 1

SETTING I/O PARAMETERS

The $APAL argument sets the language mode to APAL64. The· $FTN argument
sets the language mode to APFTN64. The dollar signs ($) preceding APAL
and FTN identify these arguments as APDEBUG64-defined symbols, not
user-defined symbols (described in Section 5.2). The choice of language
mode affects the operation of the debugger in the following ways:

•

•

•

•

•

•

•

In FTN mode, the default output radix is decimal. In APAL mode,
the default output radix is hexadecimal. (Refer to Section 4.4.)

In FTN mode the default output format is the data type of the
variable examined. In APAL mode, the default output format is
determined by the register or memory location being examined.
(Refer to Section 4.5.)

In FTN mode a breakpoint occurs before the source line is
executed. In APAL mode, the breakpoint occurs after the source
line is executed. (Refer to Section 5.,.3~.)

In FTN mode, a program step is defined as one squrce code
statement. In APAL mode, a step is defined as one APAL64
instruction. (Refer to Section 5.10.)

When printing a procedure call traceback in FTN mode, the
debugger displays the source code line number and corresponding
PS address at which the procedure was called. In APAL mode, the
debugger displays only the PS address. (Refer to Section 5.15.)

The relational operators for evaluating expressions are different
in FTN and APAL modes. (Refer to Table 6-4.)

In FTN mode, the DISPLAY command displays the value of a value
expression. In APAL mode, the DISPLAY command displays the
address of a value expression. (Refer to the example in Section
6.5.)

The default language mode is FTN. Whenever the debugger opens the local
symbol table for a subprogram, the language mode is set to the language
mode of the routine.

If no arguments appear with the LANGUAGE command, the debugger displays
the current language mode.

Page 4 2 FPS 860-7489-00lA

SEITI:L~G I/ 0 PARAMETERS

4.3 OPEN OR CLOSE SYMBOL TABLES (SYMBOL)

Opening symbol tables allows any local or global symbol names appearing in
APAL64 or APFTN64 source statements to be used in command input and
output.

Global symbols are entry points or variable names that can be referenced
by another program unit. Local symbols are variable names and program
locations (such as statement labels) which can be referenced only from
within.the program u..~it defining them.

The following command opens or closes a global or local symbol table:

SYmbol [/CL] [name] ['file']

The CL (close) modifier directs the debugger to close any global or local
symbol tables that are currently open.

The name argument specifies the name of the object module whose local
symbol table is to be opened; any currently open local symbol table is
closed. The name has the form [overlayname\\]modulename. The modulename
is the name used in the APPROGRAM, APROUTINE, SUBROUTINE, FUNCTION, or
ENTRY statement in the module. If the main program has no PROGRAM·
statement, the default name (generated by the APF~64 compiler) is $MAIN$.
The default name can be used for the name argument in either FTN or APAL
mode.

Opening a local symbol table also opens the global symbol table. If name
is specified along with the CL modifier, only the local symbol table of
the module is closed; the global symbol table remains open. If name is
not specified along with the CL modifier, the global and local symbol
tables and the symbol file itself are closed.

The file argument identifies the file containing the global or local
symbol table. Opening a new symbol table file automatically closes the
current symbol table file.

Unless a module name is specified with the SYMBOL command, opening a
symbol file automatically opens the local symbols. for the object module
pointed to by the current program location. If a symbol file is open,
APDEBUG64 automatically opens the local symbols for the AP routine in
which the program stopped after a RUN or STEP command. (If the
stand-alone or SJE version is invoked and the user has not run a program
yet, there is no current' program location. In this case, the user must
specify a module name to open a local symbol table.)

If all modifiers and arguments are omitted, the debugger displays the name
of the symbol file that is currently open and the name of the object
module whose local symbols are open.

FPS 860-7489-00lA Page 4 3

SETTING I/O PARAMETERS

Example:

• Open the local symbols for the object module named PROGl;
examine the instructions at the symbolic locations PROGl,
PROGl+l, and PROG1+2, and modify one of the instructions.

*SY PROGl 'PRGSYM'
~·:E PROG 1: PROG 1 +2

PROGl = 42A8000000000030
PROGl+l = 42ECOOOOOOOOOOOO
PROG1+2 = 0000000000000000

~·:D PROGl+l<MA>=3
~·:E

PROGl+l = 42EC000000000030

*

4.4 SET INTEGER RADIX (RADIX)

The following command sets or lists the integer input/output radix:

RAdix [/radix]

A slash (/) always precedes the radix modifier.

The value of the radix modifier can be B (binary), 0 (octal), D (decimal),
or Z (hexadecimal). The default radix is hexadecimal in APAL64 mode and
decimal in FTN mode. If the modifier is omitted, the debugger displays
the current radix.

The current integer radix can always be overridden for integer input by
entering the integer in the form, ~'g', where ~ is the radix indicator
described above and g is the integer number. For input, integers of all
radices can be optionally signed (+or -). A minus (-) means
two's-complement negation. Unless hexadecimal numbers are preceded by Z',
they must always begin with a decimal digit (0-9) so that they can be
distinguished from symbols.

Binary, octal, and hexadecimal integers are displayed with leading O's to
the width of.the item being displayed. Decimal integers are displayed
without leading zeros. 'Negative integers in all radices are displayed
left-justified and blank-filled.

Page 4 4 FPS 860-7489-00lA

SETTING I/O PARAf1ETERS

This command sets the default radix for both input and output.

Example:

• Examine SPAD register Z'A' in decimal, binary, octal, and
hexadecimal.

;'•RA/D
-;'•RA

RA = D
;':E SP (ZIA I)

$SP(l0) = 32768
;'•E/B
$SP(10) = 00000000000000001000000000000000
;'•E/O
$SP(l0) = 00000100000
;'•E/ Z
$SP(10) = 00008000
~·:

SPAD register 10 (decimal) has the following value:

32768 (radix 10)
00000000000000001000000000000000 (radix 2)
00000100000 (radix 8)
00008000 (radix 16)

4.5 SET OUTPUT FORMAT (FORMAT)

The FORMAT command overrides the default output format for the contents of
an AP functional unit (memory or register).

NOTE

For FORTRAN variables, the default output format is the
data type of the variable and can only be overridden by
using a format specifier on the E (examine) command
(Section 6.3), + or (succeed or precede) command
(Section 6.4), or DI (display) command (Section 6.5).

FPS 860-7489-00lA Page 4 5

SETTING I/O PARAMETERS

The following command sets or lists the output format for register and
memory contents:

FOrmat [/format] [funit]

A slash (/) always precedes the format modifier.

The format modifier is one of the following:

R Specifies real (floating-point) numbers of the form:

where ~ is the possible size of the integer part, y is the possible
size of the fraction part, and ~ is the possible size of the
exponent (all in decimal). The symbol± indicates that either a
plus (+) or a minus (-) can be used. This is the default format for
MD, TM, DPX, DPY, FA, and FM.

F Specifies field format. Each of the field names are displayed along
with the field value. Valid fields for PS memory and the status and
I/O registers are listed in Appendix A. This format is not used for
input. This format is the default for the APSTAT register and the
user's copy of the 1/0 registers. (Refer to the description of the
REG argument, below.)

xin Specifies g-bit byte integer format, where g is a decimal integer
between 1 and 64. The bytes are right-justified in the word, so the
left-most byte can contain fewer than the full n bits. Commas
separate the bytes. The ~ is replaced with S, U, or nothing, as
follows:

Sin Specifies signed integers.

Uin Specifies unsigned integers. UI64 is the default for
I/O. UI32 is the default for PS memory.

In Is the same as S when in decimal radix and the same as
U when in all other radices. I32 is the default for
SPAD and SRS.

A Specifies an ASCII constant of the form:

A'c'

where c is a sequence of one to eight ASCII characters. Apostrophes
(') in-c must appear twice for each desired occurrence (e.g., 'I''M
DONE').- The debugger left-justifies and blank-fills each 8-bit byte
(e . g . , ' DONE ') .

Page 4 6 FPS 860-7489-00lA

SETTING I/O PARAMETERS

The FORMAT command applies to output only. Values can be entered in any
format. Values can be entered in two or more bytes only ir ~ne format for
the functional unit being deposited into is specified as bytes, or the
byte format is specified on the deposit command.

Note that only the SI32 and SI64 formats can produce negative integers.

The funit argument specifies the functional unit to which the format
applies. This argument can be any of the following:

DPX
DPY
MD
PS

TM
SP
REG
FA

FM
IO
SRS
$ALL

The memory name (DPX, DPY, MD, PS, TM, or SP) specifies that the format
applies to that particular memory. The MD and TM pipeline register
contents are displayed in the same format as the contents of the MD and TM
memories. The contents of SPFN are displayed in the same format as the
SPAD memory (SP).

REG specifies that the format applies to the APSTAT (AP status) register
and the user's copy of the I/O registers. (The user's copy contains the
I/O registers' values when breakpoints occur; these values are restored
when program execution resumes.)

FA and FM specify that the format applies to the adder ·pipeline contents
and the multiplier pipeline contents, respectively.

IO specifies the AP's copy of the I/O registers. (The AP's copy contains
the I/O registers' values when the SUM is running; these are real-time
values.)

SRS specifies that the format applies to the subroutine return stack.

$ALL specifies that the format applies to all functional units.

If the modifier and argument are omitted, the debugger displays the
current format settings.

FPS 860-7489-00lA Page 4 7

SETTING I/O PARAMETERS

These commands, arguments, and modifiers are illustrated in the following
examples:

• Set the integer radix to octal and examine DPX register 6 in each
of four numeric data word formats (real, 64-bit integer, 32-bit
integer, and 53-bit integer).

•

Page 4

"'•RA/O
"'•FO/R DPX
•'•E DPX(6)
$DPX(06) = -1.0
•'•E/164
$DPX(06) = 1000200000000000000000
"'•E/ I32
$DPX(06) = 20004000000,00000000000
"''E/I53
$DPX(06) = 2000,200000000000000000

DPX register 6 contains the following:

-1. 0 (floating)
1000200000000000000000 (I64 format)
20004000000,00000000000 (I32 format)
2000,200000000000000000 (I53 format)

Examine main memory locations 100 through 103 in character string
format and deposit a correct character string into location 103.

*E/A MD(lOO):MD(103)
$MD (100) = A' This
$MD(l01) =A' example '
$MD(l02) = A'isn' 't
$MD(103) = A'two long'
*D MD(l03)=A'too long'

*
MD location 103 contained "two long" and now contains "too long".

8 FPS 860-7489-00lA

EXECUTING PROGRAMS

CHAPTER 5

EXECUTING PROGRAMS

5.1 INTRODUCTION

The typical strategy when debugging a program is to set a breakpoint at
one or more key locations and then run the program. Various data
locations are examined when the program stops at the breakpoint. This
strategy results in alternately running a program and examining the
results.

The commands listed in Table 5-1 control AP program execution.

COMMAND

BREAK
TRACE
WATCH
CLEAR
RUN
attention
PTIMEOUT
STEP
WHERE
INVOKE
TIME
POVERLAY

IPTRACE
FBUF
BUFFER
XBUF
LIST
STATUS

Table 5-1 Execution Commands for AP Programs

key

MINIMUM
ABBREVIATION

B
T
w
c
R

PTI
s
WH
INV
TI
PO
p
FB
BU
XB
LI

I STA

FUNCTION

set or list breakpoints
set or list tracepoints
set or list a watchpoint
clear break/trace/watch points
run user program
3top user program
set or list program time-out period
single step through program
print current location
invoke a subroutine or function
print elapsed execution time
print overlay structure diagram
print a procedure call traceback
fill command buffer
toggle command buffer switches
execute command buff er
open or close a listing file
print debugger status

This chapter discusses these commands and the parameters used with them
in detail.

FPS 860-7489-00lB REV March 84 Page 5 1

EXECUTING PROGRAMS

5.2 ADDRESS EXPRESSION PARAMETERS

Whenever addexp appears as a command argument, it is an address
expression. Address expression parameters are used with the BREAKPOINT,
TRACEPOINT, and WATCHPOINT commands described in Sections 5.3, 5.4, and
5.5.

The next two sections define FTN and APAL64 address expression command
parameters.

5.2.1 FTN Address Expressions

In FTN mode, an address expression is any of the following:

• A variable name.

• An array element name. (Subscript expressions cannot contain
function references.)

•

•

•

A line number at an executable statement (prefixed by a dollar
sign ($)). (Refer to Section 5.3 for a list of executable
APFTN64 statements.)

A statement label (prefixed by a period(.)) .

A procedure entry name (defined by a SUBROUTINE, FUNCTION,
APROUTINE, or ENTRY statement).

The type of the address expression can be PS (when the symbols used are
line numbers, statement labels, or entry points), MD (when the symbols
used are variables or array elements), or untyped (when no symbols are
used or when the symbols used have been defined in a parameter statement).

5.2.2 APAL64 Address Expressions

In APAL64 mode, an address expression is any valid APAL64 expression with
the following restrictions and additions:

•

•

Page 5

The value of a register specifier is the contents of the
register. It is untyped.

The following special symbols designate the contents of various
AP registers:

@MA
@PSA
@DPA
@DA
@SRA
@TMA

2

main memory addresses
program source addresses
data pad X addresses
input/output device addresses
subroutine return stack addresses
table memory addresses

FPS 860-7489-00lA

EAECUTING PROGRAMS

These symbols are predefined symbols. The symbol vaJ·1e is the current
contents of the register specified (i.e., a memory address). Symbol type
is determined by the type of the memory to which it refers.

The memory type of symbols used in the expression determines the type of
the expression. All symbols and the type operator in the expression must
be of the same type except for untyped, which is compatible with any other
type. An expression is untyped if it contains no symbols. An expression
can be made untyped by using the INT operator. The APAL64 Programmer's
Reference Manual (li~ted in Table 1-1) contains more information on APAL64
expressions.

5.2.3 Local Symbol Overrides

If a local symbol has the same name as an AP register or memory specifier,
the local symbol takes precedence. Prefixing the register or memory name
with a dollar sign ($) overrides this precedence. The prefix causes the
symbol to be interpreted as an APDEBUG64-def ined symbol rather than a
user-defined symbol.

On output, a dollar sign ($) precedes predefined memory and register names
to distinguish them from any user symbols with the same name.

5.2.4 Path Names

A path name can be used wherever a local symbol is used. A path name
references a local symbol outside the module whose symbol table is
currently open. For example, module name, entry point, and local symbols
defined in an overlay must be qualified with the overlay name to
distinguish them from symbols of the same name in either the main program
or in another overlay.

A path name has one of the following forms:

overlayname??modulename?localsymbol
overlayname??modulename
modulename?localsymbol
overlayname??globalsymbol
overlayname
localsymbol

The backslash(\) can be used instead of the question mark(?). For
example:

overlayname\\modulename\localsvmbol

Two question marks (or backslashes) separate an overlay name from a module
name, and a question mark (or single backslash) character separates a
module name from a local symbol. The overlay name is required only when
the path name refers to a symbol defined in an overlay segment.

FPS 860-7489-00lA Page 5 3

EXECUTING PROGRAMS

5.3 SET OR LIST BREAKPOINTS (BREAK)

A breakpoint is a user-defined PS location at which APDEBUG64 halts a
program, allowing the user to examine and modify the contents of memories
and registers. No more than two breakpoints or tracepoints can be set at
one time. To set or list a breakpoint, enter one of the following:

Break [/option ...] [/ARG] add exp

Break [/option ...] [/ARG] $CALLS [$RETURNS]

Break [/option ...] [/ARG] $RETURNS

Break [/option ...] $OVERLAYS

Break [/option ...] ovname\\

Break

The option modifier describes when the breakpoint is taken. The option
modifier has one of the following values:

EVERY:n Specifies that the breakpoint is taken every n times it is
encountered. EVERY:l is the default value.

AFTER:n Specifies that the breakpoint is taken only after it is
encountered n times.

UNTIL:n Specifies that the breakpoint is taken each time it is
encountered until it has been encountered n times. The
breakpoint is then cleared.

IF (relexp) Specifies that the breakpoint is taken only if the
relational expression (relexp) evaluates to true. The
expression is evaluated each time the breakpoint occurs.

The modifier count~ applies to each breakpoint separately (i.e.,~ is not
a cumulative total of all breakpoints).

The ARG (argument) modifier directs the debugger to display the values of
the called procedure's arguments each time the breakpoint occurs. For
APAL64 routines, this modifier is only valid when setting breakpoints at
procedure entry points defined by the $PENTF pseudo-op (described in the
APAL64 Programmer's Reference Manual). For APFTN64 routines, this
modifier can only be used with the $CALLS argument or on breakpoints which
occur at or after the first executable FORTRAN statement in the routine.

Page 5 4 FPS 860-7489-00lA

EXECUTING PROGRAMS

The executable FORTRAN statements are:

• arithmetic, logical, and statement label (ASSIGN) assignment
statements

• unconditional, computed, and assigned GO TO statements

• arithmetic and logical IF statements

• block IF, ELSE IF, ELSE, and END IF statements

• DO statement

• CONTINUE statement

• READ, WRITE, and PRINT statements

D"C't.JT1'.T1'
.1' . .Llft.Li'l.lJ,

UA('V~DA('k'
u.nv.n.u.1. .nv.1..1 ,

statements

• CALL and RETURN statements

• STOP and PAUSE statements

• CALL EXIT

• END statement

r\Pt'hl
'VJ. .1.,.,u,., J WAIT, and

For an array argument, only the first element of the array is
displayed. (The EXAMINE command can be used to examine the entire
array.)

The addexp argument specifies the program location where the break is
set. It must be a program address or program symbol (line number,
statement label, or entry point).

FPS 860-7489-00lA Page 5 5

EXECUTING PROGRAMS

The $CALLS and $RETURNS arguments indicate that breakpoints are set at
subroutine or function calls and returns. In APAL64 mode, breakpoints are
set at all entry points defined by the currently open symbol file
regardless of whether any local symbol information is available. In FTN
mode, breakpoints are set at the first executable statement of each
APFTN64 subprogram and at the entry address for each APAL64 entry point
for which local symbol information exists in the currently open symbol
file.

The $OVERLAYS argument indicates that a breakpoint is taken (subject to
the option modifier) when any overlay is brought into memory, before any
instructions in the overlay are executed.

The ovname argument specifies that a breakpoint is taken when the named
overlay is brought into memory. The overlay name must be defined in the
APLINK64 overlay description file used in linking the load module. (The
linking process is described in the APLINK64 Manual, listed in Table 1-1.)

Breakpoints can be set on code in an overlay even when the overlay is
non-resident. The debugger automatically inserts and removes these
breakpoints as an overlay's memory residency status changes.

If no arguments are specified, the debugger displays the current
breakpoint setting. A maximum of two breakpoints and tracepoints can be
set at a time. Breakpoint settings forced by the $CALLS and $RETURNS
options count as one breakpoint. Breakpoints set by the $OVERLAYS
argument or the ovname\\ parameter do not count toward the maximum of two
breakpoints and tracepoints.

NOTE

In APAL64 mode, the breakpoint is taken after the
specified instruction is executed, and in FTN mode, the
breakpoint occurs before the source line is executed.

Examples:

Page 5

• In APAL64 mode, set a breakpoint so that the program stops after
executing the instruction at PS location 20.

• In FTN mode, set a breakpoint so that the program stops every
fifth time it reaches line number 100.

':':B/EVERY: 5 $100

6 FPS 860-7489-00lA

EXECUTING PROGRAMS

5.4 SET OR LIST TRACEPOINTS (TRACE)

A tracepoint is a user-defined PS location at which APDEBUG64 halts a
program, and displays specified memory and register information. A
maximum of two breakpoints and tracepoints can be set at one time. To set
or list a tracepoint, enter one of the following:

Trace [/option ...] [/ARG] add exp

Trace [/option ...] [/ARG] $CALLS

Trace [/option ...] (/ARG] $RETURNS

Trace [/option ...] $OVERLAYS

Trace (/option ...] ovname\\

Trace

The modifiers and arguments for the TRACE command are the same as for the
BREAK command (described in Section 5.2).

APDEBUG64 does not return control to the user at a tracepoint as it does
at a breakpoint. Instead, APDEBUG64 continues execution of the program
after displaying the appropriate information.

A maximum of two breakpoints and tracepoints can be set at a time.
Tracepoint settings forced by the $CALLS and $RETURNS options count as one
tracepoint. Tracepoints set as a result of the $OVERLAYS argument or the
ovname\\ parameter do not count toward the limit.

Tracepoints can be set on code or data locations in an overlay even when
an overlay is non-resident. The debugger automatically inserts and
removes these tracepoints as an overlay's memory residency status changes.

If no argument appears with the command, the debugger displays the current
tracepoint settings.

5.5 SET OR LIST A WATCHPOINT (WATCH)

A watchpoint is a user-defined variable reference at which APDEBUG64 halts
a program whenever the variable is read and/or written. Only one
watchpoint can be set at a time. The following command sets or lists a
watchpoint:

Watch [/option] [addexp]

The option modifier can have the values shown for the BREAK command plus
the following values:

FPS 860-7489-00lA Page 5 7

EXECUTING PROGRAMS

RD Specifies that the watchpoint is taken whenever the location is read.

WR Specifies that the watchpoint is taken whenever the location is
written. WR is the default ~tion modifier.

RW Specifies that the watchpoint is taken whenever the location is
either read or written.

NOTE

The APFTN64 compiler generates code that causes
implicit reads of MD. These reads cause MD read
watchpoints to occur at program locations that are
not actually using the data from the MD read. This
problem is unavoidable; the programmer must be
aware that these spurious reads can occur when a
read watchpoint (RD or RW) is requested.

The addexp argument specifies the data location to be watched .. Note that
addexp is a data location, not a program location. The program halts
whenever the location is read or written.

The debugger can only watch one 64-bit data word at a time. A watchpoint
set at a character datum cannot catch a read or write into that part of
the character string that extends past the first 64-bit word. Also, the
watchpoint can occur when the character datum itself is not actually being
accessed, such as when the character datum starts in the middle of a word.

A watchpoint can be set on a data location in an overlay even when the
overlay is nonresident. The debugger automatically inserts and removes
this watchpoint as an overlay's memory residency status changes.

If no argument is used with the command, the debugger displays the current
watchpoint setting.

Example:

• Set a watchpoint to halt every time VARl is changed.

i:W /WR VARl

*

Page 5 8 FPS 860-7489-00lA

EXECUTING PROGRAMS

5.6 CLEAR BREAKPOINTS, TRACEPOINTS, AND WATCHPOINT (CLEA'R)

To clear a breakpoint, traceµoint, or watchpoint, enter one of the
following:

Clear add exp

Clear $CALLS

Clear $RETURNS

Clear $OVERLAYS

Clear ovname\\

Clear $ALL

The addex:e argument specifies the location of a breakpoint, tracepoint, or
r.1.::i+,... hT"\I"\; ,-,t-
Wt.4 WV.Ll..t''-'L.L"""' to clear.

The $CALLS argument directs the debugger to clear all breakpoints and
tracepoints that were set using the $CALLS argument with the BREAK or
TRACE commands. The $RETURNS argument directs the debugger to clear all
breakpoints and tracepoints that were set using the $RETURNS argument with
the BREAK or TRACE commands.

The $OVERLAYS argument directs the debugger to clear the breakpoint or
tracepoint that was set using the $OVERLAYS argument with the BREAK or
TRACE commands.

The ovname argument specifies a named overlay breakpoint or tracepoint to
clear.

The $ALL argument directs the debugger to clear all watchpoints,
breakpoints, and tracepoints at all locations.

5.7 RUN USER PROGRAM (RUN)

The following command runs the user program in the AP.

Run [/count] [addexp]

The count modifier specifies the number of breakpoints or watchpoints to
encounter before stopping. If it is omitted, execution stops at the first
breakpoint encountered. The maximum value of count is 2**31 - 1. This
number is always interpreted as a decimal number.

The addex:e argument specifies the program location where execution starts.
If it is omitted, program execution begins at the current program source
address.

FPS 860-7489-00lA Page 5 9

EXECUTING PROGRAMS

The debugger starts the program at the specified location and then waits
until the program stops. After execution, the debugger displays the
current program location and the total elapsed execution time since the
last RUN or STEP command which specified a start address. Also, the
command buffer is executed if it is not disabled by the BUFFER command
(described in Section 5.16) and is not empty. Otherwise, the debugger
displays the contents of the currently open register or memory location.

Example:

• Set a breakpoint at program location 16 and then start program
execution at location 10.

;':B 16
;':R 10

PROG BREAK AT PSA = 17

*
1.167 us.

The program executed for 1.167 us and stopped with location 17 as
the next instruction to be executed.

5.8 STOP USER PROGRAM (ATTENTION KEY)

The host-dependent attention key (described in the appropriate host
manual, listed in Table 1-1) interrupts the user program started by the
RUN or STEP command. The user can then examine the machine state, make
modifications, and continue execution (by using the RUN or STEP command).

NOTE

This feature of the attention key applies only
execution of a RUN command or a STEP command.
this key at any other time can abort the debugger.

5.9 SET OR LIST PROGRAM TIME-OUT PERIOD (PTIMEOUT)

during
Using

The PTIMEOUT command sets or lists the time-out period after which the
debugger interrupts the user program running in the AP and checks whether
the user attention key was pressed. If the key was pressed, control
returns to the user for input. If not, the debugger restarts the user
program in the AP.

Page 5 10 FPS 860-7489-00lA

EXECUTING PROGRAMS

To set or list the program time-out value, enter the following command:

PTimeout [=value]

The value argument must be an integer expression indicating the number of
seconds in the time-out period. The smallest legal time-out period is one
second. The default time-out period is 10 seconds. A value of 0
indicates that no time-out period is set.

If no argument is entered with the command, the debugger displays the
current time-out value.

5.10 SINGLE-STEP THROUGH USER PROGRAM (STEP)

The STEP command is useful when proceeding step-by-step through a piece of
code while watching fbr a particular problem to occur.

The following command single-steps through an AP program:

Step [/count] [/P] [/option] [addexp]

The count modifier specifies the number of instructions to execute in step
mode. The maximum value of count is 2•'d:31 - 1. This number is always
interpreted as a decimal number.

The P (proceed) modifier specifies step-and-proceed. The program executes
in step mode until a breakpoint is encountered. If both P and count are
specified, the program executes step-by-step until it hits a breakpoint or
until the specified number of instructions are executed, whichever comes
first.

The option modifier can have the value OVER (indicating that the execution
of a called procedure is considered as a single step) or INTO (indicating
that the execution of each statement in the procedure is a step). The
default is OVER.

The addexp argument specifies the program location where execution starts.
If it is omitted, program execution begins at the current program source
address.

After execution of each program step, the debugger displays the current
program location and the total elapsed execution time since the last RUN
or STEP command which specified a start address. With APDEBUG64 (but not
APSIM64), this elapsed time is inflated by six or seven cycles because of
system overhead. Also, the command buffer is executed if it is not
disabled by the BUFFER command (described in Section 5.7) and is not
empty. Otherwise, the debugger displays the contents of the currently
open register or memory location.

FPS 860-7489-00lA Page 5 11

EXECUTING PROGRAMS

In APAL64 mode, a step is a single instruction.

In FTN mode, a step is a single source statement. The user must select
the LINennum compiler option (included in the DEBUG option) at compile
time in order to use the STEP command while debugging in FTN mode. (The
APFTN64 User's Guide (listed in Table 1-1) contains a complete discussion
of the compiler options.)

Examples:

•

•

Page 5

Examine MA. Then watch it change as the program is
single-stepped starting at location 10.

•':E MA
$MA = 103
•':s 10

PROG STEP AT PSA = 11 0.167 US.
$MA = 104
i:S

PROG STEP AT PSA = 12 0.333 us.
$MA = 105
•'•S

PROG STEP AT PSA = 13 0.500 us.
$MA = 106

Set a breakpoint at PS location 12. Examine MA. Then
step-and-proceed through the program until it hits the
breakpoint.

12

•':B 12
•':E MA
$MA = 103
•':S/P

PROG STEP AT PSA = 11 0.167 US.
$MA = 104

PROG STEP AT PSA = 12 0.333 US.
$MA = 105

PROG BREAK AT PSA = 13 0.500 US.
$MA = 106

*

FPS 860-7489-00lA

EXECUTING PROGRAMS

5.11 PRINT CURRENT LOCATION (WHERE)

The following command prints the current program location:

WHere

Example:

~·.-wH

AT PSA = 0

5.12 EXECUTE A SUBROUTINE OR FUNCTION (INVOKE)

The following command executes a subroutine or function:

INVoke name [(arg [,arg ...])]

The name argument specifies the subroutine or function name.

The arg arguments are the actual arguments to the subroutine. They can be
address expressions (addexp) or constants.

5. 13 PRINT ELAPSED EXECUTION TIME (TIME)

The TIME command displays the elapsed program execution time (in
microseconds) since the last RUN or STEP command which specified a
starting location. The time is always printed in decimal notation. Note
that execution times are variable for on-line debugging due to I/O
interrupts and DMA (direct memory access) activity.

The following command displays elapsed AP program execution time:

TI me

Example:

• Print the elapsed program execution time.

*TI
14231324.667 us.

*

FPS 860-7489-00lA Page 5 13

EXECUTING PROGRAMS

5.14 PRINT OVERLAY STRUCTURE DIAGRAM (POVERLAY)

The POVERLAY command displays the overlay structure and memory
residency status of each overlay segment. Indentation indicates the
hierarchy of overlays; subordinate overlays are indented beneath their
superior. The multiple overlay notation appears when the subordinate
overlays can occupy the same locations in memory. In addition to the
memory residency status, the POVERLAY command also indicates the memory
bounds (base and size) of each overlay area.

The following command displays the current overlay structure:

POverlay

Figure 5-1 shows an overlay structure diagram.

OVERLAY NAME (R=RESIDENT, M=MODIFIED) PS BASE PSSIZE MDBASE MDSIZE
OV1 4CEE 5F 98F 3f
OV2 R 4CEE 3C 98f 0
(
. OV3 l102A 39 98f lE

OV4 402A 23 98f 1E

-3392-

Figure 5-1 Overlay Structure Diagram

5.15 PRINT A PROCEDURE CALL TRACEBACK (PTRACE)

A traceback displays the procedure calls which resulted in execution of
the current routine. In FTN mode, the source line number at which the
call was made is also displayed.

The following command displays a procedure call traceback:

Pt race

!Example:
I *P

*

Page 5

IN 'FABS I LOG 1102
FROM 'FOROTS' LOC 571
FROM 'SUB7 I AT LINE 13 LOG 621
CALLED FROM HOST AT LINE 57 LOG 310

14 REV March 84 FPS 860-7489-00lB

EXECUTING PROGRAMS

5.16 FILL COMMAND BUFFER (FBUF)

A command buffer saves the user entering individual commands to manipulate
memories and registers at each breakpoint, tracepoint, and watchpoint.

The following command fills the command buffer:

FBuf [/CL] ['file']

The CL modifier directs the debugger to close the command buffer.

The file argument specifies the file to be loaded into the command buffer.
If it is omitted, all subsequent commands from the terminal are entered
into the command buffer until it is closed.

More than one file can be put into the command buffer before it is closed.
Depending on the settings of the command buffer switches (described in
Section 5.17), the command buffer is executed after each RUN or STEP
command. The command buffer can also be executed with the XBUF command.
If the command buffer contains a RUN or STEP command, the command buffer
continues execution from the point after the embedded RUN or STEP command.

The command buffer cannot contain an FBUF command. It can contain an XBUF
command only if the XBUF command executes an external command file.

Note that after the FBUF command is entered, the debugger prompts with
"FBUF=" instead of an asterisk. The "FBUF=" prompt remains until the
buffer is closed with the /CL modifier.

Example:

• Fill the command buffer with commands to examine the address
registers.

FPS 860-7489-00lA

"''"FB
FBUF=E MA
FBUF=E PSA
FBUF=E TMA
FBUF=E DPA
FBUF=E DA
FBUF=E SRA
FBUF=FB/CL

*

Page 5 15

EXECUTING PROGRAMS

5.17 TOGGLE COMMAND BUFFER SWITCHES (BUFFER)

To toggle the command buffer switches, enter one of the following:

BUffer [/option] ($STEP] [$BREAK] [$TRACE] [$WATCH]

BUffer [/option] $ALL

The option modifier can have the value ON (indicating that the command
buffer is to be executed) or OFF (indicating that it is not to be
executed). The default value is ON.

The $STEP argument specifies that the command applies to each program step
(when using the STEP command).

The $BREAK, $TRACE, and $WATCH arguments specify that the command applies
to a breakpoint, tracepoint, or watchpoint, respectively.

The $ALL argument specifies that the command applies to all of the above
cases ($STEP, $BREAK, $TRACE, and $WATCH).

If no argument appears with the command, the current settings of the
command buffer switches and the current contents of the command buffer are
displayed.

5.18 EXECUTE THE COMMAND BUFFER (XBUF)

The following command executes commands from the command buffer:

XBuf [/count] ['file']

The count modifier specifies the number of times to execute the file or
command buffer. If the modifier is omitted, count is assumed to be 1.
The count modifier is interpreted as a decimal number.

The file argument directs the debugger to execute commands from the
specified file rather than from the internal command buffer.

APDEBUG64 executes all the commands in the buffer or file before returning
to the terminal for input. If any fatal command errors occur during the
execution of the command buffer or a command file, the debugger returns to
the terminal for further input.

Page 5 16 FPS 860-7489-00lA

EXECUTING PROGRAM'S

Example:

• Execute the command buffer filled in the example in
Section 5. 16.

~·:xB

$MA = 104
$FSA = 23
$TMA = 1
$DPA = 3
$DA = 0
$SRA = 1
·;':

5.19 OPEN OR CLOSE A LISTING FILE (LIST)

Whenever a listing file is open, all subsequent terminal input and output
produced by the debugger is written to the listing file, providing the
user with a permanent copy of a debugging session. (This command is
helpful when debugging must be done as a host batch job.)

The following command opens or closes a listing file:

List [/CL] ['file']

The CL modifier directs the debugger to close the currently open listing
file.

The file argument specifies a listing file to be opened for output. The
debugger closes any previously opened listing file before the file is
opened. The file name must be enclosed in apostrophes.

If the modifier and argument are omitted, the debugger displays the name
of the· currently open listing file.

5.20 PRINT THE DEBUGGER STATUS (STATUS)

The following command displays the debugger status:

STAtus

FPS 860-7489-00lA Page 5 17

EXECUTING PROGRAMS

The status displayed contains the following information:

• current breakpoints, tracepoints, and watchpoints

• current symbol table open

• current program location

• current language mode

• current default radix (and formats if in APAL64 mode)

• current listing file

• current MASK value (refer to Section 6.6)

Page 5 18 FPS 860-7489-00lA

ACCESSING REGISTER AND MEMORY LOCATIONS

CHAPTER 6

ACCESSING REGISTER AND MEMORY LOCATIONS

6.1 INTRODUCTION

This chapter describes the commands that affect registers and memory
locations. The following commands open, examine, and modify registers and
memory locations:

COMMAND

EXAMINE
+

DISPLAY
MASK
SEARCH
DEPOSIT
ZERO

Table 6-1 Register and Memory Location Commands

MINIMUM
ABBREVIATION FUNCTION

E open and examine register or memory location
+ examine succeeding memory location

examine preceding memory location
DI 1 display the value of an expression
M set mask to be used in SEARCH command
SE search memory for a specified value
D deposit into register or memory location
Z zero a specified memory range

6.2 MEMORY AND REGISTER LOCATION PARAMETERS

This section describes the parameters used with the commands described in
this chapter to access AP memory and register locations.

6.2.1 AP Functional Units

The AP contains two kinds of functional units accessible to the debugger:
memories and registers. The next two sections define memory and register
command parameters.

FPS 860-7489-00lA Page 6 1

ACCESSING REGISTER AND MEMORY LOCATIONS

6.2.1.1 Memory Specifiers (mem)

Whenever mem appears as a command argument, it is a memory specifier. A
memory specifier is a mnemonic representing the desired memory. Table 6-2
lists the valid memory mnemonics.

Table 6-2 Memory Mnemonics

MNEMONIC NAME WIDTH MEMORY SIZE

PS program source memory space 64 job dependent
MD main memory space 64 job dependent
TM table memory 64 host dependent
DPX data pad X 64 32
DPY data pad Y 64 32
SP SPAD 32 64
SRS subroutine return stack 32 256
IO I/O devices 64 2-.·.-.·. 16 (max.)

Page 6 2 FPS 860-7489-00lA

ACCESSING REGISTER AND MEMORY LOCATIONS

6.2.1.2 Register Specifiers (reg)

Whenever reg appears as a command argument, it is a register specifier. A
register specifier is a mnemonic representing the desired register. Table
6-3 lists the valid register mnemonics.

MNEMONIC

PSA
MA
TMA
DPA
SRA
SPFN
FA
FAS
FAl
FAlS
FM
FMS
FMl
FMlS
FM2
FM2S
MDR
MDRl
MDR2
TMR
AP STAT
APSTAT3
MDBRK
PSBRKO
PSBRKl

FPS 860-7489-00lA

Table 6-3 Register Mnemonics

NAME

program source address
main memory address
table memory address
data pad address
subroutine stack address
SPAD function
adder output
adder output exceptions
adder next output
adder next output exceptions
multiplier output
multiplier output exceptions
multiplier next output
multiplier next output exceptions
multiplier 2nd next output
multiplier 2nd next output exceptions
main memory output
main memory next output
main memory 2nd next output
table memory output
user status
state save status
MD breakpoint
PS breakpoint 0
PS breakpoint 1

WIDTH

24
24
24
5
8
32
64
6
64
6
64
4
64
4
64
4
64
64
64
64
32
32
32
32
32

Page 6 3

ACCESSING REGISTER AND MEMORY LOCATIONS

6.2.2 Field Specifiers (field)

Whenever field appears as a command argument, it is a field specifier.
A field specifier indicates that the command applies only to the
indicated bits within the word rather than to the entire word. A field
specifier can be either a register or memory field mnemonic of the
form,

<mnemonic>

or an expression of the form,

<left:right>

where left and right are integers specifying the bit numbers of the
left-most and right-most bits in the field. Numbers in a field
specifier are decimal unless an explicit radix is specified. Bit 0 is
the left-most bit. (Appendix A lists the valid register and memory
field mnemonics.)

Field specifiers should not be used with address ranges involving
character data.

Note that angle brackets (<>)always enclose field specifiers (e.g.,
<field>).

6.2.3 Address Range (addrange)

Whenever addrange appears as a command argument, it is an address
range. An address range has the form:

from [: to [: }2y]]

The from field specifies the start of the address range (e.g., PS(l)),
and the to field specifies the end (e.g., PS(lO)). If omitted, the end
address is assumed to be the same as the start address. The to field
must be greater than the from field. The from and to fields must be
address expressions (addexp) of compatible types. The address range
takes the type of the from and to expressions. The 21 field specifies
the address increment of the memory range. If omitted, it is assumed
to be 1. The 21 field must be an integer expression. The to and }2y
fields are not allowed if the from field is a character substring
expression.

Page 6 4 FPS 860-7489-00lA

ACCESSING REGISTER AND MEMORY LOCATIONS

6.2.4 Value Expressions (value)

!Whenever value appears as a command argument, it is a value expression.

The next two sections define APAL64 and FTN value expressions.

6.2.4.1 APAL64 Value Expressions

The value of the symbol itself is always used when evaluating a value
expression in APAL64 mode. The special AP register names allowed are
the same as those allowed for APAL64 address expressions (listed in
Section 5.2.2). Value expressions are untyped. In APAL64 mode, a
value expression is any of the following:

• any valid APAL64 expression

• a valid APAL64 floating-point constant

• an ASCII constant

• an integer constant in byte format (described in Section 4.5)

6.2.4.2 FTN Value Expressions

When evaluating a value expression in FTN mode, the value of the symbol
is the contents of the location pointed to by the symbol (except
untyped symbols whose immediate values are always used). In FTN mode,
a value expression is any valid APFTN64 expression except that function
references are not allowed within the expression.

Enter floating-point constants carefully, since some valid hexadecimal
floating-point constants look like integer expressions. Therefore, the
decimal point must always be used. For example, 25E+30 must be entered
as 25.E+30.

6.2.5 Relational Expressions (relexp)

Whenever relexp appears as a command argument, it is a relational
expression. A relational expression has the form:

value relop value

where value is a value expression and relop is the relational operator.

Table 6-4 lists the valid relational operators.

FPS 860-7489-00lB REV March 84 Page 6 5

ACCESSING REGISTER AND MEMORY LOCATIONS

Table 6-4 Relational Operators

APAL64 MODE FTN MODE MEANING

= .EQ. equal to
<> .NE. not equal to
< .LT. less than
<= .LE. less than or equal to
> .GT. greater than
>= .GE. greater than or equal to

6.3 OPEN AND EXAMINE A REGISTER OR MEMORY LOCATION (EXAMINE)

To open and examine a register or memory location, enter one of the
following:

Examine [/format] [/radix] (addrange] [<field>] ['file']

Examine [/format] [/radix] [mem] [<field>] r't=;lo 1 1
l ~ J

Examine [/format] [/radix] [reg] [<field>] ['file']

Examine [/format] [/radix] [value]

The addrange argument specifies the location to examine. If the
address range contains character data, the range is examined one datum
at a time.

The mem argument specifies that the last open location in that memory
is examined.

The reg argument specifies the register to examine.

If the address range, memory, and register specifiers are all omitted,
the debugger displays the last open location.

The file argument directs the debugger to write to the specified file
rather than to the terminal. A file written to with the EXAMINE
command can be read back into the AP register or memory with the
DEPOSIT command. If no file is specified, output goes to the terminal.
If the 'file' specifier is used, the first line written by the debugger
is a header line describing the data. This line contains all the
information needed to read the file back in with the DEPOSIT command.
The format of this header line follows the format of the EXAMINE and
DEPOSIT commands (without the command name itself). The header line is
omitted if the output is going to the terminal.

Page 6 6 REV March 84 FPS 860-7489-00lB

ACCESSING REGISTER AND MEMORY LOCATIONS

!The value argument specifies a symbol to examine. In APAL64 mode} the
!value of the symbol is displayed. In FTN mode, the value in the
I location pointed to by the symbol is displayed.

Examples:

NOTE

A symbol with a constant value, defined in an APFTN64
PARAMETER statement, has no associated location and
hence cannot be examined with the Examine command.
To display the value of a constant symbol, use the
Display command, described in Section 6.5.

• Examine the fifth element of array AR.

*E AR(S)
Anrc::'\ - 'le:: "l
l:U\.\J) - 6,.J.J

*
The array element contains 25.3.

• Examine the memory address register in decimal. Note that a
dollar sign ($) precedes any predefined memory and register
names on output to distinguish them from any user symbol names
with the same name.

*E/D MA
$MA = 1376

*
MA contains 1376 (decimal).

• Examine data pad X registers 0, 2, 4, and 6.

*E DPX(O):DPX(6):2
$DPX(O) = -1.0
$ D PX (2) = -1. 0
$DPX (4) = -1. 0
$DPX(6) = -1. 0

DPX registers 0, 2, 4, and 6 all contain -1.0.

• Examine the three MD locations beginning at MA.

@MA+2
= 1. 2

;':~ @MA:
$MD(235)
$MD(236) =
$MD(237) =

0.0
-2.3

MD location 235 contains 1.2, MD location 236 contains 0.0,
and MD location 237 contains -2.3.

FPS 860-7489-00lB REV March 84 Page 6 7

ACCESSING REGISTER AND MEMORY LOCATIONS

6.4 EXAMINE A SUCCEEDING (+) OR PRECEDING (-) MEMORY LOCATION

To open and examine a memory location before or after the currently open
location, enter one of the following:

+[offset] [/format] [/radix] [mem] [<field>]

-[offset] [/format] [/radix] [mem] [<field>]

The + and - specify that the memory location to examine is after (+) or
before (-) the currently open memory location.

The offset specifier indicates a value to add to (+) or subtract from (-)
the address of the currently open memory location to obtain the address of
the memory location to examine. A value of 1 is used if the offset
specifier is omitted.

The mem argument indicates which memory to examine. The offset specifier
is relative to the last opened location in the specified memory. The
currently open memory is examined if no memory is specified.

Note that these commands are used with memory locations only; they are not
used with register locations.

Examples:

• Examine main memory locations 23 and 24.

•

Page 6

*E MD(23)
$MD(23) = -234.0
*+
$MD(24) = 789.0
*

MD location 23 contains -234.0, and MD location 24 contains
789.0. The current location is MD(24).

Examine SPAD registers 7 and 5 .

*E SP(7)
$SP(7) = 200
*-2
$SP(S) = 100

*
SPAD register 7 contains 200, and SPAD register 5 contains 100.

8 FPS 860-7489-00lA

ACCESSING REGISTER AND MEMORY LOCATIONS

6.5 DISPLAY THE VALUE OF AN EXPRESSION (DISPLAY)

Tne following command displays the value of a value expression:

Display [/format] [/radix] = value

This command evaluates and displays the value expression in the format and
radix specified by format and radix.

Example:

• Display the value of the expression A+3, where A is a local
variable whose address is MD(52) and whose content is 17.

-:'.-LANG SFTN
-:'.-DI = A+3

= 20
-:'.-LANG $APAL
;'.-DI = A+3

= 55

*

6.6 SEARCH A MEMORY (SEARCH)

To search for all occurrences of a specified value in a group of memory
locations, enter one of the following:

SEarch [/radix] [/format] mem [<field>] = value

SEarch [/radix] [/format] [addrange] [<field>] = value

The entire memory is searched if the mem argument is used.

The value argument specifies the search value.

The addrange argument specifies the location to search. If addrange is
not entered, the currently open memory is searched.

If the SEARCH value is a character string and the address range specified
is a character data range, then each character datum is searched for the
first occurrence of the value. When the value is found, the location and
its contents are displayed.

FPS 860-7489-00lA Page 6 9

ACCESSING REGISTER AND MEMORY LOCATIONS

If the address range is not a character data range, then each memory
word is searched for the value (truncated to eight characters). If a
field specifier is used, only the specified field of each memory word
is searched for the value. When the value is found, the memory
location and its contents are displayed.

Example:

NOTE

The search mask (described in Section 6.7) can be
used to isolate non-contiguous fields for comparison
with the search value. If a mask has been used in a
previous search command, be sure that the mask is
reset to its default value before executing the next
search command.

• Locate all occurrences of the value -1 in the SPAD registers.

~·:sE SP = -1
$SP(3) = -1
c:: ~p (71 = -1 y-· , .. /

$SP(l2) = -1
~':

SPAD registers 3, 7, and 12 all contain -1.

6.7 SET SEARCH MASK (MASK)

The following command sets the mask used in future SEARCH commands:

Mask = value]

The search mask is used to isolate non-contiguous fields for comparison
with the search value.

The value argument specifies the value used as a mask to select fields
in the memory word in any future SEARCH command. (For a description of
the SEARCH command, refer to Section 6.6.) The mask value is logically
ANDed with each memory location searched, to produce a value for
comparison with the search value. The comparison value is the value of
the fields masked with ones. Fields masked with zeros are filled with
zeros in the comparison value.

The mask value is right-justified: it is not necessary to enter
leading zeros.

Page 6 10 FPS 860-7489-00lA

ACCESSING REGISTER AND MEMORY LOCATIONS

Figure 6-1 illustrates the use of the search mask.

0 1 l 0

0 0 0 1

c::::J
OPTIONAL

I o o o o

0 0 1 0 1 1 1 0 0 1 0 t

1 1 0 0 0 0 1 1 1 1

0 0 1 0 0 0 0 0 0 1 0 1

-3393-

Figure 6-1 The Search Mask

I MEMORY
LOCATION

I MASK
VALUE

I COMPARISON
VALUE

The default mask is all ones, selecting the entire memory location for
the comparison value. If the value argument is omitted, the current
value of the mask is displayed.

Example:

• Search SPAD for even numbers by setting the mask to 1.

*MA = 1
7:SE SP = 0
$SP(l) = 0
$SP(5) = 212
$SP(31) = 4

*
SPAD registers 1, 5, and 31 contain even numbers.

FPS 860-7489-00lA Page 6 11

ACCESSING REGISTER AND MEMORY LOCATIONS

6.8 DEPOSIT INTO A REGISTER OR MEMORY (DEPOSIT)

To deposit (write) into a register or memory location, enter one of the
following:

Deposit [/format] [/radix] [addrange] [<field>] = value

Deposit (/format] [/radix] [addrange] [<field>] ['file']

Deposit [/format] [/radix] [reg] [<field>] = value

Deposit [/format] [/radix] [~] [<field>] ['file']

Deposit [/format] [/radix] [mem] [<field>] = value

Deposit [I format] [/radix] [mem] [<field>] ['file']

The format and radix arguments specify the format and the radix of the
input value(s). If not specified, the debugger uses either the values
specified in the header line (if from a file) or the global defaults.
Specify the format argument only when the input value is in byte format
and the format for the functional unit being deposited is not defined
as a byte format (described in Section 4.5).

The addrang-e nrgnment specifies the location where the file or value is
deposited. If the address range is not entered, the file or value is
deposited into the last open memory.

If the mem argument is used, the last open location in that memory is
deposited into.

The value argument specifies the value deposited into the specified
location. If the value is a character datum, the debugger truncates
the value or extends the value with blanks to fit into the address
range.

The file argument indicates that the values deposited are taken from
the specified file. This argument makes it possible to deposit
different values in each specified location in the address range. If
the register or memory or any of the from or £y fields from the address
range are not specified in the DEPOSIT command, the appropriate
information is taken from the header line of the file. The format of
this header line is described in the EXAMINE command. Adding the
number of locations in the range (as specified by the from and to
information in the file) to the specified or default from field
calculates the default to field. The radix and format information is
also read from the file.

If the user is setting up the file, a non-blank header line must be
included. The user can specify the radix, format, and address range of
the input or specify a minimum amount of information, such as the
radix, using the syntax of the DEPOSIT command without the command
name.

Page 6 12 FPS 860-7489-00lA

ACCESSING REGISTER AND MEMORY LOCATIONS

If a minimum amount of information is specified, the address range must be
specified in the DEPOSIT command.

If the value and file arguments are both omitted, the input values are
read from the terminal. If the file is the terminal, the default radix
and format information is taken from the current defaults. However, no
defaults are assumed for the address range. No header line is read from
the terminal.

Examples:

• Deposit the values contained in the file DPVAL into DPX and DPY.
The locations in DPX and DPY in which to deposit the data are
taken from DPVAL' s header line.

~·;on DPX 'DPVAL'
~·:n DPY 'DPVAL'
*E DPX(l):DPX(5):2
$DPX(l) = 1. 0
$DPX(3) = 2.0
$DPX(S) = 3.0
*E DPY(l):DPY(5):2
$DPY(l) = 1. 0
$DPY(3) = 2.0
$DPY(S) = 3.0

The file DPVAL contains the following:

DPX(l): DPX(S): 2
DPX(l) = 1. 0
DPX(3) = 2.0
DPX(S) = 3.0

• Deposit the first two values in the file DATA into SPAD(O) and
SPAD(l).

FPS 860-7489-00lA

*D SP(O):SP(l) 'DATA'
*E SP(O): SP(l)
$SP(O) = OF21
$SP(l) = 3ECA

*

Page 6 13

ACCESSING REGISTER AND MEMORY LOCATIONS

The file DATA contains the following:

/Z
OF21
3ECA

• Deposit -1.0 into main memory locations 1000 through 1005.

*D MD(lOOO):MD(lOOS) = -1.0
*E MD(lOOO):MD(lOOS)
$MD(1000) = -1. 0
$MD(1001) = -1. 0
$MD (1002) = -1. 0
$MD(1003) = -1.0
$MD(1004) = -1.0
$MD (1005) = -1. 0

*
MD locations 1000 through 1005 now contain -1.0.

• Deposit 0.0 into data pad Y registers 1, 4, and 7.

•

*D DPY(l):DPY(7):3 = 0.0
*E DPY(l):DPY(7):3
$DPY(l) = 0.0
$DPY(4) = 0.0
$DPY(7) = 0.0
*

Data pad Y registers 1, 4, and 7 new ccntaiti 0.0.

Deposit -1 into the diagonal of a lOxlO array, MIN .

*D MIN(l,l):MIN(l0,10):11 = -1

*

6.9 ZERO THE AP (ZERO)

The following commands fill a specified memory range with zeros:

Zero addrange [<field>]

Zero mem [<field>]

The addrange argument identifies the memory range to be zeroed.

The mem argument identifies an entire memory to be zeroed.

Page 6 14 FPS 860-7489-00lA

FIELD MNEMONICS

APPENDIX A

FIELD MNEMONICS

A. 1 PROGRAM SOURCE FIELD Ml\TEMONICS

The following tables list the valid program source (PS) memory field
mnemonics.

Table A-1 PS SPAD Field Mnemonics

MNEMONIC NAME I WIDTH

SOP SPAD double-operand operation 3
SOPl SPAD single operand operation 4
SH SPAD shift 2
SPS SPAD source address 4
SPSX SPAD source address extension 2
SPD SPAD destination address 4
SPDX SPAD double-operand destination address

extension 2
SPDXl SPAD single operand destination address

extension 2

Table A-2 PS Adder Field Mnemonics

MNEMONIC NAME WIDTH

FADD adder double-operand operation 4
FADDl adder single operand floating operation 3
IFADDl adder single operand integer operation 3
Al adder operand 1 3
A2 adder operand 2 3

FPS 860-7489-00lA Page A 1

FIELD MNEMONICS

Table A-3 PS Branch Field Mnemonics

MNEMONIC NAME WIDTH

MNEMONIC

DPX
DPY
DPBS
XR
YR
xw
YW
XRXE
YRXE
YWXE
XRYE
YRYE
XWYE

COND
DISP

branch condition
branch displacement

4
5

Table A-4 PS Data Pad Field Mnemonics

NAME

data pad X operand
data pad Y operand
data pad bus operand
data pad X read index
data pad Y read index
data pad X write index
data pad Y write index
data pad X XW read index extension
data pad Y :XW read index extension
data pad Y XW write index extension
data pad X ..-n.T

lW read index extension
data pad Y YW read index extension
data pad X YW write index extension

Table A-5 PS Multiplier Field Mnemonics

Page A

MNEMONIC

FM
FMl
FMO·
Ml
M2

2

NAME

multiplier double-operand operation
multiplier single-operand operation
multiplier zero-operand operation
multiplier operand 1
multiplier operand 2

WIDTH

2
2
3
3
3
3
3
1
1
1
1
1
1

WIDTH

1
2
2
2
2

FPS 860-7489-00lA

FIELD MNEMONICS

MNEMONIC

MI
MA
DPA
TMA

Table A-6 PS Memory Field Mnemonics

NAME

main memory input operation
main memory address operation
data pad address operation
table memory address operation

Table A-7 PS Immediate Value Field Mnemonics

WIDTH

2
2
2
2

MNEMONIC NAME WIDTH

SVAL 8-bit immediate value 8
VALUE 24-bit immediate value 24
HVAL 32-bit immediate value 32
SVALNL SVAL SPAD load inhibit 1

Table A-8 PS Special Operation Field Mnemonics

MNEMONIC

SPEC
STE ST
SPECWR
SPECFP
SPEC IN
SETPSA
STJMP
ST JSR

FPS 860-7489-00lA

NAME

special operation
conditional branches
partial word writes and duplicates
round and normalize inhibits
mode switching and state save
JMP's, JSR's, and read/write PS
conditional JMP's
conditional JSR's

WIDTH

4
4
4
4
4
4
4
4

Page A 3

FIELD MNEMONICS

Table A-9 PS I/O Operation Field Mnemonics

MNEMONIC NAME WIDTH

IO I/O operation 3
LDREG load address registers 3
RD REG read address registers 3
IOWRT partial word writes 3
IOMEM miscellaneous 3
IN OUT I/O data transmission 3
FLAG set/clear program flags 3
CONTRL privileged control 3

A.2 REGISTER FIELD MNEMONICS

The following tables list the valid register field mnemonics.

Table A-10 User Status Register Field Mnemonics

MNEMONIC

SRAU
FLO
FLl
FL2
FL3
NRSQRT
BITR
IOVF
F530VF
F320VF
OVF
UNF
DIVZ
FZ
FN
z
N
c
SRAO
IFFT
FFT

NAME

subroutine return stack underflow
program flag 0
program flag 1
program flag 2
program flag 3
negative reciprocal square root
bit-reverse shift count
SPAD integer overflow
FA/FM 53-bit integer overflow
FA/FM 32-bit integer overflow
FA/FM floating-point overflow
FA/FM floating-point underflow
reciprocal of zero
adder output zero
adder output negative
SPAD function zero
SPAD function negative
SPAD carry
subroutine return stack overflow
inverse FFT addressing mode
FFT addressing mode

WIDTH

1
1
1
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Page A 4 FPS 860-7489-00lA

FIELD MNEMONICS

Table A-11 State Save Status Register Field Mnemonics

MNEMONIC NAME WIDTH

TRAP trap instruction indicator 1
DPM DPBS mantissa bits 0-1 2
INTES IOVF exception interrupt enable 1
INTE53 F530VF exception interrupt enable 1
INTE32 F320VF exception interrupt enable 1
INTEF OVF/UNF exception interrupt enable 1
INTFS SRAO/SRAU fatal interrupt enable 1
INTFD DED fatal interrupt enable 1
INTFM MPAR fatal interrupt enable 1
INTTB breakpoint trap interrupt enable 1
INTTT TRAP trap interrupt enable 1
HffTJ JSYS trap interrupt enable 1
FMSTAT multiplier exception status 4
FM53 multiplier F530VF status 1
FM32 multiplier F320VF status 1
FMOVF multiplier OVF status 1
FMUNF multiplier UNF status 1
FASTAT adder exception status 6
FA53 adder F530VF status 1
FA32 adder F320VF status 1
FAOVF adder OVF status 1
FAUNF adder UNF status 1
FADIVZ adder DIVZ status 1
FANRSQ adder NRSQRT status 1
SRA subroutine return stack address 8

FPS 860-7489-00lA Page A 5

FIELD MNEMONICS

Page A

Table A-12 Main Memory DED Error Register Field Mnemonics

MNEMONIC

CPUE
DMAE
PSCE
DEDH
ECCDIS
DEDADR

NAME

CPU main memory DED error
DMA main memory DED error
program source cache DED error
DED halt enable
error correcting disable
DED physical address

WIDTH

1
1
1
1
1
24

Table A-13 TM/PS Parity Error Register Field Mnemonics

MNEMONIC

TME
PSE
TMH
PSH
PERADR

NAME

table memory parity error
program source parity error
TME halt enable
PSE halt enable
parity error physical address

WIDTH

1
1
1
1
24

Table A-14 MD Breakpoint Register Field Mnemonics

MNEMONIC

MDBHIT
MD BREN
MDBWEN
MDBRD
MDBWRT
MDBADR

6

NAME

MD breakpoint hit
MD read breakpoint enable
MD write brea~point enable
MD read breakpoint
MD write breakpoint
MD breakpoint address

WIDTH

1
1
1
1
1
24

FPS 860-7489-00lA

FIELD MNEMONICS

Table A-15 PS Breakpoint Register Field Mnemonics

MNEMONIC

PSBHIT
PSBENB
PSBADR

NAME

PS breakpoint hit
PS breakpoint enable
PS breakpoint address

WIDTH

1
1
24

Table A-16 Data Word Field Mnemonics

MNEMONIC NAME WIDTH

LEFT left half 32
RIGHT right half 32
EXP ON exponent 11
MANTI mantissa 53

FPS 860-7489-00lA Page A 7

APDEBUG64 INTERACTIVE COMMANDS

APPENDIX B

APDEBUG64 INTERACTIVE COMMANDS

In Table B-1, the lowercase letters following the shortest legal
abbreviation are optional.

COMMAND

+

Break
BU ff er
Clear
Deposit
DI splay
Examine
FBuf
FOrmat
IN it
INVoke
LAnguage
LI st
LO ad
Mask
POverlay
PTimeout
PTrace
Quit
RAdix
Run
SE arch
STAtus
Step
SYmbol
TI me
Trace
Watch
WHere
XBuf
Zero

Table B-1 APDEBUG64 Interactive Commands

FUNCTION

examine succeeding memory location
examine preceding memory location
set or list breakpoint
toggle command buffer switches
clear break/trace/watch points
deposit into register or memory location
display the value of an expression
open and examine register or memory location
fill command buffer
set I/O format
initialize the AP
invoke a subroutine or function
set the language mode
open or close a listing file
load specified load module into the AP
set mask to be used in SEarch command
print overlay structure diagram
set or list program timeout period
print a procedure call traceback
exit APDEBUG64
set integer radix
run an AP program
search memory for a specified value
print debugger status
single-step through program
open symbol table for symbolic input
print elapsed execution time
set or list tracepoint
set or list watchpoint
print current program location
execute command buff er
zero specified registers and memories

PAGE

6-8
6-8
5-4
5-16
5-9
6-12
6-9
6-6
5-15
4-5
3-6
5-13
4-1
5-17
3-6
6-10
5-14
5-10
5-14
3-6
4-4
5-9
6-9
5-17
5-11
4-3
5-13
5-7
5-7
5-13
5-16
6-14

FPS 860-7489-00lA Page B 1

ERROR MESSAGES

Al:'PENDIX C

ERROR MESSAGES

This appendix contains the debugger error messages along with an
explanation of each error and suggested corrective action. The error
messages are arranged alphabetically for quick reference.

APDEBUG64-F-ACONST, error in ASCII constant

Meaning: Incorrect syntax entered for ASCII constant.

Action: Enter correct ASCII constant syntax (refer to the APAL64
Programmer's Reference Manual).

APDEBUG64-F-ADDRANGE, negative address range

Meaning: The specified ending address is less than the starting
address.

Action: Enter the command line with the correct starting and
ending addresses.

APDEBUG64-F-AMBIGCMD, ambiguous command abbreviation

Meaning: More than one command begins with the specified
abbreviation.

Action: Enter the command with a longer abbreviation.

APDEBUG64-F-APNUM, illegal AP number

Meaning: Only one AP number can be entered on the command line.
A legal AP number is > 0.

Action: Enter the command line with the correct AP number.

APDEBUG64-F-ARGOVF, table overflow - too many arguments and switches

Meaning: Command line contains too many arguments and switches.

Action: Use the LOAD, SYMBOL, and/or LIST commands to enter
arguments.

FPS 860-7489-00lA Page C 1

ERROR MESSAGES

APDEBUG64-F-BADFD, bad file descripter (internal error)

Meaning: Internal AP errors.

Action: Contact FPS Customer Service.

APDEBUG64-F-BADSYMFILE, bad symbol file

Meaning: The debugger found an error when reading the symbol file.

Action: Report error to FPS.

APDEBUG64-F-BRKEXISTS, breakpoint already exists as call/return

Meaning: The specified breakpoint already exists as a call/return
breakpoint.

Action: Clear the breakpoint before trying to reset it (refer
to Section 5.6).

APDEBUG64-F-BRKMEM, break or trace may be set at a program location
only

Meaning: A breakpoint can be set at: a FORTRAN line number,
FORTRAN statement label, APAL64 label, or PS location.

Action: Set the breakpoint at a valid location.
Use watchpoints for data locations.

APDEBUG64-F-BYTEFMT, illegal byte format

Meaning: Byte values must be integers.

Action: Enter byte values correctly (refer to Section 4.5).

APDEBUG64-F-BYTEOVF, a maximum of 64 bytes may be specified

Meaning: Too many bytes specified in value expression
on a command.

Action: Re-enter command, specifying 1 to 64 bytes.

APDEBUG64-F-BYTEVAL, byte values must be integer expressions

Meaning: Byte values must be integers.

Action: Enter byte values correctly (refer to Section 4.5).

Page C 2 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-CANT~TND~YM, need global symbols to output function value

Meaning: The user closed the symbol table before the program
returned from the routine called by the INVOKE command. The
returning function value is in DPX(O) and DPX(l).

Action: No action required.

APDEBUG64-F-CANTMIXCHAR, can't mix character and non-char values in
input file

Meaning: An input data file cannot contain both character and
non-character values for deposit.

Action: Separate character and non-character values into two data
files.

APDEBUG64-F-CBUFFCMD, command entered not allowed in command buffer

Meaning: The specified command cannot be used in the command
buffer.

Action: Do not enter the command in the command buffer.

APDEBUG64-F-CBUFFOVF, command buffer overflow, buffer closed

Meaning: The user tried to put commands into a full command
buffer.

Action: Put a long series of commands into an external command
buffer (refer to Section 5.16) and execute the command
buffer with the XBUF command (refer to Section 5.18).

APDEBUG64-F-CHARFMT, character data may be output in ascii or integer
only

Meaning: The user requested that character data be displayed in
other than ASCII or integer format.

Action: Request character data in ASCII or integer format only
(refer to Section 4.5).

APDEBUG64-F-CHARLENGTH, 0-length character address illegal

Meaning: The user tried to access character data of no length.

Action: Enter the corrected command line.

FPS 860-7489-00lA Page C 3

ERROR MESSAGES

APDEBUG64-F-CHARMASK, field parameter not allowed with character data

Meaning: A command line cannot contain a field parameter with a
character data variable.

Action: Use a substring expression (APFTN64 Reference Manual).

APDEBUG64-F-COMMAND, unrecognized command

Meaning: The debugger does not recognize the command entered.

Action: Check command syntax in this manual.

APDEBUG64-F-CONFLICT, conflicting parameters on command

Meaning: Conflicting modifiers or parameters were entered (e.g.,
both the /INTO and /OVER modifiers on the STEP command).

Action: Enter corrected command line.

APDEBUG64-F-COUNT, bad repetition count parameter

Meaning: The repetition count was specified as < 0.

Action: Enter command line with correct repetition count
(i.e., >O).

APDEBUG64-F-DIFOVERLAY, start and end addresses must be in same
overlay

Meaning: The starting and ending addresses in an address range
are not in the same overlay.

Action: Enter the command line with the starting and ending
addresses in the same overlay.

APDEBUG64-F-DUMMYPARAM, parameter not accessible from current module

Meaning: A dummy parameter can be examined only when the program
stops in the routine to which it is a parameter.

Action: No action required.

Page C 4 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-DUPPARAM, duplicate parameters on command

Meaning: A command parameter or modifier was entered more than
once.

Action: Enter corrected command.

APDEBUG64-F-ENTRYDESC, cannot find entry descriptor

Meaning: The debugger cannot find the procedure entry descriptor
(PED) corresponding to the last subroutine call (or JSR)
made by the program. (Information in the PED is necessary
to access an actual parameter to a subroutine or to STEP
through an APFTN64 program.)

Action: For APAL64 users, the APAL64 Programmer's Guide contains
subroutine linkage directives and procedure entry
directives. (The compiler sets up PED's for APFTN64
programs.)

APDEBUG64-F-EOF, unexpected end of file

Meaning: The debugger came to the end of a load module, symbol
file, or input file when it expected more information.

Action: Verify that the correct file was specified. If not,
enter correct file name. If it was, report error to FPS
Customer Service.

APDEBUG64-F-EXPACONST, ASCII constant not allowed in expressions

Meaning: An expression contained an ASCII constant.

Action: Enter an equivalent hexadecimal constant.

APDEBUG64-F-EXPEVAL, error in evaluating expression

Meaning: The debugger found an error when trying to evaluate an
address or value expression.

Action: Verify that the expression is correct. If necessary,
enter the command line with the correct expression
syntax.

FPS 860-7489-00lA Page C 5

ERROR MESSAGES

APDEBUG64-F-EXPRCONST, floating-point constant not allowed in APAL64
expressions

Meaning: An APAL64 expression contained a floating-point constant.

Action: Enter valid APAL64 expression (refer to the APAL64
Programmer's Reference Manual).

APDEBUG64-F-EXPTYPE, address expression types do not match

Meaning: An address expression is not compatible with its memory
type.

Action: Remove the address expression type (using the INT
operator discussed in Section 5.2.2) before using it in an
expression of a different type.

APDEBUG64-F-FIELD, bad field specifier

Meaning: Field specifier formatted incorrectly.

Action: Enter field specifier correctly (refer to Section
6.2.2).

APDEBUG64-F-FIELDNAME, unrecognized field name

Meaning: The user specified an illegal field name.

Action: Enter a legal field mnemonic (Appendix A).

APDEBUG64-F-FILE, illegal file specification

Meaning: File name not enclosed in apostrophes.

Action: Enter file name with apostrophes (i.e., 'filename').

APDEBUG64-F-FILOPN, error in opening file

Meaning: The debugger could not open the specified file.

Action: Verify that the file exists. Check file protection.
Enter corrected command ine.

Page C 6 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-FLDDELIM, '>' missing on field specifier

Meaning: Field specifiers must be enclosed in angled brackets.

Action: Enter field specifier enclosed i~ angled brackets
(refer to Section 6.2.2).

APDEBUG64-F-FLOAT, bad format for floating point number

Meaning: Arithmetic error in evaluating an expression.

Action: Enter corrected command line.

APDEBUG64-F-ICONST, integer constant expected after command modifier

Meaning: The debugger expected an integer constant as part of a
command modifier.

Action: Enter the command line with the correct command modifier.

APDEBUG64-F-IFOPTLENGTH, no room for IF expression

Meaning: The relational expressions specified on the BREAK, TRACE,
or WATCH command modifiers are too long.

Action: Shorten relational expressions.

APDEBUG64-F-ILLADDRESS, illegal address expression

Meaning: The user entered an invalid address expression.

Action: Enter the correct address expression (refer to Section
5.2) on the command line.

APDEBUG64-F-ILLARG, illegal routine argument

Meaning: When calling a routine with the INVOKE command, only an
address expression or value expression can be passed as an
argument.

Action: Enter corrected command.

APDEBUG64-F-ILLARITH, illegal arithmetic operand

Meaning: Internal error.

Action: Report error to FPS Customer Service.

FPS 860-7489-00lA Page C 7

ERROR MESSAGt:S

APDEBUG64-F-ILLCHAR, illegal character

Meaning: The debugger does not recognize a character on the
command line.

Action: Enter command line with correct characters.

APDEBUG64-F-ILLENTRY, illegal entry point

Meaning: The debugger does not recognize the name the user entered
with the INVOKE command as a valid entry point name.

Action: Examine APLINK64 map and enter corrected command line.

APDEBUG64-F-ILLHEADER, illegal file header

Meaning: The first line of a data file to be read with the
DEPOSIT command is incorrect or contains insufficient
information.

Action: Correct the data file header line (refer to
Section 6.8).

APDEBUG64-F-ILLLOGICAL, illegal logical expression operand

Meaning: Internal error.

Action: Report error to FPS.

APDEBUG64-F-ILLPARAM, illegal parameter on command

Meaning: A parameter used on the command line is not valid for
this command.

Action: Enter command line with valid parameter.

APDEBUG64-F-ILLRELATIONAL, illegal relational expression operand

Meaning: Internal error.

Action: Report to FPS.

Page C 8 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-ILLRELEXP, illegal relational expression

Meaning: The debugger found an error when evaluating a
relational expression in a command line or assigned to a
breakpoint, tracepoint, or watchpoint.

Action: Reset the breakpoint, tracepoint, or watchpoint with
the corrected expression, or reenter the command.

APDEBUG64-F-ILLSTRING, illegal string

Meaning: While scanning. a string constant in the input line, the
debugger came to the end of the line before finding the
ending apostrophe.

Action: Enter the command line with the correct syntax (APFTN64
Reference Manual).

APDEBUG64-F-ILLSYNTAX, illegal syntax

Meaning: The debugger does not recognize a command line construct.

Action: Evaluate command line and enter correctly.

APDEBUG64-F-INCOMPADD, incompatible address expressions

Meaning: The user specified starting and ending addresses that are
not the same memory type.

Action: Enter compatible starting and ending addresses.

APDEBUG64-F-INCOMPATIBLE, incompatible arithmetic expression operands

Meaning: The arithmetic expression contains operands which are not
compatible (e.g., a double-precision number with a complex
number).

Action: Enter the command line with the corrected arithmetic
expression (refer to the APFTN64 Reference Manual).

APDEBUG64-F-INCOMPVAL, value incompatible with address range

Meaning: Only integer and character values are compatible with
character addresses.

Action: Use only integer or character values when depositing or
searching character data.

FPS 860-7489-00lA Page C 9

ERROR MESSAGES

APDEBUG64-F-INCREMENT, error in increment value

Meaning: The address increment must be a positive integer value.

Action: Enter corrected command line.

APDEBUG64-F-INPUTOVF, input source stack overflow

Meaning: The debugger external command files are nested too
deeply.

Action: Do not nest external command files beyond 23 levels.

APDEBUG64-F-INPUTUNF, input source stack underflow

Meaning: The debugger found an end-of-file in the initial
APDEBUG64 input source (usually the terminal).

Action: If executing the debugger from within a command file,
verify that a QUIT command is entered before the end of the
file.

APDEBUG64-F-iNTEGER, bad format for integer number

Meaning: The user entered an invalid token where the debugger
expected an integer.

Action: Enter corrected ccmma~d

APDEBUG64-F-INTERNAL, internal error

Meaning: Internal error.

Action: Report error to FPS.

APDEBUG64-F-INVOKE, not yet returned from previously invoked routine

Meaning: The user entered an INVOKE command before the program
returned from a previous INVOKE command.

Action: No action required.

Page C 10 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-INVOKECHAR, can't invoke character function ·of passed
length

Meaning: The INVOKE command cannot be used to call a character
function whose length is passed as a parameter.

Action: No action required.

APDEBUG64-F-LDMOVOVF, too many load modules specified on command

Meaning: Internal table overflow.

Action: Use the LOAD command to load the load modules.

APDEBUG64-F-LMBUFFER, buffer too small for load module block size

Meaning: The load module's block size is too big.

Action: Close symbol file or relink using a smaller block size.

APDEBUG64-F-LPAREN, left parenthesis missing in expression

Meaning: The left parenthesis is missing in the expression.

Action: Enter the corrected command line.

APDEBUG64-F-MAXBRK, maximum number of breakpoints exceeded

Meaning: Only two breakpoints or tracepoints are allowed at one
time.

Action: Delete any unneeded breakpoints or tracepoints before
setting another.

APDEBUG64-F-MISSPARAM, missing parameter on command

Meaning: The command line does not contain a necessary parameter.

Action: Enter the command line with valid command syntax.

FPS 860-7489-00lA Page C 11

ERROR MESSAGES

APDEBUG64-F-MODIFIER, unrecognized command modifier

Meaning: The debugger does not recognize the command modifier
following '!'.

Action: Enter the correct command modifier.

APDEBUG64-F-MODNAME, unknown module name

Meaning: The specified module name is not in the global symbol
table.

Action: Verify that the correct symbol file is open and enter
the command line with the correct module name.

APDEBUG64-F-NOARGS, incorrect number of arguments

Meaning: The user did not specify the correct number of arguments
for the routine specified with the INVOKE command.

Action: Enter the INVOKE command (refer to Section 5.12) with
the correct number of arguments.

APDEBUG64-F-NOARGSPPACE, no user space for arguments

Meaning: There is no MD space left to store argument pointers for
the INVOKE command.

Action: Do not use the INVOKE command.

APDEBUG64-F-NOBRK, no breakpoint set at specified address

Meaning: The user tried to clear a breakpoint where none was set.

Action: Use the BREAK, TRACE, WATCH, and/or VFP command to list
the current breakpoints, tracepoints, and watchpoints.

APDEBUG64-F-NOBYTEFMT, no byte format has been specified

Meaning: The user tried to deposit a value or search for a value
entered in bytes, but a byte format is not defined for the
memory being referenced.

Action: Use the FORMAT command (refer to Section 4.5) to
define a byte format for the referenced memory.

Page C 12 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-NODEPPSROM, PSROM is read only

Meaning: The user tried to deposit into a PSROM location (PS
address > FFFCOO, hex).

Action: No action required.

APDEBUG64-F-NOFD, no file descriptors available to open file

Meaning: Too many files are open. Command buffer files may be
nested too deeply.

Action: Do not nest debugger command files too deeply. Close
listing or symbol files.

APDEBUG64-F-NOLDMOD, no load module specified

Meaning: The user did not specify a load module with either the
LOAD command or the APDEBUG64 command.

Action: Specify the desired load module.

APDEBUG64-F-NOLINENUM, can't STEP in FTN language mode if line #snot
selected

Meaning The program must be compiled with the LINENUM option in
order to use the STEP command.

Action: Recompile with the LINENUM option (included in the
DEBUG option) or switch to $APAL language mode (refer to
Section 4.2) to step through the program by machine
instructions rather than FORTRAN lines.

APDEBUG64-F-NOLOCALSYM, local symbol table not open

Meaning: The user tried to close the local symbol table when it
was not open.

Action: No action required.

APDEBUG64-F-NOMEMOPEN, no memory open

Meaning: The user entered an EXAMINE command without specifying
the memory to examine.

Action: Specify a memory with the EXAMINE command.

FPS 860-7489-00lA Page C 13

ERROR MESSAGES

APDEBUG64-F-NOOVERLAY, image has no overlays

Meaning: The user requested overlay information (using the
POVERLAY command) when there are no overlays in the load
module.

Action: No action required.

APDEBUG64-F-NOSPACE, symbol table is full

Meaning: The debugger internal symbol table is full.

Action: Decrease the size of the symbol file (recompile with the
NOLIN or NAM REF option and relink using the SYMOUT
parameter).

APDEBUG64-F-NOSTRSPACE, not enough internal space to manipulate string

Meaning: There is not enough internal buffer space to perform the
requested operations on the specified string or strings.

Action: Use smaller strings or substrings.

APDEBUG64-F-NOSYMFILE, symbol file is not open

Meaning: The user tried to close the symbol file or open local
symbols when no symbol file was open.

Action: Open the symbol file with the SYMBOL command (refer
to Section 4.3).

APDEBUG64-F-NOVALUE, there is no value on the input line.

Meaning: The debugger expects a value on the input line,
probably to be deposited to a memory.

Action: Check input file to verify that it has one value
per line.

APDEBUG64-F-NUMOFFILES, illegal number of files specified

Meaning: The user specified too many files on the LOAD command.

Action: Only one file can be specified on the LOAD command
(refer to Section 3.5). Enter the corrected command line.

Page C 14 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-ODTCORRUPT, image overlay description table invalid

Meaning: The debugger tried to read the AP's overlay description
table but found it to be corrupt.

Action: The user's program may be overwriting the overlay
description table.

APDEBUG64-F-OUTOFBOUNDS, address out of bounds

Meaning: The memory address referenced is either outside the
memory's physical bounds or outside the user's space within
the memory.

Action: Enter in-bounds memory address.

APDEBUG64-F-OVF/UNF, overflow/underflow error

Meaning: Arithmetic error in evaluating an expression.

Action: Enter corrected command line.

APDEBUG64-F-OVLNAf1E, unknown overlay name

Meaning: The user entered an overlay name (indicated by the 1
\\

1
)

that is not in the symbol file.

Action: Enter the corrected command line.

APDEBUG64-F-OVLNONRES, overlay is nonresident

Meaning: The user tried to call a routine (with the INVOKE
command) not in the currently resident overlay or to access
a data or program location not in the currently resident
overlay.

Action: No action required.

APDEBUG64-F-QUOTE, illegal single quote

Meaning: An asterisk (1
) appeared with a parameter that was not a

file name or a radix specifier.

Action: Re-enter line.

FPS 860-7489-00lA Page C 15

ERROR MESSAGES

APDEBUG64-F-RADIX, bad radix specifier

Meaning: Incorrect radix specifier entered.

Action: Enter correct radix specifier (i.e., /B, /0, /D, or /Z).

APDEBUG64-F-RUNMEM, execution address must be a program location

Meaning: For program execution, the starting address must be a
FORTRAN line number or statement label or an APAL64 label or
PS location.

Action: Enter the command line with the corrected starting
address.

APDEBUG64-F-SIZFILNAME, Internal - no room for file name

Meaning: The file name is too long.

Action: Shorten file name.

APDEBUG64-F-SRSTACK, subroutine return stack overflow

Meaning: The INVOKE command cannot be used because the AP
subroutine return stack lacks space (as indicated by the
value of the SRA register).

Action: No action required.

APDEBUG64-F-STRINGTOOBIG, string too long for address character
length

Meaning: The user tried to search a character variable or array
for a substring that is longer than the defined length of
the variable or array elements.

Action: Shorten the string to < the character length of the
variable or array.

APDEBUG64-F-STROUTPUT, not enough output space for entire string

Meaning: String is too long for internal output buffer.

Action: Examine substrings of the string variable.

Page C 16 FPS 860-7489-00lA

ERROR MES~AGES

APDEBUG64-F-SUBSCRIPT, incorrect n-,mber of subscripts

Meaning: The user specified an incorrect number of array
subscripts.

Action: Specify correct subscripts.

APDEBUG64-F-SUBSTRING, bad substring expression.

Meaning: The debugger found invalid syntax when evaluating a
substring expression.

Action: Enter the command line with the correct syntax (APFTN64
Reference Manual).

APDEBUG64-F-SWITCH, unrecognized switch

Meaning: The switch given on the command line is not a valid
debugger switch.

Action: Enter valid debugger switch.

APDEBUG64-F-SYMBOL, unrecognized symbol

Meaning: A symbol is not in the debugger symbol table or the user
global or local symbol table. The user may have tried to
use the line number of a non-executable APFTN64 statement as
a symbol.

Action: Open the necessary user symbol table or enter the command
correctly.

APDEBUG64-F-SYMCLOSE, do not specify file name when closing symbol
file.

Meaning: The SYMBOL command does not accept a file name when
closing a symbol file.

Action: Re-enter the command.

APDEBUG64-F-SYMNONRES, cannot evaluate symbol in nonresident overlay

Meaning: The contents of the AP at a program location (PS memory)
or at a data location (MD memory) cannot be accessed because
the symbol describing the location is not part of the
currently resident overlay.

Action: Enter command line without the invalid symbol.

FPS 860-7489-00lA Page C 17

ERROR MESSAGES

APDEBUG64-F-SYMTYPE, symbol in expression does not match expression
type

Meaning: An expression is not compatible with its memory type.

Action: Remove the address expression type (using the INT
operator discussed in Section 5.2.2) before using it in an
expression of a different type.

APDEBUG64-F-TIMOUTCONV, error converting time-out value to real
(internal)

Meaning: The user entered an incorrect value with PTIMEOUT
command.

Action: Read Section 5.9 and then reenter the command with a
correct value.

APDEBUG64-F-TIMOUTVAL, time-out value must be an integer no. >=O &
<=65535.

Meaning: The user entered an incorrect value with the PTIMEOUT
command.

Action: Read Section 5.9 and then reenter the command.

APDEBUG64-F-TTYOPEN, error in opening terminal

Meaning: Debugger cannot open terminal.

Action: Report error to FPS.

APDEBUG64-F-VFPFAIL, VFP operation failed.

Meaning: The debugger cannot access the Virtual Front Panel,
probably because the user is not privileged.

Action: No action required.

Page C 18 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-F-UNKNOWN, unknown error number

Meaning: Internal error.

Action: Report error to FPS.

APDEBUG64-F-WATCHMEM, a watchpoint may be set at a main data location
only

Meaning: The user tried to set a watchpoint at other than a
program variable or an array elem~nt or MD location.

Action: Correct watchpoint setting. Use breakpoint to stop
on a PS location.

APDEBUG64-F-X64BUSY, requested X64 is busy, try another

Meaning: The requested AP is busy. If no AP number was specified,
then all AP's are in use.

Action: Try again.

APDEBUG64-F-X64MEM, X64 memory request too large

Meaning: The user requested too much memory with the MDSIZE or
PSSIZE parameter on the APDEBUG64 or INIT command.

Action: Enter a legal MDSIZE or PSSIZE memory size ..

APDEBUG64-F-X64NOTAVAIL, requested X64 not available, try another

Meaning: The requested AP is off-line, or the user entered an
illegal AP number.

Action: Request another AP.

APDEBUG64-F-ZERODIVIDE, division by zero

Meaning: Expression evaluation error.

Action: Check expression for division by zero.

FPS 860-7489-00lA Page C 19

ERROR MESSAGES

APDEBUG64-W-BADSMB, this module is not a symbol module

Meaning: The module indicated on the error message is not
recognized as part of a valid symbol file produced by
APLINK64.

Action: Enter the command line with the correct symbol file
name.

APDEBUG64-W-BOUNDSWARN, address out of bounds

Meaning: A PS or MD address is outside the current MDLH1IT or
PSLIMIT register setting.

Action: No action required.

APDEBUG64-W-CHARLEN, data extends past character symbol length

Meaning: The debugger will display the contents of a main data
memory address pointed to by a character variable symbol.
However, the character symbol only occupies part of the
word. The debugger will display the substring expression as
if the character variable did occupy the entire word but
indicate the correct character length on the error message.

Action: No action required.

APDEBCG64-W-DIMENBND, subscript outside dimension bounds

Meaning: The user specified an array element with a subscript
outside dimension bounds.

Action: Specify correct subscripts.

APDEBUD64-W-DUPENTRY, duplicate entry name in symbol file

Meaning: The debugger found two entry points in the same overlay
with the same name. The debugger ignores the second entry
point.

Action:

Page C 20

No action required. The user can examine the
APLINK64 map to eliminate the duplicate entry name.

FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-W-DUPMODNAME, duplicate module name in symbol file

Meaning: The symbol file contains two modules with the same name.
The first occurrence of the module name is used. The
second is ignored.

Action: Change the name of one of the program modules.
Examine APLINK64 map to determine cause of duplicate
module.

APDEBUG64-W-DUPOVERLAY, duplicate overlay name in symbol file

Meaning: The debugger found two overlays with the same name. The
debugger ignores the second overlay.

Action: No action required. The user can examine the APLINK64
map to eliminate the duplica~e overlay.

\./APDEBUG64-W-HALTED, AP is halted

Meaning: Neither the user's program nor the SUM is running on the
AP.

Action: Initialize the AP (refer to Section 3.6).

APDEBUG64-W-INITSW, excess information on INIT/NOINIT switch ignored

Meaning: The INIT/NOINIT options require no additional
modifiers.

Action: Reenter command line.

APDEBUG64-W-INSUFFVAL, insufficient data, excess locations not
initialized

Meaning: The data file being read by the DEPOSIT command does not
contain enough data to deposit into all the locations
specified in the header line or DEPOSIT command.

Action: Verify that the data file is correct.

APDEBUG64-W-LISTSW, error in LIST/NOLIST switch

Meaning: Incorrect number of files specified on switch.

Action: Re-enter command line.

FPS 860-7489-00lA Page C 21

ERROR MESSAGES

APDEBUG64-W-MAXCALLRETURN, max number of calls/returns exceeded

Meaning: The user exceeded the maximum number of $CALLS or
RETURNS breakpoints.

Action: Include only the routines that the user is currently
debugging in the symbol file by relinking with the SYMOUT
parameter.

APDEBUG64-W-MEMSIZSW, error in PS or MD memory size switch

Meaning: The user entered an invalid number or more than one
number on the APDEBUG64 command's PSSIZE or MDSIZE
parameter.

Action: Enter the APDEBUG64 command with the correct PSSIZE
or MDSIZE parameter (refer to Section 3.6).

APDEBUG64-W-NOCHARSYM, no character symbol found for output

Meaning: The debugger tried to display the contents of a character
address but cannot find a local character symbol to match
the address. Instead, the debugger will display the memory
name and address.

Action: No action required.

APDEBUG64-W-NOFIELDFMT, no field format has been defined

Meaning: The user tried to express an output value in field (F)
format, but the accessed memory or register is not defined
in field format.

Action: Designate another format for output (refer to
Section 4.5).

APDEBUG64-W-NOFLDFMT, field format illegal

Meaning: The debugger cannot express the output value in field (F)
format because it cannot determine which memory or register
to access.

Action: Report error. to FPS.

APDEBUG64-W-NOLOCAL, no local symbols for this module

Meaning: The current module has no local symbols in the symbol
file.

Action: Recompile or reassemble as outlined in Section 2.3.

Page C 22 FPS 860-7489-00lA

ERROR MESSAGES

APDEBUG64-W-NOSYMBOLS, this module not in symbol file

Meaning: The user's program stopped in a module that is not
included in the symbol file.

Action: If the user wants local symbols, recompile or reassemble.
Relink to get the module into the symbol file.

APDEBUG64-W-RUNNING, AP is running, enter INIT OR HALT command

Meaning: The AP is running and must be initialized.

Action: Initialize the AP (refer to Section 3.6).

APDEBUG64-W-SYMBOLSW, error in SYMBOL/NOSYMBOL switch

Meaning: Incorrect number of files specified on switch.

Action: Enter corrected command line.

APDEBUG64-W-SYMOUTPUT, no room for symbol information in output line

Meaning: The symbolic representation of the location being
examined or the current program location at which the
program is stopped is too long for the 80 characters
allotted for it. Only 80 characters can be put into the
output line, followed by any other necessary information.

Action: No action required.

APDEBUG64-W-TOOMANYBYTES, too many bytes specified, remainder ignored

Meaning: The user specified a value in byte format that has more
bytes than defined by the FORMAT command. The excess bytes
are ignored.

Action: Use the FORMAT command (refer to Section 4.5) to
redefine the byte format.

APDEBUG64-W-TMRAMSW excess information on TMRAM/NOTMRAM switch
ignored.

Meaning: The TMRAM/NOTMRAM options require no additional
modifiers.

Action: Re-enter command line.

FPS 860-7489-00lA Page C 23

ERROR MESSAGES

APDEBUG64-W-VALOUTPUT, not enough room for value in output line

Meaning: The user requested more bytes of data than can fit
on the output line.

Action: Use the FORMAT command (refer to Section 4.5) to
specify a larger byte format.

APDEB64-W-WAITSW, excess information on WAIT/NOWAIT switch, ignored.

Meaning: The WAIT/NOWAIT options require no additional modifiers.

Action: Re-enter command line.

APDEBUG64-W-X64ASSIGNED, another X64 already assigned to user

Meaning: The user is already attached to another AP.

Action: No action required; the user remains attached to the AP.

Page C 24 FPS 860-7489-00lA

$ALL command argument 5-9,16
$APAL64 argument 4-2
$BREAK command argument 5-16
$CALLS command argument 5-6,7,9
$FTN argument 4-2
$OVERLAYS command argument

5-6,7,9
$RETURNS command argument 5-6,7,9
$STEP command argument 5-16
$TRACE command argument 5-16
$WATCH command argument 5-16

@DA 5-2
@DPA 5-2
@MA 5-2
@PSA 5-2
@SRA 5-2
@TMA 5-2

+ command 6-8
- command 6-8
11 command 3-1,7
% command 3-1,7

command 3-1,7

A format (ASCII) 4-6
Acronyms and terms 1-3
Adder field mnemonics

A-1
addexp command argument

5-2
addrange command

argument 6-4
Address expressions (addexp)

5-2
Address range (addrange)

6-4
AFTER:n command modifier

5-4
AP

functional units 6-1
interactive debugger

(APDEBUG64) 2-2
simulation library

(APSIM64) 2-1
APAL64 assemble language 1-3
APAL64 address expressions

5-2
APAL64 language mode,

differences from
FTN mode 4-2

APAL mode 4-1
APAL64 value expressions

6-5

FPS 860-7489-00lA

APDEBUG64 2-2
host progra~-callable

APEX64 access 3-3
defined symbol 5-3
functions arid features

2-2
interactive commands

B-1
stand-alone access

3-4
SYM option 2-3
System Job Executive

access 3-3
system level command

3-4
APEX64 1-3
APFTN64

address expressions
5-2

array element name
5-2

language mode differences
from APAL64 mode
4-2

line number ($) 5-2
mode 4-1
procedure entry name

5-2
statement label (.)

5-2
value expressions 6-5
variable name 5-2

APFTN64 DEBUG compiler
option 2-3; 5-12,14

APLINK64 SYM option 2-3
APnum command parameter

3-4
APROUTINE statement 5-2
APSIM64 features 2-1

host program-callable
APEX64 access 3-2

stand-alone access
3-2

system level command
3-2

ARG command modifier
5-4,7

ASCII character (A) format
4-6

Assembler option 2-3
Attention key 5-10

Page INDEX

INDEX

1

INDEX

B radix (binary) 4-4
Batch debugging 3-7
Binary radix (B) 4-4
Branch field mnemonics

A-2
BREAK command 5-4
Breakpoints 1-3; 5-4
BUFFER command 5-15
Buffer switches 5-15
Byte format 4- 7
~ field 6-4

CALL DBUG64 statement
3-3

Changing I/O formats
4-1

CL command modifier 5-15,17
Clear break, trace, and

watchpoints (CLEAR)
5-9

CLEAR command 5-9
Close a listing file

(LIST) 5-17
Command arguments

$ALL 5-9,15
$BREAK 5-16
$CALLS 5-6,7,9
$OVERLAYS 5-6,7,9
$RETURNS 5-6,8,9
$STEP 5-15
$TRACE 5-15
$WATCH 5-15
addexp 5-2
addrange 6-4
field 6-4
mem 6-2
reg 6-3
value 6-4

Command buffer 5-15
Command buffer switches

5-15
Command continuation

(%) 3-7
Command parameters

IMage 3-4
List 3-4
NOIMage 3-4
NOList 3-4
NOSYMbols 3-3
relexp 6-5
SYMbols 3-2,4

Command separator (;)
3-7

Page INDEX 2

Commands for runnin·g
APSIM64/APDEBUG64
3-1

Comment line (") 3-7
Compiler options 2-3;

5-12,14
Conventions 1-1

D radix (decimal) 4-4
Data pad addresses (@DPA)

5-2
Data pad field mnemonics

A-2
Data word field mnemonics

A-7
DEBUG compiler option

2-3
Debugger commands, SY

2-3
Decimal radix (D) 4-4
DED error register field

mnemonics A-6
Default language mode

4-2
Default output files

3-5
DEPOSIT command 6-12
Deposit into a register

or memory (DEPOSIT)
6-12

Differences between FTN
and APAL64 language
modes 4-2

DISPLAY command 6-9
Display value of expression

(DISPLAY) 6-9
Dollar sign ($) 5-3

Elapsed execution time
5-13

Ellipsis (...) 1-1
ENTRY statement 5-2
Error messages C-1
EVERY:n command modifier

5-4
EXAMINE command 6-6

Examine succeeding (+)
or preceding (-)
location 6-8

Example debugging sessions
2-4

FPS 860-7489-00lA

Execute a subroutine
or function (INVOKE)
5-13

Execute the command buffer
(XBUF) 5-16

Executing programs 5-1
Execution time 5-13
Exponents 1-1

F format (field) 4-6
FBUF command 5-15
FBUF prompt 5-15
Field (F) format 4-6
Field mnemonics A-1
Field specifiers (field)

6-4
field command argument

6-4
Fill command buffer (FBUF)

5-15
FORMAT command 4-5
FORTRAN-callable APEX64

access 3-2
APSIM64 3-2

FPS-164 main memory 1-3
from field 6-4
Function execution 5-13
FUNCTION statement 5-2
Functional units 6-1

Generic syntax 1-1
Global symbols 4-3

HASI 1-3
Hexadecimal radix (Z)

4-4

I format (integer) 4-5,6
I/O operation field mnemonics

A-4
IF (relexp) command

modifier 5-4
!Mage command parameter

3-4
Image output file 3-5
Immediate value field

mnemonics A-3
Input/output device. addresses

(@DA) 5-2
Input/output format commands

4-1
Integer (I) format 4-6

FPS 860-7489-00lA

INDEX

INTO command modifier
5-11

INVOKE command 5-13
Invoking APDEBUG64

host program-callable
APEX64 access 3-3

stand-alone access
3-4

System Job Executive
access 3-3

Invoking APSIM64 3-2
host program-callable

APEX64 access 3-2
stand-alone access
3-2

Job Definition Language
(JDL) 1-3

LANGUAGE command 4-1
left field 6-4
LINenum compiler option

2-3; 5-12,14
Linker option 2-3
LIST command 5-17
List command parameter

"3-4
Listing output file 3-5
Load a load module (LOAD)

3-6
LOAD command 3-6
Load module file (loadmodfile)

3-4
Local symbol overrides

5-3
Local symbols 4-3; 5-3
Lowercase characters,

under lined 1-1

Main data (MD) 1-3
Main memory addresses

(@MA) 5-2
Main memory DED error

register field mnemonics
A-6

Manuals 1-2
MASK command 6-10
MD breakpoint register

field mnemonics A-6
Memory and register location

parameters 6-1
Memory field mnemonics

A-3

Page INDEX 3

INDEX

Memory location commands
6-1

Memory specifiers (mem)
6-2

mem command argument
6-2

Monitoring registers
and memory locations
6-1

Multiplier field mnemonics
A-2

NAM ALL compiler option
2-3

NAM assembler option
2-3

NOIMage command parameter
3-4

NOList command parameter
3-4

NOSYMbols command parameter
3-4

0 radix (octal) 4-4
Octal radix (0) 4-4
OFF command modifier

5-15
offset specifier

6-8
ON command modifier 5-15
Open and examine register

or memory location
(EXAMINE) 6-6

Open or close a listing
file (LIST) 5-17

Open or close symbol
tables (SYMBOL) 4-3

Operating procedures
3-3

OPT 0 compiler option
2-3

Output files 3-5
OVER command modifier

5-11
Overlay structure diagram

5-14
Overlays 5-3,6,7,8,9
Overriding local symbols

5-3

P command modifier 5-11
Parity error register

field mnemonics A-6
Path names 5-3

Page INDEX 4

POVERLAY command 5 -·14
Predefined symbols 5-2
Print a procedure call

traceback (PTRACE)
5-14

Print current location
(WHERE) 5-13

Print debugger status
(STATUS) 5-17

Print elapsed execution
time (TIME) 5-13

Print overlay structure
diagram (POVERLAY)
5-14

Program execution 5-1
Program source (PS) 5-4
Program source (PS) field

mnemonics A-1
Program source addresses

(@PS) 5-2
Program-callable APEX64

access, APDEBUG64
3-3

PS
adder field mnemonics

A-1
branch field mnemonics

A-2
breakpoint register

field mnemonics A-7
data pad field mnemonics

A-2
I/O operation field

mnemonics A-4
immediate value field

mnemonics A-3
memory field mnemonics

A-3
multiplier field mnemonics

A-2
SPAD field mnemonics

A-1
special operation field

mnemonics A-3
PTRACE command 5-14

QUIT command 3-6

R format (real) 4-5
RADIX command 4-4
RD command modifier 5-7
Real (R) format 4-6
Register field mnemonics

A-4

FPS 860-7489-00lA

Register location commands
6-1

Register specifiers (reg)
6-~

reg command argument
6-3

Related manuals 1-2
Relational expressions

(relexp) 6-5
Relational operators

(relop) 6-5
relexp command parameter

6-5
relop command parameter

6-5
right field 6-4
RUN command 5-9
Run user program (RUN)

5-9
RW command modifier 5-8

Scratch pad (SPAD) 1-4
Search a memory (SEARCH)

6-9
SEARCH command 6-9
Set integer radix (RADIX)

4-4
Set language mode (LANGUAGE)

4-1
Set or list a watchpoint

(WATCH) 5-7
Set or list breakpoints

(BREAK) 5-4
Set or list tracepoints

(TRACE) 5-7
Set output format (FORMAT)

4-5
Set search mask (MASK)

6-10
Setting I/O parameters

4-1
SI format (signed integer)

4-5,6
Signed integer (SI) format

4-6
System Job Executive

(SJE) access 3-3
Single User Monitor (SUM)

1-4
Single-step through user

program (STEP) 5-11
SPAD field mnemonics

A-1

FPS 860-7489-00lA

Special operation field
mnemonics A-3

Square brackets ([])
1-1

Stand-alone access
APDEBUG64 3-4
APSIM64 3-2

State save status r~gister
field mnemonics A-5

STATUS command 5-17
Status register field

mnemonics A-4
STEP command 5-11

5-15
Step-and-proceed 5-11
Subroutine execution

5-13
Subroutine return stack

addresses (@SRA)
5-2

SUBROUTINE statement
5-2

SUM 1-4
SY debugger option and

command 2-3
SYM linker option 2-3
SYMBOL command 4-3
Symbol table 5-3
Symbol, ·local 5-3
SYMbols command parameter

3-2,4
Syntax, generic 1-1

Table memory addresses
(@TMA) 5-2

Terms and acronyms 1-3
TIME command 5-13
TM/PS parity error register

field mnemonics A-6
Toggle command buffer

switches (BUFFER)
5-15

to field 6-4
TRACE command 5-7

5-15
Tracepoints 1-4; 5-7

UI format (unsigned integer)
4-5,6

Underlined lowercase
characters 1-1

Unsigned integer (UI)
format 4-6

Page INDEX

INDEX

5

INDEX

UNTIL:n command modifier
5-4

Uppercase characters
and letters 1-1

User status register
field mnemonics A-4

User-defined symbol 5-3
User-supplied parameters

3-4
APNUM 3-4
MDSIZE command parameter

3-5
[NO] IMAGE 3-4
[NO]LIST 3-4
[NO]SYMBOLS 3-4

3-5
[NO] TMRAM command

parameter 3-5
[NO] WAIT command

parameter 3-5
PSSIZE command parameter

3-5

Page INDEX 6

Using the debugger 2-3

Value expressions (value)
6-4

value command argument
6-4

WATCH command 5-7
5-15

Watchpoints 1-4; 5-7
WHERE command 5-13
WR command modifier 5-8

XBUF command 5-16

Z radix (hexadecimal)
4-4

ZERO command 6-14
Zero the AP (ZERO) 6-14

FPS 860-7489-00lA

Your comments will help us improve the quality and usefulness of our publications. Please fill
out and return this form to: Floating Point Systems, the mailing address is on the back.

Title of document----------------------------

Name/Title----------------------- Date ____ _
Firm __________________ Department----------

Address ------------------------------~
Telephone ______________________________ _

I used this manual ...

0 as an introduction to the subject
0 as an aid for advanced training
0 to instruct a class
0 to learn operating procedures
0 as a reference manual
0 other _____________ _

I found this material. ..

accurate/complete
written clearly
well illustrated
well indexed

Yes No
0 0
0 0
0 0
0 0

Please indicate below, listing the pages, any errors you found in the manual. Also !ndicate if
you would have liked more information on a certain subject.

r~. ~ 51 FLOATING POINT
I I SYSTEMS, INC.

... the world leader in array processors

CALL TOLL FREE (800) 547-1445
Ex. 4999. P.O. Box 23489 (S 500).
Portland, OR 97223 (503) 641-3151.
TLX: 360470 FLOATPOIN BEAV

