System 68000 VME
pSOs-68K

Real time, Multitasking,
Operating System Kernel for
VMEbus Board Modules

)

A
‘=
m

COMPUTERS

N



SYSTEM FIRMWARE & SOFTWARE

SYS68K

MONITOR




General Description

The pSOS-68K package is an implementation of
the pSOS* software environment on board level
products of the VME family of FORCE COMPU-
TERS etc. In its customized form it represents a
new direction in software components compar-
able to that achieved with LSI technology in hard-
ware designs. pSOS is shipped in EPROM and
can be used like a floating point coprocessor using
the standard pSOS-68K calling sequences.

Features of the EPROM resident pSOS-68K
package:

Plug in, silicon operating system

Requires no system generation, compilation,
or linking

Usable with any development system

Totally hardware independent

Self configuring and position independent
Easy to use interface

Device independent logical I/0 interface
User and privileged processes

pSOS-68K is a real time, multitasking operating
system nucleus for the 68000 CPU. It is excellent
as a fast multitasking executive in real time, ROM
based, SBC applications. Moreover pSOS-68K
can serve as the OS Kernel and I/O supervisor in
memory mapped, disk based real time systems.

*) pSOS-68K is a trademark of Software Compo-
nents Group, Santa Clara / California

Functional Overview

pSOS-68K constitutes a layer of supervisory soft-
ware around the 68000 CPU. Its rich feature set
and simple interface encourage an efficient,
structured application design, and improve pro-
ductivity through reduced design and debugging
efforts.

The user application is partitioned into logically
concurrent processes. Related processes can be
grouped, forming protected subbranches in the
process tree. pSOS schedules and allocates
resources between processes, and supervises
asynchronous processing. Processes are sche-
duled by priority; equal priority processes are
roundrobined by time-slice.

User processes and I/O drives interface with
pSOS-68K via a set of extended 68000 instruc-
tions which comprise the kernel service calls and
I/0O supervisor calls.

Kernel Service Requests

The twenty-nine kernel calls serve five groups of
functions.

Process Management
The first group of service calls allow dynamic
creation and deletion, and control of processes.

Memory Management

These calls perform dynamic memory allocation
and reclamation, and control the mapping and
protection hardware, if available. pSOS provides
an efficient »buddy« allocation algorithm for
managing unmapped memory. This serice group
is designed to be replaceable to work with any
MMU, including the Motorola 68451 and the Stan-
ford SUN segmentation-paging scheme. All
MMU-related changes are localized to these nine
calls; no other changes to pSOS are required or
recommended.

Interprocess Communication

These primitives allow processes to communi-
cate, synchronize, and effect mutual exclusion,
and thus perform crucial services in a multitasking
environment. The Message Buffer facilities pro-
vided are efficient and multi-purpose. Request/
send_messages, for example, supplant P/V se-
maphore primitives and, moreover, allow recla-



mation of resource-related mes-
sages upon asynchronous process
deletions. Messages are routed via
exchanges which provide effective
N-process to M-process communi-
cations.

Time-Base Management

If RTC hardware is included, time-
base services provide a real-time
clock, allow processes to pause for
specified periods, and provide time-
out options to other kernel services
such as Request_message and
Allocate_memory calls.

Miscellaneous

The RETI and DISPATCH calls
allow Interrupt Service routines and
Privileged processes respectively
to invoke a pSOS dispatch cycle.

I/O Supervisor Requests

The pSOS 1I/0 supervisor imposes
alogical, device-independent struc-
ture on user-provided device
drivers. I/0 requests are made via
standard calls to the I/0 Supervisor,
employing logical device numbers.
Each device driver must present six
procedures, some of which may be
simply null or error returns. 1/0O
operations are designed for ef-
ficiency, and require no lengthy re-
quest blocks. Moreover, highly
time-critical 1/0 can be performed
outside the I/O Supervisor, using
Interprocess Communication ser-
vices between the interrupt service
routines and the servicing pro-
cesses.

TABLE | — Service and I/0 calls

*For MMU implementation only

p—N

\

COMPUTERS

XIE |



Building an Application

pS0OS-68K is uniquely versatile and easy to use.
Figure 1 depicts the components in a typical ap-
plication, where dashed lines suggest data con-
nectivity, and solid arrows indicate action flow
paths.

User software consists of two types of objects —
Processes and I/0 drivers. A small Configuraton
Table supplies all hardware and application-
dependent parameters to pSOS, including ad-
dress and size of free RAM, RTC frequency,
number and location of I/O drivers, and the user
Rootprocess descriptor.

After a system reset, the following modules must
be memory resident-pSOS, Configuration Table,
Root_process, and Device drivers. Some or all of
these modules may be ROM’ed or bootloaded.
Similarly, the Vector page may be ROM’ed or

initialized by a small Bootprom monitor to point to
the kernel entries and user interrupt handlers.
The reset procedure then branches to the pSOS
initializer with a pointer to Configuration Table.
Per the Configuration parameters, the initializer
carves a kernel data segment from the free RAM
area, and sets up its data and list structures. The
Init_procedure in each Device driver is then called
in turn, which resets the Device and initializes its
data area for itself, if necessary. The kernel initia-
lizer then calls a routine which sizes up the re-
maining unused RAM and sets up the Memory
Manager.

The last initialization step actives the user Root-
process, whose responsibility it is to spawn and
activate all user processes needed at startup
time. Thereafter, processes communicate with
each other, spawn offspring processes, share
resources, and perform 1/0, all through pSOS.

_initializer

Kernel

~ SVCcalls

. Vools

interrupts

Figure 1: pSOS-68K
Application Components

Memory layout




Specifications
Hardware Requirements:

® 68000 CPU
® Memory 4KB code, 512 bytes data minimum
® RTC Realtime clock - recommended

Standard Features:

® Kernel with Memory Manager (unmapped)
® |/O supervisor
® Exception logger/reporter (virtual console)

Shipping Media

® 2764 EPROM set containing pSOS firmware
® pSOS-68K users’ documentation

Ordering Information

SYS68K/pS0OS EPROM chip set including documentation,

Part No. 130001

SYS68K/pSOS/UM

Part No. 800018

Note: The pSOS-68K package is copyrighted and licensed by

single evaluation license

Users’ documentation

FORCE COMPUTERS GmbH and may only be used in accordance
with and under the terms and conditions of such a license agreement

(see license agreement form).

Note:

FORCE COMPUTERS reserves
the right to make changes to the
product herein to improve
reliability function or design.
FORCE COMPUTERS does not
assume any liability arising out of
the application or use of product
or circuit descirbed herein,
neither does it convey any
license under its patent rights
nor the rights of others.

FORCE COMPUTERS INC.
2041 Mission College Bivd.
Santa Clara, California 95054
Phone (408) 988-8686

TLX 172465

FAX (408) 9809331

FORCE COMPUTERS GmbH
DaimlerstraBBe 9

D-8012 Ottobrunn

Telefon (089) 6092033
Telex 524190 forc-d

Telefax: (089) 60977 93

FORCE COMPUTERS FRANCE Sarl

11, Rue Casteja
92100 Boulogne
France

Phone (1) 62037 37
TLX 206 304 forc-f

1284/05.0/pSOS/A2 Printed in West Germany by 2R



