o

Floating Po¥nt Systers, Inc.,
‘Corporaté Training Department Materials

FPS-164 System
Overview and FORTRAN
User’s Materials

FPS-164 Software Programming Class

Revision 2.0 July 1984
| -d

e & & ¢ & o o o

® o & o o

® O € & o o & o o

FPS-164 FORTRAN USER'S COURSE OUTLINE

Dav 1

Introduction and course overview

FPS' Product introduction (AP family desc.)

FPS164 Hardware and Software Overview

The Program Development sequence

APFTN64 - Use and Features

Lab 1: APFTN64 and executing a program on the FPS-164
Introduction to the Systems Job Executive (SJE)

Lab 2: Using Basic SJE commands

Day 2

Quiz and Review

Host Data Conversion Utilities

Lab 3: Using SJE with the data conversion utilities

Details of the permanent file system (FMS)

Lab 4: Using SJE with data conversion and the
permanent file system

SJE system backup and restore

Program Debugging with APDEBUG64

Lab 5: Using APDEBUGé64

Program Conversion

Lab 6: Writing an APEX64 subroutine in ADC mode

Day 3

Quiz and Review

Program Timing Utilities

Lab 7: Subroutine timing

Details of APEX64

Lab 8: Accessing an APEX64 subroutine in UDC mode
Problem Reporting (the T.A.R.)

FPService and technical newsletters

Course Evaluation

(Optional Topics)

July 23, 1984

H8-BIT PRODLCTS

193@ - FPS INcoRPORATED.
MADE FLOATING POINT H/W
1934 - AP-110B > FoR MINDs
¢ 33-BIT ACCURACY (8D.D))
e 6 MHz CrLock <7161 naec.

010 0OPS./cYCLE 260 MIPS
=217 MFLOPS

1976 - AP-190OL » For MAIN'S

1980 - FPS-100 s FoR MINIS

¢ 38- BIT ACCURACY
¢4 MHz CLOCK €250 nsec

1981 - AP-180V ° For VAX +
DRIB0O

233-BIT PRODUCTS

| 1983- FPS-S000 FAMILY

* ConTRoL PROCESSOR BASED
UPON EARLIER PRODUCTS

o OPtionAL ARVTHMENIC
COPROCESSORS &

- 32-B\T ACCURACY

= 18 MFLOPS EACH

64-BIT PRODUCTS

1981 - FPS-164
* "AtracHe SCENTIFIC
CquuTEP\ WITH ON-
BOARD DIAGNQSTICS

® 4-BIT ACCLURACY =
15.5 DECIMAL DIGITS

* 182 naec/cycLe ‘
®* 55 MIPS ©oR 41 MFLOPS

® OPTIONAL W/W ALLOWS
UP TO 341 MFLOPS

(FPS-164 /MAX)

PRESENTATION SUMMARY

TYPICAL COMPUTER ELEMENTS

: FPS 4/8%

MEMORY

Single bus provides a pathway for
access to dll parts.

FPS 4/81

MEMORY

CONTROL

1.Each device must performm multiple functions.
2.5ingle bus limits access to all devices.

ADD TWO NUMBERS (Assembly Level)

C=A+8B
LD R1A "Load A into R1
ADD R1B "Add Aand B

ST RAC "Store answer in C

|

MEMORY

Fetch INST 1
AccessDataA D R1A

Fetch INST 2
Acess Data B ADD R1B

Fetch INST 3
AccessDataC ST RAC

3 Data references + 3 instruction loads = 6 total

UILD AN FP5-164
ATTACHED PROCESSOR

FPS 4/81

7

Temporary
Work
Reqisters
DATA PADS)

FLOATING ADDER

FLOATING MULTIPLIER

¢l

FADD

hl

Su

broutin

sl

FPS 4/81

Primary Instruction Word Groups

! 13 14 22 23 i S) S, B

GROUP FUNCTIONAL UNIT CONTROLLED

- SPAD Address unit (SPAD)
& Adder Adder unit (FA)

Branch Control unit (short branches)

Data Pad Data registers (X/Y),

Data Pad Bus (DPBS)
Multiplier Multiplier (FM)
Memory Main memory address, and store data source

Table memory address
Data Pad base address

INSTRUCTION SET OVERVIEW

Aggregate capability functional units per
182 nsec CPU cycle

« Two Data Computations

« Two Memory Accesses

- An Address Computation
 Four Data Register Accesses
« A Conditional Branch

ol

FPS-164 Attached Processor Architectural Features

FP5-164
D64 DISK SUBSYSTEM

e Consists of adapter, controller,
plus drives

e 135MB Winchester drives
e Up fo four drives per subsystem

e Up to six subsystems per 164
(3 Gigabytes)

e Required for SJE

bl

FPS-164 Attached Processor Architectural Features

FPS-164

D64 DISK SUBSYSTEM
e Rotational speed 3600 RPM
e Average latency - 8.33 MS
e Average seek time 30 MS
e Tracks per cylinder 10
e Cylinders per drive 823
e Density | 6220 BPI

e Sector size S512B

ot

FPS-164 Attached Processor Architectural Features

DIAGNOSTIC PROCESSOR

e Micro-processor and floppy disk

e Multiple-level diagnostic routines

e Independent Diagnostic Bus

e On-line logging of errors

e Board-level replacement strategy
- ® Remote diagnostic capability

1T

FPS-164 Attached Processor Architectural Features

REMOTE DIAGNOSTIC CAPABILITY

e FPS supplies VT101 Termindl

e FPS supplies modem

e Customer supplies phone

e Customer supplies RS232 cable

e For IBM ... ASCII port must be
defined in the operating system

SOFTWAREL

CONCEPTS

X2

LOOP IN LINEAR FORM

LOOP IN PARALLEL FORM

)/

FPS-164 Attached Processor Architectural Features

DEFINITION: SOFTWARE PIPELINE

A Software Pipeline is a software
construct whereby multiple |
elements of an array are
concurrently being processed,
and each element is at a
different stage of processing.

9

lteration

"PIPELI

NING"

t?

el En-l'ry Po it

THE SETUP

1/

Serial Execution

Seridl

V.

Paradllel E

xecution

o APPROACHES:
- EnTiRe Pem. ON 164

- Host Resipent MAINLINE
CALS 164 OSuBROUTINES

* CHOICES:
- SJE
- APEXGAY

A

ADC MODE OF OPERATION (APEXGH)

User Controlled Automatic AP

Host Processin Host Processin
i 9 9 J]

Pam. Execution Within the Host (Only) PC\m Execution Within The AP

Processing

ve

(APEXGA ONLY)
OVERLAPPING DATA TRANSFER AND AP EXECUTION

Transfer Transfer
ADC Method Datato Execute Results

AP Routin to Host

Routine
1

Transfer Transfer
Datato Execute Results
AP | Routine to Host |

Routine
2

TIne ‘ Transfer Transfer
UDC Method Datato Execute Datato

e maoutine _to Host

il KN | O

Transfer Transfer
Datato Execute Results

Routine

2
TimMe o

VAX/VMS PDS FLOWCHART

Y

MAINLINE APFTNGY SOURCE APALEH SOUR(
(.FOR) (FOR) (.SRC
[f*ORTRAN64] APAL64
AP OBYECT Cone I “PL'BR“I AT BIECT COD
(.AOB) Y (.A0B)
APLINK64

HOST
COMPILER

HOST
OB JECT

HOST
LINKER

EXECUTABLE
"PROGRAM

T

QYMBOL TABLE
(.A5Y

)

APSIM64/

AP LOAD
MODULE

APDEBUG64

(IMG

32

—>» SJUE

IBM/CMS PDS FLOWCHART

; .

AINLINE APFTNGH SOURCE APALGH SOURCE
FORTRAN) (APFTNGH) (APALCH)
lAPFORTRAN64 l l APAL64
AP OBTECT Cone v I A"'—'BR“I A BIECT CODE
(APTXTGH) v CAPTXTGH)
]
APLINK64
HASI QYMBoL TABLE
(FORTRAN) (APSMBGH)
7 APSIM64/ |
K | APDEBUG64 |
HOST | » -
COMPILER AP LOAD

(APIMGGH)

HOST
OB JECT

HOST
LINKER

EXECUTABLE
"PROGRAM v
A A

1. APFTNGH

EXTENSION OF FTN-3?

* CROSS- COMPILER
* 2 PGM. DEJIGNS:

A AP-RESIDENT SUBROLTINES
CONTROLLED BY HOST-RES.
MAINLINE T APEX64]

B AP-RESIDENT MAINLINES +
SUBROVTINES [SIE]

* (HO\CE OF METHOD:

-SEE ¢ 572 5 USER'S HNDBX.
AND MASTER TINDEX (E rel)

3

*LANGUAGE REQUIREMENTS

- 1% 9TMT. MULST BE:

PROGRAM , SUBROUTINE » FUNCTION)
BHLOCK DATA » APROUTINE »

APFUNCTION
- LAST 5TMT. MUST BE END |

* RESTRICTIONS

- NO 118-B1T DBL. PRECI\DON

- ReSERQVED WORDS IF ASSY. SRC.
OLTT OPTION VSED (p.2-5]

¥

*FEATURES

= SYMBOL NAMED = A1 CHAR MAX.
ALPHANUMERIC Pl % AND -

- RADIX : DEFALLT 'S DECIMAL
HEX : Z'DA2’
oCTAL: O’7#3%’
BINARY : B’ 11D’

- ARGUMENT CONTROL 9TMTS,

PURPOSE: REDUCE TI/O

APROUT INE
APFUNCTION

APIN LHost+AP]
APOU T [AP—~Host)
APIO [Host+AP |

"EXAMPLE :

APROUTINE GEN (X.v.2)

DIMENSION X(18) Y(1&) 2 (1)
COMMON /IN/ c(1¢)
COMMON /0uT/ D(\@)

APIN /IN/» X(12),Y(®)>Z(3)
APOUT /OUT/

-EXAMPLE [DYNAMIC DIMENSIONS]®

APROUTINE GEN (X,Y,2.N)
DIMENSION X(N)»Y(N), 2(N)

APIN XY, N
APOUT 7

b

- |F STARTS WITH SUBROUTINE OR
FUNCTION : |

° ALL ARGS. + (OMMON ARE
TRANSFERRED BOTH WAYS

= |F STARTS WITH APROUTINE:

o |F 1T 1SN'T DECLARED WITH
APIN» APOUT» DR APTO » NO
TRANSFER

- IF STARTS WITH APFUNCTION:

o UNDECLARED COMMON NOT
TRANSFERED

° UNDECLARED ARGH. HOST—AP

° FCN. RESULT XFERED BACK
10 THE HOST

3%

N (2)

)

= ADDITIONAL

° LOGICAL®

15

INTRINSIC FONS.

PROVIDE STRING MANI ?ULM\ON +
LOGICAL oPERHT\ONS

° WORX ON H-BIT DHTH

AND » OR » SHIFT » EQV>

NEQV s
o STRING : LOC2EXTRACT o INSERT

- EXAMPLE :

* YVIEW = EXTRACT (N(2115520)

(- O\M DI
(UL RS g U

65

M

\

-Aooimionar Comeer DiRectives

o CONTROL ASPECTS OF COMPILATION
PLHCED IN COL. 1 OF APFTNLY SRC:

$\NSERT filename’
$LIST

SNOLIST

$ FOOTER
SEJECT

* COMPILATION OPTIONS TAXE
PRECEDENCE

Yo

*DATA TYPES:

-8 TYPES:
INTEGER REAL

COMPLEX DOUBLE PRECISION

LOGICAL HOLLERITH
WORD CHARACTER

-INTEGER L#2,x4,%8]

T\ 31 32

63

/// 5AME AS (327. 2's CoMP. INTEGER

- REAL [«y]

%} l@n 2

! AV 4 . " e L T n
| EXP. ;3 2's COMP., MANTISSA

[BIA‘S .\‘S\GN B\T
BIT

Ui

- DDUBLE PRECISION LREM*B cexlt]
° SAME TORMAT AS REAL

- COMPLEX U[#85x16]

° 7 (CONSECUTIVE REAL NUMBRERS.
o 1% WORD = REAL PART |
o 2N WORD = IMAGINARY PART

- LOGICAL L*1~%2-x4+ 48]

® I i 63
R SAME A3 TRUE =1
BIT 31> FALSE =0
- WORD
2 63

o RIGHT JUSTIFED
° ©® TFILLED

1A

= HOLLERITH +CHARACTER

0

3'.32 63

T T
CH1 | CHZ | cu3
i |

I
!
1
l

l
CHU | CHS {cvb CHT [CHB
| i { |

o ASCII FORMAT
° CHARACTER 13 @ FILLED

HOLLERITH 1S A3CII SPACE

Q

(o]

(3) WV Sy

]

(Q'4Q’) FILLED
7 COMPILER OPTIONS:

HY :

H8 : & cuaR./WORD Lderault)

4 cHPAR. /WORD

e

ui

*COMPILER DIAGS.

=~ PROVIDE 9RC. LINE NUMBER>

SEVERITY LEVEL » MESSAGE »
AND OPTIONAL DETAILS

- 4 ERROR SEVERITY LEVELS:

WARNING (W)
ERROR (E)
SEVERE (S)

TERMINAL ()

W

*OPTIMIZATION

- AP INDEPENDENT OPTS:

. COMMON SUBEXPRESSION ELIM,
2. CONSTANT FOLDING
3. DEAD CODE ELIMINATION

4. INVARIANT CODE MOTION
S. INDUCTION VARIABLE ELIM.

- AP DEPENDENT OPTS:

a. FUNCTIONAL UNVT SCHEDULING

b. STRENGTH REDUCTION
c. REGISTER ALLOCATION

d. SOFTWARE PIPELINING

4sS

- QPTIMIZATION LEVELS

O LoOKS AT ERACH 9RC. LINE-1
AT A TIME. FASTEAQT. (1.2,55"3€]

1 BASIC BLOCK = CODE W/SINGLE

ENTRY + EXIT. LEVEL ©® ON
BASIC BLOCK + Cal

LEVEL 1 ON ENTIRE PGM.,
ALSO [¢~35 +3omE cope

reayrrangement (5))

“PIPELINER”. PERFORMS [4]
ON “WELL BEWAVED" LOOPS

LEVEL 3 PLus L4l

Y%

|«COMPILER OPTIONS

| - DEFAULTS ARE: CVAX/VMS SYNTAY]

/OPT=1
/OBTECT

/DIAGD = WARNING
/ FAILURE = ERROR

/ NOONE TRIP
/ XOFF = ALL

- USEFUL OPTIONQ
/LIST

/ CODE
/ APAL
/ MAP

/ DEBUG

43

° COMPILER OPTIONS

- DEFAULTS ARE: [1BM/CMs Syntaxl]

OPT (1)
OBJECT
DIAG (WARNING)

FAILURE (ERROR)
HE

- USEFUL OPTIONGS:

LIST
CODt

APAL
MAP (LEVEL)

DEBUG

48

MATH LIBRARY (APMAT\-\ GLD

Fonk Ml %@*w

» PURPOSE: ° ey

Cowection OF 500 OPTIMIZEL
Assy. Lancuace RouTines

» Use:
CawaelE From APFTNGY
OrR APALGAH

» INDEX:

- Cu. 85 APFTNEY User's Guioe
- CH. 2 APMATHGY ParT 1
- Are. F i APMATHEH ParT 3

«a

Matu Lisrary (APMATHGH)

o [YPEs OF KouTines:

- Scauar
- VECTOR

BAs\C MaATH
VEC10R — SCALAR
VECToR ComParISONS

ComeLex ARITHMETIC
MATRIX OPERATIONS
FFT's

S\anAL PROCESSING

Searse Matrix OPERATION.
Abvancen MATH FuneTion

EFFICIENT APFTN64 PROGRAMS

Aveid using loops with small iteration counts
when compiling at OPT=3 or OPT=4.

Use DO-loops, instead of IF and GOTO statements,
in loops that can be pipelined.

Use ONETRIP compiler option.
Use APMATH64 routines if
One routine can replace an entire loop.
The iteration count of the loop 1s 68 or more.

One math library intrinsic function can be used.

s

2. APLINKGY - INTRO.

*PURPOSE

LINK AND RELOCATE AP OBIECT
CODE.

* OUTPUT

HAST [Host-To-AP 5w INTERFACE]
LOAD MODULE

* INVOKATION

Cvax/vms] $APLINKGY Fiiespec
C1BM/cMmsl APLINKGHY “Riame

5

Exercise 1

This exercise is designed to give you a chance to use the APFTN64
language and compiler, to see differences and features of this product.

1. Write an APFTN64 program called "WXYZ" which will solve the
folowing equation:

(C X1 % Yi) + Wi)

pi * sqre(2) * i

* W, X, Y, and Z each have 20 elements, and i
varies from 1 to 20

* This program should create data for W, X, and Y,
using the following values:

W: 1 to 20, by 1
X: 2 to 40, by 2
Y: 6 to 25, by 1

* Have your program display its results

2. Compile the program 3 seperate times to get a chance to see what
the various APFTIN64 options do and become familiar with the
syntax. Some possibilities are:

Pass 1: LIST
Pass 2: LIST, CODE, and opt. level 3
Pass 3: DEBUG, APAL, LIST

3. Use APLINK64 to create the load module.

4. Use the following commands to execute your program. Substitute
the name of the load module for XXXX in the command list below:

SJE

ATTACH/WAIT

COPYIN/B "XXXX',PROG
PROG

DETACH

QUIT

93

p—— L 4

Floating Point Systems, Inc.,
‘Corporate Training Department Materials

System Job
Executive
(SJE)

FPS-164 Software Programming Class

| =]

SH

Processing of a complete user job on the AP,
FORTRAN 77 10 and TERMINAL I.0.

I/0 directly to host disk from an AP program.
A Job Definition Language supporting user job control.

File transfer between the host and AP file systems of
both text and binary files.

Permanent disk file system on the D64. The File
Management System (FMS) provides:

* Separate user directories.
* Access keys.

Roll-in/Roll-ocut to provide sharing of the AP by
-several jobs.

Accounting to record CPU time, total eclapsed time,
and number of disk I/O's for each job in the file.

5%

* UM = G4 KWorpS
* FMS STRUCTURE

-7 LeveL DIRECTORY STRUCTURE .
WITH “SYSTEM" DIR. AT ToP » FOLLOWED
BY USER DIRECTORIES

= 3 CLASSES OF FILES: [2-2]

* UNNAMED TEMPORARY
* SEMI- PERMANENT

 PERMANENT

- FILE + DIRECTORY PROTECTION
PROVIDED BY Z OPTIONAL PASSWO

CALLED “KEvYs” [r2-3]
* READER KEY : Allows vead access

* OWNER KEY : READ»WRITE, DELETE
CREATE » RENAME

’.TEMVDRAR\I DIRECTORY CALLED
ISCRATCH:" CREATED WHEN ATTACHED

* CoNTaINS SEMI-PERMANENT FILES

NN AT AN

= FILES + DIRECIORIES CAN SPAN ACRDSS
DH’s + BAD LOCATIONS

| * ROLL-IN ZROLL-OUT (r325:001]]

- ALLOWS ROUND-ROBIN SHARING
OF AP BY STE +«APEXWY JOBRS

- KEQUIRES D-6H

MAX. OF 31 J0BS IN THE QUEVE.
51T OF QUEVE + TIME SLICE RARE

SITE-CHANGERBLE IN SITE PARAMETRR
FiLt.

- APEXCY + SIE JOBS TReATED THE 5AME

*ACCOUNTING [e3-25;v0.1)

= A D4 FILE CONTAINS INFORMATION
ABOLT WHO USED THE AP (1IN Ei1THeR

SIE ok ateXed MODE) AND:
*Attach Time (Wall Clock)
* Execotion Time

* No. of TIO Orerations Yecformed

= The FiLe » CALLED USAGEGY .
19 STORED AS BINARY DATA 5 AND

A TRANSLATION WGM. MUST Be
VDSED 70 READ IT.

AP file names can be 1 to 128 characters in length
(including directory names and keys), AP file names
can contain any of the following ASCII characters:

* letters R...2D)
* digits (7...9)
* dollar sign ()

* pericd (.)
* underscore (_)
Colons are used to separate directories from file names,

and keys are enclosed in parentheses. Lowercase letters
are treated the same as uppercase.

94

* HOST 1[0 FILENAMING [%%)

= RESERVED NAMES- <INPUT AND -DUTRUT
- DerppLTe ¢ ANPUT =S :0UTPUT = b

- PREFIXES: “THOST:" AND ““HOSTCHAR:

- Us€D 10 REFER TO BINARY *(UAR-
ACTER KHOST RKRESIDENT FILES

ATTach [Wait] [TMram] [n] |

* Attempt to become the current AP user.
* Jait cption - waits for an available AP,

* /THMram option - specifies that Tabla Memory RAM is
to be used in this job.

* 'n' option - specifies a particular AP to assign.

EXAMPLES:
ATTACH Attach to any AP, but don't wait if
none are available
ATTAW 3 Attach only to AP number 3, and

wait if it is not available.

Gl

COPYIn[/Binary]l] [/DRives=XY,...] <socurce_file>[,<dest_file>]

t

Copy a file from the Host's file system to the SJE
file system.

/Binary cption - transfers a binary file. Text file
transfers are the default.

If the <dest_file> i3 not specified, then the
<socurce_file> is used.

SJE supports the transfer of sequential access files
only.

/DRives specifies up to 18 drives on the FPS-D64 Disk
Subsystem to place the file on. "X", which has a
value from 2 to 7, refers to the subsystem desired
and "Y" refers to the drive on the desired subsystem
with a value from 8 to 3.

EXAMPLES:

COPYIN HOSTTEXT.TXT Copy the Host text file,

HOSTTEXT.TXT, to a new SJE
file of the same name.

COPYI/B MYPROG.IMG,GO0 Copy the host bPinary file,

MYPROG.IMG to an SJE file
named GO.

A

PROGRAM EXECUTION

<Program> <Parameter List>

* <Program> is the file name of the program to be executed

* The parameter list may be empty.

* Examples:

MYPROG A,B ! Execute the user program in the image file
! "MYPROG" which has been copied into the SJE.
! Pass the Parameter List "A,B" as a string to
IMYPROG

COPY FILE1,FILE2. ! Execute a user-written utility
! to copy FILE1 to FILE2 on the AP.

€3

COPYOUT /Binary] <source_filename> [,<dest_filename>]

2 Copy a file from the SJE file system to the HOST
file system.

* /Binary option - transfers a binary file. Text
file transfers are the default.

2 If the <dest_filername> is not specified, then the
<source_f{ilename> is used.

* SJE supports the transfer of sequential access files
only.

EXAMPLES:

COPYOUT LISFILE.LIS Copy the SJE text file,
LISFILE.LIS, to a new HOST
file of the same name.

COPYO..B MY,MYDAT.DAT Copy the SJE binary file
MY to a host file, MYDAT.DAT.

X

DETach
* Release the AP for use by other users.

firy files remaining in the :SCRATCH: directory at the
time of a DETACH are lost,

73

QUIT

* Quit interacting with SJE and return to the hest
command level.

* May be used whenever the user is not attached to the

[=]
e .

EXAMPLES:

QUIT Quit interacting with SJE.

bl

JDL EXAMPLE

$ SJE
SJE Version 1.0

SJE> ATTACH/WAIT
SJE-I-ATTACH, Assigned processor number: 1.

SJE> COPYIN/BINARY MYPROG. IMG,MYPROG
SJE-1-COPYIN, File copied in.

SJE> COPYIN/BINARY DATAFILE1.DAT,DATAFILE
SJE-I-COPYIN, File copied in.

SJE> MYPROG
[user interacts with the executing program "MYPROG"]

SJE> COPYOUT/BINARY DATAF!LEZ,DATAFILE.’Z.DAT
SJE-1-COPYQUT, File copied out,

SJE> COPYOUT LISTFILE,LISTFILE.LIS
SJE-1-COPYQUT, File copied out.

SJE> DETACH
SJE> QUIT
$

6¥

SJE: Lab Exercise 1

Purpose:

This lab familiarizes you with the basic JDL command set in SJE, and in
control and execution of a simple program under SJE.

1. Write a small host FORTRAN program which creates 3 FORMATTED data
files. These files should each contain 25 real numbers which will
be used by the "WXYZ" APFTN64 program written earlier. Suggested
names for the files might be WDATA, XDATA, and YDATA, with the
file type appropriate for your host (VAX = .DAT; CMS = DATA).

2. Modify the host-resident mainline that you wrote earlier to expect
the input data from the 3 files created in step 1, but the file
names used in your OPEN statements should be WDATA, XDATA, and
YDATA without any file types. Your mainline should also write the
results of the program into a new FORMATTED file called ZDATA (no
file type).

3. Use APFTN64 and APLINK64 to compile and 1link the modified WXYZ
program.

4. Use SJE to assign an AP, bring your load module and data files

into the FMS, execute your program, and bring the results back to
your host.

5. Visually verify that the file brought back to your host contains
correct data.

User Attention

* User fAittention is a host-dependent terminal coperation
which gains the attention of the SJE system for the

purpose of typing a command.
= On the VRAX, User Pttertion is a“conttpl-%.
x (BM/CMS: EITHER HIT 'ENTER™ OR "PAL TWICE

Only the ABORT, CONTINUE, and DEBUG/NOW commands may be
used following the User ARttention.

After performing this operation, a 15-second delay can
occur before SJE's attention is gained.

69

ABORT

* Terminate the executing AP program.

* Used following a User fttention.

RBORT Abort the program.

CONtirnue

* Resume execution of an interrupted AP program.

The CONTINLE statement is used following a control-
¢ or a FORTRAN PRUSE.

CON Resume execution of the AP program.

DEBug [/Now]
* Invokes the FPS interactive symbolic debugger,
APDEBUGS 4.

* /NOW option - causes immediate execution of the
debugger.

* /Defer option causes the debugger to gain control
when the next program is locaded. /Defer is the default.

EXAMPLES:

DEBUG SJE will run debugger when next program
is loaded.

L

HOST CONVERSION UTILITIES

OVERVIEW

* Perform data conversion between Host and FPS-164 data formats.
* Perform file conversion between Host and SJE file formats.

* Conversion Utility use:

1) Transfer binary (machine format) data from a file which was written
using FORTRAN Unformatted WRITE statements;

2) Read the file on the destination system using the matching FORTRAN
Unformatted READ statements. '

* The user can combine program calls to these utilities with Host |/O services
to create Host files that can be transferred as binary files.

13

DATA AND FILE CONVERSION ROUTINES

* Data conversion routines convert to and from the following types of data:

Host integers « HOST LOGICALS
Host real (floating-point) numbers « HOST CHARACTERS
Host double-precision numbers

SJE integers

SJE real (floating-point) numbers

* File conversion routines convert FORTRAN Unformatted File records between
Host and AP formats.

e Convirsion Roumines In Uity Ligrary:

VAX/VMS @ [FPSIUTILEY.OLB

IBM/CMS: UTILGY TXTLIB
IBM/MVS: FPS.UTILGY

'L

ConvERDloN PrOCESS
Host —= AP

PRQVIDE AN 82@8-BYTE
DATA BUFFER
|

CALL INITIOB TQ IN-
ITIALIZE THE 8298-
BYTE DATA BUFFER §
OPEN AN OUTPUT DATA

FILE
CONVERT DATA USING
DATA CONVERSION
UTILITIES

CALL PUTUR TO CREATE
AN AP FORTRAN RECORD
AND PLACE IT IN THE
8208-BYTE DATA BUFFER

AVE ALL THE RECORD

CALL PUTEF TO WRITE
THE LAST BUFFER AND
THE E.O.F.RECORD INTO
THE OQUTPUT DATA FILE

s

CLOSE THE OUTPUT
DATA FILE

1

ONVERSION PRocess
AP—=HosT

PROVIDE AN 8208-BYTE
DATA BUFFER

CALL INITIB TO

INITIALIZE THE 8208-
BYTE BUFFER AND OPEN
THE INPUT FILE THAT
HAS THE DATA TO READ

!

CALL GETUR TO READ
A RECORD FROM THE
INPUT FILE

IS THE
RECORD THE END
?

CONVERT THE RECORD
USING HOST CONVERSION
UTILITIES

ARE THERE MORE
ECORDS TO READ?

CLOSE THE INPUT
DATA FILE

ConvERsI1ON PROCES%

e ConTRoL RouTINES

INITOB
INIT | B

PUTUR
GETUR

PUTEF
| o AL ARe INTEGER

FuncTions

#

Conversion PROCESS

o HosT AP RouTINES

FPHIZI

FPHRZR
FPHDZR
FPHL2L
FPHC2C

e AP » Host RouTiNes
FPIZHI
FPRZHR
FPRZHD

FPLZHL
* FPCZHC

B

¥

SJE: Lab Exercise 2

Purpose:

This lab familiarizes you with the host conversion utilities.

Write a host program which creates an UNFORMATTED data file
containing 10 integers, with values frrom 1 to 10.

Write another host program which converts the data in the file
created in step 1 to proper AP integer format. You will have to
store the converted data in a new file.

Write a short APFIN64 program which reads an AP file, squares each
value, and write the results as real numbers to a new UNFORMATTED
file which is created by this program on your host.

Use SJE to copy the converted data and the AP load module to the
AP and execute the program.

Write another host program to convert the unformatted data file
written from the AP. Verify that your programs work correctly.

ACCESS <directory_name>

* Set the current directory allowing access
to it and the files in the directory.

* The access given to the directory depends on the
password specified within the (directory_name>.

EXAMPLES:

ACCESS :USER (SECRET)

AC :SCRATCH:

ACC (PWORD) :

Change the current directory to
:USER, specifying the password
"SECRET".

Change the current directory to
the user's personal scratch
directory. This directory is
assigned to the user when
connected to the AP.

Set the current directory to
the system directory. "PUORD"
is its password.

CHange [roptions] <file_néme>
*x Change the attributes of a file.

* The attributes that can be changed are:

RECTYP reccerd type
FILORG file organization
FMTTYP format type

EXTSIZE extent size
MAXSIZE maximum size
LENGTH record length

EXAMPLE:

CHANGE /FILORG=SEQUENTIAL A.FTN Change the file
organization of file

"AR.FTN" to sequential.

82

COpy [roptions] <scurce_name> <(dest_name>

* Copy files andror directories from one place to
another in the AP file system.

* The file or files in the directory named by the
(source_rame> are copied to the destination file
or directory named by the <(dest_name>.

= No data conversion is performed on the copied file.
The destination file is created with the same
attributes as the socurce file except for the keys,
These attributes of the destination file are
assigned bilank ocwner and read keys unless the
/KEYS, /OKEY, or /RKEY cptions are specified.

* The destination directory must already exist.

The following are the cptions for the COPY command:

/REplace

/KEys

7OKey=sounerkey

/RKeysreadkey

Specifies that if a destination file with the
same name as a source file exists, the old
file is replaced with the new file and its
Existing files are not replaced unless the
cption is used.

Specifies that all the files in the source
directory are to be copied to the destination
directory. Files of similar names are not
replaced unless the /RE option is specified.

Specifies that the socurce file's keys are
to be used as the keys for the destination
file.

Specifies that the ocwner key of the
destination file is assigned the simple
string in "ocwnerkey”.

Specifies that the read key of the
destination file is assigned the simple
string in “readkey”.

COpy [roptions] <socurce_name> <(dest_name>

* Copy files andr/or directories from one place to
another in the AP file system.

EXAMPLES:
C0 AFILE :BARCKUP:SFILE Copy the file "AFILE" in the
current directery to the file

"AFILE" in the directory
: BACKLP.

COPY/REP :TIM:ONE :JOE:LEVEL1
Copy the file "ONE" in the directory
:TIM to file "LEVEL1" in the directory
:JOE, replacing it if it already exists.

COPY/ALL/REPLACE :GEORGE: :SLE:
After the copy statement is complete,

the directory :SUE contains the files
it already had and all of the files
from the directory :GEORGE. If :SUE
had any file with the same name as

any in :GEORGE, the files from :GEORGE
overurote the files in :SUE.

&

CReate [options] <file_name>
* Create files or directories in the AP file system.

x Optiona include:

Dlrectory - Creates a directery with the name
specified in <file_name>,.

/RKeysreadkey - Assigns password readkey to allow
read access to the created file or directory.

/7OKeysocunerkey - 'ﬁssigns password cunerkey to allow
owner access (read,write,delete,and change the
attributes) of the created file or directory.

/DRives= (XY,...) - Specifies D64 disk drives to use
for file storage. The default is any subsystem and
drive. X specifies the subsystem and can be an integer
from 2 to 7. Y specifies the drive on the subsystem
and can be and integer from # to 3.

* Options valid only for files (not directories) include:

/Slze=size - Speci fies the initial size for the file
. as an integer from 1K to 2 (22321)K. The default
size is 18K words.

/REctyp=type - Iype can be Fixed, Variable, or
None. The default is None.

Fllorg=otype - Otvpe can be Sequential or Direct.
The default is Sequential.

89

CReate [/options] <file_name>

*

4

-

Create files or directories in the AP file system.

Options valid only for files (not directories) include

AEngth=reclen - Specifies the size of each record
for files using a record structure. The default is
is 8192 bytes per record.

AMAxsize=msize - Specifies the maximum size,in K words
of the file. An msize of -1, the default value,
indicates the maximum possible (2x32]1 K words) size.

/EXtsizesesize - Specifies the file extent size. Esiz
specifies the number of K words for each extension

to the file. Default esize is one-fourth of the

Slze attribute.

EXAMPLES:

CREATE FILE! Create FILEI in the currentiy accessed
directory.

CR/DIR (SYSPRSSUD) :D1 Create a directory called
:D1, specifying the System Directory
password "SYSPASSWD".

CR/RE=F FI=DIR & Create FILE!l with a fixed

FILE1 record structure, and a
direct file organization.
"&" continues a line.

8o

DElete [AL1] [DiIrectory] <«file_1>,...<file_n>

* Remove the specified files or directories from the
AP file system.

= /ALl option deletes all of the files in the
specified directory.

* /Dlrectory option indicates that a directory is to
be deleted. The directory must be empty to delete.

EXAMPLE :

DEALLDIR :USER: Delete all the files in the
directory :USER and delete
the directory itself.

DE DATA, :USER:JUNK Delete Data in the current

directory and delete JUNK in
the directory USER.

gt

DIrectory [options] [<file>,...]

Lists information concerning the specified files, 1If
no file names are specified, all the files in the
current directory are listed. Not for host files,

The options for the DIRECTORY command are:

* /ATtiributes - List all attributes of the specified
files (subject to access rights). By default,
only the file name is listed.

x /0Ufput-<output_name>“ Output of the directory listing
goes to <output_name>,
instead of to the terminal.

written, if it exists,
x ,SONLY List only the directory and not the files
in it. :
EXAMPLES:
DI List the current directory.
DI :USER: List the names of all the files in
directory :USER.
DI : List all of the files and directories in the

System Directory.

DI/CUT=DIR.LISAATT & List all of the file attributes
DATA.DAT, CLASS.CL for DATA.DAT and CLASS.CL.
The listing is written to DIR.LIS
*&" Contirues the line.

88

REName [/RKey=key] <old_name> [(new_name>]
* Change the name and/or read and ocwner keys of the
specified file or directory.

* /RKey - Changes the old read key for <old_name>
to key. Ouwner access to the directery is raguirad
to change keys.

* /OKey - Changes the old ocwner key for <old_name>
to key. Owner access to the directory is required
to change keys,

* {new_name> - Changes the name of a file. OQuner access
to the file or directory is required.

EXAMPLE:

REN MINE URS Rename the file MINE, URS.

89

SEt [ACCOunt=acctname] [/LIMit=timelimit]
* Set certain characteristics of the user job.
* /Account option - records the simple or quoted
string in acctname in the job accounting file.
* /Limit option - sets the value in time=limit tc be
the amcunt of AP CPU time, in secornds, allcwed each
program within a job before it is timed-ocut and
aborted. The default is no time limit.
EXAMPLES:

SE/LIM=28 After 28 seconds, the job will be aborte

9¢

SHow [roption]

* Report information to the user.
= /ACcess option - Show the currently accessed directory.
* ,Dlsks option - Gives the status of the disks in system
= AIMit option - Shows the AP CPU time limit.
* OUTput=<file_name> option - causes the information

to be sent to <file_name> instead of the users terminal

EXAMPLE:

SH/AC List the current directory name.

Qi

Type <file_name>
2 Print a text file to the terminal.

s <(file_name> is typed to the terminal.

EXAMPLE :

TYPE :USER:MYFILE List the MYFILE in directory
:USER: to the terminal.

qt

SJE: Lab Exercise 3

Purpose:

[oa e}

Use the conversion utilities
Access files from various directories within FMS from SJE
Experiment with more advanced JDL commands

Supplies: . -

a. In your directory, a file called BDATA, which is UNFORMATTED
and contains the values 5 to 50, by 5.

b. On the AP, in the directory :JRAB:, a FORMATTED file called
ADATA which contains 10 reals (F5.2) ranging from 1 to 10, by
1.

Write an APFTN64 program called VECTADD which will add the 2 files
mentioned in step 1 together and create a third file called CDATA:

a. ADATA resided in the AP directory :JRAB:

b. BDATA will be converted into AP format and brought over to
the AP with the name NEWDATA and placed in your scratch
directory

c. VECTADD creates an UNFORMATTED file called CDATA containing
the sums of each data pair in ADATA and NEWDATA

Write a host program which converts the 10 reals in BDATA to
proper AP format in a file called NEWDATA.

Start up SJE and perform the following:

a. Determine your current directory

b. Create a new directory named the same as your login name

c. Change your default to the new directory, and verify

d. Copy NEWDATA from the host to your scratch directory without
changing your default directory

e. Reset to your scratch directory

f. Determine the file attributes of NEWDATA

g. Without bringing in your VECTADD load module, start it
executing (think about the file naming syntax)

h. Bring CDATA out from the AP back to the host

i. Delete the directory you created and any files that it might
contain

j- Detach and quit

Write a host program to convert the 10 reals in CDATA to host
format. Display the data to verify proper operation of all steps.

Q3

PREserve [/parameters][<ihput_specifier>]

x Save one or more AP files in one host file on the host

* These files can later be restored to the AP file
system using the RESTORE statement.

* <Kinput_specifier> lists one or more names of existing
FMS files or directcries to be prezerved.

* If a directory name is specified, all files and
directories in that directory are preserved.

* A :SCRATCH: directory cannot be preserved.

W

PREserve [/parameters][<input_specifier>]
The cptions for the PRESERVE command are:

* /FILe=:HOST:<host_file> - File will be preserved on
host Disk, under the name <host_file>.

* /ID=<(name> - <name> is the name stored with the
preserve file for identification purposes,

* J/TREE - Save the currently accessed directory,
including sub-directories,

* Alst[=]list_file] - Write the name and length for
each file saved to the file <list_file>. If
<list_file> is omitted, the information is written to
the user's terminal.

9

PREserve [/parameters] [Kinput_specifier>]

*

The following are closely related cptions:

/TAPe=:HOST: <host_device> - File will be preserved on
host tape drive, under the name <host_device>.

/DENsity=dnum -~ Use in conjunction with the /TAPe
cption, where dnum is an integer that specifies the
density of information in bits per inch of tape.
The default is 16889 bits per inch.

/SEGrum=srum - Use in conjunction with the /TAPe
option, where snum is an integer that identifies

the file's relative position on the tape. The
preserve file is written as the first file on the
tape, by default. More than one preserve file can
be written on a single tape by specifying a different
srum for each file. A single preserve file can span
more than one tape. :

90

PREserve [/parameters] [Kinput_specifier>]

EXAMPLE:

The following example illustrates the use of RCCESS,
PRESERVE and RESTORE. In this example, several FMS
files are saved to a host disk file.

PRESERVE FILE=:HOST: DRAS: [DIRECT1] PRESERVE:.DAT &
/ID=MYFILES,LIST=: HOSTCHAR: PRESERVE1.LIS &
FILES,FILEB,FILEC, FILED

RESTOREFILE=:HOST:DRAG: [DIRECT1] PRESERVEL.DAT &
sID=MYFILES/REPLACE FILED

DRAF: [DIRECT1]PRESERVEL1.DAT is a preserve file having
MYFILES for an ID and containing the four FMS files
FILEA, FILED, FILEC, and FILED. The ocutput from
PRESERVE is written to the file PRESERVEL.LIS in the
user's default directory on the host.

This RESTORE replaces the FMS file FILED with the
FILED found in DRAB: [DIRECT!]PRESERVYEL.DAT.

9%

REStore [/parameters] [<output_specifier>]

* Restore FMS files and directories from a preserve
file on the host created by the PRESERVE command.

2 Flle=:HOST:<host_file> - <host_file> is the name
of the disk file in which the files or directories
specified by <output_specifier)> were preserved.
The A ILE parameter must be used when files are to
be restored from host disk.

* /IDs<name> - <(name> is the name stored with the
preserve file for identification purposes. The
71D parameter is required, and must be the same
name as was used when preserved.

* /REPlace - Replace existing FMS files by versions
found in the preserve file.

* Alst[=]list_file]l] - Write the name and length for
each file restored to the file <list_file>. If
<list_file> is omitted, the information is written to
the user's terminal.

18

REStore [/parameters] [<output_specifier>]

* The following are closely related options:

* /TAPe=:HOST:<host_device> - File will be preserved on
host tape drive, under the name <host_device>.

* DENsitysdnum - Use in conjunction with the /TAPe
option, where dnum is an integer that specifies the
density of 1nformation in bits per inch of tape.
The default is 1688 bits per inch.

* /SEGnum=srum - Use in conjunction with the /TAPe
option, where snum is an integer that identifies
the file's relative position on the tape. The
preserve file is written as the first file on the
tape, by default. More than one preserve file can
be written on a single tape by specifying a different
srnum for each file. A single preserve file can span
more than one tape.

REStore [/parameters] [<output_specifier)]

EXAMPLE :

The following example illustrates the use of ACCESS,
PRESERVE and RESTORE. In this example, the entire

FMS is saved onto magnetic tape using PRESERVE anc then
restored using RESTORE. RCCESS establishes a right to
the system directory.

ACCESS (system_password) :
PRESERVE /TAPE=:HOST:MTAB/ID=JAN.#1.1983/TREE

ACCESS (system_password) :
RESTORE /TAPE=:HOST:MTAB/ID=JAN.#1.1983

TREE specifies the currently accessed directory to be
saved, including all sub-directories., PRESERVE
dynamically ALLOCATEs tape drive MTAZ and MOUNTs a
tape on it, if necessary. PRESERVE aborts if MTAS
cannot be allocated. The user's console and the
operators console both receive MOUNT requests at the
time the tape should be physically placed on MTASB.

190

REStore [/parameters] [Koutput_specifier>]

EXAMPLE::

The following example illustrates the use of ACCESS,
PRESERVE and RESTORE. In this example, the entire

FMS is saved onto magnetic tape using PRESERVE and then
restored using RESTORE. ACCESS eatablishes a right to
the system directory.

ACCESS (system_password) :
PRESERVE /TAPE=:HOST:MTAZ/ID=JAN.#1.1983/TREE

ACCESS (system_password) : '
RESTORE /TAPE=:HOST:MTAB/ID=JAN.#1.1983

PRESERVE defaults the tape density to 1688 bpi and
writes the preserve file as the first and only file
on the tape. The ID, JAN.8#1.1983, is kept in the
preserve file header for identification in a RESTORE
operation.

101

REStore [/parameters] [Koutput_specifier>]

EXAMPLE:

The following example illustrates the use of ACCESS,
PRESERVE and RESTORE. In this example, the entire
FMS is saved onte magrnetic tape using PRESERVE and then

v w @ e « Twme ¥

restored usirg RESTORE. ACCESS establishes a right to
the system directory.

ACCESS (system_password) :
PRESERVE /TAPE=:HOST:MTAB/ID=JAN.F#1.1983/TREE

ACCESS (system_password) :
RESTORE /TAPE=:HOST:MTAB/ID=JAN.#1.1983

RESTORE interfaces with tape drive MTAB. The firs=t
file on the tape must have an ID of "JAN.#1.1983"

or RESTORE aborts. All FMS files and directories
contained in the preserve file will be created and
restored to FMS if they no longer exist. The REPLACE
parameter can be used to replace existing FMS files
with those found in the preserve file,

142

DEBUGGING

193

APDEBUG6EY

INTERACTIVE SYMBOLIC DEBUGGER

ACCESS TO ALL USER-VISIBLE REGISTERS AND’MEMORIES
SET, CLEAR, AND EXAMINE BREAKPOINTS

EXECUTE PROGRAMS IN SINGLE-STEP OR FREE-RUNNING MODE
DISPLAY OF ELAPSED EXECUTION TIME

ACCESS TO GLOBAL AND LOCAL SYMBOLS

STAND-ALONE OR FORTRAN-CALLABLE

INVOKING APDEBUGH4

@ THE AP COMPILATION SHOULD BE PERFORMED WITH THE

DEBUG OPTION

8 THE APLINKG64 SHCULD BE PERFORMED WITH THE

SYM oPTION

104

APS IMb4

“_LATION LIBRARY
-34S AP SOFTWARE TO EXECUTE ON HOST
~UNCTIONAL SIMULATION OF THE APEX INTERFACE
BITWISE SIMULATION OF THE AP

CAN BE LINKED WITH APDEBUGG4 TO PROVIDE AN INTERACTIVE
SIMULATOR WITHOUT USING THE AP

148

INVOKING APSIMb4

THE SIMULATOR IS SLOW SO IT IS INADVISABLE TO
EXECUTE A LARGE AMOUNT OF FORTRAN CODE ON THE

SIMULATOR

THE ONLY CHANGE IN THE PROCESS IS TO DEFINE THE
APSIMG4 LIBRARY IN PLACE OF THE APEX64 LIBRARY

VAX environment

$ FORTRAN/DEBUG/NOOPT VMUL.HSI
$ FORTRAN/DEBUG/NOOPT/LIST MAIN
$§ LINK/DEBUG MAIN,VMUL, -
FPS:APDEBUG64.0LB/LIB, -
FPS:APSIM64.0LB/LIB, -
FPS:UTIL64.0LB/LIB

§ EXIT

IBM (MVS/TSO) environment
LINK MAIN.OBJ,SUB.OBJ LOAD(MAIN.LOAD(MAIN)) FORTLIB +

LIB('X64.S.IAPEX.LIB', 'X64.S.APDBUG.LIB' , -
'X64.S.APSIM.LIB', 'X64.S.UTIL.LIB")

106

APSIMeH /APDEBLGE!
OVERVIEW FOR APFTNGY VS
* PURPOSE

Prowne INTERACTIVE DEBRVGGING +
Software SIMULATION ENVIRONMENT

. APDEBUGGH

1. USES THE HARDWARE
2. ACCESSED IN 3 WANY D

_ 5TAND ALONE PGH (INDWIDUBL RINS)

— IN APEXGH M™MODE ,WHEN AP SUBROUTING
1S CALLED

— From SIJE

. APSIMoGH

|. Host RESIDENT BIT-WISE SIMULATION
5> DIFFERENCES
- NO T]o SopPORT
~ UNAVAILABLE FROM SIE
- ONLY G4 K WoRrDs Man MEmor\J
— Not %ood Lo UDC mode

G)

193

* ACCESS : APEXGEY Mode

[. AVTOMATI\CALLY STARTED wUHeN AP
SUBROVTINE CALLED . SUBROUTINE S
NOT E€XecuTeD. DATA,PGM. — AP

2. UPON ©X'T = MAINULINE CONTINUES

23 PROGRAM DEVELOPMENT STEPS:

- USE "DERUG OPTION WITH APFTNGY
- UsE "SYM” OPTION wWITH APLINKGY

~ 05T LINK/LOAD wI\TH APDEBVGEY
AND|OR AP3IMCH LIBRARIES

e ACCESS: STANDALONE
|. ONLY NEED LOAD MODULE CREATED
BY APLINKGH ¢ SYMboL TABLE

2 YOU WILL NEED TO SET UP ALl AP
REGISTERS MEMORIES ETC. MANURLLY

- ACCESS: SJE

. SAME AD WITH APEX(LY |, EXCePT NO
HOST LINKAGE \S PERFORMED
2 . CANNOT USC APSIMGY

198

COMMANDS

ACTINATE 31ML$: SYmbol

For SYMmBOLIC DEBVGGING ,MmUST ACTIVATE
SympoL. TABLE €AcH TIMEe Aeslmw/APDEeueeq

1S ENTERED. . 3
2 . To AcTwaTe SYMBoL TARLe : SYM 'Tilenome '

L.

3 AcTWATE LOCAL SYMBOLS SVYM EW\‘Y‘WPO\’ni'
H . DisPLAaY SympoL INFO - SAYM '

. EXAMINE A VARIABLE : E xamine

|. VseD TO LooK AT A VARIABLE | REGISTER,
OR MEMORY
9 cAN Look AT

VARIABLES (INDE X, ADATA(Z),)
STMT. LABELS (.120)
SRC. LINE # (%$20)
ENTRY POINT
REGISTERD +HMEMORIED
3. QYNTAX: E INDEX

E ADATA (L) : ADATA (AG)
E T(1):1(98®) 19

184

‘CHANGE A VARIABLE: Deposit

l. USED To CHANGE THe \JALUE OF A
VARWAWBLE ,REG:@TEK) OR MEMORY

2. SINTAX: D INDEX = 22
"D ApPATA(4): AvaTA(S) = 2.5

+ EXECVTE A PGM : Ruyn

|. STARTS PROGRAM EXECUTION
2. SYNTAX: R {ENTRYPOINT

5. WHEN PGM. COMPLETES OR STOPS,

ELAPSED TIME IS5 SHOWN, BASED
ON AG+ nsec. CLocx

- EXIT DEBUGGER: it

[. IN APEXGH MODE ,wilt RETORN TO
MAINLINE P&M. AND CONTINUE

2. IN 33 ,WILLRETURN TO I DL
COMMAND LEVEL

119

* SET BREAKPOINTS: Break

1. USeED TO sSToP PGHM. EXECUTION AT
A PARTICULILAR POINT

2. MAX. OF 2 BREAKPOINTS AT A TIME

3. SYNTAX:

B $71 (SRC.LINE F1)
p .20 (STMT. LBL. 20)

B (DISPLAY BREAKPOINTS)

4 . OPTIONAL QUALIFIERS :

/EVERY: n evecy Y time
/AFTER : 1 aftec n times
/UNTIL: N clear cftec n breaks
/A (REATORAL) loreak 1F TTRUE

G. EXAMPLEDS®

glevery:H $13
8/IF (YMIN .€Q. ¢.8) -39

M

* SET WATCHPOINTS: Watch

|, UseD TO STOP PGM. EXECUOTION wWHEN
A VARIABLE 1S ACCESSED

2. 4 WATCHPOINT ALLOWED AT A TIME

B SYNTAX:
W IDATE

1. QUALIFIERS :

/RD wHENCUER VARAALE RCAD
/\WR WHENEVER VAR, S WRIYTTEN
/RW WHENEVER VAR, 1S WRITTEN
OR Repd
DeEFAULT = /WR

.. AND ALL OPTIONS LOUTH BREAK

5. EXAMPLE S

Ww/1F (APTR(A) .Le. AMAX)/RD Z(28)
W /RW oHoH (F)

112

« CLEAR WATCHPOINTS
AND BRREAXPOINTS ¢ Clear

| UseD TD'CLe/—\R WATCHPOINTDS AND
BREAKPONTS

7 SINTAX:
C 1IDATE
3 OPTIONS
$ALL - all meclnfoa.nfs

awnd \oreak,’)ém’rs

113

LAB: USING APDEBUGEH

1. USE 'wXYZ PROGRAM WHICH
CREATES DATA INTERNALLY.

2. RECOMPILE WITH 'DERLG”
OPTION + BUILD SYMBOL TABLE

3. RUN UNDER SJE AND:

a. OPEN YOUR SYMBOL TABLE
b. LIST ALL 2@ W VALUES W/1 CMo.

¢. CHANGE Y(Q) To 71.S

D. CAUSE PGM. HALT WHEN Y(1) 1S
READ

E. EXECUTE THE PROGRAM

F. LIST ALL 25 WITH 4 COMMAND

G. EXIT APDERUGGY + SJE

1

pa

Floating Point Systems, Inc.,
‘Corporate Training Department Materials

?&oaram CON\IERSWN
To Use The

FPS-164

FPS-164 Software Programming Class

| - il

k)

ELEMENTARY CONVERSION PROCESS

DETERMINE WHERE THE PROGRAM IS TO BE DIVIDED, AND
WHICH SUBROUTINE(S) ARE TO RUN ON THE FPS-164

Use APFTNG4 TO chPILE THE ROUTINES FOR THE
FPS-164

UseE APLINK64 TO PROVIDE LINKAGE AND DECLARE THE
SUBROUTINE ENTRY POINTS FROM THE HOST PROGRAM

INSERT TWO APEX SUBROUTINE CALLS IN THE HOST

PRNAGRAM
YAt 1Y ati!

CALL APINIT (1INUM, o0,0,0, IASG, ISTAT) TO
INITIALIZE FPS-164

AND
CALL APRLSE TO RELEASE FPS-164 AFTER USE

COMPILE WITH THE HOST FORTRAN COMPILER THE HOST
PORTION OF THE PROGRAM AND THE HASI OUTPUT FROM
APLINKGY

PERFORM HOST LINK OF ALL ROUTINES

RUN THE PROGRAM USING THE FPS-164 AND VERIFY THE
RESULT

16

5. APEXEM - INTRO.

D D &P SEND SEDS BN AP AP I o D oy awp

* PURPOSE

ACCESS TO AND CONTROL
OF THE AP

* SIMPLIST ACCESS METHOD

CALL APINIT (@20>0°02IS>IN)

CALL APPGM (++-)
CALL APRLSE

| “MAINLINE” PGM. I

1%

BASIC _APEXGH CALLS

GEP GEUEP (ENF CUND SENY SEN) GEN) GEND WNRD Guap GEWD EEE) GEID GEND @IED NP WS

CALL APINIT (2>022@ sTNUM IS0

|AP NUMBER
ACT\ON IF AP
1S BUSY vl ks
MD 51tk] oo)‘1 ’,Nvf' v
- b
PS S\:E ,%/ %:W‘ g
¥ OF AP

ASSIGNED

STATVUS OF
THIS CALL

118

SAMPLE PROGRAM PRIOR TO MODIFICATION

[/0 STATEMENTS
COMMON BLOCK

PARAMETERS

PROGRAM MAIN -
COMMON /ARRY/ A(10),B(10),C(10),D(10)
DO 100 I=1,10

A(I) = FLOAT (I)
B(I) = FLOAT (I)
C{I) = FLOAT (I)

100 CONTINUE
WRITE (6,1000) I
N=1I-1
CALL VMUL (N,APCPU1)
WRITE (6,1010) D(N)
CALL VSQ (N,APCPU2)
APCPU = APCPU1 + APCPU2
WRITE (6,1020) APCPU
WRITE (6,1030) (D(J), J=1,10)
STOP
1000 FORMAT (' LOOP COUNT =',I3)

1010 FORMAT (' LAST TERM OF COMPUTED ARRAY =',F10.4)

1020 FORMAT (' TOTAL FPS-164 TIME =',F8.4)
1030 FORMAT (5(2X,F10.4))
END

SUBROUTINE VMUL (N,APCPU1)
COMMON /ARRY/ A(10),B(10),C(10),D(10)
DO 100 I=1,N
D(I) = A(I)*B(I) + C(I)
100 CONTINUE
RETURN
END

SUBROUTINE VsQ (N,APCPU2)
COMMON /ARRY/ A(10),B(10),C(10),D(10)

T=1 N
DO 100 I=1 3 0¥

D(I) = D(I)*D(I)
100 CONTINUE
RETURN
END

119

SAMPLE PROGRAM AFTER MODIFICATION

® InNsErT APEX caLLs (APINIT AND APRLSE)
0 INSERT 1/0 TO VERIFY AP CONNECTION
O ReQUIRES Two CALLS TO THE FPS-164, HENCE INEFFICIENT

PROGRAM MAIN
COMMON /ARRY/ A(10),B(10),C(10),D(10)
DO 100 I=1,10

A(I) = FLOAT (I)
B(I) = FLOAT (I)
C(I) = FLOAT (I)

100 CONTINUE
WRITE (6,1000) I
N=1I-1
WRITE (6,9997)
READ (5,9998) INUM
9997 FORMAT (' APNUM =')
9998 FORMAT (I1)
CALL APINIT (INUM, O, 0, 0, IASG, ISTAT)
IF (IASG .EQ. 0) STOP
WRITE (6,9999) IASG,ISTAT
9999 FORMAT (' IASG =',I3,' ISTAT =',16)
CALL VMUL (N,APCPU1)
WRITE (6,1010) D(N)
CALL VSQ (N,APCPU2)
APCPU = APCPU1l + APCPU2
| CALL APRLSE
WRITE (6,1020) APCPU
WRITE (6,1030) (D(J), J=1,10)
STOP
1000 FORMAT (' LOOP COUNT =',13)
1010 FORMAT (' LAST TERM OF COMPUTED ARRAY =' F10.4)
1020 FORMAT (' TOTAL FPS-164 TIME =',F8.4)
1030 FORMAT (5(2X,F10.4))
END

12¢

SAMPLE PROGRAM AFTER REDUCING 1/0

A NEW SUBROUTINE IS CREATED THAT CALLS THE TWO
SUBROUTINES AND PASSES THE DATA FOR I/0 AS A
pARAMETER LREDUCES TI/0 AND APEYLY OVERHEAD)

THE HOST PROGRAM IS MODIFIED TO WRITE THE 1/0 DATA
FROM THE FPS-164

PROGRAM MAIN
COMMON /ARRY/ A(10),B(10),C(10),D(10)
DO 100 I=1,10
A(I) = FLOAT (I)
B(I) = FLOAT (I)
C(I) = FLOAT (I)
100 CONTINUE
WRITE (6,1000) I
N=1I-1
WRITE (6,9997)
READ (5,9998) INUM
9997 FORMAT (' APNUM =')
9998 FORMAT (I1)
CALL APINIT (INUM,0,0,0,IASG,ISTAT)
IF (IASG .EQ. 0) STOP
WRITE (6,9999) IASG,ISTAT
9999 FORMAT (' IASG =',I3,' ISTAT =,16)
| CALL SUB (N,APCPU,PARM)
I WRITE (6,1010) PARM
WRITE (6,1020) APCPU
WRITE (6,1030) (D(J), J=1,10)
STOP
1000 FORMAT (' LOOP COUNT =',I3)
1010 FORMAT (' LAST TERM OF COMPUTED ARRAY =',F10.4)
1020 FORMAT (' TOTAL FPS-164 TIME =',F8.4)
1030 FORMAT (5(2X,F10.4))
END

SUBROUTINE SUB (N,APCPU,PARM)

COMMON /ARRY/ A(10),B(10),C(10),D(10)
CALL VMUL (N,APCPU1)

PARM = D(N)

CALL VSQ (N,APCPU2)

APCPU = APCPUL + APCPU2

RETURN

END

121

SAMPLE FPS-164 SUBROUTINE MINIMIZING 1/0

Uses APROUTINE Tor APFUNCTIONJ]

VARIABLES ARE DEFINED AS EITHER IN or OUT

APROUTINE SUB (N,APCPU,PARM)
COMMON /ARRY/ A(10),B(10),C(10),D(10)
APIN A,B,C

APIN N

APOUT D

APOUT APCPU, PARM

CALL VMUL (N,APCPU1)

PARM = D(N)

CALL VSQ (N,APCPU2)

APCPU = APCPUl + APCPU2
RETURN

END

12

HOST COMPILE AND LINK

e COMPILE MAINLINE +HASIL

o LINK OBJECTS/TEXT WITH
FPS-SuerLied LIBRARIES:

- HARDWARE RUN: APEXeH
UTILGY

- HARDWARE DepuG: APDERUGGM og;»
APEX@‘" %L‘L‘)

UTIL eM w@

- SIMULATOR RUN: APSIMeM ;f’f
UTIL6M

- SIMULATOR DEBUG: APDEBUGEY
APSIMEY |
uTiLed |

113

APEX64 Exercise

This exercise is designed to let you convert an existing program to run
in APEX64 mode.

_ﬁ‘

~J

Modify the APFTN64 program "WXYZ" (written earlier) to be called
as a subroutine from a FORTRAN program executing on your host
machine.

* W, X, Y, and Z each have 20 elements, and i
varies from 1 to 20

* Use APROUTINE to declare the entrypoint

* W, X, and Y are passed from the host in a
COMMON block called DATAIN

¢ Z and a number representing the length of
each vector are passed as arguments to WXYZ

Use APFTN64 to compile the WXYZ subroutine.

Use APLINK64 to create the load module and the HASI.

Write a mainline program which will execute on your host and call
the subroutine WXYZ. In this mainline, create the input values
for the vectors W, X, and Y. Also include the necessary APEX64

calls to assign and release the FPS-164.

Compile the mainline and the HASI using your host's FORTRAN
compiler.

Link the compiled mainline and HASI together and search the FPS
supplied libraries for the APEX64 subroutines:

e VAX/VMS: § LINK main,hasi,FPS164:APEX64/L,UTIL64/L
¢ TIBM/CMS: GLOBAL TXTLIB APEX64 UTIL64

Execute your complete module.

114

ADDITIONAL TECHNIQUES

COMMON BLOCKS

ALL COMMON BLOCKS USED IN BOTH AP ROUTINES AND THE
THE HOST PROGRAM MUST BE DEFINED IN THE SUBROUTINE
CALLED DIRECTLY FROM THE MAINLINE PROGRAM.

EXAMPLE:

- HosT PROGRAM

COMMON /A/ . .
COMMON /B/ v . .
common /C/7 .

CALL APINIT(...)
CALL FPS164
CALL APRLSE

STOP

- AP ROUTINES FPSlo4
SUBROUTINE FPS164 SUBROUTINE SUB
COMMON ::::;;;‘~\~_—_’///,—~COMMON /B/. ..
CALL SUB

RETURN

115

RETIHIRN

ADDITIONAL TECHNIQUES

¢ EQUIVALENCE STATEMENTS

TWO OR MORE DATA TYPES CANNOT BE MIXED IN
AN ARRAY THAT IS TRANSFERRED TO/FROM THE AP

THE HASI CAUSES THE TRANSFER OF THE WHOLE
ARRAY AS ONE DATA TYPE.

0 UNINITIALIZED DATA

THE APFTNG4 COMPILER DOES NOT INITIALIZE THE
DATA IN ARRAYS.

8 LITERALS

PARAMETERS IN SUBRCUTINE CALLS FROM THE HOST
TO THE FPS164 SHOULD NOT BE PASSED AS LITERALS
1., CALL SUB (1,A) SHOULD BE REPLACED WITH

IA=1
CALL SUB (IA, A)

126

INTERPRETATION OF ERROR MESSAGES

DOUBLE ERROR DETECT

DOUBLE-BIT PARITY ERROR DETECTED

LOAD MODULE ID's DO MNOT MATCH

THE IMAGE FILE (LOAD MODULE) ID AND HASI
ID ARE NOT THE SAME - DUE TO NEW APLINKG4
AND FAILURE TO RECOMPILE HASI

INVALID I/0 CHANNEL

THE FPS-164 WAS NOT ASSIGNED TO THE USER
- NO APINIT IN HOST PROGRAM

INSUFFICIENT MAP REGISTERS

TOO MANY PARAMETERS/ARRAYS FOR MAP REGISTERS
IN THE HOST(VAX)
- CANNOT BE FORESEEN BY USER
- USE APEX ROUTINE
CALL APSETS (-)

HISP DETECTED ERRORS
GENERALLY A HARDWARE PROBLEM EXISTS
- POSSIBLE SOLUTION IS TO FORCE STEP
MODE BY AN APEX SUBROUTINE
- CALL APMODE (2)

12%

INTERPRETATION OF ERROR MESSAGES

FORMAT OVERFLOW/UNDERFLOW

THE DATA TRANSFERRED BACK TO THE HOST
EXCEEDS THE DYNAMIC RANGE OF THE HOST
COMPUTER FORMAT

THE MESSAGE CAN BE MASKED BY AN APEX
SUBROUTINE

CALL APWUCM (- - -)

DEVICE NOT IN CONFIGURATION

HOST OPERATING SYSTEM IS NOT AWARE OF

THE FPS-164

---X64 MANAGER IS NOT ACTIVE ON THE
HosST (VAX)

INSUFFICIENT PS FOR LOAD MODULE .

WARNING MESSAGE ONLY
INFORMS USER THAT APEX IS REALLOCATING
THE AP MEMORY TO SUIT THE USER PROGRAM,

ARRAY OUT OF BOUNDS

SUBSCRIPT CHECKING WAS PERFORMED AND
FOUND AN ARRAY ADDRESSING ERROR,

PROM HAS DETECTED ERRONEOUS (\-I\SP)

THE RESULT OF A MISMATCH OF THE DATA
TYPES BETWEEN THE HOST COMPUTER AND

THE AP

---INCONSISTENT USAGE oF DOUBLE PRECISION

118

TIMING PROGRAMS ON THE FPS-164

@ APEX ROUTINE CAN ACCESS REGISTERS IN THE FPS-164

FROM THE HOST COMPUTER.

s EXAMINE HARDWARE CYCLE COUNTER

DIMENSION IA (2)
CALL APEXAM (IA, 38, 232)
[A IS THE RETURNED VALUES

38,232 ARE PARAMETERS SPECIFYING THE
HARDWARE CYCLE COUNTER

¢ EXAMINE THE USER ELAPSED TIME COUNTER

DIMENSION ISA(2)
CALL APEXAM (ISA, 12, 0)
ISA IS THE RETURNED VALUES

12, O ARE PARAMETERS SPECIFYING THE
USER CYCLE COUNTER

129

TIMING PROGRAMS ON THE FPS-164

0 SYSSCLTIME AND SYS$RDTIME -

SYS$CLTIME CLEARS USER SOFTWARE TIMING
REGISTERS

SYS$RDTIME READS USERS ACCUMULATED TIME
FROM SOFTWARE REGISTERS

0 EXAMPLE:

SUBROUTINE VMUL (N,APCPU)

COMMON /ARRY/ A(10),B(10),C(10),D(10)
| CALL SYSSCLTIME
DO 100 I=1,N
D(I) = A(I)*B(I) +C(I)
100 CONTINUE
| CALL SYSSRDTIME(CYCLES)
| APCPU = 0.181818E-06*CYCLES
RETURN
END

1%0

LAB: USING TIMING UTILITIES

1. MODIFY "'wxYz2" TO
INCLUDE AP-RESIDENT
TIMING RQUTINES.
DISPLAY EXECUTION TIME,

2. RECOMPILE AT DIFF.

OPT. LEVELS TO SEE IF
EXECUTION TIMES
CRANGE.

131

o

Floating Point Systems, Inc.,
‘Corporate Training Department Materials

Ap EXECVTINE
(APEX6H)

FPS-164 Software Programming Class
Revision

F

1%

Frimary Functions of Apex

@lnitialization of AP
®F=lzase of AF
O®Ex=cution of HASI
O®Frimitive access to AP

O L=bugzing Support

133

AFEx-SUM IMTERACT ION

® APEXE64 1nitializes task contro
tables 1n SUM memory.

® HFPEX64 sends commands to SUM
¥H1locate memory

*otart program runming.

14

SUM-APEx INTERACTION

® SUM commands HISF to infterrupt

ost when task completes.

5]

® SlLM recei ves control on FTH
PAUSE and STOP.

® nder SUM, AF never physically
halts. |

135

2
A
&

LNTERFACE
SurrorT Processor

® PURPOSE:
Repuce Host OvERHEAD

® ACT\WITIES:
- Aobress TRANSLATION
- SeTup DMA ChONNELS

ve c M Uurolrg aecead,

- FormaAr DATA DUR\NG DMA

136

SvsTemM ELEMENTS

HOST

APEX6A

PDS

SJE

13%

FPS-
164

SUM

le

oon

£)

DAtA DeEscRriptor Brock

° DEFINITION:

A HISP-YESIDENT CHANNEL

PROGRAM USED TO CONTROL
DATA TRANSFERS

138

CHANNEL PROGRAMMING

® DEFINITION®

“BUNDLING TOC:ET\-\ER” A
SERiEs OF 1/0 caws

e PurPOSE:
REDUCE HosT OVERHEAD
HOST FPS-164

MEMORY MEMORY

139

DEFINITIONS:

APEx<64 EXECUTION. MODES
@ Step mode

@ Chain mode
® Hutomatic mode
Substep threshold

Chainine threshold

—_

Susster Mobe

14¢

- APEx64 EXECUTION MODES
® Mode contrel (AFMODE)

® [Mode reporting (APGMODY)

141

APLINKGH

o PURPOSE:

Process APFTNGY +APALGM
OLTPUT + COMBINE WITH

PRIVATE + FPS-SUPPLIED
AP ORJECT LIBRARIES

e FUNCTIONS:
- MEMORY SPACE ALLOCATION
-~ RESOLVE EXTERNALS

- CopE RELOCATION
141

APLINKGY

e QuTPULT:
-For APEXGH-mopE SUB-
ROUTINES CcReATES HASI

— CREATES LOAD MODULE FOR

BOTH APEXGH-mope + SJE
SUBROVUTINES

- OPTIONAL LOAD MAPS AND
SYMBOL TABLE

143

HosT-To- AP
SOFTWARE I NTERFACE

(HAST)

e PURPOSE:

PRovIDES Host/AP SortwARE
Communtcation And ConTROL

o LTYPES:
ADC + UDC

144

ADC V5. UDC HA=I

Data transfer betwesn the
host and the AP:

building DDBs
ewaclting DDBs.
Load module loading.

|l cad mocdule sxecutilon.

145

Auto- Directed CALLs
CADQC)

e ALlows AP SUuRROUTINES 10

Be TReateD Like NormAL
ORTRAN SUBROUTINES

o AL Data Transrer Automaric

o Host/AP ExecutioN 1s
SERIAL AND SYNCHRONIZED

° Usep By SIE Ano APEXGH

146

ADC Mode HASI for an APFTN64 Subroutine

SUBROUTINE VADDAPF (A0, Al, A2, A3) HOST CALLABLE ENTRYPT.

c

REAL A0(100), A1(100), A2(100)
INTEGER A3
C t/,vg)
INTEGER A4(6), AS(66) P
p)‘,/\\a
_ ALL VADDAP
/f ALL APIDB (AS, 66) .ﬁ U’p
c |
| 84(1) =4
AL(2) = 16 ¥
{ A4(3) = A4(2) + 100 Maiy Memocy
| A4(4) = A4(3) + 100 Adress Dervp
I AL(5) = A4(4) + 100
b A4(6) = A4(5) + 1 oo
3| CALL APBDD (A5, A4, 5, 0, 11, 2, 1, 1), e o ATA ""’“” \f
C U . "’\.f(‘ "\(‘ .
R | CALL APBDD (A5, A0, 100, 0, A4(2), 2, 5‘/’__
Y | CALL APBDD (A5, Al, 100, 0, A4(3), 2, 5, 1)
] CALL APBDD (A5, A2, 100, 0, A4(4), 2, 5, 0)

S < CALL APBDD (A5, A3, 1, 0, A4(5), 2, 0, 1)

‘ CALL APPREP (A5, 8, 11, A4(6), O TRANSFER ARGS.
s \CALL APPRED (43, 2, 11, 4406,) ¢ COMMON, AND DATA.
;f <CALL APWR AND START SUBRTN.

S CALL APXDDB (AS, O, 0)4_

§ £ TATALL APXISKy - z RETRIEVE RESULTS
Ay RETURN WW’; WA W
END @i,,%@fﬁx
LL} VP
SUBROUTINE VADDAP ¢
c
INTEGER A0(2), A1(9§, A2(134)
c
DATA AO(1)/ :11143564551 /, AO(2)/ :37737777306 /
C
DATA Al(1)/ :00000000111 /, Al(2)/ :00000000137 /
DATA Al(3)/ :00000000126 /, Al(4)/ :00000000101 /
DATA Al(5)/ :00000000104 /, Al(6)/ :00000000104 /
DATA Al(7)/ :00000000101 /, Al(8)/ :00000000120 /
DATA Al(9)/ :00000000106 /
c
CALL APLMLD (5, Al, 9, A0, A2) «§ TRANSFER LOAD MODULE
RETURN
END

143

User Directep Cails
(uDC)

o (SReatER FrLeximuty OF ComRbL

e MAINLINE More Compuex

o HosT/AP EXECUTION 15
AsyncHRonous AnD PARALLEL

e ADVANTAGE:

Mar Repuce Overaw
Pam. Execution TimEe

148

UDC Mode HASI

SUBROUTINE VADDUDC (40, Al, A2, A3, A4, A5, 46) €§———ENTRY POINT

INTEGER AO
INTEGER Al, A2, A3, A4, A5, A6

INTEGER A7(8), A8(50)

CALL VADDUD

CALL APIDB (A8, 50)
A7(1) = 7

A7(2) = A0

A7(3) = Al

A7(4) = A2

A7(5) = A3

A7(6) = AL

A7(7) = AS

A7(8) = A6

CALL APBDD (A8, A7, 8, 0, 0, 2, 1, 1)

TRANSFER ARGS.

CALL APPREP (A8, 2, 0, 8, 0) <

CALL APXDDB (A8, 1, 1) AND START SUB'
RETURN

END

SUBROUTINE VADDUD

INTEGER A0(2), A1(11), A2(38)

DATA AQ(1)/'10574766357'0/, AO(2)/'12620242117'0/

DATA Al(1)/'00000000126'0/, Al(2)/'00000000101'0/

DATA Al(3)/'00000000104'0/, Al(4)/'00000000104'0/

DATA Al(5)/'00000000125'0/, Al(6)/'00000000104'0/

DATA Al(7)/'00000000103"'0/, Al(8)/'00000000056'0/

DATA Al(9)/'00000000111'0/, Al(10)/'00000000115'0/

DATA A1(11)/'00000000107 "0/

CALL APLMLD (5, Al, 11, 40, 42) q———_ TRANSFER LOAD
gggURN MODULE

149

THE UDC MAINLINE

1. DiMensioN 2 InTEGER ARRAYS
For The DDB's

2. Ser Up MD ADDRESSES

J. INmauze Hos1—~ AP DDB
Wiw APIDB

4 Inmauze AP Witw APINIT
Q. Force Stee Moot With APMDI

©. Create DDBs To Transrer
Data To The AP With APPU
1%

THE UDC MAINLINE

F. Execute Twhe DDB Wirn APXDDE
5. Stncuronize With APWD

1. Caw Tue AP SupROUTINE

D. Perrorm Host Activity. USE
APWR ~ APWD To SYNcHRONIZE

|. Setwe AP-»Host DDR Witk
APIDB

2. Create DDB's To TransFER
- Data Back To The Host WiTH
- APGET

a1

THE UDC MAINLINE

13. Execute Tue DDB Wi APADI

I4. Syncwronize With APWD
15. Rerease Twe AP Witn APRLS

152

a0

Mainline Calling a UDC Mode Routine

FORTRAN mainline program to call the UDC mode APAL
routine VADDUDC.

DIMENSION A(100),B(100),C(100)
INTEGER AINC,BINC,CINC,CTR

Now set up matricies tc contain the data descriptors
for data transfer. The matricies must be of type
INTEGER and the size to specify is determined as:

(4 * no. of APPUT's or APGET's) + 6

INTEGER INDDB(30),0UTDDB(10) 4

Create dummy values for the A and B matricies - - =

CTR = 100

B¢ 1¢ I=1,CIR

A(I) =1 ; :
B(I) = (CTR + 1) - I
CONTINUE ’

Setup element increments

AINC =1
BINC =1
CINC =1

Now setup the main memory addresses for each parameter
passed over to the AP164. Where we chose to start the
addresses is purely arbitrary.

STEP 1

IAPTR = 10

IBPTR = IAPTR + CTR
ICPTR = IBPTR + CTR

ICTR = ICPTR + CTR ><'
IAINC = ICTR + 1

IBINC = TAINC + 1

ICING = IBINC + 1

-/
Now initialize the DDB for host to AP transfer

CALL APIDB(INDDB,30) <

1STEP2

Assign the AP164

CALL APINIT(0,0,4096,4096,INUM,ISTAT)1‘*

STEP 3

Force STEP mode for UDC mode execution

CALL APMODE(2) <—

STEP 4

163

STEP5S

Mainline Calling a UDC Mode Routine

Setup the calls to transfer the data over to the AP

aaQa

s

CALL APPUT(INDDB,A,IAPTR,CTR,S5)

CALL APPUT(INDDB,B,IBPTR,CIR,5)
CALL APPUT(INDDB,CTR,ICTR,1,0)

CALL APPUT(INDDB,AINC,IAINC,1,0)
CALL APPUT(INDDB,BINC,IBINC,1,0)

STEPG

CALL APPUT(INDDB,CINC,ICINC,1,0)
CALL APXDDB(INDDB,0,1) «§—

STEP ¥

oNoN®]

Wait until the DMA is complete

STEPS

STEP 9

STEP I@

CALL 4PWD <f—
c
c Call the APAL subroutine
Cﬁ///’““

;&V’Mf CALL VADDUDC (TAPTR, IBPTR ICPTR ICTR, IAINC IBINC ICINC)“"
c Take advantage of UDC mode by hav1ng the host perform some
C I/0 to the terminal while the AP subroutine is busy.

C .
WRITE(6,101) (I,A(I),B(I), I= 1,CTR) -1’
"101 VORMAT(IOO(2X,'V‘ements LI 3,2(3x,F5.1},/3) a8
c J
C Wait until the AP program has completed.
C
CALL APWR <§-
C : v v
C Setup the DDB for transferring the results back from the AP
C) . N R R . R . Ll N e

CALL APIDB(OUTDDB,10) 4§

STEP1 |

CALL APGET(OUTDDB,C,ICPTR,CTR,5)
CALL APXDDB(QUTDDB,0,0) _

STEP 12

STEP 13

STEP 14

C Wait until the DMA is complete
: CALL APWD

g Release the AP164k;

: CALL APRLSE

g Now display the results

C

WRITE(6,100) (A(I),B(I),C(I),I=1,CTR)
100 FORMAT(100(3(F5.1,3X),/))
CALL EXIT

STEP 15

END

194

COMPARISON:
ADC -Vs- UDC

- Bom Use Te

o Botn ArLLow D\SK OR Msnoav
Rt-:snmzm LOAD P’\onm.ss

» ADC Enster To Devewp + UsE

» UDC Mar Execute FASTE!, Ir
PG.M PRoPERu DE:S\G:NED

199

[LaB: ACCESS 4 LDC SUB.

1. USE "'WxYZ" SUBROUTINE FROM
PREVIOUS LABS

2. REBUILD + CREATE A UDC HASIL.
INCLUDE TIMING SUBROUTINES AND
GENERATE LISTINGS FRoM BOTH
APFINGHY + APLINKGH

3. Rewrite MAINLINE FBR LVOC Mone.
Uste 10,000 AS MD BASE ADDR.

BUILD ALL PIECES + EXECULTE.
1S9 AP SUBROUTINE EXECUTION
TIME DIFFERENT THAN WITH THE
ADC SURROLTINE ?

156

==S sevs NG

...the world leader in array processors

CALL TOLL FREE (800) 547-1445
Ex. 4999. P.0O. Box 23489 (S 500),
Portiand, OR 97223 (503) 641-3151,
TLX: 360470 FLOATPOIN BEAV

