System 68000 VME
SYS68K/PDOS*

Operating System






PDOS* DISK OPERATING SYSTEM

FEATURES:

— REAL TIME, MULTI-USER, MULTI-TASKING

— PRIORITIZED, ROUND-ROBIN SCHEDULING

— INTERTASK COMMUNICATION AND SYNCHRONIZATION

— TASK MEMORY MAP CONTROL FOR PROGRAM SECURITY

— FULL EXCEPTION PROCESSING

— SEQUENTIAL, RANDOM, AND SHARED FILE MANAGEMENT

— HARDWARE INDEPENDENCE

— 68000 LAYERED DESIGN OF KERNEL, FILE MANAGER, MONITOR
— COMPLETE FLOATING POINT SUPPORT

— CONFIGURABLE, MODULAR, ROMABLE STANDALONE SUPPORT
— NO MEMORY RESTRICTIONS

Task #4
Position
Monitoring

ROBOTICS

Task 43
Stepper Motor
~ Movements

a2 = cosb + cosc + 2ab

)

f'

OMPUTERS

N



1. DESCRIPTION:

PDOS* is a powerful multi-user, multi-tasking operating system developed for the 32-bit
Motorola 68000 processor family. This development software is designed for scientific,
educational, industrial, and business applications.

PDOS* consists of a small, real time, multi-tasking kernel layered by file management, float-
ing point, and user monitor modules. The 2k byte kernel provides synchronization and con-
trol of events occurring in a real-time environment using semaphores, events, messages,
mailboxes, and suspension primitives. All user console I/0O as well as other useful conver-
sion and housekeeping routines are included in the PDOS* kernel.

The file management module supports named files with sequential, random, and shared ac-
cess. Mass storage device independance is achieved through read and write logical sector
primitives. The designer is relieved of real-time and task management problems as well as
user console interaction and file manipulation so that efforts can be concentrated on the ap-
plication.

Assembly language floating point applications are no longer a problem. Conversion mo-
dules, assembler directives, and operating system calls allow easy integration of floating
point operations into user application programs.

2. FUNCTIONAL DESCRIPTION:

PDOS* KERNEL. PDOS* is written in 68 000 assembly language for fast, efficient execution.
The small kernel provides multi-tasking, real-time clock, event processing, and memory
management functions. Ready tasks are scheduled using a prioritized, round-robin me-
thod. Three XOP vectors are used to interface over 75 system primitives to a user task.

MULTI-TASKING EXECUTION ENVIRONMENT. Tasks are the components comprising a
real-time application. Each task is an independant program that shares the processor with
other tasks in the system. Tasks provide a mechanism that allows a complicated application
to be subdivided into several independant, understandable, and manageable modules.
Real-time, concurrent tasks are allocated in 2k byte increments. Task system overhead is
less than 1k bytes.

INTERTASK COMMUNICATION & SYNCHRONIZATION. Semaphores and events provide
alow overhead facility for one task to signal another. Events can be used to indicate availa-
bility of a shared resource, timing pulses, or hardware interrupt occurrences. Messages and
mailboxes are used in conjunction with system lock, unlock, suspend, and event primitives.
PDOS* provides timing events that can be used in conjunction with desired events to pre-
vent system lockouts. Other special system events signal character inputs and outputs.

MEMORY REQUIREMENTS. PDOS* is very memory efficient. The PDOS* kernel, floating
point module, file manager, and user monitor utilities require only 8k bytes of memory plus
an additional 4k bytes for system buffers and stacks. Most applications can be developed
and implemented on the target system. Further memory reduction can be achieved by link-
ing the user application to a 2k byte PDOS* kernel for a small, ROMable, standalone, multi-
tasking module. A fast, 6k byte scientific orientated BASIC interpreter with real-time primi-
tives provides interactive high level language support as well. For large system configura-
tions, PDOS* effectively addresses up to a 32 bit address space.

FILE MANAGEMENT. The PDOS* file management module provides sequential, random,
read only, and shared access to named files on a secondary storage device. These low over-
head file primitives use a linked, random access file structure and a logical sector bit map for
allocation of secondary storage. No file compaction is ever required. Files are time stamped
with date of creation and last update. Up to 32 files can be simultaneously opened. Com-
plete device independence is achieved through read and write logical sector primitives.

COMMAND LINE INTERPRETER. A resident command line interpreter allows multiple com-
mands to be enterred on a single line. Command utilities such as append, define, delete,
copy, rename, and show file are also resident and can be executed without destroying cur-
rent memory programs. Other functions resident in the monitor include setting the baud rate
of a port, checksumming memory, creating tasks, listing tasks, files and open file status,
asking for help, setting file level, file attributes, interrupt mask, and system disk, and direct-
ing console output.



&

INTERRUPT MANAGEMENT. The PDOS* kernel handles user console, system clock, and
other designated hardware interrupts. User consoles have interrupt driven character 1/0
with type ahead. A task can be suspended pending a hardware or software event. PDOS*
will switch control to a task suspended on an external event within 100 microseconds after
the occurrence of the event (provided the system mask is high enough). Otherwise, a priorit-
ized, round-robin scheduling of ready tasks occurs at 10 millisecond intervals.

PORTABILITY. PDOS* gives software portability through hardware independance of read/
write logical sector primitives. All other hardware functions such as clocks, mappers, and
UARTS are conveniently isolated for minimal customization to new 68000 based systems.

CUSTOMER SUPPORT. Numerous support utilities including virtual screen editors, as-
sembler, linker, macroprocessor, disk diagnostics, link, and recovery, disk cataloging are
standard. Single stepping, multiple break points, memory snap shots, save and restore task
commands, and error trapping primitives are provided in all languages to aid in program de-
bugging.

3. LANGUAGE SUPPORT:

— Basic Standard Dartmouth Basic with enhancements, such as program de-
bugging, inter-task communication and real-time support.

— Pascal multi-pass, optimizing compiler that generates assembler text for the
68000 microprocessor. The PDOS* Pascal compiler implements a su-
perset of the Pascal language defined by Jensen and Wirth.

— Fortran 77 compiler, supporting the full ANSI Fortran 77 standard (available later).

-C Compiler for the C language (available later).

PDOS* SYSTEM CALLS

Append file Execute PDOS call to D7.W
Baud console port Exit to monitor

Build file directory list Flush buffers

Debug call Fix file name

Check for break character Fix time and date
Convert binary to decimal Free user memory
Convert binary to hex Get character conditional
Convert to dec w/message Get character

Check for break or pause Get line in buffer

Convert to decimal in buffer Get line in monitor buffer
Convert decimal to binary Get line in user buffer
Close file w/ attribute Get memory limits

Chain command Get next Parameter
Convert binary to hex in buffer Get task message

Close file Get user memory

Clear screen Initialize sector

Copy file Kill task

Create task block Kill task message

Delay set / reset event Load file

Define file ' Load error register
Delete file Look for name in file slots
Define trap vectors Lock file

Return error do to monitor Lock task

COMPUTERS

XCE



Load status register

List file directory

Open non-exclusive random
Put buffer to console

Put character(s) to console
Put CRLF

Put data to console

Put encoded message to console
Put line to console

Put message to console
Position cursor

Position file

Put space to console

Read bytes from file

Reset console inputs

Read port cursor position
Read next directory entry
Dump registers

Read directory entry by name
Read date

Read file attributes

Read line from file

Rename file

Open random read only
Open random

Reset disk

Read sector zero
Read time

Read task status
Rewind file

Set event flag

Open sequential

Set port flag

Send task message
Set / read task priority
Suspend until interrupt
Enter supervisor mode
Swap to next task
Get disk size

Tab to column

Test event flag
Unpack date

Unlock file

Unlock task

Unpack time

Write bytes from file
Write date

Write file attributes
Write line from file
Write sector

Read port status Write time

Read sector Zero file

PDOS* UTILITIES

MASM 68000 assembler.

MBACK Disk backup.

BXREF Basic cross reference.

COMP Compare ASClI files.

MCHATLE Changes attributes levels of selected files.
MDDMAP Disk diagnostic. Reads files by links.
MDDUMP Disk sector dump and alter.

MDNAME Renames PDOS disks.

MFDUMP Output logical dump of PDOS files.
FERMT Format logical unit.

MFSAVE Restore files from links.

MINIT Initialize PDOS disk.

MLDIR Wild card list directory.

MLEVEL Short listing by level.

LIBGEN Create user module library.

QLINK Link relocatable object.

MORDIR Alphabetizes and compresses disk directory.
SYFILE Generate SY file from OB.

MTERM Set terminal cursor functions for task only.
MTRANS Selektive file transfers.

RENUMBER Renumbers BASIC programs.

UPTIME Systemuptime




P N

S T

INTERRUPT MANAGEMENT. The PDOS* kernel handles user console, system clock, and
other designated hardware interrupts. User consoles have interrupt driven character 1/0
with type ahead. A task can be suspended pending a hardware or software event. PDOS*
will switch control to a task suspended on an external event within 100 microseconds after
the occurrence of the event (provided the system mask is high enough). Otherwise, a priorit-
ized, round-robin scheduling of ready tasks occurs at 10 millisecond intervals.

PORTABILITY. PDOS” gives software portability through hardware independance of read/
write logical sector primitives. All other hardware functions such as clocks, mappers, and
) UARTS are conveniently isolated for minimal customization to new 68000 based systems.

CUSTOMER SUPPORT. Numerous support utilities including virtual screen editors, as-
sembler, linker, macroprocessor, disk diagnostics, link, and recovery, disk cataloging are
standard. Single stepping, muitiple break points, memory snap shots, save and restore task
commands, and error trapping primitives are provided in all languages to aid in program de-

UTERS

T QY
5O

* bugging.

3. LANGUAGE SUPPORT:

— Basic Standard Dartmouth Basic with enhancements, such as program de-
bugging, inter-task communication and real-time support.

— Pascal multi-pass, optimizing compiler that generates assembler text for the
68000 microprocessor. The PDOS* Pascal compiler implements a su-
perset of the Pascal language defined by Jensen and Wirth.

— Fortran 77 compiler, supporting the full ANSI Fortran 77 standard (available later).

-C Compiler for the C language (available later).

PDOS" SYSTEM CALLS
Append file Execute PDOS call to D7.W
Baud console port Exit to monitor
Build file directory list Flush buffers

(- Debug call Fix file name
Check for break character Fix time and date
Convert binary to decimal Free user memory
Convert binary to hex Get character conditional
Convert to dec w/ message Get character
Check for break or pause Get line in buffer
Convert to decimal in buffer Get line in monitor buffer
Convert decimal to binary Get line in user buffer
Close file w/ attribute Get memory limits
Chain command Get next Parameter
Convert binary to hex in buffer , Get task message
Close file Get user memory
Clear screen Initialize sector
Copy file Kill task
Create task block Kill task message
Delay set / reset event Load file
Define file ' Load error register
Delete file Look for name in file slots
Define trap vectors Lock file
Return error do to monitor Lock task




PDOS* MONITOR COMMANDS

Append file
Available memory
Baud port

Copy file

Create task
Definefile
Deletefile

Delete multiple file
Date and time
Set/reset event
PDOS BASIC
Free Memory

File slot usage

Get memory
Execute

Help

Set system date/time
If processor

Set interrupt mask
Kill message

Kill task

Load file

List directory
List tasks
Directory level
Make file

PDOS debugger
Reset console
RAM disk
Rename file
Reset disk

Set file attributes
Show file

Send message
Disk space
Spool unit
Systemdisk
Transparent mode
Task priority
Output unit

Zero memory

4. HARDWARE CONFIGURATION:

The SYS68K/PDOS* Operating System implementation requires one of the following hard-

ware configurations:
® CPU-1or CPU-2
® SASI-1

W ® DTC-520
® DRAM-1

® CPU-1orCPU-2
® WFC-1
® DRAM-1

FORCE COMPUTERS recommends the following devices for data storage:

Micropolis 1115
Micropolis 1302

1 MB Floppy
25MB Winchester

SASI
Controller

25 MB
Winchester

1MB
Floppy

25 MB
Winchester

IMB
Floppy

)

f

COMPUTERS
]

N



5. DELIVERY MEDIA:

SYS68K/PDOS* is shipped on 5'/, inch Floppies. The package includes two boot EPROMS

and documentation.

ORDERING INFORMATION

Operating System on 5 '/, inch Floppies,
boot EPROMS and documentation.

SYS68K/PDOS
Part No. PDOS for CPU-1: 140001/10
Part No. PDOS for CPU-2: 140002/10

SYS68K/PDOS/UM
Part No. 800031

SYS68K/PDOS/OV
Part No. 800030

SYS68K/PDOS-PAS
Part No. 140020

SYS68K/PDOS-PAS/UM
Part No. 800032

NOTE: The SYS68K/PDOS* package is copyrighted and licenced by FORCE COMPUTERS GmbH and may only be used in accor-
dance with and under the terms and conditions of such a licence aggreement.

Basic included.
User’s documentation.

Product overview.

Pascal compiler and documentation.

Pascal user’s documentation.

* PDOS is a trade mark of EYRING RESEARCH INSTITUTE INC.

FORCE COMPUTERS INC.
727 University Ave.

Los Gatos, CA 95030
Phone (408) 354-3410

Tix 172465

Telefax (408) 3957718

FORCE COMPUTERS GmbH
DaimlerstraB3e 9

D-8012 Ottobrunn

Telefon (0 89) 6 09 20 33
Telex 5 24 190 forc-d
Telefax (0 89) 6 09 77 93

FORCE COMPUTERS FRANCE
11, Rue Casteja

F-92100 Boulogne

Tel. (1) 620 37 37

Tix 206 304 forc-f

Telefax (1) 621 35 19

ﬁ)MPUTERS’
4

Note:

FORCE COMPUTERS reserves
the right to make changes to the
product herein to improve
reliability, function or design.
FORCE COMPUTERS does not
assume any liability arising out of
the application or use of product
or circuit described herein,
neither does it convey any
license under its patent rights
nor the rights of others.

© Copyright 1985
Design FORCE COMPUTERS

7.85/5.0/PDOS/A2 Printed in West-Germany by ik



