
1:()RTIJ N E S\'STE l4S

INTRODUCTION TO FOR:PRO
, ~Ij . .' SYSTEM TOOLS
~ b! .

INTRODUCTION TO FOR:PRO

COMMAND,LEVEL USE OF
FORTUNE'S OPERATING SYSTEM

I:I:ORTUNE SYSTEMS
300 Harbor Boulevard

Belmont, CA 94002

Copyright ~ 1983 Fortune Systems Corporation. All rights reserved.

No part of this document may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine readable
form without prior consent in writing from Fortune Systems
Corporation. The information in this manual may be used only under
the terms and conditions of separate Fortune Systems Corporation
license agreements.

UNIX is a trademark of Bell Laboratories.
FOR:PRO is a trademark of Fortune Systems Corporation.

Printed in U.S.A.
1 234 5 6 7 8 9 0

Ordering Introduction to FOR:PRO

Order Number: 1002268-01 October 1983 Software Release 1.7
Please do not order products from the address shown below. Consult
an authorized Fortune Systems dealer for copies of manuals and
technical information.

Disclaimer of Warranty and Liability

No representations or warranties, expressed or implied, of any kind
are made by or with respect to anything in this manual. By way of
example, but not limi tat ion , no representations or warranties of
merchantability or fitness for any particular purpose are made by
or with respect to anything in this manual.

In no event shall Fortune Systems Corporation be liable for any
incide'ntal, indirect, special or consequential damages whatsoever
(including but not limited to lost profits) arising out of or
related to this manual or any use thereof even if Fortune Systems
Corporation has been advised, knew or should have known of the
possibility of such damages. Fortune Systems Corporation shall not
be held to any liability with respect to any claim on account of,
or arising from, the manual or any use thereof.

For full details of the terms and conditions for using Fortune
software, please refer to the Fortune Systems Corporation Customer
Software License Agreement.

ii

About This Book

FOR: PRO, Fortune's Professional Operati ng System, is an enhanced

version of Bell Laboratories' Version 7 UNIX operating system,

modified to run on the Fortune system. The IntroductiQn~Q_EQR~ERQ

is designed to address the needs of two different groups of Fortune
system users:

• Those who have read Understan~Your_EQrtllng_~Y§tgm, used the

Fortune menu system, and need to know FOR:PRO at the command

level.

• Those with prior computer experience who want to use FOR:PRO

at the command level rather than at the menu level.

The main goals of this book are to familiarize you with the

commands on the FOR:PRO single-user operating system so you can use

them to perform everyday tasks, and to provide a complete set of

MAN pages cor responding to the commands on the FOR: PRO set of

flexible disks.

The first two chapters are designed to bridge the gap between the

menu system interface and the command level interface to FOR:PRO.

The material contained in these chapters assumes only minimal

familiarity with computer terminology and concepts. The last two

chapters are designed to meet the needs of users experienced with
other computer systems, but not necessarily UNIX-based systems.

This book assumes you have already read Underst.§n~.J:...ouL-.Fortune

~Y§tem, so the concepts here are simply summarized.

ORGANIZATION OF THIS BOOK

This document has two parts:

•

•

Part 1 introduces FOR: PRO and describes how to use simple
commands to perform common operations.

Part 2 is the entire collection of the manual pages, called
"MAN pages." They provide reference documentation for all

commands and files that are part of the single-user FOR:PRO
system.

iii

Part 1 is divided as follows:

• Chapter 1 reviews UNIX terms and concepts introduced in
Understand Your Fortune System. It then explains how to

access FOR:PRO at the command level and how to set up your

working environment.

• Chapter 2 compares the menu system with equivalent UNIX

commands, and describes how to use some of these commands.

• Chapter 3 deals with advanced commands, such as those

enabling you to set up system security, change the way

commands work, and put commands together to perform routine

tasks.

• Chapter 4 explains the organization of system director ies

provided with FOR:PRO and summarizes the commands available

on the FOR:PRO single-user operating system.

• Appendix A describes the changes to the print spooler at

this release.

CONVENTIONS USED IN PART 1

When communicating with FOR:PRO at command level, you type entire

commands without going through the menu system. Commands must be

typed using proper command format, or syntax. This document uses

certain conventions to help you understand exactly how a command is

typed. These are outlined below.

• Commands to FOR:PRO are almost always lowercase letters, as

is with most UNIX commands. Occasionally, some command

options may be uppercase. Be careful to type commands using

the case shown in the syntax descriptions.

• In examples, any input you must type appears in boldface,

while output such as system messages does not. Also, items

shown in boldface must be typed exactly as they appear in

the text.

• Words to be replaced wi th your own text are under.11.D§Q.
Such items are also referred to as command-line parameters.

• Brackets
from.

indicate one or more options you may select

iv

• Hyphens (-) usually signal an option on a command line, as
in the command

Is -1

Always remember to type the hyphen.

• Ellipses (...) mean that the preceding option may be

repeated more than once.

Commands are sent to FOR: PRO by pressing the RETURN key,

shown as Return throughout this text. In examples and in

command syntax, it is represented as <RETURN).

v

About This Book iii

Contents vi

Part 1 USING FOR:PRO COMMANDS 1-1

The Shell Environment 1-2

Basic UNIX Terms and Concepts 1-2

FOR:PRO Operating System 1-2

Shells 1-3

Files 1-3

Directory Concepts 1-3
File Systems and Tree Structures 1-5

Pathname 1-6

Shellscript 1-7

The Three Shells and How to Access Them 1-7

Introduction to Text Editing and the ed Command 1-19

Customizing Your Working Environment 1-22

More Customizations 1-28

2 Using FOR:PRO Commands 2-1

How Menu Functions Relate to FOR:PRO Commands 2-1

Using FOR:PRO Commands for Routine Tasks 2-1

Metacharacters as Shell "Shorthand" 2-2

Creating and Modifying Directories and Files 2-4

Manipulating Files on Flexible Disks 2-9

Printing Your Files 2-13
System Status Commands 2-22

Using the Sort Command 2-27

Communicating with Other Users 2-33

3 Advanced Concepts 3-1

Permissions/Access Rights 3-1

More About Groups 3-6

Changing Erase and Kill Characters 3-7

Redirection of Input and Output 3-8
Pipes 3-11

4 Single-User Operating System 4-1

System Files and Directories 4-1

Single-User Operating System Contents 4-7

APPENDIX A: The New Print Spooler A-1

What's in this Appendix A-1

The New lpr A-1

Part 2 Single-User Operating System MAN Pages i

Organization of the MAN Pages ii
The MAN Page Format ii

viii

USING FOR:PRO COMMANDS 1

1 The Shell Environment

This chapter reviews concepts covered in Understand-1ou~J[ortune

~§.tem and introduces concepts that relate particularly to using

FOR:PRO at command level. A few simple commands are introduced to

familiarize you with using the system at command level.

covered include:

• Related terms and concepts

• The three FOR:PRO shells and how to use them

• Directories, files, and file systems

• The ed text editor

• Customizing your login environment

BASIC UNIX TERMS AND CONCEPTS

Topics

To make the best use of the FOR: PRO operating system, you should

understand basic terms such as file system, utility, shell, and

other concepts briefly discussed in this section. Most of these

terms are discussed fully in Parts and 2 of llnder:stalliL_Your

Eortune_~tem.

FOR:PRO OPERATING SYSTEM

An operating system is a large set of instructions that manage the

acti vi ties of a computer. The FOR: PRO operating system is an

enhanced form of Version 7 UNIX, an operating system developed by

Bell Laboratories. FOR:PRO consists of a kernel (the "heart" of

the operating system) and a set of utili ties. Together, they

manage all input and output, schedule processes, manage devices,

and handle other crucial system tasks while carrying out requests

from the system's users. Users do not communicate directly with an

operating system I ike FOR: PRO; instead, they send their requests

through interface programs called shells.

Introduction to FOR:PRO 1-2 10/83

THE SHELL ENVIRONMENT

SHELLS

A shell is a command interpreter that reads information you type at

the terminal and passes it to the operating system. FOR:PRO
provides three shells as interfaces to the operating system: the

Bourne shell (on the single-user operating system set of disks),

the C shell (available with Development Utilities only), and the

menu system. You have probably already used the menu system to

perform various tasks. This chapter demonstrates how to use FOR:PRO
at command level by using either the Bourne or C shells to issue

commands directly to the kernel without menus as a gO-between.

FILES

As is the case with UNIX, FOR:PRO organizes information in a series

of directories and files. FOR:PRO uses three types of files:

• Ordinary files - groups of characters combined to form a

computer program, text to be processed by a program, text

created through the use of an application such as Multiplan,

and so forth.

• Special files - used by the operating system for handl ing

peripherals such as disks and printers.

• Directory files - contain the names of files and other
directories, providing a way to find information on the

disk.

DIRECTORY CONCEPTS

You should be familiar with the following terms related to

directories:

• Home directory - the directory an account accesses upon

login. Since the system automatically creates a home
directory for new accounts in the directory /u, your home

directory will be

10/83

/u/your login name

Working directory - the directory you are currently using;

also known as the current directory.

1-3 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

• Parent directory - the directory in which a given directory
or file is listed. Every file or directory on the system

has a parent except the root directory (I). The root
directory, or root,

FOR:PRO file system.
is the main directory for the entire

(See Figure 1-1.)

• Child directory - a directory listed in a given directory.

All the directories immediately under root are "children" of

the root directory.

If you log into the system as manager or root, you are

automatically put in the root directory (I). If you then access

Fortune:Word or Multiplan, or any other application, any new

documents or worksheets you create will be in the I directory

instead of in your home directory. This can cause problems when

you back up your system. All of these files will be owned by root,

so you will have to log in as manager or root in order to back them

up, copy them, or change them.

Before backing up your system on a daily basis, and especially

before doing a cold boot, make sure you check the contents of the

root directory to see if there are any user files resident there.

bin etc

laura

Figure 1-1.

111(

I
usr u

/

The root directory:
parent directory of all
others on system

(OthersI]-" Each of these is a
child of 1

Iu 1---------- Parent of all login
I account directories

I I
Greg acctg finance}..-- Each of these is a

/

\~ child of lu

\ The acctg directory is
the parent of the ir 7\IOg ~:~~r~~d backlog

(files) (files)

Parent and Child Directories

Introduction to FOR:PRO 1-4 10/83

THE SHELL ENVIRONMENT

If so, you should consider moving them to an account in the lu

directory. In any event, remember to back them up, or you will

lose them if you do a cold boot.

FILE SYSTEMS AND TREE STRUCTURES

Files and directories on the FOR :PRO system are organized in a

hierarchical manner called a tree structure. All the files and

directories that exist under the root directory, which is the "top"

of the upside down tree, are part of the FOR:PRO file system. All

directories on the hard disk descend from the root. (See

Figure 1-2.) Each flexible or hard disk contains its own complete

file system. Normally when a flexible disk is used, it is mounted

on If, making If the root directory for the flexible disk-based

file system. Hierarchical tree structures are the operating

system's way of looking at the data stored on the flexible or hard

disk.

bin etc

Directory

/
bin

etc

dev

usr

u

other
directories

/

dev usr

Contains

root

system-level commands

u other
directories

system-level commands and special files

device files

user-oriented commands and libraries

user account directories, user-created
directories and files

other directories listed in root like
If, 1m and Fortune software products

Figure 1-2. A Typical FOR:PRO File System

10/83 1-5 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

PATHNAME

A pathname identifies where a file or directory exists within the

tree-structured file system. There are two types of pathnames:

full and relative. (See Figure 1-3.) A full pathname describes

the exact location of a file within the hierarchical file system.

For example, the full pathname of the file called decl created in

the home directory of the user jefferson would be:

/u/jefferson/decl

A pathname differs from a filename in that a filename assumes the

file is in the current directory. Use a file's pathname in a

command if that file is not in your current directory.

A relative pathname includes any directories the system must go

through to find a file, starting with your working directory. Using

the previous example, if your current directory was /u, to access

the file decl, you would specify

jefferson/decl

Full pathname

Relative pathname

Simple filename

n
/u/jefferson/decl

rootj acc~unts fte
directory home

directory
user

account
directory

Full path name - (/u/jefferson/decl) can be used while in
any directory

Relative pathname - (jefferson/decl) used when current
directory is /u

Simple filename - (dec!) used only when file
is in current directory, (lu/jefferson)

Figure 1-3. Filenames and Pathnames

Introduction to FOR:PRO 1-6 10/83

THE SHELL ENVIRONMENT

From a current directory of luI jefferson you could use " .. " as a

shorthand to indicate the parent directory lu. The" "stands for

"parent directory" and in this case, lu.

SHELLSCRIPT

A shellscript is a file containing one or more commands to be

executed sequentially, as if typed directly from the terminal.

More complex shellscripts use variables and simple program logic

like "IF •.. THEN .•• ELSE". You can write your own shellscripts to

perform routine actions, saving time and reducing the risk of

mistakes. Table 1-1 shows a sample shellscript which mounts a

flexible disk, lists its contents, then unmounts the disk.

Table 1-1. A Shellscript for Listing Files on a Flexible Disk

Command Results

The shellscript fd.look contains:

mount Idev/fd02 If

11 If

umount Idev/fd02

Mounts a flexible disk.

Displays a detailed list of files on

the flexible disk.

Unmounts the flexible disk.

Execute these commands by running the shellscript fd.look and type

$sh fd.look

THE THREE SHELLS AND HOW TO ACCESS THEM

The three FOR:PRO shells, the menu shell, the Bourne shell, and the

C shell, provide an easy way for users to communicate with the
operating system.

The menu shell, also called the global menu system, consists of a

set of menus descending from a single global menu you access when

you log in.

10/83 1-7 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

The menus contain selections for running applications, accessing

training materials, and performing basic system and file management

tasks. For example, when you choose a selection from the system

utilities or system management menus, this activates a FOR:PRO

command or a shellscript which performs the selected activity.

The Bourne Shell

The Bourne shell is the standard user interface to UNIX. It was

developed by Bell Laboratories and is offered on the FOR :PRO

single-user operating system. Bourne shell prompt is a dollar sign

($) or a number sign (#), if you are logged in as root or manager.

This book shows you how to issue FOR: PRO commands at the Bourne

shell level. When you see a reference to the shell wi thin this

text, assume the Bourne shell is being discussed.

The C shell, also called the Berkeley shell, was developed at the

University of California at Berkeley. It provides a user interface

to the FOR:PRO operating system that is similar to the C

programming language. The C shell prompt is the percent sign %.

The C shell is not included on the FOR :PRO single-user operating

system and is therefore not described here. If you want to use

this shell, you should obtain the Development Utilities package,

which contains the C shell software and appropriate documentation.

Accessing the Bourne Shell

Since all new accounts created with the newuser command

automatically enter the menu system, you'll have to go to the

global menu first before accessing the Bourne shell. Follow these

steps to get from the menu to the Bourne shell:

1. From the global menu, type

then press Return.

Bourne shell.

You can also type Ish to get to the

Introduction to FOR:PRO 1-8 10/83

THE SHELL ENVIRONMENT

2. The screen clears and a $ prompt (or # if you are logged in

as root or manager appears in the upper left corner of your

screen. The $ is the Bourne shell prompt.

When you are finished using the shell, press the Control key and

the d key simultaneously to get back to the global menu. This

sequence is represented from here on in the text by CTRL-D. You

can also type

exit

and press Return to get back to the menu system.

You can set up your account so that you access the Bourne shell

automatically when you log in. It is recommended that you do if

you intend to do most of your work at command level. See the

section, ~Y~10mi~ing Your Working Environment, for instructions on

how to change your login shell. Then, you can access the menu

shell by typing

menu

If your original login shell is the Bourne shell and you have not

entered the global menu system since logging in, when you type exit

or CTRL-D, you will be logged off the system.

To get out of the menu shell, you can always press the Cancel key.

This logs you off completely, unless you were in another shell

before accessing the menu system.

10/83

NOTE

It isn't a good practice to constantly move from

one shell to another without occasionally logging

off. For example, don't use "menu" to access the

global menu, then use an application, and then

use to go back to the Bourne shell several

times without logging off. This will definitely

slow down the system's response to your prompts.

1-9 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

Issuing Commands from the Shell

To get you started at the FOR: PRO command level, here are some

essential commands that you'll soon be using on a regular basis.

Remember that all commands must be typed in lowercase letters and

must be followed by a carriage return. Here is a list of routine

tasks and the commands you would use to perform them:

Routine Task

Print or display (current) working

directory

Find out what is in the directory

Change to another directory

Find out who'S on the system

Print (display) the current date and time

List the contents of an entire file

on the screen

List the contents of a file twenty-four

lines at a time

Correcting Errors

pwd

Is, 11

cd

who

date

cat

more, page

You will probably want to know how to correct typing mistakes while

entering commands to the shell. The default erase character is the

Backspace key. It erases one character at a time. Simply press

Backspace until you reach the place on the command line where you

made the error and retype. Typing CTRL-W erases an entire word at

a time. The default line delete, or kill character, is CTRL-X.

After typing CTRL-X, press Return, and the line will be erase~. If

you want to change your default erase and kill characters, see

Chapter 3.

NOTE

You can always press the Cancel key to abort a

command.

Introduction to FOR:PRO 1-10 10/83

THE SHELL ENVIRONMENT

All FOR:PRO commands follow UNIX syntax rules. A command's proper

format or syntax must be used to make it work properly.

Each command consists of a word or abbrev iation representing the

command itself, usually followed by one or more words called

arguments. Arguments further define the action a command is to

take. Finally, each FOR:PRO command must be terminated by pressing

the Return key.

A typical FOR:PRO command, Is, can be broken down as follows:

Is [-adls] [other options]

cornland!
options

[directory name . . . 1
Uilename .. J

I
arguments

An option is a single character that tells the command to perform a

certain additional function. One or more of the options indicated

in brackets can be specified in a single Is command line. The

ellipses (..•) mean that more than one file or directory name can

be used with a single Is command.

In the command formats shown in this document, the text you must

type exactly as shown appears in bold. Optional items are enclosed

in square brackets. This includes arguments, which are typed as

shown, and parameters, for which you must supply real values, like

an actual filename or directory name. Parameters are underlin~Q.

One of the first things you are likely to ask once you've entered

the shell is, "Where am I?" The pwd command prints the pathname of

your current directory.

Follow these steps to find the location of your current working
directory:

10/83 1-11 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

1. You should see the $ prompt on your screen. Type pwd and

press the Return key.

2. Then system responds with a message like

/u/yourname or /

where YQurname is the name of your account. If you access

the shell from the global menu immediately after login, you

should be in your home directory.

However, if you log in as manager, you will be in the root

directory when you return to the shell. Use pwd to find out where

you are.

To get to your home directory at any time, type

cd /u/yournamg,

where yourname is the name of your login account.

NOTE

Accounts should be created with the newuser

command, which creates a directory for each user

login account in the /u directory. When you log

into the system using your account (login) name,

you will be put into your home directory:

lu/yourname.

To see the contents of a directory except for files begining with

".", use the Is command. If you type

Is

the names of all directories and files in the current directory

will be displayed on the screen. You can also request a list of

the contents of a different directory by typing that directory's

pathname with the Is command, as in this example:

Is /usr/bin

Introduction to FOR:PRO 1-12 10/83

THE SHELL ENVIKUNMtN I

The Is command also has a large number of options for listing

information about directories and files in addition to their names.

To use the Is command with an option, the format would be

Is -option

Options are always preceded by a hyphen (-).

options of Is are:

Some commonly used

-1 Lists the directory's contents in long format, giving status

information about all files and subdirectories. This
informat ion includes the pe rmi ss ion setting s, si ze, and

ownership of each item listed in the directory. (FOR:PRO

provides a shortcut command, 11, which does the same thing.)

-a Lists all entries in the directory, including all the

entries beginning with a period as in the. and •. entries.

If you are not logged in as root or manager, you can only

see the • entries if you use the -a option of Is. The.
entry represents the directory listed. The entry

represents the parent of the directory listed.

NOTE

If you are logged in as root or manager, simply

typing Is will list the files whose names begin

wi th "." (except for • and •.) as well as all

others in the directory.

Listing Your Current Directory: To look at the entire contents of

your current directory, type Is -a. The names of any directories

and files you have created thus far including files beginning with
• (like • profile), are displayed. (If this is your first time on

the Fortune system, you may see only the dot (.) files, since your
current directory may be empty.)

Listing Another Directory: You can also look at directories other

than your current directory without changing your location. To

look at a long listing of the / directory, for example, type

Is -1 I

10/83 1-13 Introduction to FOR:PRO

I nt ~ntLL tNVll(UNMtN I

Notice the syntax you used for this command:

The resul ting display contains both files and directories and

should resemble the following:

drwxrwxr-x 2 root 944 Jul 6 11 :22 bin

drwxr-xr-x 1 root 1104 May 3 19:27 dev

drwxrwxr-x 3 root 1264 Jul 6 08:43 etc

drwxrwxr-x 10 bin 176 Jul 6 09:20 u

The directories above are four system directories that reside in I.

They are discussed in more detail in Chapter 4. The following is a

brief description of the status information:

d

rwxrwxr-x

2

root

944

Indicates the file is a directory.

indicates an ordinary file.

A hyphen (-)

Permissions assigned to the file or directory,

which govern the way a file or directory can be

used. The letter "r" means r:.~, "w" means

writeLYQdate, and "x" means execute. You'll learn

more about this later.

Number of links to the file; usually 1. For a

directory, it indicates the number of

subdirectories in the directory.

The owner of the file.

Number of bytes (characters) the file or directory

takes up.

Jul 6 11:22 Date the entry was last updated.

bin The name of the file or directory.

The cd command moves you from one working directory to another. To

use the command, type

Introduction to FOR:PRO 1-14 10/83

II II- \.I, IL.. "III", ,.,_. , •• __ • ~.

The way you specify the directory name depends on the location of

the directory to which you want to move. For example, suppose you

have a lu directory that contains the entries shown in Figure 1-5.

To access the file june.1, you would use cd to get to the directory

june, in which june.1 resides. If your current directory is /etc,

you'd have to give the full pathname to get to june.

cd /u/greg/memos/june

If you are already in the directory called greg, you'd use this

relative pathname

cd memos/june

lisa (dir)

files in {·une 1
the dire?tory J (f)·

June

/u (dir)

mark (dir) greg (dir)

A
other user
directories

memos (dir) index (dir)

A
june (dir) july (dir)

june. 2
(f)

june. 3
(f)

dir - means directory
f - means file

Figure 1-5.
Subdirectories

The User Account Directory (/u) and Typical

10/83 1-15 Introduction to FOR:PRO

If the current directory is memos, type

cd june

Never begin a relative pathname with a /. The system will start

its search with the / directory, rather than with your working

directory.

If the directory you want is the parent of your working directory,
type

cd

Referring to Figure 1-5 if your current directory is june, typing

cd •• gets you to the directory memos. When you did an Is -a, you

saw spec ial characters (••) that stand for the parent directory.

If you were in the greg directory and typed cd •• , you would go to

lu, the parent directory of greg.

Finally, if the directory you want isn't located at a level

directly above or below your current directory, you'll have to type

cd and the full pathname of that directory. For example, suppose

you are in the memos directory and want to access a directory

called lib that you know isn't in a direct line above or below the

current directory. You'd have to type that directory's full

pathname: lusr/lib.

Using cd: The examples below show you how to move from your home

directory to other directories on the system.

1. Type

cd ••

and your new location becomes the parent of your current

directory.

2. Type pwd. You should get the response

lu

3. Go to the letc directory. Type its full pathname

cd letc

Introduction to FOR:PRO 1-16 10/83

THE SHELL ENVIRONMENT

Date is a simple command that tells you the current system date and

time. To use this command, type

date

Remember, if you don't update the date and time screen when you

start up the system, the response you see may not agree with the
actual date and time. To correct this, use the /etc/setdt command

to display the same date and time screen shown when you turn on the

Fortune system. Make your changes on this screen. (If you are

logged in as root or manager, you can leave off the "/etc/"

prefix.)

The who command tells you who is using your system. On a multiuser

system this is very handy. On a single-user system, you might use

it to find out what user ID you used when you logged into the

system. To use who, type

who

The who display tells you which account is logged in and which

terminal (tty) that person is using.

The cat command, short for concatenate, which means "join," is a

simple command that performs three functions:

1. cat displays an already existing text (ASCII) file on the

screen. To use cat for this purpose, you'd type

cat old.filename

2. cat combines or concatenates two files, so the second file
specified is appended to the first. To concatenate file.1

and file.2, creating a new file called file.3, you'd type

cat file.1 file.2 > file.3

10/83 1-17 Introduction to FOR:PRO

Inc ;)nCLL CI'IV I "'VI'IMCI'II

Then file.3 is created from the results of concatenating

file.l and file.2, leaving file.l and file.2 in their

original form. The > symbol tells the system to put the

results of the cat process into file.3. Should you use this

form where file.3 already exists, file.3 is overwritten by

the results of the concatenation of file.l and file.2.

3. cat allows you to create a new file by simply pausing while

you enter text. In this case you'd type

cat > new. file

to create a brand new file called new.file.

also type

cat » old.file

You can

to append information you type at the terminal to an

existing file, called old.file.

In either case, the system waits while you type information

you want sent to new. file or old. file. Just type in the

lines you want. Signal the end of the file by pressing

CTRL-D. Make sure new.file is the name of a new file and not

an existing one; otherwise, it will be overwritten.

Using cat: To use cat for the first time, use the cd command to

get to letc and type

cat group

The system displays the contents of the file group on the screen.

The file letc/group is a system file containing the names of all

user groups on the system.

NOTE

Do not use cat to display binary files such as
system programs and executable user programs on

the screen. If you do this by mistake, you may

get a strange screen display. Use the -v option

of cat (cat -v) to look at binary files.

Introduction to FOR:PRO 1-18 10/83

THE SHELL ENVIRONMENT

Display a File a Screen at a Time (more)

The more command is similar to the display function of cat, because

it displays an already existing text file on the screen. However,

the more command only displays 24 lines of text at a time. Use

more to display long files, because cat rapidly scrolls a long file

over several screens without stopping until the end of the file.

To use more, type

more filename

The more command pauses at the bottom of the first screen of text

until you press the Spacebar to display the next screen of text, or

press Return to display the next line.

The following example demonstrates the use of more. A pipe (I)

will also be used. On many keyboards, the I key is one of the

three gray keys located to the left of the standard keys. Pipes

allow you to use the output of one command or process as input to

another.

1. Type the following:

Is -1 letc I more

You've "piped" the results of an Is -1 operation to the more
command. If letc is your current directory, you can omit

letc from the Is command line.

2. The system displays the first screen of the long directory

listing, indicating that there is more to come.

3. Press the Spacebar to view the next 24 lines of output. If

the $ prompt isn't at the bottom of the directory list, keep
pressing the Spacebar until you see the $ prompt, signifying

the end of the file. To get out of a display before it is

finished, type q and press Return, or press the Cancel key.

INTRODUCTION TO TEXT EDITING AND THE ed COMMAND

Text editors provide tools for creating and editing text files. If

you need to create reports and memos on the Fortune system, you

should use the Fortune:Word application. However, if you need to

create source programs, perform minor file updates, and create data

files, you should use a text editor.

10/83 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

Types of Editors

There are two basic types of text editors available on the FOR:PRO

system: line editors and screen editors. Line editors enable you
to create text, then edit one line at a time. The line editor, ed,

is the text editor available on the single-user operating system

set of disks. It's easy to learn and adequate for cr~ating simple

ASCII text files. To do extensive text formatting on a file

created with ed, use the commands associated with the text
formatting program nroff, available with the Development Utilities

software.

Screen editors enable you to edit text a screenful at a time,

taking advantage of the characteristics of the video screen. If

you have the Development Utilities set on your system, you can use

vi, the screen editor provided with that software package.

The next couple of pages show you how to use ed. A brief example

and table of ed commands are also provided.

Accessing ed

To use ed, you must be at the command level. Once there, use ed

like any other FOR:PRO command. Use the syntax

ed filename

regardless of whether you are creating a new file or editing an

existing one.

NOTE

The cursor control keys (grey keys with arrows)

do not work in ed.

Rules for Creating ~

There are a few rules governing the creation of files. The first

rule is that filenames can be a maximum of 14 characters, and

should not begin with the following special characters:

,$><?*&;.

Introduction to FOR:PRO 1-20 10/83

THE SHELL ENVIRONMENT

The second important rule is that FOR: PRO, like all UNIX systems,

distinguishes between uppercase and lowercase letters, so type your

filenames carefully.

Creating a New File with ed

There are two modes of operation in ed: append mode for creating

text, and edit mode for issuing commands to modify text. To create

a new file, type ed and the name of the file. Follow the

file-naming rules discussed above. The system responds

?filename

indicating that this is a new file.

you are in edit mode.

The ? prompt indicates that

To enter append mode, type a and press the Return key.

mode, you type the text you want in the file.

In append

If you make a mistake while typing, you can correct the mistake

provided it is on the current line. Use the Backspace key to erase

the errors and then retype the text as you want it.

To leave append mode, start a new line with a period • and follow

it by a Return.

At this point you can either edit the file or save it for
modification at a later time. If you don't plan to edit the file
right after creation, save its contents by issuing a w command.

This command writes the current version of the file onto the hard

disk. Type q to leave ed and return to the shell.

A Sample ed Session

Here's how to create a sample file using ed.

1. Type the following:

ed softdrink

2. The system responds

?softdrink

10/83 1-21 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

3. Get into append mode by typing a and pressing the Return

key. You won't get any more system responses until you

leave append mode.

4. Type a few lines of text, such as these:

In New York, they call it soda.

Then it migrated to California

Where they also called it soda.

In Ohio and Indiana, they call it pop.

In Georgia, they call it coke,

even if it isn't cola.

Or so I'm told. But in Boston, they call it tonic

(that's tawnicl).

5. The single period on the last line of the file represents

the end of text. Now type 1,$p to display the whole file.

(1 refers to the first line, $ to the last line of the
file.)

6. Type w to write the text you just typed onto the hard disk.

The system responds with a number, representing the number

of characters (bytes) in the file.

7. Type q to leave ed and return to the shell. You should see

the $ prompt on your screen.

Editing Text Using ed

To modify existing files, use some of ed's single character

commands to change text on a line-by-line basis. The ed commands

you'll use most often are described in the table on the next page.

CUSTOMIZING YOUR WORKING ENVIRONMENT

If you want to access the shell directly every time you log in, you

have to change the entry in the /etc/passwd file that describes

your account. The passwd file contains important information about

all the user accounts on the system. It tells the name of the

account, the password for that account, the group to which the user

Introduction to FOR:PRO 1-22 10/83

THE SHELL ENVIRONMENT

Table 1-2. Table of ed Commands

Command Description

a Appends text after the current line.

d

i

p

q

10/83

The syntax of the a command is

(current line)

a <RETURN>
(New text--as many lines as needed)

• <RETURN>

Deletes the indicated line or lines.

The syntax of d is

[line number]d

or

[line number],[line number]d

Inserts text above the current line. You can

insert as much text as necessary, indicating the

end of text by typing a period on the I ine below

the last line of text, followed by a Return. The
syntax of i is

i <RETURN>

(New text--as many lines as needed)

• <RETURN>

Prints on the screen the line or range of lines

specified. The syntax of p is

[line number]p
[line number],[line number]p

Use the $ symbol to specify the last line of the

file. You can also print the contents of a line by

typing that line number, for example, 3 Return.

Quits ed and returns to the shell.

1-23 Introduction to FOR:PRO

THE SHEll ENVIRONMENT

s

u

w

/llx,1/

Substitutes (replaces) a new string of text for an

old string in the given line, in a range of lines,

or globally, throughout the entire file.

Use this format to change the current line of text.

Use the g option when you want to make the

indicated change to every occurrence of oldtext on

that line.

s/oldtext/newtext/[gJ

Use this format to change text over a range of

lines indicated by A,Y.

A,Y s/oldtext/newtext/

This format adds the newtext string to the

beginning of the current line.

s/" /newtext/

To add something to the end of the line, use $

instead of ..

To change a string globally (throughout an entire

file), use this format of the substitute (s)

command:

1,$s/oldtext/newtext/g

Restores the results of the last editing command

issued at the current line. This only applies to

editing commands that may have modified the current

line. The contents of the line are restored to

their state before the last command was issued.

This command will not undo global changes -- it
will only undo the change made to the last line of

the file.

Writes the contents of the file to the hard disk.

Searches for the characters between the slashes.

(If the text contains special characters like

/,\,[,;, or * they must be preceded by a
backslash \.)

Introduction to FOR:PRO 1-24 10/83

THE SHELL ENVIRONMENT

Return prints the current line.

In edit mode, typing a period and pressing Return

prints the current line.

File Position Commands

$

+ Lon]

.n.n

Moves you to the last line of a file, printing its

contents.

Moves you from the current line to the next line;

with.ll.ll, moves you forward .n.n lines.

Moves you from the current line to the preceding

line; with nu, moves you backwards illl lines

(towards the top of the file).

Moves you to the line numbered .n.n, and prints that

line.

belongs, and the shell into which the user is automatically placed

upon logging in. For most accounts, the listing will end with

/bin/menu

meaning that the account enters the menu system upon login. To

access a shell other than the menu system, you must change menu to

read sh or csh.

Changing the passwd File

To change the /etc/passwd file from the FOR:PRO level, you must log

in as manager or root. When you log in as manager or root, your
working directory is automatically set to /. (Get to the shell

from the menu by typing I or Ish.) Then use cd to get to the fete

directory. It is recommended that a backup copy of the passwd file

be made. To do this, simply use the cp command, as in

cp passwd passwd.baekup

There is now a backup copy that you can reinstate if needed.

Should you accidentally delete or mangle the passwd file, type

cp /etc/passwd.backup /etc/passwd

to restore the file from your backup copy.

10/83 1-25 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

Get into the passwd file by typing ed passwd. Find the line in the

passwd file that pertains to your account. Use the I~/

command to find it. For example,

/laura/

will find the entry for the user laura and print out that line.

Note that the last entry on the line describing your account reads

/bin/menu. Now change the string /bin/menu to read

/bin/sh

Type this command line to change the string

s/menu/sh/p

The changed line is then displayed. Save your changes using the w
and q commands. See the previous section on the editor Editing

Text Using ed if you need help.

To see the effect of this change, you have to log in again. You

can log off and log back in, or you can just type login, and you

will be prompted for your account name and password. You should

directly access the Bourne shell instead of the global menu. Once

you've done this, you might want to set up your environment by

modifying the .profile file.

Setting up .profile

The .profile file is listed in the / directory, and is merely a

prototype file. It is meant for the manager or root account and

does nothing for you as an ordinary user until you customize it.

You must first make a copy of .profile in your home directory and
then make the necessary modifications to the copy. These steps are

described in the following paragraphs.

NOTE

Once you put a .profile file in your home

directory, it will be executed upon login, even

if your login shell is Ibin/menu.

Introduction to FOR:PRO 1-26 10/83

THE SHELL ENVIRONMENT

What's in ,profile

Before you modify it, .profile looks like this:

PATH=':/bin:/usr/bin:/usr/ucb:/etc'; export PATH

TERM=FT; export TERM

HOME=I; export HOME

The first line of the file describes your command search PATH,
which tells the system where to look for the commands you type. By

default, the system first looks in the current directory, then the

Ibin directory, then in lusr/bin, and so on, as shown above. Since

the shell environment gives you the ability to define your own
commands, you may want to change the PATH so the system looks in

your directory first, then searches the others.

The TERM line indicates the type of terminal you are USing, by

default FT, which stands for Fortune terminal.

The HOME line indicates the directory that FOR:PRO considers your

home directory. The default for root and manager is I, which is why

the PATH and HOME fields have the values they do. You should

change this to be /u/yourname, where yourname is the name of your

account. That way, whenever you type cd without specifying a name,

you access your home directory.

Customizing ,profile

First, copy .profile to your home directory, as in this example:

cp I,profile lu/yourname/.profile

Now you have your own copy to work with. If you type the command

Is -la, you will notice that the permission rights for the .profile
file are read only

r--r--r--

You have to change this so you have write access to the file. Use

the cbmod (change mode) command to give yourself write access. The

cbmod command is complex, as is the entire concept of permissions.

cbmod is described in Chapter 3. Enter this command line, so you
can edit the file

cbmod u+w .profile

10/83 1-27 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

The "u" stands for user and the "w" stands for write. Issue the

command Is -la, and you see a write permission to the file. Use ed

to change the first line. This is the PATH line that indicates the

search path for your account. Change the string :/bin to

:/u/yourname:/bin

where yourname is the name of your account.

Use the following command string to change the PATH line, using a

comma as the delimiter for the s command:

s,:/bin,:/u/yourname:/bin,p

This changes your PATH line and prints it out with the

modifications you just made.

Change the HOME line so that it has your account name instead of

the root directory.

substitution.

Again, use the comma as a delimiter in the

3s,/,/u/yourname,p

The "3" specifies that the change will take place on the third line

of the file. You can omit it if "3" is already the current line.

Type w Return and q Return to get out of ed and to make these

changes permanent. Having done this, you can go to your home

directory by simply typing cd.

To put these changes into effect, you must log in again. First log

out, using CTRL-D, then log in as you normally do.

When you log into the system from now on, your .profile file will

automatically be executed.

MORE CUSTOMIZA TIONS

You can customize your login environment by adding items to your

.profile file. Here is a list of some simple things you can do:

• Display a message or "reminder" file

• Display the system time and date

• Change the default shell prompt

• List the contents of your directory

• Find out who is on the system

Introduction to FOR:PRO 1-28 10/83

THE SHELL ENVIRONMENT

The first item in the list involves using either the echo command,

followed by some text to be displayed, or using the cat command to

list a file of reminders you've previously created. For example,

if you have a file called reminder in your directory, you can list
its contents by including the command

cat reminder

in your .profile file.

Similarly, the current time and date can be displayed by putting
the date command in the .profile file.

Here is a sample • profile file that uses all the custom features
listed above.

PATH=':/u/1aura:/bin:/usr/bin:/usr/ucb:/etc'; export PATH
TERM=FT; export TERM

HOME=/u/laura; export HOME
PS1=LJD$

date

echo This system is running 1.7
cat reminder

1s -las

who

Setting Shell Variables

Changing the default Bourne shell prompt ($) involves setting the

special PS1 variable. In the example shown above, the default

prompt is set to the user's initials, followed by a dollar sign, in
this case, LJD$.

Like PS1, all shell variables are set by equating them to some
value. The general format is

variable=value

with no space on either side of the equal (=) sign. For example,

PS1=PROHPT$

If you want a prompt that contains embedded spaces, surround the

entire prompt string with quotes, as in

PS1="HI THERE$"

10/83 1-29 Introduction to FOR:PRO

THE SHELL ENVIRONMENT

Once set, a shell variable is referenced by preceding it with the

dollar sign. For example, to display the setting of the HOME

variable, type: echo $HOME. With a .profile setup like the one

shown in the example, typing cd $HOME should get you to the

directory you defined as "home". (You can also simply type cd to

get home.)

Qisplaying Variable Settings

To find out what shell variables are currently set for your

environment, type

set

A complete list of variables and their settings is displayed.

/etc/profile in FOR:PRO

The file /etc/profile defines the default language for the system

(LANGUAGE=EN), the lpr defaul ts for users of the menu system

(LPRFLAGS), and the XON/XOFF mode for Fortune terminals. In
XON/XOFF mode, when output to the screen is suspended using CTRL-S,

it can only be resumed by typing CTRL-Q.

Currently, only the menu shell invokes /etc/profile. The Bourne

shell (/bin/sh) does not read /etc/profile. If your login shell is

Ibin/sh, incorporate the settings in Jete/profile into your

environment by copying the lines from /etc/profile into your

.profile file. Note that Ipr does not use the LPRFLAGS setting

when used from the Bourne shell. (See Appendix A.)

Introduction to FOR: PRO 1-30 10/83

2 Using FOR:PRO Commands

The most frequently used FOR:PRO commands included in the

single-user operating system set of disks are described in this
chapter. You'll also find a section describing the connection

between selec tions on the menu system and the FOR: PRO commands
which the selections activate.

HOW MENU FUNCTIONS RELATE TO FOR:PRO COMMANDS

If you've used the menu system prior to reading this document, you

probably noticed a similarity between the FOR:PRO commands

discussed so far and certain selections on the menus. In fact,

most of the selections on the System Utilities and System
Management menus merely activate FOR:PRO commands. Other

selections run shell scripts consisting of a series of commands.

For example, the selection "Create a Directory" on the System
Utilities menu activates the FOR:PRO command mkdir.

Table 2-1 lists some commonly used menu system selections and the

FOR:PRO commands that are activated by these selections.

To use the commands with the "/etc" prefix, you must either be in

the letc directory or you must type the full pathname for the
command. If you are logged in as manager or root, you can use them

without typing "/etc" before the command name. These commands are

described more fully in Chapter 3.

USING FOR:PRO COMMANDS FOR ROUTINE TASKS

The next few pages describe some basic FOR: PRO commands. You'll

use these commands to create and manipulate files and directories,

print your work, and perform disk-related activities. You'll also

learn how to receive and interpret system status information.

10/83 2-1 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

Table 2-1. Menu System Selections and FOR:PRO Commands

Menu Items FOR:PRO Command Invoked

System Utilities

Copy a file

Delete a file
Group ID change of a file

List file contents on screen

Move or rename a file
Owner change file ownership

Print file content on printer
Permission change of a file

Copy a directory

Create a directory

Delete a directory

Go to another directory
Group ID change of a directory

List directory information
Move or rename a directory

Name current directory

Owner change of a directory
Permission change of a directory

System Management

Shutdown computer

Who is using the computer

Disk usage

Percent of disk used

Display current date and time
Set date and time

Write a message to a terminal

Send a message to all terminals

cp

rm
letc/chgrp

more

mv
letc/chown
Ipr
chmod
cp
mkdir
rmdir

cd
letc/chgrp

Is
mv
pwd
letc/chown
chmod

shutdown
who

du
df

date
setdt

write
wall

METACHARACTERS AS SHELL "SHORTHAND"

The Bourne shell provides a notation method that enables you to use

a single special character in a command to represent any number of

Introduction to FOR:PRO 2-2 10/83

USING FOR:PRO COMMANDS

files and directories. Use these special characters, called

metacharacters, in the command line in the following fashion:

• To match a string of characters of any length,
including a null (empty) string.

? To match any single character except null.

[.!1.=nl To match any single character within the range

indicated in n-n where n=n can be any two letters in

the alphabet.

Metacharacters are most useful when copying, moving, deleting, and

simply listing file names.

The asterisk character matches a character string of any length.

Suppose you had the following files in a directory:

apples1
apples2

oranges

grapes1

pears

apples.a

If you issued the command

Is apples.

the result would be

apples1 apples2

grapes2

apples.g

apples.a apples.g

The system lists all files that begin with apples. The * matches
any characters in the filename that follow the string apples.

Using?

Unlike the asterisk, the question mark metacharacter matches any

single character in a file, not an unlimited string. Using the

same directory as above, if you issued the command

Is apples?

10/83 2-3 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

the result would be

apples1 apples2

The system lists any files in the directory whose names begin with

the string apples and include one other single character. Notice

that the files apples.a and apples.g were not listed because in

both cases apples was followed by more than one character. If you

type

Is apples??

you receive the results

apples.a apples.g

In this case, the two question marks ?? match any two characters

(except null) following the apples string.

The brackets indicate that the match required by the command be any

single character between the range n-n. Using the same directory

as in the two previous examples, suppose you issued the command

Is apples.[a-f]

The system would respond only with the name apples.a.
apples.g is outside the range enclosed in the brackets.

CREATING AND MODIFYING DIRECTORIES AND FILES

The file

Among the most commonly used commands are those for creating and

manipulating directories and files: mkdir, mY, cp, rm and rmdir.

The next few pages describe the syntax and usage of these commands

and their most commonly used options.

CreatinR-Q1rectories (mkdir)

To create a directory, use the mkdir command. You can use the

mkdir command to create subdirectories in your home directory or in

any other directory for which you have write permission.

Introduction to FOR:PRO 2-4 10/83

USING FOR:PRO COMMANDS

The easiest way to use mkdir is to first go to the directory where

you want to create the new directory. Then issue the mkdir command

using the following syntax:

mkdir directory.name

You can supply as many directory names as you want, depending on

how many directories you are creating. However, remember to use a

pathname for any directories not in the current directory. The

mkdir command automatically creates the • file, representing the

directory itself, and the file representing the parent

directory, in any new directory.

The my command's most commonly used function is to move files and

directories to different places. You can also use my to simply

rename files and directories without moving them. This is because

my removes the file from its original location and puts it in the

specified location. If you use my on a file in the current

directory, and specify a new filename instead of a I@thname as

destination, then the file remains in the original directory, but
its name is changed.

The syntax for that use of my is

my {filenam~}
dir.name.1 {filena~} dir.name.2

It's also possible to move a file or directory, changing its name

in the process. Use the following syntax

my {Old. filename
Qld-Ll!ir...1l~

new. pathname}
ne~I@thname

new.pathname is a complete pathname which specifies where the

directory or file is located.

To move a file from the current directory to another, use the
syntax

my [options] filename •.. directory.name

10/83 2-5 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

Supply the name of the file you want moved and the name of the

destination directory. Remember, once you move a file to another

directory, it no longer exists in its former directory. The options

are explained below.

Move one directory to another by using the syntax

my [options] dir.name to.dir.name

When you move a directory, all its files and subdirectories are

moved as well. Note that you cannot move a directory to one of its

subdirectories.

my Command Options: You can use one of three options: -f, -i, or
when invoking my. The -i option causes the system to pause if

it finds an existing file in the directory with the same name as

the file you want to move into that directory. If you type a "y"

as the next character in response to the prompt, the system

replaces the old file with the new file. If you type any other

character in response, the system will not move that file. The-f

option causes all files to be moved, regardless of any permissions

set or the existence of duplicate filenames. The -f and -1 options

are mutually exclusive. If you do use them together, -1 overrides

-f.

The - option interprets all later arguments to my as filenames.

This means you can move a file whose name begins with - The­

option can be used with -1 or -f.

Copying Files and Directories (cp)

The cp command offers facilities for copying both files and

directories. When you use cp to copy a file or directory, the

original is not destroyed. Instead, you have two copies of the

same data. To make this clearer, in the following syntax

descriptions for cp, the original file or directory is referred to

as the "source," and the new copy or file or directory receiving

the copy is called the "destination."

Making a Copy of an Original File: For basic file copying, use the

following cp syntax:

cp [opt1ons][-] source.f1lg destination. file

Introduction to FOR: PRO 2-6 10/83

USING FOR:PRO COMMANDS

This form of cp makes a copy of a file in the same directory as the

original or in a different directory. The options are described

below. The destination file retains the same file permissions as

the source file. If the destination file is in the same directory

as the source, be sure to give the copy a different name than the

source. If either the source or destination file isn't in your

working directory, remember to use pathnames.

Here's a shortcut for copying a file from another directory into

the current directory.

Recall that • represents the current directory.
file is not changed when it is copied.

The name of the

Options~: On the Fortune system, the cp command has a great

number of options. As with the mv command, you can use the option

-i to have the system prompt you every time it finds an existing

file in the destination directory with the same name as a source

file to be copied into the directory. The -f forces copying of all

source files to the destination directory even when the system

encounters duplicate filenames. You can also use the - option to

create files with names beginning with a hyphen.

£QQyin~irectories:

using the -r option.

You can copy a directory into another by

The -r stands for recursive, meaning that the source directory and

all of its subdirectories and files are copied into the destination

directory. You cannot copy a directory into one of its

subdirectories. You must use the -r option to completely copy a

directory that contains subdirectories, otherwise the system

ignores any subdirectories it encounters and only copies the files.

Removing Files and Directories-1rml

The rm command removes files and directories from the file system.

Its syntax is

rm [-f][-i][-r][-]

10/83 2-7 Introduction to FOR:PRO

U!)ING FOR:PRO COMMANDS

You can use rm to delete more than one file by typing individual

filenames or by using metacharacters. Due to the serious nature of

rm, you should be very careful when using this command. Unless you

use the -i option, the only time rm prompts during file deletion is

when it encounters a file for which you do not have write

permission.

NOTE

You do not need write permission on a file to

delete it, as long as you have write permission

for the directory in which the file resides. If

you try to delete a file for which you don't

have write access, the system simply informs you

of the file's permission mode and then asks

again if you want to delete it. All you have to

do is type y and the system deletes the file.

Options of rm: The safest way to use rm for deleting files is to

use the command with the -i option, as in

rm -i filename •.•

In this case, the system prompts, "rm: remove filename?" and waits

for your response. Type y to remove the file. Any other response

cancels the deletion.

To force rm to delete all files without displaying prompts or error

messages (even on write-protected files), use the -f option, as in

rm -f

Once again, -i and -f are mutually exclusive, with -i taking
precedence if you mistakenly use them in the same command.

RLIILQ. v i n R-lLi r LUQLi.~_w i.LIL- r m: Tor e m 0 v e a I I f i 1 e san d

subd i rector i es in a directory, use the recur si ve option of rm, as

in

Introduction to FOR:PRO 2-8 10/83

USING FOR:PRO COMMANDS

In this case, rm searches for and deletes first all files, then all

subdirectories beneath the named directory.

To give you an idea of the danger of rm -r, if you issued the

command

rm -r it

the system would delete all files and directories from the current

directory on down the file hierarchy. If you were to issue such a

command from I, you could delete the entire contents of the hard

disk! So be very cautious using rm -r, particularly with

metacharacters. Use the -i option whenever you use -r, just to be

safe.

You can use the rmdir command to delete directories, provided the

directories do not contain any files. The syntax of rmdir is

rmdir dir.name

If you created directories and didn't put any files into them, you

can use rmdir to delete them. However, if you use rmdir to delete

a directory that does contain files, you'll receive an error

message, and the system will ignore the command. You must delete
the directory's contents before you can delete it with rmdir.

MANIPULATING FILES ON FLEXIBLE DISKS

FOR:PRO provides three commands for handling flexible disks: mount,

umount, and format. These commands, along with cp, help you store

and retrieve user files on flexible disks. Note that to install

and backup any Fortune Systems' software, you must use the Product

Maintenance menu.

HowJnformation-iLOrganized on a Flexible Disk

a
Each flexible disk contains a separate file system with the

directory If at the top of the hierarchy. When you copy or move

files to the flexible disk, they are listed under If.

10/83 2-9 Introduction to FOR: PRO

USING FOR:PRO COMMANDS

The file system on the hard disk includes an empty directory also

called f listed directly under I. When you mount a flexible disk,

the system "logically" attaches the files on the flexible disk to

the If directory on the hard disk. When you unmount the flexible

disk, the association between the flexible disk and If on the hard

disk is removed.

Before using a flexible disk, you must format it. During the

formatting process, the system arranges the surface of the disk, so

that data can be stored on it. The surface is divided into areas

called blocks. Individual blocks hold 1024 bytes or characters, on
the FOR:PRO operating system.

NOTE

An attempt to access an unformatted disk will

cause the system to hang. If this happens,

reset the system by pushing the reset switch.

During formatting, the system also creates the configuration block,

the first block on the disk. The configuration block describes the

size of the disk, the date the disk was formatted, and other status

information.

Using the format Command: Use the format command to prepare brand

new disks or to reformat a used flexible disk. The format command

erases any files that might exist on the disk. Therefore, do not

format a disk that contains files you want to save. The syntax of

format is

format [-k][other options] Idev/fd02

The -k option of the format command causes the system to save

information in the configuration block about any bad blocks
encountered in the formatting process. If you're reformatting

disks, you may want to use format -k, because used disks are more

likely to have bad blocks than new ones.

Introduction to FOR:PRO 2-10 10/83

USING FOR:PRO COMMANDS

After you've formatted the disk, you should use the command mkfs to

make a file system on the flexible disk. Type

mkfs -a /dev/fd02

This command creates a file system on the flexible disk.

running mkfs, the system will display some messages.

While

The mount and umount commands tell the system that you want to load

or unload a removable file system.

command, place the flex i ble disk in

syntax to mount the flexible disk

/etc/mount /dev/fd02 /f

Before issuing the mount

the drive. Then use this

Since fd02 is a special device file, it is contained in the /dev

directory. This is why you use the full pathname /dev/fd02. The

system attaches the file system on the disk in drive fd02 to the

directory /f on the hard disk.

NOTE

If you followed the directions on setting up a

.profile file in your home directory, you don't

need to type the /etc prefix. Just type mount

or umount plus the proper arguments.

To unmount a file system, use the following syntax:

/etc/umount /dev/fd02

Again, the /etc prefix is not necessary if your path has been

changed to include /etc. This unmounts the files listed under /f

on the hard disk. After typing the command, remove the disk from

the drive.

10/83 2-11 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

NOTE

Do not remove the flexible disk from the drive

before issuing the umount command. Such an

action could damage the file system on the hard

disk.

To copy files to the flexible disk, mount the disk and then use cp

with the following syntax:

cp file1 [file2] .•• If

You can copy as many files as you want onto the flexible disk,

provided that there is enough space on the disk. Use

metacharacters wi th cp as shortcuts; don I t forget to specify

pathnames for files not in the current directory. To look at the

contents of a mounted flexible disk, just type

11 If

or

Is -a If

The second format displays all special "." files as well as other
files.

To copy a directory and all its contents to the flexible disk, use
the -r option:

cp -r dirname If

For example, to copy the contents of the directory lu/greg/memos,
type

cp -r lu/greg/memos If

Introduction to FOR:PRO 2-12 10/83

USING FOR:PRO COMMANDS

Copying Files from a Flexible Disk

To copy files from the flexible disk onto the hard disk, first

mount the disk, then use this syntax:

The directoryname represents a relative pathname, and specifies the
directory name where the file is to be copied. The Qirecto£y~

argument should not contain the name of the file being copied. You

can specify more than one filename to be copied from a flexible

disk. Suppose you want to copy the file may from a flexible disk

to the lu/greg/memos directory on the hard disk. You would use

this format of cp:

cp If/may lu/greg/memos

To copy all the files and any directories on a flexible disk to a

directory lu/greg/index on the hard disk, use

cp -r If/* lu/greg/index

All the files under If, including any directories (except special

files beginning with "."), are copied to the directory

lu/greg/index. To copy the entire contents of the flexible disk to

your current directory, type

cp -r If/* •

To copy all the files and directories in the current directory to a

flexible disk, use this form of cp:

cp -r * If

The contents of your current directory, including any

subdirectories and all their contents (except for special files,

like .profile, which have to be copied individually) are copied to

the flexible disk. Other useful options are V, 0, t, B, and R.
See the MAN page entry for cp in Part 2 of this book.

PRINTING YOUR FILES

FOR:PRO provides the following printer-related commands, which
enable you to print files according to your specifications, and

then manipulate these files once they are placed in the print

queue:

10/83 2-13 Introduction to FOR: PRO

USING FOR:PRO COMMANDS

Command

lpr

pr

lpq

lprm

lpdun

lpmv

Places the file you request in print queue for

printing.

Displays a paginated file on the screen, or,

when used with lpr, causes the printing of a

paginated file.

Displays the list of files waiting to be

printed.

Removes files from the list of those waiting to

be printed.

Interrupts and resumes printing. Sets printer

defaults and creates new printer directories.

Changes the order of files waiting to be

printed.

Printing Files with the lpr Command

The lpr command places requested files in a list called a print

queue for printing. There are many options to the lpr command,

ranging from those that serve the simplest printing needs to others

used for more complex printing equipment. Only the basic options

of lpr are explained here. Refer to Appendix A for information

related to lpr and its associated utilities.

Simple Print Requests Using lpr aruL.p!:: If you simply want a
printout of a file, without page breaks or page numbers, use lpr as

shown below:

lpr [options] filename

If you want page numbers on your printout, use a combination of pr

and lpr. The command pr organizes the file into pages with the

file title and the page number displayed at the top of each page.
The syntax of pr is

pr filename

Introduction to FOR:PRO 2-14 10/83

USING FOR:PRO COMMANDS

If you issue pr in this form, your file is displayed on the screen

in the paginated format. To print a paginated file, you must use

pr and Ipr connected by a pipe, as in

pr filename I Ipr

Some Useful Options of lQr

Some particularly useful options of Ipr are summarized below. They

are described in more detail in the following paragraphs and in

Appendix A.

-b

-d

-b

-n

-0

-p

+P

+L

+V

10/83

Adds a banner preceding the text of the printed

file containing the name you specify in the center.

Causes the printer to stop after printing a page so

you can load single sheet paper (only for printers

with friction feed or single sheet feeders).

Removes the leading banner from a printed file.

Requests more than one copy of a file.

Changes the owner name printed on the banner page.

Indicates the number of the printer you want to use

on a multiple printer system.

Specifies pitch of a printed file.

Changes the print position of the left margin of a

file.

Determines the number of lines printed per inch.

NOTE

You can use more than one of these options on

the command line. If you do, make sure you type

all options beginning with - before typing those

beginning with +. Otherwise, the + options

override those beginning with a -

2-15 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

Banner-related options: If your login shell is Ibin/sh instead of

Ibin/menu, the first page of every printout created by Ipr usually

consists of a banner containing the name of the person who printed

the file, the date of printing, and the name of the file. Users

wi th menu login shells (/bin/menu) will not have banner pages on

their printouts. Banners are the only method of identifying the

owner of a printout. You can use the -b option to produce a banner

containing both your account name and another specified name. The

format for this version of Ipr is

Ipr -b user.name filename

This might be useful if several people use the same account, like

ENG, and you want to identify a printout as belonging to you, for

example, MARVIN. The printout would show both the account name you

were using, ENG, plus the user name you specified, MARVIN. In this

case, the command line would be

Ipr -b HARVIN report

To eliminate the banner (header page) entirely, use the -h option:

NOTE

The default Ipr setting for users with menu

login shells is to suppress the banner on each
print job. Use the -b option to override the

default. (See Appendix A for details.)

Duplicat~copies: You can print out more than one copy of a file

by issuing the command:

xx is an integer specifying the number of copies to be printed.

SpecifYin&-print~I __ ~mbers: If you have more than one printer on

your system, each will have a printer number assigned. (See

Introduction to FOR:PRO 2-16 10/83

USING FOR:PRO COMMANDS

FOR:PRO Installation Instructions for details on defining

printers.) The default printer number is 1. If you want to print

a file on a printer other than printer 1, type

Qrinter~ represents the number of the printer you wish to use.

Printing one sheet at a time: The -d option of Ipr causes the

printer to pause after printing each page of a file. This enables

you to feed single sheets of paper 1 ike letterhead stationery or

other preprinted forms into the printer while it is inactive.

After you've loaded the next sheet, continue printing by issuing

the command Ipdun.

Specifying Pitgh: The +P option of Ipr lets you specify the pitch

(characters per inch) for the individual print job. Its syntax is

Ipr +Pnn filenam~

nn is either 10, 12, or 15 characters per inch. The default is 10.

Use the +L option to specify the left

margin of the printout. When the printer is inactive, its

printhead rests in the leftmost print position which is position 0

on printers which have a margin ruler. Normally the left margin of

a file begins at this print location.

If you specify +L, the left margin changes without having to
reposition the paper. Its syntax is

Ipr +Lnn fil~name

1111 represents the number of characters to the right of the
printhead where the left margin starts. If you use both the +P and

+L options on the command line, be sure to specify +P before you
specify +L.

Changing-1in~~_Q~r_Inch: The +V option of Ipr lets you specify the
number of vertical lines per inch you want on your printout. Its

syntax is

nn represents lines per inch. The default is 6 lines per inch.
Other choices are 8 or 10 lines per inch.

10/83 2-17 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

NOTE

The +L, +P, and +V options are effecti ve on a

per print job basis. To change specifications

for all print jobs, you must change the

defaults. To do this, see Appendix A.

The Print Queue CQillmand-1lR9l

When you use Ipr to send a file to the printer, the file is placed

in the print queue. The system maintains the queue for the purpose

of determining print priorities. By default, the first file sent

to the printer is the first printed. However, you can change the

order of files in the queue by using Ipmv.

Each printer attached to the Fortune system has its own print

queue. You can view the contents of the queue by issuing the Ipq

command, using the following syntax:

Ipq [-aqsp]

The table below explains the Ipq options and their uses.

-p nn

-a

-s

-q

The -p nn option lets you view the queue for the

printer whose number is represented by nn. The

default is printer 1. On a multiple printer

system, use Ipq -p nn to view the queue for a

printer other than printer 1.

To view the queues of all printers on the system,

type Ipq -a.

The -s option displays a status table, in place of,

or in addition to, the print queue. It is

explained further in the following pages.

When used with -s in the form Ipq -qs, displays

both the print queue and status table.

Introduction to FOR:PRO 2-18 10/83

USING FOR:PKU l.UMMANU~

Simply typing Ipq displays the queue for printer #1. That display

should resemble the following:

Pdf Owner
1 steff

ruby

QID Type Size

419 File 5183

421 File 13295

Filename

cab00419

cab00421

Jobname Comment Copies

bridge.2.3

prog.15

The individual fields are defined below.

prif

Owner

QID

Type

Size

Filename

Jobname

Comment

Copies

Printer number - given only for first job in each

queue.

Owner of the file in the queue.

Queue identification number.

Type of entry. The possible values for this field

are:

doc Word processing document

file Ordinary file created by an editor

pipe File created through a pipe

shell File created through a shellscript

Size of the file in bytes.

The name the system gives the file.

The job name of file being printed, usually the
same as the actual file name.

Any comment typed on the comment line of a word

processing document summary.

Number of printed copies requested.

In addition to the print queue, you can also view the state of the

printer by issuing the Ipq command and the option -so The result

is a table that describes the printer's current mode of operation.
The display you receive after issuing Ipq -5 should resemble the

one on the next page.

10/83 2-19 Introduction to FOR:PRO

U;'II'I'V rUK:t'KU l.UMMANDS

Pr# State Ribbon

1 Active Black

Wheel

Round

Forms Line Page PID Waiting on

paper 256 66 422

Here is a description of the individual fields.

Description

Pr# Printer number.

State Current operational mode of the printer. Most

common states are: active, suspended, and idle.

Ribbon Type of ribbon currently loaded.

Wheel Type of printwheel loaded on the printer.

Forms Type of forms loaded.

Line Maximum width of a line in characters.

Page Maximum length of a page in lines.

PID The process id number of the filter currently

handling printing.

Waiting on A message explaining why printing is suspended.

To display both the print queue and the printer state, type

Ipq -ds

Removing Files from the Print Queue (lprm)

To remove a file from the print queue or to terminate a job being

printed, use the Iprm command. Before issuing Iprm, display the

print queue; make note of the QID of the file you wish to delete.

Then issue the Iprm command using the following syntax:

Iprm [-p nn] OlD. number

where OlD. number represents the QID of the file to be deleted. The

system then alerts you that it is deleting the file. If the

Introduction to FOR:PRO 2-20 10/83

USING FOR:PRO LUMMANU~

deleted file was the one currently printing, printing halts, and

the message, "Printing Cancelled by Operator" appears as the last

line on the printout.

Use the -p lin option to kill a file queued to a printer other than

printer 1. The lin represents the number of the printer.

NOTE

If a file is almost done printing when you issue

Iprm, it may finish printing anyway. This is

because many printers have a large buffer size

(typically 2000 characters) and the buffer must

empty before the Iprm takes effect.

To remove all jobs queued by the same person, type

Iprm owner,name

where owner.name is the login name of the person who sent the

files to the printer.

Suspending and Resuming Printing (lpdun)

The command lpdun is used to suspend and restart a print job.

You'll most often interrupt printing to fix buckling paper, change

a ribbon, or change a printwheel on a character printer. Using the

Ipdun command, you can resume printing at the last page printed

before the paper or ribbon problem occurred.

The proper syntax for suspending a print job is

1pdun -1 [-p nn]

When you issue this command, the printer stops printing the current

file. Use the -p nn option to interrupt printing on a printer
other than printer 1.

Resume printing by issuing Ipdun using the following syntax:

Ipdun [-n lill]

10/83 2-21 Introduction to FOR:PRO

U"'II~\..7 rVro;.:iro;.U LUMMANU~

You'll often use the -n option of Ipdun, where QQ represents the

number of pages to be reprinted. For example, suppose paper

started buckling on the fourteenth page of a file, mangling this

page and the next, before you were able to suspend printing. Your

last good page was the thirteenth page. In this case, you would

type Ipdun -n2 to reprint the last 2 pages. However, you could

reprint up to nine pages. If QQ is more than the number of pages

that have been printed, printing starts at the beginning of the

job. To restart the printer at the point it stopped, simply type

Ipdun.

On jobs that are being printed one sheet at a time (started with

Ipr -d), issue lpdun after you've successfully fed and positioned

the paper in the printer.

In addition, Ipdun has other useful options explained in the MAN

page entry for Iprm.

SYSTEM STATUS COMMANDS

The FOR: PRO operating system provides a number of system status

commands, among them are the following:

Command

date

who

ps

du

df

Presents the date and time.

Tells you who is currently logged into the

system.

Presents a table of programs on which your

account is currently running.

Displays the amount of space in blocks a file

takes uP.

Presents a table indicating how much free space

remai~s on a disk.

The date and who commands were described in the previous chapter.

The ps, dU, and df commands display tables concerning the

operational state of the computer; they are especially useful if

you are the manager of a multiuser system. The major aspects of

these commands are discussed on the next pages.

Introduction to FOR:PRO 2-22 10/83

USING FOR:PRO COMMANDS

The ps command displays a table describing the state of all

processes on the system. You might think of a process as a

currently executing program. The process table displayed by ps

lists any system and user-created programs that are currently

running.

The syntax of ps is

ps [-a][-l][other options][Qig]

To see the short form of the process table, type ps. The resulting

display shows all processes running under your current account

flame. (Note that if you are currently logged in at two terminals

at the same time, the process table shows the processes running

under the same account on both terminals.) The resulting short

process table will resemble the following:

PID TTY TIME CMD

29 03 0:04 -sh

Here's an explanation of the fields in the short process table.

PID

TTY

TIME

CMD

The process ID number assigned by the system to the

running process.

The terminal controlling the running process.

The amount of computer time used so far to execute

the process.

The command line typed to start the process. Note

that the information listed under CMD may not

always look exactly like what you typed. If you

run a shellscript or type a command that uses

pipes, you'll see a process number for each pipe

under CMD.

In the above example, the account that issued the ps command is
currently running the Bourne shell (-sh) from terminal TTY 03. The

system assigned the process ID 29 to the shell and has spent four

seconds of CPU time running the shell.

10/83 2-23 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

NOTE

If you are logged in as manager or root, you

will also see an entry for the ps process

itself, even when you issue the "short form" (no
options) of ps.

If you are the system manager, you'll probably want to view a table

listing all processes initiated from every terminal on your system.

The -a option lets you view all processes executing from all

terminals. Type

ps -a

The resulting display resembles this one.

PID TTY TIME CMD
28 co 0:07 /m/menu/bin/msh -p /m/menu/control

-1 user -s

29 03 0:04 -sh

59 co 0:00 sh -c TERM=FTAJexport TERMAJCLEARHOME

=20 AL10 AAA Jexport CLEAR HOM

In this case, terminal 03 is running the Bourne shell, while the

console is running shell scripts from the menu system.

If you have a single-user system, or are the system manager, you'll

want to monitor disk usage from time to time on your system to

prevent the hard disk from running out of space. Two commands, du
and df, provide information relevant to disk usage.

Displaying Used and Free Space: The df command displays a table

depicting the number of free blocks available on the file system.

You can use df to determine the free space not only on the hard

disk, but also on a mounted flexible disk.

The syntax of df is

df [-f) [other options] [filesystem •••][file •••]

Introduction to FOR:PRO 2-24 10/83

USING FOR:PRO COMMANDS

filesystem represents the device containing the particular file

system, /dev/hd02 for the hard disk, or /dev/fd02 for a flexible

disk. (The flexible disk doesn't have to be mounted, just

inserted, to use df.) If you do not specify a filesystem, the df

table is shown for the root file system on the hard disk.

The df Table Display:

resembles this one.

Wh en you type df, the resul ti ng t abl e

Filesystem Mounted on kbytes

7895

used free % used

68% /dev/hd02 / 5342 2553

Th€ fields of the table are described below.

Filesystem

Mounted on

kbytes

used

free

% used

Device containing the f{le system.

The top directory in the file system hierarchy

on the specified device. In the example above,

the entry is I, representing the root

directory. For a mounted flexible disk, the

entry If appears in this field.

The total number of kilobytes of storage space

available on the disk. (A kilobyte is 1024

bytes. Also, one block is equal to 1024

bytes.)

The number of kilobytes used or taken up by

files.

The number of kilobytes still unused.

The percentage of disk space used.

The most significant field in the display is % used. You should

check this field every day, perhaps more often if your system is

heavily used. You shouldn't let the amount of used space on the

hard disk exceed 90 percent, because hard disk efficiency is

reduced when free space on the disk gets closer to zero. Should

this happen, delete files you don't need and backup on a flexible

10/83 2-25 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

disk other files that you don't use routinely but want to save. The

-f option lets you view just the % used field. If you type df -f,

you'll receive a message like

"68% of the available space is in use"

Displaying Disk Usage iQyl

The du command shows how much space a specified directory takes up

on the disk in terms of blocks. (Remember that one block is one

kilobyte, or 1024 bytes.) If you are the system manager or have

your own single-user system, use du to determine the size of files.

You may want to move any large files that are seldom used but still
must be saved onto a flexible disk.

The syntax of du is

du [-a][-s][Qir.name ..•]

If you type du dir.name, the system presents a display resembling

the following

56 /u/ruby

where /u/ruby is the directory specified for dir.nam~.

If you simply type du, the resulting display may resemble

11

Since you haven't supplied a name, the system gives you the disk

usage of the current directory (.). If the current directory

contains other directories, du (with no options or arguments)

displays the size and names of all directories within the requested

directory, plus any of their subdirectories.

To view just a total of blocks used by a directory, use the

-5 option of du, as in

To see how many blocks the entire file system takes up, type

du -5 /

Introduction to FOR:PRO 2-26 10/83

USING FOR:PRO COMMANDS

Displaying File Size in Blocks: The -a option of du gives the disk

usage for all files in the specified directory. For example,

suppose you wanted to view the disk usage for all files in the
directory /u/ruby. You would type

du -a /u/ruby

The system's response might be

4 /u/ruby/a.out

3 lu/ruby/hist.1ist

lu/ruby/hist.1ist.fr

lu/ruby/hist.1ist.dc

4 lu/ruby/myprog.p

If you want to view the disk usage of all files on the system, type

du -a / I more

since the list generated will appear on more than one screen.

USING THE SORT COMMAND

The sort command sorts information in existing files (typically

lists) in alphabetic and numeric order. It is particularly useful

for sorting files such as telephone lists, price lists,

inventories, and statistics.

The sort command considers each line in a list to be composed of

fields: strings of alphanumeric characters, separated from others

on the same line by spaces, tabs, or other delimiters. Since

sorting is done on a field basis, you don't have to set up the data
in a file in columns.

The next paragraphs use the file, bookfile, as an example. You may

want to use it for practice with sort. bookfile is the type of

list a bookseller might use to keep an inventory. It lists

anthologies of the works of famous authors, the price for each

book, and current inventory. It has four fields on each 1 ine:

first name, last name, price, and quantity.

10/83 2-27 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

William Shakespeare 24.98 14

Washington Irving 10.98 10

Emily Bronte 5.98 85

Leo Tolstoy 20.00 6

Walt Whitman 3.35 103
Charlotte Bronte 5.98 71
Alexandre Dumas 12.00 28

You can have the system perform the sort on any or all of the four

fields.

Suppose you wanted the list rearranged alphabetically by last

names. When issuing the sort command, you'd designate that the

last name field is the field to be sorted. The field used in the

sort is called the key field. sort looks at the key field on each

line, and reorganizes the lines in the file so that the key fields

are in alphabetic or numeric order.

Invoking sort

The general syntax of sort is

sort [+QQ§j] [-pos2] [-0 new.file] [orig.file] •.•

where origifile represents the file or files you want to sort. If

you don't specify a filename for orig.file, sort expects you to

type in the data you want sorted from your keyboard. When you're

finished, type CTRL-D.

file, type

To perform a simple sort on an existing

sort filename

In this case, the system considers each line in filename to be a

single field.

NOTE

Unless you specify otherwise, files are sorted

according to the ASCII collating sequence. In

this sequence, control characters come first,

then special characters (1'#, and so forth), the

Introduction to FOR:PRO 2-28 10/83

USING FOR:PRO COMMANDS

numbers 0-9, uppercase letters, and finally

lowercase letters. Tables containing the entire

ASCII collating sequence can be found in most

programming texts.

Sorting by Key Field

You are more likely to sort by specific fields, rather than by

using an entire line. To do this, you must indicate the position

of the field on the line. When defining key fields, use the syntax

sort [+~] [-pos2] ••• QLig.file

where +~ indicates the starting position and -pos2 the ending

position of the field. Sort considers the starting position of the

first field on a line to be position O. The ending character of

the first field is position -1. The starting character of the next

field is position +1, and so on.

The chart below shows the position indicators for an entry in the

bookfile illustrated earlier:

William Shakespeare 24.98 14

-1 +1 -2 +2 -3 +3-4

To sort the file by the author's last name, issue the command

sort +1 -2 bookfile

Sorting is done on the second field, which begins with position +1

and ends with position -2.

You can indicate as many key fields as you want in a single sort

command. The system sorts key fields in the order specified on the

command line, not in the order they appear in the file.

Saving Sorted Lists in a File (-0 and »

The -0 option of sort lets you save the sorted list in a specified

file. When you issue the sort command without the -0 option, the
sorted list is by default displayed on your terminal, and exists

only as long as it remains on the screen.

10/83 2-29 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

However, most of the time, you'll probably want to save the sorted

file. To do so use the -0 option

orig.file represents the file to be sorted and new.file represents

the resulting sorted file. Note that new.file is not displayed on

the screen. You'll have to use cat or more to display new. file.

The contents of Qrig.file are unchanged by the sort operation.

Another way to achieve the same results is to type

sort [options] [+QQ~][-pos2] ..• orig.file > new.filg

The > symbol preceding new. file tells the system to direct the

sorted list to a file called new.file, rather than display it on

the screen. In general, the> symbol can be used after any FOR:PRO

command to redirect the output that would otherwise appear on the

screen to a specified file.

More sort Options

The sort command has many

before the field positions.

options, is

options. They are usually specified

The general format of sort, including

The most useful options for sorting single files are described

below:

-b

-f

-n

-r

-0

-tx

Ignores leading blanks in fields.

Treats uppercase and lowercase letters equally.

Performs a numeric sort.

Sorts the list in reverse order.

Saves the sorted list in the specified output file.

Lets you define field separators other than the

default tabs or spaces.

Introduction to FOR:PRO 2-30 10/83

USING FOR:PRO COMMANDS

Equal Treatment for ~ca~-E.nd--L.owercase LetteL.§_(-f) : The-f

option tells the' system to sort an uppercase letter in the same

pOSition as the lowercase version of the same letter.

is:

sort -f [options] [+Qosl] [-Qos2] .•• ori~file

Its syntax

For example, suppose you were sorting a list in which the starting

letters of the key field were mixed uppercase and lowercase.

Naturally, you'd put the fields beginning with Band b after the

a's and before the C's.

However, unless you specify the -f option, the system first lists

all fields beginning with A-Z then all fields beginning with a-z.

Remember, the system uses the ASCII collating sequence, where

upppercase letters are higher in the collating order than lowercase

letters. The -f option makes the system treat uppercase and

lowercase letters equally.

Removing Leading Blanks~: A blank also has a value in the

ASCII collating sequence. If you have more than one blank at the

beginning of the field, sorting is performed first on the blanks,

then on the remaining characters in the field, which may result in

an incorrect sort. Use the -b option to remove any leading blanks

from fields.

You can use -b in either of two ways. If you type

sort -b [options] [+~] [-pos2] ..• orig.file

leading blanks are removed from all fields.

blanks from a specific field, type

sort [+~]b orig.file

To remove leading

Leading blanks are now removed from the field indicated in +~.

In the syntax form above, a letter following a field position is

called a flag, rather than an option. Note that when you use a
flag, it overrides other options.

Numeric Sorts (-TIl: Numbers in fields can be regarded in two ways,

as characters or as numeric values. A number regarded as a string

of characters such as a phone number or serial number has no
significant numeric value. Numbers such as prices or quantities

obviously have significant numeric value.

10/83 2-31 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

To sort a field in which numbers have values, use the -n option to

indicate you want to perform a numeric sort. If you use the

following syntax:

sort -n [options] [+~] [-pos2] ••• orig.file

all fields are treated as numeric fields. To limit numeric sorting

to a specified field, use -n as a flag, as in

sort [+~]-n ••. filename

where +QQ~ represents the field to be sorted numerically.

NOTE

You can use the -b option to sort a field in

which numbers are treated as characters,

provided that the numbers are all equal in

length.

For example, zip codes occupy five character

positions. If the numbers vary in length,

you'll need to use -n to achieve the results you

want.

Sorting in Reverse Order l=r~: You can use the -r option to sort

files in reverse alphabetic order (Z-A) or from highest numeric
value to lowest. If you type

sort -r [options] [+QQ§j] [-pos2] orig.file [-0 new.file]

all fields are sorted in reverse alphabetic order. To sort a
specific field in reverse alphabetic order, use r as a flag

following the position indicator of the field. If you wanted to

sort a specific field in reverse numeric order, use both nand r as

flags, as in

sort [+QQ§j]nr orig. file

Specifying Field Delimiters (-tx): The -t option of sort lets you

specify a delimiter other than a space or tab to represent field

boundaries. Use the following syntax:

sort -tx [options] [+QQ~] [-QQs2] orig. file

Introduction to FOR:PRO 2-32 10/83

USING FOR:PRO COMMANDS

x represents the character you want to use as a delimiter for

example, I or :). When choosing delimiters, be very careful that

the delimiter is not one that has a special meaning to FOR: PRO,

such as I or I. If you need to use a special character, precede it

with the escape character I, as described in Chapter 2.

COMMUNICATING WITH OTHER USERS

The FOR:PRO single-user operating system includes two commands for

sending messages, write and wall. The write command enables you to

send a message to another

telephone-like conversation.

terminals.

terminal, even to carryon a

wall sends your message to all

Communication Between Users-1writ~

The write command is very simple to use. Its syntax is

You can specify either a user's account name or the tty number of

the terminal used by the person with whom you want to communicate.

NOTE

Normally you don't have to supply the tty number

to use write. However, sometimes you may want

to contact a person who is logged in on two or

more terminals at the same time. You may have

to send a message to both terminals in order to

contact the individual.

Once you invoked write, the system waits for your input at the

terminal. Type your message, ending each line with a Return.

After you type the first line, the system sends your message to the

specified user. To end the message, press CTRL-D.

10/83 2-33 Introduction to FOR:PRO

USING FOR:PRO COMMANDS

The person you indicated receives a message on the screen

specifying your name and tty number plus a "beep" to get the

recipient's attention. For example:

Message from ruby tty03

Can you check the printer to see if it has enough paper?

Thanks.

NOTE

If you send a message to a user who isn't

currently logged in, that message will be lost.

Therefore, use the who command before using

write, not only to find out who is on the

system, but also to see which terminals are in

use.

~ending_a_Messa@ to All Terminals ~alll

wall operates according to the same principle as write, except that

the message you type is sent to every terminal on your Fortune

system. To invoke wall, type

wall

As in write, the system pauses, waiting for your input. Type the

message, indicating its end by pressing the CTRL-D. Unlike write,

the system waits for the CTRL-D, regardless of the message's
length, before transmitting it to everyone currently logged in.

A typical message from wall might look like

Message from manager console

EMERGENCYI! We're 95% full. Please delete any junk files

or move files you don't need right now to a flexible disk.

~ug@stions for Using write and wall

Use write and wall with a certain amount of discretion. Ideally,

these commands should only be used to communicate vital

information, as in the case of the system in danger of becoming

Introduction to FOR:PRO 2-34 10/83

overloaded, or if a shared

taken offline for servicing.

USING FOR:PRO COMMANDS

resource, such as a printer, must be

It is a good practice to restrict use

of the wall command to the manager and root accounts.

Since your messages are transmitted as you type them, they are

displayed in the middle of whatever the recipient is currently

viewing on the screen. Although the messages are only temporary,

it appears as though the message text has been written into the

recipient's file, particularly if the recipient is running an

application. However, these messages are nondestructive. The

recipient need only clear the screen and return to the file to see

that the message has not become part of the file and has not

disturbed anything.

You may want to put the text of the message into a temporary file

so you can edit it before sending it. To do this, use ed filename

or cat filename to put the text into a file, then edit the text

using ed. Send the message using this syntax:

or

The < symbol directs the text of fil~ to the indicated FOR:PRO

command, for example, wall or write.

Using write Like a Telepho~: You can carryon a two-way

conversation with another user via write. For example, User

issues the write command and sends a message to User 2 without

pressing CTRL-D. User 2 invokes write and answers User l' s

message. This response is promptly displayed on User 1's screen.

Both users can continue sending messages in this fashion, until

they both press CTRL-D.

You should establish a protocol for carrying on two-way

conversations, to ensure both users don't write to each other at

the same time. When you finish writing to another user, wait for a

response before writing again. End each message with a code you

have both agreed upon. It is a common practice to end each message

in the conversation with the letter "0" for "over." To indicate

that you are going to sign off, end your final message with "00"
for "over and out."

10/83 2-35 Introduction to FOR:PRO

2-36

3 Advanced Concepts

This chapter describes advanced operations you may want to perform

at command level. It also explains in detail more involved UNIX
concepts you may have previously encountered. Among them are:

• File and directory permissions

• Changing file and directory ownership

• More about groups
• Changing default erase and kill characters

• Redirection of input and output
• Creating simple shell scripts

PERMISSIONSI ACCESS RIGHTS

The methods used to keep files safe from unauthorized users have

many names: file or directory permissions, access rights, user

right~, and file protection rights. These terms all refer to the
protection settings that can be placed on a file or directory.

These settings specify what kind of access different users on the
system have to that file or directory.

File Permissions

There are three kinds of access rights for files. Directories are

a little different. (See Direct~ermissions below.) As used on

the FOR:PRO operating system, these are:

r Means the file can be examined or read but can I t be
modified or changed.

w Means you can modify or write to the file.

x

10/83

The file can also be edited or changed.

Means you can run or execute the file. Such a file

contains instructions, as does a program. You can

execute a shell script by simply typing its name, as

long as it has "x" rights.

3-1 Introduction to FOR:PRO

ADVANCED CONCEPTS

NOTE

If a file is read only, you must override this

protection setting in order to delete it. A

message asks whether you want to override

protection for the file when you try to remove

such a file.

For example, look at this listing, obtained by using the -1 option

of the Is command:

-rw-rw-r-- laura 604 Jun 14 17:09 change. stuff

-rw-rw-r-- laura 1926 Jun 15 15:41 customs

-rw-rw-r-- laura 210 Jun 15 15:08 ex1

-rwxrw-r-- laura 42 Jun 13 13:58 fd.look

-rwxrw-r-- laura 5 Jun 15 16:44 logout

-rw-rw-r-- laura 1278 Jun 14 15: 10 10ng2

-rw-rw-r-- laura 1578 Jun 14 16:44 new. stuff

-rw-rw-rw- laura 652 Jun 17 16:34 private

-rw-rw-r-- laura 114 Jun 15 16: 11 reminder

-rwxrw-r-x laura 47 Jun 15 15:45 u

The read, write, and execute permissions are indicated in the left'

columns of the display. The first hyphen indicates an ordinary file

rather than a directory. Nine possible permission slots follow,

three for each class of user. Possible values for these permission

slots are r, w, x, and -. They correspond to read, write, execute,
and no, or null permission, respectively. (The hyphen indicates

that a permission is denied.)

The three classes of users on the FOR:PRO system are:

user
(u)

Group
(g)

The user who created the file or now "owns"

the file. The permissions for the owner are

always shown first.

Users can be placed in different groups on a

FOR:PRO system. A group can have rights which

di ffer from those of the owner and everybody

else.

Introduction to FOR:PRO 3-2 10/83

Other
(0)

ADVANCED CONCEPTS

Everybody else, or the general public, is

assigned a third set of rights. This is useful

when you want to protect certain files from

modification, but you want everyone to be able

to read those files.

Note that the three classes of users have single-letter

abbreviations: u is user, g is group, and 0 is other. These will

come in handy when you need to change a file's access rights.

Directory permissions are a bit different from file permissions.

Here is what the r, w, and x permissions mean when applied to

directories.

r

w

x

Permits users to list or read a directory's

contents.

Permits users to write or copy items to a
directory. Thus, they can create files and

directories in that directory, copy files and

other directories into that directory, and

remove files and directories within that

directory.

Permits users to go to, or search the directory

and to copy files from that directory as long

as they also have read rights to that

directory. Also allows users to execute

programs from the directory, as long as they

already know the program name.

The hyphen (-) indicates the absence or denial of a permission.

That is, the permission slot is set to nUll.

You'll find it necessary to change the access rights on a file or

directory from time to time. For example, you may want to

10/83 3-3 Introduction to FOR:PRO

ADVANCED CONCEPTS

make a file executable, as in the case of a shellscript, or you may

need to add or take away certain access privileges on a particular

file or directory. It is important to remember that you have to be

the owner of a file or logged in as root or manager to change the

access rights on a file or directory.

To change file or directory permissions, use the chmod command.

This command has a variety of arguments and options. A quick way

to learn chmod is to memorize the following six letters:

u

g

o

r

w

x

user or owner (must be you!)

group (everyone else in your group)

other (everyone on the system besides owner and

group)

read permission

write permission

execute permission

NOTE

The directory a file resides in must be writable

in order to delete a file. If the file you are

trying to delete is read only, but is in a

writable directory, rm prints a message. If you

answer y in response to it, the file is deleted.

Also, if you use rm -f, it overrides the file's

read only status and deletes it anyway.

The chmod command uses these six letters in combination with these

common operators:

+

Meaning

Means "assign these rights to"
Means "add this right to"

Means "take this right away from"

Introduction to FOR:PRO 3-4 10/83

ADVANCED CONCEPTS

The chmod command is used in this form:

chmod {ugo} {-+=} {rwx} filename

You can specify more than one letter, more than one permission, and

more than one filename in a single chmod command.

For example, to assign all users except yourself read only rights

to the file badges and payroll, you'd issue this command:

chmod go=r badges payroll

Of course, you would have to be the owner of both the badge and

payroll files in order to change their access privileges.

Another chmod example: Assume you are the user called pubs, and you

want to take away write privileges from the general public (the

user class other) for a file called private. This file currently

has rw permissions assigned to all user classes. Here's the command

line you would use:

chmod o-w private

You are subtracting the write privilege (w) from the user class

other (0).

If you issue the command

Is -1 private

you'd see the following display:

-rw-rw-r-- 1 pubs 652 Jun 17 16:34 private

Changing File/Directory Ownership (chown)

When you copy a file from someone else's directory to your own, you
become the owner of the copy in your directory. If another user

copies a file or directory to your directory, that user will own

the copy. If the permissions for the other class deny write access,

you may need to use the chown command to change the ownership of

that file or directory so you can modify it.

10/83 3-5 Introduction to FOR:PRO

ADVANCED CONCEPTS

You must be logged in as manager or root to use chown.

format to change the ownership of a file or directory:

Use this

The name of the new. owner must be a valid existing user account

name on the system. The filename can be a pathname, if necessary.

MORE ABOUT GROUPS

Users on a Fortune system can be organized into groups for purposes

of restricting access to certain files or directories. All users

on the system belong to the group called users by default. Assuming

you belong to the group called users, any file or directory created

by you can be assigned a special set of access rights for the rest

of the user accounts on the system. Thus, any other account

belonging to the users group can have special access to your files

and directories as discussed previously. Conversely, if you don't

want any other user accounts to access your files and directories,

simply use chmod to take all access rights away from the group

class.

To find out what groups exist on your system and which users belong

to each group, type

cat /etc/group

You may want to create another group for yourself and other people

in your department to use. This makes it easier to control access

to information that you want only certain people to use. On a

FOR: PRO system, the best way to assign special access rights to

certain people is to put those users into a group. Remember

however, that a user account can only belong to one group at a

time.

The procedures for creating and modifying user groups are discussed

in detail in Under:.§.tamL.1ouLLortul1Jl._~y..§.tem. You can accomplish
the same tasks from FOR:PRO level, if necessary, by modifying the

/etc/group and /etc/passwd files.

Introduction to FOR:PRO 3-6 10/83

ADVANCED CONCEPTS

Like the chown command, chgrp can only be accessed by the manager

or root accounts. Its purpose is to change the group ownership of

files and directories. You may want to do this when you need to

turn over files to a different group of users.

For example, if the Acctg group decides to turn over all the files

in the back.order directory to the Audit group, you'd have to
change the ownership of the directory. Use this format of the

command:

chgrp new~rogQ {filename }
QirectorY...name

CHANGING ERASE AND KILL CHARACTERS

The default erase and kill characters were discussed in Chapter 1.

Should you need to change either or both of them, use the stty

command, followed by the word erase or kill, and the new character

sequence you want to use.

stty kill ne!:hkill.....ghill:

You can find out what the default settings are for the erase and

kill characters by typing

stty everything

This displays the various settings for your particular terminal,

most of which may not mean much at first glance. If you look at

the bottom two lines, you'll see listings for the current erase and

kill characters. The defaults are:

erase: AH (CTRL-H)

kill: AX (CTRL-X)

In this case the nAn means CTRL.

10/83 3-7 Introduction to FOR:PRO

ADVANCED CONCEPTS

Sometimes you may accidentally use cat on a long file instead of

more. If you want to stop a screen display, type CTRL-S. To
restart the display, type CTRL-Q. This is also known as XON/XOFF

protocol, or flow control.

REDIRECTION OF INPUT AND OUTPUT

Command input and/or output can be redirected. You might redirect

output so it can be used by another command. Input can come from a

file, rather than the keyboard, as it normally does. This section

describes how redirection can be done.

Redirection of-QutQY1

Output produced by FOR:PRO commands is normally sent to the screen,
which is called the standard output. When you run the who command,

for example, the resulting list of who is on the system appears on

your screen. However, if you want to send the listing to a file,
you can redirect the output with a "greater than" sign (» followed

by the destination filename. For example,

who > whofile

directs the output from the who command into a file named whofile

in the current directory. The output is not displayed on the

screen. If whofile already exists, its contents will be replaced

by the output from the who command.

If you wish to append a command's output to an existing file rather

than overwriting the current contents, use two greater than signs

(»). For example, you might start a list of thoughts for future
reference with the following commands:

date > ideas

echo 'With the echo command and redirection
of output I can easily jot down

ideas in a file for future reference.' » ideas

The date> ideas command line creates a file named ideas and places

its output, the current date, within it. The echo command

Introduction to FOR:PRO 3-8 10/83

ADVANCED CONCEPTS

appends the first idea to the file. (If you follow the echo command

with multiple lines of text as shown here, you will receive a >
prompt at the start of the second and third lines, indicating that

the shell is waiting for the rest of the command to be entered.)

Additional entries could be appended similarly. For example,

date » ideas

echo 'I should keep a list of things I need

to do in a separate file' » ideas

Programs often expect input from the keyboard, called the standard

input. Just as output can be redirected, input can be redirected

so that it comes from a file or another device rather than from the

keyboard.

Suppose, for example, that you have written a novel, the chapters

of which are stored in 34 files. You now decide to change the main

characters' names from Paul, Mary, Jack, and Susan to Pierre,

Marilyn, Jacques, and Victoria. Rather than entering the necessary

editing commands 34 times while editing the 34 files, you can store
the required commands in a file and use the file as input to the

editor. This file, which might be called edits, could contain the

following:

1,$s/Paul/Pierre/g

1,$s/Hary/Harilyn/g

1,$s/Jack/Jacques/g

1,$s/Susan/Victoria/g

w
q

The first four of these commands tell the ed editor to start at the

first line of the file being edited and to continue to the bottom

line ($), and for each line in that range to substitute the second

name shown for the first name. The g, which stands for global,

changes every occurrence of the indicated string throughout the

line. Without the g, only the first occurrence on each line would

be replaced.

10/83 3-9 Introduction to FOR: PRO

ADVANCED CONCEPTS

Once the necessary editing commands have been stored in the file

edits, you can change the names in Chapter 1 of the novel, which is

contained in the file ch.01, by typing

ed ch.01 < edits

The result is exactly the same as if you had typed

ed ch.01

and then proceeded to type the lines contained in edits from your

keyboard.

It would be tedious to make changes in all the files with the

method just described j you would have to type 34 command lines.
Bourne shell programs by default take input from the keyboard, but

you can simplify the editing process by sending these 34 commands

to the shell from a file instead. First, put the names of the

files to be edited into a file named shell. input using the command

Is ch.* > shell.input

The shell.input file now contains 34 lines, each of which is the

filename of one of the chapters. Edit shell.input using the

following commands:

ed shell.input

1,$srled 1

1 ,$s/$1 < editsl
w

q

The second of these commands tells the editor to insert the string

fled " at the start of each line. Similarly, the next command

instructs the editor to place the string " < edits" at the end of

each line. When surrounded by slashes, the $ represents the end of

a line just as the ~ represents the start of a line. After editing

with these commands, the lines of shell.input look like this

ed ch.01 < edits

ed ch.02 < edits

and so on.

Introduction to FOR:PRO 3-10 10/83

ADVANCED CONCEPTS

To initiate a shell that will take its input from the file you just

created, shell. input, use this command:

sh < shell. input

A new Bourne shell is started up by this command. When the shell

finishes executing the commands in shell. input it will die, and the

original shell will then give a prompt indicating it is ready for

another instruction.

Instead of creating a new shell that takes its input from a file

like shell. input, you can instruct the original shell to directly

execute the commands in the file. To do so, you would first make

the file executable by typing

chmod +x shell. input

Then, simply typing the filename

shell.input

would cause the commands in shell. input to be executed. Command

files like shell.input are called shellscripts, and are useful when

a sequence of commands must be executed numerous times. For

example, FOR:PRO uses the shellscript named rc to perform part of

the system start-up procedure every time you power up the Fortune

system. See Mor~_On~hellscri~ in this section.

PIPES

In Chapter 1, you saw how a pipe Cl) could be used to send a long

directory listing through the more command. A pipe connects one

program's output channel to another program's input channel. The

result is the same as redirecting the first program's output to a

file, and then redirecting the second program's input from that

file, but the pipe process is more efficient.

Suppose, for example, that you want to examine a long listing of

all files on your system. The command

Is -lR /

10/83 3-11 Introduction to FOR:PRO

ADVANCED CONCEPTS

produces the desired listing, but it flashes by too quickly to be

read. To make the listing appear a screenful at a time, pipe it

through more

Is -IR / more

Similarly, the listing could be sent to the printer by piping it

through lpr

Is -IR / I Ipr

Mul tiple pipes are quite useful. For example, suppose you have a

list of names and phone numbers in a file named phone. The list is

in no particular order because new names have been appended as they

became available.

Thomas Decatur

Barbara Danforth

Paula Pearson

Bill Brodsky

400-846-2412
200-347-9825
800-968-2135
200-845-7623

To produce a printed listing with last names in alphabetical order,

including the date of the printout, a suitable heading, and line

numbers, you can use the following command:

sort +1 -2 phone cat -n I pr -h "Phone Numbers" I Ipr

The +1 -2 sequence in the sort indicates that the second field of

each line in the phone file (the last name field) should be used

for sorting (see Chapter 2 for more information on how sort works).

The first pipe symbol sends the output from the sort command to

cat, which adds line numbers when used with the -n option. The pr
command divides its input into pages, putting a heading at the top

of each page which includes the date and time, the input filename

(if any), and a page number. In this case, there is no input

filename, because the input comes from a pipe rather than a file,

so the -h (for "header") option has been used to include the

character string "Phone Numbers" in the heading. The output from pr
is piped into Ipr, which prints the text. The result is shown on

the next page.

Introduction to FOR:PRO 3-12 10/83

ADVANCED CONCEPTS

Sep 1 12:16 1983 Phone Numbers Page 1

Bill Brodsky 200-845-7623
2 Barbara Danforth 200-347-9825

3 Thomas Decatur 400-846-2412

4 Paula Pearson 800-968-2135

Shellscripts have many uses and are great timesavers. Mounting and

unmounting disks are common operations, and are particularly suited

to shellscripts. Earlier in Chapter 1, you saw an example of a

shellscript that performed those disk-handling operations. Suppose

you used the ed editor or the cat command to put the following

command lines in a file called mu:

mount Idev/fd02 If

11 If

cd If

pwd

cd

umount Idev/fd02

You could then execute this series of commands by typing the

command

sh mu

Alternatively, you could make the command file executable (chmod +x

mu) and then simply type its name, mu, at shell level.

Now let's get fancy. Suppose you want to make a shellscript that

will automatically back up all the files in your home directory to

a flexible disk. This is probably a good idea because you want to
back up your directory on a daily basis anyway.

10/83 3-13 Introduction to FOR:PRO

ADVANCED CONCEPTS

cd $HOME

mount Idev/fd02 If

cp -rtV * If

11 If

echo 'The Backup Is Now Complete.'
cd $HOME
umount Idev/fd02

echo 'Please Remove Your Disk.'
echo 'Bye!'

Using the $HOME variable is a precaution to make sure you are in

your home directory. The echo command I ines let you know what I s

going on by displaying the text enclosed in quotes.

Suppose you want to write a shellscript that prints files with

certain printer attributes, like a different pitch or vertical

spacing. It would be helpful to have a way of specifying the name

of a file to be printed each time you run the shellscript. Using

variables within a shell script gives you just that flexibility.

Variables are indicated by a dollar sign $ followed by a number, or

a string. For example, $1, $2, and $ans are typical shell
variables. Here I s an example of a shellscript (called print) that

uses a variable:

lpr ,+P10 +V8 $1

To use this shellscript, type its name, followed by the name of the

file to be printed, as in

print chapter1.o

(Remember that the file must be executable to be used this way. To

make it executable, type chmod +x print.)

When writing shellscripts, you may want to give yourself or other

users the option of doing some particular action. For example,

when mounting a disk, you might ask if the user wants to see what's

on the flexible disk. In this case, you would have to perform one

action if they wanted a list, and another if

Introduction to FOR:PRO 3-14 10/83

ADVANCtLJ LUNLtt'l~

they did not. That calls for the use of a conditional, or

if ..• then •.• else, statement. Often, the two alternate paths that

can be taken in a conditional statement are called branches,

indicating that the program can branch to one section or another,

depending on some particular condition. For example, if you ask a

question and the user answers "yes," the program takes the then

branch but if the user answers "no," the else branch is taken

instead.

Here is an example of using a conditional in a simple shellscript:

mount Idev/fd02 If

echo Disk is Not Hounted

echo "Do you want to see what's on the flexible disk? (yes

or no)"

read ans

if test "$ans" = "yes"

then Is -las If I more

else echo "Bye!"

fi

exit

The test line checks the value of the $ans variable. If it is yes,

the list operation is performed, if not, the word "Byel" is echoed.

The test operation has many options which you can read about in

many commercially available UNIX texts, some of which are

recommended below.

To learn more about shellscripts, consult one of the following

books:

S.R. Bourne. Th~~ni~~~~~em: Addison-Wesley Publishing Co.,

1982.

McGilton, H., Morgan, R.

McGraw-Hill Book Co., 1983.

10/83 3-15 Introduction to FOR:PRO

3-16

4 Single-User Operating System

The three flexible disks labeled FOR:PRO Single-User Operating

System are packaged with FO~.lJIstallation_Instructio!l§.. They
are distinguishable from the other command and utility sets

available on the Fortune System: IlevelJ!.P.ment Utilities, and
Langua~ DevelQQmgnt Tools. You may also have a multiuser operating

system master disk which allows you to upgrade your system from one
to multiple users.

This chapter summarizes the commands and system files and
directories on the single-user operating system disks.

SYSTEM FILES AND DIRECTORIES

The / directory, the root of the hard disk file system, also

contains some special files. This section briefly summarizes the

purpose of the files and directories located in the root directory.

If you list the contents of the root directory using the command

Is -las, you will see something like the following:

/:

total 126

drwxrwxr-x14 root 304 Jul 13 16: 19
drwxrwxr-x14 root 304 Jul 13 16: 19

-r--r--r-- 2 bin 90 May 9 20:30 . profile

drwxrwxr-x 2 root 832 Jul 7 16:30 bin

drwxr-xr-x 2 root 704 Jul 22 10:42 dev

drwxrwxr-x 3 root 1024 Aug 11 09:25 etc
drwxrwxrwx 2 root 64 Jul 8 17:08 f
drwxrwxr-x 2 bin 32 Jun 27 11:06 h

2 drwxrwxrwx 2 root 2048 Jun 27 12: 19 lost+found
1 drwxrwxrwx 9 root 144 Jul 11 13:27 m

drwxr-xr-x 2 bin 64 Jun 27 11 : 10 sa
drwxrwxrwx 2 root 112 Aug 11 11: 04 tmp

drwxrwxr-x 4 bin 80 Aug 4 14:45 u
110 -r--r--r-- 2 bin 112580 Jun 27 12:22 unix

1 drwxrwxr-x 9 root 144 Jul 7 16:28 usr

10/83 4-1 Introduction to FOR:PRO

SINGLE-USER OPERATING SYSTEM

Remember that the contents of the root directory on your system may

be somewhat different, especially if you have the multiuser

operating system installed.

In this list of entries, the first number you see indicates the

number of i-nodes taken up by the file or directory. An i-node

describes a file and points to the actual physical disk blocks that

make up the file. There is at least one i-node for each file and

directory on the system.

A "d" in the column immediately to the right of the i-node number

indicates that the entry is a directory. A hyphen (-) indicates

that the entry is a file.

An executable file contains information that can be interpreted by

the shell as command input. Such files are sometimes called

"command files" on other systems, because they contain commands

that can be executed by the operating system. You will notice that

certain executable files and commands in /bin and /etc have a

special mode known as set user id. Any program or file so

designated has an "s" instead of an "x" in the owner rights slot.
This means that when users execute these files, the user ID is set

equal to that of the actual owner of the file. This allows users

other than root to use commands that must create files in

directories to which they normally would not have access rights.

The set user id mode is important for such processes as login,

date, mail, and mkdir.

The concept of a link is really a system-level way of saving space

by having several command names linked to a single copy of the

actual binary source for that command. Commands that are 1 inked

use the same source but sometimes produce a slightly different

result. Examples are 11, If, lr, and Is, all of which list the

contents of a directory, but in different ways.

You can see whether a command is linked by looking at the first

number to the right of all the access and protection rights. For

most entries, a 1 appears in this column. However, for files like

11, If, lr, and Is, the number is greater than 1, indicating that

there are several different versions of the same command.

Introduction to FOR:PRO 4-2 10/83

SINGLE-USER OPERATING SYSTEM

Here's what the major directories listed in the root (I) directory

are used for.

bin

dey

etc

f

h

sa

tmp

10/83

Contains the binary source code for most of the

FOR:PRO commands on the system. These commands
are accessible to all users on the system.

Contains all the special device files needed by

the operating system. Each peripheral device

attached to the system is defined as a file,

and has an entry in the Idev directory. The

contents of this directory vary depending on

the devices you have attached to your

particular system.

Contains those FOR :PRO commands and special

files which can only be accessed by manager or

root. There are some exceptions to this which

are discussed below. letc also contains many

crucial system files and tables which you can
look at, but should not modify unless you know

what you are doing.

The root node (directory) of the flexible disk

file system. The If directory is used by the

system in order to transfer information between

the file system on the flexible disk and a file

system on the hard disk.

Top-level directory for the hard disk-based

file system. Like If, its function is to

provide a way for the operating system to

reference the contents of the hard disk by

treaating it as a directory.

Contains important files which are needed to

reboot the system. These files are /sa/boot

and /sa/reconf. The "sa" stands for stand

alone because the programs in sa are meant to
run without the aid of the operating system.

This is a very important directory used by many

system processes to store temporary

4-3 Introduction to FOR:PRO

SINGLE-USER OPERATING SYSTEM

u

unix

usr

The Ibin DirectoLY

information. It is a "scratch" area on the disk

where information may be temporarily stored

before it is written or copied to some other

location. Don't ever delete this directory.

This is the master directory for all user

accounts. All the login accounts on the system

which were created by the newuser process are

1 is ted in lu. (See .!In.951.rst an.1LLQ..YL_.Fortu~
System for more information about the newuser

process.)

The operating system itself -- don't touch this

one!

Contains programs for users, including macros,

user libraries, and other development

utilities.

Many of the commands you will use on a routine basis are stored in

the Ibin directory. The word bin stands for binary. Most files in

the Ibin directory are binary files, so don't try to use cat to

display them unless you use the -v option. In FOR:PRO, Ibin

contains the following commands on the single-user operating system
set of disks:

cat chmod cp
date dd df
echo ed If
11 lr Is
mkdir mv rmdir
pwd rm cmp
sh sync kill
du expr pr
login passwd stty
ps sort wall
test true
who write

Most of the entries in letc are programs used by the system to do

routine operations. For example, important system startup and

shutdown programs are stored here. You must be logged in as

manager or root to access some of these files and commands (for
example, the passwd file). In this way, the files and commands

that are crucial to the proper operation of the system are

protected from unauthorized users.

Introduction to FOR:PRO 4-4 10/83

SINGLE-USER OPERATING SYSTEM

The chgrp command, which changes the group ownership of directories

or files, can only be used by the manager. You can't change the

ownership of a file unless you are logged in as manager or root.

When You ~eed These Commands

You may find it necessary to use some of the commands in letc and

modify some of the files there if you need to reboot the system, or
install a new operating system. For example, when starting up the

system, you may experience an unsuccessful file check. You would
then have to use the letc/fsck program to manually check the file

system. You might also want to know what's in the special files

that reside in this directory in case you need to modify them or

back them up.

The letc directory contains the following special files:

devtype

disk

disktab

fstab

group

10/83

Lists all peripheral devices attached to

the system. Specifies port number (tty

number), baud rate, category and type of
device, printer message port and optional

location description.

Contains configuration blocks for disk

devices.

A list of all the disk drives available on

potential Fortune systems.

The file system table which indicates the

name of the device on which the file

system resides.

Lists all the user groups defined for the

system. By default, there are groups

defined for sys, bin, daemon, and users.

The first field is the group name, the
second, the group password, the third, the

group ID, and the last, a list of all the

accounts that belong to that group.

4-5 Introduction to FOR:PRO

SINGLE-USER OPERATING SYSTEM

motd

mtab

passwd

printcap

profile

termcap

ttys

Introduction to FOR:PRO

Stands for message of the day. You can

put in this file any message that you

want all users to see when they log onto

the system.

A table of all currently mounted devices.

Useful when you want to know whether a

flexible disk is really mounted or not.

If a disk is mounted, you might see

something like this when you type cat

/etc/mtab

Iffd02

This means a flexible disk is mounted on

drive 02, with a root directory of If.

Contains a list of all the user accounts

on the system, including default users

like root and manager.

Contains defini tions for all supported

printers on Fortune systems. These

definitions are used by the printer

control programs.

A general purpose profile file which is

executed prior to your own .profile file,

if you have one in your home directory.

At this release, /etc/profile defines

print spooler defaults for printing files

via the global menu "Print a File" option.

It also defines the default language as

"English," LANGUAGE=EN, and sets Fortune

terminals to XON/XOFF mode.

The file used by FOR:PRO to interpret the

in formation coming from your particul ar

terminal. It contains data on nearly

every terminal type supported by UNIX.

Defines the baud rate, login setting, and

tty number for each port available on the

system.

4-6 10/83

ttytype

SINGLE-USER OPERATING SYSTEM

A table of the device names and tty

numbers that are connected to your system.

There should be one entry here for each

port listed in the ttys file.

The fetc directory also contains the following commands:

boot chgrp

chlog chown
config disk

dskselect format

fsck getty

halt init

login.help mkconf

mkdevs mkfs

mklost+found mknod

mount pstat

rc rc.cold

rc.hd rc.passl

rc.passl.O rc.passl.F1

rc.passl.F2 rc.passl.H
rc.pass2 rc.pass2.run

rdconf reboot

setdt setnswap
shutdown surf test

uconf umount

update utmp

SINGLE-USER OPERATING SYSTEM CONTENTS

This section is an alphabetical summary of all the commands

available on the single-user operating system. If you have either

or both of the other command sets installed on your system, you

will notice that this list doesn't show some of the commands you

may be accustomed to using. The (f) indicates the item is a text

file, a (c) indicates it is a command, (sf) indicates it is a

special system file, (sc) indicates it is a system administration

level command, and (m) indicates it is a miscellaneous routine or

table.

basename (c)

bootflop.conf (m)
cd (c)

chmod (c)

10/83

boot (c)

capture (c)

chgrp (c)

chown (c)

4-7

bootcp (sc)

cat (c)

chlog (c)

cmp (c)

Introduction to FOR:PRO

SINGLE-USER OPERATING SYSTEM

config (sf)

date (c)

df (c)

disktab (f)

du (c)

expr (c)

flop.conf (m)

fsck.AM (sf)

genstring (c)

init (sc)

11 (c)

Ipd (sc)

Ipdun (sc)

Iprm (c)

menu (c)

mkdevs (c)

mklost+found (sc)

mknod (sc)

mount (sc)

newgrp (c)

passwd (c)

ps (c)

pwac (c)

rc.cold (sf)

rc.pass1.0 (sf)

rc.pass1.H (sf)

rdconf (sc)

rm (c)

setnswap (sc)

sleep (c)

surf test (c)

termcap (f)

true (c)

ttytype (f)

update (sc)

what (c)

write (c)

cp (c)

dd (c)

disk (f)

dskselect (sc)

echo (c)

filsys (f)

format (sc)

fstab (f)

group (f)

kill (c)

login (c)

Ipdun (sc)

1 pq (c)

lr (c)

mid (sc)

mkdir (c)

mknod (sc)

more (c)

mtab (f)

nice (c)

pr (c)

profile (f)

pwd (c)

rc.hd (sf)

rc.pass1.F1 (sf)

rc.pass2 (sf)

reboot (sc)

rmdir (c)

sh (c)

sort (c)

sync (sc)

test (c)

tty (c)

uconf (sc)

utmp (f)

whl (f)

Introduction to FOR:PRO 4-8

cp.AM (sf)

devtype (f)

diskconf (f)

dtinit (c)

ed (c)

find (c)

fsck (sc)

getty (c)

halt (c)

If (c)

login. help (sf)

Ipf (sc)

Ipr (c)

Is (c)

mkconf (sc)

mkfs (c)

more (c)

motd (f)

mv (c)

page (c)

printstring (c)

pstat (sc)

rc (c)

rc.pass1 (sf)

rc.pass1.F2 (sf)

rc. real (sf)

reconf (sc)

setdt (sc)

shutdown (sc)

stty (c)

tee (c)

trans (f)

ttys (f)

umount (c)

wall (c)

who (c)

10/83

Appendix A: The New Print Spooler

A new version of the print spooler is included with the 1.7

operating system. This print spooler resides in the directory

/usr/bin, instead of in /usr/ucb as in the previous release.

Several new utilities are associated with the print spooler.

Whether you print from the menus or use Ipr from FOR: PRO command

level, you should read this information.

WHAT'S IN THIS APPENDIX

This appendix describes the following:

• The new version of Ipr and its associated utilities

• The changes to Ipr that affect print formatting options

• The impact of the new spooler on various software
applications

• Related programs and files made obsolete by the release of

FOR:PRO

THE NEW Ipr

The new Ipr command brings increased functions and some changes

from the previous version, making it necessary for some users to

change the way they use their printers. For example, software

features are now available to do the following from the FOR: PRO

command level, not just from the Fortune:Word menus:

• Temporarily stop and restart a print job so you can change

the paper or ribbon.

• Change the pitch, lines per inch, and page size on a per

print job basis, using Ipr options.

• Run more than one printer on your system. In addition, you

can logically number them so you can direct jobs to
specific printers.

10/83 A-1 Introduction to FOR:PRO

• Change the order in which print jobs will be printed by
manipulating print queues.

• Control individual print job formats by writing customized
shellscripts, by setting variables in user .profile files.

Alternatively, the system manager which can set up printer

defaults for everyone on the system. The latter is most

useful when people do thei r printing from the System

Utilities menu.

lpr and Related Commands

The components of the print spooler interface include:

• lpr

• lprm

• lpq

• lpmv

• lpdun

• pr

Sends files to a designated printer with optional

formatting.

Removes one or more files from a designated print

queue.

Displays the status of one or more print queues.

Changes the order in which jobs for a given printer

will be printed.

Stops and restarts a print job for printer

servicing, or adding/changing paper or ribbon.

Also sets new defaults for print page format.

Displays a file on the screen, placing page numbers

at the top of each unit of 66 lines. Output from

pr can be piped to lpr, if page numbers are desired

on the printout.

Per Print Session Formatting

New features in the current lpr enable you to control the format of

a print job via software on a per print job basis. This makes it

possible for individual users to print documents according to their
own specifications without interfering with one another. It is no

longer possible to set print format parameters via hardware
switches and have the lpr software recognize them. Users who

Introduction to FOR:PRO A-2 10/83

previously controlled settings like pitch, lines per inch, page

size, and baud rate by physically setting switches on the printer

should note that the FOR:PRO spooler will not look at these

hardware settings.

Instead, such changes in pitch, lines per inch, and so forth, must

be done by using options of the lpr command, or by modifying the

system-supplied defaults for print jobs. For users printing from

the System Utilities menu, system-supplied defaults can be found in

the file /etc/profile, in a variable called LPRFLAGS. This is

explained below.

Users of lpr from command level will find that print job defaults

are set by lpdun and lpr, and can be changed on a per user and per

print job basis by issuing the appropriate options on the command

line.

Print Job Defaults in LPRFLAGS

A file called /etc/profile is supplied with the FOR:PRO operating

system. Currently, this file is only executed by the menu shell

and is therefore effective only for menu system users. However,

users can include its settings in their .profile files. It can be

used to set up defaults for banners, pitch, lines per inch, page

size, and line width for all print jobs queued through the print

option of the System Utilities menu. When at the Bourne shell

level, users who log into the menu shell can still override these

settings on a per print job basis by using the proper lpr and

lpdun options.

As delivered, LPRFLAGS in /etc/profile contains the following

default printer setting for global menu users:

-h

This means that all printouts will have no header (banner) page,

unless otherwise specified. This is a change from the previous

system in which banners were the default. The change was made

speci fically to prevent paper waste in single-user systems where

there is little need to identify printouts by user name. To change

this default, you must edit the file and remove -h from the

LPRFLAGS line. Use ed (or vi, if you have Development Utilities)

to do this. You can also delete the LPRFLAGS line entirely

if you like.

10/83 A-3 Introduction to FOR:PRO

Users of the "Print" option on the System Utilities menu will get

their print job defaults from the LPRFLAGS variable in

/etc/profile. This is true except for users who have .profile

files and who also use the menus. LPRFLAGS is ignored by lpr when
used from the Bourne shell level. Only the menu shell uses

LPRFLAGS with lpr. However, any other lpr-related setting in a

user's .profile file will override the settings in /etc/profile,

since the user's .profile file is executed after /etc/profile.

Defaults and How to Override Them

The following table shows how printer settings correspond to
options of lpr and lpdun. To set these options for people using

the global menus, include the proper option in LPRFLAGS in
/etc/profile.

Setting lpdun/lpr Option Default Value

Line -tLnn (lpr) 132

Length -cnn (lpdun)

Lines Per Page -Fnn (lpr) 66
(Form Length) -Inn (lpdun)

Left Margin +Lnn (lpr) 0

Pitch +Pnn (lpr) 10

Lines Per Inch +Vnn (lpr) 6

(Vertical Pitch)

NOTE

Note that the - options must appear before the +

options on a command line, and in LPRFLAGS.

This is because any - options that appear after

+ options are treated as filenames.

You can check the lpdun defaults by typing

lpdun -z

Introduction to FOR:PRO A-4 10/83

Changing the Vertical Pitch

If you use the +V option to change vertical pitch, it will slightly

adjust the size of a page. You will have to adjust the top-of-form

after the job with the changed pitch size is completed. Note also

that 10 pitch is really 9.6, so there are really 9.6 lines per inch

instead of 10. This means the number of lines per page is really

105.6, not 105 or 106. You will notice a slight increase in page

size on long print jobs when printing with +V10.

~hangin&-1ine Length

The default line length is 132 characters. To change it on a per

print job basis, use

Ipr -tLnn filename

The -t option guarantees the line will be truncated at nn

characters. To change the default line length on a global basis,

use the -c option of Ipdun

Ipdun -c nn

Indiyidual Settings for Print Jobs

Print job settings can be altered on a per print job basis by each

individual user. System defaults can be overriden by shellscripts

that print files, or by customizing user .profile files.

For example, the following one-line shellscript prints files with a

horizontal pitch of 12 characters per inch, and a vertical pitch of

8 lines per inch:

Ipr +P12 +V8 $1

By making this shellscript executable (chmod 755 filename), you

could print files according to these settings by simply typing the

name of the shellscript followed by the name of the file to be

printed. For example, if the shellscript containing the above Ipr

line were named mpr, you could print files wi th it using this

command line:

mpr filename

10/83 A-5 Introduction to FOR:PRO

You could also put a line similar to this one in your

.profile file:

mpr='lpr -b Greg +L5 $1'

Every time you type

mpr filename

from the Bourne shell, your printouts will have a banner name, like

Greg in this case, and an adjusted left margin. Notice that the

variable name used here is mpr and not lpr. It is advised that you

do not use lpr as a name for shellscripts or aliases, as this can

only cause confusion. By using other names you can make multiple

lpr command lines that perform different functions.

NOTE

For users with login shells set to /bin/menu,

your .profile file (if you have one) is

executed after the /etc/profile file is read.

Therefore, settings in your .profile file will

override those in /etc/profile. Since

/etc/profile is only read by the menu shell,

you can incorporate its contents in your login

environment with this command

. /etc/profile

as the first line of your .profile file.

Multiple Printers and Print Queues

The FOR:PRO spooler and Device Connection Menus allow you to define

and make use of multiple printers per system. The lpq, lpmv, and

lprm utili ties allow you to look at, manipulate entries in, and

remove entries from multiple print queues.

For Fortune:Word Users

In order to use Fortune:Word 1.0 at Release 1.7, it must be

upgraded using the 1.7 Upgrade disk. Users who are familiar with

version 1.0 of Fortune:Word will recognize that much of the printer

Introduction to FOR:PRO A-6 10/83

functionality available to them in Fortune:Word is now available at

the FOR: PRO level v ia the new lpr. In Fortune :Word, the printer

control menu can be used to set defaults on a per print job basis

by changing the prototype file used for a particular print job.

In order to use Multiplan on 1.7, it must be upgraded using the

1.7 Upgrade disk. The program mp.printer, which was formerly used

to set printer defaults for Multiplan, has been replaced by a

program called mpinit. This program defines the page size, pitch,

number of lines per inch, and so forth for Multiplan print jobs.

It is run automatically when you upgrade the Multiplan master disk
using the 1.7 Upgrade disk, or when you use the Upgrade disk to

restore your system backup. mpinit can be run by the manager

account whenever the print job characteristics for Multiplan print

jobs need to be changed. It is located in the directory usr/bin.

In future releases of Multiplan, this program will be replaced by a

printer menu similar to that of Fortune:Word.

Users of BAS applications should note that /dev/lp is linked by

default to /dev/tty01. If you have mul tiple printers on your

system and want to print BAS application files on a printer

attached to a port other than tty01, make changes to the IPL files

as discussed in Technical Tip 1.1, MultiQle Printers within BASIC.

(See also Appendix E of the Business BASIC manual.)

10/83

NOTE

Since BAS does not use Ipr, if you use the same

printer for both BAS and FOR:PRO-level printing,

output from both may appear intermixed on the

same printer. In this case, use Ipdun to stop

the Ipr-level print job, then reprint the pages

after the BAS job is finished. The BAS job will

have to be restarted if clean output is desired.

The same problem may occur if two or more people

are printing BAS jobs at the same time.

A-7 Introduction to FOR:PRO

Related Print Spooler Files

The following files are also related to the new print spooler on

the single-user operating system:

/etc/profile

/etc/devtype

/devllp

/etc/*.whl

/etc/printcap

For users of global menu system.

Defines all devices, including printers.

Used by BAS applications only.

* stands for any supported printer type.

Files of this nature are used for

alternate character sets.

Defines printer control characteristics
for all supported printers.

Controlling Print Spooler Priority

As delivered at 1.7, the print spooler is assigned the standard

priority (0). The default number of pages saved is 2. To change

either of these default settings, use these options of Ipdun:

-mnn
-Pnn

Change number of pages to save

Change priority of print spooler

In the -m option, the nn argument specifies how many pages are to

be kept in memory for reprinting if it is necessary to restart a

print job several pages back from the one at which printing

halted. The -P option takes an nn argument that can have a value

of -20 to +20. The highest priority setting is -20, which devotes

maximum system resources to the print spooler. The lowest

priority setting is +20, which will improve interactive response,

but slow printing down. (On very heavily loaded systems, low
priority jobs may never run, so use caution when lowering

priorities.)

Introduction to FOR:PRO A-8 10/83

If you used Fortune:Word, Multiplan, or other applications, the

following programs are now obsolete:

letc/ttype

lusr/bin/def.printer

lusr/bin/mp.printer

lusr/bin/lpint

lusr/lib/lpfc

lusr/bin/on.printer

lusr/bin/off.printer

lusr/ucb/lpr (*)

lusr/ucb/lprm (*)

lusr/ucb/lpq (*)

Items marked with an asterisk (*) have been moved to lusr/bin as

of this FOR:PRO release.

10/83 A-9 Introduction to FOR:PRO

A-10

SINGLE,USER OPERATING 2
SYSTEM MAN PAGES

Part 2 contains reference documentation for the FOR:PRO single-user
operating system. It is provided in the form of MAN pages (manual

pages) in the same format as the Bell Laboratories' IDi.lX

Programmer's Manual. The MAN pages provide Fortune-specif ic
reference material for all commands and system level files
available on the single-user operating system set of disks.

ORGANIZATION OF THE MAN PAGES

UNIX MAN pages are traditionally divided into eight sections. This
subset of the FOR:PRO MAN pages contains entries from Sections 1,

4, 5, and 8 and are descr ibed below. All sections appear in the
FOR:PRO Programmer's Manual, which is included with the Development
utilities software. Refer to the header on the page for
correlation to UNIX MAN pages.

Section

1 Commands
(Chapter 1

in this manual.)

4 Special Files
(Chapter 2
in this manual.)

5 File Formats and
Conventions
(Chapter 3

in this manual.)

Description

References commands invoked directly from
the shell, including the most commonly

used commands.

Discusses the special device files
contained in the directory /dev. These
files describe peripheral devices

connected to the Fortune system.

Describes important system files used
by a number of system programs.

8 System Administration Explains commands used for system
Commands
(Chapter 4
in this manual.)

THE MAN PAGE FORMAT

administration.

All MAN pages follow a specific format. Most MAN page entries have

at least these three sections:

NAME Gives the command name and a description of its use.

ii

SYNOPSIS Presents the syntax of the particular command, all its

options, and other possible arguments.

DESCRIPTION Gives a detailed description of the command and how it

interprets its arguments.

NOTE

In the SYNOPSIS section of certain commands,
more than one command option may be listed. For
example, the Is command has many options, as

this syntax indicates:

Is [-abcCdFgilmgrRstuxl]

Each character within the brackets is an option

of the Is command. You may use one, many, or
none of the options on the same command line.

However, make sure the first option you type is

immediately preceded by a hyphen, as in

Is -1

Some entries have additional sections that include the following:

OPTIONS

EXAMPLES

FILES

SEE ALSO

DIAGNOSTICS

WARNINGS

LIMITATIONS

Command options are discussed in detail here.

Gives one or more examples of the command.

Names any files built into the command.

Refers you to commands related to the one described.

Discusses diagnostics you may receive when using the

command.

Indicates problem areas and gives precautions.

Lists known bugs and design limitations.

iii

iv

BASENAME (1) Fortune Systems BASENAME (1)

NAME
basename - strip filename affixes

SYNOPSIS
basename string [suffixJ

DESCRIPTION
Basename deletes any prefix ending in II' and the suffix, if present in
string, from string, and prints the result on the standard output. It
is normally used inside substitution marks' , in shell procedures.

This shell procedure invoked with the argument /usr/src/cmd/cat. c
compiles the named file and moves the output to cat in the current
directory: cc $1 mv a.out 'basename $1 .c'

SEE ALSO
sh(l)

9/83 1-1 FOR:PRO

CAPTURE(1) Fortune Systems CAPTURE (1)

NAME
capture - allows automatic capture of certain key system information

SYNOPSIS
ca pture [fps J

DESCRIPTION
Capture is a shell-script which allows automatic capture of certain key
system information to a diskette, a listing, or interactively to the
screen. This information is intended to assist in problem reporting
and trapping for software products.

Capture gathers 'what' strings, directory listings, the contents of cer­
tain files, and other system information. It then dumps this data to
a diskette or a listing which may be included with a problem report
to provide information regarding the environment in which the
problem occurred. Alternatively, capture has an interactive mode in
which the user can select items of information items of information
to be displayed on the screen, one at a time. Progress and informa­
tion messages are sent to the screen.

OPTIONS
f sends the information to a flexible diskette. The user is asked

whether to continue with the process ('y' to continue the pro­
cess, 'n' to end the process). The diskette is formatted and the
information from capture is written. The user is notified upon
completion.

p sends the information to a printer.

s displays the information on the screen. Build a two digit code
of (col)(row) from the displayed chart.

Example:

FILES

"2g". Reply <space> to "«STOPPED»".
Use "q" to quit.

lusrlbinlcapture
shell script

lusr/lib/capture _menu
contains the menu for the screen option

lusr/lib/capture _ inst
displays instructions

DIAGNOSTICS
If no option is specified when capture is invoked, the following is
disp!~ed:

Usage: capture floppy or

FOR:PRO

capture printer or
capture screen

1-2 9/83

CAT(1) Fortune Systems CAT(1)

NAME
cat - concatenate and print

SYNOPSIS
cat [-nJ [-5] [-u] [-vJ file ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output.

If no input file is given, or if the argument '-' is encountered, cat
reads from the standard input file. Output is buffered in 1024-byte
blocks unless the standard output is a terminal, in which case it is
line buffered.

OPTIONS
-n Causes the output lines to be numbered sequentially from 1.

Giving -b with -n causes numbers to be onutted from blank
lines.

-5 Causes the output to be single spaced.

-u Causes the output to be completely unbuffered.

-v Causes non-printing characters to be printed in a visible way.
Control characters print like "X for control-x; the delete character
(octal 0177) prints as "? Non-ascii characters (with the high bit
set) are printed as M- (for meta) followed by the character of the
low 7 bits. A -e option can be given with -v and causes the ends
of lines to be followed by t~e character '$'; the -t option with -v
causes tabs to be printed as 1.

EXAMPLES
cat file

prints the file

cat file1 file2 > file3
concatenates the first two files and places the result in the third

SEE ALSO
cp(l), ex(l), more(l), pr(l), tail(1).

LIMITATIONS

9/83

Beware of 'cat a b >a' and 'cat a b >b', which destroy the input
files before reading them.

1-3 FOR:PRO

CO(1) Fortune Systems CO(1)

NAME
cd - change working directory

SYNOPSIS
cd directory

DESCRIPTION
Directory becomes the new working directory. The process must
have execute (search) permission in directory.

Because a new process is created to execute each command, cd
would be ineffective if it were written as a norma.l command. It is
therefore recognized and executed by the shells. In csh{l) you can
specify a list of directories in which directory is to be sought as a sub­
directory if it is not a subdirectory of the current directory; see the
description of the cdpath variable in csh{l).

SEE ALSO
csh(l), sh{l), pwd{l), chdir(2).

FOR:PRO 1-4 9/83

CHLOG(1) Fortune Systems CHLOG(1)

NAME
chlog - change UNIX error logging format

SYNOPSIS
chlog [unixJ [defaultJ [debug hexllumberJ [decimal decimalJ

DESCRIPTION
Chlog changes the style in which UNIX prints internal error mes­
sages. Chlog unix switches to the standard unix style of error mes­
sage, while chlog default prints them in the default style of error
numbers. chlog debug hexnwnber controls how hardware fault mes­
sages are printed. Chlog uses the elog(2) system call. Chlog decimal
decimal does a direct eLogO system call.

EXAMPLES
Chlog unix performs elog(LOCTYPE, LUNIX). ChLog default performs
elog(LOGTYPE, LOEFL T), Chlog debug SOp performs elog(OBGLVL,
Ox50f3). Chlog 4 40 performs elog(kupdate,4O), which instructs the
kernel to do a sync(2) every 40 seconds.

1*
* Used in the elogO system call to determine error logging type
*/

#define LOGTYPE 0
#define OBCL VL 1
#define KUPOA TE 4
#define KNOUPOA TE 5

#define LOEFL T
#define LUNIX

o
1

1* set the 'logtype' variable
1* set the' debug' variable
1* enable kernel updateOs
1* disable updateOs from kernel

1* default error logging
1* make it more like normal
UNIX logging

The OBGLVL bits are defined as follows (from sys/debug.h) :

*/
*1
*1
*1

*1

*1

#define 0_ MAIN OxOOOl /* starting icode & schduler msgs */
#define 0_ TRAP Ox0002 /* system calls, trap messages */
#define 0_ UREG OxO004/* remapping calls to ureg, estabur*/
#define 0 _ SYSCALL OX0400 1* system call info */
#define 0_ STACK OX0800 1* Stack trace before death */
#define 0 _FLOPPY OxlOOO /* Floppy disk mfg debugs */
#define 0 _FOPRINT Ox2000 /* Floppy disk verbose printfOs */
#define 0_ WOISK Ox4000 /* Winchester disk printfsOs */

FILES
/usr/include/sys/err. h

/usr/include/sys/types. h

SEE ALSO
elog(2)

9/83 1-5 FOR:PRO

CHMOD(1) Fortune Systems CHMOD(1)

NAME
chmod - change mode

SYNOPSIS
chmod mode file .. ,

DESCRIPTION
The mode of each named file is changed according to mode, which
can be absolute or symbolic. An absolute mode is an octal number
constructed from the OR of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form

[who] op permission [op permission] ...

The who part is a combination of the letters u (for user's permis­
sions), g (group) and 0 (other). The letter a stands for all three types
(ugo). If who is omitted, the default is a but the setting of the file
creation mask (see umask(2» is taken into account.

Op can be + to add permission to the file's mode, - to take away per­
mission and = to assign permission absolutely (all other bits will be
reset).

Permission is any combination of the letters r (read), w (write), x (exe­
cute), s (set owner or group id) and t (save text - sticky). Letters u,
g , or 0 indicate that permission is to be taken from the current mode.
Omitting permission is only useful with = to take away all permis­
sions.

Multiple symbolic modes separated by commas may be given.
Operations are performed in the order specified. The letter s is only
useful with u or g.

Only the owner of a file (or the super-user) can change its mode.

FOR:PRO 1-6 9/83

CHMOD(1) Fortune Systems

EXAMPLES
To deny write permission to others,

chmod o-w file

To make a file executable:

chmod +x file

SEE ALSO
Is(l), chmod(2), stat(2), urnask(2), chown(8).

9/83 1-7

CHMOD(1)

FOR:PRO

CMP(1) Fortune Systems CMP(1)

NAME
cmp - compare two files

SYNOPSIS
emp [-1] [-s] filel file2

DESCRIPTION
The two files are compared. (If filel is '-', the standard input is
used.) Under default options, cmp makes no comment if the files are
the same; if they differ, it announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of
the other, that fact is noted.

OPTIONS
-1 Print the byte number (decimal) and the differing bytes (octal)

for each difference. If this option is not given, only the first
difference is listed.

-8 Print nothing for differing files; return codes only.

SEE ALSO
comm(l), diff(l).

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2
for an inaccessible or missing argument.

FOR:PRO 1-8 9/83

CP(1) Fortune Systems CP(1)

NAME
cp - copy OF link files and directory trees

SYNOPSIS
cp [-abBdilnNoprRsStTuvVxXj [backup optionsj [-j filel file2
cp [-abBdilnNoprRsStTuvVxXj [-] file ... directory

DESCRIPTION
File1 is copied onto file2. In the second form, one or more files are
copied into directory, which must exist, and the last element of the
file pathname is used as the name of the new file in directory. Links
between source files will be preserved in the destination wherever
possible.

If there is a single source argument and it is a special file, it is
opened and read as if it were a regular file. In the multiple-source­
argument or recursive case, special files are ignored.

If a destination file exists, its owner and mode are unchanged, and
the source is copied onto it. Otherwise it is created with the owner­
ship of the invoker and the mode of the source. The setuid and set­
gid bits will each be set only if the new file is owned by the same
user id and group id as the source, respectively. If the source is not
a regular file and the destination is new, then cp creates the new file
with permissions rw-rw-rw- subject to the umask.

Cp attempts to read 20K bytes at a time, and writes out the same
amount it reads each time. Thus it is usable with tapes or other dev­
ices with large or irregular block sizes.

Cp will not attempt to copy a file onto itself.

OPTIONS

9/83

-a Ask on all files before copying. If -r is selected, sets -d. Answer
is interpreted as in -i.

-b Copy a file only when the destination doesn't already exist or its
inode modification time (st ctime) is older than the source. - .

-B Backup. Automatically makes file systems, handles error
recovery and works with any other cp option. -8 requires two
backup options:

1) special file to use (mount)
2) size of file system to make

There is no destination file specified on the command line as it is
assumed the same name is used on the backup media. Backup cal­
culates the sizes of every file and tells you how many volumes are
needed to store the files specified. Examples:

cp -B Idev/fd02 770 !bin/cat !bin/Is

This will back up only the files !bin/cat and !bin/Is.

1-9 FOR:PRO

CP(l) Fortune Systems, CP(l)

cp -Br Idev/fd02 770 /bin lusr

This will backup all directories and files under /bin and lusr.

cp -Broust Idev/fd02 770 I

This will backup the entire filesystem

-d Ask on all but regular files before copying. If cp is copying
recursively, and you decline to examine a directory, that direc­
tory and recursively all its contents are skipped. Answer is
interpreted as in -i.

-i Prompts the user with the name of the file whenever the copy
causes an existing file to be overwritten. An answer of 'y' or 'Y'
will cause cp to continue. Any other answer prevents it from
overwriting the file.

-I Link instead of copying if source and destination are on the
same file system If a link can be made and the destination
already exists, cp unlinks it before making the new link. Note
that this is different from the behavior of In(l). If you want a
link to fail when the destination exists, as it would if you were
using In(l), then use -n along with -1.

-n Copy a file only when the -destination does not already exist.

-N No copy operation. This allows you to do a -0 and/or -t, to des-
tination file(s) which already exist. No file copies take place,
and no directories are made when this option is in effect. Can­
not be used with -I, -n, or -u.

-0 Set the group and user id ownership of the destination to that of
the source. Only super-user can do this.

-p Use full pathnames. Form each destination name by appending
the entire source path to the destination path. This is especially
useful for copying selected files from one tree to another.
Example:

cp -p dl/d2lfi x

will make xld1 and xldl/d2 if necessary and copy dlld2lfl to
xldl/d2lfl.

-r Recursive. Copy each source directory and its entire subtree.
Make new subdirectories in the destination directory as neces­
sary. Without this option, directories are skipped.

-R Restore. Asks the user to insert diskettes and ensures they are
all from the same backup. -R requires one backup option which
is the special file to mount. Restore first dis~overs where each
file is and asks you to insert each volume as needed. Examples:

cp -R Idev/fd02 bin/cat bin/Is /bin

FOR:PRO 1-10 9/83

CP(1) Fortune Systems CP(1)

9/83

This restores the files "cat" and "Is" to the directory bin.

cp -rpR Idev/fd02 bin usr I

This restores everything in /bin and lusr.

cp -Rroust Idev/fd02 I. I

This restores an entire backed-up filesystem

-5 Do special files. If -1 is not set, or it is set and cp can't link, and
you are super-user, do a mknod(2) so that the destination file is
a device just like the source.

-5 Replace an argument of "=" with a list of newline-separated
files from the standard input. If this option is in effect, it is
assumed that you are copying multiple files to a directory even
if there is only one file in the list from the standard input, and
the destination argument must be on the command line. This
option is incompatible with -B, -R or -i.

-t Set the file modification and access times of the destination to
that of the source. This only works if you are super-user or you
own the destination file. To be sure that you will own destina­
tion files, use the -u option.

-T Same as -t plus the access time of the source is unchanged by
the copy.

-u If the destination is not a directory and already exists, unlink it
before copying. This is useful when the destination file is
multiply-linked and you don't want to affect all the links. It is
also useful when you want all the destination files to be owned
by you and to have the same mode as the source.

-v Verbose, partial. Print a line on the standard output noting
each copy operation which is skipped because of conditions
specified by the -n or -b options.

-V Verbose, full. Print a line on the standard output noting each
copy operation, whether it is to be done or skipped, each source
directory that is examined, and each destination directory that is
created.

-x Copy a file only when the destination already exists. Do not
make any directories.

-X When used with the backup option, -B, verifies that the backup
media is readable after each disk is written. Does not check file
system integrity or do any data verification, however. This
option is ignored when not used with -B.

1-11 FOR:PRO

CP(1) Fortune Systems CP(1)

The null option - indicates that all the arguments following it are
to be treated as file names. This allows cp to work with files
whose names start with a minus.

EXAMPLES
For these examples, assume the following directories and files:

dl/fl, dl/d2/f2, and d3

where dI, etc. are directories, and £1, etc. are files. Then

cp dl/£1 d3

would make d3/£1, and

cp -r dl d3

would make d3/dl/£1 and d3/dl/d2/f2, and

cp -r dl/. d3

would make d3/£1 and d3/d2/f2.

You can effect a recursive move across file systems by doing a 'cp -r'
followed by a 'rm -r'. The mv(I) command is best for moving a sub­
tree within a file system.

SEE ALSO
cat(I), In(I), mv(l), rm(I).

DIAGNOSTICS
Copy is normally silent about its operation. If an error occurs, a
message will be printed to the standard error output. If a file is not
copied for some other reason, this will be noted on the standard out­
put unless this was because it did not meet a condition specified by
-n or -b. For more verbosity, use -v or -V.

Cp does not stop prematurely on errors. Exit status is '0' if all files
are copied OK. If any file or directory was skipped for some reason,
the exit status is 'I' unless any file or directory was supposed to be
copied, but couldn't because of an error, in which case the exit
status is '2'. Errors may result in partially-written destination files.
Other exit statuses are possible for "fatal" errors.

LIMITATIONS
The ownership and times of directories created under the -p option
cannot be set to match the source directories. In this case, the
owner is set to the current uid, the time to the current times, and
the mode is set to 'rwxrwxrwx'.

Links may be 'preserved' in the destination to a file which did not
copy successfully.

FOR:PRO 1-12 9/83

DATE(1) Fortune Systems DATE(1)

NAME
date - print and set the date

SYNOPSIS
date [yymmddhhmm [.ss]]

DESCRIPTION
[f no argument is given, the current date and time are printed. [f an
argument is given, the current date is set. yy is the last two digits of
the year; the first mm is the month number; dd IS the day number in
the month; hh is the hour number (24 hour system); the second mm
is the minute number; .55 is optional and is the seconds. The year,
month and day may be omitted, the current values being the
defaults. (Only the super-user can change the default.) The system
operates in CMT. Date takes care of the conversion to and from
local standard and daylight time. Uconf(2) can be used to set the
timezone.

EXAMPLES
date 8610080045

sets the date to Oct 8,1986 12:45 AM

date 1345

sets time to 1:45 PM and leaves the date unchanged.

FILES
/usr/admJwtmp

to record time-setting

SEE ALSO
uconf(8), utmp(5).

DIAGNOSTICS
'No permission' if you aren't the super-user and you try to change
the date; 'bad conversion' if the date set is syntactically incorrect.

9/83 1-13 FOR:PRO

00(1) Fortune Systems 00(1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option=va[uej ...

DESCRIPTION
Dd copies the specified input file to the specified output with possi­
ble conversions. The standard input and output are used by default.
The input and output block size may be specified to take advantage
of raw physical I/O.

OPTIONS
option
bs=n

cbs=n
count=n
conv=ascii

block
ebcdic
ibm
lease
noerror
swab
sync
ucase
unblock

files=n
ibs=n
if=
iseek=n
iskip=n
nocreat
obs=n
of=
oseek=n
oskip=n
quiet

seek=n

skip=n

values
set both input and output block size, superseding ibs
and obs; also, if no conversion is specified, it is par­
ticularly efficient since no copy need be done
conversion buffer size
copy only 11 input records
convert EBCDIC to ASCII
convert variable length records to fixed length
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
map alphabetics to lowercase
do not stop processing on an error
swap every pair of bytes
pad every input record to ibs
map alphabetics to uppercase
convert fixed length records to variable length
several comma-separated conversions
skip 11 input files before starting copy
input block size 11 bytes (default 512)
input file name; standard input is default
seek over n input records before copying
same as skip
don't create the output file before writing to it
output block size (default 512)
output file name; standard output is default
same as seek.
skip (read over) n output records
Don't print summary of input and output records
when done
seek 11 records from beginning of output file before
copying
skip 11 input records before starting copy

Where sizes are specified, a number of bytes is expected. A number
may end with k, b or w to specify multiplication by 1024, 512, or 2
respectively; a pair of numbers may be separated by x to indicate a

FOR:PRO 1-14 9/83

00(1) Fortune Systems 00(1)

product.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is
specified. In the first two cases, cbs characters are placed into the
conversion buffer, any specified character mapping is done, trailing
blanks trimmed and new-line added before sending the line to the
output. In the latter three cases, characters are read into the conver­
sion buffer, and blanks added to make up an output record of size
cbs.

After completion, dd reports the number of whole and partial input
and output blocks.

EXAMPLES
To copy one 6-head (96 512byte blocks/cyl) hard disk to another,

dd if=/dev/rhd02 of=/dev/rhd12 bs=48k

Note the use of the raw hard disk. Dd is especially suited to I/O on
the raw physical devices because it allows reading and writing in
arbitrary record sizes.

To back up a (small) directory to a floppy (10 1K blocks/cyl):

tar cfv - dir I dd of=/dev/rfd02 obs= 10k

SEE ALSO
cp(l), tr(l).

DIAGNOSTICS
f+p records in(out): numbers of full and partial records
read(written)

LIMITATIONS

9/83

The ASCIIIEBCDIC conversion tables are taken from the 256 charac­
ter standard in the CACM Nov, 1968. The 'ibm' conversion, while
less blessed as a standard, corresponds better to certain IBM print
train conventions.

1-15 FOR:PRO

DF(1) Fortune Systems DF(1)

NAME
df - disk free

SYNOPSIS
df [-f] [-i] [-1] [filesystem ...] [file ... J

DESCRIPTION
Of prints out the number of free blocks available on the specified
filesystem, e.g. "/dev/hdOz" , or on the filesystem in which the speci­
fied file, e.g. "$HOME", is contained. If no file system is specified,
the free space on all of the normally mounted file systems is printed.

The reported numbers are in file system block units; currently each
filesystem block is 1024 bytes long. du(l) or Is(l) with the -s option.

OPTIONS
-f gives the report in Fortune friendly format. Initial -f should be

used exclusively, as it overides all other options.

-i Report also the number of inodes which are used and free.

-1 Also examines the free list, double checking that the summary
number in the filesystem superblock is correct.

EXAMPLES
I elf

Files1st.
/dev/hd02
1 elf -1

Filesyst.
/dev/hd02

FILES
letdfstab

Mounted on

/

Mounted on

/

kbytes used free
5835 2106 3129

kbytes used free
5835 2106 3129

list of normally mounted filesystems

SEE ALSO
fstab(5), icheck(8).

LIMITATIONS

I used

461

harcbray
" used

31.29 461

It should print some warning message when the' -1' option discovers
a messed-up file system

FOR:PRO 1-16 9/83

DTINIT(1) Fortune Systems DTINIT(1)

NAME
dtinit - initialize /etcldevtype

SYNOPSIS
/mlsysman/dtinit [-b baud] [-c classJ [-m #J [-n deviceJ [-eJ [-dJ [-s dev­

iceJ [-t type] [-x nameJ [-TJ [-MJ

DESCRIPTION
Otinit is used to update the device type file /etcldevtype. [f an entry
exists for the device, any new information specified in the command
is added to the entry. If no entry exists, one is created.

OPTIONS
-b baud

baud rate for the entry. baud can be any legal baud rate or the
one character specified as defined in Berkeley getty.

-c class
class of the device (e.g. 'f" for printer, 'e' for comm line).

-m=!l=
number of the device in its class (e.g. P2. for the second printer).

-n device
UNIX special file name (i.e. the name in the device table /dev).
lhis is used for transferring data. (see -s option).

-d disable this line. lhis sets a status bit to 0 indicating that the
line is disabled.

-e enable this line. This sets a status bit to 1 indicating that the
line is enabled.

-5 device
service notification port. UNIX special file name (i.e. the name
in the device table /dev). Bells (control g) are sent to this port
when operator intervention is needed.

-t type
type of device. This is most likely a string which identifies an
entry in /etclprintcap or /etcltermcap.

-x name
external name. This is any string to identify the device (e.g. Dot
matrix printer near the water cooler).

-T Prints out a table of the entries in /etcldevtype.

-M Updates the letclttys and /etclttytype files.

There is a one-to-one correspondence benveen options and fields in
a devtype entry. The minimum arguments necessary to uniquely
identify an entry is either a name or a class and number.

FILES

9/83 1-17 FOR:PRO

DTINIT(1) Fortune Systems DTINIT(1)

/etddevtype
device configuration file

SEE ALSO
devtype(5), ttys(5), ttytype(5).

FOR:PRO 1-18 9/83

DU(1) Fortune Systems DU(1)

NAME
du - summarize disk usage

SYNOPSIS
du [-aJ [-5J [name ... J

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively)
directories within each specified directory or file name. If name is
missing, '.' is used.

A file having two links to it is only counted once.

OPTIONS
-a causes an entry to be generated for each file. Absence of either

causes an entry to be generated for each directory only.

-5 causes only the grand total to be given.

SEE ALSO
df(l), filsys(S).

LIMITATIONS

9/83

Non-directories given as arguments (not under -a option) are not
listed.
If there are too many distinct linked files, du counts the excess files
multiply.
du does not count indirect blocks (see jilsys(S)).

1-19 FOR:PRO

ECHO(1) Fortune Systems ECHO(1)

NAME
echo - echo arguments

SYNOPSIS
echo [-nJ [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a
newline on the standard output.

Echo is useful for producing diagnostics in shell programs and for
writing constant data on pipes. To send diagnostics to the standard
error file, when running the Bourne shell, do 'echo ... 1>&2'.

OPTIONS
-n No newline is added to the output.

FOR:PRO 1-20 9/83

EO(1) Fortune Systems EO(1)

NAME
ed - text editor

SYNOPSIS
ed [-xJ [-J [nameJ

DESCRIPTION

9/83

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below)
on the named file; that is to say, the file is read into ed's buffer so
that it can be edited.

Ed operates on a copy of any file it is editing; changes made in the
copy have no effect on the file until a w (write) command is given.
The copy of the text being edited resides in a temporary file called
the buffer.

Commands to ed have a simple and regular structure: zero or more
addresses followed by a single character command, possibly followed
by parameters to the command. These addresses specify one or
more lines in the buffer. Missing addresses are supplied by default.

In general, only one command can appear on a line. Certain com­
mands allow the addition of text to the buffer. While ed is accepting
text, it is said to be in input mode. In this mode, no commands are
recognized; all input is merely collected. Input mode is left by typ­
ing a period '.' alone at the beginning of a line.

Ed supports a limited form of reguLar expression notation. A regular
expression specifies a set of strings of characters. A member of this
set of strings is said to be matched by the regular expression. In the
following specification for regular expressions the word 'character'
means any character but newline.

1. Any character except a special character matches itself. Special
characters are the regular expression delimiter plus \ [. and
sometimes 1\ >I- $.

2.

3.

4.

5.

A . matches any character.

A \ followed by any character except a digit or (\) matches that
character.

1\

A nonempty string 5 bracketed [5 J (or [s J) matches any charac-
ter in (or not in) s. In 5, \ has no special meaning, and J may
only appear as the first letter. A substring a-b, with a and b in
ascending ASCII order, stands for the inclusive range of ASCII
characters.

A regular expression of form 1-4 followed by >I- matches a
sequence of 0 or more matches of the regular expression.

1-21 FOR:PRO

EO(1) Fortune Systems EO(1)

6. A regular expression, x, of form 1-8, bracketed \(x \) matches
what x matches.

7. A \ followed by a digit n matches a copy of the string that the
bracketed regular expression beginning with the nth \ (matched.

8. A regular expression of form 1-8, x, followed by a regular
expression of form 1-7, y matches a match for x followed by a
match for y, with the x match being as long as possible while
still permitting a y match.

9. A regular expression of form 1-8 preceded by 1\ (or followed by
$), is constrained to matches that begin at the left (or end at the
right) end of a line.

10. A regular expression of form 1-9 picks out the longest among
the leftmost matches in a line.

11. An empty regular expression stands for a copy of the last regu-
lar expression encountered.

Regular expressions are used in addresses to specify lines and in one
command (see s below) to specify a portion of a line which is to be
replaced. If it is desired to use one of the regular expression meta­
characters as an ordinary character, that character may be preceded
by '\'. This also applies to the character bounding the regular
expression (often II') and to '\' itself.

To understand addressing in ed it is necessary to know that at any
time there is a current line. Generally speaking, the current line is the
last line affected by a command; however, the exact effect on the
current line is discussed under the description of the command.
Addresses are constructed as follows.

1. The character '.' addresses the current line.

2. The character '$' addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. "x' addresses the line marked with the name x, which must be
a lowercase letter. Lines are marked with the k command
described below.

5. A regular expression enclosed in slashes 'I' addresses the line
found by searching forward from the current line and stopping
at the first line containing a string that matches the regular
expression. If necessary the search wraps around to the begin­
ning of the buffer.

6. A regular expression enclosed in queries I?' addresses the line
found by searching backward from the current line and stopping
at the first line containing a string that matches the regular
expression. If necessary the search wraps around to the end of
the buffer.

FOR:PRO 1-22 9/83

ED(1) Fortune Systems ED(1)

7. An address followed by a plus sign '+' or a minus sign '-' fol­
lowed by a decimal number specifies that address plus (resp.
minus) the indicated number of lines. The plus sign can be
omitted.

8. If an address begins with' +' or '-' the addition or subtraction is
taken with respect to the current line; e.g. '-5' is understood to
ll1ean '.-5'.

9. If an address ends with '+' or '-', then 1 is added (resp. sub­
tracted). As a consequence of this rule and rule 8, the address
'-' refers to the line before the current line. Moreover, trailing
'+' and '-' characters have cumulative effect, so '--' refers to the
current line less 2.

10. To mainta~n compatibility with earlier versions of the editor, the
character' , in addresses is equivalent to '-'.

Commands may require zero, one, or two addresses. Commands
which require no addresses regard the presence of an address as an
error. Commands which accept one or two addresses assull1e
default addresses when insufficient addresses are given. If more
addresses are given than such a command requires, the last one or
two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma I,'.
They can also be separated by a semicolon ';'. In this case the
current line '.' is set to the previous address before the next address
is interpreted. This feature can be used to determine the starting
line for forward and backward searches ('I', '?'). The second address
of any two-address sequence must correspond to a line following the
line corresponding to the first address.

In the following list of ed commands, the default addresses are
shown in parentheses. The parentheses are not part of the address,
but are used to show that the given addresses are the default.

As Il1entioned, it is generally illegal for more than one command to
appear on a line. However, most commands can be suffixed by 'p'
or by 'I', in which case the current line is either printed or listed
respectively in the way discussed below.

(.) a
<text>

(., .) c
<text>

9/83

The append command reads the given text and appends it after
the addressed line. '.' is left on the last line input, if there were
any, otherwise at the addressed line. Address '0' is legal for this
command; text is placed at the beginning of the buffer.

1-23 FOR:PRO

ED(1)

(., .) d

Fortune Systems ED(1)

The change command deletes the addressed lines, then accepts
input text which replaces these lines. '.' is left at the last line
input; if there were none, it is left at the line preceding the
deleted lines.

The delete command deletes the addressed lines from the
buffer. The line originally after the last line deleted becomes the
current line; if the lines deleted were originally at the end, the
new last line becomes the current line.

e filename

The edit command causes the entire contents of the buffer to be
deleted, and then the named file to be read in. '.' is set to the
last line of the buffer. The number of characters read is typed.
'filename' is remembered for possible use as a default filename
in a subsequent r or w command. If 'filename' is missing, the
remembered name is used.

E filename

f filename

This command is the same as e, except that no diagnostic results
when no w has been given since the last buffer alteration.

The filename command prints the currently remembered
filename. If 'filename' is given, the currently remembered
filename is changed to 'filename'.

(1,$) g/regular expression/command list

(.) i
<text>

FOR:PRO

In the global command, the first step is to mark every line which
matches the given regular expression. Then for every such line,
the given command list is executed with '.' initially set to that
line. A single command or the first of multiple commands
appears on the same line with the global command. All lines of
a multi-line list except the last line must end with '\'. A, i, and c
commands and associated input are permitted; the '.' terminat­
ing input mode can be omitted if it would be on the last line of
the command list. The commands g and v are not permitted in
the command list.

This command inserts the given text before the addressed line.
'.' is left at the last line input, or, if there were none, at the line
before the addressed line. This command differs from the a
command only in the placement of the text.

1-24 9/83

ED(1) Fortune Systems ED(1)

(., .+l)j

(.) kx

(., .) I

(., .)trn

(., .) p

(., .) p

q

Q

This command joins the addressed lines into a single line; inter­
mediate newlines simply disappear. '.' is left at the resulting
line.

The mark command marks the addressed line with name x,
which must be a lowercase letter. The address form" x' then
addresses this line.

The list command prints the addressed lines in an unambiguous
way: non-graphic characters are printed in two-digit octal, and
long lines are folded. The L command can be placed on the
same line after any non-i/o command.

The move command repositions the addressed lines after the
line addressed by a. The last of the moved lines becomes the
current line.

The print command prints the addressed lines. '.' is left at the
last line printed. The p command can be placed on the same
line after any non-i/o command.

This command is a synonym for p.

The quit command causes ed to exit. No automatic write of a file
is done.

This command is the same as q, except that no diagnostic results
when no w has been given since the last buffer alteration.

($) r filename

The read command reads in the given file after the addressed
line. If no filename is given, the remembered filename, if any, is
used (see e and f commands). The filename is remembered if
there was no remembered filename already. Address '0' is legal
for r and causes the file to be read at the beginning of the
buffer. If the read is successful, the number of characters read
is typed. '.' is left at the last line read in from the hle .

. , .) s/regular expression/replacement!

., .) s/regular expression/replacementlg

9/83 1-25 FOR;PRO

EO(1)

(., .)ta

u

Fortune Systems EO(1)

The substitute command searches each addressed line for an
occurrence of the specified regular expression. On each line in
which a match is found, all matched strings are replaced by the
replacement specified, if the global replacement indicator 'g'
appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is
replaced. It is an error for the substitution to fail on all
addressed lines. Any character other than space or new-line can
be used instead of 'I' to delimit the regular expression and the
replacement. ': is left at the last line substituted.

An ampersand '&' appearing in the replacement is replaced by
the string matching the regular expression. The special meaning
of '&' in this context can be suppressed by preceding it by '\'.
The characters '\ n' where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between '\ ('
and '\)'. When nested, parenthesized subexpressions are
present, n is determined by counting occurrences of '\ (' starting
from the left.

Lines can be split by substituting new-line characters into them.
The new-line in the replacement string must be escaped by
preceding it by '\'.

This command acts just like the m command, except that a copy
of the addressed lines is placed after address a (which can be 0).
'.' is left on the last line of the copy.

The undo command restores the preceding contents of the
current line, which must be the last line in which a substitution
was made.

(1, $) vlregular expression/command list

This command is the same as the global command g except that
the command list is executed g with '.' initially set to every line
except those matching the regular expression.

(1, $) w filename

The write command writes the addressed lines onto the given
file. If the file does not exist, it is created mode 666 (readable
and writable by everyone). The filename is remembered if there
was no remembered filename already. If no filename is given,
the remembered filename, if any, is used (see e and f com­
mands). '.' is unchanged. If the command is successful, the
number of characters written is printed.

(I,$)W filename

FOR:PRO 1-26 9/83

EO(1) Fortune Systems EO(1)

x

($)=

This command is the same as w, except that the addressed lines
are appended to the file.

A key string is dema.nded from the standard input. Later r, e
and w commands will encrypt and decrypt the text with this key
by the algorithm of crypt(l). An explicitly empty key turns off
encryption. This option does not work unless you have the
Development Utilities Set installed on the Fortune 32:16.

The line number of the addressed line is typed. '.' is unchanged
by this command.

!<shell command>

The remainder of the line after the '!' is sent to sh(l) to be inter­
preted as a command. '.' is unchanged.

'(.+1) <newline>

An address alone on a line causes the addressed line to be
printed. A blank line alone is equivalent to '. + 1 p'; it is useful
for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a '?' and returns
to its command level.

Some size limitations: 512 characters per line, 256 characters per glo­
bal command list, 64 characters per filename, and 128K characters in
the temporary file. The limit on the number of lines depends on the
amount of core: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters and all char­
acters after the last newline. It refuses to read files containing non­
ASCII characters.

OPTIONS
-x An x command is simulated first to handle an encrypted file.

Suppresses the printing of character counts bye, r, and w com­
mands.

FILES
Itmp/e*

ed.hup
work is saved here if terminal hangs up

SEE ALSO

9/83

sed(l), crypt(l).

B. W. Kernighan, A Tutorial Introduction to the ED Text Editor

B. W. Kernighan, Advanced editing on UNIX

1-27 FOR:PRO

EO(1) Fortune Systems EO(1)

DIAGNOSTICS
I?narne' for inaccessible file; I?' for errors in commands; I?TMJY for
temporary file overflow.

To protect against throwing away valuable work, a q or e command
is considered to be in error, unless a w has occurred since the last
buffer change. A second q or e is obeyed regardless.

LIMITATIONS
The I command mishandles DEL.
A! command cannot be subject to a g command.

Because 0 is an illegal address for a w command, it is not possible to
create an empty file with ed.

FOR:PRO 1-28 9/83

EXPR(1) Fortune Systems EXPR (1)

NAME
expr - evaluate arguments as an expression

SYNOPSIS
expr arg .. ,

DESCRIPTION
The arguments are taken as an expression. After evaluation, the
result is written on the standard output. Each token of the expres­
sion is a separate argument.

The operators and keywords are listed below. The list is in order of
increasing precedence, with equal precedence operators grouped.

expr I expr
yields the first expr if it is neither null nor '0', otherwise yields
the second expr.

expr & expr
yields the first expr if neither expr is null or '0', otherwise yields
'0'.

expr + expr
expr - expr

addition or subtraction of the arguments.

expr'" expr
expr / expr
expr % expr

multiplication, division, or remainder of the arguments.

expr : expr
The matching operator compares the string first argument with
the regular expression second argument; regular expression syn­
tax is the same as that of ed(l). The \ (... \) pattern symbols
can be used to select a portion of the first argument. Other­
wise, the matching operator yields the number of characters
matched ('0' on failure).

expr reLop expr
where relop is one of < < = = != > = >, yields 'I' if the indi­
cated comparison is true, '0' if false. The comparison is numeric
if both expr are integers, otherwise lexicographic.

(expr)
parentheses for grouping.

EXAMPLES

9/83

To add 1 to the Shell variable a:

a='expr $a + l'
To find the filename part (least significant part) of the pathnarne
stored in variable a, which mayor may not contain 'I':

1-29 FOR:PRO

EXPR(1) Fortune Systems EXPR(1)

expr $a : ' .*/\(.*\)' '1' $a

Note the quoted Shell metacharacters.

SEE ALSO
sh(l), test(l).

DIAGNOSTICS
Expr returns the following exit codes:

o if the expression is neither null nor '0',
1 if the expression is null or '0',
2 for invalid expressions.

FOR:PRO 1-30 9/83

FINO(1) Fortune Systems FINO(1)

NAME
find - fmd files

SYNOPSIS
find pathname-list expression

DESCRIPTION

9/83

Find recursively descends the directory hierarchy for each pathname
in the pathname-list (i.e., one or more pathnames) seeking files that
match a boolean expression written in the primaries given below. [n
the descriptions, the argument 11 is used as a decimal integer where
+n means more than n, -n means less than 11 and 11 means exactly 11.

-atime n
True if the file has been accessed in 11 days.

-exec command
True if the executed command returns a zero value as exit
status. The end of the command must be punctuated by an
escaped semicolon. A command argument I{}' is replaced by
the current pathname.

-group gname
True if the file belongs to group gname (group name or numeric
group 10).

-inum n
True if the file has inode number n.

-links n
True if the file has n links.

-mtime n
True if the file has been modified in 11 days.

-name filename
True if the filename argument matches the current file name.
Normal Shell argument syntax can be used if escaped (watch out
for ,[" I?' and 1*').

-newer file
True if the current file has been modified more recently than the
argument file.

-ok command
Like -exec except that the generated command is written on the
standard output, then the standard input is read and the com­
mand executed only upon response y.

-perm onum
True if the file permission flags exactly match the octal number
Ol1um (see chmod(l». If onum is prefixed by a minus sign, more
flag bits (017777, see stat(2)) become significant and the flags are
compared: (ftags&onum)==onum.

1-31 FOR:PRO

FIND(1) Fortune Systems FINO(1)

-print
Always true; causes the current pathname to be printed.

-size n
True if the file is n blocks long (512 bytes per block).

-type c
True if the type of the file is c, where c is b, c, d or f for block
special file, character special file, directory or plain file.

-user unarne
True if the file belongs to the user uname (login name or numeric
user ID).

The primaries can be combined using the following operators (in
order of decreasing precedence):

1) A parenthesized group of primaries and operators (parentheses
are special to the Shell and must be escaped).

2) The negation of a primary ('1' is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the
juxtaposition of two primaries).

4) Alternation of primaries ('-0' is the or operator).

EXAMPLES
To remove all files named 'a.out' or '*.0' that have not been accessed
for a week:

find I \(-name a.out -0 -name '*.0' \) -atirne +7 -exec rm {} \;

FILES
letdpasswd

letdgroup

SEE ALSO
sh(l), test(l), filsys(5).

FOR:PRO 1-32 9/83

KILL(1) Fortune Systems KILL(1)

NAME
kill - terminate a process with extreme prejudice

SYNOPSIS
kill [-signa] processid ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. If a signal
number preceded by '-' is given as first argument, that signal is sent
instead of terminate (see signal(2)). This kills processes that do not
catch the signal; in particular 'kill -9 ... ' is a sure kill.

By convention, if process number 0 is specified, all members in the
process group (i.e. processes resulting from the current login) are
signaled.

The killed processes must belong to the current user unless he or
she is the manager. To shut the system down and bring it up single
user the manager may use 'kill -1 1'; see init(8).

The process number of an asynchronous process started with '&' is
reported by the shell. Process numbers can also be found by using
ps(l).

SEE ALSO
ps(l), kiU(2), signal(2).

9/83 1-33 FOR:PRO

LOrnN(1) Fortune Systems LOGIN(1)

NAME
login - sign on

SYNOPSIS
login [username 1

DESCRIPTION
The login command is used when a user initially signs on, or it can
be used at any time to change from one user to another. The latter
case is the one summarized above and described here. See Under­
stand Your Fortune System for initial login.

If login. is invoked without an argument, it asks for a user name,
and, if appropriate, a password. Echoing is turned off (if possible)
during the typing of the password, so it will not appear on the writ­
ten record of the session.

After a successful login, accounting files are updated and the user is
informed of the existence of mail, and the message of the day is
printed. The user is also informed of the time he last logged in
(unless he has a .hushlogin. file in his home directory - this is mostly
used to make life easier for non-human users, such as uucp).

Login initializes the user and group IDs and the working directory,
then executes a command interpreter (usually sh(l» according to
specifications found in a password file. Argument 0 of the command
interpreter is "-s h ", or more generally the name of the command
interpreter with a leading dash ("_") prepended.

Login also initializes the environment environ(5) with information
specifying home directory, command interpreter, terminal type (if
available) and user name.

[f the file letclnologin exists login prints its contents on the user's ter­
minal and exits.

Login is recognized by sh(l) and csh(l) and executed directly
(without forking).

FILES
Ie tclutmp

accounting

lusr/adm/wtmp
accounting

lusrlspooVmail/*
mail

letclmotd
message-of-the-day

FOR:PRO 1-34 9/83

LOGIN(1) Fortune Systems LOGIN(1)

/etc/passwd
password file

/etc/nologin
stops log ins

.hushlogin
makes login quieter

/etc/securetty
lists ttys that root may log in on

SEE ALSO
mail(l), newgrp(l), passwd(l), environ(5), passwd(5), getty(8),
init(8), shutdown(8).

DIAGNOSTICS

9/83

"Login incorrect," if the name or the password is bad.

"No Shell", "cannot open password file", "no directory": consult
your dealer.

1-35 FOR:PRO

LPR(1) Fortune Systems LPR(1)

Ipr, print - line printer spooler

SYNOPSIS
print file ...

Ipr -CdhclLmriTn -Fn -n n -p n -z n -f filter -j jobname -u file -0 name
-q string -s cmd -Sn,n,n,A -An -Pname -Ln +Pn +0 +Wn +Vn
+:xx=#: [file ... J

DESCRIPTION
Print runs the shell command 'pr $* /lpr', which prints a paginated
copy of each file on the printer. Note that normal pr(l) options can
also be used (but NOT Ipr options).

Lpr causes the named files to be queued for printing. If no files are
named, the standard input is read.

OPTIONS
Options which do not need an additional argument can be con­
catenated. For example:

"Ipr -mhTcp 3" is the same as "Ipr -m -h -T -c -p 3"

There are a number of options which are ignored if the -C flag is
given, these are preceded by an ,.. The following options are
accepted by Ipr (any , +' options MUST follow any '-' options that
are given):

-An
Number of times to retry an unsuccessful print job. (The default
is 3).

-b name

-c n

banner name to be used on the header page at the beginning of
the print job. The default is the username of the owner of the
print job. Overrides -h option. The -b option forces output of a
header page, regardless of the default set by lpdun.

copy flag causes the print job to be copied into the print queue,
instead of linked. This is usually slower than linking, but guards
against changes that may occur in the file before it is printed.

-C Input is expected to be in a special format, which is currently
used only by Fortune:Word. A number of options are ignored if
this option is given (see note above).

-d Single sheet mode. Causes the printer to pause after printing
each page and wait for a signal from lpdun(l).

+0

FOR:PRO

draft mode printing (faster, and usually lower quality) is used, if
supported by the printer.

1-36 9/83

LPR(1) Fortune Systems LPR(1)

9/83

-f name
filter "name" will be used to do the actual printing instead of
the normal filter. A full pathname MUST be used. The filter
must accept (even if it ignores) the same flags as the normal
filter. (see the man page for lpJ(8).

* -F n

form length is set to n lines for this job. The default form length
is set with lpdun(l). This option is ignored if -S is given. If the
value given does not match the length of the paper on the
printer, top of form will be incorrect for subsequent jobs, unless
manually reset.

-h header page is NOT printed at the beginning of the print job.
Generally used only if just one user is on the system, since this
is the only way to identify the printout. (See also the -b option
of lpdun(l).) This option is ignored if -b is given.

-j name
jobname for this print job. The default is the source filename of
the print job if a file is being printed, shell commands default to
the command, and standard input defaults to "Standard input."

-i input from a pipe (or standard input) is not copied to a tem­
porary file, as is normally done. This is mainly used for jobs so
large that copying them would use up all or most of the free
space on the filesystem Input from a terminal is not allowed,
since there would then be two processes reading from the termi­
nal at the same time. Requests for multiple copies force a copy
file to be created.

*-Ln
line length is set to n characters for this job. Output lines longer
than this are truncated, if the -t option is also given. This option
is ignored if -5 is given. The default line length is set with
lpdun(l).

* +Ln
Changes the left margin to position n. (Must follow the +P
option if the +P is given.) For example, if n is 10, printing
starts in colunm 11.

-m mail(l) is sent to the owner of the job, when the job completes.
If the owner was set with the -0 option, and the owner given is
not a valid usemame, mail is sent to the person who submitted
the job, unless the owner name contains an @ or an !, in which
case it is assumed the owner name is a valid user on another
system

1-37 FOR:PRO

LPR(1) Fortune Systems LPR(1)

-n n
number of copies to be printed, the default is one.

-0 name
owner of the print job. The default is the username. 1his is
NOT used to determine permission to remove jobs from the
queue, but appears on the header page and in the queue listings
as the owner of the job. It is also used to determine who mail
should be sent to with the -m option.

-p n
printer the job is sent to. The default is printer 1.

-Pname
printer type is set to name for this job, rather than the default,
(which is set by dtinit(l).

* +Pn
pitch for this job is set to rl. Some printers (such as the IDS)
only support fixed pitches. For this reason only 10, 12, and 15
pitch are supported.

-q string
Any comment the user wishes can be placed here. At least the
first 15 characters are displayed by lpq(l).

-r remove the files (if any) that were submitted after they are
queued. This is useful for printing files which are tmp files. Also
see the -u option.

-5 cmd
cmd will be executed when the job is ready to be printed, and
its standard output will be sent to the printer. Except for the
time "cmd" is run, this is almost identical to:

cmd Ilpr-i

No file arguments are allowed with this option. "cmd" is parsed
to determine if it contains any Bourne shell metacharacters. If it
does, it is run in a subshell, otherwise an attempt is made to run
the command directly. If the exec fails, an attempt is then made
to run the cmd in a subshell. In both cases, the environment is
set to that of the user when Ipr was invoked. This is currently
used by Fortune:Word to do formatting at print time.

-Sn,n,n,A

FOR:PRO

Use the sheet feeder on this printer, if supported. No checks are
made to ensure the sheet feeder is actually on the printer. At
least 1, and up to 4 comma separated fields follow the '5'. The
first 3 must be numbers from 1 to 3. The first number is the bin
for the first page, the second is for the second page, and the
third is for the third page. If the fourth field is present and is
the letter 'A', the last two bins given will be alternated for the

1-38 9/83

LPR(1) Fortune Systems LPR(1)

9/83

rest of the job; otherwise the last field given will be used as the
bin for the rest of the job. Bin 1 is the 'letterhead' bin, bin 2 is
the 'plain paper' bin, and bin 3 is the 'envelope' bin. (For single
bin feeders, you are considered to have only a 'letterhead' bin.)
Several examples are given below:

lpr -S3,1,2,A

First page is an envelope, second page is letterhead, third page
is plain paper; following this, even pages will be letterhead and
odd pages will be plain paper.

lpr -S1,1,2

First page is letterhead, second page is letterhead, third page is
plain paper; following this, all pages will be plain paper.

The sizes of the paper in each of the bins must be set correctly
for some of the supported sheet feeders to work properly. Use
the -5 option of lpdun(l) to set and display the sizes.

If more bins are specified than are available for the printer type
given (either via command line or from /etddevtype). Those bins
will be converted to I, the 'plain paper' bin, and a diagnostic
will be issued. Similarly, if the -S option is given, and the printer
type does not support sheet feeders at all, the option will be
ignored and a diagnostic issued.

-t truncation of overly long lines will be done. (line length is set
by the -L option or by the default set by Lpdun(l).) The default is
to do no truncation; overly long lines will print on the platen.

-T Transparent mode. All characters in the job are sent to the
printer exactly as they are. This is mainly so the user can include
printer control sequences in their files, such as super/subscripts
(this is particularly useful for moffil) output). This option does
not allow reprinting of pages for print jobs, since the filter has
no way of knowing where pages end. (See lpdun(l) for a
description of this). Tabs are not expanded with this option,
use expand(I) to expand them, if necessary. In addition, LF's are
NOT turned into <LF> <CR> sequences, as this would alter
some printer control sequences.
Unfortunately, only the low 7 bits are used, because using 8 bits
requires that the printer accept AND generate 8 bit characters.
Some printers, like the NEC35XX series, can accept 8 bit charac­
ters, but always generate MARK parity on output. This has the
unfortunate side effect of losing flow control, which is unaccept­
able.

1-39 FOR:PRO

LPR(1) Fortune Systems LPR(1)

-u file
Causes the following file to be removed after printing. nus is
useful with shell scripts that create or use temporary files. The
FULL pathname MUST be given. This option may be given up
to ten times to remove multiple files. The file will be removed
even if job is not successfully printed.

'" +Vn
Vertical pitch is set to n lines per inch. Currently only 6, 8 and
10 lines per inch are su pported, although others may work for
some printers. (10 lines per inch is actually 9.6 lines per inch for
all currently supported printers, so page length may not come
out the way one would expect.)

"'+Wn

-z n

Change to font n. This is only supported for printers (such as
IDS) which can change their fonts under software control.

The size the user wishes reported by lpq for this job can be
placed here. This is useful when no files are given to lpr, since a
size would otherwise not be reported.

+:xx=#:
Can be used to pass any capability from the printcap file. xx is
any 2 letter sequence, the the printcap entry where the character
'V' occurs, and the :'s are REQUIRED.

FILES
lusrlspooVlpd/pr#

spooler directories (# is the printer number)

lusrlspooVlpd/pr#/[cdelt j '"
Control files for use by the spooling system.

lusr/lib/lpd
printer daemon

lusr/lib/lpf
printer filter

/etdprintcap
For printer specific information

letddevtype
For correlation between printer #, printer port, and printer
type, etc.

lusr/admllperr

FOR:PRO

If this file exists and is writable by all, all messages generated by
the spooling system (including those suppressed by silent
options) are written here. In addition, messages which are for
troubleshooting only, (and hence are never output to a

1-40 9/83

LPR(1) Fortune Systems LPR(1)

terminal), are written here. Note that this file grows rapidly and
is generally created only for troubleshooting.

SEE ALSO
dti11it(1), lprm(l), Lpmv(l), Lpq(l), Lpdu11(1), lpf(8) , Lpd(8) , pr(l),
printcap(S).

NOTES
Each page starts at the right margin (whatever it is). Thus, a line
which has a formfeed in it will become 1WO lines on output, the
second of which will start at the right margin. Note also that a
formfeed followed by a newline will result in a blank line at the top
of the new page.

Error messages are written by a routine which attempts to decide
whether it can output a newline, or if the user is using a screen
oriented program, and therefore cannot do a newline (because the
screen might be scrolled). The determination IS made by checking to
see if the terminal from which the job was started is set in raw
and/or cbreak mode. If so, a message is written (in a terminal
independent manner) to the bottom line of the screen; otherwise it
simply outputs the message followed by a newline.

An attempt is made to send error messages to the terminal that
started the job (the stderr, stdout, and stdin of Ipr are checked in
that order until one is found to correspond to a terminal; if one
does, it is passed thru to Ipd and Ipf).

If a spooler program does not inherit the terminal name as in the
program above (or if it is not writable), /dev/tty is tried, then stderr,
which may, in some cases (e.g. a daemon running jobs started from
more than one terminal), be the wrong terminal. The terminal type
is set from the TERM shell variable, or if TERM is not set, it is set to
FT.

Some messages which are of informational nature only (such as
specifying a sheetfeeder when the printer does not support it) are
not written to the terminal if a screen oriented program is running
(they are still written to the error logging file, if it exists).

LIMITA TIONS

9/83

For normal printing (without the -T or -C options) the spooling sys­
tem will not handle videotext characters. They will be printed as
'''Yx' where x is the escape characters. Future versions may handle
videotext in the same manner as Fortune:Word, by looking up wheel
files and mapping videotext sequences to the appropriate output
sequences.

1-41 FOR:PRO

LPRM(1) Fortune Systems LPRM(1)

NAME
Iprm, Ipq, Ipdun, Ipmv - line printer auxilIary programs

SYNOPSIS
lprm [-sp nJ [QID] [filenameJ [ownerJ [pbnameJ ...

Ipq [-aqsp nJ
Ipdun -b on'pff -c n -C -f form -i -I n -mn -n n -N -p n -Pn -F -r ribbon

-s -S[+-][wl,ll, ... w3,l3J -w printwheel -z

Ipmv [-sp nJ printid newid

DESCRIPTION
These commands all default to printer #1, unless the -p n option is
given (where 11 is the printer number).

IMPORTANT NOTE

Iprm

Because of the communications between these programs and the
filter program(s) (see Lpf(8», the action requested may not occur until
the printer is ready to accept more data. The printer may not accept
data if the printer cover is open, if a ribbon breaks, if the paper runs
out, or simply if the data buffer of the printer is full. If for some
reason the printer doesn't request more data, while the filter sends
data to the printer, nothing will happen. For all supported printers
this condition can be cleared by turning the printer off and on. In
this case, some data will probably be lost.

This command allows users to remove jobs from the print queue.
Users may only remove their own jobs; the superuser may, how­
ever, remove any job. Jobs may be identified by qid, filename,
owner, or jobname. These are all reported by Ipq(l).

-s silent option; normal results are not reported, but errors are.

rt is important to note that spaces or special characters in the job­
name must be given exactly. It is usually easiest to give the QID.
ALL jobs matching ANY of the arguments will be removed. Thus,
"lprm olson" will remove all of the jobs in the queue submitted by
"olson l (also any jobs named "olson").

NOTE: Giving one (or more) filenames for a job which has multiple
files (such as 'lpr a.c b.c d.c e.c') results in ALL files for that job
being removed. This is always the case, no matter what type of
argument is given; if more than one file is assocIated with a job, they
will ALL be removed.

Multiple arguments may be given, as:

lprm 456 789 lpr.c root

Each job removed will be reported by QID, unless the -s option was
given. Jobs that are prmting at the time they are removed are
stopped, and a message is printed on the last printed page.

FOR:PRO 1-42 9/83

lPRM(1) Fortune Systems lPRM(1)

Lpq
This command lists the line printer queues and state. The following
options are accepted:

-a all printer queues are displayed. Otherwise, only the informa­
tion for the printer specified is given. The pnnter nu mber is
listed in the first column for the first job in each queue.

-s display the state information; the default is to list only the
queue(s).

-q when given with -s, queue information is displayed, followed by
the state information.

Each entry in the queue is printed showing the owner of the queue
entry, the queue identification number, the type of entry (doc (WP),
file, pipe, or shell), the size (in characters), the file to be printed, the
jobname of the entry, any comments attached to the entry, and the
number of copies to be printed. Jobs are listed in the order they will
be printed. For shell jobs, the shell command is listed under job­
name, unless the -j name option was used with Ipf. The jobname
and comment fields are used entirely for the jobname/comment, if
there is nothing in the other field.

With -s, the state, what (if anything) the printer is waiting on, the
current ribbon, wheel and form, the line width in characters, the
page length in lines, and the process id of the filter currently run­
ning are displayed (if the PIO is not shown, nothing is printing).

lpdun

9/83

Lpdun is used to restart a suspended print job or notify the spooler
of a change in the printer's condition. It is also used to set up
default paper sizes and other default attributes of the printers. With
any ot the options that set defaults (e.g. -5, -c, and -P options) or
with -z, options that interact with the filter (Le., -i, -n, and -N), will
be ignored. With no options, if a job was waiting on a new sheet,
form, etc., it is restarted.

lpdun depends heavily on the normal filter Ipf(8) bemg the printing
filter. If another filter is used, and it does not work in the same
manner, lpdun may not work properly.

-b [onpffl

-c n

[f "on" is given, changes printer so it defaults to printing the
banner page, if "off", changes default to no banner page. Either
way, this can be overridden by options to lpr(l).

changes the default line width (in characters) for printer. (See
also the -Ln option of lpr(l).)

1-43 FOR:PRO

LPRM(1) Fortune Systems LPRM(1)

-c When given with the -5 option, indicates that the sizes given are
in centimeters instead of inches.

-f jDrm
The form type is set to jDrm. lhis, like ribbon is not used by the
spooling system, but may be used by Fortune:Word in the
future.

-i interrupt the printing of a job, if a job is active. Note: many
printers have a large (typically 2000 character) buffer; therefore
printing may continue for a page or more after printing is inter­
rupted.

-In changes the default formlength in lines per page for printer.
(See also the -Fn option of /pr(l).)

-mn

-n n

n is the number of pages to be saved in memory by the filter so
that they can be reprinted if necessary. The range is 0 to 9, with
the default 2. If n is 0, nothing is saved, and no reprinting is
possible. lhis option is provided to allow the user some control
over how much memory is used by the filter; systems that have
little memory or many users will want to keep n low.

restarts a suspended print job and gives the number of pages to
backup (1 means restart at top of current page, unless a new
page was just fed, in which case it means reprint from the previ­
ous page). The header page, if any, is never reprinted.

If printing is suspended while reprinting, and reprinting is again
requested, reprinting starts n pages back from the highest num­
bered page that has actually been printed, NOT n pages back
from the page that is currently printing. That is, if pages 1-21
have been printed, then a request is made to reprint 4 pages
(18-21), and printing is then stopped at page 19, a request to
reprint 2 pages will cause pages 20 and 21 to be reprinted, NOT
pages 18 and 19.

If this option is omitted, or n is 0, printing resumes at the
current position (this is the only exception to the highest num­
bered page rule). "lpdun" is thus equivalent to "lpdun -n 0".

-N This option is used to initialize or reinitialize a printer with a
sheet feeder on it, since some sheetfeeders do not have manual
controls to do this. If a job is running or suspended, the filter is
told to output the appropriate strings, and then suspend itself.
If there is no job running, a special job is submitted to the spool­
ing system requesting that the printer be initialized.

FOR:PRO 1-44 9/83

LPRM(1) Fortune Systems LPRM(1)

lpmv

9/83

-Pn n is the priority level for the spooler to run at. The range may
be from -20 to 20; 0 is the default for most Unix programs. A
negative n will cause the spooler to run at a higher priority, but
will slow other programs down. If n is 20 (the default) the
spooler wIll run with a very low pnority, putting as little load on
the system as possible.

-r name
Changes the default ribbon for the printer to name.

-5 This option is used with single sheet jobs to inform the spooler
that a new sheet has been inserted, and printing can resume.

-5 If followed by '-', no sheet feeder is in use. If followed by '+ ",
a sheet feeder is in use, and up to 6 ',' separated numbers can
follow. These are the width and length (in inches by default) of
the paper in each of up to 3 bins. See the -5 option of lpr(l) for
the correspondence between bin numbers and their contents.
Fields that are left blank (two commas in a row, or a comma
immediately after the' +') are left unchanged.

lpdun -5+3.3,4.5",8.5,11

sets bin 1 to 3.3 inches wide and 4.5 inches long. The width
and length of bin 2 is left unchanged, and bin 3 is set to 8.5
inches wide by 11 inches long.

-w name
changes the default wheel for the printer. (See also the +Wn
option of lpr(l).)

-z reports the sizes of the paper in the various bins, the width in
characters, and the length in lines for single sheet and tractor
feed jobs.

Lpdun is also used to set up new printers (in combination with
dtinit(I». If the printer spooling directories and/or control files are
not found, lpdun will try to create them (The directory
11 /usr/spoolllpd 11 must already exist.)

moves a print job to a new position in the queue. printid and newid
are the numbers displayed by Ipq. in the QID column.

-5 silent option; normal results are not reported, but errors are.

Printid is the id of the print job to be moved.

Newid is the print job printid will be printed before.

Note that moving a job in front of a printing job does NOT interrupt
the printing job to print the moved job, however, the moved job will
be the next job printed.

1-45 FOR:PRO

LPRM(1)

FILES
/usrispoolllpd/pr#

Fortune Systems

spooler directories (# is the printer number)

The file (in each spooling directory)
that records current state of a printer.

letddevtype

LPRM(1)

The master configuration file for serial devices. Checked by Ipq
to see what printers are available.

SEE ALSO
Lpr(l), Lpf(8), Lpd(8).

FOR:PRO 1-46 9/83

LS(1) Fortune Systems LS(1)

NAME
Is - list contents of directory

SYNOPSIS
Is [-abcCdfFgilmqrRstuxl] name ...
II [is options] name .. .
If [is options] name .. .
Ir [is options] name .. .

DESCRIPTION
For each directory argument, is lists the contents of the directory; for
each file argument, is repeats its name and any other information
requested. The output is sorted alphabetically by default. When no
argument is given, the current directory is listed. When several
arguments are given, the arguments are first sorted appropriately,
but file arguments appear before directories and their contents.

There are three major listing formats. The format chosen depends
on whether the output is going to a teletype, and can also be con­
trolled by option flags. The default format for a teletype is to list the
contents of directories in multi-column format, with the entries
sorted down the columns. (Files which are not the contents of a
directory being interpreted are always sorted across the page rather
than down the page in columns. This is because the individual file
names may be arbitrarily long.) If the standard output is not a tele­
type, the default format is to list one entry per line. Finally, there is
a stream output format in which files are listed across the page,
separated by',' characters. The -m flag enables this format; when
invoked as L this format is also used.

OPTIONS

9/83

-a List all entries; usually all files beginning with a '.' are
suppressed.

-b Force printing of non-graphic characters to be in octal notation.

-c Use time of file creation for sorting or printing.

-C Force multi-column output, e.g. to a file or a pipe.

-d If argument is a directory, list only its name, not its contents
(mostly used with -I to get status on directory).

-f Force each argument to be interpreted as a directory and list the
name found in each slot. This option turns off -1, -t, -5, and -r,
and turns on -aj the order is the order in which entries appear in
the directory.

-F Cause directories to be marked with a trailing 'I' and executable
files to be marked with a trailing '*'; this is the default if the last
character of the name the program is invoked with is a 'f.

1-47 FOR:PRO

LS(1) Fortune Systems LS(1)

-g Give group ID instead of owner ID in long listing.

-i Print i-number in first column of the report for each file listed.

-1 List in long format, giving mode, number of links, owner, size
in bytes, and time of last modification for each file. (See below.)
If the file is a special file the size field will instead contain the
major and minor device numbers.

The mode printed under this option contains 11 characters
which are interpreted as follows:

the first character is
b if the entry is a block-type special file;
c if the entry is a character-type special file;
d if the entry is a directory;
m if the entry is a multiplexor-type character special file;

if the entry is a plain file.

The next nine characters are interpreted as three sets of three
bits each. The first set refers to owner permissions; the next to
permissions to others in the same user group; and the last to all
others. Within each set the three characters indicate permission
respectively to read, to write, or to execute the file as a pro­
gram. For a directory, 'execute' permission is interpreted to
mean permission to search the directory for a specified file. The
permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group execute permission character is given as s if the file
has set-group-ID mode; likewise the user execute permission
character is given as s if the file has set-user-ID mode.

The last character of the mode (normally 'x' or '-') is t if the 1000
bit of the mode is on. See chmod(l) for the meaning of this
mode.

When the sizes of the files in a directory are listed, a total count
of blocks, including indirect blocks is printed.

-m Force stream output format.

-n Displays the user or group id number instead of user or group

FOR:PRO

id name in a long listing. This option makes a long listing run
much more quickly, as the names do not have to be searched for
in letdpasswd or letdgroup, respectively.

1-48 9/83

LS(1) Fortune Systems LS(1)

-q Force printing of non-graphic characters in file names as the
character I?'; this normally happens only if the output device is a
teletype.

-r Reverse the order of sort to get reverse alphabetic or oldest first
as appropriate.

-R Recursively list subdirectories encountered.

-s Give size in blocks, including indirect blocks, for each entry.

-t Sort by time modified (latest first) instead of by name, as is nor-
mal.

-u Use time of last access instead of last modification for sorting (-t)
or printing (-I).

-x Force colUlrmar printing to be sorted across rather than down
the page; this is the default if the last character of the name the
program is invoked with is an 'x'.

-1 force one entry per line output format, e.g. to a teletype.

FILES
JetcJpasswd

to get user ID's for 'Is -I'.

Jete/group
to get group ID's for 'Is -g'.

LIMITATIONS

9J83

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is
undesirable as "Is _s" is much different than "Is -s I Ipr". On the
other hand, not doing this setting would make old shell scripts
which used Is almost certain losers.

Column width choices are poor for terminals which can tab.

1-49 FOR:PRO

MAN(1) Fortune Systems MAN(1)

NAME
man - print out the manual

SYNOPSIS
man [section J title ...

DESCRIPTION
Man is a shell program which provides on-line access to sections of
the printed manual. If a section specifier is given, man looks in that
section of the manual for the given titles. Section is an Arabic section
number, i.e. 3. If section is omitted, man searches all sections of the
manual and prints all the sections it finds, if any.

Man pipes its output through more(l) to stop after each page on the
screen. Hit a space to continue, a control-D to scroll 11 more lines
when the output stops. More(l) is smart enough not to ask for ter­
minal input if the output of man has been redirected to a file.

FILES
lusr/manlman?l*

SEE ALSO
more(l).

FOR:PRO 1-50 9/83

MENU(1) Fortune Systems MENU(1)

NAME
menu - execute the Schmidt shell

. unix - provide unix interface for users of the Schmidt shell

SYNOPSIS
menu
.unix

DESCRIPTION

9/83

Menu puts you in the "user-friendly" command interpreter .

. unix allows the user to access the unix system directly from the
Schmidt shell. The unixdoor file contains a list of commands run by
sh(l}. Currently, it contains a single command which calls sh(l) so
the user can interact with the regular unix shell. By editing this file,
a different command processor such as csh(l) can be used instead of
the regular shell.

1-51 FOR:PRO

MKOIR(1) Fortune Systems MKOIR(1)

NAME
mkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates the specified directories. Standard entries, '.', for the
directory itself, and ' .. ' for its parent, are made automatically.

Mkdir requires write permission in the parent directory. The permis­
sion bits of the directories will be 777, as modified by the user's
umask (see sh(1)).

SEE ALSO
chmod(l), rm(l).

DIAGNOSTICS
Mkdir returns exit code 0 if all directories were successfully made.
Otherwise it prints a diagnostic and returns nonzero.

FOR:PRO 1-52 9/83

MORE(1) Fortune Systems MORE(1)

NAME
more, page - file perusal filter for crt viewing

SYNOPSIS
more [-cdflsuJ [-nJ [+linenumberJ [+patternJ [name ... J

page more options

DESCRIPTION
More is a filter which allows examination of a continuous text, one
screenful at a time on a soft copy terminal. It normally pauses after
each screenful, printing --More-- at the bottom of the screen. A
return displays just one more line and a space displays another
screenful. Other possibilities are enumerated later.

OPTIONS

9/83

-c More draws each page by beginning at the top of the screen and
erasing each line just before it draws on it. This avoids scrolling
the screen, making it easier to read while more is writing. This
option is ignored if the terminal does not have the ability to
clear to the end of a line.

-d More prompts the user with the message "Hit space to continue,
Rubout to abort" at the end of each screenful. This is useful if
more is being used as a filter in some setting, such as a class,
where many users may be unsophisticated.

-f This causes more to count logical, rather than screen lines, mean­
ing long lines are not folded. This option is recommended if
nroff output is being piped through ul, since the latter may gen­
erate escape sequences. These escape sequences contain charac­
ters which would ordinarily occupy screen positions, but do not
print when sent to the terminal as part of an escape sequence.
Thus more thinks that lines are longer than they actually are,
and fold lines erroneously.

-I Do not treat "L (form feed) specially. If this option is not given,
more will pause after any line that contains a L, as if the end of
a screenful had been reached. Also, if a file begins with a form
feed, the screen will be cleared before the file is printed.

-n An integer which is the size (in lines) of the window which more
will use instead of the default.

-s Squeeze multiple blank lines from the output, producing only
one blank line. Especially helpful when viewing nroff output,
this option maximizes the useful information present on the
screen.

-u Normally, more will handle underlining such as produced by
nroff in a manner appropriate to the particular terminal: if the
terminal can perform underlining or has a standout mode, more
will output appropriate escape sequences to enable underlining

1-53 FOR:PRO

MORE(1) Fortune Systems MORE(1)

or standout mode for underlined information in the source file.
The -u option suppresses this processing.

+linenumber
Start up at linenumber.

+Ipattern
Start up two lines before the line containing the regular expres­
sion pattern.

If the program is invoked as page, then the screen is cleared before
each scree nfu I is printed (but only if a full screenful is being
printed), and k - 1 rather than k - 2 lines are printed in each screen­
ful, where k is the number of lines the terminal can display.

More looks in the file letc/termcap to determine terminal characteris­
tics, and to determine the default window size. On a terminal capa­
ble of displaying 24 lines, the default window size is 22 lines.

More looks in the environment variable MORE to preset any flags
desired. For example, if you prefer to view files using the -c mode
of operation, the csh command setenv MORE -c or the sh command
sequence MORE='-c' ; export MORE would cause all invocations of
more, including invocations by programs such as man and msgs , to
use this mode. Normally, the user will place the command sequence
which sets up the MORE environment variable in the .cshrc or .profile
file.

If more is reading from a file, rather than a pipe, then a percentage is
displayed along with the --More-- prompt. This gives the fraction of
the file (in characters, not lines) that has been read so far.

Other sequences which may be typed when more pauses, and their
effects, are as follows (i is an optional integer argument, defaulting
to 1) :

i <space>
display i more lines, (or another screenful if no argument is
given).

"D display 11 more lines (a "scroll"). If i is given, then the scroll
size is set to i.

" d same as D (control-D).

i z same as typing a space except that i, if present, becomes the
new window size.

is skip i lines and print a screenful of lines.

if skip i screenfuls and print a screenful of lines.

FOR:PRO 1-54 9/83

MORE(1) Fortune Systems MORE(1)

9/83

"q or Q"
Exit from more.

Display the current line number.

v Start up the editor vi at the current line.

i/expr
search for the i -th occurrence of the regular expression expr. If
there are less than i occurrences of expr, and the input is a file
(rather than a pipe), then the position in the file remains
unchanged. Otherwise, a screenful is displayed, starting two
lines before the place where the expression was found. The
user's erase and kill characters may be used to edit the regular
expression. Erasing back past the first column cancels the
search command.

in search for the i -th occurrence of the last regular expression
entered.

(single quote) Co to the point from which the last search
started. If no search has been performed in the current file, this
command goes back to the beginning of the file.

!command
invoke a shell with command. The characters '%' and '!' in "com­
mand" are replaced with the current filename and the previous
shell command respectively. If there is no current filename, '%'
is not expanded. The sequences "\ %" and "\!" are replaced by
"%" and "!" respectively.

i:n skip to the i -th next file given in the command line (skips to last
file if n doesn't make sense).

i:p skip to the i -th previous file given in the command line. If this
command is given in the middle of printing out a file, then more
goes back to the beginning of the file. If i doesn't make sense,
more skips back to the first file. If more is not reading from a
file, the bell is rung and nothing else happens.

:f display the current filename and line number.

':q or :Q"
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to
type a carriage return. Up to the time when the command character
itself is given, the user may press the line kill character to cancel the
numerical argument being formed. In addition, the user may press
the erase character to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can
press the cancel key. More will stop sending output, and will display

1-55 FOR:PRO

MORE(1) Fortune Systems MORE(1)

the usual --More-- prompt. The user may then enter one of the
above commands in the normal manner. Unfortunately, some out­
put is lost when this is done, due to the fact that any characters
waiting in the terminal's output queue are flushed when the quit sig­
nal occurs.

The terminal is set to noecho mode by this program so that the out­
put can be continuous. What you type will thus not show on your
terminal, except for the I and! commands.

If the standard output is not a teletype, then more acts just like cat,
except that a header is printed before each file (if there is more than
one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n I more -s

FILES
Ie tdtermcap

Terminal data base

lusr/lib/more. help
Help file

SEE ALSO
csh(l), man(l), msgs(l), script(l), sh(l), environ(S).

FOR:PRO 1-56 9/83

MV(1) Fortune Systems MV(1)

NAME
mv - move or rename files

SYNOPSIS
mv [-f] [-i] [-] file1 file2

mv [-f] [-i] [-J file .. . directory

mv [-f] [-i] [-] directory1 ... directory2

DESCRIPTION
Mv moves (renames) file1 to file2.

If file2 already exists, it is removed before file1 is moved. If file2 has
a mode which forbids writing, mv prints the mode (see chmod(2)) and
reads the standard input to obtain a line; if the line begins with y,
the move takes place; if not, mv exits.

In the second form, one or more files are moved to the directory with
their original filenames.

Mv refuses to move a file onto itse If.

Mv also moves (or renames) directory1 to directory2 along with all of
its files and subdirectories.

OPTIONS
-f Stands for force, overrides any mode restrictions or the -i

switch.

-i Stands for interactive mode. Whenever a move is to supercede
an existing file, the user is prompted by the name of the file fol­
lowed by a question mark. If answered with a line starting with
'y', the move continues. Any other reply preve1\lts the move
from occurring.

means interpret all the following arguments to mvas filenames.
This allows filenames starting with minus.

SEE ALSO
cp(l), In(l).

LIMITATIONS

9/83

If filel and file2 lie on different file systems, mv must copy the file
and delete the original. In this case the owner name becomes that of
the copying process and any linking relationship with other files is
lost.

Directories can only be moved within the same parent directory.

1-57 FOR:PRO

NEWGRP(1) Fortune Systems NEWGRP(1)

NAME
newgrp - log in to a new group

SYNOPSIS
newgrp [group]

DESCRIPTION
Newgrp changes the group identification of its caller, analogously to
login(l). The same person remains logged in, and the current direc­
tory is unchanged, but calculations of access permissions to files are
performed with respect to the new group ID.

Newgrp without an argument changes the group identification to the
group in the password file; in effect it changes the group identifica­
tion back to the caller's original group.

A password is demanded if the group has a password and the user
himself does not, or if the group has a password and the user is not
listed in fete/group as being a member of that group.

When most users log in, they are members of the group named
users.

FILES
Jetdgroup

Jetdpasswd

SEE ALSO
login(l), group(5).

LIMITATIONS
There is no convenient way to enter a password into Jete/group.
Use of group passwords is not encouraged, because, by their very
nature, they encourage poor security practices. Croup passwords
may disappear in the future.

FOR:PRO 1-58 9i83

PASSWD(1) Fortune Systems PAS5WD(1)

NAME
passwd - change login password

SYNOPSIS
passwd [name]

DESCRIPTION
This command changes (or installs) a password associated with the
user name (your own name by default).

The program prompts for the old password and then for the new
one. The caller must supply both. The new password must be
typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a
sufficiently rich alphabet and at least six characters long if monocase.
These rules are relaxed lf you are insistent enough.

Only the owner of the name or the manager can change a password;
the owner must prove he knows the old password.

FILES
/etc/passwd

SEE ALSO
login(l), crypt(3), passwd(5).
Robert Morris and Ken Thompson, UNIX password security

LIMIT ATIONS

9/83

The password file information should be kept in a different data
structure allowing indexed access.

1-59 FOR:PRO

PR(1) Fortune Systems PR(1)

NAME
pr - print file

SYNOPSIS
pr [option] ... [file] ...

DESCRIPTION
Pr produces a printed listing of one or more files. The output is
separated into pages headed by a date, the name of the file or a
specified headert and the page number. If there are no file argu­
ments, pr prints its standard input.

OPTIONS
Options apply to all following files but can be reset between files:

-f Use form feeds instead of new lines to separate pages. A form
feed is assumed to use up two blank lines at the top of a page.
(This option does not affect the effective page length.)

-b Take the next argument as a page header.

-In Take the length of the page to be n lines instead of the default
66.

-m Print all files simultaneously, each in one column.

-F Fold, rather than truncate, lines in multi-column output.

-n Produce n-colunm output.

+n
Begin printing with page n.

-sc Separate columns by the single character c instead of by the
appropriate amount of white space. A missing c is taken to be a
tab.

-t Do not print the 5-line header or the 5-line trailer normally sup­
plied for each page.

-wn
For purposes of multi-column output, take the width of the page
to be n characters instead of the default 72.

SEE ALSO
cat(l}.

FOR:PRO 1-60 9/83

PRINTSTRING (1) Fortune Systems PRINTSTRING (1)

NAME
printstring - prints arguments with possible translation

SYNOPSIS
printstring translation-table [argJ ...

DESCRIPTION
Printstring writes its arguments or a translated version of its argu­
ments terminated by a newline on the standard output. It also
understands C-like escape conventions; beware of conflicts with the
shell's use of \:

\ b backspace
\c print line without new-line
\f form-feed
\n new-line
\r carriage return
\t tab
\ \ backs lash
\n the 8-bit character whose ASCII code is the 1, 2 or 3-digit

octal number n, which must start with a zero. This last
escape convention is not yet implemented.

Each argument is looked up in a translation table to determine if a
corresponding value exists. If there is a corresponding value it is
printed. If no value is found, the argument is printed. This does
not apply if the argument begins with a blank or a backslash. If the
argument begins with a blank or a backs lash the argument is printed
untranslated.

Printstring is useful for producing diagnostics in command files and
for sending known data into a pipe.

SEE ALSO
echo(I), sh(l), trans(5).

9/83 1-61 FOR:PRO

PS(1) Fortune Systems PS(1)

NAME
ps - process status

SYNOPSIS
ps [akItUvxJ [pid]

DESCRIPTION
Ps prints process status information. First, ps prints a heading line,
then the information for each process. The default short listing
prints only the PI 0, TrY, TIME, and CMD fields described below,
whereas the long listing prints all fields, as in the following example:

FUGS S UID PID ppm CPU PHI nCE SZ ICRU m TIllE CJO)

IC S 0 0 0 70 0 20 2 runout ! 8:08 snpper
C S 0 1 0 0 30 20 15 Cwait) ! 0:02 /etc/Wt
C S 101 32 1 0 28 20 39 ttJ6,O 02 O:U -csh
C B 101 877 876 42 51 20 37 co 0:01 ps 10:

The fields are as follows:

F Flags associated with the process:

D: Detached process, parent has died.
U: Process has asked that it be locked in core.
W: Traced process, parent process is waiting for it.
T: Traced process.
S: Process is swapped out.
L: Temporarily locked in core (e.g. for raw I/O).
K: System process, not normal program.
C: Loaded in core.

S The state of the process:

0: nonexistent;

UIO

PIO

S: sleeping;
W: waiting;
R: running;
I: intermediate;
Z: terminated;
T: stopped.

The user ID of the process owner.

The process ID of the process, which can be used to kill it. The
listing is sorted in PIO order.

PPID
The process 10 of the parent process.

CPU
Amount of processor utilization, used for scheduling.

FOR:PRO 1-62 9i83

PS(1) Fortune Systems PS(1)

PRI The priority of the process, ranging from highest priority, -128,
to lowest, 127. The process cannot be killed while this number
is negative, which should only happen during certain types of
110.

NICE
Used in priority computation. A lower nice value begets higher
priority. Normal value is 20.

SZ The size in 1K core increments of the data and stack portions of
the process, i.e. exclusive of the code segment if it is sharable.

WCHAN

TIY

The event for which the process is waiting or sleepmg; if blank,
the process is running. This field is either the name of an inter­
nal kernel variable (like runout, lbolt, buf[10J, inode[3J, etc.), a
system call name such as wait or pause (in parentheses), a tty
major/minor dev like ttyO,O, any of the above with an offset, as
in tty1,1+56, or a hex address in rare cases.

The controlling tty for the process. Examples are "co" for con­
sole, "02" for tty02, or I/?" if none.

TIME
The cumulative execution time for the process.

CMD
The command and its arguments. A process that has exited and
has a parent, but has not yet been waited for by the parent is
marked < defunct> . Ps makes an educated guess as to the
command name and arguments given when a process was
created by examining the argument list in the memory image of
the process in memory or the swap area, wherever it is. The
method is inherently somewhat unreliable and in any event a
process is entitled to destroy this information, so the names can­
not be counted on too much.

OPTIONS

9/83

If the pid argument is specified, ps prints information about only that
process.

a gives information about all processes with terminals (ordinarily
only one's own processes are displayed).

k uses the file /usr/sys/core in place of /dev/mem. This is used only
by kernel developers for debugging after a system crash.

gives a long listing.

1-63 FOR:PRO

PS(1) Fortune Systems PS(1)

ttty gives information only about processes associated with terminal
tty.

U Prints the current time, the length of time the system has been
up, and the average number of jobs in the run queue over the
last I, 5 and 15 minutes; followed by the ps information.

v prints the accumulated child user and child system time for each
process in addition to the accumulated time for the process
itself. The I option overrides this option.

x gives information even about processes with no terminal.

FILES
Idev/hdOI

this or another disk is the swap device

Idev/mem
core memory

lusrlsys/core
alternate core file

SEE ALSO
kill(I), pstat(l).

LIMITATIONS
Things can change while ps is running; thus, the picture it gives is
only a close approximation to reality. In rare cases, ps can die from
a segmentation fault because the kernel tables change too quickly.
Some data printed for defunct processes is irrelevant.

FOR:PRO 1-64 9/83

PWAC(1) Fortune Systems PWAC(1)

NAME
pwac - maintain account and group information files

SYNOPSIS
/m/sysman/pwac [option] ... [name] '"

/m/sysman/pwac -a [option] '" [name] .,.

/m/sysman/pwac -d [option] .. , [name] ...

/m/sysman/pwac -t [option] '"

DESCRIPTION
Pwac is used to add, modify, delete and list the information main­
tained in the files /ete/passwd and fete/group.

The simple version of the command lists the information for the
specified accounts or groups and makes any desired changes.

OPTIONS

9/83

Names and options can be given in any order. Options can also be
combined. The following options are recognized by pwac:

-a adds new accounts or groups. The information is normally
taken from a template account or group called proto . Normally
names must start with a lower case letter and contain only lower
case letters and digits. The -1 option allows any names to be
added.

-d deletes accounts or groups.

-t lists all accounts or groups in a table format. Most items are
printed as they are stored. A few items are not printed but are
instead labeled flags. Currently they are 'y' if the account or
group is on, 'n' if the account or group is off, and 'p' if the
account or group has a password. A group that has been
turned off can still be used by its members. Other people, how­
ever, are unable to newgrp(l) to this group even if they know
the password.

In addition, the following options can be used:

-F format
Use format to print only specific information about an account or
group. Most characters are printed without expansion. Many
letters, however, expand to values. For example, the character
'5' expands to the shell, the character 'H' expands to the home
and so forth. A back-slash ('\') causes the next character to be
printed without expansion.

-g Group operations are performed.

1-65 FOR:PRO

PWAC(1) Fortune Systems PWAC(1)

-1 Values are taken literally.

-q (quiet) prints only error messages.

-T name
Use the name as a template instead of the default account
"proto·.

The following options can be used for adding or modifying:

-A group
Adds the accounts specified as members of group. This option
can be repeated several times to add accounts to several groups.

-C comment
Use comment as the comment to be associated with the specified
accounts. On some computers this comment is used to store the
real name of the person who uses this account. On other sys­
tems, it is used to store job control information for sending
requests to other systems.

-D group
Deletes the accounts specified as members of group This option
can be repeated several times to delete accounts from several
groups. It is not an error to attempt to delete an account from a
group in which it is not a member.

-G group or number
Use group as the default group for the specified accounts. When
used with a group operation use number as the group-id-number
in the same manner as the user-id-number described above.

-H directory
Use directory as the new home directory. The character '&' is
replaced with the account or group name. The -1 option
prevents this expansion. This is useful when working with
accounts which are to be used as the templates for making other
accounts.

-n Turn the specified accounts or groups off. This has the same
effect as if the account or group has a password which is unk­
nown.

-N name
Use name as the new name of the specified accounts or groups.
This should normally not be done with more than one account
or group. The rules for a valid name are the same as those used
when adding accounts or groups.

-p password

FOR:PRO

Use password as the password for the specified accounts or
groups. This password is normally encrypted before being
stored. Using the -1 option this can be prevented. In either case

1-66 9/83

PWAC(1) Fortune Systems PWAC(1)

an empty password indicates no password.

-S shell
Use shell as the new shell.

-U number
Use number as the user-id-number. If more than one account is
listed the number is used for the first account, the number plus
one is used for the second account and so forth.

-y Tum the specified accounts or groups on.

SEE ALSO
newgrp(l), passwd(l), sU(l), passwd(5), group(5).

FILES
letdpasswd

account information file

letdgroup
group information file

/etdptmp
lock file

/etdpasswd. temp
account information temporary

/etdgroup. temp
group information temporary

/etdptmp.link
lock file temporary

LIMITATIONS
There is no way to specify that only some items are to be taken
literally.

The rules affecting group membership are somewhat confusing.

9/83 1-67 FOR:PRO

PWO(1) Fortune Systems PWO(1)

NAME
pwd - working directory name

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the pathname of the working (current) directory.

SEE ALSO
cd(l), csh(l).

FOR:PRO 1-68 9/83

RM(1) Fortune Systems RM(1)

NAME
rm, rmdir - remove (unlink) files

SYNOPSIS
rm [-f] [-i] [-r] [-] file ...

rmdir dir ...

DESCRIPTION
Rm removes the entries for one or more files from a directory. If an
entry was the last link to the file, the file is destroyed. Removal of a
file requires write permission in its directory, but neither read nor
write permission on the file itself.

If a file has no write permission and the standard input is a terminal,
its permissions are printed and a line is read from the standard
input. If that line begins with 'y' the file is deleted, otherwise the
file remains.

If a designated file is a directory, an error comment is printed unless
the optional argument -r has been used.

Rmdir removes
empty.

entries for the named directories, which must be

OPTIONS
-f

-i

No questions are asked and no errors are reported.

Asks whether to delete each file (interactive option) and, under
-r, whether to examine each directory.

-r No errors messages are given and rm recursively deletes the
entire contents of the specified directory and the directory itself.

The null option indicates that all the arguments following it are
to be treated as filenames. This allows the specification of
filenames starting with a minus.

SEE ALSO
unlink(2).

DIAGNOSTICS

9/83

Cenerally self-explanatory. It is forbidden to remove the file ' .. '
merely to avoid the antisocial consequences of inadvertently doing
something like 'rm -r . *'.

1-69 FOR:PRO

SH(1) Fortune Systems SH(1)

NAME
sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit,
export, login, newgrp, read, read-only, set, shift, times, trap,
umask, wait - command language

SYNOPSIS
sh [-ceiknrstuvx] [argJ ...

DESCRIPTION
Sh is a command programming language that executes commands
read from a terminal or a file. See invocation for the meaning of
arguments to the shell.

Commands.
A simple command is a sequence of non blank words separated by
blanks (a blank is a tab or a space). The first word specifies the
name of the command to be executed. Except as specified below the
remaining words are passed as arguments to the invoked command.
The command name is passed as argument 0 (see exec(2». The value
of a simple command is its exit status if it terminates normally or
200+status if it terminates abnormally (see signal(2) for a list of status
values).

A pipeline is a sequence of one or more commands separated by I. The
standard output of each command but the last is connected by a
pipe(2) to the standard input of the next command. Each command
is run as a separate process; the shell waits for the last command to
terminate.

A list is a sequence of one or more pipelines separated by;, &, && or
II and optionally terminated by ; or &. ; and & have equal pre­
cedence which is lower than that of && and I I, && and 1 1 also have
equal precedence. A semicolon causes sequential execution; an
ampersand causes the preceding pipeline to be executed without
waiting for it to finish. The symbol && (I I) causes the list following
to be executed only if the preceding pipeline returns a zero (non zero)
value. Newlines may appear in a list, instead of semicolons, to del­
imit commands.

A command is either a simple command or one of the following. The
value returned by a command is that of the last simple command
executed in the command.

for name [in word ...] do list done

FOR:PRO

Each time a for command is executed name is set to the next
word in the for word list If in word '" is omitted then in -$@­
is assumed. Execution ends when there are no more words in
the list.

1-70 9/83

SH(1) Fortune Systems SH(1)

9/83

case word in [pattern [I pattern J ...) list ;; J '" esac
A case command executes the list associated with the first pat­
tern that matches word. The form of the patterns is the same as
that used for filename generation.

if List then List [elif list then List J '" [else list J fi
The List following if is executed and if it returns zero the list fol­
lowing then is executed. Otherwise, the List following elif is
executed and if its value is zero the list following then is exe­
cuted. Failing that the else list is executed.

while list [do list J done
A while command repeatedly executes the while list and if its
value is zero executes the do list; otherwise the loop terminates.
The value returned by a while command is that of the last exe­
cuted command in the do list. Until may be used in place of
while to negate the loop termination test.

(List)
Execute list in a subshelL

{ List}
list is simply executed.

The following words are only recognized as the first word of a com­
mand and when not quoted.

if then else elif fi case in esac for while until do done { }

Command substitution.
The standard output from a command enclosed in a pair of grave
accents (' ') may be used as part or all of a word; trailing newlines
are removed.

Parameter substitution.
The character $ is used to introduce substitutable parameters. Posi­
tional parameters may be assigned values by set. Variables may be
set by writing

name=vaLue [name=value J '"

$ {parameter}
A parameter is a sequence of letters, digits or underscores (a
name), a digit, or any of the characters >10 @ #- ? - $ The value, if
any, of the parameter is substituted. The braces are required
only when parameter is followed by a letter, digit, or underscore
that is not to be interpreted as part of its name. If parameter is a
digit then it is a po~itional parameter. If parameter is >10 or @ then
all the positional parameters, starting with $1, are substituted
separated by spaces. $0 is set from argument zero when the
shell is invoked.

1-71 FOR;PRO

SH(1) Fortune Systems SH(1)

$ {parameter -word}
If parameter is set then substitute its value; otherwise substitute
word.

$ {parameter = word}
If parameter is not set then set it to word; the value of the param­
eter is then substituted. Positional parameters may not be
assigned to in this way.

$ {parameter? word}
If parameter is set then substitute its value; otherwise, print word
and exit from the shell. [f word is omitted then a standard mes­
sage is printed.

$ {parameter +word }
If parameter is set then substitute word; otherwise substitute
nothing.

In the above word is not evaluated unless it is to be used as the sub­
stituted string. (So that, for example, echo ${ d-' pwd'} will only
execute pwd if d is unset.)

The following parameters are automatically set by the shell.

§. The number of positional parameters in decimal.
Options supplied to the shell on invocation or by set.

? The value returned by the last executed command in
decimal.

$ The process number of this shell.
The process number of the last background command
invoked.

The following parameters are used but not set by the shell.

HOME
The default argument (home directory) for the cd command.

PATH
The search path for commands (see execution).

MAIL

PSt

PS2

If this variable is set to the name of a mail file then the shell
informs the user of the arrival of mail in the specified file.

Primary prompt string, by default '$ '.

Secondary prompt string, by default I> '.
IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.
After parameter and command substitution, any results of substitu­
tion are scanned for internal field separator characters (those found
in SIFS) and split into distinct arguments where such characters are
found. Explicit null arguments ("" or ") are retained. Implicit null

FOR:PRO 1-72 9/83

SH(1) Fortune Systems SH(1)

9/83

arguments (those resulting from parameters that have no values) are
removed.

Filename generation.
Following substitution, each command word is scanned for the char­
acters "', ? and [. If one of these characters appears then the word is
regarded as a pattern. The word is replaced with alphabetically
sorted filenames that match the pattern. If no filename is found that
matches the pattern then the word is left unchanged. The character
. at the start of a filename or immediately following a I, and the char­
acter I, must be matched explicitly.

'" Matches any string, including the null string.
? Matches any single character.
[. ..)

Matches anyone of the characters enclosed. A pair of charac­
ters separated by - matches any character lexically between the
pair.

Quoting.
The following characters have a special meaning to the shell and
cause termination of a word unless quoted.

; & () I < > newline space tab

A character may be quoted by preceding it with a \ I. \ newline is
ignored. All characters enclosed between a pair of quote marks
(' '), except a single quote, are quoted. Inside double quotes (••)
parameter and command substitution occurs and quotes the charac­
ters and $.

$* is equivalent to $1 $2 ... whereas
$@ is equivalent to $1 $2

Prompting.
When used interactively, the shell prompts with the value of PSI
before reading a command. If at any time a newline is typed and
further input is needed to complete a command then the secondary
prompt ($PS2) is issued.

Input output.
Before a command is executed its input and output can be redirected
using a special notation interpreted by the shell. The following may
appear anywhere in a simple command or can precede or follow a
command and are not passed on to the invoked command. Substitu­
tion occurs before word or digit is used.

<word
Use file word as standard input (file descriptor 0).

1-73 FOR:PRO

SH(1) Fortune Systems SH(1)

> word
Use file word as standard output (file descriptor 1). If the file
does not exist then it is created; otherwise it is truncated to zero
length.

»word
Use file word as standard output. If the file exists then output is
appended (by seeking to the end); otherwise the file is created.

«word
The shell input is read up to a line the same as word, or end of
file. The resulting document becomes the standard input. If
any character of word is quoted then no interpretation is placed
upon the characters of the document; otherwise, parameter and
command substitution occurs, newline is ignored, and is used
to quote the characters and the first character of word.

< &digit
The standard input is duplicated from file descriptor digit; see
dup(2). Similarly for the standard output using> .

<&-
The standard input is closed. Similarly for the standard output
using> .

It should be noted that the command 'program < file > file' will
probably destroy file before calling program and should be avoided.

If one of the above is preceded by a digit then the file descriptor
created is that specified by the digit (instead of the default 0 or 1).
For example,

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for
the command is the empty file (/dev/null). Otherwise, the environ­
ment for the execution of a command contains the file descriptors of
the invoking shell as modified by input output specifications.

Environment.
The environment is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list; see
exec(2) and environ(S). The shell interacts with the environment in
several ways. On invocation, the shell scans the environment and
creates a parameter for each name found, giving it the corresponding
value. Executed commands inherit the same environment. If the
user modifies the values of these parameters or creates new ones,
none of these affects the environment unless the export command is
used to bind the shell's parameter to the environment. The environ­
ment seen by any executed command is thus composed of any
unmodified name-value pairs originally inherited by the shell, plus

FOR:PRO 1-74 9/83

SH(1) Fortune Systems SH(1)

9/83

any modifications or additions, all of which must be noted in export
commands.

The environment for any simple command may be augmented by pre­
fixing it with one or more assignments to parameters. Thus these two
lines are equivalent

TERM=450 cmd args
(export TERM; TERM=450; cmd args)

If the -k flag is set, aLL keyword arguments are placed in the environ­
ment, even if they occur after the command name. The following
prints 'a=b c' and 'c':

echo a=b c
set -k
echo a=b c

Signals.
The INTERRUPT and QUIT signals for an invoked command are
ignored if the command is followed by &; otherwise signals have the
values inherited by the shell from its parent. (But see also trap.)

Execution.
Each time a command is executed the above substitutions are carried
out. Except for the 'special commands' listed below a new proces.s is
created and an attempt is made to execute the command via an
exec(2).

The shell parameter $PATH defines the search path for the directory
containing the command. Each alternative directory name is
separated by a colon (:). The default path is :lbin:/usrlbin. If the
command name contains a / then the search path is not used. Oth­
erwise, each directory in the path is searched for an executable file.
If the file has execute permission but is not an a.out file, it is
assumed to be a file containing shell commands. A subshell (Le., a
separate process) is spawned to read it. A parenthesized command
is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and
except where specified no input output redirection is permitted for
such commands.

No effect; the command does nothing .
. file

Read and execute commands from file and return. The search
path $P ATH is used to find the directory containing ~le.

break [n j
Exit from the enclosing for or while loop, if any. If 11 is speci­
fied then break n levels.

1-75 FOR:PRO

SH(1) Fortune Systems SH(1)

continue [11 J
Resume the next iteration of the enclosing for or while loop. If
n is specified then resume at the n-th enclosing loop.

cd [arg J
Change the current directory to argo The shell parameter
SHOME is the default argo

eva} [arg ... J
The arguments are read as input to the shell and the resulting
command(s) executed.

exec [arg ... J
The command specified by the arguments is executed in place of
this shell without creating a new process. lnput/output argu­
ments may appear and if no other arguments are given cause
the shell input/output to be modified.

exit [11 J
Causes a non interactive shell to exit with the exit status speci­
fied by 11. If n is omitted then the exit status is that of the last
command executed. (An end of file will also exit from the shell.)

export [name ... J
The given names are marked for automatic export to the environ­
ment of subsequently executed commands. If no arguments are
given then a list of exportable names is printed.

login [arg ... J
Equivalent to 'exec login arg ... '.

newgrp [arg ...]
Equivalent to 'exec newgrp arg ... '.

read name ...
One line is read from the standard input; successive words of
the input are assigned to the variables name in order, with left­
over words to the last variable. The return code is 0 unless the
end-of-file is encountered.

read-only [name ...]
The given names are marked read-only and the values of the
these names may not be changed by subsequent assignment. If
no arguments are given then a list of all read-only names is
printed.

set [-eknptuvx [arg ...] J

FOR:PRO

-e If non interactive then exit immediately if a command fails.
-k All keyword arguments are placed in the environment for a

command, not just those that precede the command name.
-n Read commands but do not execute them
-t Exit after reading and executing one command.
-u Treat unset variables as an error when substituting.
-v Print shell input lines as they are read.

1-76 9/83

SH(1) Fortune Systems SH(1)

9/83

-x Print commands and their arguments as they are executed.
Turn off the -x and -v options.

These flags can also be used upon invocation of the shell. The
current set of flags may be found in $-.

Remaining arguments are positional parameters and are
assigned, in order, to $1, $2, etc. If no arguments are given
then the values of all names are printed.

shift
The positional parameters from $2... are renamed $1 ...

times
Print the accumulated user and system times for processes run
fro m the she ll.

trap [arg j [n] ...
Arg is a command to be read and executed when the shell
receives signal(s) n. (Note that arg is scanned once when the
trap is set and once when the trap is taken.) Trap commands are
executed in order of signal number. If arg is absent then all
trap(s) n are reset to their original values. If arg is the null
string then this signal is ignored by the shell and by invoked
commands. If n is 0 then the command arg is executed on exit
from the shell, otherwise upon receipt of signal 11 as numbered
in signal(2). Trap with no arguments prints a list of commands
associated with each signal number.

umask [nnn]
The user file creation mask is set to the octal value nnn (see
umask(2». If nnn is omitted, the current value of the mask is
printed.

wait [n]
Wait for the specified process and report its termination status.
If n is not given then all currently active child processes are
waited for. The return code from this command is that of the
process waited for.

Invocation.
If the first character of argument zero is -, commands are read from
$HOME/. profile, if such a file exists. Commands are then read as
described below. The following flags are interpreted by the shell
when it is invoked.
-c string

If the -c flag is present then commands are read from string.
-s If the -s flag is present or if no arguments remain then com­

mands are read from the standard input. Shell output is written
to file descriptor 2.

1-77 FOR:PRO

SH(1) Fortune Systems SH(1)

-i If the -i flag is present or if the shell input and output are
attached to a terminal (as told by gtty) then this shell is interac­
tive. In this case the terminate signal SIG1ERM (see signal(2» is
ignored (so that 'kill 0' does not kill an interactive shell) and the
interrupt signal SIGINT is caught and ignored (so that wait is
interruptable). In all cases SICQUIT is ignored by the shell.

The remaining flags and arguments are described under the set com­
mand.

FILES
$HOME/. profile

Itmp/sh*

Idev/null

SEE ALSO
csh(l), exec(2), test(l).

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to
return a non zero exit status. If the shell is being used non interac­
tively then execution of the shell file is abandoned. Otherwise, the
shell returns the exit status of the last command executed (see also
exit).

LIMITATIONS
If < < is used to provide standard input to an asynchronous process
invoked by &, the shell gets mixed up about naming the input docu­
ment. A garbage file Itmp/sh* is created, and the shell complains
about not being able to find the file by another name.

FOR:PRO 1-78 9/83

SLEEP(1) Fortune Systems SLEEP(1)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds.

EXAMPLES
To execute a command after a certain amount of time:

(sleep 105; command)&

To execute a command every so often from the Bourne shell:

while true

SEE ALSO

do
command
sleep 37

done

alarm(2), sleep(3).

LIMITATIONS
Time must be less than 2147483647 seconds.

9/83 1-79 FOR:PRO

SORT(1) Fortune Systems SORT(1)

NAME
sort - sort or merge files

SYNOPSIS
sort [-bcdfimnor] [-txJ f+posl [-pos2J] ... [-oname] [-TdirectoryJ [name]

DESCRIPTION
Sort sorts lines of all the named files together and writes the result
on the standard output. The name '-' means the standard input. If
no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexico­
graphic by bytes in machine collating sequence. The ordering is
affected globally by the options, one or more of which can appear.

The notation +posl -pos2 restricts a sort key to a field beginning at
posl and ending just before pos2. Posl and pos2 each have the form
m.n, optionally followed by one or more of the flags bdfinr, where m
tells the number of fields to skip from the beginning of the line and
n tells the number of characters to skip further. If any flags are
present they override all the global ordering options for this key. If
the b option is in effect n is counted from the first nonblank in the
field; b is attached independently to pos2. A missing .n means .0; a
missing -pos2 means the end of the line. Under the -tx option, fields
are strings separated by x; otherwise fields are nonempty nonblank
strings separated by blanks.

When there are multiple sort keys, later keys are compared only
after all earlier keys compare equal. Lines that otherwise compare
equal are ordered with all bytes significant.

OPTIONS
b Ignore leading blanks, spaces, and tabs in field comparisons.

c Check that the input file is sorted according to the ordering
rules; give no output unless the file is out of sort.

d 'Dictionary' order: only letters, digits and blanks are significant
in comparisons.

f Fold uppercase letters onto lowercase.

Ignore characters outside the ASCII range 040-0176 in non­
numeric comparisons.

m Merge only, the input files are already sorted.

n An initial numeric string, consisting of optional blanks, optional
minus sign, and zero or more digits with optional decimal point,
is sorted by arithmetic value; implies option b.

FOR:PRO 1-80 9/83

SORT(1) Fortune Systems SORT(1)

o The next argument is the name of an output file to use instead
of the standard output. This file can be the same as one of the
inputs.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

T The next argument is the name of a directory in which tem­
porary files should be made.

u Suppress all but one in each set of equal lines. Ignored bytes
and bytes outside keys do not participate in this comparison.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words.
Capitalized words differ from uncapitalized.

sort -u +Of +0 list

Print the password file (passwd(5» sorted by user id number (the 3rd
colon-separated field).

sort -t: +2n letdpasswd

Print the first instance of each month in an already sorted file of
(month day) entries. The options -um with just one input file make
the choice of a unique representative from a set of equal lines
predictable.

sort -urn +0 -1 dates

FILES
lusr/tmp/strrf, Itmp/*

first and second tries for temporary files

SEE ALSO
comm(l), join(l), uniq(l).

DIAGNOSTICS
Comments and exits with nonzero status for various trouble condi­
tions and for disorder discovered under option -c.

LIMITATIONS
Very long lines are silently truncated.

9/83 1-81 FOR:PRO

STTY(1) Fortune Systems STTY(1)

NAME
stty - set terminal options

SYNOPSIS
stty [option ...]

DESCRIPTION
Stty sets certain va options on the current output terminal, placing
its output on the diagnostic output. With no argument, it reports
the speed of the terminal and the settings of the options which are
different from their defaults. With the argument "all", all normally
used option settings are reported. With the argument "everything",
everything stty knows about is printed.

OPTIONS
cbreak make each character available to read(2) as received; no

erase and kill processing, but all other processing (inter­
rupt, quit, ...) is performed

-cbreak make characters available to read only when newline is

cooked
echo
-echo
ek
even
-even
lease
-lease
-nl

nl
odd
-odd
raw

-raw
tabs
-tabs
tandem

-tandem

received
same as '-raw'
echo back every character typed
do not echo characters
set erase and kill characters to # and @

allow even parity input
disallow even parity input
map upper case to lower case
do not map case
allow carriage return for new-line, and output CR-LF for
carriage return or new-line
accept only new-line to end lines
allow odd parity input
disallow odd parity input
raw mode input (no input processing (erase, kill, inter­
rupt, ...); parity bit passed back)
negate raw mode
preserve tabs
replace tabs by spaces when printing
enable flow control,(the system sends out the stop charac­
ter when its internal queue is in danger of overflowing on
input, and sends the start character when it is ready to
accept further input
disable flow control

For the following commands which take a character argument c, you
may also specify c as the "u" or "under', to set the value to be
undefined. A value of ""x", a 2 character sequence, is also inter­
preted as a control character, with ;/"7" representing delete.

FOR:PRO 1-82 9/83

STTY(1) Fortune Systems STTY(1)

9/83

brk c set break character to c (default undefined.) This character
is an extra wakeup causing character.

bsO bsl select style of delay for backspace
crO crt cr2 cr3

select style of delay for carriage return (see ioctl(2))
dec set all modes suitable for Digital Equipment Corp. ope rat­

~g /lsystems" users; (erase, kill, and interrupt characters to
?, U, and C, decctlq and "newcrt".)

eof c set end of file character to c (default control D.)
erase c set erase character to c (default '#', but often reset to "H.)
ffO ff1 select style of delay for form feed
intr c set interrupt character to c (default DEL or "? (delete), but

often reset to "C.)
" kill c set kill character to c (default '@', but often reset to U.)

nlO nil n12 nl3
select style of delay for linefeed

quit c set quit character to c (default control \.)
start c set start character to c (default control Q.)
stop c set stop character to c (default control S.)
tabO tab1 tab2 tab3

tek
ti700

tn300
tty33

tty37

select style of delay for tab
set all modes suitable for Tektronix 4014 terminal
set all modes suitable for Texas Instruments 700 series ter-
minal
set all modes suitable for a General Electric TermiNet 300
set all modes suitable for the Teletype Corporation Model
33 terminal.
set all modes suitable for the Teletype Corporation Model
37 terminal.

vt05 set all modes suitable for Digital Equipment Corp. VT05
terminal

o hang up phone line immediately
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 19200 (exta) extb

Set terminal baud rate to the number given, if possible.

A teletype driver which supports more functionality that the basic
driver is introduced in newtty(4) and fully described in tty(4). The
following options apply only to it.

crt Set options for a CRT (crtbs, ctlecho and, if > = 1200

-crt
crtbs

baud, crterase and crtkill.)
Tum off options set by crt.
Echo backspaces on erase characters.

crterase Wipe out erased characters with "backspace-space­
backspace."

1-83 FOR:PRO

STTY(1)

-crterase
crtkill
-crtkill
ctlecho

-ctlecho

decctlq

Fortune Systems

Leave erased characters visible; just backspace.
Wipe out input on like kill as in crterase.

STTY(1)

Just echo line kill character and a newline on line kill.
Echo control characters as ,/, x" (and delete as II"?".) Print
two backspaces following the EaT character (control D).
Control characters echo as the mselves;
in cooked mode EOT (control-D) is not echoed.

After output is suspended (normally by "S), only a start
character (normally "Q) will restart it.
This is compatible with DEC's vendor supplied systems.

-decctlq After output is suspended, any character typed will res-
tart it; the start character will restart output without pro­
viding any input. (This is the default.)

etxack
flusho

Diablo style etxlack handshaking (not implemented).
Output is being discarded usually because the user typed
control a (internal state bit).

-flusho Output is not being discarded.
litout Send output characters without any processing.
-litout Do normal output processing, inserting delays, etc.
mdmbuf Start/stop output on carrier transitions (not implemented).
-mdmbuf Return error if write attempted after carrier drops.
new Use new driver (switching flushes typeahead).
nohang Don't send hangup signal if carrier drops.
-no hang Send hangup signal to control process group when carrier

drops.
pendin Input is pending after a switch from cbreak to cooked and

will be re-input when a read becomes pending or more
input arrives (internal state bit).

-pendin Input is not pending.
prterase For printing terminal echo erased characters backwards

within "\" and "/".
tilde Convert II"''' to II,,, on output (for Hazeltine terminals).
-tilde Leave poor II"''' alone.

The following special characters are applicable only to the new tele­
type driver and are not normally changed.

flush c set flush output character to c (default control 0.)
Inext c set literal next character to c (default control V.)
rprnt c set reprint line character to c (default control R.)
werase c set word erase character to c (default control W.)

The following options control page mode, a Fortune enhancement.
Page mode may be used only after pageen, and then comes into
effect with a pageon command or when one of the page mode control
characters is pressed.

FOR:PRO 1-84 9/83

STIV(1) Fortune Systems STTY(1)

pageen Enable page mode.
pagelen n Set page length to n (default 25).
pageon Tum on page mode, if enabled.

Page mode prints out < <STOPPED> > at the bottom of the screen
and waits for input, whenever page/en lines has been printed, and
interesting stuff would scroll off the top of the screen. (See more(1).
When the < <STOPPED> > prompt is printed, one of the follow­
ing characters will print the next page, the next line, the next half­
page, or clear the screen and print a page. Any other character will
continue printing and turn off page mode.

dear c set clear character to c (default control N.)
nxhalf c set next half page character to c (default control B.)
nxpage c set next page character to c (default control F.)
nxline c set next line character to c (default control Eo)

SEE ALSO
tabs(l), tset(l), ioctl(2), newtty(4), tty(4).

9/83 1-85 FOR:PRO

TEE(1) Fortune Systems TEE(1)

NAME
tee - pipe fitting

SYNOPSIS
tee [-aJ [-iJ [filej ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes
copies in the files.

OPTIONS
-a Causes the output to be appended to the files rather than

overwriting them

-i Ignores interrupts.

FOR:PRO 1-86 9/83

TEST(1) Fortune Systems TEST(1)

NAME
test - condition command

SYNOPSIS
test expr

DESCRIPTION

9/83

test evaluates the expression expr, and if its value is true then returns
zero exit status; otherwise, a non zero exit status is returned. test
returns a non zero exit if there are no arguments.

The following primitives are used to construct expr.

-d file
true if the file exists and is a directory.

-£ file
true if the file exists and is not a directory.

-n sl
true if the length of the string 51 is nonzero.

n1 -eq n2
true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -It, or -Ie can be used in place of -eq.

-r file
true if the file exists and is readable.

-s file
true if the file exists and has a size greater than zero.

sl true if 51 is not the null string.

sl = s2
true if the strings 51 and 52 are equal.

sl != s2
true if the strings 51 and 52 are not equal.

-t [fildes J
true if the open file whose file descriptor number is filde5 (1 by
default) is associated with a terminal device.

-wfile
true if the file exists and is writable.

-z sl
true if the length of string 51 is zero.

These primaries can be combined with the following operators:

-a binary and operator

-0 binary or operator

1-87 FOR:PRO

TEST(1) Fortune Systems TEST(1)

(expr)
parentheses for grouping.

unary negation operator

-a has higher precedence than -0. Notice that all the operators and
flags are separate arguments to test. Notice also that parentheses
are meaningful to the Shell and must be escaped.

SEE ALSO
find(l), sh(l).

FOR:PRO 1-88 9/83

TRUE(1) Fortune Systems TRUE(1)

NAME
true, false - provide truth values

SYNOPSIS
true

false

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccessfully.

EXAMPLE
True and false are typically used in input to sh(l) such as:

SEE ALSO
sh(l).

while true
do

command
done

DIAGNOSTICS
True has exit status zero, fnlse nonzero.

9/83 1-89 FOR:PRO

TTY(1) Fortune Systems TTY(1)

NAME
tty - get terminal name

SYNOPSIS
tty

DESCRIPTION
Tty prints the pathname of the user's terminal.

DIAGNOSTICS
'not a tty' if the standard input file is not a terminal.

FOR:PRO 1-90 9/83

WAIT(1) Fortune Systems WAIT(1)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION
Wait until all processes started with & have completed, and report
on abnormal terminations.

Because the wait(2) system call must be executed in the parent pro­
cess, the Shell itself executes wait, without creating a new process.

SEE ALSO
sh(l).

LIMITATIONS

9/83

Not all the processes of a 3- or more-stage pipeline are children of
the Shell, and thus can't be waited for. (This does not apply to
csh(l).) Csh prints out the names and process numbers of all back­
ground processes when wait is interrupted, while sh does not.

1-91 FOR:PRO

WALL(1)

NAME
wall - write to all users

SYNOPSIS
wall

DESCRIPTION

Fortune Systems WALL{1)

Wall reads its standard input until an end-of-file. It then sends this
message, preceded by 'Broadcast Message ... ', to all logged in users.

The sender should be manager to override any protections the users
may have invoked.

FILES
/dev/tty?

/etdutmp

SEE ALSO
mesg(l), write(l).

DIAGNOSTICS
'Cannot send to ... ' when the open on a user's tty file fails.

FOR:PRO 1-92 9/83

WHAT (1) Fortune Systems WHAT(1)

NAME
what - identify SCCS files

SYNOPSIS
what files

DESCRIPTION
What searches the given files for all occurrences of the pattern that
get(l) substitutes for @(#) (this is @(#) at this printing) and prints
out what follows until the first IV, >, new-line, \' or null character.
For example, if the C program in file f.e contains

char ident[J = "@(#)identification information ";

and f.e is compiled to yield £.0 and a.out, then the command

what f.c f.o a.out

prints

f.c: identification information

f.o: identification information

a.out:
identification information

What is intended to be used in conjunction with the sces command
get(l), which automatically inserts identifying information, but it can
also be used where the information is inserted manually.

SEE ALSO
get(l), help(l).

DIAGNOSTICS
Use he/p(1) for explanations.

LIMITATIONS

9/83

It's possible that an unintended occurrence of the pattern @(#)

could be found just by chance, but this causes no harm in nearly all
cases.

1-93 FOR:PRO

WHO(1) Fortune Systems WHO(1)

NAME
who - who is on the system

SYNOPSIS
who [who-file] [-f] [am IJ

DESCRIPTION
Who, without an argument, lists the login name, terminal name, and
login time for each current user.

Without an argument, who examines the letclutmp file to obtain its
information. If a file is given, that file is examined. Typically the
given file is /usr/admtwtmp, which contains a record of all the log ins
since it was created. Then who lists log ins , logouts, and crashes
since the creation of the wtmp file. Each login is listed with user
name, terminal name (with '/devl' suppressed), and date and time.
When an argument is given, logouts produce a similar line without a
user name. Reboots produce a line with 'x' in the place of the device
name, and a fossil time indicative of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who
tells who you are logged in as.

OPJ'IONS
-f prints in Fortune friendly format.

FILES
/etciutmp

SEE ALSO
getuid(2), utmp(S).

FOR:PRO 1-94 9/83

WRITE(1) Fortune Systems WRITE(1)

NAME
write - write to another user

SYNOPSIS
write user [ttynameJ

DESCRIPTION
Write copies lines from your terminal to that of another user. When
first called, it sends the message

Message from yourname you rttyna me ...

The recipient of the message should write back at this point. Com­
munication continues until an end of file is read from the terminal or
an interrupt is sent. At that point write writes 'EOT' on the other
terminal and exits.

If you want to write to a user who is logged in more than once, the
ttyname argument can be used to indicate the appropriate terminal
name.

Permission to write can be derued or granted by use of the mesg
command. At the outset writing is allowed. Certain commands, in
particular nroff and pr(l) disallow messages in order to prevent
messy output.

If the character 'I' is found at the beginning of a line, write calls the
shell to execute the rest of the line as a command.

The following protocol is suggested for using write: when you first
write to another user, wait for him to write back before starting to
send. Each party should end each message with a distinctive
signal- (0) for 'over' is conventional so that the other can reply.
(00) for 'over and out' is suggested when the conversation is about
to be terminated.

FILES
/etdutmp

to find user

Ibinlsh
to execute '!'

SEE ALSO
mail(l) , mesg(l), who(l).

9/83 1-95 FOR:PRO

INTRO(4) Fortune Systems INTRO(4)

NAME
intro - introduction to special files

DESCRIPTION

9/83

Each type of device is accessed through a 'driver' module in the ker­
nel. These drivers can be accessed through 'special files', which can
be opened, closed, read, and written, just like ordinary disk files.
Some of the special files support Iseek(2), and many of them support
ioctl(2). By heavily entrenched convention, unix special files are
found in the /dev directory.

Special files are created by calling the mknod(2) system call The
mknod(l) program can be used to make a special file from the shell,
but that is never necessary on the Fortune Systems 32:16 because
when the system comes up, the program mkdevs(8) is run, which
correctly makes the files in /dev automatically. Manual pages in Sec­
tion 4 describe the device drivers on the Fortune Systems 32: 16.

These special files in /dev are found on all configurations:

ttyOO Built-in keyboard
tty01 Rear serial port
console System console
conf Configuration information.
mem Memory.
kmem Kernel data memory
null Empty file on input, black hole on output.
tty The controlling terminal of the opening process.
fdO[0-7] Built-in floppy disk

rfdO[O-7]

fd[1-3][0-7]
rfd[l-3][0-7]

buffered (block) interface, partitions 0-7
Built-in floppy disk
raw (character) interface, partitions 0-7
Other optional floppy disks, buffered interface.
Other optional floppy disks, raw interface.

Some files for accessing optional plug-in device controller cards:

ttyxx Terminal special files, from tty02 on up.
For accessing Comm-A, cards.

hd[O-3][0-7] Optional hard disk(s)
buffered (block) interface, partitions 0-7

rhd[0-3][0-7] Optional hard disk(s)
raw (character) interface, partitions 0-7

Some of these devices can be accessed through other names in
/dev for the convenience of certain application programs.

lp
tar
culO, cuaO

Line printer.
Default device used by tar(l), same as rfd02.
tty ports for cu(l) and uucp(l).

2-1 FOR:PRO

INTRO(4) Fortune Systems INTRO(4)

SEE ALSO
mkdevs(l), mknod(l), mknod(2), ttys(8),

All of Section 4.

FOR:PRO 2-2 9/83

CONSOLE (4) Fortune Systems CONSOLE (4)

NAME
console - Fortune 32:16 system console

DESCRIPTION
Idevlconsole is a character terminal. The built-in keyboard port, also
known as /devlttyOO, operates at 2400 baud. The keyboard is a stan­
dard ASCII device. The front port is not a standard RS-232 port, it
only drives 5 volts, instead of the standard 12. The built-in 25x80
monitor operates at a maximum effective rate of 45000
characters/second. It operates according to AT&T Presentation Level
Protocol, as defined in /usrlincludelvideotex.h.

FILES
/dev/console

/dev/ttyOO

/usr/include/videotex. h

SEE ALSO
tty(4) , reconf(8).

DIAGNOSTICS
All UNIX internal problems are reported on the built-in monitor.

9/83 2-3 FOR:PRO

FLOPPY (4) Fortune Systems FLOPPY (4)

NAME
floppy - built-in floppy disk drive

DESCRIPTION
The on-board floppy disk controller supplied with the Fortune 32:16
is based on the NEe 765A. The software currently supports MFM,
8O-tra~k, double-sided, double-density (MFM) disks with 5 lK blocks
per track. This adds up to BOOK bytes per disk. There can be up to
3 additional drives attached. See diskconf(S) to find out how floppy
disks are arranged.

FILES
/dev/fd[0-4J[0-7]

/dev/rfd[0-4] [0-7]

SEE ALSO
disk(S)

FOR:PRO 2-4 9/83

HO(4) Fortune Systems HO(4)

NAME
Hard Disk - Winchester disks

DESCRIPTION
The hard disks currently offered for the Fortune 32:16 are 5-1/4'
Winchester disks, based on the Seagate-506 electrical interface. The
controller is a version of the Western Digital 1000 Hard Disk Con­
troller. Each controller can support 4 disk drives. The maximum
effective throughput (by dumping a large disk file into /dev/null) is
around 80,000 bytes/second. The raw device (/dev/rhd??) provides
faster throughput in large sequential transfers. The disks are laid
out in from 0 to 7 partitions, described by a table at the beginning of
the disk. See diskconf(5).

FILES
/dev/hd[0-3] [0-7]

/dev/rhd[0-3 J [0-7]

SEE ALSO
disk(5), diskconf(5).

9/83 2-5 FOR:PRO

MEM(4) Fortune Systems MEM(4)

NAME
mem, kmem, conf - main memory

DESCRIPTION
Mem is a special file that is an image of the main memory of the com­
puter. It can be used, for example, to examine the system

Byte addresses in mem are interpreted as physical memory
addresses. References to non-existent locations cause errors to be
returned.

Examining and patching device addresses is likely to lead to unex­
pected results when read-only or write-only bits are present.

The file kmem is the same as mem except that kernel data memory,
rather than physical memory, is accessed.

/dev/Conf is a window onto a small area in low core which contains a
copy of the data in the EAROM. It is the only memory file that is
accessible to user-written programs.

FILES
/dev/mem

/dev!kmem

FOR:PRO 2-6 9/83

NEWTTY(4) Fortune Systems NEWTTY(4)

NAME
newtty - summary of the "new" tty driver

SYNOPSIS
stty new

stty new crt

DESCRIPTION

9/83

This is a summary of the new tty driver, described completely, with
the old terminal driver, in tty(4). The new driver is largely compati­
ble with the old but provides additional functionality for page con­
trol.

CRTs and printing terminals.

The new terminal driver acts differently on CRTs and printing termi­
nals. On CRTs at speeds of 1200 baud or greater it normally erases
input characters physically with backspace-space-backspace when
they are erased logically; at speed under 1200 baud this is often
unreasonably slow, so the cursor is normally moved to the left. This
is the behavior when you say stty new crt; to have the tty driver
always erase the characters say stty new crt crterase crtkill, to have
the characters remain even at 1200 baud or greater say stty new crt
-crterase -crtkill.

On printing terminals the command stty new prterase should be
given. Logically erased characters are then echoed printed back­
wards between a '\' and an 'I' character.

Other terminal modes are possible, but less commonly used; see
tty(4) and stty(l) for details.

Input editing and output control.

When preparing input the character #: (normally changed to "H
using stty(l)) erases the last input character, "w the last input word,

" and the charac!er @ (often changed to U) erases the entire current
input line. A R character causes the pending input to be retyped.
Lines are terminated by a return or a newline; a "0 at the beginning
of a line generates an end-of-file.

Control characters echo as "x when typed, for some x; the delete
character is represented as "?

" The character Y can be typed before any character so it can be
entered without its special effect. For backwards compatibility with
the old tty driver the character '\' prevents the special meaning of
the character and line erase characters, much as "Y does.

Output is suspended when a "s character is typed and resumed
when a "Q character is typed. Output is discarded after a "0 char­
acter is typed until another "0 is typed, more input arrives, or the
condition is cleared by a program (such as the shell just before it

2-7 FOR:PRO

NEWTTY(4)

prints a prompt.)

Page Mode.

Fortune Systems NEWTTY(4)

When page mode is set, printing more than a screenful of characters
stops the display, the legend n < <STOPPED> > n prints at the bot­
tom of the screen, and the user must type a ch~racter before the
printout continues. The nxpage character (default F) shows another
page. The nxhalf character ~default liB) shows another half-page.
The nxline character (default E) shows another line, and the nxpage
character (default liN) clears the screen and shows a page.

Stty pageen enables the mode. Enabled means that is possible to tum
on page mode. If the mode is not enabled, the above four special
characters are not interpreted. Page mode can then actually be
turned on when cbreak and raw modes are off, and echo mode is
on. When the mode is enabled, any of the above four characters, or
the conupand stty pageon, turns page mode on. The printer restart
(default Q) restarts the printout and tum page mode off. Typing
any: other character to the n < <STOPPED> > n prompt is equivalent
to I\F. Stty pagelen 25 sets the length of the page to be used, the
default is 25 lines, the screen length of the Fortune Intelligent
Workstation. Signals.

II
A non-interactive pr?gram is interrupted by ~ ? (delete); this charac-
ter is often reset to C using stty(l). A quit \ character causes pro­
grams to terminate like II? does, but also causes a core image file to
be created which can be examined with a debugger. This is often
used to stop runaway processes. Interactive programs often catch
interrupts and return to their command loop; only the most well
debugged programs catch quits.

See tty(4) for a more complete description of the new terminal
driver.

SEE ALSO
csh(l), newcsh(l), stty(l), tty(4).

LIMITA TIONS
There is always room for more complexity in this area. The page
mode scheme is wired into Fortune terminal control codes. To
operate well with cursor-control programs, it should be sensitive to
cursor controls, this might downgrade efficiency.

FOR:PRO 2-8 9/83

NULL (4) Fortune Systems

NAME
null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
Idev/null

9/83 2-9

NULL(4)

FOR:PRO

510(4) Fortune Systems 510(4)

NAME
sio, comrn-a - Standard and optional serial I/O ports

DESCRIPTION
The Fortune 32:16 has two asynchronous serial ports as standard
equipment. One is used for the keyboard input and its beeper out­
put. The other is available for RS-232C connection at the back of the
main unit. Each optional Communications-A board has either two or
four asynchronous serial ports.

All of these devices are accessed through the 'tty' interface described
in tty(4).

The functionality of these serial I/O ports is provided by Zilog Z-80
SIO (motherboard ports) and DART (Comm-A ports) chips. The
Zilog DART is a functional subset of the Z-80 SIO, lacking only the
synchronous capabilities. These ports can operate at the standard
UNIX speeds, 0-19200 baud, with the exception that Comm-A ports
cannot operate at 200 baud. The setting for the input baud rate
determines both the input and output baud rates. The output baud
rate setting is explicitly ignored. The default baud rates for ttyOO
and tty01 are determined by values stored in the EAROM. See
reconf(8).

The DART interrupts the CPU for each character input or output;
however, for efficiency, input characters are batched up and sent to
the reading process with a delay of no more than 1120 of a second.

The device file names for the standard SIO ports are Idev/ttyOO
(built-in keyboard), and Idev/tty01, (RS-232C port at rear of main
unit). The device file names for the Comm-A ports are Idev/tty02,
Idev/tty03, etc. Later, other communications devices may also be
known by ttyxx device names, the actual name assignment depend­
ing on the placement of the boards in the I/O option slots.

Electrically, the inputs and outputs of the serial ports described here
appear at the back of the main unit on RS-232C connectors. (RS-
232C is the Electronic Industries Association standard for serial I/O.)
The world is divided into two kinds of equipment, as far as RS-232C
connectors are concerned: Data Communication Equipment (DCE),
e.g. modems, and Data Terminal Equipment (DTE), e.g. CRT termi­
nals. You can connect DCE to DTE with a simple, straight-through
cable. A special adaptor cable known as a "null modem" must be
used to connect DTE to DTE, and a "null terminal" adaptor cable
must be used to connect DCE to DCE. A port on a host computer
might be connected to either a DCE or DTE depending on the appli­
cation, requiring a special cable in one of the two cases.

The serial ports on the computers used for the initial development of
UNIX were wired as DTE, and the modem control signals are
described in the software and the manual pages as if this were the

FOR:PRO 2-10 9/83

SI0(4) Fortune Systems SI0(4)

9/83

case (Fortune retains this nomenclature for standardization with
UNIX practice). However, the Fortune 32:16 RS-232C ports are
wired as DCE so that terminals can be connected with a simple,
straight-through cable. Therefore, modems must be attached with
special adaptor cables. All of this can be a little confusing, so be
careful to note that when the tty(4) manual page talks about DCD,
you can think of this as if it were describing the DCD signal at the
modem end of a modem adaptor cable. (In fact, on the host port, it
corresponds to the DTR pin.) In general, therefore, the tty(4) man
page nomenclature and the software names for the modem control
bits follow the names at the modem end of a modem adaptor cable
as shown below. The tables below show the correspondence,
between the DART signals, RS-232C connector pinouts, and modem
cable connections. Note that the Zilog Z-80 DART is designed to be
used as ow.
The pinouts on the RS-232C ports look like this:

DART PIN NAME
RxD < --- 2 TxDTransmitted Data
TxD --- > 3 RxDReceived Data
ClS < --- 4 RTSRequest to Send
DTR --- > 5 ClSClear to Send
RlS --- > 6 DSRData Set Ready
GND 7 GNDGround
DTR --- > 8 DCDData Carrier Detect
DCD < --- 20 DTRData Terminal Ready
RI < --- 25 TRBTrouble

Note that the use of pin 25 is not officially defined in the RS-232C
specification, but many printers and modems use it to indicate some
problem (out of paper, taken off line, etc.).

When a port is to be connected to a modem, an adaptor cable must
be used. (Note that this adaptor cable is not the same as a 'null
modem' adaptor.) This adaptor cable has the following connections:

DART HOST MODEM
RxD TxD 2 <--- 3 RxD Received Data
TxD RxD 3 ---> 2 TxD Transmitted Data
CTS RTS 4 <--- 5 crs Clear to Send
DTR CIS 5
RTS DSR 6 ---> 4 RTS Request to Send
GND GND 7 7 GND Ground
DTR DCD 8 ---> 20 DTR Data Terminal Ready
DCD DTR 20 <--- 8 DCD Data Carrier Detect
RI BUSY 25 <--- 6 DSR Data Set Ready

The end of the cable that connects to the Fortune 32:16 must ter­
minate in a male connector.

2-11 FOR:PRO

510(4) Fortune Systems 510(4)

NOTE: Noise on the input control lines on pins 4, 20, and 25 can put
a heavy interrupt load on the CPU, crippling or even stopping sys­
tem activity. Therefore, these pins are all pulled to -12 volts through
a 15k ohm resistor (inactive logic level), so that if left unconnected,
they do not fluctuate from noise. A connected peripheral device
must actively pull them up to the high level to change their state.
As per industry standard, pin 9 is connected to + 12 volts, and pin
10 is connected to -12 volts, for the benefit of short-haul moderns.
These voltages will current-limit at 100 milliamperes. (In the official
EIA RS-232C spec, these pins are defined as "Reserved for dataset
testing".)

The keyboard jack on the front of the unit is intended only for con­
nection of the standard Fortune keyboard. The keyboard input and
output signals are connected directly to the Z-80 DART chip, which
does not use RS-232C voltage levels. Permanent damage is done to
that chip if you connect an RS-232C device to this jack. For the
unusual case that needs to use the front keyboard port for some­
thing other than the normal keyboard, the pinouts look like this:

1 Shield
3 GND
4 +5V
5 +5V
6 ---> Data to keyboard.
7 < --- Data from keyboard.
8 gnd

FILES
Idev/tty[OI][0-9]

Idev/console

SEE ALSO
Zilog Z-80 SID Technical ManuaL
tty(4)

LIMITATIONS
Because of a limitation of the baud rate generation hardware, the 200
baud speed is not supported on the Corom-A. The serial port on the
back of the motherboard handles input slightly more efficiently than
the Comm-A ports, its use is preferred for high-speed input from
another computer.

FOR:PRO 2-12 9/83

TTY (4) Fortune Systems TTY (4)

NAME
tty - general terminal interface

SYNOPSIS
#include <sgtty.h>
#include <sys/uy.h>
#include <sys/ioctl.h>

DESCRIPTION

9/83

The serial communications lines, /dev/tty"', and the console
keyboard-screen combination, /dev/console, are interfaced to the sys­
tem through this driver. These devices are called tty devices, or just
tty's.

What happens when you open, close, read, and write a tty depends
heavily on the many options you can set with calls to ioctl(2). We
will approach the matter by describing all the basic mechanisms and
how the options affect them. Some of the options actually affect the
hardware, such as setting the speed of a serial device, but most of
the options affect the software behavior of the device.

Unfortunately, you won't find a lot of cleanliness, modularity, or
regularity in anything having to do with tty devices. The whole sub­
ject is an incredible morass of compatability with past versions of the
system, Berkeley extensions, Fortune extensions, and the painful
truth that dealing with serial terminals in the real world is like unto
the problems faced at the Tower of Babel. We refer the reader to the
documentation for the standard Bell Version 7 release or the Berke­
ley release, if he wants to know which features of this driver are
standard Version 7, which came from Berkeley, and which are
Fortune extensions.

For our discussion of control characters, we will often use the official
ASCII names as found in ascii(7). We will use all caps for these
names, as in CR for carriage return.

Line disciplines.

Tty devices do all their input and output through a kind of driver
called a line discipline. In the case where there is more than one line
discipline available, line discipline switching is accomplished with the
TIOCSETD ioctl:

int ldisc = LDISC; ioctl(filedes, TIOeSETD, &ldisc);

where LOISe would be the manifest constant from <sys/ioctl.h>
for the desired line discipline. The active line discipline can be
obtained with the TIOCGETD ioctl. Pending input is discarded
when the line discipline is changed.

In this version of the system there is only one discipline available,
the new tty line discipline from the 4.1 Berkeley Software Distribu­
tion, with further extensions added at Fortune Systems. The

2-13 FOR:PRO

TTY (4) Fortune Systems TTY (4)

manifest constant for this line discipline, found in <sys/ioctl.h>, is
NTIYDISC.

This section describes both the characteristics of this particular line
discipline and characteristics that are common to all line disciplines;
unfortunately, the distinction is somewhat blurred.

First open and last close.

Like most UNIX devices, a tty is in a dormant state when it is not
open by any process. It makes the transition from this dormant
state to an active state when a process opens it. This kiss of life is
referred to as 'first open'. Many processes can have the device open
at the same time, and it will remain active until the last of those
processes closes it, an event known as 'last close'.

The control terminal and process groups.

Each process has a pointer to a tty known as its control terminal. The
special file /dev/tty is a handy name for the control terminal of the
process that opens it. This special device can be used by programs
that wish to be sure of writing messages on the control terminal no
matter how output has been redirected. It can also be used by pro­
grams that demand a file name for output, when terminal output is
desired and it is tiresome to find out which terminal is currently in
use.

Each process has a process ID and a process group ID. There can be
only one process with a certain process ID, but more than one pro­
cess can have a given process group ID. The process group ID of 0
is the null process group, i.e. belonging to process group 0 is like
belonging to no process group. Each tty device has a process group
ID associated with it.

If a process whose process group 10 is 0 opens a tty device, then
that tty device becomes the control terminal for that process, and the
process group 10 of the process is set to that of the tty device unless
the process group 1D of the tty is 0, in which case the process group
1D of both the opening process and the tty device are set to the pro­
cess ID of the opening process. On last close, the process group 10
of the tty is set to O. Under various conditions, a tty device will
send a signal to all the processes with its process group ID.

The TIOCGPGRP ioctl can be used to read the process group ID of
the tty, and the TIOCSPGRP ioctl can be used to set it.

The process group 1D and the control terminal of a process are both
inherited by a child process during a [vrk(2), even if the control ter­
minal is closed.

Basic modes.

FOR:PRO 2-14 9/83

TTV(4) Fortune Systems TTV(4)

9/83

There are several shorts, longs, and structures in the kernel that
contain bits, characters, and numbers used by a tty to determine its
mode of operation and its current state. These are called things like
the 'tty state word', the 'local modes word', the 'sgtty structure', etc.
For now, we will just talk about these things and what they do. You
can read and write them with various ioctls which will be summar­
ized later, and you can use the stty(l) command to display and to
modify these things from the shell.

On first open, the tty characteristics are initialized to default values,
and changes persist only until last close. The TIOCSA VEMODES
ioctl causes the current characteristics to be saved as the defaults for
the tty on subsequent first opens. For normal interactive use, pro­
cess 1 (init(8» forks a child which opens a tty then execs getty(8)
which sets up tty modes then execs login(l). Thus most of the
defaults are quickly overridden by getty(8) for login terminals.

The sgJags word.

Historically, the oldest of the mode words in the tty driver is the
sg_flags word of the sgtty structure. There are two bits in the
sg_flags word of the sgtty structure which determine one of three
major modes of operation, characterized by the amount of process­
ing done on the input and output characters. The bits are RAW and
CBREAK. If the RAW bit is set, it overrides the CBREAK bit. The
major features of these modes are:

cooked The name comes from the fact that this mode is not
RAW. It is also not CBREAK, but once upon a time there
was only RAW and cooked (Ah, the History of Comedy).
In this mode, the driver collects 7-bit input characters,
allowing editing like backspacing to be done on the data.
A process reading from the device will not get any data
until a NL or an EOT (t_ eofc) character, normally liD, is
entered, at which point it gets all the buffered data up
through the NL or up to the EOT (the EOT is not passed
to the reading process). All dnver functions (input edit­
ing, interrupt generation, output processing such as delay
generation and tab expansion, etc.) are available in this
mode.

CBREAK This mode is just like cooked mode except that input is
not collected and editing is not effective; each input char­
acter is made available to a reading process as it is
received by the hardware.

RAW In this mode, 8-bit characters are passed into and out of
the device with minimal hassle. Each input character is
made available to a reading process as it is received by the
hardware.

2-15 FOR:PRO

TTY (4) Fortune Systems TTY (4)

Other bits in the sg_ flags word of the sgtty structure are:

ECHO If this bit is set, input characters are echoed to the out­
put.

CRMOD If RAW is not set and this bit is set, an input CR is read
as a NL. On output, NL is translated into two characters:
a CR and a NL. If ECHO and CRMOD are both set, CR
and NL will each echo as the two character sequence CR
NL.

LCASE It is pointless to try to use an upper-case-only terminal
with UNIX. The intent of this bit was try to help a user
of an upper-case-only terminal. In the Fortune 32:16, this
bit is ignored by the tty driver.

TANDEM When this bit is set'll the system outputs a stop (t_stopc)
character, normally 5, whenever the input queue is in
danger of" overflowing, and a start (t_startc) character,
normally Q, when the input queue has drained suffi­
ciently. This mode is used when the input comes from
the output of another machine rather than a person typ­
ing at a keyboard, and when the other machine under­
stands this convention. TANDEM mode is unaffected by
RAW or CBREAK modes.

EVENP
ODDP If the EVENP bit is set, input characters with even parity

are accepted. If the ODDP bit is set, input characters
with odd parity are accepted. If both bits are set or nei­
ther bit is set, input parity is ignored, and all input char­
acters are accepted and their parity bit (most significant
bit) is set to O. Input characters which are not accepted
because they are the wrong parity are discarded. Charac­
ters are ouptut with even parity if EVENP is set and
ODDP is not, otherwise they are output with odd parity.
In RAW mode, all input parity checking and output parity
generation is disabled and full 8-bit characters are input
and output.

Output delays and tab expansion.

In cooked and CBREAK mode, delays can be invoked after output­
ting backspaces (H), form feeds (L), carriage returns (M), tabs (I)

II
and newlines (J). These delays are controlled by bit fields in the
sg_ flags word of the sgtty structure. For compatibility with the
past, when the C compiler did not support bit fields, the bit fields
are not declared as such in the sgtty structure in <sgtty.h> but
instead, masks and manifest constants are provided for the job.

The backspace delay capability is not implemented.

FOR:PRO 2-16 9/83

TTY (4) Fortune Systems TTY (4)

9/83

The vertical tab delay, which should really be called the form feed
delay, is either on or off. If it is on, an output Form Feed is fol­
lowed by a delay of 2.12 seconds.

The carriage return delay can be CRO (off), or one of three types:
CRt, CR2, or CR3. Delay type 1 lasts about .08 seconds and is suit­
able for the General Electric Terminet 300. Delay type 2 lasts about
.16 seconds and is suitable for the DEC VT05 and the 11 700. Delay
type 3 is intended for the Concept-100 and is not really a delay. If
delay type 3 is set, then enough nulls are output to guarantee that at
least nine characters are ouptut on each line.

The newline delay can be NLO (off) or one of three types: NLt, NL2,
or NL3. Delay type 1 is dependent on the current column and is
tuned for Teletype model 37's. Type 2 is useful for the DEC VT05
and is about .10 seconds. Type 3 is unimplemented and is O.

The tab delay can be off, T ABO (off) or one of three types: T ABt,
TAB2, or XTABS. Tab delay type 1 is dependent on the amount of
movement and is tuned to the Teletype model 37. Type 2 is unim­
plemented and is O. Type 3, called XTABS, is not a delay at all but
causes tabs to be replaced by the appropriate number of spaces to
advance the column to the next multiple of 8.

Input.

UNIX expects terminals to operate in full-duplex mode. Characters
may be input at any time, even while output is occurring. Input
characters are buffered by the tty driver until some process reads
them Input characters will be discarded if the number of buffered
input characters exceeds the maximum allowed, 255, or in extremely
rare circumstances when the system's character input buffers
become completely choked. In cooked or CBREAK mode, a BEL
character is echoed when an input character is discarded. In RAW
mode, if a character is discarded, all buffered input and output char­
acters for that tty are discarded and no BEL is echoed.

In cooked mode, and less so in CBREAK mode, special behavior is
invoked when certain characters are input. Some of the characters
cause editing of the buffered input (cooked mode only), others con­
trol the flow of output, and others cause signals to be sent to the
process group associated with the device. There are ioctls, to be dis­
cussed later, which will select the control character which invokes
each kind of special processing.

In cooked mode, terminal input is processed in units of lines. A
program attempting to read will normally be suspended until an
entire line has been received. No matter how many characters are
requested in the read call, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number of
characters may be requested in a read, even one, without losing

2-17 FOR:PRO

TTY (4) Fortune Systems TTY (4)

data. Note, however, that it is much more efficient to read several
characters at a time. In cooked mode, an input EaT (t_ eofc) ter­
minates a line of input and starts a new one in much the same way
that a NL does, except that an EaT is discarded and not read. If an
EaT is input at the beginning of a line, a read will return with a
count of 0, indicating end-of-file.

The t_ brkc character, normally disabled, acts like a new-line in that
it terminates a line, is echoed, and is read. Typically, this character
is set to ESC by programs that use it.

lt is possible for a program to simulate terminal input using the
TIOCSTI ioctl, which takes as its third argument the address of a
character. The system pretends that this character was typed on the
terminal, which must be the control terminal except for the super­
user.

If the LTELETEX bit in the local modes word is set, the tty driver
tries its best to treat videotex three-character sequences that describe
accented alphabetic characters as if they were a unit. Such a /I
sequence is a Y followed by a character in the range of Ox40
through Ox5F followed by a character in the range of Ox20 through
OxFF.

Input editing (cooked mode only).

In cooked mode, inlZut line editing is done with the erase (sg_ erase)
character, normally H (same as the backspace key), ~rasing the last
character typed, the kill (sg_ kill) character, normally X, erasing the
entire current input line, and the word-erase (t_ werasec) character,
normally W, erasing the last word typed. For the purposes of the
word-erase character, a word is defined as a sequence of non-blank
characters, with tabs counted as blanks. Erasing of input characters
never goes back beyond the beginning of the current input line.

The literal-next (t_lnextc) character, normally /IV, can be typed
preceding any character to prevent its special meaning. This also
works in CBREAK mode. The erase and kill characters may also be
entered literally by preceding them with '\ I for compatiblity with
olden days; the '\ I will normally disappear upon typing the next
character.

The reprint (t_rprntd character, normally /lR, retypes all unread
input. Retyping occurs automagically in cooked mode if you attempt
to erase over intermingled program output. If the LRETYPE bit in
the local modes word is set, then output is retyped on every input
character which was preceded by program output.

Input echoing and redisplay options.

The driver has several options for handling the echoing of terminal
input, controlled by bits in the local modes word. (The name is an

FOR:PRO 2-18 9/83

TIV(4) Fortune Systems TTV(4)

9/83

artifact from Berkeley, where the 'new tty' line discipline was origi­
nally considered a 'local extension' in the Berkeley system It is
really just another funny-named word containing a bunch of bits
controlling tty operation.)

Hardcopy terminals. The LPRTERA bit is normally set in the local
modes word when a hardcopy terminal is in use. Characters which
are logically erased are then printed out backwards preceded by '\'
and followed by'/' in this mode.

Crt terminals. The LCRTBS bit is normally set in the local modes
word when a crt terminal is in use. The terminal driver then echoes

" the proper number of backspace (H) characters when input is
erased; in the normal case where the erase character is a "H this
causes the cursor of the terminal to back up to where it was before
the logically erased character was typed. If the input has become
fouled due to interspersed asynchronous output, the input is
automagically retyped.

Erasing characters from a crt. When a crt terminal is in use, the
LCRTERA bit may be set to cause input to be erased from the screen
with a backspace-space-backs pace sequence when character or word
deleting sequences are used. The LCRTKIL bit may be set as well,
causing the input to be erased in this manner with the kill character
as well.

Echoing of control characters. [f the LCTLECH bit is set in the local
modes wor~, then non-printing (control) characters are normally
echoed as X (for some X) rather than being echoed unmodified;
DEL is echoed as "?

Output flow control.
" . The stop (t stope) character, normally 5, will cause output to be

suspended.- The start (t_startc> character, normally "5, will cause
output to resume. Extra stop characters typed when output is
already stopped have no effect. Extra start characters typed when
output is not stopped have no effect except to tum off page mode
(see below). [f the LDECCTQ bit of the local modes word is set,
stopped output will only restart when the start character is input;
otherwise any character will restart output (page mode characters,
discussed below are special here). If the start and stop characters are
both set to the same character, then the function of that character
toggles between stopping and starting output. These characters
have no effect in RAW mode unless the LOUTFLOW bit is set in the
local modes word, in which case they do have this effect, and they
are read instead of discarded.

If the AUTOEN bit in the tty state word is set, output flow is con­
trolled by the ClS input modem control status bit. I.e. output flows
only when C1S is on. Also when AUTOEN is set, input is discarded

2-19 FOR:PRO

TTY (4) Fortune Systems

whenever the OeD input modern control status bit is off.

Flushing input and output.

TTY (4)

Output to serial devices, as well as input, is buffered in the tty
driver. Depending on the speed of the device, up to 496 characters
may be buffered by the driver on their way to the output port.
Under certain conditions, the tty driver will discard, or 'flush', buf­
fered output.

The flush (t_flushd character, normally "0, sets the LFLUSHO bit in
the local modes word, causing subsequent output to be flushed until
the LFLUSHO bit is cleared by a program or more input is typed.
This character has effect in both cooked and CBREAK modes and
causes pending input to be retyped if there is any pending input.

The TIOCFLUSH ioctls can be used to flush the characters in the
input and/or output queues depending on the third argument. The
TIOCOUTQ ioctl can be used to determine the number of characters
still in the output queue.

Page mode.

Very fast terminal screen output, such as one finds on the Fortune
32:16 console or on terminals running at 19200 baud, can go by so
fast that you can't read it. Page mode is intended to solve this prob­
lem When page mode is on, the tty driver keeps a count of the
number of lines it has output since the last input character. When
this number reaches the number of lines on the page, output stops,
the < <STOPPED> » prompt is printed, and the terminal driver
waits for input. The nxpage (t_pagec) character, normally "F,
enables" another page of output, the nxhalf (t_ halfc) character, nor­
mally B, enables another half page of output, and the nxline
(t_lined character, normally "E, enables another line of output. If
you type these characters ahead, the amount of output enabled will
accumulate.

If the LPAGE _ EN bit in the local modes word is set, page mode is
enabled, which means that it mayor may not be turned on. Then if
the LP AGE _ ON bit in the local modes word is set, page mode is
turned on. When the LP AGE_EN bit is set, LPAGE _ ON can be set
by typing any of the three page mode characters mentioned above.
The start character turns page mode off, but does not disable it. The
stop character does not tum page mode on or off, but it does stop
output, and then the page mode characters can be used to get more
output.

The TIOCSPAGE and TIOCGP AGE ioctls are used to change the
page length and to read it, respectively. Page mode is never enabled
if the page length is O.

FOR:PRO 2-20 9/83

TTY (4) Fortune Systems TTY (4)

9/83

Input characters that generate signals.

There are several characters that generate signals in cooked and
CBREAK mode; such signals are sent to all processes with the same
process group IO as the tty. In addition, when input, these charac­
ters also flush pending input and output. This same flushing action
can be effected with the TIOCFLUSH ioctl.

" The interrupt (t_intrc) character, normally ? (same as ASCII DEL),
sends a SIGINT signal. This is the normal way to blow away a pro­
cess from the terminal. In addition, many interactive programs
catch this signal and revert to command mode when they catch it.
In cooked and CBREAK mode, a received break is converted by the
driver into an interrupt character, and acts just like one. In RAW
mode, a received break is read as a NUL.

" The quit (t_ quitc) character, normally \' sends a SIGQUIT signal.
This signal is used to cause a foreground program to terminate and
produce a core image if possible, in a file called core in the current
directory.

Output.

When one or more characters are written, they are transmitted to
the terminal as soon as previously-written characters have finished
typing. (As noted above, input characters are normally echoed by
putting them in the output queue as they arrive.) When a process
writes characters more rapidly than they can be output through the
output hardware, it will be suspended when its· output queue
exceeds a limit which is automatically selected to be higher for
higher output speeds, with a maximum of 496 characters. When the
queue has drained down to a threshold, the program is resumed.

If the LNOEOTOUT bit in the local modes word is set, the EOT
character is not transmitted in cooked or CBREAK mode. This is to
prevent terminals that respond to it from hanging up; programs
using RAW or CBREAK mode should be careful.

If the LLITOUT bit in the local modes word is set, output transla­
tions are suppressed in cooked and CBREAK mode, and output acts
much like RAW mode.

Modem control signals

NOTE: Important information on modem control signal information
is presented in sio(4). The tty driver knows about the output
modem control signals 01R and RIS, and the input modem control
signals DCD, OSR, and CIS.

Output modem control signals

Whenever a tty is opened, whether it is the first open or not, the
DTR and RTS output modem control signals are both raised. If the

2-21 FOR:PRO

TTY(4) Fortune Systems TTY(4)

LNOOPENDTR bit of the local modes word is set, DTR will not be
raised on open. Similarly, if the LNOOPENRTS bit of the local
modes word is set, RTS will not be raised on open. If the HUPCLS
bit of the tty state word is set, OTR and RTS will be lowered on last
close. Setting the input speed to 0 causes OTR and RTS to be
lowered immediately. The TIOCSDTR ioctl raises OTR, and the
TIOCCDTR ioctllowers it. The TIOCSRTS ioctl raises RTS, and the
TIOCCRTS ioctl lowers it.

Input modem controL signaLs

If the NOMDMINTS bit of the local modes word is set, then the
input modem control signals are totally ignored, an input break will
act as if it were an ordinary null character, and the discussion of
other features relating to input modem status signals and input
breaks elsewhere in this section becomes moot. (1llis bit should
only be used if the equipment connected to the port generates noise
on one of the input modem control signals, and it is inconvenient to
disconnect the offending signal(s), and the status of the other unof­
fending signals is unimportant. Specifically, some printers generate
noise on pin 25. Noise on an input modem control signal can very
seriously degrade system performance.)

The current state of the three modem control inputs is available in
the tty state word as the DCD_STATUS, CTS_STATUS, and
DSR _STATUS bits. Three more bits in the tty state word,
DCD _ CHANGE, CTS _ CHANGE, and DSR_ CHANGE, are set to
indicate a change since first open or since the most recent
TIOCGETSTATE ioctl on the device. These bits are useful for
detecting transitions that are too quick to be caught by looking at the
status bits.

A process can issue a TIOCSETSIG ioctl to arrange for a specified
signal to be sent to the tty's process group on each transition of
selected input modem control bits. The selection of bits is made
with a bitrnask made up of the DCD STATUS, CTS STATUS, and
DSR _STATUS bits. The TIOCGETSIG ioctl reportS the currently
selected modem status change signal number and the selected bits.
On last close, the bitmask of selected bits and the selected modem
status change signal are both set to O.

Carrier Detect.

The tty driver maintains a bit in the tty state word named
CARR_ON, for 'carrier on'. The name 'connected' would be more
appropriate to its true function, since this bit can often be set when
the DCD input is not. Depending on the settings of the
RESPECTCARR, IWTCARR, and OWTCARR bits in the tty state
word, CARR_ON may go up and down with the DeD input signal
or it may be independent of it.

FOR:PRO 2-22 9/83

TTY (4) Fortune Systems TTY (4)

9/83

If the RESPECTCARR bit in the tty state word is not set, then the
OeD input signal has no effect on CARR_ON, and the IWTCARR
and OWTCARR bits in the tty state word are ignored. In this case,
the CARR_ON bit is set on first open, and cleared on last close.
Both input and output function normally when the CARR_ON bit is
on. If the RESPECTCARR bit in the tty state is set, then
CARR_ON starts out high on first open, but will then go down and
up with the DeD input signal. If OeD makes CARR_ON drop
while the tty is open, a SIGHUP signal is sent to all the processes in
the tty's process group, and all current and subsequent reads and
writes terminate prematurely, i.e. with a returned count of 0 (reads)
or a smaller count than requested (writes). (Pending reads and
writes which are interrupted by the SIGHUP signal will return -1.)
The SIGHUP is suppressed if the LNOHANG bit in the local modes
word is set.

A normal tty device, such as /dev/tty01, is considered an 'incoming'
device. For each incoming device there can be a corresponding 'out­
going' device, which is the same except that its minor device number
is 128 greater than its corresponding incoming device. Logins use
incoming devices; cu(l) and uucico(8) use outgoing devices. For
example, if /dev/tty01, which is an incoming device, is device
major:minor 1:1, then the corresponding outgoing device, which
would probably be named /dev/cuIO, would be device major:minor
1:129. If the RESPECTCARR and IWTCARR bits in the tty state
word are both set on an incoming device, then if DCD is low, opens
will block until DCD comes up, at which point CARR_ON is set and
sleeping open calls will return. Similarly, the OWTCARR bit can be
used to cause opens on an outgoing device to wait for carrier.

If a process, such as getty, is waiting for carrier on an incoming dev­
ice, the corresponding outgoing device can be used, and the process
sleeping on the incoming device will continue to sleep until the out­
going device is dosed, at which time the incoming process will con­
tinue to wait for carrier. If an incoming tty is open, then opens on
the corresponding outgoing tty will fail with errno set to EBUSY.

If the RESPECTCARR bit in the tty state word is set, the
TIOCW AITCARR ioctl can be used to explicitly wait until carrier is
up. This ioctl returns immediately if carrier is already up at the time
of the call.

Breaks.

The TIOCSBRK ioctl will set the 'transmit break' bit in the hardware
interface causing the transmitted line to go to the mark condition
until this condition is reversed by a TIOCCBRK ioctl (usually after a
delay with sleep(3». The TCSBRK ioctl will cause a 250 millisecond
break to be transmitted.

2-23 FOR:PRO

TTV(4) Fortune Systems TTV(4)

An input break in RAW mode is read as a NUL character. In cooked
or CBREAK mode it is read as if it were the interrupt character.

More detail on the ioct} commands.

Programs using tty ioctls will include <sys/types.h> and
<sgtty.h> which in turn includes <sys/ioctl.h>. Some ioctls
require including < sys/tty.h > .

#include <sgtty.h>

struct sgtty sgtty;

ioctI(filedes, TIOCGETP, &sgtty);

This ioctl reads the sgtty structure. The TIOCSETN ioctl writes it,
and the TIOCSETP ioctl writes it after waiting until output is quies­
cent, the flushes input and output.

The sgtty structure, and the defines for the bits used in that struc­
ture, are defined in <sgtty.h>:

struct sgttyb {
char
char

sg ispeed;
sg=ospeed;

char sg erase;
char sg=kill;
short sg_ flags;

};

The sg ispeed and sg ospeed fields describe the input and output
speeds of the device according to the following table. Symbolic
values in the table are as defined in <sgtty.h>:

80 0 (hang up dataphone)
850 1 50 baud
875 2 75 baud
8110 3 110 baud
8134 4 134.5 baud
8150 5 150 baud
8200 6 200 baud
8300 7 300 baud
8600 8 600 baud
81200 9 1200 baud
81800 10 1800 baud
82400 11 2400 baud
84800 12 4800 baud
89600 13 '9600 baud
EXTA 14 External A (19200 baud)
EXTB 15 External 8

FOR:PRO 2-24 9/83

TTY (4) Fortune Systems TTY (4)

9/83

The EXTA baud rate is 19200 baud on the Fortune 32:16. Code
conversion and line control required for IBM 2741's (134.5 baud)
must be implemented by the user's program Half-duplex operation,
(such as is used on the Bell 202 dataset is not supported.

The bits in the sg_flags field are as follows:

ALLDELAY 0177400 Delay algorithm selection
BSDELAY 0100000 Select backspace delays

BSO 0
BS1 0100000
VTDELAY 0040000
FFO 0
FF1 0100000
CRDELAY 0030000
CRO 0
CR1 0010000
CR2 0020000
CR3 0030000
TBDELAY 0006000
TABO 0
TAB1 0001000
TAB2 0004000
XTABS 0006000
NLDELAY 0001400
NLO 0
NL1 0000400
NL2 0001000
NL3 0001400

EVENP 0000200

ODDP 0000100
RAW 0000040

CRMOD 0000020

ECHO 0000010
LCASE 0000004
CBREAK 0000002
TANDEM 0000001

include <sgtty.h>

struct tchars tchars;

(not implemented):

Select form-feed and vertical-tab delays:

Select carriage-return delays:

Select tab delays:

Select new-line delays:

Even parity allowed on input
(most terminals)
Odd parity allowed on input
Raw mode: wake up on all characters,
8-bit interface
Map input CR into LF,
output LF to CR LF
Echo (full duplex)
Map upper case to lower on input
Return each character as soon as typed
Input flow control

ioctl(filedes, TIOCGETC, &tchars);

This ioctl reads the tchars structure, and the TIOCSETC ioctl writes
it. This structure contains some of the characters that are special on

2-25 FOR:PRO

TTY(4) Fortune Systems TTY (4)

-
input. The tchars structure is defined in < syslioctL. h > :

strud tchars {
char
char
char
char
char
char

t_intrc;
t_ quitc;
t_startc;
t_stopc;
t_eofc;
t_hrkc;

include <sgtty.h>

struct Itchars Itchars;

1* interrupt "'I
1* quit *1
1* start output" I
1* stop output *1
1* end-of-file "'I
1* input delimiter (like nl) *1

iodl(filedes, TIOCGLTC, &Itchars);

'Ihis ioctl reads the ltchars structure, and the TIOCSLTC ioctl writes
it. This structure contains some of the characters that are special on
input. The It<;hars structure is defined in < syslioctl.h >:

struct ltchars {
char 1* stop process signal "'I
char
char
char
char
char

t_suspc;
t_dstopc;
t_rprntc;
t_flushc;
t_ werasec;
t_Inextc;

1* delayed stop process signal *1
1* reprint line "'I

};

1* flush output (toggles) *1
1* word erase *1
1* literal next character *1

The t_suspc and t_dstopc characters are not implemented.

include <sgtty.h>

struct ptchars ptchars;

ioctl(filedes, TIOCGPTC, &ptchars);

This ioctl reads the Itchars structure, and the TIOCSPTC ioctl writes
it. This structure contains the characters that are special to page
mode. The ptchars structure is defined in <syslioctl.h>:

struct ptchars {
char

};

char
char
char

t_pagec;
t_linec;
t_ halfc;
t_ clearc;

1* show next page *1
1* show next line *1
1* show half next page "'I
1* clear screen and show next
page *1

The t_ clearc character is not implemented.

Characters in the sgtty, tchars, ltchars, and ptchars structures
should be unique, except that the t stopc and t startc can be the
same for a toggling effect. Setting ooe of these characters to OxFF

FOR:PRO 2-26 9/83

TTY (4) Fortune Systems TTY (4)

9/83

disables that function.

unsigned long localmodes;

ioct1(filedes, TIOCLGET, &Iocalmodes);

This ioctl reads the local modes word. The TIOCLSET ioctl writes
it, the TIOCLBIS ioctl ORs localmodes into it, and the TIOCLBIC ioctl
ANOs it with the complement of localmodes.

The bits of the local modes word are:

LCRTBS OxOOOOOl Backspace on erase rather than
echoing erase

LPR1ERA OxOOOOO2 Printing terminal erase mode
LCR1ERA OxOOOOO4 Erase character echoes as

backspace-space-backspace
LTlLDE OxOOOOO8 Convert '" to ' on output

(for Haze ltine terminals)
LMDMBUF OxOOOOlO Stop/start output when carrier

drops
LLITOUT OxOOOO20 Suppress output translations
LTOSTOP OxOOOO40 Send SIGTTOU for background

output
LFLUSHO OxOOOO80 Output is being flushed
LNOHANG OxOOOlOO Don't send hangup when carrier

drops
LETXACK OXOOO200 Diablo style buffer hacking

(unimplemented)
LCRTKIL OXOOO400 BS-space-BS erase entire line on

line kill
LINTRUP OxOOO800 Generate interrupt SIGTlNT when

input ready to read
LCTLECH OxOOlOOO

. A
Echo mput control chars as X,
delete as A?

LDECCTQ OXOO4000
A A

Only Q restarts output after S,
like DEC systems

LPAGE EN OXOO8000 Enable page mode, does not tum
it on.

LPAGE ON OxOlOOOO Turn page mode on.
L1ELE1EX OX020000 teletex multi-char sequences
LNOEOTOUT OX040000 don't output EOT's
LOUTFLOW OX080000 flow ctrl in raw mode & read the

chars
LRE1YPE OxlOOOOO Retype whenever echoed data is

messed up
LNOOPENDTR Ox200000 Do not raise DTR on open
LNOOPENRTS Ox400000 Do not raise RTS on open

The LTILDE, LTOSTOP, LINTRUP, and LMDMBUF bits are

2-27 FOR:PRO

TTY (4) Fortune Systems TTY (4)

unimplemented.

unsigned long state;

ioctl(filedes, TIOCGETSTATE, &state);

This ioctl reads the tty state word, and the TIOCSETSTATE ioctl
writes certain bits into it.

The interesting bits of the tty state word are:

CARR ON
BUSY
XCLUDE
TISTOP
HUPCLS
TBLOCK
DCD STATUS
CTS STATUS
DSR STATUS
RTS ON
DTR ON
RESPECTCARR
IWTCARR
OWTCARR
AUTOEN

OxOOOOOlO
OxO000020
OXOOOO080
OxOOOOlOO
Ox0000200
Ox0000400
OxOOOlOOO
OxO002000
Ox0004000
OxO008000
OxO 1 00000
OX0200000
OX0400000
OX0800000
OxlOOOOOO

DCD CHANGE Ox2000000
CTS CHANGE Ox4000000
DSR CHANGE Ox8000000

Connected
Output in progress
Exclusive-use flag against open
Output stopped by ctl-s
Hang up upon last close
Tandem queue blocked
DCD status
CTS status
DSR status (RI on the sio)
Software copy of rts on
Software copy of dtr on
Respect the carrier
Wait for carrier on incoming open
Wait for carrier on outgoing open
DCD & CTS enable receiver and
xmitter
DCD status changed
CTS status changed
DSR status changed
(RI on the sio)

The TIOCSETSTATE ioctl loads only the XCLUDE, HUPCLS,
IWTCARR, OWTCARR, RESPECTCARR, and AUTOEN bits. The
others are read-only. The TIOCGETSTATE ioctl clears the
DCD _CHANGE, CTS _CHANGE, and DSR CHANGE bits after
reading them

include <sgtty.h>

struct mdmsig mdmsig;

ioctl(filedes, TIOCSETSIG, &mdmsig);

This ioctl writes the modem signaling information and the
TIOCGETSIG reads it. This information is transmitted with the
mdmsig structure found in <sgtty.h>:

struct mdmsig {
unsigned long ms mask;/" mask of status bits to

- signal on .. /
unsigned char ms _ signo;/" which signal to send .. ,

};

FOR:PRO 2-28 9/83

TTY (4) Fortune Systems TTY (4)

9/83

A number of other ioctL(2) calls apply to ttys, and have the general
form:

#include <sgtty.h>

ioctl(fildes, command, arg)
item *arg;

where item would be an unsigned long, or a short, or an int, as
appropriate for the ioctl command. Unless otherwise specified, ioctl
commands that don't take an argument should be passed a NULL
pointer for the argo

With the following commands the arg is ignored, although 0 is
recommended.

TIOCEXCL

TIOCNXCL

TIOCHPCL

Set exclusive-use mode: no further opens are permit-
ted until last close.

Tum off exclusive-use mode.

On last close, hang up, i.e. drop the D1R and R1S
outputs. This is useful when the line is associated
with an ACU used to place outgoing calls.

TIOCSA VEMODES
Save the current characteristics as the defaults for
the tty on subsequent first opens. This is what is
saved: sgtty structure, tchars structure, ltchars
structure, ptchars structure, local modes word, line
discipline, page length, and the DTR _ ON,
RTS_ON, DCD_STATUS, CTS_STATUS, and
DSR _STATUS bits of the tty state word.

TIOCWAITCARR
Wait until DCD is up if the RESPECTCARR bit is set
in the tty state word, otherwise return immediately.

In the remaining calls, where arguments are required they are
described; arg should otherwise be given as the NULL pointer (0).

TIOCFLUSH
If arg is 0, all characters waiting in input or output queues are
flushed. If arg is non-O, it is taken as a pointer to an into The
input queue is flushed if the 1 bit of the int is set, and the out­
put queue is flushed if the 2 bit of the int is set.

TIOCSTI
the argument is the address of a character which the system
pretends was typed on the terminal.

TIOCSBRK
the break trans mit bit is set.

2-29 FOR:PRO

TTY (4) Fortune Systems TTY (4)

TIOCCBRK
the break transmit bit is cleared.

TIOCSDTR
DTR output is set.

TIOCCDTR
D1R output is cleared.

TIOCSR1S
R1S output is set.

TIOCCR1S
R1S output is cleared.

TIOCGPGRP
arg is the address of a short into which is placed the process
group number of the tty.

TIOCSPGRP
arg is a short (typically a process id) which becomes the process
group for the tty.

TIOCOUTQ
reads the number of characters awaiting output into the int
whose address is argo

TIOCSPAGE
loads the page length from the int whose address is argo

TIOCGPAGE
reads the page lenth into the int whose address is argo

TCSBRK
Wait for output to be quiescent, and if arg is the NULL pointer,
output a 250 millisecond break.

FIONREAD
returns in the long integer whose address is arg the number of
immediately readable characters from the argument unit. This
works for files, pipes, and ttys.

FILES
Idev/tty

Idev/tty*

Idevlconsole

SEE ALSO
csh(l), stty(l),
ioctl(2), signal(2), stty(2),
getty(8), init(8).

FOR:PRO 2-30 9/83

DEVTYPE(5) Fortune Systems DEVTYPE(5)

NAME
devtype - serial line configuration file

DESCRIPTION
Oevtype contains for each serial line the following information:

unix device name

internal name (eg. As described in termcap, printcap ..)

class (P=printer, T=terminal, C=communications device)

number - number of device in it's class

baud rate

external name (eg. location)

service notification port

Status bit 1 = enabled, 0 = disabled

This is an ASCII file. Each field within each entry is separated from
the next by a tab. Each entry is separated from the next by a new­
line.

This file resides in directory lete.

FILES
letddevtype

SEE ALSO
dtinit(l).

9/83 3-1 FOR:PRO

DIR(5) Fortune Systems DIR(5)

NAME
dir - format of directories

SYNOPSIS
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user
can write into a directory. The fact that a file is a directory is indi­
cated by a bit in the flag word of its i-node entry see, jilsys(5). The
structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino t d_ino;
char d_ name[DIRSIZj;

};

By convention, the first two entries in each directory are for '.' and
' . .'. The first is an entry for the directory itself. The second is for
the parent directory. The meaning of ' .. ' is modified for the root
directory of the master file system and for the root directories of
removable file systems. In the first case, there is no parent, and in
the second, the system does not permit off-device references.
Therefore in both cases ' .. ' has the same meaning as '.'.

SEE ALSO
filsys(5).

FOR:PRO 3-2 9/83

DISK (5) Fortune Systems DISK(5)

NAME
disk - Special liD commands for disk devices

SYNOPSIS
ioctl(fildes, request, addr)
devctl(b _or _ c, dev, request, addr)

DESCRIPTION

9/83

Special disk maintenance operations are done with the ioetl and
devctl calls. Some special operations may only be done when the
device has no outstanding open(2) calls, necessitating the use of
devctl, and some can be done either with devctl or with ioctl.

The different calls use and return data in addr pointers. The various
calls and their arguments.

devct1(b or c,dev,IOCRCONFB,struct diskconf *)

ioctl(fildes,IOCRCONFB,struct diskconf *)

Read the configuration for this disk into struct diskconf.

devctl(b _ or _ c,dev , IOCWCONFB,struct diskconf *)

Change the configuration block to that in struct diskconf. There
can be no outstanding requests on the drive, and the conf block
must be correct.

devctl(b or c,dev ,IOCFMT ,struct diskconf *)

Format the drive. There may be no outstanding requests. The
conf block must be correct.

devct1(b _ or _ c,dev ,IOCFMTTRK,strud fmttrk *)

Format the track on the drive. Same as above.

devct1(b _ or _ c,dev ,IOCCHMED,unused)
Force driver to assume that media in drive has changed. There
may be no outstanding requests.

devctl(b _ or _ c,dev ,IOCAUTO ,struct devauto *)

ioctl(fildes,IOCAUTO,struct devauto *)

Place standard name and mode of device, if it exists, into struct
devauto.

devct1(b or c,dev,IOCSAFE,unused)
Move disk heads to a safe place, in case of power outage, global
or local earthquake, or other acts of Cod.

devct1(b _ or _ c,dev,IOCSEEK,cylinder)
ioctl(fildes,IOCSEEK,cy linder)
Seek disk heads to given cylinder.

devctl(b _ or _ c,dev ,IOCRESET, unused)
Force driver to rebuild its concept of the state of the drive. No
outstanding requests.

devctl(b or c,dev,IOCDRVSTAT,struct diskstat *)

ioctl(fildes,IOCDRVSTAT ,struct diskstat *)

3-3 FOR:PRO

DISK (5) Fortune Systems DISK (5)

Report current state of drive: its head position, any error condi­
tions, and indicate any outstanding accesses.

FILES
lusr/include/sys/ioctl. h
lusr/include/sys/diskconf. h

SEE ALSO
devctl(2), ioctl(2), diskconf(5), floppy(5), wd(5).

DIAGNOSTICS
Devctl and ioctl return -1 on error.

LIMITATIONS
It is not guaranteed that all of these commands are implemented in
every driver.

FOR:PRO 3-4 9/83

DISKCONF (5) Fortune Systems DISKCONF (5)

NAME
Diskconf

DESCRIPTION
The diskconf structure, also known as the disk configuration block,
occupies the first block of every disk used by the Fortune 32:16. It
contains information describing physical characteristics of the disk,
the disk partition layout, bad block information, etc. used by the
particular disk driver. Mkconf(l), rdconf(l), and format(l) manipu­
late the config block.

PHYSICAL CHARACTERISTICS

9/83

The canonical disk described by the config block consists of one or
more platters each of which is a series of dc _cyls concentric circles of
information-bearing magnetic media. The disk also has dc head
read/write heads, each of which has its own platter. The heads can
move from outermost cylinder to the innermost. They are usually
attached together and must move in tandem. Each individual band
is called a track, and there are dc_head * dc _cyls tracks per disk.
Each track is subdivided into dc sectrk sectors. Each sector holds
dc _blksiz bytes. Each sector is called a block, and the standard
address of any sector on the disk is its block number. There are
dc_head * de _eyls * dc _sectrk blocks on a disk. Block numbers
increase by sector, then by head, then by cylinder. The UNIX sys­
tem has a notion of two kinds of blocks: logical blocks and physical
blocks. Logical blocks are 1024 bytes long. The 32:16 built-in floppy
disk operates with 1024-byte (or 1K) physical blocks. The Winches­
ter disks operate with S12-byte (or 1I2K) physical blocks. All block
numbers in the config block are in physical blocks.

The dc _ wrtred and de _ wrtpre fields stand for write reduce and wri­
teprecompensation. These affect the way data is encoded on the
surface of the disk via magnetic blips. The dc _ro Jags contain one
bit per partition. If that bit is on, the partition can be accessed but
not changed.

The disk can be divided into NPART (defined in
/usr/include/sys/diskconf. h) contiguous areas, called partitions. Parti­
tion X is described by the first block and number of blocks, i.e., it
starts at block de _sizes[X].dc Joffset and continues for
dc _sizes[X].dc Jsize blocks. The disk can also contain up to NPART
level 1 boot program areas. These are indicated in a separate table,
similar to the partition table. A boot area must be wholly within a
partition, because only the partitions are accessed by the drivers.

When a disk error occurs, the offending block(s) is/are replaced by
the sparing mechanism. When a block is decided to be unusable, any
reference to it is redirected to its replacement block. Spare blocks
are pulled from the first cylinder. Thus, data should never be stored
on the first cylinder. The field dc nbad and the array de _bad[J

3-5 FOR:PRO

DISKCONF (5) Fortune Systems DISKCONF (5)

FILES

constitute the bad block map. The construction of the bad block map
differs between devices.

A config block must follow certain rules: dc_magic must contain
CONFMAGIC (defined in <sys/diskconf.h», dc_sysid and dc_sysid
and also dc _ vid and dc_vid must contain the bitwise negation of
each other, respectively. Also, any driver can impose additional res­
trictions, usually to disallow impossible drive characteristics (i.e. 5000
disk heads on a floppy).

For performance reasons, partition boundaries should be on
cylinders. A typical layout for a Seagate 506 disk on a one-hard-disk
system:

(4 heads, 16 sectors/track, 153 cylinders, 4.9 megabytes)

Size , Offset

Partition 0 192,0 first 3 cylinders
Partition 1 1408,192 appx. 700K of swap space
Partition 2 8192,1590 rest of disk
Boot area 0 80,64 4OK, size of /sa/boot

A floppy-UNIX layout would be:

(2 heads,S sectors/track, 80 cylinders, 800 kilobytes)

Partition 0
Partition 1
Partition 2
Boot area 0

Size, Offset

50,0
250,50
500,300
40,10

first 5 cylinders
250K of swap space
rest of disk
40K

A back-up floppy layout would be:

Partition 0
Partition 1
Partition 2
No boot image.

Size, Offset
10,0
0,0
790,50

first 1 cylinder
empty
rest of disk

/usr/include/sys/diskconf. h

SEE ALSO
format(8), mkconf(8), rdconf(8).

FOR:PRO 3-6 9/83

DISKTAB(S) Fortune Systems DISKTAB(S)

NAME
Disktab

DESCRIPTION
The disktab file is a human readable disk configuration data base.
Command Dskselect(8) reads it to create a configuration block for
some selected disk type. Each record in the file stores information
about one configuration block. Fields are separated by ":". Each
record is stored on one line. Each field in the first record contains
name of the corresponding column. Columns can be ordered arbi­
trarily. Column name is the key column and all names must be
unique. The name field is the Fortune System assigned name of a
disk. A name is one letter prefix (unique for each manufacturer) and
a 1-2 digit suffix (approximate storage capacity in Mega bytes).
Other fields describe the sector size, number of sectors/track,
number of tracks, number of heads, write pre-corn cylinder, write
reduce current cylinder, media type, interlace factor, default disk
name, default partitions, default boots, manufacturer's name, model
number or name, etc. See diskconf(S) for more details.

The format of the disktab file can change in future. So this file
should be accessed only through dskselect(8).

FILES
/etddisktab

SEE ALSO
diskconf(5), dskselect(8).

LIMITA TIONS
The first line is so long that you will not be able to edit this file with
vi or ed.

9/83 3-7 FOR:PRO

FllSYS(5) Fortune Systems FllSYS(5)

NAME
filsys, flblk, ino - format of file system volume

SYNOPSIS
/linc1ude <sys/types.h>
/linc1ude <sys/flbk.h>
/linc1ude <sys/filsys.h>
/linc1ude < sys/ino.h >

DESCRIPTION
Every file system storage volume (e.g. /dev/hd[O-3J[2-7], /dev/fd[O-
3][2-7]) has a common format for certain vital information. Every
such volume is divided into a certain number of l024-byte blocks.

Block 0 is unused. Block 1 is the super block. The layout of the super
block as defined by the include file <syslfilsys.h> is:

1*
* Structure of the super-block
*/

struct filsys {
unsigned short s _ isize; 1* size in blocks of i-list */
daddr t s fsize; /* size in blocks of entire volume */
short - s == nfree; /* number of addresses in s free */
daddr t s free[NICFREE]; 1* free block list */
short - s -ninode; 1* number of i-nodes in s inode */
ino t s - inode[NICINOD]; /* free i-node list */
char s -flock; /* lock during free list manipulation */
char s - ilock; 1* lock during i-list manipulation */
char s fmod; 1* super block modified flag */
char s == ronly; /* mounted read-only flag */
time s _time; /* last super block update */

/* remainder not maintained by this version of the system * /

daddr _ t s _ tfree; /* total free blocks* /
ino t s _ tinode; • 1* total free inodes *1
short s _ m; /* interleave factor *1
short s_n; /* " " */
char s _ fname[6]; /* file system name */
char s _ fpack[6]; /* file system pack name */

};

S isize is the address of the first block after the i-list, which starts just
after the super-block, in block 2. Thus the i-list is s _isize-2 blocks long.
S Jize is the address of the first block not potentially available for alloca­
tion to a file. These numbers are used by the system to check for bad
block addresses; if an 'impossible' block address is aUocated from the free
list or is freed, a diagnostic is written on the on-line console. Moreover,
the free array is cleared, so as to prevent further allocation from a presum­
ably corrupted free list.

FOR:PRO 3-8 9/83

FllSYS(5) Fortu ne Systems FllSYS(5)

9/83

The free list for each volume is maintained as follows. The s Jee
array contains, in sJee{1]' ... , sJee[s_nfree-1], up to NICFREE free
block numbers. NlCFREE is a configuration constant. 5 Jee[OJ is
the block address of the head of a chain of blocks constituting the
free list. The layout of each block of the free chain as defined in the
include file <syslfblk.h> is:

struct fblk
{

int df _ nfree;
daddr _ t df_ free[NICFREE];

};

The fields df_nfree and dfJee in a free block are used exactly like
s _ nfree and s Jee in the super block. To allocate a block: decrement
s_nfree, and the new block number is sJee[s_nfree1. If the new
block address is 0, there are no blocks left, so give an error. If
s _ nfree became 0, read the new block into s _ nfree and s Jee. To free
a block, check if 5_ nfree is NlCFREE; if so, copy s _nfree and the
s Jee array into it, write it out, and set 5 _n free to O. In any event
set s Jee[s _nfree1 to the freed block's address and increment s _nfree.

5 _ninode is the number of free i-numbers in the s _in ode array. To
allocate an i-node: if s _ninode is greater than 0, decrement it and
return s inode[s ninodeJ. If it was 0, read the i-list and place the
numbers-of all free inodes (up to NlCINOO) into the s _inode array,
then try again. To free an i-node, provided s _ ninode is less than
NlCINOOE, place its number into s _inode[s _l1illodeJ and increment
s ninode. If s ninode is already NlCINOOE, don't bother to enter the
freed i-node into any table. This list of i-nodes is only to speed up
the allocation process; the information as to whether the inode is
really free or not is maintained in the inode itself.

The fields s lasti and s nbehind are used to avoid searching the
inode list from the beginning each time the system runs out of
inodes. 5 _Lasti gives the base of the block of inodes last searched on
the filesystem when inodes ran out, and s _ nbehind gives the number
of inodes, whose numbers were less than 5 _lasti when they were
freed with s _ ninode already NlCINOOE. Thus s ninode is the
number of free inodes before s _lasti. The system will search forward
for free inodes from s lasti for more inodes unless s l1behind is suffi­
ciently large, in which case it will search the file system inode list
from the beginning. This mechanism serves to avoid n**2 behavior
in allocating inodes.

5 Jock and s _ilock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of s Jnod on disk is likewise immaterial; it is used as a flag
to indicate that the super-block has changed and should be copied to

3-9 FOR:PRO

FILSYS(5) Fortune Systems FILSYS(5)

the disk during the next periodic update of file system information.
S _,only is a write-protection indicator; its disk value is also imma­
terial.

S _time is the last time the super-block of the file system was
changed. During a reboot, s _time of the super-block for the root file
system is used to set the system's idea of the time.

The fields s _tfree, s _tinode, s yame and s JJack are not currently
maintained.

I-numbers begin at I, and the storage for i-nodes begins in block 2.
I-nodes are 64 bytes long, so 16 of them fit into a block. I-node 2 is
reserved for the root directory of the file system, but no other i­
number has a built-in meaning. Each i-node represents one file.
The format of an i-node as given in the include file <syslino.h> is:

1*
"" Inode structure as it appears on
* a disk block.
*1

struct dinode
{

};
1*

unsigned short di_ mode; I"" mode and type of file *1
short di_ nlink; 1* number of Links to file *1
short di_ uid; 1* owner's user id *1
short di_gid; 1* owner's group id *1
off t di_size; 1* number of bytes in file *1
chell di addr[40]; 1* disk block addresses *1
time t d(~atime; 1* time last accessed *1
time t di_ mtime; I"" time last modified *1
time t di_ ctime; 1* time created *1

* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

Di_mode tells the kind of file; it is encoded identically to the st _mode
field of stat(2). Di nlink is the number of directory entries (links) that
refer to this i-nOde. Di_ uid and diJid are the owner's user and
group IDs. Size is the number of bytes in the file. Di_atime and
di mtime are the times of last access and modification of the file con­
tents (read, write or create) (see times(2»; Di_ctime records the time
of last modification to the inode or to the file, and is used to deter­
mine whether it should be dumped.

Special files are recognized by their modes and not by i-number. A
block-type special file is one which can potentially be mounted as a

FOR:PRO 3-10 9/83

FILSVS(5) Fortune Systems FILSVS(5)

file system; a character-type special file cannot, though it is not
necessarily character-oriented. For special files, the di addr field is
occupied by the device code (see types(5». The device cOdes of block
and character special files overlap.

Disk addresses of plain files and directories are kept in the array
di _addr packed into 3 bytes each. The first 10 addresses specify dev­
ice blocks directly. The last 3 addresses are singly, doubly, and tri­
ply indirect and point to blocks of 256 block pointers. Pointers in
indirect blocks have the type daddr _t (see types(5)).

For block b in a file to exist, it is not necessary that all blocks less
than b exist. A zero block number either in the address words of the
i-node or in an indirect block indicates that the corresponding block
has never been allocated. Such a missing block reads as if it con­
tained all zero words.

SEE ALSO
stat(2), dir(5), types(5) dcheck(8), fsck(8), icheck(8), mount(8).

9/83 3 .. 11 FOR:PRO

FSTAB(5) Fortune Systems FSTAB(5)

NAME
fstab - static information about the file systems

SYNOPSIS
#include <fstab.h>

DESCRIPTION
The file letc/fstab contains descriptive information about the various
file systems. letclfstab is only read by programs, and not written; it is
the duty of the system administrator to properly create and maintain
this file.

These programs use letclfstab: dump, mount, umount, swapon, fock and
df The order of records in letc/fotab is important, for fock, mount, and
umount sequentially iterate through letclfotab doing their thing.

The special file name is the block special file name, and not the char­
acter special file name. If a program needs the character special file
name, the program must create it by appending an "r" after the last
"I" in the special file name.

If fo_type is "rw" or "ro" then the file system whose name is given in
the fo Jle field is normally mounted read-write or read-only on the
specified special file. The fo Jeq field is used for these file systems
by the dump(8) command to determine which file systems need to be
dumped. The fs yassno field is used by the fock(8) program to deter­
mine the order in which file system checks are done at reboot time.
The root file system should be specified with a fs yassno of 1, and
other file systems should have larger numbers. File systems within a
drive should have distinct numbers, but file systems on different
drives can be checked on the same pass to utilize parallelism avail­
able in the hardware.

Fs _type can be specified as IIXX" to cause an entry to be ignored.
This is useful to show disk partitions which are currently not used
but will be used later.

FOR:PRO

#define FSTAB
#define FSNMLG

" letclfstab"
16

#define FSTABFMT "%I6s:%I6s:%2s:%d:%d\n"
#define FSTABARG(p) (p)->fs_spec, (p)->fs_file, \

(p)- > fs _type, &(p)- > fs _ freq, &(p)-> fs Jassno
#define FSTABNARGS 5

#define FSTAB_RW "rw ll

#define FSTAB_RO "ro"
#define FSTAB _ SW "sw II
#define FSTAB _ XX "XXII

struct fstab {

3-12

/* read write device *1
1* read only device *1
/* swap device *1
1* ignore totally *1

9/83

FSTAB(5) Fortune Systems FSTAB(5)

char fs spec[FSNMLG]i 1* block special device name */
char fs~)ile[FSNMLG]i /* file system path prefix */
char fs _ type[3]; 1* TW,ro,SW or xx */
int fs _ freq; 1* dump frequency, in days */
int fs _passno; 1* pass number on parallel dump */

};

The proper way to read records from letclfstab is to use the routines
getfsentO, getfsspecO or getfsfileO.

FILES
letdfstab

SEE ALSO
getfsent(3)

9/83 3-13 FOR:PRO

GROUP (5) Fortune Systems GROUP (5)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group lD
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons. Each
group is separated from the next by a carriage return. If the pass­
word field is null, no password is demanded.

This file resides in directory /etc. Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical group lD's to names.

FILES
/etdgroup

SEE ALSO
newgrp(l), passwd(l), pwac(l), crypt(3), passwd(5).

LIMITATIONS
The passwd(l) command won't change the passwords. The group
concept is nowhere near sophisticated enough for 'real' security sys­
tems and not really very handy for small systems.

FOR:PRO 3-14 9/83

MOTD(5) Fortune Systems MOTD(5)

NAME
motd - message of the day

DESCRIPTION
Motd is a file that resides in directory Jete and is the "message of the
day" that is printed out when users login.

SEE ALSO
login(l)

9/83 3-15 FOR:PRO

MTAB(S) Fortune Systems MTA8(S)

NAME
mtab - mounted file system table

DESCRIPTION
Mtab resides in directory fete and contains a table of devices mounted
by the mount command. Umount removes entries.

Each entry is 64 bytes long; the first 32 are the null-padded name of
the place where the special file is mounted; the second 32 are the
null-padded name of the special file. The special file has all its direc­
tories stripped away; that is, everything through the last 'I' is thrown
away.

This table is present only so people can look at it. It does not matter
to mount if there are duplicate entries or to umount if a name cannot
be found.

FILES
fetcJIl'ltab

SEE ALSO
mount(8).

FOR:PRO 3-16 9/83

PASSWD(5) Fortune Systems PASSWD(5)

NAME
passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID
comment
initial working directory
program to use as Shell

This is an ASCII file. Each fie ld within each user's entry is separated
from the next by a colon. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if
the Shell field is null, then /bin/sh is used.

This file resides in directory /etc. Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical user ID's to names.

Appropriate precautions must be ta~en to lock the file against
changes if it is to be edited with a text editor; vipw(8) does the neces­
sary locking.

FILES
/etdpasswd

SEE ALSO
login(l), passwd(l), pwac(l), crypt(3), getpwent(3), group(S).

LIMITATIONS
User information (name, office, etc.) should be stored elsewhere.

9/83 3-17 FOR:PRO

PRINTCAP (5) Fortune Systems PRINTCAP (5)

NAME
printcap - printer capability data base

SYNOPSIS
letc/printcap

DESCRIPTION
Printcap is a data base describing printers. They are described by
giving a set of capabilities which they have, and by describing how
operations are performed.

Entries in printcap consist of a number of ':' separated fields. The
first entry for each printer gives the names which are known for the
printer, separated by , , characters.

TYPES OF PRINTCAP DESCRIPTORS
:xx: This is a switch. It is either present or absent.

:xx#<num>:
< num> must be a decimal number. This is frequently used as
the number of an algorithm applicable to the printer being
described. Example:

:ir#l:
Use initialization routine 1.

:XX= < string> :
< string> is any string of ascii characters other than ':'. It may
also include \E for escape, \nnn for an octal code, \n, etc.
Example:

:wh=/etddiab. whl:
Printwheel descriptor file is letddiab. whl

:XX= < expr>:
<expr> is a string as above. It is evaluated as a sequence of
numbers and operators. The legal operators are:

+, -, *, I, II, > >, < <, I, ", &, N

The symbol II is remainder (% in C), and the rest have their nor­
mal C meanings. There is no precedence, and evaluation is
strictly left to right. Numbers may be decimal, octal (begins
with 0), or hex (begins with Ox). The letter 'I' is interpreted as a
number whose value is an inch. Example:

:bv= I/48*12S:
Maximum vertical increment is 12S/48ths of an inch.

:XX= < format>:

FOR:PRO

< format> is a string as above. If the string is to be used to
output a value, it may contain format specifications. A format
specification begins with a '%'. Thus a real '%' must be
represented in the string as '%%'. The '%' is followed by an expr

3-18 9/83

PRINTCAP (5) Fortune Systems PRINTCAP (5)

as above, with the addition that 'V' is interpreted as the value to
be output. The expr is followed by a 'c', a 'd', or a''''.

I c' causes the low order 8 bits of the value of the expression to
be output as a single byte.

I d' causes the value of the expression to be output in decimal.

I ,,' causes the string which follows (terminated by another ,,,, to
be output the number of times specified by the value of the
expression. The characters in the string are interpreted as 7 -bit,
so if a' ", must be repeated, it can be expressed as \242.

Examples:

:ah=EG, % V d,$:
Absolute horizontal positioning on the IDS is done by send­
ing ESC, 'G', ',', the position to move to as a string of
decimal digits, ',', '$'.

:iu=E 36% V + lc:
The vertical increment on a Diablo 630 is set by sending
ESC, '\036', and the binary value of the size of the incre­
ment plus 1 as a single byte.

:rh=EI% V> >6&077 0100c% V&077 0100c:
Relative horizontal positioning on the Sanders is done by
sending ESC, 'I', and the value in two bytes, each contain­
ing 6 bits, and with the 0100 bit on.

:fl=E?E7% V"OELE@:Forms length on the NEC 3510 is set by putting
the printer in format mode (ESC, '?'), clear- ing forms
length (ESC, '7'), sending newlines to feed to the bottom of
the page (% V"\n"), setting form length to the number of
lines just fed (ESC, 'L'), and exiting format mode (ESC, '@').

:XX= < numlist >:
< numlist> must be a list of decimal, octal or hex numbers,
separated by','. This is frequently used as a list of numbers of
an algorithms applicable to the printer being described.

DET AILED DESCRIPTION OF /etc/printcap ENTRIES
Bold text:

:bs#<num>:
bold start routine number or

:bs=<string>:
bold start string

:be#<num>:
bold end routine number or

9/83 3-19 FOR:PRO

PRINTCAP (5) Fortune Systems PRINTCAP (5)

:be=<string>:
bold end string

:bo=<expr>:
bold offset

:bc=<expr>:
bold repeat count

bs can be a number of a routine to enter bold mode or a string
which causes the printer to start printing in the bold mode.

be can be a number of a routine to exit bold mode or a string
which causes the printer to stop printing in the bold mode.

If 'bs' and 'be' are numbers, they must be identical. Routines
currently in existence are 1 and 2. '

Routine 1 prints the char 'be' times, advances the printhead a
distance of 'bo', and prints the char 'be' times. If 'bo' is 0, the
char will print 'be' times (not 2*'be').

Routine 2 disables bolding.

Overstruck text:
:os#<num>:

overstrike start routine number or

:os=<string>:
overstrike start string

:oe#<num>:
overstrike end routine number or

:oe=<string>:
overstrike end string

os can be a number of a routine to enter overstrike mode or a
string which causes the printer to start printing in overstrike
mode.

oe can be a number of a routine to exit overstrike mode or a
string which causes the printer to stop printing in overstrike
mode.

If 'os' and 'oe' are numbers, they must be identical. Routines
currently in existence are 1 and 2.

Routine 1 prints each character overstruck with a ' /'.

Routine 2 disables overstriking.

Underlined text:
:us#<num>:

underline start routine number or

FOR:PRO 3-20 9/83

PRINTCAP (5) Fortune Systems PRINTCAP (5)

:us=<string>:
underline start string

:ue#<num>:
underline end routine number or

:ue= <string>:
underline end string

us can be a number of a routine to enter underline mode or a
string which causes the printer to start printing in underline
mode.

ue can be a number of a routine to exit underline mode or a
string which causes the printer to stop printing in underline
mode.

If 'us' and 'ue' are numbers, they should be identical. Routines
currently in existence are 1 and 2.

Routine 1 prints the characters to be underlined, backs up the
print head, and underlines them

Routine 2 disables underlining.

Double underlined text:
:ds#<num>:

9/83

double underline start routine number or

:ds= < string>:
double underline start string

:de#<num>:
double underline end routine number or

:de= < string>:
double underline end string

:di= < expr> :
double underline increment

ds can be a number of a routine to enter double underline mode
or a string which causes the printer to start printing in double
underline mode.

de can be a number of a routine to exit double underline mode
or a string which causes the printer to stop printing in double
underline mode.

If 'ds' and 'de' are numbers, they should be identical. Routines
currently in existence are 1 and 2.

Routine 1 prints the characters to be underlined, backs up the
print head, underlines them, moves down the double underline
increment, backs up the print head, underlines again, and
moves up the double underline increment.

3-21 FOR:PRO

PRINTCAP (5) Fortune Systems PRINTCAP (5)

Routine 2 disables double underlining.

Unrecognized sequences:
:Bs#<num>:

bad sequence start routine number or

:Bs= < string>:
bad sequence start string

:Be#<num>:
bad sequence end routine number or

:Be=<string>:
bad sequence end string

Bs can be a number of a routine to enter bad sequence display
mode or a string which causes the printer to start printing in
this mode.

Be can be a number of a routine to exit bad sequence display
mode or a string which causes the printer to stop printing in this
mode.

If '8s' and 'Be' are numbers, they should be identical. Routines
currently in existence are 1 and 2.

Routine 1 prints the characters to be displayed in this mode,
backs up the print head, and prints "A",S underneath them

Routine 2 disables the special mode display.

Horizontal motion:
:hf=<numlist>:

FOR:PRO

list of horizontal positioning routine numbers

hI is a list of routine numbers to be tried for moving horizon­
tally.

All routines in the list will be tried, and the one producing the
fewest bytes will be used. Routines currently in existence are I,
2, 3, 4, and 5.

Routines 1 to 4 output spaces or the string 'bk' to move to the
desired location, changing the increment as necessary, using the
routine specified in 'hi'.

Routines 2 and 4 change to the largest increment first.

Routines 1 and 3 only change the increment if the distance to be
traversed is not an integral multiple of the current increment.

Routines 1 and 2 move left by sending backspaces.

Routines 3 and 4 move left by sending the string' cr' followed by
spaces.

3-22 9/83

PRINTCAP (5) Fortune Systems PRINTCAP (5)

Routine 5 moves to the desired horizontal location by sending
the number of minimum increments 'lh' formatted according to
'ah'.

:ah= < format>:
absolute horizontal positioning string

ah is used only if horizontal positioning routine 5 is selected.

:nb:
no backspace (for diablo firmware)

nb prevents routines 1 thru 4 from sending a backspace. The
firmware in some Diablo 630' s does not always get its backspace
increment from the horizontal increment register.

:hi#<num>:
horizontal increment routine

:lh= < expr> :
minimum (littlest) horizontal increment

:bh= < expr>:
maximum (biggest) horizontal increment

:ih= < format>:
horizontal increment string

hi is the number of the routine to set the horizontal increment.
This is only used if routine I, 2, 3, or 4 is specified in the 'hf
list. Routines currently in existence are 1 and 2.

Routine 1 is used to change the horizontal increment by sending
the number of minimum increments 'lh' formatted according to
'ih'. It never changes to an increment larger than 'bh'.

Routine 2 does nothing.

:cr= < string>:
carriage return

cr is the string sent to move the printhead to the left margin.

:bk= <string>:
backspace

bk is the string sent to move the printhead left one character
position.

Vertical motion:
:vf=<numlist>:

list of vertical positioning routine numbers

vf is a list of routine numbers to be tried for moving vertically.

9/83 3-23 FOR:PRO

PRINTCAP (5) Fortune Systems PRINTCAP (5)

All routines in the list are tried, and the one producing the
fewest bytes is used. Routines currently in existence are 1, 2,
and 3.

Routines 1 and 2 output up or down strings to move to the
desired location, changing the increment as necessary, using the
routine specified in 'vu' or 'vd' as appropriate.

Routine 2 changes to the largest increment first.

Routine 1 only changes the increment if the distance to be
traversed is not an integral multiple of the current increment.

Routine 3 is used only for an IDS printer.

Routine 4 outputs the string 'ff if the destination is the bottom
of the page.

:vd#<num>:
downward vertical increment routine number

:vu#<num>:
upward vertical increment routine number

:bv=<expr>:
maximum (biggest) vertical increment

:lv=<expr>:
minimum (littlest) vertical increment

:id=<format>:
downward vertical increment string

:iu=<format>:

:ud:

FOR:PRO

upward vertical increment string

vd is the number of the routine to set the downward vertical
increment.

vu is the number of the routine set the upward vertical incre­
ment. These are only used if routine 1 or 2 is specified in the
'vf list. Routines currently in existence are 1 and 2.

Routine 1 is used to change the vertical increment by sending
the number of minimum increments 'Iv' formatted according to
'id' or 'iu'. It never changes to an increment larger than 'bh'.

Routine 2 does nothing.

up and down vertical increments are kept in separate registers

This indicates that 'id' and 'iu' load different registers in the
printer.

3-24 9/83

PRINTCAP (5) Fortune Systems PRINTCAP (5)

:ii= < format>:
Third vertical increment string

ii initializes another vertical increment register for the IDS
printer.

:dn= < string>:
line feed

:up= < string>:
reverse line feed

dn and up are the strings sent to move down or up on the page
by the current vertical increment.

:ff=<string>:
form feed

if is the string sent to eject a page.

:xv=<expr>:
extra vertical increment for good paper registration when mov­
ing upwards

When moving paper backwards, it is sometimes necessary to
move back some distance beyond the desired location, and then
move forward in order to take up paper slack. xv is this dis­
tance.

:dm- <string>:
defeat firmware

Some printers have optimizing firmware that takes a sequence
such as 'up 3 units, down 2 units', and turns it into 'up 1 unit'.
If the hardware on such a printer does not give good vertical
registration, setting the 'xv' value to nonzero does not have the
desired effect. The firmware defeats the software attempt to
make up for the hardware limitations. dm is any string which
convinces the firmware that it has printed something. This
prevents the firmware from outsmarting the software.

:sd#<num>:
subscript routine number

:su#<num>:
superscript routine number

Routines currently in existence are 1 and 2.

Routine 1 moves vertically by a fraction of a line.

Routine 2 disables superscripting and subscripting.

Miscellaneous:

9/83 3-25 FOR:PRO

PRINTCAP (5)

:is= <string>:
initialization string

Fortune Systems PRINTCAP (5)

is is the string sent to reset the printer to a known state for all
attributes except forms length and top of form

:tf= < string> :
top of form initialization string

tf is the string sent to reset forms length and top of form This is
used by spoolers between print jobs. WP uses fl and fi instead.
This string may cause the printer to read its switch settings or
set forms length to a fixed value.

:ir#<num>:
initialization routine number

Routines currently in existence are 1 and 2.

Routine 1 does nothing.

Routine 2 is used only by the IDS.

:fi=<expr>:
forms length increment

:fl= < format>:
forms length initialization

The page length is set using fl. The value formatted ('V') is ' fi',
or the current line height if 'fi' evaluates to O.

:pl=<expr>:
pitch if 10 cpi selected from menu

:p2=<expr>:
pitch if 12 cpi selected from menu

:p3= < expr > :
pitch if 15 cpi selected from menu (IDS uses 16.8)

These are the fractions of an inch to be used as a character
width for the menu selections labeled 10, 12, and 15 pitch.

:wh= < string>:
printwheel descriptor file

This is the file from which font information is taken.

:of= < string>:
output filter

This is an executable file, which filters wpprfmt's output into
printer-specific, print-ready format.

FOR;PRO 3-26 9/83

PRINTCAP (5) Fortune Systems

:qo#<num>:
quick output routine number

Routines currently in existence are 1 and 2.

Routine 1 is the normal one to use.

Routine 2 is used only by the IDS.

ALPHABETIC LISTING OF PRINTCAP SWITCHES
:ah= < format>:

absolute horizontal positioning string

:bc=<expr>:
bold repeat count

:be#<num>:
bold end routine number

:be=<string>:
bold end string

:Be#<num>:
unrecognized \ sequence end routine number

:Be= <string>:
unrecognized \ sequence end string

:bh=<expr>:
maximum (biggest) horizontal increment

:bk= <string>:
backspace

:bo=<expr>:
bold offset

:bs#<num>:
bold start routine number

:bs=<string>:
bold start string

:Bs#<num>:
unrecognized \ sequence start routine number

:Bs= < string>:
unrecognized \ sequence start string

:bv=<expr>:
maximum (biggest) vertical increment

:cr= <string>:
carriage return

9/83 3-27

PRINTCAP (5)

FOR:PRO

PRINTCAP (5) Fortune Systems PRINTCAP (5)

:de#<num>:
double underline end routine number

:de= <string>:
double underline end string

:di= < expr>:
double underline increment

:dm= <string>:
defeat firmware - send this string to keep the printer from
optimizing out our ups and downs, intended to produce good
paper registration when moving upwards

:dn= < string>:
line feed

:ds#<num>:
double underline start routine number

:ds=<string>:
double underline start string

:ff= < string>:
form feed

:fi=<expr>:
forms length incre ment

:f1= < format>:
forms length initialization string

:hf= <numlist>:
list of horizontal positioning routine numbers

:hi#<num>:
horizontal increment routine

:id= < format>:
downward vertical increment string

:ih= < format>:
horizontal increment string

:ii= < format>:
third vertical increment string

:ir#<num>:
initialization routine number

:is= < string>:
initialization string

:iu= < format>:
upward vertical increment string

FOR:PRO 3-28 9/83

PRINTCAP(5) Fortune Systems PRINTCAP (5)

9/83

:lh= < expr>:
minimum (littlest) horizontal incre ment

:lv= < expr>:
minimum (littlest) vertical increment

:nb:
no backspace (for diablo firmware)

:oe#<num>:
overstrike end routine number

:oe= < string>:
overstrike end string

:of=<string>:
output filter

:os#<num>:
overstrike start routine number

:os=<string>:
overstrike start string

:p1=<expr>:
pitch if 10 cpi selected from menu

:p2= < expr>:
pitch if 12 cpi selected from menu

:p3= < expr>:
pitch if 15 cpi selected from menu (IDS uses 16.8)

:qo#<num>:
quick output routine number

:sd#<num>:
subscript routine number

:su#<num>:
superscript routine number

:tf: reset top of form and set form length to a known value

:ud:
up and down vertical increments are kept in separate registers

:ue#<num>:
underline end routine number

:ue=<string>:
underline end string

:up= < string>:
reverse line feed

3-29 FOR:PRO

PRINTCAP (5) Fortune Systems PRINTCAP (5)

:us#<num>:
underline start routine number

:us= <string>:
underline start string

:vd#<num>:
downward vertical increment routine number

:vf= <numlist>:
list of vertical positioning routine numbers

:vu#<num>:
upward vertical increment routine number

:wh= <string>:
printwheel descriptor file

:xv=<expr>:
extra vertical increment for good paper registration when mov­
ing upwards

FILES
/etdprintcap

file containing printer descriptions

SEE ALSO
printcap(5)

FOR:PRO 3-30 9/83

PROFILE (5) Fortune Systems PROFILE (5)

NAME
profile - setting up an environment at login time

DESCRIPTION
If your login directory contains a file named .profile, that file will be
executed (via the shell's exee .profile) before your session begins;
.profiles are handy for setting exported environment variables and
terminal modes. If the file fete/profile exists, it will be executed for
every user before the . profile. The following example is typical
(except for the comments):

=1= Make some environment variables global
export MAIL PATH TERM
=1= Set file creation mask
umask 22
=1= Tell me when new mail comes in
MAIL=/usrlspooV maiV myna me
=1= Add my Ibin directory to the shell search sequence
PATH=$PATH:$HOMEibin

Currently letdprofile defines Ipr defaults for users printing from the
global menu, system language defaults (eg. LANGUAGE=EN), and
specifies XON/XOFF protocol for Fortune terminals.

FILES
s-l$HOME/. profile
fete/profile

SEE ALSO
login(l), mail(l), menu(l), sh(l), stty(l), su(l).

BUGS

9/83

At present, the "/etdprofile" file is only implemented for users
whose shell is menu(l).

3-31 FOR:PRO

TERMCAP(5) Fortune Systems TERMCAP(5)

NAME
terrncap - terminal capability data base

SYNOPSIS
/etc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by vi(l) and
curses(3). Terminals are described in termcap by giving a set of capa­
bilities which they have, and by describing how operations are per­
formed. Padding requirements and initialization sequences are
included in termcap.

Entries in termcap consist of a number of I:' separated fields. The
first entry for each terminal gives the names which are known for
the terminal, separated by characters. The first name is always two
characters long and is used by older version six systems which store
the terminal type in a 16-bit word in a systemwide data base. The
second name given is the most common abbreviation for the termi­
nal, and the last name given should be a long name fully identifying
the terminal. The second name should contain no blanks; the last
name can contain blanks for readability.

CAPABILITIES
(P) indicates padding can be specified
(P*) indicates that padding can be based on no. lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am boo I Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not IIH
bs bool Terminal can backspace with IIH
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cI str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line

(P*)
. II

cr str Carnage return, (default M)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display can be retained above
dB num Number of millisec of bs delay needed
db bool Display can be retained below

FOR:PRO 3-32 9/83

TERMCAP(5) Fortune Systems TERMCAP(5)

dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of ff delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give :ei=: if ic
eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy terminal page eject (default "L)
hc boo I Hardcopy terminal
hd str Half-line down (forward 112 Iinefeed)
ho str Home cursor (if no cm)
hu str Half-line up (reverse 112 line feed)
hz str Hazeltine; can't print ""s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give :im=: if ic
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by other function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of keypad transmit mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of other keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in keypad transmit mode
ku str Sent by terminal up arrow key
10-19 str Labels on other function keys
Ii num Number of lines on screen or page
11 str Last line, first column (if no cm)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
m1 str Memory lock on above cursor.
ms bool Safe to move while in standout and underline mode
mu str Memory unlock (tum off memory lock).
nc bool No correctly working carriage return (DM2500,H2000)
nd str Non-destructive space (cursor right)
nl str (P*) Newline character (default \n)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes

9/83 3-33 FOR:PRO

TERMCAP(5) Fortune Systems TERMCAP(5)

pc str
pt boo I
se str
sf str
sg num
so str
sr str
ta str
tc str
te str
ti str
uc str
ue str
ug num
ul bool
up str
us str
vb str
ve str
vs str
xb boo I
xn bool
xr bool
xs boo I
xt bool

(P)

(P)
(P)

Pad character (rather than null)
Has hardware tabs (may need to be set with is)
End stand out mode
Scroll forwards
Number of blank chars left by so or se
Begin stand out mode
Scroll reverse (b~ckwards)
Tab (other than I or with padding)
Entry of similar terminal - must be last
String to end programs that use cm
String to begin programs that use cm
Underscore one char and move past it
End underscore mode
Number of blank chars left by us or ue
Terminal underlines even though it doesn't overstrike
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (f1=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)
Tabs are destructive, rna.gic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept-IOO, is among the
more complex entries in the termcap file as of this writing. (This par­
ticular concept entry is outdated, and is used as an example only.)

c11c100IconceptlOO:\
:is=\EU\Ef\E7\E5\E8\EI\E~\EK\E\2g0\Eo&\~00:\
:al=3*\E R:am:bs:cd=16*\E C:ce=16\E S:cl=2* L:\
:cm=\Ea%+ %+ :co#80:dc=16\E

II

A:dl=3*\E
II

B:ei=\E\200:eo:\
:00= \ Ellp:in:ip= 16*:li#24:mi:nd= \E=: \
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries can continue onto multiple lines by giving a \ as the last
character of a line, and empty fields can be included for readability
(here between the last field on a line and the first field on the next).
Capabilities in termcap are of three types: Boolean capabilities which
indicate the terminal has some particular feature, numeric capabili­
ties giving the size of the terminal or the size of particular delays,
and string capabilities, which give a sequence which can be used to
perform particular terminal operations.

Types of Capabilities
All capabilities have two letter codes. For instance, the fact that the

FOR:PRO 3-34 9/83

TERMCAP(5) Fortune Systems TERMCAP(5)

Concept has "automatic margins" (i.e. an automatic return and
linefeed when the end of a line is reached) is indicated by the capa­
bility am Hence the description of the Concept includes am
Numeric capabilities are followed by the character '#' and then the
value. Thus co which indicates the number of columns the terminal
has gives the value '80' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an '=', and then a
string ending at the next following ':'. A delay in milliseconds may
appear after the '=' in such a capability, and padding characters are
supplied by the editor after the remainder of the string is sent to
provide this delay. The delay can be either a integer, e.g. '20', or an
integer followed by an '*', i.e. '3*'. An ,*, indicates that the padding
required is proportional to the number of lines affected by the opera­
tion, and the amount given is the per-affected-unit padding
required. When an ,*, is specified, it is sometimes useful to give a
delay of the form '3.5' and specify a delay per unit to tenths of mil­
liseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \ E maps to an

II •
ESCAPE character, x maps to a control-x for any appropnate x, and
the sequences \n \r \t \b \f give a newline, return, tab, backspace
and formfeed. Finally, characters may be given as three octal digits
after a \' and the characters II and \ can be given as \" and \ \. If it
is necessary to place a : in a capability it must be escaped in octal as
\ 072. If it is necessary to place a null character in a string capability
it must be encoded as \200. The routines which deal with termcap
use C strings, and strip the high bits of the output very late so that a
\200 comes out as a \000 would.

Preparing Descriptions
We now outline how to prepare descriptions of terminals. The most
effective way to prepare a terminal description is by imitating the
description of a similar terminal in termcap and to build up a descrip­
tion gradually, using partial descriptions with ex to check that they
are correct. Be aware that a very unusual terminal may expose defi­
ciencies in the ability of the termcap file to describe it or limitations in
ex. To easily test a new terminal description you can set the environ­
ment variable TERMCAP to a pathname of a file containing the
description you are working on and the editor looks there rather
than in /etcltermcap. TERMCAP can also be set to the termcap entry
itself to avoid reading the file when starting up the editor. (1his
only works on version 7 systems.)

Basic Capabilities

9/83

The number of colunms on each line for the terminal is given by the
co numeric capability. If the terminal is a CRT, then the number of

3-35 FOR:PRO

TERMCAP(5) Fortune Systems TERMCAP(5)

lines on the screen is given by the Ii capability. If the terminal wraps
around to the beginning of the next line when it reaches the right
margin, then it should have the am capability. If the terminal can
clear its screen, then this is given by the cl string capability. If the
terminal can backspace, then it should have the bs capability, unless
a backspace is accomplished by a character other than "H in which
case you should give this character as the be string capability. If it
overstrikes (rather than clearing a position when a character is struck
over) then it should have the os capability.

A very important point here is that the local cursor motions encoded
in termcap are undefined at the left and top edges of a CRT terminal.
The editor never attempts to backspace around the left edge, nor
attempts to go up locally off the top. The editor assumes that feed­
ing off the bottom of the screen causes the screen to scroll up, and
the am capability tells whether the cursor sticks at the right edge of
the screen. If the terminal has switch selectable automatic margins,
the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" termi­
nals. Thus the model 33 teletype is described as

t3 33 tty33:co#72:os

while the Lear Siegler ADM-3 is described as

cl adm3 3 lsi adrn3:am:bs:cl= "Z:li#24:co#80

Cursor addressing
Cursor addressing in the terminal is described by a cm string capabil­
ity, with printf(3s) like escapes %x in it. These substitute to encod­
ings of the current line or column position, while other characters
are passed through unchanged. If the cm string is thought of as
being a function, then its arguments are the line and then the
column to which motion is desired, and the % encodings have the
following meanings:

%das in printf, 0 origin
%2like %2d
%3like %3d
%.like %c
% +xadds x to value, then %.
% >xyif value> x adds y, no output.
%rreverses order of line and column, no output
%iincrements linelcolumn (for 1 origin)
%%gives a single %
%nexclusive or row and column with 0140 (DM2S00)
%BBCD (16*(X/10» + (x%10), no output.
%DReverse coding (x-2*(x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs
to be sent \E&a12c03Y padded for 6 milliseconds. Note that the

FOR:PRO 3-36 9/83

TERMCAP(5) Fortune Systems TERMCAP(5)

order of the rows and columns is inverted here, and the row and
colunm are printed as two digits. Thus its cm capability is
"cm-6\E&%r%2c%2Y". The Microterm ACT-IV needs the current
row and column sent preceded by a "T, with the row and column
simply encoded in binary, "cm= "T%. %.". Terminals which use
"%." need to be able to backspace the cursor (bs or be), and to move
the cursor up one line on the screen (up introduced below). This is
necessary because it is not always safe to transmit \t, \n "0 and \r,
as the system can change or discard them

A final example is the LSI AOM3a, which uses row and column
offset by a blank character, thus "cm=\E=%+ %+ ".

Cursor motions
If the terminal can move the cursor one position to the right, leaving
the character at the current position unchanged, then this sequence
should be given as nd (non-destructive space). If it can move the
cursor up a line on the screen in the same column, this should be
given as up. If the terminal has no cursor addressing capability, but
can home the cursor (to very upper left comer of screen) then this
can be given as ho; similarly a fast way of getting to the lower left
hand comer can be given as 11; this may involve going up with up
from the home position, but the editor never does this itself (unless
11 does) because it makes no assumption about the effect of moving
up from the home position.

Area clears
If the terminal can clear from the current pOSition to the end of the
line, leaving the cursor where it is, this should be given as ceo If the
terminal can clear from the current pOSition to the end of the
display, then this should be given as cd. The editor only uses cd
from the first column of a line.

Insertldelete line
If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the first
position of a line. The cursor must then appear on the newly blank
line. If the terminal can delete the line which the cursor is on, then
this should be given as dl; this is done only from the first position on
the line to be deleted. If the terminal can scroll the screen back­
wards, then this can be given as sb, but just al suffices. If the termi­
nal can retain display memory above then the da capability should
be given; if display memory can be retained below then db should be
given. These, let the editor understand that deleting a line on the
screen can bring non-blank lines up from below or that scrolling back
with sb can bring down non-blank lines.

Insertldelete character

9/83

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using tenncap. The

3-37 FOR:PRO

TERMCAP(5) Fortune Systems TERMCAP(5)

most common insert/delete character operations affect only the char­
acters on the current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and the Perkin
Elmer Owl, make a distinction between typed and untyped blanks
on the screen, shifting upon an insert or delete only to an untyped
blank on the screen which is either eliminated, or expanded to two
untyped blanks. You can find out which kind of terminal you have
by dearing the screen and then typing text separated by cursor
motions. Type "abc def" using local cursor motions (not spaces)
between the "abc" and the "def". Then position the cursor before
the "abc" and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the
end, then your terminal does not distinguish between blanks and
untyped positions. If the "abc" shifts over to the "def" which then
move together around the end of the current line and onto the next
as you insert, you have the second type of terminal, and should give
the capability in, which stands for "insert null". If your terminal
does something different and unusual then you may have to modify
the editor to get it to use the insert mode your terminal defines.

The editor can handle both terminals which have an insert mode,
and terminals which send a simple sequence to open a blank posi­
tion on the current line. Give as im the sequence to get into insert
mode, or give it an empty value if your terminal uses a sequence to
insert a blank position. Give as ei the sequence to leave insert mode
(give this, with an empty value also if you gave im so). Now give as
ic any sequence needed to be sent just before sending the character
to be inserted. Most terminals with a true insert mode will not give
ic, terminals which send a sequence to open a screen position should
give it here. (Insert mode is preferable to the sequence to open a
position on the screen if your terminal has both.) If post insert pad­
ding is needed, give this as a number of milliseconds in ip (a string
option). Any other sequence which needs to be sent after an insert
of a single character can also be given in ip.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode you can give the capability rni to speed up inserting in this
case. Omitting rni affects only speed. Some terminals (notably
Datamedia's) must not have mi because of the way their insert mode
works.

Finally, you can specify delete mode by giving drn and ed to enter
and exit delete mode, and dc to delete a single character while in
delete mode.

Highlighting, underlining, and visible bells
If your terminal has sequences to enter and exit standout mode

FOR:PRO 3-38 9/83

TERMCAP(5) Fortune Systems TERMCAP(5)

these can be given as so and se respectively. If there are several fla­
vors of standout mode (such as inverse video, blinking, or underlin­
ing - half bright is not usually an acceptable "standout" mode unless
the terminal is in inverse video mode constantly) the preferred mode
is inverse video by itself. If the code to change into or out of stan­
dout mode leaves one or even two blank spaces on the screen, as
the TVI 912 and Teleray 1061 do, then ug should be given to tell
how many spaces are left.

Codes to begin underlining and end underlining can be given as us
and ue respectively. If the terminal has a code to underline the
current character and move the cursor one space to the right, such
as the Microterm Mime, this can be given as uc. (If the underline
code does not move the cursor to the right, give the code followed
by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout
mode when they move to a new line or the cursor is addressed.
Programs using standout mode should exit standout mode before
moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different
mode during open and visual modes of ex, this can be given as vs
and ve, sent at the start and end of these modes respectively. These
can be used to change, e.g., from a underline to a block cursor and
back.

If the terminal needs to be in a special mode when running a pro­
gram that addresses the cursor, the codes to enter and exit this
mode can be given as ti and teo This arises, for example, from termi­
nals like the Concept with more than one page of memory. If the
terminal has only memory relative cursor addressing and not screen
relative cursor addressing, a one screen-sized window must be fixed
into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad

9/83

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible
to handle terminals where the keypad only works in local (this
applies, for example, to the unshifted HP 2621 keys). If the keypad
can be set to transmit or not transmit, give these codes as ks and ke.
Otherwise the keypad is assumed to always transmit. The codes
sent by the left arrow, right arrow, up arrow, down arrow, and

3-39 FOR:PRO

TERMCAP(5) Fortune Systems TERMCAP(5)

home keys can be given as kI, kr, ku, kd, and kh respectively. If
there are function keys such as £0, fl., ... , f9, the codes they send
can be given as kO, kI, ... , k9. If these keys have labels other than
the default £0 through f9, the labels can be given as 10, 11, ... , 19. If
there are other keys that transmit the same code as the terminal
expects for the corresponding function, such as clear screen, the
termcap 2 letter codes can be given in the ko capability, for example,
":ko=cl,ll,sf,sb:", which says the terminal has clear, home down,
scroll down, and scroll up keys that transmit the same thing as the
cl, ll, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals which
have single character arrow keys. It is obsolete but still in use in
version 2 of vi, which must be run on some minicomputers due to
memory limitations. This field is redundant with kI, kr, ku, kd, and
kh. It consists of groups of two characters. In each group, the first
character is what an arrow key sends, the second character is the
corresponding vi command. These commands are h for kI, j for kd,
k for ku, I for kr, and H for kh. For examole, the mime would be

A ,A II A" II

:ma= KJ ~k XI: indicating arrow keys left (H), down (K), up (Z),
and right (X). (There is no home key on the mime.)

Miscellaneous
lf the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

lf tabs on the terminal require padding, or if the terminal uses a
character other than "I to tab, then this can be given as tao

Hazeltine terminals, which don't allow ,"I, characters to be printed
should indicate hz. Datamedia terminals, which echo carriage-return
linefeed for carriage return and then ignore a following line feed
should indicate nco Early Concept terminals, which ignore a line feed
immediately after an am wrap, should indicate xn. If an erase-eol is
required to get rid of standout (instead of merely writing on top of
it), xs should be given. Teleray terminals, where tabs tum all char­
acters moved over to blanks, should indicate xt. Other specific ter­
minal problems may be corrected by adding more capabilities of the
forrnxx.

Other capabilities include is, an initialization string for the terminal,
and if, the name of a file containing long initialization strings. These
strings are expected to properly clear and then set the tabs on the
terminal, if the terminal has settable tabs. If both are given, is is
printed before if. This is useful where if is lusrllibltabsetlstd but is
clears the tabs first.

Similar Terminals
If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability tc

FOR:PRO 3-40 9/83

TERMCAP(5) Fortune Systems TERMCAP(5)

can be given with the name of the similar terminal. This capability
must be last and the combined length of the two entries must not
exceed 1024. Since tennlib routines search the entry from left to
right, and since the tc capability is replaced by the corresponding
entry, the capabilities given at the left override the ones in the simi­
lar terminal. A capability can be cancelled with xx@ where xx is the
capability. For example, the entry

hn 2621nl:ks@:ke@:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and
hence does not tum on the function key labels when in visual mode.
This is useful for different modes for a terminal, or for different user
pre ferences.

FILES
letdtermcap file containing terminal descriptions

SEE ALSO
ex(l), more(l). tset(l), ul(l), vi(l), curses(3), termcap(3).

LIMITATIONS

9/83

Ex allows only 256 characters for string capabilities, and the routines
in termcap(3) do not check for overflow of this buffer. The total
length of a single entry (excluding only escaped newlines) must not
exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not
supported by any program.

3-41 FOR:PRO

TRANS (5) Fortune Systems TRANS (5)

NAME
trans - translation table file

DESCRIPTION
Translation table files contain labeled strings. They are often used to
lookup a string associated with a particular label. For example, the
label" INSERT-DISK" might have a string value of

"Please insert the flexible disk and press < return> . "

Software that needs to have a diskette inserted can lookup the label
"INSERT-DISK" and display the string that is found. If the transla­
tion table is changed, a different message would be displayed. This
happens without any change to the software which is doing the
lookup and displaying the message.

Much of Fortune Systems' software uses translation tables. This
often allows a single program to work in different environments.
Only the translation table needs to be changed.

The translation table file consists of two parts. The first contains the
labels and the offsets into the file of the corresponding values. The
second part conains these values. Both the labels and the string
values are terminated by the null character.

SEE ALSO
printstring(l)

LIMITATIONS
The file is normally generated by a string compiler which is currently
not available to Fortune customers.

FOR:PRO 3-42 9/83

TTYS(5) Fortune Systems TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION
The ttys file is read by the l1'zit program and specifies which terminal
special files are to have a process created for them which allows peo­
ple to log in. It contains one line per special file.

The first character of a line is either 'a' or '1'; the former causes the
line to be ignored, the latter causes it to be effective. The second
character is used as an argument to getty(8), which performs such
tasks as baud-rate recognition, reading the login name, and calling
login. For normal lines, the character is 'a'; other characters can· be
used, for example, with hard-wired terminals where speed recogni­
tion is unnecessary or which have special characteristics. (Getty has
to be fixed in such cases.) The remainder of the line is the terminal's
entry in the device directory, /dev.

FILES
/etdttys

SEE ALSO
login(l), getty(8), init(8).

9/83 3-43 FOR:PRO

TTYTVPE(5) Fortune Systems TTYTVPE(5)

NAME
tty type - data base of terminal types by port

SYNOPSIS
/etc/ttytype

DESCRIPTION
Ttytype is a database containing, for each tty port on the system, the
kind of terminal that is attached to it. There is one line per port,
containing the terminal kind (as a name listed in termcap (5», a
space, and the name of the tty, minus /dev/.

This information is read by tset(l) and by login(l) to initialize the
TERM variable at login time.

SEE ALSO
login(l), tset(l).

LIMITATIONS
Some lines are merely known as "dialup" or "plugboard".

FOR:PRO 3-44 9/83

UTMP(5) Fortune Systems UTMP(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION
The utmp file allows one to discover information about who is
currently using the operating system The file is a sequence of
entries with the following structure declared in the include file:

1*
* Structure of utmp and wtmp files.
*
* Assuming the number 8 is unwise.
*1

struct utmp {
char
char
long

};

ut_line[8]; /* tty name */
ut_ name[8]; /* user id */
ut_ time; /* time on */

This structure gives the name of the special file associated with the
user's terminal, the user's login name, and the time of the login in
the form of time(2).

The wtmp file records all log ins and logouts. Its format is exactly like
utmp except that a null user name indicates a logout on the associ­
ated terminal. Furthermore, the terminal name ,N, indicates that the
system was rebooted at the indicated time; the adjacent pair of
entries with terminal names " and I}' indicate the system­
maintained time just before and just after a date command has
changed the system's idea of the time.

Wtmp is maintained by login(l) and init(8). Neither of these pro­
grams creates the file, so if it is removed record-keeping is turned
off. It is summarized byac(8).

FILES
/etdutmp

/usr/adm/wtmp

SEE ALSO
login(l), who(l), ac(8), init(8).

9/83 3-45 FOR:PRO

WHL(5) Fortune Systems WHL(5)

NAME
whl - print wheel (font) descriptor file

DESCRIPTION
A printwheel descriptor file contains descriptions of all the known
fonts for a particular printer. Text on a line following a '#' is
ignored:

#Comment line
+init "xxx" #the init string is "xxx"

The following items appear in the descriptions below. They have
the following meanings:

[Name1], [Name2], [Name31, etc.
These are strings by which this entry is identified. They can
contain any combination of alphabetics and numerics.

[pitch]
This appears as a fraction of an inch (e.g. 1110, 1115). It must be
expressed in terms of integers (1116.8 should appear as 10/168).
In a monos paced font, it is the width of a character. In a pro­
portional spaced font, it is the width of an em-space (the widest
character).

Cps default width]
This appears as a fraction of the pitch. It must be expressed in
terms of integers. This is used only in a proportional spaced
font. It is the most common character width in the font. It is
used as the default for any character which does not have an
explicit width.

[char width]
This appears as a fraction of the pitch. It must be expressed in
terms of integers. This is used only in a proportional spaced
font. It is the width of the character defined on the current line.

[videotex]
This is the videotex representation of the character being
defined.

[string]

FOR:PRO

This is the string sent to the printer to display the videotex char­
acter.

[videotex] and [string] are sequences of characters.
[videotex] begins at the beginning of the line, and is ter­
minated by a space or tab. [string] is delimited by'"' at
either end. \ sequences recognized as single characters are:

\n 012
\r 015
\f 014

3-46 9/83

WHL(5)

9/83

\t
\E

Fortune Systems

011
033
033
0210

WHL(5)

\[
\b
\ xxx
\x

the character whose octal value is xxx
the character 'x' where x is any character
not listed above. [n particular:

\ \ '\'
\" 'II'

\# '#'
\> - '>'
\+ '+'
\

A font description starts with the name line:

>[Name1] [Name2] [Name3] ... (etc.)

and continues until the name line for the next font or end of
file.

Next in the file are optional data lines. These can be:

+init "[string]"
[string] is the character sequence which must be sent in
order to select this font. If this line is absent, no init string
is sent.

+pitch ([pitch])
[pitch] is a fraction of an inch. [f this line is absent, a
default pitch is assumed.

+ps ([ps default width])
If this line is absent, the font is monospaced. If present, it is
proportional spaced. [ps default width] is optional. [f

present, it is a fraction of the pitch, and is used as the
width of any character not having an entry containing a
width.

Next in the file are optional character lines.

[videotex] "[string]" ([char width])

These describe the character sequence which must be sent to
print the character described on this line, and the width of the
character. There are four types of videotex characters described
in the file. The following list explains each of these types:

1. Standard printable ascii (non-overstriking): in the range
040-0177.

3-47 FOR:PRO

WHL(5)

FOR:PRO

Fortune Systems WHL(5)

entry absent
The output string defaults to the ascii character. The
character width defaults to Cps default width], or [pitch]
if not present.

[videotex] "[string]"
If [string] is null, this character is not available. Other­
wise, the output string is [string], and the character
width defaults to Cps default width], or [pitch] if not
present.

[videotex] ([char width])
The output string defaults to the ascii character. [char
width] is a fraction of pitch.

[videotex] "[string] " ([char width])
The output string is [string]. [char width] is a fraction
of pitch.

2. Non-overstriking supplementary characters: SS2 (031), fol­
lowed by a character in the range 040-077 or 0120-0177.

entry absent
This character is not in the font.

[videotex] "[string]"
The output string is [string]. Character width defaults
to Cps default width], or [pitch] if not present.

[videotex] "[string]" ([char width])
The output string is [string]. [char width] is a fraction
of pitch.

3. Overstriking supplementary characters which can be com­
bined with non-overstriking characters: SS2 (031), followed
by a character in the range 0100-0117.

entry absent
This character is not in the font.

[videotex] "[string]"
The output string is [string]. Printing this string leaves
the position of the printhead unchanged. If printing
the character causes the head to advance, the string
must end with '\ b'. Since this is an overstrike, it is not
considered to have a width.

4. Overstriking supplementary characters already combined
with non-overstriking characters: SS2 (031), followed by a
character in the range 0100-0117, followed by a printable
ascii character (in the range 040-0177).

3-48 9/83

WHL(5) Fortune Systems WHL(5)

entry absent
This character is not in the font.

[videotex] "[stringJ"
The output string is [string]. Character width defaults
to [ps default widthJ, or [pitchJ if not present.

[videotex] "[stringJ" ([char width])
The output string is [string]. [char width] is a fraction
of pitch.

In types 3 and 4, all descriptions containing the same overstrik­
ing character must appear in adjacent lines within a font
description (e.g. a-umlaut, o-umlaut, umlaut alone).

EXAMPLE

9/83

Sample wheel file entry:

"# wp print wheel 4 on NEC
"# Multilingua1-A 803-020004-702
> Multi lingual 4
+init "i'""0"
\177" "#not on wheel
#supplementary set
"# (Y below indicates that the control character is in
the file, not" that the file contains the two
7! characters' , and 'Y').
YA ,,"N(O\b" # All

" " " YAa " N' O\ba" # the
"YAe ,,"N'''O\be'' # "YA's
"YAi ,,"N'''O\bi'' # must
"YAo ""N'''O\OO Ii # be
" " " YAu " N' O\bu" # adjacent.
"YAc ,,"N'''O\bc'' #
"YAj ,,"N'''O\bj'' #
" "" YB " N@ O\b" # The first three
"YBa ,,"NF"O\ba" "# "YB's are all
"YBe " "NF" 0\ be" # that will be seen.
"YC ""N> "O\b"
" " " "YBi ""NF"O\bi"
YBo " NF 0\00"

" " " YBu " NF O\bu"
"YBc ,,"NF"O\bc"
"YBj ,,"NF"O\bj"
" ""

These "YB's will
be ignored
due to the

" # intervening YC.
This is an error.

YO " N<" O\b"
\031H ""NX O\b" # \031 is identical to fly
\031Ha ,,"NA"O\ba" #
\031He ,,"NA"O\be" #
\031Hi ,,"NA"O\b"NN"O"#
\031Ho ""NA "0\00" #

3-49 FOR:PRO

WHL(5) Fortune Systems WHL(5)

II II
\031Hu II II NAil O\bu" #
"YJ II NR O\b"
IIYJA II II NWII 0 II

II II II
YJa II NV 0"

IIYK II II

"I1NEIIO\b"
lIyO II ND O\b"
lIy# "I1NB

II
O"

lIy! II II
II NC 0"

lIy ' II II
II NG 0"

IIYa II
I1
N(O"

II
yz

II II

II NKO"
lIy? "I1NL

II
O"

IIYT "I1NM
II
O"

1Iy- II II

II NO 0" II J
II II NPII 0 II yy

lIyS II II
" NQ 0"

lIyv II II
"NS 0"

"Y{
II II

" NT 0"
"Yi

II II
" NU 0" II

Yq " II NY II 0 "
lIy "

II II
" NZ 0"

IIY6 II II
" N}. 0"

lIy("liN 110 "
IIYR II II

"N 0"

FILES
Any files with the . whl extension.

SEE ALSO
mapvtx(3)

FOR:PRO 3-50 9/83

INTRO(8) Fortune Systems INTRO(8)

NAME
intro - introduction to section 8

DESCRIPTION

9/83

Section 8 of the Programmer's Manual describes system management
programs. These utilities mostly reside in fete and usually must be
run by the system manager. Most of the time the system manager
will not need to run these programs directly; they are run automati­
cally when the need arises by the fetclrc shell file, or are not needed.
See (re(8).)

4-1 FOR:PRO

8001(8) Fortune Systems 8001(8)

NAME
boot -the standalone shell

SYNOPSIS
Isalboot

DESCRIPTION
Isa/boot, also known as the "Levell" boot, is the 32:16'5 equivalent of
the standalone shell. It is a standalone program which normally
resides in boot partition 0 of every hard and some floppy disks used
on the 32:16. When booting up, a level 0 boot program (usually in
ROM), reads in the indicated level 1 boot program (0-7) from the
indicated device and drive. The level 1 boot program, usually
/sa/boot, then reads in the boot file name stored in the EAROM. This
usually is hd02/unix (or fd02/unix). If there is no file name specified,
or the specified file does not exist, a prompt appears and the user
may type any file. The syntax supplied to boot must be of the form:
device/file, where device is one of hd[0-3J[0-7] or fd[O-3J[0-7]. For
instance, to get the reconfiguration menu, (see reconf(8)), one can
reboot the system, holding the DEL key. First, type the F7 key and
hd02/sa/reconf Then type the RETURN key and then the EXECU1E
key. The reconfiguration menu will appear.

SEE ALSO
bootmenu(8) .

LIMITATIONS
/sa/boot is actually just an image of what is in the boot partition.
Changing or removing /sa/boot will not affect normal operation of the
32:16. /sa/boot is a standalone program and cannot be invoked
through UNIX.

FOR:PRO 4-2 9/83

BOOTCP(8) Fortune Systems BOOTCP(8)

NAME
bootcp - copy a boot image

SYNOPSIS
bootcp ifile ofile bootno

DESCRIPTION
Bootep copies a boot image from ifile to ofile. ifile can be a regular file
or a character device. If it is a regular file, it is assumed to be the
boot image. If it is a character device, boonoth boot is read. ofiIe can
be a regular file or a character device. If it is a regular file, it will
contain the boot. If it is a character device, bootnoth boot contains
the boot. If the bootno boot exists, it is overwritten. If it doesn't,
space for it is found in partition O. In either case the configuration
block is updated.

SEE ALSO
devctl(2), diskconf(S), disktab(S), rdconf(8).

DIAGNOSTICS

9/83

Error messages if the ifile does not exist, if the ifile is not a regular
file or a character special file, if the ofiie is not a regular file or a char­
acter special file or if the partition 0 doesn't have enough space for
the boot.

4-3 FOR:PRO

BOOTMENU (8) Fortune Systems BOOTMENU (8)

NAME
bootmenu - first power-up menu

DESCRIPTION
Ute boot menu allows you to decide what the 32:16 does on power­
up or reset, which device, drive, and boot program # to used in
booting up, the brand(s) of floppy drive(s), the UNIX file name
brings up, and the default baud rates used on the front and back
ports. Each line of the menu has a short description, the current
setting of that field (if appropriate to the command), and the func­
tion key which picks that field (highlighted). The EXECUTE key
quits the menu and either goes into terminal mode or starts the boot
device and drive routine. The HELP key gives a description of how
to use each command.

F1 Change Front port speed current setting
F2 Change Back port speed " "
F3 Change power-up action
F4 Change boot device
F5 Change boot program number
F6 Change floppy drive #0 type
F7 Change boot file name
F8 Read settings from EAR OM
F9 Save settings into EAROM
FlO Start system from floppy disk

EXECUTE Start up system using information on screen
HELP For more information

The function keys are brightened to indicate they are to be
depressed. Pressing F1 to FlO picks one of the possible fields, the
chosen field is indicated by showing the description in reverse video.
FI-F6 are changed by typing the space key. F7 requires the user to
type in a string device/file, followed by RETURN. F8 and F9 do not
have settings to change; the underlined message confirms the action
was taken. FlO sets the proper settings you need to run the cold
boot diskette or the floppy-based unix diskette. The EXECUTE key
goes ahead and boots, using the information on the screen but not
writing the EAROM. The HELP key shows an alternate menu, giv­
ing a slightly longer description of each field.

If there is some problem in booting up the "Level I" boot, the boot
menu is entered with a flashing error message.

DESCRIPTION OF COMMANDS
Change Front port speed:

Change Back port speed:

FOR:PRO

The Fortune keyboard port (TIYOO) and the port on the back of
the machine (TIYOl) are RS-232C serial lines. These can operate
at various speeds. The Fortune keyboard should be at 2400

4-4 9/83

BOOTMENU (8) Fortune Systems BOOTMENU (8)

9/83

baud. The back port can be used for various purposes and the
speed can be set for however it is used. These are default
speeds only. They are in effect whenever the MomROM func­
tions as a terminal, and also under UNIX until they are changed.
TTYOO can be set to any baud rate if that port is to be used for
operation with other than the Fortune integral keyboard.

Change power-up action:
Decide what the machine will do when you tum it on. It can
boot from the "Boot Device", show the menu, or act as a termi­
nal with another computer connected to ttyOl.

Change boot device:
Decide from which peripheral and drive number to boot. The
32:16 can boot from the back port, the floppy disk drive, and
some of the VO option cards.

Booting from the hardware peripherals consists of using data
stored on the hardware. Booting from a serial line requires
another computer at the other end of the line. Most of the disk
drive peripherals can have more than one drive attached to
them, and the drives have unique numbers, starting from O.
This field also sets which drive on the above-named device will
be used.

Change boot program number:
Each disk drive can have one or more boot programs. This
number specifies which boot program should be used to find the
'level 1 boot file'. See bootcp(8).

Change floppy drive #n type:
The 32:16 can have up to four floppy disk drives attached to it.
This allows you to indicate which model of floppy disk drive is
connected to each of the four channels. You will notice that
there are four drives and only one type shown; drive number n
is changed, where n is 0 unless the boot device is set to floppy
drive #=1, #2, or #3. You should never have to change this.

Read settings from EAROM:
This overwrites the current settings on the screen with the con­
tents of the non-volatile part of the EAROM.

Save settings into EAROM:
This saves the settings on the screen into the permanent part of
the EAROM.

Start system from floppy disk:
This sets the other items on the screen to the necessary settings
for running the floppy-based FOS system (such as cold boot disk
#1). It also sets the EAROM root device and swap device fields
(see reconf(8» to "fd02" and II fd01", respectively. This merely
allows you to boot up on floppy-based unix once; it only

4·5 FOR:PRO

BOOTMENU (8) Fortune Systems BOOTMENU (8)

changes the volatile portion of the EAR OM.

See reconf(8) for a full description of what these fields do.

EXECUTE
This saves the settings on the screen into the volatile portion of
the EAROM. They are only in force until the machine is re'set or
powered down, at which time the non-volatile contents of the
EAROM are consulted.

HELP
This replaces the screen with a list of terse reminders of each
key's function; it is no replacement for this document.

See momrom(8) for information to run the boot menu.

DIAGNOSTICS
Unexpected processor trap!

This is caused by an unexpected processor trap, and could indi­
cate a program bug or an unexpected device interrupt. Probably
what happened is that the indicated level 1 boot program is gar­
bage. If this happens, try booting from a floppy; for hard disk
systems, use the cold boot floppy.

Downloading:
This message appears when using terminal mode. Th~ down­
load function has started (because the 32:16 received a D from
the back port), and the processor is accepting records from the
back port.

These messages can appear with the boot menu:

EAROM checksum error!
The Motherboard EAROM has been changed too many times
and needs to be replaced, or the data in the EAROM was
accidentally changed. The F9 key should make this message go
away; if it doesn't, consult your dealer.

Please set boot device The EAROM code for the boot device means
nothing.

When booting from the floppy:

No disk in floppy drive

Bad conf block on floppy

Empty boot program on floppy

Bad boot program on floppy

Floppy drive can't seek

FOR:PRO 4-6 9/83

BOOTMENU (8) Fortune Systems BOOTMENU (8)

Floppy has bad block

Floppy does not respond
The floppy disk boot routine ran into some problem; The first
message is obvious. The last message indicates that the floppy
controller may be broken. The rest are explained in boot(8),
disk(5) and diskconj(8).

Any of the above problems can also occur when booting from the
hard disk.

OLD VERSIONS
Older versions of the motherboard PROMs use "There's something
wrong, start over" instead of "Unexpected processor trap," and
"EAROM may not work" instead of "EAROM checksum error."

SEE ALSO
boot(8), momrom(8), reconf(8).

9/83 4-7 ,FOR:PRO

CHOWN(8) Fortune Systems CHOWN(8)

NAME
chown, chgrp - change owner or group

SYNOPSIS
letc/chown owner file .. .

letclchgrp group file .. .

DESCRIPTION
Chown changes the owner of the files to owner. The owner can be
either a decimal UlD or a login name found in the password file.

Chgrp changes the group-ID of the fiLes to group. The group can be
either a decimal GID or a group name found in the group-ID file.

Only the super-user can change owner or group, in order to simplify
as yet unimplemented accounting procedures.

FILES
/etdpasswd

/etdgroup

SEE ALSO
chown(2), group(5), passwd(5).

FOR:PRO 4-8 9/83

DSKSELECT (8) Fortune Systems DSKSELECT (8)

NAME
dskselect - select a disk configuration block

SYNOPSIS
dskselect file [disktype]

DESCRIPTION
Dskselect reads the disktab data base and displays the disk type
names on the screen after printing the prompt. One of the displayed
types can be selected by typing its index. A configuration block of
the selected disk is written out to file. If the disktype is given, the
user is not prompted and configuration block for that type is writ­
ten. The letcldisktab file contains the data base of the configuration
blocks.

SEE ALSO
devctl(2), disktab(5), rdconf(8).

DIAGNOSTICS

9/83

Error messages if letc/disktab can not be found, disktype is not in the
disktab file or file can not be written.

4-9 FOR:PRO

FORMAT (8) Fortune Systems FORMAT (8)

NAME
format - formats a floppy or a hard disk

SYNOPSIS
format [-c conftle] [-kJ [-t track -h head] device

DESCRIPTION
Format is a disk formatter. It formats the device and writes a new
configuration block on it. You must use mkfs if you want to create a
new filesystem on the device.

OPTIONS
-c conftle

reads a configuration block from con#le instead of device.

-k saves the bad block information present on the disk. This
avoids the need to res pare known bad blocks. This option has
no effect on an unformatted hard disk. This option, when used
on an unformatted floppy disk, will hang the system

-t track -h head
formats a single track on a head.

SEE ALSO
mkconf(8), mkfs(8), rdconf(8), diskconf(S), mkfs(8).

DIAGNOSTICS
Error messages if the conftle or device does not exist, configuration
block can not be read or is invalid, configuration block can not writ­
ten to device, invalid track or head, or if formatting was unsuccessful.

FOR:PRO 4-10 9/83

FSCK(8) Fortune Systems FSCK(8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
letc/fsck -p [file system ...]

letc/fsck [-n] [-sX] [-SX] [-tfilenameJ [-yJ [file system] ...

DESCRIPTION

9/83

The first form of fock preens a standard set of file systems or the
specified file systems. It is normally used in the script letclrc during
automatic reboot. In this case fock reads the table letcJfstab to deter­
mine which file systems to check. It uses the information there to
inspect groups of disks in parallel taking maximum advantage of I/O
overlap to check the file systems as quickly as possible. Normally,
the root file system is checked on pass I, other "root" ("a" partition)
file systems on pass 2, other small file systems on separate passes
(e.g. the "d" file systems on pass 3 and the "e" file systems on pass
4), and finally the large user file systems on the last pass, e.g. pass
5. A pass number of 0 in fstab causes a disk to not be checked; simi­
larly partitions which are not shown as to be mounted "rw" or "ro"
are not checked.

The system takes care that only a restricted class of innocuous incon­
sistencies can happen unless hardware or software failures inter­
vene. These are limited to the following:

Unreferenced inodes

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super block wrong

These are the only inconsistencies which fock with the -p option
corrects; if it encounters other inconsistencies, it exits with an abnor­
mal return status and an automatic reboot then fails. For each
corrected inconsistency one or more lines are printed identifying the
file system on which the correction takes place, and the nature of
the correction. After successfully correcting a file system, fock prints
the number of files on that file system and the number of used and
free blocks.

Without the -p option, fock audits and interactively repairs incon­
sistent conditions for file systems. If the file system is inconsistent
the operator is prompted for concurrence before each correction is
attempted. It should be noted that a number of the corrective
actions are not fixable under the -p option result in some loss of
data. The amount and severity of data lost can be determined from
the diagnostic output. The default action for each consistency

4-11 FOR:PRO

FSCK(8) Fortune Systems FSCK(8)

correction is to wait for the operator to respond yes or no. If the
operator does not have write permission fock defaults to a -n action.
check, dcheck, [check, and icheckcombined.

OPTIONS
The following flags are interpreted by fock.

-0 Assume a no response to all questions asked by fock; do not
open the file system for writing.

-sX Ignore the actual free list and (unconditionally) reconstruct a
new one by rewriting the super block of the file system The file
system should be unmounted while this is done; if this is not
possible, care should be taken that the system is quiescent.

-SX

The -sX option allows for creating an optimal free-list organization:

-sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was
created are used.

Conditionally reconstruct the free list. This option is like -sX
above except the free list is rebuilt only if there were no discrepancies
discovered in the file system. Using -S forces a no response to aU
questions asked by fock. This option is useful for forcing free list
reorganization on uncontaminated file systems.

-t If fock cannot obtain enough memory to keep its tables, it uses a
scratch file. If the -t option is specified, the file named in the
next argument is used as the scratch file, if needed. Without
the -t flag, fock prompts the operator for the name of the scratch
file. The file chosen should not be on the file system being
checked, and if it is not a special file or did not already exist, it
is removed when fsck completes.

-y Assume a yes response to all questions asked by fock; this should
be used with great caution as this is a free license to continue
after essentially unlimited trouble has been encountered.

If no file systems are given to fock then a default list of file systems is
read from the file /etc/fstab.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the range of
the file system

3. Incorrect link counts.

FOR:PRO 4-12 9/83

FSCK(8) Fortune Systems FSCK(8)

4. Size checks:

Directory size not 16-byte aligned.

5. Bad inode format.

6. Blocks not accounted for anywhere.

7. Directory checks:

File pointing to unallocated inode.
[node number out of range.

8. Super block checks:

More than 65536 inodes.
More blocks for inodes than there are in the file system.

9. Bad free block list format.

10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with
the operator's concurrence, reconnected by placing them in the
lost+found directory. The name assigned is the inode number.
The only restriction is that the directory lost+found must preexist
in the root of the file system being checked and must have empty
slots in which entries can be made. This is accomplished by making
lost+found, copying a number of files to the directory, and then
removing them (before fock is executed).

Checking the raw device is almost always faster, but does not work
on /dev/rhd??

FILES
/e tdfs tab

contains default list of file systems to check.

DIAGNOSTICS
The diagnostics produced by fock are intended to be self-explanatory.
If the root (I) file system has to be modified, the system must be
rebooted.

SEE ALSO
fstab(5), filsys(5), reboot(8).

LIMITATIONS

9/83

Inode numbers for. and.. in each directory should be checked for
validity.

-b and -g options from check should be available in fock.

4-13 FOR:PRO

GETIV(8) Fortune Systems GETTV(8)

NAME
getty - set terminal mode

SYNOPSIS
fete/getty [char1

DESCRIPTION
Getty is invoked by init(8) immediately after a terminal is opened, fol­
lowing the making of a connection. While reading the name getty
attempts to adapt the system to the speed and type of terminal
being used.

Init calls getty with an argument specified by the ttys file entry for
the terminal line. Arguments other than '0' can be used to make
getty treat the line specially. Normally, it sets the speed of the inter­
face to 300 baud, specifies that raw mode is to be used (break on
every character), that echo is to be suppressed, and either parity
allowed. It prints the 'login:' message. Then the user's name is
read, a character at a time. If a null character is received, it is
assumed to be the result of the user pushing the 'break' ('interrupt')
key. The speed is then changed to 1200 baud and the 'login:' is
typed again; a second 'break' changes the speed to 150 baud and the
'login:' is typed again. Successive 'break' characters cycle through
the speeds 300, 1200, and 150 baud.

The user's name is terminated by a newline or carriage-return char­
acter. The latter results in the system being set to treat carriage
returns appropriately (see stty(2)).

The user's name is scanned to see if it contains all upper-case alpha­
betic characters; if so the user will be warned that he should not be
using all capital letters. If the user again types logs in using all capi­
tal letters, the system is told to map any future uppercase characters
into the corresponding lowercase characters. Finally, login is called
with the user's name as argument.

The letter codes and their characteristics follow. If Code is given as
argument to getty, then that line is used. If a break is received by
code 0, then code Oa is attempted. Code Oa "breaks" to code Ob,
then code Oc, then back to code O. Codes Oa, Ob, and Oc are not
available as arguments. Similarly, codes 3 and 5 switch to each
other.

FOR:PRO 4-14 9/83

GETTY (8) Fortune Systems GETTY (8)

Input Output
Code Stty Commands speed speed

0 ANYP, ECHO 300 300
Oa ANYP,XTABS, ECHO, CRMOD 1200 1200
Ob EVENP,ECHO,FFl,CR2, TABl, NLI 150 150
Oc ANYP, ECHO,CRMOD,XTABS, LCASE 110 110

ANYP, ECHO,CRMOD,XTABS, LCASE 110 110
1 EVENP,ECHO,FFl,CR2, TABl,NLl 150 150
2 ANYP,XTABS, ECHO,CRMOD 9600 9600
3 ANYP,XTABS,ECHO,CRMOD 1200 1200
4 ANYP,ECHO,CRMOD,XTABS 300 300
5 ANYP,ECHO 300 300
6 ANYP,ECHO 2400 2400
a ANYP,XTABS, ECHO, CRMOD 50 50
b ANYP,XTABS, ECHO,CRMOD 75 75
c ANYP,XTABS, ECHO,CRMOD 110 110
d ANYP,XTABS, ECHO,CRMOD 134 134
e ANYP,XTABS, ECHO,CRMOD 150 150
f ANYP,XTABS, ECHO,CRMOD 200 200
g ANYP,XTABS, ECHO,CRMOD 300 300
h ANYP, XTABS, ECHO,CRMOD 600 600

ANYP,XTABS,ECHO,CRMOD 1200 1200
j ANYP, XTABS, ECHO, CRMOD 1800 1800
k ANYP,XTABS, ECHO,CRMOD 2400 2400
1 ANYP, XTABS, ECHO,CRMOD 4800 4800
m ANYP, XTABS, ECHO,CRMOD 9600 9600
n ANYP,XTABS, ECHO,CRMOD 19200 19200

SEE ALSO
login(I), stty(2), ttys(S), init(8).

9/83 4-15 FOR:PRO

HALT (8) Fortune Systems HALT (8)

NAME
halt - prepare to stop

SYNOPSIS
fete/halt

DESCRIPTION
Halt executes any hardware specific functions prior to shutdown,
informs the user of its completion and requests that the machine be
turned off. It then executes the pause(2) primitive.

Halt is not intended to be called directly; rather it is executed from
/etdrc.

SEE ALSO
pause(2), rc(8), shutdown(8).

FOR:PRO 4-16, 9/83

INIT(8) Fortune Systems INIT(8)

NAME
init - process control initialization

SYNOPSIS
letc/init

DESCRIPTION
[nit is invoked inside UNIX as the "first" user program Its general
role is to first make sure that the system is ready to run, and then
create a process for each typewriter on which a user may log in.

First it prints a "7" in the count-up sequence (see countup(8)), and
reads the system language code from the EAROM (see uconJ(8» and
creates the LANGUAGE= environment variable (see environ(S).
This is passed in the environment to all user programs. It then forks
Ibinfsh to run the shell script lete/re. See rc(8). (If fetdrc exits with
nonzero status, or if letdrc is not present, it runs a single user shell
on Idevlconsole.)

To allow logins, init reads the file letclttys and forks several times to
create a process for each terminal specified in the file. Each of these
processes opens the appropriate terminal for reading and writing.
These channels thus receive file descriptors 0, 1 and 2, the standard
input and output and the diagnostic output. After an open
succeeds, lete/getty is called with argument as specified by the second
character of the ttys file line. Getty reads the user's name and
invokes login to log in the user and execute the user's login program
(usually the menu shell or /bin/sh, see passwd(S».

Ultimately the user's shell will exit. The main path of init, which has
been waiting for such an event, wakes up and removes the appropri­
ate entry from the file utmp, which records current users, and makes
an entry in fusrladm/wtmp, which maintains a history of log ins and
logouts. The wtmp entry is made only if a user logged in success­
fully on the line. Then the appropriate terminal is reopened and
getty is reinvoked.

[nit catches the hangup signal (signal 1) and interprets it to mean that
init should start over. Everybody logged in is preremptorily logged
out. To do this use: 'kill -1 1.' If there are processes outstanding
which are deadlocked (due to hardware or software failure),- init will
not wait for them all to die (which might take forever), but will time
out after 30 seconds.

[nit's role is so critical that if it dies, the system will stop with an
automatic "Software Error 22". If, at bootstrap time, the lete/init pro­
gram cannot be exec'd, the system will stop with "Software Error
18".

DIAGNOSTICS

9/83 4·17 FOR:PRO

INIT(8) Fortune Systems INIT(8)

File rr/etc!rc rr missing, running in maintenence mode.
The letclrc shell script is gone, and init is forking Ibin/sh so that
the system manager can do something.

Can't execute rr Ibin/sh rr. Contact your dealer.
The program Ibin/sh is gone, or can't run.

Can't execute rr/etclgettyrr. Contact your dealer.
The program letclgetty is gone, or can't run.

Can't open rr letc!ttys rr file
The terminal types database is gone.

See rc(8) to find out how to run the maintenence mode shell.

Can't creat rr/etc!utmp" file
The database of currently logged in terminals cannot be main­
tained. This is not serious, and will not hinder multi-user
operation.

FILES
Idev/console, Idev/tty??, letclutmp, lusr/adrrv'wtmp, letc!ttys, letc!rc

SEE ALSO
login(l), kill(l), sh(l), uconf(8), environ(5), ttys(S), getty(8), rc(8),
reboot(8), halt(8), shutdown(8)

FOR:PRO 4-18 9/83

LPD(8) Fortune Systems LPD(8)

NAME
Ipd - the line printer daemon

SYNOPSIS
Ipd -p printer -i PID

OPTIONS
-p n

is the printer number, and can be from 0 - 999. The default is
1.

-i PID
This option indicates that the daemon is to pass the standard
input along to the filter. In this case, the daemon will hang
until the lock file is unlocked, indicating that the previous dae­
mon has finished. When it runs, the PIO given is checked
against the 'P' line in the control file. If they are the same, the
job runs; otherwise it releases the lock file, then again hangs
until it is unlocked, the assumption being that there is another -i
job with a lower priority waiting to run. This option is invoked
by giving the -i option to Ipr. The intention is to allow printing
of jobs so large that a copy file would require more disk space
than is available.

DESCRIPTION

9/83

The line printer daemon is the portion of the printer spooling pro­
gram which decides which file should be printed next, and what
options should be given to the printer filter for each job. It also
determines the output device, sets the baudrate, etc. for the output
device, and prevents other programs from using the output device.

A daemon is responsible for one printer only. Thus, it is possible to
have a number of daemons running at the same time, one for each
enabled printer. The daemon is normally started by lpr(l) (lpr
checks to see if a daemon is active by checking the file "lock" in the
appropriate directory; if it is there and is locked (via lockf(2» Ipr sim­
ply exits, (unless invoked with the -i option), otherwise it forks and
execs Ipd with the appropriate option(s). When it starts, lpd also
checks to see if a daemon is active for the printer; if so, it exits
unless the -i option was given.

The daemon determines which job will print next by examining the
control file. If there are two or more jobs vlith the same priority, the
one which occurs first in the directory will be printed first. Every
job in the queue is examined every time, since priorities may be
altered by lpmv(l).

When all jobs in the queue have been printed, the daemon exits.
This is less of a load on system resources than having a daemon for
each printer which wakes up when jobs are submitted.

4-19 FOR:PRO

LPD(8) Fortune Systems LPD(8)

After each job, the daemon will write the jobname, the size, the
printer and the owner to an accounting file, if the file exists and is
writable.

CONTROL FILE
Each line in the control file is treated as a unit, there is no concep­
tion of continuation lines, and each line must be 128 characters or
less. The first byte of each line is the control byte, the meanings are
listed below.
+ As each file in a job is successfully printed, the 'F', 'P', or'S' is

replaced with '+', so that if another atte mpt to print the job is
required, only those jobs which were NOT printed are retried.

A Gives the full path name of the output filter.
a Number of times to try and reprint unsuccessful jobs.
B String to be used as the banner on the header page. Passed to

the filter as -b.
e Indicates that the filter is to be passed the 'W' option.
c Indicates that setup is to be done by the filter to enable manual

feeding of a page for the sheet feeder. (Not available from Ipr,
used only by lpdun.)

o The job is to be printed in single sheet mode. Passed to the
filter as -d.

E The type of terminal the job was invoked from Passed to the
filter as -E.

e The port the job was invoked from (full pathname). Passed to
the filter as -e.

F A filename to be passed to the filter as its input file. It is impor­
tant to note that all lines containing information for the filter
must precede the 'F', '5' and 'P' lines, since the filter is invoked
as soon as any of these lines are encountered.

f The formlength (in lines) to be used for the job. Passed to the
filter as -F.

e The real group 10 of the user who started the job.
H A header page was specifically requested, as opposed to a

default header page. Forces the filter to be passed the -0

option.
The real user 10 of the user who started the job.
A string of options which correspond to keywords in the
printcap file, of the form fI:xy=#:ab=#: :fI where # will be
substuted for the letter 'V' in a printcap formula. Passed to the
filter as -I.

J The job name, used when sending mail announcing job comple­
tion, also passed to the filter, and reported by lpq(l).

K The umask of the user who started the job, used only with '5'
below.

FOR:PRO 4-20 9/83

LPD(8) Fortune Systems LPD(8)

9/83

L The owner of the job, passed on to the filter, and used as the
person to send mail to, if it is a valid user name, (or looks like a
uucp or Arpanet address). Passed to the filter as -0, if a header
page is to be printed.
The maximum output line length to be used. Passed to the filter
as -L.

m Send mail via mail(l) when the job is completed.
o overly long lines should be truncated on output. Passed to the

filter as -to
P This job is a piped job, and should be run only if the -i option

was given, and the PIO given with it matches the one on this
line. See also 'F'.

Q This is the QIO, which is initially the same as the PIO of the Ipr
that made the control file. (It may be altered by lpmv(l». The
job with the lowest QIO is printed next. This must be the first
line in the control file.

p The type of printer this job is being sent to. Passed to the filter
as -Po

R The number of copies of this job that should be printed.
s This job is being sent to a sheet feeder, the rest of the string is

passed to the filter as the '_5' option.
5 This line is a command to be run, whose output will be passed

to the filter. (See also the note under 'F'.) The command is
parsed, and if it contains no Bourne shell metacharacters, an
attempt is made to run it via exec. The environment of the user
who started the job is passed to the execed program (or to the
shell). If the exec fails, or the command contains shell meta­
characters, the cmd is run as II sh -c cmd II • The umask is set to
that on the 'K' line, and the environment is set up from the file
whose name is the same as the control file, except that the first
letter of the relative portion of the path name is 'e', instead of
'd'. The working directory is set from the 'w' line. The format
of the environment file is:
3 digits which give the length of the variable and its value,
including the LF at the end; the variable name followed by an
'='; the value of the variable; and a LF terminator. This allows
environmental variables to contain an arbitrary string, including
8 bit characters.
This job is to be printed in transparent mode; the filter should
output all characters without altering them or masking them.
Passed to the filter as -T.

u A filename (always a full pathname) to be unlinked when the
job is finished (successfully or not).

W The directory from which the filter should be run, used only
with the '5' line.

4-21 FOR:PRO

lPD(8) Fortune Systems lPD(8)

Z The size to be reported for this file. Jobs for which the daemon
can not determine the size (such as piped input with -i, and '5'
cmds) report this size in the accounting file. For cases in which
the size can be determined, this is added to the real size.

FILES
lusrlspooVlpd/pr#=

spooler directories (#= is the printer number)
lusrlspooVlpdlpr#=/[cd Ie J*

Input and control files.
letc/devtype

For correlation between printer #, printer port, and printer
type, etc.

lusr/admllpacct
If this file exists and is writable by root, a line of statistics is
written for each job. (The size of the job is given as zero if the
job was a shell script, or there was no file AND the -I option
was given.

dtinit(l), lprm(l), lpmv(l), lpq(l), lpdun(l), lpr(l), Ipf(8), printcap(5).
NOTES

See the NOTES section in lpr(l) for a description of how error mes­
sages are handled.

FOR:PRO 4-22 9/83

LPF(8) Fortune Systems LPF(8)

NAME
Ipf - the line printer spooler program which actually does output

SYNOPSIS
Ipf -b banner -d -D name -e -E name -e name -£'=/1 -F # -I string

-j name -L # -1=/1 -N name -0 owner -P name -s=/l -S name - T -t
-w

DESCRIPTION
Arguments fall into three classes: required for proper operation,
desirable, and optional. Since this program is not intended to be
used directly by humans, error checking for invalid/missing argu­
ments is minimal! The intention is that it be started by the line
printer daemon Lpd(8).

The filter is responsible for extracting printer specific strings and
capabilities from /etc/printcap. The program itself is printer indepen­
dant. If certain strings (carraige return, line feed, formfeed mainly)
are not found, or the printer type is not found, defaults are assumed
(the ascii characters 013, 012, and 014, respectively).

The filter also handles asynchronous signals from the lpdun(1) pro­
gram, requesting that printing be suspended, restarted, pages be
reprinted, etc. The program Lpnn(1) also signals the filter, requesting
that the job be terminated. The S[GBAND (most system calls are not
interrupted) signal is used.

REQUIRED ARGUMENTS
-D name

9/83

name is the relative portion of the output device name, e.g. tty01
for the S[O port.

-£n The file descriptor to be used in reading from the daemon, used
to verify that the daemon has changed the prstate file as
requested. (The file is opened by the daemon, and the descrip­
tor inherited by the filter.) n is ANDED with 077 to determine
the actual number.

-In n is the file descriptor for the output devicelfile. (The file is
opened by the daemon, and the descriptor inherited by the
filter.) n is ANDED with 077 to determine the actual number.

-sn The file descriptor to be used in sending to the daemon, used to
request that the daemon change the prstate file. (The file is
opened by the daemon, and the descriptor inherited by the
filter.) n is ANDED with 077 to determine the actual number.

-N name
name is the relative portion of the notification device name, e.g.
console. This port is used to notify the operator that human
intervention is required, e.g. feeding a new sheet of paper.

4-23 FOR:PRO

LPF(8) Fortune Systems LPF(8)

-p name
name is the printer type to be used. It should be one that is
legal, i.e., in /etdprintcap.

DESIRABLE ARGUMENTS
-j name

name is the job name. It is used on the header page to identify
the job.

-e name
name is the tty port from which the job is started. Error mes­
sages are sent to this port. If not given, or not writable, /dev/tty
is tried; if /dev/tty is not writable, messages go to stderr.

-E name
name is the terminal type of the user who started the job. This
allows messages to be placed properly on the screen. If not
given, type FT is assumed.

OPTIONAL ARGUMENTS
-b string

string is printed in large letters in the center of the header page
(if any). It is truncated to 10 letters.

-d This option informs the filter that the job is to be printed as sin­
gle sheets. After each page, the filter will send bells (CTRL G)
to the notification port and wait for a signal from Ipdun(l).

-F n
Form length for the job is set to n lines. The formfeed string is
sent every n lines (the default is taken from the state file).

-I string

-L n

This string contains keywords that match entries in
/etdprintcap, optionally followed by '=' and a number. This is
how the' +' options of Ipr(l) are implemented. See the 'I' line of
the control file in Ipd(8) for the exact format.

line length in characters; not significant unless -t is also given.

-0 name
name is printed on the header page at top and bottom It is usu­
ally the owner of the job. The presence of this argument is
what causes the header page to be printed. If the -b option
was not given, this is also used as the banner name.

-S string

FOR:PRO

string is the same as the string after the -S option of Ipr(l). It
informs the filter that the job is being printed on a printer with a
sheet feeder. It has a special significance if the string is "-1"
(that is, 'minus one'), which is NOT allowed by Ipr. In this case
the filter sends the required strings to the printer to enable a

4-24 9/83

LPF(8) Fortune Systems LPF(8)

9/83

new sheet of paper to be fed from the sheet feeder. This is nor­
mally done by using the -N option of Ipdun(I).

-t truncate lines that are too long (as shown by the -L option or
the default in the state file).

-T transparent mode. All 8 bits of each character in the input are
sent directly to the printer; no processing is done, and no
reprinting is possible. Normally, non-printing characters are
shown the same as they would be by the -v option of cat(I).

-W Expect input to be in a special format, with key letters indicating
the action to be taken. This option corresponds to the -C
option of Ipr(I). The following options are ignored if this option
is given: -t, -T, -L, and -F. Currently, only the word process­
ing formatter uses this format. A listing of the special characters
and their meaning follows. The number in parentheses indi­
cates the number of bytes that go with the command.

A Software length change. 2 byte arg (12 bits).

B Bin number change. 1 byte arg (6 bit).

C Software ribbon change. LF terminated string argo

o Delay. 1 byte arg (6 bit).

E End of page.

F Operator forms change. LF terminated string argo

H Software character set change. LF terminated string argo

Turn off overriding un-interruptible mode.

J Turn on overriding un-interruptible mode.

L Operator width change. 2 byte arg (12 bits).

o Software forms change. LF terminated string argo

P Operator length change. 2 byte arg (12 bits).

R Operator ribbon change. LF terminated string argo

S Re-Schedule this job for later.

T Software width change. 2 byte arg (12 bits).

W Operator character set change. LF terminated string argo

X Transmit n bytes interruptible (count is in following byte)

Y Transmit n bytes un-interruptible (count is in following
byte)

Count for 'X' ana. 'V' commands:
@ ABC 0 E F G H I J K L M N 0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

4-25 FOR:PRO

LPF(8) Fortune Systems LPF(8)

P Q R STU V W X Y Z []
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

I abc d e f g h i j kim n 0

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

p q r stu v w x y z { I } - de I
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

'Ii through '0'

Transmit n bytes interruptible
I abcde fgh j k lmno
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

'p' through 'DEL'
Transmit n bytes un-interruptible
p q r stu v w x y z { I } - del
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FILES
lusrispoolllpd/pr#

spooler directories (# is the printer number)

lusrlspoolllpd/pr#/prstate

FOR:PRO

The file containing information about the current state of the
printer and the spooler. The lprm, [pmv, and lpdun programs
change this file before they signal the filter, so the filter can
determine what request was made. See the functional spec for
the spooling system for more details about this file. The follow­
ing printer states are currently understood:

o IDLE
1 ACTIVE
2 SUSPEND
3 WAITING FOR SHEET
4 WAITING FOR RIBBON
5 WAITING FOR WHEEL
6 WAITING FOR FORM
7 WAITING FOR LINEWIDTH
8 WAITING FOR PAGELENGTH
10 KILLED
11 INTERRUPIED
12 RESTART
13 RESUME
14 TRANSPARENT (-T option or no pages being saved)
15 SETSHEET (see -S-I)

4-26 9/83

LPF(8) Fortune Systems LPF(8)

/etc/printcap
For printer specific information

SEE ALSO
dtinit(l), lpnn(l), lpmv(l), lpq(l), lpdun(l), lpr(l), lpd(8), printcap(5).

NOTES
See the N01ES section in lpr(l) for a description of how error mes­
sages are handled.

LIMIT ATIONS

9/83

Ipf attempts to save pages in memory, so jobs can be restarted up to
9 pages (the actual number is set by Lpdun(l); see it's -m option)
before the current one. If there is a very limited amount of memory,
this can result in some thrashing if any pages are being saved. The
job will still be printed, but very slowly.

Ipf does not know about videotext characters. It will pass through
sequences in transparent mode or from Fortune:Word, but in normal
printing, they will be shown as ""'yx' where x is the escape character.

4-27 FOR:PRO

MID (8) Fortune Systems MID (8)

NAME
mid - display machine serial 10 number andlor group 10 number

SYNOPSIS
mid [-5J [-g] [-hJ

DESCRIPTION
Mid displays the machine serial number and group number. If either
the -5 or -g option is specified then only those requested fields will
be displayed as described below; otherwise, both numbers will be
displayed prefixed with descriptive labels. .

Both the serial number and group number are 32-bit numbers which
are displayed in "license plate format" (unless the -h option is speci­
fied). This format maps a 32-bit number into an ascii string of the
form "nnn-CCC-nnn" where n is a digit and C is an alphabetic con­
sonant.

OPTIONS
-s display the machine serial number in a format suitable for pipe­

lining, i.e. with no descriptive label and immediately followed by
a carriage return.

-g display the group number in a format suitable for pipe lining.

-h use hexadecimal format for displaying numbers. If both the -s

FOR:PRO

and -g options are specified then the serial number and group
number will be displayed, in that order, in a form suitable for
pipe lining.

4-28 9/83

MKCONF(8) Fortune Systems MKCONF(8)

NAME
mkconf - create/change a configuration block

SYNOPSIS
mkconf -c ifile ofile
mkconf -floppy ofile
mkconf [-i ifile] ofiLe
mkconf -rigid ofile
mkconf [-S size J 0 file

DESCRIPTION
Mkconf allows you to create a configuration block and save it on a
regular file or a disk device.

OPTIONS
-c Copies the conf block from ifile to ofile.

-floppy / -rigid
Allows the user to interactively change fields in the configura­
tion block. Cause a reasonable default configuration block to be
created for floppy disks and rigid disks, respectively.

-i Reads the configuration block from ifile if available or from device
and uses that as a starting point.

-S Sets the size of the swap partition to size.

SEE ALSO
devctl(2), diskconf(5), rdconf(8).

DIAGNOSTICS

9/83

Error messages if the device does not exist, if read or write errors
occur, or if one of the files does not exist.

4-29 FOR:PRO

MKDEVS(8) Fortune Systems MKDEVS(8)

NAME
mkdevs - generate canonical device names

SYNOPSIS
mkdevs -p

DESCRIPTION
Every 32:16 device driver has a unique set of file names for the dev­
ices it gives access. Mkdevs -p prints out a shell script which creates
all of these standard device names in /dev, along with permission
bits supplied by the driver. The devices are queried via the
IOCAUTO command available with devctl(2) or ioctl(2).

FILES
/dev/*

SEE ALSO
devctl(2), ioctl(2), intro(4), disk(5).

FOR:PRO 4-30 9/83

MKFS(8) Fortune Systems MKFS(8)

NAME
rnkfs - construct a file system

SYNOPSIS
lete/mkfs -a special [mn]
lete/mkfs special size [mn]
lete/mkfs special proto

DESCRIPTION

9/83

Mkfs constructs a file system by writing on the special file special. In
the first form the size of the file system is the same as the size of the
partition and is taken from the disk configuration block. In the
second form of the command a numeric size is given and mkfs builds
a file system with a single empty directory on it. The number of i­
nodes is calculated as a function of the file system size. (No boot
program is initialized in this form of mkfs.)

NOTE: All file systems should have a lost+found directory for fsck(8);
this should be created for each file system by running
mklost+ found(8) in the root directory of a newly created file system,
after the file system is first mounted.

The second form of mkfs is sometimes used in bootstrapping. In this
form, the file system is constructed according to the directions found
in the prototype file proto. The prototype file contains tokens
separated by spaces or new lines. The first token is the name of a
file to be copied onto sector zero as the bootstrap program. The
second token is a number specifying the size of the created file sys­
tem. Typically it is the number of blocks on the device, perhaps
diminished by space for swapping. The next token is the number of
i-nodes in the i-list. The next set of tokens comprises the specifica­
tion for the root file. File specifications consist of tokens giving the
mode, the user-id, the group id, and the initial contents of the file.
The syntax of the contents field depends on the mode.

The mode token for a file is a six character string. The first character
specifies the type of the file. (The characters -bed specify regular,
block special, character special and directory files respectively.) The
second character of the type is either u or - to specify set-user-id
mode or not. The third is g or - for the set-group-id mode. The rest
of the mode is a three digit octal number giving the owner, group,
and other read, write, execute permissions, see chmod(l).

Two decimal number tokens come after the mode; they specify the
user and group IO's of the owner of the file.

If the file is a regular file, the next token is a pathname whence the
contents and size are copied.

If the file is a block or character special file, two decimal number
tokens follow which give the major and minor device numbers.

4-31 FOR:PRO

MKFS(8) Fortune Systems MKFS(8)

If the file is a directory, mkfs makes the entries. and" .. and then
reads a list of names and (recursively) file specifications for the
entries in the directory. The scan is terminated with the token $.

487255
d--77731
usr d--777 3 1

sh ---755 3 1 /bin/sh
ken d--755 6 1

$
bO b--644 3 1 0 0
cO c--644 3 1 0 0
$

$

The arguments m and n specify the interleave factor. They default
to 3 and 68 respectively in the first form of the command. In the
second form they are taken from the configuration block. Recom­
mended values for m and n are, respectively, 3 and the number or
I024-byte blocks per disk cylinder.

SEE ALSO
dir(5) , filsys(5), format(8), fsck(8), mkconf(8L mklost+found(8),
rdconf(8).

LIMITATIONS
There is no way to specify links.
There is no way to specify bad blocks.
Lost+ftJUnd is not made automatically.

FOR:PRO 4-32 9/83

MKLOST +FOUNO (8) Fortune Systems MKLOST +FOUNO(8)

NAME
mklost+found - make a lost+found directory for fsck

SYNOPSIS
/etclmklost+found

DESCRIPTION
A lost+found directory is created in the current directory containing
a number of empty files. These provide empty slots for fsck(8). 1his
command should be run immediately after mounting a newly created
file system

SEE ALSO
fsck(8), mkfs(8).

LIMITATIONS
Should be done automatically by mkfs.

9/83 4-33 FOR:PRO

MKNOO(8) Fortune Systems MKNOO(8)

NAME'
mknod - build special file

SYNOPSIS
/ete/mknod name [b] [e] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the
entry. The second is b if the special file is block-type (disks, tape) or
c if it is character-type (other devices). The last two arguments are
numbers specifying the major device type and the minor device (e.g.
unit, drive, or line number).

The assignment of major device numbers is partly dependent on the
order of I/O option boards in the 32:16 expansion slots. The mkdevs
program queries each available driver for the "real name" of each
device, and this program should never be run. If it is necessary to
make an alternate name for a device, i.e. !devltar for /dev/rfd02, the
Ln(l) command should be used.

SEE ALSO
mknod(2), mkdevs(8).

FOR:PRO 4-34 9/83

MOMROM(8) Fortune Systems MOM ROM (8)

NAME
Motherboard Rom - the startup program for the Fortune 32:16

DESCRIPTION

9/83

The motherboard rom, or momrom, is run when the 32:16 is turned
on or the reset button is depressed. It is not a disk file, instead it is
part of the 32:16 hardware. To get the boot menu, turn on the
machine while holding down the CanceVDel key. The 32:16 contains
a small store of non-volatile RAM. The contents remain when the
32:16 is turned off. This storage area, the EAROM (electrically alter­
able read-only memory), contains information the motherboard rom
uses.

When momrom runs, it clears the screen, prints "1 n, and then does
one of three things: runs UNIX, acts as a simple computer terminal,
or shows the boot menu. The first is the usual action; this does the
normal startup sequence ("2 345 6 7 8 9" etc.). The second, termi­
nal mode, prints "Terminal mode" on the screen and operates as a
simple terminal. It assumes that a remote host is connected to the
serial port on the back of the machine. The boot menu allows you to
change the action taken and the details of booting up, i.e. whether
to boot from the hard disk or the floppy disk, what baud rates the
keyboard and back serial ports run at, and similar trivia. For a
detailed guide to the boot menu, read bootmenu(8». Also, all of the
items in the boot menu can also be changed in the reconfiguration
menu programs (reconj(8».

Essentially, the boot menu is a stripped-down version of the reconfi­
guration menu, which only changes the information in the EAROM
used in booting up to a stage where the full reconfiguration menu
can be run. The keyboard and the built-in CRT is usually used as the
system console. However, both the keyboard and back ports can
also, when attached to an FIS 1000, be used as the system console.
This can be done by changing the "Console location" field in the
reconfiguration menu (normally set to CR1) to TTYOO or TTYOl. The
next time UNIX comes up, or the machine is powered up or reset,
the keyboard port (TTYOO) or the back port (TTY01) is used as the
console, instead of the keyboard/CRT combination.

If the CANCEL/DEL key is held down on the keyboard right after
the machine is turned on or reset, the boot menu appears on the
CRT/keyboard console. This overrides the EAROM "Boot action"
and "Console location" settings. Also, if an FIS 1000 is attached to
the front or back port, and any of the arrow keys are held down
immediately after reset or power-up, the boot menu appears on FIS.
Until the reconfiguration menu is run, or the machine is again reset
or powered up, that terminal is the system console.

4-35 FOR:PRO

MOUNT (8) Fortune Systems

NAME
mount, umount - mount and dismount file system

SYNOPSIS
letclmount [special name [-rU

letclmount -a

letc/umount special

letclumount -a

DESCRIPTION

MOUNT (8)

Mount announces to the system that a removable file system is
present on the device speciaL. The file name must ex~st already; it
must be a directory (unless the root of the mounted file system is
not a directory). It becomes the name of the newly mounted root.

Umount announces to the system that the removable file system pre­
viously mounted on device special is to be removed.

These commands maintain a table of mounted devices in letclmtab. If
invoked without an argument, mount prints the table.

Physically write-protected and magnetic tape file systems must be
mounted read-only or errors occur when access times are updated,
whether or not any explicit write is attempted.

OPTIONS
-a For either mount or umount, aU of the file systems described in

letcl[stab are attempted to be mounted or unmounted. In this
case, special and name are taken from letcl[stab. The speciaL file
name from letcl[stab is the block special name.

-r Indicates that the file system is to be mounted read-only.

FILES
letdmtab

mount table

letdfstab
file system table

SEE ALSO
mount(2), fstab(5), mtab(5).

LIMITATIONS
Mounting file systems full of garbage crash the system.

Mounting a root directory on a non-directory makes some
apparently good pathnames invalid.

FOR:PRO 4-36 9/83

PSTAT(8) Fortune Systems PSTAT(8)

NAME
pstat - print system status

SYNOPSIS
pstat [-acCfimMpstxwW] [-d dumpfileJ [-u pid]

DESCRIPTION
Pstat prints miscellaneous information from inside the kerneL The
option switches determine what is printed. Most of the options
cause pstat to print out data tables from kernel memory. Most of the
information is only of use to those working on kernel development,
but it can also be useful for analyzing system resource usage pat­
terns.

OPTIONS

9/83

-a With -p or -t, print out the whole table, not just active table
slots.

-c Print total number of dist blocks, number of clist blocks free,
number of characters in free clist blocks, and the freelist wait
address. Example:

c:lists: 14 total. 14 free. 1736 chars. 1084: nit address

-c Print configuration information, i.e. how much memory is
plugged in, and what is plugged in to the option slots. Informa­
tion about an I/O board in an option slot comes from the ROMs
on the board. Example:

Total Ma.ory = 10241 bytes
Slot' c:onta.1Ds Crt. Version 1.1
Slot E c:onta.1Ds Bard boot. JersioD 0.0

-f Print the open file table. Example:

100 files. 3 ac:tive
LOC FLG CIT 110 OFFS
15 I 1 4 0
41 HI 7 3 34
42 HI 9 9 2886

The headings are:

LaC
The index of this table entry.

FLG
Miscellaneous state bits:
H open for hole-skipping read
P pipe
R open for reading

4-37 FOR:PRO

PSTAT(8) Fortune Systems PSTAT(8)

W open for writing

CNT
Number of file descriptors referencing this file table entry.

INa
The index of the inode table entry for this file.

OFFS
The file offset, see lseek(2).

-i Print the incore inode table. Example:

100 inode •• 4 active
LoC ruGS CIT DEllCE 110 1I0DE ill urn SIZE/DEI

0 8 1. 18 2 40777 45 0 1152
1 T 1 1. 18 1239 100170 2 101 6784
2 T 1 1. 18 1304 101777 1 4 26272
3 2 1. 18 54 20623 2 101 8, 0

The headings are:

FOR:PRO

LaC
The index of this table entry.

FLAGS
Miscellaneous state bits:
A access time must be corrected
C changed time must be corrected
H hole-skipping read is in progess
L locked
M file system is mounted here
P is a pipe
T contains a text file
U update time (filsys(5» must be corrected
W wanted by another process (L flag is on)

CNT
Number of open file table entries for this inode.

DEVICE
Major and minor device number of file system in which this
inode resides.

INa
I-number within the device.

MODE
Mode bits, see chmod(2).

NLK
Number of links to this inode.

4-38 9/83

PSTAT(8) Fortune Systems PSTAT(8)

UID
User ID of owner.

SIZE/DEV
Number of bytes in an ordinary file, or major and minor
device numbers of special file.

-m Print total physical memory, amount available for user
processes, amount of user memory free, maximum memory
allowed per process, number of core freelist slots used out of
total number available. Amounts are in increments of 1024
bytes. Example:

.. total = 10241, user = 8031. free = 3391.
perproc = 2851 coraaap: t/50

-M Print amount of memory available for user processes, total phy­
sical memory, and maximum memory allowed per process.
Amounts are in increments of 1024 bytes. Example:

8031 user .-cry available out of 10241 total.
2561 uxiJIaDI per process

-p Print the process table. Example:

37 processel. 5 active
LOe s F PHI SIGIll urn TIll CPU H PCRP pm ppm SIZ ICHU
o 1 3 0 0 o 127 199 20 0 0 0 2 runout
1 1 1 30 0 o 121 o 20 0 1 0 15 (nit)

2 1 1 30 0 101 121 o 20 32 32 1 42 (nit)

3 1 1 to 0 o 127 50 30 0 29 1 22 (pause)

t 1 0 28 0 o 121 o 20 0 33 1 15 ttJi.l+56

LIB TEITP CUT
0 0 0
o ffUe 0
o ff432 0
0 0 t5
o ffUe 0

The headings are:

9/83

LOC
The core address of this table entry.

S Run state encoded thus:
o no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace

F Miscellaneous state bits (hexadecimal):

1 loaded

2 the scheduler process

4 locked

4-39 FOR:PRO

PSTAT(8) Fortune Systems

8 swapped out

10 traced

20 used in tracing

4{) locked in by lock(2).

PRI Scheduling priority, see nice (2).

SIGNAL
Signals received (signals 1-32 coded in bits 0-31),

UID
Real user 10.

TIM
Time resident in seconds; times over 127 coded as 127.

CPU
Weighted integral of CPU time, for scheduler.

NI Nice level, see nice(2).

PGRP

PSTAT(8)

Process group number of process (usually process [0 of the opener of the
controlling terminal).

PID
The process 10 number.

PPID
The process ID of parent process.

SIZE
Size of process image in clicks (IK bytes). Does not include shared code
segment if sharable.

WCHAN
The event for which the process is waiting or sleeping; if blank, the process
is running. This field is either the name of an internal kernel variable,
like runout, lbolt, buf[10J, inode[3J, etc., a system call name such as wait
or pause (in parentheses), a tty major/minor dev like ttyO,O, any of the
above with an offset, as in ttyl, 1 +56, or a hex address in rare cases.

LINK
Link pointer in list of runnable processes.

TEXTP
If text is pure, index of text table entry.

CLKT

-5

FOR:PRO

Countdown for alarm(2) measured in seconds.

Print information about swap space.
Example:

4-40 9/83

PSTAT(8) Fortune Systems PSTAT(8)

9/83

Strap allocation size is 512 bJtes.
Total = 3264. total free = 2236
Largest free chUDlr: is 2158. snpu.p: 38 slota. 5 used

-t Print table of tty devices. Example:

7 ttJs
STATE: T=TIIIEOUT '=lOPEI O=ISOPEI C--C.lBll 01 B=BUST A=.ISLEEP

I=ICLUDE H=HOPCLS S=STOPPED
DEY RA' CAl OUT IIODE DEL COL STATE PCBP DISC LOCAL LSTJ.TE
O. 0 0 0 0

6. 0 0 0 0

The headiDga are:

DEV

eO 0 0 DC

cdS 0 4 DC

Major and minor of the device.

RAW

46 nttJ 119405
41 nttJ 119405

Number of characters in raw input queue.

CAN

o
o

Number of characters in canonicalized input queue.

OUT
Number of characters in output queue.

MODE
Encoded in hexadecimal Things like echo, tab expansion,
etc. See tty(4).

DEL
Number of delimiters (newlines) in canonicalized input
queue.

COL
Calculated column position of output.

STATE
Miscellaneous state bits:
A process is awaiting output
B busy doing output
C carrier is believed to be on
H hangup on close
a open
S output is stopped
T output timeout delay is in progress
W waiting for open to complete
X open for exclusive use
Use stty(l) for complete state.

4-41 FOR:PRO

PSTAT(8) Fortune Systems PSTAT(8)

PCRP
Process group for which this is controlling terminal.

DISC
Line discipline in use for terminaL

LOCAL
Hexadecimal contents of tty. t_Iocallongword.

LSTA1E
Hexadecimal contents of tty.t_Istate longword.

-u print information about a process from its 'upage'; the next
argument is the process ID. The 'upage' is a data structure that
is part of the data segment of a process and is 2K bytes in this
implementation for the Fortune 32:16. Pstat finds the upage in
main memory or swap space, wherever it is. If the process ID
argument is -1 and dumpfile is the core file of a process that died,
this option prints out the information from the upage of the
deceased process represented by the core file.

-w Print what version of the kernel this is and when it was built.

-w Like -w but also tells who built the kernel and where.

-x Print the text table with these headings:

LaC
The index of this table entry.

FLAGS
Miscellaneous state bits:
K locked
L loading in progress
T ptrace(2) in effect
w wanted (L flag is on)
W text not yet written on swap device

SIZE
Size of text segment, measured in clicks (IK bytes).

INa
Core location of corresponding inode.

CNT
Number of processes using this text segment.

CCNT
Number of processes in core using this text segment.

FILES
Idev/mem

default source of tables, kernel data space

FOR:PRO 4-42 9/83

PSTAT(8) Fortune Systems PSTAT(8)

Idev/hdOl
this or some other disk will be the swap device

SEE ALSO
ps(l), stat(2), filsys(S).

K. Thompson, UNIX ImpLementatIOn

9/83 4-43 FOR:PRO

RC(8) Fortune Systems RC(8)

NAME
letdrc - Shell script for system startup

DESCRIPTION
letclrc is a shell script run by init(8) when the system starts up. If
there is a file Itmpl.reboot, then the system is rebooted. If there is a
file Itmpl.powerdown, then letclrc goes through an orderly powerdown
sequence, which runs any product shutdown scripts, prints
"Software shut down complete", unrnounts any file systems in
letdfstab (to prevent file system damage), prints "Hardware shut
down starting, please wait 60 seconds" places a marker for future
use that the file systems are in order, and runs lete/halt, which
merely waits for 60 seconds. After 60 seconds of no disk activity,
the disk heads are moved to a safe place, otherwise shutting off
power could destroy datd.

If neither of the two files exist, letclrc attempts to bring up the sys­
tem It prints the number "8" in the countup sequence (see
countup(8», builds all the proper special devices (see mkdevs(8», and
then prints "9". Next, the screen is cleared and the user is given 5
seconds to hit the DEL key. If he does, then letclrc goes into main­
tenence mode and the user is allowed to log in as 'root'. The user
then sets the time and date.

If the file letcl.fsclean does not exist, it assumed that the system was
not brought down with letclshutdown but instead crashed in some
fashion. Acting on this assumption, lete/rc runs ' fsck' to clean up
any possible file system damage.

Lastly, any product startup scripts (/m/rd*.rc) are run.

FILES
Itmp/.reboot

Itmp/. powerdown

/m/rd*.rc

letd.fsclean

letc/mtab

letdutmp

Ie tdptmp

Idev/console

SEE ALSO
fsck(8), login(l), mkdevs(8), mount(8), pstat(l), setdt(8), sh(8),
sync(8), update(8).

FOR:PRO 9/83

RDCONF(8) Fortune Systems RDCONF(8)

NAME
rdconf - read configuration block

SYNOPSIS
rdconf [-T I -bJ device ...

DESCRIPTION
Rdconf reads the configuration block from each device and prints it's
contents on the standard output in a human readable form.

Device can take several forms and it should be noted that all the pro­
grams which manipulate disk drives via devctl(2) use this same form.
If device is of the form

- {b Ie} ma jor / minor

then the appropriate block or character (b or c) device with the
respective major/minor pair of numbers will be used in the devctL call.
If device does not match this form then it is assumed to be either the
name of a device special file or a data file in which case either a
devctL is made on the device or the file is read; this way files can be
used to store configuration blocks and used anywhere a device could
be used.

OPTIONS
-b causes an image of the configuration structure to be output

instead of the human readable text.

-T prints out only the typename from the configuration block.
Checks are made to see if the configuration block is legitimate
and if not diagnostics are produced; this does not, however,
prevent the information in the block from being interpreted and
printed.

SEE ALSO
mkconf(8), devctl(2), diskconf(5).

DIAGNOSTICS

9/83

Error messages if a device does not exist or if a read error occurs on
a device.

4-45 FOR:PRO

REBOOT (8) Fortune Systems REBOOT (8)

NAME
reboot - reboot the system

SYNOPSIS
reboot [-nJ

DESCRIPTION
Reboot takes down the Fortune System and brings it back up. It asks
you to confirm that you want the system to reboot, if the -n flag is
not given.

OPTIONS
-n Does not ask you if you want the system to reboot.

DIAGNOSTICS
Reboot failed, you must be super-user.

WARNING
Reboot does not issue a sync(l) command.

SEE ALSO
sync(l).

FOR:PRO 4-46 9/83

SETDT(8) Fortune Systems SETDT(8)

NAME
setdt - set date and time

SYNOPSIS
/etc/setdt [e][t#J

DESCRIPTION
Setdt reads the current time with time(2) and puts it on the screen in
human-readable format to be edited. If the time entered is earlier
than the current time or more than five days in advance of the
current time, the user is told that the time appears to be incorrect
and is asked to verify that it is the correct time. When setdt deter­
mines the user has entered a reasonable time, or has confirmed the
time entered is correct, it prints the time and asks the user to verify
that they have entered the correct time. If the Cancel key is pressed
any time while the program is running, the current time is printed in
the format shown above and the program terminates.

OPTIONS
e Indicates that European format is desired, rather than American

format. The'f' or 'F' keys can be used to toggle between for­
mats once the program has been invoked.

t Allows the user to give a time limit in seconds after which the
program should time out, e.g. 'setdt t30' gives the user 30
seconds to edit the date, and if the program is still running after
30 seconds it is sent signal 1 (alarm clock). If this option is used
it must be the last option given.

SEE ALSO
date(l), stime(2), time(2), ctime(3).

LIMITATIONS

9/83

If a yes/no question is answered with "no<EXECUTE> " or
"n< EXECUTE > ", this is interpreted as a response of "yes".

An hour of "00" is accepted as a valid time in American format.

The 'f' and up-arrow keys are not accepted if the cursor is on the
right side of the date or time fields.

4-47 FOR:PRO

SETNSWAP (8) Fortune Systems SETNSWAP (8)

NAME
setnswap - set the 'nswap' variable in the kernel binary file

SYNOPSIS
setnswap partition-number confblock-file unix-file

DESCRIPTION
Setnswap reads the configuration block from confblock-file, usually a
disk device, and determines the number of blocks in partition-number.
It patches this number into the 'nswap' variable in unix-file.

LIMITATIONS
Setnswap assumes the sector size is 512.

FOR:PRO 4-48 9/83

SHUTDOWN (8) Fortune Systems SHUTDOWN (8)

NAME
shutdown - orderly shutdown

SYNOPSIS
shutdown

DESCRIPTION
Shutdown takes down the Fortune Operating System in an orderly
fashion. It asks you to confirm that you really want the system to
quit.

9/83 4-49 FOR:PRO

SYNC (8) Fortune Systems SYNC (8)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION
Sync executes the sync system primitive. Sync can be called to insure
all disk writes have been completed before the processor is halted.

See sync(2) for details on the system primitive.

SEE ALSO
sync(2), halt(8), reboot(8), update(8).

FOR:PRO 4-50 9/83

UCONF(8) Fortune Systems UCONF(8)

NAME
/etduconf - change basic system parameters

SYNOPSIS
/etc/uconf - UNIX program
/sa/reconf - Stand-alone program

DESCRIPTION
The reconfiguration menu allows you to use the 32:16 with its vari­
ous peripheral devices. The various fields allow you to decide what
the system will do when it powers up, and the size of various
operating system resources. /etc/ucon[can only be run by the system
manager. /sa/reconf operates in generally the same way as /etduconf,
except it is a stand-alone program, i.e. it runs before UNIX comes
up.

To run it you must hold down the CANCEL/DEL key when the sys­
tem is powered up or rebooted, and change the "Boot file name"
(F7) field to disk/salreconf, where disk is probably "hd02" for the
hard disk or "fd02" for the floppy disk. Type EXECUTE and the
reconf menu eventually appears. To leave the menu, type F3, and
the level 1 boot program (the ":" prompt) re-appears and you can
then bring in UNIX (disk/unix). (See boot(8), bootmenu(8), and mom­
rom(8).)

The menu consists of fields and values for the fields. Upon entry to
the program the current value of the fields as stored in the EAROM
is displayed.

Certain of the fields simply have a list of possible values that are
cycled through by pushing the space bar. Others require the data to
be manually entered; for these entries, the space bar either has no
effect or enters a space character in the field. In either case, simply
type the <RETURN> key to move on to the next field.

Certain of the fields also have associated with them" Used/Total"
information. In any case, that information is not crucial, so it can be
ignored.

The information in some of the fields may also be in overstruck. See
the description of "Set params auto?".

Field Definitions

9/83

Power up action: Decide what the machine will do when you tum it
on. It can boot from the "Boot Device n, show the menu, or act as a
terminal, with another computer connected to ttyOl.

Boot Device: Decide from which peripheral to boot. The 32:16 can
boot from the back port, the floppy disk drive, or some of the
Fortune peripheral options, such as the hard disk controller.

Boot drive #: Most of the disk drive peripherals can have more than
one drive attached to them, and the drives have unique numbers,

4-51 FOR:PRO

UCONF(8) Fortune Systems UCONF(8)

starting from O. 1his sets which actual drive will be used on the
above-named boot device.

Boot Program: Each disk drive can have up to eight boot programs.
This number specifies which boot program will be used.

Boot file: This is a file name in the UNIX file system in the boot parti­
tion (usually hd02lunix or fd02lunix).

Flex drive #1, #2, #3, #4: The 32:16 can have up to four floppy disk
drives hooked up to it. This allows you to indicate which model of
floppy disk drive is connected to each of the four channels.

TTYOO port speed & TTYOI port speeds:
The Fortune keyboard port (TTYOO) and the port on the back of the
machine (TTY01) are RS-232C serial lines. These can operate at vari­
ous speeds. The Fortune keyboard should be at 2400 baud. The back
port can be used for various purposes and the speed can be set up
for whatever it is used. These are default speeds only. They are in
effect whenever the MomROM functions as a terminal, and also
under UNIX until they are changed. TTYOO can be set to any baud
rate if that port is to be used for operation with other than the
Fortune integral keyboard.

Console location: You may want to run a standard video-display termi­
nal or even a printing terminal as the console. This item allows you
to use ttyOO or tty01 for this purpose. Typically, you would figure
out an appropriate speed for the terminal, and plug it into ttyOl.

Timezone: This allows you to tell the UNIX time-keeping system
about your timezone. All of the world's timezones (except Saudi
Arabia) are available here, in either verbal or numerical form.

Daylight savings: This field allows you to tell the UNIX time-keeping
system whether or not daylight savings time ever applies in your
hemisphere; the system uses Daylight Savings at the appropriate
time of the year.

Line frequency: Sets the line frequency of the of the ambient AC
power supply. If you are in America, this is 60 hertz; otherwise, it is
probably 50 hertz. If this is set wrong the integral CRT will flicker.

Language: The language field indicates the natural language used in
this machine's application software. It controls the LANGUAGE=
environment variable.

Floating point?: The 32:16 supports floating point software using a
large emulator in the kernel, and some of the software distributed by
Fortune needs this package. You should set this field to YES unless
you know that you don't need it.

Hex number: This field is not used in the 2.0 release, but is included
for future use.

FOR:PRO 4-52 9/83

UCONF(8) Fortune Systems UCONF(8)

9/83

Now we come to the really interesting part of the menu. The next
eight fields allow you to change how well UNIX performs under
various loads. If you are confused by any of this, change the "Set
params auto?" field to YES. It automatically calculates generally
acceptable values to use for the fields that are overstruck when the
"Set params auto?" field is set to YES.

Number buffers: Unix performs disk-handling through intermediate in
and out boxes called buffers. The more file-handling (disk activity)
occurs, the more the buffers are used. If you are performing much
activity on a certain few disk files, for instance a data-base, increas­
ing the number of buffers might have cause an improvement.

Number inodes: There is an in-core inode required for every active
(open) file, and the number of inodes limits the number of active
files. These in-core structures are also another kind of buffer cache.
If you are dealing with many files, increasing the number of in-core
inodes can also have an effect on performance. It should also be
increased if the "Software Error 142" message ever appears on the
console.

Number files: There is a also file structure in core for every open file.
The number of file structures limits the total number of files that can
be open at one time. Having more of them will not help perfor­
mance. But not having enough of them could make it so you can't
get anything done. Increase this number if the "Software Error 129"
message ever appears on the console.

Number clists: Clists are to terminals as buffers are to disk files.
Increasing these to large amounts is only useful when running the
32:16 with much va activity to printers, networks, or terminals other
than the integral CRT.

Number processes: Every program that runs is a process. Many pro­
grams, to work effectively, use 2 or more processes. and the 32:16
can only run so many processes. If you try to run too many pro­
grams at once, you will get the message "No more processes" (or
something similar) from the shell; this means you need room for
more processes.

Max process size: The largest amount of memory (the most critical sys­
tem resource) that a process can use up. The number you enter is
multiplied by 1024 bytes.

Set params auto? If this is set to YES, the operating system ignores
the above eight fields, and instead uses rules of thumb. It does a
pretty good job, and you should only need to control these fields if
you always use your system in a certain way. It bases its estimation
of the above fields based on the total memory on your system and
on your estimate of the number of users that will be using the sys­
tem If this field is set to YES, the values of the fields are displayed

4-53 FOR:PRO

UCONF(8) Fortune Systems UCONF(8)

crossed out, meaning that those values are ignored and the automat­
ically calculated parameters used instead.

Appx. # of users: This is a guess as to how many users you will have
using your 32:16. This number is useful to UNIX in "Set params
auto?". Note that if you want to just increase everything propor­
tionately, but aren't really increasing the number of users on the sys­
tem, you can still just make this number larger. The numbers which
are ignored when this field is set to YES are struck out in the menu,
when the field is so set. This field does not control how many peo­
ple are allowed to log in.

/etc/uconf also displays certain system resource usage parameters: the
ram usage, swap space usage, and the actual system parameters
listed above "Set params auto" which can be changed. These
numbers are already tuned to run well with a general mix of applica­
tions, but if you wish to fine-tune these numbers for a specific type
of computing load, this display is of aid. Please note that setting
any of these too low crashes UNIX or otherwise hinders the system
from working well. Also, the pstat(1) program helps identify perfor­
mance problems.

Saving your changes, or what does that bottom line mean?
The settings in the configuration menu are stored in a special kind of
computer memory called an EAROM (electrically alterable read-only
memory). This memory has two levels: one whose contents goes
away when the computer is turned off (known as volatile memory),
and another one whose contents is permanent (non-volatile).
Isalreconf allows you to save your changes in one or the other;
letduconf only saves things in the permanent area, and these
changes do not take effect until Unix comes up again.

The F1 key puts your changes in non-volatile memory, so that when­
ever you tum the system off and on, the changes stay in effect.
There is an important problem here: Every time that you SAVE your
changes with F1 into non-volatile memory, the EAROM degrades.
The "EAROM has been changed # times" line at the bottom records
only this, not changes to the volatile part. After the EAROM has
been changed around 1000 times, it can fail. When this happens, a
flashing message (see below) appears at the bottom of the screen,
This does not necessarily mean that the EAROM has gone bad, it
may also mean that the data in the EAROM may not have been
properly maintained.

The F2 key throws away any changes you may have done, and reads
what was in the EAROM when you last powered up. This is useful
if you made a change and didn't really mean it.

In the stand-alone version, typing the F3 key causes the changes you
made to be used on this boot-up only, they are not saved in the

FOR:PRO 4-54 9/83

UCONF(8) Fortune Systems UCONF(8)

non-volatile portion of the EAROM, and the level 1 boot prompt
(":") appears. Turning the 32:16 off and on again (or pushing the
reset button) causes the configuration menu to revert to its old state.
In the stand-alone version, the F4 key indicates that the contents of
the screen are used on the next boot-up only, but the program goes
back to the beginning of the boot-up process (before the "1 II
appears) instead of merely going back to the level 1 boot prompt
(": ").

In letdreconf, the F3 key merely exits the program and F4 does
nothing.

FILES
bootmenu(8)

SEE ALSO
boot(8), bootmenu(8), momrom(8), pstat(8).

DIAGNOSTICS

9/83

EAROM checksum error!
This message appears when the earom has either gotten old and
started to malfunction, or it was aCcidentally altered by a program
malfunction. The Fl key should make this error go away. If it
doesn't, consult your dealer. A checksum is computed from the
data in the EAROM and is then stored in the EAROM. If this check­
sum is incorrect, the EAROM may have shuffled off this mortal coil,
or may have been improperly altered by a program bug.

4-55 FOR:PRO

UPDATE (8) Fortune Systems UPDATE (8)

NAME
update - periodically update the super block

SYNOPSIS
fete/update

DESCRIPTION
Update is a program that executes the sync(2) primitive every 30
seconds. This insures that the file system is fairly up to date in case
of a crash. This command should not be executed directly, but
should be executed out of the initialization shell command file. This
program has been subsumed into the kernel, and does not need to
be run.

SEE ALSO
sync(l), sync(2), init(8).

LIMITATIONS
With update running, if the machine is powered down just as the
sync is executed, a file system can be damaged.

FOR:PRO 4-56 9/83

