
c
A PROGRAMMING LANGUAGE

FOR THE FORTUNE 32:16

I: FORTUNE SYSTEMS
300 Harbor Boulevard

Belmont, CA 94002

I_-
FORTUNE SYSTEMS CORPORATION

LANGUAGE DEVELOPMENT TOOlS GUIDE
RELEASE 1.8

ADDITIONS AND CHANGES

....... ,
,j.t: .. , .

'I1lis document contains Important information tor the Lancuau DeyelCQDent
Tgoll Guide, and pertains to Release 1.8 ot the Language Development
Tools set and the language compilers C, Pascal, and FORTRAN.

SOFnrARB BXCiPtIOl1B

I',. , ":, JIP. running a program compiled with the protner option (-p), do not rely
. ::OD.;,,~i'l..~~,~tI.;WS returned by that option. Exit status ot the protUed

prorram l·.Y :,6i!~ ~'Cbecked at runtime.
.l:_ ' ...

t't: ';-' ' , . ", ;; ~,'~
';\ 'j; ~

. , ...

Pap 1

(~ I .. FORTUNE SYSTEMS>
101 Twin Dolphin Drive

Redwood City, CA 94065

Dear Fortune Systems Customer:

.~ ,::1 .:_ ~::'~7:.;~!;i~·'.;
,;".}-.

R E L E

This package contains the latest release of the Fortune C Language. You should find
the following items included in this package:

• Fortune C Language Master Diskette (Release 1.7)

• Fortune C Language Guide and index tab

A

(The guide and tab can be inserted into the Language Development Tools binder.)

• The C Programming Language, by B.W. Kernighan and D.M. Ritchie

• User Response Card

• Software Registration Card

If any item is missing, contact a Fortune Representative. Please be sure to fill out
and return the software registration card.

C is a general purpose programming language that is often described as a "powerful
assembly language.» It offers the programmer the advantages of coding brevity,
variety of data structures, modern flow-control constructs, fast floating-point,
single and double processor, and operators. C is well suited ~() system software
development (most tJNlXTM operating systems and Fortune's FOR:PRO are written in C) and
has been used successfully in a wide range of commercial, scientillc, and data base
applications.

A copy of The C Programming Language, by Brian W. Kernighan and Denrus· M. Ritchie,
is also included in this package to aid further understanding of C programming.

In addition to C, Fortune Systems Corporation offers two other systems. languages for
development purposes: Pascal and FORTRAN. These packages identify Fortune extensions.
to the language and provide numerous programming examples.

If you do not have Fortune Language Development Tools (part number 1002145-02)
installed on your system, you will need to order this package separately before
installing the Fortune C Language. The Language Development Tools package is a
language-independent companion document to the guide that accompanies the compiler
disks. It is designed to meet the needs of experienced programmers for programming
in the FOR:PRO environment.

We at Fortune Systems Corporation hope you find the Fortune C Language package to be
as useful and effective as we do. We welcome your comments and suggestions
concerning thi's and other Fortune products.

10/85
1002398-02

UNIX is a trademark of AT&T Bell Laboratories Page 1

s E

c
FortuneC Language Guide

c

I: PORilJ N E 3~0~a~~~u~a~
Belmont. CA 94002

Copyright ® 1984 Fortune Systems Corporation. All rights 0
reserved.

No part of this document may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine read­
able form without prior consent in writing from Fortune Systems
Corporation. The information in this manual may be used only
under the terms and conditions of separate Fortune Systems Cor­
poration license agreements.

UNIX is a registered trademark of Bell Laboratories. Fortune
32:16 is a trademark of Fortune Systems Corporation. FOR:PRO is
a trademark of Fortune Systems Corporation for the Fortune 32:16
Operating System.

Printed in the U.S.A.
1 2 3 4 5 6 7 890

Ordering the Fortune C Language Guide

Order No.: 1002175-01 for the complete guide with disk
1002147-01 for the complete guide without disk

Consult an authorized Fortune Systems Representative for copies
of manuals and technical information.

Disolaimer of Warranty and Liability

No representations or warranties, expressed or implied, of any
kind are made by or with respect to anything in this manual. By
way of example, but not limitation, no representations or warran­
ties of merchantability or fitness for any particular purpose are
made by or with respect to anything in this manual.

In no event shall Fortune Systems Corporation be liable for any
incidental, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or
related to this manual or any use thereof even if Fortune Systems
Corporation has been advised, knew or should have known of the
possibility of such damages. Fortune Systems Corporation shall
not be held to any liability with respect to any claim on account
of, or arising from, the manual or any use thereof.

For full details of the terms and conditions for using Fortune
software, please refer to the Fortune Systems Corporation Custo­
mer Software License Agreement.

11

o

o

c

(~'\
j

o

Contents
INTRODUCTION: AN OVERVIEW OF C i-1

Part 1 USING C ON THE FOR:PRO SYSTEM

Part 2

1 Compiling a C Program 1-1
2 Linking a C Program 2-1
3 Executing a C Program 3-1
4 Debugging a C Program 4-1
5 Profiling a C Program 5-1

THE C LANGUAGE

6 The C Character Set and Conventions of Notation 6-1
7 Data Types and Declarations 7-1
8 Expressions and Statements 8~1
9 Routines 9-1

10 Library Functions 10-1
11 Input and Output 11-1

Part 3 ADVANCED C PROGRAMMING

12
13
14

APPENDIX A

APPENDIX B

APPENDIX C

Advanced System Calls 12-1
Function Calling Conventions 13-1
Linking Programs in Different Languages 14-1

Compiler Passes, Options and Functions A-1

List of C Language Files B-1

Generating Assembly Language Output C-1

iii

o

o

C Introduction

o

An Overview of C

The Fortune Systems' version of C is a general purpose program­
ming language based on the C language developed by Bell Labora­
tories. C is fast and versatile. It is suitable for applica­
tions programming as well as for developing operating systems and
compilers. The FOR:PRO operating system, the UNIX operating sys­
tem on which C is based, and the C compiler were all written in
C. The C language is also appropriate for numerical, text han­
dling, and data base applications.

THE C VOCABULARY

The major elements of the C vocabulary are:

Functions

Declarations

Arguments.

Statements

Return Values

Types

Structure

IIO Functions

Memory Management
Functions

Math Functions

String Functions

THE C PROGRAM

Logically grouped events.

Areas of the program that define a section
of code to be activated by function calls
from other parts of the program.

Methods of passing data to functions.

Parts of the program that determine action.

Values returned by each function.

Each declared variable is of a particular
type.

Groups of logically associated data.

Functions available through a library file
that is linked automatically.

Library routines that allocate and free
space in the main memory.

A library of math functions.

A library of string functions.

The basic structure of a C program is shown in Figure i-1.

2/84 i-1 C Language Guide

ask.c

Program title
and description -1:

comPiler{
instructions .

Main program
body

Called
functions

getfield.c
(included
function)

1* ask.c - Ask a single word question and obtain a reply * I

#define VON
#define VOFF

#include "stdio.h"

main (argc, argv)
int argc;
char **argv;
{

"\033Y"
"\033Z"

char *reply, *question;
int reply length;

if (argc == 3)
{

I *Turn underlining on * /
/ *Turn underlining off * I

I· Assign command arguments • /
replylength = atoi (argv [2]);

else

/ * Display single word question • /
printf("%s ", argv [I]);

I· Underline reply field * /
ulfield(replylength);

I * Obtain reply * /
getfield(reply, reply length);
printf("\n \n ");

printf("·Usage: ask question replylength\n");

#include "getfield.c"

/ * Underline a field and move cursor to beginning of field * /

ulfield(length)
int length;
{

int n;

!. Underline field * /
printf("%s", UON);
for (n= I ;n<=length;++n)

printf(" ");

i * Reposition cursor • /
for (n=length;n>o;--n)

printf("\ b ");
printf("%s ", U 0 FF);

;' * getfield.c - Read a string of characters * I

getfield(data,length)
char *data;
int length;
{

int n;

printf("%s", UON);
for (n=O;n<=length;++n)

data[n] = getchar ();
printf("%s", V 0 FF);

Figure i-1. Major Sections in a Typical C Program

C Language Guide i-2

c

o

o
2/84

c: FORTUNE EXTENSIONS TO THE C LANGUAGE

C:

o

Fortune Systems Corporation has included several extensions to
the C language. These are:

• Non-unique structure elements

Previously, all declarations at the same context level had
to be unique. This extension permits non-unique structure
element declarations that do not share the same offset
value.

• Long variable names

The Fortune C language permits variables to be of any
length.

• The void type

•

This type may be used to prevent "incompatible type" warning
messages.

Passing of structure arguments by value

This feature of the Fortune version of C allows structures
to be passed to functions by "value" as well as by the stan­
dard "reference."

Structures as function return values

The Fortune C language permits structures to be returned as the
value of a function.

These extensions are described in detail in Part 2, "The C
Language."

CONVENTIONS USED IN THIS GUIDE

When creating and executing C programs, you'll be communicating
with the FOR:PRO operating system. FOR:PRO requires that com­
mands be typed using proper command format, or syntax. This
document uses certain conventions to illustrate how FOR:PRO com­
mands are to be typed. These are outlined below.

• Commands to FOR:PRO are almost always lowercase letters,
as is with most UNIX commands. Occasionally, some command
options may be uppercase. Be careful to type commands using
the case shown in the syntax descriptions.

• In syntax statements, any input that you must type is
shown in boldface. Examples and filenames are always in
boldface.

2/84 i-3 C Language Guide

.• Words that you must replace with your own text are und.ru:= 0
lined. Such items are also referred to as command-line
parameters.

• Brackets [] indicate one or more options you may select
from.

• Hyphens (-) usually signal an option on a command line, as
in the command

Is -1

Always remember to type the hyphen.

• Ellipses (...) mean that the preceding option may be
repeated.

• Commands are sent to FOR:PRO by pressing the RETURN key.

• This guide assumes you are using the standard Bourne shell,
hence the $ prompt indicating the start of a command line.
However, this is merely a convention. The FOR:PRO command
syntax used throughout this guide applies to the C shell as
well.

BIBLIOGRAPHY

Hancock, Les and Morris Krieger, Ih~ ~ ELim~L.
McGraw-Hill Book Company, 1982.

New York:

Kernigan, Brian W. and Dennis M. Ritchie, Ih~ ~ ELQ&Lsmmin&
1angu..9g~. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Kochan, Stephen G., fro&Lamm1n& in~. Hasbrouck Heights,
New Jersey: Hayden Book Company, Inc.

C Language Guide i-4 2/84

------ -------- -

o

o

c

PART ONE
USING C ON THE

FOR:PRO SYSTEM

(-: Part 1 of the Fortune C Language Guide introduces five fundamen­
tal steps in developing and using a C program on the FRO:PRO sys­
tem. These are:

• Compiling a C program
• Linking a C program
• Executing a C program
• Debugging a C program
• Profiling a C program

o

o

C Chapter 1
Compiling a C Program

The C compiler translates C source code into relocatable object
code. It translates each file of code individually and then calls
the linking loader to create a single file of object code.

ENTERING SOURCE CODE

Generally, C source code is entered as a source file using a text
editor. You can use the FOR:PRO line editor ed or any other
editor you have on your system. For instructions on the use of
the ed editor, see Chapter 1 of the LangYM~ DeveloQIDen.t. Tool§.

INVOKING THE COMPILER

For input, the compiler expects one or more file names, each with
the suffix .c. The compiler will not accept files without this
suffix.

To invoke the C compiler, use the cc command with the following
syntax:

The cc oommand calls up to six different programs to translate
a C source file into object code. They include, the following:

• Preprocessor
• C compiler
• Optimizer
• Fast floating-point processor
• Assembler
• Linking loader

These programs are called in successive passes. The flow chart
in Figure 1-1 shows the progress of a C file through the compiler
passes. Appendix A describes the passes in detail.

2/84 1-1 C Language Guide

opt
(optimizer)

ffp
(fast floating

point processor)

cc

cpp
(preprocessor)

ccciii
(compiler)

ac
(assembler)

libraries
/usr/lib/crtO.o
/usr/lib/libc.a
/usr/lib/libm.a

/ usr /Iib/libc. ffpa

Figure 1-1. Path of a C Source File Through the Compiler

C Language Guide 1-2

o

o

o
2/84

SELECTING COMPILER OPTIONS

The output of the cc command is by default an executable object
file called a.out. It is created 1.n the current working direc­
tory. However, you may select a number of options that change
the output of the compiler or alter the way it runs. Use the
following syntax to select a compiler option:

$ cc -Q fil~L.Q

where fil~~ is the C source file, and Q is the option.
Note that a hyphen - must precede all options.

Table 1-1 briefly describes the options of cc in alphabetical
order for convenient reference. More detailed descriptions of
the options appear in Appendix A.

OBTAINING SOURCE LISTINGS

The C compiler does not generate source or cross reference list­
ings. To obtain these, use the separate FOR:PRO programs cat,
more, and Ipr.

CO:) cat: Listing Source Files

o

The cat program concatenates and displays files. You may use
it to list a C source file on the terminal screen as follows:

$ cat filll~

You can generate line numbers in the listing by inserting the -n
option between the cat command and the filename:

$ cat -n file~

more: Viewing Long Program Listings

If a program is more than one screenful in length, you may wish
to use the more command, since the text will scroll continu­
ously if you use the cat command. The syntax for more is

$ more fil~ Q

lpr: Listing Source Files on a Printer

Finally, to send source files to a line printer, use the Ipr
command:

$ Ipr fil.§ Q

2/84 1-3 C Language Guide

Table 1-1. C Compiler Options

Option

-0

... g

-0 filenllm~

-p

-v

-w
-c
-D nllm~=gef

-E

-G

-I dir

-0

-5

Purpose

Creates a relocatable object file (.0 suffix).

Produces additional symbol table information for
the Fortune symbolic debugger.

Names the output executable file.

Prepares the executable program for use with the
profiler (prof).

Lists the compiler passes as they occur.

Suppresses warning messages.
Prevents the preprocessor from removing comments.

Defines an identifier nam~ to the preproces-
sor, in the same way as a 'define macro state­
ment. If no definition (= g~f) is given, nam~
is defined as 1.

Runs only the preprocessor; output goes to stan­
dard output.

Prevents the compiler from
stack checking routines
procedure.

generating calls to
at the beginning of each

Searches for 'include files in the dir directory.

Calls the peephole optimizer.

Generates assembly language output; output is
left in .8 file.

Eliminates the definition of the identifier
nll.l!!~ to the pre-processor.

C Language Guide 1-4 2/84

o

o

o

c

o

Chapter 2
Linking a C Program

The last pass of the C compiler is the linking loader.
ing loader combines files of object code, resolves
references, and searches libraries as necessary. It is
automatically by the 00 command unless you use the -0
piler option.

The link­
external

invoked
com-

If you are developing a large program, it is helpful to divide it
into smaller programs and compile them separately using the -0
option. When they have all been compiled successfully into
object code, they can be linked together using the linking loader
as follows.

INVOKING THE LINKING LOADER

There are two ways to invoke the linking loader.
method is to use the 00 command:

The simplest

With this command, the three object code files--fll~.o,
fll~.2.o, and .fll~.o--are linked into one executable ftle,
a.out.

Sample Program for Use with the cc Command

NOTE: Although this is a short example, separate com­
pilation is most useful with long programs.

You have two files, t1.0 and f2.0. The contents of f1.0 are

2/8~

maine)
{
1nt x,Y,z;
x=10;
y=20;
z=57;
b1ngo(x,y,z);
}

2-1 C Language Guide

The contents of f2.0 are

b1ngo(a,b,o)
1nt a,b,oj
(
pr1ntf("~d Id Id", a,b,c);
)

The co command is used with the -c option to produce two
files of object code:

$ cc -0 f.L.Q
$ cc -c ~Q

or simply

$ cc -0 f1~Q f~~£

When f1~Q and f~Q are successfully compiled, you will have
two object code files, f~ and fg~Q. You link the files
with the command

and one executable file a.out is produced.

The second way to invoke the linking loader is with the Id com­
mand. This command is not as simple to use as ce. With the
Id command, you must call the individual libraries; the ce
command calls them for you automatically. However, Id does
make available several options that cannot be used with ce.
These are shown in Table 2-1.

The syntax of the Id command is

The snytax of the ld is

$ Id [QQt12n~ Llusr/l1b/crtO.o] !il~L2 fil~~Q L-lx][-lx2]

In this command, -Ix is an abbreviation for a library named
libl.a in a given list of directories. The loader searches for
matching libraries in the directory Ilib, lurs/lib, and
lusr/local/11b, in that order. To load the standard C library
(/usr/11b/l1bc.a) , include the flag -Ie at the end of the
loader command line.

The module lusr/11b/crtO.o is the standard runtime
module. It must be the first module in the command
want the loader output to be an executable command.
command does this automatically.)

C Language Guide 2-2

~-- -~--~---

stuntoff
line if you

(The ee

2/84

o

o

o

I
I

-<

C'
. ,

c::

Table 2-1 .

Element

-d

-e

-n

-0 filename

-u symbol

-r

-s

-D arg

-M

-N

The ld Options

Purpose

Forces a definition of common storage.

Specifies an, alternate entry point.

Indicates read-only outfile, .so that text por­
tion is shareable among users.

Causes executable file produced by loader to be
placed in filename •. (Default name: a.out.)

Takes the symbol and enters it undefined in a
symbol table.

Generates relocatable object code file.

Removes symbol table and relocation bits from
output.

Takes argument as hexadecimal; pads data seg­
ment with 0 to indicate length.

Produces primitive load map, listing files to
be loaded.

Makes text portion unsharable.

The libaries contain object code that will resolve calls to the
standard C routines (such as printf), calls to math functions, or
other special subroutine calls. It is important that the stan­
dard C library libe.a be the last argument on the ld command
line, since all other modules (and other libaries) reference sub­
routines defined in libe.a.

Some of the libraries you may need with the C programs and Id
command are:

• IcrtO.o Runtime start-off library

• Ilibc.a C library

• Ilibm.a Math library

• Ilibtermcap.a Library of terminal independent cursor move­
ments

2/84 2-3 C Language Guide

• Ilibcurses.a Library of screen functions (see Curses(3».

If you use the -ffp option, you will not need the math library
but you will need:

• libffp.a
• libc_ffp.a

the floating-point library
the C floating-point library

Below is an example of a local line for object modules compiled
using the -ffp option:

$ Id -u_cforoe lusr/lib/crtO.o IDQgl~Q mQg~Q =lc_ffp -lffp -10

The -u_cforoe is required to force loading of the -f'fp
modules in the C fast floating-point libraries rather than
the standard library routines, which may not be compatible with
-ffp. The -rfp option causes the -u option and arguments to be
passed to the loader automatically.

LINKING FILES IN DIFFERENT STAGES OF COMPILATION

o

You can combine files that are in different stages of compilation
with the 00 command. The 68000 assembly language files (suffix
.s), object code files (suffix .0), and C source code files (suf-
fix .c) can be compiled into one a.out file as follows: ~

$ 00 il&§ fll~~Q fll.tl..Q

This command converts the two files that are not already in
object code (f~§ and fil~~Q) into object code, resulting
in filL.,Q, f1il.a....Q, and fil~.3.....Q. Because the linking
loader was not suppressed, (that is, the -c option was not
used) the three object code files are then linked, producing one
executable file a.out.

LINKING MODULES WRITTEN IN OTHER LANGUAGES

Source files written in languages other than C must be compiled
using the -c option before they can be linked.

For example, to compile a C program with a program written in
Pascal, use the po command with the -0 option. The po com-
mand invokes the Pascal compiler, and -0 suppresses the linking
loader, resulting in ah object code file of the Pascal program.
The command is

$ pc -0 Q~~cfil~Q

It produces ftle pascfile.o.

C Latlguage Guide 2-4 2/84

-~--------

o

c

(-. -
~

c

To link the object code file produced by the above command with a
C file, you use:

$ pc -c pascfile.p

It produces file pascfile.o.

To link the object code file produced by the above command with a
C file, you use:

$ cc pascfile.o Cfile.o

Remember that the C file and all other files in the ld command
line must be in object code.

HEADER FILES AND GLOBAL VARIABLES

Separate compilation of programs can save time when several pro­
gram modules constitute one large program. Each module can be
compiled separately and then they can be linked into one program
with the linking loader.

Two techniques should be considered when performing separate com­
pilations. First, a common set of definitions or declarations
can be shared among the modules of a large C program. Rather
than placing a set of these definitions in each module, you
should declare them in a common header file. By convention, the
suffix .h is appended to this header file name. Use the
'include statement with the name of the header file as its
argument in each file that requires the definitions.

The following example shows how to prepare files for separate
compilation without duplicating the definitions:

r1le1.c: f11e2.c:

tnt 1[100]; 1nt 1[100];
int j[200]; 1nt j[200];
1nt k[100]; int k[100];

runc1() runc2()
{ {
• • • • • •
• • • • • •
} }

2/84 2-5 C Language Guide

Use 'include statements with a header file:

dets.h:

int i[100];
intj[200];
int k[100];

file1.c:

func1()
{

• ••
• • •
}

file2.c:

fUDC2()
{

• • •
• ••
}

The second technique concerns global variables that are used
across several C source files but are not defined in a common
header file. In all files other than the one in which an exter­
nal variable is defined, there must exist an external declara­
tion. In the following example, . this declaration permits the
compiler to determine the type of a variable that is not defined
in the module.

file1.c: file2.c:

lonl val; extern long long val;

maine) func()
{ {

••• • • •
• • • • ••
} }

C Language Guide 2-6 2/84

o

o

o

CChapter3
Executing a C Program

A file that has been compiled and linked can be executed. To
execute a file, typ~ its name and pr~ss RETURN. If you used the
-0 option in the 00 command, the exeoutable file's name was
indicated with the option. If the -0 option was not used, the
executable file is named a.out. For example:

$ tilename If the -0 option was used during compilation

$ a.out If the -0 option wasn't used

Errors that were not detected during compilation sometimes sur­
face during program execution. These are called runtime errors.
Sometimes runtime errors cause execution to stop with an error
message. Often, runtime errors can only be found by examining
the output or "side effects" of execution. Chapter 4 contains
more information about debugging your programs.

(" REDIRECTING INPUT

o

The standard input device is the keyboard. The C routines that
access files for standard input are discussed in Chapter 11,
"Input and Output."

In addition, it is possible to redirect input so it comes from a
file instead of the keyboard. Use the redirection input symbol
< to do this. The redirection symbols are shell commands, and
are used on the shell command line. Here is the syntax used to
execute a.out with redirected input.

$ a.out < gatgf!l~

The object file a.out will be executed and the contents of
datafil~, a file you have created in your directory, will be
read into a.out when the appropriate C system call is reached.

REDIRECTING OUTPUT

The standard output is the terminal screen. Chapter 11, "Input
and Output," discusses the C system calls for generating output
on the screen.

In addition, output may be redirected to a file or to the line
printer.

2/84 3-1 C Language Guide

Redirecting Output to a File ~
Use the FOR:PRO redirection symbol> to redirect output to a
file. Both the output of a successfully executed program and the
error messages can be redirected to a file in your directory. For
both, use >. To use> with a.out, type

$ a.out > store

This command will place the output of a.out in a file called
store. If store contains any contents already, the old con­
tents will be replaced by the new. To have the new data appended
instead, use the double arrow» as follows:

$ a.out » sto~~

The output of a.out will be added to the end of the file
.§.tQ~.

The input and output redirection symbols may be used together in
one command line to redirect both input and output:

$ a.out < infile > outfil~

This command line inputs the contents of infile to a.out and
places the output of a.out in Qy.tfil~.

Redirecting Output to the Printer

Two ways are available to send output to the printer. If the
output of an executed program is stored in a file, the output
file may be sent to the line printer spooler with the Ipr com­
mand, which has the following syntax:

$ Ipr [-oQtions] outfll~

Note that Ipr is the FOR:PRO command that invokes the line
printer spooler. The spooler ensures that one job is completely
printed before another is started.

If output is normally sent to the standard output, it can be
redirected with the pipe symbol I as in:

$ a.out r Ipr

HANDLING ERRORS

o

The C compiler error messages are designed to be self-explanatory
and to help the user locate the line number in the source file
where the error occurs. For example, if the compiler discovers 4[)
the following for statement on line 5 of this sample C program:

C Language Guide 3-2 2/84

c

main () { int jack;
jack = 0;

}

for(i=O; i <=100; i++)
jack = jack + i;

the error message is

"programname.c", line5: i undefined

Normally the display screen receives
standard output has been redirected
This convention has been provided so
be intermingled with other output.

error messages even when
to some other output device.
that error messages will not

Error messages are normally sent to device number 2, standard
error. To redirect your error messages to a file, use the fol­
lowing command from the Bourne shell:

$ a.out > erfile 2 > &1

In the C shell use

$ a.out > &erfile

If you do not know which shell you are in, use the set command.
If the variable argv is listed, you are in the C shell. Other­
wise, you are in the Bourne shell.

The fprintf statement can also redireot error messages, using
the predefined stream pointer stderr just as standard output
uses stdout.

Error messages can be redirected from within a C program in this
way:

$fprintf(stderr, "Error number Id\n", ernumber);

2/84 3-3 C Language Guide

0 ," . 'fr,

(~!
~,

o

C Chapter 4
Debugging a C Program

The Fortune sybmolic debugger (fdb) is one of the tools
included with the Language Development Tools. The debugger is
used when a program compiles successfully but does not run as
expected. From within the debugger, you can trace variables and
their values throughout a program to find the exact location of a
bug.

This chapter describes the use of the Fortune symbolic debugger.

COMPILING A PROGRAM FOR DEBUGGING

Before a file can be input to the debugger, the file must be com­
piled with the -g compiler option. This is done with the command:

$ cc -g f11~.&

(-- INVOKING THE DEBUGGER

c

After compiling the program with the -g option, you will have
an executable file. As always, the file is called a.out unless
you used the -0 option. The next step is to run the fdb pro­
gram with your executable file as follows:

where filen2ID~ is the name of your executable file. If no
filename is given, the file a.out is used by default. The
Qi~ectoLY, if included, refers to the directory where
filename can be found. If no directory is named, the current
working directory is assumed.

USING THE fdb Commands

Table 4-1
commands
described
mands may

2/84

defines the most important fdb commands. Additional
as well as the general rules for using the debugger are
in the 19n9Ygg~ .Q~Y~lQQm~nt IQQls fIYide. These com­
be abbreviated.

4-1 C Language Guide

Table 4-1. The fdb Commands

Command

alias

break

delete

dump

file

find

fun

go

help

let

print

quit

restart

set

show

trace

walk

,(comma)

&

return key

Function

Defines or cancels an alias.

Sets a breakpoint.

Removes a breakpoint.

Dumps memory contents.

Changes input, output, and source files.

Searches source file for a string.

Defines a function key.

Starts or resumes program execution.

Displays a summary of fdb commands.

Modifies a data item's value in memory.

Prints specified lines of the source code.

Exits fdb.

Restarts program with optional parameters.

Sets special debugger options.

Displays debugger status information or lines of
source code.

Traces program execution.

Executes program line by line, stopping after each
command.

Shell escape.

Displays contents and addresses of a variable.

Displays address of a variable.

Repeats previous command.

C Language Guide 4-2 2/84

o

o

o

i

(~

C···\ _'i

A SAMPLE C PROGRAM FOR DEBUGGING

The following C language program converts integers to ASCII char­
acters. It can be used as an exercise in debugging.

To begin your debugging session, first create a file of the sam­
ple C program. Then, after compiling the file with the -g
option, give the fdb command, and type the different debugger
commands to see how the debugger works. Name the program
"sample.c" and type it as file in your current working directory
as follows:

2/84

'define MAXCHAR 10
char s[MAXCHARJ
mainO ,- sample.c
{

int i;

i= 12345;
pr1ntd(1);
i= -987654;

pr1ntd(i);
}

printd(n)
int nj
{

reg1ster 1 ;

1f (n < 0) {
putohar('-');
--n;

}
1 - 0;
do {

-,

s[1++J = n ~ 10 + '0';
} wbile ((n ,= 10) > 0);
pr1nt1t(i);

}

pr1nt1t(k)
int k;
(

}

wh1le(--k >= 0)
putchar(s[k]);

putchar(f\n');

4-3 C Language Guide

Next, compile the C program with the -g option:

Then invoke the Fortune symbolic debugger with the command:

$fdb a.out

Your screen will show the message:

Fortune Symbolic Debugger

An asterisk (.) prompt will appear on your screen. Now follow
the guide below. The information that you type is in boldface
type. The purpose of the command is in parentheses.

* break 11

(Sets breakpoint at line 11.)

BREAKPOINT SET AT: PROCEDURE main
LINE 11: printd(i)j

* break printd: 1 do ,n

(Sets breakpoint at the first line of procedure printd
and display the value of n whenever the program stops.)

NEW BREAKPOINT S,ET AT: PROCEDURE printd
LINE 19: if (n < 0) {

* break printit: 34

(Sets breakpoint at printit, line 34.)

NEW BREAKPOINT SET AT: PROCEDURE printit
LINE 34: putchar(s[kJ)j

* show break

(Displays the 3 breakpoints defined so far.)

PROCEDURE printit
LINE 34: putchar(s[k])j
PROCEDURE printd
LINE 19: if (n < 0) {
BKPT COMMAND: ,n
PROCEDURE main
LINE 11: printd(i)j

C Language Guide 4-4 2/84

o

o

o

c

c

* go

(Starts program execution and stops at the first breakpoint.)
INFORM(36): EXECUTION SUSPENDED TO
PERFORM BREAKPOINT COMMAND ,n AT
printd:LINE 19: if (n < 0) {
12345

* show window 7

(Displays 7 lines before and 7 lines after the current line.)

LINE 12: }
LINE 13 :
LINE 14: printd(n)
LINE 15 : int n' ,
LINE 16: {
LINE 17: register i' ,
LINE 18:
LINE 9 : if (n < 0) {
LINE 20: putchar('-')j
LINE 21 : --nj
LINE 22: }
LINE 23: i = O· ,
LINE 24: do {
LINE 25: s[i++] = n % 10 + ' 0 ' j
LINE 26: } while ((n 1= 10) > 0) j

* break 26

(Sets another breakpoint at line 26.)

NEW BREAKPOINT SET AT: PROCEDURE printd
LINE 26: } while ((n 1= 10) > 0)j

* go

(Continues the program.)

INFORM(35): EXECUTION SUSPENDED DUE
TO BREAKPOINT SET AT
printd:LINE 26:} while ((n 1= 10) > 0)j

* t n; t sIs

(Displays the variables nand s.)

12345
5

2/84 4-5 C Language Guide

* alias gd "go; ,n; ,sIs"

(Sets alias definition gd to resume execution and
displays variables nand s in one command when
the execution stops.)

* show alias

(Displays the alias definition.)

ALIAS: gd DEFINED AS go; ,n; ,sIs

* gd

(Runs the command.)

INFORM(35): EXECUTION SUSPENDED DUE
TO BREAKPOINT SET AT
printd:LINE 26:} while ((n 1= 10) > 0)j
1234
54

* gd

(Runs the command again.)

INFORM(35): EXECUTION SUSPENDED DUE
TO BREAKPOINT SET AT
printd:LINE 26:} while ((n 1= 10) > 0)j
123
543

* delete 26

(Deletes breakpoint at line 26.)

* show break

(Displays the breakpoints.)

PROCEDURE printit
LINE 34: putchar(s[k]);
PROCEDURE printd
LINE 19: if (n < 0) {
BKPT COMMAND:,n
PROCEDURE main
LINE 11: printd(i);

* delete all

(Deletes all the breakpoints.)

C Language Guide 4-6

o

o

o
2/84

c * go

(Continues the program. Since all the breakpoints are
deleted, it will' finish.)

12345
-987654

SYSTEM (99): PROCESS TERMINATED

(Process is terminated whenever the main procedure
completes execution.)

* quit

(Leaves the debugger program and returns the shell prompt.)

Now rerun the debugger program as follows:

$fdb a.out

Fortune Symbolic Debugger

(-C' * break 7

C\
"

(Sets a breakpoint at line 7.)

NEW BREAKPOINT SET AT: PROCEDURE main
LINE 7: i=12345;

* restart

(Restarts the debugger program.)

INFORM(35): EXECUTION SUSPENDED DUE
TO BREAKPOINT SET AT
main:LINE 7: i= 12345;

* walk

(Single steps through the program.)

main:LINE 8: printd (1) ;

* dump &1

(Displays the add res of i and the memory contents
around the address of i.)

2/84 4-7 C Language Guide

ADDRESS FOR :i IS Ox7ffed8
sp address 0 1 2 3 4 5 6 7 8 9 abc d e f

D 7ffdfO 00 00 00 00 00 00 00 62 00 00 30 39 00 00 00 00

* Idate

(Executes the shell command for date and time.)

Fri Jul 8 12:57:23 GMT-3:30 1983

* show file

(Names the input, output, debug, and source files.)

INPUT FILE:
OUTPUT FILE:
DEBUG FILE:
SOURCE FILE:

standard
standard
sample.c
sample.c

* find "print" 1

(Searches for the first time the string print occurs
from line 1.)

LINE 8 : printd(1);

* find

(Searches for the same string again.)

LINE 11 : printd(i);

* print 1/10

(Prints lines 1 - 10.)

LINE 1 : 11defi neMAXCHAR 10
LINE 2: char s[MAXCHAR];
LINE 3 : maine)
LINE 4 : {
LINE 5: int i;
LINE 6 :
LINE 7: i = 12345;
LINE 8 : printd(1) ;
LINE 9 : i = -987654;
LINE 10:

C Language Guide 4-8

o

o

o
2/84

1

C

c

* show fun

(Shows how the function keys are currently set.)

FUN KEY: fun16 DEFINED AS next
FUN KEY: down DEFINED AS print next
FUN KEY: up DEFINED AS print .-1
FUN KEY: EXECUTE DEFINED AS walk in
FUN KEY: execute DEFINED AS walk
FUN KEY: nextscrn DEFINED AS print . -1 ! 20
FUN KEY: prevscrn DEFINED AS print . ! -20
FUN KEY: help DEFINED AS help

Now use the PREV SCRN and NEXT SCRN keys to see how they work as
special function keys. The up arrow () and the down arrow ()
will print the line of source code above or below the current
line. Type q to leave fdb.

2/84 4-9 C Language Guide

c

C ChapterS

c

Profiling a C Program

The profiler is a tool designed to help programmers identify
those parts of a program that are inefficient. It generates a
list that indicates the amount of time spent executing each part
of a program. This chapter describes how to use the profiler. It
should be noted that the profiler alters the value returned by a
program. In normal cases this should not cause any difficulty.

COMPILING A PROGRAM FOR PROFILING

To prepare a file for profiling, you must first compile it with
the -p option:

The input to the cc -p command may contain no more than 200
procedures (the main program and all functions and subroutines).

The output of the co -p command
executable file. The name of
a.out unless the -0 option was
specified.

is a modified version of the
the executable file, as usual, is
used and another name was

The executaple file produced by the -p option is modified to
contain code that calls a program named monitor. monitor
tracks the use of computer time during program execution.

USING THE prof PROGRAM

Once the cc -p command line has prepared a file for profiling,
the file must be executed as usual by typing its name and a
return.

At the end of the execution, profiler information is placed in a
file called mon.out. You may use the 18 command to ascertain
that mon.out is in your directory.

Once the a.out file has been executed, use the prof program to
generate the profiler information. The basic syntax of prof is

$ prof

where your executable file is a.out. If a.out is not the name
of your executable file, you must state the filename after the
prof command:

2/84 5-1 C Language Guide

$ prof filename

A listing of profiler information will appear on your screen in
response to the prof command.

A SAMPLE PROGRAM FOR USING THE PROFILER

This sample session illustrates the use of the profiler. The
program to be profiled is named proftst.c. Its contents are

mainO

{

long 1;
for (1=0; i < 100; i++)
funO:
printf(ftDone\n ft):

}

fun()
{

}

int n;
for(n=OJ n < 100; ++n)

fun2() ;

fun2()
{

lnt n;
for(n=O; n < 10; ++n);

}

To compile the program, type

$ co -p QrQftst.q

To generate the profiler listing, type

$ a.out

then the profiler command

$ prof

C Language Guide 5-2 2/84

o

o

o

c

o

The following information will appear on your screen:

%time

63.1
4.2
0.0

tm spent

1. 77
0.12
0.00

cum sec

1. 77
1.88
1.88

call

10000
100
1

ms/call

0.18
1.19
0.00

name

fun2
fun
main

where:

2/84

%time Percentage of time spent in function

tm spent Time (in seconds) spent in function

cum sec Cumulative time prior to this function

flcall Number of times function was called

ms/call Number of milliseconds spent in call

name Program unit name

NOTE: The actual values displayed depend on the
operating system, the C compiler, and Language Develop­
ment Tools you are uSing.

5-3 C Language Guide

o

o

c

PARTTWQ
THE C LANGUAGE

('. Part 2 of the Fortune C Language Guide summarizes the vocabulary
and conventions of the C language on the FOR:PRO operating sys­
tem. It defines

C\
• .;.,,..1

• The C character set and conventions of notation
• Data types and declarations
• Expressions and statements
• Routines
• Library functions
• Input and output

For a more comprehensive description of the C language, see Ker­
nighan and Ritchie, The ~ Programm~ng J.&.ng1Jag~ or one of the
other books in the list of references in the introductory section
of the guide.

o

;(~.

\~)

o

C Chapter '6

("' .
•. ~

The C Character Set and Conventions
of No tation
The C language uses a few conventions of notation that must be
observed when programs are written. These as described, together
with the C character set, in this chapter.

THE CHARACTER SET

The C character set contains the following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

0 1 2 3 4 5 6 7 8 9

"
, II $ % & * () + - / . . < > = . , . ,

? @ [] { } " , -I

The C language distinguishes between uppercase and lowercase.
For example, the variable named "Lower," spelled with an upper­
case L is different from the variable "lower," spelled with a
lowercase I as the first letter. The same is true of constants.

RESERVED IDENTIFIERS

In C, the following identifiers are reserved for use as keywords
and cannot be used to identify other elements of a C program.

auto
break
oase
ohar
oontinue
default
do
double
else

entry
extern
float
for
goto
if
int
long
register

C Language Guide

return
short
sizeof
static
struot
switch
typedef
union
unsigned
while

6-1 2/84

NONGRAPHIC CHARACTERS

In the C language, the backslash \ is used with other charac­
ters to represent certain nongraphic characters as well as the
single quote and the backslash itself. These non-graphic charac­
ters and their representations are as follows:

backslash \
backspace \b
bit pattern \ddd
carriage return \r
form feed \f
horizontal tab \t
newline \n
single quote \'

STATEMENT FORMAT

The C language uses a free field for statements: They may begin
or end in any column, and blanks beyond the first one are ignored
by the compiler. Any number of blanks, tabs, or blank lines may
be included to improve ease of reading.

COMMENTS

The C compiler ignores any' characters that appear between ,*
and *'. These symbols can thus be used to create comments,
that will appear in the program listing but not affect its execu­
tion. Such comments may be used freely in a C program. Comments
can be included anywhere a blank or a newline can.

C Language Guide 6-2 2/84

o

o

(~- Chapter 7

c

Data Types and Declarations

The basic data types used by a C program are constants and vari­
ables. Constants are declared implicitly by their appearance and
use in a program. Variables must be declared in such a way that
the variable name becomes associated with a variable type. This
type implies the properties and storage size of the variable.

The basic data types may also be used to create extended data
types, such as structures and arrays. These extended data con­
structions are useful for modeling logical groups that arise in
actual data.

Finally, pointer variables may be declared to point to both basic
and extended data types. When used in plac~ of array subscripts,
pointers increase the efficiency of programs that perform index
referencing.

The five classes of data types are described below.

CONSTANTS

Constants may be characters, integers, or floating-point numbers.
Characters may exist alone or in groups called strings.

Character Constants

The following are examples of character constants:

'a' '1'
"January"

Single charaters
String of 8 characters (null included)

Character constants are enclosed by single quotes while strings
are enclosed by double quotes. A string will always include the
null character (a binary zero) as its terminator. This character
is added by the compiler. Note that a string is the same as an
array of characters in C.

Integer Constants

Integer constants may be represented in different radix formats
by prefixing them with the appropriate symbol, 0 for octal or
Ox for hexadecimal.

2/84 7-1 C Language Guide

Here are some examples of integer constants:

-25 0 100000

0177 011

Decimal constants

Octal constants

Oxa2 Oxfff Hexadecimal constants

Floating-Point Constants

Floating-point constants are represented by "number decimal point
number rr or by scientific notation. They can also be expressed in
hexidecimal or octal. The two ways of expressing floating-point
constants are shown below.

12.5 1000.0001

23.4e23 10.023E-4

VARIABLES

Use of decimal points

Use of scientific notation

o

A variable declaration consists of a variable name and an associ­
ated variable type. The variable name is a string of letters and
digits, the first of which must be a letter. ~

The Six Variable Types

There are six variable types in the C programming language. Each
type implies rules for the manipulation of its value and the
number of bits allocated for its storage, as shown in Table 7-1.

The additional unsigned qualifier may precede a character,
short, or integer variable name to permit the integer to range in
value from zero to a maximum of two to the n-minus-1 power, where
n is the number of bits in the integer.

Multiple variables of the same type may be declared in a single
declaration statement by separating each with a comma. Each
declaration is terminated by a semicolon.

The following example shows the declaration of multiple variables
of type short.

short s1,s2,s3;

C Language Guide 7-2 2/84

o

C ..

c

Table 7-1. C Data Types

Type Description Storage Example
in bytes

char character 1 ' a' , ' 1 ' , ' q ,

short integer 2 32767, -53

int integer 4 7494312

long integer 4 9043555, -213328

float single-precision
floating-poiint 1E37, 3.976

double double-precision
floating-point 8 1E314, -E313

Precision Arithmetic

The program below illustrates precision arithmetic. Following
the program is a t~ble which gives the upper and lower bounds of
all the numerical data types. CIS precision is the same as
Fortran's and follows the IEEE standard. In this standard, all
real and double-precision numbers are represented in the form
called normalized floating point form: plus or minus 2 raised to
the n-th power times f where f is a real number whose lower bound
may equal 1.0 and whose upper bound is always less than 2.0.

If you compile the program below by typing

$ cc .IU:Qgram ~ -lm

and then run it by typing

a.out

you will get the following output:

uf is 3.4025878e+38
If is 1.1754944e-38
ud is 1.797568532587847e+308
ld is 2.225073858507200e-308
little is 32767
big is 2147483647

2/84 7-3 C Language Guide

The program statements beginning uf and If (upper floating and
lower floating) illustrate the largest and smallest floating
point numbers expressed in normalized form. In the output above,
they are converted to normal scientific notation. The double
numbers ud and ld are treated similarly. The last two lines of
the output show the largest short and the largest integer. (The
function pow is described in section 3 of the EOR~fRO
PrQg~~mm~~~§ M~nu21 along with all the other C library functions.)

'inolude <math.b> '* this loads in the math library routines *'
main{)
{
short little; int i,big;
float uf,lf: double ud,ld:

uf = pow(2.0, 121.9999); printfC" uf 1s S1.1e O,uf);
If = pow(2.0, -126.0): printfC" If is Sl.7e O,lf);
ud = pow(2.0, 1023.9999); printfC" ud 1s Sl.lSe a,ud);
ld = powC 2.0, -1022.0); printfC" ld is S1.1Se O,ld);
little = 32761; big = 2147483647;
pr1ntf(nlittle is SSdO,llttle); printfCnbig is S10dO,big);
}

Upper and Lower Bounds for Numerical Datatypes

DATA TYPE

short
int
float
double

LOWER BOUND

+(-)1.175494E-38
+(-)2.2250738507E-308

The ffp Option

UPPER BOUND

+(-)32767
+(-)2147483647
+(-)3.402587E+38
+(-)1.7976931348E+308

Users who want faster arithmetic operations and are willing to
sacrifice precision and range can use the -ffp option with the
C compiler. The necessary library, which comes with the Language
Development Tools, is loaded automatically. Note that when you
invoke ffp:

• There is no distinction between float and double, doubles
are treated as floats.

• The range of the float exponent is reduced by approximately
fifty percent.

The ranges for the -ffp option are:

-9.22337E18 < x < -2.71050E-20 (for negative values)
5.421010E-20 < x < 9.22337E18 (for positive values)

C Language Guide 7-4 2/84

------------- ------------------ -------

o

o

0

c A Fortune Extension: . Long Variable Names

In many implementations of the C language, only the
first eight characters of a variable name are signifi­
cant. The Fortune C language, however, permits variable
names to be of an arbitrary length.

The only limit imposed is one of practicality. Variable
names that extend beyond 256 or even 128 characters will
be unwieldy and a nuisance to type and understand. The
underscore character may be useful in separating logical
parts of a variable name.

This example illustrates a long variable name:

Mixing Variable Types (Casting)

A type is associated with each declared variable in C. When
variables are used in expressions (such as relationals or assign­
ments) these types are compared for compatibility. Normally,
programs are written in such a manner that compatibility is obvi­
ous: Integers are added only to other integers, characters are
compared only with other characters, and so forth.

When types do not match, implicit rules are provided, and the
intended operation is able to continue. These rules are called
casts. If a variable of type short is being compared or
assigned to one of type long, for instance, the C-Ianguage cast
converts the short variable to a long variable before it is com­
pared or assigned.

In the following example, s is first moved to a long temporary
variable or register, and its sign is extended, if necessary, to
reflect a negative value. It is then ready for the assignment
operation:

long I;
short s;

1 = s;

In some cases the rules for casting are not defined; an explicit
cast must be provided by the programmer.

2/84 7-5 C Language Guide

Here is an example of an explicit cast:

cl'lar .cp;
short .sp;

sp = (short .)cp;

The type supplied in parentheses is the type to which the vari­
able immediately following it should be converted. This mayor
may not generate additional machine instructions, but if the
variables have been properly cast, the compiler will omit its
warning.

Note that casting character pointers to short o~ integer may
cause your program to fail due to an odd-byte address.

A Fortune Extension: The Void Type

A special new void type, corresponding to the undefined
type, is available with the Fortune C compiler. It may
be used to prevent the "incompatible type" warning mes­
sages produced by the type-checking program lint.

In the following example, the function fune1 normally
returns a long value. When the function is called and
cast using the void type, a dummy variable that holds
the return value is unnecessary because this return
value is not needed.

This program illustrates the use of the void type:

maine)

{

}
(void)func1():

long
fune1()

{

}

int longval = 10;
return(longva1);

C Language Guide 7-6 2/84

o

o

o

c

(

ARRAYS

Array declarations permit the logical grouping of homogeneous
data objects. Each data object occupies the same amount of phy­
sical space and is referenced by subscripts according to its
position relative to the first element.

As in other languages, subscripts are used both in the declara­
tion to indicate the size of the array and in the reference to
indicate the element required. Arrays in C may have one or more
dimensions.

Simple Arrays

The simplest and most common array has only one dimension.

The following are examples of the declaration and indexing of
one-dimensional arrays:

char cstrlng[80J;
fnt iarray[100J;
iar-r-ay[OJ
iar-r-ay[~J
larray[99J

Array of 80 characters, termed a "string"
Array of 100 integers
First integer in iarray
Fifth integer in iarray
Last integer in iarray

Since the first array element is indexed, the last element of an
array is one less than the declared size of the array.

Multi-Dimensional Arrays

Arrays are not limited to one dimension; they may have several.
A two-dimensional array of integers is declared as follows:

int larray[10][20J;

A total of 200 integer elements are in this array. The elements
are stored in order by rows. The rightmost subscript of the
array varies fastest when the elements are accessed in the order
in which they are stored in memory.

An array may be initialized by a list of initializing constants
enclosed in braces. A multi-dimensional array is initialized by
enclosing sublists of these constant initializers in braces.

Each of the sUblists corresponds to an array row. In the event
that the number of constants in a sublist does not match the
number of elements in an array row, the elements of the ~rray go
uninitialized when there are too few constants or the constants
are discarded when there are too many constants.

2/84 7-7 C language Guide

The following example shows a corresponding list and array:

1nt february(_](1] = {

} ;

{ 8, 8, 8, 8, 8, 0, 0 },
{ 8, 8, 8, 8, 8, 8, 0 },
{ 8, 8, 8, 8, 8, 8, 8 },
{ 8, 8, 8, 8, 8, 0, 0 }

STRUCTURES

In C, structures combine heterogeneous data types into a compound
data types. A C structure is equivalent to what is termed a
"record", in many other languages. This compound data types col­
lects data that logically belong together.

Structures may consist of combinations of simple variables,
arrays, or additional nested structures. Structures of the same
type may be grouped together into an array of structures.

Because structure is a declared type, pointers may point to
structures to access individual elements. Combinations are pos­
Sible, and structures may even contain pointers referencing them­
selves.

More information on passing structures and on pointers to struc­
tures appears in Chapter 10, "Library Functions."

Simple Structures

Each element of a structure is a declared variable and may
include both arrays and structures. This declaration has the'
following form:

struct [strYQ1~1~g] {
~lem~nl1;
~l~menl~;
~l~~nl1;
•••
• • •
e1~~lN;

} §trYQtu~g_n~mg;

The keyword struct denotes the beginning of a structure
declaration. The §trYQly~e t~ notation merely names (or tags)
the particular structure being declared and is therefore
optional. However, such name tags should ordinarily be included
because they are useful in the creation of additional instances
of the structure and in the definition of pointers to the struc­
ture.

C Language Guide 7-8 2/84

o

o

o

c

c

The following structure has one element that is a simple integer
plus three elements that are character arrays:

tnt
char
char
char

} newcar;

year;
make[16];
model[16];
color[16];

Additional structures of this type (one integer and three charac­
ter arrays) may be created using the same tag, tag~car:

struct
struct

taL-cal:
.t.aL-Q.al:

usedQ.al:;
jYnkQ.al:;

Each of the above structures contains the same four elements as
the original structure and is initialized by following the
declaration with a list of constants enclosed in braces.

struct tag_car junkcar = {
1951,
"Buick",
"Super",
"black",

} ;

An element of a structure is referenced using the. operator:

junkcar.year
junkcar.make
junkcar.model
junkcar.color

Arrays of Structures

equals
equals
equals
equals

1951
"Buick"
"Super"
"black"

Multiple instances of the same type of structure may be grouped
together into an array.

2/84 7-9 C Language Guide

This example illustrates an array ~f structures:

struct person {

int
char
struct

} bday;
char

} i

struct
struct
struct
struct

age;
name[32];
bIrthday {
int day;
int menth;
int year;

inventIon[32];

person grade1[35]j
person grade2[32]j
person grade3r_O]j
person 'personptrj

The braces around the embedded structure birthday are optional.

o

The first structure definition does not occupy any space. It
merely describes the elements of the structure. The tag person
is used to reference this definition when declarations are
created. Three arrays of structures were declared together with ~
a pointer to a person structure.

To initialize an array of structures, enclose the initial values
in braces and place them after the declaration. The values for
each structure must also be enclosed in braces, as in the follow­
ing example:

struct personinventors[35] = {
{ 33,

} ;

} ,
"Barbara Wire", {25, 3, 50},
"Barbed Wire"

{ 32,

} . "Walter Windchill", {1Q, 3. 51},
"The Windchill Factor"

• • •

C Language Guide 7-10 2/84

o

c

o

Bit Fields

Structures may have special elements called 111.tf1l1.9:.:!. These
bitfields are p6rtions of integers used to replace masks that use
bitwise operators.

The following format is used for bitfields:

struct {

unsigned fname] • Q.!.tHid.thl; .
unsigned fn~.2 Q.!.tn.9:.th.2;
• ••
•••
unsigned fnameN 11i.kH.!dthN;

} .:!trucLngme ;

Rather than using complex Idefine statements and bitwise opera­
tors, you can sometimes use bitfields to clarify the logic of the
program.

Here is an example of complex programming:

Idefine
Idefine
Ide fine

ORDERED
SHIPPED
PAIDFOR

int flags;

flags t= ORDERED;

l'
2

"

ir«flags & (ORDERED t SHIPPED» 1= 0) {
• • •
• ••
• • •

}

The above example can be replaced by this straightforward bit­
field logic:

2/84

Iderine NO 0
Ide fine YES 1

struct {

} flags;

unsigned
unsigned
unsigned

is_ordered
is_shipped
is_paid for

7-11

• •
• •
:

1 ;
1 ;
1 ;

C Language Guide

rIags.ls.,.:ordered = YES; 0
1r(rIags.ls.,.:ordered == YES If rIals.is_shipped == YES) {

• • •
• • •
•••

)

Bitfields may not cross integer boundaries. If a sequence of bit­
fields is declared such that one would cross an integer boundary,
the bitfield is aligned on the next full integer boundary.

Bitfields are not arrays and thus do not have addresses. They
are declared as unsigned variables and are stored as integer
variables. Attempting to retrieve the address of a bitfield by
use of the & operator generates an error message.

Unions

Unions are variants of structures that allow the user to overlay
different types of data on the same allocated space. Rather than
being allocated one after another, each element of a union uses
the beginning of the union as its starting address. The compiler
manages union size and union alignment requirements.

Unions, like structures, consist of one or more elements enclosed
by braces; they follow the keyword union. The ynlon ~gg nota­
tion merely names (or tags) the particular union being declared
and is therefore optional. However, such name tags should ordi-

. narily be included because they are useful in the creation of
additional instances of the union and in the definition of
pointers to the union.

An example of the union and name tags follows:

union [union_tagl (
element1;
element2;
•••
elementl;

) union_name;

Unlike the structure variable, each of the elements of a union
begins at the same location in memory. Unions may occur within
structures and arrays, and vice versa. The structure operators
• and -> are used to access elements of a union, together
with the name of the union and a pointer to the union.

C Language Guide 7-12 2/84

o

c

«:: For example:

The following union permits one of three types to be stored in
the allocated space. The compiler reserves enough space to hold
the largest-sized variable.

union .!L3.u~~ {

int
long
float

} tlf t~;

intval' ---,
lQng,nl;
llistvalj

POINTER VARIABLES

Pointer variables point to data objects by containing their
memory addresses. They are declared like simple variables, but
their names are preceded by the unary • operator.

The type associated with each pointer is the type of variable to
which the pointer points. All pointers use the same amount of

(~ physical storage (4 bytes).

The following are examples of pointers:

2/84

int .pi; The pointer variable pi points to an
integer

int .pai[10]j The array pal contains ten integer pointers

A Fortune Extension: Non-Unique St~ucture Elements

Previously, all declarations at the same context level
were required to be unique. The only exceptions to this
rule were structure element declarations having the same
physical offset within the structure.

These are examples of structure element declarations:

struct s_1{struot s_2 {
int str_onej lnt str_twoj
int same; lnt same;

} 51; } s2;

7-13 C Language Guide

In these examples, although the integer same is non­
unique in both structures, its offset from the beginning
of the structure (its value) is the same. This has nor­
mally been permitted.

The following structure declarations each contain common
elements that do no~ share the same value:

struct s_1 {8truet 8_2 {
int same; int str_two;
int 8tr_one; int same;

} sl; } s2;

The Fortune C compiler accepts these structural declara­
tions by permitting non-unique structure element
declarations that do not share the same offset value.

A pointer variable may be given a value by assigning an address
to it. The address operator & (ampersand) is used to obtain an
address.

Use the pOinter variable in this way:

pi = &i; Assigns to pi the address of the integer
i.

pairol ::: &i; Assigns to the first element of the array
pai the address of the integer i.

The • operator is also used to obtain the value of the object
to which the pointer points. This process is called d~­
referencing.

The following are examples of de-referencing:

int i,j;
int ·pi;

pi = &i; Assigns to the pointer pi the address of 1

j = ·pi; Assigns to j the value of the integer pointed
to by pi

j = i; Assigns the value of i to j

The first two assignments above are equivalent to the third. In
this example, the assignment j = i is more direct and effi-
cient. However, had the situation included an array of integers

o

0

within a loop, the de-referencing approach might have been more
efficient. Here is an example of an array of integers within a 0 ...
loop:

C Language Guide 7-14 2/84

(-

~.~ ..
~'

1nt total = O,1array[10],.p1;

p1 = &1array[O]j Points to the first element of the
array 1array

vh1le(p1 =< &iarray[9]){ Means "while the pointer is not
pointing at array elements iarray
[0], through 1array[9]." .

total += .pi; Adds the element to the total

p1++;

}

Advances the pointer to the next
element of the array iarray

Address Arithmetic

Addresses, like scalars, may be used in arithmetic expressions.
Incrementing a pointer by one points at the next element of the
storage. Adding a number to the pointer moves it ahead by the
number of elements added.

Examples of incrementing a pointer follow:

long larray[10J,·lp;

lp = larray; Same as &larray[O]

lp++; Moves the pointer to the next element

lp += "; Moves the pointer ahead 4 elements

You can omit the address of the first element in an array. Stat­
ing the name of the array is the same as stating the address of
the first element. Therefore, the following two assignments are
equivalent:

pi = &1array[O]j

pi = iarray;

Character Pointers

Character pointers (char .namej) may point at character arrays
in addition to pointing at individual character variables. Char­
acter arrays may be string constants.

This is an example of a character array:

"This 1s a string constant"

2/84 7-15 C Language Guide

This string constant is enclosed by double quotes and includes a
binary zero \0 (supplied by the C compiler) as a terminator.
String constants appear frequently in printf statements. The
printf and other 1/0 functions in C are described in Chapter
11. If the address of the string constant is passed to the
printf function the string constant will be printed. The fol­
lowing two calls to printf produce the same message.

This example illustrates the use of string constants:

printf("Hello universe\n");

ohar .message;
message = "Hello universe\n";
pr1ntf(message);

Pointers to structures

Pointers may also be declared to point at structures. As with
simple variables, the asterisk • precedes the pointer name as
follows:

struot tag_date {

} date;

struct

intday;
intmonth;
intyear;

Once the pointer has been assigned the address of the structure,
each element is referenced using the -> operator.

This is how the elements are referenced:

datep = &date;

datep->day
datep->month
datep->year

Pointer Arrays

Points the pointer at the structure

References each of the elements

Pointer arrays extend the usefulness of pointers by permitting
the association of a group of elements, such as string constants
of variable length. The following declaration creates a look-up
table for the days of the week.

C Language Guide 7-16 2/84

o

o

o

c

c'

This example illustrates the pointer array:

char *days[] = {
"Nobodaddyday",
"Monday",
"Tuesday",
"Wednesday",
"Thursday",
"Friday",
"Saturday",
"Sunday"

} ;

A dummy string "Nobodaddyday" has been inserted as element zero
in order to force array numbers to match the conventional one­
through-seven numbering of weekdays. The numeral 8 is not
required inside the brackets of the declaration because the C
compiler counts the subsequent list and generate$ the correct
number.

Pointers Used as Function Arguments

Pointers may be passed
passed, the variable
passed "by reference."

as arguments to functions. When so
to which the pointer is pointing is being

Arguments are ordinarily passed to functions "by value" (that is,
a copy is made and handed to the function). When arguments are
passed by value, changes made to the copy have no effect on the
original. However, both the copy and the original may be changed
when passing is by reference. In this example, the variable i is
being passed by value:

mainO
{

}

int i = 25;
func(i);
printf("The value is still %d\n",i);

func(1)
int i;
{

i = 0;
}

Although the integer i is passed to the function runc and set
equal to zero, it continues to have the value 25 in the main
function. This is not the case in the call-by-reference example
below. The value is changed, by in executing the function.

2/84 7-17 C Language Guide

MainO
{

}

int i = 25,*pij

pi = &i;

func (pi) j

printf("The value is now ~d\n",i);

func(ppi)
int *ppi;
{

*ppi = OJ
}

In addition to passing arguments by reference for the purpose of
modifying the original, pointers are passed to functions as a way
to avoid passing an entire array or structure. This use of
pointers along with address arithmetic permits access to each
element or field of the larger data objects.

This example passes pointers to functions:

mainO
{

int iarray(20),*pij

pi = &iarray[O);

func (pi) j
}

func(ppi)
int *ppi;
{

int i;

i = *(ppi + 3);

}

C Language Guide

'it becomes equal to element
iarray(3) of the array

7-18

--- -----~--------

2/84

o

o

o

C," . Chapter 8

(-

c

Expressions and Statements

The C language provides a large set of operators for creating
expressions. It uses control-flow statements to determine the
order in which the actions of a program are executed. The types
of operators and statements and their uses are described below
along with examples of their use.

OPERATORS

The C operators can be grouped under seven major headings:

1. Arithmetic Operators

2.

3.

2/84

Unary minus

+ - Binary add, subtract

• I , Binary multiply, divide, modulus

Logical Operators

Unary one's complement

& Bitwise AND

t .. Bitwise inclusive OR, exclusive OR

« » Left shift, right shift

&& It Binary AND, binary OR

Relational Operators

== 1= Equal and not equal

< <= > >= Less than, less than or equal,
greater than, greater than or equal

8-1 C Language Guide

4. Assignment Operators

=
+= -= *= 1= 1=

«= »= &= "= 1=

Assignment

Assignment after arithmetic operation

Assignment after logical operation

5. Conditional Operator

1: Ternary conditional

6. Increment/Decrement Operators

++ -- Increment by one, decrement by one

7. Special Operators

() Change order of evaluation

[] Array reference

-> -Pointer to a structure member

• Structure or union element

(ll~l IY12~ cast

* Pointer reference

& Variable address

sizeot Object size in bytes

, Multiple expression

Order of Operations

Table 8-1, reprinted from page 49 of Kernighan & Ritchie,. sum­
marizes the special operators. Rows are in order of decreasing
precedence.

C Language Guide 8-2 2/84

- - ----- - --- ------ -------

o

o

o

(:' Table 8-1. Order of Operations

Table of Operators

() [] ->

++ (type)
* & sizeof

* 1 %

+

« »

< <= > =>

&

&&

I I
I I

7:

I =

= += -= *=
«= »= &=

1=
=

%=
1=

(used in the for statement)

Associativity

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

*From Kernighan, Brian W. and Ritchie, Dennis
M.: The ~ £rQgL~mmlng 1~ngy~~, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1978.

EXPRESSIONS

Operators are combined with variables and constants of different
types to form expressions. Expressions can be nested. They are
evaluated according to the rules of precedence of the operators.

C' The evaluation of an expression has two effects: The variables
, that make up the expression may be changed, and the value of the

expression may be used to determine an action in a program.

2/84 8-3 C Language Guide

STATEMENTS

Control-flow statement~ determine the order in which the actions
of a program are executed. Sometimes this order depends on the
execution of an expression. Each statement should be chosen
carefully to reflect the logical intent. In some unusual cases,
it may be difficult to represent the required flow with a single
control statement. Such situations can often be handled either
by combining two or more control-flow statements or by using the
single semicolon as a null statement.

The simpliest statements are expressions, that are terminated by
semicolons, as in the following examples:

i :: j;
x--;
funo(abo);

Left and right braces { and } are used to group declarations
and statements into compound st~tements or blocks. One of these
blocks is syntactically equivalent to a single statement. A ter­
minating semicolon n~~r follows the right brace of a block.

The following program illustrates this use of braces:

MainO

}

(1nt 1 = 0;

wh1le(i < 10)
{

'* deolaration in the block *'
tnt j; '* deolaration in an inner block *'

}

j = 1 * 1; i++:
printf("j = ~d\n",j);

The control-flow statements in C are as follows:

if-else: . Choosing Between Two Execution Paths

The it-else statement permits a program to choose between two
execution paths. It takes the form

if (exRre~~1Qn)
statem~nLl

else

C Language Guide 8-4 2/84

o

o

o

(= The else portion is optional. The expression is evaluated, and
if the result is true or non-zero, st.i.t.~en.t.-1 is executed.
Otherwise (if the expression is false or zero), §tatem§n.t.-Z is

(-

c

executed. In the event that st.i.t.§ID§n.t.-i is also ari if-else
statement, an ambiguity might arise regarding the connection of
the trailing else statement:

if(§xQt§§§12n __ 1)
if(§~QL§§§ioll-g)

§.t..i.t.§ID§n.t.-1
else

§tat~m~n.t.~

The else portion of an if-else is al~sY§ associated with
the closest previous if statement without an else. In the
above example, the else associates with the if using §XQL§§=
§lQn 2. The If, using §XQL§§§ioll-l, has no else statement
at all.

If the else portion were required to associate with the if
statement using expression_', then braces would be needed to
denote the completion of the inner if statement, as follows:

if (expression_"{

}
else

if (elpressioD_2)
statement_'

A number of if-else statements may
create complex logic trees. In
else acts as the default condition
expressions obtain. For example:

if (§llL§§§1.Qll-l)
§il.t.~§n.t.-1;

else if (~Qr§§§1.QD-g)
§.t..9.t.~§n.t._;

else if (nRL§§§1.2ll-.3)
§ta.t.§ID§nL3;

else if (nQL§§§1.Qn_~)
§.t.at§ID§nL~;

else

be connected together to
such a construct, the trailing
when none of the previous

switch: Testing Against Constant Values

The switch statement permits an expression to be tested against
a number of constant values. An action may then be taken, based
upon a match.

2/84 8-5 C Language Guide

Here is an example of the switch statement:

switoh (~XRL~§§iQn){
oase QQM..tanU:

§ta..t~men.t._1 ;
break;

}

oase QQll§..tsn..t~:
§ta.t.~m~n.t.~;
break;

•
•

case cQn§.t.sn.t.N:
§ta.t.~!ru}ntJI;
break;

default:
~.t.stem~.nLg~f;
break;

Onc~ the expression has been evaluated, it is compared with each
of the constants in the case portions of the statement. Upon
encountering the first match, the program proceeds to execute the
statements following the colon. Execution continues until either
a break statement or the enclosing brace is reached.

In the event that the expression does not match any of the con­
stants, the optional default case is taken. Otherwise execution
proceeds after the enclosing brace.

The C switch construct is similar to the case construct in Pas­
cal. This program illustrates its use:

'* Count the number of a's, b's, and c's in a string *'

maine)
{

int aohars :: 0;
int bohars :: 0;
tnt ccnars :: 0;
tnt others :: 0;

char *string = "Count my a's, b's, and c'sl";
char *p;

p = string;

C Language Guide 8-6

--- ------- ---

2/84

o

o

o

c

c

}

while <fp != t\O'){
switch <fp){

}
p++;

}

case 'a':
aohars++;
break;

case fbi:
bohars++;
break;

case 'e':
eohars++;
break;

default.:
others++;
break;

printf <na's = ~dr b's = ~d, c's = ~d, others = ~d\nn,
aehars, behars, cehars, others);

while: Repeating Until an Expression is False

The while statement permits an action to be repeated each time
that a control expression evaluates non-zero or true. Once the
expression evaluates to zero or false, execution continues with
the next statement after the while. The expression is alwaY§
evaluated Qeforg deciding to execute the statement. This is
the format of the while statement:

while <exQ.r.ession)
statgment

The following program shows the use of the while statement:

2/84

mainO
o

}

int i = 1-;.
char fstring = "Look for the next blank space";
char fp;

p = string;
while <fp != , t){

i++;
p++;

}
printf ("The next blank was found at position ~d\n",i);

8-7 C Language Guide

Note that the increment operator can be included in the expres­
sion to reduce the number of statements. The following statement
shortens the program:

while (.p++ 1= ' f)
1++:

The only difference will be the value of the pointer p when the
expression is not equal or false. The pointer p in the first
example will point to the blank. In the second example, it will
point to the character following the blank.

for: Initializing and Incrementing

The (or statement builds on the while statement by including
the initialization and incrementation steps in the syntax. The
(or statement uses the following format:

('or (.um:~~s iQn_l; ~z.~~~1Qn-g;
eX~llon-1) st.2.t~n.t

Upon entering the ('or statement, eXQr~~1QD-l is executed
once. It will not be executed again unless the (or is entered
from the top.

Next, eXQcesslQn-g is evaluated and, if non-zero or true, the
statement of the (or will be executed. Once the statement has
been executed, .uQr~~12D-3 is evaluated. If eXQr~~~1on_g is
zero or false, execution continues after the statement. Usually
eXQc~~sion_l is an assignment while eXQ~~1Qn-g is a rela-
tional expression. The (or statement is functionally
equivalent to the following set of statements:

{
.uQ~~ll2n_l ;
wh i 1 e (llm:~~llQn-Z) {

sta.t~m~n.t
gz.Qr~lliQn-1;

}

C Language Guide 8-8 2/84

o

o

o

c This program causes a loop:

int iarray[10] = { 1, "2, 4, 8, 16, a, 32, 64, 128, 256 };

maine)
{

}

II check each value of an array for zero II

int i;

for (i = 0; i < 10; i++)
if (iarray[i] == a)

printf e"A zero found at $d\n",i);

Any of the three expressions in a for statement may be omitted,
although the semicolons must remain. If all three expressions
are omitted, the for degenerates into an infinite loop:

for (;;)
stat~m~nt

Presumably this endless loop could be broken by use of a break,
return, or go to statement.

This example uses the break, return, and goto statements to
exit the loop:

2/84

maine)
{

II exit from an infinite loop on certain conditions 'I

int i = 0;
int j = 13;

for (;;) {
j 1= j;
j -= i;
if (j == 9999){

printf ("Found the 9999\n");
break;

}
if e j >= 9999){

}

printf ("Out of bounds\n");
return;

8-9 C Language Guide

}
111000:

if «j S 1000) == O){

}
i++;

printf (-Multiple of 1000\n-);
goto 111000;

printf C-A compound statement eould go here\n");
}

do-while: Repeating While an Expressions is True

The do-while statement permits a statement to be executed
before the conditional expression is evaluated. This is the for­
mat of the do-while statement:

do
~tat~men.t

while (~Q~~§§iQn);

Upon entry, the statement is executed.
evaluated and if non-zero or true
~XQ~~§sion is zero or false, execution
statement after the do-while.

Next, the eXQ~~§§iQn is
the loop repeats. If the

continues with the next

The following program illustrates the do-while statement:

mainC)
{

'* count the characters in the string *'

int i = 0;
char *string = "Here is a string of characters";
char *p;

p = string;
dot

i++; .
}while (*p++ 1= -\0');

}
printf ("The string is Sd characters in length\n",i);

break: Exiting a Loop

The break statement is used to exit a for, while, or do
statement from a place other than the top or bottom of the state­
ment. Execution continues with the statement immediately follow­
ing the loop.

C Language Guide 8-10 2/84

- ----------- --------~---------------------------

o

o

o

The following statement illustrates the use of the break state­
ment:

for (i = 0; i < j; i++){
• • •
• ••
if (iarray[i] < 0)

break;
• ••
• ••

}

while (i < j){

}

• ••
• ••
if ("++i == 0)

break;
• • •
• • •

Remember that the break statement is also used in the switch
statement to direct control to the end of the switch.

(' continue: Starting the Next Iteration of a Loop

The continue statement is used within a for, while, or do
statement to cause the next iteration of the loop to occur. In
the for statement, the third expression is executed. In the
while and do statements, the test expression in parentheses
is executed immediately.

A typical use of the continue statement is the following:

for (i = 0; i < 100; i++){

}

• • •
if (iarray[i] < 0)'* skip negative elements *'

continue;
• • •
• • •

Note that the continue statement applies only to loops and has
no meaning in a switch other than to execute the next iteration
of an enclosing loop.

2/84 8-11 C Language Guide

goto and Labels: Creating a Branch

The goto permits a branch to a defined label elsewhere in the
same function. This label must be either in the same block or in
an enclosing block. Normally, this statement is used to escape
from a deeply nested series of statements upon encountering an
error.

The goto statement can be used in the following way:

wh11e(•••){
· .. · ...
if (~~Q1g1-gg§~)

go to ll1.tJ.ab~1;
• ••
• ••

}
ex!.Ll.9Q~l:

• • •
/. exit code ./
• • •

C Language Guide 8-12 2/84

o

o

o

C' Chapter 9
Routines

Programs written in C usually consist of several routines in a
single file. Data is passed to functions through agreements or
through variables that have been declared in the program. The
components of a function are described below:

FUNCTION NAMES

Every function within a C program must have a unique name. This
name is external to the function in the sense that it is avail­
able to all other functions in the program. Alphanumeric charac­
ters and the underscore _ may be used to create such names. The
format is as follows:

func_1()
{

• ••
• • • · ..

}

Every C program must contain a function with the name main
because this is the runtime entry point at which execution of the
program begins.

The following example shows the skeleton for a C program:

maine)
{

• • •
• • •

}

FUNCTION STRUCTURE

In addition to its name, a function may include the following
components:

2/84

type
fname (argument_list)
argument_declarations
{

}

declarations
statements

optional
optional
optional

optional
optional

9-1 C Language Guide

As can be seen, many of a function's structures are optional. .4[)
Every function returns a value of some type. Whether this value
is used depends on the function's caller's declaration. If
type is omitted, the return value's type defaults to integer.

Arguments may be passed to a function through the argument list.
A declaration for all arguments that are not of type integer
should appear in the argument-declaration list. It is good prac-
tice to include declarations for all arguments on this list. In
the event that no argument is used, enclosing parentheses ()
must still be used.

The body of the function is surrounded by enclosing braces { }.
Optional declarations and program statements may be placed within
the braces. The return statement, when present, specifies the
return value upon exit from the function. A minimal function
looks like:

minimal()
{
}

The skeleton of a function that converts an ASCII string of
digits into an integer might look like:

int
coi(string,size)
char .string;
int size;
{

1nt intval;
• • •
• ••
• • •

/. ASCII to integer ./
/. pointer to chars ./
/. length of string ./

return(intval);
}

ARGUMENTS

Arguments are passed to functions through the argument list.
Generally, each argument is passed by value; that is, a copy of
the actual data item is given to the function. Any changes that
the function makes to this copy will not affect the original
value.

One exception to this rule arises when array names or pointers to
data objects are passed as arguments. In this case, an address
that points to the original data is passed, and modification of

o

data objects will change the original data. This pass-by­
reference technique is used when a function needs to return more 0
than a single value. .

C Language Guide 9-2 2/84

C:: When passing arguments, take care to assure that two essential
conditions are satisfied. First, dat~ objects passed as argu­
ments to a function should match in type with the argument
declaration of that function. Passing a long argument when a
short argument is expected can lead to trouble.

Second, the argument list should contain the same number of data
objects as the number passed in the function call. If the number
of objects expected is greater than the number passed, the func­
tion will receive arbitrary values for some arguments.

A Fortune Extension: Passing Structures by Value

Older implementations of the C language permitted struc­
tures to be passed to functions "by reference" only.
That is, rather than making a copy of the argument and
pushing it onto the stack, a point~r was passed to
reference the remainder of the variable.

The Fortune implementation of the
structures to be passed by value
ence. The following example passes
a copy of date:

struct date_sf
int month;
int day;
int year;

}date;

C language permits
as well as by refer­
both the address and

func(&date); passes the address of "date"

funo(date); passes an entire copy of "date"

Each function, on return from its execution, may pass a
value' back to its caller. This returned value may in
turn be used to build expressions.

RETURN VALUES

Upon encountering a return statement, a
returns a value available to the caller.
in an expression.

function exits and
This value may be used

If the return value is a type other than integer, it must be
declared ahead of the function name. This declaration alerts the
return mechanism to save an adequate amount of temporary space.

2/84 9-3 C Language Guide

Because the return statement syntax does not require a value, 4[)
be careful to include one if the return value is used by the
caller.

A Fortune Extension: Structures as Return Values

Just as structures can be passed by value to functions,
Fortune's version of C permits structures to be returned
as the value of a function. By declaring a function to
return a structure, sufficient space is reserved when
the function is called to contain the entire return
value. The example below declares function getdate to
return the structure date~s:

struct date_sf
int month;
int day;
int year;

}date;

struct date_s getdate();

mainO
{

struct date_s dj

d = getdateO;
}

struct date_s
getdate()
{

struct date_s gdate;
• • •
• • •
• ••
return(gdate);

}

USING EXTERNAL, STATIC, AND REGISTER VARIABLES

Variables may be assigned to one of three storage classes in a
function or program: external, static, or register. The
assignment depends on how many functions use them and how often
they are used.

C Language Guide 9-4 2/84

o

o

J

c

External Vari~bles

A variable is external if it is declared outside of a function.
Such variables are considered global in that they are available
to other functions. All functions recognize these variables by
name. If a program's functions are declared across two or more
files, an external declaration might be required in the file
that does not have the definition.

All external variables are by default initialized to the value
zero and may be reset to other values by declaring them in the
following way:

int counter = 100;

Static Variables

Static variables are similar to external variables in some
respects and similar to automatic variables in other respects.
They are allocated like external variables and exist during the
entire program execution. They differ from external variables in
scope. When a static variable is declared with the external
variables of a file, it is available only to the functions of
that particular file, and when a static variable is declared
within a function, it is available only to that particular func­
tion. Like the value of an external variable, the value of a
static variable may be passed between calls to functions in the
same file (that is, the file in which it is declared).

Like external variables, static variables have the value zero
unless they are explicitly initialized to another value. The
following example shows the static variable initialized to 1200.

2/84

/* external static */

static int estat_i = 1200;

mainO
{ /* internal static */

int i;
static int estat_i; ,

• ••
• ••
• • •

}

9-5 C Language Guide

Register Variables

Register variable declarations should be substituted for any
function arguments and local automatic variables accessed fre­
quently by the program. Register variables are stored in proces­
sor registers rather than in temporary memory locations and are
more efficiently accessed. The use of register vari~bles may
increase execution speed.

The Fortune C compilar supports a maximum of six data register
variables plus a maximum of six floating-point register variables
in addition to a maximum of six address register variables (such
as those used to store pointers). If there ~re more register
declarations than machine registers, the excess declarations are
not lost but become normal arguments or automatic variables.

The following example shows the method of register declaration.

func(a)
register int a;
{

}

register int i;
register float f;
• • •
• ••
• ••

INVOKING A FUNCTION

Functions are invoked by using their names and a pair of
parentheses. Any arguments to be passed to the function must
appear within the parentheses. Function invocations may stand
alone as separate statements or they may be part of an expres­
sion.

Several ways to call a function are shown below:

function(arg1, arg2);
retval = functlon(arg1, arg2);
x = y + function(arg1, arg2) + z;

In the first example, the value- returned from the function is not
used. In the second, the return value is assigned to the vari­
able ~.ty.sl. It is important that the type of the value
returned from the function be the same type as the variable to
which it is assigned. In the third example, the value returned
from the function is used to form an expression.

o

o

FUnctions in C may call themsel ves recursively. Each invocation 0,'-
of the function receives a new set of automatic variables.
Because jt is sometimes difficult to predict the number of

C Language Guide 9-6 2/8lJ

",,---------- ------- ------~,,---,,----------,,----------~ -----

c'

recursions, the user must be alert to overflowing of the run-time
stack.

The following example shows the function printd calling itself
recursively.

printd(n)
int n;

1* print n in decimal *1

{

}

int i· ,
if' (n < O}{

putchar('-');
n = -n;

}
if' «i = n/10) 1= 0)

printd(i);
putchar(n % 10 + '0');

DESIGNING FUNCTIONS FOR EASE OF USE

Whenever possible, each C function should be designed to perform
one simple set of operations. Large monolithic functions that
attempt to do everything should be avoided. In general, each C
function should consist of no more than a page or two of code.
Small size makes each function easy to read and modify.

As programs grow larger, the number of functions in the C source
file may increase. To avoid the extra time required to compile
the entire source file for minor additions or corrections, divide
the C functions into two or more source files. These files are
compiled individually then are linked together to form the exe­
cutable object module.

Commonly used functions may be placed in libraries for easy
access using the archive program (ar), which creates and main­
tains library files. Since loader operates at the file level,
it is best to limit each library file to a single function. Oth­
erwise, when the library is searched and a fun6tion is found, all
the other functions in that file will also be loaded, and the
output will be unnecessarily large.

2/84 9-7 C Language Guide

o

o

o

.. -.---~~.---------

c Chapter 10
Library Functions

The FOR:PRO operating system provides a number of libraries that
can be called ·from C programs. They include

• Math functions
• String functions
• Memory management functions

This chapter describes these library functions. They are also
discussed in Section 3 of the E,OR:PRO EJ:.Q&.rammer's MsDYli.

MATH FUNCTIONS

A library of sophisticated mathematical functions is available to
the programmer for use in creating C programs. In all cia~es, the
file math.h should be included in programs using the math
library.

(- The format for using the math functions is

'ino1ude <math.h>

Each of the math functions is listed below with descriptions of
the appropriate argument and return types.

Exponential

double exp (x)
double x;

Logarithmic

double log (x)
double x;

Base ten logarithmic

2/84

double 10g10 (x)
double x;

Returns the exponential Function of x

Returns the natural Logarithm of x

Returns log to the Base 10

10-1 C Language Guide

Power

double pow (x,y)
double x, y;

Square root

double sqrt (x)
double x;

Absolute value

double fabs (x)
double x;

Floor

double floor (x)
double x;

Ceiling

double ceil (x)
double x;

Log gamma

double gamma (x)
double X· ,

Euclidean distance

Returns x to the y power

Returns the square root of x

Returns the absolute value of x

Returns the largest integer - as a double
precision number - not greater than x

Returns the smallest integer not less
than x

The sign of gamma (x) is returned in the
external integer sign~am. The following
C program fragment calculates gamma:

y = gamma (x);
if (y>88.0)

error ();
y = exp (y) * signgam;

double hypot (x,y) Returns square root(x*x + y*y), taking
double x,y; precaution against unwarranted overflows

C Language Guide 10-2 2/84

o

c

o

C

c

Bessel functions

double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
double x;
double yO (x)
double x;
double y1 (x)
double x;
double yn (n, x)
int n;
double x;

Trigonometric functions

double sin (x)
double x;
double oos (x)
double x;
double tan (x)
double x;

double aain (x)
double x;
double aoos (x)
double x;
double at an (x)
double x;
double atan2 (x,y)
double x, y;

Hyperbolic functions

sinh (x)
double x;
double oosh (x)
double x;
double tanh (x)
double x· ,

2/84

These functions calculate Bessel functions
of the first and second kinds for real
arguments and integer orders.

Sin, cos, and tan return trigonometric
functions of radian arguments

Returns the arc sin in the range Pi/2
to Pi/2
Returns the arc cosine in the range
to Pi
Returns the arc tangent of in the
x range -Pi/2 to Pi/2.
Returns the arc tangent of y/x in
the range -Pi to Pi.

These functions compute the designated
hyperbolic functions for real arguments.

10-3 C Language Guide

STRING FUNCTIONS

A library of the string functions available to C programmers is
automatically searched whenever the loader pass of oc is
invoked. Each of the string functions in this library file is
listed below.

Note that the following functions will operate on null-terminated
strings and that no check is made for overflow in the receiving
string.

String Concatenation

ohar
char

char
char
tnt

.stroates1, s2)

.s1, .s2;

• strncat(s1, s2, n)
.s1, .s2;
n;

String Compare

stromp(s1, s2)
char .s1, .s2;

strncmp(s1, 82, n);
ohar .s1, .s2;
int n;

String Copy

char .strcpy(s1, s2);

char .s1, .s2;

C Language Guide

Appends a copy of string s2
to the end of string 81
returning a pointer to the
null-terminated result •

Appends a copy of at most
n characters of string s2
to the end of string s1,
returning a pointer to the
null-terminated result.

Compares string s1 to string
s2 returning an integer greater
than, equal to, or less than
zero according to the lexico­
graphical result of that
comparison

Compares at most n characters
of string s1 to string s2
returning an integer greater
than, equal to, or less than
zero according to the lexico­
graphical result of comparison

Copies string s2 to
string s1,
stopping after the first null
character is copied and returning
a pointer to the new string sl

10-4 2/84

o

0',,'· "

o

c

char *8trncPY(81, 82, n); Copies n characters
of string 82

char *81, *s2;
int n;

to string 81, returning a pointer
to the new string 81

Note that the new string 81 may not be null-terminated if the
value of n was greater than the total length of string s2.

String Length

strlen(8);
char *s;

Index

char
char

*index(s, c);
*8, c;

char *rindex(s,c)

char *s, c;

MEMORY MANAGEMENT FUNCTIONS

Returns the number of non-null
characters in string 8

Returns a pointer to the first
occurrence of character 'c' in
string s or returns a zero if
that character cannot be found

Returns a pointer to the last
occurrence of character c in
string s or returns a zero
if that character cannot be found

An executing program may dynamically allocate and free segments
of main memory for use as data space. Two C library routines,
malloc and free, provide this service.

malloc: Allocates a Block of Contiguous Memory

The library routine malloc searches a circular list of avail­
able main memory space and allocates a block of contiguous memory
locations. The format for the malloc routine is:

2/84

char *malloc(size)
unsigned size;

10-5 C Language Guide

Following is an example of the use of malloc:

cbar *newspace;
unsigned mspace = 512;

nevspace = ma11oc(mspace);

A pointer to the allocated memory space is returned from the call
to ma110c. This pointer must be used when the space is freed.
A null pointer is returned if there is no available free memory
or if the memory area has been corrupted.

free: Returns Allocated Memory to Pool of Available Memory

The free routine is used to return allocated main memory to the
pool of available memory. The pointer returned from the ma110c
call must be used to free the proper memory. The free memory
area may be corrupted if a random pointer is used.

The free routine format is

free(memptr)
char *memptr;

An example of the use of the free routine follows:

char *mptr;
int unsigned mspace = 102Q;

mptr = malloc(mspace);
• ••
• •• · -
free(mptr);

It is not necessary to indicate the size of the segment of main
memory to be freed. The FOR:PRO operating system keeps track of
this space.

setbuf: Flushing 1/0

Ordinarily, the buffered standard 1/0 library routines fopen,
fread, and fwrite should be used when performing 1/0. Buf­
fered streams are provided to minimize the number of requests to
the FOR:PRO kernel.

The setbuf call is used after a stream has been opened but
before it is read or written. It forces a user-supplied
buffer to be used in place of an automatically allocated buffer.

C Language Guide 10-6 2/84

o

o

o

C:' Use this format for the setbuf function:

The ~~~gm parameter is the value returned from an fopen
call. The buffer parameter is a pointer to a character buffer
(possibly returned from a malloc request for space). If the
constant pointer NULL is used in place of a buffer pointer, I/O
through that stream will be completely unbuffered, making it
equivalent to the functions open, read, and write.

setfree: Allocating Free Space

Normally, free space is managed through FOR:PRO by making calls
to malloc and free. These calls permit free space to be
allocated dynamically.

If a segment of space is known to be required before a process
begins execution, it is more economical to make it available
using the setfree system call rather than repeated malloc and
free system calls. This is a feature specific to the Fortune
implementation of UNIX.

The set free call has the following syntax:

setfreeCQQinter, ~ize);

The parameter Qoint~~ points to a block of memory to be allo­
cated to the new free area. The parameter ~i~ indicates its
size in bytes. For more information on storage management, refer
to malloc(3) in the EQRlfRO ~Q&rgm~~~ MgDygl.

2/84 10-7 C Language Guide

o

o

C' Chapter 11

c

Input and Output

C does not include the 1/0 primitives for moving data between the
processor and system peripherals. Instead, a number of input and
output functions are available through a library file that is
linked automatically whenever an executable object file is
created using 00. This library is termed the standard IIO
library and has been designed to be both efficient and portable.

The following sections describe many of the functions provided in
this standard 1/0 library file. When using library routines, it
is necessary to include a header file. The following statement
should appear near the beginning of every source file that uses
the 1/0 routines:

'inolude <stdio.h>

The stdio.h file contains definitions required by the standard
1/0 library.

A description of every library routine would be beyond the scope
of this section. Consult Section 3 of the EQRlERO PrQg£amm~~A
Manual for more information.

STANDARD INPUT AND OUTPUT

Standard input and output are concepts desi~ned to connect
processes together easily. The default standard input device is
the keyboard and the default standard output device is the
display screen. At the simplest level, a program reads or writes
a single character by calling a routine.

The following are examples of the format of input and output
statements:

char c;

c = getchar();

putchar(c);

2/84

Reads a single character from the standard
input.

Writes a single character to the standard
output.

1 1 - 1 C Language Guide

More general versions of these single-character input and output
routines are used to construct more sophisticated routines. In
addition, the soanf and printf functions can be used to read
and print formatted input and output. These are used as
described below.

scanf: Reading Formatted Input

The function soanf reads formatted data from the standard
input. This is the format of the scanf function:

soanf(f2Lmst, yariaQl~l, vaLiableg, •••);

This function reads from the standard input and assigns values to
variables based on the format described in the first argument.
Conversion specifications may be present in the format string to
transform ASCII characters to numeric values. These specifica­
tions are preceded by a ~ and are followed by conversion char­
acters such as d for decimal, 0 for octal, or s for string.

The following is an example of the use of the soanf function:

int year;
float model;
char company[32];

soanf(·~d ~f ~s·, &year, &model, company);

If you use this program with the input line:

1983 32.16Fortune

it will assign 1983 to year, 32.16 to model, and "Fortune\O" to
company.

Note that since soanf expects arguments to be passed "by refer­
ence," you must supply addresses for arguments.

printf: Directing Formatted Output

The printf function directs a string of characters to the stan­
dard output device. This string consists of an exact text string
plus optional formatted variable values based on conversion char­
acters in the text string.

The printf function format looks like this:

printf(for;mst, variabl~l, YSLisQl~, •••);

C Language Guide 11-2 2/84

----,---,.--------.~--. ~~-------------

0 '
,"

o

o


~~~-------- ~---

c: As with scant, the format string directs conversion of the 
variables that follow. ASCII characters are copied from the for­
mat string to the standard output device. 

The S denotes a variable value conversion for the next variable 
in order. 

The following program fragment illustrates the use of the 
printt function: 

1nt year = 1983; 
tloat amount = 98.21; 
char -company = nAcme"; 

printtCnln Sd, the amount ot Sf was owed by Ss.\n", 
year, amount, company): 

This example prints: 

In 1983, the amount of 98.27 was owed by Acme. 

ACCESSING FILES 

Files not connected with a program through command line redirec­
tion may be opened and accessed using functions in the standard 
I/O library. The routines described below buffer data and call 
lower level FOR:PRO interface routines, which are described in 
Chapter 11. 

fopen: Opening a File 

Before a file can be read or written, it must first be opened. 
The declaration and calling sequence to open a file are 

FILE -ropenC), -§tr~gmQ; 

The f11~ngme argument is a pointer to a string corresponding to 
the name of the file to be opened. The second argument, mod~, 
specifies the open mode. Allowable modes are: read (r), write 
(w), and append (a), which writes at to the end of the file. 

If a file is opened for either writing or appending 
does not exist, it is dynamically created. If 
exist and is opened for writing, the previous 
erased, and the file is truncated to zero. 

and the file 
the file does 
contents are 

2/84 11-3 C Language Guide 



The value A~eamQ returned from topen is called a stream 
pointer. It points to an area of the data type tile that is 
declared in stdio.h and buffers data between the file and the 
program. 

fread: Moving Data to the Program Area 

The tread library function permits data to be moved from a file 
into the program area. 

The format for using tread follows: 

bytes = rread(Qtr, sizeQ~, .nYm1.t~ms, A.t.reaIDQ); 

The first argument to the tread routine is a pointer or an 
address ptr, which points to the place where the data is to be 
transferred. In the above syntax, sizeQ.t.r is the size in bytes 
of the type of item to be transferred, .n.Ym1.t~ms is the number 
of items of that type to be transferred, and A.t.r~amQ is the 
file pointer returned from an ropen call. The routine returns 
the number of items that are described by A1z~Q~ and are actu-
ally read. . 

fwrite: Moving Data from the Program to a File 

The fwrite library function permits data to be moved from the 
program area into a file. 

Use the following format for the fwrite function: 

bytes = fwrlte(ptr, sizeptr, numltems, streamp); 

The first item to the fwrite routine is a pointer Q.t.r that 
points to the place from which the data is to be transferred. 
Then sizeQ.t.r is the size in bytes of the type of item to be 
transferred; .nymi.t~mA is the number of items of that type to be 
transferred; and st.r~gmQ is the file pointer returned from an 
fopen call. The routine returns the number of items actually 
written. 

fclose: Closing a File 

The folose library routine closes a file that has been previ­
ously opened by an ropen call. Buffered data is flushed and 
written to the file before it is closed. 

C Language Guide 11-4 2/84 

o 

0" '. , 

o 



c 

(.
~. 

... 

c 

The format of the rclose routine is 

rclose(st~AIDQ); 

The §tr~amQ argument uses a file pOinter previously returned 
from an ropen call. 

fscanf and fprintf: Using Stream Pointers 

These routines behave like soanr and printr except that they 
take a stream pointer as their first argument. There are three 
predefined stream pointers for standard devices: 

std1n For the standard input (keyboard) 

stdout For the standard output (display screen) 

stderr For the standard error (display screen) 

RESETTING THE INPUT/OUTPUT BUFFER 

All standard input and output is buffered unless otherwise 
stated. The setbur system call with a parameter of null as a 
buffer pointer resets the standard I/O file to be unbuffered. 
Alternatively, rrlush may be performed whenever a flush of out­
put is required. The following example illustrates the use of 
these commands: 

setbur(stdout, null); Resets standard output to be unbuffered) 

rrlush(stdout); Flushes current output 

2/84 11-5 C Language Guide 



o 

o 

o 



( -

" 

i 

I 

i C' I " 

PART THREE 
ADVANCED C PROGRAMMING 



o 

(0" "", 

o 



c 

Chapter 12 
Advanced System Calls 

The FOR:PRO operating system offers a number of low-level rou­
tines for the C programmer. These include interface functions 
for file descriptors as well as a number of operating system ser­
vices. In addition to the standard read and write I/O calls, 
FOR:PRO offers a number of other operating system services to the 
C programmer. These services include commands for reconfiguring 
character devices (terminals), creating and overlaying processes, 
passing codes or sending signals between processes, manually 
allocating space and using larger logical pieces of disk storage 
(file systems). 

INTERFACE FUNCTIONS 

An interface exists between C programs and the FOR:PRO operating 
system. A number of standard I/O func t ln calls translate 
directly into operating-system traps. It is oy means of such 
traps that C programs communicate with the FOR:PRO kernel. 

The input and output routines described in Chapter 11, "Input and 
Output," refer to this interface as the "low level routines." 
Often, these routines are called directly from C code. 

To gain access to a file it must first be either created or 
opened. In both cases, the value returned is called a file 
descriptor. 

This file descriptor is actually an index into a process's own 
file table. The possible values of the file descriptor range 
from zero to one less than the maximum number of files open at 
one time during the program execution. This maximum number of 
files is 16. 

Associated with each open file descriptor is an internal file 
position also called a "seek pointer." The read, write, and 
explicit Iseek calls move the seek pointer throughout the file. 
The functions that create and use the file descriptor are: 

open: Opening a File for Reading or Writing by Function Calls 

The open function call attempts to open a file for reading 
and/or writing by subsequent function calls. 

fd = open(f11~nam~, mQg~); 

2/84 12-1 C Language Guide 



The filename is a nUll-terminated string corresponding to the 
name of the file to be opened. If not preceded by an explicit 
directory name, the file is presumed to exist in the current 
directory. 

Full pathnames may be used to specify the file. The mode indi­
cates the mode in which the opened file is to be used. The modes 
are: reading (0), writing (1), and both reading and writing 
(2). Once opened, the file pointer is positioned at the begin­
ning of the file. A full description of the available modes can 
be found in the Fortune document, Int~Qduction tQ EOR~fRO. 

When a process is invoked, it is given three standard file 
descriptors: 

Ell§ De§£~1.2.t.Q~ .QQ§n§g File 

0 Standard input 

1 Standard output 

2 Standard error 

These descriptors may be changed if necessary by using other 
function calls. 

creat: Creating a New File 

Files that are needed by a program and that do not exist must be 
created using the ereat function. Like the open function, 
the create function returns a file descriptor. Creating a file 
that already exists removes the previous contents and truncates 
it to zero. 

Use this format for the ereat function: 

fd = ereat(fllenam§, mQg§) 

The fll§n~me is a null-terminated string corresponding to the 
name of the file to be created. If not preceded by an explicit 
directory name, the file is presumed to exist in the current 
directory. Full pathnames may be used to specify the file. The 
mode indicates the permission bits to be associated with the file 
when it is created. A full description of the available modes 
can be found on the chmod and umask pages in the E.QB~PR.Q 

f~&~smm§r~§ M~nY~l. 

C Language Guide 12-2 2/84 

o 

o 

o 



c: 

c 

read: Moving Data from a File into Memory 

The read function is used to move data from a file into program 
memory. A file descriptor returned from an open or creat is 
required. 

The read function format is 

The argument fd is a file descriptor returned from an open or 
creat function call. Either a number of bytes equal to 
nQY~~§ is transferred to the buffer address or the value -1 is 
returned upon failure. 

write: Moving Data from a Program to a File 

The write function is used to move data from memory to a file. 
A file descriptor, returned from an open or creat call, is 
required. 

The write function format is 

The argument fd is a file descriptor returned from an open or 
oreat function call. Either a number of bytes equal to 
nQyt~§ is transferred to the buffer address (or the value -1 is 
returned upon failure). 

close: Closing a File 

The close function is used to close a file that is no longer 
needed for reading or writing. When an open file is closed, the 
file descriptor is freed for use by another open call. The 
close function format is 

close(fg) ; 

The fg argument is the file descriptor returned from a previous 
open or creat call. 

unlink: Breaking the Link Between Filename and Inode 

The unlink function is used to break the link between a file's 
name and its inode in the file system. If only one link exists, 
the file itself is removed from the file system. 

2/84 12-3 C Language Guide 



The unlink function format is 

The filen~ is a null-terminated string corresponding to the 
name of the file to be unlinked. If not preceded by an explicit 
directory name, the file is presumed to exist in the current 
directory. Full pathnames may be used to specify the file. 

lseek: Positioning the Internal File Seek Pointer 

The Iseek function call is used to position the internal file 
seek pointer in a file. The function requires a file descriptor 
returned from an open or creat function call. 

The lseek function format is 

long .l2Q~j 
QOS = lseek(fg, .offse,t, .2.r1&in); 

The argument fd is a file descriptor returned from an open or 
creat function call. The notation Qff~,t depends on the Q£1gin 
according to specific rules, as follows: 

Origin 

o 

1 

2 

Seek pointer is set to offset bytes from beginning 
of file. 

Seek pOinter is set to its current location plus 
offset bytes. 

Seek pointer is set to size of file plus offset 
bytes. 

The return value is the current position in the file. It must be 
returned in a long variable since a file may be larger than 64KB. 
The value -1 is returned for an undefined file descriptor. The 
seek has no meaning when used to find a position before the 
beginning of a file or when used on a pipe. 

These functions, like those declared in a C program, expect 
parameters and return values. In general, FOR:PRO system calls 
return the value -1 when encountering an error and 0 when there 
are none. The use of these functions is described on the next 
page. Table 12-1 lists the system calls. 

C Language Guide 12-4 2/84 

------------ -----

o 

{) 

o 



I 

~ 
I 

C: Table 12-1. Principal FOR:PRO System Services 

c 

System Call 

ioctl 

system 

fork 

wait 

exec 

exit 

kill 

pipe 

signal 

mount 

umount 

Definition 

Controls a character device 

Executes a process and wait 

Creates a process 

Waits on child process's completion 

Overlays a process 

Terminates a process 

Sends a signal 

Sets up a pipe between two processes 

Sets up responses to incoming signals 

Mounts a logical file system 

Unmounts a logical file system 

ioctl: Controlling the Character Device 

The foctl system call performs a variety of functions on a spe­
cial character file such as a terminal or a printer. The call 
appears as: 

ioctl(fllLde~, ~~ec1al_Qod~, a.tLQQ1ntu); 

The f11~g~~ is the file descriptor returned from an open 
call. The file opened should be from the device directory Idey 
and have a 0 as its first permission character (using the Is 
-1 command). The 0 corresponds to a character special file. 

The special_code is a device-specific value. The arg_polnter 
is a pointer to a list of arguments that is usually a structure. 

The header file sgtty.h should be included when using ioctl 
because it contains the structure definition for passing argu­
ments. 

2/84 12-5 C Language Guide 



Note the following example: 

'include <sgtty.h) 

mainO 
{ 

} 

tnt fd; 
struct sgtty sgtty; 

fd = openC n/dev/tty01·,2); 
if(loctICfd, TIOCGETP, &sgtty) < 0) 

printf(nioctl returned an error\nn); 
••• 
• • • 

TIOCGETP Is defined as the code for getting terminal-dependent 
parameters and status. In this example the structure sgtty 
contains status information regarding the terminal device 
Idev/tty01, including its baud rate and special control charac­
ters such as the characters corresponding to the backspace and 
the line erase (kill). 

system: Passing Return Codes Between Processes 

The system call launches a new process and waits for its com­
pletion. To invoke it, use the following syntax: 

system(nR~Qces~-lilen); 

The Rrocess fll~ is an executable file to be run while the cal­
ling process is suspended. 

Note the use of system in the following program sample: 

smallproc: 
{ 

} 

largeproc: 
{ 

} 

C Language Guide 

maln() 

printfCnI am a small process\nn); 
exit(1); 

mainO 

int retval; 

printf(nI am a large process\nn); 
retval = system(nsmallproc"); 
printf("Smallproc returned 'd\nn, 
retval); 

12-6 

~~-~~--~ 

2/84 

o 

o 

o 



('-

c 

~------------

system can be used to run any command you can type at the ter­
minal. For example: 

system("l~ -las"); 

produces a listing of the files in your current directory on the 
standard output. 

fork and exec: Creating Processes 

These two FOR:PRO system calls are used for creating new 
processes. Since they have a profound effect on the entire group 
of executing processes, they should be used with care. 

fork: Spawning a New Process 

The fork system call creates a new process by making a copy of 
the current process core image. The resulting process is nearly 
identical to the original, including the files that are open. 
There are two differences: the processes have different process­
identification numbers and they return different values from the 
fork call. The ,parent process fork returns the process iden­
tification of its child. The child process returns a zero. 

Here is the syntax of fork: 

fork(); No parameters 

The fork call is normally used in conjunction with the exec 
call to overlay a different process on the child. 

Note the use of fork in the following example: 

••• 
if( fork 0 == 0) { '* child oode *' 
else{ '* parent oode *' 
} 

Remember that two processes exist after the fork is executed. 
The example above illustrates the way to distinguish between 
them. 

exec: Overlaying a Process with a File to Execute 

The exeo call permits a process to overlay itself with another 
process started from a file. With this call, it is not possible 
to return to the calling process since the original core image is 
overwritten. Several variations of this call allow for parame­
ters in different formats. 

2/84 12-7 C Language Guide 



The following are the syntaxes of two forms of exeo: 

exeol(ngm~, grgQ, grgl, grgZ, ••• ); 

exeov(ngm~, grgx); 

The nam~ is the pathname of the file to be executed. In the 
first file call, srgQ, sr&1, and grgZ are pointers to 
strings that are the arguments to the process name. In the 
second call, gr&Y is a pointer to an array of arguments. 

Often, exeo is used with fork to launch a completely new process 
from an existing one. The following example incorporates 
fork, exec, and wait. 

int status; 
• • • 
.' .. 
if(fork() == )( 

'* child code *' 
exec("newproo", "a1", "'a2"); 

} 
wait (& status); '* more parent oode *' 
• •• 
• •• 

The child process spawned by use of fork is overlaid by 
"newproc", the new process file. The call to wait, if 
included, will cause the parent process to wait until the child 
finishes before more instructions are executed. 

exit: Terminating a Process 

The exit system call terminates a process and passes back a 
return value. Its syntax is 

exit(return_value); 

The return_value is an ihteger value returned from a 
that has just terminated (possibly called from a 
request. See the use of exit in the example program in 
below. 

C Language Guide 12-8 

process 
system 
wait 

2/84 

o 

o 

o 



c 

c 

wait: Waiting for Descendants After an Exec 

The extensively commented example program below illustrates most 
of the details of the wait call. The main use of wait (in con­
junction with fork) is to wait for descendants after an exec. 
wait is almost always called in the parent. If there are descen­
dant (child processes or their offspring) processes running, this 
call suspends the parent process until a descendant terminates. 
If there are no descendants, wait returns -1; otherwise, wait 
returns the process-id of the child which has just terminated. 
This process-id is useful if more than one child is executing, 
and the parent needs to know which child has just terminated. 

wait is usually called with an integer argument, conventionally 
called Status. If Status is declared int, then wait is called as 
follows: 

wait(&Status); 

If Status is declared as an integer pointer, int *Status, then 
wait is called by: 

wait(Status); 

Status holds the value returned by a call to exit in the child or 
the number of the signal which terminated the wait. 

The second exec in the program below illustrates a non-zero exit 
status. The program, torun, included after the main example pro­
gram, calls exit with -1. The second to the lowest byte in 
status holds this exit Status. (See the fourth line of the out­
put below.) 

In case of an unsuccessful exec, the value returned (in the 
integer variable status) is undefined unless the child process 
explicitly calls exit. This is illustrated in the third exec 
below where the fictitious routine los is "exec"ed. 

If wait is terminated by a signal instead of by the termination 
of a child, the lowest byte in Status contains the signal number. 
You can see this by running the program and hitting the Cancel 
key at different times. 

The example program below produces the following output: 

12 -rwxrwxr-x 1 fisher 11989 Jan 18 16:41 waitTest 
waited for child PID 2703, exit value 0, 'signal' OxO 
Why can't I be as wise as Boethius? 
waited for child PID 2704, exit value -1, 'signal' OxO 
fictitious PID is 2705 
execlp failed 
waited for child PID 2705, exit value 1, 'signal' OxO 

2/84 12-9 C Language Guide 



'inolude (signal.h> 
'inolude (stdio.h> 

II this funotion is used to oatoh signals II 
oatoh_int() 
{ 

printfC"got interrupt in parent\n"); 
} 

mainO 
( 

II pid_ohild holds the prooess-id of the child; Status holds 
the value returned by exit(). II 

intpid_ohild, Status; 
ohar status2; 

,I catoh signals IF they are not already being ignored. We 
do this beoause some shells (like Bourne) set baokground 
prooesses to ignore keyboard interrupts. I, 

ifCsignal(SIGINT,SIG~IGN) t= SIG_IGN) 
signalCSIGINT, oatoh_int); 

II first exeo, the program splits into two "identioal pieoes" II 
pid_ohild = fork(); 
if (pid_ohild == 0) { 

} 

,I the exeo is done only in the ohild II 
printfC"ls PIO is Id\n",getpidC»; 
exeolpC"ls"_"ls","-las", "waitTest",O); 
printf("exeolp failed \n"); exit(1); 

else { 
II the prooess-id is not zero in the parent 'I 
I' wait returns the prooess-id of the terminated ohild II 

pid_ohild = wait(&Status); ,I the trioky part here is that the status is returned 
in the seoond lowest byte not in the highest byte as 
it says in many man pages. The highest byte syndrome 
is left over from pdp-11 days and is a source of many 
bugs. We right shift Status by 8 bits and then AND 
the result with Oxff whioh strips off the signifioant 
byte which is put into a oharfstatus2; In addition, 
wait oan terminate beoause a -signal has been reoeived, 
for example, from the keyboard. You oan see this by 
interrupting this progr~m by hitting oanoel/del. When 
this happens, the low byte of status oontains the 
signal number. II 

status2 = (Status»8)&Oxff; 
printf( 

"waited for ohild PIO Id, exit value Id, 'signal' Oxlx\n", 

o 

0-· .' 

ffl Pid_(Ohdild,)status2,StatuS&OXff); O~· 
ush st out ; 

} 

C Language Guide 12-10 2/84 



} 

/' second exec '/ 
pid_child = fork(); 
if (pid~child == 0) { 

} 

printf("torun PID is ~d\n",getpid(»; 
execlp("torun","torun",O); 
printf("execlp failed \nH); exit(1); 

else { 

} 

pid_child = wait(&Status)j 
/' torun returns non-zero exit status '/ 

status2 = (Status»8)&Oxff; 
printf( 

"waited for child PID ~d, exit value %d, 'signal' Ox~x\nH, 
pid_ohild, status2,Status&Oxff); 

fflush(stdout); 

I' third exec with non-existent prooess 'I 
pid~child = fork(); 
if (pid_child == 0) { 

} 

printf("fictitious PID is ~d\n",getpid(»; 
execlp(nlos",hlos","-las",O); 

II we can only get here if the exec fails 'I 
printf("execlp failed \n"); exit(1); 
fflush(stdout); 

else { 

} 

pid_child = wait(&Status); 
status2 = (Status»8)&Oxff; 
printf( 

"waited for child PID ~d, exit value ~d, 'signal' Ox~x\n", 
pid_child, status2,Status&Oxff); 

The next little program is torun which is exected in the second 
exec above. 

maine) 
{ 

printf("why oan't I be as wise as Boethius?\n"); 
exit(-O; 

} 

signal and kill: Using Process Signals 

FOR:PRO processes may send and receive software interrupts or 
signals. These signals do not carry any infcrmation other than 
their signal number. They are used to indicate particular pro­
cess conditions. The file lusr/include/signal.h contains the 
definitions for the signals and should be included when using 
signal and kill. 

2/84 12-11 C Language Guide 



signal: Preparing to Receive a Signal 

This system call is used to indicate the routine to be executed 
when a catchable signal is detected. Upon receiving the signal, 
the process is suspended and execution continues with the indi­
cated signal routine. When the routine exits, the process 
resumes from the point of interruption. 

The following is the syntax of signal: 

slgnal(slg_number, routine); 

The sig_numbe~ is the number of the signal being caught and the 
routine is the function to be executed. 

Note the use of signal in the following example: 

'include <signal.h) 

signal(SIGINT, lntfunc); 
• • • 
• •• 
• • • 

lntfuncO 
{ 

} 

slgnal(SIGINr, intfuno); 
prlntf("Recelved a keyed lnterrupt\n"); 

Pressing CANCEL generates the SIGINT interrupt signal. In this 
example, the program catches the signal and prints a message. 
Notice that the signal-catching routine must call signal again 
to catch the next signal. This signal-catching routine is reset 
each time a signal is caught. See the example programs in the 
material on the pipe system call and the wait system call. 

kill: Sending a Signal 

The name of this call is misleading; kill merely signals to 
processes. Its syntax is 

The Qid is the process-id of the process to receive the signal. 
The §i& numQer is the signal number to be sent, as defined in 
lusr/include/signal.h. Note that the sending and receiving 
processes must be owned by the same user or the signal is not 
sent. 

C Language Guide 12-12 2/84 

o 

o 

o 



J 

c 

C: 

---- --------- - ------------

pipe:· An I/O Channel Between Two Processes 

This section introduces the pipe system call by means of an 
extensively commented example. In addition to illustrating the 
pipe system call, the example illustrates the following system 
calls: 

• fork 

• exec 
• exit 
• wait 
• signal 

Is -las f more 

The command above "pipes" the output of the Is command to the 
input of the more command. Instead of sending its output to 
the standard output, Is sends its output to the pipe. The com­
mand more reads its input from the other end of the pipe 
instead of from a file given as an argument. The shell uses the 
pipe system call to allow Is and more to communicate in this 
way. 

The pipe system call takes a two-element integer array as an 
argument and returns two file descriptors. The first element 
holds the file descriptor for the read side of the pipe; the 
second element holds the file descriptor for the write side. 
These file descriptors allow user processes to write to and 
read from an 8,192 element buffer. 

Writing is suspended when this buffer is full. 

When the write end of a pipe is closed, any process that reads 
it, will read an end of file. 

The two ends of a pipe are named according to the way they are 
used. A process writes characters into the write end of a pipe 
and reads characters from the read end. 

The example below uses the pipe system call to set up a communi­
cation channel between two child processes. The output of the 
Is process is piped into the input of the child more process. 

2/84 12-13 C Language Guide 



I" comments generally describe the statement immediately below them "I 0 
'include <signal.h> 
linclude <stdio.h> 

'define READ 0 
'define WRITE , 

static int pipeopen_pid; 

I" the following procedure takes a command cmd and a 
mode which is either READ or WRITE. It next calls the 
pipe command and then creates a child process which exec's 
the command cmd. pipeopen returns a file descriptor 
which can be used to read or write the pipe. "I 

pipeopen(cmd. mode) 
char "cmd; 
int mode; 
{ 

1* the pipe command takes an array of two file descriptors 
prO] holds the read side file descriptor and p[,J holds 
the write side file descriptor. *1 

int p[2]j 

I" the call to the pipe command "I ~ 
if (pipe(p) < 0) '" 

} 

return(NULL); 
1* in the next statement we split into two processes. *1 
I" child code follows *1 

if ( (pipeopen_pid = forke» == 0) { 
I" close the write side of the pipe in the child "I 

close(p[WRITE])j 
1* the next statement closes the· standard input 

of the child and puts the pipe's read file 
descriptor in its place. This allows more 
, which reads from the standard input, to get 
its input from the read side of the pipe. *1 

dup2(p[READ],0); 
I" the exec' executes the command "I 

execl("/bin/sh", "sh", "-c", cmd, 0); 
_exitC'); 1* disaster has occurred if we get here *1 
} 

1* end of child code *1 

if Cpipeopen_pid == -,) 
return(NULL)j 
1* since another child process is going to write into 
the pipe, we close the parent's read side "I 

close(p[READ] ); 
1* Next we return the pipe's write side file descriptor. 

return(p[WRITE])j 

C Language Guide 12-14 2/84 

"I o 



c 

C, 
.. ;../ 

pclose(fd) ,I 
int fd; 

close the pipe fd " 

{ 

} 

register r, (Ihstat)(), (Iistat)(), Clqstat)(); 
int status; 

close(fd); 
,I save the signal values I, 

istat = signal(SIGINT, SIG_IGN); 
qstat = signal(SIGQUIT, SIG_IGN); 
hstat = signal(SIGHUP, SIG_IGN); 

,I wait until the child processes terminates I, 
while «r = wait(&status» 1= pipeopen~pid && r 1= -1); 
if (r == -1) 

status = -1; 
,I the next three statements sets the signals back 

to their previous values. *' 
signal(SIGINT, istat); 
s1gnal(SIGQUIT, astat); 
slgnal(SIGHUP, hstat); 
return(stgatus); 

main () 
{ 

2/84 

int status; 
" fout will hold the pipe's write fd I, 

int fout; 

,I get the file descriptor for the write side of the pipe " 
fout = pipeopen("more", WRITE ); 

,I next fork off a child process to do the Is" " 
if (fork() == 0) { 

} 

" dup2 first closes the standard output file 
descriptor and then moves the pipe's write 
file descriptor to the standard output. II 

dup2(fout, 1); 
II If you remove the next statement, the program 

will not work. It will hang. To get the 
output, you will have to type control-backslash 
This statement closes fout so that pclose below 
will flush the pipe " 

close(fout); 
,I The next statement exec's the Is command I, 
execlp("ls","ls", "-las", 0); 
printf("execlp of Is -las failed \n"); 
exit(O); 

12-15 C Language Guide 



} 

1* pclose flushes out any remaining characters in the 
pipe. When more reads the closed pipe, it will 
get an end of file. Note t more reads the keyboard 
by reading Idev/tty. *1 

pclose(fout); 

mount and umount: Mounting and Unmounting File Systems 

Entire physical disk drives may be divided into one or ~ore logical 
file systems. Normally, the logical files do not overlap. 

One of these file systems, the root I, is used by the kernel. 
It is always mounted and is home for the system commands and utilities. 
Other file systems (if any exist) may be mounted and unmounted 
practically anywhere in the root file system tree as follows. 

mount: Mounting a File System on a Directory 

This call notifies FOR:PRO that a file system is being mounted in the 
root file system tree. It is invoked by: 

mount(§~1.al.111~, nam~, r:!dlg&); 

The ~Q1s1-f11~ is a block-structured device file found in the 
Idev directory. The name is the pathname of the directory on 
which the mountable file system is to be placed. 

Note that the previous contents of this directory become inacces­
sible while the file system is mounted. They will reappear when 
the file system is unmounted. The r:Hilgg indicates whether the 
file system is to be mounted for reading only. 

umount: Unmounting a Mounted File System 

This call unmounts a previously mounted file system. Its syntax 
is: 

The only parameter for this call is the block-structured device 
file from the Idev directory used in a previous mount command. 
This call will fail if a user is currently in a file or directory 
or accessing a file in the mounted file system. 

C Language Guide 12-16 2/84 

o 

o 

o 



~ 
! 

C' Chapter 13 
Function Calling Conventions 

In advanced programming applications, it is often necessary to 
understand how and where symbolic names and their data are stored 
in physical memory. These are governed by the conventions for 
the placement of frames on the run-time stack and for data align­
ment by the compiler. These coventions are described below. 

THE C RUN-TIME STACK 

Whenever a C function is called, an activation record or frame is 
pushed onto the run-time stack. This frame is used to pass argu­
ments to and from the function, to save the calling function's 
registers and return address, and to provide space for the called 
function's local variables. 

The frame pointer (fp) identifies the current activation record 
for the function being executed. (See Figure 13-1.) The stack 
grows downward. Arguments are pushed in reverse order, so argu­
ment 1 is pushed last and argument N is pushed first. The first 
argument is located at fp+8 on the stack. 

When calling and returning from C functions, the calling function 
and the called function must perform certain operations in con­
junction with the run-time stack. These operations are described 
as follows. 

Entry Sequence 

On entry to a function, the 
return address will have 
frame. 

calling function's arguments and 
been pushed onto the run-time stack 

Note that the number of arguments pushed must correspond exactly 
to the number of arguments expected. If the number of arguments 
in each call doesn't correspond, the stack will be unbalanced and 
will probably produce an invalid result. 

The called function will immediately save the old frame pointer 
register on the stack and then update the register to point to 
the new stack. Local variable and register save space is allo­
cated, and the registers are saved in that space. Then execution 
of the called function begins. 

2/84 13-1 C Language Guide 



fp • 

(Stack g rows I 
downward.) t 

· 
· 

arguments 
· 

return address 

oldfp 

· 
· 

local variables 
~ 

· 
· 

saved registers 

(hig h memory) 

III 

(low memory) 

Figure 13-1. The Run-Time Stack (Stack Grows Down the Page, 
or From High Memory to Low Memory) 

Exit Sequence 

Upon exit from a function; the reverse operations of entry are 
performed. The called function restores all registers including 
the old frame pointer and old stack pointer. The activation 
record or stack frame is removed. Control is passed back to the 
return address of the oalling function. The calling program unit 
clears the arguments from the stack it originally pushed. 

DATA ALIGNMENT 

All variables are aligned by the 00 compiler on even byte 
addresses in memory. If a data structure contains an odd number 
of bytes, it is padded to the next even address with an extra 
zero byte. 

, 

If you are attempting to maintain machine independence for porta­
bility, keep in mind that the lengths of the different data types 
vary. Since future releases of the Fortune e compiler may 
define the sizes of the various data types differently; the dif-

o 

bferent datat dtypesThand thie amoufnt of tstoragie acllolclated eacht· ShOUlidd 0". 
e respec e • e s ze 0 opera ors n a ·ows you 0 avo 

using absolute numbers when referring to particular data objects. 

C Language Guide 13-2 2/84 



c Addressing should not be performed within a basic type. It is 
dangerous to set a pointer of one size to the address of a vari­
able of an9ther size to access different portions of the basic 
type. The union construction should be used instead. 

The following example shows an inQQr£ect method of setting 
pointers: 

long longvar; 
short s1,s2; 
short .shortp; 

shortp = (short *)&longvar; 
s1 = .shortp; 
shortp++; 
s2 = *shortpi 

The above program fragment should be replaced by: 

union { 
long longvar; 
struct { 

short s1; 
short s2; 

}shortvarsj 
ll_to_sh; 

In this example, the variable l_to_sh.longvar is overlaid by the 
two short variables l_to_sh.shortvars.s1 and l_to_sh.shortvars.s2. 

Addresses should not be calculated within a structure. The 
fields of a structure should be used explicitly to access data 
within that structure. 

Because variables are aligned on even boundaries, extra zero 
bytes may pad structures. Incrementing a pointer through a 
structure may fail to reveal padding bytes inserted by the com­
piler. 

Local variables should be accessed only with their declared 
names. Because local variables are allocated on the run-time 
stack, a pointer moving through these locals can inadvertently 
modify other stack information required for linking the procedure 
to the calling program. The result may produce errors that are 
extremely difficult to find. 

The Motorola 68000 processor addresses bytes sequentially from 
high to low order. If a pointer to an integer is cast to a 
pointer to a character, the first character referenced will be 
the high order byte of the integer (that is, the most significant C byte). 

2/84 13-3 C Language Guide 



An example is the following program: 

maine> 
{ 

ohar- .op; 
short i = 259; 

cp = (char .)&i; 

/. i = Ox0103 ./ 

printf("1st char = ~d\n",.cp); 
cp++; 

} 
printf("2nd char = ~d\n",.cp); 

which produces the output: 

1st char = 1 
2nd char = 3 

C Language Guide 13-4 

o 

o 
2/84 



C Chapter 14 

o 

Linking Programs in Different Languages 

With the FOR:PRO operating system, it is possible to call rou­
tines or functions written in one language from programs written 
in another language. For example, you can write a program in C 
that calls a math package in FORTRAN 77 or a graphics package in 
Pascal. 

To call functions written in different languages, you need to 
compile and link the functions and your C program separately as 
described in Chapter 2. You also need to observe special conven­
tions for declaring data and functions, for including libraries, 
and for actually calling a procedure. These conventions are sum­
marized in this chapter. 

DECLARING DATA 

Table 14-1 compares the sizes of variables declared in the C, 
FORTRAN 77, and Pascal languages. As this table indicates, data 
types of some languages do not exist in others. The unit of size 
used for comparison is the byte. 

Table 14-1 allows you to determine the proper data declaration 
for passing parameters when one language issues a call to 
another. 

DECLARING FUNCTIONS AND PROCEDURES 

Table 14-2 shows examples of equivalent function declarations 
(which are called "definitions" in C) in the three Fortune System 
languages. Table 14-3 provides examples of equivalent procedure 
declarations. 

INCLUDING ADDITIONAL LIBRARIES 

When you call subroutines written in a language different from 
your programming language, you may need to include additional 
libraries when linking your program. For example, if you are 
compiling a C program that calls a Pascal procedure, you need to 
use the -lpo and -1m option when invoking co (C compiler). 
If you are compiling a Pascal program in which a FORTRAN subroti­
tine is called, you need to add the -lI77 and -If&7 options 
as well as the -1m option. 

2/84 14-1 C Language Guide 



Table 14-1. Physical Data Representations 

Size 
in Bytes FORTRAN 77 Pascal C 

2 integer*2 NONE short 

4 integer integer long,int 

4 real NONE float 

1 character char,boolean char 

n character*n char char 

4 logical NONE NONE 

8 complex NONE struct{float r, i} 

16 double complex record struct{double 

8 double precision real double 

2 or 4 statement label NONE NONE 

varies hollerith NONE NONE 

Table 14-2. Equivalent Function Declarations 

Pascal 

c 

FORTRAN 

type realptr = Areal; 
function power(var x:real;var y:integer):real; 
forward (or external); 

double power(x,Y) 
double Ix; 
int Iy; 

double precision function power(x,y) 
double precision x 
integer y 

C Language Guide 14-2 

dr, di} 

2/84 

0 

0 

o 



c 

Table 14-3. Equivalent Procedure Declarations 

Pascal 

FORTRAN 

prooedure minmax(var x,y:integer); 

subroutine minmax(x,y) 
integer x,y 

C The concept of a procedure does not exist as such 
in C; the C function is equivalent to the FORTRAN 
function or subroutine and the Pascal procedure.) 

INCLUDING ADDITIONAL LIBRARIES 

When you call subroutines written in a language different from 
your programming language, you may need to include additional 
libraries when linking your program. For example, if you are 
compiling a C program that calls a Pascal procedure, you need to 
use the -lpo and -1m option when invoking cc (C compiler). 
If you are compiling a Pascal program in which a FORTRAN subrou­
tine is called, you need to add the -lI77 and -If&7 options 
as well as the -1m option. 

In the case of I/O modules, it is always advisable to use the I/O 
of the language you are compiling. In other words, if you are 
compiling with cc (C compiler) and linking a routine written in 
FORTRAN 77, the I/O library of C should be used. 

CALLING A PROCEDURE 

Calling conventions vary from one language to another. The fol­
lowing example illustrates calling a FORTRAN 77 function from a C 
program. 

C Program: 

2/84 

I' 
, This C program oa11s a FORTRAN 77 funotion 

, to raise a number to a given power. 
, Sinoe FORTRAN 77 passes its arguments 
, by referenoe, an & must preoede eaoh variable. 
'I 

mainO 
{ 

int 1; 
1nt y = 3; 

for(i = 1; 1 <= 10; i++) 

14-3 C Language Guide 



/. oaloulate 1 oubed ./ 

pr1ntr("~d raised to Sd equalsSd\n", 
1, y, power(&1, &y»; 

} 

FORTRAN 77 Function: 

integer function power(base, exponent) 
integer base, exponent 

power = base ** exponent 
return 
end 

C Language Guide 14-4 

o 

o 

o 
2/84 



CI Appendix A . 
. Compiler Passes, Options and Functions 

(-

This Appendix provides detailed information on the individual 
compiler passes and the options that can be used with the com­
piler that are introduced in Chapter 1. A description of 
compile-time functions for reading files and for defining global 
constants and macros is also included. 

THE COMPILER PASSES 

The six compiler passes are: 

The Preprocessor 

The C preprocessor interprets commands preceded by the' char­
acter when encountered in the source code. These commands permit 
files to be included (Iinclude), macros to be defined and sub­
stituted ('define), and different sections of the code to be 
output. The output of the preprocessor alone may be generated 
and placed in std.out by using the -E compiler option. 

The C Compiler 

The C compiler parses the C source code and generates assembly 
language output. The assembly language output of the compiler 
may be preserved by using the -3 option. It is saved in a file 
suffixed by .s. 

The C Optimizer 

A peephole (as opposed to global) optimizer is available as an 
option to the C compiler. It may be invoked by using the -0 
command option to cc. It will reduce code 20-25 percent in 
size, allowing it to run faster. For example: 

$ co -0 f.ll.~.LQ 

Produces an optimized code. 

2/84 A-1 C Language Guide 



The Fast Floating-Point Processor 

The fast floating-point processor lusr/lib/ffp takes the assembly 
language file generated by the compiler and converts all floating 
point operations and constants to a much faster single-precision 
floating-point form. The resulting file is slightly larger and 
suffers a loss of precision in return for much faster floating­
point operations. 

The Assembler 

The FOR:PRO assembler ac is automatically invoked as part of 
the C compiler. It accepts input files suffixed with .s and 
generates relocatable object modules suffixed with .0. For 
example: 

$ lusr/lib/ac test~§ 

produces the object module test.o. 

Remember that using the cc command on an assembly source file 
will automatically call the assembler followed by the linking 
loader. 

The Linking Loader 

The linking loader Id binds one or more relocatable objects 
together with optional libraries to create an executable object 
module. Provided the -c option is not used to generate an 
intermediate relocatable object file, the C compiler automati­
cally calls the loader. If the -c option is used, the loader 
may be invoked as follows: 

$ Id lusr/lib/crtO.o te§t& lusr/lib/libc.a -0 te§t 

OPTIONS USED WITH cc COMMAND 

The C compiler options are introduced in Chapter 1 of this guide. 
The following examples provide additional instruction in their 
use. 

-c Creates a relocatable objeQt file.o using the 
same name as the source file. For example 

C Language Guide A-2 2/84 

"" 0" 

o 

o 



c 

-0 

( ' 

'-.' .. 
-0 

-v 

-G 

c 
2/84 

produces: 

file.o 

This example produces a relocatable object file 
named file.o instead of the executable file 
a.out. Since the loader has not been invoked, 
this .0 file is not executable. The .0 file may 
be used on the command line of a subsequent compila­
tion. 

Names the output file. For example 

$ cc -0 test test.c 

produces 

test 

This command enables you to give your own name to 
the executable object file. Except for the name, 
test is exactly the same as a.out. 

Calls the peephole optimizer. For example: 

$ cc -0 fil~...Q 

The a.out file produced will be smaller in size 
and run faster. 

Lists the compiler passes as they occur. 
example: 

produces the output 

For 

lusr/lib/cpp -Dmc68000 -Uvax test.c Itmp/ctm001044 •. 
lusr/lib/ccom < Itmp/ctm001044.s > Itmp/ctm001043.s 
lusr/lib/ac -0 test.o Itmp/ctm001043.s 
lusr/bin/ld lusr/lib/crtO.o test.o lusr/lib/libc.a 

Turns off stack checking. For example: 

$ cc -G te~.t.-L.Q 

This option decreases the next (code) size. If the 
stack is not used extensively, this decrease pro­
duces a slight improvement in running time. 

A-3 C Language Guide 



-E 

-C 

-Dname 

-Dname=def 

CAUTION: Do not use the -G option with 
programs that allocate more than 8KB of 
stack space or with programs that use 
recursion. 

Example: 

I· 
• Since local variables are allocated in the stack, 
• the following example requires 4000 * 4 bytes of 
• stack space • . , 
mainO 
{ 

} 

int x[4000),i; 

for (i = O;i < 4000;i++) 
x _ Q.l 

Runs only the preprocessor. For example, 

$ cc -E te.§hQ 

produces the output: 

#1 test.c (text of the program) 

Prevents the preprocessor from removing comments. 
For example: 

(Comments removed.) 

(Comments remain.) 

Defines an identifier name the preprocessor. 

Defines an identifier name and assigns it the 
value def. For example: 

$ cc test~Q -DSIZE 

When a value is omitted, a default 
used. The constant SIZE above 
assigned the value 1. 

value of 1 is 
is defined and 

C Language Guide A-4 2/84 

o 

o 

o 



-S 

-Uname 

-Idir 

-g 

-w 

-p 

2/84 

Another example: 

$ cc test.c -DSIZE=12 

The constant SIZE is defined and assigned the 
value 12. 

Generates assembly language output. 

The assembly language output of the compiler is 
preserved in a file suffixed by .s. For example: 

$ cc -S test~Q 

produces 

test.s 

Eliminates an identifier name that has been defined 
for the preprocessor. For example: 

$ cc test."..g -USIZE The constant defini­
tion SIZE is eliminated. 

Searches for 'include files in the dlr direc­
tory. For example: 

$ cc -I/usr/newllb tes~ 

A search is made through several standard direc­
tories for any 'include files listed in the C 
source file test.c that are not full pathnames (do 
not begin with /)~ Typically, the current direc­
tory is searched first. If the files are not found 
here, the system directory /usr/include is 
searched. The -I option in the example above 
causes the /usr/newllb directory to be searched 
first. If the files are not found there, the other 
directories are searched in the usual sequence. 

Produces additional symbol-table information for 
the Fortune symbolic debugger. 

Suppresses warning messages. 

Prepares the executable program for use with the 
profiler. 

A-5 C Language Guide 



COMPILE-TIME FUNCTIONS 

The C language preprocessor permits a C program to read files at 
compile-time, to define global constants and macros, and to com­
pile different source code based on global definitions. These 
compile-time functions are used as follows: 

#include 

The 'include command reads and expands a UNIX file inline dur­
ing compilation. 

The 'include command format is 

'inolude "filename" 

When double quotes " are used, the current directory is 
searched for filename before the standard directories. When 
the command and greater than , > signs are used, only the stan­
dard directories are searched. 

fldefine 

The 'detine command associates a name with a constant. 
are examples of the 'define command: 

'define N 100 
'define M N-1 

These 

The 'detine command may also define a macro substitution in 
this way. 

'define MASK(i) i &= 0377 

In the above example, semicolons have intentionally been omitted. 
As in a C function call, semicolons are automatically provided 
when this macro is used. 

MASK(a); becomes a &= 0377; 

l1if and l1ifdef 

Sections of a C program may be conditionally compiled using the 
lif, lifdef, and 'ifndef commands if those sections of code 
are appropriately surrounded. 

'if 32 16 
• •• 
• • • 
• •• 
'endif 

C Language Guide 

The enclosed C program section 
compiles if constant 
32:16 is non-zero or true. 

A-6 2/84 

o 

o 

o 



c 

c 

11fdef 32 16 
• • • 
• • • · ... 
lend1f 

'ifndef 32 
• •• 

••• 
lend!f 

16 

The enclosed C program section 
compiles if constant 
32:16 appears in a previous 
define command or in a 
-D runtime option of the compiler. 

The enclosed C program compiles 
if constant 32:16 is NOT defined 
or is a -U runtime option of the 
compiler. 

The command Ilelse may be used similarly to the else for the 
alternative code in a conditional compilation. 

2/84 A-7 C Language Guide 



c 

0,' 
, ' 



C AppendixB 
List of C Language Files 

The following files are included on the C product disk. 

In 

In 

directory: If/usr/bin: 

cb C beautifier 
cc C compiler (driver) 
lex Lexical analyzer generator 
lint C semantic checker (types, ••• ) 
yace Yet another compiler compiler 

directory: If/usr/lib: 

ccom 
libl.a 
libln.a 
lint1 
lint2 
llib-lc 
llib-lo.ln 
llib-port 
l11b-port.ln 
ncrorm 
yaoopar 

C compiler 
link librarY 
lint library 
pass one o( lint 
pass one of lint 
lint library 
lint library 
lint library 
lint library 
part of lext 
part of yacc 

2/84 B-1 

(parser generator) 

C Language Guide 



4'-';c 

"'-..,v . 



CAppendixC 
Generating Assembly Language Output 

The following programs illustrate the use of the -3 compiler 
option to generate assembly language output. 

1* These programs demonstrate the calling conventions for making * 
* a subroutine call from a C program. *1 

int base = 10; 

maine) 
{ 

int 
int 

resul t, subr(); 
x = 25; 

1* global variable "base" initialized 
to 10 *1 

1* main procedure *1 

1* declare resul t, subr() *1 
1* declare int x, initialize *1 

result = subr(x, base); 1* assign value returned by *1 
} 

int 

int 

LLO: 

base: 
1 

main: 
1 • proc 

2/84 

subr(p1,p2) 

p1,p2; 

int temp; 

temp = p1 * 100 1 ps; 
return(temp); 

.data 

.even 

.globl base 

line 6, file "call.c" 
.long 10 
.text 
.globl main 

jsr 
link 
add1 

_csavl: 
%a6,#0 
#-.F1,%sp 

movem1 #,31,%sp@ 
movb #.FR1,$d1 
jsr _regsav 

C-1 

1* by subr() to result *1 

1* 
1* 
1* 

subroutine - returns an int, 2 
parameters *1 
parameter declarations *1 

1* declare automatic variable 
"temp" *1 

1* perform calculation *1 
1* return result of operations 

1* storage assigned for 
1* global variable "base" 
1* initialized to 10 

1* start of main procedure 

1* jump to stack-checking routine 
1* save old frame pointer 
1* allocate storage area for 
1* local variables (automatics) 
1* save address and data registers 
1* load floating point reg. mask 
1* save floating point registers 

C Language Guide 

*1 



IA1 = B 
I 

L13: 

F1 = B 
S1 = ° 
FR1 = ° 
Im1 = B 

subr: 
I . proc 

IA2 = 16 
! 

L15: 

line 11, file "call.c" 
mov1 #25,$a6@(-B) 
line 13, file "call.c" 
mov1 base,%sp@-
mov1 %a6@(-B),%sp@­
jsr subr 
addq1 IIB,%sp 
mov1 %dO,%a6@(-4) 
bra .L13 

movem1 %a6@(-.F1),II,S1 
unlk %a6 
rts 

1* 
1* 
* 
* 
* 
* 
* 
* 

initialize automatic "x" to 25 

push arguments (last arg first) 
onto stack 
jump to subroutine 
adjust stack (clear arguments) 
assign return value (returned in 
$dO) to automatic "result" 

1* restore old register contents 
1* restore old frame pointer 
1* end 

o 

1* size of local storage area on stack 
1* register save mask 

.data 

.text 

.globl subr 

jsr _csavl 
link %a6,#0 
add1 #-.F2,%sp 

movem1 #,S2,%sp@ 
movb #.FR2,%d1 
jsr _regsav 

line 22, file "call.c" 
mov1 %a6@(12),%sp@­
mov1 #100,%sp@-
mov1 %a6@(8),%sp@­
jsr 1mul 
addq1 #8,%sp 

mov1 %dO,%sp@-
jsr 1div 
addq1 #8,%sp 
mov1 %dO,%a6@(-4) 
line 23, file "call.c" 
mov1 %a6@(-4),%dO 
bra .L15 

1* floating point register save mask 

1* start of subroutine "subr" 

1* stack-checking 
1* save frame pointer (from main) 
1* allocate local storage area -
1* parameters are stored here 
1* save registers 

1* save floating point regs 

1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
1* 
I * 
1* 
1* 

push THREE arguments onto stack: 
first "p1" for division later 
constant (100) and "p2" are 
pushed for multiplication 
jump to multiplication routine 
adjust stack for TWO arguments -
still is ONE arg (p1) on stack 
push mult, result (in %dO) 
onto stack and jump to divide 
adjust stack, qlearing all args 
store result in automatic "temp" 

move "temp" into %dO for return 

moveml %a6@(-.F2), #.S2 1* restore regi~ters (not $dO) 
restore old frame pointer 
return to calling routine 

unlk %a6 1* 
rts 1* 

o 
C Language Guide C-2 2/84 



CFS = 4 
32= 0 
FR2 = 0 
I Ms = 12 

.data 

2/84 C-3 

1* size of local storage area on stack 
1* register save mask 
1* floating point register save mask 

C Language Guide 



o 

c 



, 

PLEASE GIVE US YOUR RESPONSE TO THIS MANUAL 

You can help us provide manuals that suit your needs by filling out and returning this form. When a 
new edition of this manual is prepared, we will try to use your suggestions. 

Write the name of the manual you are commenting about here ______________ _ 

1. Does this manual give you the information you need? Yes No 
Is any information missing? 

2. Is this manual accurate? Yes No 
Please list the inaccurate information. 

3. Is the manual written clearly? Yes No 
\lVhat areas are unclear? 

4. What other comments about this manual do you have? 

5. What do you like about this manual? 

On a scale of 1 to 10, how would you rate this manual? Please circle one. 
Excellent 10 9 8 7 6 5 4 3 2 1 Poor 

Name ______________________ Phone number ________ _ 
Company ______________________________________________________________ ___ 
Address ________________________________________________________________ __ 
City _____________________ State _____ Zip Code ___ ----:-____ _ 

Fortune Systems Corporation has the right to use or distribute this information as appropriate with no obligation. 

1002348-02 



BUSINESS REPLY MAIL 
First Class Permit No. 29 San Carlos, CA 

FORTUNE SYSTEMS CORPORATION 
Attn: Publications Department 
101 Twin Dolphin Drive 
Redwood City, CA 94065 

IIIIII 
NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 


