“wtyprPe slae.lst

01 0001
01 0002 $
01 0003 O A=0
01 0004 1 B =1
01 0005 LIST-OPERATORS
OPERATORS
name pPrec unarv? binarvy? function
! 20 no ves boolean inclusive or
20 no ves boolean exclusive or
& 20 no ves boolean and
(1 ves no left Parenthesis
) 1 no Yes right pParenthesis
* 10 no Yes inteder multiplication
+ S Y&8 ves inteder addition
) 30 no ves 18 bit halfuword
- b ves Yes inteder subtraction
«AND. 2 no ves logical A and B
.OR. 2 no Yes lodgical a or b
/ 10 no ves integer division
/= 2 no ves lodical not a=b
< 2 na ves Todical a<b
L= 2 no Yes lodical a<=b
s 2 no ves logical a=b
> 2 no ves logical a>b
P 2 no ves logical a>=b
DEF 1000 Yes no boolean, true is svymbol known
IDEN 1000 Yes no boolens true if next two tokens identical
\ 10 no ves inteder remainder
AN\ 30 ves no boolean not
- 30 no ves arithetic shift
— 30 no ves lodical shift
01 00046
01 0007 list—-nextec
next rpc routines
16-WAY set pPc to first of a w word block
4-WAY set pPc to first of a w word block
a-WAY set pc to first of a w word block
PC~ANY rc+l pPreferred, but anvwhere is ok
PC-EVEN set pc to an even pair
PC—~PLUS1 unconditional +1
PC~-PLU3S20 unconditional pc+20
~davt

11-FEB-1982 1:46:15 P3T

«8Y¥Y8N

TYMSHARE C930-P034/K04 2-9-82

i CFOODOC>SLOEMANG1 Thu 17-Dec-81 6:26PM Page 1

1.0 CONCEPTS

Stoe is designec to be a general purpose assembler for microcodes
As suchy there are certain underlying assumptions about the architecture
of the machiness and the desirable form cf the microcode to drive the
machines. These assumptions will be stated shortly.

Sloe is syntacticly directes The only distinctions among characters
are between ®separatcr® characters and all others. The only characters
with any implied meaning are [J ¢) $: 3 and * . This structure
allows the widest possible Latitude in the definition of symbolss

Sloe is transformed from its tnittal state into an assembler for
some particular machine by making an appropriate set of declarationss
corresponding to the architecture of the target machine, There is no
separate procedure for declarations. As a design featurees all the
capabilities for defining and extending the microcode are always
available, In practicey there will be 2 parameter file for each target
machine sloe assembles fory but is always possible to extend the basic
parameter in any compatible directione.

Error checking 1is an intrinsic part of any assembler. SlLoe
diligently checks for many kinds of errors that are implied by the
declarations that have been made. Among these are multiple defintitions,
missing definitions, syntax errorse missing operandse unbalanced
parenthesesy and so on. Sloe alsc checks for errors that are implied by
the structure of the declarations that have been made. These include
alt errors fdnvolving attempting to encode dimpossible or jllegal
operationse. The etfectiveness of sloe®*s strategy for detecting this
kind of error is directly related to the precision with which the
declarations were madee Loosely structured declarations will result §n
undetected errors. There 1s also provision for detecting ad hoc errorss
those which are not deduced from the declared structures, but which
nonetheless are impossible or undesirable 4n the actual hardware.

240 THE MACHINE MODEL

Heresy we refer to the presumed propertied of the target machine
which sloe 1s to assemble for,
IL

s CFOODOC>SLOEeMANS1 Thu 17-Dec=81 6:26PM Page 2
Page 2

21 Memories

The target machine has one or more memories. each memory has its
own size and its own word formate Memory words may be any widthe The
total number of bits in all memories ¥s smalls Less than a miltione.
There is provision for automatically generating parity bitse.

242 Paretlelism

Micro machines are Likely to have a large number of functionss many
of which can operate in parallele This gives the microcode a “do this
and do that and do something else®" flavore.

2«3 Incompleteness

Not all operations that can be encoded 4n an dnstruction can
actually be executed by the hardware. For instance, a rul tiptier and a
shifter might both use an 4internal buse so both can®t be active
simultaneouslys even if the microcode could code for such an operatione.

2¢4 Microinstructions

fach microinstruction occupies exactly one word in one of the
memories. Microinstruction format 1s hamming-decodeables though not
necessarily instantaneouslys The dmplied ‘*next instructton' may be
other than e+1y or may not even _sw#ts existe The encoding of the
microcode word can be expressed in terms Like %"if field A has value X
and Field B has value Ys then field C can have values C(1) C(2) or
C(3) "

3.0 BASIC ASSEMBLER SYNTAX

SPACES are the characters <spaced> <tab> <cr> <L f>
SEPARATORS are the characters [1 ¢) * &
NUMBERS are 012 34567889
LETTERS are A-2 a=-2

Ltower case 1s always equivalent to upper case
SPECIALS are etl other printing characters
SYLLABLE ANY sequence of LETTERS NUMBERS and SPECIALS

It

s CFOODOC>SLOE.MAN31 Thu 17-Dec=81 &226PM " Page 3

Page 3
BASIC ASSEMBLER SYNTAYX

or
cne SEPARATOR

Notice that the group called SPECIALS 4s not really speciale only
an amalgamation of all the other characters. Syntactically, they are
never treated differently than letters or numberse. This 4s Likely to
cause scme consternation 1in expression evaluations where the familiar
syntax?: A=B+C must be written as A = B * C Howevery This is a small
encumberace 1in view of the power to define symbols Like AD>=B without
confounding a well meaning syntax analyzer.

The SEPARATORS group are the only characters that get spectal
attention. They constitute a concessicn to conventence, with the cost
that they cannot be incorporated into symbols. Fach of the separators
has 2 specific function associated with it

terminates multi part declarations and microcode words
) group expressions 4n the usual way
J group operandsy values for microcode fields,
s the concatination character for the macro processor
defines a Label
begins a comment to the end of line
NOTICE that this is the only place where end of tine
is not synonymous with a space

we te @Y o4

4.0 SYMBOLS

Any syllable which is not a separatcr can be defined ag a symbole
Except for one cases nothing is implied by the characters in a symbol,
that s "A=B"™ ®FQQ® ®1I® wABY sre all perfectly valid symbol namess and
no arithmetic or Logical operations are implied by any of theme The one
exception is the single quote character ®v%, yuhich {s given special
meaning 1in some restricted contexts. (see: FIELD VALUES) There are
-several subclasses of symbolse which are determined by the type of
declarations and which have different useful attributes affecting the
assembly process Symbols of the same name with different attributes are
sometimes permitteds but not encouragede.

iL

3 "CFOODOCDSLOE.MAN31 Thu 17-Dec=-81 6326PM Page 4

Page 4
SYMBOLS

4e1 PSEUDO OPERATORS

Pseudo ops are the predefined elements of the language. Note that
ALL of sloe®s predefined Language 4s implemented as pseudo opsSe even
those Like assignment (=) and Label declaration (¢) which are not
normally thought of zs suche The pseudo ops will be described in detail
Latere.

EXAMPLE:
DECLARE-MEMORY MAIN
10 1000

"Declare-memory"™ is a pseudo ops in this case the one that sets the
basic memory parameters; an 8-bit by 512-word memoryes The rest of the
text is interpreted by the particular pseudo op processing routine.
Note that end of Line does not end the argument List., This %s generally
true. End of Line is almost always egquivalent to a Spaces

42 MACROS

Macros provide capability to extend the Llanguage processed. The
macro processor is rucimentary but functional,.

EXAMPLE
oDEFINE FOO [arel arg2 1
[argl = arg2 1

Note that ARG1 and ARG2 are arbitrary syllablesy and that there are
no separators betuween them. The pseudoc ops for defining macros and
related construtions will be described in detail Latere

4,3 FIELDS

A field 4s a contiguous set of bits within a2 microcode word that
requires a value be specifieds Declaration of fields within the
microcode of each memory in the target machine is the basic operation
‘that makes sloe an assembler for a particular machine. The stringency
of the field declarations you make determines sloets ability to detect
errors in the microcode it assembles.

EXAMPLE: ¢ with the memory definition in the previous example)
L

'$ <FOODOC>SLOEMAN§1 Thu 17-Dec=81 6&:2&PM Page 5

Page 5
SYMBOLS

OPCOCE = FIELD 3 4 s

Declares OPCODE as a 4 bit fields whose Low order bit 4s bit 3
counting bit O=leftmost bit. Internallys this generates a mask of the
~significant bits in the field within themicrocode word?

11110000 (binary)

4.4 WORDS

A fieldy with the required value specifieds becomes a worde Words
correspond directly to microcode words. The basic assembly operation
consists of IOR ing together several word symbolss and Checking that IOR
ing the symbols together doesn®t assign one part of the microcode word
two different values,

EXAMFLE? (extending the previous example)

OPCODELS] 3
OPCODECE] ¢

ADD
sus

"o

Defines a ADD as a wcrd that has the following mask and value
11110000 OPCCODE field (binary mask)
01010000 ADD (value bits)
01100600 SUR (value bits)

Any attempt to change the value of a bit which has already been
specifiec 1s an error. For instance?
ADD SUB ¢

Generates an errcr message in the above examples because some bits
of the CPCODE field are required to have two different valuess This is
the basis for most of SLOE*s error checkinge

There are several variations on the basic FIELD and WCORD typesys
which are for convenience and syntactic clarftys but are not essential
to the caoncepte These embellishments will be described in detatl latere.
{L

’

3 <KFOODOCD>SLCE.MANS1 Thu 17-Dec=81 6:26PM Page 6

Page 6
SYMBOLS
445 VALUES

Value symbols associate a name with an 1{nteger. The syntax to
declare a value 1s

valuename = expression

Note that there must be spaces separating the = from the name and
expressione The Limits on expressions will be discussed in detail
Latery but brieflys an expression 4dnvolves only 1integer numbers,
numeric pseudo operatorss labelss and previocusly defined values.

valuegs unlike fields words and labelsy can be redefined.

4.6 LABELS

lLLabels are values with additional attribute *label® attached,
Labels are declared by the ":" pseudo ope

for EXAMPLE:
FOO:

Dectares the Label "FOO" at the current memory Locatione Untlike
valuesy Llabels cannct be redefineds but unlike everything elsey a Llabel
can be foruward referenceds Filelds can have the attribute of requiring a
tabel to fill their vacancys Any undefined symbols encountered in
expressicns are assumed to be forward references to LlLabels, When the
forward references are eventually rescolvedys the value is ADDED to the
fielde This means that expressions Like:

FCO + N fWhere FOO 1s a forward reference
Will works but expressions lLike:

FOO ' N 3Where FOO 4s a forward reference
Will not worke. vy)

n Laégké
4.7 NUMBERS

A syllable which consists of only digitse possibly termininated by
a decimal pointe can be interpreted &s a number; &f all else failse.
You CAN cdefine such syllables as symbolse so caution is advised, Even
numbers are not necessarily what they seem!
|L

s CFOODOC>SLOE.MAN31 Thu 17-Dec=81 &226PM Page 7

Page 7
SYMBOLS

4.8 PCROUTS

PCROUTS are a special class of pseudo operatorey which specify an
algoritm for selectirg the Location for the next microinstructione. For
all syntactic purposessy PCROUTS are identical to PSEUDOs.

L

5 CFOODOC>SLOE.MAN31 Thu 17-Dec-81 6:26PM Page 8

Page 8
BLOCKS

5.0 BLOCKS

A BLOCK ¥s a group of syllablesy delimited by correctly nested Left
and right markerse 2 lett marker is either a "[* or "BEGIN XXX"s where
XXX 4s the name of the blocke A right marker 1is either "1I" or
"END XXX"y where XXX i3s the name of the blocke The name of the btock
serves toc enforce the matched closure of blockse.

EXAMPLE
[$becinning of ablock
A =1
BEGIN FO0 3begin a names block
B =1

END FCO s3end of the named block
7 s3$end of the unnamed block

Alt of the constructs that expect BLOCKs as arguments allow blocks
to be nestedy and insist that named blocks be matched.

within this documents blocks will be referred to as XXX=-BLOCK,
where XXX 1s somewhat descriptive of the function of the blocke Two
caveats are in order: Firsty those descriptions that explicity wuse [
and] mean ite REGIN FOO eee END FCO is not acceptable (for instance)
in supplying field values. Secondy do not confuse the use ot the word
BLOCK with the oBLOCK pseudo ops which 1s totally unrelated.
L

3 <FOODOC>SLOESMANSI Thu 17-Dec=81 6:26PM Page 9

Page 9
ASSEMBLER DIRECTIVES

6.0 ASSEMBLER DIRECTIVES

The following section describes each pseudo op in the current
release of SLOEes in alphabetical order. Most pseudoc ops are recognised
in any contexte but & few are recognised only in restricted contextse
These exceptions to tre rule will be noted.

SLOE pseudo ops are implemented by ad=hoc subroutiness Those which
require arguments usually use the standard parsers so their input witl
Ltook much Like other SLOE constructions. Those which take numeric
arguments are not restricted to simple numberss but will accept an
arbitrary expresione

61 %

The "$" pseudo cp ¥s wused as a terminator, which returns the
assembler to 1t¥s top level state from whatever sub context you are in.
The two most important functions arel

$ terminates the scope ot a FIELD pseudo ope.

$ terminates assembly of a microcode words and 1inftiates the
process of supplying default wvalues for unspecified fields and for
selecting the next microcode PCe.

$%s encountered when neither a FIELD declaration ¥s in progress or
a microcode word has been built will not cause any microcode to be
generated or any error messages to be generatede So you can sprinkle
$%s around to suit your tastey without fear of trashing anything.

6e2 «BLOCK [Llb UbJ <OX1> Hoeltelii# eee

The +BLOCK pseudc op finds a2 block of memory meeting constraints
specified by the argumentse. The next microinstruction will be assembled
at Location 0 of the blocke The oBLOCK pseudo op does not actually
allocate the memory Lccationsy but only assures that they are available.
Use the ®":" pseudo op to determine which location within an alltocated
block to usees or rely on the default sequencinge ¥f that does the richt
thinge.
jL

31:<FOGDGC)SL§50MAN31 Thu 17=Dec~-81 6&26PM Page 10

Page 10
ASSEMBLER DIRECTIVES

You can use MARKOUT in conjunction with +BLOCKy to mark memory
locations usedes

For convenience and appearance® sakes oBLOCK uses a slightly
nonstandard syntax in fts scane A (BLOCK pseudo op is terminated by end
of Liney unless the last character aon the lLine is a comma or a colong
and within the "#.#:4% part of the argument Listy COMMA is considered to
be a separatore This will cause confusion 4f you try to use expressions
involving symbols with commas 4n their names.

It is also ILL acdvised to use the BLOCK psuedo op in the middle of
assembling a micro 4nstrucion: a warning message is generated §f you
doe

[tb ub 2
specifies the bounds within memory what will be searched for a
location that meets the other constraints imposede LB and uUB
default to 0 and max-value respectively. LB and UB can be an
expression rather than a constant. The whole of [b ub 1 is
optional

<0x1>
is entirely optionate 4f specifieds it is a picture of the
low order adress bits of the block to be founds x specifys a
"don®t care” bite If omitteds <xxxxx> is assumed (with enough
x*s so any address will match).

8 ¥s a number or expression

#:8%# 1s a2 range of numbers

EXAMPLE?
eBLOCK [« 1000] <100> 0:3410
Finds a blcck of memory between current micro PC and 1000,

whose Low order bits are 100 tbinary)s and for which the 0*th
through 3%rc¢ and 10°*th following locations are unusede.

«BLOCK [o 1 <0J041

Finds an even patr of memory locationssy at some higher address
IL

3 CFOODOC>SLOE.MAN$1 Thu 17-Dec=81 6:26PM Page 11

Page 11
ASSEMBLER DIRECTIVES ,

663 «DEFINE MACRONAME ARG-BLOCK BODY=BLOCK

The oCEFINE pseudo op declares a macroe It must be
followed by a syllabley the name of the macro being defineds,
and blockse Every syllable 4n ARG=-BLOCK becomes a dummy
argument fcr the macros and all occcurences of dummy arguments
are replaced by the actual arguments supplied when the macro
s invoked This is the usual macrc capabilityy without some of
the flourishes that are available in MACRO-10 or FAIL. Every
syllable 1ir the argument l4ist s an arguments so there should
be no extraneous syllables (such as commas) separating the
dummy arguments

EXAMPLE:
«DEFINE FOO L A B JIL A =813 define the macro “FO0O"
FOO [xyz2 o0 1 § evaluates to " XyzZ =g »

€+44 +FOR FORMAL ARG-BLOCK BLOCK

The «FOR construct provices an immediate execution macro
capabilityy similar to the FOR construct §n FAIL. The above example is
equivalent to the following:

oDEFINE xxx [FORMAL I BLOCK
XXX [argl 13
XXX [arg2 1
eee and so on for each syllable in arg-block

Were XXX is a tewporary macroe +FOR statements can be nested to
any reasonable level. For example:?
eFOR A L B C J [LFORDUECEF JC[A*D =0 11
evaluates as? BE = 0 BF = 0 CE = 0 CF = 0

Ee5 ;ﬁ;,EXPRESSION TRUE-BLOCK ELSE FALSE-BLOCK

The «IF pseudo op provides a mechanism for conditionally assembl ing
code 1into a program. EXPRESSION can be any boolean expressions If the
expression evaluates to TRUEs then TRUE~BLOCK is assembleds Otherwise 4t
is skipped. If the next syllable atter termination of TRUE=-BLOCK 4s
"ELSE"™s then FALSE-BLOCK 1s scanned for and executed (or not)
appropriatelye. «IFs can be nested tc any reasonable lLevele See the
LIST-OPERATORS pseudc ops for a List of the conditions avatlable.

L XAMPLE:
jL

% <CFOODOC>SLOESMANS1 Thu 17-Dec=81 &:26PN Page 12

Page 12
ASSEMBLER DIRECTIVES

eIF A O L B =B/ A JTELSEL B =0 2

6e6 <INSERT Filesgpec

v Causes the named file to be iInserted 14nto the assembly. The
default extension 4is +SLO. «INSERTs can be nested to any reasonable
Level,

Gel «MARKOUT #4tic#

*MARKOUT marks the microcode memory locations Listed as USED. The
format of the argument List i1s 1dentical to the cerresponding part of
the «BLOCK pseudo op. Error messages are generated 1f any marked out
Loctions are already usedey or §f any subsequent attempt 3s made to use a
marked out Location,

Markout s intenced to allow you to interdict memory locations that
are nonexistant or dedicated to other uses so they will not be selected
by the pc sequencing mechanismse.

JL

% 'CFOODOCOSLOE.MANS1 Thu 17-Dec=81 &:26pN | Page 13

Page 13
CONTEXTS

7«0 CONTEXTS

The grammar recognised by SLOE 4s context sensitive and syntax
drivens Therefores the kind of entity expected depends on the current
context. Symbol tables are searched for in a predefined order $¥n each
context,

7Tel GLOBAL Context

Which is where you start, and where you return each time a $ is
encountered,. Heres one makes declarationss gives assembler directivesy
or starts assembling microcode words. In order of scans

MACROS Macrcs have highest priority. A macro with the
seame name as a pseudo op effectively replaces it.

PSEUDO OPS Pseucc ops are the means of directing the assemblye.
The pseudo ops will be described in detail Later.

PCROUTS Which are syntacticly equivatent to pseudos

FIELDS microcode definitions

Note that numbers and numeric expressions are NOT acceptable 4n
this contexte.

72 FIELDS

Whenever the name ot a field is encountereds a spectal Llocal
context is entereds where a spectal set of field value names are
recognisede In order of search:

FIELD VALUES associated with the field immediately following
the FIELD pseudo ops or after a MODIFY=~FIELD pseudo op
FIELD VALUES of other fieldss allowed in this context by the ALLOW
pseudo op
NUMERIC EXPRESSIONS
fL

‘i_'_g

CFOODOC>SLOE «MANS 1 Thu 17=Dec=81 6:26PM Page 14

Page 14

CONTEXTS

It

73 DECLARATIONS

Declaration context is entered by the "=" pseudo opPe Within
declaration contexty several additional symbol types are searched,
and numeric expressions are allowede

PCROUTS a special set of symbolss corresponding to the
algorithm for assigning the lLocation of the next
micrc instruction to be assembled.

DEFOQOPS a few special words Like DEFAULT.

7«4 EXPRESSIONS

Numeric expressions are legal within declaration syntaxs and
secondarilys when no subfield 4is found to complete a field
reference.,

OPERATORS operztor symbols become avaitables and have first
scan priority within expressions,

LABELS labels defined with *:»

VALUES intecer symbols defined with =
NUMBERS syliasbles that are Logically numbers.
FIELDS

7+4e1 *“"short®™ And "lLong"™ Word Names =

In one contexty a shorter than complete name of a word is
recogniseds This provides a Limited facility to have apparently the
same word have different values ¥n different contexts. The single

quote character: "¢* 4s treated as a terminator for a symbol name
within the restricted context of a field requiring a values.
Example:
OPCODE = FIELD S5 5
ADD*CP = 1
SuB = 2 ¢

ADD = OPCODE 3 $
OPCODECADD] ¢
ADD 3

In the examrley OPCODELADD] 4s equivalent to QP CODECADD®OP 1,
whereas ACD $ 4s ecquivalent to CPCODE[L3] ¢

He
L4

 CFOODOCOSLOE.MAN31 Thu 17-Dec=81 6:26PM Page 15

Page 15

CONTEXTS

It

ARDD*OP is recognised "anywhere®", but ®ADD" is recognised as
equivalent to "ADD*0OP" only when the enclosing field "QPCODE" has
been explicitly mentionede.

It is intended that names without imbedded "%"g pe given only

to symbols that are to be referencable ftrom top lLevels, without

explicitly mentioning the enclosing fielde.

Te4e2 Optional Forms For Field Values =

There are three optional forms for specifying a ftield value
wordes From the above example:?

suB s

OPCODE SUB ¢

OPCODECSUB] s

ADD*OP $
OPCODE ADD 3
OPCODE ADD ¢

ALL three forms in each group are equivalent. Which form 4s
used 1s a matter of preference, except when the field ALLOWS (see
ALLOW Pseudo op writeup) more than one actual fields wvalues to be
specified. In that <cases the bracketed form must be used §s more
than one value 1s actually specified.

§ <FOODOC>SLOE.MAN31 Thu 17-Dec=81 6:26PM Page 16

Page 16
CONTEXTS
$ e ¢ o o s & ¢ ¢ 6 o o o o o & & 9
eblOCKk ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ ¢« ¢ o o & 9
«define e o ¢ o ¢ o o o o o o o o 11
«efOPr o ¢ o ¢ ¢ ¢ o o ¢ ¢ ¢ o o o o 11
oif ® 6 ¢ ¢ 8 & o o ¢ o ¢ o s o o 11
einsert e e ¢ @ ¢ o o o o o s o o 12

Asembler directives e ¢ » o o o o 9

Bastc SYNtax « o ¢ o ¢ ¢ ¢ o ¢ o o 2
Block e ¢ 6 ¢ o ¢ o s o o s & o & 9

Comma e ¢ o & o & o ¢ o o o o+ o o 10
Conditional assenbly o o ¢« ¢ o o o 11
Contexts ¢« ¢ ¢ ¢ ¢ ¢ o o ¢ o ¢ 0.0 13

Declarations « « . . . 14
Define ¢« o o« ¢ o o o o o & @ e o 11

End of Line e © ¢ o ¢ ¢ o o o o o 10

Eol e ¢ ¢ ¢ & o o o & ¢ s o o o o 10

Error checking « « o« o ¢ ¢ ¢ ¢ ¢ ¢ 1¢ 5
EXDTCSS‘OHS e ¢ + o o o ¢ &« o o o 14

Fleld values o« ¢ ¢« ¢ o ¢ ¢ ¢ ¢ o o 15
FielcGS o o o o ¢ ¢ o o o o o o o o #y 13-14
Files ¢ © ¢ o o o o & s o o s ¢ o 12

For * o o o o & o o s o o o s o o 11

.
.
.
.
.
.
e
.
P
[o

If L d L * . L] * *
Incompleteness o« ¢ o ¢ o ¢ o o o o 2
Insert o ¢ ¢« o @ ¢ o 2 ¢ ¢ o o ¢ « 12

Labels o ¢ o ¢ ¢ ¢ « ¢« ¢ « o ¢ o o 6
Letters e © 5 o & o ¢ o o o o & & 2

LONg Names ¢« ¢ ¢ ¢ ¢ ¢« o ¢« o o o o 14
Macro definition ¢« ¢ ¢« o ¢ ¢ ¢ o ¢ 11
Macrec fnvecation « o o ¢ ¢ o o o o 11
MBCros o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o &
Memories « o ¢ ¢ o o ¢ ¢ o o o o o 2
Memory allocaion « ¢« ¢« ¢ ¢ ¢ ¢ o ¢ S
Microinstructions e ¢ o o o o & o 2

Numbers ® o ¢ o ¢ & ¢ o & o o o & 2% 6
iL

§$ <FOODOC>SLOE«MANS L Thu 17-Dec=81 6:26PM Page 17

Paraltlelism . t o o o o 2
PSCUCO ODS ¢ ¢ ¢ ¢ & ¢ o ¢« o o o o 44 9
Separators ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o & & 2-3
Short names s o ¢ o ¢ o o o o o o 14
SPACES ¢ ¢ © &« o ¢ & ¢ o o o ¢ o o 2
Specials ¢ ¢ ¢ ¢ o ¢ ¢ ¢ ¢ ¢ ¢ o o 2
Syllable ¢ ¢ & o & & o o s o o & & 2
Syﬂbol types ¢ ¢ o o 2 o o s o o o 3
SYMbOtS ¢ ¢ e o o e ¢ o 5 o ¢ o ¢ 3
Values o« o« o ¢ ¢ o ¢ s ¢ o o ¢ o o 6

Words e & & o o & ¢ & o & & o & & 5

3 <FOODOCDO>SLOE.DOCS1 Thu 17-Dec=81 6:25PM Page 1

Memory specifications

Sloe can simultaniously assemble code into any number of
different memoriess with different sizes and field propertiese.
AT LEAST ONE memory must be declared befcre any siagnificant
assembling can be decnes

DEFINE~-MEMORY memory-name [subclass List] bit-size words-long

SUBCLASS LIST 9s a List of *extre® 1 bit fields (more Later)
BIT=SIZE is the width of the memorys excluding the class Llist
WORDS -LONG 1s the lLength of the memory

declares a new memory and selects it to be current,
SELECT memory-name

selects a declared memory as current
LIST-MEMORIES

Lists the properties cf declared memories.
DEFAULT=PC xxx

selects mode xxx as the default next pc selectore See the PC CONTROL
section cf this docurent,

in addition to BITS1Z2Ef and WORDSIZEs each memory has other
properties preserved cver memory switchess These are:

LOCATION COUNTER

ALLOCATION MAF

FIELDS LIST

NEXT=PC SELECTOR

SUBCLASS LISTY

PARITY GENERATION SPECIFICATION

NOT included in the per memory stuff is
VARIABLES LIST
MACR(QS LIST
LABELS LIST

3 <FOODOC>SLOE.DOC31 Thu 17=Dec~81 6225PM Page 121

Self [Cocumentation Features

There are a number of psudo ops that dump documentation
into the Listing file. The documentation so dumped 1is
gaurenteed to be currenty since it 1s created at compile time
and ¥s an integral part of the assembler.

LIST-PSUDOS

ee is the most importanty since 1t Lists the List of Listse
others that exist at the time this file was Last updated are:

LIST-CORMAP print memory allocation map
of your assembled progranm
LIST-FIELDS tist alt the fleld definitions

very useful ta see 1f everything
is as you expect!

LIST-OPELRATORS List the arithmetic expression
operators

LIST-MEMORIES List name and sizes of defined memories
LIST-NEXTPC tist the available next~pc operators
LIST~LABELS List labei-to-address symbol table
LIST=-SYMBOLS List the integer symbols defined
LIST~PARITY List the parity generation specification

SYMBOLS

SYMBOL TCKENS are bounded by separator characterse.
the separator set 1is:
$ ¢ $ [Y ¢)Y space tab Line feed

the separator set does NOT include
< = > 1 8 /7 \ ¢

SYMBOL TOKENS can inctude any characters not in the separator set.
as FIELD VALUESs tokens are scanned onlu as far as the first
single quote ¢ *) character. This makes it convenient to
define local names that possibly conflict with glebal names,
EXAMPLE:
FIELD FOO s p ¢
FIELD ABC s p
FOO%abe = 3 %
now FOO references field FOOQ
ABC FOO references field ABC
FOO*ABC references field ABC

3 <FOODOGCD>SLOE.DACS1 Thu 17=Dec=81 6:25PM Page 1:2

EXAMPLE:
ALUCA+B] ¢ is parsed as ALU [A+B] ¢
ALULA + B] 3 is parsed as ALU [A +B 1 ¢

SYMBOL TYPES
User defined symbols can be of several types

A defines Label Ay Alsos an undefined reference in a
LABEL type field implicitly creates a Labely whose
value will be defined lLatere.

A = expr defines a simple variables NOTE that the space hetween
the & and = is necessary!
A = FIELC s p §
defires a FIELD within a microcode wordes
S is the size of the field in bits
P s the number of the Low order bit of the field,
with bit zero at the left.
Syntzazcticallys a field defined this way requires
a value specification to follow 1t.
A = FIELD s p
VALUEL = n
VALUE2 = k
[X N 3
VALUEN = z ¢
defines a field which has named valuess The values
may be used as value specification for the fields oOr,
if uniquesy may be used to imply the field.
FOR EXAMPLE:
FOOBAR = FIELLC 5 § idefine a 5 1t field ending 5 bits fro
FoO0~-1 =0 tend of microcode word
FoO0=-2 = 2 % $F00-1 and F00=~2 are possible values
FOOBAR 4 §
FOOBAR FOO-1 ¢
FoO=-2 ¢ sall specify the FOOBAR fleld
~+wkakr COMPLEX FIELD DEFINITIONS »#nin
special modifiers for field definitionse.
LABEL before the $ ending the field defintition

specifies that the vatue of the field 4s a label

FOOBAR = FIELD 5 S LABEL $

5 <FOODOC>SLOE.DOC51 Thu 17=-Dec-81 6325PM Page 1:3

DEFAULT

NOVALUE

after a subfield specification specified that this
is to be the field*s default value,.

FOOBAR = FIELD S 5

F0C=1 = 0
FO0O0=2 = 1 DEFAULT
FOO=-3 = 2 $

after a field value definitione specifies that

this cefinition does not supply a value for the field.:
This allows unrelated specifications to be 4included

in the field for syntactic clarity

FOOBAR = FIELD 5 5

FOO=1 = 0

FoO=2 = 1

STROBE = XYZ 3 NOVALUE
F00=-3 = 3 ¢

FOOBAR [FOO~2 STROBE] §

restrictions and irplied fields can be added to field specifications
and field value specifications.

FOOBAR

-
=

XXX 3 YYY 4 FIELD 5 S5

FO0O~-1
FOO=-2
F0O0-3

Hnuu

222031 0
2 DEFAULT
XYZ 4 NOVALUE $

This specifies that FCOBAR ¢ or subfields)

set xxX field to 3 anc YYY field to 4,

as well as requiring a value for the field.

FOO=1 also sets 222 fileld to 3

FOO0=2 also sets X2Y field to 4¢ and specifles
no value for FOOBAR

The *subclass List* of each memory 4¥s a List of names of 1 Bit
fieldss which are not part of the ®real® microcode worde Unlike all
fields which are part of the microcode worde class List fields
do not have to be specified (or defaulted) in every microcode
ALL the usual operations can be done with the class

worde

List fields.
in microcode.

This permits you to set up arbitrary restrictions

EXAMPLE S

Declare-memary main [SPECIAL I 10 1000

FOO

FIELL 4 3

BAR = SPECIAL 1 1 sspecial on
BAZ = SPECIAL 0 1 ¢ sspecial off
FOO2
FGO0Z2 = SPECIAL 0 1 ¢

= FIELD 4 7

R

3 .<FOODOC>SLOE.SOC§1 Thu 17-Dec=81 6:25PM Page 1:4

NOWe the micorcode word

FOO [RAR] FOC2LFQO02] ¢
will cause an error message *F(002 fcauses a field conflict®
because FQO2[F00Z1 requires SPECIALLO0] and FOOLBAR] requires
SPECIALL1]

-e

*E @8 W

Finallyy fields can require another field®s value be specified.

@ = FIELD 12 30 LABEL s
JCODE = FIELC 3 20
JuMP = & [1 7

NEVER = 3 CEFAULT
PUSHJY = & [1 4
POPJ = 5 %

defines JCODELNEVER] as the default specifications
but if JUMP or PUSHJ is usedsy an address must be
specified as welle.

JUMP FOO ¢

and
JCODE 4 3 FOC ¢

ee are now ecquivalent,

A= BITPV S
4s ecuivalent to:
A«FIELD = FIELD P 1
A = V DEFAULT $
if V is omitteds 1 1s assumed
This is a convenient mechanism for defining control
bft fieldse ALL the other elaborations of FIELD

defiritions can be used tooe

T Y2222 222 2222222222323 23 SR R R 2222222 AR R RS R AL Rl El RS

Memory allocation etce

$ <FOODOCO>SLGCE.DOCS1 Thu 17=Dec=81 6:25PM Page 1:5

AARRRRARRER AR RN RN RA R R AR A RA R AN R R AR AR AL A RN RN REARANRAANRARR AR AR R R

Before anythings you must declare the microcode wordsize

DECLARE=NMEMORY memory-name bitsize dwordsize

memory=name is the name of the memory
bitsize is the number of bits wide 1t 1is
wordsize is the number of words long 1t 1is

any number of memories can be declareds and you can suwitch assenmbly
into any of them with

SELECTY memory-name

¢ nnn where nnn is & number, expressions or simple variable
sets the tocation counter to nnn
Al defines a new lLabel at the current location counter

t A+ nn sets the Location counter toc a relative location

«BLOCK Elb ub3l <0x1> ﬂ.#,#:ﬁ XX
finds a2 block of memory Locationsy meeting constraints {imposed

L b ub 1
. specifies the bounds within memory what will be searched for
a Location that meets the other constraints imposed., LB
and UB default to 0 and max-value respectivelys LB and UB
can also be an expression rather than a constant.,
The whole of [Lb ub] is optional

<0x1> is entirely coptional. if specified,
it 1s a3 picture of the Low order adress bits of the block
to be founds x specifys a *don®*t care® bit.
is a number or evpression
#:84 1is a range of numbers

«MARKOUT #o#:8 4o
: marks specified memory Locationsy retative to the
current location counteres as used.

tZ 2222222222 22222 XRRRRZRSX222R 2222228222222 2Rttt R it el d

PARITY GENERATION

'$ <FOODGCD>SLOE.DOCS1 Thu 17-Dec=81 6€:25PM Page 126

AN ARAEAANRAE R RN N AR AR R XA RFIAANARA AR RARN R RAN R R R AN S A AR AN RN AR AR RN

Each memory has a parity generation specificatione which
can be declared anytime before final cutput s writtene.

GEN=PARITY type mask=field data-tield

TYPE must be the word "ODD® or "EVEN®
MASK-FIELD can be any fieldes The bits masked by

the field are counted for the calculation
DATA~FIELD can be any 1~BIT fields Data-field will

be stuffed with the desired parity

There can be any number of cifferent parity specifications:
The calculations are performed in the order originally specified.
It is possibley therefores to autoatically caculate separate parity
for different parts of the wordy or even to generate error
correcting codes!

The LIST-PARITY pseudo-op Lists the parity generation
sequence for the current memorye.

(2222222 RRR22222RARRRRRS RSS2 R 22 222 222222222222 ARt s iRl S

Next FC control

L2223 R0 RARRRRRAREEEsRE R RERRRRRR 2R AR AR 22 R

The vagarities of PC control are handled through a special
mechanisme. There are a number *next pc* selectors (PCCs) available,
more will be generated on requeste. Currently avaitable:

PC+1 unconditionatly the next memory location
FC+20 unconditionally PC+20

PC-EVEN the even Location of a pair of free Locations
PC=ANY PC+1 if avatlabley but any 1f not.

In genralse any set c¢f constraints to the +BLOCK psudo op could
be used. Any zero=-argument macro which manipulates the location
counter can be added to the list with the DECLARE-NEW-PC psudo=-op

CECLARE=-NEW=PC macroname newpc=name comment-to=end=-ocf=~Line

macrcname must be a zero-arg macro
newpc-name witl be it*s alias as a new=-pc generator

the rest of the Line 1s a comment, which will be
printed by the LIST-NEXTFC psudo op

EXAMEPLE :

DECLARE-NEW=-PC FUBAR FC~-MYWAY do it the right way!
Wwill set up the macro FUBAR as PC-MYWAY in
the PCROUTS List

$ <FOODOCDSLOE.DOC31 Thu 17-Dec=81 €225PM . Page 137
At any moment, one cf the PCCs is the defaulty set with the
DEFAULT=FC psudo ope
DEFAULT=PC xxxx

sets the pc selector. The default cefault pc=selector ¥s PC+1le.

Nows any FIELD can imply a non-default pc selector. for instance?

FIELD PC-MOD 2 2

NO=SKIP = 0 default
SKIP-USER = PC=-EVEN 1
SKIP=-EXEC = PC~EVEN 2 §

nowse asserting SKIP=-USER in a microcode word also causes
the sequencer to select an appropriately constrained location as the
default next.

b

In adcition to selecting a default next pce it is sometimes
necessary to assure that that value is used in some label fietd.
For instazncesy on FOONLYs the Next address field nust be fillede
LABEL type fields are allowed to have a default values and
two useful spectal lLabels are availablee.

. is the current location counter
NAF is the default next location counter

FIELD NEXT=-ADR 10 10
NAF®* = 0 DEFAULT % sdefault pc to NAFm whatever
sthat may evaluate to be.

FIELD NEXT<ADR=2 10 20
. = 1 DEFAULT ¢ sde fault to «+1

L2222 R AR R 2222 2 R R R R R Z R 2 S S R R Y R N R S R R R 2 222 2222222}

Conditional compitation

'3 <FOODCC>SLONE.DOCS? Thu 17-Cec=81 6:25PM Page 1:8

it*tit*ti*’tt**‘l*‘ltt'ltt*t*t*‘ltit*t*!it*tttitti***i*t"lﬁﬁ*'t*ﬁi

oIF <boolean expression® <blockd> else <block> 1 C7 ’kl

Is the basic syntax for conditionalss the ELSE and
the second block are optionala.

BElock can be efther

BEGIN any=-token
(X N J

END any=-token

or

EXAMPLE®S

«IF A > 0 L E = 1 J FELSE
BEGIN FOO
B = E +1
C =B » &
END FCO

LARAS AL SR RR LR R SR R R R R R Y R 2222 R Rl

Repeaty Fors Macros etce

LA AR AR RS AR ERE R LR ET IR TR FR R R PP PR R R RGP

+REPEAT <expression> <block>
repeats BLOCK however many times,y possibly zeroe.

EXAMPLE:
«REPEAT A + 2 [B =B » 2 3
«REPEAT 0 BECGIN FOO

this is a random comment
ENC FOO

3§ <FOODOC>SLOE.DCCs1 Thu 17=Dec=81 E:ZSPH Page 1:9

«DEFINE <macroname> <arg=-black> <body-chck)

cefines a2 macroe.
MACRONAME 1s any valid token
ARG=BLOCK 1s a blocke ALL the tokens within the block
are formal argumentss max of 127.
BODY-BLOCK 4s a block to substitute the formals in
the usual waye.
is the concatination character

.

EXAMPLE:

+DEFINE FOO I' A B 1
PEGIN XX
A*B = A + B
END XX
«DEFINE FOO PEGIN ARGS A B C END ARGS
EEGIN BODY

A B C ¢
END BODY

+FOR <formalname> <actuals> <body>
cefines a repetitive replacememt of FORMALNAME
with each of the actialse. Much like Fail.

EXAMPLE:

evaluates to

noaun
oo

B
c
D

} <FOODOC>SLOE.DOC31 Thu 17-Dec=81 6:25pM Page 1:10

‘*f't*iiiti*ﬁi***t*i*!iiti*attt*ttlt*it*ti*iiiit**t'**t**i**tit‘.*i

Labels and expressions

~t*ﬁ*ﬁt#ttiti*ﬁttittiaiiﬁit*tti'tti**iiiiii*ii*ﬁ**'****tt!*tﬁ***t*i

Labelsy unlike fieldnamesy may be forward referenceds both in
defined words and code words

ERROR = JUMP PBUGHLT $
s a valud defintion, even it BUGHLT is currently undefined

CAVEAT arithmetic performed with forward referenced lables is
valid for simple + and - operations only!?
JUMP L[FOO0 + 11 is always valid
wUMP LF00 ! 13 is valtid only 1f F0O is defined

L

3 <FOODOC>SLOEDOC31 Thu 17=Dec=81 6:25PM Page 2

Special Notes for the export version
The ususal ccmmands begin with a @
ID €control C)Y calls DDTy return with |E

'fooc a b ¢ d (up to four arguments) calls trip function FQQO

TAPE output format is 8 bit bytesy (tape frames)
2000« frames in a reccrde changable by setting BUFSIZ

Cadr=high><adr-Low> <8bits data><Bbits catad eee<8bits datad
enough Ebit data bytes to contain the whole words however tong
that may be

micrococe word groups are output in the order encountered in the
assembly

file 1s terminated ty an adr of 177777

