
LANGUAGE
DEvEWPMENT TOOLS .

DEVEWPMENT TOOLS
FOR FORTUNE LANGUAGES

I: FORTUNE3!~~o~B~u~a~ Belmont, CA 94002

c'
Language Development Tools Guide

I: 1:0 RT LJ N E 3~0~a~:!u~a~
Belmont, CA 94002

Copyright @ 1984
reserved.

Fortune Systems Corporation. All rights

No part of this document may be copied, photocopied,reproduced,
translated, or reduced to any electronic medium or machine read­
able form without prior.oonsent in writing from Fortune Systems
Corporation~ The information in this manual may be ~sed only
unde the terms and conditions of separate Fortune Systems Cor­
poration license agreements.

UNIX is a registered trademark of Bell Laboratories.
Fortune 32:16 is a trademark of Fortune Systems Corporation.
FOR:PRO is a trademark of Fortune Systems Corporation for the
Fortune 32:16 Operating System.

Printed in the U.S.A.
1 234 567 890

Ordering Laaguage Deyelopileat Tools

Order No.: 1002146-01 February 1984 for manual with disk
1002145-01 February 1984 for manual without disk

Consult an authorized Fortune Systems Representative for copies
of manuals and technical information.

Disolalmer or Warraaty aad Liability

No representations or warranties, expressed or implied, of any
kind are made by or with respect to anything in this manual~ By
way of example, but not limitation, no representations or warran­
ti~s of merchantability or fitness for any particular purpose are
made by or with respect to anything in this manual.

In no event shall Fortune Systems Corporation be liable for any
incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or
related to this manual or any use thereof even if Fortune Systems
Corporation has been advised, knew -or should have known of the
possibility of such damages. Fortune Systems Corporation shall
not be held to any liability with respect to any claim on account
of, or ariSing from, the manual or any use thereof.

For full details of the terms and conditions for using Fortune
software, please refer to the Fortune Systems Corporation Custo­
mer Software License Agreement.

ii

c

o

()

C; How to Use This Guide

Fortune Systems Corporation offers three ~ystems languages for
development purposes: C, FORTRAN, and Pascal. The Langu~~
~evelopment IQol§ is a language-independent companion document
to the guides that accompany the compiler disks for these
languages. It is designed to meet the needs of experienced pro­
grammers for programming in the FOR:PRO environment. (FOR:PRO is
an enhanced version of Bell Laboratories' Version 7 UNIX operat­
ing system, modified to run on Fortune comput~rs.)

1.9.ngua~ DeveloID!l~t Tool§ describes the software tools pro­
vided on the Language Development Tools set of disks with which
the guide is shipped. These tools aid in the efficient manage­
ment of programs and files in any or all of the three systems
languages.

ORGANIZATION OF THIS BOOK

Langu~ Deyelopment 1QQl§ contains five chapters. Chapters 1
and 2 address the needs of both experienced and novice program­
mers. Chapters 3 through 5 are intended for experienced system
developers. Each chapter is summarized below.

L.9.ngygg~ ~velopment Tool§ is not intended as a language refer­
ence or tutorial. If you need instructions on a particular
language, refer to the manuals that accompany the compiler disk
for the language.

• Chapter 1 contains procedures for installing and backing
up the Language Development Tools and language compiler
disks.

• Chapter 2 explains how to create a program using ed, the
FOR:PRO line editor.

• Chapter 3 describes the FOR:PRO tools archive, ranllb,
strip, and make. With these tools you can create and
update library files; convert these files into random
libraries for faster loading; remove the symbol table
attached to a program for debugging purposes; and make up­
to-da~e versions of programs consisting of many files.

• Chapter 4 documents the size, name, and ctags tools,
which aid you in determining the size and names of object
files and the location of functions in source files.

iii

• Chapter 5 provides a detailed explanation of the Fortune
Symbolic Debugger (fdb). It includes fdb commands and
special rules, instructions for debugger use, and debugger
messages.

iv

----_._- ------ -- _.-_._------ -_._- -----_._--------

C.
"·\ .)

o

c

C Contents

THE LANGUAGE DEVELOPMENT TOOLS: AN OVERVIEW i-1

Chapter 1 INSTALLING THE LANGUAGE DEVELOPMENT TOOLS 1-1

Setting the System Configuration 1-1
Installing the Programs and Files on the Hard Disk 1-1
Formatting and Copying Disks 1-2
Backing Up Master Disks 1-2

Chapter 2 ENTERING AND EDITING PROGRAMS 2-1

ed: Invoking the Editor 2-1
Creating a New File with ed 2-1
Editing Text Using ed 2-2

Chapter 3

A Sample ed Session 2~5

MANAGING FILES AND PROGRAMS 3-1

archive (ar): Creating Up-to-Date Library Files
ranlib: Loading Archive Files More Rapidly 3-3
strip: Reducing the Size of a Debugged Program
make: Creating Up-to-Date Versions of Programs

Chapter 4 EXAMINING SOURCE AND OBJECT CODE 4-1

3-1

3-4
3-5

size: Determining the Size of an Object File 4-1
name (nm): Examining the Symbol Table Names of 4-1

Object Files
ctags: Determining the Locations of Functions 4-3

in Source Files

Chapter 5 DEBUGGING PROGRAMS 5-1

Preparing a Program
Running fdb 5-1
Special fdb Rules
Using fdb Commands
Special Characters
Debugger Messages

for Debugging

5-2
5-5
5-19

5-20

v

5-1

-~~""~"-~------
--~-.... -... ----~-~--- -- - -- - ,- ~-~~~~" "-" - ~---- .. "-----

o

THE
" LANGUAGE DEVELOPMENT

TOOLS: AN OVERVIEW

o

o

--- - ------------------- ---- .-.~~ --

c;

This section presents an overview of the Language
Tools and the three system languages. Conventions
document are summarized to prepare you for using the
guide.

Development
used in this
rest of this

THE TOOLS

The Language Development Tools are a set of commands and support­
ing files for use in compiling, executing, and debugging programs
in the FOR:PRO environment.

The Single-User FOR:PRO set is shipped with every Fortune com­
puter and contains all of the features necessary to start using
the Fortune system.

The Development Utilities set extends the capabilities of FOR:PRO
with additional features that are useful for programmers. The
Development Utilities supplements the Language Development Tools
and is available as a separate software package.

The Language Development Tools set, which this guide addresses,
is for systems and applications programmers. The software that
is provided with this binder can assist you in the development of
programs. These tools are designed for managing programs and
files more efficiently, for examining source and object code, and
for debugging programs. The set of tools include the following
items.

E2x managing files sng RXQgrams

make

archive

ranlib

strip

2/84

Produces final versions of programs that are com­
posed of many separate files and files that require
many complex commands in their production.

Creates and updates libraries of object files
used by the linking loader.

Converts archives to a random library for faster
loading by the linking loader.

Saves space by removing the symbol table and the
relocation bits that are attached to the output
file by the assembler and loader.

i-1 LDT Guide

f.Q.J: exami-n1n& source and obj~ct cod~

size Displays the size of an object file in bytes.

name Prints the name list (symbol table) of each
object file in the argument list.

cta,. Creates a "tags" file that gives the line number
locations of specified functions in e, FORTRAN, and
Pascal source programs.

f2.r: d~bugg1n& programs

(db The Fortune symbolic debugger is a high-level
debugging tool designed to be language-independent.
It can therefore serve as a debugger for the com­
piled high-level languages supported on the Fortune
system.

THE LANGUAGES

The three languages available on the Fortune system are: e, FOR­
TRAN, and Pascal.

C'" . '

e is a general purpose programming language that is perhaps best ~
described as a "powerful assembly language. If It offers the pro- 0'
grammer the advantages of coding brevity, a wide variety of data
structures, modern flow-control constructs, fast floating-point,
single and double processor, and operators. e is well suited to
system software development (most of UNIX as well as Fortune's
FOR:PRO are written in e) and has been used successfully in a
wide range of commercial, scientific, and data base applications.

FORTRAN is a high level, problem oriented programming language
that allows the programmer to communicate with the Fortune com-
puter in a semi-English scientific language. When using FORTRAN
(an acronym for Formula Translator), the programmer defines a
problem through mathematical relationships and formulas. (Ratfor
and EFL programs can also be run on a Fortune system with an f77
compiler. Fortune offers the processors for these FORTRAN
dialects, but does not support them. Documentation must be
obtained from Bell Laboratories' UNIX programmer's manuals. Rat-
for is documented in Volume 2b of that set; EFL is in volume 2c.)

Pascal is a general purpose, block-structured programming
language that promotes the writing of well-structured, readable
programs. Pascal encourages and supports advanced program design
approaches such as top-down program and data structure design,
structured coding, program modularity, stepwise refinement, and
team work on programming.

LOT Guide i-2 2/84

-------------~--~ -------------

c

c Each of these languages is a separate software and documentation
package. However, one set of Language Development Tools supports
all three languages. The guides to each language are thus
designed to be inserted into this binder. See Figure i-1 for an
overview of the software and documentation available in the
entire Language Development Tools set.

CONVENTIONS USED IN THIS GUIDE

This guide ~nd the three language guides are written for program­
mers. These books do not attempt to teach the basics of program­
ming. A list of reference texts is provided with each guide for
new users of any of the three languages.

Throughout the manual, you will find examples and descriptions of
syntax for commands and other elements of the languages. This
guide assumes you are using the standard Bourne shell, hence the
$ prompt, indicating the start of a command line. In these
examples, the following conventions are used:

• Commands to FOR:PRO are
letters, as is the case
ally some of the command
ful to type the commands

almost always entirely lowercase
with most UNIX commands. Occasion­
options maybe uppercase. Be care­
exactly as shown in the text.

• In syntax statements, any input that you must type is
shown in boldface. Examples and filenames are always in
boldface.

• Words that you must replace with your own text are undgr=
lined. Such items are also referred to as command-line
parameters.

• Brackets [] indicate one or more options that you mayor
may not want to use.

• The hyphen preceding an option, as in the command

18 .. 1

must always be typed. Hyphens on a command line signal an
option.

• Braces {} indicate that' at least one of the enclosed
options must be included in the command.

• Ellipses
repeated.

• • • mean that the preceding option may be

• Commands are ended and executed by pressing the Return
key.

2/84 i-3 LDT Guide

The Language Development Tools set includes this binder, text, and software.

Each language comes with a language guide. Insert your guide (or guides) in
this binder.

Figure i-1. Language Development Tools Set

LOT Guide 1-4

o

c

o
2/84

----- ------ -- - ------------------_._---------- --------_._._------- -- -------------.----

('

- - ---------------------------- - -- ---- -------

INSTALLING
THE LANGUAGE 1 DEVELOPMENT TOOLS

c

To install the Language Development Tools, follow the procedures
in this chapter.

SETTING THE SYSTEM CONFIGURATION

To install the Language Development Tools and/or the language
compilers, you may need to reconfigure your Fortune system.

If your system was configured to support the Language Development
Tools or compilers during the installation of the FOR:PRO 1.7
operating system, it will not be necessary to make any changes.

On the Configuration menu, the "Max Process Size" must be set to
at least 256K and the "Appx n Users" must be set to the number of
terminals on your system. You should also review the number of
swap units for which your system is configured.

Information on setting the system configuration is provided in
the FOBiPBQ Install~tlon InstJ:Yctions. Refer to Chapter 1 on
"Determining SWAP Space Requirements" and Chapter 6, "Changing
the Configuration Menu."

INSTALLING THE PROGRAMS AND FILES ON THE HARD DISK

Before you use any of the system programming languages (C, FOR­
TRAN, or Pascal), you must install the programs and files from
the master flexible disks to the hard disk on the system you are
using. You need a minimum 512K RAM memory configuration to use
the languages.

To install the programs and files, log in as manager, and use the
menu system as follows:

1. On the Global menu, select S5 Product Matntenaftce and press
the Return key.

2. Enter t for the "Install" selection and press the Return
key.

3. Insert the Language Development Tools flexible disk in the
flexible disk drive device and press Return.

2/84 1-1 LDT Guide

4. Enter 1 when asked if you want to proceed with installation
and whether the max process size is 256K.

5. Remove the Language Development Tools flexible disk when you
receive the message that the installation is successfully
completed. An error message will appear if the installation
is not successful.

6. Repeat this process with the language compiler disk(s).

FORMATTING AND COPYING DISKS

Make a copy of your software as soon as possible after it has
been installed on the hard disk. Use the procedure below to for­
mat one or more blank flexible disks, and then copy your software
onto it (them) from your master disk. To perform this procedure
you must be logged in as manager.

1. On the Global menu, select S1 System Utilities, and press
the Return key.

2. Next, select 32 Fermat Flex1ble Disk on the System Utili­
ties menu.

3. Insert the flexible disk that is to be formatted.

4. Enter y to the question, "Do you want to continue?"

5. When you receive the completion message, either remove the
flexible disk or leave it in the drive if you are copying it
as the next operation.

BACKING UP MASTER DISKS

This procedure is used to back up your master disks.

1. On the Global menu, select S5 Produat Maintenanoe and press
the Return key.

2. On this new menu, select b for back up.

3. Enter:

ds for the development set
cc for the C compiler
f11 for the FORTRAN compiler
pc for the Pascal compiler

4. Answer y to the question, "Do you want to continue?"

5. Insert a formatted disk and press the Return key.

LDT Guide 1-2 2/84

--------------------------"~-"-"-- -

c

o

o

C 6. When you receive the completion message, remove the disk.

7. Repeat the process to back up each compiler.

2/84 1-3 LDT Guide

c

ENTERING AND
2 EDITING PROGRAMS

c

c

Two basic types of text editors are available on the FOR:PRO
operating system: line editors and screen editors. Line editors
allow you to oreate text and then edit it a line at a time. With
screen editors you can edit text a screenful at a time, taking
advantage of the characteristics of the video screen.

The screen editor, Y1, is provided with the Development Utili­
ties set. The line editor, ed, is the text editor available on
the FOR:PRO Single-User set. It's easy to learn and adequate for
creating simple ASCII text files.

This chapter describes the basic steps in using ed and the com­
mands associated with it.

To do extensive text formatting on a file created with ed, use
the commands associated with the text formatting program Drott.
This program is available with the Development Utilities Product.
Instructions for its use are included in the FORlPRO
~QgLgmmeL~~ ManY~l. For more information on the text editor
ed, see, lnkoduc.tlQn to FORlPRO, ChgQ~ 1, '!!:Ib~ Shell
EnYiLQn~. "

ed: INVOKING THE EDITOR

To use ed, you should be at the command level. From there,
invoke ed like any other FOR:PRO command, using the syntax:

$ ed filename

Use this syntax whether you are creating a new file or editing an
existing one.

CREATING A NEW FILE WITH ed

The ed editor has two modes of operation: the appeDd mode
creat~s text, and the edit mode modifies text. To create a new
file, first type ed and the name of the file as shown above.
The system responds to this command with:

?filename

This response indicates that this is a new file. The? prompt
indicates that you are in the edit mode.

2/84 2-1 LDT Guide

To enter the append mode, type an a and press the Ret.urn key. 0
Once you are in append mode, you simply type the text you want to
include in the file.

If you make a mistake while typing, you can correct the mistake,
provided it is on the current line. Use the Backspace key to
move the cursor over the mistake; this action erases the text.
You can then retype the text as you want it.

To leave the append mode, type a period at the beginning of a new
line and then press the Ret.urn key.

At this point, you can either edit the file or save it for modif­
ication at a later time. If you don't plan to edit the file
immediately after creating it, save its contents by issuing a w
command. This command writes the current version of the file
onto the hard disk. Type a q to leave ed and return to the
shell.

You should be aware of the following rules when creating files:

First, filenames must not be longer than 14 characters and must
not begin with the following special characters.

, $ > < ? • & ; •

Second, FOR:PRO, like all UNIX systems, distinguishes between
uppercase and lowercase letters, so type filenames carefully.

Last, be aware that the cursor control keys (grey keys with
arrows) do not work in ed.

EDITING TEXT USING ed

To modify existing files, you can use some of the ed single­
character commands to change text on a line-by-line basis. The
ed editor offers a full range of commands; those that you will
use most often are described in Table 2-1. (For a complete list,
see the FQRiPBO P,ro&.!:emmer's Manual.)

LDT Guide 2-2 2/84

o

o

C' Table 2-1. Table of ed Commands

Command

a

d

1

p

q

a

2/84

Desoription

Appends text after the ourrent line. This is the
same command that is used when creating a file. The
syntax of the a oommand is

(ourrent line)
a <return>
(Rew text--a. lIany 11nea aa needed)
• <return>

Deletes the text in the indioated line or lines. The
syntax of d is

[11ne number]d

or

[11ne aUllberJ,[11ne number]d

Inserts text above the ourrent line. You oan insert
as much text as neoessary, indioating the end of text
by typing a period on the line below the last line of
text, followed by a RETURN. The syntax of 1 is

1 <return>
(Rew text ... ·aa many 11nes a. needed)
• <returrt>

Prints on the soreen the line or range of lines
specified. The syntax of , is

[liMe number]p
[11ne number],[11n. number],

Use the $ symbol to specify the last line of the
file. You oan also print the contents of a line by
typing that line number, such as 3.

Quits the ed editor and returns to the shell.

Replaoes a new string of text for an old string in
the given line, in a range of lines, or throughout the
entire file.

2-3 LDT Guide'

Command

u

v

Iteltl

$

+[nn]

-[nn]

nn

LOT Guide

Description

Use the following format to change the current line of
text. The g option indicates that you want to make
the indicated change to every occurrence of old.text
on that line.

s/old.text/nev.text/[g]

Use this format to change text over a range of lines
indicated by X,Y:

X,y a/old.text/aew.textl

The format below adds the new text string to the begin­
ning of the current line:

a/--/aevtextl

This format adds the new text string to the end of
current line:

Is/$/ltevtext

the

"Undoes" the results of the last editing command
issued at the current line. It applies only to editing
commands that may have modified the line. The contents
of the line are restored to their state before the last
command was issued.

Writes the contents of the file to the hard disk.

Searches for the characters between the slashes. (If
you need to use slashes in the text, type one backslash
before the slash, as in: \1 .)

Moves you to the last line of a file and prints its
contents.

Moves you from the current line to the next line;
with the nn option, this command moves you forward nn
lines.

Moves you from the current line to the preceding
line; the an option moves you backwards nn lines
towards the top of th. file.

Moves you to the line number nn and prints that
line.

2-4 2/84

o

c'

A SAMPLE ed SESSION

If you do not have any files to experiment with, you can create
the following sample file to tryout ed.

Begin the process by typing the follo~ing:

$ ed file.p

The system responds:

?file.p

Enter the append mode by typing a and pressing the Return
key. You won't get any further system responses until you leave
the append mode.

Type the following short Pascal program:

pro' hello(output);
begin
writ~ln('Hello Universe')
end.

The single period on the last line of the file represents the end
of text. Now type 1,$ p to display the entire file.

Type w to write the text you just typed onto the hard disk.
The system responds with a number, representing the number of
characters (bytes) in the file.

Type q to leave ed and return to the shell. You should see
the $ prompt on your screen.

2/84 2-5 LDT Guide

3
MANAGING FILES
AND PROGRAMS

o

o

o

Several LDT tools allow you to manipulate, create, and maintain
files and programs. With the archive (ar) command, for exam­
ple, you can place any number of modules (usually object) into a
single archive, or library file. Another tool, raalib, works
on these files to allow faster searching by the loader (ld).
The strip command removes symbol and relocation information
from an executable module to make the executable smaller and to
save space. The final tool described in this chapter, make,
provides a way to easily manage and maintain large programming
projects and produce files which may involve complex or repeti­
tive processing. These tools are used as follows.

archive (ar): CREATING UP-TO-DATE LIBRARY FILES

The archive (ar) tool is used primarily to create and update
library files.searched by the loader. Groups of files are main­
tained in one archive file~ This version of archive (ar) uses
an ASCII format archive header that can be shared among various
machines running UNIX.

The syntax for archive is

$ ar k§y UQ§nam~ll .afj.l~ nameL.&.

In this command line, posname is the file name you use to indi­
cate position (this optional file name is unnecessary if you use
the ranlib tool); arile is the name you assign to the archive
file; and nameCs) is the file (or files) that is in or to be
added to the archive file.

The key is a set of characters that denote an instruction for
manipulating the files. There are seven possible instruction
characters. These may be used with one or more options. Table
3-1 lists the instructions; Table 3-2 lists the options.

The following are examples of the use of the archive tool:

$ ar rv devices.a printer.o tty.o

This example creates an archive library called devices.a. It
consists of two object modules, print.o and tty.o.

To extract an object file from an archive, type

$ ar xv devices.. tty.o

2/84 3-1 LDT Guide

Table 3-1. Keys for Use in the archive Command Line.

Key Character Description of Instruction

d Deletes the named files from the archive file.

r Replaces the named files in the archive file.
If you include the optional character y, only
those files that have been modified since one of
the archive files were created are replaced. If
you use an optional positioning character A, Q
or i, the poaname argument must be included.
It specifies that new files are to be positioned
following (a) or before (Q or i) the.posi-
tion named. Otherwise, new files are placed at
the end.

q Quickly appends the named files to the end of
the archive file, disregarding any optional posi­
tioning characters and without checking to deter­
mine if the added files are already in the
archive.

t

p

m

x

Prints a table of contents for the archive file.
If no names are printed, all the files in the
archive are included in the table. If names are
printed, only those files with names are included
in the table.

Prints the contents of
archive.

named files in the

Moves the named files to the end of the archive.
If you include a positioning character, then the
$posname argument must be used as with r to
specify where the files are to be moved.

Extracts
working
files in
however,

the named files and places
directory. If you give
the archive are extracted;
alter the archive file.

them in the
no names, all
.l does not,

This command extracts the t1le tty.o from the archive, and
places it unchanged into the current directory.

To delete an object file, type

$ ar c4 devices.a tty.o

The file tty.o is deleted from the archive.

LDT Guide 3-2 2/84

o

o

C

(~ Table 3-2. Options for Use in the ar Command Line.

Option

-v

Description

This is the "verbose" option.
file-by-file description of
archive file. If you include
information about the files
key prints the filename before

With it, you receive a
the construction of a new
t, a listing of all
will be included. The p
each file.

-c The create option suppresses the usual message pro­
duced when a file is created.

-1 The local option places files in the local directory
rather than in Itmp, where temporary files are nor­
mally placed.

-u The update option replaces the contents of an old
archive with new contents.

-a This option
instruction
tion.

is used in conjunction with the ~
to place new files after a specified posi-

-b or -1 This option is used in conjunction with the instruc­
tion to place new files before a specified position.

ranlib: LOADING ARCHIVE FILES MORE RAPIDLY

The ran11b tool converts each archive to a random library that
can be searched. As described above, an archive is a file that
contains a collection of .0 object files.

When invoked, ran11b adds ~ table of contents named __ .SYMDEF
to the beginning of the archive. This entry is then searched by
the loader.

The syntax for ranllb is

$ ranllb archlve

where aroh!ve is the name of the archive file containing a col­
lection of .0 object files.

2/84 3-3 LDT Guide

strip: REDUCING THE SIZE OF A DEBUGGED PROGRAM

The strip tool removes the symbol table and the relocation bits
which are attached to the output file produced by the assembler
and loader. You can use this tool to save space after you have
debugged a program.

The effect of strip is the same as that of the -8 option of
the Id command. It reduces the size of a file.

The syntax ·for strip is

$ strip fl1ename

Sample Program for Use with the strip Tool

You may use this simple program to see the effect of strip.

1* complete the squares of the numbers 0 to 9 *1
maine)
}

register tnt x,i;
for (i=O; t < 10; i++){

x = i*i;
printf("i = %d i squared = %d", i,x);
{

{

To see the effect of sttip, enter the following:

$ ec str1p.c

$ Is .. l a.out

-rwxrwxr-x 1 U$er

$ strip a.out
$ Is -1 a.out

-rwxrwxr-x1, user

LDT Guide

Produces a.out

long listing of a.out, before
strip is invoked, produces

8739 Dec30 14:00 a.out

produces the following

6892 Dec 30 14:00 a.out
the actual size of the
stripped a.out file depends
on the version of the language
compiler and the version of LDT
that you are using

3-4 2/84

o

o

C; make: CREATING UP-TO-DATE VERSIONS OF PROGRAMS

c

.ake is a sophisticated tool that is most commonly used to pro­
duce final, up-to-date versions of the following:

• Programs that are composed of many separate files

• Files with production requirements that require the typing
of several complex commands.

make works by reading a file (a .akefile) into which you have
placed FOR:PRO commands. These commands are in groups, and each
group has a header or title. The left-hand part of the title is
either the name of a file which some of the commands beneath it
produce, or is a symbolic name used for reference within the
makefile. If it is a symbolic name, the commands beneath it do
not produce it; but are associated with it. The file 6r symbolic
name serves as a title for the group of commands directly beneath
it. This part of the title is called the tar~t.

In addition to the target, many titles in a makefile listdep~n=
dengy !~§. The basic format of the title-command construction
is

tar"ll g~denQY files
<tab>
<tab>

This line is the title.
gomID.§:nd
£2IDID.§:nd2

A g~~ndeI)QY ~ is not always a file: Like a target, it can
be a symbolic name used within the makefile. Dependency file
lists tell make that before it executes the commands associated
with the current target, it must execute the commands associated
with the dependency files. Dependency files are usually listed
as targets, or titles for another group of commands elsewhere in
the makefile. For example:

a:b X

b:x

x:

a depends on band x.
gommangs ~oc1at~g Hiih a

b depends on x.
£2mms:nsi§ ~Q£1s: ted Hi1h b

x has no dependency files.
g2IDIDang.§ .§:§§2g1ateg H.1th x

With this makefile, make would first execute the commands
listed under A, then b, then a.

The main purpose of make is usually to perform some sort of
compilation, via a lex, aA t77, or an Rrotf processor,
because avoiding unnecessary compilations requires kno~ledge of
when a file was last edited. make avoids repetitive processing
by checking the time and date when a file was last edited, and

2/84 3-5 LDT Guide

compares that time to the time when the file was last processed. c=:
It does not reprocess a file unless the file or any of its depen­
dency files has been edited since the last time it was processed.

If a target is a symbolic name, rather than the name of an actual
file in a directory, make cannot know when it last executed the
associated commands. In this case, make re-executes all the
commands.

How make Works

In your directory you have three files that constitute one pro­
gram. The files are named a.c, b.o, and c.o. To compile,
link, and execute these files, you normally use these commands:

$ 00 -0 a.c b.o c.o Resulting in a.o, b.o, and c.o.

$ 00 a.o b.o 0.0 Linking the .0 into a.oat.

$ a.out Executing a.out.

Each time you edit one of the files, you need to compile that
file again, then re-link all three files and execute the result­
ing file. Your task could be simplified if you typed only one
command:

$ make

To use make, however, you need to produce a makefile. The
makefile is produced through the editor. For now, consider its
correct name to be makefile or Makefile. The make file that
would execute the above commands is

a.out: a.-o b.o 0.0
CO a.o b.o 0.0
a.out

a.o : B&C
CO -0 a.o

b.o • b.c •
co -e b.e

e.o • Che •
ee -e c.e

(This makefile could be simpilified; the above example is for
illustrative purposes only. Ensuing sections of this chapter
show how to write more condensed makefiles.)

If you had the above makefile and a.c, b.e, and e.o in
your working directory and you typed

$ make

LDT Guide 3-6 2/84

o

c

c the following would be generated, assuming the .0 files were
error-free

ec -0 a.o
ce -0 b.e
ce -0 c.o
ec a.o b.o c.o
a.out

and were followed by the result of executing a.out.

make's first step is to find its final target. The final tar­
get is a.out, since a.out 1s the first file mentioned in the
leftmost column of the makefile. The construction a.out: a.o
b.o c.o indicates that before the commands listed under a.out
can be executed, those under 8.0 f b.o, and c.o must be
executed, if a.o, b.o, and c.o are not up to date. make
searches the working directory for when the object files were
last processed. The files do not even exist, so make proceeds
to where those files are listed as targets. It sees that each of
the .0 files is dependent on its repective .c file. To pro­
duce the .0 files from the .e files, make must compile the
.e files with the -e option. make finds the .c files in
the working directory, and compiles them. Note that the commands
to compile them are listed in the makefile, and are also the
first three command lines printed on the screen after you type
make:

co -0 a.c
ee -0 b.e
co -0 c.e

Having produced the .0 files, make returns to the line

a.out: a.o b.o e.o

and executes the two commands that are associated with the a.out
target: cc a.o b.o c.o, and a.o~t.

If you type make again without editing any of the .e files,
you will get the message

fa.out' is up-to-date

If you edit only one of the files and then type make, only the
edited file and any files that are dependent on it will be recom­
piled. For example, if you edit a.e then invoke make, the
following commands will be executed:

2/8~

co -e a.e
eo a.o b.o e.o
a.out

3-7 LDT Guide

The remainder of this ohapter gives details on the functions and «=)
abilities of this powerful utility.

The make Command

The syntax of make is

lliG are options. The flags permitted on the make command
line are shown in Table 3-3. ~rg~ is the title of the com­
mands below it, and often is the name of the file which those
commands create. If no targets are mentioned on the aake com­
mand line, the first target in the makerile is produced.
MaCt2 sl§.!1.n1t12DS relates to what is inside your makefile.
They are described later in this section entitled "Macro Defini­
tions."

When you issue the make command, make first reads the flags
and puts them into an environment variable called MIKEFLIGS.
Then, if make is called without the -r flag, it searches for
a file called aaterile or Materile. If the -r flag is
used, make searches for a file with a name that is specified
immediately after the -r flag.

Next, lIake reads the command line macro definitions, the other 0
environment variables, and then the specified command line tar-
gets. Finally, lIake executes the makefile.

The Makefile

The lIakerile can contain target and dependency specifications,
comments, macro definitions, suffix rules, a few special state­
ments, and commands that produce targets. These are described
below.

Targets and their Production

The syntax of a target specification is

t a rg ~tl [ilu~.tZ ilu~.3. ..•] : [sitl1
~ •••] [; QQmmand]
[<tab> QQIDmaD~] [; ~mm~Dg •••]
[<tab> sommang] [j sQm~ng ••• l

r 'QQID~n.t]
where ta~.tl is the title of the commands that follow. It may
be either a file which those commands produce or a symbolic name
which 1s associated with those commands. More than one target may
be specified. g~Ql deQZ 4~ indicates dependency files, which 4(}

LOT Guide 3-8 2/84

(;

are usually listed as targets elsewhere in a makefile. Up to
date versions of the target (g~l) to the right of the colon
must be produced before the target on the left of the colon.) In

. the first example, a.out, a.o, b.o, and 0.0 are targets.
The latter three are also dependency files.

Table 3-3. Flags Used with the make Command

Flag Meaning

-1 Ignores error codes.

-k ierminates work on the current file and its depen­
dents, if an error status is returned, but continues
work on other targets in the makefile.

-8 Does not print commands before executing.

-r Does not use built-in rules.

-n Lists, but does not execute commands.

-t f1.1~ Touches the target~. The target's date is
changed but its contents are not. This option is used
only when the file has not been changed since it was
last compiled or a neutral change was made (such as
adding a comment).

-q Stands for "question." It checks whether the file is
up-to-date, and returns a zero status if yes and
nonzero otherwise.

-p Prints a complete set of macro definitions and target
dependencies.

-b Ensures compatibility with makefiles designed for
older versions of the make utility.

-d Invokes the debug mode and, prints very detailed
information on files. This option is recommended as a
last resort; the -n option usually serves best to help
you locate makefile bugs.

-f file Reads f1l~ as the description file instead of
Makefile or makerile.

2/84 3-9 LOT Guide

A command may follow dependency information and a semicolon, C
another command and a semicolon, or a RETURN and a tab. Several
commands may be specified under one target. Comments are pre-
ceded by a 'and ended by a RETURN. Whenever anything but a
tab occurs in the first eight columns of a line, assumes that the
group of commands for the last target is complete. Do not place
comments between a target specification and the commands that
make the target, or within a group of commands.

Unless an alternative is specified on the command line, only the
first target listed in the makefile is produced. For instance,
if you alter the previous example so the first two lines read

8.0:8.0
co -e a.e

only a.o will be produced; a.out will not be produced unless
you specify it on the make command line

$ make a.out

If a source code file has an include statement, the object code
version is dependent on the included file and this dependency
should be stated. The source code file is not dependent on the
included file.

The make command executes each command line in the makefile
with a separate invocation of the shell. Hence, if you use the
cd command in one target command line, the next target command
line will still be executed from the original directory.

If a file must be created but there are no directions specifying
how to create it, make uses the commands associ~ted either with
.DEFAULT or with suffixes that are dependent on .SUFFIXES.
The use of these keywords is explained below. If you do not use
.DEFAULT or • SUFFIXES , make prints a message and stops.

Macro Definitions: Macro definitions are a convenient tool for
changing the files or commands that are used without locating
each occurrence of the files or commands in the makefile. Macros
are defined with the following syntax:

where the string to the
string to the right
makefile. If the macro
the macro is referenced
tax:

$ (HACNAM)

LDT Guide

left of the equal sign is replaced by the
wherever MA~NAM is reference in the
name contains more than one character,
in the makefile with the following syn-

3-10 2/84

o

o

"1

C·
.,"

If the macro name is only one character long, the parentheses may
be ommitted. For instance, if the macro name is simply H, the
macro can be referenced with $ H. Here is an example illustrat­
ing macros:

FILES=a.o b.e 0.0
O=a.o b.o 0.0
a.out:$ 0

00 $ 0
a.out

$ 0: $ (FILES)
00 -0 $ (FILES)

The macro definitions can be changed by either editing the first
two lines of the makefile, or listing the new macro definitions
on the make command line. If the command line definition contains
more than one string, it is enclosed with quotes. For example:

make FILES = "run01.0 fun02.0" 0="run01.0 fun02.0·

will execute the makefile with the macros redefined accordingly.

One disadvantage of using macros is that make does not distin­
guish between the files defined in the macro. If any file in a
given macro needs to be recompiled, make recompiles all the
files in that macro. The extra time spent in these compilations
mayor may not be compensated for by the convenience of using
macros. It all depends on your individual files and how much
system time you can afford.

If the final target of a makefile is a macro that defines two or
more files, only the first file will be produced. To avoid this
problem, the final target should be a symbolic name with a depen­
dency file that is the macro.

Suffix Rules: In creating files, make consults a file, .SUF­
FIXES, which includes certain default suffix transformation
rules. When a .0 file without directions on how to produce the
file occurs, make consults default rule in .SUFFIXES for pro­
ducing a .0 file. This rule is: Search the current directory
for a file with a base name that is the same. If its suffix is
.0, execute 00 -0 flle.c. make does this for each of the
suffixes and compilers listed in Table 3-4.

2/84 3-11 LDT Guide

Table 3-4. Implicit Rules for
Producing .0 Files

Suffix

.c

.s

.1

.y

Compiled by

C compiler
Assembler
Lex compiler
Yacc-C compiler

You may specify rules that override or add to the default rules.
Here is an example that uses .SUFFIXES and defines a rule for
processing nroff source files:

OBJS=1.doc 2.doc 3.doc
.SUFFIXES: .doc .me
.lIe.doe:

nroff -me $I.me) $€
docullent: $(OBJS)

cat $(OBJS)) document

The .SUFFIXES: line warns that all files with suffixes • lie
and .doc are to be treated specially. Suffixes must be listed
here in the opposite ord~r from which they will be used. For
instance, if a.b file is to be transformed into a .g file,
and the .g file into a .w file, you should list, from last to
first:

.S8FFIXES: .w .g .b

The .lIe.doc line indicates that files with the suffix .me are
to be transformed to files with the suffix .doc, according to a
rule that will be given on the next line(s) of the makefile.
Order is also important here, and is the opposite of the order
required by .SUFFIXES: The file with the first suffix listed is
transformed into a file with the second suffix. The transforma­
tion rule in the above example is: nrofr any file with a suf­
fix •• e, and place the output into another file that has the
same root or base name but ends in .doc. The special symbols
$1 and $@ are explained in the next section.

Internal Macros: The make tool supplies several internal mac­
ros for use with suffix rules and dependency declarations. These
macros are described in Table 3-5.

LDT Guide 3-12 2/84

---_ .. _. --.-.. -------------.--.. ~--.-.-----------

o

o

C

C~!

Table 3-5. Internal Macros Used with the make Tool

Used with

Files Suffixes
(file1: (.e.o:)

Symbol Meaning file2) Example

$* The filename of x $*.0= r11e.o
the current dependent
without the suffix.

$@ The full name of the x x f1le1 and f1le.o
current target.

$< The full name of the x f1le.o
file on which the
current target depends.

$1 All out-of-date files x out-of-date file2
on which the current
target depends.

$1 An archive library x $@($~)= l1b(file,'ol
file of the form
ilQif11~.a.21.

This example illustrates the use of .SUFFIXES and internal mac­
ros •

• SUFFIXES: .0 .0
.c.o:

co -0 -0 $@ $*.c
ex: a.o b.o c.o

co -0 ex a.o b.o c.o
ex

Two additional internal macros are useful when working with more
than one directory: D and F. They are used in conjunction with
the macros mentioned above and a macro that you declare in your
makefile. This macro contains a directory and filename, in the
conventional syntax di~cto~YLf1lengm~. An example of these
macros is

2/84

DIR~MODS= d1/targ1 d2/targ2
all: $(DIR_MODS)

@ echo 'everything's up to date'
$(DIR~MODS):

cd $(@D); $(MAKE) $(@F)

3-13 LOT Guide

include: Makefiles may contain i.clude statements. The syntax
is

include<space or tab)string

where string is the name of the file to be included. Up to 16
nested include's are permitted. That is, an include may have
a file that includes another file and so on up to 16 times.

Maintaining Archive Libraries: make has a special command that
helps to maintain archive libraries. The syntax for maintaining a
library named lib is

lib(tname.o) lib(tname2.o)
, echo lib updated.

This command is included in the
llb(tile1.o tlle2.0) is not legal.

makefile. The syntax

Recursive makes: The make command may call itself. To invoke
make from within a makefile, you use the internally defined
macro $(MAIE). For example:

xx:
$(MAIE) -r newmakerile [maero detsl [targetsl

Part of make's internal knowledge is that the macro $(M11£)
means make. $(MAI£) is the only command executed when the
-n option is in effect. Using the -n option on the make
command line instructs make to list the commands it would exe­
cute but not to execute them. The -n option is exported to the
subsequent make, so its commands are also listed without being
executed. This option allows you to see the steps that would be
taken by the make call without waiting for the system to per­
form those steps. You can use $(MAI£) as many times as you
like during a program, executing an unlimited number of
makefiles.

Compatibility with Old Makefiles: This document describes the
augmented version of make. To ensure compatibility with old
makefiles, use the -b option on the command line.

Special make Statements

Several special statements can be used in a makefile. Some of
the results of these statements can also be invoked on the make
command line •

• SILENT:
cuted.
mands:

LDT Guide

Each command in the makefile is printed as it is exe­
Three ways are available to silence the printing of com-

3-14 2/84

c

o

c

c'

• Globally, by inserting .SILENT into your makefile.

• Individually, by inserting a @ between the tab and the
command in each command line that should not be printed.

• Globally, by using the -s option on the make command
line •

. IGNORE: Normally, make terminates if any command returns a
nonzero (error) status. You can prevent this termination three
ways:

• Individually, by placing a hyphen after the tab and before
the command line words in each line with an error status
that is to be ignored.

• Globally, by inserting .IGNORE anywhere in the makefile.

• Globally, by using the -i option on the make command
line.

An alternative to the -i option is -k. This option ter­
minates work on the current line and its dependents in case of
error status, but continues work on the nondependent lines in the
makefile •

• PRECIOUS: Pressing the Cancel key during make's execution
stops all work. Any file being processed is removed unless it
has been declared a dependent of .PRECIOUS in the makefile.
Files on which .PRECIOUS is dependent are not removed •

• DEFAULT: When a file depends on a nonexistent file that make
does not know how to create, make looks for a line labeled
.DEFAULT and executes the commands listed there. For example:

.DEFAULT
cc -0 georges 1.c

niceone: georges
georges teat

In this example, since make cannot find a rule to make
georges, it follows the rule under .DEFAULT.

2/84 3-15 LDT Guide

4 EXAMINING SOURCE

AND OBJECT CODE

o

o

o

During a programming task, you may want to know the
size and names of your object files and the location of functions
in your source files. The following FOR:PRO tools allow you to
examine your code for this information.

size: DETERMINING THE SIZE OF AN OBJECT FILE

The size tool displays the size of an object file in bytes. It
prints the decimal number of bytes required by text, data, and bss
portions. It also prints the sum in hexadecimal and decimal of
each object file argument.

The size utility uses the name of the object file that you
are measuring. If you do not specify a filet a.out is used.

The syntax for size is

$ size filename

For example, to see the size of a program named test.o, you enter
the following:

$ size test.o

The result is

text
60

data
16

bss
o

dec
76

hex
4c

name (nm): EXAMINING THE SYMBOL TABLE NAMES OF OBJECT FILES

The nm command tool prints the name list (symbol table) of each
object file in the argument list. If an argument is an archive,
a listing for each object module in the archive is produced. If
no file is given, the symbols in a.out are listed.

In the name list produced by nm, each symbol name is preceded
by its value (blanks if undefined) and one of the following
letters:

2/84 4-1 LDT Guide

Undefined B
Absolute C

Bss segment symbol
Common symbol
File name

U
A
T
D

Text segment symbol F
Data segment symbol For fdb symbol table entries

For local symbols (nonexternal), the type letter is in lowercase.
Output is normally sorted alphabetically.

The syntax for name is

$ nm [-option] filename

In this command, the options control the type of listing that is
produced. The options are shown in Table 4-1.

Table 4-1. Options for Listing Names of Files

Option

-a

-&

Description

All symbols are included for printing.

Prints only global symbols, not local or fdb sym­
bols.

-ft Sorts numerically rather than alphabetically.

-0 The file or archive element name precedes each output
line rather than only the first.

-p Prints in the order of the symbol table rather than
sorting.

-r Sorts in reverse order.

-u Prints only undefined symbols.

Sample Program for Use with the name Tool

The following C program illustrates the effect of name.

'-Find the position or the first oocurrence of the
- character z in a string and return its position in
- the string.
- Return 0 if the character z is not in the string. -,

LDT Guide 4-2 2/84

c

'define NONE 0
char search_obr = 'z';
maine)
{

short index;

index = positlon("zorro",searoh_ohr);
printt(athe pOSition of z in this string = ~d\n",index);

}

1nt pos1tlon(strlng,o)
register char .stgring,o;
{
int 1 = 1;

do {
if (.string == 0)

return(i);

1++;
}whl1e (.string++);
return(NONE);

}

Compile this program using the -0 option to produce an object
file pos.o:

$ 00 -0 pos.o

Typing nm pos.o displays the following name list on your
screen:

U
U

00000000
00000060

U
OOOOOObc

_csavI
_regsav

T main
T position

printf
D search_chr

ctags: DETERMINING THE LOCATIONS OF FUNCTIONS IN .SOURCE FILES

This command creates a tags file for cross reference
This tags file gives the locations (line numbers) of
functions in C, Pascal, and FORTRAN source programs.
of the tags file contains three fields:

• Function name

purposes.
specified

Each line

• File in which the function is defined (line number)

• Scanning pattern used to find the function definition

2/84 4-3 LDT Guide

Files ending in .0 or .h are assumed to be C source files and ~
are searched for C routines and macro definitions. Others are
first examined to see if they contain any Pascal or FORTRAN rou-
tine definitions. If not, they are processed again looking for C
definitions.

In C programs, a special main tag can be used to make etags
practical in directories with more than one program. The main
tag is created by adding an M to the beginning of the filename
and removing the .0 from the end. The leading pathname com­
ponents are also removed.

The syntax for etags is

$ etags [-options] tilename

The ctags command is used with the options shown in Table 4-2.

Table 4-2. Options for Use with the ctags Command

Options Descriptions

-u This update option replaces the existing tags file
with a new tags file.

.. a Adds information to the end of a tags file •

-x Displays the tags file with line numbers.

-w Suppresses warnings.

Note that only the -x option displays the tags file on the
screen. To view a tags file created by the other options, you
must use either the more command or the eat command.

Sample Program for Use with the ctags Tool

The following program illustrates the effect of etags:

maine)
{
short 1nt x;

}

LDT Guide

Ino(x);
sqr(x);
deo(x);
neg(x);

4-4 2/84

o

o

o

C\
/

~, v

1nc(nvm)
reg1ster
{

short Rum;

num++;
}

sqrenum'
reg1ster
{

short nUll;

num *= num ;
}

dee(num)
register short Dum;
{

nUIII--;
}

neg(num)
register short num;
{

num = -num;
}

If you type etags -x filename, the output will be

2/84

dec
inc
main
neg
sqr

23 ctags.c
11 ctags.c

1 ctags.c
29 ctags.c
17 ctags.c

dec(num)
inc(num)
MainO
neg(num)
squ(num)

4-5 LDT Guide

c

5 DEBUGGING PROGRAMS

c

('

(..

The Language Development Tools provide a Fortune Systems symbolic
debugger (fdb). This is a high level debugging tool with which to
debug programs in terms of their source-level names and constructs.
Since fdb is language independent, it can serve
as a debugger for the three high level system languages supported
on the Fortune. System--C, FORTRAN, and Pascal.

PREPARING A PROGRAM FOR DEBUGGING

The fdb debugger is used to debug programs after they have been
compiled with the -g debug option, and loaded. To prepare the
executable programs to work with the debugger, you must do the
following:

• Compile source programs with the -g option

• Run the loader (if needed) with the -1 option

• Run fdb

RUNNING fdb

The format of the fdb command is

$ fdb [objectfi1eJ [directoryJ

In this command, objectfl1e is an executable program file that
has been compiled with the -g (debug) option. The default for
objectfi1e is a.out. The directory is the directory where
the source files exist. The default for directory is the work­
ing directory. Note that fdb uses * as a prompt character to
indicate that it is ready to accept a command. You can change
the debugger prompt with the set command.

The following example illustrates the commands to compile a C
program and a Pascal program, to link the programs, and to call
the debu·gger.

$ cc -c -g test.c
Compiles the program test.c and leaves output in test.o.

2/84 5-1 LDT Guide

$ pc -c -g sample.p
Compiles the program sample.p and leaves
sample.o.

$ cc -0 sample.obj -g test.o sample.o
Links the two object programs.

$ fdb sample.obj
Calls the debugger.

The computer responds:

Fortune Symbolic Debugger

output

* (Indicates fdb is waiting for your command.)

in

An extended example of a debugging session is provided in the
individual language guides for C, FORTRAN, and Pascal. This
chapter provides a more complete description of the fdb commands.

SPECIAL fdb RULES

Note that you must observe a number of rules when using
These rules are explained under the next few headings.

Uppercase and Lowercase Rule

fdb.

Uppercase and lowercase letters are generally treated the same.
Combinations of uppercase and lowercase letters are allowed.
This rule only applies to the fdb keywords.

For example, the following commands mean the same thing:

equate
EQUATE
EquAte

Variable and procedure names, however, may have distinct upper­
case and lowercase letters that must be respected.

Abbreviation of Commands

Every command can be abbreviated to three characters if desired.
For example, the following strings are all legal commands:

bre for
del for
equ for

LDT Guide

break
delete
equate

5-2 2/84

o

o

o

, ...

(~

1"'\
V

Some commands can even be abbreviated to one character (see Table
5-1). However, if a command is not given in one or three charac­
ters, the whole command string must be spelled out. For example,
for the equate command, eq, equal, and equat are illegal,
while e and equ are legal.

Use of Leading Blanks

All the leading blanks in a command are ignored. One or more
blanks and tab characters are equivalent to one blank character.
Hence the following commands are equivalent:

EQUATE
eQU
Equate

Multiple Commands per Line

Multiple commands per line are allowed if they are separated by a
semicolon. Since the commands in multiple-command line entries
are interpreted serially, the first command is performed regard­
less of the error condition in subsequent commands.

For example:

command 1 ; command 2; command 3 <return>

is equivalent to:

command 1 <return>
command 2 <return>
command 3 <return>

This rule does not apply when a semicolon appears in a string, a
comment command, or a break-do command. For example, each of
the following lines is a single command:

find "a=O; b=O; c=O;"
equate a ".a/wx; ,b/c; ,c; break when count=100;"
comment x:=3; was for Pascal ass1gnment_
break 3 do display a; display bj sho file

Source-File Dependency

The fdb debugger generates a warning if the source file for the
debugged object file does not exist in the directory from which
the object file was compiled. It is also possible that the
source file and the object file to be debugged are not the same
version. The fdb debugger warns you if the source file is newer
than the object file.

2/84 5-3 LDT Guide

Null Procedure Name

When the procedure name isn't given for a C program, fdb
assumes the main procedure name since the main entry point is
defined by the main () procedure in the C language. The main
procedure convention isn't required in FORTRAN and Pascal.
Therefore, to use a consistent main procedure reference, fdb
treats a null procedure name as the main program name. For exam­
ple:

break :3

display :a

Use of Quotes

Sets the breakpoint at line 3 of the main pro­
gram.

Displays the variable a in the main program.

A quote in a string is represented by two quotes. The quote
aband is represented by abcnnd. The string nn is
represented by"""", but ann is an illegal string.

Use of the Backslash

A backslash \ is used to indicate that a special character fol- r\
lows. Therefore, \\ means single \. Use a backslash when- "'-?
ever non-alphanumeric characters are used. (This rule does not
apply to the alias replacement string.) In general, a
backslash before a special character suppresses the special
interpretation of that character.

For example, if \ precedes ~, the equ expansion is
suppressed:

equ a nx!z"
find n~A" Searches for YZ

find "\~An Searches for %A

Use of the Carriage Return

When using the debugger, pressing the Return key immediately
after the prompt is interpreted as re-entry of the previous com­
mand. If the previous command was a multiple command line, the
carriage return executes the last command on the line.

LDT Guide 5-4 2/84

----- ~~-------~- ~

c·, USING fdb COMMANDS

The debugger uses three types of commands: (1) those that allow
you to set up the debugging environment or to display informa­
tion; (2) those used for source file examination; and (3) those
that control execution. Table 5-1 summarizes these commands.

Table 5-1. The Debugger Commands

Command Purpose

a11as(a)
break(b)
comment
delete{d)
display(,)
dump
equate(e)
file
find{f)
fun
go(g)
help(h)
let(l)
prlnt(p)
quit(q)
restart
set
shell escapee!)
show(s)
traoe(tl
variable address(&)
walk(w)

Defines a debugger command
Sets a breakpoint
Prints a comment line
Removes a breakpoint
Displays the value of a variable
Displays the contents of memory
Equates a character to a data string
Redefines source, input and output files
Searches for a specified string
Defines the function keys
Starts or resumes execution of the program
Lists every fdb command
Assigns a value to a variable
Prints a number of lines
Exits the debugger
Restarts the program
Sets up the debug options
Executes shell commands
Shows information about "session
Traces the execution
Displays a variable address
Single-steps through code

The syntax for each of these commands is described in the follow­
ing pages, together with examples. In these descriptions, all
punctuation {except square brackets), such as commas,
parentheses, semicolons, hyphens, or equal signs, must be
included as shown.

alias: Defining Debugger Commands

The alias command allow~ a" user to
cancel pre-set alias commands.
rename existing fdb commands or to
into one for convenience.

2/84 5-5

define debugger commands or
You can also use alias to

~ombine two or more commands

LDT Guide

The syntax for alias is

alias definition [replace string]

To see the current alias definitions, type

show alias

You must cancel one alias definition before re-defining
another. An alias definition can be canceled by typing the
empty replacement string as follows:

alias definition

If multiple commands are used in the definition, they must be
enclosed in quotes. Note that the case rule does not apply to
the definition string.

The following examples redefine the commands single and step:

altas single walk

alias step "walk; display a"

alias single

break: Setting a Breakpoint

Defines single as walk

Defines step as walk and
then displays a line

Cancels the alias for sin­
gle

This command sets a breakpoint at the indicated line number in
the source program. The program is stopped before the indicated
line is executed. If this line is not an executable statement
(such as a blank, a comment line, or a declaration), the break­
point is set to the first executable line that follows. The syn­
tax for break is

break[procedurename:][line number] [do(fdb command)]

The module name and/or line number may be omitted in the break
command. In this case, the defaults are taken from the current
procedure name and current line number. If the breakpoint is to
be set in a procedure other than the currently active procedure,
a line number must be specified. If the line number is smaller
than the procedure starting line number, then the breakpoint is
set at the procedure starting line number.

If the break command is specified with a do phrase, fdb
will execute the command(s) when the breakpoint is reached. Oth­
erwise, control is transferred to the user. For example:

LDT Guide 5-6 2/84

o

o

o

break

bre sub': 1

break 10 DO ,a; ,b

Sets a breakpoint at current line in
the current procedure.

Sets a breakpoint at the first line in
procedure SUB1.

Sets a breakpoint at· line 10 and
prints the values of variables a and b
whenever the program stops.

comment: Printing a Comment Line

This command causes fdb to print a comment line exactly as
entered. The syntax is

comment statement

The comment command is used to document the debugging session,
especially in cases where the fdb output is saved in an exter­
nal file.

The following example is used to test for error conditions.

com;; equ a;

It is one command even though three semicolons appear.

delete: Removing Breakpoints

The delete command is used to remove breakpoints.
is

Its syntax

delete [procname:] [line number]

The del all command deletes all the breakpoints set so far.
The del command with no parameters deletes breakpoints interac­
tively. That is, each breakpoint location is printed, and the
user can decide if the breakpoint should stay. The user responds
d del, y, yes, or ok to delete the breakpoint. All
other responses are interpreted as no responses. For example:

delete main:ll

delete all

2/811

Deletes the breakpoint on line 4 of pro­
cedure rna in •.

Deletes all the breakpoints.

5-7 LDT Guide

display: Displaying the Value of a Variab1e[]

This command is used to display the value of a variable at the
point of program suspension. Its syntax is

display [proc name:] variable [format]

The values are displayed in a format determined by the user. If
the format specification is omitted, variables are formatted
according to their data type (as declared in the program).

The comma is used as an abbreviation for display. Two commas
., display the most recently displayed variables. The contents
of pointer variables can be displayed by -> in C and by A in
Pascal.

Registers can be displayed by prefacing the register name with a
(sign. For example, the contents of register dO in hexade­
cimal can be displayed by typing display or g (dO/x.

The contents of an absolute address can also be displayed. For
example, typing display or g Ox23~b/x yields the contents
in hexadecimal of that location.

Array variables can be specified as a range to display more than
one element at a time.

Variable Format Specifications: Displaying Variables and their
Contents

Format specifications can be used for displaying variable con­
tents using this syntax:

/lm (l=length and m=format)

The format specifiers for length are

b
h
1
number

One byte.
Two bytes(ha1f word).
Four bytes(long word).
String length for formats sand a.

The format specifiers for format are

c

d

f

g

LDT Guide

Character.

Decimal.

Floating point.

Floating point.

~--------~- -------"--

5-8 2/84

c

c

--,-_ ... _---- . __ ." .. __ .. _-_• _ .. _---

o Octal.

s Assume variable is a string pointer, and print
characters until a null is reached.

u Decimal.

x Hexadecimal.

The length specifiers are only effective with formats d, u,
o and x. If one of these formats is specified and the length
specifier is omitted, the length defaults to four bytes •.

In the following example, the types and contents of variables
1, Q, 2, and j are defined as:

Variable Type Name Contents

char i . 'x'
char *p "abcxy"
char a[3] "ABC"
int j Ox12345678

The following commands illustrate several ways to examine the
variables listed above:

Command Displays

x
Ox78000000

abcxy

display i
display i/x
display p
display p->/e
display p/3s
display pIs
display a
display a/2s
display j
display j/x
display jIb

a in C (should be pAle in Pascal)
abc
abcxy
ABC
AB
305419896
Ox12345678
18

dump: Displaying the Contents of Memory

This command displays the contents
format(c) or in hexadecimal format(x).
decimal.) The syntax for dump is

dump [option] address

2/84 5-9

of memory in character
(The default is hexa-

LDT Guide

The output format for each line is as follows:

• Space designation: I for instruction space or D for
data space.

• Memory address in hex.

• 16 bytes of contents.

The memory dump is displayed in a 16-byte unit, and the starting
address is always a multiple of 16. If a dump is requested
towards the end of a line, two lines are displayed.

For example:

dump Ox100 Dumps between Ox100 and Ox10f.

dump 3 Dumps between OxO and Oxf.

dump Ox100 I Ox200 Dumps between Ox100 and Ox200.

dump next Dumps next 16 bytes.

dump &a Dumps the memory around the address
of variable a.

equate: Using a Character for a Data String

The equate command equates a character to a data string. The
syntax is

equate definition [replacement string]

To expand the meaning of an equated character, type the escape
character ~ before the equated character and then type the
addition to the data string. The equated character will be
expanded in line prior to the execution of the command.

The equate command can also combine multiple commands into one
command or into alias commands.

You can cancel an equate command by equating the previously
defined character to a null (empty) string. The fdb debugger
detects and reports recursive equate definitions.

LDT Guide 5-10 2/84

o

o

c

"'1
I

c

For example, to equate a character to a long variable name use
the following:

equ a "employee"

display ~a

display ~a.name

equ a

Defines "a" as equated to "employee".

Displays the contents
employee.

Displays the contents
employee. name.

of

of

Cancels the equate definition.

variable

variable

file: Re-defining Files

This command re-defines the source file or re-directs input and
output from the standard devices. The syntax of file is

file [<» [filename)

Files for the program being debugged can be redirected by .using
runtime arguments as described in the section on the restart
command.

If a filename does not include a dot, it is considered a function
name, and the file with that function becomes the source file.
The symbols < and > are used with the file command to redirect
fdb's input and output. A filename immediately following < will
cause input to be read from that file. A filename with a follow­
ing > will cause the output to be redirected into that file.
When you type file, followed by < or > and a space, fdb .
will direct the debugger input or output to the standard devices.
Use » to append to the end of an existing file. It is impor­
tant to have a file comma~d to redirect input at the end of any
file that you use as a source of input to fdb.

For example:

2/84

file (profile Executes fdb commands in profile.

file lusrlsouree/test.c Makes source file lusrlsource/test.c.

file> y/trace Saves debug output in parent's
directory.

file > Redirects debug output to the
terminal.

5-11 LDT Guide

find: Searching for Strings

The find command is used to search the current source file for
a specified string. After searching, it then prints the source
lines that contain the specified string. The syntax is

find [string] [line count]

The search can be confined to a specific section of the program
by specifying the beginning line number or ending line number
immediately following the strings. The debugger can also be
instructed to find multiple occurrences of the specified string
by typing t followed by a decimal value for the number of
occurrences needed.

To search backward, use the command:

find .1 -1

The -1 means "search backwards." If the string is not speci­
fied, the last search string is used.

The default value for the line number is the current line. The
current line number is automatically updated each time a line is
found with the specified string. The line count defines the max-
imum number of lines to be printed. C
Examples of the use of find are as follows:

find "procedure"

find "if" 3

Searches for "procedure" and prints
the first line that contains the
string from the current line.

Finds the first "if" beginning at
line 3.

find "count- 2 r 10 Finds 10 ocurrences of "count"
starting at line 2.

find nxyzn 10 , 100

LDT Guide

Finds "xyz" string starting at line
10 and searching through line 100.

5-12 2/84

------------ ~~---------.. ---------

c

C fun: Defining the Function Keys for Use with fdb

This command allows the user to define the 26 function keys with
useful fdb commands. All the function keys, F1 through F16 on
the top of the keyboard, the Help and Execute keys on the left
and right sides of the keyboard, the four grey cursor keys on the
right side of the keyboard, and the four keys above the cursor
keys (Insert, Delete, Prev Scrn, Next Scrn), can be programmed
(or "aliased") by the user. For more information on programming
the function keys, see Table 5-2, and the sections "alias, "Set"
and "show" in this chapter. The proper syntax is

fun key description

Since the first letter of the function key name can be defined as
uppercase, you can define 52 function keys. If multiple commands
are defined by a function key, the function description must be
enclosed in quotes.

Table 5-2 shows the function keys that are pre-defined by fdb~
You may re-define these function keys. The command show func­
tion displays all the current function key definitions.

Table 5-2. Function Keys Pre-defined by fdb

Key Definition

help Same as Help
command

fun16 Next

execute Walk

EXECUTE Walk in

prey scrn Print. I -20

next Bcrn Print .-1 ! 20

up arrow Print.-1

down arrow Print next

2/84

Description

See Help

Can be used with
print or dump

May go to subroutine

Allows single step with same
procedure

Prints previous 20 lines

Prints next 20 lines

Prints previous line

Prints next line

5-13 LDT Guide

Two examples for using this command are

fun 1 ,employee.name Same as FUN fun1 ,employee.name.

fun Fun1 "walk; ,," Shifted Function1 key is defined
as a single step and displays the
contents of the last variable refer­
enced.

go: Resuming Program Execution

The go command is used to continue program execution or to con­
tinue with the signal that caused the program to stop. The com­
mand causes the program to either' start or resume execution. The
syntax for go is

go [sig]

If the sig option is used, the program continues with the sig­
nal that caused it to stop. This option can be used to debug a
user signal handler.

The program continues to execute until a breakpoint, a
error, a user interrupt, or a normal program exit occurs.

For example:

program

go sig Continues with the signal that caused the suspen­
sion of program execution.

go Continues from the current line.

help: Viewing the Debugger Commands

This command lists every fdb command with a short description
of the command. The syntax is simpl~

help

You may also use the Help key or a single "1".

let: Assigning a Value to a Variable

This command is used to assign a value to a variable. The syntax
is

let assignment statement

LDT Guide 5-14 2/84

o

o

o

I

-1

c;

c'

----------~

For Cand FORTRAN, the assignment operator is -- for Pascal the -,
assignment operator is -- For example: . -.

let a = te t Assigns character c to variable a.

let b = "007' Assigns beep character to variable b.

let c = 1.23e3 Assigns real value of 1230.0 to variable
c.

print: Printing Program Lines

This command prints a specified number of lines from a given
starting line in the source code. The syntax is

print [ourrent line] [number of lines]

The default value for the starting line is the current line. The
current print line is changed, but the current execution (or.
walk) line is not affected. For example:

prints

print .-10 / 11

print • r 6

Prints the current line.

Prints 10 lines before the current line
through line 11.

Prints 6 lines from the current line.

quit: Exiting the Debugger

The quit command causes an exit from the fdb debugger. The
syntax is simply

quit.

You are returned to the shell, and the debugging session ends.

restart: Restarting the Program with Runtime Parameters

You can use this command to restart the program being debugged
with runtime parameters. The syntar is

restart [options] [(parameters)]

Options and parameters for the program being debugged can be set
up. This is the difference between the restart and go com­
mands. The standard input/output device for the program being
debugged can be redirected by using > or < command line argu­
ments just like if you were in the shell.

2/84 5-15 LOT Guide

For example, to debug an object file called f.o, with option
-0 and parameter input1, use the following commands:

$ fdb f.o Debugs the object file f.o

The computer responds:

Fortune Symbolic Debugger
*

Then you type:

restart -0 input1 Invokes option -0 and parameter
input1 for the object file f.o when
typed after the above command.

set: Setting Debug Options

This command is used to set the debug options. The syntax is

set option [=] definition

The four debug options are as follows:

prompt Changes the fdb default prompt. The default
is *, but any string can be used.

case Makes tdb differentiate uppercase and lower­
case letters for variable and procedure names.
The default is upper/lower (UPLOW). The other
options are upper and lower.

language

mode

Changes source language convention. The default
is the actual source language used (C, FORTRAN, or
Pascal).

Suppresses fdb error messages. In case of
user error r the beep will sound. and mode will be
set to terse. The default is verbose.

Examples of the set command are:

set prompt = "+"
set prompt="Fortune tdb~"

set case upper

set language C

LDT Guide

Sets debugger prompt to +.

Sets prompt to Fortune fdbl.

Converts variable and procedure
names to uppercase.

Indicates user should use C
language convention.

5-16 2/84

o

c: shell escape (I): Executing Shell Commands while Debugging

This command allows the user to execute shell commands in the
middle of a debugging session. The syntax is

I oommand

Multiple shell commands on a single line are not permitted in
(db.

Examples of the use of the shell escape include:

!date

fdate; Iwho

tdate; who

Prints date and time.

Executes multiple shell commands who from
fdb.

Is illegal since multiple shell commands
from the command line are not allowed.

show: Displaying Information About the Debugging Session

This command displays information about the current debugger ses­
sion at you terminal. The syntax is

show command

The information that can be displayed is shown below. Note that
all of these commands can be abbreviated to three characters.

Command

alias

breakpoint

oase

command

equ

file

fun

language

mode

2/84

Displays

Alias definitions.

Breakpoints that are currently set.

Uppercase or lowercase, whichever is in use.

The last command as seen by fdb (expanded- in
case of alias).

A list of all equate symbols and their defin­
itions.

Input/output/source files.

Function key definitions.

Source language specification.

terse or verbose, whichever is in use.

5-17 LDT Guide

procedure

window

A procedure stack (the procedure names called
to reach the current stop point).

A few lines around the current line--default
is five lines on each side of the current line.

The following are examples of the show command:

show procedure Lists procedure names in frame stack.

show breakpoint Shows all the breakpoints defined.

show equate Shows all the equate definitions.

show window 1$ Prints four lines above and below the
current line.

trace: Tracing the Execution of a Program

This command traces the execution of the source program. There
are three types of trace commands: trace execution, trace pro­
cedure, and trace variable var.

Trace execution is used to display the code-segment labels

o

(code statement line numbers) encountered during program execu- O·
tion. The source lines will also be printed.

Trace procedure prints source lines whenever a new function
(procedure or subroutine) is entered. The output format is

****AT line # called: func name (argument name=
argument value) [FILE= source file name, LINE= line # in
the file, NEST= nest level]

Trace variable var prints source lines whenever the specified
variable changes its value. The variable must be defined when it
is used. For example, an automatic variable cannot be traced
outside the procedure in which it is defined.

&: Displaying the Address of a Variable

This command is used to display the address of a variable. The
syntax is

& variable name

LDT Guide 5-18 2/84

"-"'~"--'---------~

C·\ , J

c

The address is always displayed in hexadecimal format. For exam­
ple:

&a

&b[3]

&b(3)

Displays address of variable g.

Displays address of the 4th element of array Q.

Displays address of the 3rd element of array b.
This format applies to FORTRAN. For Pascal and C use
[] as shown above.

walk: Single-Stepping through a Section of Code

The walk command is used for single-stepping through a section
of code. The syntax is

walk [r in lout]

The number of statements to single-step can be specified by a
parameter. The user can walk within a current module (walk
in) or into the called procedure (walk out). The default is
out.

The following are three sample lines of source code that can be
used to illustrate the walk command:

line 10
line 11
line 12

count = 10;
getvalue();
printf("result=%dO, count);

For a user who "walks" in the source code at line 10, walk,
walk in and walk out are equivalent. The variable count is
set to 10, and execution is stopped at line 11.

At line 11, walk in will execute the getvalue procedure and
stop at line 12; walk out will stop at the first line in the
getvalue procedure.

At line 12, walk out
ming environment.
printf routine. The
equivalent.

SPECIAL CHARACTERS

has no meaning in the nonsystems program­
The fdb debugger will not single-step the
commands walk in and walk out are thus

The following characters have special meanings in fdb:

Symbol

2/84

Meaning

A substitute for the fdb command display or the
most recently referenced variable name.

5-19 LDT Guide

&

!

?

· ·
%

\

• ,
I

<

The address of a variable.

The shell escape or the counter in the print and
find commands.

The help command.

The current line (in print, find, •••).

The procedure name identifier (or character that ter­
minates procedure names).

The Equate key.

The escape character.

New line end of single command.

A symbol for giving a line range (for print or
find), or marking the start of a format specification.

The register display indicator.

DEBUGGER MESSAGES

Each fdb message consists of three parts: type, code, and rea­
son for message. These appear in the following format.

The type refers to five different categories of messages.
are:

These

INFORM:

WARNING:

ERROR:

SYSTEM:

PROCESS:

LDT Guide

Nothing wrong; just for information

Not critical but not desirable

User error; commands are ignored

Reached system limit or fdb has a bug

Fatal error, so there is no reason to continue the
fdb session

5-20 2/811

c

c

c

C.'
"

The code refers to the internal sequence number for documenting
errors. The @ symbol in the following messages is replaced by a
specific string. The messages are as follows:

2/84

Code Description

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Starts fdb
Object file @ does not exist in directory
Object file @ is newer than core
No core image exists
No string table exists for object file @
No room for @ bytes of string table
I/O error in reading string table from object file @
No room for @ bytes of symbol table
I/O error in reading symbol table from object file @
String index in symbol table messed up
Source file @ does not exist in directory
Source file @ newer than object file @
Obj file @ not compiled with -g option
Interrupt requested, (message 0 follows)
Illegal instruction, (message 0 follows)
Illegal command @
Yowl Memory ran out in allocatin& for @
Core dumped
This module not loaded with -g option
Program ready to execute
(Reserved for future use)
Core access error at @ in @ space
(Reserved for future use)
Cannot file line number from object file
Input device directed to @
Output device directed to @ .
Multiple input device definition
Multiple output device definition
Input @ cannot be opened
Output @ cannot be opened
No breakpoint currently set
No breakpoint to delete
Cannot set breakpoint there with errno= @
Breakpoint already set there
Address not found for proc: @ at line no= @
Execution suspended due to breakpoint set at @
Execution suspended to perform breakpoint command at @
Digit expected at @
Too long strings used
Source language is @
Bad data class @
Unrecognized source language spec @
Recursive alias for equ definition
Equ definition character @ must be alpha
No delimiter after equ definition character @
Equ char for @ must be defined before cancel
Equ definition for @ already exists

5-21 LOT Guide

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

LDT Guide

Currently no equ defined C
Equ expansion causes longer than 1024 characters
Equ char for @ must be defined before used for expansion @
String expected but non-quote encountered @
Unmatched quote for @
Needs more parameter after @
No parameter needed on/after @
Syntax error at @
No old command to repeat
Must precede format specification at @
No matched string for (@) from line number @
Error in string match
(Reserved for future use)
Module (procedure) too long @
Procedure @ is not active
Procedure name @ does not end with a colon
Only one level proc name allowed
Illegal variable name detected at @
Unmatched bracket for array variable @
Expected null variable name
No variable name found in display command
Unrecognized register variable @
Procedure call requires (and)
Unrecognized argument at @
Unrecognized relational operator @
Procedure @ not found in symbol table C
Unrecognized character in proc argument @ i,

More arguments than fdb can handle - max is 16
Unknown variable @ - address not found
Var @ not found in procedure:
Illegal variable descriptor @ used
Multiple source file definition
Address of register var cannot be displayed
Null filename specified at @
File @ opened to append
File @ opened for output
No source file read in memory
Line number @ is too big when last line is
Illegal line number @
Error in line range specification
Illegal integer specification at @
Argument length @ is too long
Bad magic number @
Integer too big in converting to string
Stack messed up
Unrecognized signal @
Normal return from proc call
Bad file linked list
No process found to continue
Bad subprocess command @
Subprocess cannot be created (fork)
Error in ptrace wait C
Process terminated

5-22 2/84

---- ---- - - ----- ----- ------------------ - --

c

2/84

100
101
102
104
105
110
111
112
113
114
115
116
119
120
121
122
123
127
132
133
134

@
This feature is not supported by current version of fdb
Register @ is not valid
_dsubc variable not found
Main entry program not found
Command buffer is emptyr" Please try again
Symbol table mangled for @
Bad linked list for@
Bad common block
Lost common block
Illegal function key of @
Currently no function key defined
No entry for @ in symbol table
Command length or alias string too long - max is 12
Alias for @ must be defined before use
Alias for @ already defined
Currently no alias defined
Hex conversion
Illegal assignment command at @
Incompatible data type
Illegal character data type

5-23 LDT Guide

PLEASE GIVE US YOUR RESPONSE TO THIS MANUAL

You can help us provide manuals that suit your needs by filling out and returning this form. When a
new edition of this manual is prepared, we will try to use your suggestions.

Write the name of the manual you are commenting about here __________ ~----

1. Does this manual give you the information you need? Yes No
Is any information missing?

2. Is this manual accurate? Yes No
Please list the inaccurate information.

3. Is the manual written clearly? Yes No
V\That areas are unclear?

4. What other comments about this manual do you have?

5. What do you like about this manual?

On a scale of 1 to 10, how would you rate this manual? Please circle one.
Excellent 10 9 8 7 6 5 4 3 2 1 Poor

Name _____________________ Phone number ________ _
Company ________________________________ ___
Address ___ _
City ____________________ State ______ Zip Code __________ __

Fortune Systems Corporation has the right to use or distribute this information as appropriate with no obligation.

1002348-02

BUSINESS REPLY MAIL
First Class Permit No. 29 San Carlos, CA

FORTUNE SYSTEMS CORPORATION
Attn: Publications Department
101 Twin Dolphin Drive
Redwood City, CA 94065

IIIIII
NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

