
Fortune C Language Guide 

Fortune Systems Corporation 
300 Harbor Boulevard 

Belmont, CA 94002 



Ordering Fortune C Language 

Order Numbers: 1000834-01· for the guide with disks 

1000835-01 for the guide without disks 
Consult an authorized Fortune Systems dealer for copies of manuals 
and technical information. 

ii 



Copyright ~ 1982 Fortune Systems Corporation. All rights 
reserved. 

No part of this document may be copied, photocopied, reproduced, 
translated, or reduced to any electronic medium or machine readable 
form without prior consent in writing from Fortune Systems 
Corporation. The information in this manual may be used only under 
the terms and conditions of separate Fortune Systems Corporation 
license agreements. 

Printed in U.S.A 
1 2 345 6 7 890 

Unix is a trademark of Bell Laboratories 

Ordering Fortune C Language Guide 

Order Number: 1000837-01 
Please do not order products from the address shown below. Consult 
an authorized Fortune Systems dealer for copies of manuals and 
technical information. 

Customer Comments 

Your ideas about Fortune products and evaluations of Fortune manuals 
will be appreciated. Submit your comments to the Publications 
Department, Fortune Systems Corporation, 300 Harbor Boulevard, 
Belmont, CA 94002. By submitting any idea, evaluation, or other 
information to Fortune Systems Corporation, you consent to any use 
or distribution of such information deemed appropriate by Fortune 
Systems Corporation. Fortune Systems Corporation shall have no 
obligation whatsoever with respect to such information. 

Disclaimer of Warranty and Liability 

No representations or warranties, expressed or implied, of any kind 
are made by or with respect to anything in this manual. By way of 
example, but not limitation, no representations or warranties of 
merchantability or fitness for any particular purpose are made by or 
with respect to anything in this manual. 

In no event shall Fortune Systems Corporation be liable for any 
incidental, indirect, special or consequential damages whatsoever 
(including but not limited to lost profits) arising out of or 
related to this manual or any use thereof even if Fortune Systems 
Corporation has been advised, knew or should have known of the 
possibility of such damages. Fortune Systems Corporation shall not 
be held to any liability with respect to any claim on account of, or 
arising from, the manual or any use thereof. 

For full details of the terms and conditions for using Fortune 
software, please refer to the Fortune Systems Corporation Customer 
Software License Agreement. 

iii 



How to Use This Guide 

The Fortune C Language Guide is designed to help you use the C 

language on the Fortune 32:16. The information included covers 

those aspects particular to the Fortune system in addition to 

helpful utilities and more advanced features for very experienced 

programmers. 

The guide is not intended to teach you to program in C. Use the 

guide along with the C programming manual of your choice. Below is 

a list of recommended manuals. 

• E. W. Kernighan and D. M. Ritchie, The C Programming Language, 
Prentice-Hall, 1978 

• B. W. Kernighan, Programming in C-A Tutorial 

• D. M. Ritchie, C Reference Manual 

This package includes the following items: 

• Fortune C Language Guide 

• Two Master disks 

• Fortune Systems software registration card 

If any item is missing, contact your Fortune Systems dealer for 

a replacement. 

iv 



Contents 

How to Use This Guide iv 

Section 1 Fortune C Language Guide 

Part 1 

Part 2 

Part 3 

Using C,on the Fortune 32:16 

Starting Up Your Fortune 32:16 

Installing the C Compiler 

Formatting Disks 

Copying Your Disks 

Selecting and Leaving C 

The C Compiler (cc) 

The Fortune Symbolic Debugger 

1 

2 

5 

9 

11 

13 

15 

20 

Descriptions of the Debugger 21 

Definitions 24 

Organization 26 

Command Syntax 27 

Command Classification 30 

Commands to Set Up Environment/Display Information 31 

Commands for Source File Examination 38 

Commands for Controlling Execution 41 

Special Notes 46 

Operating Procedure 47 

Support Utilities, Libraries, and Machine Specific 

Aspects 

Archive ar 

Link Editor ld 

Make 

v 

49 

50 

53 

58 



Part 4 

Name nm 

Ran1ib 

Size 

Strip 

Tool Usage 

Libraries 

Fortune 32:16 Specific Aspects 

Optimizer 

The Fortran/C/Language Interface 

Procedure Names 

Data Representation 

Return Values 

Argument Lists 

Section 2 Library Routines 

Part 1 System Routines 

Part 2 Library Functions 

Part 3 File Formats 

-vi-

61 

63 

64 

65 

66 

70 

73 
75 

77 

77 
77 
78 

79 

1 

3 

1 

1 



SECTION I 
FORTUNE C LANGUAGE GUIDE 

This section contains documentation on the installation of C on the 

Fortune 32:16, the C compiler, the Fortune symbolic debugger, and 

machine specific aspects of the Fortune C language. In addition, 

the support utilities and the interface between Fortran and C on the 

Fortune 32:16 are discussed. 





Using C on the Fortune 32:16 

C is a general-purpose programming language that runs under the 

Fortune Operating System on the Fortune 32:16. The Fortune 

Operating System is a modified version of UNIX, an operating system 

developed by Bell Laboratories. The C language is simple, 

efficient, and appropriate for a wide variety of programming 

applications. 
In this section you'll learn first to power up your system. 

You'll also learn: 

• How to install C 
• How to format and copy disks 

• How to select and leave C 
• How to use the C compiler 

1 



Starting Up Your Fortune 32:16 

The first step is to plug in the system. Do this with the power 

on/off switch in the off position. For your safety, and the 

protection of the system, use a three-pronged electrical outlet that 

fits the connector. 

Now push in the white dot on the switch to set the power switch 

to on. Test the airflow with your hand to make sure that the fan is 
operating. 

First you will see the cursor blinking on the screen. Then the 

message "Fortune Systems 32:16 Please Wait," with the "Please wait" 
blinking appears. When you see the heading "Please enter the 

current date and time," the system is ready to receive information. 

Use the following procedure to log onto your system. It is read 

from left to right. The system category shows you what will appear 
on the screen. Type what you see in the user category. The 
comments column provides useful information. 

System 

User 

2 

Procedure 

Please set the current 

date and time, then press 

(RETURN): 

Today's date is: mm/dd/yy 

(current date) (RETURN) 

Comments 

Type in six digits to 

represent month, date, and 

year or press the Return 
key to accept the date 

displayed. You don't have 

to type the slashes. 



System 

User 

System 

User 

System 

Procedure 

Current time is: hh/mm A 

P 

(Current time) (RETURN) 

Date set to (Day Month Date 

Time Year) 

Is this correct (Y/N) 

y (RETURN) 

File check successful ... 

FORTUNE SYSTEMS 32:16 

Press (HELP) For Assistance 

Type in your name and 

press (RETURN) 

Comments 

Use the Back Space key to 

backup within a line and 

the t and ~ keys to 

move up and down between 

date and time. The Cancel 

key bypasses this entry 

altogether. 

Type in four digits 

to represent hours and 

minutes or press the 

Return key to accept the 

time displayed. You don't 

have to type the colon. 

Type y or n to indicate 

correct/incorrect date 

and time. Typing n returns 

you to beginning of date. 

The dots blink while the 

system checks the files. 

If any other message 

appears get help. 

3 



User 

System 

User 

System 

4 

Procedure 

(account name) (RETURN) 

Type in your password 

and press (RETURN): 

(password) (RETURN) 

% of the available space 

is currently in use. 

FORTUNE SYSTEMS GLOBAL MENU 

Comments 

Type your account name. 

Type newuser to create a 

new account. 

Type your password. This 

is requested only if you 

have one assigned. 

When your system reaches 

90% full, archive some 

files to free up more work 

space. 

Make your selection from 
the Global Menu. 



Installing the C Compiler 

Before you begin to use C, you need to install the programs and 

files from the two master flexible disks to a hard disk on the 

system you are using. You need a mininum of 384k of memory to load 

the C compiler. 

The C compiler is loaded through the product maintenance menu. 

When the global menu appears, select Product Maintenance. 

Follow the procedures below to load the software. To do this 

procedure you must be logged in as manager. First shut down the 

system. Then turn it on again while holding down the Cancel key. 

System 

User 

System 

User 

System 

User 

Procedure 

FORTUNE SYSTEMS GLOBAL MENU 

s2 (RETURN) 

System Management 

30 (RETURN) 

Fortune Systems 32:16 ShutDown 
(takes about 30 seconds) 

Do you want to continue? 

yes (RETURN) 

Comments 

To power down, select s2. 

Choose 30 from the system 

management menu. 

Wait for system messages. 

5 



System 

User 

System 

User 

System 

User 

Slstem 

User 

System 

6 

Procedure 

Software shutdown starting, 
please wait. 

Software shut down complete 

Hardware shut down starting, 
please wait 

Hardware shut complete 

Please turn the Fortune 
Systems 32:16 off 

Type any highlighted key. 

Set boot file name 

hd02/sa/reconf (RETURN) 
(EXECUTE) 

Max process size 

C) ./ 
))'ffitTURN) 

256 ern 
CID 

Today's date is 
Current time is: 

Comments 

Press off switch. Now 

turn on system again, 

holding down CANCEL. 

Press the F7 key. 

Move cursor to Max process 
size. 

1. 
Press the Return key l( 
times. 

Bypass this. 



User 

System 

User 

System 

User 

System 

User 

System 

User 

System 

Procedure 

yes 

(RETURN) 

(RETURN) 

(RETURN) 

Type in your name and press 
(RETURN) 

(your account name) (RETURN) 

FORTUNE SYSTEMS GLOBAL MENU 

s5 (RETURN) 

PRODUCT MAINTENANCE 

i (RETURN) 

Fortune Systems Corporation 
Product Maintenance 

Please insert flexible disk 

volume 1. Press (RETURN) 

(RETURN) 

This flexible disk is 

labeled: Development Set 

xxxx 
Volume 1 

(date) 

Comments 

Log in again. 

Select s5 to load the 
software. 

Type i for the install 

selection. 

Install the development 
set first. 

Put the disk labelled 

"develoment set" in the 

drive. 

7 



, System 

User 

System 

User 

System 

8 

Procedure 

Proceed with installation? 

(yin): 

y (RETURN) 

Copy phase of Development Set 
Menu update ••• 
Development Set installation 
successfully completed. 

Press (RETURN) for menu 

or select ahead 

(RETURN) 

FORTUNE SYSTEMS GLOBAL MENU 

Comments 

The system puts a copy on 

the hard disk. 

Remove the flexible disk. 

Repeat the process to 

install the second disk 
labelled He Compiler." 

You're at the global menu. 



Formatting Disks 

Before you can use a blank flexible disk to store your application 
or other files, the disk must be formatted. From the global menu 

use this procedure to format a flexible disk. 

System 

User 

System 

User 

System 

User 

System 

Procedure 

GLOBAL/MENU 

Sl System Utilities 

sl (RETURN) 

SYSTEM UTILITIES MENU 

32 (RETURN) 

FORMAT FLEXIBLE DISK 

Do you want to continue 
(yes or not)?: 

yes (RETURN) 

Please wait for completion 
message 

Comments 

Select Format Flexible 

Disk. 

Read screen text. Insert 

a flexible disk. 

Do not press any key while 
this message is on the 

screen. 

9 



User 

System 

User 

System 

User 

System 

10 

Procedure 

Your request is complete 
Please Remove Your Flexible 
Disk 

-Press (RETURN) for menu 
or select ahead 

CM1!!RID 

FORMAT FLEXIBLE DISK 

(RETURN) 

SYSTEM UTILITIES MENU 

(RETURN) 

FORTUNE SYSTEMS GLOBAL MENU 

Comments 

Your disk is formatted. 
Remove the disk. 

You can repeat the 
formatting procedure at 
this point by beginning 
step 3 again. 

at 



Copying Your Disks 

Make a copy of your software as soon as possible. The procedure 

below is used to back up your master disks. To do this procedure, 

you must be logged in as manager. 

System 

User 

System 

User 

System 

User 

System 

User 

Procedure 

FORTUNE SYSTEMS GLOBAL l1ENU 

s5 (RETURN) 

PRODUCT MAINTENANCE 

b (RETURN) 

PRODUCT SELECTION MENU 

cc 

Fortune Systems Corporation 

Product Maintenance 

Do you want to backup 

'c' compiler? (yin): 

y (RETURN) 

Comments 

Selects Product Mainte-

nance. 

Chooses backup. 

Options are cc or ds. 

Select C compiler. 

11 



System 

User 

System 

User 

System 

12 

Procedure 

Please label a blank 

flexible disk: 

'e' compiler 
1000837-01 
Volume 1 

(date) 

Insert the disk into 
drive 110. 

Copy phase ••• 
Successfully ••• 

(RETURN) 

-Press (RETURN) for menu or 
select ahead 

(RETURN) 

FORTUNE SYSTEMS GLOBAL MENU 

Comments 

Be sure the disk was 

previously formatted. 

Repeat the process to back 
up the development set 

disk, choosing ds. 



Selecting and Leaving C 

From the global menu use the following procedure to choose the UNIX 

command interpreter where you will run C. 

Procedure 

System FORTUNE SYSTEMS GLOBAL MENU 

User !sh (RETURN) 

System $ 

Comments 

Type !sh. Use the shift 1 

key for!. You are now in 
direct communication with 

the operating system. 

The $ shows that the 

system is ready. 

Use the ed editor on your Fortune system to develop and edit 

programs. Refer to your Fortune Operating System Guide for 

information about using ed. 

When you have finished your work use the following procedure to 

log out. 

Procedure 

System $ 

User (CTRL)d 

Comments 

Press the CTRL key and d 
at the same time. 

13 



System 

User 

14 

Procedure 

-Press RETURN for menu 
or select ahead 

(RETU@) 

Comments 

Pressing the Return key 
returns you to the global 

menu. 



The C Compiler (cc) 

CC is the command that activates the C compiler. The compiler reads 

in source code, and translates that code into machine language which 

can be understood by the computer. The following are the five steps 

involved in compiling a C program. 

1 Preprocessor 

2 C Compiler 

3 Optimizer 

4 Assembler 

5 Load 

This processes any U sign statements. 

Code in filename.c is translated into 

assembly language. 

Code is optimized and thereby reduced in 

size. The optimizer also fncreases the 

runtime speed. 

The object file (filename.c) is created. 

The executable file (a. out) is created. 

A set of options, described in the next few pages, provides 

variations in compiling results. 

To compile a C program enter 

cc (options) filename.c ... 

The argument, or filename you enter whose name ends with oC is a 

C source program. It is compiled and an executable file named a.out 

is created. In addition, a .0 file is created if the -c option is 

used or more than one c source file is compiled with the same 

command. This is the object file, the compiled C program. The.o 

file can later be processed by the loader, then executed. For 

example, for the file named test.c: 

15 



You Enter Results 

cc test.c a.out 

Any number of .c files may be compiled into one a.out file. Again, 

.0 files will also be created for each .c file. 

You Enter Results 

cc testl.c test2.c a.out 

testl.o test2.0 

Arguments other than the C options described below are taken to 
be loader option arguments or C-compatible object programs. These 

object programs are typically produced by an earlier cc run, or 

libraries of C-compatible routines. These programs and the results 

of any specified compilations are loaded (in the named order) to 

produce a runnable program named a.out. To create only .0 files, 

use the -c option. No a.out file will result. 

You Enter Results 

cc -c testl.c testl.o 

Object files (.0) may be linked-to create an a.out file. 

You Enter Results 

cc testl.o test2.0 a.out 

Already compiled files (.0) and .c files may be run through the 

compiler with the following results. 

You Enter Results 

cc test1.0 test2.c a.out test2.0 

16 



Using the -0 option you can name an a.out file. 

You Enter 

cc -0 test testl.o test2.c 

Results 

test 

test2.0 

The following options are interpreted by cc. 

-c Does not link object file with libraries. Leaves only the .0 

file. 

You Enter Results 

cc -c test.c test.o 

-0 Calls an object code optimizer. Code size will be reduced 

20-25% in size and result in a faster running file. 

-v Verbose. Compiler lists passes on the screen as they are 

executed. 

You Enter 

cc -v test.c 

Results 

/usr/lib/cpp -DMC68000 -Uvax 

file.c /tmp/ctm0013H.s 

/usr/lib/ccom /tmp/ctm001314.s 

/tmp/ctmOO/313.s 

/usr/lib/ac -0 test.o /tmp/ctm0013l3.s 

/usr/bin/ld /usr/lib/crt./o file.o 

/usr/lib/libc.a 

17 



-G The stack growth checking is turned off. This improves the code 

slightly as long as the stack is not used extensively. It 

decreases the text size. 

Do not run -G on a program that allocates more 

than 8K of stack. 

For example, the following program will fail under the -G option. 

main ( ) 

[ 
int x [4000] ,i; 

For (i = 0; i < 4000; i ++) 

x [i] =0; 

-E Runs only the macro preprocessor on the named C programs. The 
result is sent to the screen. 

You Enter Results (on the screen) 

cc -E test.c 111 "test.c" 

(text of program) 

-C This prevents the macro preprocessor from removing comments. 

You Enter 

cc -E test.c 

cc -E -C test.c 

cc -E -C test.c ff.c 

Results 

Comments are removed 

Comments remain 

Comments are put into ff.c 

-0 output Names the final executable file output and leaves the 

a.out file undisturbed. 

18 



-Dname=def Defines the name to the preprocessor, as with 

#define. If you give no definition, the name is 
defined as one. 

-Dname 

You Enter Results 

cc -DFLEXNAMES FLEXNAMES is defined and assigned 

the value 1. 

cc -DFLEXNAMES=12 FLEXNAMES is defined and assigned 

the value 12. 

-Uname 

-Idir 

Removes any initial definition of name in the preprocessor. 

# include files whose names do not begin with / are always 
looked for first in the directory of the file argument, 

then in directories named in -I options, then in 
directories on a standard list. 

19 



The Fortune Symbolic Debugger 

I 

Included on the master disks for C is the Fortune symbolic debugger. 

Fortune Systems Symbolic Debugger (fdb) is a high-level debugging 

tool developed by the Fortune Systems Corporation. Fdb is language 
independent so it will serve as a common debugger for all the high 

level (compiler) languages supported on the Fortune system. 

20 



Description of the Debugger 

Fdb is a symbolic debugger which can be used with the C language. 

The format of the fdb command is: 

fdb [obj fil [directory]] 

You use it to examine your files and to provide a controlled 

environment for file execution. Objfil is an executable program 

file which has been compiled with the -g (debug) option. The 

default for objfil. is a.out. Core file is not utilized. Directory 

is the working directory. 
It is useful to know that at any time there is a current line 

and current file. The default for the current file is the file 

debugged. However, the current file may be changed with the source 

file examination commands. There are two types of current line. 

One is current print line, and the other is current execute line. 

The current execute line can only be changed with program execution 

while the current print line can be changed with file examination 

commands. 
Names of variables are written just as they are in C. Variables 

local to a procedure may be accessed using the form 'procedure: 
variable'. If no procedure name is given, the procedure containing 

the current line is used by default. It is also possible to refer 

to structure members as 'variable. member' , pointers to structure 

members as 'variable~member' and array elements as 'variable 

[numbe~' and array elements. Combinations of these forms may also 

be used. 

FILES 

The file used by fdb is a.out. 

21 



DIAGNOSTICS 

Error reports are self-explanatory. 

BUGS 

Error checking for structured variable elements are not performed. 

The fdb commands are summarized below. 

Command 

, 

& 

RETURN key 

alias 

break 

comment 

delete 

display 

dump 

equate 

file 

22 

Meaning 

Exits the shell (escape) 

Displays the content of a variable (same as display 

command) 

Displays the address of a variable 

Repeats the previously executed command 

Defines or cancel alias 

Sets up a breakpoint 

Allows a comment line 

Deletes breakpoint(s) 

Displays the content of a variable (same as , command) 

Dumps memory contents 

Defines or cancels replacement string 

Redirects source/input/output file 



Command 

find 

go 

help 

print 

quit 

restart 

set 

show 

trace 

walk 

Meaning 

Searches a given string from the source file 

Starts or resumes debugged program execution 

Shows the summary of fdb commands 

Prints source lines 

Exits from fdb and return to shell 

Restarts the debug session with optional parameter 

Sets debugger options such as user definable prompt 

string 

Shows status of debug session such as breakpoint, 
file, window, alias, last command, equate and procedure 

Traces program execution 

Single step execution 

23 



Definitions 

The following terms are defined as used in this description of fdb. 

Breakpoint 
A location in a program's execution at which either some debugging 

command is to be performed or the user wishes to gain control. 

Command 

Debugging command 

Debug option 

A compiler directive to have extra Symbol table entries added which 

are utilized by fdb. The option is specified by -g, thus, sometimes 

it is called -g option under UNIX environment. 

Debugging command 
A directive that controls the behavior of a debugger. 

Debugging session 

A period of time during which a debugger is used. 

Debugging mode 

Execution of a program in conjunction with a debugger. 

Linker/loader 

The function of a linker is to link the object modules and produce 

an executable load module. The function of a loader is to load the 

load module from disk into memory. The linker is called the loader 

and the loader is the kernel in UNIX. 

24 



Object/load module 

The input to the linker is called the object module and the output 

is the load module. There is no clear difference between object and 

load module in UNIX. Thus the term object and load modules are used 

interchangeably. 

Symbolic debugging 

The debugging of programs in terms of their source level names and 
constructs. 

Trace 

A display of the dynamic activity of some aspect of a program. Fdb 

supports the execution trace, the procedure trace and the variable 
trace. 

25 



Organization 

The following figure shows how fdb is utilized in program execution. 

C 

user 

source 

program 

C 

compiler 

-g option 

object 
module 

26 

F77 PASCAL 

user user 

source source 

program program 

F77 PASC AL 

compiler c<?mp iler 

-g option -g 0 ption 

object obje ct 
module modu Ie 

linking loader 

Debugger (fdb) 

PROGRAM EXECUTION 

(debug session) 

COBOL compiled 

user 

source system 

program 
library 

COBOL (obj ect 

compiler format) 

-g option 

I 
object 
module 



Command Syntax 

The following are the general rules of the fdb command. 

CASE RULE 

There is no difference between upper and lower case letters. 

Combinations of upper and lower case letters are allowed. This 

rule also applies to the fdb keywords. For example, the following 

commands are equivalent: 

equate 

EQUATE 

EquAte 

Upper and lower case letters may be distinct in 

variable and procedure names. This is language 

dependent. 

3-CHARACTER RULE 

Every command can be abbreviated to three characters if desired. 
For example, the following strings are all legal commands. 

BRE for break 

DEL for delete 

EQU for equite •.. etc. 

Some commands may even be abbreviated to one character (please 

see HELP for details). However, if a command is spelled with more 

27 



than the allowed abbreviation (one or three characters), the whole 

command string should be spelled out. For example, EQ, EQUA and 

EQUAT are illegal while E and EQU are legal. 

LEADING BLANK RULE 

All the leading blanks in ·a command are ignored. So, the following 

commands are equivalent. One or more blanks and tab characters are 

equivalent to one blank character. 

EQUATE 

eQU 

Equate 

MULTIPLE COMMANDS PER LINE 

Multiple commands per line are allowed if they are separated by the 
semicolon (;). Thus, a semicolon before the Return key has its own 

meaning (please see NEWLINE for details). 
Note that each command in a mUltiple command line is 

interpreted. So the first command is performed regardless of the 

error condition in the subsequent commands. For example: 

command 1; command 2· , command 3 (RETURN) 

is equivalent to 

command 1 (RETURN) 
command 2 (RETURN) 

command 3 (RETURN) 

This rule does not apply when a semicolon appears in a string, 

in a COMMENT command, or in a BREAK - DO command. For example, each 
of the following commands is a single command. 

28 



FIND 
EQUATE 
COMMENT 
BREAK 3 

II a=O ; b=O; c=O , II 

a ",a/wx; ,b/c; ,c; BREAK WHEN count=100," 

x:=3; was for PASCAL assignment 

DO DISPLAY a; DISPLAY b; SHO FILE 

DEBUGGER PROMPT 

Fdb uses * as a prompt character. When * is prompted on the screen, 

fdb is ready to accept a command from the user. A user can change 

the debugger prompt using SET command. 

29 



Command Classification 

This section describes all the debugging commands supported by fdb. 

Commands are classified into three categories: 

• Commands to set up environment/display information 

• Commands for source file examination 

• Commands for controlling execution 

Each command is presented with the command's grammar in Backus-Naur 

form, a functional description of the command, and examples. 

30 



Commands to Set Up Environment/Display Information 

DISPLAY 

The following are the commands used to set up display variables. In 

BNF notation, display variable is defined as: 

<display var> ::= ( , : DISPLAY) <procedure><Variable><format spec>; 

<procedure> : : = <empty> ~ <procedure name> : . , 
< format spec> ::= <empty> I <int spec>: <float spec>: <char spec>; 

< int spec> : : = <byte size> <int form>; 

<byte size> : := <empty> b! h: 1 ; 

<int form> 

<float spec> 

<char spec> 

< string form> 

< string size> 

: : = 
-

: : = 
.. -.. -
: : = 

x d 0 u 

f g . , 
c ~ <s tring form> ; 

<string size> s 

<empty> I <unsigned> ; 

This command displays the values of variable(s) at program 

suspension. The values are displayed according to the user format 

specification. If format specification is omitted, variables are 

formatted according to their data type as declared in the program. 

For example, suppose the types and contents of variables i, p, a 

and j are defined as follows: 

variable type name contents 

char i 'x' 

char *p "abcxy" 

char a[3] "ABC" 

int j Ox12345678 

The fdb commands and its output values for the example are: 

,i x 

, i/x Ox78000000 

31 



,i x 

, i/x Ox78000000 

,p abcxy 

,p- > Ic a 

,p/3s abc 

,pI s :abcxy 

,a ABC 

,a/2s AB 

,j 305419896 

,j/x Ox12345678 

,jIb 18 

EQUATE 

In BNF notation, equate is defined as: 

<equate> ::= EQUATE <alpha> ( <empty> I <string> ); 

The EQUATE command equates a character to a data string. For the 

equated character to be expanded, an escape charac'ter (%) should 
precede the equated character. When the equated character appears 

in a command, it will be expanded in1ine prior to executing the 

command. Thus, equate could be used to combine the multiple 

commands into one or alias commands. 

An equate command may be cancelled by equating the previously 

defined character to a null (empty) string. 

Fdb will detect and report recursive equate definitions. For 

example: 

Equate to long variable name 

equ a "employee" 

display tar 

display %e.name 

equ a 

, %ae.ssn 

32 

:define a as an equated character to "employee" 

:display the content of variable employer 

:disp1ay the content of variable employee.name 

:cancel the equate definition 

:might have been employee.ssn but illegal since 

equation a was cancelled 



Equate to Multiple commands 

equ b 

%b 

II SHOW ARG; SHOW LAN; SHOW EQU; ! who II 

:shows the arguments defined, source language, 

equated characters and the name logged on the 

system 

Equate to user defined command (in this case ALIAS is better than 

EQUATE) 

equ w 

%w 
"PRINT .-5 ! 11" 

:print 5 lines before and after the current line 

HELP 

The HELP command lists everY.fdb command with a short description. 

Help can be invoked by pressing the HELP key, typing help, or 
• ? typl.ng .• A command that can be abbreviated to one character is 

represented by one lower case character in parentheses. The 

following is a list of commands and their descriptions on the help 

facility. 

Command Description 

:shell escape 

, :display the content of a variable 

& :display the address of variable 

RETURN key :repeat previous command 

ALIAS :define/cancel alias 

BREAK (b) :set up a breakpoint 

33 



Command 

COMMENT 

DELETE (d) 

DISPLAY 

DUMP 

EQUATE(e) . 

FIND(f) 

FILE 

GO(g) 

HELP (h) 

PRINT(p) 

QUIT(q) 

RESTART(r) 

SET 

SHOW(s) 

TRACE (x) 

WALK(w) 

34 

Description 

:comment line 

:delete breakpoint(s) 

:display the content of variable (same as ,) 

:dump memory contents 

:define/cancel replacement string 

:search a given string from the source file 

:redirect source/input/output files 

:start or resume execution 

:shows legal fdb commands 

:print source lines 

:exit from fdb and return to shell 

:restart the debug session with optional parameter 

:set debugger options 

:show status for breakpt/argument/file/equate procedure 

:trace program execution 

:single step execution 



SHOW STATUS 

In BNF notation, show status is defined as: 

(show status) ::= SHOW (BREAKPOINT I FILE I 
WINDOW (unsigned) : 

ALIAS COMMAND: EQU PROCEDURE ) ; 

This command is used to show information about the current debugger 

session at the user's terminal. The information that could be 

displayed is: 

• Breakpoints that are currently set 

• Input/output/source files 

• A few lines around the current line 

• Alias definitions 
• Last command as seen by fdb (expanded in case of alias) 

• List of all equate symbols and their current definitions 

• Procedure stack, for example, the procedure names called to 
reach the current stop point 

These are examples of the SHOW STATUS command. 

SHOW PROCEDURE :procedure names in frame stack 
SHOW BREAKPOINT :show all the breakpoints defined 

SHOW EQUATE :show all the equate definitions 

SHOW WINDOW 4 :print 9 lines around the current line 

35 



COMMENT 

Fdb prints the comment line as entered on the output device. This 

command is used to document the debug session when fdb output is not 

standard output (terminal). For example: 

COMMENT next statement is to test error condition 

EQU a; COM " This line has two commands even if many 
appeared 

ALIAS 

In BNF notation, ALIAS is defined as: 

<alias> ::= ALIAS «alias define>l <alias cancel» 

<alias define> : := <def striIfg><replace string> ; 
<alias cancel> : := <def string> ; 

. , 

• I S , 

This command allows a user to define his/her own debugger command. 

The user can rename existing fdb commands or combine a few commands 

into one at his/her convenience. 

To redefine the already defined alias, a user should cancel it 

before redefine. A user can use SHOW ALIAS command to see the alias 

definitions. 

If a semicolon is used in the alias replacement string, mUltiple 

commands alias, it must be enclosed in quotes. Note that Case Rule 

does not apply to the alias definition string. For example: 

ALIAS 

ALIAS 
single 

step 

WALK : redefine single as WALK 

"WALK; DISPLAY a" 

To make fdb commands look like Unix Sdb (may not be recommended 

though), a user can set up alias definitions as follows: 

36 



ALIAS 

ALIAS 
ALIAS 
ALIAS 

s 

S 

w 

+ 

VARIABLE ADDRESS 

WALK 

WALK IN 

SHOW WINDOW 5 
PRINT NEXT 

In BNF notation, variable address is defined as: 

<var address> ::= & <variable> ; 

This command is used to display the address of a variable. The 
address is always displayed in hexadecimal notation. For example: 

&a :address of variable a 

&b [3] :address of fourth element of array b 

SET 

In BNF notation, set is defined as: 

<set option> ::= SET <debug option> ; 
<debug option> : : = <user prompt> ; 

<user prompt> ::= PROMPT ECEMPTY> I =) '~string>,'; 

This command is used to set up a debug option. Currently only the 
user prompt setting is available. For example: 

SET PROMPT = "+" : debugger prompt is + 
SET PROMPT "Fortune fdb%" 

37 



Commands for Source File Examination 

Several commands are used in examining source files: file 

definition, find string, print source lines, and dump. 

FILE DEFINITION 

This is the BNF notation for file definition: 

{ <file name>} . , <file definition> ::= FILE <file name> 

<file name> ::= «empty> : < I > l > > ) <identifier>; 

The file definition command is used to refine the source file or 

redirect the standard input and output devices. It is used to 

change the file specifications for debugger. Files for the debugged 

program can be redirected by run time arguments (see RESTART 

command). 

When <or> is followed by a space, fdb will redirect input or 

output devices to standard devices .. »is to append to the end of 

existing file. For example: 

FILE <profile 

FILE /user/s~urce/test.c 

FILE > .. /trace 

FILE > 

FIND STRING 

:execute fdb commands in profile 

:source file is /usr/source/test.c 

:save debug output in parent's directory 

:print debug output on terminal 

In BNF notation, find is defined as: 

<find> ::= FIND <string><range> 

<range> ::= «single line> I <multiple line> I <count» ,<range> 

38 



<single line> ::= <empty> l<line number> 
<line number> ::= ( <unsigned> I NEXT: . ) (+: -) <unsigned> 

<multiple line> ::= <single line> / <single line> ; 

<count> ::= <single line>! <integer> 

The FIND command is used to search the source (current) file and 

print the source line(s) which contain the specified string. 
The count is for the maximum number of lines to print, and the 

default values for the line number is the current line. For example: 

FIND "Procedure" :search "Procedure" and print the first line that 

contains the string from the current line 
FIND "if" 3 :find the first "if" from line number 3 

FIND "count".-3!10 :find 10 occurrences of "count" from current-3 

line 
FIND "xyz" 10/100 : find "xyz" string from line 1/10 through 100 

PRINT SOURCE LINES 

In BNF notation, print source is defined as: 

<print source> ::= PRINT <range> 

The PRINT command is used to print the specified number of lines 

(count) from the given starting lines in the source. The default 

values for the starting line is the current line. For example: 

PRINT 

PRINT .-10 

PRINT . -10/ 

PRINT 
, 

6 .. 
PRI 3, . -2/ 

11 

11 

.+3, 10 

:print the current line 

:print (current -10) and current same as 
PRINT.-lO, 11 

:print (current-lO) through line #11 

:print 6 lines from the current line 

:print line #3, from (current-2) through 
(current+3) and line #10 

39 



DUMP 

In BNF notation, dump is defined as: 

<dump> ::= DUMP<dump option> <dump spec> 

<dump option> ::= <empty> I C X 

<dump spec> ::= <range> I <var address> . , 

This command is used to display the contents of memory. A user can 

display in character format or in hexadecimal. The default is in 

hexadecimal format. 

Output format is: 

Space designation: I for instruction space 

D for data space 

Memory address in hex 

16 bytes of contents 

The memory dump is displayed in a l6-byte unit, and the starting 

address is always a multiple of 16. If a dump is requested towards 

the end of a line, for example, mod(address) is between 13 and 15, 

two lines are displayed. For example: 

DUMP Ox100 : dump between Ox100 and Ox10f 

DUMP 3 : dump between OxO and Oxf 

DUMP Ox100/Ox200 

DUMP NEXT : dump next 16 bytes 

DUMP &a : dump the memory around var a 

40 



Commands for Controlling Execution 

The following commands are used for controlling execution of the 

debugger: breakpoint, delete breakpoint, go, shell escape, walk, 

quit, trace, and restart. 

BREAKPOINT 

In BNF notation, breakpoint is defined as: 

<breakpt definition> ::= BREAK <break loc> <break command> , 

<break loc> ::= <empty> I <static break> 

<static break> ::= <module name> <statement spec> 

<module name> ::= <empty> l <procedure name> 1 <procedure name>} 

<statement spec>::= <line number> 

<line number> ::= <integer> 

<procedure name> 

<break command> 

.. -.. -

.. -.. 

<identifier> . , 

<empty> DO <fdb command> 

This command causes a breakpoint to be set at the indicated line 

number in the source program. The program is stopped before the 

line is executed. If the specified line is not an executable 

statement such as a blank or comment line, the breakpoint is set 

to the first executable line after that. 

The module name and/or line number may be omitted in which case 

the defaults are taken from the current procedure name and the 

current line number, respectively. 

If break command is specified as DO - phrase, fdb executes the 

command(s) when the breakpoint is reached. Otherwise, the control 

is transferred to the user. For example: 

41 



Break :break at current line in the current procedure 

unconditionally 
B SUBl: 4 :break at line #4 in the procedure SUB1 
BREAK 10 DO ,a; ,b :break at line #10 and print the values of var a 

and b when the program stops 

DELETE BREAKPOINT 

In BNF notation, delete breakpoint is defined as: 

<delete breakpt> .. -.. - DELETE «empty> ! ALL: <module name> 
<statement spec> ) ; 

The DELETE command is used to remove the breakpoints. DEL ALL will 

delete all the breakpoints set up so far. If no parameter is given, 
. . 

then the breakpoint is deleted interactively. Each breakpoint 

location is printed and a line is read from,the,standard input. If 
the user response is d, del, y, yes or ok, then the breakpoint is 
deleted. Other responses are considered as no., For example: 

Del GETCHAR: 4 

DELETE 
delete SUBl 37 no 
delete SUB3 107 ok 

Delete all 

GO 

:delete the breakpoint on line 4 of 
procedure GETCHAR 
:no parameter, so interactive deletion 
:user does not want to delete line #3 of SUBI 
:user wants to delete this breakpoint 

:delete all the breakpoints 

In BNF notation, go is defined as: 

42 

<go> .. -.. - GO «empty> : <statement number> 
<statement number> ::= <unsigned> 

) 



The command causes the program to either start or resume execution. 

If a statement number is specified, the program execution is 
suspended after executing the specified number of lines from the 

current position. 
The GO command is used to continue the program execution, 

ignoring the signal that caused the execution to stop (such as user 

interrupt). 
The program will continue to execute until one of the following 

events occurs: 

• Breakpoint 

• Program error 

• User interrupt 
• Normal progaram exit 

SHELL ESCAPE 

In BNF notation, shell escape is defined as: 

<shell escape> : : = <shell command> 

This command allows the user to execute shell command in the middle 

of a debugging session. Shell allows mUltiple commands if separated 

by the semicolon. However, fdb'uses the same convention. 
Therefore, mUltiple shell commands per line are not permitted in 

fdb. For example: 

!date :print date and time on the input device 

!date; !whC1" :multiple fdb commands 

!date; who :illegal, since mUltiple shell commands are not allowed 

\lALK 

In BNF notation, walk is defined as: 

<walk> : := WALK «empty> ! <unsigned» «empty> IN I ) ; 

43 



This command is useful for single stepping through a section of 

code. The number of statements to single step could be specified. 

The user can walk single step only within the same procedure 

(WALK IN) or single step even in the called procedure (WALK 1). The 

default parameter is one so that the program stops after every line 

is executed. For example, suppose a user walks on the source code 
that looks as follows: 

linelllO: 

linellll: 
linell12: 

At linelllO: 

At linellll: 

At linell12: 

QUIT 

count = 10; 

getvalue(); 
printf(" result= %d \ nil , count); 

WALK, WALK IN and WALK 1 are equivalent. Variable 

count is set to 10 and execution stopped,at line 1111. 

WALK IN will execute the getvalue procedure and stop 
at line #12. WALK will stop at the first line in the 

getvalue procedure. 

WALK has no meaning in the non-systems programming 
environment. Fdb will not single step the printf 
routine, and WALK IN and WALK are equivalent. 

The QUIT command causes you to exit the fdb. 

TRACE 

In BNF notation, trace is defined as: 

<trace> :: = TRACE EXECUTION 

44 



This command is used to display the code-segment labels (code 

statement line numbers) encountered during program execution. This 

will also display the source lines. For example: 

TRACE EXECUTION :print every line of code executed 

RESTART 

In BNF notation, restart is defined as: 

<restart> 

<option> 

: : = 
.. -.. -

<option char> 

RESTART <option><parameter><file name> 

<empty> I - <option char> ; 

: : = <alpha> ; 

<parameter> - <identifier> 

. , 

This command is used to restart the debugged program. The user can 

set up options and parameters for the debugged program and also 

redirect the standard input/output device for the debugged program. 

Suppose a user wants to debug a load module called compiler, 

whose option is -0 and its parameter (file name to save the objects) 

is compile.o. Type this: 

fdb compiler 

RESTART -0 compile.o 

There are two types of output during a debug 

session. One is diagnostic messages from fdb and 

the other is output from the debugged program. 

Fdb allows you to redirect either output. FILE command is used 

to redirect the debug messages and RESTART is used to redirect the 

program output. 

45 



Special Notes 

If a user just presses the RETURN key (Newline Command), it is 

interpreted as if the previous command was entered. 

Because of the newline feature and the mUltiple commands line 

feature, a command line that ends with a semicolon is different than 
one that ends without it. For example: 

command 1 :this is just one command 

command 1; :this is equivalent to command I , command 1 

W :single step execution command 

(RETURN) : execute next statement 

(RETURN) : execute next statement 

SPECIAL CHARACTERS IN A STRING 

A quote in a string is represented by two quotes. So "abc""d" is a 
string of abc"d, and 11111111"" is 1111. But 1111" is an illegal string. 

A backs lash (\.) is used to indicate that a special character is 

following. So ~ means single \.. It is advised to use a backslash 

whenever non-alphanumeric characters are used. This does not apply 
in ALIAS replacement string. 

If \ precedes I, EQU expansion is suppressed. For example: 

EQU A "XYZ" 
FIND 

FIND 
"ioA" 
II \ ioA" 

:search for XYZ 

: search for ioA 

The following example could cause a permanent loop, but will be 
detected and reported by fdb. 

46 

EQU a II \ Ia" 
Ia 

:define itself 

:would-be permanent expansion 



Operating Procedure 

The steps of a general operating procedure is described here. First 

the syntax of fdb is reviewed. 

The syntax for calling fdb is: 

fdb [Object-file[directory~ 

where: 

object-file: an executable program file which has been compiled 

with the -g (debug) option. The default for object-file is 

a.out. 

directory: a directory where the source file exists. The 

default for directory is the working directory. 

At any time there is a current line and current file. The 

current file may be changed by FILE command. 

These are the steps in the procedure: 

1 Compile source programs with -g option 

2 Run loader 

3 Run fdb 

Suppose a C program is saved in test.c and a PASCAL program is in 

sample.p, and you try to debug the linked program (UNIX command 

syntax may be changed from time to time). These are the steps you 

follow. 

Procedure 

cc -g test.c -0 cobject 

pc -g sample.p -0 pobject 

Comments 

/* compile test.c program */ 
/* compile sample.p program */ 

47 



Procedure Comments 

ld -0 junk 

fdb junk 
cobject pobject /* link 2 objects */ 

/* invoke debugger */ 

48 

If fdb has a bug and causes a permanent loop, you 

can't get out from fdb by pushing the Cancel 

key. In this case, hold down the Cancel key 

about 10 seconds. Then you can get out from fdb 

and return to the Unix shell. 



Support Utilities, Libraries, and Machine Specific Aspects 

The Fortune Operating System provides a number of utilities and 
libraries which make routine programming activities easier and less 
time consuming. In this section you will learn about the utilities 
and libraries below. 

• Archive -ar 
• Link Editor -ld 

• Make 
• Name -nm 
• Ranlib 

• Size 
• Strip 
• Libraries 

libc.a 
libg.a 
libm.a 

You will also learn about aspects of using C on the Fortune 
32:16 which are specific to a 68000 based product. 

49 



Archive ar 

Ar is used primarily to create and update library files used by the 

loader. Groups of files are maintained in one archive file. This 

version of ar uses an ASCII-format archive which can be ported among 

various machines running UNIX. 

SYNTAX: ar key posname afile names(s) ••• 

Element 

key 

posname 

afile 

name(s) 

Purpose 

One character from the set of options (d, r, q, t, p, 
m, x). It can be catenated and enhanced with one or 

more of another set of options (v, u, a, i, b, c, 1). 

The filename you use to indicate position. 

The name for the archive file. 

The files in the archive file. 

Each of the key options is described below. 

Option 

d 

r 

50 

Description 

Deletes the named files from the archive file. 

Replaces the named files in the archive file. If you 

include the optional character u only those files 

modified later than the archive files are replaced. 

If you use an optional positioning character from the 
set abi, then the posname argument must be included. 



Option 

q 

t 

p 

m 

x 

v 

c 

Description 

It specifies that new files are to be positioned 

following a or before ~ or i posname. Otherwise, new 

files are placed at the end. 

Quickly appends the named files to the end of the 
archive file, disregarding any optional positioning 
characters and without checking whether the added 
files are already in the archive. When you are 
creating a large archive in pieces, use this to avoid 
quadratic behavior. 

Prints a table of contents of the archive file. If no 
names are printed, all the files in the archive are 

tabled. If names are printed, only those files are 
tabled. 

Prints the named files in the archive. 

Moves the named files to the end of the archive. If 
you include a positioning character, then the posname 

argument must be present and, as with E, must specify 

where the files are to be moved. 

Extracts the named files. If you give no names, all 

files in the archive are extracted. x does not, 
however, alter the archive file. 

With the verbose option, you receive a file-by-file 
description of the construction of a new archive 

file. If you include! a listing of all information 

about the files will be included. With E each file is 

preceded by a name. 

The create option suppresses the usual message 

produced when afile is created. 

51 



Option 

1 

52 

Description 

The local option places files in the local directory 
rather than in /tmp, where it normally places 

temporary files. 



Link Editor ld 

The link editor, or loader, combines several object programs into 

one, resolves external references, and searches libraries. In the 

simplest form several object files are given and ld combines them. 

An object module is produced. It can be executed or used with the 

-r option as input for a further ld run. Output of ld is left in 

the a.out file (unless the -0 option is used to specify an output 

filename) and is executable only if no errors occurred during 

loading. 

SYNTAX: ld option files ••• 

Argument routines are ca~enated in the order you specify. 
Unless you use the -e option the entry point of the input of the 

executable or a.out file is the beginning of the first argument. 
If any argument is a library, it is sear-c-hed only once when it 

is encountered in the argument list. Only routines that define 
unresolved external references are loaded. The order of programs 

within libraries may be important. For example, if a routine from a 

library references another routine in the library, and the library 

has not been processed by ranlib(l), the referenced routine must 

appear after the referenc-ing routine in the library. The first 

member of a library should be a file named __ .SYMDEF. It is 

understood to be a dictionary for the library as produced by 

ranlib(l) and is searched iteratively to satisfy as many references 

as possible. 

The symbols etext, edata and end are reserved, and if 

referenced, are set to the first location above the program, the 

first location above initialized data, and the first location above 

all data respectively. Don't define these symbols. 

53 



Element 

Option 

Files 

Purpose 

ld understands several options (D, d, e, lx, M, 

N, n, 0, r, s) and except for -1 (this is the 

letter 1), they should appear before the file 

names. 

These files are to be combined into the object 

module. 

The following is a description of the link editor options. 

Option Description 

-D 

-d 

Takes the next argument as a hexadecimal number and 
pads the data segment with zero bytes to the length 

you indicate. 

Forces definition of common storage even if the -r 

flag is included. 

-e The following argument becomes the entry point of the 

loaded program. Zero is the default. For example, 

with a program consisting of main( ) and main2( ): 

-Ix 

54 

You enter Result 

ld -e main2 filenames.o When you type a.out the program 
begins execution at main2. 

Description 

This option is an abbreviation for the library name 
/lib/lib~.a, where x is a string. If that library 

doesn't exist, ld tries /usr/lib/libx.a. The library 



Option 

You Enter 

Description 

name must be placed last as it is searched for all 

undefined references when it is encountered. 

Results 

ld filenames.o -1m The math (m) library is 

searched. 

Option 

-M 

-N 

-n 

-0 

-r 

Description 

Produces a primitive load map which lists the names of 
the files that will be loaded. 

The text portion is not made read-only or sharable. 

Uses "magic number" 0407. 

When the output file is executed, the text portion is 
made read-only. Therefore, it doesn't have to be 

repeated in memory if more than one copy of the 
program is being run concurrently. For example, if 

two or more people are expected to run an editor, 

loading it with -n can save space. 

Gives a name in the place of a.out to the ld output 

file. 

Relocation information is retained. This is useful 

for running the output through the loader again, if, 

for example, you don't include all files on the 
first run. 

55 



You Enter 

ld -r x.o y.o -0 q.o 

Id q.o z.o 

Results 

Puts results in q.o. The 
files-x.o and y.o are combined 

with Z.Q to make a.out. This is 

the same as doing ld x.o y.o z.o 

Option Description 

-S 

-s 

-T 

-t 

-u 

Strips the output by removing all symbols but locals 

and globals. 

This is useful if you do not plan to reload, but only 

to execute. All symbol table and relocation 

information is removed, thereby saving space. 

The text segment origin is set by the next argument, a 

hexadecimal number. 

Traces the name of each file as it is processed and 

prints it on the screen. 

Takes the argument following and undefines it to force 

loading. This is useful for loading solely from a 

library. 

You Enter 

ld -u asin filenames.o 
library 

Results 

asin would be included from 

the library you name. 

Option Description 

-x This discards any symbols that are not local, those 

whose names begin with II II 

56 



Option 

-x 

Description 

Removes all local symbols and saves space in the 

output file. 

You Enter Results 

ld -x test.c test.o file that is smaller. 

Option Description 

-ysym Lists each file in which sym appears, its type, 

and whether the file references or defines it. 

57 



Make 

When you are working on a programming project, it is easy to lose 

track of which files need to be reprocessed or recompiled after a 

change is made in some of the source code. Make provides a simple 

means for maintaining up-to-date versions of programs. You can tell 
make a sequence of commands that creates certain files, and the list 

of files requiring other files to be current before the operations 

can be done. Whenever you make a change in any part of the program, 
use the make command to create the proper files simply, correctly, 

and with little effort. 

Basically, make finds the name of a needed target in the 

description and ensures that all of the files that the target 

depends on are current. Aft~r ensuring that the supporting files 

are current, the target is made according to predefined 

instructions. If supporting files are not current, make will 

attempt to target each one. The description file defines the graph 

of dependencies. Make does a depth-first search of this graph and 
determines what work is really necessary. 

In addition, make provides a simple macro substitution facility 

and the ability to condense commands into a single file for 

convenience. The make command takes four kinds of arguments: macro 

definitions, options, description, file names, and target file names. 

SYNTAX: make (options) (macro definitions) filenames ..• 

Element 

Options 

58 

Purpose 

The options, from the set (i, s, r, n, t, q, p, 

d, f), are examined second, after the macro 

definition arguments. 



Element 

Macro 

definitions 

Filenames 

Purpose 

A macro definition is a line including an equal 

sign not preceded by a colon or a tab. The name 

on the left of the equal sign (trailing blanks 

and tabs are stripped) is assigned to the string 

of characters to the right of the equal sign 

(tabs and leading blanks are stripped.) The 

following are examples: 

CFLAGS = -I/u/james/mylib 

The null string is a valid assignment. 

Remaining arguments are the names of the targets 
to be made. They are processed left to right. 

If no suc~ arguments exist, the first filename in 

the list of description files that doesn't begin 

with a period is made. 

Following is a description of the options used with make. 

Option 

-i 

-s 

-r 

-n 

Description 

Ignores error codes returned by invoked commands if 

the fake target name "IGNORE" is encountered in the 

description file. 

The silent mode doesn't print command lines before 

executing them. The same action is taken if the fake 

target name "SILENT" appears in the description file. 

Doesn't use the built-in rules. 

Commands are printed but not executed. Lines 
beginning with H@" are also printed. 

59 



Option 

-t 

-q 

-p 

-d 

-f 

. DEFAULT -

• PRECIOUS 

. SILENT 

• IGNORE 

60 

Description 

Updates (touches) the target files rather than issuing 

the normal commands. 

Questions whether the target file is or isn't up to 

date. Make returns a zero or non-zero status 

indicating up to date or not up to date. 

Prints the complete set of macro definitions and 

target descriptions. 

In debug mode make prints detailed information on 

files and times examined. 

The arg~ment following f names a description file. 

The name "_II signifies standard input. If you include 

no -f arguments the file named makefile or Makefile in 

the current directory is read. When description files 

are present the contents override any built-in rules . 

If a file must be made and no explicit commands or 

appropriate built-in rules exist, the commands in 

.DEFAULT are used-if it exists. 

Doesn't remove dependents of this file if quit or 

interrupt is hit. 

This has the same effect as the -s option • 

This has the same effect as the -i option . 



Name nm 

~ame prints the symbol table of each object file in the list of 
arguments. A listing for ,each object file in the archive is 

produced if an argument is an archive. 

Each symbol name is preceded by its value (blanks if undefined) 

and one of the following letters: U (undefined), A (absolute), T 

(text segment symbol), D (data segment symbol), B (bss segment 

symbol), C (common symbol), f file name, or - for sdb symbol table 

entries. For local symbols (non-external) the type letter is in 

lowercase. Output is sorted alphabetically • 

. 
SYNTAX: nm -option file ••• 

You may use several options with the name utility. 

Element Purpose 

Options The set of options is (a, g, n, 0, p, r, u). 

Files These files are the object of the command. The 

symbols in a.out are listed if no file is given. 

The options control the listings. Each option is described 

below. 

Option Description 

-a All symbols are included for printing. 

-g Prints only global symbols, not local or fdb. 

-n Sorts numerically rather than alphabetically. 

61 



Option 

-0 

-p 

-r 

-u 

62 

Description 

The file or archive element name precedes each output 

line rather than only the first. 

Prints in symbol-table order rather than sorting. 

Sorts in reverse order. 

Prints only undefined symbols. 



Ranlib 

Ranlib adds a table of contents named __ SYMDEF to the beginning of 

the archive. This way the· archive can be loaded more rapidly. 

~(l) is used to reconstruct the archive, so that enough temporary 
file space is available in the file system containing the current 
directory. 

SYNTAX: ranlib archive ... 

The ranlib utility uses archive files. 

Element 

Archive 

Purpose 

This is the name of the archive file containing a 
collection of .0 files. 

63 



Size 

Size prints the decimal number of bytes required by the text, data, 
and bss portions, and the sum in hex and decimal, of each 

object-file argument. 

SYNTAX: size object 

The size utility uses the object file that you are measuring. 

Element 

Object 

Purpose 

The name of the file you are measuring. If you 

do not specify a file, a.out is used. 

To see the size of a particular program, enter the following: 

You Enter 

size test.c text 

60 

Results 

data 
'16 

bss 

o 
dec 

76 

hex 

4c 

You can do a comparison on file size by running size on a program 

before and after, using the optimizer which reduces code size. 

64 



Strip 

Strip removes the symbol table and relocation bits which are usually 

attached to the output of ·the assembler and loader. Use this to 
save space after you have debugged a program. 

Strip has the same effect as the -s option of ld. 

SYNTAX: strip name ••• 

The strip utility reduces the size of a file. 

Element Purpose 

Name The file you want to strip. 

65 



Tool Usage 

The following procedure allows you to use these "tools: size, nm, 

strip, ar, ranlib, make, and lint. 

1 Create a C language program. 

You Enter 

ed x.c 

a­
main ( ) { 

Results 

A program named x.c is created 
which prints a message. 

priotf (HHello, World \ nil); 

} 

w 

q 

cc x.c 

1s -1 a.out 

a.out 

size a.out 
nm a.out 

strip a.out 
Is -1 a.out 

2 Now create two subroutines. 

You Enter 

ed hello.c 

a 

66 

Compiles the program. 

Lists the output file. 

Runs the program. 

Displays the size. 
Prints the symbol table of the 

a.out object file. 

Strips off the symbol table. 

Shows that the program is smaller. 

(use size to show that the symbol 

table is gone.) 

Results 

Creates a subroutine named hello.c. 



You Enter Results 

hello ( ) { 

printf ("Hello, World \n") 
} 

w 

q 

ed goodbye.c 

a 

goodbye ( ) r 

Creates a subroutine named 

goodbye.c. 

printf ("Goodbye, World \ nil) ; 

w 

q 

3 Compile the subroutines. Then create the main program that 

calls the subroutines. 

You Enter Results 

cc -c hello.c goodbye.c 

Is *.0 
Compiles subroutines. Lists all 

.0 files. 

ed main.c 

a 

main (* ){ 
hello ( ); 

J 

w 

q 

67 



4 Compile the main program. 

You Enter Results 

cc -c main.c Compile the program. 

ar crv greet.a hello.o· goodbye.o 

ar tv greet.a 

ranlib greet.a 

cc main.o greet.a 

nm a.out 

Create the archive even if it already 
exists. 

Prints table of contents of the library 

Inserts table of contents in front of 

library. 

This link edits the archive of .0 files 

with the main program. 

Notice hello is in the name list and 

goodbye isn't. 

5 Create a makefile. Use the make utility to create the a.out 

file. 

68 

You Enter 

ed makefile 

a 

hello.o: hello.c 

goodbye.o: goodbye.c 
main.o: main.c 

greet.a: hello.o goodbye.o 

Results 

ar crv greet.a hello.o goodbye.o 

main: main.o greet.a 

cc -0 main main.o greet.a 



You Enter 

w 

q 

make main 

Results 

Compiles source files that have 

been changed. 

69 



Libraries· 

Information on how to use the library functions, arguments, and 

returns can be found in Section 2. The Fortune Operating System 

contains numerous libraries designed for many different 

applications. Some are specifically for use with C. C related 

libraries are summarized below • 

• libc.a is the general C library containing string, input/output, 

and system functions • 

• libg.a contains support routines for the Fortune Symbolic 

Debugger (FDB) • 
• libm.a contains math, transcendental, and power functions. 

To avoid conflict with l~brary global names, do not use any of 

the following names for global variables or procedures. 

_dbargs filbuf BC asctime 
dbsubc flsbuf PC asin 
dbsubn _getccl UP atan 

callc innum abort atan2 

calle instr abs atoi 

cerror iob access atol 

_cleanup lastbuf acct atof 

cret _regbak acos auldiv 
csav _regsav alarm aulmul 
csavl sctab aldiv aulrem 

_ctype_ sibuf allocp bIt 
_doprnt _sighnd allocs brk 

doscan sobuf alloct cabs 
elOtab strout allocx calloc 
error 13tol almul ceil 
exit Itol3 alrem cfree 

70 



chdir fgets getuid open 

chmod floor getw ospeed 

chown fopen gmtime pause 

chroot fork hypot pclose 

clear fpint index perror 

clearerr fprintf intss phys 

close fputc ioctl pipe 

cos fputs isatty printf 

cosh fread isinf profil 

creat frexp isnan ptrace 

crypt free isnorm ptrtrap 

ctime fscanf jl putchar 

devctl fseek jO puts 

dup fstat jn putw 

dup2 ftell kill qsort 

dysize ftime ldexp rand 

ecvt fwrite ldiv read 

encrypt gamma link realloc 

endgrent getchar lmul rewind 
endpwent getegid localtim rindex 

erf getend lock sbrk 

erfc geteuid locking scanf 

errno getfpcl log setbuf 

execl getfpst loglO setfpcl 

execle getgid longjmp setfpst 

execlp getgrent lrem setgid 

execv getgrgid lseek setgrent 

execve . getgrnam malloc setjmp 
execvp get login mknod setkey 
exit getpass mktemp setpwent 

exp getpid modf setuid 
fabs getpw monitor sigfunc 
fclose getpwent mount signal 
fcvt getpwnam mpxcall signgam 
fflush getpwuid nice sigtrap 

fgetc gets nlist sin 

71 



sinh strlen tgetflag ulmul 

sleep strncat tgetnum ulrem 

sprintf strncmp tgetstr umask 

sqrt strcpy tgoto umount 
srand stty time ungetc 
sscanf swab times unlink 
stat sync timezone utime 

stime sys_errl tmpnam wait 

strcat sys_nerr tnamatch wdleng 
strcatn system tnchktc write 
strcmp tan tputs yl 
strcmpn tanh ttyname yO 
strcpy tell ttyslot yn 
strcpyn tgetent uldiv yyportli 

72 



Fortune 32:16 Specific Aspects 

There are four machine-specific qualities of the Fortune C 

compiler. Each is explained below. 

INTEGERS AND POINTERS 

Types Integer, pointer, and long are each 32 bits long. The type 
short is 16 bits long. Character data is 8 bits long. Unsigned 

data is the same length as the corresponding signed quantities. 

SIGN EXTENSION 

Character data is sign extenqed unless the user declares unsigned 
character. 

BYTE ORDERING 

The Motorola 68000 addresses bytes sequentially from high to low 

order. If you reference the address pointer of an integer (int) as 

a character (char) you will get the high order byte of the integer 

(the most significant portion). 

ALIGNMENT 

All variables and structures are aligned to even byte addresses and 

occupy an even number of bytes. To maintain machine indepedence 
when coding in C, be aware of the following issues • 

• The length of int may not be the same as anything else, such as 

a pointer, a long, or a short • 

• Addressing should not be done within a basic type. 

73 



• Calculating addresses should not be done within a structure • 

• The type char may not be sign extended in all calculations. 

• Nothing should be accessed within the local frame area, except 
with declared names. 

74 



Optimizer 

The optimizer can increase the throughput of your programs. To get 

the best out of your Fortune optimizer follow these rules. 

1 Use register variables as much as possible, especially floating 

point, to affect code size and speed. 

2 - Use shorts whenever possible. Although the compiler may 

occasionally have to extend them, operations with shorts are 

much faster than character or integer equivalents (except byte 

moves). 

3 Use of logical operation~, such as ~ and y where y is a 

constant, optimize better than subtraction or comparison. The 

same is true for the operator. 

4 Structures or array references, especially byte arrays, are 

optimized if their lengths are powers of two. 

5 The C language has no common subexpression or invariant code 

optimizer. Place only necessary expressions inside loops and do 

not repeat expressions in straight line code. 

6 Use register variables in a function only if the variable is 

used in a loop or is used at least four times in the function 

for the first register, and three times for succeeding registers. 

7 Register variables should be kept on the left-hand side of the 

expression. For example, write 

r = f + g; (r and f are register vars) 

75 



rather than 

r = g + f 

8 Generally, automatics access more quickly than static 
variables. However, heavily used statics may produce better 

code than automatic variables. 

• If the variable or array is referenced more than three 

times, place it in static (unless there are no other 
register variables). 

• If the variable is a structure avoid placing it in static. 

9 If your program will not allocate more than 8K of stack space, 

you may compile with the -G option which reduces stack growth 

and checks calls at ever~ procedure invocation. 

10 Use short mUltiplication and division whenever possible. Cast 
or convert everything to shorts before doing the operation to 
ensure the use of hardware instructions. Multiplication or 
division by a power of two is converted to shifts, however. 

11 When moving approximately one half or more of a structure use a 

full structure move, and then restore the contents. Use full 

structure move whenever possible. 

12 Keep for loops simple, using one variable going through a simple 

range, rather than lots of conditionals. Use a simple increment 

such as ++g. 

76 



The Fortran/C/Language Interface 

The C language is well suited for high-speed system applications. 

Fortran is designed for mathematical and scientific applications. 

You may find it desirable to write mUlti-language applications that 

use the strengths of each language. You may write a program in 

Fortran, for example, that calls a graphics package written in C. 

With the language interface capabilities on the Fortune 32:16, C 

procedures can be written to ,call or to be called by Fortran 

procedures. To do this you must know the rules that completed code 

obeys for procedure names, data representation, return values, and 
argument lists. 

Procedure Names 

On UNIX systems the name of a Fortran procedure or a common block is 

represented as seen. It is accessible from other languages without 

any additional notation. 

Data Representation 

The following table shows corresponding Fortran and C declarations. 

Fortran 

integer*2 x 

integer x 

C 

short int x; 

long int x; 

77 



Fortran 

logical x 
real x 

double precision x 
complex x 

double complex x 

character*6 x 

c 

long int x; 

float x; 

double x; 

struct float r, i; x; 

struct double dr, di; x; 

char xr6]; 

In Fortran, integer, logical, and real data occupy the same amount 
of memory. 

Return Values 

A function in Fortran of type integer, logical, real, or double 

precision will return the same value as a C routine of the 

corresponding type. A complex or double complex function in Fortran 
is equivalent to a C routine that includes an additional argument 
pointing to the location where the return value is to be stored. In 

this example, 

complex function sin( .•• ) 

is equivalent to 

sin (temp, . . .) 
struct float r, i; *temp; 

A character-valued function in Fortran is the same as a C routine 
which includes two extra initial arguments: a data address and a 

length. For example, 

character *15 function strcpy( •.. ) 

is the same as 

78 



strcpy(result, length, ••• ) 

char result 

long int length; 

and could be called in C with 

char chars 15 

strcpy(chars, l5L, .); 

Subroutines are called as if they were integer-valued functions 

whose value indicates which alternate return value to use. The 

alternate return arguments are labels and are not passed to the 

function. They are used to do an indexed branch in the calling 

procedure. If the subroutine provides no entry points with 

alternate return arguments, the returned value is not defined. 

In this example, the statement 

call nref(*IO, *20, *30) 

is treated as if were 
goto (10, 20, 30), nret() 

Arguments Lists 

Fortran arguments are passed by address. Also, all type char and 

dummy procedure arguments pass an argument giving the length of the 

value. String lengths are long int quantities passed by value. 

Arguments are given in the following order: 

• Additional arguments for complex and character functions 

• Address for each item of data or function 

• A long integer for each character or procedure argument 

79 



The call in 

external f 
character*7 s 

integer b(3) 
. . . 
call sam(f, b(2), s) 

is the same as 

int f(); 

char s(71; 
long 1nt b 3 . , 
. • • 
sam (f, &b I ,s~ OL, 7L); 

The first element of a C array has the subscript zero, whereas 
Fortran arrays begin at one. Also, Fortran arrays are stored in 
column-major order; C arrays are stored in row"!'"major order. 

80 



Part 1 System Routines 

This set of routines provides the interface of the C language to the 

UNIX operating system. Using these routines you will be able to 

access many of the UNIX system calls by way of C programs. 

3 



INTRO(2) System Routines INTRO(2) 

NAME 
intro, errno - introduction to system calls and error 
numbers 

SYNOPSIS 
linclude <errno.h> 

DESCRIPTION 
Section 2 of this manual describes all the entries into the 
system. Distinctions as to the status of the entries are 
made in the headings: 

(2) System call entries which are standard in Version 7 
UNIX systems. 

(2J) System call entries added in support of the job control 
mechanisms of csh(l). These system calls are not 
available in standard Version 7 UNIX systems, and 
should be used only when necessary; to prevent inexpli­
cit use they are contained in the ~ library which 
must be specifically reques~ed with the -ljobs loader 
option. The use of conditional compilation is recom­
men ted when possible so that programs which use these 
features will gracefully degrade on systems which lack 
job control. 

(2V) System calls added for the Virtual Memory version of 
UNIX distributed by Berkeley. Some of these calls are 
likely to be replaced by new facilities in future ver­
sions; in cases where this is imminent, this is indi­
cated in the individual manual pages. 

An error condition is indicated by an otherwise impossible 
returned value. Almost always this is -1; the individual 
sections specify the details. An error number is also made 
available in the external variable errno. Errno is not 
cleared on successful calls, so it should be tested only 
after an error has occurred. 

There is a table of messages associated with each error, and 
a routine for printing the message; See perror(3). The pos­
sible error numbers are not recited with each writeup in 
section 2, since many errors are possible for most of the 
calls. Here is a list of the error numbers, their names as 
defined in <errno.h>, and the messages available using ~ 
.IQ.t.. 

" Error " 
Unused. 

4 



INTRO(2) System Routines INTRO(2) 

1 EPERM Not owner 
Typically this error indicates an attempt to modify a 
file in some way forbidden except to its owner or 
super-user. It is also returned for attempts by ordi­
nary users to do things allowed only to the super-user. 

2 ENOENT No such file or directory 
This error occurs when a file name is specified and the 
file should exist but doesn't, or when one of the 
directories in a path name does not exist. 

3 ESRCH No such process 
The process whose number was given to signal and ptrace 
does not exist, or is already dead. 

4 EINTR Interrupted system call 
An asynchronous signal (such as interrupt or quit), 
which the user has elected to catch, occurred durin9 a 
system call. If execution is resumed after process~ng 
the signal, it will appear as if the interrupted system 
call returned this error condition. 

5 EIO I/O error 
Some physical I/O error occurred during a ~ or 
write. This error may in some cases occur on a call 
following the one to which it actually applies. 

6 E~~IO No such device or address 
I/O on a special file refers to a subdevice which does 
not exist, or beyond the limits of the device. It may 
also occur when, for example, a tape drive is not 
dialed in or no disk pack is loaded on a drive. 

7 E2BIG Arg list too long 
An argument list longer than 10240 bytes 'is presented 
to exec. 

8 ENOEXEC Exec format error 
A request is made to execute a file which, although it 
has the appropriate permissions, does not start with a 
valid magic number, see g.~(5) • 

9 EBADF Bad file number 
Either a file descriptor refers to no open file, or a 
read (resp. write) request is made to a file which is 
open only for writing (resp. reading). 

10 ECHILD No children 
wait and the process has no living or unwaited-for 
children. 

5 



INTRO(2) System Routines INTRO:(2) 

11 EAGAI,N 'No more processes 
In a fork, the system IS pro,cess table is fu'Tl o:r ,the 
user is not allowed to create any more proc'e.s's'e's,. 

12 ENOMEM Not enough core 
During an exec or break, a program asks 'fo'r lIl«:lre ,core 
than the system is able to su~pply. This is ,n,ot .a i:em­
porary condition; the maximum core size is ;a sy.sttem 
parameter. The error may also occur if the arr.an.g,el1lent 
of text, data, and stack segments r.equi'res to-o many 
segmentation registers. 

13 EACCES Permission denied 
An attempt was made to access a fil'e in a 'w-ay -f-oTbitlden 
by the protection system. 

14 EFAULT Bao aod.ress 
The system encountered a hard-ware fault in attempting 
to access the arguments of a system call. 

15 ENOTBLK Block device required 
.A plain file was mentioned 'where a block de·vic·e 'was 
required, e.g. in mount. 

16 EBUSY Mount device busy 
An attempt to mount a device that was already mounted 
or an attempt was made to dismount a device on which 
there is an active file directory. (open file, current 
airectory, mounted-on file, active text segment). 

17 EEXIST File exists 
An existing file was mentioned in an inappropriate con­
text, e.g. link. 

18 EXDEV Cross-device link 
A link to a file on another device was attempted. 

19 ENODEV No such device 
An attempt was made to apply an inappropriate system 
call to a device; e.g. read a write-only device. 

20 ENOTDIR Not a directory 
A non-directory was specified where a directory is 
required, for example in a path name or as an argument 
to chdir. 

21 EISDIR .Is a directory 
An attempt to write on a directory. 

22 EINVAL Invalid argument 
Some invalid 'argument: dismounting a non-mounted 

6 



INTRO(2) System Routines INTRO(2) 

device, mentioning an unknown signal in signal, reading 
or writing a file for which seek has generated a nega­
tive pointer. Also set by math functions, see 
intro(3). 

23 ENFILE File table overflow 
The system's table of open files is full, and tem­
porarily no more opens can be accepted. 

24 EMFILE Too many open files 
Customary configuration limit is 20 per process. 

25 ENOTTY Not a typewriter 
The file mentioned in stty or g1iy is not a terminal or 
one of the other devices to which these calls apply. 

26 ETXTBSY Text file busy 
An attempt to execute a pure-procedure program which is 
currently open for writing (or reading!). Also an 
attempt to open for writing a pure-procedure program 
that is being executed. 

27 EFBIG File too large 
The size of a file exceeded the maximum (about 1.0E9 
bytes) • 

28 ENOSPC No space left on device 
During a write to an ordinary file, there is no free 
space left on the device. 

29 ESPIPE Illegal seek 
An lseek was issued to a pipe. This error should also 
be issued for other non-seekable devices. 

30 EROFS Read-only file system 
An attempt to modify a file or directory was made on a 
device mounted read-only. 

31 EMLINK Too many links 
An attempt to make more than 32767 links to a file. 

32 EPIPE Broken pipe 
A write on a pipe for which there is no process to read 
the data. This condition normally generates a signal; 
the error is returned if the signal is ignored. 

33 EDOM Math argument 
The argument of a function in the math package (3M) is 
out of the domain of the function. 

7 



INTRO(2) System Routines INTRO(2) 

34 ERANGE Result too large 
The value of a function in the math package (3M) is 
unrepresentable within machine precision. 

SEE ALSO 
intro(3) 

BUGS 
The message "Mount device busy" is reported when a terminal 
is inaccessible because the "exclusive use" bit is set; this 
is confusing. 

8 



ACCESS(2) System Routines ACCESS (2) 

NAAE 
access - determine accessibility of file 

SYNOPSIS 
access(name, mode) 
char *name: 

DESCRIPTION 
Access checks the given file name for accessibility accord­
ing to mode, which is 4 (read), 2 (write) or 1 (execute) or 
a combination thereof. Specifying mode 0 tests whether the 
directories leading to the file can be searched and the file 
exists. 

An appropriate error indication is returned if name cannot 
be found or if any of the desired access modes would not be 
granted. On disallowed accesses -1 is returned and the 
error code is in errno. ~ is returned from successful 
tests. 

The user and group IDs with respect to which permission is 
checked are the real UID and GID of the process, so this 
call is useful to set-UID programs. 

Notice that it is only access bits that are checked. A 
directory may be announced as writable by access, but an 
attempt to open it for writiag will fail (although files may 
be created there): a fil~ may look executable, but ~ will 
fail unless it is in proper format. 

SEE ALSO 
stat(2) 

9 



ACCT(2) System Routines ACCT(2) 

. NAME 
acct - turn accounting on or off 

SYNOPSIS 
acct (file) 
char *file; 

DESCRIPTION 
The system is prepared to write a record in an accounting 
~ for each process as it terminates. This call, with a 
null-terminated string naming an existing file as argument, 
turns on accounting; records for each terminating process 
are appended to file. An argument of 0 causes accounting to 
be turned off. 

The accounting file format is given in ~(5) • 

SEE ALSO 
acct (5), sa (8) 

DIAGNOSTICS 

BUGS 

On error -1 is returned. The fi'le must exist and the call 
may be exercised only by the super-user. It is erroneous to 
try to turn on accounting when it is already on. 

No accounting is produced for programs running when a crash 
occurs. In particular nonterminating programs are never 
accounted for. 

10 



ALARM (2) System Routines ALARM (2) 

NME 
alarm - schedule signal after specified time 

SYNOPSIS 
alarm(seconds) 
unsigned seconds; 

DESCRIPTION 
Alarm causes signal SIGALR~l, see signal(2), to be sent to 
the invoking process in a number of seconds given by the 
argument. Unless caught or ignored, the signal terminates 
the process. 

Alarm requests are not stacked; successive calls reset the 
alarm clock. If the argument is 0, any alarm request is 
canceled. Because the clock has a I-second resolution the 
signal may occur up to one second early; because of schedul­
ing delays, resumption of execution of when the signal is 
caught may be delayed an arbitrary amount. The longest 
specifiable delay time is 2147483647 seconds. 

The return value is the amount o£ time previously remaining 
in the alarm clock. 

SEE ALSO 
pause(2) , signal(2), sigsys(2), sigset(3) , sleep(3) 

11 



BRK(2) System Routines BRK(2) 

NME 
brk, sbrk - change core allocation 

SYNOPSIS 
char *brk(addr) 

char *sbrk(incr) 

DESCRIPTION 
Brk sets the system's idea of the lowest location not used 
by the program (called the break) to addr (rounded up to the 
next multiple of 1024 bytes). Locations not less than addr 
and below the stack pointer are not in the address space and 
will thus cause a memory violation if accessed. 

In the alternate function sbrk, incr more bytes are added to 
the program's data space and a pointer to the start of the 
new area is returned. 

When a program begins execution via ~ the break is set at 
the highest location defined by the program and data storage 
areas. Ordinarily, therefore, only programs with growing 
data areas need to use break. 

The vlimit(2) system call may be used to determine the max­
imum permissible size of the ~ region; it will not be 
possible to set the break beyond "etext + vlimit(LIM_DATA, 
-l).n (See end(3) for the definition of etext.) 

SEE ALSO 
exec(2), vlimit(2), malloc(3), end(?) 

DIAGNOSTICS 
Zero is returned if the bLk could be set; -1 if the program 
requests more memory than the system limit or if too many 
segmentation registers would be required to implement the 
break. Sbrk returns -1 if the break could not be set. 

12 



CHDIR(2) System Routines 

NAME 
chdir - change current working directory 

SYNOPSIS 
chdir(dirnarne) 
char *dirnarnei 

DESCRIPTION 

CHDIR(2) 

Dirname is the address of the pathname of a directory, ter­
minated by a null byte. Chdir causes this directory to 
become the current working directory, the starting point for 
path names not beginning with 'Ii. 

SEE ALSO 
cd(l) 

DIAGNOSTICS 
Zero is returned if the directory is changed; -1 is returned 
if the given name is not that of a directory or is not 
searchable. 

13 



CHMOD(2) System Routines CHMOD(2) 

N~£ 
chmod - change mode of file 

SYNOPSIS 
chmod(name, mode) 
char *name; 

DESCRIPTION 
The file whose name is given as the null-terminated string 
pointed to by name has its mode changed to mode. Modes are 
constructed by QLing together some combination of the fol­
lowing: 

04000 set user ID on execution 
02000 set group ID on execution 
01000 save text image after execution 
00400 read by owner 
00200 write by owner 
00100 execute (search on directory) by owner 
00070 read, write, execute (search) by group 
00007 read, write, execute (search) by others 

If an executable file is set up for sharing (this is the 
default) then mode 1000 prevents the system from abandoning 
the swap-space image of the program-text portion of the file 
when its last user terminates. Ability to set this bit is 
restricted to the super-user since swap space is consumed by 
the images. See sticky(S). 

Only the owner of a file (or the super-user) may change the 
mode. Only the super-user can set ~he 1000 mode. 

On some systems, writing or changing the owner of a file 
turns off the set-user-id bit. This makes the system some­
what more secure by protecting set-user-id files from 
remaining set-user-id if they are modified, at the expense 
of a degree of compatibility. 

SEE ALSO 
chmod(l) 

DIAGNOSTIC 
Zero is returned if the mode is changed; -1 is returned if 
~ cannot be found or if the current user is neither the 
owner of the file nor the super-user. 

14 



System Routines CHOvlN (2) 

NAME 
chown - change owner and group of a file 

SYNOPSIS 
chown(name, owner, group) 
char *namei 

DESCRIPTION 
The file whose name is given by the null-terminated string 
pointed to by name has its owner and group changed as speci­
fied. Only the super-user may execute this call, because if 
users were able to give files away, they could defeat the 
(nonexistent) file-space accounting procedures. 

On some systems, chown clears the set-user-id bit on the 
file to prevent accidental creation of set-user-id programs 
owned by the super-user. 

SEE ALSO 
chown(l), passwd(5) 

DIAGNOSTICS 
Zero is returned if the owner is changedi -1 is returned on 
illegal owner changes. 

15 



CLOSE(2) System Routines CLOSE(2) 

NAME 
close - close a file 

SYNOPSIS 
close(fildes) 

DESCRIPTION 
Given a file descriptor such as returned from an ~, 
creat, dup or ~(2) call, close closes the associated 
file. A close of all files is automatic on exit, but since 
there is a limit on the number of open files per process, 
close is necessary for programs which deal with many files. 

Files are closed upon termination of a process, and certain 
high-numbered file descriptors are closed by exec(2) , and it 
is possible to arrange for others to be closed (see FIOCLEX 
in ioctl(2». 

SEE ALSO 
creat{2), open(2), pipe(2) , exec(2), ioctl(2) 

DIAGNOSTICS 

BUGS 

Zero is returned if a file is closed; -1 is returned for an 
unknown file descriptor. 

A file cannot be closed while there are pages which have 
been yread but not referenced. 

16 



CREAT(2) System Routines CREAT(2) 

NAAE 
creat - create a new file 

SYNOPSIS 
creat(name, mode) 
char *name; 

DESCRIPTION 
Creat creates a new file or prepares to rewrite an existing 
file called name, given as the address of a null-terminated 
string. If the file did not exist, it is given mode ~, 
as modified by the process's mode mask (see umask(2». Also 
see chmod(2) for the construction of the mode argument. 

If the file did exist, its mode and owner remain unchanged 
but it is truncated to 0 length. 

The file is also opened for writing, and its file descriptor 
is returned. 

The mode given is arbitrary; it need not allow writing. 
This feature is used by programs which deal with temporary 
files of fixed names. The creation is done with a mode that 
forbids writing. Then if a second instance of the program 
attempts a creat, an error is returned and the program knows 
that the name is unusable for the moment. 

SEE ALSO 
write(2), close(2), chmod(2) , umask (2) 

DIAGNOSTICS 

BUGS 

The value -1 is returned if: a need~d directory is not 
searchable; the file does not exist and the directory in 
which it is to be created is not writable; the file does 
exist and is unwritable; the file is a directory; there are 
already too many files open. 

A file cannot be truncated while any process has pages set 
up by a vread on that file which have not been referenced. 

17 



DUP(2) System Routines DUP(2) 

NAAE 
dup, dup2 - duplicate an open file descriptor 

SYNOPSIS 
dup(fildes) 
int fildes; 

dup2(fildes, fildes2) 
int fildes, fildes2; 

-DESCRIPTION 
Given a file descriptor returned from an ~, ~, or 
creat call, ~ allocates another file descriptor synonymous 
with the original. The new file descriptor is returned. 

In the second form of the call, fildes is a file descriptor 
referring to an open file, and fildes2 is a non-negative 
integer less than the maximum value allowed for file 
descriptors (approximately 19). ~ causes fildes2 to 
refer to the same file as fildes. If fildes2 already 
referred to an open file, it is closed first. 

SEE ALSO 
creat(2), open(2), close(2), pipe(2) 

DIAGNOSTICS 

BUGS 

The value -1 is returned if: the given file descriptor is 
invalid; there are already too many open files. 

Dup2 fails if fildes2 was vread from and some of the pages 
have not been referenced. 

18 



EXEC(2) System Routines EXEC(2) 

NAAE 
execl, execv, execle, execve, execlp, execvp, exece, environ 
- execute a file 

SYNOPSIS 
execl(name, arg0, argl, ••• , argn, ~) 
char *name, *arg0, *argl, ••• , *argn; 

execv(name, argv) 
char *name, *argv[]; 

execle(name, arg0, argl, ••• , argn, 0, envp) 
char *name, *arg0, *argl, ••• , *argn, *envp[]; 

execve(name, argv, envp) 
char *name, *argv[], *envp[]; 

extern char **environ; 

DESCRIPTION 
Exec in all its forms overlays the calling process with the 
named file, then transfers to the entry point of the core 
image of the file. There can be no return from a successful 
exec; the calling core image is lost. 

Files remain open across exec unless explicit arrangement 
has been made; see ioctl(2). Ignored/held signals remain 
ignored/held across these calls, but signals that are caught 
(see sianal(2» are reset to their default values. 

Each user has a real user ID and group ID and an effective 
user ID and group ID. The real ID Identifies the person 
using the system; the effective ID determines his access 
privileges. Exec changes the effective user and group ID to 
the owner of the executed file if the file has the 'set­
user-ID' or 'set-group-ID' modes. The real user ID is not 
affected. 

The name argument is a pointer to the name of the file to be 
executed. The pointers ~[~], ara[~] ••• address null­
terminated strings. Conventionally arg[~] is the name of 
the file. 

From C, two interfaces are available. execl is useful when 
a known file with known arguments is being called; the argu­
ments to execl are the character strings constituting the 
file and the arguments; the first argument is conventionally 
the same as the file name (or its last component). A 0 
argument must end the argument list. 

19 



EXEC(2) System Routines EXEC(2) 

The execy version is useful when the number of arguments is 
unknown in advance; the arguments to execv are the name of 
the file to be executed and a vector of strings containing 
the arguments. The last argument string must be followed by 
a 0 pointer. 

When a C program is executed, it is called as follows: 

main(argc, argv, envp) 
int argc; 
char **argv, **envPi 

where argc is the argument count and ~ is an array of 
character pointers to the arguments themselves. As indi­
cated, argc is conventionally at least one and the first 
member of the array points to a string containing the name 
of the file. 

Argv is directly usable in another execv because ~[arac] 
is 0. 

Envp is a pointer to an array of strings that constitute the 
environment of the process. Each string consists of a name, 
an "=", and a null-terminated value. The array of pointers 
is terminated by a null pointer. The shell shell passes an 
environment entry for each global shell variable defined 
when the program is called. See environ(S) for some conven­
tionally used names. The C run-time start-off routine 
places a copy of envp in the global cell environ, which is 
used by execv and execl to pass the environment to any sub­
programs executed by the current program. The ~ routines 
use lower-level routines as follows to pass an environment 
explicitly: 

execve(file, argv, environ) i 
execle(file, arg0, argl, ••• , argn, 0, environ); 

Execlp and execvp are called with the same arguments as 
execl and execv, but duplicate the shell's actions in 
searching for an executable file in a list of directories. 
The directory list is obtained from the environment. 

To aid execution of command files of various programs, if 
the first two characters of the executable file are Ii!' 
then ~ attempts to read a pathname from the executable 
file and use that program as the command files command 
interpreter. For example, the following command file 
sequence would be used to begin a csh script: 

#! /bin/csh 
# This shell script computes the checksum on /dev/foobar 
i 

20 



EXEC(2) System Routines EXEC(2) 

FILES 

A single parameter may be passed the interpreter, specified 
after the name of the interpreter; its length and the length 
of the name of the interpreter combined must not exceed 32 
characters. The space (or tab) following the Ii!' is manda­
tory, and the pathname must be explicit (no paths are 
searched) • 

/bin/sh shell, invoked if command file found by execlp or 
execvp 

SEE ALSO 
fork(2), environ(S), csh(l) 

DIAGNOSTICS 

BUGS 

If the file cannot be found, if it is not executable, if it 
does not start with a valid magic number (see ~.out(S», if 
maximum memory is exceeded, or if the arguments require too 
much space, a return constitutes the diagnostic; the return 
value is -1. Even for the super-user, at least one of the 
execute-permission bits must be set for a file to be exe­
cuted. 

If execvp is called to execute a file that turns out to be a 
shell command file, and if it is impossible to execute the 
shell, the values of argv[~] and argv[-l] will be modified 
before return. 

21 



EXIT (2) System Routines EXIT (2) 

NAME 
exit - terminate process 

SYNOPSIS 
exit(status) 
int status; 

_exit (status) 
int status; 

DESCRIPTION 
Exit is the normal means of terminating a process. ~ 
closes all the process's files and notifies the parent pro­
cess if it is executing a wait. The low-order 8 bits of 
status are available to the parent process. 

This call can never return. 

The C function exit may cause cleanup actions before the 
final 'sys exit'. The function exit circumvents all 
cleanup, and should be used to terminate a child process 
after a fork (2) or vfork (2) to a·void flushing buffered out­
put twice. 

SEE ALSO 
fork(2), vfork(2), wait(2) 

22 



FORK (2) System Routines FORK(2) 

NAME 
fork - spawn new process 

SYNOPSIS 
fo rk () 

DESCRIPTION 
Fork and vfork(2) are the only ways new processes are 
created. With fork, the new process's core image is a copy 
of that of the caller of fork. The only distinction is the 
fact that the value returned in the old (parent) process 
contains the process 10 of the new (child) process, while 
the value returned in the child is 0. Process ID's range 
from 1 to 30,000. This process ID is used by wait(2) • 

Files open before the fork are shared, and have a common 
read-write pointer. In particular, this is the way that 
standard input and output files are passed and also how 
pipes are set up. 

Vfork is the most efficient way of creating a new process 
when the fork is to be followed ~hortly by an exec, but is 
not suitable when the fork is not to be followed by an exec. 

SEE ALSO 
wait (2), exec (2), vfork (2) 

DIAGNOSTICS 
Returns -1 and fails to create a process if: there is inade­
quate swap space, the user is not super-user and has too 
many processes, or the system's process table is full. Only 
the super-user can take the last process-table slot. 

23 



GETPID {2} System Routines 

NM1E 
getpid - get process identification 

SYNOPSIS 
getpid () 

DESCRIPTION 

GETPID (2) 

Getpid returns the process ID of the current process. Most 
often it is used to generate uniquely-named temporary files. 

SEE ALSO 
mktemp(3) 

24 



GETUID(2) System Routines GETUID(2) 

NAME 
getuid, getgid, geteuid, getegid - get user and group iden­
tity 

SYNOPSIS 
getuid () 

geteuid () 

getgid() 

geteg id () 

DESCRIPTION 
Getuid returns the real user 10 of the current process, 
geteuid the effective user 10. The real user 10 identifies 
the person who is logged in, in contradistinction to the 
effective user 10, which determines his access permission at 
the moment. It is thus useful to programs which operate 
using the 'set user 10' mode, to find out who invoked them. 

Getgid returns the real group 10', getegid the effective 
group 10. 

SEE ALSO 
setuid(2) 

25 



IOCTL(2) System Routines IOCTL(2) 

N~E 
ioctl, stty, gtty - control device 

SYNOPSIS 
iinclude <sgtty.h> 

ioctl(fildes, request, argp) 
struct sgttyb *argpi 

stty(fildes, argp) 
struct sgttyb *argp; 

gtty{fildes, argp) 
struct sgttyb *argp; 

DESCRIPTION 
Ioctl performs a variety of functions on character special 
files (devices). The writeups of various devices in section 
4 discuss how ioctl applies to them. 

For certain status setting and status inquiries about termi­
nal devices, the functions stty "and gtty are equivalent to 

ioctl(fildes, TIOCSETP, argp) 
ioctl(fildes, TIOCGETP, argp) 

respectively; see tty(4). 

The following two standard calls, however, apply to any open 
file: 

ioctl(fildes, FIOCLEX, NULL); 
ioctl{fildes, FIONCLEX, NULL); 

The first causes the file to be closed automatically during 
a successful ~ operation; the second reverses the effect 
of the first. 

The following call is peculiar to the Berkeley implementa­
tion, and also applies to any open file: 

ioctl(fildes, FIONREAD, &count) 

returning, in the longword count the number of characters 
available for reading from fildes. 

SEE ALSO 
stty(l), tty(4), exec(2) 

DIAGNOSTICS 
Zero is returned if the call was successful; -1 if the file 
descriptor does not refer to the kind of file for which it 

26 



IOCTL(2) System Routines IOCTL(2) 

BUGS 

was intended, or if request attempts to modify the state of 
a terminal when fildes is not writeable. 

Ioctl calls which attempt to modify the state of a process 
control terminal while a process is not in the process group 
of the control terminal will cause a SIGTTOU signal to be 
sent to the process' process group. Such ioctls are 
allowed, however, if SIGTTOU is being held, ignored, if the 
process is an orphan which has been inherited by init, or is 
the child in an incomplete vfork (see jobs(3» 

Strictly speaking, since ioctl may be extended in different 
ways to devices with different properties, arap should have 
an open-ended declaration like 

union { struct sgttyb ••• i } *argpi 

The important thing is that the size is fixed by 'struct 
sgttyb ' • 

27 



KILL(2) System Routines KILL(2) 

NME 
kill - send signal to a process 

SYNOPSIS 
kill(pid, sig) 

DESCRIPTION 
Kill sends the signal sig to the process specified by the 
process number Did. See sigsys(2) for a list of signals. 

The sending and receiving processes must have the same 
effective user ID, otherwise this call is restricted to the 
super-user. (A single exception is the signal SIGCONT which 
may be sent as described in killpg(2), although it is usu­
ally sent using killpg rather than kill). 

If the process number is 0, the signal is sent to all other 
processes in the sender's process group; see ~(4) and also 
killpg(2). 

If the process number is -1, and the user is the super-user, 
the signal is broadcast universally except to processes 0, 
1, 2, the scheduler initialization, and pageout processes, 
and the process sending the signal. 

Processes may send signals to themselves. 

SEE ALSO 
sigsys(2), signal(2), kill(l), killpg(2), init(8) 

DIAGNOSTICS 
Zero is returned if the process is killed; -1 is returned if 
the process does not have the same effective user ID and the 
user is not super-user, or if the process does not exist. 

28 



LINK (2) System Routines LINK (2) 

NAl-1E 
link - link to a file 

SYNOPSIS 
link(namel, name2) 
char *namel, *name2; 

DESCRIPTION 
A link to namel is created; the link has the name name2. 
Either name may be an arbitrary path name. 

SEE ALSO 
In(l), unlink(2) 

DIAGNOSTICS 
Zero is returned when a link is made; -1 is returned when 
namel cannot be found; when name2 already exists; when the 
directory of name2 cannot be written; when an attempt is 
made to link to a directory by a user other than the super­
user; when an attempt is made to link to a file on another 
file system; when a file has too many links. 

On some systems the super-user may link to non-ordinary 
files. 

29 



LSEEK(2) System Routines LSEEK(2) 

NAME 
lseek, tell - move read/write pointer 

SYNOPSIS 
long Iseek{fildes, offset, whence) 
long offset; 

long tell{fildes) 

DESCRIPTION 
The file descriptor refers to a file open for reading or 
writing. The read (resp. write) pointer for the file is set 
as follows: 

If whence is 0, the pointer is set to offset bytes. 

If whence is 1, the pointer is set to its current 
tion plus offset. 

If whence is 2, the pointer is set to the size of 
file plus offset. 

The returned value is the resulting pointer location. 

The obsolete function tell{fildes) is identical to 
lseek(fildes, 0L, 1). 

loca-

the 

Seeking far beyond the end of a file, then writing, creates 
a gap or 'hole', which occupies no physical space and reads 
as zeros. 

SEE ALSO 
open(2), creat(2), fseek(3) 

DIAGNOSTICS 

BUGS 

-1 is returned for an undefined file descriptor, seek on a 
pipe, or seek to a position before the beginning of file. 

Lseek is a no-op on character special files. 

30 



MKNOD(2) System Routines MKNOD(2) 

N~E 

mknod - make a directory or a special file 

SYNOPSIS 
mknod(name, mode, addr) 
char *name; 

DESCRIPTION 
Mknod creates a new file whose name is the null-terminated 
string pointed to by name. The mode of the new file 
(including directory and special file bits) is initialized 
from mode. (The protection part of the mode is modified by 
the process's mode mask; see umask(2». The first block 
pointer of the i-node is initialized from addr. For ordi­
nary files and directories addr is normally zero. In the 
case of a special file, addr specifies which special file. 

Mknod may be invoked only by the super-user. 

SEE ALSO 
mkdir(l) , mknod(l) , filsys(5) 

DIAGNOSTICS 
Zero is returned if the file has been made; -1 if the file 
already exists or if the user is not the super-user. 

31 



MOUNT(2) System Routines MOUNT(2) 

NAAE 
mount, umount - mount or remove file system 

SYNOPSIS 
mount(special, name, rwflag) 
char *special, *name; 

umount(special) 
char *speciali 

·DESCRIPTION 
Mount announces to the system that a removable file system 
has been mounted on the block-structured special file ~ 
~i from now on, references to file name will refer to the 
root file on the newly mounted file system. Special and 
~ are pointers to null-terminated strings containing the 
appropriate path names. 

Name must exist already. Name must be a directory (unless 
the root of the mounted file system is not a directory). 
Its old contents are inaccessible while the file system is 
mounted. 

The rwflag argument determines whether the file system can 
be written on; if it is 0 writing is allowed, if non-zero no 
writing is done. Physically write-protected and magnetic 
tape file systems must be mounted read-only or errors will 
occur when access times are updated, whether or not any 
explicit write is attempted. 

Umount announces to the system that the special file is no 
longer to contain a removable file ~ystem. The associated 
file reverts to its ordinary interpretation. 

SEE ALSO 
mount{8) 

DIAGNOSTICS 

BUGS 

Mount returns 0 if the action occurred; -1 if special is 
inaccessible or not an appropriate file; if ~ does not 
exist; if special is already mounted; if name is in use; or 
if there ar~ already too many file systems mounted. 

Umount returns 0 if the action occurred; -1 if if the spe­
cial file is inaccessible or does not have a mounted file 
system, or if there are active files in the muunted file 
system. 

If a file containing holes (unallocated blocks) is read, 
even on a file system mounted read-only, the system will 

32 



MOUNT (2) System Routines MOUNT(2) 

attempt to fill in the holes by writing on the device. 

33 



NICE{2) System Routines NICE(2) 

N~E 
nice - set program priority 

SYNOPSIS 
nice(incr} 

DESCRIPTION 
The scheduling priority of the process is augmented by ~. 
Positive priorities get less service than normal. Priority 
10 is recommended to users who wish to execute long-running 
programs without flak from the administration. 

Negative increments are ignored except on behalf of the 
super-user. The priority is limited to the range -20 (most 
urgent) to 20 (least). 

The priority of a process is passed to a child process by 
~(2). For a privileged process to return to normal 
priority from an unknown state, ~ should be called suc­
cessively with arguments -40 (goes to priority -20 because 
of truncation), 20 (to get to 0), then 0 (to maintain compa­
tibility with previous versions of this call). 

SEE ALSO 
nice(l), fork(2), renice(8) 

34 



OPEN(2) System Routines OPEN(2) 

N~E 

open - open for reading or writing 

SYNOPSIS 
open {name, mode) 
char *name~ 

DESCRIPTION 
Open opens the file name for reading (if ~ is 0), writing 
(if mode is 1) or for both reading and writing (if ~ is 
2). Name is the address of a string of ASCII characters 
representing a path name, terminated by a null character. 

The file is positioned at the beginning (byte 0). The 
returned file descriptor must be used for subsequent calls 
for other input-output functions on the file. 

SEE ALSO 
creat(2), read(2), write(2), dup(2), close(2) 

DIAGNOSTICS 

BUGS 

The value -1 is returned if the file does not exist, if one 
of the necessary directories does not exist or is unread­
able, if the file is not readable (resp. writable), or if 
too many files are open. 

It should be possible to optionally open files for writing 
with exclusive use, and to optionally call open without the 
possibility of hanging waiting for carrier on communication 
lines. 

35 



PAUSE(2} System Routines PAUSE(2) 

NAME 
pause - stop until signal 

SYNOPSIS 
pause (,) 

DESCRIPTION 
Pause never returns normally. It is used to give up control 
while waiting for a signal from k1ll(2) or alarm(2). Upon 
termination of a signal handler started during a pause, the 
pause call will return. 

SEE ALSO 
kill(l), kill(2), alarm(2), sigsys(2), signal(2) , sigset(3) , 
setjmp(3) 

36 



PIPE(2) System Routines PIPE (2) 

NAME 
pipe - create an interprocess channel 

SYNOPSIS 
pipe{fildes) 
int fildes[2] ; 

DESCRIPTION 
The ~ system call creates an I/O mechanism called a pipe. 
The file descriptors returned can be used in read and write 
o~erations. When the pipe is written using the descriptor 
f1Ides[1] up to 4396 bytes of data are buffered before the 
writing process is suspended. A read using the descriptor 
fildes[0] will pick up the data. 

It is assumed that after the pipe has been set up, two (or 
more) cooperating processes (created by subsequent fork 
calls) will pass data through the pipe with read and write 
calls. 

The Shell has a syntax to set up a linear array of processes 
connected by pipes. 

Read calls on an empty pipe (no buffered data) with only one 
end (all write file descriptors closed) returns an end-of­
file. 

SEE ALSO 
shell, read(2), write(2), fork(2) 

DIAGNOSTICS 

BUGS 

The function value zero is returned if the pipe was created; 
-1 if too many files are already open. A signal is gen­
erated if a write on a pipe with only one end is attempted. 

Should more than 4096 bytes be necessary in any pipe among a 
loop of processes, deadlock will occur. 

37 



PTRACE(2) System Routines PTP~CE(2) 

NAAE 
ptrace - process trace 

SYNOPSIS 
iinclude <signal.h> 

ptrace(request, pid, addr, data) 
int *addr; 

DESCRIPTION 
Ptrace provides a means by which a parent process may con­
trol the execution of a child process, and examine and 
change its core image. Its primary use is for the implemen­
tation of breakpoint debugging. There are four arguments 
whose interpretation depends on a request argument. Gen­
erally, pid is the process ID of the traced process, which 
must be a child (no more distant descendant) of the tracing 
process. A process being traced behaves normally until it 
encounters some signal whether internally generated like 
'illegal instruction' or externally generated like 'inter­
rupt.' See signal(2) for the list. Then the traced process 
enters a stopped state and its parent is notified via 
~(2). When the child is in the stopped state, its core 
image can be examined and modified using ptrace. If 
desired, another ptrace request can then cause the child 
either to terminate or to continue, possibly ignoring the 
signal. 

The value of the request argument determines the precise 
action of the call: 

~ This request is the only one used by the child process; 
it declares that the process is to be traced by its 
parent. All the other arguments are ignored. Peculiar 
results will ensue if the parent does not expect to 
trace the child. 

1,2 The word in the child process's address space at addr is 
returned. If I and D space are separated, request 1 
indicates I space, 2 D space. Addr must be even. The 
child must be stopped. The input data is ignored. 

3 The word of the system's per-process data area 
corresponding to addr is returned. Addr must be even 
and less than 512. This space contains the registers 
and other information about the process; its layout 
corresponds to the user structure in the system. 

4,5 The given data is written at the word in the process's 
address space corresponding to addr, which must be even. 
No useful value is returned. If I and D space are 

38 



PTRACE(2} System Routines PTRACE(2} 

separated, request 4 indicates I space, 5 D space. 
Attempts to write in pure procedure fail if another pro­
cess is executing the same file. 

6 The process's system data is written, as it is read with 
request 3. Only a few locations can be written in this 
way: the general registers, the floating point status 
and registers, and certain bits of the processor status 
word. 

7 The data argument is taken as a signal number and the 
child's execution continues at location addr as if it 
had incurred that signal. Normally the signal number 
will be either 0 to indicate that the signal that caused 
the stop should be ignored, or that value fetched out of 
the process's image indicating which signal caused the 
stop. If addr is (int *)1 then execution continues from 
where it stopped. 

8 The traced process terminates. 

9 Execution continues as in request 7; however, as soon as 
possible after execution of at least one instruction, 
execution stops again. The signal number from the stop 
is SIGTRAP. (On the PDP-II and VAX-II the T-bit is used 
and just one instruction is executed; on the Interdata 
the stop does not take place until a store instruction 
is executed.) This is part of the mechanism for imple­
menting breakpoints. 

As indicated, these calls (except for request 0) can be used 
only when the subject process has stopped. The wait call is 
used to determine when a process stops; in such a case the 
'termination' status returned by wait has the value 0177 to 
indicate stoppage rather than genuine termination. 

To forestall possible fraud, ptrace inhibits the set-user-id 
facility on subsequent exec(2) calls. If a traced process 
calls E'}<'ec, it will stop before executing the first instruc­
tion of the new image showing signal SIGTP~P. 

On the Interdata 8/32, 'word' means a 32-bit word and 'even' 
means 0 mod 4. On a VP~-ll, 'word' also means a 32-bit 
integer, but the 'even' restriction does not apply. 

SEE ALSO 
wait (2), signal (2), adb (1) 

DIAGNOSTICS 
The value -1 is returned if request is invalid, Rid is not a 
traceable process, addr is out of bounds, or data specifies 

39 



PTRACE(2) System Routines PTRACE(2) 

BUGS 

an illegal signal number. 

Ptrace is unique and arcane; it should be replaced with a 
special file which can be opened and read and written. The 
control functions could then be implemented with ioctl(2) 
calls on this file. This would be simpler to understand and 
have much higher performance. 

On the Interdata 8/32, 'as soon as possible' (request 7) 
means 'as soon as a store instruction has been executed.' 

The request 0 call should be able to specify signals which 
are to be treated normally and not cause a stop. In this 
way, for example, programs with simulated floating point 
(which use 'illegal instruction' signals at a very high 
rate) could be efficiently debugged. 

The error indication, -1, is a legitimate function value; 
errno, see intro(2), can be used to disambiguate. 

It should be possible to stop a process on occurrence of a 
system call; in this way a completely controlled environment 
could be provided. 

40 



READ(2) System Routines READ(2) 

NAAE 
read - read from file 

SYNOPSIS 
read(fildes, buffer, nbytes) 
char *bufferi 

DESCRIPTION 
A file descriptor is a word returned from a successful ~, 
creat, dup, or ~ call. Buffer is the location of nbytes 
contiguous bytes into which the input will be placed. It is 
not guaranteed that all nbytes bytes will be read; for exam­
ple if the file refers to a typewriter at most one line will 
be returned. In any event the number of characters read is 
returned. 

If the returned value is 0, then end-of-file has been 
reached. 

Unless the reader is ignoring or holding SIGTTIN signals, 
reads from the control typewriter while not in its process 
group cause a SIGTTIN signal to be sent to the reader's ~ro­
cess group; in the former case an end-of-file is returnea. 

SEE ALSO 
open(2) , creat(2), dup(2), pipe(2) , vread(2) 

DIAGNOSTICS 

BUGS 

As mentioned, 0 is returned when the end of the file has 
been reached. If the read was otherwise unsuccessful the 
return value is -1. Many conditions can generate an error: 
physical I/O errors, bad buffer address, preposterous 
nbytes, file descriptor not that of an input file. 

It should be possible to call read and have it return 
immediately without blocking if there is no input available. 
As a single special case, this is currently done on control 
terminals when the reading process has requested SIGTINT 
signals when input arrives (see ~(4». 

Processes which have been orphaned by their parents and have 
been inherited by init(8) never receive SIGTTIN signals. 
Instead read returns with an end-of-file indication. 

41 



SETUID (2) System Routines 

NAME 
setuid, setgid - set user and group ID 

SYNOPSIS 
setuid(uid) 

setgid(gid) 

DESCRIPTION 

SETUID (2) 

The user ID (group 1D) of the current process is set to the 
argument. Both the effective and the real ID are set. 
These calls are only permitted to the super-user or if the 
argument is the real or effective ID. 

SEE ALSO 
getuid(2) 

DIAGNOSTICS 
Zero is returned if the user (group) ID is set; -1 is 
returned otherwise. 

42 



SIGNAL(2) System Routines SIGNAL(2) 

NAl4E 
signal - catch or ignore signals 

SYNOPSIS 
#include <signal.h> 

( * signa 1 (s ig, func» () 
void (*func) () i 

DESCRIPTION 
M.B.: The system currently supports two signal iffiplementa­
tions. The one described here is standard in version 7 UNIX 
systems, and is retained for backward compatabililty. The 
one described in siqsys(2) as supplemented by sigset(3) pro­
vides for the needs of the job control mechanisms used by 
csh(l), and corrects the bugs in this older implementation 
of signals, allowing programs which process interrupts to be 
written reliably. 

A signal is generated by some abnormal event, initiated 
either by user at a terminal (quit, interrupt), by a program 
error (bus error, etc.), or by iequest o~ an9ther program 
(kill). Normally all signals cause terro~nat~on of the 
receiving process, but a sianal call allows them either to 
be ignored or to cause an interrupt to a specified location. 
Here is the list of signals with names as in the include 
file. 

SIGHUP 
SIGINT 
SIGQUIT 
SIGILL 
SIGTRAP 
SIGIOT 
SIGEHT 
SIGFPE 
SIGKILL 
SIGBUS 
SIGSEGV 
SIGSYS 
SIGPIPE 
SIGALRH 
SIGTERM 

1 hang up 
2 interrupt 
3* quit 
4* illegal instruction (not reset when caught) 
5* trace trap (not reset when caught) 
6* lOT instruction 
7* EMT instruction 
8* floating point exception 
9 kill (cannot be caught or ignored) 
10* bus error 
11* segmentation violation 
12* bad argument to system call 
13 write on a pipe with no one to read it 
14 alarm clock 
15 software termination signal 
16 unassigned 

B.~.: There are actually more signals; see siasys(2) ; the 
signals listed here are those of standard version 7. 

The starred signals in the list above cause a core image if 
not caught or ignored. 

43 



SIGNAL(2) System Routines SIGNAL (2) 

If !QnQ is SIG_DFL, the default action for signal sig is 
reinstated; this default is termination, sometimes with a 
core image. If func is SIG_IGN the signal is ignored. Oth­
erwise when the signal occurs func will be called with the 
signal number as argument. A return from the function will 
continue the process at the point it was interrupted. 

Except as indicated, a signal is reset to SIG_DFL after 
being caught. Thus if it is desired to catch every such 
signal, the catching routine must issue another sianal call. 

If, when using this (older) signal interface, a caught sig­
nal occurs during certain system calls, the call terminates 
prematurely. In particular this can occur during an ioctl, 
read, or write(2) on a slow device (like a terminal; but not 
a file); and during pause or wait(2). When such a signal 
occurs, the saved user status is arranged in such a way that 
when return from the signal-catching takes place, it will 
appear that the system call returned an error status. The 
user's program may then, if it wishes, re-execute the call. 

The value of signal is the previous (or initial) value of 
'func for the particular signal. 

After a fork(2) the child inherits all signals. ~(2) 
resets all caught signals to default action. 

If a process is using the mechanisms of sigsys(2) and sig­
~(3) then many of these calls are automatically restarted 
(See sigsys(2) and jobs(3) for details). 

SEE ALSO 
sigsys(2), kill(l), kill(2), ptrace(2), setjmp(3), sigset(3) 

DIAGNOSTICS 

BUGS 

The value (int)-l is returned if the given signal is out of 
range. 

The traps should be distinguishable by extra arguments to 
the signal handler, and all hardware supplied parameters 
should be made available to the signal routine. 

If a repeated signal arrives before the last one can be 
reset, there is no chance to catch it (however this is not 
true if you use sigsys(2) and sigset(3». 

The type specification of the routine and its func argument 
are problematical. 

44 



STAT (2) System Routines STAT (2) 

NAME 
stat, fstat - get file status 

SYNOPSIS 
iinclude <sys/types.h> 
iinclude <sys/stat.h> 

stat(name, buf) 
char *namei 
struct stat *buf; 

fstat(fildes, buf) 
struct stat *bufi 

DESCRIPTION 
Stat obtains detailed information about a named file. 
obtains the same information about an open file known 
file descriptor from a successful open, creat, dup or 
~(2) call. 

Fstat 
by the 

Name points to a null-terminated strin9 naming a file; bYf 
is the address of a buffer into which lnformation is placed 

'concerning the file. It is unnecessary to have any permis­
sions at all with respect to the file, but all directories 
leading to the file must be searchable. The layout of the 
structure pointed to by buf as defined in <stat.h> is given 
below. St mode is encoded according to the '#define' state­
ments. 

struct stat 
{ 

} ; 

dev_t 
ino_t 
unsigned 
short 
short 
short 
dev_t 
off_t 
time_t 
time_t 
tirne_t 

st_dev; 
st_ino; 

short 
st_nlinki 
st_uidi 
st_gidi 
st_rdevi 
st_sizej 
st_atime; 
st_rntime; 
st_ctimei 

45 



STAT(2) System Routines STAT(2} 

idefine S_IFMT 0170000 /* type of file */ 
idefine S_IFDIR 004~000 /* directory */ 
idefine S_IFCHR 0020000 /* character special */ 
idefine S_IFBLK 0060000 /* block special */ 
idefine S_IFREG 010000e /* regular */ 
idefine S_IFMPC 0030000 /* multiplexed char special */ 
idefine S_IFMPB 0070000 /* multiplexed block special */ 
idefine S_ISUID 0004000 /* set user id on execution */ 
idefine S_ISGID 0002000 /* set group id on execution */ 
#define S_ISVTX 0001000 /* save swapped text even after use 
#define S_IREAD 000040e /* read permission, owner */ 
idefine S_IWRITE 0000200 /* write permission, owner */ 
idefine S_IEXEC 0000100 /* execute/search permission, owner 

The mode bits 000007e and 0000007 encode group and others 
permissions (see chmod(2». The defined types, ino t, 
off t, time t, name various width integer values; dev t 
encodes major and minor device numbers; their exact defini­
tions are in the include file <sys/types.h> (see types(5». 

When fildes is associated with a pipe, fstat reports an 
ordinary file with an i-node num"ber, restricted permissions, 
and a not necessarily meaningful length. 

st atime is the file was last read. For reasons of effi­
ciency, it is not set when a directory is searched, although 
this would be more logical. st mtime is the time the file 
was last written or created. It is not set by changes of 
owner, group, link count, or mode. st ctime is set both 
both by writing and changing the i-node. 

SEE ALSO . 
ls(l), fi1sys(5) 

DIAGNOSTICS 
Zero is returned if a status is available; -1 if the file 
cannot be found. 

46 



STIr-IE (2) 

NAME 
stime - set time 

SYNOPSIS 
stime(tp) 
long *tPi 

DESCRIPTION 

System Routines STIME (2) 

Stime sets the system's idea of the time and date. Time, 
pointed to by 1Q, is measured in seconds from 0000 GMT Jan 
1, 1970. Only the super-user may use this call. 

SEE ALSO 
date(l), time(2), ctime(3) 

DIAGNOSTICS 
Zero is returned if the time was seti -1 if user is not the 
super-user. 

47 



SYNC (2) System Routines SYNC(2} 

NAME 
sync - update super-block 

SYNOPSIS 
sync () 

DESCRIPTION 
Svnc causes all information in core memory that should be on 
disk to be written out. This includes modified super 
blocks, modified i-nodes, and delayed block I/O. 

It should be used by programs which examine a file system, 
for example icheck, ~, etc. It is mandatory before a boot. 

SEE ALSO 

BUGS 

sync(l), update(S) 

The writing, although scheduled, is not necessarily complete 
upon return from sync. 

48 



TIME (2) System Routines TIIvlE (2) 

NAME 
time, ftime - get date and time 

SYNOPSIS 
long time(0) 

long time(tloc) 
long *tloc; 

iinclude <sys/types.h> 
iinclude <sys/timeb.h> 
ftime(tp) 
struct timeb *tp; 

DESCRIPTION 
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, 
measured in seconds. 

If tloc is nonnull, the return value is also stored in the 
place to which tloe points. 

The ftime entry fills in a structure pointed to by its argu­
ment, as defined by <~timeb.h>: 

/* 
* Structure returned by ftime system call 
* * jam 810817 
*/ 

struct timeb { 
time_t time; 
unsigned short millitm; 
short timezonei 
short dstflag; 

} i 

The structure contains the time since the epoch in seconds, 
up to 1000 milliseconds of more-precise interval, the local 
time zone (measured in minutes of time westward from 
Greenwich), and a flag that, if nonzero, indicates that Day­
light Saving time applies locally during the appropriate 
part of the year. 

49 



TIME(2) System Routines TIl-1E {2} 

SEE ALSO 
date(l), stime(2) , ctime(3) 

50 



TIMES(2) System Routines TIMES(2) 

Nl\..ME 
times - get process times 

SYNOPSIS 
#include <sys/types.h> 
iinclude <sys/times.h> 

times(buffer) 
struct tms *buffer; 

-DESCRIPTION 
Times returns time-accounting information for the current 
process and for the terminated child processes of the 
current process. All times are in l/HZ seconds, where HZ is 
either 50 or 60 depending on your locality. 

This is the structure returned by times: 

/* 
* Structure 
*/ 

struct tms { 
time_t 
time_t 
time_t 
time_t 

} ; 

returned by times() 

tms_utime; 
tms_stime; 
tms_cutime; 
tms_cstime; 

/* user time */ 
/* system time */ 
1* user time, children */ 
/* system time, children */ 

The children times are the sum of the children's process 
times and their children's times. 

SEE ALSO 
time(l), time(2), vtimes(2) 

51 



UMASK (2) System Routines UMASK(2) 

NANE 
umask - set file creation mode mask 

SYNOPSIS 
umask (complmode) 

DESCRIPTION 
Umask sets a mask used whenever a file is created by 
creat(2) or mknod(2): the actual mode (see chmod(2» of the 
newly-created file is the logical and of the given mode and 
the complement of the argument. Only the low-order 9 bits 
of the mask (the protection bits) participate. In other 
words, the mask shows the bits to be turned off when files 
are created. 

The previous value of the mask is returned by the call. The 
value is initially 022 (write access for owner only). The 
mask is inherited by child processes. 

SEE ALSO 
creat(2), rnknod(2), chmod(2) 

52 



UNLINK (2) System Routines UNLINK(2) 

NAME 
unlink - remove directory entry 

SYNOPSIS 
unlink (name) 
char *name; 

DESCRIPTION 
Name points to a null-terminated string. Unlink removes the 
entry for the file pointed to by name from its directory. 
If this entry was the last link to the file, the contents of 
the file are freed and the file is destroyed. If, however, 
the file was open in any process, the actual destruction is 
delayed until it is closed, even though the directory entry 
has disappeared. 

SEE ALSO 
rm(l), link(2) 

DIAGNOSTICS 
Zero is normally returned; -1 indicates that the file does 
not exist, that its directory cannot be written, or that the 
file contains pure procedure text that is currently in use. 
write permission is not required on the file itself. It is 
also illegal to unlink a directory (except for the super­
user) • 

53 



UTIME(2) System Routines UTI"lE (2) 

NAME 
utime - set file times 

SYNOPSIS 
iinclude <sys/types.h> 

utime{file, timep) 
char *file; 
time_t timep[2]; 

-DESCRIPTION 
The utime call uses the 'accessed' and 'updated' times in 
that order from the tirnep vector to set the corresponding 
recorded times for file. 

The caller must be the owner of the file or the super-user. 
The 'inode-changed' time of the file is set to the current 
time. 

SEE ALSO 
stat (2) 

54 



WRITE(2) System Routines WRITE(2) 

NAME 
write - write on a file 

SYNOPSIS 
write(fildes, buffer, nbytes) 
char *buffer; 

DESCRIPTION 
A file descriptor is a word returned from a successful ~, 
creat, dup, or ~(2) call. 

Buffer is the address of nbytes contiguous bytes which are 
written on the output file. The number of characters actu­
ally written is returned. It should be regarded as an error 
if this is not the same as requested. 

writes which are multiples of 1024 characters long and begin 
on a 1024-byte boundary in the file are more efficient than 
any others. 

~Yrites to the control terminal by a process which is not in 
the process group of the termainl and which is not ignoring 
or holding SIGTTOU signals cause the writer's process group 
to receive a SIGTTOU signal (See jobs(3) and the description 
of the LTOSTOP option in ~(4) for details). 

On some systems write clears the set-user-id bit on a file. 
This prevents penetration of system security by a user who 
"captures" a writeable set-user-id file owned by the super­
user. 

SEE ALSO 
creat (2), open (2), pipe (2) 

DIAGNOSTICS 

BUGS 

Returns -Ion error: bad descriptor, buffer address, or 
count; physical I/O errors. 

It would be nice to be able to call write and have the call 
return with an error indication if there was no buffer space 
for the written data, rather than blocking the process. 

Processes which have been orphaned by their parents and have 
been inherited by init(8) never receive SIGTTOU signals. 
Output by such a process is permitted even when they are not 
in the process group of the control terminal. 

55 





Part 2 Library Functions 

These procedures provide the runtime support for the C language. 
This support includes various methods of 1/0, a variety of 
mathematical functions (includin~ the transcendental functions), 
and a general set of subroutines to facilitate programming. 

1 



INTRO(3) Library Functions INTRO(3) 

NAME 
intro - introduction to library functions 

SYNOPSIS 
iinclude <stdio.h> 

iinclude <math.h> 

DESCRIPTION 
This section describes functions that may be found in vari­
ous libraries, other than those functions that directly 
invoke UNIX system primitives, which are described in sec­
tion 2. Functions are divided into various libraries dis-
tinguished by the section number at the top of the page: 

(3) These functions, together with those of section 2 and 
those marked (3S), constitute library libc, which is 
automatically loaded by the C compiler cc(l) and the 
Fortran compiler f77(1). The link editor ld(l) 
searches this library under the '-lc' option. 
Declarations for some of these functions may be 
obtained from include files indicated on the appropri­
ate pages. 

(3J) These functions are part of the job control facili­
ties, contained in the library" .}S 3 1 n" n 

n-ljobs"n "." n n nn nn "n "n The job control facili­
ties are outlined in jobs(3). 

(3M) These functions constitute the math library, 1ibm. 
They are automatically loaded as needed by the Fortran 
compiler i2I(1). The link editor searches this 
library under the '-1m' option. Declarations for 
these functions may be obtained from the include file 
<math.h>. 

(3S) These functions constitute the 'standard I/O package', 
see stdio(3). These functions are in the library libc 
already mentioned. Declarations for these functions 
may be obtained from the include file <stdio.h>. 

(3X) Various' specialized libraries have not been given dis­
tinctive captions. Files in which such libraries are 
found are named on appropriate pages. 

FILES 
/lib/libc.a 
/lib/libm.a, /usr/lib/libm.a (one or the other) 

SEE ALSO 
stdio (3), nm (1), Id (1), cc (1), f77 (1), intro (2) 

2 



INTRO(3) Library Functions INTRO(3) 

DIAGNOSTICS 
Functions in the math library (3M) may return conventional 
values when the function is undefined for the given argu­
ments or when the value is not representable. In these 
cases the external variable errno (see intro(2)) is set to 
the value EDOM or ERANGE. The values of EDOM and ERANGE are 
defined in the include file <math.h>. 

3 



ABORT (3) Library Functions ABORT (3) 

}.lAME 
abort - generate a fault 

DESCRIPTION 
Abort executes an instruction which is illegal in user mode. 
This causes a signal that normally terminates the process 
with a core dump, which may be used for debugging. 

SEE ALSO 
adb(l), signal(2), exit(2) 

DIAGNOSTICS 
Usually 'lOT trap - core dumped' from the shell. 

4 



ABS(3) Library Functions 

NAME 
abs - .integer absolute value 

SYNOPSIS 
abs (i) 
int i; 

DESCRIPTION 
Abs returns the absolute value of its integer operand. 

SEE ALSO 
floor(3) for ~ 

BUGS 

ABS(3) 

You get what the hardware gives on the smallest integer. 

5 



ATOF(3) Library Functions ATOF(3) 

NAME 
atof, atoi, atol - convert ASCII to numbers 

SYNOPSIS 
double atof(nptr) 
char *nptr; 

atoi(nptr) 
char *nptri 

long atol(nptr) 
char *nptr; 

DESCRIPTION 
These functions convert a string pointed to by ~ to 
floating, integer, and long integer representation respec­
tively. The first unrecognized character ends the string. 

Atof recognizes an optional string of tabs and spaces, then 
an optional sign, then a string of digits optionally con­
taining a decimal point, then an optional 'e' or 'E' fol­
lowed by an optionally signed integer. 

Atoi and atol recognize an optional string of tabs and 
spaces, then an optional sign, then a string of digits. 

SEE ALSO 
scanf(3) 

BUGS 
There are no provisions for overflow. 

6 



CRYPT(3) Library Functions CRYPT(3) 

NAAE 
crypt, setkey, encrypt - DES encryption 

SYNOPSIS 
char *crypt(key, salt) 
char *key, *salt; 

setkey(key) 
char *key; 

encrypt(block, edflag) 
char *block; 

DESCRIPTION 
Crypt is the password encryption routine. It is based on 
the NBS Data Encryption Standard, with variations intended 
(among other things) to frustrate use of hardware implemen­
tations of the DES for key search. 

The first argument to crypt is a user's typed password. The 
second is a 2-character string chosen from the set [a-zA­
Z0-9./]. The salt string is used to perturb the DES algo­
rithm in one of 4096 different ways, after which the pass­
word is used as the key to encrypt repeatedly a constant 
string. The returned value points to the encrypted pass­
word, in the same alphabet as the salt. The first two char­
acters are the salt itself. 

The other entries provide (rather primitive) access to the 
actual DES algorithm. The argument of setkey is a character 
array of length 64 containing only the characters with 
numerical value 0 and 1. If this string is divided into 
groups of 8, the low-order bit in e~ch group is ignored, 
leading to a 56-bit key which is set into the machine. 

The argument to the encrypt entry is likewise a character 
array of length 64 containing 0's and l's. The argument 
array is modified in place to a similar array representing 
the bits of the argument after having been subjected to the 
DES algorithm using the key set by setkey. If edflEg is 0, 
the argument is encrypted; if non-zero, it is decrypted. 

SEE ALSO 

BUGS 

passwd(l), passwd(5), login(l), getpass(3) 

The return value points to static data whose content is 
overwritten by each call. 

7 



CTIME(3) Library Functions CTIME(3) 

NAME 
ctirne, localtime, gmtirne, asctirne, tirnezone - convert date 
ana time to ASCII 

SYNOPSIS 
char *ctirne(c1ock) 
long *clock; 

iinclude <time.h> 

struct tm *localtirne(clock) 
long *clock; 

struct trn *gmtirne(clock) 
long *clock; 

char *asctime{tm) 
struct tm *tmi 

char *timezone(zone, ast) 

DESCRIPTION 
Ctime converts a time pointed to by clock such as returned 
by time(2) into ASCII and return~ a pointer to a 26-
character string in the following form. All the fields have 
constant width. 

Sun Sep 16 01:03:52 1973\n\0 

Localtime and gmtime return pointers to structures contain­
ing the broken-down time. Localtime corrects for the time 
zone and possible daylight savings time; gmtirne converts 
directly to GMT, which is the time UNIX uses. Asctirne con­
verts a broken-down time to ASCII and returns a pointer to a 
26-character string. 

The structure declaration from the include file is: 

struct trn 
int 
int 
int 
int 
int 

{ /* see 
tm_sec; 
tID_min; 
tIn_hour; 
trn_mday; 
tIn_mOni 

ctirne(3) */ 

8 



CTIME(3) Library Functions CTIME(3) 

} ; 

int tm_year; 
int tm_wday; 
int tm_yday; 
int tm_isdst; 

These quantities give the time on a 24-hour clock, day of 
month (1-31), month of year (0-11), day of week (Sunday = 
0), year - 1900, day of year (0-365), and a flag that is 
nonzero if daylight saving time is in effect. 

When local time is called for, the program consults the sys­
tem to determine the time zone and whether the standard 
U.S.A. daylight saving time adjustment is appropriate. The 
program knows about the peculiarities of this conversion in 
1974 and 1975; if necessary, a table for these years can be 
extended. 

Timezone returns the name of the time zone associated with 
its first argument, which is measured in minutes westward 
from Greenwich. If the second argument is 0, the standard 
name is used, otherwise the Daylight Saving version. If the 
required name does not appear in a table built into the rou­
tine, the difference from GMT i~ produced; e.g. in Afghan­
istan timezone(-(Ql*A+30), ~) is appropriate because it is 
4:30 ahead of GMT and the string GMT+4:30 is produced. 

SEE ALSO 
time(2) 

BUGS 
The return values point to static data whose content is 
overwritten by each call. 

9 



CTYPE(3) Library Functions CTYPE(3) 

NAME 
isalpha, isupper, islower, isdigit, isalnum, isspace, 
ispunct, isprint, iscntrl, isascii - character classifica­
tion 

SYNOPSIS 
#include <ctype.h> 

isalpha(c) 

. . . 
DESCRIPTION 

These macros classify ASCII-coded integer values by table 
lookup. Each is a predicate returning nonzero for true, 
zero for false. Isascii is defined on all integer values; 
the rest are defined only where isascii is true and on the 
single non-ASCII value EOF (see stdio(3». 

isalpha 

isupper 

islower 

isdigit 

isalnum 

isspace 

ispunct 

isprint 

iscntrl 

isascii 

SEE ALSO 
ascii(7) 

£. is a letter 

£. is an upper case letter 

£. is a lower cas~ letter 

£. is a digit 

£. is an alphanumeric character 

£. is a space, tab, carriage return, newline, 
or formfeed 

£. is a punctuation character (neither control 
nor alphanumeric) 

£. is a printing character, code 040(8) 
(space) through 0176 (tilde) 

£ is a delete character (0177) or ordinary 
control character (less than 040). 

£ is an ASCII character, code less than 0200 

10 



ECVT(3) Library Functions ECVT(3) 

NAAE 
ecvt, fcvt, gcvt - output conversion 

SYNOPSIS 
char *ecvt(value, ndigit, decpt, sign) 
double value~ 
int ndigit, *decpt, *Si9n1 

char *fcvt(value, ndigit, decpt, sign) 
double value; 
int ndigit, *decpt, *sign; 

char *gcvt(value, ndigit, buf) 
double value; 
char *buf; 

DESCRIPTION 
Ecvt converts the value to a null-terminated string of ~ 
git ASCII digits and returns a pointer thereto. The posi­
tion of the decimal point relative to the beginning of the 
string is stored indirectly through decpt (negative means to 
the left of the returned digits). If the sign of the result 
is negative, the word pointed to by sian is non-zero, other­
wise it is zero. The low-order digit is rounded. 

Fcvt is identical to ~, except that the correct digit has 
been rounded for Fortran F-format output of the number of 
digits specified by ndiaits. 

Gcvt converts the value to a null-terminated ASCII string in 
buf and returns a pointer to buf. It attempts to produce 
ndigit significant digits in Fortran F format if possible, 
otherwise E format, ready for printing. Trailing zeros may 
be suppressed. 

SEE ALSO 
printf(3) 

BUGS 
The return values point to static data whose content is 
overwritten by each call. M=l .ds]D Fortune Operating 
System M=l .ds]E Development Set M=2 .ds]D System 
Routines M=3 .ds]D Library Functions M=5 .ds]D File 
Formats 

11 



EXP(3M) Library Functions EXP (3M) 

NMiE 
exp, log, 10g10, pow, sqrt - exponential, logarithm, power, 
square root 

SYNOPSIS 
iinclude <math.h> 

double exp (x) 
double Xi 

double log (x) 
double Xi 

double 10glfiJ (x) 
double Xi 

double pow (x, y) 
double x, Yi 

double sqrt (x) 
double Xi 

DESCRIPTION 
~ returns the exponential func·tion of x. 

Log returns the natural logarithm of ~i 10910 returns the 
base l~ logarithm. 

~ returns X8y9. 

Sgrt returns the square root of x. 

SEE ALSO 
hypot(3}, sinh(3), intro(2) 

DIAGNOSTICS 
Exp and pow return a huge value when the correct value would 
overflow; errno is set to ERANGE. Pow returns 0 and sets 
errno to EDaM when the second argument is negative and non­
integral and when both arguments are 0. 

LQg Teturns fiJ when ~ is zero or negative; errno is set to 
EDaM. 

Sgrt returns ~ when ~ is negative; errno is set to EDaM. 
S=l .ds]D Fortune Operating System S=l .ds]E 
Development Set S=2 .as]D System Routines S=3 .ds]D 
Library Functions S=5 .ds]D File Formats 

12 



FCLOSE(3S) Library Functions FCLOSE(3S) 

NAME 
fclose, fflush - close or flush a stream 

SYNOPSIS 
iinclude <stdio.h> 

fclose(stream) 
FILE *stream; 

fflush(stream) 
FILE *stream; 

DESCRIPTION 
Fclose causes any buffers for the named stream to be emp­
tied, and the file to be closed. Buffers allocated by the 
standard input/output system are freed. 

Fclose is performed automatically upon calling ~(2) • 

Fflush causes any buffered data for the named output stream 
to be written to that file. The stream remains open. 

SEE ALSO 
close(2) , fopen(3) , setbuf(3) 

DIAGNOSTICS 
These routines return EOF if stream is not associated with 
an output file, or if buffered data cannot be transferred to 
that file. M=l .ds]D Fortune Operating System M=l .ds 
]E Development Set M=2 .ds]D System Routines M=3 .ds 
]D Library Functions M=5 .ds]D File Formats 

13 



FLOOR (3M) Library Functions FLOOR (3M) 

NAME 
fabs, floor, ceil - absolute value, floor, ceiling functions 

SYNOPSIS 
iinclude <math.h> 

double floor (x) 
double x; 

double ceil (x) 
double x; 

double fabs (x) 
double Xi 

DESCRIPTION 
Fabs returns the absolute value Ixl. 

Floor returns the largest integer not greater than x. 

Ceil returns the smallest integer not less than x. 

SEE ALSO 
abs(3) S=l .ds]D Fortune Operating System S=l .ds]E 
Development Set S=2 .ds]D System Routines S=3 .ds]D 
Library Functions S=5 .ds]D File Formats 

14 



FOPEN(3S} Library Functions FOPEN(3S} 

NAAE 
fopen, freopen, fdopen - open a stream 

SYNOPSIS 
iinclude <stdio.h> 

FILE *fopen(filename, type} 
char *filename, *typej 

FILE *freopen(filename, type, stream) 
char *filenarne, *typej 
FILE *streamj 

FILE *foopen(fildes, type} 
char *type; 

DESCRIPTION 
Fopen opens the file named by filename and associates a 
stream with it. Fopen returns a pointer to be used to iden­
tify the stream in subsequent operations. 

~ is a character string having one of the following 
values: 

Urn open for reading 

"w" create for writing 

nan append: open for writing at end of file, or create for 
writing 

In addition, each ~ may be followed by a '+' to have the 
file opened for reading and writing. nr+" positions the 
stream at the beginning of the file, "w+" creates or trun­
cates it, and "a+" positions it at the end. Both reads and 
writes may be used on read/write streams, with the limita­
tion that an fseek, rewind, or reading an end-of-file must 
be used between a read and a write or vice-versa. 

Freopen substitutes the named file in place of the open 
stream. It returns the original value of stream. The ori­
ginal stream is closed. 

Freopen is typically used to attach the preopened constant 
names, stdin, stdout, stderr, to specified files. 

Fdopen associates a stream with a file descriptor obtained 
from open, dup, creat, or ~{2}. The ~ of the stream 
must agree with the mode of the open file. 

15 



FOPEN (3S) Library Functions FOPEN (3S) 

SEE ALSO 
open(2), fclose(3) 

DIAGNOSTICS 

BUGS 

Fopen and freopen return the pointer NULL if filename cannot 
be accessed. 

Fdopen is not portable to systems other than UNIX. 

The read/write types do not exist on all systems. Those 
systems without read/write modes will probably treat the 
~ as if the '+1 was not present. S=l .ds]D Fortune 
Operating System S=l .ds]E Development Set S=2 .ds]D 
System Routines S=3 .ds]D Library Functions S=5 .ds]D 
File Formats 

16 



FREAD (3S) Library Functions FREAD (3S) 

NAME 
fread, fwrite - buffered binary input/output 

SYNOPSIS 
*include <stdio.h> 

fread(ptr, sizeof(*ptr), nitems, stream) 
FILE *stream; 

fwrite(ptr, sizeof(*ptr), nitems, stream) 
FILE *stream; 

DESCRIPTION 
Fread reads, into a block beginning at ptr, niterns of data 
of the type of *£i£ from the named input stream. It returns 
the number of items actually read. 

If stream is stdin and the standard output is line buffered, 
then any partial output line will be flushed before any call 
to ~(2) to satisfy the fread. 

Fwrite appends at most nitems of data of the type of *~ 
beginning at ~ to the named output stream. It returns the 
number of items actually written. 

SEE ALSO 
read(2), write(2), fopen(3), getc(3) , putc(3), gets(3)', 
puts(3), printf(3), scanf(3) 

DIAGNOSTICS 
Fread and fwrite return 0 upon end of file or error. 

BUGS 

17 



FREXP(3) Library Functions FREXP(3) 

NME 
frexp, Idexp, modf - split into mantissa and exponent 

SYNOPSIS 
double frexp(value, eptr) 
double value; 
int *eptr; 

double Idexp(value, exp) 
double value; 

double modf(value, iptr) 
double value, *iptr; 

DESCRIPTION 
Frexp returns the mantissa of a double value as a double 
quantity, x, of magnitude less than 1 and stores an integer 
n such that value = x*28n9 indirectly through ~. 

Ldexp returns the quantity value*28~9. 

Modf returns the positive fractional part of value and 
stores the integer part indirectly through ~. S=l .ds]D 
Fortune Operating System S=1 .ds]E Development Set 8=2 
.ds]D System Routines S=3 .ds]D Library Functions S=5 
.ds]D File Formats 

18 



FSEEK (3S) Library Functions FSEEK (3S) 

NAME 
fseek, ftell, rewind - reposition a stream 

SYNOPSIS 
*include <stdio.h> 

fseek(stream, offset, ptrname) 
FILE *stream; 
long offset; 

long ftell(stream) 
FILE *stream; 

re\,lind ( stream) 

DESCRIPTION 
Fseek sets the position of the next input or output opera­
tion on the stream. The new position is at the signed dis­
tance offset bytes from the beginning, the current position, 
or the end of the file, according as ptrname has the value 
'" 1, or 2. 

Fseek undoes any effects of uDgetc(3). 

Ftell returns the current value of the offset relative to 
the beginning of the file associated with the named stream. 
It is measured in bytes on UNIX; on some other systems it is 
a magic cookie, and the only foolproof way to obtain an 
offset for fseek. 

Rewind(stream) is equivalent to fseek(stream, ~, ~). 

SEE ALSO 
1seek(2), fopen(3) 

DIAGNOSTICS 
Fseek returns -1 for improper 
Operating System M=l .ds]E 
System Routines M=3 .ds]D 
File Formats 

19 

seeks. M=l .ds]D Fortune 
Development Set M=2 .ds]D 

Library Functions M=5 .ds]D 



GAMNA(3M) Library Functions GAMMA (3M) 

NAME 
gamma - log gamma function 

SYNOPSIS 
#include <math.h> 

double gamma(x) 
..double Xi 

DESCRIPTION 
Gamma returns In IG(lxl) I. The sign of G(lxl) is returned 
in the external integer sianoam. The following C program 
might be used to calculate G: 

y = gamma(x)i 
if (y > 88.0) 

error()i 
y = exp (y) i 
if(signgam) 

y = -Yi 

DIAGNOSTICS 

BUGS 

A huge value is returned for negative integer arguments. 

There should be a positive indication of error. S=l .ds]D 
Fortune Operating System S=l .ds]E Development Set S=2 
.ds]D System Routines S=3 .ds]D Library Functions S=5 
.ds]D File Formats 

20 



GETC(3S) Library Functions GETC(3S) 

NAAE 
getc, getchar, fgetc, getw - get character or word from 
stream 

SYNOPSIS 
#include <stdio.h> 

int getc(stream) 
FILE *stream; 

int getchar() 

int fgetc(stream) 
FILE *stream; 

int getw(stream) 
FILE *stream; 

DESCRIPTION 
Getc returns the next character from the named input stream. 

Getchar() is identical to ~(stdin). 

Fgetc behaves like getc, but is a genuine function, not a 
macro; it may be used to save object text. 

Getw returns the next word (32-bit integer on a VAX-ll-) from 
the named input stream. It returns the constant EOF upon 
end of file or error, but since that is a good integer 
value, feof and ferror(3) should be used to check the suc­
cess of getw. Getw assumes no special alignment in the 
file. 

SEE ALSO 
fopen(3), putc(3), gets(3), scanf(3), fread(3) , ungetc(3) 

DIAGNOSTICS 

BUGS 

These functions return the integer constant EOF at end of 
file or upon read error. 

A stop with message, 'Reading bad file', means an attempt 
has been made to read from a stream that has not been opened 
for reading by fopen. 

The end-of-file return from qetchar is incompatible with 
that in UNIX editions 1-6. 

Because it is implemented as a macro, qetc treats a stream 
argument with side effects incorrectly. In particular, 
'getc(*f++);' doesn't work sensibly. 

21 



GETENV(3) Library Functions 

NAME 
getenv - value for environment name 

SYNOPSIS 
char *getenv(name) 
char *name; 

DESCRIPTION 

GETENV(3) 

Getenv searches the environment list (see environ(S» for a 
string of the form name=value and returns value if such a 
string is present, otherwise 0 (NULL). 

·SEE ALSO 
environ(S), exec(2) 

22 



GETGRENT(3) Library Functions GETGRENT(3) 

NAME 
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group 
file entry 

SYNOPSIS 
iinclude <grp.h> 

struct group *getgrent{) 

struct group *getgrgid(gid) 
int gid1 

struct group *getgrnam{name} 
char *name1 

setgrent{} 

endgrent () 

DESCRIPTION 
Getgrent, getgrgid and getgrnam each return pointers to an 
object with the following structure containing the broken­
out fields of a line in the group file. 

struct group { /* see getgrent(3) */ 
char *gr_name 1 
char *gr_passwd; 
int gr_gid; 
char **gr_mem; 

} ; 

The members of this structure are: 

gr_name 
gr_passwd 
gr_gid 
gr_mem 

The name of the group. 
The encrypted password of the group. 
The numerical group-IDe 
Null-terminated vector of pointers to the indivi­
dual member names. 

Getqrent simply reads the next line while oetqrgid and ~ 
grnam search until a matching qid or ~ is found (or until 
EOF is encountered). Each routine picks up where the others 
leave off so successive calls may be used to search the 
entire file. 

23 



GETGRENT(3) Library Functions GETGRENT(3) 

A call to setgrent has the effect of rewinding the group 
file to allow repeated searches. Endgrent may be called to 
close the group file when processing is complete. 

FILES 
jete/group 

SEE ALSO 
getlogin(3), getpwent(3), group(S) 

DIAGNOSTICS 

BUGS 

A null pointer (0) is returned on EOF or error. 

All information is contained in a static area so it must be 
copied if it is to be saved. 

24 



GETLOGIN(3) Library Functions GETLOGIN(3) 

NAME 
getlogin - get login name 

SYNOPSIS 
char *getlog in () 

DESCRIPTION 
Getlogin returns a pointer to. the login name as found in 
/etc/utmp. It may be used in conjunction with aetpwnam to 
locate the correct password file entry when the same userid 
is shared by several login names. 

If getlogin is called within a process that is not attached 
to a typewriter, it returns NULL. The correct procedure for 
determining the login name is to first call getlogin and if 
it fails, to call getpwuid. 

FILES 
/etc/utmp 

SEE ALSO 
getpwent(3) , getgrent(3), utmp(5) 

DIAGNOSTICS 

BUGS 

Returns NULL (0) if name not found. 

The return values point to static data whose content is 
overwritten by each call. 

25 



GETPASS(3} Library Functions GETPASS(3) 

NAME 
getpass - read a password 

SYNOPSIS 
char *getpass(prompt) 
char *prompt; 

DESCRIPTION 
Getpass reads a password from the file /~~, or if that 
cannot be opened, from the standard input, after ~rompting 
with the null-terminated string prompt and disablIng echo­
ing. A pointer is returned to a nUll-terminateo string of 
at most 8 characters. 

FILES 
/dev/tty 

SEE ALSO 
crypt(3) 

BUGS 
The return value points to static data whose content is 
overwritten by each call. 

26 



GETPh' (3) Library Functions 

NAME 
getpw - get name from uid 

SYNOPSIS 
getpw(uid, buf) 
char *buf; 

DESCRIPTION 

GETPW(3) 

Getpw searches the password file for the (numerical) Yid, 
and fills in buf with the corresponding line; it returns 
non-zero if uid could not be found. The line is null­
terminated. 

FILES 
/etc/passwd 

SEE ALSO 
getpwent(3), passwd(5) 

DIAGNOSTICS 
Non-zero return on error. 

27 



GETPWENT(3} Library Functions GETPWENT(3} 

NAME 
getpwent, getpwuid, getpwnam, setpwent, endpwent - get pass­
word file entry 

SYNOPSIS 
iinclude <pwd.h> 

struct passwd *getpwent(} 

struct passwd *getpwuid(uid) 
int ui-d; 

struct passwd *getpwnam(name} 
char *namej 

int setpwent{) 

int endpwent () 

DESCRIPTION 
Getpwent, getpwuid and getpwnam each return a pointer to an 
object with the following structure containing the broken­
out fields of a line in the password file. 

struct passwd { /* see getpwent(3) */ 
char *pw_namej 
char *pw_passwd; 
int pw_uid; 
int PW_9idj 
int -pw_quota; 
char *pw_commenti 
char *pw_gecosj 
char *pw_diri 
char *pw_shellj 

} ; 

The fields pw quota and pw comment are unused; the others 
have meanings described in passwd(5). 

Getpwent reads the next line (opening the file if neces­
sary); setpwent rewinds the file; endpwent closes it. 

Getpwuid and £€tpwnam search from the beginning until a 
matching uid or ~ is found (or until EOF is encountered). 

28 



GETPWENT(3) Library Functions GETPWENT(3) 

FILES 
/etc/passwd 

SEE ALSO 
getlogin(3), getgrent(3), passwd(5) 

DIAGNOSTICS 

BUGS 

Null pointer (0) returned on EOF or error. 

All information is contained in a static area so it must be 
copied if it is to be saved. 
S=l .ds ]D Fortune Operating System S=l .ds ]E 
Development Set 8=2 .ds]D System Routines S=3 .ds]D 
Library Functions S=5 .ds]D File Formats 

29 



GETS(3S) Library Functions GETS(3S) 

NAME 
gets, fgets - get a string from a stream 

SYNOPSIS 
#include <stdio.h> 

char *gets(s) 
char *s; 

char *fgets(s, n, stream) 
char *s; 
FILE *stream; 

DESCRIPTION 
Gets reads a string into s from the standard input stream 
stdin. The string is terminated by a newline character, 
which is replaced in ~ by a null character. Gets returns 
its argument. 

Fgets reads n-l characters, or up to a newline character, 
whichever comes first, from the stream into the string ~. 
The last character read into s is followed by a null charac­
ter. Fgets returns its first argument. 

I 

SEE ALSoi 
puts(3), getc(3), scanf(3), fread(3), ferror(3) 

DIAGNOSTICS 

BUGS 

Gets and fgets return the constant pointer NULL upon end of 
file or error. 

Gets deletes a newline, faets keeps it, all in the name of 
backward compatibility. M=l .ds]D Fortune Operating 
System M=l .ds]E Development Set M=2 .ds]D System 
Routines M=3 .ds]D Library Functions M=5 .ds]D Eile 
Formats 

30 



HYPOT (3~1) Library Functions 

NAME 
hypot, cabs - Euclidean distance 

SYNOPSIS 
#include <math.h> 

double hypot(x, y) 
double x, Yi 

double cabs(z) 
struct { double x, Yi} Zi 

DESCRIPTION 
Hypot and ~ return 

sqrt(x*x + y*y}, 

taking precautions against unwarranted overflows. 

SEE ALSO 

HYPOT (3M) 

exp(3} for sgrt M=l .ds]D Fortune Operating System M=l 
.ds]E Development Set M=2 .ds]D System Routines M=3 
.ds]D Library Functions M=5 .ds]D File Formats 

31 



J0(3M) Library Functions J0(3M) 

NAME 
Je, jl, jn, y0, yl, yn - bessel functions 

SYNOPSIS 
#include <math.h> 

double j0 (x) 
do ubI-€: Xi 

double jl (x) 
double Xi 

double jn(n, x) 
double Xi 

double y0 (x) 
double Xi 

double yl (x) 
double Xi , , 

double yn(n, x) 
double Xi 

DESCRIPTION 
These functions calculate Bessel functions of the first and 
second kinds for real arguments and integer orders. 

DIAGNOSTICS 
Negative arguments cause ~, 21, and yn to return a huge 
negative value and set errno to EDaM. 

32 



L3TOL(3} Library Functions L3TOL(3) 

I 

NAME! 
13tol, lto13 - convert between 3-byte integers and long 
integers 

SYNOPSIS 
l3tol(lp, cp, n) 
long *lPi 
char *CPi 

Ito13 (cp, lp, n) 
char *CPi 
long *lPi 

DESCRIPTION 
L3tol converts a list of n three-byte integers packed into a 
character string pointed to by ~ into a list of long 
integers pointed to by ~. 

Lto13 performs the reverse conversion from long integers 
(l£) to three-byte integers (~). 

These functions are useful for file-system maintenance where 
the i-numbers are three bytes long. 

SEE ALSO 
filsys(S) 

33 



~lALLOC (3) Library Functions ~lALLOC (3) 

NAME 
malloc, free, realloc, calloc - main memory allocator 

SYNOPSIS 
char *rnalloc(size) 
unsigned size; 

free(ptr) 
char *ptr; 

char *realloc(ptr, size) 
char *ptr; 
unsigned size; 

char *calloc(nelem, elsize) 
unsigned nelem, elsize; 

DESCRIPTION 
Malloc and free provide a simple general-purpose memory 
allocation package. Malloc returns a pointer to a block of 
at least size bytes beginning on a word boundary. 

The argument to free is a pointer to a block previously 
allocated by malIOC; this space is made available for 
further allocation, but its contents are left undisturbed. 

Needless to say, grave disorder will result if the space 
assigned by malloc is overrun or if some random number is 
handed to free. 

Malloc allocates the first big enough contiguous reach of 
free space found in a circular search from the last block 
allocatee or freed, coalescing adjacent free blocks as it 
searches. It calls sbrk (see break(2» to get more memory 
from the system when there is no suitable space already 
free. 

Realloc changes the size of the block pointed to by ~ to 
size bytes and returns a pointer to the (possibly moved) 
block. The contents will be unchanged up to the lesser of 
the new and old sizes. 

Realloc also works if ~ points to a block freed since the 
last call of malloc, realloc or calloci thus sequences of 
free, malloc and realloc can exploit the search strategy of 
rnaIIoc to do storage compaction. 

Calloc allocates space for an array of nelem elements of 
size elsize. The space is initialized to zeros. 

3-4 



MALLOC(3) Library Functions HALLOC(3) 

Each of the allocation routines returns a pointer to space 
suitably aligned (after possible pointer coercion) for 
storage of any type of object. 

DIAGNOSTICS 

BUGS 

Malloc, realloc and callcc return a null pointer (0) if 
there is no available memory or if the arena has been 
detectably corrupted by storing outside the bounds of a 
block. Malloc may be recompiled to check the arena very 
stringently on every transaction; see the source code. 

vlhen realloc returns ", the block pointed to by m..I. may be 
destroyed. 

The current incarnation of the allocator is unsuitable for 
direct use in a large virtual environment where many small 
blocks are to be kept, since it keeps all allocated and 
freed blocks on a single circular list. Just before more 
memory is allocated, all allocated and freed blocks are 
referenced; this can cause a huge number of page faults. 

35 



MKTEHP(3) Library Functions 

NAME 
mkternp - make a unique file name 

SYNOPSIS 
char *mktemp(template) 
char *template; 

DESCRIPTION 

MKTEf.1P (3) 

Mkternp replaces template by a unique file name, and returns 
the address of the template. The tem~late should look like 
a file name with six trailing XiS, WhlCh will be replaced 
with the current process id and a unique letter. 

SEE ALSO. 
getpid(2) 

36 



l-iONITOR (3) Library Functions MONITOR(3) 

NAME 
monitor - prepare execution profile 

SYNOPSIS 
monitor(lowpc, highpc, buffer, bufsize, nfunc) 
int (*lowpc) (), (*highpc) () ; 
short buffer[]; 

DESCRIPTION 

FILES 

An executable program created by 'cc _pi automatically 
includes calls for monitor ~lith default parameters; monitor 
neednlt be called explicitly except to gain fine control 
over profiling. 

Monitor is an interface to profil(2). Lowpc and hiohpc are 
the addresses of two functions; buffer is the address of a 
(user supplied) array of bufsize short integers. Monitor 
arranges to record a histogram of periodically sampled 
values of the program counter, and of counts of calls of 
certain functions, in the buffer. The lowest address sam­
pled is that of lowpc and the highest is just below hiahpc. 
At most nfunc call counts can be kept; only calls of func­
tions compiled with the profiling option -p of ~(l) are 
recorded. For the results to be significant, especially 
where there are small, heavily used routines, it is sug­
gested that the buffer be no more than a few times smaller 
than the range of locations sampled. 

To profile the entire program, it is sufficient to use 

extern etext(); 

monitor«int) 2, etext, buf, bpfsize, nfunc) ; 

Etext lies just above all the program text, see end(3). 

To stop execution monitoring and write the results on the 
file mon.QQt, use 

monitor(0); 

then prof(l) can be used to examine the results. 

mon.out 

SEE ALSO 
prof (I), profil (2), cc (1) 

37 



NLIST(3) Library Functions NLIST(3) 

NAAE 
nlist - get entries from name list 

SYNOPSIS 
iinclude <nlist.h> 
nlist(filename, nl) 
char *filenarne; 
struct nlist nl[]; 

DESCRIPTION 
Nlist examines the name list in the given executable output 
file and selectively extracts a list of values. The name 
list consists of an array of structures containing names, 
types and values. The list is terminated with a null name. 
Each name is looked up in the name list of the file. If the 
name is found, the type and value of the name are inserted 
in the next two fields. If the name is not found, both 
entries are set to 0. See £.out(S) for the structure 
declaration. 

This subroutine is useful for examining the system name list 
kept in the file /vmunix. In this way programs can obtain 
system addresses that are up to date. 

SEE ALSO 
a.out(S) 

DIAGNOSTICS 

BUGS 

All type entries are set to 0 if the file cannot be found or 
if it is not a valid namelist. 

On other versions of UNIX you must include <a.out.h> rather 
than <nlist.h>; this is unfortunate~ but <a.out.h> can't be 
used on the VAX because it contains a union which can't be 
initialized. 

38 



PERROR(3) Library Functions PERROR(3) 

NAAE 
perror, sys_errlist, sys_nerr - system error messages 

SYNOPSIS 
perror(s) 
char *s; 

int sys_nerr; 
char *sys_errlist[]; 

DESCRIPTION 
Perror produces a short error message on the standard error 
file describing the last error encountered during a call to 
the system from a C program. First the argument string § is 
printed, then a colon, then the message and a new-line. 
Most usefully, the argument string is the name of the pro­
gram which incurred the error. The error number is taken 
from the external variable errno (see intro(2», which is 
set when errors occur but not cleared when non-erroneous 
calls are made. 

To simplify variant formatting of messages, the vector of 
message strings sys errlist is provided; errno can be used 
as an index in this table to get the message string without 
the newline. Sys nerr is the number of messages provided 
for in the table; it should be checked because new error 
codes may be added to the system before they are added to 
the table. 

SEE ALSO 
intro(2) 8=1 .ds]D Fortune Operating System S=l .ds]E 
Development Set S=2 .ds]D System Routines S=3 .ds]D 
Library Functions S=5 .ds]D Fil~ Formats 

39 



POPEN(3S) Library Functions POPEN(3S) 

NME 
popen, pclose - initiate I/O to/from a process 

SYNOPSIS 
linclude <stdio.h> 

FILE *popen(command, type) 
char *command, *type; 

pclose(stream} 
FILE *stream; 

DESCRIPTION 
The arguments to popen are pointers to null-terminated 
strings containing respectively a shell command line and an 
I/O mode, either "r" for reading or "w" for writing. It 
creates a pipe between the calling process and the command 
to be executed. The value returned is a stream pointer that 
can be used (as appropriate) to write to the standard input 
of the command or read from its standard output. 

A stream opened by popen should be closed by pclose, which 
waits for the associated process to terminate and returns 
the exit status of the command. 

Because open files are shared, a type "r" command may be 
used as an input filter, and a type "w" as an output filter. 

SEE ALSO 
pipe(2), fopen(3), fclose(3) , system(3) , wait(2) 

DIAGNOSTICS 

BUGS 

Popen returns a null pointer if files or processes cannot be 
created, or the Shell cannot be accessed. 

Pclose returns -1 if stream is not associated with a 
'popened' command. 

Buffered r€ading before opening an input filter may leave 
the standard input of that filter mispositioned. Similar 
problems with an output filter may be forestalled by careful 
buffer flushing, e.g. with fflush, see fclos~(3). S=l .ds 
]D Fortune Operating System 8=1 .ds]E Develnpment Set 
8=2 .ds]D System Routines 8=3 .ds]D Library Func­
tions 8=5 .ds]D File Formats 



PRINTF(3S) Library Functions PRINTF(3S) 

NAAE 
printf, fprintf, sprintf formatted output conversion 

SYNOPSIS 
iinclude (stdio.h> 

printf(format [, arg ] ••• 
char *formati 

fprintf(stream, format [, arg ] 
FILE *stream; 
char *forrnat; 

sprintf(s, format [, arg ] ••• 
char *s, format; 

DESCRIPTION 

. . . 

Printf places output on the standard output stream stdout. 
Fprintf places output on the named output stream. Sprintf 
places 'output' in the string ~, followed by the character 
'\0'. 

Each of these functions converts, formats, and prints its 
arguments after the first under control of the first argu­
ment. The first argument is a character string which con-

\ tains two types of objects: plain characters, which are sim­
ply copied to the output stream, and conversion specifica­
tions, each of which causes conversion and printing of the 
next successive arg printf. 

Each conversion specification is introGuced by the character 
%. Following the %, there may be 

an optional minus sign '_I which specifies left adjust­
~ of the converted value in the indicateo field; 

an optional digit string specifying c field width; if 
the converted value has fewer characters than the field 
width it will be blank-padded on the left (or right, if 
the left-adjustment indicator nas been given) to make 
up the field width; if the field width begins with a 
zero, zero-padding will be done instead of blank­
padding; 

an optional period '.' which serves to separate the 
field width from the next digit string; 

an optional digit string specifying a precision which 
specifies the number of digits to appear after the 
decimal point, for e- and f-conversion, or the maximum 
number of characters to be printed from a string; 

41 



PRINTF(3S) Library Functions PRINTF(3S) 

the character I specifying that a following d, 0, x, or 
u corresponds to a long integer ££U. (A capitalized 
conversion code accomplishes the same thing.) 

a character which indicates the type of conversion to 
be applied. 

A field width or preclslon may be '*' instead of a digit 
string. In this case an integer arg supplies the field 
width or precision. 

The conversion characters and their meanings are 

dox The integer ~ is converted to decimal, octal, or hex­
adecimal notation respectively. 

f The float or double arg is converted to decimal nota­
tion in the style '[-]ddd.ddd' where the number of a's 
after the decimal point is equal to the precision 
specification for the argument. If the precision is 
missing, 6 digits are given; if the precision is expli­
citly 0, no digits and no decimal point are printed. 

e The float or double ££g is converted in the style 
'[-]d.ddde±dd' where there is one digit before the 
decimal point and the number after is equal to the pre­
cision specification for the argument; when the preci­
sion is missing, 6 digits are produced. 

9 The float or double ara is printed in style d, in style 
f, or in style e, whichever gives full precision in 
minimum space. 

c The character QLg is printed. 

s Arq is taken to be a string (character pointer) and 
characters from the string are printed until a null 
character or until the number of characters indicated 
by the precision specification is reached; however if 
the precision is 0 or missing all characters up to a 
null are printed. 

u The unsigned integer arg is converted to decimal and 
printed (the result will be in the range 0 through MAX­
OINT, where NAXUINT equals 4294967295 on a VAX-II and 
65536 on a PDP-II). 

% Print a '%'i no argument is converted. 

In no case does a non-existent or small field widt~ cause 
truncation of a field; padding takes place only if the 

42 



PRINTF(3S) Library Functions PRINTF(3S) 

specified field width exceeds the actual width. Characters 
generated by printf are printed by ~(3) • 

Examples 
To print a date and time in the form 'Sunday, July 3, 
10:02', where weekday and month are pointers to nu11-
terminated strings: 

printf("%s, %s %d, %02d:%02d", weekday, month, day, 
hour, min) i 

To print pi to 5 decimals: 

printf("pi = %.5f", 4*atan(1.0»i 

SEE ALSO 

BUGS 

putc(3), scanf(3), ecvt(3) 

Very wide fields (>128 char~cters) fail. S=l .ds]D For­
tune Operating System S=l .ds]E Development Set S=2 
.ds]O System Routines 8=3 .ds]O Library Functions S=5 
.ds]O File Formats 

43 



PUTC(3S) Library Functions PUTC(3S) 

NAME 
putc, putchar, fputc, putw - put character or word on a 
stream 

SYNOPSIS 
iinclude <stdio.h> 

int putc(c, stream) 
char Ci 
FILE *streami 

putchar(c) 

fputc(c, stream) 
FILE *stream; 

putw(w, stream) 
FILE *stream; 

DESCRIPTION 
Putc appends the character c to the named output stream. It 
returns the character written. 

Putchar (c) is defined as putc (c,· stdout) • 

Fputc behaves like putc, but is a genuine function rather 
than a macro. It may be used to save on object text. 

~ appends word (i.e. int) ~ to the output stream. It 
returns the word written. Putw neither assumes nor causes 
special alignment in the file. 

The standard stream stdout is normally buffered if and only 
if the output does not refer to a terminal; this default may 
be changed by setbuf(3). The standard stream stderr is by 
default unbuffered unconditionally, but use of freopen (see 
fopen(3» will cause it to become buffered; setbuf, again, 
will set the state to whatever is desired. When an output 
stream is unbuffered information appears on the destination 
file or terminal as soon as written; when it is buffered 
many characters are saved up and written as a block. Fflush 
(see fclose(3» may be used to force the block out early. 

SEE ALSO 
fopen(3), fclose(3), getc(3}, puts(3}, printf(3), fread(3) 

DIAGNOSTICS 
These functions return the constant EOF upon error. Since 
this is a good integer, ferro~(3) should be used to detect 
putw errors. 

44 



PUTC(3S} Library Functions PUTC(3S} 

BUGS 
Because it is implemented as a macro, putc treats a stream 
argument with side effects improperly. In particular 
'putc(c, *f++) i' doesn't work sensibly. 

Errors can occur long after the call to putc. S=l .ds]D 
Fortune Operating System S=l .ds]E Development Set S=2 
.ds]D System Routines S=3 .ds]D Library Functions S=5 
.ds]D File Formats 

45 



PUTS(3S) Library Functions PUTS (3S) 

NAME 
puts, [puts - put a string on a stream 

SYNOPSIS 
#include <stdio.h> 

puts(s) 
char *s; 

fputs(s, stream) 
char *Si 
FILE *streami 

DESCRIPTION 
Puts copies the null-terminated string ~ to the standard 
output stream stdout and appends a newline character. 

Fputs c0pies the null-terminated string § to the named out­
put stre3rll. 

Neither routine copies the terminal null character. 

SEE ALSO 

3VGS 

fopen(3), gets(3), putc(3), printf(3), ferror(3) 
freao(3) for fwrite 

Puts aFpends a nevlline, fputs does not, all in the name of 
backwa~d ~ompatibility. 

46 



QSORT(3) Library Functions QSORT(3) 

NAME 
qsort - quicker sort 

SYNOPSIS 
qsort(base, nel, width, compar) 
char *base; 
int (*compar) () i 

DESCRIPTION 
Qsort is an implementation of the quicker-sert algorithm. 
The first argument is a pointer to the base of the data; the 
second is the number of elements; the third is the width of 
an element in bytes; the last is the name of the comparison 
routine to be called with two arguments which are pointers 
to the elements being compared. The routine must return an 
integer less than, equal to, or greater than 0 according as 
the first argument is to be considered less than, equal to, 
or greater than the second. 

SEE ALSO 
sort(l) 

47 



RAND (3) Library Functions RAND (3) 

NME 
rand, srand - random number generator 

SYNOPSIS 
srand(seed) 
int seed; 

rand() 

DESCRIPTION 
Rand uses a multiplicative congruential random number gen­
erator with period 28329 to return successive pseudo-random 
numbers in the range from 0 to 28319-1. 

The generator is reinitialized by calling srano with 1 as 
argument. It can be set to a random starting point by cal-
ling srand with whatever you like as argument. S=l .ds]D 
Fortune Operating System S=l .ds]E Development Set S=2 
.ds]D System Routines S=3 .ds]D Library Functions 8=5 
.ds]D File Formats 

48 



SCANF(3S) Library Functions SCANF(3S) 

NAME 
scanf, fscanf, sscanf - formatted input conversion 

SYNOPSIS 
#include <stdio.h> 

scanf(format [ , pointer] ••• 
char *formati 

fscanf(stream, format [ , pointer 
FILE *streami 
char *formati 

sscanf(s, format , pointer] ••• 
char *s, *formati 

DESCRIPTION 
Scanf reads from the standard input stream stdin. Fscanf 
reads from the named input ~~J~am. Sscanf reads from the 
character string~. Each function reads characters, inter­
prets them according to a format, and stores the results in 
its arguments. Each expects as arguments a control string 
format, described below, and a set of pointer arguments in­
dicating where the converted inp"Ut should be stored. 

The control string usually contains conversion specifica­
tions, which are used to direct interpretation of input se­
quences. The control string may contain: 

1. Blanks, tabs or newlines, which match optional white 
space in the input. 

2. ]\...11 ordinary character (not %) which must match the next 
character of the input stream. 

3. Conversion specifications, consisting of the character 
%, an optional assignment suppressing character *, an 
optional numerical maximum field width, and a conversion 
character. 

A conversion specification directs the conversion of the 
next input field; the result is placed in the variable 
pointed to by the corresponding argument, unless assignment 
suppression was indicated by *. An input field is defined 
as a string of non-space characters; it extends to the next 
inappropriate character or until the field width, if speci­
fied, is exhausted. 

The conversion character indicates the interpretation of the 
input field; the corresponding pointer argurn~nt must usually 
be of a restricted type. The following conversion charac-

49 



SCANF(3S) Library Functions SCANF(3S) 

ters are legal: 

% a single '%' is expected in the input at this point; no 
assignment is done. 

d a decimal integer is expected; the corresponding argu­
ment should be an integer pointer. 

o an octal integer is expected; the corresponding argument 
should be a integer pointer. 

x a hexadecimal integer is expected: the corresponding ar­
gument should be an integer pointer. 

s a character string is expected; the corresponding argu­
ment should be a character pointer pointing to an array 
of characters large enough to accept the string and a 
terminating '\0', which will be added. The input field 
is terminated by a space character or a newline. 

c a character is expected; the corresponding argument 
should be a character pointer. The normal skip over 
space characters is suppressed in this case; to read the 
next non-space character, tr~ '%ls'. If a field width 
is given, the corresponding argument should refer to a 
character array, and the indicated number of characters 
is read. 

99f7 a floating point number is expected; the next field is 
converted accordingly and stored through the correspond­
ing argument, which should be a pointer to a J~oat. The 
input format for floating point numbers is an optionally 
signed string of digits possibly containing a decimal 
point, followed by an optional exponent field consisting 
of an E or e followed by an optionally signed integer. 

indicates a string not to be delimited by space charac­
ters. The left bracket is followed by a set of charac­
ters and a right bracket: the characters between the 
brackets define a set of characters making up the 
string. If the first character is not circumflex (A), 
the input field is all characters until the first char­
acter not in the set between the brackets; if the first 
character after the left bracket is A, the input field 
is all characters until the first character which is in 
the remaining set of characters between the brackets. 
The corresponding argument must point to a character ar­
ray_ 

The conversion characters d, 0 and x may be capitalized or 
preceeded by I to indicate that a pointer to long rather 

50 



SCANF (3S) Library Functions SC]\ .. NF (3 S) 

than to int is in the argument list. Similarly, the conver­
sion characters e or f may be capitalized or preceded by I 
to indicate a pointer to double rather than to float. The 
conversion characters d, 0 and x may be preceeded by h to 
indicate a pointer to short rather than to int. 

The scanf functions return the number of successfully 
matched and assigned input items. This can be used to de­
cide how many input items were found. The constant EOF is 
returned upon end of input; note that this is different from 
0, which means that no conversion was done; if conversion 
was intended, it was frustrated by an inappropriate charac­
ter in the input. 

For example, the call 

int ii float Xi char name[50] ; 
scanf("%d%f%s", &i, &x, name) ; 

with the input line 

25 54.32E-l thompson 

will assign to 1. the value 25, Z· the value 5.432, and .lli\IIl.f! 
will contain 'thompson\0'. Or, 

int ii float Xi char name[50] ; 
scanf("%2d%f%*d%[1234567890]", &i, &x, name) i 

with input 

56789 0123 56a72 

will assign 56 to i, 789.0 to x, skip '0123', and place the 
string '56\0' in name. The next call to getchar will return 
'a ' • 

SEE ALSO 
atof(3), getc(3), printf(3) 

DIAGNOSTICS 

BUGS 

The scanf functions return EOF on end of input, and a short 
count for missing or illegal data items. 

The success of literal matches and suppressed assignments is 
not directly determinable. S=1 .ds]D Fortune Operating 
System S=1 .ds]E Development Set S=2 .ds]D System 
Routines S=3 .ds]D Library Functions S=5 .ds]D File 
Formats 

51 



SETBUF(3S) Library Functions SETBUF{3S) 

NAAE 
setbuf - assign buffering to a stream 

SYNOPSIS 
iinclude <stdio.h> 

setbuf(stream, buf) 
FILE *streami 
char *bufi 

DESCRIPTION 
Setbuf is used after a stream has been opened but before it 
is read or written. It causes the character array bQf to be 
used instead of an automatically allocated buffer. If buf 
is the constant pointer NULL, input/output will be complete­
ly unbuffered. 

A manifest constant BUFSIZ tells how big an array is needed: 

char buf[BUFSIZ]i 

A buffer is normally obtained from malloc(3) upon the first 
aetc or putc(3) on the file, except that the standard output 
is line buffered when directed t~ a terminal. Other output 
streams directed to terminals, and the standard error stream 
sto.err are normally not buffered. If the standard output is 
line buffered, then it is flushed each time data is read 
from the standard input by read(2). 

SEE ALSO 

BUGS 

fopen(3), getc(3), putc(3), malloe(3) 

The standard error stream should be line buffered by de­
fault. 

52 



SETJHP(3} Library Functions SETJMP(3} 

NAME 
setjmp, longjmp - non-local goto 

SYNOPSIS 
#include <setjmp.h> 

setjrnp(env) 
jmp_buf enVi 

longjmp(env, val) 
jrnp_buf enVi 

DESCRIPTION 
These routines are useful for dealing with errors and inter­
rupts encountered in a low-level subroutine of a program. 

Setjmp saves its stack environment in env for later use by 
lonajrnp. It returns value 0. 

Longjmp restores the environment saved by the last call of 
setjrnp. It then returns in such a way that execution con­
tinues as if the call of setjmp had just returned the value 
val to the function that invoked set.-imp, which must not it­
self have returned in the interim. All accessible data have 
values as of the time longjmp was called. 

SEE ALSO 
signal(2) M=l .ds]D Fortune Operatir.g 
]E Development Set M=2 .ds]D System 
]D Library Functions M=5 .ds]D File 

53 

System ~i=l 
Routines M=3 
Formats 

.ds 
.ds 



SIN(3M) Library Functions SIN (3M) 

NAME 
sin, cos, tan, asin, acos, atan, atan2 - trigonometric func­
tions 

SYNOPSIS 
#include <math.h> 

double sin (x) 
double x; 

double cos (x) 
double Xi 

double asin(x) 
double Xi 

double acos (x) 
double Xi 

double atan (x) 
double Xi 

double atan2(x, y) 
double x, Yi 

DESCRIPTION 
Sin; cos and tan return trigonometric functions of radian 
arguments. The magnitude of the argument should be checked 
by the caller to make sure the result is meaningful. 

Asin returns the arc sin in the range -J/2 to J/2. 

Acos returns the arc cosine in the ~range 0 to J. 

Atan returns the arc tangent of X in the range -J/2 to J/2. 

Atan2 returns the arc tangent of z/y in the range -J to J. 

DIAGNOSTICS 

BUGS 

Arguments of magnitude greater than 1 cause asin and ~ to 
return value 0i errno is set to EDOM. The value of tan at 
its singular points is a huge number, ana errno is set to 
ERANGE. 

The value of tan for arguments greater than about 2**31 is 
garbage. M=l .ds]D Fortune Operating System M=l .ds 
]E Development Set M=2 .ds]D System Routines M=3 .ds 
]D Library Functions M=5 .ds]D File Formats 

54 



SINH(3M) Library Functions SINH(3M) 

NAME 
sinh, cosh, tanh - hyperbolic functions 

SYNOPSIS 
.include <math.h> 

double sinh(x) 

double cosh(x) 
double Xi 

double tanh(x) 
double Xi 

DESCRIPTION 
These functions compute the designated hyperbolic functions 
for real arguments. 

DIAGNOSTICS 
Sinh and cosh return a huge value of appropriate sign when 
the correct value would overflow. 

55 



SLEEP(3) Library Functions SLEEP(3} 

NAAE 
sleep - suspend execution for interval 

SYNOPSIS 
sleep(seconds) 
unsigned seconds; 

DESCRIPTION 
The current process is suspended from execution for the 
number of seconds specified by the argument. The actual 
suspension time may be up to 1 second less than that re­
quested, because scheduled wakeups occur at fixed I-second 
~ntervals, and an arbitrary amount longer because of other 
activity in the system. 

The routine is implemented by setting an alarm clock signal 
and pausing until it occurs. The previous state of this 
signal is saved and restored. If the sleep time exceeds the 
time to the alarm signal, the process sleeps only until the 
signal would have occurred, and the signal is sent 1 second 
later. 

SEE ALSO 
alarrn(2}, pause(2) S=l .ds 1D Fortune Operating 
S=l .ds]E Development Set S=2 .ds JD System 
S=3 .ds]D Library Functions S=5 .ds]D File 

56 

System 
Routines 
Formats 



STDIO(3S) Library Functions STDIO(3S) 

NAAE 
stdio - standard buffered input/output package 

SYNOPSIS 
iinclude <stdio.h> 

FILE *stdin; 
FILE *stdout; 
FILE *stderr; 

DESCRIPTION 
The functions described in Sections 38 constitute an effi­
cient user-level buffering scheme. The in-line macros qetc 
and ~(3) handle characters quickly. The higher level 
routines gets, fgets, scanf, fscanf, fread, ~, fputs, 
printf, fprintf, fwrite all use getc and putci they can be 
freely intermixed. 

A file with associated buffering is called a stream, and is 
declared to be a pointer to a defined type FILE. Fopen(3) 
creates certain descriptive data for a stream and returns a 
pointer to designate the stream in all further transactions. 
There are three normally open streams with constant pointers 
declared in the include file and associated with the stan­
dard open files: 

stdin 
stdout 
stderr 

standard input file 
standard output file 
standard error file 

A constant 'pointer' NULL (0) designates no stream at all. 

An integer constant EOF (-1) is ret~rned upon end of file or 
error by integer functions that deal with streams. 

Any routine that uses the standard input/output package must 
include the header file <stdio.h> of pertinent macro defini­
tions. The functions and constants mentioned in sections 
labeled 3S are declared in the include file and need no 
further declaration. The constants, and the following 
'functions' are implemented as macros; redeclaration of 
these names is perilous: getc, getchar, putc, putchar, feof, 
ferror, fileno. 

SEE ALSO 
open(2), close(2), read(2), write(2) 

DIAGNOSTICS 
The value EOF is returned uniformly to indicate that a FILE 
pointer has not been initialized with fopen, input (output) 
has been attempted on an output (input) stream, or a FILE 

57 



STDIO(3S} Library Functions STDIO(3S} 

~ointer designates corrupt or otherwise unintelligible FILE 
aata. 

For purposes of efficiency, this implementation of the stan­
dard library has been changed to line buffer output to a 
terminal by default and attempts to do this transparently by 
flushing the output whenever a read(2} from the standard in­
put is necessary. This is almost always transparent, but 
may cause confusion or malfunctioning of programs which use 
standard i/o routines but use read(2} themselves to read 
from the standard input. 

In cases where a large amount of computation is done after 
printing part of a line on an output terminal, it is neces­
sary to fflush(3} the standard output before going off and 
computing so that the output will appear. 

58 



STRING(3) Library Functions STRING(3) 

NAME 
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, 
index, rindex - string operations 

SYNOPSIS 
char *strcat(sl, s2) 
char *sl, *52; 

char *strncat(sl, s2, n) 
char *sl, *s2; 

strcmp(sl, s2) 
char *sl, .*s2; 

strncmp(sl, s2, n) 
char *51, *s2; 

char *strcpy(sl, s2) 
char *sl, *s2; 

char *strncpy(sl, s2, n) 
char *sl, *s2; 

strlen(s) 
char *s; 

char *index(s, c) 
char *s, c; 

char *rindex(s, c) 
char *s, c; 

DESCRIPTION 
These functions operate on null-terminated strings. They do 
not check for overflow of any receiving string. 

Strcat appends a copy of string s2 to the end of string ~. 
Strncat copies at most n characters. Both return a pointer 
to the null-terminated result. 

Strcmp compares its arguments and returns an integer greater 
than, equal to, or less than 0, according as sl is lexico­
graphically greater than, equal to, or less than s2. 
strncmp makes the same comparison but looks at at most n 
characters. 

strcpy copies string s2 to sl, stopping after the null char­
acter has been moved. Strncpy copies exactly n characters, 
truncating or null-padding s2; the target may not be null­
terminated if the length of s2 is n or more. Both return 
lie 

59 



STRING(3) Library Functions STRING(3) 

BUGS 

Strlen returns the number of non-null characters in E. 

Index (rindex) returns a pointer to the first (last) oc­
currence of character £ in string ~, or zero if ~ does not 
occur in the string. 

Strcrnp uses native character comparison, which is signed on 
PDPll's and VAX-II's, unsigned on other machines. 

60 



SWAB (3) Library Functions SWAB(3) 

NAME 
swab - swap bytes 

SYNOPSIS 
swab (from, to, nbytes) 
char *from, *to; 

DESCRIPTION 
Swab copies nbytes bytes pointed to by from to the position 
pointed to by to, exchanging adjacent even and odd bytes. 
It is useful for carrying binary data between PDPll's and 
other machines. Nbytes should be even. 

61 



SYSTEM (3) Library Functions 

NAME 
system - issue a shell command 

SYNOPSIS 
system(string) 
char *stringi 

DESCRIPTION 

SYSTEH(3) 

System causes the string to be given to sh(l} as input as if 
the string had been typed as a command at a terminal. The 
current process waits until the shell has completed, then 
returns the exit status of the shell. 

SEE ALSO 
popen(3) , exec(2), wait(2) 

DIAGNOSTICS 
Exit status 127 indicates the shell couldn't be executed. 

62 



Part 3 File Formats 

The file formats describe the structure and conventions of 
particular UNIX system files. Two examples of these files are the 
a.out file, which is the file output by the assembler and loader, 

and the ttys file, which is the file containing the terminal 
initialization data. 

1 



A.OUT{S) File Formats A.OUT{S) 

NAME 
a.out - assembler and link editor output 

SYNOPSIS 
iinclude <a.out.h> 

DESCRIPTION 
A.out is the output file of the assembler as{l) and the link 
editor ld(l). Both programs make g.out executable if there 
were no errors and no unresolved external references. Lay­
out information as given in the include file for the VAX-II 
is: 

/* 
* Header prepended to each a.out file. 
*/ 

struct exec { 
long a_magic; /* magic number */ 
unsigned a_text; /* size of text segment */ 
unsigned a_data; /* size of initialized data */ 
unsigned a_bss; /* size of uninitialized data 
unsigned a_syms; /* size of symbol table */ 
unsigned a_entry; /* entry point */ 
unsigned a_trsizej /* size of text relocation */ 
unsigned a_drsize; /* size of data relocation */ 

} ; 

idefine OMAGIC 0407 /* old impure format */ 
#define NMAGIC 0410 /* read-only text */ 
#define ZMAGIC 0413 /* demand load format */ 

/* 

*/ 

* Macros which take exec structures as arguments and tell whether 
* the file has a reasonable magic number or offsets to textlsymbo 
*/ 

#define N_BADMAG(x) \ 
{( (x) • a_magic) !=OMAGIC && ({x) .a_magic) !=N~iAGIC && ((x) • a_magi 

~define N_TXTOFF{x) \ 
«x) .a_ma'gic==ZMAGIC ? 1024 : sizeof (struct exec» 

~define N_SYMOFF{x) \ 
(N_TXTOFF(x) + (x) .a_text+(x) .a_data + (x) .a_trsize+(x) .a, 

#define N_STROFF(x) \ 
(N_SYMOFF(x) + (x) .a_syms) 

The file has five sections: a header, the program text and 
data, relocation information, a symbol table and a string 
table (in that order). The last three may be omitted if the 
program was loaded with the '-s' option of 10 or if the sym­
bols and relocation have been removed by strip(l). 

2 



A.OUT(S) File Formats A.OUT(S) 

In the header the sizes of each section are given in bytes. 
The size of the header is not included in any of the other 
sizes. 

When an ~.out file is executed, three logical segments are 
set up: the text segment, the data segment (with uninitial­
ized data, which starts off as all ~, following initial­
ized), and a stack. The text segment begins at ~ in the 
core image; the header is not loaded. If the magic number 
in the header is OMAGIC (0407), it indicates that the text 
segment is not to be write-protected and shared, so the data 
segment is immediately contiguous with the text segment. 
This is the oldest kind of executable program and is rarely 
used. If the magic number is NMAGIC (0410) or ZMAGIC 
(0413), the data segment begins at the first 0 mod 1~24 byte 
boundary following the text segment, and the text segment is 
not writable by the program; if other processes are execut­
ing the same file, they will share the text segment. For 
ZMAGIC format, the text segment begins at a 0 mod 1024 byte 
boundary in the £.out file, the remaining bytes after the 
header in the first block are reserved and should be zero. 
In this case the text and data sizes must both be multiples 
of 1024 bytes, and the pages of the file will be brought 
into the running image as needed, and not pre-loaded as with 
the other formats. This is especially suitable for very 
large programs and is the default format produced by ~(l) • 

The stack will occupy the highest possible locations in the 
core image: growing downwards from 0x7ffff~00. The stack is 
automatically extended as required. The data segment is 
only extended as requested by break.(2) • 

After the header in the file follow the text, data, text 
relocation data relocation, symbol table and string table in 
that order. The text begins at the byte 1024 in the file 
for ZMAGIC format or just after the header for the other 
formats. The N_TXTOFF macro returns this absolute file 
position when given the name of an exec structure as argu­
ment. The data segment is contiguous with the text and 
immediately followed by the text relocation and then the 
data relocation information. The symbol table follows all 
this; its position is computed by the N_SYMOFF macro. 
Finally, the string table immediately follows the symbol 
table at a position which can be gotten easily using 
N_STROFF. The first 4 bytes of the string table are not 
used for string storage, but rather contain the size of the 
string table; this size INCLUDES the 4 bytes, the minimum 
string table size is thus 4. 

The layout of a symbol table entry and the principal flag 
values that distinguish symbol types are given,in the 

3 



A.DUT(S) File Formats 

include file as follows: 

/* 
* Format of a symbol table entry. 
*/ 

struct nlist { 
union { 

char *n_name; /* 
long n_strx; /* 

} n_un; 
unsigned char n_type; /* 
char n_other; 
short n_desc; /* 

A.DUT(S) 

for use when in-core */ -
index into file string table *1 

type flag, i.e. N_TEXT etc; see 

see <stab.h> */ 
unsigned n_value; /* value of this symbol (or sdb of 

} ; 
idefine n_hash 

/* 
* Simple values 
*/ 

idefine 
#define 
#define 
:ff;define 
#define 
idefine 
*define 

N_UNDF 
N_ABS 
N_TEXT 
N_DATA 
N_BSS 
N_COMM 
N_FN 

#define N_EXT 
idefine N_TYPE 

/* 

n_desc 

for n_type. 

0x0 
0x2 
0x4 
0x6 
0x8 
0x12 
0xlf 

01 
0xle 

/* used internally by Id */ 

/* undefined */ 
/* absolute */ 
/* text */ 
/* data */ 
/* bss */ 
/* common (internal to ld) */ 
/* file name symbol */ 

/* external bit, or'ed in */ 
/* mask for all the type bits */ 

* Other 
* These 
*/ 

permanent symbol table entries have some of the N_STAB bit 
are given in <stab.h> 

#define 0xe0 /* if any of these bits set, don't 

/* 
~* Format for namelist values. 
*/ 

#define N_FOFJ.1AT "%f08x'" 

In the ~.QQt file a symbol's n_un.n_strx field gives an 
index into the string table. A n_strx value of 0 indicates 
that no name is associated with a particular symbol table 
entry. The field n_un.n_narne can be used to refer to the 
symbol name only if the program sets this up using n_strx 
and appropriate data from the string table. 

If a symbol's type is undefined external, and the value 
field is non-zero, the symbol is interpreted by the loader 

4 



A.DUT(S) File Formats A.DUT(S) 

1Q as the name of a common region whose size is indicated by 
the value of the symbol. 

The value of a byte in the text or data which is not a por­
tion of a reference to an undefined external symbol is 
exactly that value which will appear in memory when the file 
is executed. If a byte in the text or data involves a 
reference to an undefined external symbol, as indicated by 
the relocation information, then the value stored in the 
file is an offset from the associated external symbol. When 
the file is processed by the link editor and the external 
symbol becomes defined, the value of the symbol will be 
added to the bytes in the file. 

If relocation information is present, it amounts to eight 
bytes per relocatable datum as in the following structure: 

/* 
* Format of a relocation datum. 
*/ 

struct relocation_info { 

} ; 

int r_address; 
unsigned r_symbolnum:24, 

r_pcrel:l, 
r_length:2, 
r_extern:l, 
: 4 ; 

/* address which is relocated */ 
/* local symbol ordinal */ 
/* was relocated pc relative alreac 
/* 0=byte, l=wordi 2=long */ 
/* does not include value of sym rE 
/* nothing, yet */ 

There is no relocation information if a_trsize+a_drsize==0. 
If r_extern is 0, then r_symbolnum is actually a n_type for 
the relocation (i. e. N_TEXT meaning' relative to segment text 
or igin.) 

SEE ALSO 

BUGS 

adb(l), as(l), ld(l), nm(l), sdb(l), stab(S), strip(l) 

Not having the size of the string table in the header is a 
loss, but expanding the header size would have meant 
stripped executable file incompatibility, and we couldn't 
hack this just now. 

S 



ACCT(5) File Formats ACCT(5) 

NAME 
acct - execution accounting file 

SYNOPSIS 
iinclude <sys/acct.h> 

DESCRIPTION 
Acct(2) causes entries to be made into an accounting file 
for each process that terminates. The accounting file is a 
sequence of entries whose layout, as defined by the include 
file is: 

/'* '* Accounting structures 
'* '* jam 810817 
'*1 

typedef unsigned short comp_ti /* "floating pt": 3 bits base 8 exp, 
struct acct 
{ 

} ; 

char 
comp_t 
comp_t 
comp_t 
time_t 
short 
short 
short 
comp_t 
dev_t 
char 

ac_comm[10]; 
ac_utime; 
ac_stime; 
ac_etime; 
ac_btime; 
ac_uid; 
aC_9id i 
ac_mem; 
ac_io; 
ac_tty; 
ac_flag; 

extern struct acct 
extern struct inode 

~define AFORK 
idefine ASU 

01 
02 

/* Accounting command name */ 
/* Accounting user time */ 
/* A~counting system time */ 
/* Accounting elapsed time */ 
/* Beginning time *1 
/* Accounting user ID */ 
/* Accounting group ID */ 
/* average memory usage */ 
/* number of disk 10 blocks */ 
1* control typewriter */ 
/* Accounting flag */ 

acctbuf; 
*acctp;/* inode of accounting file * 

/* has executed fork, but no exec *1 
/* used super-user privileges */ 

If the process does an ~(2), the first 10 characters of 
the filename appear in ac cpu@. The accounting [lag conlains 
bits indicating whether ~(2) was (~v(>r i.lccornp] j f:hed, and 
whether the process ever had Buper-uner privileges. 

6 



ACCT(5} File Formats ACCT(5} 

SEE ALSO 
acct(2}, sa(l} 

7 



ALIASES(S) File Formats ALIASES(S) 

NAAE 
aliases - aliases file for delivermail 

SYNOPSIS 
/usr/lib/aliases 

DESCRIPTION 
This file describes user id aliases that will be used by 
/~/delivermail. It is formatted as a series of lines of 
the form 

name:addrl,addr2, ••• addrn 
The name is the name to alias, and the addri are the 
addresses to send the message to. Lines beginning with 
white space are continuation lines. Lines beginning with 
'i' are comments. 

Aliasing occurs only on local names. Loops can not occur, 
since no message will be sent to any person more than once. 

This is only the raw data file; the actual aliasing informa­
tion is placed into a binary format in the files 
/usr/lib/aliases.dir and /usr/lib/aliases.pag using the pro­
gram newaliases(S). A newaliases command should be executed 
each time the aliases file is changed for the change to take 
effect. 

SEE ALSO 

BUGS 

newaliases(l), dbm(3), delivermail(8) 

Because of restrictions in obm(3) a single alias cannot con­
tain more than about 1000 bytes of information. You can get 
longer aliases by "chaining"; i.e. make the last name in 
the alias by a dummy name which is a continuation alias. 

8 



AR(S) File Formats AR(S) 

NMIE 
ar - archive (library) file format 

SYNOPSIS 
iinclude <ar.h> 

DESCRIPTION 
N.B.: This archive format is new to this distribution. See 
old(8) and arcv(l) for programs to deal with the old format. 

The archive command ar is used to combine several files into 
one. Archives are used mainly as libraries to be searched 
by the link-editor Id. 

A file produced by ar has a magic string at the start, fol­
lowed by the constituent files, each preceded by a file 
header. The magic number and header layout as aescribed in 
the include file are: 

idefine AFJ.IAG n!<arch>\n" 
idefine SARHAG 8 

idefine ARFMAG n '\nn 

struct ar_ hdr { 
char ar_name[161i 
char ar_date[121i 
char ar_uid[61j 
char ar_gid[6]j 
char ar_mode[81j 
char ar_size[10]i 
char ar_fmag[2] j 

} ; 

The name is a blank-padded string. The ar fmag field con­
tains ARFr·lAG to help ver ify the presence of a header. The 
other fields are left-adjusted, blank-padded numbers. They 
are decimal except for ar mode, which is octal. The date is 
the modification date of the file at the time of its inser­
tion into the archive. 

Each file begins on a even (0 mod 2) boundary; a new-line is 
inserted between files if necessary. Nevertheless the size 
given reflects the actual size of the file exclusive of 

9 



AR(S) File Formats AR(S) 

padding. 

There is no provision for empty areas in an archive file. 

The encoding of the header is portable across machines. If 
an archive contains printable files, the archive itself is 
printable. 

SEE ALSO 

BUGS 

a r (1), ld (1), nm (1) 

File names lose trailing blanks. Most software dealing with 
archives takes even an included blank as a name terminator. 

10 



CORE(S) File Formats CORE(S) 

NME 
core - format of memory image file 

DESCRIPTION 
UNIX writes out a memory image of a terminated process when 
any of various errors occur. See signal(2) for the list of 
reasons; the most common are memory violations, illegal 
instructions, bus errors, and user-generated quit signals. 
The memory image is called 'core' and is written in the 
process's working directory (provided it can be; normal 
access controls apply). 

The maximum size of a core file is limited by vlimit(2). 
Files which would be larger than the limit are not created. 

The core file consists of the u. area, which currently con­
sists of 6 pages, beginning with a user structure as given 
in /usr/include/sys/user.h. The kernel stack grows from the 
end of this 6 page region. The remainder of the core file 
consists first of the data pages and then the stack pages of 
the process image. 

In general the debugger adb(l) is sufficient to deal with 
core images. 

SEE ALSO 
adb(l), signal(2) , vlimit(2) 

11 



DIR(5) File Formats DIR(5} 

NAr-1E 
dir - format of directories 

SYNOPSIS 
iinclude <sys/types.h> 
#include <sys/dir.h> 

DESCRIPTION 
A directory behaves exactly like an ordinary file, save that 
no user may write into a directory. The fact that a file is 
a directory is indicated by a bit in the flag word of its 
i-node entry; see filsys(5). The structure of a directory 
entry as given in the include file is: 

iifndef DIRSIZ 
idefine DIRSIZ 14 
iendif 
struct direct 
{ 

} ; 

d_ino; 
d_narne[DIRSIZ]; 

By convention, the first two entries in each directory are 
for '.' and ' •••• The first is an entry for the directory 
itself. The second is for the parent directory. The mean­
ing of ' •• ' is modified for the root directory of the master 
file system" .}S 3 1 "(" " "I"" "" ") ,"" "" "" where ' •• 
has the same meaning as ' • 

SEE ALSO 
filsys(5} 

12 



DUMP(S) File Formats DUI1P(S) 

NAME 
dump, ddate - incremental dump format 

SYNOPSIS 
iinclude <sys/types.h> 
iinclude <sys/ino.h> 
#include <dumprestor.h> 

DESCRIPTION 
Tapes used by dump and restor(l) contain: 

a header record 
two groups of bit map records 
a group of records describing directories 
a group of records describing files 

The format of the header record and of the first record of 
each description as given in the include file <dumprestor.h> 
is: 

idefine NTREC 10 
idefine ~1LEN 16 
idefine MSIZ 4096 

#define TS_TAPE 1 
idefine TS_INODE 2 
idefine TS_BITS 3 
#define TS_ADDR 4 
idefine TS_END 5 
#define TS_CLRI 6 
#define MAGIC ( int) 60011 
#define CHECKsurwi ( int) 84446 

struct spcl 
int 
time_t 
time_t 
int 
daddr_t 
ino_t 
int 
int 
struct 
int 
char 

} spc1j 

{ 
c_typej 

c_datej 
c_ddate; 

c_vo1umej 
c_tapea; 
c_inurnberj 

c_magic; 
c_checksum; 

dinode 
c_countj 
c_addr[BSIZE] j 

struct 
char 
char 

idates { 
id_name[16]j 
id_incnoj 

id_ddatej 

13 



DUMP(S) 

} ; 

idefine 

idefine 

File Formats DUMP(S) 

DUMPOUTFMT "%-16s %c %s" /* for printf */ 
/* name, incno, ctime(date) */ 

DUMPINFMT "%16s %c %[A\n]\n" /* inverse for scanf */ 

NTREC is the number of 1024 byte records in a physical tape 
block. MLEN is the number of bits in a bit map word. MSIZ 
is the number of bit map words. 

The TS entries are used in the c type field to indicate 
what sort of header this is. The types and their meanings 
are as follows: 

TS_ADDR 

TS_END 
TS_CLRI 

MAGIC 
CHECKSUM 

Tape volume label 
A file or directory follows. The c dinode 
field is a copy of the disk inode and contains 
bits telling what sort of file this is. 
A bit map follows. This bit map has a one bit 
for each inode that was dumped. 
A subrecord of a file description. See c addr 
below. . 
End of tape record. 
A bit map follows. This bit map contains a 
zero bit for all inodes that were empty on the 
file system when dumped. 
All header records have this number in c magic. 
Header records checksum to this value. 

The fields of the header structure are as follows: 

c_type 
c_date 
c ddate 
c=volume 
c_tapea 
c_inumber 

The type of the header. 
The date the dump was taken. 
The date the file system was dumped from. 
The current volume number of the dump. 
The current number of this (1~24-byte) record. 
The number of the inode being dumped if this is 
of type TS INODE. 
This contains the value M~ above, truncated 
as needed. 
This contains whatever value is needed to make 
the record sum to CHECKSUM. 
This is a copy of the inode as it appears on 
the file system; see fil~(S). 
The count of characters in c addr. 
An array of characters describing the blocks of 
the dumped file. A character is zero if the 
block associated with that character was not 
pres€nt on the file system, otherwise the char­
acter is non-zero. If the block was not 
present on the file system, no block was 

14 



DUMP(S) File Formats DUMP(S) 

dumped; the block will be restored as a hole in 
the file. If there is not sufficient space in 
this record to describe all of the blocks in a 
file, TS ADDR records will be scattered through 
the file, each one picking up where the last 
left off. 

Each volume except the last ends with a tapemark (read as an 
end of file). The last volume ends with a TS END record and 
then the tapemark. 

The structure idates describes an entry of the file 
/etc/ddate where dump history is kept. The fields of the 
structure are: 

id_name The dumped filesystem is '/dev/id narn'. 
id_incno The level number of the dump tape; see dump(l). 
id_ddate The date of the incremental dump in system format 

see types(S). 

FILES 
/etc/ddate 

SEE ALSO 
dump(S), dumpdir(8), restor(8), filsys(S), types(S) 

15 



ENVIRON(S) File Formats ENVIRON{S) 

N~E 

environ - user environment 

SYNOPSIS 
extern char **environ; 

DESCRIPTION 
An array of strings called the 'environment' is made avail­
able by exec(2) when a process begins. By convention these 
strings have the form 'name=value'. The following names are 
used by various commands: 

PATH 

HOME 

TERM 

SHELL 

The sequence of directory prefixes that sh, ~, 
nice(l), etc., apply in searching for a file known 
by an incomplete path name. The prefixes are 
separated by':'. Login(l) sets 
PATH=:/usr/ucb:/bin:/usr/bin. 

A user's login directory, set by loain(l) from the 
password file passwd(S) • 

The kind of terminal for" which output is to be 
prepared. This information is used by commands, 
such as nroff or plot(l), which may exploit special 
terminal capabilities. See /etc/termcap 
(termcap(S» for a list of terminal types. 

The file name of the users login shell. 

TERMCAP The string describing the terminal in TERM, or the 
name of the termcap file, see termcap(S) ,termlib(3) • 

EXINIT A startup list of commands read by ~(l), edit(l), 
and vi(l). 

USER The login name of the user. 

Further names may be placed in the environment by the export 
command and 'name=value ' arguments in sh(l), or by the 
setenv command if you use csh(l). Arguments may also be 
placed in the environment at the point of an ~(2). It is 
unwise to conflict with certain shell variables that are 
frequently exported by '.profile' files: MAIL, PSI, PS2, 
IFS. 

SEE ALSO 
csh(l), ex(l), login(l), sh(l), exec(2), system(3), term­
lib(3), termcap(5), terrn(7) 

16 



GROUP(S) File Formats GROUP(S) 

NAME 
group - group file 

DESCRIPTION 
Group contains for each group the following information: 

group name 
encrypted password 
numerical group ID 
a comma separated list of all users allowed in the group 

This is an ASCII file. The fields are separated by colons; 
Each group is separated from the next by a new-line. If the 
password field is null, no password is demanded. 

This file resides in directory /etc. Because of the 
encrypted passwords, it can and does have general read per­
mission and can be used, for example, to map numerical group 
ID's to names. 

FILES 
/etc/group 

SEE ALSO 
newgrp(l), crypt(3), passwd(l), passwd(S) 

BUGS 
The passwd(l) command won't change the passwords. 

17 



MTAB(5) File Formats MTAB(5) 

NAAE 
mtab - mounted file system table 

DESCRIPTION 
Mtab resides in directory /etc and contains a table of dev­
ices mounted by the mount command. Uroount removes entries. 

Each entry is 64 bytes long; the first 32 are the null­
padded name of the place where the special file is mounted; 
the second 32 are the null-padded name of the special file. 
The special file has all its directories stripped away; that 
is, everything through the last 'Ii is thrown away. 

This table is present only so people can look at it. It 
does not matter to mount if there are duplicated entries nor 
to urnount if a name cannot be found. 

FILES 
/etc/mtab 

SEE ALSO 
mount(8) 

18 



PASSvlD (5) File Formats PASSWD(5) 

NAME 
passwd - password file 

DESCRIPTION 
Passwd contains for each user the following information: 

name (login name, contains no upper case) 
encrypted password 
numerical user ID 
numerical group ID 
user's real name, office, extension, horne phone. 
initial working directory 
program to use as Shell 

The name may contain '&', meaning insert the login name. 
This information is set by the chfn(l) command and used by 
the finger(l) command. ----

This is an ASCII file. Each field within each user's entry 
is separated from the next by a colon. Each user is 
separated from the next by a new-line. If the password 
field is null, no password is demanded; if the Shell field 
is null, then /bin/sh is used. 

This file resides in directory /etc. Because of the . 
encrypted passwords, it can and does have general read per­
mission and can be used, for example, to map numerical user 
ID's to names. 

Appropriate precautions must be taken to lock the file 
against changes if it is to be edit~d with a text editor; 
vipw(8) does the necessary locking. 

FILES 
/etc/passwd 

SEE ALSO 

BUGS 

getpwent(3), 10gin(1), crypt(3), passwd(l) , group(5), 
chfn(l), finger(l), vipw(8), adduser(8) 

A binary indexed file format should be available for fast 
access. 

User information (name, office, etc.) should be stored else­
where. 

19 



TTYS(5) File Formats TTYS(5) 

NAAE 
ttys - terminal initialization data 

DESCRIPTION 
The ttys file is read by the init program and specifies 
which terminal special files are to have a process created 
for them which will allow people to log in. It contains one 
line per special file. 

The first character of a line is either '0 1 or '11; the 
former causes the line to be ignored, the latter causes it 
to be effective. The second character is used as an argu­
ment to getty(8), which performs such tasks as baud-rate 
recognition, reading the login name, and calling loain. For 
normal lines, the character is '0 1

; other characters can be 
used, for example, with hard-wired terminals where speed 
recognition is unnecessary or which have special charac­
teristics. (Getty will have to be fixed in such cases.) The 
remainder of the line is the terminalls entry in the device 
directory, /dev. 

FILES 
/etc/ttys 

SEE ALSO 
init(8), getty(S), login(l) 

20 



TTYTYPE (5) File Formats TTYTYPE(5) 

NAME 
ttytype - data base of terminal types by port 

SYNOPSIS 
/etc/ttytype 

DESCRIPTION 
Ttytype is a database containing, for each tty port on the 
system, the kind of t~rminal that is attached to it. There 
is one line per port, containing the terminal kind (as a 
name listed in termcap (5», a space, and the name of the 
tty, minus /dev/. 

This information is read by tset(l) and by login(l) to ini­
tialize the TERM variable at login time. 

SEE ALSO 
tset(l), login(l) 

BUGS 
Some lines are merely known as "dialup" or "plugboard". 

21 



TYPES(S) File Formats TYPES(S) 

NPJllE 
types - primitive system data types 

SYNOPSIS 
iinclude <sys/types.h> 

DESCRIPTION 
The data types defined in the include file are used in UNIX 
system code; some data of these types are accessible to user 
code: 

/* a la types.h 4.1 81/03/21 */ 

/* 
* Basic system types and major/minor device constructing/busting macrc 
*/ 

/* major part of a device */ 
idefine major (x) { (int) {( (unsigned) (x) »8) &0377» 

/* minor part of a device */ 
#def ine minor (x) ( (int) ( (x) &0377) ) 

/* make a d~vice number */ 
idefine makedev(x,y) ({dev_t) ({ (x) «8) r (y») 

typedef unsigned char 
typedef unsigned short 
typedef unsigned int 
typedef unsigned long 

u_char; 
u_short; 
u_int; 
u_long; 

/* SHOULD USE long RATHER THAN int HERE BUT IT WOULD GIVE LINT ON THE K 
/* GASTRIC DISTRESS AND DON'T HAVE TIME TO FIX THAT JUST NOW */ 
typedef struct _physadr { int r[l]; } *physadr; 
typedef int daddr_t; 
typedef char * caddr_t; 
typedef u_short ino_t; 
typedef int time_ti 
typedef int label_t[13]j 
typedef short dev_t; 
typedef int off_ti 
typedef int mem_t; 
typedef 11_1ong tim_id_t; 
typedef int (*faddr_t) () ; 

22 

/* regs d2-d7, a2-a7, pc */ 

/* timeout id */ 
/* Pointer to a function */ 



TYPES (5) File Formats TYPES(S) 

#ifdef KERNEL 
typedef int vector_t; /* interrupt vectors */ 
~aefine NULLVECTOR «vector_t) -1) 
#endif KERNEL 

typedef 
#ifndef 
idefine 
#define 
#endif 

u_char 
YES 
YES 1 
NO 0 
YES 

#define HAX_LONG 0x7FFFFFFFL 
#define MAX_INT 0x7FFFFFFF 
#define MAX_SHORT 0x7FFF 
idefine MAX_CHAR 0x7F 

idefine M~~_U_LONG 0xFFFFFFFFL 
#define HAX_U_INT 0xFFFFFFFF 
idefine MAX_U_SHORT 0xFFFF 
idefine HAX_U_CHAR 0xFF 

#ifndef lint 
idefine void int 
iendif 

/* so berkeley void coersions will work */ 

The form daddr t is used for disk addresses except in an i­
node on disk, see filsys(5). Times are encoded in seconds 
since 00:00:00 GMT, January 1, 1970. The major and minor 
parts of a device code specify kind and unit number of a 
device and are installation-dependent. Offsets are measured 
in bytes from the beginning of a file. The label t vari­
ables are used to save the processor state while another 
process is running. 

SEE ALSO 
filsys(S), time(2), lseek(2), adb(l) 

23 



UTMP{5) File Formats UTf.'lP (5) 

NAME 
utmp, wtmp - login records 

SYNOPSIS 
iinclude <utmp.h> 

DESCRIPTION 

FILES 

The utmp file allows one to discover information about who 
is currently using UNIX. The file is a sequence of entries 
with the following structure declared in the include file: 

struct utmp { 

} ; 

char ut_line[8]; 
char ut_name[8]; 
long ut_time; 

/* tty name */ 
/* user id */ 

/* time on */ 

This structure gives the name of the special file associated 
with the user's terminal, the user's login name, and the 
time of the login in the form of ~(2) • 

The ~ file records all logins and logouts. Its format is 
exactly like utmp except that a null user name indicates a 
logout on the associated terminal. Furthermore, the termi­
nal name ,-, indicates that the system was rebooted at the 
indicated time; the adjacent pair of entries with terminal 
names 'I' and '}' indicate the system-maintained time just 
before and just after a date command has changed the 
system's idea of the time. 

Wtmp is maintained by locin(l) and init(8). Neither of 
these programs creates the file, so if it is removed 
record-keeping is turned off. It is summarized by ac(8). 

/etc/utmp 
/usr/adm/wtmp 

SEE ALSO 
login(l), init(8), who(l), ac(8) 

24 



UUENCODE(5) File Formats UUENCODE(5) 

NAME 
uuencode - format of an encoded uuencode file 

DESCRIPTION 
Files output by uuencode(l) consist of a header line, fol­
lowed by a number of body lines, and a trailer line. 
Uudecode(l) will ignore any lines preceding the header or 
following the trailer. Lines preceding a header must not, 
of course, look like a header. 

The header line is distinguished by having the first 6 char­
acters "begin" The word begin is followed by a mode (in 
octal), and a string which names the remote file. A space 
separates the three items in the header line. 

The body consists of a number of lines, each at most 62 
characters long (including the trailing newline). These 
consist of a character count, followed by encoded charac­
ters, followed by a newline. The character count is a sin­
gle printing character, and represents an integer, the 
number of bytes the rest of the line represents. Such 
integers are always in the range from 0 to 63 and can be 
determined by subtracting the character space (octal 40) 
from the character. 

Groups of 3 bytes are stored in 4 characters, 6 bits per 
character. All are offset by a space to make the characters 
printing. The last line may be shorter than the normal 45 
bytes. If the size is not a multiple of 3, this fact can be 
determined by the value of the count on the last line. 
Extra garbage will be included to make the character count a 
multiple of 4. The body is terminated by a line with a 
count of zero. This line consists of one ASCII space. 

The trailer line consists of "end" on a line by itself. 

SEE ALSO 
uuencode(l) , uudecode(l) , uusend(l), uucp(l) , mail(l) 

25 



WTMP(5) File Formats WTMP(5) 

N~E 

wtmp - user login history 

DESCRIPTION 
This file records all logins and logouts. Its format is 
exactly like ~(5) except that a null user name indicates 
a logout on the associated typewriter. Furthermore, the 
typewriter name '-I indicates that the system was rebooted 
at the indicated time; the adjacent pair of entries with 
typewriter names 'II and '}' indicate the system-maintained 
time just before and just after a date command has changed 
the system's idea of the time. 

Wtrnp is maintained by loain(l) and init(S). Neither of 
these programs creates the file, so if it is removed 
record-keeping is turned off. It is summarized by ac(l). 

FILES 
/usr/adm/wtmp 

SEE ALSO 
utmp(S), login(l) , init(8), ac(l), who(l) 

26 


