
~ FORTUNE:WORD'M
-

GLOSSARY USER'S GUIDE

-

FORTUNE SYSTEMS
-

------------ ----

Fortune:Word™
Glossary. User's Guide

I: FORTUNE 3:!~o~~~a~
Belmont, CA 94002

Copyright © 1984, 1985, 1987 by Fortune Systems Corporation. All rights
reserved. Printed in the United States of America.

No part of this document may be copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-readable form without prior consent
in writing from Fortune Systems Corporation. For full details of the terms and
conditions for using Fortune software, please refer to the Fortune Systems
Corporation Customer Software License Agreement.

The information in this document is subject to change without notice and should
not be construed as a commitment by Fortune Systems Corporation. Fortune
Systems Corporation assumes no responsibility for any errors that may appear in this
document, nor does it assure any responsibility for use of glossary programs as
described or written in this manual, or contained on the glossary software disk
provided with this manual. This document describes features available with
Fortune:Word release 3.0.

This document contains samples of names, addresses, and products used to
illustrate the features and capabilities of Glossary. Any similarity to the names,
addresses, or products of actual individuals or companies is purely coincidental.

UNIX is a registered trademark of AT&T.

Fortune is a registered trademark, and Fortune 32:16, Fortune Formula,
Fortune:Word, and FOR:PRO are trademarks of Fortune Systems Corporation.

Reg. U.S. Pat. & Tm. Off.

Consult an authorized Fortune Representative for copies of manuals and technical
information.

1006923-01

ii

Contents

1

2

3

4

About Glossary

What Is Glossary?
How to Create Glossary Entries

Creating a Glossary Document

The Glossary Functions Menu
How to Create a Glossary

Creating the Glossary
Leaving the Glossary
Verifying the Glossary
Attaching the Glossary
Detaching the Glossary

Creating a Glossary By Example Entry

How to Create a Glossary by Example Entry
Entry c: Creating an Entry to Type a Company Name
Entry d: Creating an Entry to Type a Company Name
Entry e: Creating an Entry That Inserts Text

Tips on Creating and Using Glossary by Example

Writing Glossary Entries

Basic Elements of a Glossary Entry
Entry Labels
Braces
Keywords
Strings
Comments

Screen Symbols and Format Lines in a Glossary
Writing Glossary Entries

Modifying a Glossary by Example Entry
Writing A Glossary Entry Memorandum Form
Writing Menu Glossary Entries
Learning More About Glossary

Verifying and Troubleshooting
Glossary Verification Options

iii

1-1

1-1
1-3

2-1

2-1
2-2
2-2
2-4
2-5
2-5
2-6

3-1

3-1
3-1
3-4
3-6
3-7

4-1

4-1
4-2
4-2
4-3
4-3
4-5
4-6
4-7
4-7
4-9

4-11
4-11
4-11
4-12

5

6

Correcting Verification Errors
Attaching a Glossary
Detaching a Glossary

Introduction to Glossary Syntax

What is Glossary Programming?
Glossary is a Programming Language
The Verification Process Compiles Your Entries
The Structure of a Fortune:Word Document

How to Learn Glossary
Overview of Glossary Language Elemems

Statements
Variables
Values
Logical Values
Relational, Equality, and Logical Operators
Assignment Operators
Functions, Arguments, and Expressions
Conditional Statement Functions
Control Statement Functions
Labeled Statements (Identifiers)
Braces
Brackets
Parentheses
String Operations
Mathematical Operations

Programming Style
Entry a, An Example of Programming Style
Programming Style Conventions

Syntax

Elements of the Glossary Language

Statements
Types of Statements
Single and Multiple Statements
Statement Execution Order

Variables
Declaring and Initializing Variables
Variable Names

Values
Assigning Values to Variables
Rules for Values

Logical Values
Functions That Return True or False Values

Operators
Binary and Unary Operators
Assignment Operator
Mathematical Operators

iv

4-14
4-15
4-16

5-1

5-1
5-1
5-1
5-2
5-3
5-4
5-4
5-4
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-6
5-6
5-6
5-6
5-6
5-7
5-7
5-7
5-8

5-11

6-1

6-1
6-1
6-2
6-3
6-3
6-3
6-4
6-5
6-5
6-6
6-7

6-10
6-10
6-10
6-11
6-12

7

8

Using Mathematical Operators with Variables
Mathematical Assignment Operators
Relational Operators
Using Relational Operators with Alphabetic String
Relational Operators and Alpha/Numeric Comparison
Equality Operators
Logical Operators
Tables of Operators

Functions, Arguments, and Expressions
Functions
Arguments
Expressions

Using Parentheses
Parentheses and Mathematical Expressions
Parentheses and Relational and Equality
Parentheses and Logical Expressions

Troubleshooting

Conditional Statements

General Principles for Using Conditional Functions
Evaluating Conditions in the Text Document
Evaluating Interactive Operator Input
Evaluating Conditions in an Entry
Conditional Statements Can Change Execution Order
Evaluating Fortune:Word Screen Symbols
The Conditional If Statement
Using an If Statement to Evaluate Document Conditions
Evaluating Interactive Input
Evaluating Conditions in the Entry
Using Flow Charts to Plan Entries

The Conditional If Else Statement
Using Flags in an Entry

Considering Entry Runtime
Nesting If and If Else Statements
Troubleshooting

Control Statements

Subroutines
Using the Call Statement
Using the Glossary Statement
Nesting Subroutine Calls

Branching
The Jump Statement

Looping
Using the Jump Statement for Loops
Using While and Do While for Loops
Points to Remember About Loops

Stopping Entry Recall Using the Exit Statement

v

6-13
6-15
6-18
6-20
6-23
6-24
6-25
6-29
6-33
6-33
6-34
6-34
6-36
6-36
6-38
6-38
6-39

7-1

7-2
7-3
7-4
7-4
7-5
7-5
7-5
7-6
7-7
7-9
7-9

7-10
7-12
7-14
7-14
7-16

8-1

8-1
8-2
8-5
8-7
8-8
8-9

8-12
8-12
8-18
8-24
8-25

9

Gracefully Stopping an Entry
Trapping Function Errors Using the Globerr Statement
Timing Your Entries

Function Description List

How to Use the Alphabetical List of Functions
Text Conventions Used in this Chapter
General Rules for Using Functions
List of Functions that Require Arguments
Alphabetical List of Functions

abs
beg_doc
bot-page
call
cat
char
clrpos
cursor
date
display
do while
end_doc
error
exit
false
feed
finsert
globerr
if
if else
index
jump
key
keyin
keys
keys in
left_margin
len
line
loc
max with numeric expressions
max with alphabetical strings
min with numeric expressions
min with alphabetical strings
num
number
occur
p~ge_no

pIC

position

vi

8-25
8-26
8-26

9-1

9-1
9-3
9-3
9-4
9-5
9-5
9-5
9-5
9-6
9-6
9-7
9-7
9-7
9-8
9-8
9-9
9-9

9-10
9-10
9-11
9-11
9-11
9-12
9-12
9-13
9-14
9-14
9-15
9-15
9-16
9-16
9-17
9-17
9-17
9-18
9-18
9-18
9-19
9-19
9-19
9-20
9-20
9-21
9-21
9-22

posmsg
prompt
right_margin
round
seg
spacing
status
sub
substr
text
textJen
time
top-page
true
truncate
unixfun
unixpipe
while
word

10 Function Usage List

Conditional Functions
Using Conditional Functions

Control Functions
Using Control Functions

Display Functions
Using Display Functions
The Display Function

Document Reading Functions
Using Document Reading Functions
Cursor Location Functions

Document Writing Functions
Using the Feed and Finsert Functions
Using the Cursor Function

Error and Logical Functions
Using the Globerr Function
Using True and False Logical Functions

Interactive Functions
Using Interactive Functions
The Keyin and Keysin Functions
Using Interactive Functions with Display Function

Mathematical Functions
Using Mathematical Functions
Creating a Calculator
Using the Max and Min Functions

Operating System Access Functions
Using Operating System Access Functions
The Date and Time Functions
The Unixfun and Unixpipe Functions
Using command "!" and command "I"

vii

9-22
9-23
9-23
9-23
9-24
9-24
9-25
9-25
9-26
9-26
9-28
9-28
9-28
9-29
9-29
9-29
9-30
9-31
9-32

10-1

10-3
10-3
10-5
10-6
10-6
10-7

10-16
10-20
10-20
10-21
10-23
10-23
10-25
10-27
10-27
10-28
10-28
10-28
10-30
10-31
10-33
10-33
10-34
10-39
10-39
10-40
10-40
10-41
10-42

String Functions
Using String Functions
Using Substr to Reformat the Date Function
Using the Len function

11 Administering Glossary Entries

Entry Planning
Applications
Access

Linking a Glossary to Another Library
Runtime
Backup, Storage, and Retrieval
Obsolescence
Entry Duplication
Glossaries in a Multiuser Environment
Debugging Entries (Troubleshooting)

Syntax Bugs
Execution Bugs
Logic Bugs
Points to Remember

12 Glossary Information for FOR:PRO Users

Fortune:Word File Structure
The .gl File

13 Glossary Entry Examples

Contents of Glossary Documents
Entries in Glossary Document: gloss 1
Entries in Glossary Document: gloss2a
Entries in Glossary Document: gloss2b
Entries in Glossary Document: gloss3

10-43
10-44
10-44
10-46

11-1

11-2
11-3
11-4
11-4
11-5
11-5
11-5
11-6
11-6
11-7
11-7
11-7
11-7
11-8

12-1

12-1
12-2

13-1

13-1
13-1
13-2
13-2
13-3

Appendix A Reserved Words and Symbols A-I

Appendix B Comparison of Glossary Keywords and Functions B-1

Appendix C Character Codes C-l

Appendix D Keywords by Usage D-l

viii

Appendix E Error Messages E-l

Index IN-l

ix

x

About This Guide

This guide is a learning and reference guide for Fortune:Word Glossary functions.
Glossary is a Fortune:Word feature that you use to store frequently-typed words and
phrases. You can recall the stored text in your document with just two keystrokes.

Using a glossary entry, you can automate almost any word processing task. You can
use glossary entries to insert standard paragraphs in your document as you are
editing it. If you have extensive document or paragraph assembly requirements,
consider using the Fortune:Word Document Assembly feature for this purpose.

In addition to text and keyword storage and recall, Glossary gives you full
programming capabilities with such functions as:

• Mathematical
• String
• Interactive
• Document reading and writing
• Display

You can define and initialize variables, use relational and assignment operators,
logical operators, conditional functions, and control functions.

HOW THIS GUIDE IS ORGANIZED

This book has 13 chapters, five appendices, and an index. Following is a brief
description of each part:

Chapter 1: About Glossary contains a brief introduction to Glossary.

Chapter 2: Creating a Glossary Document describes how to create, verify,
attach, and detach a glossary document.

Chapter 3: Creating a Glossary By Example Entry describes how to store
keystrokes in a glossary document while you are typing them in a text document.

Chapter 4: Writing Glossary Entries describes the basic syntax required for
glossary entries, how to write simple entries, and how to modify a glossary by
example entry. It contains additional information about correcting verification
errors, and attaching and detaching a glossary document. .

Chapter 5: Introduction to Glossary Syntax describes additional syntax and
provides an overview of the elements of the Glossary language.

xi

Chapter 6: Elements of the Glossary Language contains information about
statements, variables, values, logical values, operators, functions, arguments,
expressions, and parentheses.

Chapter 7: Conditional Statements describes the statements that you can use to
test for specific conditions while a glossary entry is running.

Chapter 8: Control Statements describes the Glossary functions that allow you
to control the flow and execution order of the elements of a glossary entry.

Chapter 9: Function Description List contains an alphabetical list of all the
Glossary functions. The type, value, syntax, and a brief description is provided for
each function. You can use this chapter as a reference guide.

Chapter 10: Function Usage List contains information on all Glossary functions
grouped by the types of actions they perform. You can use this chapter together
with Chapter 9 as a reference guide.

Chapter 11: Administering Glossary Entries contains suggestions for
maintaining, updating, and filing glossary documents.

Chapter 12: Glossary Information for FOR:PRO Users contains operating
system information that relates to glossary documents.

Chapter 13: Glossary Entry Examples contains an index of the glossary
examples that are provided on diskette with this guide.

Appendix A: Reserved Words and Symbols contains a list of the words and
symbols that are reserved for specific use by the Glossary language.

Appendix B: Comparison of Glossary Keywords and Functions contains an
alphabetical list of keywords and functions used by the Glossary language and by
Records Processing.

Appendix C: Character Codes contains information about the ASCII collating
sequence, octal number conversions, attribute codes, and Fortune: Word document
format control codes.

Appendix D: Keywords by Usage provides a list and description of Glossary
keywords grouped by the functions they perform.

Appendix E: Error Messages contains a list of verification error messages and
glossary operation error messages.

HOW TO USE THE GLOSSARY ENTRY EXAMPLES

A Glossary Examples Diskette is provided with this guide. It contains documents
with all the entries used as examples. Retrieve the glossary documents on this
diskette and try the entries as you use this guide. Observing a glossary entry as it
performs its functions can help clarify the descriptive text.

xii

One way to learn to write your own glossary entries is to take an existing entry and
make modifications to it. The entries on this diskette represent one approach to
Glossary. There are many ways you can write an entry for any application. The
suggestions in this guide are not the only solutions, and they may not even be the
best.

HOW TO USE THIS GUIDE TO LEARN GLOSSARY

Do not feel that you need to learn everything in this guide before you begin to use
Glossary for your word processing needs. Read the first four chapters of this guide
for introductory information to Glossary. You can then begin to use Glossary to
store and recall frequently typed words and phrases. This convenient production
tool may be all that you ever use of the Glossary language.

As you become more familiar with Glossary, you may want to further automate
some of your entries. When this happens, refer to the part of this guide that
discusses the function you want to perform. For example, if you want to add a test
for a specific condition, refer to Chapter 7, "Conditional Statements." If you want
to check to see if the cursor is at the end of the document, look up the "end_doc"
function in Chapter 9, "Function Description List."

Another way to learn Glossary is to take an existing entry and modify it to suit your
needs. You can experiment with the entries on the Glossary Examples D~skette,
modifying them to suit your specific needs.

Once you learn to use glossary by example to store text and keystrokes, you can
modify those entries, adding conditional statements and testing for specific
conditions. Even if you write complex entries, you can start the entry by capturing
the basic function keystrokes using glossary by example.

CONVENTIONS USED IN THIS GUIDE

The following conventions are used throughout this guide:

• The names of keyboard functions and editing keys you press are capitalized, as
shown in the following examples:

RETURN SEARCH INDENT EXECUTE

• Glossary keywords have different functions depending on whether the keyword
is lowercase or uppercase. Glossary keywords are shown in the case that
represents the function that is performed. For example search in a glossary
entry searches from the cursor position for the string specified in quotation
marks. SEARCH searches from the beginning of the document for the string
specified in quotation marks.

xiii

• The four directional arrow keys (up, down, left, and right) that move the
cursor are identified as follows:

UP DOWN LEFT RIGHT

• To perform certain Fortune:Word functions, you have to hold down one key
while you press a second key. This combination of keystrokes is shown in the
following way:

Press SHIFT/COPY
Press SHIFT/MERGE
Press CTRL/y

In the examples above, you hold down SHIFT while you press COPY, MERGE,
or y.

• Words or phrases you type are in boldface type, as shown in the following
example:

Type rad

• Screen prompts, messages, and menu selections are in italic type, as shown in
the following examples:

Press EXECUTE to continue
Select Edit Old Document from the Main menu.

• Fortune:Word document names are in bold type as shown in the following
example:

Glossary document glossI

• The term "text document" refers to a standard Fortune:Word document, to
distinguish it from a "glossary document" containing executable entries. The
term Glossary is used to refers to the Glossary language. The term "glossary"
is used to refer to a glossary document.

• Glossary keywords, functions, and variables in the descriptive text are in bold
type as shown in the following examples:

it adds 1 to the variable figure_no
If the search fails, the statement if(globerr) {execute exit}
causes the entry to end.

• In syntax examples, expressions may be shown as:

function (expression 1 ,expression2,expression3)

or as:

function(el,e2,e3,e4,e5)

xiv

Three dots following the last expression in an argument mean more
expressions are allowed, as shown in the following example:

function (expressionl,expression2, ...)

In some diagrams and figures, omitted program statements are
represented by three periods enclosed in parentheses, as shown in
the following example:

(...)

RELATED FORTUNE SYSTEMS DOCUMENTS

Following is a list of related Fortune Systems Fortune publications:

• How to Use Fortune:Word
• Fortune: Word Glossary User)s Guide
• Fortune: Word Records Processing User)s Guide
• FOR'PRO Users Guide
• Using Fortune Terminals

xv

xvi

Chapter 1

About Glossary

Anyone who knows Fortune:Word can learn to use Glossary.

If you are not familiar with Fortune: Word you can learn how to use it by
studying How to Use Fortune: Word and referring to the Fortune: Word
Reference Guide.

WHAT IS GLOSSARY?

Fortune:Word Glossary is a special type of document where you can store
frequently-typed words and phrases. You can then recall the text with
just two keystrokes, automatically typing it in a document. You can also
perform word processing functions such as Center, Indent, or Execute
automatically by storing keywords in your glossary document.

You type the text and keywords as a glossary entry in a glossary
document. Each glossary entry is identified by a one-character label
that you assign. You can have as many as 94 entries in one glossary.

To use a glossary entry while you are editing a document, you attach the
glossary, press the GL key, then type the one-character entry label. The
text stored in the entry is typed at the cursor location in your document
just as though you had typed it from the keyboard, only much faster.
Entry a is an example of a simple glossary entry that types a company
name. Braces mark the beginning and ending of the glossary entry.

entry a
{

}
"Fortune Systems"

If you want the text to be centered and followed by Returns, you include
keywords as instructions in your glossary entry. The following entry
example types a centered company name followed by two Returns.

3/87 1-1 Glossa.ry Users Guide

About Glossary

entry b
{

center "Fortune Systems" return(2)

You save typing time and improve typing accuracy when you use glossary
entries to type text and perform repetitive functions. Glossaries are
great times avers when you frequently type legal or engineering phrases
such as "hereinafter referred to" or "gallium aluminum arsenide." For
example, using glossary entry c, you can insert the phrase "(trademark
pending)" at the cursor location in your document.

entry c
{

}
insert "(trademark pending)" execute

Glossary entries can automate almost any word processing task. You can
create glossary entries that insert standard paragraphs for contracts,
reports, or form letters anywhere you want them in your document. You
can use a glossary entry to type field labels for Records Processing list
documents. Glossary entries help you type complicated documents that
include tables, forms, multiple format lines, numbered lists, or
financial data. Any repetitive keystrokes you perform can be stored in a
glossary entry and recalled with only two keystrokes.

In addition to text and key function storage, Glossary contains the
following tools:

• Variables
• Relational and assignment operators
• Conditional testing
• Control statements
• Operating system command access
• Document reading and writing functions
• Display functions
• Error and logical functions
• Interactive functions
• Mathematical functions
• String functions

You can use glossary entries to serve your production needs in the
following ways:

Glossary Users Guide 1-2 3/87

About Glossary

• Interactive glossary entries: write interactive glossary entries
with your own prompts and error messages. Write entries that stop
during recall and permit the operator to enter data, then continue
the entry. You can design glossary entries that fill out forms,
request variable information from the operator, or create lists.

• Mathematical functions and calculations: write glossary entries
that work with the Fortune: Word Math function to perform
calculations on numbers in your document, update parts lists,
calculate financial data, or do incremental counts.

• Conditional testing: write entries that can ask questions about
document conditions and perform functions based on the answers. For
example, if the cursor is under the character "a," you may want some
text deleted. If it is not under "a," perhaps you want to insert
text.

HOW TO CREATE GLOSSARY ENTRIES

You can create glossary entries in two ways:

1. Glossary by example: create a glossary by example entry in a
glossary while you edit your text document.

The quickest way to store simple, short glossary entries is to
create them by example. While you are typing text and using
functions in your text document, you can also storing them in your
glossary for later recall. Chapter 3 describes how to create a
glossary by example entry.

2. Write a glossary entry: write a glossary entry by typing it in a
glossary.

3/87

You can utilize the full power of Glossary when you type your
glossary entries directly into a glossary. A glossary by example
entry only allows you to store keystrokes (keywords and characters).
When you write a glossary entry directly, you can use the full range
of Glossary functions, such as if statements, while loops,
subroutines, and math and string functions. Chapter 4 describes how
to write a glossary entry in a glossary.

1-3 Glossary Users Guide

1-4

Chapter 2
Creating a Glossary Document

Before you can create a glossary entry, you must create a glossary
document. The major differences between a text document and a glossary
document are:

• The glossary is usually created and edited from the Glossary
Functions menu. The Glossary Functions menu is accessed by
selecting Glossary Functions from the Fortune: Word Main menu.

• The glossary contains glossary entries instead of text.

• The glossary must be verified each time you change or add an entry.
The verification process compiles entries into executable programs,
checks for syntax errors, and attaches the glossary when
verification is successful.

• The glossary must be attached, either through verification, from a
menu, from a Document Index screen, or from a document editing
screen, before you can use an entry.

You can perform all Fortune:Word editing and formatting functions in a
glossary. You can also perform menu functions such as Delete, Rename,
Move, Copy, Print, or Archive on a glossary.

Glossaries are created separately from text documents. When you edit a
text document, you attach the glossary and use the glossary entries to
enter text or perform functions. Figure 2-1 illustrates the relationship
of a glossary and glossary entries to a text document.

THE GLOSSARY FUNCTIONS MENU

You can perform most glossary activities from the Glossary Functions
menu. The Glossary Functions menu is shown in Figure 2-2. To display
the menu, select Glossary Functions from the Fortune: Word Main menu.

You are already familiar with the first two selections on the Glossary
Functions menu, editing and creating documents. Verifying, attaching,
and detaching are activities specific to glossaries.

3/87 2-1 Glossary User~s Guide

Creating a Glossary Document

FORTUNE:WORD Glossary Functions ~ GLOSSARY' FUNCTlONS Fortuna 5y8temI WanI ProcH,ing

is accessed from
the Fortune:Word menu Edit Old Gloasary -- e91

{ Edit Old Document -- edd Creola New Gla811C1ry -- egl
Crillot, New Document -- crd Verify glossary -- v<;Il
Print Document -- prd Attachgloslory -- 0111
Printer Control -- pre Detach gloaary -- dgl
Index

Filing

Document Processing Tools

Glossary Functions

Supervi8oryf"unctions

The gloss ary document
, edited is created

The text document is and verifi ed from
created and edited

~ from the Fortune:Word menu
the Gloss ary Functions
menu

Text document Glossary document

------ (0 ..) _._-----
The entries in the (00 0) ------------ glossary document (0 0 0) -------- ---- are run from the - -----._- - ---- text document and
perform actions on
text and data

Figure 2-1. Relationship Between the Glossary Document~ Glossary Entries~
and the Text Document

The step-by-step instructions in the next section show you how to use
each of the selections on the Glossary Functions menu.

HOW TO CREATE A GLOSSARY

This section shows you how to create, verify, attach, and detach an empty
glossary.

Creating the Glossary

You can create a glossary in three ways:

• Select Create New Document from the Main menu. The new glossary
is not automatically verified if you use this selection.

• Use the shortcut code cgl from any menu. The new glossary is
verified at the end of editing when you use this selection.

Glossary Users Guide 2-2 3/87

r

Creating A Glossary Document

GLOSSARY FUNCTIONS

Please select next activity

Edit Old Glossary

Create New Glossary

Verify glossary

Attach glossary

Detach glossary

Creation library Is /u/training

-- agl

-- cgl

-- vgl

-- agl

-- dgl

cO
r--

\'--'~ ~
Figure 2-2. The Glossary Functions Menu

• Select Create New Glossary from the Glossary Functions menu. The
new glossary is automatically verified at the end of editing when
you use this selection.

1. Select Glossary Functions from the Main menu.

2. Press EXECUTE.

3. Move the marker to Create New Glossary.

4. Press EXECUTE.

When you name your glossary, follow the same naming conventions that
apply to a text document. The prototype document you select can be a
text document, a glossary, or the default 0000.

3/87 2-3 Glossary User>s Guide

Creating a Glossary Document

5. Type gloss.

6. Press EXECUTE.

7. Press EXECUTE to accept the prototype default 0000.

Notice that the summary screen is called a Glossary Summary rather than a
Document Summary. Fill in the Glossary Summary just as you do a Document
Summary. The Statistics portion of the Glossary Summary is the same as
a Document Summary.

8. Fill in the Glossary Summary by typing the Document title, the
Operator, the Author, and the Comments lines.

9. Press EXECUTE.

10. The editing screen is displayed.

You use the editing screen just as you would for a text document. You
can change the format line or add alternate format lines. Changing the
format line in a glossary does not affect the format of an entry when you
recall it in a document. Like a text document, the glossary has header,
footer, note, and work pages.

Do not enter any text in the glossary at this time. You have created it
so you can create a glossary by example.

Leaving the Glossary

1. Press CANCEL to display the End Of Edit Options menu.

2. Press EXECUTE. The message VerifYing is briefly displayed at the
bottom of the screen. The messages Press EXECUTE to continue and
An empty glossary is attached are displayed. The glossary is
empty because you have no entries in it at this time.

3. Press EXECUTE.

4. Press CANCEL to return to the Main menu.

You have created, verified, and attached your new glossary gloss.

Glossary Users Guide 2-4 3/87

Creating A Glossary Document

Verifying the Glossary

Any time you leave an existing glossary and save the changes, the
verification process checks for errors and compiles glossary entries into
an executable form so you can use them in your text document. When the
verification is successful, the glossary is automatically attached so it
is available for immediate use. Chapter 4 describes the glossary
verification procedure.

If' you use the Main menu to create a new glossary, you must either go to
the Glossary Functions menu and use the VerifY glossary selection, or
remain at the Main menu and use the shortcut code vgl to verify the
glossary for the first time. Thereafter, the glossary is verified at the
end of editing no matter which menu selection you use.

1. If you created the glossary from the Main menu, select VerifY
glossary from the Glossary Functions menu or use the shortcut code
vgl.

2. Press EXECUTE.

Attaching the Glossary

Before you can use the entries in a verified glossary, you must attach
it. You can attach a glossary in five ways:

• Verify the glossary; it is automatically attached after it is
successfully verified.

• Use the Attach Glossary selection on the Glossary Functions menu.

• Attach a glossary while editing a text document by pressing
COMMAND, pressing GL, and typing the glossary name.

• Use the shortcut code agl to attach a glossary from any menu.

• Select Index from the Main menu (or use one of the index shortcut
codes to display a Document Index screen), position the cursor on
the glossary name, and press the GL key. Glossaries are identified
on the Document Index screen by two asterisks (**) displayed before
the glossary name. The asterisks are automatically added to a
glossary name when it is verified.

Once a glossary is attached, you can use any entry in it. When the
glossary is attached from a menu, the glossary is available for use with
any document you edit during an editing session. When you attach a
glossary from an editing screen, the glossary is automatically detached
when you leave the document.

3/87 2-5 Glossary UserYs Guide

Creating a Glossary Document

Detaching the Glossary

When you attach a glossary you automatically detach any previously
attached glossary. You may need to detach a glossary from one terminal
to allow a user to edit or archive it from another terminal on a
multiuser system. You can detach an attached glossary in two ways:

• Select Detach Glossary from the Glossary Functions menu.

• Use the shortcut code dgl from any menu.

Glossary Users Guide 2-6 3/87

Chapter 3

Creating a Glossary By
Example Entry

Using the Glossary by Example feature, you create a glossary entry that
duplicates your keystrokes as you perform them. Keystrokes include
typing text, Fortune:Word formatting keys like TAB and RETURN, and
function keys like INSERT and EXECUTE.

Once you have created the entry, you can use it immediately within the
document you are editing. A glossary created by example becomes a
permanent entry in your glossary document, so you can use it with other
documents as well.

Remember, you must have an existing glossary attached before you can
create an entry by example.

NOTE: If you do not have a glossary, follow the steps
in Chapter 2 to create one before you begin the next
section.

HOW TO CREATE A GLOSSARY BY EXAMPLE ENTRY

The following sections show you how to create three glossary by example
entries and recall them in your document:

• Entry c types a company name.
• Entry d types a centered company name and address.
• Entry e inserts a name and title.

Entry c: Creating an Entry to Type a Company Name

When you are learning to create glossary entries or testing new entries,
it is always a good idea to try them in a "test" document before you use
them in your regular documents. Follow these steps to create a new text
document:

3/87 3-1 Glossary User's Guide

Creating a Glossary By Example Entry

1. Select Create New Document from the Main menu.

2. Name the document learngloss. Go to the editing screen.

3. The cursor is on Line 1, Pos 1 of your text document.

You must attach your glossary gloss before you can create a glossary by
example. If you created and verified gloss and have not left
Fortune:Word, it is attached. If you left Fortune:Word or attached
another glossary, follow the steps below to attach gloss.

4. Press COMMAND.

5. Press GL.

6. Type gloss.

7. Press EXECUTE.

Start Glossary by Example mode:

8. Press MODE.

9. Press GL.

The flashing message Glossary entry is displayed at the bottom center
of the screen. This message continues to flash until you have completed
your entry.

Type the entry exactly as you want it to appear in your document. If you
make a mistake while you are typing the entry, use the Backspace key to
back up and correct the error. Or, you can press. CANCEL to end the entry
and start over.

REMEMBER: Every keystroke you make, including
mistakes, is duplicated in your glossary entry.

10. Type Fortune Systems.

When you have finished typing the entry, follow these steps to conclude
your entry.

11. Press MODE.

12. Press GL.

Glossary Users Guide 3-2 3/87

Cretlting A Glosstlry by Extlmple Entry

You must now assign a label in response to the Which entry? prompt. An
entry label consists of one character. You can use anyone of 94
keyboard characters as an entry label including the Space bar (allowing
you 94 entries per glossary). Do not use quotation marks as an entry
label.

You cannot duplicate entry labels in the same glossary. For example, you
cannot have two entries labeled "a." If you inadvertently assign a
duplicate label, the error message Entry in use is displayed. If this
occurs, press EXECUTE and assign a different label. See Chapter 4 for
detailed information on entry labels.

13. Type c.

14. Press EXECUTE.

Once entry c has been created it can be used in any document. To recall
the entry, follow these steps:

15. Press GL.

16. Type c.

Try recalling the entry several times. Notice how quickly it is typed in
your document.

You have created your first glossary by example entry. If you type your
company name frequently, this entry is a practical one for you to use.
Try creating another entry, substituting the name of your company for
"Fortune Systems."

If you did not type a space following "Fortune Systems" and recalled
entry c a few times, your screen probably looks like this:

Fortune SystemsFortune SystemsFortune SystemsFortune Systems

If you typed a space following the word "Systems" when you created the
entry, your screen probably looks like this:

Fortune Systems Fortune Systems Fortune Systems Fortune Systems

Remember that if you recall a word or phrase that requires punctuation
following it, you probably do not want to type a space at the end of the
phrase when you create the entry. If you know the phrase will never
occur at the end of a sentence or be followed by punctuation, including
the space means you do not have to type it in your document. Give some
consideration to possible uses for your entries. It is a good idea to be
consistent in the use of spaces following phrases to ensure a smooth work
flow as you recall each entry.

3/87 3-3 Glosstl" Users Guide

Creating a Glossary By Example Entry

You can use short entries in a variety of ways. A company name is one
example. Other examples might be proper names, lengthy titles, or words
you have difficulty typing or spelling.

You can end the edit of your document learngloss now, or remain in it and
continue with the next exercise.

Entry d: Creating an Entry to Type a Company Name and Address

Entry d includes both text and function keys. The function keys used in
this example are CENTER and RETURN.

Begin this exercise from the editing screen of your text document. Skip
the first three steps if you did not leave the document at the end of the
last exercise.

1. Edit your text document, learngloss.

2. Attach the glossary, gloss

a. Press COMMAND and then GL.
b. Type gloss, and press RETURN or EXECUTE.

3. Move the cursor to the end of the document.

Remember, the exact keystrokes you type are duplicated in the glossary
entry. If you make too many mistakes or unnecessary keystrokes, the
entry takes longer to recall. If you want to stop the entry and start
over, press CANCEL. The entry is not saved until you assign an entry
label.

Start glossary by example:

4. Press MODE.

5. Press GL.

Begin typing the entry:

6. Press CENTER.

7. Type Fortune Systems.

8. Press RETURN.

9. Press CENTER.

10. Type 300 Harbor Boulevard.

Glossa,., Users Guide 3-4 3/87

Creating A Glossary by Example Entry

11. Press RETURN.

12. Press CENTER.

13. Type Belmont, CA 94002.

14. Press RETURN.

Conclude entry d:

15. Press MODE.

16. Press GL.

Assign the entry label:

17. Type d.

18. Press EXECUTE.

Recall entry d:

19. Press GL.

20. Type d.

Notice that entry d is typed in your document exactly as you typed it
when you were creating the entry, complete with Centers and Returns.
When you recall it in your text document, the entry should look like this
example:

Fortune Systems
300 Harbor Boulevard
Belmont, CA 94002

You can see from entry d that using function keys (such as CENTER and
RETURN) in an entry provides more possibilities for creative glossary
applications.

When you use entry c or d, you must put the cursor beyond or below any
existing text before you recall the entry. Otherwise the entry text
overwrites the existing text. You can use the Insert function in your
glossary entry to avoid overwriting existing text. The next exercise
shows you how to create an entry that inserts text in your document.

You can end the edit of your document learngloss now, or remain in it and
continue with the next exercise.

3/87 3-5 Glossary Users Guide

Creating a Glossary By Example Entry

Entry e: Creating an Entry That Inserts Text

Begin this exercise from the editing screen of your text document. Skip
the first three steps if you did not leave the document at the end of the
last exercise.

1. Edit your text document, learngloss.

2. Attach the glossary, gloss.

3. Move the cursor to the end of the document.

Start glossary by example:

4. Press MODE.

5. Press GL.

Begin typing the entry:

6. Press INSERT.

7. Type Mr. John Jones, President.

8. Press EXECUTE.

Conclude entry e:

9. Press MODE.

10. Press GL.

11. Type e.

12. Press EXECUTE.

To understand how entry e inserts text, put the cursor where you want the
text inserted, and recall the entry.

13. Press GL.

14. Type e.

Entry e should look like the following example:

Mr. John Jones, President

Glossary Users Guide 3-6 3/87

Creating A Glossary by Example Entry

TIPS ON CREATING AND USING GLOSSARY BY EXAMPLE ENTRIES

The following list provides additional information and gives you some
points to remember about glossary by example entries.

• Cursor position: When you recall a glossary entry that does not
include the Insert function, be sure your cursor is at the place
where you want the entry to be typed. If the cursor is positioned
on existing text, the text is overwritten when the entry is
recalled.

• Using function keys: Remember, anything you can type on the
keyboard you can save in a glossary entry. If you do a large volume
of production typing, you can use glossary entries to reduce the
number of keystrokes you have to type. For example, you can create
a glossary by example entry to copy an alternate format line. The
keystroke sequence you type to create an alternate format line is:

INSERT COPY FORMAT 2 EXECUTE

Typing this sequence requires five keystrokes, whereas performing it
with a glossary entry takes only two keystrokes. To make this entry
easy to remember, use the number of the alternate format line as the
entry label (in this example the label could be entry 2).

• Format lines: A recalled glossary entry always uses the current
format line in your text document (unless you include a format line
as part of the glossary entry).

• Using text emphasis modes: If you always highlight or underline
certain words or phrases, you can shorten the time it takes to type
them by including the text emphasis modes as part of your glossary
entries.

• Paragraphs: You can use a glossary by example entry for short
paragraphs or forms; however, there is a finite limit to the amount
of keystrokes you can store in a glossary by example entry (see
"Length") .

When you have a large volume of text or keystroke combinations you
would like to use in a glossary entry, you must write the entry
directly in the glossary. Chapter 4 explains how to do this.

• Length: A glossary by example entry cannot exceed approximately
1024 characters in length. The character count includes text,

3/87

screen symbols (like RETURN and TAB), page and/or column breaks, and
format lines. Since a glossary by example entry records every
keystroke you make, it includes the keys you press to make
corrections or move the cursor. Unless you are very sure exactly

3-7 Glossary Use~s Guide

Creating a Glossary By Example Entry

what the entry should contain, you may quickly reach the maximum
entry size. Text formatting keys such as RETURN and TAB count as
more than one character. See Appendix C in this guide for more
information.

If you exceed the character limit while you are creating a glossary
by example entry, the Glossary entry prompt stops flashing and the
Which entry? prompt is displayed. You can enter a label and press
EXECUTE to save the entry, or press CANCEL to stop.

• Modifying or adding to an entry: You can edit your glossary and
modify or add to any entry you have created by example. Chapter 4
shows you how to do this.

• Using the numeric keypad: You can use the numeric keypad just as
you would any other key on the keyboard while you are creating a
glossary by example.

• Number of entries in a glossary: You can create as many glossaries
as you need, although you can only attach one at a time. You can
have up to 94 separate entries in each document. They can either be
entries you write or create by example.

• Creating glossary by example entries from menus: You can create
glossary by example entries to automate keystrokes you perform from
menus. For example, if you frequently change between two libraries,
you may want to create a glossary by example to perform the
following keystroke sequence:

COMMAND chllibrary/sublibrary/document RETURN

Although the shortcut code chI is quick to use, this menu glossary
entry is even quicker. From any menu, use the shortcut code agi to
attach a glossary. Then follow the same procedure you learned in
this chapter to create a glossary by example entry.

• Suggestions for creating glossary by example entries: There are
many ways to use glossary by example entries. Consider using
entries for repetitious typing, standard paragraphs, Records
Processing field labels (the Fortune:Word Records Processing Users
Guide gives you an example), and technical words and phrases.

You can create a glossary by example entry as you use the Math
function to quickly add rows or columns.

Remember, you can print and archive a glossary. When you have created a
number of entries, it is easy to lose track of what your entries do and
which labels you have used. You may want to print your glossaries and
keep them in a binder for reference.

Glossary Users Guide 3-8 3/87

Chapter 4

Writing Glossary Entries

This chapter describes how to write entries in a glossary. When you know
how to write glossary entries, you can:

• Modify or add to your glossary by example entries
• Create longer glossary entries (up to 33,000 characters)
• Use all the functions available in Glossary

Before you write a glossary entry, you need to understand the elements
that compose the entry. Every glossary entry, including the entries you
created by example in Chapter 3, contains the same basic elements. These
elements are described in the following section.

BASIC ELEMENTS OF A GLOSSARY ENTRY

A glossary entry is composed of the following basic elements:

• Entry label
• Braces
• Keywords
• Strings
• Comments

Figure 4-1 shows the elements of a short glossary entry that inserts the
text, "Fortune Systems Corporation," in a document.

entry a ~---------------Entry label

{ ~----------------- Beginning brace

insert "Fortune systems" execute -- Keywords and text string
This is the entry "body"

...... ~----------------- Ending brace
A1538

Figure 4-1. Elements of a Glossary Entry

3/87 4-1 Glossary Users Guide

Writing Glossary Entries

Entry e (the glossary by example entry from Chapter 3) is similar to the
example shown in Figure 4-1. If you would like to compare the entries,
edit your glossary gloss, and look at entry e. It should look like the
following example. If you made any corrections while you were creating
entry e, your entry may contain extra keywords such as backspace or left.

entry e
{

insert "Mr. John Jones, President" execute

As you can see, although entry e and Figure 4-1 insert different text,
they both contain the same structural elements. Read the following
descriptions of these glossary entry elements before you begin writing
entries in your glossary.

Entry Labels

Each glossary entry starts with the word entry. The single character
after this word is the label. You have 94 keyboard characters available
to use as entry labels. These may be any uppercase or lowercase letter,
numeral, or symbol such as !, @, and -.

To use either a space or a backslash as an entry label, you must precede
the label with a backslash. If you use a space or backslash as an entry
label when you create a glossary by example, the backslash before the
character is automatically entered in the glossary. To use a space as a
label, type entry \ (space). To use a backslash as a label, type
entry \\.

Each entry label must be unique; you cannot have two entries with the
same label in the same glossary. When you use a glossary entry in your
Fortune: Word document, recall the entry by pressing the GL key and typing
the single character entry label. The label of the sample entry in
Figure 4-1 is the· character a.

Braces

A brace marks the beginning and the end of an entry. The text between
the braces is called the body of the entry. The body of the sample entry
in Figure 4-1 contains the keywords insert and execute and the text
string "Fortune Systems."

Glossary Users Guide 4-2 3/87

Writing Glossary Entries

Keywords

Keywords represent the formatting, editing, and cursor movement keys on
the keyboard, such as RETURN, TAB, DELETE, and LEFT.

When you use an entry containing keywords, each keyword performs its
designated function. For example, in entry f below, the cursor moves
down three lines and deletes a character.

entry f
{

down(3)
delete execute

The repeated activation of a key can be specified by a number in
parentheses immediately following the keyword, as in entry f. See the
list of keywords by usage in Appendix D for keywords that accept a
parenthetical number.

Strings

A string is any continuous set of characters that is typed or inserted
into the text document. It may be as short as one character, or may
include several paragraphs of text.

A string may consist of any combination of alphabetic or numeric
characters, including spaces and special characters such as a required
space or required hyphen.

To differentiate strings from keywords in an entry, you must enclose the
strings in quotation marks, as shown in entry g:

entry g
{

}
insert center "Monthly Report" return execute

The string in entry g is "Monthly Report." The keywords are insert,
center, return, and execute. When this entry is used in a document, the
heading "Monthly Report" is inserted, centered, and followed by a Return.

3/87 4-3 Glossary UserJs Guide

Writing Glossary Entries

Embedding Keywords in Strings

Entry f uses only keywords. Entry g uses both keywords and a text
string. The keywords in entry g are whole keywords, typed outside the
string. You can also embed certain keywords within the text string.
These keywords are called "abbreviated keywords." You can use
abbreviated keywords in a quoted string to avoid breaking the text into
quoted and non-quoted segments. A list of keyword abbreviations is
provided in Appendix D.

Entry h is the same as entry g, except the keyword abbreviations for
center and return are embedded in the text string. Keyword abbreviations
are always preceded by a backslash.

entry h
{

insert "\cMonthly Report\r" execute

The first two characters in the string, \c, are an abbreviation for the
keyword center. The last two characters in the string, \r, are an
abbreviation for the keyword return. Abbreviated keywords must always be
placed inside the quotes in a string.

Since double quotation marks are used to define a string, you must always
use the keyword abbreviation \q instead of the symbol (") when you want
to quote a word or phrase within a string. The following example shows
the keyword abbreviation for double quotation marks embedded in the
string:

"The name of the company is \qFortune Systems Corporation\q"

This string appears in the text document as:

The name of the company is "Fortune Systems Corporation"

You can also use the keyword quote to enclose words or phrases in
quotation marks:

"The name of the company is" quote "Fortune Systems Corporation"
quote

As you can see, using the keyword quote is awkward, since you have to
split the string into quoted and non-quoted segments.

Glossary Users Guide 4-4 3/87

Writing Glossary Entries

Single vs. Double-Quoted Strings

You can also enclose a string in single quotes C). However, a
single-quoted string is interpreted differently from a double-quoted
string. When surrounded by double quotes, the embedded keywords in a
string are interpreted and their functions are carried out; when
single-quoted, any embedded keywords in a string are printed verbatim
rather than interpreted. For example, when the string

"\cFortune Systems Corporation\r"

is typed in the text document, the center symbol is typed, the string
"Fortune Systems Corporation" is typed, a Return symbol is typed, and the
cursor advances one line.

When the same string is enclosed in single quotes, it is typed in the
text document exactly as it appears in the glossary entry. The string

'\cFortune Systems Corporation \r'

is typed in the text document as

\cFortune Systems Corporation\r

The Backslash in Strings

The backslash (\) is an escape character; it tells the system that the
character following it is to be treated in a special way (for example,
\r performs a different function than the solitary character "r").
When you include a backslash in a string, you must always precede it with
another backslash:

"The backs lash (\ \) is a special character."

The string is typed in the document as

The backslash (\) is a special character.

Comments

Comments describing the entry make glossary entries easier to understand
and use. Any text enclosed between 1* and * 1 within an entry is a
comment. When a glossary is verified or an entry is executed, comments
are ignored. Instructional and explanatory comments can therefore be
used frequently. Comment lines are used to clarify the function of
entry i.

3187 4-5 Glossary User~s Guide

Writing Glossary Entries

entry i
{

1* boldface 5
mode "b"
right(5)
mode "b"

characters * 1
I*Turn boldface on* 1
I*Move cursor right five characters * 1
I*Turn boldface off* 1

Comments can be composed of several lines of instructions. In the
following example, expanded comments have been added to entry i. Note
that the comments now provide instructions on how to use the entry as
well as describing it.

The comment paragraph must begin and end with the comment symbols.

entry i
{

I*This entry is used to boldface 5 characters. To use it, place the
cursor on the first character to be boldfaced. Press GL and type the
label i* 1

mode "b"
right(5)
mode "b"

I*Turn boldface on* 1
I*Move cursor right five characters* 1
I*Turn boldface off* 1

Never mix keywords and comments. If you have comments following keywords
on one line, be sure the commented section begins and ends with the
comment symbols and does not include any keywords. The second example of
entry i shows the correct usage of both instructional and explanatory
comments.

REMEMBER: Regardless of how complicated your
glossary entries become, they share the same
structural elements. Begin each entry with a label,
start the body of the entry with a left brace, enclose
strings in quotes, spell whole keywords correctly, use
the correct keyword abbreviation, and finish the entry
with a right brace.

SCREEN SYMBOLS AND FORMAT LINES IN A GLOSSARY

Screen symbols that are displayed on the editing screen of your glossary,
such as the Return and Tab triangles and the Center diamond, are not
recognized as keywords in the glossary entry. You must type the full

Glossary Users Guide 4-6 3187

Writing Glossary Entries

name of the keyword, or use a keyword abbreviation in a string, for that
keyword to become part of the glossary entry. You can use Return, Tab,
Indent, and other screen symbols to format your glossary entry so it is
easier to read on the editing screen.

The format line in a glossary document has no effect when the entry is
recalled in a text document. The quoted strings in the glossary entry
wrap to adjust to the right margin of the text document format line. To
use a glossary entry to change or insert a format line in the text
document, you must make the format line part of the glossary entry.

Entry j is a short entry that inserts an alternate format line in the
text document.

entry j
{

/*inserts alternate format line. Tabs at 8 and 37. Margin at 68. * /
insert

format space(7) tab space(28) tab space(30) return execute
execute

WRITING GLOSSARY ENTRIES

This section shows you how to modify an existing entry created by
example. It also suggests a glossary entry you can write and try. If
you want to understand more about the action of a particular keyword as
you are writing the examples, refer to Appendix D, "Keywords by Usage."

Modifying a Glossary by Example Entry

You can add additional text or functions to an existing entry created by
example by editing the entry in your glossary. You cannot use the
glossary by example feature to change or add to an existing entry created
by example. To add a phrase to entry d (the glossary by example entry
you created in Chapter 3), perform the following steps:

1. Select Glossary Functions from the Main menu.

2. Select Edit Old Glossary.

3. Type gloss and press EXECUTE twice.

3/87 4-7 Glossary Users Guide

Writina GlosslI,., Entries

4. Entry d in your glossary should be similar to the following example.
Text lines may be wrapped differently, depending on the format line
in your glossary. You may also have additional keystrokes in your
entry, depending on how many corrections you made while you were
creating the entry.

entry d
{
center "Fortune Systems Corporation" return center "300 Harbor Boulevard"
return center "Belmont, CA 94002" return
}

5. Put the cursor at the beginning of the entry body (the "c" in the
first "center"), and press INSERT.

6. Type the following line:

"Please send correspondence to:" return(2)

7. Press RETURN, then press EXECUTE. Entry d should now look similar
to the following example:

entry d
{
"Please send correspondence to:" return(2)
center "Fortune Systems Corporation" return center "300 Harbor Boulevard"
return center "Belmont, CA 94002" return
}

The keyword return(2) is used to place two Returns between the line and
the address. Instead of return(2), you could use the keyword
abbreviation for Return. However, because keyword abbreviations do not
take a number argument, you must type the abbreviation twice, as in the
following example.

"Please send correspondence to:\r\r"

Of course, if you only want one return after the line, you can type one
keyword abbreviation in the string:

"Please send correspondence to:\r"

Either method, embedding the abbreviation or typing the keyword outside
the string, is correct. Use the method that seems most natural to you
and accomplishes your purpose most efficiently.

GloSSII,., Users Guide 4-8 3/87

Writing Glossary Entries

Recalling the Entry

Once you have modified the entry, perform the following steps to verify,
attach, and recall it in a document:

1. Press CANCEL.

2. Press EXECUTE.

3. The status message VerifYing is displayed at the bottom of the
screen.

4. When the glossary verifies correctly, the menu from which you edited
the glossary is displayed.

If the glossary does not verify correctly, the verification screen
is displayed. Refer to the "Verifying and Troubleshooting" section
later in this chapter for information on how to correct verification
errors.

5. The glossary is automatically attached when it is successfully
verified. Press CANCEL to return to the Main menu.

6. Edit your text document, learngloss.

7. Position the cursor below any existing text.

8. Press GL, then type d.

9. The new version of entry d is typed in your document.

You can save time by creating glossary by example entries as you perform
your regular typing, then modifying them as necessary. When you add text
to an entry created by example, the 1024 character limit no longer
applies. You can add as much text as you like, up to approximately
33,000 characters.

Writing A Glossary Entry Memorandum Form

If you want to practice before you begin writing your own entries, try
writing entry k in the next example. Entry k is a memorandum form; you
can change any of the headings to match the ones you normally use.

To write entry k, perform the following steps:

1. Select Glossary Functions, then edit your glossary, gloss.

3/87 4-9 Glossary Users Guide

Writing Glossary Entries

2. You can type entry k on the same page as the other entries, or you
can put in a page break and begin entry k on the next page. You can
put as many page breaks as you like in your glossary (up to the 999
document page limit). It is easy to find entries quickly if you
start each entry on a new page; however, you may want to group
several short entries together on one page.

3. Type entry k as shown in the following example, substituting any of
the headings with ones you normally use. The entry is shown with
whole keywords outside the strings. If you prefer, you can use the
appropriate keyword abbreviations instead (refer to the list of
keyword abbreviations in Appendix D).

This entry inserts an alternate format line that sets the right
margin at 65 and a tab stop at 10. Note that the keyword space
takes a number argument; this feature simplifies typing spaces in a
glossary entry.

entry k
{

insert format space(9) tab space(54) return execute(2)
center "MEMORANDUM" return(2)
"DATE:" tab return(2)
"TO:" tab return(2)
"FROM:" tab return(2)
"cc:" tab return(2)
"SUBJECT:" tab return(2)

4. Press CANCEL, then press EXECUTE to verify and attach the glossary.

5. When the Glossary Functions menu is displayed, use the shortcut code
edd to edit your text document, learngloss.

Using the shortcut code edd from the Glossary Functions menu is a
quick way to edit a text document and check the action of a new
glossary entry.

6. When the editing screen is displayed, press GL, then type k to
recall entry k.

7. If you need to modify entry k after you have seen it perform in the
text document, leave the document, edit the glossary, verify it,
then recall it again in your text document. If you are writing a
complicated glossary entry, you may need to go back and forth
between the glossary and the text document several times until you
are satisfied with the entry's performance.

Glossary Users Guide 4-10 3/87

Writing Glossary Entries

Writing Menu Glossary Entries

You can write a glossary entry to perform keystrokes on a menu. However,
neither glossary by example entries nor written entries cross from the
menu to the editing screen, or vice versa. For example, you can write a
glossary entry that creates a document, fills out the Document Summary,
and takes you to the editing screen. The entry stops at that point, even
if there are more keystrokes in the entry. To enter text you must use a
different glossary entry. Both entries can be in the same glossary.

Learning More About Glossary

You have completed the basic exercises showing how to create glossary by
example entries and how to write entries directly in the glossary
document.

The remainder of this chapter provides reference information about
verifying, troubleshooting, attaching, and detaching glossaries.

The "Keywords by Usage" list and the "Keyword Abbreviations" list in
Appendix D are particularly useful. Study these lists carefully before
you begin the next chapter."

If you feel you need to gain a little more understanding of glossary and
how it applies to your word processing tasks, write and use several of
your own entries. You may find that you want to add more functions, or
test for certain conditions. You can learn additional Glossary functions
by gradually incorporating them as you find you need them. You do not
need to learn all of Glossary before you begin to write and use entries.

VERIFYING AND TROUBLESHOOTING

When you write a new glossary entry or modify an existing one, you MUST
verify the glossary before you can use the entry. When verification
occurs, all entries in the glossary are verified (even if you modified
only one entry). Therefore, the amount of time it takes to verify a
glossary depends on the length of individual entries and how many entries
are in the glossary.

The verification process checks your glossary entries for several
possible error conditions. The basic error conditions are:

• Entries without labels

• Duplicated labels within the same glossary

• Entries not beginning andlor ending with a brace

3187 4-11 Glossary UserYs Guide

Writing Glossary Entries

• Keywords misspelled and/or used incorrectly

• Strings not beginning and/or ending with a single or double
quotation mark

• Comment lines not beginning and/or ending with the correct
comment symbols

A list of error messages is provided in Appendix E.

Glossary Verification Options

You have a variety of options available when verifying a glossary. You
can also choose not to verify it if you have edited it just to scan the
contents or look at an entry. All of these options are described below.

Verification Through the End of Edit Options Menu

When you leave a glossary, the End Of Edit Options menu is displayed.
The functions on this menu are the same as for a text document. In
addition, the glossary may be verified and attached, depending on the
selection you choose.

The options on the menu are EXECUTE, RETURN, COPY, DELETE, and
FORMAT. Each option is described below.

NOTE: You can use the Autosave or COMMAND
RETURN functions while you are editing your glossary.
Your changes are saved as you edit; however, entries
are not verified until you leave the glossary and
press EXECUTE.

• EXECUTE: Verification automatically occurs when you press EXECUTE.

Once a glossary has been created and verified, the EXECUTE option
automatically verifies the document. When verification is
successful, the glossary is automatically attached.

You can create a glossary from the Main menu. If you do this, the
EXECUTE option does not automatically verify the glossary. You must
verify it from the Glossary Functions menu or by using the shortcut
code vgl before you can use the entries.

• RETURN: The document is not verified. You are returned to the
glossary editing screen.

Glossary Users Guide 4-12 3/87

Writing Glossary Entries

• COPY: Only the glossary is verified and attached; the copy is not
verified or attached. This option saves the glossary with all
changes, and creates a copy of the glossary that includes only the
editing changes saved by using Autosave or COMMAND RETURN.

• DELETE: The glossary is not verified, but it is attached. Any
changes made during the editing session, except changes that were
saved by using Autosave or COMMAND RETURN, are deleted.

The DELETE option can be useful if you want to look at the glossary
without making any changes. Of course, like a text document, any
changes you make are deleted, so use this option with discretion.

• FORMAT: The glossary is automatically verified, attached, and the
Print Document menu is displayed.

The same End Of Edit options apply when you edit a glossary from the
Document Index; only the FORMAT option works differently. When you use
the FORMAT option from a Document Index screen, a Print Document menu
is not displayed, and the document is sent to the printer using the last
settings on the Print Document menu.

Menu Verification Options

You can verify a glossary two ways without editing it:

• Select VerijJ Glossary from the Glossary Functions menu.

• Use the shortcut code vgl from any menu that accepts shortcut
codes.

Verification Limitations

A glossary cannot be verified in an open document window. If you edit a
glossary entry in a window, you must return to the menu to verify the
glossary. The changes remain in the entry but are not executable until
the glossary is verified. You can work around this by closing all other
windows first. You can then leave the glossary normally and select an
option that automatically verifies it.

A glossary is verified when you edit it from a Document Index screen you
access by using COMMAND i or I from a text document editing screen.
However, the glossary is only attached until you leave the Document Index
screen. You can press GO TO PAGE and edit a different document, using
entries from the glossary. Once you leave the Document Index screen,
that glossary is no longer attached. You may type or edit an entry using

3/87 4-13 Glossary User~s Guide

Writing Glossary Entries

this method, but if you want to use the glossary in the current document,
you must attach it when you return to the text document editing screen
before you can use the new or modified entry.

Correcting Verification Errors

If errors in an entry or entries are detected during the verification
process, the Verification Errors Options menu is displayed:

No. of errors detected :1
Verification errors options

RETURN
DELETE

to editing screen
to original menu

The menu in the example shows that one error was detected in the
glossary. You have two options:

• RETURN: You are returned to the glossary editing screen. Choose
this option to view and correct entry errors.

• DELETE: The glossary is not verified. Any changes made during the
editing session (including the errors) are saved.

If you choose the DELETE option, you cannot access any entries in
the glossary until it is successfully verified. You must eventually
edit the document and correct the errors or delete the incorrect
entry and verify the glossary before you can use the entries.

The verification process places messages about entry errors on the
glossary work page (Page W). To see this information, edit the glossary,
press GO TO PAGE, then type w. The message displayed on the work page
shows the date and time that the verification was performed and lists the
error or errors detected. A sample error message display is shown in the
following example:

Tue Jan 27, 1987 at 20:53:49

page 2 , line 4 : syntax error: ({,

The error message example indicates that the entry on page 2 is probably
missing an opening brace.

Mter you have looked at the work page, you can go to the page and line
number indicated and correct the error or errors.

Glossary Users Guide 4-14 3/87

Writina Gloss/Iry Entries

When you reverify the glossary after making corrections, any new errors
detected are added at the bottom of the work page below existing
messages. You should delete error messages from the work page after you
have corrected the error or errors.

Most glossary entry errors are simple mistakes, like misspelled keywords,
missing braces, or duplicated entry labels. They are usually easy to
spot and correct.

Appendix E provides a complete list of verification error messages and
gives you suggestions for correcting them.

ATTACHING A GLOSSARY

To use an entry in a glossary, you must first attach the glossary. You
can attach a glossary from a menu, from a document editing screen, or
from the Document Index.

You can only attach and use one glossary at a time. For example, if you
are using glossI, and attach gloss2, then glossI is detached and you can
only use gloss2.

Several users can attach and use the same glossary at the same time. For
example, you and your co-worker can both attach and use giossl at the
same time.

You cannot edit an attached glossary that is in use. If you attempt to
edit an attached glossary, the message Document in use is displayed.

You cannot delete, rename, or move a glossary that is attached from an
editing screen or is attached to more than one workstation. Detach the
glossary before using it with these functions.

You can use any of the following methods to attach a glossary:

• Verify the glossary. A glossary is automatically attached after it
is successfully verified.

• Use the Attach Glossary selection on the Glossary Functions menu.

• From a document editing screen, press COMMAND, press GL, then type
the glossary name.

• From any menu, use one of the index shortcut codes.

• From a Document Index screen accessed from the menu system, put the
marker on a glossary name, then press GL. Glossary names are
preceded by two asterisks (**).

3/87 4-15 GlosslI,., Users Guide

Writinll GlosslI" Entries

If you use COMMAND i or I to access a Document Index screen from an
editing screen, and then edit and modify a glossary, you must attach the
glossary again when you return to the editing screen.

DETACHING A GLOSSARY

You can detach an attached glossary by selecting Detach Glossary from
the Glossary Functions menu or by using the shortcut code dgl from any
menu. You may want to detach a glossary from another workstation so you
can make editing changes or perform archiving functions.

When you attach a glossary, you automatically detach any previously
attached glossary.

Figure 4-2 summarizes the glossary entry writing, verifying, attaching,
and recalling procedure.

Glossary document

ClCSSAR'I" RJNCT1ON5 entry a ----- Type entries or Edit Old GloslOl')' -- 101 ---
Create NI. GlolllOl')' -- cOl create entries by Vtlrifygloaory -- 1191 Create entry b
AttachglollllCll')' -- 091 example
Detach glORal')' -- dgl Glossary -------Document

< Verify and Attach)

I Edit text document I
~

Text document

------_ .. ----------------
H ------ Run

entry

Figure 4-2. The Glossary Writing~ Veri.fYing~ Attaching and Recalling
Procedure

Glossllry Users Guide 4-16

I

3/87

Chapter 5

Introduction to Glossary Syntax

While Glossary has a great deal in common with other types of computer
programming, it was specifically designed to manipulate text and data
inside a Fortune:Word text document. When you write a glossary entry,
you are writing a program.

The basic glossary elements you have already learned can be used to type,
create headers and footers, and format your documents. The glossary
functions presented in the rest of this guide greatly expand the range of
possible uses for glossary entries.

WHAT IS GLOSSARY PROGRAMMING?

A glossary entry is a computer program. Your glossary entry is a set of
instructions that tells the computer what to do, how to do it, and in
what order to do it. When you use special glossary reading and writing
functions, interactive functions, string functions, and mathematical
functions, you can write more complicated instructions. Conditional and
control statements permit you to control the order of entry execution.

Glossary is a Programming Language

Entries must be written in a language that the computer understands.
Very much like a spoken language, glossary language has a grammatical
structure called "syntax." It uses declarations called "statements" and
action words (verbs) called "functions."

You may already know a programming language such as BASIC, PASCAL, or
C (the language most frequently used on the UNIX operating system). If
so, the syntax and logic of the Glossary language will be familiar to
you.

The Verification Process Compiles Your Entries

Glossary is a compiled language. During the verification process, your
glossary entry is compiled into a compact form that can be read by the
machine.

3/87 5-1 Glossary Users Guide

Introduction to Glossary Syntax

Most languages must be converted to a machine-readable form by an
interpreter or a compiler. The two methods of compilation described
below are similar in result but different in execution.

• An interpreted language (like some forms of BASIC) is translated
line-by-line as the entry executes. If you made a syntax error in
your entry code, the interpreter stops the entry and reports the
error to you. Usually you have to correct the error before you can
rerun the program.

• A compiled language (like Glossary), waits until you have typed the
entire entry and then compiles it into machine-readable form. Any
errors in the entry are reported to you after it is compiled. The
compiled form is called the object program. The typed form is the
source program. How the object and source programs affect the
glossary is described in Chapter 12, "Glossary Information for
FOR:PRO Users."

The Structure of a Fortune:Word Document

A Fortune:Word document usually consists of three files:

filename

filename.dc

filename.fr

The text of a document

The history, statistics and page pointer information
for the document

The formats, header, footer, work, note, and footnote
pages for the document

This structure is not apparent from Fortune:Word Document Index, which
displays only the base filename of the document. Fortune:Word treats all
three files as one for the purposes of document control. However, for
purposes of using Glossary, it is helpful for you to understand what is
happening "behind the scenes."

When you compile a glossary, a fourth file, the .gl file, is created that
contains the compiled and executable portion of the glossary.

filename.gl The compiled and executable form of a glossary.

See Chapter 12 for more information about the .gl file and Fortune:Word
document file structure.

The glossary compiler reports entry errors to you on Page W of a
glossary. The glossary language has an extensive syntax error list.
Chapter 11, "Administering Glossary Entries," tells you how to

Glossary Users Guide 5-2 3/87

Introduction to Glossary Syntax

troubleshoot (debug) your entries. Appendix E provides a list of error
messages received from the compiler. It also gives you a list of error
messages associated with glossary procedures.

HOW TO LEARN GLOSSARY

You have already learned how to create and use glossary by example
entries, and to write simple entries using entry labels, braces,
keywords, and strings. Chapters 6 through 8 contain the fundamental
knowledge you need to write more sophisticated Glossary entries. While
the information is specific to Fortune:Word Glossary, the principles
apply to most computer languages.

You can read through the information in these chapters to familiarize
yourself with what Glossary can do for you. Do not expect to learn
everything at once. Start simply, creating entries that you use on
regular basis. You will find that gradually you want to do more complex
things with the entries. You may want to check to see if you are at the
end of the document. You may want to include a statement in an entry
that does something specific when a search string is not found. Glossary
can perform many complicated tasks, or it can be used simply and
effectively.

Chapters 9 and 10 give you a detailed description of each Glossary
function. When you want to know what a function does and how to use it,
refer to Chapters 9 and 10. Functions are listed alphabetically and by
usage. Mter you develop a working familiarity with Glossary, you can
use these chapters for reference while you are writing your entries.

When new functions are introduced in entry examples, they are briefly
described in the context of the program. If you would like detailed
information on any function, refer to Chapter 9.

Comment lines are deliberately omitted in some of the entry examples to
give you an opportunity to read and understand an uncommented entry.

All of the examples in this and following chapters are functional
glossary entries you can type and try. Typing and recalling some of the
entries can help you understand how each entry accomplishes its task.

When you type the entries yourself, you become familar with Glossary
syntax. However, you can save typing time by using the entries on the
Glossary Examples Diskette provided with this book. The entries for this
chapter and Chapter 6 are in gloss2a on the Glossary Examples Diskette.

3/87 5-3 Glossary Users Guide

Introduction to Glossary Syntax

OVERVIEW OF GLOSSARY LANGUAGE ELEMENTS

The following list provides a brief description of the elements of the
glossary language presented in Chapters 6 through 8.

Statements

A statement is a declaration of purpose. A Glossary statement may be
either a single keyword or a whole series of words consisting of
variables, keywords, functions, and strings. Statements belonging to
conditional and control statements must be enclosed in braces { }.
Other types of statements do not need braces.

Variables

Variables are names you assign to store alphabetic or numeric strings for
reference and manipulation. The content of a variable is called its
value. The variable name can be almost anything you wish. All variables
that you use in your entry must be declared (given a name) and
initialized (given a value).

Values

Variables and functions that contain values can use those values
throughout the execution of a program. For example, the value of the
word function is the word at the cursor location in the text document.
Mter assigning the value of the word function to a variable, you can
type that word elsewhere in the document by feeding the variable to the
document. Entry a in the "Programming Style" section in this chapter
illustrates this principle.

Logical Values

Logical values of true or false allow you to check for true or false
conditions in the document. For example, you can test for a true or
false cursor condition by using this statement: if(top_page). If the
cursor is at the top of the page, the value is true; if it is not at the
top of the page, the value is false.

Relational, Equality, and Logical Operators

Relational and equality operators, such as > (greater than), = =
(equal to), and >= (greater than or equal to), allow you to compare
two values.

Glossary Users Guide 5-4 3/87

Introduction to Glossary Syntax

Logical operators, such as & (and), I (or), and! (not), allow you to
apply the logic principles of Boolean algebra to glossary entries.

Assignment Operators

The assignment operator = allows you to assign a value to a variable.
Mathematical assignment operators, such as + = or -=, are used to
perform mathematical operations on variables.

Functions, Arguments, and Expressions

The Glossary language has a built-in library of functions that can detect
the location of the cursor, prompt the operator for information, read
text from a document, manipulate strings, call another entry as a
subroutine, and even interact directly with the operating system.

Functions have "arguments" that may contain one or more "expressions."
For example, the function posmsg has an argument in parentheses with
three expressions separated by commas as in call posmsg(2,12, "hello").
This statement puts the word "hello" (expression 3) on the document
editing screen at line 2 (expression 1) and position 12 (expression 2).

Conditional Statement Functions

Conditional statement functions such as if and while allow the glossary
entry to make decisions based on document conditions. For example, the
statement:

if(end-doc) {goto "1" execute exid

tests to see whether or not the cursor is at the end of the document. If
it is, the cursor is sent to page 1 by the following statement:

(goto "1" execute)

The glossary entry ends:

{exit}.

Control Statement Functions

Control statement functions such as call and jump change the order of
statement execution. Using the example for conditional statements, you
could have your entry call another glossary entry (in the same glossary)

3/87 5-5 Glossary Users Guide

Introduction to Glossary Syntax

as a subroutine by writing the statement: if(enLdoc) {go to "I"
execute call a}. Program execution control is transferred to glossary
entry a by the call function.

Labeled Statements (Identifiers)

A word enclosed in brackets and followed by a statement or statements may
become the destination of a jump control statement. For example, the
statement "jump counter" causes the entry to continue execution at the
statement following the identifier [counter].

Braces {}

In addition to beginning and ending an entry, braces are also used to
begin and end bodies of conditional or control statements within the body
of the entry.

Brackets []

Brackets are used to enclose the identifying word for labeled statements.

Parentheses ()

Parentheses enclose arguments and expressions. For example, in the
statement prompt("Enter Date"), the text string "Enter Date" is the
expression and is enclosed in parentheses as the argument to the prompt
function.

String Operations

String functions allow you to perform a variety of operations on strings.
For example, you can select and use specific parts of strings, you can
substitute one part of a string for another, and you can concatenate
(combine) two strings into one string. Strings can be assigned to
variables or they can be used as expressions within function arguments.
Mathematical calculations can be performed on numeric strings.

String functions are used extensively in Records Processing control
glossaries. The Fortune:Word Records Processing Users Guide provides
many examples that use string functions.

Glossary Users Guide 5-6 3/87

Introduction to Glossary Syntax

Mathematical Operations

Mathematical operations, such as addition, subtraction, multiplication,
and division, can be performed on numeric strings.

PROGRAMMING STYLE

Using the Glossary language, you can write long and complex entries.
Long entries are difficult to read unless you follow a specific style or
convention. Glossary is a free-form language. The style you use is not
important as long as your syntax is correct. However, using style
conventions can assist you in writing, understanding, and reviewing your
entries.

Entry a, An Example of Programming Style

The syntax of entry a in the following example is correct, but the
logical execution of the entry is very hard to follow. Also, since the
compiler lists the line an error is on, it becomes difficult to pinpoint
the error when the entry runs together on one or two lines.

entry a (title= word command note go to "w" goto down call
feed(title) go to note}

Formatting helps to clarify the entry. Formatting means using spaces
between the keywords, putting blocks of action on separate lines,
indenting, and adding comments. Entry a is retyped in the following
example. Notice how much easier it is understand the logical action of
the entry when Returns, Tabs, and comments are added.

entry a
{

title = word
command note
goto "w"
goto down
call feed(title)
goto note

/*read the word at the cursor location* /
/*mark the cursor position in the document* /
/*go to the workpage* /
/*go to the bottom of the workpage* /
/*insert the word saved in the variable* /
/*go back to the bookmark cursor position* /

You can use entry a to create a word list on Page W when you are typing
or editing your document. When you have finished editing, you can then
copy the list on Page W into a "word list document" to use with the Index
Generator.

3/87 5-7 Glossary Users Guide

Introduction to Glossary Syntax

In entry a, the word function assigns the word at the cursor location in
the text document to the entry variable title. The location of the
cursor is marked by the keywords command note. The cursor is then sent
to the bottom of Page W, where the value of title is typed by the
statement, call feed(title). The cursor is then sent back to the marked
location in the text document.

The feed function feeds string values into the document as though they
were being typed from the keyboard; call precedes a function when the
function is used as a statement.

All of the functions shown in entry a are described more completely in
the following chapters.

Programming Style Conventions

The style recommended here is the standard C language style that is
adapted to Glossary.

Comments

Descriptive, well-placed comments make complex entries much easier to
understand. Even if you are not familiar with all the functions used in
entry a, you can follow the logical sequence in the entry by reading the
comment lines. Comments can also provide instructions or information for
other people who are using your glossary entries.

Instructional comments at the beginning of an entry can wrap for several
lines. The commented paragraph must start with the symbols /* (slash and
asterisk), and end with the symbols * / (asterisk and slash). When an
explanatory comment following an entry statement requires two lines, use
an Indent symbol to wrap the lines, or begin and end each line with
comment symbols.

Be especially observant about enclosing your comment lines with the
comment symbols. Also, be sure not to accidentally include any entry
statements within the comment symbols. The compiler does not tell you if
a symbol has been omitted and some very unpredictable results may occur
when you recall the entry.

Spaces

Be sure to put spaces between keywords, variables, and functions. You do
not need to put spaces between a function and its argument. It makes no

Glossary Users Guide 5-8 3/87

Introduction to Glossary Syntax

difference to the compiler if you write return (2) instead of return(2).
However, eliminating the space clearly associates the parenthetical
argument with its function, as in feed(title) in entry a.

Indenting

Indenting establishes a visible hierarchy of execution in an entry and
links statements with their functions. It helps you to see exactly where
to place braces for the beginning of the entry and for function bodies.

Entry b is used to "de-center" top-of-page headings throughout a document
and ignore centered headings that occur elsewhere in the document. .The
entry performs recursively by using the labeled statement jump loop to
repeatedly execute its statements until it reaches the end of the
document. See if you can understand the logical action of the entry
before you read the description following the example. Note that
indenting clearly establishes the sequence of entry execution.

entry b
{

[loop]
if(end-doc)
{

exit

goto center
if(top_page)
{

delete execute

}
jump loop

jump loop

In entry b, three large blocks that form the structure of the entry are:

1. The beginning and ending braces around the body of the entry.

2. The [loop] and jump loop block. This loop keeps executing all the
if tests and instructions between [loop] and jump loop until the
first test, if(enLdoc), proves true.

3/87

When the cursor reaches the end of the document, the exit statement
following if(enLdoc) is executed and the entry stops.

5-9 Glossary User's Guide

Introduction to GlossRry SyntRx

3. The braces that surround each if function body. The function body
for the first if test is the single statement exit, which stops the
entry if the cursor is at the end of the document.

The second test, if(top_page), is comprised of the statements delete
execute jump loop, which delete the center symbol if the cursor is
at the top of the page.

Indenting creates steps through your glossary entry. This is helpful
when you write the entry, but more helpful at a later time when you read
it again and try to remember why you wrote it.

Braces

Braces are used to begin and end function bodies. Although it is not
necessary to use braces for only one statement, in the interest of
consistency and good programming practice, it is recommended that you
enclose all function bodies in braces.

Figure 5-1 shows how braces are used with function bodies. The figure
uses the if else function.

This function is described in Chapter 7. Dots (...) represent omitted
statements.

entry 1
{ 1----------- Opening brace begins entry body .

........ 1------- Various statements are executed.

if (. • .) 1------ The conditional statement if is

else

{..

a function. Parentheses enclose
the argument to the function.
(In the case of the if function.
the statements in the function
body are executed if the
expression proves true.)

r-- Braces surround function bodies.

Function bodies contain
statements .

..... 1----------- Closing brace ends entry body.
A 1539

Figure 5-1. Using BrRces to Enclose Function Bodies

GlossRry Users Guide 5-10 3/87

Introduction to Glossary Syntax

SYNTAX

Syntax is the order in which the glossary language must be written. This
chapter tells you about general syntax usage. Chapter 9 gives you the
specific syntax required for each function.

The following entry inserts "Fortune Systems Corporation" in a document.
To work properly, the entry must be written in the correct execution
order, or syntax.

entry c
{

}
insert "Fortune Systems Corporation" execute

To insert a text string, you must first invoke insert mode by pressing
the Insert key. Mter typing the string, press the Execute key to end
the insert mode. You must follow the same sequence when you type
keywords and strings in an entry. The entry would not work correctly if
you wrote it in a different syntax, such as the one shown in entry C.

entry C
{

}
"Fortune Systems Corporation" execute insert

Type both entry c and entry C in a glossary. Recall them in a text
document and analyze the results. Entry C leaves you hanging in Insert
mode because there is no execute keyword following the insert.

Figure 5-2 shows the standard function syntax for arguments and
expressions, using the prompt function as an example. Chapter 6
discusses arguments and expressions.

Another type of syntax structure is shown in Figure 5-3, which
illustrates the syntax for a conditional statement. Conditional
statements are discussed in Chapters 7 and 8.

The specific syntax requirements for functions, conditional statements,
control statements, and parenthetical expressions are explained in the
following chapters.

3/87 5-11 Glossary Users Guide

Introduction to Glossary Syntax

prompt("Enter Date")

1 L. oxp.o,,;on ;, pa" 0' tho a'9,mont; ,oma "nct;on,
may require or accept two or more expressions

Parentheses enclose the argument to the function
A1540

Function

Figure 5-2. The Syntax for Functions) Ar;guments) and Expressions

if (char "a") {delete execute}

t I Braces enclose the function body which may be a statement
or statements

String expression

Equality operator

The function char

Parentheses enclose the argument to the conditional if;
the argument may contain an expression or expressions

The conditional if statement; the entire line, including
the delete execute keywords, is a conditional statement

A1541

Figure 5-3. The Syntax for a Conditional Statement

Glossary Users Guide 5-12 3/87

Chapter 6

Elements of the Glossary Language

This chapter describes the following glossary elements:

• Statements
• Variables
• Values
• Logical Values
• Operators
• Functions, Arguments, and Expressions
• Parentheses

The labeled entries in this chapter are example glossary entries you can
type in a glossary and recall in a text document. As you learn how to
use each language element, try incorporating it into some of your earlier
glossary entries or writing new entries using the examples in this
chapter as guidelines.

If you want to save typing time, all labeled glossary entries in this
chapter are in glossary document gloss2a on the Glossary Examples
Diskette provided with this book. Chapter 13 provides an index of the
entries on the Glossary Examples Diskette.

STATEMENTS

A glossary statement can be a single keyword or a whole series consisting
of keywords, variables, functions, and strings.

Types of Statements

Table 6-1 shows several types of glossary statements.

3/87 6-1 Glossary User's Guide

Elements 'Of the Glossary Language

Table 6-1. Examples of Statement Types

Statement

return
insert "x" execute
cost = 27.32
call prompt("Enter Name")
if(char = = "x") {delete execute}
do {righdwhile(char != "x")
jump loop
[loop] goto "e" execute

Single and Multiple Statements

Type of Statement

Keyword statement
Keyword statements
Assignment statement
Function call statement
Conditional statement
Conditional loop statement
Control statement
Labeled statement

When a conditional function has multiple statements, the multiple
statements must be enclosed in braces { }. A single statement does
not require braces; however, enclosing all statements in braces clearly
identifies the relationship of the statement to the conditional function.

Entry d contains examples of conditional functions with both single and
multiple statements:

• The first conditional if statement, if(globerr) exit, has the
single statement, exit, which is not enclosed in braces.

• The second and third conditional if statements have multiple
statements which are enclosed in braces.

entry d
{

[repeat]
go to indent

if(globerr) exit
right

if(char = = "0")
{

goto indent
jump repeat

if(char != "0")

(entry d continued on next page)

Glossary Users Guide 6-2 3/87

(entry d continued)

insert
"0" indent

execute
jump repeat

Elements of the Glossary Language

Note that entry d assumes the standard bullet format for indented items
to be "Indent 0 Indent", since the lowercase "0" is frequently used for
bullets on impact printers. If you are using a laser printer, you can
substitute the laser printer bullet code for the lowercase "0." Also,
indented items in the text document must begin with a character other
than "0" for the entry to work properly.

The globerr function is used in entry d to perform a graceful exit from
the entry if the statement goto indent does not find an indent. The
globerr function is described in Chapter 8 in the section, "Trapping
Function Errors Using the Globerr Statement."

Statement Execution Order

Statements in a glossary entry are executed in a top-down order,
beginning with the first statement after the opening brace and ending at
the last statement before the dosing brace. As you can see from
entry d, you can modify the execution order of an entry by using
conditional and control statements with if and jump. Chapters 7 and 8
describe how to control the execution sequence of your entries.

VARIABLES

An important feature of Glossary is the ability to store a value and
recall it as a constant or change it as the entry runs. A value may be a
numeric string, an alphabetical string, or a mathematical expression.
The storage location for the value is called a variable.

Declaring and Initializing Variables

Each variable you use must be declared and initialized in your entry by
giving it a name and assigning it an initial value. It is important that
you initialize each variable either to 0 (zero) or to some other value

3/87 6-3 Glossary Users Guide

Elements of the Glossary Language

the first time you use it in your entry. Each time you use the entry, or
at each iteration of an entry loop, the variable is reset to its initial
value.

You can initialize all variables at the beginning of your entry or
immediately prior to their use. Look at the entries in this book for
examples of where variables are initialized.

For example, entry e initializes the variables ourcost to a constant
value of 64.25, markup to 0, and theircost to 0, then uses the keys
function to assign a value to markup. (The keys function pauses the
entry during execution and allows you to enter data from the keyboard.)

The variables ourcost and markup are added, and the result is assigned to
theircost, which is typed in the document. The equal sign (=)
following the variables is an assignment operator; it assigns the value
to the variable. Assignment and other types of operators are described
later in this chapter.

entry e
{

ourcost = 64.25
markup = 0
theircost = 0
markup = keys
theircost = ourcost + markup
call feed(theircost)

Initializing variables to 0 at the beginning of an entry is not strictly
necessary, but it is a good habit to acquire and can be very important
when you use programming languages other than Glossary.

Variable Names

Variable names may have as many characters as you want. Using short
names, however, keeps your entry concise.

The rules for variable names are as follows:

• A variable name cannot be the same as a glossary reserved word.
Glossary reserved words are the names of functions and keywords.
See Appendix A for a list of reserved words and symbols.

Glossary Users Guide 6-4 3/87

Elements of the Glossary Language

• Two-word variable names must be joined by an underbar (_) or a
period (.). Joining two-word variables by a period is a good way to
distinguish them from two-word function names like end-doc or
top_page, which are joined by an underbar. Spaces in any form are
not allowed as part of variable names. When you type the underbar,
type SHIFT/Underline. Do not use MODE "_" (MODE Underline)
to type the underbar.

• The variable name must always begin with an uppercase or lowercase
letter. It cannot begin with a number or other symbol.

• The variable name may consist of any combination of uppercase
and/or lowercase letters and the numbers 1 through 9. The only
symbols that may be used are the underbar (_), the period (.), and
diacritical marks, such as the umlaut (..) or the grave n and
acute n accents.

VALUES

A value may be a string or a mathematical expression. Values are
returned by 'functions or are assigned to and returned by variables. The
word "returned" means that a function reads information specified by the
function and uses that information in the way specified by the glossary
entry. The value can be stored in a variable to be used at a later time
in the glossary, or used to test for a specific condition. Returned
values are not entered directly into the document as text unless you
provide specific instructions in the entry to do so. During entry
execution, you may pass a value to a variable or function, or cause a
current value to be changed.

Functions that return values have a standard value type. For example,
the line function always returns the line number of the current cursor
position in the text document. The date function returns the system time
and date. The unixpipe function returns the standard output of an
operating system command.

Some functions return true or false values. These are called logical
values. The beg_doc function returns a numeric value of 1 (true) if the
cursor is at the beginning of the text document or 0 (false) if it is
not. Logical values are described later in this chapter.

Assigning Values to Variables

When you assign a value to a variable, you must use an assignment
operator. The standard assignment operator is the equal sign. This does
not mean "equal to" but instead means "assign the value on the right-hand
side of the = sign to the variable on the left-hand side of the = sign."

3/87 6-5 Glossary Users Guide

Elements of the Glossllry Lllnllulllle

(The equality operator is two equal signs, == ==, which means "equal
to." Equality operators are described in the "Operators" section of this
chapter.)

The syntax for assigning a value to a variable is shown in Figure 6-1.

It is useful to remember the "right-hand, left-hand" definition.
Mathematical assignment operators (described later in this chapter)
depend on the "right-hand side, left-hand side" assignment principle.

variable value

I I Lme.rc o. lexl string

Assignment operator

Variable name
A15112

Figure 6-1. The Vllrillble Assignment SyntllX

The following are examples of different types of values assigned to
variables. The variable names are arbitrary. You may use whatever names
you choose.

figur<:-no == 0 month == "April" cost == $44.37 month. end == 31

Xl - "2137 A" X2 == 22,370 count == 31 last.year == 86

. The output of a function may also be assigned to a variable. The
following example assigns the output of the date function to the variable
today. (The date function returns the current system date and time.)

today - date

The current value of a variable can be assigned to another variable. For
example:

month. end ... cost figure. number ... count

Rules for Values

• A numeric value is a number string, which may consist of the
numbers 0 through 9 in any combination, the dollar sign, the period,
or the comma. Mathematical calculations may be performed on a
numeric value. A numeric string does not need to be enclosed in
quotation maries.

Glossllry Users Guide 6-6 3/87

Elements of the Glossary Language

• If numeric values containing commas are used as expressions in a
function argument, they must be enclosed in double quotes. This
rule applies to expressions in the form of variables or numbers.

• An alphabetic value is a character string enclosed in double or
single quotation marks, (") or ('). If YOll are embedding keyword
abbreviations or octal numbers in your strings, use double quotation
marks. (The use of octal numbers is described in Appendix C.) The
character string may consist of any combination of letters, numbers,
symbols, or keyword abbreviations.

• Double quotation marks (") within the string must be embedded by
using the keyword abbreviation \q.

• Single quotes (') may be used to enclose strings. However, codes
such as keyword abbreviations or octal representations are
interpreted literally and are typed in the document when single
quotes are used.

• Octal code numbers embedded in strings must be preceded by a
backslash ',\."

• Each keyword abbreviation symbol counts as one character in a
quoted string. The string "\cFortune Systems Corporation\r" has
29 characters even though the abbreviations are translated to a
single screen symbol when the string is recalled in a text document.
This is an important consideration if you are using string
functions. Other considerations in string character counts include
the use of octal numbers and Fortune:Word document control codes.
(Appendix C describes the use of octal numbers and control codes.)

• Mathematical calculations cannot be performed on an alphabetic
string or on alphanumeric combinations. For example, the string
"12th" is considered an alphabetic string, not a numeric string.

LOGICAL VALUES

You can assign logical values to variables using the functions true or
false. Entry f illustrates one way to use logical values.

Entry f is a glossary entry that types a memorandum form. It uses false
as an argument to the display function to turn the editing screen display
off while the form is being typed. The true function turns the display
back on at the conclusion of the entry. Turning the display off during
glossary execution causes the entry to run faster.

3/87 6-7 Glossary Users Guide

Elements of the Glossary Language

entry f
{

call display(false)
"\cMEMORANDUM"

return(2)

I*turn display off* I
I*center heading* I

"DATE: " call feed(date)
return(2)

I*types system date and time* I

"TO: John Brown"
return(2)

"FROM: Helen Smith"
return(2)

"SUBJECT: MEETING ON
WEDNESDAY"

return(2)
call display(true)

I*types memo to line* I

I*types memo from line* I

I*types subject* I

I*turn display on* I

Functions used in entry f are display, call, feed, and date. The display
function always refers to the current display on the document editing
screen. Note that the date function is placed in parentheses as an
argument to the feed function. The value returned by one function can
become the value of another. The call function is a statement that
transfers execution control to another f~nction. A function is only
preceded by call when it is used as a statement.

The true and false functions can be assigned to variables, as shown
below.

today = true yesterday = false

A true value returns the number 1, and a false value returns O. Entry g
is an example that uses true and false functions with a conditional if
statement. The entry is an interactive test that asks a question
requiring a true or false answer.

entry g
{

answer = 0

"GLOSSARY TEST" return(2)
"Enter 1 if your answer is true. Enter 0 if your answer is false."
return(2)
[question1]
"QUESTION 1: A function can return a value." return(2)
"ANSWER: "

(entry g continued on next page)

Glossary Users Guide 6-8 3187

Elements of the Glossary Language

(entry g continued)

call prompt("Enter 1 or 0: ")
answer = keys
call feed(answer)
return(2)
call clrpos(l,50,3l)

if(answer = = true)
{

}

"Correct. Most functions do return values, please refer to
Chapter 9 for a description of the value type returned by each
function." return (2)
exit

if(answer = = false)
{

}

"Incorrect. Most functions return values, please refer to
Chapter 9 for a description of the value type returned by each
function." return(2)
exit

if«answer != true) 1 (answer != false))
{

"The number entered is not 1 or 0, please reenter your answer."
return (2)
jump questionl

The student enters 1 if the answer is true or 0 if the answer is false.
The 1 or 0 is assigned to the variable answer. The value of answer is
checked three times by if statements. If the answer entered is 1 (true),
the "Correct" message is printed. If the answer entered is 0 (false),
the "Incorrect". message is printed. If the student accidentally enters a
number other than 1 or 0, a message is printed and the student is given
another opportunity to answer the question.

Entry g uses the if, prompt, and clrpos functions, the equality operators
= = and !=, and the logical or operator (I). The prompt function
displays a message in the prompt area of the screen. The message is
whatever you type as a quoted string in the argument to prompt. The
clrpos function clears a designated area of the screen. The screen area
is defined by the expressions in the argument to clrpos. Expression 1 is
the line number, expression 2 is the starting position, and expression 3
is the number of characters to be replaced with blanks.

3/87 6-9 Glossary User's Guide

Elements of the Glossary Language

The if function is described in Chapter 7. Equality and logical
operators are described later in this chapter.

Functions That Return True or False Values

Many functions return a numeric value of true (1) or false (0). The
beg_doc function, for example, is true if the cursor is on the first
character in the document and false if it is not. You can use these
values by assigning beg_doc to a variable, as shown in the following
example.

entry h
{

whereindoc = beg_doc
if(whereindoc = = 1)
{

goto "e"

When a function requires a logical interpretation of an argument, any
nonzero value (equal to or greater than 1) is true. A zero value in a
logical interpretation is always false.

OPERATORS

Operators are symbols that assign values, perform math, determine the
relationship of one value to another, assess equality, and designate
logical operations.

Binary and Unary Operators

There are two basic types of operators: binary and unary. Binary
operators require two operands, one to the left of the operator and one
to the right of the operator, as shown in Figure 6-2. Operand means
"that which is operated on," and can be a variable, a function, or an
expression.

Unary operators require only one operand. There are two unary operators,
the logical not (!) and the unary minus (-). Unary operators are placed
to the left of the operand as shown in the following example:

if(!boLpage) t . .}

Glossary Users Guide 6-10 3/87

Elements of the Glossary Language

operand = operand

1
1 Lh' op •• ood

Operator

Left operand
A15J13

Figure 6-2. The SyntRX for Binary Operators

The logical not (!) performs logical negative operations. If the cursor
is not at the bottom of the page, the statements represented by {. . .}
are performed. Normally, the function bot-page is true if the cursor is
on the page break line, and false if it is not. These values are
reversed by the inclusion of the not operator (!); a true value is
returned only if the cursor is not at the bottom of the page.

The unary minus is an operator that takes the negative value of a number,
as shown in entry i:

entry i
{

}

Y = 200
z = 50
x = y * -z
call feed(x)

/*x is assigned a value of -10000*/

The expression y * -z results in the negative value -10000, since the
unary minus before the z converts the initialized value of z (50) to
negative 50 (-50).

Assignment Operator

The assignment operator - is used to assign a value to a variable, a
value to a function, the output of a function to a variable, or the
result of a mathematical operation to a variable or function.

In addition to the standard assignment operator =, there are
mathematical assignment operators you can use. These math operators are
discussed in this chapter in the section "Mathematical Assignment
Operators. "

3/87 6-11 Glossa,., Users Guide

Elements of the GlosslI" Lllnaulljfe

Mathematical Operators

Mathematical operators can be used to perform addition, subtraction,
multiplication, and division in your entries. These operators are shown
below.

Operator

+

*
/
%

plus
minus
multiply
divide
modulo

Function

Addition
Subtraction
Multiplication
Division
Yields remainder of division

Mathematical operations can be performed on numbers and numeric
variables. Numeric variables can store the results of a calculation, as
shown in entries j and k.

entry j
{

balance" $25.20 + $100.00
call feed(balance)

In entry j, the numbers $25.20 and $100.00 are totaled and the result,
$125.2, is placed in the variable balance. You can do subtraction,
multiplication, and division in the same way, as shown in entry k.

entry k
{

top - 190 - 3.2
bottom ... 54 * 2
percent - (top - bottom) / 100
call feed(percent)

A numeric variable can be used anywhere a number can. Consequendy, the
variables top and bottom can be used in a mathematical expression such as
the one shown in entry k. Note that numeric values can appear on either
side of a mathematical operator.

GloSSII" Users Guide 6-12 3/87

Elements of the Glossary Language

Parentheses are used to ensure that the value of bottom is subtracted
from top before division occurs. You can generally follow standard
mathematical principles for parentheses when you write glossary entries
to perform arithmetic. The section "Using Parentheses" in this chapter
provides more information on parenthetical syntax.

The Modulo Operator

The remainder of a division operation can be determined with the modulo %
remainder operator, as shown in this example:

leftover = 10 % 3

The variable leftover contains the value 1, since 10 divided by 3 leaves
1 (the remainder).

Using Mathematical Operators with Variables

Entry 1 is used to number figure illustrations in a document. First, it
searches the text document for the string "= Figure ". The equal sign
is included as part of the search string to specify a case-sensitive
search. When it finds the first "Figure " it inserts the number 1 after
the space following "Figure ". It continues to search the document, and
each time it finds "Figure " it adds 1 to the variable figure-1lo and
inserts the incremented value. If the search fails, the statement
if(globerr) {execute exid causes the entry to end. (The globerr
function is described in Chapter 8.)

entry 1
(

figure-11o = 0

[loop]
search "= Figure " execute

if(globerr)
{execute exit}

cancel
right(7)

figure-11o = figure-11o + 1
insert

call feed(figure-11o)
execute

jump loop

3/87 6-13 Glossary User~s Guide

Elements of the Glossary Language

In entry 1, the value of the variable figure-D.o increased by 1 at each
repeat of the search loop. The syntax for that addition is:

figure-11o = figure-11o + 1

where the current value of the variable is increased by 1, and the
resulting value is assigned to itself.

The math operation is performed on the right side of the assignment
operator using the current value of figure-D.o. If figure-D.o has a value
of 10, the addition of figure-D.o + 1 produces the sum n. This sum is
then assigned to the variable on the left side of the assignment
operator, so figure-D.o has a current value of 11.

The assignment operator allows a variable to perform a mathematical
calculation on itself and reinitialize itself with the result. This is
why you cannot simply say figure-D.o + 1. You must use the assignment
operator =, as in figure-D.o = figure-D.o + 1. You can use
mathematical assignment operators to shortcut the syntax. These
operators are described in the next section, "Mathematical Assignment
Operators."

In entry m, the two uses of the assignment statements to the variable
count 'produce two different results. In the first assignment, count is
declared and initialized to 1. In the second assignment, 1 is added to
the value of count, and the result is assigned to count.

entry m
{

count = 1
[loop]

count = count + 1
call feed(count) return
jump loop

I*count has a value of 1*1

I*count has a value of 2*1

I*count is increased by 1 for each loop
repeat* 1

Entry m is an endless loop. If you use it, the entry continues to write
numbers in your document until you press CANCEL to stop the glossary
entry. Chapter 7 shows you how to use conditional statements to break
endless loops.

Other mathematical operations are shown in entries n, 0 and p. Remember,
the numeric variable must be declared and initialized in the entry before
beginning the math calculation.

Glossary Users Guide 6-14 3187

Elements of the Glossary Language

entry n
{

linenumber = 8
linenumber = linenumber - 3 I*linenumber now has a value of 5* 1
call feed(linenumber)

entry 0

{
cost = 35
markup = 10
cost = cost * markup
call feed(cost)

I*cost now has a value of 350*1

entry p
{

average = 472
average = average 1 16
call feed(average)

I*average now has a value of 29.5*1

Mathematical Assignment Operators

Mathematical assignment operators provide a shortcut for calculation
assignments by performing the calculation and the assignment in one
statement. The mathematical assignment operators are shown in the
following list.

Operator Assignment Function

+= pl~s Addition
-= mlllUS Subtraction
*= multiply Multiplication
1= divide Division
%= modulo Yields remainder of division

In the previous examples, a calculation was performed on a variable and
the result assigned to the variable by using the following syntax:

figure-Ilo = figure-Ilo + 1

Using the mathematical assignment operator + =, the same addition to
figure-D.o is achieved with fewer keystrokes, as shown in this example.

figure-Ilo + = 1

3187 6-15 Glossa" Users Guide

Elements of the Glossary Language

The + = operator adds the value on the right to the value of the
variable on the left, then stores the result in the variable. Examples
using all the mathematical assignment operators are shown below.

entry r
{

silo. storage == 1375000
current. crop .. 478245

silo.storage +.. current. crop
potato. surplus = silo.storage
call feed(potato.surplus)

entry s
{

cost = 24
if(cost == = 24)
{

else
{

}

cost -= 14
call feed(cost)

"The value of cost is not 24"

entry t
{

headcount == 12740
ticket.cost == $15
headcount *== ticket. cost
gate. receipts = headcount
call feed(gate.receipts)

entry u
{

performers == 5
gate. receipts = 191100
gate. receipts 1= performers
divideup == gate. receipts
call feed(divideup)

Glossary Users Guide

I*if the current value of cost is 24* 1

1*14 is subtracted from cost* 1
I*the current value of cost becomes* 1
1*10, and is typed in the document* 1

6-16 3187

entry v
{

volunteers = 17
gate. receipts = 191100
gate. receipts %= volunteers
charity = gate. receipts
call feed(charity)

Elements of the Glossary Language

Remember, when using mathematical operators, the number source for the
calculation is on the right, and the storage destination for the result
is on the left. The current value on the left is changed by the
operation; the value on the right remains the same.

Use the standard assignment operator = when the result of a calculation
on a variable is assigned to another variable. Entry w is an example of
this type of calculation. The variable avgsa1es is multiplied by 12, and
the standard assignment operator is used to assign the result to the
variable forcast.

entry w
{

avgsales = 121,334
forcast = avgsales * 12
call feed(forcast)

When you try this example, note that the comma in the value assigned to
avgsa1es has no effect on the calculation of avgsa1es * 12. The value in
forcast does not contain commas. To place commas, periods, and dollar
signs in function and variable number values, which are then typed in a
document, use the pic function. Entry x uses the pic function to format
the value in forcast with a dollar sign and a comma.

entry x
{

avgsales = 121,334
forcast = avgsales * 12
call feed(pic(forcast, "$,"»

The syntax for the pic function is:

pic(expression 1, "expression2")

3/87 6-17 Glossary Users Guide

Elements of the Glossary Language

The number in expression 1 is formatted with the symbols in expression 2.
The symbols must be in quotation marks. Expression 1 and expression 2
are separated by a comma. Expression 2 can contain one or more of the
following symbols: dollar sign ($), plus sign (+), minus sign (-),
comma (,), period (.).

Refer to Chapter 9 for a complete description of the pic function.

Relational Operators

The relational operators are shown in the following list.

Operator Function

> greater than
< less than
> == greater than or equal to
< == less than or equal to

Relational operators relate one value to another, asking such questions
as:

Is cost greater than saleprice?
Is temp less than 35?
Is total greater than or equal to 12444?
Is char less than or equal to "a"?

You write these questions in your entry by using relational operators in
the syntax shown in Table 6-2.

Table 6-2. Syntax and Examples for Relational Operators

Syntax

VARIABLES AND FUNCTIONS:

variable operator variable
variable operator function
function operator variable
function operator function

Glossary Users Guide

Example

if(cost > saleprice) {...}
while (doc page < page--11o) C..}
do { .. .} while(line > = line.no)
if(number <= (min(el,e2,e3, ...))
C .. }

6-18 3/87

Table 6-2. (continued)

Syntax

STRING EXPRESSIONS:

string operator variable
string operator function
variable operator string
function operator string

Elements of the Glossary Language

Example

if(" A" > letter) {...)
while(22 < number) {...)
if(zipcode >= 94401) {...)
do (...) while(char <= "m")

As illustrated in Table 6-2, tiumbers and letters may be substituted for
the functions and variables on the right side of the operator. Entries
y, z, B, and D give examples using numbers on either side of the
relational operator. The section following the entries tells you about
relational operators and alphabetic strings.

entry y
{

cost = 3366
. if(cost < 3368) {cost + = 50)

call feed(cost) return

entry z
{

x = 1
if(x < 2) {jump z)
[z] "This is a z jump"

Note that entry z jumps to an identifier in brackets [z] and executes the
statements following the identifier. You can use a statement like
entry z in an entry to verify that the entry is doing what you want it to
do at a particular place in its execution.

Identifiers and jump statements are described in more detail in
Chapter 8.

3/87 6-19 Glossary User's Guide

Elements of the Glossary Language

entry B
{

if(page-11o > = 2)
{
insert

"\cFigure " return(10) page
execute
}

entry D
{

if(line <= 12)
{
insert

return(5)
execute
}

None of the function statements enclosed in braces following the if
statement are executed unless the condition specified by the relational
operator is true. Entries Band D use the document reading functions
page-11o and line. The page-11o function reads page number of the cursor
location in the text document during entry execution. The line function
reads the current cursor line number. The page number or line number is
not entered in the document unless you assign it to a variable and feed
it into the document.

Using Relational Operators with Alphabetic Strings

You can use all of the relational operators with alphabetic strings.
Just as Glossary interprets true and false values as 1 and 0, it
interprets alphabetic, numeric, and symbol characters as numbers. Each
character has a number equivalent that can be represented as either an
octal or a hexadecimal number, that corresponds to the position of the
character in the ASCII (American Standard Code for Information
Interchange) collating sequence. Appendix C contains a table of
characters in ASCII collating sequence order.

Since characters can be represented numerically, they can be ranked and
collated numerically. This means you can write a glossary entry that
selects only those strings whose beginning characters collate higher or
lower than a specified character. An example is shown in entry E.

Glossary Users Guide 6-20 3/87

Elements of the Glossary Language

Entry E is deliberately uncommented. Try the entry by typing it in your
glossary and verifying it (or use entry E in gloss2a on the Glossary
Examples Diskette.) Then follow the instructions after the entry.

entry E
{

[loop]
if(encLdoc)

{exit}
command note

if(char >- "a")
(

insert tab(2) execute
down
goto left

lump loop

else
{

}

insert tab execute
goto left
copy

return execute
goto "w"
goto down

execute
goto note
down
goto left
jump loop

Create a text document and type the following list on page 1 of the
document. Begin each word at the left margin and type a RETURN at the
end of every word. Be sure you capitalize the words EXACTLY as shown on
the list.

3/87

Bicycle
gears
tires
handlebars
Pencil
eraser
lead
Computer

6-21 Glossary UserYs Guide

Elements of the Glossary Language

cpu
console
keyboard

Put the cursor on the first character of the first word on the list. Be
sure your glossary is attached, then press the GL key and type your entry
label.

Entry E inserts a tab before each word that begins with an uppercase
letter and copies the word to page W (the workpage). It places two tabs
before each word that begins with a lowercase letter.

Look at the ASCII table in Appendix C, and note that uppercase letters
appear before lowercase letters, meaning that they have a lower numeric
value. This is why the statement if(char > = "a") places a tab before
lowercase letters.

NOTE: Glossary uses the case-sensitive collating
sequence from the operating system. Fortune:Word uses a
case-insensitive ASCII collating sequence (where upper
and lowercase letters are assigned· the same value) for
functions that sort such as Index Generator, Records
Processing, and sort in a document. You can use the
Fortune:Word case-sensitive sort in glossary entries by
using the appropriate keywords to select and sort text.
See the Fortune: Word Reference Guide for information
about sorting in a document.

The functions in entry E are the char, end-doc, and exit functions. The
char function reads the character at the cursor location in the document.
The end-doc function is true if the cursor is at the end of the document,
and false if it is not. When the value is true, the statements (in
braces) to the conditional if are executed. When the value is false, the
exit statement stops the entry immediately. Any statements following the
exit statement are not executed.

Entry E uses page W as a place to store items during entry execution. It
also uses command note and goto note to mark its place in the document
and return to that place. These are valuable features to remember when
you are planning an entry.

When you write an entry like entry E, carefully consider the cursor
position in the document at each step of the entry execution. If you
encounter any bugs during execution, print a copy of the entry. Walk
through the entry by performing the steps from the keyboard. You can
quickly spot places where the cursor is in the wrong place. Walking
through an entry in this fashion is useful when troubleshooting a problem
entry.

Glossary Users Guide 6-22 3/87

Elements of the Glossary Language

Relational Operators and Alpha/Numeric Comparisons

When you use relational operators to compare two numbers, they are
compared according to their numeric value. When you compare a numeric
value and an alphabetic value, they are compared according to their ASCII
collating order.

For example, entry F compares two numeric values (provided the keys entry
is numbers only). The variable buy.price is assigned a value as a result
of a numeric comparison.

Entry G, however, compares a numeric and an alphabetic value. Since the
"I" in "10" has a lower ASCII equivalent than the "J" in "June," the
result is that this.month compares less than month, even though month 10
(October) comes after June.

When performing comparisons, be sure you really want to compare an
alphabetic value to a numeric value. Also remember that the ASCII
collating sequence does not compare numbers in true numeric order. It
ranks the numbers in order according to the first digit. Even if, in
entry G, you change the value of month to 6 (June), to provide an
accurate value comparison, October still considers June (6) to come after
October (10) because the "1" in "10" has a lower ASCII equivalent than 6.

entry F
{

stock = 10.25
today.market = keys

if(today.market < stock)
{
buy. price = today.market
call feed(buy.price)
)

sell.price - today.market
call feed(sell. price)

entry G
{

month = "June"
this.month = 10

if(this.month > month)
{

call feed(this.month)

(entry G continued on next page)

3/87 6-23 Glossary Users Guide

Elements of the Glossary Language

(entry G continued)

}
else
{

call feed(month)

The ASCII collating sequence in Appendix C shows you the hierarchical
ranking order of numbers, letters, and symbols.

Equality Operators

Equality operators determine if the value on the right is equal to or not
equal to the value on the left; = = means "equal to" and != means
"not equal to." Entry H and entry I show examples of equality operators.

entry H
{

grandtotal = 7836
if(grandtotal ... = 7836)
{
insert

"Grand Total"
execute
}

entry I
{

day = 29
if(day != 1)
{

iump x

[x] "This is an x jump"

In entry H, grandtotal must have a value of 7836 before "Grand Total" can
be typed in the document. In entry I, the jump statement is executed if
day has a value other than 1.

Glossary Users Guide 6-24 3/87

Elements of the Glossary Language

Logical Operators

Logical operators perform logical operations on values. The logical
operators are & (logical and), I (logical or), and! (logical not).

At their most basic level in entry execution, logical operators depend on
whether a value is true or false. True is evaluated numerically as 1
(one), and false is evaluated as 0 (zero).

The Logical and (&) Operator

There is only one possible true condition for the & operator:
expressions on either side of the & operator must be true.

Entry J uses the logical & operator in a conditional if statement.

entry J
{

ingredients = 0

call prompt("Enter amount of apples: ")
apples = keys
call clrpos(1,50,31)
"Number of apples: " call feed(apples) return

call prompt("Enter amount of bananas: ")
bananas = keys
call clrpos(1,50,31)
"Number of bananas: " call feed(bananas) return

if«apples = = 6) & (bananas = = 2»
{

ingredients = apples + bananas

else
{

"Not the right amount of fruit for this recipe. You need 6
apples and 2 bananas"
return(2)

fruitsalad = ingredients
"Total apples and bananas in the fruitsalad: " call feed(fruitsalad)
return(2)

3/87 6-25 Glossary User~s Guide

Elements of the Glossary Language

If you typed and recalled entry J, you noticed that you had to enter 6
apples and 2 bananas. Because the logical & linked the two variables
together, you could not enter 8 apples and 2 bananas.

In entry J, the conditional if has one full expression that includes the
logical & operator:

if((apples = = 6) & (bananas = = 2»

and two subexpressions:

(apples = = 6)
(bananas = = 2)

The subexpression (apples = = 6) is only true if its value is 6. The
sub expression (bananas = = 2) is only true if its value is 2.

The full expression «apples = = 6) & (bananas = = 2» is only true
if both sub expressions are true. The statement {ingredients = apples
+ bananas} is only executed if both sub expressions are true. You can
state this logically by saying, "If apples = = 6 and bananas = = 2,
then the expression is true, so execute the following statements (add
apples to bananas and store the result in ingredients)."

Note that the full expression in entry J is contained in one set of
parentheses. The two sub expressions are separated by the & operator and
each have their own set of parentheses. For more information on the use
of parentheses, refer to the section "Using Parentheses" later in this
chapter.

The Logical or (I> Operator

There are three possible true conditions and one false condition for the
I operator.

The three true conditions are as follows:

• Both statements are true

• The statement to the left of the operator is true, the statement to
the right is false

• The statement to the left of the operator is false, the statement
to the right is true

The one false condition is when all statements are false.

Glossary Users Guide 6-26 3/87

Elements of the GloSS/I,., Language

Using the same example that was used for the & operator, you could
construct entry K, substituting the I operator for the & operator.

entry K
{

ingredients = °
call prompt("Enter amount of apples: ")
apples = keys
call clrpos(1,50,31)
"Number of apples: " caL feed(apples) return
call prompt("Enter amount of bananas: ")
bananas = keys
call clrpos(1,50,31)
"Number of bananas: " call feed(bananas) return

if«apples == = 6) I (bananas = = 2))
{

ingredients = apples + bananas

else
{

"Not the right amount of fruit for this recipe. You need 6
apples and 2 bananas"
return(2)

fruitsalad == ingredients
"Total apples and bananas in the fruitsalad: " call feed(fruitsalad)
return(2)

Since (apples = = 6) is true if apples equals 6, and (bananas
= = 2) is true if bananas equals 2, anyone of the following three
conditions is true and executes the statement {ingredients = apples
+ bananas}.

• When apples == = 6 and bananas = = 2, the full expression is
true.

• When apples == == 6 and bananas does not == == 2, the full
expression is true.

• When apples does not = = 6 and bananas = = 2, the full
expression is true.

3/87 6-27 Glossary Users Guide

Elements of the Glossary Language

The only possible false condition where {ingredients = apples +
bananas} is not executed is when apples does not = = 6 and bananas
does not = = 2. In this case the full expression is false, so the
statement in braces is ignored and the entry skips to the next statement.

The logical or is an either/or condition; one or the other may be true,
both may be true, but neither may be false.

If you tried entry 1<., you noticed that you could enter either any number
for apples and a 2 for bananas, any number for bananas and a 6 for
apples, or a 6 for apples and a 2 for bananas, and you received a total.
However, if you entered 5 for apples and 7 for bananas, for example, you
received a zero.

The Logical not (!) Operator

You have already had an introduction to the logical not operator (!) in
the section on unary operators and relational operators. Summarizing
that introduction, logical not (!) requires only one operand on the right
side. It reverses the normal true condition of the function, so that it
returns a value of true only if the function is false. The following
examples show its use:

if(!enLdoc) { .. .}

If the cursor is not at the end of the document, perform the statements
represented by {...}.

if(!top_page) { .. .}

If the cursor is not at the top of the page, perform the statements
represented by {. . .}.

Entries J and K assume you always want bananas in your fruit salad. If
you are indifferent to bananas, you can use entry L, where the
combination of the keys function, the logical or operator (I), and the
equality operator (!=) give you the option of defaulting to bananas or
selecting your choice of fruit.

entry L
{

ingredients = 0
apples = "6 apples "
bananas = "2 bananas "

(entry L continued on next page)

Glossary Users Guide 6-28 3/87

Elements of the GloSS/zry Language

(entry L continued)

call posmsg(20,15,"Entering \qapples\q or \qbananas\q defaults
amount")
call prompt("Enter amount and fruit: ")

fruit = keys
call clrpos(1,50,31)
call clrpos(20,15,46)

if«fruit = = "apples") I (fruit = = "bananas"»
{

ingredients = cat(apples, bananas)
fruitsalad = ingredients
"FRUITSALAD INGREDIENTS: "
call feed(fruitsalad) return(2)

else if«fruit != "apples") I (fruit != "bananas"»
{

ingredients = cat(apples,fruit)
fruitsalad == ingredients
"FRUITSALAD INGREDIENTS: "
call feed(fruitsalad) return(2)

Functions that are new to you in this entry are posmsg and cat. The
syntax for posmsg is:

posmsg(expressionl,expression2,expression3)

The syntax for cat is:

cat(expressionl,expression2)

The posmsg function displays expression 3 at the line and position
specified by expression 1 and expression 2. Expression 3 may be a
numeric or alphabetical string, a variable, or a function that returns a
value. The cat function concatenates (brings together) expressionl and
expression2, providing one continuous string expression.

Tables of Operators

Tables 6-3, 6-4, 6-5, and 6-6 summarize all the operators you can use in
your entries.

3/87 6-29 Glossary Users Guide

Elements of the Glossary Language

Table 6-3. Relational Operators

Operator Definition Syntax Example

< Less than if(total < 2254)
{"debit"}

> Greater if(total > 2254)
than {"credit"}

<= Less than if(cost <= (10)
or equal {cost + = 2}
to

>= Greater if(percent > = 2)
than {jump loop}

Table 6-4. Equality Operators

Operator

==

!=

Definition

Equal to

Not equal
to

Glossary Users Guide

Syntax Example

if(char = = "X")
{insert "XX"
execute}

if(char != "X")
{delete
execute}

6-30

Explanation

If total is less than
2254, type "debit" in
document at cursor
location.

If total is greater than
2254, type "credit" in
document at cursor
location.

If the value of cost is
less than or equal to
10, add 2 to cost.

If the value of percent
is greater than or equal
to 2, jump to [loop].

Explanation

If character at cursor
is equal to X, insert XX
in the document at
cursor location.

If character at cursor
is not equal to X,
delete it.

3/87 I

Elements of the Glossary Language

Table 6-5. Logical Operators

Operator

&

Table 6-6.

Operator

+

*

3/87

Definition

Logical
and

Logical or

Logical
not

Syntax Example

if((month = =
"Feb") & (day
= = 29» {"leap
year"}

if«name = =
"Joe") I (name
=' = "Jane"»
{call feed
(name)}

if(!enLdoc)
{goto "e"}

Mathematical Operators

Definition Syntax Example

Plus inventory = 27
(performs + 114
addition)

Minus stock = inventory
(performs - sales
subtrac-
tion)

Multiply forcast =
(performs avgsales
multipli- * 12
cation)

6-31

Explanation

If the value of month is
Feb, and the value of
day is 29, type "leap
year" in the document at
cursor location.

If the value of name is
Joe or Jane, type Joe or
Jane in the document at
the cursor location.

If the cursor is not at
the end of the document,
go to the end of the
document.

Explanation

Add 27 and 114 and
assign a value of 141 to
inventory (141 is the
sum of 27 and 114).

Subtract the value in
sales from the value in
inventory and assign the
result to stock.

Multiply the value in
avgsales by 12 and
assign the result to
forcast.

Glossary Users Guide

Elements of the Glossary Language

Table 6-6. (continued)

Operator

/

%

+=

-=

*=

/=

%=

Definition

Divide
(performs
division)

Modulo

Addition
assignment
operator

Subtrac-
tion
assignment
operator

Multipli-
cation
assignment
operator

Division
assignment
operator

Modulo
(division
remainder)
assignment
operator

Unary
minus
(takes
negative
number of
operand)

Glossary Users Guide

Syntax Example

avgsales =
sales83 / 12

sales.remainder =
sales83 % 12

personnel + = 4

personnel -= 2

expenses *= 12

expenses /= 12

expenses %= 6

loss = 12 *
-sales

6-32

Explanation

Divide the value in
sales83 by 12 and assign
the result to avgsales.

Divide the value in
sales83 by 12 and assign
the remainder to
sales.remainder.

Add 4 to the value in
personnel and assign the
result to personnel.

Subtract 2 from the
value in personnel and
assign the result to
personnel.

Multiply the value in
expenses by 12 and
assign the result to
expenses.

Divide the value in
expenses by 12 and
assign the result to
expenses.

Divide the value in
expenses by 6, and
assign the remainder to
expenses.

Multiply the negative
value of sales by 12 and
assign the result to
loss.

3/87

Elements of the Glossary Language

FUNCTIONS, ARGUMENTS, AND EXPRESSIONS

Functions

Glossary gives you a library of built-in functions you can use to perform
standard operations in your glossary entries. Chapter 9 provides you
with an alphabetical list of each function, including its use and syntax.
Chapter 10 groups functions by usage and gives function application
examples for each use.

Functions can be used as statements or expressions. When you use a
function as a statement, you must call it from the function library by
using the call function, as shown below.

call prompt("Enter Date")
call feed (avgsales)
call feed(date)

The call function is not required when a function is used as an
expression. In the last example above, the date function is used as an
expression in the argument to feed. Since the feed function is used as a
statement, it must be preceded by call.

Functions Operate on Data

Functions can gather and return data to the glossary entry during its
execution. This data is the value in the function. For example, when
the date function is called in your entry, it reads the system date as
its value.

today == date /*the value of date is set to system date and time
and assigned to today* /

You can store the value of date in a variable (today = date) and use it
elsewhere in your entry.

You can have the value returned to you by calling the feed function to
type the value of date in your document as shown in the example below:

call feed(date)

3/87 6-33 Glossary User~s Guide

Elements of the Glossary Language

Functions Perform Operations

Two functions that perform operations are error and posmsg. The error
function displays a message in the error section of your screen. (The
error section is at the bottom right of the screen. System messages such
as No glossary appear there.) The posmsg function places a message on
the screen at a location you specify.

Arguments

Most functions require arguments. The expressions in parentheses
following the prompt and feed functions are the arguments to those
functions.

call prompt("Enter Date")
call feed(avgsales)
call feed(date)

The argument to prompt is the alphabetic string expression "Enter Date."
The argument to the first feed function is the variable avgsales. The
argument to the second feed function is the date function.

The function date does not require a parenthetical argument. Its
argument is built in because the only function it performs is to return
the system date.

Expressions

Values inside the parenthetical argument are expressions. Some functions
can take several expressions, as in the examples for logical operators
shown earlier. In those examples, the argument to the if function
contains a full expression in parentheses. The full expression has two
sub expressions, each with its own set of parentheses. The example for
logical & is repeated below.

if«apples = == 6) & (bananas = = 2»

Since Glossary allows you to use an expression anywhere a value is
allowed, arguments can contain either mathematical or string expressions.
A mathematical expression using the function max is shown below.

Note that multiple expressions in an argument must be separated by
commas.

highest = max(llO,a + b,227)

Glossary Users Guide 6-34 3/87

Elements of the Glossary Language

The function max evaluates its . list of expressions and returns the
highest number for its value. If the value of a is 85 and the value of b
is 72, what value would max assign to highest? Try writing this example
as an entry. Remember to declare and initialize a and b as variables.

Five different types of expressions are shown in the following example.

call prompt{"Enter Date")
call feed { avgsales)
call feed{date)
call clrpos{22,48,12)
highest = max{llO,a + b,227)

Alphabetical string expression
Variable used as an expression
Function used as an expression
Numeric string expressions
Math calculation as an expression

Some functions require more than one expression in their arguments. The
posmsg function requires three expressions. Multiple expressions in an
argument are separated by commas. Variables or functions can also be
used in most multiple expression arguments. The function descriptions in
Chapter 9 show how many expressions are required for each function.

call posmsg(6,5, "Glossary in Progress")

Expressions With More than One Part

In some functions, the argument takes only one expression, but the
expression is split into parts. The cursor function is one example.

call cursor{"2,10,27")

When the cursor function is called in a glossary entry, the cursor moves
to the page, line, and position numbers that are specified in the string
expression in its argument.

The three numbers separated by commas in the example for the cursor
function are not three separate expressions. They are parts of one
expression that is enclosed in quotes.

Variables cannot be substituted for parts of an expression because each
expression is considered a separate argument to the function. One
variable may serve as the expression. It must contain all parts of the
expression as a quoted string. The variable is not quoted in the
argument to cursor. An example is shown below.

3/87

a "2,10,27"
call cursor{ a)

6-35 Glossary Users Guide

Elements of the Glossfl.ry Lfl.ngufl.ge

Using Expressions with Cursor Movement Keywords

An added benefit of the glossary language is the ability to use
expressions with keywords that take an argument. You can move the cursor
up 12 lines using the following syntax:

up(12)

And you can type the tab symbol in your document four times using the
following syntax:

tab(4)

You can also give an expression to the keyword, and it can be a variable.
For example you can move the cursor up 12 lines using the following
syntax:

moveup = 12
up(moveup)

When you recall the glossary entry, the result is exactly the same as if
you wrote the expression as up(12).

You can use a mathematical expression as an argument for a variable, or
an expression to the keyword, as shown in the examples below:

x = 6 + 4
tab (x)

up(3 * 3)

The examples in this book illustrate some ways you can use this feature.
If you like to experiment, try using expressions with keywords in other
combinations. Keywords that take arguments are identified in Appendix D.

USING PARENTHESES

When more than one expression is part of an argument to a function,
parentheses may be required.

Parentheses and Mathematical Expressions

Using mathematical expressions requires care. Mathematical operators
follow rules of precedence when calculations are performed. Using
parentheses correctly with math expressions helps you avoid calculation
errors.

Glossfl.ry Users Guide 6-36 3/87

Elements of the Glossary Language

A mathematical expression is the combination formed by an operator and
its two operands, as shown in Figure 6-3.

2 + 12

111p.""d 2

Plus operator

Operand 1
A151j1j

Figure 6-3. The Syntax of a Mathematical Expression

The result of a mathematical expression can be assigned to a variable
without parenthesizing the expression:

x = 2 + 12 /*X has a value of 14*/

If you add another expression you need to add parentheses to be sure the
calculations are performed in the correct order.

x = (2 + 12) * 14 /*X has a value of 196*/

Multiplication has a higher precedence order than addition and is
performed first. If the addition expression were not enclosed in
parentheses in the example above, the result would be quite different. In
the example below, 12 and 14 are multiplied first, and then 2 is added to
the result.

x = 2 + 12 * 14 /*X has a value of 170* /

The parentheses ensure that addition is performed first, because the
operation in parentheses has a higher precedence order than
multiplication. Multiplication is performed second, and the result is
assigned to the variable X.

The fully parenthesized form looks like this:

x = «2 + 12) * (14»

Fortunately, this level of parentheses is not necessary because the
glossary compiler knows what you mean by

x = (2 + 12) * 14

3/87 6-37 Glossary UserYs Guide

Elements of the Glossary Language

The precedence for mathematical operators is listed in Table 6-7 in order
from highest to lowest. Operators listed on the same line are equal in
precedence. If the full expression has subexpressions with operators
that are equal in precedence, calculations are performed from left to
right.

Table 6-7. Precedence Order for Mathematical Operators

Operator Definition Order

0 Parentheses First
Unary minus Second

* / % *= /= %= Multiplicative Third
+ - += -- Additive Fourth

Assignment Fifth

Parentheses and Relational and Equality Expressions

The precedence order for relational and equality operators ranks lower
than that of mathematical operators. Relational and equality operators
are of equal precedence. In arguments such as those shown below, you do
not need to enclose the subexpressions in parentheses.

if(a + b < a + c) { .. ,}

if(medflies > fruittrees) { .. ,}

Of course, if you add more complicated math to the first expression, you
need to add the appropriate parentheses around the sub expressions, as in
the example below.

if((a + b) * 4 < (a + c)) {...}

For lists and examples of relational and equality operators, see
Tables 6-3 and 6-4 in this chapter.

Parentheses and Logical Expressions

Logical expressions have a lower precedence order than relational and
equality operators. However, you need to use parentheses with most
logical expressions using the & and I operators because they usually
contain several subexpressions, as shown in the following examples.

Glossary Users Guide 6-38 3/87

Elements of the Glossary Language

Sometimes the syntax of a function requires parentheses around logical
expressions:

if((a + b > a + c) & (d - g < x - y» { .. .J

if((char = = "z") I (char = = "y"» {. . .}

The logical not (!) is a unary operator and is always included within the
parenthetical expression.

if(!end_doc) {...}

if(!top_page) {...}

TROUBLESHOOTING

When you begin to use the Glossary elements presented in this chapter,
you may receive more verification errors than usual, or your entries may
not execute the way you think they should. Some points to help you
troubleshoot your entries are:

• Be sure you have not used a reserved word to name a variable.
Appendix A provides a list of reserved words and symbols.

• If any mathematical operations do not seem to be calculating
correctly, check your logic on a calculator. The compiler checks
for syntax errors, but does not check for logic errors.

• Be sure you have used parentheses properly.

• Logical operators can be tricky to use. If you are not familiar
with the principles of Boolean algebra, refer to a book on the
fundamentals.

• Be sure you have provided the correct number and type of arguments
to a function.

• Remember, the problem is usually something simple like a missing
quotation mark, a missing closing brace, or a misspelled keyword.

3/87 6-39 Glossary User's Guide

6-40

Chapter 7

Conditional Statements

Statements in a glossary entry are always executed from the top to the
bottom unless you change the execution order with a conditional or
control statement.

• Conditional statements such as if, if else, while, and do while
change the execution order by evaluating conditions and making
decisions. The if and if else conditional statements are described
in this chapter. The while and do while conditional statements are
used in examples in this chapter and described in detail in
Chapter 8.

• Control statements such as jump and call transfer execution control
to a different part of the entry or to another entry. The globerr
function allows you to exercise control by setting a trap for
keyword function error conditions. You can gracefully stop an entry
at any point in its execution by using the exit statement. These
statements are described in Chapter 8.

Correct placement of conditional and control statements within an entry
is essential. Write a few entries of your own using these functions.
The glossary compiler notes syntax errors; it does not check your logic.
If an entry does not work the first time, your conditional tests or loop
instructions may be in the wrong place. Shift them around and try again.

The term "conditional statement" means the function, its arguments and
expressions, and the statement or statements that are executed as a
result of the conditional test.

MUltiple statements to conditional functions are always enclosed in
braces. Although you are not required to enclose single statements in
braces, it is useful to help distinguish between conditional statements
and other statements in the entry.

The four conditional functions and their syntax structures are shown
below. The functions are: if, if else, while, and do while.

3/87 7-1 Glossary Use~s Guide

Conditional Statements

if

if(expression)
{

statement or statements

if else

if(expression)
{

statement or statements

else
{

statement or statements

while

while (expression)
{

statement or statements

do while

do
{

statement or statements
}
while (expression)

GENERAL PRINCIPLES FOR USING CONDITIONAL FUNCTIONS

Conditional functions are decision makers. Decisions are based on the
evaluation of three types of conditions:

• Conditions in the text document during execution
• Conditions arising from interactive operator input during execution
• Conditions in the entry during execution

These conditions are described in the following text and shown in
entries a, b, and c.

Glossary Users Guide 7-2 3/87

Conditional Statements

The expressions in the argument to conditional functions specify the
conditions for evaluation. If the expressions evaluate as true, the
statements following the argument are executed. If false, they are
skipped.

Evaluating Conditions in the Text Document

When you use a conditional statement to evaluate document conditions, you
are evaluating the cursor position in the document. You use a "document
reading function" (discussed in Chapter 10) to ask a question about the
cursor location. Is the cursor at the beginning of the document
(beg_doc)? What character is it on (char)? What line number is it on
(line)? What is the vertical spacing of the current format line
(spacing)? What is the exact page, line, and position location of the
cursor in the document (loc)?

All document reading functions return a value that can be assigned to a
variable, evaluated as a conditional expression, or used by a function.

Some document reading functions read number values from the document
status line. The line function, for example, reads the line number of
the current cursor location. Your entry works somewhat like you do;
while you are editing a text document, you can glance at the status line
at the top of the screen and tell which line number the cursor is on.
Some document reading functions use this information when an entry is
executed in the document.

Other document reading functions, such as beg_doc and lefLmargin, test
for true or false. If someone asks you if your cursor is at the
beginning of the document while you are editing, you respond "yes" (true)
if it is and "no" (false) if it is not. The beg_doc function makes this
same evaluation while the entry is executing and responds with a true or
false answer.

You can take another logical step with true/false functions by using the
logical not (!) operator. The statement

while(!encLdoc)
{

counter + = 1
}

increases the variable counter .by 1 as long as the cursor is not at the
end of the document. The logical not operator (!) changes end-doc so
that the function is true if the cursor is not at the end of the
document. Normally, end-doc is true if it is at the end of the document.

3/87 7-3 Glossary User~s Guide

Conditional Statements

Entry a in this chapter uses two conditional if statements to evaluate
document conditions during entry execution.

Evaluating Interactive Operator Input

The interactive functions key, keys, keyin, and keys in allow you to enter
data as the entry is being executed. The entered data can be stored in a
variable, then evaluated and acted upon by a conditional statement.

When you use key and keys, the data is assigned to a variable. If you
also want the data to be typed in the document you can use the feed
function with the key or keys variable as shown in the following entry
fragment.

name = keys
call feed(name)

When you need to evaluate interactive data with a conditional statement,
key and keys are the most direct functions to use.

When you execute an entry that uses the keyin and keysin functions, the
data y<;m type is entered directly into the document and is not stored in
a variable.

The interactive method you choose for your entry depends on the result
you want to achieve.

Entry b in this chapter is an example that uses both methods of
interactive data entry.

Evaluating Conditions in an Entry

Values in variables are usually the internal entry conditions that are
evaluated during execution. As you have seen from several previous
examples in this book, variable values can change as a result of
mathematical calculations, reassignment of string expressions, or other
factors. Your entry can be written to continually evaluate a variable by
using a conditional statement.

For example, entry A types the value of count in the document until count
reaches 80. The variable count is typed and incremented by the do
statement and is continuously evaluated by the conditional while until it
reaches 80. When the variable count reaches 80, the entry stops.

Glossary User>s Guide 7-4 3/87

entry A
{

count = 2
do
{

call feed(count) return
count += 2

while (count < = 80)

Conditional Statements

Entry c in this chapter is an example of evaluating the same variable for
two different entry conditions.

Conditional Statements Can Change Execution Order

Execution order of the entry can be changed by the statements to a
conditional function. Entries a, b, and c in this chapter illustrate
this action.

Evaluating Fortune:Word Screen Symbols

One of the document conditions you may want to evaluate is whether or not
the cursor is on a screen symbol, such as a Return, Tab, or Center
symbol. Asking these questions with a conditional statement involves
using both Fortune:Word document format codes and octal numbers.
Appendix C gives you syntax requirements and examples for this type of
evaluation.

The Conditional If Statement

The syntax for the conditional if statement is as follows:

if(expression)
{

statement or statements

The argument to if may contain various combinations of expressions and
operators, as shown in examples in this book.

Examples of the if statement are shown in entries a, b, and c in this
chapter.

3/87 7-5 Glossary UserYs Guide

Conditional Statements

Using an If Statement to Evaluate Document Conditions

Entry a is an example of if statements that evaluate conditions in the
text document during entry execution. This entry goes to the top of the
next page and inserts format line 2. If there is no next screen (the end
of the document), the entry stops. If the next screen is page 10, it
inserts the string "This page intentionally left blank."

This entry only executes once. If you want to use it to reformat several
pages, you must add a loop. Chapter 8 describes how to rewrite this
entry using a conditional while loop.

entry a
{

goto nextscrn
if(globerr)
{

cancel execute

insert copy format "2" execute execute

if(pagc.11o = = 10)
{

goto south
insert page
return(6)
"\cThis page intentionally left blank\r"
execute

call error("Entry Concluded")
call prompt("Press EXECUTE to continue")
call keyin
call clrpos(1,SO,31)
call clrpos(2S,Sl,28)

Entry a is concluded gracefully by a series of prompts to the operator.
The error message notifies the operator that the entry has concluded, the
prompt message asks the operator to enter a keystroke to continue, the
keyin function allows the operator to enter one keystroke, and the c1rpos
statements clear the error and prompt messages.

Glossary Users Guide 7-6 3/87

Conditional Statements

Evaluating Interactive Input

Entry b is an example of an if test that evaluates conditions arising
from interactive operator input during entry execution. This entry
interactively types an invoice in the text document.

In entry b, the conditional if statement is used to perform a yes/no
branch. The invoice is typed again on a new page if the operator enters
a y or Y in response to the prompt Invoice? Type y or n. A jump
statement is used to repeat the loop and type the invoice again. Jump
statements are described in Chapter 8.

If the operator enters an n or N, the entry stops.

entry b
{

[typeagain]

"\cAMALGAMATED WIDGETS, INC.\r"
"\cINVOICE\r"
"NAME: "
call prompt("Enter Name")
call keysin
return
"ADDRESS: "
call prompt("Enter Address")
call keys in
call clrpos(1,50,31)
return(2)

"Thank you for your patronage. Your balance for widgets and goodies
purchased through June 30 is: " return(2)

tab(2)
"AMOUNT DUE: "
call prompt("Enter Balance")
call keys in
call clrpos(1,50,31)
return(2)
page
goto north

call prompt("Invoice? Type y or n: ")
answer = keys
call clrpos(1,50,31)

(entry b continued on next page)

3/87 7-7 Glossary User's Guide

Conditional Statements

(entry b continued)

if((answer = == "y") I (answer "Y"»
{

}
jump typeagain

if((answer = "n") I (answer == = "N"»
{

exit
}

When you use this entry, note the difference between the keysin function
and the keys function. The keys in function allows the operator to enter
an unlimited number of keystrokes. When all data is entered the operator
must press EXECUTE to restart the entry. The data entered in response to
keys in is typed directly in the document.

NOTE: When you use the keysin function following an
insert, pressing EXECUTE to conclude keysin also ends
the insert. To continue inserting text from the
glossary entry after a keys in, precede the text in the
glossary entry with the keyword insert.

The keys function also allows entry of unlimited keystrokes; however, the
data entered is stored in a variable, and is not typed in the document.
The value of the variable (data entered in response to keys) can then be
compared by a conditional function as illustrated in entry d, or it can
be typed in the document at any point by using the call feed(variable)
statement.

Also note that entry b provides for lowercase or capital letter input by
using the logical or operator (I> in the argument to the conditional
if. The yes/no branch is a convenient device for many applications.
Some of the more common uses are:

• Educational tests requiring yes/no answers

• Queries to repeat a loop

• Decision to call a subroutine (subroutines are described in
Chapter 8)

Glossary Users Guide 7-8 3/87

Conditional Statements

Evaluating Conditions in the Entry

Entry c is an example of an if test that evaluates conditions in the
entry during execution. This entry types the numbers 1 through 50, each
on a separate line. The numbers 1 through 9 are preceded by a zero (0),
as in 01, 02, 03, and so on. When the 50th line is typed, the cursor
goes to the top of the page and the entry concludes.

entry c
{

linenumber = 0

[typenumbers]
linenumber + = 1

if(linenumber < = 9)
{

"0"

if(linenumber > 50)
{

return goto north exit

call feed(linenumber)
return
jump typenumbers

Entry c can be modified for typing line numbers before existing text
lines by adding the keywords insert and execute. This can be very
helpful when typing legal documents that require line numbers. Try
writing another entry to perform this function. You can base it on
entry c and add the appropriate keywords. First, create a text document
and type the required fifty separate lines of text. Second, write the
entry to insert a number before each line. Third, recall the entry and
make sure it works.

Using Flow Charts to Plan Entries

Figure 7-1 shows a typical flow chart used to diagram an entry using the
conditional if statement. Flow charts are a device you can use for
planning your entries. You do not need to be formal with them; just
sketch your ideas on a piece of scratch paper. Use squares for the
action parts of the entry and diamonds for the conditional
decision-making sections. Draw lines to indicate the flow of execution
through the entry. Using flow charts to analyze your logic can make the
actual entry-writing easier.

3/87 7-9 Glossary Users Guide

Conditional Statements

If false If true

(...)

goto "e"

A 151J5

Evaluate expression.

Test expression.

If true, execute
statement.

If false, skip
statement and
continue execution.

Figure 7-1. Flow Chart Using the Conditional if Statement

THE CONDITIONAL IF ELSE STATEMENT

The else statement gives you an alternative statement to use when the
expressions in the argument to if prove false.

As you have seen in the previous examples, if can be used by itself as a
conditional statement. The else, however, is dependent on if and cannot
be used alone.

Although there are two separate statement blocks in the if else structure
(one for if and one for else), it is considered as a single conditional
statement.

The syntax for a conditional if else statement is as follows:

if(expression)
{

statement or statements
}
else
{

statement or statements

Glossary User~s Guide 7-10 3/87

Conditional Statements

The argument to if may contain various combinations of expressions and
operators.

The execution of an if else statement follows this order:

• True Condition: When the if(expression) proves true, the if
{statement} is executed, and the else {statement} is
skipped.

• False Condition: When the if(expression) proves false, the if
{statement} is skipped, and the else {statement} is
executed.

The statements to else are always enclosed in braces. Examples using if
else are shown in entries d and e.

Figure 7-2 shows a sample flow chart for the if else statement.

If false

else
{jump counter}

A1546

Evaluate expression.

Test expression.

If true, execute
statement

If false, skip if
statement and execute
else statement. In
this case, the else
statement is a branch
to the identifier
[counter] and the
remaining statement is
not executed.

Figure 7-2. Flow Chart Using the Conditional if else Statement

3/87 7-11 Glossary Users Guide

Conditional Statements

USING FLAGS IN AN ENTRY

A flag is a symbol you put in a document for a specific purpose. The two
most common purposes are:

• To provide a unique search string for an entry. For example, the
Table of Contents Generator searches for the symbol combination
MERGE NOTE MERGE to extract headings. When you use a flag in a
glossary entry, choose a symbol or symbol combination that is not
used elsewhere in the document. The merge symbol is a convenient
character to use for flags because it is not generally used in a
text document.

• To provide a signal to stop the entry. When a flag is encountered,
the entry stops. This type of flag is typically used with a
conditional statement.

NOTE: Merge symbols are used in Records Processing
List and Format documents, so choose another flag
symbol if you are writing glossaries to perform
operations in these documents.

In entry d, the flag used for figures is < fx, and the flag used for
tables is < tx, which are unlikely combinations to encounter in a
document. To use this entry, the document must be prepared in a specific
way. When the document is first typed, the operator puts a <fx flag
before each figure heading and a <tx before each table heading. A
glossary entry can be used to do this. In case the document contains
other flags that use the Merge symbol, entry d uses an else statement to
ignore a non-flag merge symbol. Entry d could be used in different
documents. When you write an entry like this, it is always a good idea
to provide a trap for other uses of the flag character in the document.

entry d
{

figureno = 0
tableno = 0

[searchloop]

search "<" execute
if(globerr)
{

execute exit

cancel

(entry d continued on next page)

Glossary Users Guide 7-12 3/87

(entry d continued)

right

if«char = =
{

}
else

{

"f") I (char = = "t"))

jump typenumb

jump searchloop

[typenumb]

if(char = = "f")
{

}
else
{

figureno + = 1
goto left delete "x" execute
insert

"'FIGURE "
call feed(figureno)

execute

tableno += 1
goto left delete "x" execute
insert

"TABLE"
call feed(tableno)

execute

jump searchloop

Conditional Statements

Entry d searches for the left-facing merge symbol <. The globerr
function is used to trap a search failure and stop the entry. When the
entry finds a <, it moves one character to the right. If the character
is an "f" or a "t," the entry jumps to the identifier [typenumb],
otherwise it repeats the search by jumping to [searchloop]'

At [typenumb], the character is checked again. If it is an "f," the
variable figureno is incremented by 1, the flag is deleted, and the
string "FIGURE" and the value of figureno are typed in the document.

3/87 7-13 Glossary Users Guide

Conditional Statements

If the character is not an "f," it has to be a "t" because the first if
used the or operator (I) to make sure the character was an "f" or a
"t. "

The else provides the statement to increment the tableno variable, delete
the flag, and type the string and value of tableno in the document.

The final jump statement goes to [searchloop] and starts the search for
the next < symbol.

Considering Entry Runtime

The application performed by entry d could be written more simply as two
separate entries. One would search for <fx, increment the figureno
variable, delete the flag, and type the string and value in the document.
The other entry would perform the same operations for <tx. However,
this method requires two passes through the entire document. The runtime
would be double the runtime for entry d.

NESTING IF AND IF ELSE STATEMENTS

When you nest statements, you put one statement inside another, rather
like putting a series of smaller boxes inside bigger boxes. There are
two ways to type nested if else statements in an entry. Both styles
perform the same way when the entry is executed. Whichever style you
choose, be consistent throughout your entry.

Note that in both styles the else statement to the first if is another
if else statement.

• One statement follows another. The second if else statement is
indented to indicate that it is subordinate to the first statement.

if(expression)
{

statement or statements

else
if(expression)
{

statement or statements

else
{

statement or statements

Glossary Users Guide 7-14 3/87

Conditional Statements

• The following nested statement is called an else if structure. If
it seems to be a clearer way of nesting than the first style, use
it.

if(expression)
{

statement or statements

else if(expression)
{

statement or statements

else
{

statement or stat~ments

Nesting your if else statements helps you write tighter entries with
fewer jump statements. You can nest as many if else statements as you
need for making multiple decisions.

Entry e shows a more concise way to write entry d using nested if else
statements.

Entry d used two if else statements. One checked the character flag and
jumped to [typenumb] or [searchloop]. The second if else at [typenumb]
checked the character again and incremented figureno or tableno,
depending on the character.

Entry e nests its statements using the if else structure. This method
eliminates the jump to the identifier [typenumb].

entry e
{

figureno = 0
tableno = 0

[searchloop]

search "<" execute
if(globerr)
{

execute exit

cancel

(entry e continued on next page)

3/87 7-15 Glossary UserYs Guide

Conditional Statements

(entry e continued)

right
if(char = = "f")
{

figureno + = 1
goto left delete "x" execute
insert

}

"FIGURE "
call feed(figureno)

execute

else if(char = = "t")
{

tableno += 1
goto left delete "x" execute
insert

else

"TABLE"
call feed(tableno)

execute

{
jump searchloop

jump searchloop

Figure 7-3 shows a sample flow chart for nested if else statements.

TROUBLESHOOTING

Remember, when you use a conditional statement to evaluate conditions in
the text document during entry execution, you are evaluating the cursor
location. If your entry is not working properly, check the cursor
location. A good way to check your entry is to edit the glossary, then
create a window for the text document. Attach and run the glossary entry
in the text document window. Using this method, you can look at the
entry and watch it run at the same time.

Glossary Users Guide 7-16 3/87

If false

If false

goto "e"

A151j7

Conditional Statements

Evaluate if expression.

Test expression.

If true, execute
if statement.

If false, skip
if statement and
evaluate else if
expression.

Test expression.

If true, execute
else if statement.

If false, skip
else if statement
and continue
execution.

Figure 7-3. Flow Chart Using Nested if and if else Statements

3/87 7-17 Glossary User~s Guide

7-18

Chapter 8

Control Statements

Conditional statements make decisions in your entries. Based on those
decisions, control statements can transfer execution control to another
part of your glossary entry or to another entry in the same glossary
document.

While frequently used with conditional statements, control statements are
not dependent on them. Execution control can be transferred at any point
in an entry.

Glossary control statements include the following:

call

glossary

jump

exit

globerr

The call function and glossary transfer execution control to subroutines
(glossary is a keyword, not a function; however, it is included here
because it performs as a control statement). The jump function branches
to an identifier within the same entry. The exit function stops the
currently executing entry. While not strictly a control function, the
globerr function allows you to exercise control by setting a trap for
keyword function error conditions.

SUBROUTINES

Subroutines are glossary entries that can be called and used by other
entries. They can be used two ways:

• As dependent entries that can only be used for a specific calling
entry.

3/87 8-1 Glossary User~s Guide

Control Statements

• As independent entries that can be called from several different
entries in the same glossary document. Entries w, X, and y in this
section are examples of independent subroutines. Entries w, x,
and yare used as multiple-choice subroutines for entry f, but they
could also be called by other entries.

Using the Call Statement

The call function transfers execution control to a function or a
subroutine. The syntax for call is as follows:

call function(expression)

call entry label

The call function was used in many previous examples. This section tells
you in more detail how to use the call statement for subroutines.

How to Call a Subroutine

The calling entry specifies the called entry by the entry label following
the call function:

call label

The call statement might look like these examples:

call a call x call B call F

The call statement can only call entries that have alphabetical character
labels with the letters a to z or A to Z. To call entries with numeric
or symbol labels, use the glossary statement. Some examples are:

glossary "1" glossary "@" glossary "9" glossary "$"

Order of Subroutine Execution

When call is used to call another entry as a subroutine, the statements
in the subroutine are executed, then entry execution continues at the
statement immediately after the subroutine call (unless directed
elsewhere by the subroutine).

Figure 8-1 illustrates the flow of statement execution between the
calling entry and the subroutine.

Glossary Users Guide 8-2 3/87

Control Statements

entry a

{
(. ·)
(. · ·)
(. ·)
(. · ·) (. ·)
(. · ·)
(. · ·) call b
(. ·)
(. · ·) (. · ·) (. · ·)
(. ·)

}

entry b

,. {

...... These (. ·) -statements (. . ·)
are executed (. ·)

(. ·)
Control is (. ·)
transferred (. . ·)
to entry b (. ·)

(. ·)
}

Control returns <

to entry a
...... The remaining statements are executed

...... The entry concludes

All of these
statements
are executed

Figure 8-1. Calling a Glossary Subroutine Using the call Function

Examples of the Call Statement

Entry f uses nested if else statements to choose between four alternate
subroutines.

Entry f is a form letter responding to a customer's request for
information. It pauses processing after the second paragraph and prompts
the operator for a choice of dealer addresses.

The typed character is assigned by the keys statement to the variable
dealer. Nested if else statements determine which character was assigned
to dealer and also call the correct subroutine.

NOTE: Chapter 10 shows you how to use the substr
function to change the value returned by date to the
format July 14, 1987.

entry f
{

insert
format space(7) tab space(23) tab space(35) return execute

execute
tab (2) call feed(date)
return(4)
"Dear Customer:" return(2)

(entry f continued on next page)

3/87 8-3 Glossary User's Guide

Control Statements

(entry f continued)

tab "Weare pleased you are considering us as your major supplier of
widgets. Our widgets are the finest in the world. They are available
in 24 vibrant colors and make a variety of sounds at random moments."
return(2)

tab "The Amalgamated Widget dealer in your area is:"
return(2)
indent

call prompt("Choose: w,x,y,z")
dealer = keys
call cirpos(1,50,31)

if(dealer = = "w")
{ call w }

else if(dealer = = "x")
{ call x }

else if(dealer = = "y")
{ call y }

else
{ call z }

return(2)

tab "Again, thank you for your interest. There is no better tool than
a colorful, pleasant-sounding Amalgamated widget."
return(2)

tab(2) "Sincerely yours" return
tab(2) "AMALGAMATED WIDGETS, INC." return(4)
tab(2) "J. Redd Widget, Jr." return
tab(2) "Vice-President, Sales" return

Entries w, x, y, and z are used as subroutines for entry f. Because they
do not contain dependencies on entry f, they may also be called by other
entries in the same glossary.

entry w
{

"GENERAL WIDGETS, Box 123, Chicago, Illinois"
}

Glossary Users Guide 8-4 3/87

Control Statements

entry x
{

"HAND-HELD WIDGETS, Pluto Street, Anaheim, California"

entry y
{

"ALL PURPOSE WIDGETS, Steep Hill Blvd., San Francisco, California"
J

entry z
{

"There is no AMALGAMATED WIDGET dealer in your area. Please
contact our headquarters sales department at the address on this
letterhead. "

Using the Glossary Statement

Using the keyword glossary in an entry is the same as pressing the GL key
from the keyboard. When you run the entry, the prompt Which entry? is
displayed. You can include the entry label in two ways:

• By including the entry label as part of the entry when you write it

• By using the keyin or keysin function as part of the entry. When
you recall the entry, the entry label is entered interactively from
the keyboard while the entry is running.

In both instances, both the calling entry and the called entry must be in
the same glossary document.

You can use the keyword glossary to temporarily transfer control from one
entry to another entry with anyone of the following statements. When
you use the glossary statement, you must always enclose the entry label
in quotes.

3/87

glossary "label"
glossary call keyin
glossary call keysin

8-5 Glossa" Users Guide

C;ontrol StatenJents

entry g
{

"\cMEMORANDUM" return(2)
"TO: " call y return(2)
"FROM: J. Redd Widget, Jr., Vice-President, Sales" return(2)
"SUBJECT: SALES QUOTA" return(2)

"Congratulations on achieving 100 percent over your sales quota last
month. You will be crowned WIDGET KING OF THE MONTH at this
month's Amalgamated Widget Bash."
return(2)

"Last month's sales figures for all regions were:"
return(2)

glossary call keys in

return(2)

"Your sales quota projection for this month is being sent separately."
return(2)

entry 0
{

"$1,500,000.00"

entry P
{ .

"$250.00"

Nesting Subroutine Calls

Subroutine calls can be nested so that entry a calls entry b, which calls
entry c, which calls entry d.

When a subroutine has executed all its statements, it always returns
control to the entry that called it. Execution resumes at the statement
immediately after the call statement.

Entry h gives you an example of nested subroutines. Try it to get an
idea of what the flow is like through the subroutine structure.

3/87 8-7 Glossary User~s Guide

Control StlJtements

entry h
{

"Help! I'm in a maze! Where do 1 go next?" return

call i

"Oh! Safe at last!" return(2)

entry i
{

"Not this way. Maybe there's a door here ... " return

call j

"Great, it's a light at the end of the tunnel!" return

entry j
{

"No door, I'm in a tunnel. Which way now?" return

}
"I think the tunnel is winding up. What's that 1 see?" return

Figure 8-3 illustrates four nested subroutines.

BRANCHING

Execution control can be unconditionally transferred to a different part
of an entry or to another entry in the same glossary. This procedure is
called "branching" because you branch off the main (or trunk) statement
execution line.

Unlike subroutines, branches do not return to their point of departure;
execution continues from the branch.

GlosslJ,., User's Guide 8-8 3/87

START NESTED CALLS

Program begins:
Statement is executed

Entry e transfers
control to entry f

Statements are executed

Entry f concludes and
transfers control to
entry 9

Statements are executed

Entry 9 transfers
control to entry h

Statements are executed

Entry h concludes

{ -r--

}

{ -
~

}

{
'---+
r--

}

{
'---+

}

entry e

(. · ·) call f
(. · ·)

entry f

(. · ·) (. · ·) call g

entry 9

(. · ·) call h
(. · ·)

entry h

(. · ·) (. · ·) (. · ·)

-

~ ---1-

r--
A1550

Control Statements

END NESTED CALLS

Statement after
call f is executed
Program ends

Entry f returns
to entry e

Entry 9 returns
to entry f

Statement after
call h is executed

Entry h returns
to entry 9

Figure 8-3. Nested Subroutine Calls Using the call Function

The Jump Statement

The jump function performs a branch to a labeled statement within the
same entry.

Jumping always unconditionally transfers execution control to a labeled
statement. The jump statement is usually invoked by a conditional
statement, as in the following examples:

3/87

if(!encLdoc)
{

}
jump typemore

(. .)
[typemore]
(...)

8-9 Glossary User's Guide

Control Statements

[goagain]
(...)
if(boLpage)
}

exit

else
{

jump goagain

The jump statement can also be used to perform loops. More information
about looping can be found in the next section, "Looping."

The syntax for the jump statement is as follows:

jump identifier
[identifier]
statement or statements

The jump statement must always have an identifier to jump to. It may be
any word you choose except a reserved word (see Appendix A for a list of
reserved words). The identifier must {ollow the same character
composition rules as variable names. The identifier must always be
enclosed in brackets [].

The statements following the identifier are called labeled statements.

Figure 8-4 illustrates the execution flow for jumps.

entry c
{

(. · ·) These statements
(. · ·) are executed
(. · ·) jump identifier Execution jumps to
(. · ·) [identifier]
(. · ·) (. · ·) _ These statements
(. ·) are not executed
(. ·)
[identifier]
(. · ·) .. These statements
(. ·) are executed

}

~

Figure 8-4. Branching Within the Same Entry Using the jump Statement

Glossary Users Guide 8-10 3/87

Control Statements

Using a Glossary or Call Statement to Branch

Control is temporarily transferred from one entry to another with the
call function or glossary statement. These statements can be used as a
subroutine or function call. Control is returned to the main entry after
a call or glossary statement. If you want the entry to branch, place an
exit statement after the glossary or call statement. When the called
entry returns control to the calling entry, it reads the exit statement
and stops (see Figure 8-5). Another way to branch is to put the call
statement at the end of the main entry (see Figure 8-6).

In Figure 8-5, entry a executes its statements. If the conditional
statement is true, execution resumes at the top of entry b. When control
returns to entry a, the exit statement stops the entry, ending the
branch. If the conditional statement is false, entry b is not executed,
and the statements following the conditional statement are executed.

In Figure 8-6 entry c executes its statements then branches to entry d
using the statement call d. Execution resumes at the top of entry d.
The statements in entry d are executed, and control is returned to
entry c. Since there are no more statements to execute in entry c, the
entry ends.

{

}

entry a

(. · ·) (. · .)
(. · ·) if (expression)
{ glossary nb"

exit
}
(. · ·) (. · ·) (. · ·)

- These
statements
are
executed

~ These
statements
are not
executed
if ex ression P
is true

r---

entry b

{
(. · ·) (. · ·) (. · ·) (. · ·) (. · ·) (. · ·) (. · ·) (. · ·) (. · ·)

}
(. · ·)

Entry a branches to entry b, execution resumes at the top
of entry b. After statements in entry b are executed,
control returns to entry a. The exit function ensures
that any statements which follow "b" statement are
executed.

~

N

All of
these
statements
are executed

Figure 8-5. Branching to Another Entry Using the glossary Statement

3/87 8-11 Glossary User:Js Guide

Control Statements

entry c

{
(0 0 0) ~These
(0 0 0) statements
(0 0 o) are
(0 0 0) executed
call d

}

Entry c branches to entry d.
Program execution control is

n r transferred to e t y d

r+

entry d

{
(0 0
(0 0
(0 0
(0 0
(0 0
(0 0
(0 0
(0 0
(0 0

}

0) -0)
0)
0)
0)
0)
0)
0)
0)

~

~

All of
these
statements
are executed

Execution starts at the top of
entry d and concludes at the
bottom of entry c

(When there are statements in entry c following the call
statement, entry d returns control to entry c and the
remaining statements in entry c are executed.)

Figure 8-6. Branching to Another Entry Using the call Function

LOOPING

When you write an entry without a loop instruction, it executes once
straight through its statements. When you add a loop to an entry, it
repeats itself over and over again. You stop this repetition by the
strategic placement of a conditional expression.

Since many of the previous examples in this book used loops, you probably
have a pretty good idea of what loops can do by now. There are many ways
to use loops. They can count pages or lines in the document for you,
they can increment variables, or they can repeatedly search for a string
in the document. Your specific application dictate when and which types
of loops you need.

Using the Jump Statement for Loops

The jump statement can be used to perform loops by placing an identifier
at the top of the loop and a jump statement at the bottom, specifying the
beginning and end of the loop. When you use jump to perform a loop,
remember there must always be an identifier for the jump statement to
jump to. The identifier marks the place where the loop repeats its
statements. When you forget to put the identifier in your entry, the
glossary compiler reminds you with a verification error.

Glossary Users Guide 8-12 3/87

Control Statements

You must have a conditional statement that breaks the loop somewhere
between the identifier and the jump statement, or the loop repeats itself
indefinitely. The conditional statement may direct entry execution
elsewhere by branching, calling a subroutine, or causing the entry to
stop by using an exit statement. The conditional statement is the
predictable, graceful way to break a loop.

A loop can break itself unpredictably when it encounters an error
condition, such as search not fmding its string, no next screen, or the
cursor at the end of the document. This is not a graceful way to allow
the loop to break because you are not fully controlling the course of
entry execution. The results may be totally unpredictable. You can use
the if or if else conditional statements to break jump loops.

Figure 8-7 shows the entry execution flow when the jump statement is used
to loop.

Before the loop is added

entry a

{
(. · ·) ~ (. · ·) (. · ·) (. · ·) (. · ·) (. · ·) f--
(. · ·) (. · ·) (. · ·) (. · ·) -1

Execution
begins here

All statements
are executed
once

Execution
ends here

After the loop is added

entry b

(. . .)
(. . .)
(. . .)
(. . .)

[identifier]
(. . .)
(...)

if (expr)
{

I-- Statements prior
to the loop only
execute once

I- Loop begins

Body of loop
executes
repeatedly

ex it tl until if(expr)
1 true, then exit

jump identifier l! statement
terminates

A1554

entry

if(expr) is
false, program
jumps to the
identifier and
executes the
statements
between the
identifier and
the jump
statement

Figure 8-7. Using the jump Statement to Perform a Loop

3/87 8-13 Glossary User~s Guide

Control Statements

Examples Using the Jump Statement

Entry k is an example of the jump statement. This entry gives you a good
example of how to use mathematical operators to perform calculations on a
table in a document. (You can also use the Math function to perform
these calculations from your document editing screen, or use a
combination of Math and Glossary by Example.)

To try entry k, first type the following table example in a document. Be
sure to use decimal tabs to enter the numbers, as the entry searches for
a Decimal Tab symbol to begin its calculations. If you do not want to
take the time to type the table, copy it from Page N of gloss2b on the
Glossary Examples Diskette.

Second, type entry k in a glossary document. (Or attach gloss2b and
recall entry k.)

Example for use with entry k:

Part

red widget
green widget
blue widget
orange widget
yellow widget
black widget
white widget
violet widget

TOTAL

AMALGAMATED WIDGETS, INC.

MONTH END SALES STATEMENT

Price
Qty Per Item

400 $25
327 $27
728 $48
120 $17
247 $86
124 $14
867 $14
974 $87

Gross
Sales

Mfg Cost
Per Item

$2
$3
$7
$1
$8
$2
$2
$9

Glossary Users Guide 8-14

Net
Sales

3/87

entry k
{
call finsert(time) return(2)

salesqty = 0
priceper = 0
grossale = 0
mfgcosts = 0
nets ales = 0

[loop]

search decimaltab execute
if(globerr)
{

cancel

execute
return(2) call finsert(time)
exit

salesqty = number
priceper = number
grossale = priceper * salesqty
right
insert

call feed(grossale)
execute
mfgcosts = number
nets ales = grossale - mfgcosts * salesqty
right
insert

call feed(netsales)
execute

jump loop

Control Statements

Entry k performs several calculations on the "Amalgamated Widgets Month
End Sales Statement" table. The same calculations are performed for each
line. First, "Price Per Item" is multiplied by "Quantity," which becomes
the "Gross Sales" amount. Second, "Manufacturing Cost Per Item" is
multiplied by "Quantity" and is subtracted from "Gross Sales." The
result becomes the "Net Sales" amount.

3/87 8-15 Glossary User~s Guide

Control Statements

When the entry is recalled, the first line is calculated and the amounts
entered. The jump loop statement at the end of the entry causes the
entry to resume execution at the search decimaltab statement following
the [loop] identifier. The next line is calculated, and the entry
continues looping until search fails to find another decimaltab. When
this occurs, the if(globerr) statement causes the exit statement to
execute and the entry stops.

Variables are set for each number value required by the calculations.
Note that the variables are declared and initialized outside the [loop]
identifier.

The number and finsert functions are new to you in this entry. The
number function is a document reading function that reads the number at
the cursor location. When number is used, the cursor moves to the space
or character following the number in the document. The number is read if
the cursor is on the number itself or on the screen symbol immediately
preceding it. The finsert function is used to insert the information
provided by a function such as time, or to insert text stored in a
variable. See Chapter 9 for a more detailed description of the finsert
function.

Entry ,1 adds the number formatting function pic, a "Total" branch, and
some finishing touches to entry k.

You were introduced to the pic function in Chapter 6. The syntax for pic
is pic (expressionl,expression2). It formats the number in expression 1
with the symbols in expression 2.

The last statement in entry 1 is call Z. Entry Z is a subroutine in the
next section of this chapter. It is a nice way to finish an entry and
notify the operator of its conclusion.

When you recall entry 1, note that it runs considerably faster than
entry k. The improvement in execution time is caused by the following
changes:

• The addition of the statements call display(false) and call
display(true), which turn the display off at the beginning and on at
the end of the entry. The entry runs faster if the screen display
is not constantly refreshed.

• The replacement of the statement search decimaltab execute ...
cancel with the statement goto decimaltab. This is a more direct
method that eliminates several keystrokes and a screen refresh.

• The replacement of the statements insert call feed ... execute with
the statements call finsert(pic(... ».

Glossary Users Guide 8-16 3/87

entry 1
{

call finsert(time) return(2)
call display(false)

salesqty = 0
priceper = 0
grossale = 0
mfgcosts = 0
nets ales = 0

sales total = 0
grosstotal = 0
nettotal = 0

[loop]

goto decimal tab
if(globerr)
{

}
jump total

salesqty = number
sales total + = salesqty

priceper = number
grossale = priceper * salesqty

grosstotal +.... grossale
right

call finsert(pic(grossale,« $,"»
mfgcosts = number
netsales = grossale - mfgcosts * salesqty

. nettotal + = nets ales
right

call fmsert(pic(netsales, "$,"»

jump loop

[total]

{
command search "TOTAL" execute cancel
goto right
insert

decimaltab call feed(pic(sales total, «,"»
decimaltab
decimal tab call feed(pic(grosstotal,« $,"»

(entry 1 continued on next page)

3/87 8-17

Control Statements

Glossary Users Guide

Control Statements

(entry I continued)

decimaltab
decimaltab call feed(pic(nettotal, "$,"»

execute

return(2)

"Gross sales: "
call feed(pic(grosstotal, "$,"»
" are calculated by multiplying the quantity, "
call feed(pic(salestotal, ","»
", times price per each." return(2)
"Net sales: " call feed(pic(nettotal, "$,"»
" are calculated by multiplying manufacturing cost per each times
quantity, and subtracting the result from gross sales."

return(2)

call display(true)
return(2) call finsert(time)

goto up

call Z

Using While and Do While for Loops

Two very powerful looping functions are the while and the do while
statements. The while and do while statements provide an expedient
method of combining the conditional evaluations performed by if and if
else and the looping functions performed by jump and its identifier.
They accomplish the loop and at the same time provide the conditional
expression for stopping the loop. Both while and do while observe the
general principles of conditional statements that were described in
Chapter 7.

Glossary Users Guide 8-18 3/87

CDntrDI Statements

The main distinction to remember between if and while conditional
statements is that if asks a question before it executes its statements.
The conditional if can branch or use the if else combination to execute
an alternative statement. The while function executes its statements as
long as its condition proves true and has no other alternative. The two
types of conditional statements can be nested together to form
programming combinations. Entry 0 in this chapter is an example of this
combination.

The Conditional While Statement

The syntax for the conditional while statement is as follows:

while (expression)
{

statement or statements

The while function repeatedly executes its statement or statements as
long as its expression remains true. Multiple statements to while are
always enclosed in braces. The argument to while may consist of various
combinations of expressions and operators.

When the expression becomes false, the statement or statements are not
executed, and the program continues after the closing brace in the while
statement.

The condition stated by while (expression) is evaluated before the
execution of the {statement or statements}. The statements to while
are never executed if the condition starts out false. In the following
syntax examples, the statements are executed if the cursor is on the
character "x" (in the first example) or if the line at the cursor
location is less than line 20 (in the second example).

3/87

while (char = = "x")
{

delete execute

while(line < "20")
{

insert
tab

execute
return

8-19 Glossa" Users Guide

Control StRtements

Entries m and n use the while statement to perform conditional loops.
Entry 0 combines entries m and n into one entry.

Entry m is a rewrite of entry a in Chapter 7, which used a conditional if
statement. A loop was also added to entry m by the while statement. To
add a loop to entry a, you would have to use the jump statement. . The
while statement takes care of both requirements, the conditional test and
the loop.

entry m
{

whi1e(page-1lo != 10)
{

insert
copy format "2" execute

execute
goto nextscrn

if(globerr) {exid

insert
return(6)
"\cThis page intentionally left blank\r"

execute

entry n
{

while(page-1lo <= 4)
{

go to down
insert

center call feed(page-1lo) "-Introduction"
execute
goto nextscrn

if(globerr) {exid

Entry 0 combines entries m and n to reformat a document. Note the nested
if statement inside the while statement.

GlossRry Users Guide 8-20 3/87

entry 0

{
while(pageJlo < 10)
{

insert
copy format "2" execute

execute
if(pageJlo <= 4)
{

goto down
insert

Control Statements

center call feed(pageJlo) "-Introduction"
execute

goto nextscrn
if(globerr) {exit}

insert
page return(6)
"\cThis page intentionally left blank\r"

execute

The Conditional Do While Statement

Like the while function, the do while function allows repeated execution
of a statement or statements based on the true condition of its
expression.

The do statement enclosed in braces is executed repeatedly as long as the
value of the expression or expressions in the argument to while remain
true. When the value becomes false, the statement is not executed and
the program continues at the statement following the while (expression).

Since the test of the expressions takes place after each execution of the
do statement, the statement is executed at least once whether or not the
expression to while is true.

The syntax for the do while statement is as follows:

do
{

statement or statements

while(expression)

The argument to while may consist of various combinations of expressions
and operators. Multiple statements to do must be enclosed in braces.

3/87 8-21 Glossary Users Guide

Control Statements

Entry p is an example of the do while statement. It uses a do while
conditional loop to add the "Inventory" column to the "Amalgamated
Widgets Parts List" example which follows entry p.

entry p /*the example for use with this entry is on Page N of gloss2b* /
{

inventory = 0
numbertest = 0

do
{

}

search decimaltab execute cancel
right
numbertest = num(char)

if(numbertest = = 0)
{

insert
call feed(inventory)

execute

inventory + = number

while (numbertest = = 1)

The num function is new to you in this entry. It is true if the value of
its expression is a number. If the expression is not a number, nUID is
false.

When you type the "Parts List" in your text document, be sure to use
Decimal Tabs with the numbers, and place a Decimal tab and a Return
following "TOTAL" in the text document. (This example is on Page N of
the glossary document gloss2b on the Glossary Examples Diskette.) When
you recall entry p, the column is added and the total entered.

Glossary Users Guide 8-22 3/87

Control Statements

Example for use with entry p:

AMALGAMATED WIDGETS, INC.

PARTS LIST

Part Description

red widget
green widget
blue widget
orange widget
yellow widget
black widget
white widget
violet widget

TOTAL

June 30
Inventory

20
40
69
17
34
34
56
72

Entry q is provided as a contrasting example to entry p. It performs
exactly the same column addition as entry p, using the jump, if, and
glob err functions. Note that this entry searches for TOTAL after the
column is added and inserts the Decimal Tab and the value of the variable
inventory. If a Decimal Tab follows TOTAL, the cursor moves past TOTAL,
and the total is not entered in the document. (Entry p requires an
existing Decimal Tab following TOTAL.)

entry q
{

inventory = 0

[loop]
search decimaltab execute

if(globerr)
{

execute
search "TOTAL" execute

if(globerr)
{

execute
exit

(entry q continued on next page)

3/87 8-23 Glossary Use~s Guide

Control Sta.tements

(entry q continued)

cancel
goto right
insert

decimaltab call feed(inventory)
execute exit

cancel

inventory + = number

jump loop

These two examples illustrate that there is no absolutely correct way to
write a program; many methods work and work well. They also illustrate
the importance of setting up the correct format in your document so that
the entry runs correctly. In entry p, the presence of the Decimal Tab
following TOTAL is essential for correct program execution. In entry q
the Decimal Tab following TOTAL prevents correct program execution.
Use the method that is easiest and most comfortable for you.

Points to Remember About Loops

Important points to consider when you construct entry loops are listed
below:

• A loop keeps looping unless it is stoped at some point by a
conditional expression. The globerr function is frequently used to
break a loop (globerr is covered later in this chapter).

• Variables must always be declared and initialized outside the loop,
or their value is reinitialized each time the loop repeats.

• Subroutines can be nested to perform counting or calculation loops
on variables in the calling entry. Be sure the variables that a
subroutine uses are declared and initialized in the calling entry
outside of any loops.

• A do while loop always executes its statement at least once.

• A while loop never executes its statement if the condition starts
out false.

Glossa.ry Users Guide 8-24 3/87

Control Statements

• The call and glossary statements can be used to make an entry
recall itself. When call and glossary are used to perform loops,
execution always begins at the statement immediately following the
entry label. Any variables are reinitialized at the next repeat of
the loop. It is generally better to use while, do while, and jump
statements to loop.

• When you write entries using loops, first write the entry without
the loop. Recall the entry in a text document and be sure the first
iteration works. Then add the loop to the entry. A runaway loop
can trample through your document, perhaps causing some damage on
the way. It is always a good idea to make a copy of your document
to use for testing new glossary entries. If the entry works
properly in the copy, you can make it available for general use.

STOPPING ENTRY RECALL USING THE EXIT STATEMENT

An entry ends when all its statements have been executed. When you want
an entry to stop before all statements have been executed, use an exit
statement.

The exit statement makes an entry cease execution. When the exit
statement is encountered during the entry, execution stops immediately.
Statements following the exit statement are not performed.

When you use an exit statement in a subroutine, it pertains only to the
subroutine. It ONLY stops execution of the subroutine. The entry that
called the subroutine continues at the statement immediately following
the subroutine call.

Gracefully Stopping an Entry

When an entry is running, a graceful way to conclude it is to include
screen messages that notify the operator that the entry is finished.
Entry Z is a short subroutine that can be called by any entry in your
glossary. Modify it to your taste or use it as is.

Notice that the prompts follow standard Fortune:Word message conventions
(such as Press EXECUTE to continue). This is a principle to keep in
mind when you are designing entries. People become used to pressing keys
automatically at certain times (most of the time without looking at the
prompts). If you deviate from standard practice, do so with good reason,
and make sure your glossary users understand which keys to press and
when.

3/87 8-25 Glossary Users Guide

Control Statements

entry Z
{

call error("Entry concluded")
call prompt("Press EXECUTE to continue")
call keyin
call clrpos(1,SO,31)
call clrpos(2S,Sl,28)
exit

In entry Z, the keyin function allows the operator to enter one
keystroke. Although the prompt calls for EXECUTE to be entered, any key
works.

TRAPPING FUNCTION ERRORS USING THE GLOBERR STATEMENT

There are several Fortune:Word functions that search for characters or
symbols as part of their function. This type of function sounds a beep
when it fails to find the specified object of its search. For example, a
beep sounds when a GO TO PAGE function (like GO TO PAGE INDENT,
or GO TO PAGE CENTER) does not find the specified symbol. The beep
sounds when the search function fails to find its specified string.
NEXTSCRN and PREVSCRN beep if there is no next or previous screen.

As you have seen from previous examples, you can use the globerr function
as part of a conditional statement to trap the failure of a Fortune:Word
Search function and exit the entry, jump to a branch of the entry, or
call a subroutine. The globerr function is particularly valuable for
breaking any type of search loop.

The globerr function can return its value to a variable, a conditional
statement, or a function. The value returned by glob err is 1 if true and ° if false. The initial value is false; globerr returns a value of true
if a preceding glossary operation resulted in an error condition that
caused a beep. The value of globerr is reset to false after it is used.

TIMING YOUR ENTRIES

Entry I in this chapter showed you several ways to increase the response
time of a glossary entry. If you want to evaluate glossary execution
time for comparison or scheduling purposes, you can use the time function
to include a time stamp statement in your entry. Entries K and L show
use the time function to determine the difference in execution time
between the feed and finsert functions. The system time is inserted at

Glossary User>s Guide 8-26 3/87

Control Statements

the beginning and end of each entry as part of the text displayed on the
screen. You can compare the two figures to determine how long it took to
run each entry. Both entries insert the same paragraph of text.

entry K
{

call feed(time)

rcturn(2)

call feed("While creating or editing a document, you can automatically
save the document every time a preset number of keystrokes is reached.
Pressing STOP prompts you to enter the desired number of keystrokes
allowed before the document is written to the system disk. The default
number of keystrokes is 1024. You can also press COpy before entering
the number of keystrokes to save a copy of the document before making
any further editing changes.")

return(2)

call feed(time) return(2)

entry L
{

call finsert(time)

return(2)

call finsert("While creating or editing a document, you can
automatically save the document every time a preset number of
keystrokes is reached. Pressing STOP prompts you to enter the desired
number of keystrokes allowed before the document is written to the
system disk. The default number of keystrokes is 1024. You can also
press COpy before entering the number of keystrokes to save a copy of
the document before making any further editing changes.")

return(2)

call finsert(time) return(2)

Depending on your system configuration and load, entry K takes
approximately five seconds longer to execute than entry L.

3/87 8-27 Glossary User)s Guide

8-28

Chapter 9

Function Description List

This chapter contains an a Iphabetical reference list of all the functions
in the Glossary language. Use it as you would a dictionary to look up a
function. Each function entry includes:

• A description of the function
• The type of value returned by the function
• Permissible syntax statements for the function

Some examples are provided in this chapter to help clarify the nature of
the function. For additional examples, refer to the other chapters and
appendices -of this guide.

Chapter 10 provides a compendium of functions by usage. Examples are
provided for each usage group.

HOW TO USE THE ALPHABETICAL LIST OF FUNCTIONS

Functions are listed alphabetically by name. Information about the
function is arranged in the format shown in Figure 9-1, using the beg_doc
function as an example.

The following list provides a detailed description of the format shown in
Figure 9-1.

Function:

Type:

3/87

Functions are listed in alphabetical order by name.

The type of function is shown. Refer to the usage list of
functions in Chapter 10 for more information. The beg_doc
function is a document reading function, so you know that
it returns information from the text document as its
value.

9-1 Glossary Users Guide

Function Description List

Type: document reading

Value: 1 if true, 0 if false

Syntax: conditional function (beg_doc)
conditional function (lbeg_doc)
variable = beg_doc
call function (beg_doc)

The beg_doc function returns a value of true if the cursor is on
the first character of the document. Otherwise, it returns a
value of false.

~--~<

Figure 9-1. Example of Function Information Format

Value:

Syntax:

This is the type of value returned by the function. In
the case of beg_doc, the function returns a numeric value;
it returns a number 1 if true (the cursor is at the
beginning of the document) or a 0 (zero) if false (the
cursor is not at the beginning of the document). Other
types of functions return alphabetic or numeric string
values.

These are possible and permissible ways of using the
function. Most functions can be used in a variety of
statements; some are restricted to only one or two. The
beg_doc function can be used as an expression to a
conditional if or while. It can have its value assigned
to a variable, or it can be used by another function, such
as status or error.

The syntax combinations shown may not represent all
possible combinations for the function. For example, if
the syntax is shown as "conditional function(position
operator expression)," you can just as easily reverse the
expressions to have "conditional function(expression
operator position)." Experiment with other combinations
than those shown.

Glossary Users Guide 9-2 3/87

Function Description List

Description: This paragraph describes what the function does and how it
performs. The values required for each expression in the
argument are listed and explained. Brief examples are
used when appropriate to clarify the action of the
function. This descriptive paragraph is similar to a
dictionary definition. Refer to the "Function Usage List"
in Chapter 10 and in other chapters and appendices in this
book for more detailed information about a function.

TEXT CONVENTIONS USED IN THIS CHAPTER

In syntax examples, expressions may be shown as

function(expression1,expression2,expression3)

or as

function(e1,e2,e3,e4,e5)

Three dots following the last expression in an argument mean more
expressions are allowed, as in this example:

function(expression1,expression2, ...)

In some diagrams and figures, omitted entry statements are represented by
(...).

GENERAL RULES FOR USING FUNCTIONS

• Functions that return values can be used anywhere an expression can
be used, as shown in the following syntax examples:

variable = function
conditional function(function operator expression)
call function(function)

• Functions that return values of true or false can be used anywhere
an expression can be used. Returned values are always 1 if true or
o if false.

• When a function is used as a statement, it must be preceded by the
call function.

• The argument to a function is always enclosed in parentheses.

3/87 9-3 Glossllry User's Guide

Function Description List

• Unless otherwise stated, an expression to a function can be a
string expression, a variable, a mathematical expression, or a
function.

• Multiple expressions within a function argument are separated by
commas unless otherwise stated in the function description.
(Expressions to conditional functions are treated differently. See
the syntax descriptions for if, if else, while, and do while.)

LIST OF FUNCTIONS THAT REQUIRE ARGUMENTS

abs(expression)
cat(expressionl,expression2)
clrpos (expressionl, expression2, expression3)
cursor("expression")
display(expression)
do while(expression)
error(expression)
feed(expressionl,expression2*)
finsert(expression)
if(expression)
if(expression)dse
index(expressionl,expression2,expression3*)
len(expression)
max(expressionl,expression2, ...)
min(expressionl,expression2, ...)
num(expression)
occur(expressionl,expression2)
pic(expressionl,expression2)
posmsg(expressionl,expression2,expression3)
prompt(expression)
round(expressionl,expression2)
seg(expressionl,expression2,expression3,expression4*)
status (expression)
sub(expressionl,expression2,expression3,expression4,expression5)
substr(expressionl,expression2,expression3*)
text("expressionl,expression2")
truncate(expressionl,expression2)
unixfun("expression")
unixpipe("expressionl,expression2")
while (expression)

* The numbered expression marked by an * is optional in the argument.

Glossary Users Guide 9-4 3/87

Function Description List

ALPHABETICAL LIST OF FUNCTIONS

abs

Type:

Value:

Syntax:

mathematical

absolute value of a number

variable = abs(expression)
conditional function(abs(expression) operator expression)
call function(abs (expression»

The abs function provides the absolute or positive value of the
expression. The value in the expression must be a number. It may
contain a leading dollar sign, commas, a decimal point, and/or leading or
trailing minus or plus signs. It may not contain any alphabetic
characters or other symbols.

Type:

Value:

Syntax:

document reading

1 if true, 0 if false

conditional function(beg_doc)
conditional function (!beg_doc)
variable = beg_doc
call function(beg_doc)

The beg_doc function is true if the cursor is on the first character of
the document. Otherwise, it is false. When it is preceded by the
logical not operator (!), the combination !beg_doc is true only if
beg_doc is NOT on the first character of the document. The beg_doc
function treats all of the following as characters: screen symbols,
characters from alternate character sets, spaces, alphabetic characters,
numeric characters.

boLpage

Type:

Value:

Syntax:

3/87

document reading

1 if true, 0 if false

conditional function(bot-page)
conditional function(!bot-page)
variable = bot-page
call function(bot_page)

9-5 Glossary User's Guide

Function Description List

The bot-page function is true if the cursor is on an optional page break,
a required page break, or the end of document line. Otherwise, it is
false. When it is preceded by the logical not operator (!), the
combination !bot-page is true only if bot-page is NOT on a page break.
An optional or required column break is not considered to be a page
break.

call

Type:

Value:

Syntax:

control

call does not return a value

call function(expression)
call label

The call function is a statement that transfers execution control to a
built-in function. A function is only preceded by call when it is used
as a statement. The call statement is not required when a function is
used as an expression. When a function is called, the function is
executed. Control then returns to the statement immediately following
the function call.

The call function is also used to transfer execution control to another
entry in the same glossary. When call is used to call another entry as a
subroutine, the statements in the subroutine are executed, then entry
execution continues at the statement immediately after the subroutine
call (unless directed elsewhere by the subroutine).

cat

Type:

Value:

Syntax:

string

a continuous string expression that results from the
concatenation of expressionl and expression2

variable = cat(expressionl,expression2)
conditional function(cat(el,e2) operator expression)
call function(cat(el,e2»

The cat function concatenates (brings together) expressionl and
expression2 and provides one continuous string expression.

Glossary User~s Guide 9-6 3/87

char

Type:

Value:

Syntax:

Function Description List

document reading

character at cursor location

variable = char
conditional function(char operator expression)
call function(char)

The char function reads the character at the cursor position. You can
use this function to test for a specific character, or to pass the
character found at the cursor position to a variable. When the character
is read, the cursor position does not change.

clrpos

Type: display

Value: clrpos does not return a value

Syntax: call clrpos(expressionl,expression2,expression3)

The clrpos function displays the number of blank characters specified by
expression3 at the line specified by expression 1 and the character
position specified by expression2. You can only clear lines 1 through 25
and positions 1 through 80. Messages that extend beyond position 80 or
line 25 result in screen display anomalies. The blanks displayed by
clrpos can be cleared at the end of glossary execution by pressing CANCEL
and RETURN, CANCEL and EXECUTE, or CTRL/w. The c1rpos function
is a temporary display. It does not replace characters in the document.

cursor

Type: display

Value: cursor does not return a value

Syntax: call cursor(expression)

3/87 9-7 Glossary User~s Guide

Function Description List

The cursor function moves the cursor to the location in the document
specified by the expression. If the expression contains the string value
"3,9,12," the cursor moves to page 3, line 9, position 12. If the screen
position is not an open area of the screen, the cursor moves as close as
possible to the location specified. The page designation may be a
numbered page, or the header, footer, work, note, or footnote pages. The
expression in the argument to cursor may be a quoted string in the form
"page, line, position," or it may be a single unquoted variable whose
value is the quoted string expression. The cursor function only works
correctly in the leftmost column of a document with a multiple-column
format line.

date

Type:

Value:

Syntax:

operating system access

the current system date and time

variable = date
conditional function(date operator expression)
call function (date)

The date function returns the current system date and time in the form
"Fri May 1 09:40:00 1987."

display

Type: display

Value: display does not return a value

Syntax: call display(expression)

The display function turns the display on if the value of the expression
is true (non-zero) and off if the value is false (zero). The syntax to
turn the display off is call display(false). To turn the display on the
syntax is call display(true). A glossary entry runs faster when the
screen display is turned off.

Glossary Users Guide 9-8 3/87

do while

Type:

Value:

Syntax:

Function Description List

conditional

do while does not return a value

do
{

statement or statements
}
while(expression)

(expression) may consist of various combinations of expressions
and operators:

while (expression operator expression)

As long as proper parenthetical syntax is followed, the
argument to while may contain a theoretically unlimited number
of expressions and operators.

{Multiple statements} to do must be enclosed in braces.

The do while function allows repeated execution of a statement or
statements based on true or false conditions. The true or false
conditions are specified by the expressions in the argument to while.
The do statements enclosed in braces are executed repeatedly as long as
the value of the expression in the argument to while remains true. When
the value becomes false, the do statements are not executed, and the
entry continues after the while argument. Since the test of the
expressions takes place after each execution of the do statements, the
statements are executed at least once whether or not the argument to
while is true.

Type:

Value:

Syntax:

3/87

document reading

1 if true, 0 if false

conditional function(enLdoc)
conditional function(!enLdoc)
variable == enLdoc
call function(enLdoc)

9-9 Glossary Users Guide

Function Description List

The enrl-doc function is true if the cursor is on the end of document
line. Otherwise, it is false. When it is preceded by the logical not
operator (!), the combination !enrl-doc is true only if enrl-doc is not on
the end of document line.

error

Type: display

Value: string

Syntax: call error(expression)

The error function displays the value of expression in the error section
of the screen (line 25, character locations 51 to 79). The error section
of the screen automatically displays any text as bold. The error display
is accompanied by a beep. The length of the error string cannot exceed
29 characters. Strings longer than 29 characters result in screen
display anomalies. The error message can be cleared with the clrpos
function, by pressing CTRL/w, by including the CTRL/w statement "\027"
in the entry (the octal representation for CTRL/w), or by invoking an
editing function, such as insert or delete.

exit

Type: control

Value: exit does not return a value

Syntax: exit

The exit statement makes an entry cease execution. When the exit
statement is encountered in the entry, execution immediately stops and
statements following the exit statement are not performed. The exit
statement in a subroutine pertains only to the subroutine. It causes the
subroutine to stop execution. The entry that called the subroutine
continues at the statement immediately following the subroutine call.

Glossary Users Guide 9-10 3/87

false

Type:

Value:

Syntax:

Function Description List

logical

provides a numeric value of 0

variable = false
conditional function(expression operator false)
call function(false)

The false function is used to provide a false value for a variable or a
function. It can also serve as an expression in a conditional statement.
The false function always is zero.

feed

Type: document writing

Value: feed does not return a value

Syntax: call feed(expressionl,expression2)

The feed function types the value in expressionl as if it came from the
keyboard. Expression2 is optional. If it is included, the value in
expressionl is typed the number of times specified by expression2. The
typed characters from expressionl remain as part of the document text.
The feed function does not insert, and it overwrites existing text if the
cursor is not in a blank area of the screen. To insert, nest a call feed
{ .. .} statement in an insert mode as follows:

insert call feed (expression) execute

If you use feed in an entry for Forms Processing, be sure the characters
you feed correspond to the type of the field in the form template
document and that the field length is not exceeded.

finsert

Type: document writing

Value: finsert does not return a value

Syntax: call finsert(expression)

The finsert function inserts the contents of the expression into a
document at the cursor location. The finsert function must be used when
a returned value contains screen symbols such as a RETURN, TAB, INDENT,

3/87 9-11 Glossary Users Guide

Function Description List

or CENTER. These symbols are displayed in the document as symbols;
however, they are read as Fortune: Word document control codes by
functions such as char or text. (Appendix C describes Fortune:Word
document control codes.) Use finsert to insert values returned by the
text function. (See the description of the text function in this
chapter.) The finsert function should not be used in a Forms Processing
entry, since it modifies the form.

globerr

Type:

Value:

Syntax:

error

1 if true, 0 if false

variable = globerr
conditional function(globerr operator expression)
call function(globerr)

The initial value of globerr is false. It only is true if the preceding
search or goto [symbol] glossary operation resulted in an error condition
that caused a beep. For example, the search function fails to find its
specified string, and the beep sounds. The glob err function is
particularly useful for breaking a search loop. The value of globerr is
reset to false after it is used. The glob err function can be used with
these glossary keywords:

search nextscrn prevscrn go to nextscrn
goto prevscrn goto command indent goto indent
goto center goto dec tab goto tab

Use the following syntax:

keyword(s) if(globerr) {...}

if

Type: conditional

Value: if does not return a value

Syntax: if(expression)
{

statement or statements

Glossary Users Guide 9-12 3/87

l

F'Unction Description List

(expression) may consist of various combinations of expressions
and operators:

if(expression operator expression)

& long as proper parenthetical syntax is followed, the
argument to if may contain a theoretically unlimited number of
expressions and operators.

Multiple {statements} to if must be enclosed in braces.

The if conditional statemen t allows the glossary entry to make decisions
based on specified conditions in the document. The expression in the
argument is evaluated, and if true, the statement or statements enclosed
in braces are executed. If the expression in the argument is false, the
statements enclosed in braces are skipped, and entry execution continues
immediately beyond the last brace in the if statement.

if else

Type:

Value:

Syntax:

3/87

conditional

the if else statement does not return a value

if(expression)
{

statement or statements
}
else
{

statement or statements
}

(expression) may consist of various combinations of expressions
and operators:

if(expression operator expression)

As long as proper parenthetical syntax is followed, the
argument to if may contain a theoretically unlimited number of
expressions and operators.

Multiple {statements} to if must be enclosed in braces.

MUltiple {statements} to else must be enclosed in braces.

9-13 GlOSS/I" Users Guide

Function Description List

The if else conditional statement allows the entry to execute either the
if statements or the else statements, depending on a true or false
condition of the expression in the argument to if (else does not require
an argument; it relies on the argument to if).

The expression in the argument to if is evaluated. If true, the
statement or statements enclosed in braces are executed. The statements
following else are skipped, and entry execution continues at the
statement immediately after the closing brace in the else statement
(unless directed elsewhere by the if statements).

If false, the statements to if are skipped, and the statements to else
are executed. Execution then continues at the statement immediately
after the closing brace in the else statement (unless directed elsewhere
by the else statements).

index

Type:

Value:

Syntax:

string

character number where expression2 begins inside expressionl

variable .. index(expressionl,expression2)
variable index(expressionl,expression2,expression3)
conditional function(index(el,e2,e3) operator expression)
call function(index(el,e2,e3»

The index function searches for an occurrence of expression2 inside
expressionl, beginning at the character number provided by expression3.
Expression3 is optional. If it is not present, the search begins at
character 1 of expressionl. If expression2 is not found inside
expressionl, a false (zero) value is returned. If it is found, the value
returned is the first character position inside expression 1 where
expression2 begins.

jump

Type:

Value:

Syntax:

control

jump does not return a value

jump identifier
[identifier]
statement or statements

GlossII", Users Guide 9-14 3/87

Function Description List

The jump statement unconditionally transfers entry execution control to
the statement immediately following a labeled identifier. The identifier
may be any word other than reserved keywords and must be enclosed in
brackets. The rules for naming variables also apply to identifiers.

The labeled statement can be anywhere in the entry. Unlike a subroutine
call, the entry does not return to the statement following the jump
statement after executing the labeled statements.

key

Type:

Value:

Syntax:

interactive

key accepts one keystroke from the keyboard. Typically, this
value is passed to a variable.

variable = key
call function(key)
conditional function(key operator expression)

The key function pauses entry execution until the operator types one key.
This key can be assigned to a variable or used by a function. The typed
key is not written in the document. Any key on the keyboard is accepted
by key and can be assigned to a variable. This includes character keys,
cursor movement keys, and function and editing keys.

keyin

Type:

Value:

Syntax:

interactive

keyin does not return a value

call keyin

The keyin function pauses entry execution so that the operator can type
one key. When a character key or screen symbol key such as RETURN or
TAB is pressed, it is typed in the document and remains as part of the
text. Any key pressed counts as a keystroke, including cursor control
keys and function and editing keys such as EXECUTE or DELETE.
Execution of the entry resumes after the key is typed.

3/87 9-15 Glossary Users Guide

Function Description List

keys

Type:

Value:

Syntax:

interactive

keys accepts unlimited keystrokes from the keyboard.
Typically, this value is passed to a variable.

variable == keys
call function(keys)
conditional function(keys operator expression)

The keys function pauses entry execution so that any number of characters
may be typed. Only standard character keys are accepted by the keys
function. A beep sounds if a function or editing key is pressed. When
the Execute or Return key is pressed by the operator, entry execution
continues, and the entered string of characters is passed to the variable
or function. Characters entered to keys appear to overwrite existing
text in the document. This is a temporary condition and can be cleared
at the end of glossary execution by pressing CTRL/w or by including the
statement "\027", which is the octal representation for CTRL/w, in the
entry.

keysin

Type:

Value:

Syntax:

interactive

keys in does not return a value

call keys in

The keys in function pauses entry execution so that the operator can type
an unlimited sequence of keys. These may be character keys for data
entry or formatting keys such as TAB, RETURN, or PAGE.

Characters are typed in the document and remain as part of the text.
Execution of the entry resumes when EXECUTE is pressed by the operator.
When you use keys in following an insert, pressing EXECUTE to end the
keys in also ends the insert. When using an entry with the keys in
function, pressing CANCEL stops the glossary entry.

Glossary Users Guide 9-16 3/87

Function Description List

lefLmargin

Type:

Value:

Syntax:

document reading

1 if true, 0 if false

conditional function(lefLmargin)
conditional function (!lefLmargin)
variable = lefLmargin
call function(lefLmargin)

The lefLmargin function is true if the cursor is on the first character
of a line. Otherwise, it is false. When it is preceded by the logical
not operator (!) the combination !lefLmargin is true only if lefLmargin
is not on the first character of a line.

len

Type:

Value:

Syntax:

string

number of characters in expression

variable = len(expression)
conditional function(len(expression) operator expression)
call function(len(expression»

The len function returns a number value equivalent to the number of
characters in its expression. Keyword abbreviations, Fortune:Word
document control codes, and octal numbers that are embedded in the string
are included in the character count. Keyword abbreviations, such as
\r, count as one character. Octal numbers, such as \007, count as
one character. Refer to Appendix C for information on counting
characters in Fortune:Word document control codes. (The backslash (\)
is used as an escape character for embedments and does not count as a
character unless it is escaped by another backslash, (\ \). The
combination "\\" counts as one character.)

line

Type:

Value:

Syntax:

3/87

document reading

line number for the cursor

variable = line
conditional function(line operator expression)
call function(line)

9-17 Glossary User's Guide

Function Description List

The line function reads the line number of the cursor location in the
document. The line number returned by the line function is the line
number shown in the status line, which reflects the Spacing setting.

loc

Type:

Value:

Syntax:

document reading

page, line, and position of the cursor in the form "1,4,6"

variable - loc
conditional function(loc operator expression)
call function(loc)

The loc function reads the page, line, and position of the cursor
location in the document. These values are returned in three segments
separated by commas; for example, the string "h,2,44" translates as
"header page, line 2, position 44." The string "10,18,66" translates as
"page 10, line 18, position 66." The page designation may be a numbered
page or the header, footer, work, note, or footnote page.

max

Type:

Value:

Syntax:

with numeric expressions

mathematical

the expression containing the highest number of all the stated
expressions

variable = max(expressionl,expression2, ...)
conditional function(max(el,e2, ...) operator expression)
call function(max(el,e2, ... »

The max function evaluates all of its stated expressions and returns the
highest expression (number) as its value.

max

Type:

Value:

Syntax:

with alphabetical strings

string

the highest alpha string expression based on ascending order of
the ASCII collating sequence

variable .. max(expressionl,expression2, ...)
conditional function(max(el,e2, ...) operator expression)
call function(max(expressionl,expression2, ... »

Glossary Users Guide 9-18 3/87

Function Description List

The max function returns as its value the highest of its alphabetic
string expressions in ascending order according to the ASCII collating
sequence provided in Appendix C. Any number of string expressions can be
compared.

min

Type:

Value:

Syntax:

with numeric expressions

mathematical

the expression containing the lowest number of all the stated
expressions

variable = min(expressionl,expression2, ...)
conditional function(min(el,e2, ...) operator expression)
call function(min(expressionl,expression2, ...))

The min function evaluates all of its stated expressions and returns the
lowest expression (number) as its value.

min

Type:

Value:

Syntax:

with alphabetical strings

string

the lowest alpha string expression based on descending order of
the ASCII collating sequence

variable min(expressionl,expression2, ...)
conditional function(min(el,e2, ...) operator expression)
call function(min(expressionl,expression2, ...))

The min function returns as its value the lowest of its alphabetic string
expressions in descending order according to the ASCII collating sequence
provided in Appendix C. Any number of string expressions can be
compared.

num

Type:

Value:

Syntax:

3/87

mathematical

1 if true, 0 if false

variable = num(expression)
conditional function(num(expression))
call function(num(expression))

9-19 Glossary User~s Guide

Function Description List

The num function is true if the expression is numeric, and false if it is
not. Only numeric strings are recognized. If the string contains any
alphabetic characters, the statement is false. The number may contain a
leading dollar sign, commas, a decimal point, and/or leading or trailing
minus or plus signs.

number

Type:

Value:

Syntax:

document reading

number at the cursor location

variable == number
conditional function(number operator expression)
call function(number)

The number function passes the number found at or to the immediate right
of the cursor position to the variable. Only numeric strings are
recognized. When the string contains any alphabetic characters, "12th"
for example, a value of 0 is returned to the variable, indicating that
the string is not numeric. The number may contain a leading dollar sign,
commas, a decimal point, and/or leading or trailing minus or plus signs.
When the cursor is on or after a decimal point, only the decimal point
and the numbers following it are returned.

The number may not contain any change of text emphases such as boldface,
underlines, or double underlines. For example, the number ill8 returns a
zero value because the underline attribute changes halfway through the
number. The number ~ returns the correct value only if it is preceded
by a space. A number that is part of a sequence of emphasized
characters, such as the number 4428, is, returns the correct value. The
cursor moves past the end of the number on the document screen.

occur

Type:

Value:

Syntax:

string

the number of segments in a delimited string

variable = occur(expression1,expression2)
conditional function(occur(e1,e2) operator expression)
call function(occur(expression1,expression2»

GlossllTY Users Guide 9-20 3/87

Function Description List

The occur function provides the number of segments in expression1
delimited by the character in expression2. The character in expression2
must be enclosed in quotes. If a variable is used in expression2, it
does not need to be quoted. (See the seg function for a description of
delimiting characters.)

Type:

Value:

Syntax:

document reading

page number for the cursor

variable == page.Jlo
conditional function(page.Jlo operator expression)
call function(page.Jlo)

The page.Jlo function reads the page number of the cursor location in the
document.

piC

Type:

Value:

Syntax:

mathematical

pic does not return a value

variable = pic(expression 1, "expression2")
call function(pic(expression 1, "expression2"))
conditional function(pic(el, "e2") operator expression)

The pic function formats the number in expression 1 with common numeric
symbols such as $ or -. Expression1 may be a numeric string, a variable
with a numeric value, or a function that returns a numeric value.
Expression2 specifies the symbols to be used by expressionl. If more
than one symbol is used, they do not need to be separated by commas or
formatted in any way, and can appear in any sequence. Expression2 must
be a quoted string or a variable that contains the quoted string. When
expression2 is a variable, the variable name should not be enclosed in
quotation marks. Expression2 may include one or more of the following
symbols:

3/87 9-21 Glossary Use~s Guide

Function Description List

Symbol Meaning

$
+

position

Type:

Value:

Syntax:

Precede number with a dollar sign
Precede number with a plus sign
Follow number with a minus sign
Insert a comma every three digits if number is greater

than 999
Insert a decimal point two decimal places from right of

number

document reading

character position for the cursor

variable = position
conditional function(position operator expression)
call function(position)

The position function reads the character position of the cursor location
in the document.

posmsg

Type:

Value:

Syntax:

display

posmsg does not return a value

call posmsg(expressionl,expression2,expression3)

The posmsg function displays expression3 at the line specified by
expressionl and the character position specified by expression2.
Expression3 may be an alphabetic or numeric string, a variable, or a
function. Permissible screen positions for posmsg are lines 1 through 25
and positions 1 through 80. Messages extending beyond position 80 or
line 25 result in screen display anomalies. (See the "Display Functions"
section in Chapter 10 for additional information about screen display
functions.)

The message posted by posmsg can be cleared by the clrpos function or, at
the end of glossary execution, by pressing CTRL/w, or by including the
statement "\027" (the octal representation for CTRL/w) in the entry.
The posmsg function does not replace characters on the screen. It is a
temporary display.

Glossary Users Guide 9-22 3/87

Function Description List

prompt

Type: display

Value: string

Syntax: call prompt(expression)

The prompt function displays the value of the expression highlighted in
the prompt section of the screen (line 1, characters 50 to 79). The
length of the prompt string cannot exceed 30 characters. Strings longer
than 30 characters result in screen display anomalies. The prompt
message can be cleared by the clrpos function; by including the null
prompt statement, call prompt("") in the entry; by pressing CTRL/w; by
including the CTRL/w statement "\027" in the entry; or by invoking an
editing function, like insert or delete.

righLmargin

Type:

Value:

Syntax:

document reading

1 if true, 0 if false

conditional function(righLmargin)
conditional function(!righLmargin)
variable = righLmargin
call function(righLmargin)

The righLmargin function is true if the cursor is on the last character
of a line. Otherwise, it is false. When it is preceded by the logical
not operator (!), the combination !righLmargin is true only if
righLmargin is not on the last character of a line.

round

Type:

Value:

Syntax:

3/87

mathematical

rounded value of a numeric expression to the specified decimal
place

variable = round(expression1,expression2)
conditional function(round(e1,e2) operator expression)
call function(round(e1,e2)

9-23 Glossary User>s Guide

Function Description List

The round function rounds expression 1 to the number of decimal places
specified by expression2. If the fractional part beyond the specified
decimal place is 5 or greater, 1 is added to the last decimal. If it is
less than 5, nothing is added to the last decimal.

seg

Type:

Value:

Syntax:

string

the string segment from expression3 to expression4 or to the
end of the entire string if expression4 is omitted

variable = seg(expressionl,expression2,expression3)
variable = seg(el,e2,e3,e4)
conditional function(seg(el,e2,e3,e4» operator expression)
call function(seg(el,e2,e3,e4»

The seg function evaluates strings whose discrete segments are separated
by a specific delimiting character. Examples are a social security
number segmented with hyphens, "526-43-9090," or a string segmented by
spaces, "table 5xlO 15 $95." Any character may be used to segment the
string., This character is called the delimiter.

Expressionl is the entire segmented string. Expression2 is the character
used for the segment delimiter. The character in expression2 must be
enclosed in quotes. If a variable is used in expression2, it does not
need to be quoted.

The value returned by seg is any portion of the string beginning with the
segment specified by expression3 and ending with expression 4. If
expression4 is omitted, the value returned begins at the segment
specified by expression3 and concludes at the end of the entire string.

spacing

Type:

Value:

Syntax:

document reading

current format setting for vertical line spacing

variable = spacing
conditional function(spacing operator expression)
call function(spacing)

Glossary Users Guide 9-24 3/87

Function Description List

The spacing function returns the vertical line spacing of the closest
format line above the cursor location in the document. The vertical line
spacing is displayed on the document editing screen, both in the second
status line following the word "Spacing," and in the first position of
the format line. To change the vertical line spacing during entry
execution, use the keyword combination: command"s n" where "n" stands
for the vertical line space number or letter. The line number returned
by the line function is the line number shown in the status line, which
reflects the Spacing setting.

status

Type: display

Value: string

Syntax: call status(expression)

The status function displays the value of the expression in the status
area of the screen (line 2S, characters 26 to SO). The length of the
status string cannot exceed 26 characters. Strings longer than 26
characters result in screen display anomalies. The status message can be
cleared by the clrpos function, by including the null status statement,
call status(""} in the entry, by pressing CTRL/w, by including the CTRL/w
statement "\027" in the entry, or by invoking an editing function such
as insert or delete.

sub

Type:

Value:

Syntax:

string

sub performs a substitution function; if it can be said to
return a value, the value would be the substitution segment in
expressionS

variable = sub(el,e2,e3,e4,eS)
conditional function(sub(el,e2,e3,e4,eS) operator expression)
call function(sub(el,e2,e3,e4,eS»

The sub function substitutes the string in expressionS for the string
segments specified by expression3 and expression4. Expressionl gives the
entire segmented string. Expression2 gives the delimiter character used
to segment the string in expressionl. Expression3 gives the segment

3/87 9-25 Glossll-ry User's Guide

Function Description List

number where the substitution begins. Expression4 gives the segment
number where the substitution ends. ExpressionS gives the string to be
substituted for expression3 through expression4. (See the seg function
for a description of delimiting characters.)

substr

Type:

Value:

Syntax:

string

the string segment extracted from a string

variable = substr(expression1,expression2)
variable = substr(expression1,expression2,expression3)
conditional function(substr(e1,e2,e3) operator expression)
call function(substr(e1,e2,e3))

The substr function returns as its value a substring that is extracted
from a string. The string is specified by expression1, which may be a
numeric or alphabetic string, a variable, a function, or a math
calculation. It is taken from the character position specified in
expression2 to the end of the string. Expression3 is optional. If it is
used, the substring is taken from expression2 to the character position
specified by expression3.

text

Type:

Value:

Syntax:

document reading

text extracted from a document from expression1 through
expression2

variable = text(expression1,expression2)
call function(text(expression1,expression2))
conditional function (expression operator text(e1,e2))

The text function extracts text from a document between the document
locations specified by expression1 and expression2. Document locations
are specified in the form page, line, position. Each expression must be
enclosed in quotation marks. For example, the statement

variable = text("1,14,22", "2,17 ,33")

assigns the block of text from page 1, line 14, position 22, through
page 2, line 17, position 33, to the variable.

Glossary Users Guide 9-26 3/87

Function Description List

The loc function may be used to specify beginning or ending text
extraction locations. (The loc function returns the current cursor
location in the document.)

variable = text(loc,"4,1,6")

You can extract one character at the cursor position by using the
statement

variable = text(loc,loc)

Use text when you want to know if the cursor is on a screen symbol such
as RETURN, TAB, INDENT, DEC TAB, or CENTER.

The following syntax example uses a conditional if and the text function
to determine if the cursor is on a Return symbol.

retl = "\\B\\\012"
ret2 = text(loc,loc)
if(ret1 = ret2) L}

The value in ret! is the Fortune:Word document control code for the
Return symbol. Appendix C provides more information about Fortune: Word
document control codes.

The value (text from the document) returned by text can be assigned to a
variable or placed directly in the document by using the finsert
function, as in

call finsert(text("1,4, 1", "1,10,31"»

You must use finsert to insert the value returned by text into your
document. The text function retains Fortune: Word document control codes
for screen symbols such as Return, Tab, or Center in the text that it
reads from the document. The finsert function recognizes these document
control codes and inserts their equivalent screen symbols in the
document.

Format lines in the extraction location in the document are not retained
by text. When text values are inserted, they observe the closest format
line above the insertion location.

3/87 9-27 Glossary Users Guide

Function Description List

texLlen

Type:

Value:

Syntax:

document reading

current setting for document text length

variable = text-len
conditional function(text-len operator expression)
call function(text-len)

The text-len function reads the current text length setting of the
document. (The text length setting is shown on the second status line on
the editing screen.)

time

Type:

Value:

Syntax:

operating system access

the current system time

variable = time
conditional function(time operator expression)
call function(time)

The time function returns the current system time in the form 09:40:00.
The time is represented in 24-hour format. For example, 2:00 in the
afternoon is shown as 14:00:00.

Type:

Value:

Syntax:

document reading

1 if true, 0 if false

conditional function(top_page)
conditional function(!top_page)
variable = top_page
call function(top_page)

The top_page function is true if the cursor is on the first character of
the first line of a page. Otherwise, it is false. When it is preceded
by the logical not operator (!), the combination !top_page is true only
if top_page is not on the first character of the first line of a page.

Glossary Users Guide 9-28 3/87

true

Type:

Value:

Syntax:

Function Description List

logical

provides a numeric value of 1

variable = true
conditional function(expression operator true)
call function(true)

The true function is used to provide a true value for a variable or a
function. It can also serve as an expression in a conditional statement.
The true function always is 1.

truncate

Type:

Value:

Syntax:

mathematical

truncated value of a numeric expression to the specified
decimal place

variable = truncate(expression1,expression2)
conditional function(truncate(e1,e2) operator expression)
call function(truncate(e1,e2))

The truncate function truncates expression1 to the number of decimal
places specified by expression2. The fractional part beyond the
specified point is deleted regardless of its value.

unixfun

Type: operating system access

Value: unixfun does not return a value

Syntax: call unixfun(expression)

The unixfun function executes the operating system command in the
expression. The output of the command is not written to the document.
The unixfun function operates similarly to the Fortune:Word command "I"
function. The "Operating System Access Functions" section in Chapter 10
gives examples of how to use both unixfun and command "I".

3/87 9-29 Glossary User's Guide

Function Description List

unixpipe

Type: operating system access

Value: returns the output of an operating system command

Syntax: variable = unixpipe(expressionl,expression2)

The unixpipe function assigns the standard output of a operating system
command to a variable. The data in expression2 is piped to the command
in expressionl.

Expressionl is the entire operating system command line. Expressionl
must be enclosed in quotation marks.

Expression2 is data required for the command line. In entry a below, the
operating system command expr is accessed for a simple calculation.
Variable a is assigned the calculation. Since expr only requires command
line input, b is used as a null expression for expression2.

entry a
{

a = "expr 44 + 77"
b = ,,,,

x = unixpipe(a,b)
call finsert(x)

Entry b is another example of the unixpipe function. This entry uses the
keys function to assign the variables for unixpipe. If the command in
variable a does not require data from variable b, enter a null by
pressing EXECUTE when the entry pauses for key entry to variable b.

entry b
{

"Enter a: "
a = keys
call feed(a)
insert return execute
"Enter b :"
b = keys
call feed(b)
insert return(2) execute
x = unixpipe(a,b)
call finsert(x)

Glossary Users Guide 9-30 3/87

Function Description List

You must use the finsert function instead of the feed function to type
the value returned by unixpipe in the document.

The unixpipe function operates similarly to the Fortune:Word function
command "I». The "Operating System Access Functions" section in
Chapter 10 gives examples that use both unixpipe and command "I».

while

Type:

Value:

Syntax:

conditional

while does not return a value

while (expression)
{

statement or statements

(expression) may consist of various combinations of expressions
and operators:

while (expression operator expression)

As long as proper parenthetical syntax is followed, the
argument to while may contain a theoretically unlimited number
of expressions and operators.

{Multiple statements} to while must be enclosed in braces.

The while function allows repeated execution of a statement or statements
based on true or false conditions in the document. The true or false
conditions are specified by the expressions in the argument to while.
The statement enclosed in braces is executed repeatedly as long as the
value of the expression in the argument to while remains true.

When the value becomes false, the statement is not executed and the entry
continues after the closing brace in the while statement. The test of
the expressions takes place before each execution of the statement.

3/87 9-31 Glossary User~s Guide

Function Description List

word

Type:

Value:

Syntax:

document reading

word at cursor location

variable = word
conditional function(word operator expression)
call function(word)

The word function passes the word found at the cursor position or the
nearest word to the right of the cursor to the variable. When the word
function is used during entry execution, the cursor is moved past the end
of that word on the document screen. A word is defined as a sequence of
characters, induding punctuation, that begins and ends with a space or
spaces, the left margin, or a Tab, Decimal Tab, Right-flush Tab, Indent,
or Return symbol. Spaces surrounding the word are not stored in the
variable.

Glossary Users Guide 9-32 3/87

\
Chapter 10 \

Function Usage List

Functions can be grouped by the type of actions they perform when a
glossary entry is executing. For example, when you use display functions
such as prompt, clrpos, and status, you can put messages on the text
document editing screen while the entry is running. Document reading
functions such as char and pagC-llo provide information about the cursor
position in the text document. Operating system access functions allow
you to use a wide range of operating system commands in glossary entries.

In this list, functions are organized by the usage groups shown in
Table 10-1. The introduction to each usage group describes the' functions
in that group, suggests ways to use them, and provides examples.

See the "Alphabetical List of Functions" in Chapter 9, and refer to other
chapters in this book for additional examples and more detailed
information about specific functions.

Table 10-1. Usage Groups and Their Functions

Usage Group

Conditional Functions

Control Functions

3/87

Function

do while
if
if else
while

call
exit
glossary
jump

10-1 GIDSSIZ,., User~s Guide

Function Usage List

Table 10-1. (continued)

Usage Group

Display Functions

Document Reading Functions

Function

clrpos
cursor
display
error
posmsg
prompt
status

beS-doc
bot-page
char
enLdoc
left-margin
line
loc
number
page-1lo
position
right-margin
spacing
text
texLlen
top_page
word

Document Writing Functions feed

Error and Logical Functions

Interactive Functions

Mathematical Functions

Glossary Users Guide

£insert

false
glob err
true

key
keyin
keys
keys in

abs
max
mIn

10-2 3/87

Table 10-1. (continued)

Usage Group

Operating System Access
Functions

String Functions

CONDITIONAL FUNCTIONS

• do while
• if
• if else
• while

Using Conditional Functions

Function

num
number
pic
round
truncate

date
time
unixfun
unixpipe
command "!"
command" I"

cat
index
len
max
mln
occur
seg
sub
substr

Function Usage List

Use a conditional function when you want your entry to ask a question and
execute different statements based on the response. Typical questions
are: What is the cursor position in the document? What did the operator
just type? What is the current value of a particular variable, string,
or function?

3/87 10-3 Glossary User~s Guide

Function Usage List

A conditional function is part of a conditional statement. The
conditional statement includes the function, its arguments and
expressions, and the statement or statements that are executed as a
result of the conditional test. The conditional test is based on the
evaluation of expressions in the argument to the function. Conditional
functions are typically used to perform a branch or a loop, call a
subroutine, or stop the entry.

The while and do while functions perform conditional loops. The
statement repetition action of a loop is combined with the conditional
test.

Remember that do while always executes its statements at least once
because the conditional test is made after the statement is executed.
The while function performs its test before its statements are executed.
If the condition starts out false, the while statement or statements are
never executed.

The if and if else functions perform conditional tests. Their statements
are executed based on the true or false result of the test. They do not
perform loops as the while and do while functions do. You have to use a
jump or while statement in combination with if to perform a loop.

Chapters 7 and 8 give you in-depth information and entry examples for
each conditional function.

Entry c boldfaces only alphabetical characters. You can use this entry
to boldface a word in parentheses, a word that ends with some form of
punctuation, or a word followed by a space.

entry c
{

mode "b"

while« (char > = "A") & (char < = "Z")) I «char > = "a") & t char < == "z")))

right

mode "b"

Glossary Users Guide 10-4 3/87

Function Usage List

This entry uses the conditional loop while, the logical operators & and
I, and the char function. It makes use of the ASCII collating sequence
to restrict the boldface to alphabetic characters. (The ASCII sequence
is described in Appendix C.) You can use this entry for any text
emphasis mode by changing mode "b" to another mode.

Entry c could also be written using a do while statement, as shown in
entry d. There is a subtle distinction in the way each entry performs
its operation. Entry c, which uses while, stops execution if the word
begins with an excluded character such as a number or symbol. Entry d,
which uses do while, always executes its statement once regardless of the
character. You can prove t..lis by trying both entries on the character
combination "2word."

Entry c does not bold "2word" because the test is made before the
statements are executed. Entry d does bold "2word" because the test is
performed after the statements are executed.

entry d
{ .

mode "b"

do
{

right
}
while« (char > == "A") & (char < == "Z"» I «char > == "a") &
(char < == "z"»)

mode "b"

See entry D under the section "Mathematical Functions" and entry I under
"Document Reading Functions" section in this chapter for examples that
use the conditional if and if else statements.

CONTROL FUNCTIONS

• call
• exit
• glossary
• jump

3/87 10-5 Glossa" User's Guide

Function Usage List

Using Control Functions

Use control functions to control the statement execution order of your
entry.

The jump statement transfers control to a block of labeled statements in
the entry. There are two parts to a jump statement:

• A statement which is enclosed in brackets, and labeled by an
identifying name, called the identifier.

• A "jump identifier" statement at the place in the glossary entry
where you want to transfer control. In this statement, the
identifier is not enclosed in brackets.

You can use jump statements to perform a branch or a loop.

The call statement transfers execution control to a built-in function or
a subroutine. When a function is used as a statement (rather than an
expression) it must be preceded by a call statement. A subroutine is
another glossary entry in the same glossary. The glossary statement
transfers execution control to another entry in the same glossary.
Either call or glossary can be used to make an entry recall itself.

The exit statement causes the entry to stop.

Chapter 8 gives you in-depth information and entry examples for each
control function.

See entry 1 under the section "Document Reading Functions" in this
chapter for an entry that uses control functions. Entry 1 also provides
an example of how to construct an entry that switches execution sequence
between various parts of the entry, depending on conditional tests.

DISPLAY FUNCTIONS

• clrpos
• cursor (See also "Document Writing Functions")
• display
• error
• posmsg
• prompt
• status

Glossary Users Guide 10-6 3/87

Function Usage List

Using Display Functions

You can use display functions to put messages on the text document
editing screen while an entry is running, to put the cursor in a
specified location, or to turn the screen display refresh function off
and on.

Physical Editing Screen Locations

When you work in your document, you use the editing screen. The screen
is a grid that measures 25 vertical lines (rows) by 80 horizontal
character positions (<t:Olumns). Figure 10-1 shows the screen grid layout
of 25 vertical lines by 80 horizontal positions.

"0
ID
>­
C
D. ..
C
c

::;
III
N

25

80 ChcrDcter Positions Dlsployed
I

Figure 10-1. Editing Screen Grid

3/87 10-7

I
80

Glossa" Users Guide

..
on
on
:c

Function Usage List

The grid line and position numbers are called the physical editing screen
locations. They never change in relation to the changing line and
position numbers of your text.

When you use Fortune:Word, four of the 25 vertical lines are reserved to
display status information and messages. The editing screen reserved
areas are shown in Figure 10-2.

Status line 1. character IDeations 1-40

1

~ ,~.". '0. , .• "~ •• ,, ',,,',n H'

.~ '~"' '~m,.,~ '"' ,. ~ .. " '00""0' "-,,
33 41 50 80

1 "" "- '" I I "" 2 "" I '" 3

25 I <I I ~

1

Status oraD I~:. 25~aract8r locations 26~~0 /

80

Error area line 25. character locations 51-79

Figure 10-2. Editing Screen Reserved Areas

Glossary Users Guide 10-8

~

1 :ll
=<

3/87

Function Usage List

Logical Editing Screen Locations

Although 25 lines are displayed on the editing screen, only 21 lines are
available for text typing. These are lines 4 through 24. The line
indicator in the first status line reflects the number of the text line
on the screen. If you place your cursor on Page 1, Line 1, Pos 1 in your
document, the cursor is actually on line 4 of the screen display, but the
line indicator reads "Line 1." Figure 10-3 shows both physical and
logical screen locations.

2
3

4
5
6

7
B

9
10
11

12
13

14
15

16
17

IB
19
20
21
22
23
24
25

BO text character pasltians displayed at ane time

Status line I, character locatIons 1-40

1

~ "'.", "0" .• ,.rod" '.00".0' H'
-~ '~O, 'mm,' ••• "0, ,. ~ •• " .~ "' "-,,

33 41 50

"'" " '" I I "'"
" I "" ""

1-

2
3

4

5
6

7
B
9
10
11 - 21 text lines dlsplayod at one lime

12
13
14
15

16

17
18
19

20
21

I ~ I ~

1

Status area I~:e 25~racter lacatlons 26~~0 /
Error araa lina 25, character locations 51-79

Figure 10-3. Physical Screen Locations vs. Logical Screen Locations

BO

BO

3/87 10-9 Glossary UserYs Guide

Function Usage List

Try the following two short entries to see the difference between a
physical location and a logical location. Entry e uses the posmsg
function to place a message on line 1, position 43. Entry f uses the
cursor function to send the cursor to line 1, position 1, and then
inserts a message.

entry e
{

call posmsg(1,43,"THIS IS A POSMSG ON LINE 1, pas 43.")
}

entry f
{

call cursor("l,l,l")
insert

"THIS IS TEXT LINE 1, pas 1."
return(2)
execute

Notice that when you recall entry f, part of the message from entry e is
cleared to allow room for other prompts. Although both posmsg and cursor
specified line 1, the messages are displayed on different lines. What is
line 1 to the cursor function, which uses a logical location, is actually
line 4 to the posmsg function, which uses a physical location.

Notice that the posmsg message is displayed at position 43 so it does not
conflict with status line 1. Although status line 1 is in a reserved
screen area (as shown in Figure 10-2) messages displayed with the posmsg
function can temporarily overwrite the information on the status lines.
You can see this if you change entry e to display the posmsg at
position 1.

Pressing CTRL/w clears the remainder of the message from the prompt area.
The text from posmsg is temporarily displayed on the screen but is not
inserted in the document. The message inserted by entry f remains in the
document. When you use posmsg to display a message over existing text,
the text is never actually overwritten. This principle is illustrated by
entry i in this section.

As you have seen from entries e and f, the line and position numbers for
physical locations are not the same as logical locations for text line
and position numbers. Logical locations reflect the number of text lines
per page or the number of characters per line.

Glossary Users Guide 10-10 3/87

Function Usage List

From the examples, you can see why the physical screen locations on the
grid in Figure 10-1 are the numbers you must use when you specify line
and position locations for the posmsg and c1rpos functions.

The posmsg and c1rpos function messages can be put at any location you
choose on the editing screen grid. Acceptable line locations are 1
through 25. Acceptable character positions are 1 through 80. Glossary
verification does not check for incorrect error locations. If you
specified a line or position location outside these numbers, when you
recall the entry the error message bad location is displayed and the
entry stops. Messages that extend beyond 79 characters or line 25 cause
screen display anomalies.

Using Editing Screen Message Locations

The prompt, status, and error functions have their message placement
predefined in specific editing screen reserved areas as shown in
Figure 10-2.

As you can tell from entry e, reserved areas of the editing screen are
important considerations when you use display functions. These areas are
reserved for system-generated prompt, status, and error messages.

When you use the prompt, status, error, posmsg or c1rpos functions m
reserved areas, you can overwrite system prompts and document status
lines. In addition, your display function messages can be totally or
partially cleared by system-generated or your own entry-generated
messages.

Depending on your entry, you may want to replace a system message or
status line with your own message. You should always try your entry in a
text document that you keep for testing glossary entries. Check your
placement of display functions and see how they interact with
system-generated displays. If you use keywords such as insert, search,
delete, copy, or replace, the messages that are integral to these
functions clear your entry-generated messages.

As shown in Figure 10-2, Lines 1 through 3 are reserved for the two
document status lines, the format line, and system-generated prompt
messages. Line 25 is reserved for system-generated status and error
messages.

The prompt, status, and error functions all have predefined message
display locations in the reserved areas as follows:

• prompt messages display on line 1, positions 50 through 79
• status messages display on line 25, positions 26 through 50
• error messages display on line 25, positions 51 through 79

3/87 10-11 Glossary User's Guide

Function Usage List

These function messages display only in their reserved areas. Use the
posmsg function to display messages anywhere on the editing screen.

Document Scrolling

Think of the logical text location on the screen as a moving picture
under a piece of transparent glass. The text is framed by the reserved
areas of the screen, which are lines 1-3, and line 25. In Figure 10-4,
text lines 1 through 21 are framed by the reserved areas. The text
within the frame can be scrolled up and down (vertical scroll), or from
side to side (horizontal scroll).

Statu. line 1, character locatIons 1-40

I

~ ",,'"' "0' '. ,'"~_" '"'"",," H' -~ F~na Prompt araa line I, ~ctar locations 50-79

33 41 50

1 r
"'" "- "" 1 J -"' 2 "'" I "" 3 "

ThIs Is a reference chapter for all the functIons In the Glossary programmIng

langu"ge. Use It as you would a dIctIonary to look up a functIon. The first

sactlon Is an alphabetical list by function name. It Includes a description of

the function, the type of value requIred, and permissible synta" statement. for

Its use. The second section is a list of functIon by usage type. E"amples ora
provIded for each usage group. Program IIxamples cre provided where appropriate

to clarify the nature of the function .•

•
Functions can be grouped by tha type of actIons they perform when a glossary

program Is e"ecutlng. For e"ample, when you use display functIons such as

prompt, clrpos, and statu., you can place massages on the te"t document editing

screen. Document reading functions such as ahar and pageJ10 return information

about the ta"t dacumant. Oparatlng system access functions allow you to use a

wid .. range of operatIng system commands In your glossary programs ••

•
In this list, functions are organized by usage groups. The introduction

to each usage group descrIbes the functions In that group and provIdes
programmIng suggestIons. Glossary entry e"amples are provIded for each group ••

•
See the "Alphabetical LIst of Functions" for additional e"ample. and more
detailed InformatIon about sDecltlc functIons ••

25
\.

I .J I I

I 26 _/ 51 /
Status area line 2S, charocter locetlons 26-50

Error area line 25, character locations 51-79

Figure 10-4. Text is Framed by Reserved Areas of the Screens

Glossary Users Guide 10-12

80

80

3/87

Function Usage List

Figures 10-5 and 10-6 show the same text being scrolled vertically and
horizontally. Notice how the reserved areas framing the text remain
stationary as the text moves. The only changing elements in the reserved
areas are the line and position numbers on status line 1, which reflect
the cursor movement.

You can illustrate the principles shown in Figures 10-5 and 10-6 by
scrolling text in your document. First, be sure your document page
exceeds 21 lines and has a format that exceeds 80 characters. Scroll
vertically through the text by pressing DOWN. Notice how the text lines
change as the top three status lines remain stationary. Now scroll
horizontally by pressing RIGHT. Notice how the text slides off the left
side of the screen, but the status lines remain stationary in their
physical screen location.

1

Doc gloss Page 1 Line B Pas 1
word Format 1 Spacing 1 length 54

+(1 ~ ~ 1 ... ~ ~2 ... ~ ~3 ... ~ ~4 ... ~ ~5 ... ~ ~6 ... ~ ~7 ... ~ ~

~
Functions can be grouped by type of actions they perform when a glossary
program i. executing. For example. when you u.e display functions such a.

prompt, clrpos, and status, you can replace messages on the text document editing
screen. Document reading functions such as char and page...Jlo return information
about the text document. Operating system acce •• functions allow you to use a

wide range af apereting system cammands in your glossary programs. ~

~

In this list, funclions ara organized by usage groups. The introduction

to each usage group describes the functions in that group and provides

programming suggestion. Glossary entry examples are provided for each graup.~

~

See the "Alphabetical List of Functions" for additional examples and mare

detailed Information about specific functions. ~

Figure 10-5. Text Can Scroll Vertically within Reserved Areas

3/87 10-13 Glossary User's Guide

Function Usage List

Doc gloss Page 1 Line 8 Pas 21
word Formal 1 Spacing 1 langlh 54
+ .. ~ ~ 3 ..• ~ ~ 4 .•. ~ ~ 5 ... ~ •... ~ 6 ... ~ ~ 7 ... ~ ~8 ... ~ ...• ~ 9 ~
i9hapler for all Ihe funclions In the Glossary programming

you would a diclionary 10 1001< up 0 function. The first
eticel list by function name. It Includes a description of

pe of value required. and permissible syntax stat.ments for
.ecllon i. 0 lisl of function by usage type. Example. are

age group. Program example. are provIded where approprIate
e of the function. ~

uped by type of actions they perform when a glossary
. For example, when you use display functions such as
status, you can place messages on the text documenl editIng
ading functions such as char and page_no return information
ent. Operating system access functions allow you to use a

ing systam commands In your glossary programs. ~

ons are organized by usage groups. The introduction

descrIbes the functions In that group and provIdes
ons. Glossary entry examples are provIded for each group.~

I List of Functions" for addItIonal examples and more
about specIfic functlons.~

Figure 10-6. Text Can Scroll Horizontally within Reserved Areas

Messages posted by the posmsg and clrpos functions can be "pasted"
anywhere on the "glass" overlaying the text. They do not become part of
the text; they temporarily overlay it. Figure 10-7 shows text with an
overlaid message posted by posmsg.

You can demonstrate this concept shown in Figure 10-7 by trying entry g.
Use a text document that has a format line of 250 characters. Place your
cursor on position 250 and recall the entry. The message is displayed at
the physical screen location of line 4, position 7, which is the logical
screen location of line 1, position 187.

entry g
{

}
call posmsg(4,7,"This is a posmsg on line 4, pos 7,(text line 1).")

Glossary Users Guide 10-14 3/87

r

Function Usage List

Doc gloss Page 1 Line 1 Pos 1

word Format Spacing length 54

1 (1 ~ ~ 1 ... ~ ~ 2 •.. ~ ~ 3 .•. ~ •..• ~ 4 ... ~ ...• ~ 5 ••. ~ .•.. ~ 6 •.. ~ •... ~ 7 ..• ~ ..•. ~

This is a reference chapter far all the functions in the Glossary programming

language. Use it as you would a dictionary to look up a function. The first

section is an alphabetical list by function name. It includes a description of

the function, the type of value required, and permissible syntox statements for

its use. The second section is a list of function by usage type. Examples are

provided for each usage group. Program examples are provided where appropriate

to clarify the nature of the function.~

~

Functions can be grouped by type of actions they perform when a glossary

program is executin· • .. •••••••••••••••••••••••••••• .. unctions such as
prompt, clrpos, and· GLOSSARY IN PROGRESS ·text document editing

screen. Document r· • • .. ••••• •••• ·_no return information

about the text document. Operating system access functions allow you to use a

wide range of operating system commands In your glossary progroms. ~

~

In this list, functions are organized by usoge groups. The introduction

to each usage group describes the functions in that group and provides

programming suggestions. Glossary entry examples are provided for each group.~

~

See the "Alphabetical List of Functions" for additional examples and more

\. detailed information about specific functions. ~

Figure 10-7. A posmsg Message Temporarily Overlays Screen Text

When you have used display functions in a few entries, the physical
locations and logical locations become easy to remember. You can use
display functions in a variety of situations. They are particularly
valuable when you are writing entries for others to use, as you can post
messages to the user on the screen while the glossary is running.

Clearing Display Messages from the Screen

Removing your messages is as important as posting them. You can use
three methods to clear display functions:

• Clear prompt, status, and error messages by system-generated
prompt, status, or error messages, or by another message in the
currently executing glossary entry. If you use this method you must
be sure a replacement message is generated immediately after your
message. This method does not work for posmsg unless its message IS

posted in a reserved area.

OJ

'" "' :;:

3/87 10-15 Glossary UserYs Guide

Function Usage List

• Use the drpos function to replace the message with blanks.
Remember, drpos is an overlay of text; it does not replace text in
your document. This method works well for prompt, status, and error
messages because they are in reserved (non-text) areas. It does not
work as well for posmsg because you are still obscuring underlying
text with blanks. Entry i uses drpos in a while loop to clear the
entire screen.

• Use CTRL/w to clear messages. Using CTRL/w in your entry is
generally the best method for clearing the posmsg function. Try
recalling entry h, which uses all four message display functions.

entry h
{

call prompt("HI")
call status("HI")
call error("HI")
call posmsg(4,7, "HI")

Mter the entry has displayed in your document, press CTRL/w. All
messages are cleared. To use CTRL/w in your entry, you have to represent
it by its octal number, 027. (Octal numbers are described in
Appendix C.)

Entry i in this section uses octal 027 (CTRL/w) as a quoted string. Like
keyword abbreviations in a quoted string, the octal number is preceded by
a backslash.

When status and error functions are displayed simultaneously in an entry,
be sure the status message does not extend into the error message area
(positions 51 through 79). Any characters in the status message at
position 51 and beyond are overwritten by the error message which begins
at position 51.

The Display Function

The editing screen display is restored each time you perform a standard
function such as insert, delete, copy, or replace. When these standard
functions are part of your entry, the screen is restored during entry
execution, just as it is while you are editing. Although a glossary
entry restores the screen faster than normal editing does, it still slows
the entry down.

Glossary User>s Guide 10-16 3/87

Function Usage List

You can use the display function to turn off the screen display restore
during entry execution. This is particularly valuable for reducing
runtime for lengthy entries.

A good example is entry 1 in Chapter 8, which uses the statement
call display(false) at the beginning of the entry to turn the display
off. The screen display is turned back on at the end of the entry by the
statement call display(true).

If you typed and recalled entry I in Chapter 8, using the "Amalgamated
Widgets" example, you saw a semi-static display. Try removing both
display statements from tht entry and running it. Notice that the entry
takes longer to run because the screen is being restored.

Entry i shows you how to use a combination of display, posmsg, and
clrpos to speed up entries and display a message that an entry is
running. Entry i incorporates a variation of entry I shown in Chapter 8.

The posmsg messages in entry i use octal numbers and attribute codes to
display the messages in reverse video and flashing modes. (Keyword
abbreviations for modes cannot be embedded in posmsg messages.)
Appendix C describes octal numbers and attribute codes.

The "Glossary in Progress" flashing module in entry i could be placed in
a separate entry and used as a subroutine with many different entries.

entry i
{

call display(false)

linenumber = 1
while(linenumber < 25)
{

}

call clrpos(linenumber,1,80)
linenumber + = 1

call posmsg(5,26, "\034HD
call posmsg(6,26,"\034HD \034ID
\034Id")

\034ID")
\034HD

call posmsg(7,26, "\034HD \034ID \034HBGLOSSARY IN
PROGRESS\034IB \034HD \034ID")
call posmsg(8,26, "\034HD \034ID
\034ID")
call posmsg(9,26, "\034HD

(entry i continued on next page)

3/87 10-17

\034HD

\034ID")

Glossary User>s Guide

Function Usage List

(entry i continued)

salesqty = 0
priceper = 0
grossale = 0
mfgcosts = 0
nets ales = 0

salestotal = 0
gross total = 0
nettotal = 0

[loop]

goto decimaltab
if(globerr)
{

jump total

salesqty = number
salestotal + = salesqty

priceper = number
grossale = priceper * salesqty

grosstotal + = grossale
right

call finsert(pic(grossale, "$,"))

mfgcosts = number
nets ales = grossale - mfgcosts * salesqty

nettotal + = nets ales
right

call finsert(pic(netsales, "$,"))

jump loop

~total]

command search "TOTAL" execute cancel
go to right
insert

decimaltab call feed(pic(salestotal," ,"))
decimaltab
decimaltab call feed(pic(grosstotal, "$,"))

(entry i continued on next page)

Glossary Users Guide 10-18 3/87

(entry i continued)

decimaltab
decimaltab call feed(pic(nettotal, "$,"»

execute
return(2)

"Gross sales: "
call feed(pic(grosstotal, "$,"»
" are calculated by multiplying the quantity, "
call feed(pic(salestotal, ","»
", times price per each." return(2)
"N et sales: "
call feed(pic(nettotal, "$,"»

Function Usage List

" are calculated by multiplying manufacturing cost per each times
quantity, and subtracting the result from gross sales."
return(2)

"\027"
call display(true)
}

Entry i uses the same "Amalgamated Widgets Month End Sales Statement"
example as entry 1 in Chapter 8. You can find the example on Page N of
gloss2b on the Glossary Examples Diskette.

The Cursor Function

The cursor function can be considered both a display and a document
writing function. You can move the cursor to any logical location you
choose. The cursor cannot be placed in a reserved screen area unless you
call it there with a combination of posmsg and key or keys functions.
Entry D (under the section "Mathematical Functions" in this chapter)
gives you an example of moving the cursor with the posmsg and key
functions.

Write some entries to try the cursor function. Examples are shown in
entries j and k. For additional information about the cursor function,
see the section "Document Writing Functions" in this chapter.

entry j
{

call cursor("4,6,22")

3/87 10-19 Glossary Users Guide

Function Usage List

entry k
{

call cursor("1,47,2")
insert

"COMPANY CONFIDENTIAL"
execute

Entry j sends the cursor to page 4, line 6, position 22. Note that the
expression to cursor is a quoted string with its parts separated by
commas. Entry k sends the cursor to page 1, line 47, position 2, then
inserts the string "COMPANY CONFIDENTIAL." For additional
information about the cursor function see the section "Document Writing
Functions" in this chapter.

DOCUMENT READING FUNCTIONS

• beg_doc
• bot-page
• char
• end-doc
• lefLmargin
• line
• loc
• number
• page-Ilo
• position
• righLmargin
• spacing
• text
• texLlen
• top_page
• word

USing Document Reading Functions

During entry execution, document reading functions read values from the
text document that reflect the cursor position, status line information,
or format line information.

Glossary Users Guide 10-20 3/87

Function Usage List

Cursor Location Functions

Cursor location functions are grouped into two types:

• Those that return numeric or alphabetic string values
• Those that return true or false values

Numeric or Alphabetic Values

The line, loc, page-1lo, and position functions return numeric values
equal to the cursor location in the text document. The number function
returns a numeric value equal to the number at the cursor location. The
char, text, and word functions return alphabetic string values equal to
the character, text block, or word at the cursor location.

Some points to remember about using the text function are listed below:

• The finsert function must be used to insert the value returned by
text in the document.

• Format lines in the document are not retained by the text function.

• When the value of text is inserted, it observes the format line
immediately above the insertion location.

True or False Values

The beg_doc, bot-page, enLdoc, left-margin, right-margin, and
top_page functions are true or false (lor 0) based on the cursor
location in the text document. The two most common conditional tests for
functions that return true or false values are the if test and the if not
test (using the logical not operator (!», shown in entry 1.

entry I
{

if(top_page)
{

}
jump legend

else if(!top_page)
{

goto up jump legend

(entry 1 continued on next page)

3/87 10-21 Glossary User's Guide

Function Usage List

(entry 1 continued)

[legend]
insert

center "For Immediate Release" return(2)
execute

Entry 1 performs two conditional tests on the cursor position. If the
cursor is at the top of the page (if(top_page» the string is inserted.
If the cursor is not at the top of the page, it is sent there by the
statement goto up, and the string is inserted. Note that the second
test, if(!top_page), uses the logical not operator (!).

You could also write the conditional tests by literally checking the
numeric true or false values as shown in entry m. This method is a bit
more cumbersome to write than entry 1, but works equally well. Again,
this illustrates that there is more than one way to write a glossary
entry.

entry m
{

if(top_page = = 1)
{

}
jump legend

else if(top_page = = 0)
{

goto up jump legend
}
[legend]
insert

center "For Immediate Release" return(2)
execute

Format and Status Line Functions

The spacing function returns the vertical spacing value for the current
format line. The text-len function returns the current text length
default for the document.

Glossary User>s Guide 10-22 3/87

Function Usage List

DOCUMENT WRITING FUNCTIONS

• cursor (see also "Display Functions")
• feed
• finsert

Using the Feed and Finsert Functions

The feed and finsert functions write the values returned from a function
or a variable in your document. Both functions must be preceded by the
call function when they are used as statements (rather than expressions).
There are three major differences between feed and finsert:

• Document writing performance
• Treatment of Fortune: Word document control codes
• Treatment of keyword abbreviations

Document Writing Performance

The feed function writes characters in the document as if they were being
typed from the keyboard (except much faster). If the cursor is on
existing text in the document when feed is called by the entry, the text
is overwritten. You can avoid overwriting by using the keywords insert
and execute as part of the feed statement. The following example inserts
the date at the cursor location in the document.

insert call feed(date) execute

The finsert function inserts characters in the document. Existing text
is not overwritten, and the action is very fast since characters or
blocks of text are inserted all at once. You do not have to use the
keywords insert and execute since insertion is automatically performed by
finsert. Using finsert, the statement example above is written as

call flOsert(date)

Treatment of Document Control Codes

The finsert function recognizes and writes Fortune:W ord document control
codes as screen symbols, such as a left-facing triangle for Return, a
diamond for Center, or an arrow for Indent. Document control codes can
be part of values returned by the text function, values used by unixpipe,
values assigned to variables, or values returned by document reading
functions.

3/87 10-23 Glossary User~s Guide

Function Usaae List

The feed function treats document control codes as string values and
writes them as strings, such as \B\ (return) or \c\ (center).

You can demonstrate the different ways feed and finsert treat document
control codes by trying entries nand o. When you recall these entries,
put your cursor on a screen symbol such as Return, Indent, or Decimal Tab
in your text document. The feed function types the control code, and the
finsert function types the actual screen graphic.

entry n
{

character - char
insert

call feed(character)
execute

entry 0
{

character = char

}
call fmsert(character)

Appendix C gives you a list of document control codes and tells you how
to use them in glossary entries.

Treatment of Keyword Abbreviations

You must use feed to write string values that contain keyword
abbreviations such as \r, \c, or \t. The finsert function does not
recognize keyword abbreviations.

CTRL Characters

CTRL/y characters are special characters that are accessed by typing
CTRL/y and then typing a character. CTRL/y characters are most
frequently used for changing laser printer fonts or typing foreign or
accented characters. Both finsert and feed recognize and print CTRL/y
characters.

Characters from alternate character sets can also be accessed in
Fortune:Word using CTRLI] and CTRL/n key sequences. You cannot use
CTRLI] and CTRL/n characters with glossary.

Glossary Users Guide 10-24 3/87

Function Usage List

Using the Cursor Function

While cursor is not strictly'a document writing function, you can control
cursor location in the document with the cursor function. You can send
the cursor to a specified location, then call feed or finsert to write a
value.

The cursor function uses the logical screen location line and position
numbers discussed in the "Display Functions" section in this chapter.
The cursor cannot be put in the reserved screen areas of lines 1 through
3 and line 25.

Open and Unopened Editing Screen Areas

When you use the cursor function, you must consider unopened areas of the
screen. Look at the text example in Figure 10-8.

Presume that the screen placement for the example begins the text on
page 1, line 1, with an indent set at position 6. The text ends on
line 2, position 72. The screen is "open" from line 1, position 1, to
line 3, position 1 (the end of the document). The remainder of the
screen is "unopened" because it does not contain characters. The
statement call cursor("'1,3,4S"') sends the cursor to line 3, position 1,
because position 48 is not an open area of the screen. The cursor
function gets as close as it can to the specified location.

When an entry is executing in a document, you do not always know which
areas of the screen are open or closed. If this is a concern in your
entry, assign the desired cursor position to a variable. Then use the
loc function to return the cursor position and compare it to the
variable.

Doc gloss Page 1 LIne 3 Pos 1
word Format Spacing 1 length 54
+(1 ~ ..•. ~ 1 ••• ~ •••• ~ 2 ••• ~ •••• ~ 3 .•. ~ •••. ~ 4 •.• ~ •••• ~ s ... ~ ~ 6 ...•••.. ~ 7 •••••••.•

Significant advances are being made In display technology, in color hard copy,
and In the human engineering aspects of graphics hardware and software ••

EI =

Figure 10-8. Text Example of Unopen Screen Areas

3/87 10-25 Glossary UserJs Guide

Function Usage List

Entry p gives you an example that uses the cursor and loc functions to
control the cursor position.' If you want to try this entry, set up a
document with a return (no text or spaces) on line 22, position 1, of
page 4. The cursor is called and sent to the location specified by the
variable curpos == "4,22,12". The arrival location of the cursor is
checked by comparing loc against the variable curpos. If they do not
match, the incorrect location is displayed in the status area, and the
error message tells you the cursor is in the wrong location. If they do
match, dollars is inserted by finsert at the cursor location.

The cursor is not able to go to position 12 since the screen area is not
open at that position. The entry sends the cursor as close as it can get
to "4,22,12", then allows you the option of moving the cursor to
position 12. To move the cursor, you have to space to position 12, which
opens that screen area, then press EXECUTE. If you do not want to move
the cursor, type quit and press EXECUTE. The exit statement stops the
entry.

entry p
{

dollars == $4,782.25
curpos = "4,22,12"
call cursor(curpos)

if(loc != curpos)
{

call status(loc)
call error("Cursor is in wrong location")
call posmsg(1,43, ''\034H'Move cursor to 4,22,12?\0341''')
call posmsg(2,43, ''\034H'Type y & EXECUTE\0341''')
call posmsg(3,43, "\034H'Quit? Type quit &
EXECUTE\0341'")
response .. keys
"\027"

if«response = = "y") I (response" - T»
{

}

call posmsg(1,43,"\034H'Move cursor to
4,22,12\0341'")
call posmsg(2,43,"\034H'& press
EXECUTE\0341'")
call keysin
call fmsert(dollars)
,,\027"
exit

if«response = == "quit") I (response = = "QUIT"»
{

(entry p continued on next page)

Glossary Users Guide 10-26 3/87

Function Usage List

(entry p continued)

"\027" exit

}
call finsert(dollars)

ERROR AND LOGICAL FUNCTIONS

• false
• globerr
• true

Using the Globerr Function

Use the glob err function to trap standard Fortune:Word function errors.
A standard function such as search, nextscrn, prevscrn, or go to sounds a
beep when it cannot complete its function. For example, the search
function beeps when it cannot find another instance of the word it is
searching for. The nextscrn function beeps when there is no next screen
to go to.

The globerr function helps you to branch, loop, or stop an entry
. gracefully if a standard function fails. Entries rand s use the globerr
function.

entry r
{

search "manufacturer" execute
if(globerr)
{

execute exit

cancel
insert

"computer "
execute

3/87 10-27 Glossary User~s Guide

Function Usage List

entry s
{

while (!globerr)
{

goto nextscrn
call finsert(text("1,2,1", "1,6,27"»

Using True and False Logical Functions

Use the true and false functions to assign logical values or to perform
logical comparisons with other values. The true function always returns
a value of 1. The false function always returns a value of O. Entries f
and g in Chapter 6 are examples that use true and false functions.

INTERACTIVE FUNCTIONS

• key
• keys
• keyin
• keys in

Using Interactive Functions

Interactive functions let you stop the entry so that you can type data
from the keyboard. There are two types of interactive functions: the
key and keys functions, which return their input to a variable or to a
function; and the keyin and keys in functions, which type their input
directly in the document.

The Key and Keys Functions

When you use the key and keys functions, the data is stored in a variable
or used by a function. It is not typed in the document unless you use
feed or finsert statements. There are two ways to write key or keys
input to the document with feed (or finsert, which is interchangeable
with feed in most instances):

• Assign key or keys input to a variable, then write the value to the
document by using one of the following statements:

variable = key
call feed(variable)

Glossary User:ls Guide 10-28 3/87

variable = keys
call feed(variable)

Function Usage List

• Use one of the following feed statements (in this case, key or keys
is not stored in a variable):

call feed(key)

call feed(keys)

The Key Function

The key function accepts one typed key from you, then immediately
continues entry execution.

Any key on the keyboard is accepted by key and may be assigned to a
variable. CTRL/y by itself is considered as one keystroke and is
accepted. Any characters that follow CTRL/y exceed the one-character
limit and therefore are not accepted by key. Because the character you
type as input to key does not appear on the screen, you may want to use a
conditional s'tatement to check the validity of the entered character.

Entries t and u show two methods you can use to validate a key entry.
Entry t assigns a value to a variable and uses key as the first
expression to the conditional if. When the key is entered, it is
compared to the second expression, answer. The entered key is not
assigned to a variable. In entry u, the entered key is stored in a
variable and the two variables are compared. Since entry u captures the
key in a variable, an incorrect answer (as well as a correct answer) can
be typed in the document.

entry t
{

answer = 7
call prompt("Enter Answer")
if(key = = answer)
{

"Correct, the answer is " call feed(answer)
}
else
{

"Incorrect, the answer is " call feed(answer)

"\027"

3/87 10-29 Glossary Users Guide

Function Usage List

entry u
{

real answer = 7
call prompt("Enter Answer: ")
answer"" key
if(answer = = realanswer)
{

else
{

}

"Correct, the answer is " call feed (answer)

"Incorrect, the answer is " call feed(realanswer) ", not"
call feed (answer)

"\027"

The Keys Function

The keys function accepts an unlimited number of character keys that are
assigned to a variable or a function. Execution continues when you press
EXECUTE or RETURN. Only character keys (including CTRL/y characters)
are accepted by keys. A beep sounds if a formatting or editing key, such
as Copy, Insert, Delete, or Search, is pressed.

The string from keys can be checked by a conditional function, but it is
more difficult than checking key because a greater amount of data can be
input. The characters you type in response to keys are typed on the
editing screen. Like posmsg messages, they overlay existing text and are
not cleared until you press CTRL/w or CANCEL and RETURN. This
overlay feature of keys can be confusing because it obscures existing
text. If you include the CTRL/w statement (,,\027") immediately after
the keys statement in your entry, you can clear keys input without
terminating the entry or disrupting your text.

Remember, input to key or keys does not become part of the document.
You must use feed or finsert to write key or keys directly or to write
their assigned variables to the document. When you want to write
directly to the document, it is simpler to use keyin or keys in, which
perform this function automatically.

The Keyin and Keysin Functions

The keyin and kcysin functions arc similar to key and keys except that
their input cannot be stored in a variable. Instead, it is written
directly to the document. Unless they are used as expressions, both
functions are preceded by the call statement.

Glossary Users Guide 10-30 3/87

Function Usage List

The keyin function accepts any keyboard key and writes it to the
document. Execution continues immediately after you type the key. You
cannot correct a mistake (even though you can see it on the screen) until
the entry concludes.

The keys in function accepts an unlimited numbers of keys. It accepts any
key on the keyboard except EXECUTE and CANCEL. Pressing EXECUTE
stops keysin entry, and entry execution continues. Pressing CANCEL
during keys in entry stops the glossary entry.

When recalling a glossary entry with keysin, you can use the Backspace
or cursor keys to correct typing mistakes. You cannot use the standard
editing functions, such as Insert or Delete, because they require EXECUTE
to conclude their function, which also concludes the keysin entry.

When writing a glossary entry with keyin or keysin, remember that both
functions place their input directly in the document. Existing text is
overwritten unless the cursor is on a Return or you are at the end of a
page or the end of a document. To avoid overwriting existing text in a
document, you can use the keyword insert. When you use keys in with an
insert in an entry, do not end the insert with an execute, as shown in
entry v. The EXECUTE that concludes keys in also ends the insert

When you use keyin or keys in to enter text in an interactive entry, you
may want to post messages in the prompt area to indicate when operator
intervention is required. It may not be obvious from the entry when
input is required.

entry v
{

insert
call keys in

Because of the text-overwriting characteristics inherent in keyin and
keys in, placement of the cursor is an important consideration when you
use interactive functions with display functions.

Using Interactive Functions with Display Functions

When you place a key or keys statement in your entry after a display
function statement like prompt, status, error, or posmsg, the cursor
jumps to the position immediately following the function message. Mter
you enter the requested data, the cursor jumps back to its original
location.

3/87 10-31 Glossary Users Guide

Function Usage List

This is not a particularly important consideration when you are using the
key function, since its single key is not displayed on the screen unless
you provide an instruction in the entry to do so. Entry x shows one way
to enter the key as text in a document.

When you use keys, the input to keys appears to overwrite whatever text
exists at the message location. These characters can be cleared by using
a CTRL/w statement (octal 027) in your entry.

When keyin and keys in functions are used with display functions, the
cursor remains in its position and entered data becomes part of the
document at that location.

Try writing some short test entries similar to the following examples if
you are uncertain how interactive and display functions affect one
another. When you find a combination that works best for your
application, put it in your entry.

entry x
{

call posmsg(11,40,"enter key: ")
x = key
call feed(x)

entry y
{

call keyin

)
call prompt("enter keyin: ")

entry z
{

call error("enter keys: ")
y = keys
call feed(y)

entry A
{

call status("enter keysin: ")
call keys in

Glossary Users Guide 10-32 3187

Function Usage List

MATHEMATICAL FUNCTIONS

• abs
• max
• min
• num
• number
• plC
• round
• truncate

Using Mathematical Functions

Mathematical functions can be used in a wide variety of entries. You need
not restrict their use only to mathematical applications. For example,
if you want to be sure the cursor is not on a number, use a combination
of num and char to check the character.

The num function returns a value of 1 (true) if its expression is numeric
and a value of 0 (false) if its expression is not numeric. The char
function is a document reading function that reads the character at the
cursor location. Entry B shows you how to be sure a character is not a
number. The entry moves the cursor right to boldface characters until a
number is encountered, then turns off the boldface mode.

entry B
{

mode "b"
while (num (char)
{

right

mode "b"

false)

As you have seen from previous examples, mathematical operators can be
used for counting loops. Entry C clears the entire screen line by line.
When the cursor returns to the top of the screen, the page, line, and
position numbers and the crosshair are displayed. Press CTRL/W to
redraw the screen. The entry uses the mathematical assignment operator
+ = to increment the variable linenumber.

3/87 10-33 Glossary User's Guide

Function Usage List

entry C
{

linenumber = 1
while(linenumber < 25)
{

call clrpos(linenumber,I,80)
linenumber + = 1

Creating a Calculator

Entry D is an entry for creating a calculator that can perform simple
mathematical calculations in a document. Although Fortune:Word has a
built-in Math function that is more complete and faster than Entry D,
this example shows how to use mathematical functions in a glossary entry.
(Entry D is in gloss3 on the Glossary Examples Diskette.)

Entry D uses all of the mathematical operators, the interactive functions
key and keys, conditional if else functions, and the display functions
posmsg and clrpos.

Note that posmsg uses octal numbers and attribute codes to display its
message in reverse video and sound a beep. Octal numbers and attribute
codes are described in Appendix C.

To use the entry, recall it from your document editing screen and follow
the instructions in the posmsg prompts.

entry D
{

operandI = 0
operator = 0
operand2 = 0
result = 0

call posmsg(25,I,"\034HD CALCULATOR IS ON \034ID\007")
call posmsg(I,42,"\034HD Use Document Number? Type y or n: \034ID")
call posmsg(2,50, "")
answer = key

if((answer = = "y") I (answer = = "Y"»
{

call clrpos(I,42,38)
call posmsg

(entry D continued on next page)

Glossary Users Guide 10-34 3/87

Function Usage List

(entry D continued)

}

(1,42,"\034HD Place Cursor on Number; Press EXECUTE
\034ID")
call keys in
operandI = number
ca11 c1rpos(I,42,39)

ca11 posmsg(2,42,"\034H' Absolute Value of Number? y or n:
\0341"')
absolute = key
if«absolute = = "y") I (absolute = = "y"»
{

}

call c1rpos(I,42,38)
call c1rpos(2,42,38)
operandI = abs(operandl)

else if((absolute = = "n") I (absolute = = "N"»
{

ca11 c1rpos(I,42,38)
ca11 c1rpos(2,42,38)

else if((answer = = "n") I (answer = = "N"»
{

}

ca11 c1rpos(I,42,38)
ca11 c1rpos(2,42,38)
call posmsg(I,42,"\034HD Enter Number & Press EXECUTE:
\034ID\007")
call posmsg(2,50, "")
operandI = keys
ca11 c1rpos(I,42,38)
call c1rpos(2,50,30)

ca11 posmsg
(1,42,"\034HD Enter Operator(+ ,-,*,/,%) & EXECUTE: \034ID\007")
ca11 posmsg(2,50, "")
operator = keys
ca11 c1rpos(I,42,38)
ca11 c1rpos(2,50,30)

ca11 posmsg(I,42,"\034HD Use Document Number? Type y or n: \034ID")
ca11 posmsg(2,50, "")
answer = key

if((answer = = "y") I (answer = = "Y"»
{

(entry D continued on next page)

3/87 10-35 Glossary User's Guide

Function Usage List

(entry D continued)

}

call clrpos(I,42,38)
call posmsg
(1,42,"\034HD Place Cursor on Number; Press EXECUTE
\0341D")
call keys in
operand2 = number
call clrpos(I,42,39)

call posmsg(2,42,"\034H' Absolute Value of Number? y or n:
\0341"')

absolute = key
if«absolute = = "y") I (absolute = = "y"»
{

}

call clrpos(I,42,38)
call clrpos(2,42,38)
operand2 = abs(operand2)

else if«absolute = = "n")
{

I (absolute = = "N"»

call clrpos(I,42,38)
call clrpos(2,42,38)

else if«answer = = "n") I (answer = = "N"»
{

call clrpos(I,42,38)
call clrpos(2,42,38)
call posmsg(I,42,"\034HD Enter Number & Press EXECUTE:
\0341D\007")
call posmsg(2,50, "")
operand2 = keys
call clrpos(I,42,38)
call clrpos(2,50,30)

if(operator = = "+")
{

result = operandI + operand2

else if(operator = = "-")
{

result = operandI - operand2

(entry D continued on next page)

Glossary Users Guide 10-36 3/87

Function Usage List

(entry D continued)

else if(operator = = "*")
{

result = operandI * operand2

else if(operator = = "/")
{

}
result = operandI / operand2

else if(operator = = "%")
{

result = operandI % operand2

call posmsg(I,42,"\034HD Calculation result is: \034ID\007")
call posmsg(2, 50,round(result,2»
call posmsg(25,42,"\034HD Press EXECUTE to continue \034ID\007")
call keyin
"\027"

Analysis of Entry D

The round and truncate functions: The round or truncate function reduces
result numbers to a manageable size. In the syntax example below, the
round function rounds result to two decimal places. The example uses the
result posmsg statement from entry D. If you did not use round or
truncate on a calculation like 222/13, the result would be
17.07692307692307692307.

call posmsg(2,50,round(result,2»

The round function adds 1 if the fractional part beyond the specified
decimal place is 5 or greater. If it is less than 5, nothing is added.
The result of the calculation 222/13 using round is 17.08.

Alternatively, you can use truncate. In the syntax example below, the
truncate function truncates result at two decimal places.

call posmsg(2,50,truncate(result,2»

The truncate function does not mathematically round result; it just chops
off the end. Using truncate, the result of 222/13 is 17.07.

Be sure to use round if you want a rounded result number.

3/87 10-37 Glossary Users Guide

Function Usage List

Calculating with a Number in the Document: The number function reads
a number from the document as part of your calculation. Entry D uses a
yes/no branch and the number function to allow you to use a number typed
in the text as an operand in the calculation.

The number function returns the number at the cursor location. It
recognizes numbers only; a value of 0 is returned if the number is
preceded by a required space or contains any alphabetical characters.
The number may contain a leading dollar sign, commas, a decimal point,
and/or leading or trailing plus or minus signs. (Refer to the functional
defInition of number in Chapter 9 for a detailed description.)

Using the abs function: The abs function takes the absolute value of a
number. Essentially, it strips away any signs (such as + or -) and
treats the number as an unsigned number. For example, suppose the office
administrator for the "Leche Dairy" has prepared the following letter.

Dear Customer:

Your bill for home dairy delivery in February was $47.32,
-4.27 credit due to overpayment for January, which amounts to $ __ .

Thank you for your patronage of Leche Dairy.

Elsie Bovine, Office Administrator

Ms. Bovine wants to use the overpayment amount in the letter as an
operand to the glossary calculator (entry D). However, the calculator
does not deal well with the minus sign in front of the number (-4.27).
By using the abs function she can use the signed number in the document.

Adding Additional Functionality to the Calculator: The calculator is
still a basic entry. As such, it is a good entry to experiment with.
See what additional features you can add to the calculator. Here are
some suggestions:

• Add a feature that allows you to insert the calculation result in
your document.

• Add a loop to allow another calculation without exiting the
calculator.

• Add features that save the numbers entered on the first calculation
and allow you to use them in the second calculation.

• Use the pic function to add commas to result numbers above 999.

Glossa,., Users Guide 10-38 3/87

Function Usage List

Using the Max and Min Functions

When you write glossary entries for others to use, you have no way of
knowing the exact document conditions during entry execution. This means
you have to build more document reading or entry analysis functions into
each entry.

The max and min functions provide an example of this concept. Assume
that you want to use the highest number value of three variables in your
entry. Two of the variables are declared and initialized in the entry,
but the third variable must be read from the document. You do not know
what the document number variable is because it is different each time
the glossary is used.

You can use the max function to provide the variable evaluation. Entry E
gives you an example that uses max to display the highest variable in the
status area. You could then write another statement that allows the
operator to make a decision based on the highest variable number
displayed by status. Entry E could also be written using the min
function to provide the value of the lowest variable.

entry E
{

thisis = 25
thatis = 44
call posmsg

(1,41,"\034HD Place cursor on number & press EXECUTE
\034ID")

call keys in
call clrpos(1,41,40)
docnumis = number
highest = max(thisis, thatis, docnumis)
call status(highest)
call posmsg(1,42,"\034HD Press EXECUTE to continue
\034ID\007")
call keyin
"\027"

OPERATING SYSTEM ACCESS FUNCTIONS

• command"!"
• command" I"
• date
• time
• unixfun
• unixpipe

3/87 10-39 Glossary User:1s Guide

Function Usage List

Using Operating System Access Functions

These functions allow you to include operating system commands in an
entry. If you have never used the operating system at the shell command
level, be very careful about experimenting with these functions. You do
not need to understand operating system commands to use the date and time
functions.

The Date and Time Functions

Use the date function to return the system date and time. Use the time
function to return only the time. Entry J in the section "String
Functions" in this chapter shows you how to use the substr and if
functions to modify the value returned by date so that it can be used in
a business letter.

Entry F is a glossary entry you can use to periodically display the date
and time on your text document editing screen. Remember, both the date
and time function take their values from the system date and time.

entry F
{

call posmsg(2,38,"\034HD IT IS NOW: \034ID\007")
call posmsg(2,Sl,date)
call posmsg(2S,37,"\034HD Press EXECUTE to clear time \034ID")
call keyin
"\027"

Note that the date function is used as an expression to the posmsg
function. Since the date function returns a string value (the date) it
is used in place of the third expression in the posmsg argument, which is
normally a quoted string. You could use this method for any function
which returns a displayable value.

Entry F uses octal number and attribute code combinations to display the
posmsg message in reverse video. Octal numbers and attribute codes are
described in Appendix C. The octal number for CTRL/w is used to clear
the posmsg messages from the editing screen when you press EXECUTE.

Entry G uses the time function to display just the time. Note that
entry G uses unixfun to execute the command "sleep 7" to display the time
for seven seconds.

Glossary Users Guide 10-40 3187

Function Usage List

entry G
{

call posmsg(2,42,"\034HD THE TIME IS: \034ID\077")
call clrpos(2,56,1)
call posmsg(2,58,time)
call unixfun("sleep 7")
call clrpos(2,40,35)

The Unixfun and Unixpipe Functions

Both of these functions give you access to a wide range of operating
system commands you can invoke from the document editing screen.

When you call unixfun in your entry, it performs the following actions:

1. Escapes from the document to the Bourne shell sh (this action is
transparent; you do not literally see this occurring).

2. Execut,es the command in its argument; for example, the statement
call unixfun{"pwd") displays the current working directory pathname
at the cursor location in your text document.

3. Displays the standard output from the command at the cursor location
in your text document. Characters displayed by unixfun are not
written to the document and can be cleared from the screen by
pressing CTRL/w or including the octal "\027" in the entry.

Because the operating system command must be an expression in the
argument to unixfun, you cannot use the interactive functions keys or
keys in to enter the argument to unixfun. You can, however, use the
interactive functions key or keys by assigning the input to a variable,
as shown in the following example:

xinput = "keys"
call unixfun(xinput)

An alternative to unixfun is the command "!" keyword statement. See the
next section in this chapter for a description of command "!".

When you call unixpipe in your entry, it performs the following actions:

1. Escapes to the Bourne shell sh.

2. Executes its commands.

3. Writes the standard output of the command in your text document.
The standard output becomes a part of the document.

3/87 10-41 Glossary Users Guide

Function Usage List

The keyword statement command" I" is an alternative to unixpipe. See
the next section for a description of command "I".

You must assign the value returned by unixpipe to a variable as shown in
entry H. There are two expressions in the argument to unixpipe.
Expressionl is the operating system command in quotes; expression2 is the
data expected by the command. Since very few commands expect data, the
second expression may be a null, as shown in entry H.

entry H
{

x = "who"
b = ""
y = unixpipe(x,b)
call finsert(y)

Refer to the functional description of unixpipe in Chapter 9 for two
glossary entry examples that use unixpipe.

Using command "I" and command" I"

Both command "!" and command "I" are not functions, but keywords.
They are included here because their action is equivalent to unixfun and
unixpipe. Entry I is an example that uses both command "!" and
command «I".

entry I
{

command "I"
"sort documentb -0 documentb"
return
execute

command "I"
execute
"cat documentb"
return

Glossary Users Guide 10-42 3/87

Function Usage List

Entry I uses command "!", command "I", and the operating system sort
command to sort a Fortune:Word document and write the sorted result to a
text document you are currently editing. (To sort text on the document
editing screen, use the keyword statement command merge or command
MERGE.)

To try this entry, follow these steps:

1. Create a document named documentb.

2. Type a simple list of words to be sorted, one word per line.

3. You MUST be in a document of a different name to try this entry. If
you use this entry in the document to be sorted, the operating
system cannot access the document because it is in use by
Fortune:Word. (You can press CANCEL twice to end the entry and
return to the document.)

4. Press GL and type I.

If you are unfamiliar with command "!" and command "I", try using both
commands a few times from your text document before you use them in a
glossary entry.

To use command "!" from your document editing screen, press COMMAND
and type! You are now in the shell. Type a command and press EXECUTE
or RETURN. The output of the command is displayed on the screen, and the
prompt Press EXECUTE to continue appears. Press EXECUTE. You are
returned to the document editing screen.

To use command" I" from your document editing screen, press COMMAND,
then type I. The prompt Replace what? appears. Highlight the
document text you want to replace and press EXECUTE. You are now in
the shell. Type a command and press EXECUTE or RETURN. The output of
the command replaces the text you highlighted in your document.

Good operating system commands to practice with are who, which gives you
a listing of all users currently logged onto the system, or Is, which
gives you a listing of your current directory.

When the output of unixpipe is returned to your document, it is not
formatted like it is in the shell. You may want to write a glossary
entry to reformat it in your document.

STRING FUNCTIONS

• cat
• index

3/87 10-43 Glossary Users Guide

Function USRge List

• len
• max
• mIn
• occur
• seg
• sub
• substr

Using String Functions

The previous entries in this book have shown you how to assign alphabetic
or numeric strings to variables, how to type the string value of a
variable in your document, and how to compare one string value against
another.

String functions provide even more flexibility in using string values.
You can use string functions in many ways. Some suggestions for their
use follow:

• Extract a portion of the string and assign it to another variable

• Substitute a segment of a string with a different segment

• Find out if a specific sequence of characters is included in the
string

• Combine strings from two different variables to form one string

• Find out how many characters a string contains

• Compare multiple strings to determine their highest or lowest ASCII
collating value

Using Substr to Reformat the Date Function

Entry J uses the substr and cat functions to format the value returned by
the date function so that it can be used in a business letter. The date
function returns the system date and time in this format:

Fri Jul 14 19:25:14 1987

For most business letters, you probably want the date in the format

July 14, 1987

GIOSSRry Users Guide 10-44 3/87

Function Usage List

In entry J, the output of date is assigned to today. The substr function
extracts the month from today by specifying positions 5 through 7. This
value is stored in month. The full spelling of the current month plus a
space is then reassigned to the variable month.

The day and year are extracted from today by substr and assigned
respectively to day and thisyear. The cat function is used to
concatenate a comma and the year (with the leading space) into the
variable year. The variables month and day are assigned to this day by
cat, and this day and year are concatenated and assigned to currentdate,
which is typed in the document.

Entry J can be called as a subroutine by other entries that require the
date in a standard business format.

entry J
{

today = date

month = substr(today,5,7)
if(month = = "Jan") {month = "January"J
if(month = = "Feb") {month = "February"J
if(month = = "Mar") {month = "March"J
if(month = = "Apr") {month = "April "}
if(month = = "May") {month = "May"J
if(month = = "Jun") {month = "June"}
if(month = = "Jul") {month = "July"J
if(month = = "Aug") {month = "August "J
if(month = = "Sep") {month = "September"J
if(month = = "Oct") {month = "October"}
if(month = = "Nov") {month = "November"J
if(month = = "Dec") {month = "December"}

day = substr(today,9,lO)
if«substr(day,l,l)) = = "")

{
day = substr(day,2,2)

thisyear = substr(today,20)
year = cat(",",thisyear)

this day = cat(month,day)
currentdate = cat(thisday,year)
call feed(currentdate) return

3/87 10-45 Glossary User)s Guide

Function Usage List

When you use a string function like substr, you must know the position of
the string segments to extract them. To determine the positions before
you write your entry, write a short entry to check the string. Be
careful, however, which date function you use in your entry. Entries K
and L both return the date; however, the values returned by entry K
(which uses the glossary date function) and entry L (which uses command
"I" to return the system date) are different, as shown below.

entry K
{

today = date
call feed(today)

entry L
{

command "I"
execute
"date"
execute

This is the date returned by entry L, which uses command "I" to bring
the system date directly from the operating system:

Tue Tun 16 08:17:57 PDT 1987

This is the system date returned by the date function in entry K:

Tue Tun 16 08:19:59 1987

The direct system date includes the timezone "PDT." If you used this
date to count positions for substr, your position count after the time
segment would be off by four characters.

Using the Len function

Use the len function to determine how many characters are in a string.
Entry M is used as a subroutine for an interactive mailing list entry.
If the operator types the full name for a state rather than the
two-character abbreviation, an error message is displayed and the
operator is asked to retype the state.

Glossary Users Guide 10-46 3/87

entry M
{

call prompt("Enter state: ")
state = keys
call clrpos(1,50,31)

if(len(state) > 2)
{

J

call error("State too long, re-enter: ")
state = keys

call feed(state)
"\027"

Function Usage List

The index, occur, seg, and sub functions can be used to select and test
for specific words or phrases. These functions can be used in Records
Processing control glossary entries. See the Fortune: Word Records
Processing Users Guide for examples.

3/87 10-47 Glossary User~s Guide

10-48

Chapter 11

Administering Glossary Entries

Administering entries is just as important as writing them. It is a good
idea to frequently review and update glossary entries. This chapter
presents information on the following topics:

• Entry planning
• Troubleshooting
• Obsolescence
• Setting up and maintaining a glossary entry log book
• Administering entries in a multiuser environment
• Security

When you become proficient in Glossary, two things usually occur:

• You rapidly acquire a large collection of entries.
• You write entries for other people to use.

When this occurs, the following considerations become vital:

• Entry planning: Why do you need the glossary entry? How long will
it take to write? Is the time spent writing it worth it? Is the
planned application suitable for a glossary entry? Would it be
better to use a spreadsheet or Records Processing?

• Applications: What does the entry do? Who should use it? How do
you use it?

• Access: Where are the glossaries on the system? Which entry is in
which glossary?

• Runtime: How long does an entry take to run? How do you schedule
runtime? How much system space does it consume?

• Backup, storage, and retrieval: Where are the entries stored? How
often do glossary documents need to be backed up? Where is the
printed copy kept?

3/87 11-1 Glossary Users Guide

Administering Glossary Entries

• Obsolescence: Is an entry still useful? Can it be updated or
should a new entry be written?

• Duplication: Why are there different versions of the same entry on
the system? Which one is correct?

• Glossaries in a multiuser environment: How did the glossary get
renamed? Who's using the glossary when you want to edit it? Who
made all those weird changes to an entry?

• Debugging (troubleshooting): What syntax error? This isn't a bug,
it's a monster!

This chapter discusses each of these topics and gives you some practical
advice and technical tips.

ENTRY PLANNING

Consider writing a glossary entry for the following reasons:

• When you continually rekey or copy the same text. For example, an
address, legal paragraphs, form letters, technical terms, or
standard forms.

• When you type tables in a document, then hand-calculate and
inserting the results. You can decide to use the Math feature, a
glossary entry, or a combination of both.

• When you must fill out complicated standard forms that are
pre-printed on tractor-fed computer paper or snap-apart carbon
copies. You can use the Forms Processing feature, a glossary entry,
or a combination of both.

• When you are working with mailing lists, parts lists, or inventory
lists where some items remain standard and other items change
periodically. Glossary entries are an integral part of the Records
Processing feature.

Of course, there are many other reasons for writing an entry. Some of
them will be particular to your own working environment. The reasons
listed are the most universal applications. If you are performing the
same task on a periodic basis, consider writing a glossary entry.

Glossary Users Guide 11-2 3/87

Administering Glossary Entries

When you are planning an entry to perform production tasks, compare the
amount of time required to write the entry against the amount of time
saved by the entry. Obviously, you do not want to spend three hours
writing an entry that saves five minutes one time only. But, if you
spend three hours writing an entry that saves five minutes a day, your
time is well spent.

Sometimes you can get too ambitious with a glossary entry. If you are
planning to use glossary entries for extremely large financial
spreadsheets or massive mailing lists, consider using another
application, such as a spreadsheet, database program, or Records
Processing. These applications are specifically designed to serve your
spreadsheet or data base needs and are more efficient than a glossary
entry for these uses.

APPLICATIONS

It is a good idea to provide three kinds of information for every entry
you write:

• What the entry does (its application)

• How the entry flow is executed (why it works the way it does)

• How the entry is used (which keys you press or what you type if it
is interactive)

Set up a "Glossary Entries Information Notebook." Provide a separate tab
for each glossary and include the following information:

• Index of the glossary that shows each entry label with a one-line
comment about the entry

• Printed copy of each entry

• Instruction sheet for entries that are long enough or complicated
enough to require instructions

The amount of information required for an entry increases with the
complexity of the entry. Comment lines in the entry are probably
sufficient for simple entries. Longer entries or entries designed for
others to use may require printed directions.

The effort you make in setting up and maintaining adequate glossary
records helps save you time in keeping track of entries and their uses.

3/87 11-3 Glossary User's Guide

Administering Glossary Entries

ACCESS

In addition to knowing how your entries work and how to use them, you
need to know where they are on the system. If you have a small system,
you can probably remember which glossarys are in which library. On a
multiuser system with four or more users, this can sometimes be a
problem.

One solution is to create a library specifically for glossaries. Call
this library "glos" (or something similar and short). Keep all multiuser
glossaries in this library so that they are in one place and are
accessible by all users.

Do not create this library through Fortune:Word. Instead, use the
newuser login to make a new account. This way, you place the library
under the user login directory and shorten the pathname you must use to
attach the glossary from your document. To attach a glossary from
another library, you must give the full pathname, which includes the /u
directory, the user's login directory, the glossary library, and the
glossary name. The full pathname might look like this example:

/u/barbara/Glossaries/usegl

To attach the glossary from the /u directory, the pathname is
/u/gios/glossaryname, which is shorter. To edit a glossary you can
either log in as glos or use the full pathname, /u/gios/glossaryname.

Linking A Glossary to Another Library

If you are familiar with using operating system commands, you can use the
In command to link glossaries to libraries and sublibraries. The .gI
file contains the executable form of the glossary. You can link just the
.gI file. When you do this, any changes made to the glossary from its
library are always reflected in each library the .gI file is linked to.
You can link the same file to many libraries. You can only link a file
from an operating system shell. To link a .gI file, follow the steps
below:

1. Go to an operating system shell.

2. Change to the library that contains the glossary you want to link by
typing cd libraryname and pressing RETURN.

3. Type In glossaryname.gl pathname and press RETURN, where
pathname is the name of the library where you want the linked
glossary to reside.

Glossary Users Guide 11-4 3/87

Administering Glossary Entries

4. If you want to verify that the document has been linked, use the 11
command. The number of links to a file are shown in the second
column.

RUNTIME

Runtime is a real consideration in using entries. All glossary entries
execute in the "foreground." Your terminal is unavailable for use with
other applications while the entry is running. With a multiuser system,
you can use another termin:tl to run the entry. However, in a busy
production environment, th.s is not always possible. As you have
learned, you can write entries in ways that help speed up runtime. For
example, by turning the display refresh off with the call display(false)
statement.

You could create a schedule to run lengthy entries during lunch hours, in
the evenings, or overnight. Including a "glossary in progress" message
in your entry helps notify people that an entry is running and that the
terminal should not be used until the entry is finished. Entry i in the
"Display Functions" section of Chapter 10 includes this message.

If your entries take excessively long to run, Glossary may not be a
suitable solution for your application.

BACKUP, STORAGE, AND RETRIEVAL

Like any Fortune:Word document of value, glossary documents should be
backed up to an archive diskette every time a change is made. Clearly
label the diskettes and store them in a safe place.

You can keep a record of archived glossary documents by printing the
archive diskette index and placing it in the front of your "Glossary
Entries Information Notebook."

Always keep a printed copy of each entry. If someone deletes the entry
from the system and you do not have a backup copy on an archive diskette,
you can retype the entry rather than rewriting it.

OBSOLESCENCE

Entries can become obsolete when office procedures change, when you think
of a better entry, or when you improve an old entry. Periodically review
entries and delete those that are obsolete. They take up space and can
cause confusion if someone tries to use them.

3/87 11-5 Glossary Users Guide

Administering Glossary Entries

When you update an entry, get rid of the previous version. You can keep
a printed copy of all your old entries, or have a special archive
diskette just for obsolete entries.

Try to write entries with an eye toward future modification. Comment
lines and documentation help a lot when you are updating an old entry.
It is easy to forget what your logic was or exactly what the entry is
doing if the entry flow is not commented. Working on someone else's
entry is even more difficult.

If possible, have periodic meetings of all the glossary writers in your
department to review entries. You can also discuss and establish
standard commenting and documenting procedures. If your group writes a
large number of entries, these meetings can help spread information about
glossary usage and can provide a vehicle for sharing new entries.

ENTRY DUPLICATION

Several versions of the same entry can cause a lot of confusion. Be sure
to note revision numbers on your entries. File or delete old versions.
Notify all your entry users when you replace an old entry with a new one.

GLOSSARIES IN A MULTIUSER ENVIRONMENT

Several users can attach and use the same glossary at the same time. You
cannot edit, archive, copy or move a glossary while another user has it
attached or is editing it.

You must be especially careful with glossaries on a multiuser system. A
user who is logged on the system under a different account than yours can
delete, rename, or move the glossary to an archive diskette without your
knowledge. Be sure to check with all users on your system before you
perform any of these functions on a glossary.

Use the comments line on the Glossary Summary screen for notes about the
glossary. A comment like "See System Administrator before making any
changes" informs someone accessing the document that you do not want
changes made without your permission.

Notations in your glossary notebook can help clarify who is responsible
for creating and maintaining specific entries.

If you are concerned about security or do not want to permit other users
to edit your glossaries, you can:

• Password your glossary (see the Fortune:Word Reference Guide for
information about password protecting documents).

Glossary Users Guide 11-6 3/87

Administering Glossary Entries

• Change file permissions on your glossary (refer to the
Fortune: Word Reference Guide and FOR:PRO Users Guide for
information about file permissions).

DEBUGGING ENTRIES (TROUBLESHOOTING)

A "bug" is programming parlance for an error in an entry. Debugging is
the process of finding and correcting bugs. Most bugs can be classified
as errors in the following categories:

• Syntax
• Execution
• Logic

Syntax Bugs

Syntax bugs occur when you violate a rule in Glossary language. They can
be errors in statement construction, incorrect use of a function, a
misspelled k~yword or function, too many or too few expressions in a
function argument, missing identifiers, or incorrectly named variables.

As you have already experienced, your glossary compiler helps you find
and correct syntax bugs. Sometimes the messages are a bit cryptic, but
they generally point you in the right direction. Refer to Appendix E for
a descriptive list of all error messages associated with Glossary
functions.

Execution Bugs

Execution bugs occur while the entry is running and usually cause the
entry to stop abruptly (crash). They can result from trying to divide by
zero, from using an incorrect keyword sequence for a standard
Fortune:Word function, or from leaving out an input statement (like key
or keysin). Even if the entry verified, it may not execute correctly.
The glossary compiler cannot detect execution bugs unless they are
related to syntax bugs.

Logic Bugs

Logic bugs are sometimes the most difficult errors to track down because
they are particularly prevalent when you are using loops and branches.
Some of the following suggestions may help you to detect these errors:

• Try temporarily removing a loop to test the statement execution for
one pass.

3/87 11-7 Glossary Use~s Guide

Administerina GlosslI"1 Entries

• Check all your variable names and be sure they are initialized to 0
or an initial value.

• If you use the same variable more than once in the entry, make sure
it's spelled correctly each time.

• Be sure you do not inadvertently duplicate variables.

• Check your subroutine calls-are you calling the correct entry?

A very subtle logic bug can occur when you are performing mathematical
calculations. The entry can appear to be running properly, but the
calculations are wrong. Always check your entry results against a set of
known results. If you write an entry to add a column of figures, also
add the column on a hand calculator to be sure the entry is adding
correctly.

Points to Remember

Here are some suggestions about writing and debugging entries:

• Don't get frustrated if the entry doesn't work right the first
time.

• The bug is probably something simple.

• Build the entry gradually, testing each part before you proceed to
the next step.

• Debug your entry systematically by developing a troubleshooting
routine.

GloSSII,., Users Guide 11-8 3/87

Chapter 12

Glossary Information for
FOR:PRO Users

FORTUNE:WORD FILE STRUCTURE

Each Fortune:Word document is made up of at least three fIles. Two other
types of files are generated for special types of Fortune:Word documents
(glossary and exception dictionary), which must be compiled before they
are used in Fortune:Word. You can perform fIling operations on
Fortune:Word documents from the FOR:PRO shell. If you do this, be sure
you copy or move all the fIles associated with each Fortune:Word
document. The fIles and their extensions are listed in Table 12-1.

Table 12-1. Fortune:Word Document Files

Fortune:Word
Document Files

fIlename

fIlename. de

fIlename.fr

fIlename.gl

fIlename.ex

3/87

Description

The text of a document

The history, statistics and page pointer information
for the document

The formats, header, footer, work, note, and footnote
pages for the document

The compiled and executable form of a glossary
document

The compiled and executable form of an exception
dictionary

12-1 Glossary Users Guide

Glossary Information for FOR:PRO Users

When you perform a FOR:PRO command such as rm, cp, or mv, follow the
Fortune: Word document name by the metacharacter (*) to ensure that all
fUes are included. For example, the following command removes the
Fortune: Word fUe report from the directory (library).

rm report*

THE .GL FILE

The .gI fUe is only present if the document is a compiled glossary.
When a glossary is created and verified, the glossary compiler creates
the .gl fUe.

The text file (base fUe without an extension) is the glossary source
fUe. The object fUe is the .gl code for the glossary entries.

Because the .gl fUe is fully executable without the presence of the
other associated fUes, there are some interesting things you can do with
it. Some of them are listed below:

• Use the In command to link the .gl fUe across directories. Users
<;:an then conveniently use the glossary entries without giving the
full pathname when they attach the glossary document. See
Chapter 11 for information on how to link a fUe.

• If you want to maintain write security on your glossary documents,
change read and write permissions on the fUes. The .gl fUe is
still executable, but users without the proper permissions cannot
edit the glossary and change the entries. See Appendix C in the
Fortune: Word Reference Guide for information on ownership and
permissions.

• To save space on the system you can delete all but the .gl file.
Since it contains the object code, it is executable without the
other fUes. Be sure to copy the entire fUe to an archive diskette
before you delete any fUes. When you want to make additions to the
glossary or edit an entry, you can load the three fUes back on the
system, edit the glossary and recompile it.

Glossary Users Guide 12-2 3/87

Chapter 13

Glossary Entry Examples

Your Fortune:Word Glossary Examples Diskette contains glossary documents
glossI, gloss2a, gloss2b, and gloss3. All the examples shown in this
book are in these glossary documents except the glossary by example
entries you create.

You can retrieve the glossaries from the diskette as you would any other
Fortune:Word documents. See the Fortune:Word Reference Guide for
information on retrieving documents from an archive diskette.

You can attach each of the glossary documents and use the entries in it
as you learn Glossary. Using these glossaries saves you typing time.
You can edit them and modify any entry for your own use.

In addition to glossary entries, the example tables used with some
entries are provided on Page N of glossary document gloss2b.

CONTENTS OF GLOSSARY DOCUMENTS

The entries in each glossary document are shown in the following list.
The chapter in this book where the entry is discussed is shown in a
comment line after the entry label. Page numbers correspond to the page
in the glossary document.

Entries in Glossary Document: gloss1

entry a
entry b
entry c
entry f
entry g
entry h
entry i
entry j
entry k

3/87

/*in Chapter 1 * /
/*in Chapter 1 * /
/*in Chapter 1 * /
/*in Chapter 4* /
/*in Chapter 4* /
/*in Chapter 4* /
/*in Chapter 4*/
/*in Chapter 4* /
/*in Chapter 4* /

13-1

1
2
3
4
5
6
7
8
9

Glossary User>s Guide

Glossary Entry Examples

Entries in Glossary Document: gloss2a

entry a I*in Chapter 5* 1 1
entry b I*in Chapter 5* 1 2
entry c I*in Chapter 5* 1 3
entry C I*in Chapter 5* 1 4
entry d I*in Chapter 6* 1 5
entry e I*in Chapter 6* 1 6
entry f I*in Chapter 6* 1 7
entry g I*in Chapter 6*1 8
entry h I*in Chapter 6* 1 9
entry i I*in Chapter 6* 1 10
entry j I*in Chapter 6* 1 11
entry k I*in Chapter 6* 1 12
entry 1 I*in Chapter 6* 1 13
entry m I*in Chapter 6* 1 14
entry n I*in Chapter 6* 1 15
entry 0 I*in Chapter 6* 1 16
entry p I*in Chapter 6* 1 17
entry r I*in Chapter 6* 1 18
entry s I*in Chapter 6* 1 19
entry t I*in Chapter 6* 1 20
entry u I*in Chapter 6* 1 21
entry v I*in Chapter 6* 1 22
entry w I*in Chapter 6* 1 23
entry x I*in Chapter 6* 1 24
entry y I*in Chapter 6* 1 25
entry z I*in Chapter 6*1 26
entry B I*in Chapter 6* 1 27
entry D I*in Chapter 6* 1 28
entry E I*in Chapter 6* 1 29
entry F I*in Chapter 6* 1 30
entry G I*in Chapter 6* 1 31
entry H I*in Chapter 6* 1 32
entry I I*in Chapter 6* 1 33
entry J I*in Chapter 6* 1 34
entry K I*in Chapter 6* 1 35
entry L I*in Chapter 6* 1 36

Entries in Glossary Document: gloss2b

entry A I*in Chapter 7* 1 1
entry a I*in Chapter 7* 1 2
entry b I*in Chapter 7* 1 3
entry c I*in Chapter 7* 1 4
entry d I*in Chapter 7* 1 5
entry e I*in Chapter 7* 1 6
entry f I*in Chapter 8* 1 7

Glossary Users Guide 13-2 3187

entry w
entry x
entry y
entry z
entry g
entry 0
entry P
entry h
entry i
entry j
entry k
entry 1
entry Z
entry K
entry L
entry m
entry n
entry 0

entry p
entry q

I*in Chapter 8*1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8*1
I*in Chapter 8* 1
I*in Chapter 8* 1
I*in Chapter 8* 1

Entries in Glossary Document: gloss3

entry a
entry b
entry c
entry d
entry e
entry f
entry g
entry h
entry i
entry j
entry k
entry 1
entry m
entry n
entry 0

entry p
entry r
entry s
entry t
entry u
entry v
entry x
entry y
entry z

3187

I*in Chapter 9* 1
I*in Chapter 9* 1
/*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10*1
I*in Chapter 10*1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10*1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in· Chapter 10*1
I*in Chapter 10*1
I*in Chapter 10* 1
I*in Chapter 10* 1

13-3

Glossary Entry Examples

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Glossary User's Guide

Glossary Entry Examples

entry A
entry B
entry C
entry D
entry E
entry F
entry G
entry H
entry I
entry J
entry K
entry L
entry M
entry 1
entry 2
entry 3
entry 4
entry 5

I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10*1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10*1
I*in Chapter 10*1
I*in Chapter 10* 1
I*in Chapter 10* 1
I*in Chapter 10*1
I*in Chapter 10* 1
I*in Chapter 10*1
I*in Appendix C* 1
I*in Appendix C* 1
I*in Appendix C* 1
I*in Appendix C* 1
I*in Appendix C* 1

Glossary Users Guide 13-4

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3187

Appendix A

Reserved Words and Symbols

The words and symbols in this appendix are reserved for Glossary and
Records Processing keywords, functions, and operators. Reserved words
cannot be used as variable names or identifier names in any glossary
program.

Functions marked with an asterisk (*) can only be used in Records
Processing control glossary documents.

RESERVED WORDS

abs display INDENT NORTH SEARCH
ascending* do indent north search
backspace DOWN index NOTE seg
beg_doc down INSERT note select-record *
bot-page EAST insert num sort*
call east jump number SOUTH
CANCEL else key occur south
cancel encLdoc keyin PAGE space
cat entry keys page spacing
CENTER error keys in page-...1lo status
center EXECUTE LEFT pic STOP
char execute left position stop
clrpos exit lefLrnargin posmsg sub
COMMAND false len PREVSCRN subscript
command feed line prevscrn substr
COPY finsert loc prompt SUPERSCRIPT
copy FORMAT max quote superscript
cursor format MERGE REPLACE TAB
date gl merge replace tab
DECIMALTAB globerr mm RETURN text
decimaltab glossary MODE return texLlen
DECTAB GOTO mode RIGHT thru*
dec tab go to MOVE right time
DELETE HELP move righLrnargin top_page
delete help NEXTSCRN round true
descending* if nextscrn save_record* truncate

3/87 A-l Glossary Users Guide

RESERVED WORDS (Continued)

unixfun
unixpipe

UP
up

RESERVED SYMBOLS

WEST
west

while
word

The characters in the following list are reserved for use by Glossary and
can only be used for their designated purpose.

Function

Mathematical
Relational and Equality
Logical
Assignment
Mathematical Assignment
Statement

Glossary Users Guide

Symbol

+ - * / %
< > <= >= !=
! & I

+= *= /= %=
() {} []

A-2 3/87

Appendix B

Comparison of Glossary Keywords
and Functions

The Glossary language is l'sed by two Fortune:Word applications: Glossary
and Records Processing. l:.lthough the glossary-writing procedure is
similar for both, the glossary keywords and functions you can use are
different for each application.

• Glossary uses all keywords and functions except special Records
Processing selecting and sorting functions.

• Records Processing uses some Glossary functions, plus special
record selecting and sorting functions.

The following list shows which keywords and functions can be used for
each application.

KEYWORDS AND FUNCTIONS USED IN FORTUNE:WORD
APPLICATIONS

Records
Name Type Glossary Processing

abs function x x
ascending function x
backspace keyword x x
beg_doc function x
bot-page function x
call function x x
cancel keyword x x
cat function x x
center keyword x x
char function x
clrpos function x
command keyword x
COPY keyword x
copy keyword x

3/87 B-1 G10SSlJry Users Guide

Records
Name Type Glossary Processing

cursor function x
date function x
decimaltab keyword x
dectab keyword x
delete keyword x
descending function x
display function x
do function x x
DOWN keyword x
down keyword x
EAST keyword x
east keyword x
else function x x
end-doc function x
entry label x x
error function x x
execute keyword x
EXECUTE keyword x
exit function x x
false function x x
feed function x
finsert function x
FORMAT keyword x
format keyword x
gl keyword x x
globerr function x
glossary keyword x x
goto keyword x
help keyword x
if function x x
indent keyword x
index function x x
insert keyword x
jump function x x
key function x x
keyin function x
keys function x x
keysin function x
LEFT keyword x
left keyword x
lefLmargin function x
len function x x
line function x
loc function x

Glossary Users Guide B-2 3/87

Records
Name Type Glossary Processing

max function x x
MERGE keyword x
merge keyword x
mln function x x
mode keyword x
MOVE keyword x
move keyword x
nextscrn keyword x
NORTH keyword x
north keyword x
note keyword x
num function x x
number function x
occur function x x
PAGE keyword x
page keyword x
page-Ilo function x
pic function x
position function x
posmsg function x
p revs crn keyword x
prompt function x x
quote keyword x
REPLACE keyword x
replace keyword x
return keyword x
RIGHT keyword x
right keyword x
rightJnargin function x
round function x x
save_record function x
SEARCH keyword x
search keyword x
seg function x x
select-record function x
sort function x
SOUTH keyword x
south keyword x
space keyword x
spacing function x
status function x x
stop keyword x
sub function x x
subscript keyword x
substr function x x

3/87 B-3 GlomJry Users Guide

Records
Name Type Glossary Processing

SUPERSCRiPT keyword x
superscript keyword x
tab keyword x
text function x
text-len function x
thru function x
time function x
top_page function x
true function x x
truncate function x x
unixfun function x
unixpipe function x
UP keyword x
up keyword x
WEST keyword x
west keyword x
while function x x
word function x

Glossary Users Guide B-4 3/87

Appendix C

Character Codes

This appendix describes how to use attribute codes in your glossary
entries. Information is provided on the following topics:

• The ASCII collating sequence
• Octal number conversions
• Attribute codes
• Fortune:Word Document Format Control Codes

ASCII COLLATING SEQUENCE

The ASCII (American Standard Code for Information Interchange) collating
sequence is a standard set of numeric codes used to represent characters.
The attribute codes in Table C-l are listed in order of the ASCII
collating sequence.

NOTE: Glossary uses the operating system ASCII
collating sequence. Fortune:Word functions that sort
use a case-insensitive ASCII collating sequence, and
that sequence can be modified. See Appendix E in the
Fortune: Word Reference Guide for more information.

An example of how you can use the ASCII collating sequence with Glossary
is shown in entry 1. This entry underscores a word, excluding
punctuation and numbers, by comparing characters according to their ASCII
number value.

entry 1
{

mode"_"
while (« char > = "A") & (char < = "Z")) I «char > = "a") & t char < = "z")))

right

mode "_"

3/87 C-l Glossary User's Guide

OCTAL NUMBER CONVERSIONS

Use octal numbers in your glossary entries to include a control character
in the program. For example, entry 2 includes two octal codes: \007
(CTRL/G) sounds the keyboard bell, and \027 (CTRL/W) refreshes the
screen display.

entry 2
{

call posmsg(1,43, "Enter Amount: \007")
amount = keys
"\027"
call feed(amount)

Octal codes you may want to use in glossary entries are listed below:

Control \ \034
Keyboard bell \007
Page (required) \014
Refresh screen \027
Return (hard) \013
Return (soft) \012
Tab \011

Table C-2 shows control codes and the correct glossary syntax for these
octal codes.

ATTRIBUTE CODES

Glossary provides you with a set of keyword abbreviations you use to add
emphasis such as boldface or underline to text you insert in a document.
These abbreviations can be embedded in strings used by variables or
functions. Table D-4 in Appendix D lists these keyword abbreviations.

The only glossary functions that do not accept keyword mode abbreviations
are the display functions. When you want to add emphasis to screen
messages that do not become part of the document, you must use attribute
codes to add emphasis. The attribute codes are letters or symbols that
set a specific emphasis mode or combination of modes. Attribute codes
and the modes they set are shown in Table C-l.

Glossary Users Guide C-2 3/87

Entries 3 and 4 illustrate the difference between using keyword mode
abbreviations and attribute codes to highlight a message. In entry 3,
the keyword abbreviation \b for boldface is embedded in the call feed
string. In entry 4, which uses the posmsg function, the attribute code
for boldface must be preceded by an octal code and an operator selector
(the operator selectors H and I are described below).

entry 3
{

call feed("\bCustomer Name:\b ")
return(2)
call keysin

entry 4
{

call posmsg(1,43,"\034H' Customer Name:\034I''')
name = keys
"\027"

Use the following syntax to include an attribute code in a display
function message:

display function("\034H attribute_code message \0341
attribute_code")

The following examples for prompt and posmsg use the syntax shown above
to display their messages in flashing mode:

prompt("\034HB PRESS EXECUTE TO CONTINUE \034IB")

posmsg(25,43, "\034HB PRESS EXECUTE TO CONTINUE \034IB")

The rules for the attribute code syntax are:

• Turn on the attribute code with the following sequence:

3/87

\034H attribute_code

Backslash escapes the octal 034 and prevents it from being treated
as text in the message. Attribute codes are Fortune Systems'
extended terminal commands, and must be preceded by a CTRL \
(octal 034). Capital H is the operator selector to use to set the
attribute code to "on."

C-3 Glossary Users Guide

• Turn off the attribute code with the following sequence:

\0341 attribute_code

Capital I is an operator selector to turn off an attribute at the
end of the message.

• The entire string, including octal numbers, operator selectors,
attribute codes, and the message, must be enclosed in double
quotation marks.

NOTE: The octal numbers and attribute codes described
here apply to terminals manufactured by Fortune Systems
Corporation.

If your terminal does not correctly display entries that contain these
attribute codes, remove them from the message string in your glossary
entries.

If the posmsg strings shown in this book do not work correctly on your
terminal, remove the octal and attribute codes from the message string.
For example, if the posmsg statement

call posmsg(7,26,"\034HD \034ID \034HBGLOSSARY IN
PROGRESS\034IB \034HD \034IB")

does not display properly, change it to:

call posmsg(7,26, "GLOSSARY IN PROGRESS")

DESCRIPTION OF TABLE C-1

Table C-l is ranked in ascending ASCII collating sequence. The first
column shows the attribute character, the second column describes the
attribute or attribute combination set by the attribute code.

Glossary Users Guide C-4 3/87

Table C-l. Character Codes

Terminal
Attribute Attribute

Code Displayed

Space None

None

" None

None

$ None

% None

& None

None

(None

) None

* None

+ None

None

None

None

/ None

0 None

1 None

2 None

3 None

4 None

5 None

6 None

7 None

8 None

9 None

3/87 c-s Glossary Users Guide

Table C-l. (continued)

Attribute
Code

<

>

@

A

13

C

D

E

F

G

H

I

J
K

L

M

N

o

p

Q

Glossary Users Guide

Terminal
Attribute
Displayed

None

Bold, double underline, and reverse video

None

None

None

None

Resets all attributes

Overstrike

Flashing

Flashing and overstrike

Reverse video

Reverse video and overstrike

Reverse video and flashing

Reverse video, flashing, and overstrike

High underline

High underline and overstrike

High underline and flashing

High underline, flashing, and overstrike

High underline and reverse video

High underline, reverse video, and overstrike

High underline, reverse video, and double underline

High underline, reverse video, flashing, and

overstrike

Low underline

Low underline and overstrike

C-6 3/87

Table C-l. (continued)

3/87

Attribute
Code

R

S

T

U

V

W

x
y

Z

[

\
]

a

b

c

d

e

f

g

h

Terminal
Attribute
Displayed

Low underline and flashing

Low underline, flashing, and overstrike

Low underline and reverse video

Low underline, reverse video, and overstrike

Low underline, reverse video, and overstrike

Low underline, reverse video, flashing, and

overstrike

Double underline

Double underline and overstrike

Double underline and flashing

Double underline, flashing, and overstrike

Double underline and reverse video

Double underline, reverse video, and overstrike

Double underline, reverse video, and flashing

Double underline, reverse video, flashing, and

overstrike

Bold

Bold and overstrike

Bold and flashing

Bold, flashing, and overstrike

Bold and reverse video

Bold, reverse video, and overstrike

Bold, reverse video, and flashing

Bold, reverse video, flashing, and overstrike

Bold and high underline

C-7 Glossary User~s Guide

Table C-l. (continued)

Attribute
Code

k

1

m

n

a

p

q

r

s

t

u

v

w

x

y

z

{

I
}

Glossary Users Guide

Terminal
Attribute
Displayed

Bold, high underline, and overstrike

Bold, high underline, and flashing

Bold, high underline, flashing, and overstrike

Bold, high underline, and reverse video

Bold, high underline, reverse video, and overstrike

Bold, high underline, reverse video, and flashing

Bold, high underline, reverse video, flashing, and

overstrike

Bold and low underline

Bold, low underline, and overstrike

Bold, low underline, and flashing

Bold, low underline, bold, and overstrike

Bold, low underline, and reverse video

Bold, low underline, reverse video, and overstrike

Bold, low underline, reverse video, and flashing

Bold, low underline, reverse video, flashing, and

overstrike

Bold and double underline

Bold, double underline, and overstrike

Bold, double underline, and flashing

Bold, double underline, flashing, and overstrike

None

Bold, double underline, reverse video, and

overstrike

Bold, double underline, reverse video, and flashing

C-8 3/87

FORTUNE:WORD DOCUMENT FORMAT CONTROL CODES

Fortune:Word formatting characters are displayed on the document editing
screen as graphic symbols, such as a right-facing triangle for Tab, a
diamond for Center, or an arrow for Indent. Each of these characters has
a control code sequence embedded in the document. If you are familiar
with operating system commands, you can see these codes by using the more
command to view the document from the shell. Figure C-l shows you how a
fragment of text looks on the document editing screen, and Figure C-2
shows the same text viewed from the operating system.

As you can see by comparing the two figures, the combination of an
optional page break, the format line, and a return, requires the control
sequence \A\~L\Gl\\B\.

Doc g loss Page 1 Line 1 Pos 1

word Format Spacing length 54

1 (1 ~ ~ 1 ... ~ ~ 2 ... ~ •... ~ 3 ... ~ .•.. ~ 4 .•. ~ ~ 5 ... ~ ~ 6 ..• ~ ••.. ~ 7 •.• ~ .•.. ~

1 (1 ~ ~ 1 ... ~ ~ 2 ... ~ ~ 3 ... ~• 4 ...•.... ~ 5 ... ~ ~ 6 ~ 7 ~

~

Creating and Using a Glossary Document ~

~

~

There are seven steps you must know to create and use any glossary document. ~

~

1. -3>Creale a glossary document. There are three ways 10 create a glossary

dQcument.~

=========== ====================:::==

(Document End)

Figure C-l. How Text and Formatting Characters Look on the Document
Editing Screen

3/87 C-9 GloSSIlry Users Guide

\A\ ~L\Gl\\B\
\B\

Creating and Using a Glossary Document\8\

\B\

\B\
There are seven steps you must know to create and use any glossary document.\B\

\8\
1.\I\\U\Create a glossary document\u\. There are three ways to create a

glossary document.\B\

\B\

Figure C-2. How Fortune: Word Text and Control Codes Look from the Shell

How to use Document Format Control Codes in Programs

Most of the document control codes shown in Table C-2 have keyword
abbreviations that can be used in strings or can be assigned to
variables. For example, the keyword abbreviations for a Tab and a Return
are \t and \r. These keyword abbreviations, however, cannot be used
in a variable when you want to evaluate a value returned by a document
reading function like char or text.

Entry 5 shows one way to test whether the character at the cursor
position is a Return. The document control code sequence for the Return
symbol is assigned to retl. The character at the cursor position is
assigned to ret2 by the text function. The two variables are compared
and the string "this is a Return" is inserted in the document if the
cursor is on a Return. If the cursor is not on a Return, the string "it
is NOT a Return" is inserted in the document. (You could also use the
char function to return the value of the character at the cursor
position.)

entry 5
{
retl = "\\B\\\012"
ret2 = text(loc,loc)

if(retl = (ret2)
{insert "this is a return" execute)

else
{insert "it is NOT a return" execute)

Glossary Users Guide C-IO 3/87

Use the finsert function to type the value of variables containing
document control codes in your document. You can use feed and finsert
interchangeably for octal or keyword abbreviations, but you must use
finsert for document control code and octal combinations like this
sequence for an optional page break:

\\A\\\014

When you use a glossary function such as len that counts the number of
characters, each character in the Fortune: Word document format control
code is counted. For example, if a string of text is underscored, six
characters are added to the length of the string to account for the
\U\ at the beginning of the underscored text and the \u\ at the
end. Return symbols count as four characters: three for the \B\
control characters, and one for the newline that follows each Return but
is not displayed.

Table C-2 shows the action performed in the document, each Fortune:Word
document format control code, and a brief description of the code and how
the code can be used in your programs.

Table C-2. Fortune:Word Document Control Codes

Action
Performed

Backslash

Bold off

Bold on

Center

3/87

Control
Code

\\\

\x\

\X\

\c\

Description

Since backslash is used as a
control code delimiter, a
backslash typed in the document
is escaped by backslashes.

Occurs after the last character
in a bold sequence and turns bold
mode off.

Occurs before the first character
in a bold sequence and turns bold
mode on.

Centers a single line between the
right and left margins; displayed
in the document as a diamond.

C-ll Glossllry Users Guide

Table C-2. (continued)

Action
Performed

Character from
G2 set*

Column break,
(optional)

Column break,
(required)

Decimal Tab

Double Underline
off

Double Underline
on

Flashing off

Flashing on

Control
Code

\C\

\F\

\t\

\d\

\D\

\z\

\Z\

Glom",., Users Guide

Description

Selects a character from the
G2 character set. If the
character is not accented the
sequence \AyC\ is present.
If an accented character is
chosen, then the sequence is
\AYcd\.

Optional column break optional
deleted by the pagination
process; displayed in the
document as a row of periods.

Required column break not
deleted by the pagination
process; displayed in the
document as a row of colons.

Align numbers by decimal point
(period) under Tab stop in format
line; displayed in the document
as a short vertical line joined
to an underbar.

Occurs after the last character
in a double underlined sequence
anA turns double underline mode
off.

Occurs before the first character
in a double underlined sequence
and turns double underline mode
on.

Occurs after the last character
in a flashing sequence and turns
flashing mode off.

Occurs before the first character
in a flashing sequence and turns
flashing mode on.

C-12 3/87

Table C-2. (continued)

Action
Performed

Footnote Reference

Format number
identification

Hyphen, generated

Hyphen, required

Indent

Merge off

3/87

Control
Code

\Nnnn\

\Gnnn\

\H\

\-\

\1\

\>\

Description

Footnote reference number, where
"nnn" stands for the footnote
number; displayed in text as a
number in reverse video.

A Fortune:Word document may
contain 100 different format
lines. The control sequence
\Gnnn\ sets a specific format
line number. The "nnn" stands
for a format number between 1 and
100 and is displayed in the
document as a format line for
setting tabs, columns, and
margins.

Generated by the hyphenation
process; removed if subsequent
document editing causes the line
to rewrap; displayed in the
document as a bright hyphen.

Placed in front of a word to
prevent hyphenation during the
hyphenation process; placed
inside a word to mark the
required break point for the
hyphenation process; displayed in
the document as an inverted T.
(Also called a discretionary
hyphen.)

Left justifies wrapped text under
a format line Tab until a hard
Return is encountered; displayed
in the document as a right arrow.

Right field name delimiter for
Records Processing and a marker
for other applications; displayed
in the document as a bright >.

C-13 Glossll,., Users Guide

Table C-2. (continued)

Action
Performed

Indent, generated

Line feed

Merge on

Note

Optional page
break

Control
Code

\i\

\<\

\n\

Glossary Users Guide

Description

Generated by the pagination
process when a page break causes
an indented paragraph to split
between pages; deleted by the
pagination process when the
indented paragraph is rejoined by
removing the page break;
displayed in the document as a
regular indent.

Used to break contiguous
character strings at the right
margin; not displayed in the
document, and deleted when the
line is reformatted. The syntax
to test for a CTRL/k is:
char = "\014"

Left field name delimiter for
Records Processing and a marker
for other applications; displayed
in the document as a bright <.

Document character strings
enclosed in notes, or begun with
a note and ended in a return (are
suppressed during printing).
Optionally, the characters may be
printed by selecting With notes
on the document print menu;
displayed and printed as a double
exclamation mark.

An optional page break that
can be deleted by the pagination
process; displayed in the
document as a row of hyphens.
The syntax for assignment to a
glossary program variable is:
variable = "\\A\\\014"

C-14 3/87

Table C-2. (continued)

Action
Performed

Overstrike off

Overstrike on

Required page
break

Return (hard)

Return (soft)

Reverse video off

Reverse video on

3/87

Control
Code

\0\

\0\

\r\

\R\

Description

Occurs after the last character
in an overstrike sequence and
turns overstrike mode off.

Occurs before the first character
in an overstrike sequence and
turns overstrike mode on.

A required page break that
is not deleted by the pagination
process; displayed in the
document as a row of equal signs.
The syntax for assignment to a
glossary program variable is:
variable = "\014"

Return that is not changed by
word wrap; displayed in the
document as a left-facing
triangle. The syntax for
assignment to a glossary program
variable is:
variable = "\\B\\\012". To
test for a hard return with the
key function, the syntax is:
if(key = = "015"

Word wrap return used to change
the line ending whenever editing
causes the text to rewrap; not
displayed in the document. The
syntax for assignment to a
glossary program variable is:
variable = "012"

Occurs after the last character
in a reverse video sequence and
turns reverse video mode off.

Occurs before the first character
in a reverse video sequence and
turns reverse video mode on.

C-15 GlossJl.ry User~s Guide

Table C-2. (continued)

Action
Performed

Right-flush Tab

Space, required

Subscript

Superscript

Tab

Underline off

Underline on

Control
Code

\M\

\\

\s\

\S\

\u\

\U\

Description

Right justifies text under a
format line Right-flush Tab until
a Return, Tab, or another
Right-flush Tab is encountered;
displayed in the document as a
left arrow.

Prevents separation of words by
marginal word wrap; displayed in
the document as a square U,
printed as a space.

When the document is printed, a
subscript symbol causes the
printer to move down 1/4 line;
displayed in the document as a
down arrow.

When the document is printed, a
superscript symbol causes the
printer to move up 1/4 line;
displayed in the document as an
up arrow.

Advance cursor to the next Tab
stop in the format line (if no
Tab stop is in the format line,
advance one space); displayed in
the document as a right-facing
triangle. The syntax for
assignment to a glossary program
variable is: variable = "011"

Occurs after the last character
in an underlined sequence and
turns underline mode off.

Occurs before the first character
in an underlined sequence and
turns underline mode on.

*Refer to the Fortune Systems publication Using Fortune Terminals.

Glossary Users Guide C-J6 3/87

Appendix D

Keywords by Usage

Keywords can be grouped by the functions they perform. Tables D-l, D-2,
and D-3 are guides for using formatting, editing, and cursor movement
keywords.

Cursor position and movement are extremely important factors in glossary
programming. If you are not thoroughly familiar with cursor movement
during Fortune:Word functions, you should study these lists carefully.
They tell you about cursor action when a function is invoked.

When you use an entry containing keywords, the functions they perform are
activated. Some keywords may be repeatedly activated by typing a number
in parentheses after the keyword. It is easier to type return(3) than
return return return.

Keywords marked with an asterisk (*) in the following lists accept
numbers in parentheses.

Keywords in capital letters perform the same function that is
accomplished by pressing that key and the shift key simultaneously.

FORMATTING KEYWORDS

Keywords such as tab, indent, decimal tab, and return change the format
of document text. On the editing screen they appear as symbols, such as
a left-facing triangle for return or a diamond for center. When these
keywords are used as part of a glossary program, the symbol for the
keyword is typed in the document at the cursor location.

EDITING KEYWORDS

Keywords such as format, search, copy, insert, and delete cause a
function to occur when the text document is being edited.

3/87 D-l Glossary Users Guide

CURSOR MOVEMENT KEYWORDS

Keywords such as left, north, backspace, and prevscrn move the cursor to
a specific location in the document without changing the text or the
format. When you are using cursor movement keywords in your glossary
program, remember that the cursor moves character-by-character, not
position-by-position. The cursor cannot occupy blank areas of the
screen. Sometimes an area may appear to be blank but is actually
occupied by spaces. The cursor can move across spaces in the same way it
moves across characters.

COMBINATION KEYWORDS

Some keywords must be used in combinations. For example, to invoke a
Right-flush Tab you must use the keyword combination command indent.

Table D-l. Formatting Keywords

Keyword

center*

dectab* or
decimal tab*

indent*

page*

PAGE *

return*

subscript*

superscript*

tab*

Performance in Glossary Entry

The center symbol appears on the screen; any
following text up to a Return is centered.

The decimal tab symbol appears at the next
available Tab stop. Either keyword can be used.

The indent symbol appears on the screen at the next
available Tab stop. The text after it is indented.

Inserts an optional page or column break.

Inserts a required page or column break.

The Return symbol appears on the screen and the
cursor moves down one line.

The subscript symbol appears on the screen.

The superscript symbol appears on the screen.

The Tab symbol appears on the screen at the next
available Tab stop.

Glossary Users Guide D-2 3/87

Table D-2. Editing Keywords

Keyword

cancel*

command

copy

COpy

delete*

execute*

format*

glossary or
gl

help

insert

merge*

MERGE *

3/87

Performance in Glossary Entry

An executing function is canceled, or the document
edit is canceled and the End Of Edit Options menu
appears.

The command function is invoked and the message
Which command? appears on the screen.

The copy function is invoked and the message Copy
what? appears on the screen.

The copy text between documents function is invoked.
The Copying Text Between Documents screen appears.

The delete function is invoked and the message
Delete what? appears.

Completes other keyword functions such as insert,
delete, copy, and move.

The cursor moves up into the first available format
line and the screen message Change format appears.
To create an alternate format line, use the keywords
insert format.

The glossary function is invoked and the message
Which entry? appears. This is the same as pressing
the GL key on the keyboard. Either keyword can be
used.

The word processing HELP screen is invoked.

The insert function is invoked and the message
Insert what? appears.

The left-hand symbol for Merge appears on the screen.

The right-hand symbol for Merge appears on the
screen.

D-3 Glossary Users Guide

Table D-2. (continued)

Keyword

mode

move

MOVE

note*

quote*

replace.

REPLACE

search

SEARCH

stop

Performance in Glossary Entry

The mode function starts and the message "What mode?
appears. This must be followed by a character in
quotes, indicating which mode to use, such as "b" for
boldface mode, or "F" for flash mode.

The move function is invoked and the message Move
what? appears on the screen.

The move text between documents function is invoked
and the Moving Text Between Documents screen appears.

The note symbol appears on the screen.

The keyword quote must be used when quotation marks
are required within a string. (The double quote
symbol is not permitted in a quoted string.)

The replace function is invoked and the message
Replace what? appears.

The global search and replace function is invoked and
the Global Search and Replace screen appears.

The search function is invoked and the message
Search for what? appears.

The cursor is moved to the beginning of the document
and the search function is invoked. The message
Search for what? appears. Use the keywords command
search to invoke a backward search.

The autos ave function is invoked and the message
Keystrokes before saving? is displayed.

Glossary Users Guide D-4 3/87

Table D-3. Cursor Movement Keywords

Keyword

backspace*

down*

DOWN*

east*

goto

left*

nextscrn*

north*

NORTH*

prevscrn*

3/87

Performance in Glossary Entry

The cursor moves back one character.

The cursor moves down one line. If there is no text
immediately below it on the next line, the cursor
will not occupy the same position it did on the
previous lipe. Alternatively, you can use the
keyword so 11th.

Moves the cursor according to the current cursor
mode. This is equivalent to pressing the Shift key
and the Down cursor key simultaneously.
Alternatively, you can use the keyword SOUTH.

The cursor moves one character to the right. You can
also use the keyword right.

The cursor moves to a specified location in the
document. For example: goto "12'", goto "c'", go to
nextscrn, go to left.

The cursor moves one character to the left. You can
also use the keyword wcst.

The cursor moves forward to the first character on
the next full screen. Thc keywords goto ncxtscrn
move the cursor to the top of the next page.

The cursor moves up one line. If there is no text
immediately above it, the cursor will not occupy the
same position it did on the previous line. You can
also use the keyword up.

Moves the cursor according to the current cursor
mode. This is equivalent to pressing the Shift and
the Up keys simultaneously. Alternatively, you can
use the keyword UP.

The cursor moves to the first character on the
previous full screen. The keywords go to prcvscrn
move the cursor to the top of the previous page.

D-5 Glossllry Users Guide

Table D-3. (continued)

Keyword

right*

south*

SQUTH*

up*

Up*

west*

Performance in Glossary Entry

The cursor moves one character to the right. You can
also use the keyword east.

The cursor moves down one line. If there is no text
immediately below the cursor on the next line, it
will not occupy the same position it did on the
previous line. You can also use the keyword down.

Moves the cursor according to the current cursor
mode. This is equivalent to pressing the Shift and
the Down keys simultaneously. Alternatively, you can
use the keyword DOWN.

The cursor moves up one line. If there is no text
immediately above the cursor, the cursor moves to the
end of the previous line. You can also use the
keyword north.

Moves the cursor according to the current cursor
mode. This is equivalent to pressing the Shift and
the Up keys simultaneously. Alternatively, you can
use the keyword NORTH.

The cursor moves one character to the left. You can
also use the keyword left.

KEYWORD ABBREVIATIONS

Keyword abbreviations allow you to embed keywords in quoted strings. Not
every keyword has a corresponding abbreviation; those that do are listed
in Table D-4.

Glossary Users Guide D-6 3/87

Table D-4. Keyword Abbreviations

Function Code

backslash \\
boldface ON \B
boldface OFF \b
center \c
decimal tab \.

flash ON \F
flash OFF \f
footnote reference \N
help \h

hyphen (generated) \H
hyphen (optional) \-
indent (generated) \1
indent \i
merge ON \<
merge OFF \>
note \n
overstrike ON \0
overstrike OFF \0
page break (optional) \g
page break (required) \G
quote (double) \q
return (required) \r
return (word wrap) \w
reverse video ON \V
reverse video OFF \v
right-flush tab \R
space (required) \(space)
stop \p
superscript \S
subscript \s
tab \t
underline ON \U
underline OFF \u
underline (double) ON \D
underline (double) OFF \d
octal representation* \nnn

Keyword Syntax

mode "b"
mode "b"
center
dectab or
decimaltab
mode "£"
mode "£"
command "n"
help or command
help

command "-"

indent
merge
MERGE
note
mode "I"
mode "I"
page
PAGE
quote
return

mode "r"
mode "r"
command indent
command" "
stop (Autosave)
superscript
subscript
tab
mode "_"
mode "_"
mode "=="
mode "="

* Octal number abbreviations in strings are covered in Appendix C; the
"nnn" stands for a three-digit octal code.

3187 D-7 Glossllry Users Guide

D-8

Appendix E

Error Messages

This appendix lists Glossary error messages. Glossary error messages are
grouped in two types: verification error messages that appear on page W
(workpage) of the glossary document, and glossary operation messages that
occur when you attempt to attach a glossary document or use an entry.
See Chapter 3 of the Fortune: Word Reference Guide for a complete list
of glossary operation error messages.

VERIFICATION ERROR MESSAGES

All verification error messages are preceded by the legend page n,
line n where n stands for the page and line number of the error in the
glossary document. For example, suppose that entry a below is on page 6
of glossary document gltest and the entry contains two errors. When
gltest is verified, the error messages following entry a are posted on
page W.

entry a
{

{

call posmsg("Enter Amount: \007")
amount = keys
"\027"
call feed(amount)

Tue Feb 3, 1987 at 14:43:39

page 6 , line 3 : 3 arguments expected for posmsg()
page 6 , line 7 : syntax error

The first error message reports 3 arguments expected for posmsg().
The term "arguments," as used by the compiler, means "expression(s)." In
entry a, expressions one and two, the line and position numbers, were

3/87 E-1 Glossary User's Guide

omitted. The second error message reports a "syntax error" on line 7.
The syntax error is because of the reversed ending brace. The ending
brace should be }.

The error message syntax error is reported for a wide variety of
situations. The best procedure is to check for the most obvious errors
first, such as missing commas between expressions, reversed braces or
parentheses, and so on. As you become familiar with Glossary, you will
be able to spot most syntax errors before verification.

Occasionally the compiler reports syntax errors on the line below the
line that contains the error. Be sure to check the line above if you
cannot find the error on the reported line. Sometimes a missing brace or
misplaced comment symbol can cause an entire series of errors for entries
that follow. If this happens, check the first entry and correct the
error and reverify the glossary before you try to correct errors in
subsequent entries.

Table E-1. Verification Error Messages

Message

syntax error

Possible Errors

An error exists in the statement
syntax. When syntax error is
displayed alone, the error could
be that incorrect symbols are
present or that symbols are
missing. When the error is
followed by a colon and another
message, the error is specific to
the message.

Any of the messages below may follow syntax error.

: Improper use of function

Unexpected variable

Cannot start another entry here

Gloss/l.ry User's Guide

Function not preceded by the call
statement; function misspelled;
function cannot be used in the
statement.

Parentheses around a function
argument are missing; extraneous
text exists in the glossary
document; a keyword is
misspelled.

The ending brace on the previous
entry is missing.

B-2 3/87

Table E-l. (continued)

Message

: call

: if

else

: jump

: while

do

: Assignment operator

Comparison operator

: Keystrokes not allowed

unmatched character detected()

n argument(s) expected for x

multiply-defined entry name

3/87 B-3

Possible Errors

The call statement is not
complete.

The if statement syntax is not
correct.

The else statement syntax is not
correct.

The jump statement syntax is not
correct.

The while statement syntax is not
correct.

The do statement syntax is not
correct.

The assignment operator = 1S

used incorrectly.

One of the comparison operators
........ , !=, > =, < = is
used incorrectly.

A keyword or function name is
misspelled; a syntax statement is
incorrect.

The character in parentheses may
be one of the following: () []
or ". A missing quote is the
most common error causing this
message.

n stands for number of arguments
and x stands for function
requiring arguments. The
expected number of arguments
(expressions) for the function
are not present.

Two entries in the glossary
document have the same label.

GlossRry Users Guide

Table E-1. (continued)

Message

Unknown symbol

Illegal glossary entry name

Possible Errors

An incorrect symbol appears in
the entry; this error is most
common in mathematical
applications.

Too many characters are in the
entry label; an illegal symbol
appears in the entry label.

GLOSSARY OPERATION ERROR MESSAGES

Glossary operation error messages occur when you are attaching a
glossary document or using a glossary entry.

Table E-2. Glossary Operation Error Messages

Message

Cannot attach

No glossary entry

Bad location

Unknown function

Glossary Users Guide

Possible Errors

The glossary document entered
does not exist, is not in the
library, or the name was entered
incorrectly.

The glossary label entered does
not exist or it was entered
incorrectly.

The line and position numbers
specified for the posmsg or
clrpos functions exceed the
allowable range (lines 1 through
25, positions 1 through 80).

A records processing function
such as sort or select-record is
part of a regular glossary entry
running in a text document.

E-4 3/87

Index

A

abbreviation

4-4, 4-8, 6-7, 10-24,

D-6, D-7

abs function

9-4 through 9-5, 10-2

access, glossary

11-4 through 11-5

administering entries

11-1 through 11-8

alphabetical string

4-3 through 4-5, 5-6

alphabetical list of functions

9-5 through 9-32

arguments

5-5, 6-34, 7-3, B-3

ascending function

B-1

ASCII collating sequence

6-20, 6-23, C-l

table of

C-5 through C-8

3/87 IN-l

assignment operators

definition of

6-11, A-2

equality operators

6-24

logical operators

6-25 through 6-29

mathematical

6-2 through 6-18

relational

6-12 through 6-18

table of

6-29 through 6-32

attach glossary

2-5, 4-15 through 4-16

attribute codes

C-2 through C-8

B

backspace

A-I, B-1

Glossary User3s Guide

backup, storage, and retrieval

11-5

beg_doc function

9-5, 10-2, 10-20 through

10-21, A-I

binary operators

6-10 through 6-11

bot-page function

9-5 through 9-6, 10-2

braces

1-1, 4-1 through 4-2,

5-4, 5-6, 5-10

brackets

5-6, 8-10

branching

8-8 through 8-12

c

calculator entry

10-34 through 10-38

call function

definition of

8-2, 9-6

example of

8-3

in branching statements

8-8

in subroutines

8-7

call glossary function

10-1

Glossary Users Guide IN-2

caned

A-I, B-1

cat function

center

6-29, 9-4, 9-6, 10-3, 10-43

through 10-45, A-I, B-1

A-I, B-1, C-ll, D-2, D-7

char function

9-7, 10-2 10-20 through

10-21, A-I, B-1

clearing display messages

10-15 through 10-16

clrpos function

9-4, 9-7, 10-2, 10-6, 10-11,

10-14, 10-16, A-I, B-1

codes, format control

C-9 through C-16

collating sequence

6-20, 6-23, C-l

command

10-3, 10-39, A-I, B-1, D-3

command "I"
10-39, 10-41 through 10-43

command "I"

10-39, 10-41 through 10-43

comment lines

4-5 through 4-6, 4-12, 11-3

concatenate function

5-6

conditional functions

5-5, 6-2, 7-1 through 7-17,

10-1, 10-3 through 10-5

3/87

conditional statements

do while

8-21 through 8-22

if

7-5 through 7-9

if else

7-10 through 7-16

evaluating text conditions

7-3, 7-6

evaluating interactive input

7-4, 7-7

nesting if and if else syntax

7-14

syntax of

7-2

while

8-18 through 8-21

with flags

7-12 through 7-14

control

characters

10-24

codes

10-23 through 10-24, C-9

through C-16

functions

5-5, 10-1, 10-5 through

10-6

glossaries

10-47, A-I

statements

7-1, 8-1 through 8-28

3/87 IN-3

conventions, programming style

5-8 through 5-11

copy

4-13, A-I, B-1, D-3

creating

entry by example

3-1 through 3-6

glossary document

2-2 through 2-4

cursor

function

6-35 through 6-36, 9-4, 9-7

through 9-8, 10-2, 10-6,

10-7, 10-19 through 10-20,

A-I, B-2, D-l through D-2,

D-5 through D-6

location functions

10-21 through 10-22

D

date function

9-8, 10-40, 10-44 through

10-46, A-I, B-1

date reformatting entry

10-45

debugging

11-7 through 11-8

decimaltab

A-I, B-2, D-7

Glossary User~s Guide

declaring and initializing

variables

6-3

dectab

A-I, B-2, D-7

detach glossary

2-6, 4-16

display function

9-4, 9-8, 10-2, 10-6,

10-16 through 10-17, A-I,

B-2

display functions

10-2, 10-6 through 10-20

do while function

7-2, 8-18, 8-21 through

8-22, 8-24 through 8-25,

9-4, 9-9, 10-1, 10-3

through 10-5

document

5-2, 7-3, 7-6, 10-21,

10-23 through 10-25,

10-38

document format control codes

10-23 through 10-24, C-9

through C-16

document reading functions

10-20 through 10-22

document writing functions

10-23 through 10-27

down

A-I, B-2, D-5

duplication of entries

4-2, 11-6, B-3

Glossary Users Guide IN-4

E

east

A-I, B-2

editing screen locations

10-7 through 10-20

editing keywords

4-3 through 4-5, B-1 through

B-4

else function

7-10 through 7-16, 9-13

through 9-14, 10-4

end-doc function

9-9, 10-2

entry

comments

4-5 through 4-6

elements

4-1 through 4-6

embedded keywords

4-4

examples

13-1 through 13-4

how to create an

1-3, 3-1 through 3-6

keywords

4-3

labels

4-2

quoted strings

4-3 through 4-5

strings

4-3

3/87

writing mathematical

4-7 through 4-11 6-36 through 6-38

equality operators relational

5-4, 6-38, A-2 6-38

error message

4-14 through 4-15, 9-10,

10-11, 10-15 through

10-16, B-1 through r-4

error function

6-34, 9-4, 9-10, 10-2,

10-11, 10-15 through

10-16, 10-27 through

10-28, A-I, B-2

example, glossary by

1-3, 3~1 through 3-9, 4-7

example of programming style

5-7

execute

4-12, A-I, B-2

execution bugs

11-17

exit function

8-1, 9-10, 10-1, 10-5

through 10-6, A-I, B-2

expressions

5-5 through 5-6, 6-34

through 6-39, 9-2 through

9-4

equality

6-38

logical

6-38

3/87 IN-S

F

false function

5-4, 6-7 through 6-10, 9-11,

10-2, 10-27 through 10-28,

A-I, B-2

feed function

9-11, 10-2, 10-23 through

10-24

file structure

5-2, 12-2

finsert function

flags

9-11 through 9-12, 10-2,

10-23 through 10-24, 10-27,

C-11

7-12 through 7-14

flow charts

7-9 through 7-10

FOR:PRO access functions

10-39 through 10-43

format

4-13

and status line functions

10-22

control codes

C-9 through C-16

Glossary Users Guide

lines

4-6 through 4-7, 10-21

through 10-22, A-I, B-2

formatting keywords

D-l through D-2

Fortune: Word document format

control codes

10-23 through 10-24, C-9

through C-16

functions

abs

9-5

and keywords

B-1 through B-4, D-7

beg_doc

9-5

bot-page

9-5

call

9-6

cat

9-6

char

9-7

clrpos

9-7

conditional

10-1, 10-3 through 10-5

control

10-1, 10-5 through 10-6

cursor

9-7

Glossary Users Guide IN-6

date

9-8

display

9-8, 10-2, 10-6 through

10-20

do while

9-9

document reading

10-2, 10-20 through 10-23

document writing

10-2, 10-23 through 10-27

encLdoc

9-9

error

9-10

error and logical

10-2, 10-27 through 10-28

exit

9-10

false

9-11

feed

9-11

finsert

9-11

globerr

9-12

if

9-12

if else

9-13

index

9-14

3/87

interactive

10-2, 10-28 through 10-32

jump

9-14

key

9-15

keyin

9-15

keys

9-16

keys in

9-16

lefLmargin

9-17

len

9-17

line

9-17

list of

9-1 through 9-32

loc

9-18

mathematical

10-2, 10-33 through 10-39

max

9-18

mIn

9-19

num

9-19

number

9-20

3/87 IN-7

occur

9-20

operating system access

10-3, 10-39 through 10-43

page..Jlo

9-21

pic

9-21

position

9-22

posmsg

9-22

prompt

9-23

righLmargin

9-23

round

9-23

seg

9-24

spacing

9-24

status

9-25

string

10-3, 10-43 through 10-47

sub

9-25

substr

9-26

text

9-26

Glossary Users Guide

gl

texL-len

9-28

time

9-28

top_page

9-28

true

9-29

truncate

9-29

unixfun

9-29

unixpipe

9-30

usage list

10-1 through 10-48

while

9-31

word

9-32

G

2-6, 4-2, 8-5, A-I, B-2,

D-3

.gl file

5-2, 12-2

globerr function

8-1, 8~24, 8-26, 9-12,

10-2, 10-27, A-I, B-2

Glossary Users Guide IN-8

glossary

1-1 through 1-3, 2-1, A-I,

A-2, B-1, B-2

attaching

4-15 through 4-16

by example

3-1 through 3-8

detaching

4-16

functions menu

2-1 through 2-2

in a multiuser environment

11-6

language

6-1 through 6-39

goto

A-I, B-2, D-5

grid

10-7 through 10-8, 10-11

H

help

A-I, B-2, D-3, D-7

hexadecimal

6-20

identifier

5-6, 8-10, 8-12, 9-15, 10-6,

A-I

3/87

if function

5-5, 7-1 through 7-2,

7-6, 7-14 through 7-17,

9-4, 9-12, 10-1, 10-3

through 10-4, A-I, B-2

if else function

indent

7-10 through 7-11, 7-14

through 7-17, 9-13, 10-1,

10-3 through 10-4

A-I, B-2, C-13, D-l

through D-2, D-7

indenting entries

5-9

index function

9-4, 9-14, 10-3, 10-43,

10-47, A-I, B-2

initialize

6-4

insert

A-I, B-2, D-l, D-3

interactive

1-2 through 1-3, 7-4,

7-7, 10-2, 10-28 through

10-38, 10-42

interactive functions

10-28 through 10-32

3/87 IN-9

J

jump function

7-1, 8-1, 9-14 through 9-15,

10-1, 10-5 through 10-6,

A-I, B-2, B-3

branching

8-9 through 8-10

looping

8-12 through 8-18

syntax

8-10

K

key function

7-4, 9-15, 10-2, 10-28

through 10-32, 10-41, A-I,

B-2

keyin function

7-4, 8-5 through 8-6, 9-15,

10-2, 10-28, 10-30 through

10-32, 10-42, A-I, B-2

keys function

7-4, 7-8 through 7-9, 9-16,

10-2, 10-28 through 10-32,

10-41, A-I, B-2

keysin function

7-4, 7-8, 8-5 through 8-6,

9-16, 10-2, 10-28, 10-31

through 10-32, 10-41, A-I,

B-2

Glossa.ry User"s Guide

keywords

4-1 through 4-6, 4-12,

5-8, 6-2, 10-24, B-1

through B-4, C-2, D-l

through D-7

abbreviations

D-7

combination

D-2

cursor movement

D-2, D-5 through D-6

editing

D-l, D-3 through D-4

formatting

D-l through D-2

L

label

3-3, 8-5, E-4

left

A-I, B-2, D-5

lefLmargin function

9-17, A-I, B-2

len function

9-4, 9-17, 10-3, 10-44,

10-46, A-I, B-2

line function

9-17 through 9-18, 10-2,

10-9, 10-20 through

10-21, A-I, B-2

Glossary Users Guide

line feed

C-13

linking a file

11-4 through 11-5

loc function

9-18, 10-2, 10-20 through

10-21, A-I, B-2

logical operators

6-25, 6-31, A-2

logical screen locations

10-9 through 10-10

logical values

5-4, 6-7 through 6-10

looping

loops

8-12, 8-18, 8-24

8-12 through 8-13, 8-18,

8-24 through 8-25

M

mathematical operators

1-3, 5-5, 5-7, 6-6, 6-12

through 6-13, 6-15 through

6-17, 6-31 through 6-32,

6-36 through 6-38, 10-2

mathematical functions

10-33 through 10-38

IN-l 0 3/87

max function

6-35, 9-4, 9-18 through

9-19, 10-2 through 10-3,

10-33, 10-39, 10-44, A-I,

B-3

menu, glossary functions

2-1 through 2-2

merge

10-43, A-I, B-3, C-14,

D-3, D-7

messages

error

4-15, 6-34, 9-7, 9-22,

10-7 through 10-16

E-l through E-4

glossary operation error

E-4

verification error

E-l through E-4

min function

mode

9-4, 9-19, 10-2 through

10-3, 10-33, 10-39,

10-44, A-I, B-3

A-I, B-3, D-4

modulo

move

3/87

6-12 through 6-13, 6-15,

6-32

A-I, B-3, D-4

IN-ll

name

N

2-4, 5-4, 6-4 through 6-5,

E-4

nesting if and if else

7-15

nextscrn

10-27, A-I, B-3, D-5

north

A-I, B-3, D-5

note

A-I, B-3, C-14, D-4, D-7

num function

8-22, 9-4, 9-19 through

9-20, 10-3, 10-33, A-I, B-3

number conversions, octal

C-2

number function

8-16, 9-20, 10-2 through

10-3, 10-20 through 10-21,

10-33, 10-38, A-I, B-3

number of entries in a glossary

3-8

o

obsolescence

11-5 through 11-6

occur function

9-4, 9-20 through 9-21,

10-3, 10-44, 10-47, A-I, B-3

Glossary Users Guide

octal numbers

9-17, C-2

open editing screen areas

10-25 through 10-26

operating system access

functions

10-39 through 10-43

operator input

7-4, 7-7

operators

6-10 through 6-32, B-3

assignment

5-5, 6-11, B-3

binary and unary

6-10 through 6-11

equality

6-24, 6-30

logical and (&)

6-25, 6-31

logical not (!)

6-26, 6-31

logical or (I)

6-28, 6-31

mathematical

6-12 through 6-15, 6-31

through 6-32, 6-38

relational

6-18 through 6-24, 6-30

Glossary Users G",ide

page

p

A-I, B-3, C-2, C-14, D-2,

D-7

pagC-no function

9-21, 10-2, 10-20 through

10-21, A-I, B-3

parentheses

5-6, 9-3, D-l

and mathematical expressions

6-36

and relational and equality

expressions

6-38

and logical expressions

6-38

pathname

11-4

physical editing screen locations

10-7 through 10-8

pic function

6-17, 9-4, 9-21, 10-3,

10-33, A-I, B-3

position function

10-2, 10-20 through 10-21,

A-I, B-3

posmsg function

6-29, 9-4, 9-22, 10-2, 10-6,

10-10 through 10-11, 10-14

through 10-15, A-I, B-3, C-4

IN-12 3/87

precedence

6-36 through 6-38

prevscrn

A-I, B-3, D-5

prompt function

6-9, 9-4, 9-23, 10-2,

10-6, 10-11, 10-15, A-I,

B-3

programming style

5-7 through 5-10

Q

quote

4-5, A-I, B-3, D-4, D-7

R

recalling an entry

4-9

records processing functions

B-1 through B-4

relational operators

1-2, 5-4, 6-18 through

6-24, 6-30, 6-38, A-2

remainder

6-12 through 6-13, 6-15,

6-32

replace

A-I, B-3, D-4

3/87 IN-13

reserved words

6-4, 6-39, A-I, A-2

reserved screen areas

10-8

reserved symbols

A-2

restore display

10-16

retrieval, backup, and storage

11-5

return

4-13, A-I, B-3, C-2, C-15,

D-2, D-7

return symbol syntax

C-I0

right

A-I, B-3, D-6

righLmargin function

9-23, 10-2, 10-20 through

10-21, A-I, B-3

round function

rules

9-4, 9-23 through 9-24,

10-3, 10-33, 10-37, A-I, B-3

for attribute code syntax

C-3

for using functions

9-3

for values

6-6 through 6-7

for variable names

6-4 through 6-5

Glossfl.ry Users Guide

runtime

10-17, 11-1, 11-5

s

screen locations

10-7 through 10-12

screen symbols, evaluating

7-5, C-9 through C-16

screen areas, open and unopened

10-25

scrolling

10-12 through 10-15

search

10-27, A-I, B-3, D-4

seg function

shell

sort

9-4, 9-24, 10-3, 10-44,

10-47, A-I, B-3

10-40 through 10-43, 12-1

6-23, B-3

sort function

B-3

south

A-I, B-3, D-5

spacing function

9-24 through 9-25, 10-2,

10-20, 10-22, A-I, B-3

statement

5-4, 6-1 through 6-3, A-2

Glossa" Users Guide

conditional

5-5, 7-1 through 7-17, 10-3

control

5-5, 8-1 through 8-27

definition of

5-4

labeled

5-6

status function

9-4, 9-25, 10-2, 10-6,

10-11, 10-15 through 10-16,

A-I, B-3

stop

A-I, B-3, D-4, D-7

stopping an entry

8-25

storage, backup, and retrieval

11-5

string

alphabetical

4-3 through 4-5, 5-6

functions

10-43 through 10-47

operations

5-6

sub function

9-4, 9-25, 10-3, 10-44,

10-47, A-I, B-3

subroutines

8-1

branching

8-8 through 8-12

IN-14 3/87

looping with jump statements

8-12 through 8-18

looping with while and do

while

8-18 through 8-24

nesting subroutine calls

8-7 through 8-8

stopping entry recall

8-25

using call statement

8-2 through 8-5

using glossary statement

8-5 through 8-7

with globerr

8-26

subscript

A-I, B-3, C-15, D-2, D-7

substr function

9-4, 9-26, 10-3, 10-44

through 10-47, A-I, B-3

substring

9-26

superscript

A-I, B-4, C-16, D-2, D-7

symbols, reserved

syntax

A-2

2-1, 4-14, 5-1 through

5-2, 5-11 through 5-12,

6-6, 9-2 through 9-32

and attribute codes

C-3

3/87 IN-IS

bugs

11-7

definition of

5-11

errors

B-2 through B-3

for binary operators

6-11

for conditional call statements

8-2

for conditional do while

statements

8-21

for conditional if statements

7-5

for conditional if else

statements

7-10

for conditional jump statements

8-10

for conditional while statements

8-19

for equality operators

6-30

for logical operators

6-31

for mathematical expressions

6-37

for mathematical operators

6-31 through 6-32

for relational operators

6-18, 6-30

Glossary User~s Guide

variable assignment

6-6

T

tab

B-4, C-2, C-16, D-7

text function

9-4, 9-26 through 9-27,

10-2, 10-20 through

10-21, A-I, B-4, C-I0

texUen function

9-28, 10-2, 10-20, 10-22,

A-I, B-4

time function

8-26 through 8-27, 9-28,

10-3, 10-40 through

10-41, A-I, B-4

top_page function

9-28, 10-2, 10-20 through

10-22, A-I, B-4

trapping function errors

8-26

troubleshooting

4-11 through 4-12

true function

6-7, 9-29, 10-2, 10-28,

A-I, B-4

truncate function

9-4, 9-29, 10-3, 10-33,

10-37, A-I, B-4

Glossa,., Users Guide

u

unary operators

6-10, 6-31, 6-39, 6-40

underbar

6-5, C-12

unixfun function

9-4, 9-29, 10-3, 10-40

through 10-43, A-2, B-4

unixpipe function

6-5, 9-4, 9-30 through 9-31,
-'

10-3, 10-40 through 10-43,

A-2, B-4

unopened editing screen areas

10-25 through 10-26

up

values

A-2, B-4, D-6

v

6-3, 6-5 through 6-10, 9-2,

10-21

definition of

5-4, 6-5

value returned by each function

9-5 through 9-32

variables

IN-16

5-4, 6-3 through 6-6, 6-13,

6-18, 6-35

definition of

5-4

3/87

naming

6-4 through 6-5

verification

2-1, 2-5, 4-11 through

4-15, 5-1 through 5-2

errors

4-14, E-l through E-4

options

4-12 through 4-14

verifying a glossary

2-5, 4-12 through 4-15

w

while function

3/87

7-1 through 7-2, 8-18

through 8-19, 8-21, 8-24,

9-4, 9-31, 10-1, 10-3

through 10-4, A-2, B-4,

E-3

IN-17

word function

9-32, 10-2, 10-20 through

10-21, A-2, B-4

words, reserved

A-I through A-2

y

yes/no branch

7-7, 7-9

Glossa.ry Users Guide

IN-I 8

I: FORTUNE 3~!~o~~~a~
Belmont, CA 94002

