
...

Apr 4, 1985

Thank you for your attendance at the Fortune Worldwide Sales
Conference and in particular for attending Workshop #3. As we
agreed at the workshop I am now putting on paper the issues that
we discussed. I am sorry it took so long to do so but it seems
there is never enough time in a day. During the course of that
workshop we discussed many things related to configuring the
Fortune 32:16 for maximum performance. The discussions mainly
revolved around the following issues.

1. How the Fortune 32:16 allocates memory at startup time.
2. utilities available to monitor performance and configuration.
3. Things that can be done to enhance performance.

The following material is documented in one way or another in
either the Introduction to For:Pro text or the Fortune
Programmer's manual distributed with Development utilities.
Additionally the Fortune Field Service Manual has information
concerning system configuration.

The implications and deductions drawn from this information is
solely my own and do not necessarily reflect that of Fortune
Systems Corporation.

The underlying philosophy of this paper is that a multiuser
system performs best when all tasks are resident in RAM. This of
course is an ideal that is not always possible. with this in
mind we will attempt to do what we can to avoid swapping but if
swapping becomes necessary we will attempt to do so as
efficiently as possible.

I. 32:16 Resource Allocation

The following is a representation of the settings in EAROM on the Fortune 32:16. This menu can
be displayed and/or modified in two ways. First, from the unix prompt as superuser it can be
displayed by entering uconf. If etc is not in your path enter /etc/uconf. This allows you to view
and change these setting while the OS is up. Keep in mind, however, that any changes will not be
reflected until the next powerup. The other method of accessing this information is from a cold
start. Turn the power to the 32:16 on while holding down the Cancel/Del key. A menu showing
powerup actions should then display. Press the F7 function key to change the boot. Enter
hd02/sa/reconf and press return and then execute. This should take you into the configuration
menu.

Fortune Systems Configuration Menu

Power up action = BOOT
Boot device = SLOT E

Boot drive # = 00
Boot Program # = 00

Boot file = hd02/unix
Flex drive #1 = SHUGART
Flex drive #2 = SHUGART
Flex drive #3 = SHUGART
Flex drive #4 = SHUGART

Root device = hd02
Swap device = hdll

TTYOO port speed= 2400
TTYOI port speed= 1200
Console location= CRT

Timezone = PACIFIC

344/5120

Daylight savings = YES
Line frequency = 60

Language = ENGLISH
Floating point? = YES

Hex number = 0000
Number buffers = ~~~
Number inodes = ~~~
Number files = In
Number texts = ~1'

Number clists = ~,~
Number processes = ~~j4
Max process size = 350
Set params auto? = YES
Appx. # of users = 3

Used/Total Used/Total
Total primary storage = 1024K; programs are using 290K of 788K available

EAROM has been changed 37 times

FI STORE SCREEN DATA IN EAROM F2 READ CURRENT EAROM SETTINGS
F3 EXIT WITHOUT CHANGING EAROM

Although all of the fields on the menu are important we are concerned here with mainly the
bottom right portion. The first field that we are concerned with is the Set params auto. This can
be set to yes or no. By default it is set to yes. When it is set to yes the contents for the number of
buffers, inodes, files, texts, clists, and processes are calculated by using the following formula
against the number of users field.

processes = (# users * 10) + 7
text = # proc
inodes = « #users-1)*25) +50
files = # inodes
callout= #users + 8
flocks = #proc *2
buffers = (core/l0)-13 ,

/*17,27,37 */
/*17,27,37 */
/*50,75,100 ... * /
/*50,75,100 ... * /
/*9,10,11.. ... * /
/*34,54,74 * /
/*38,63,89,100* /

89
17/ 100
13/ 100
4/ 37
0/ 48
12/ 37

For mt'7st environments all you have to do is set auto params to yes and store the actual number
of users in response to the Appx. # of users field. The number entered should reflect the
maximum number of users that would be using the system at one time. This would include active
terminals as well as any background processing such as ghost tasking in the Business Basic
Interpreter.

If you do not feel that you are getting the optimum allocation for your environment you can
then use some of the utilities in the next sections to determine what you really need and are
using. Once this has been determined you can modify these settings.

The recommended way of doing so is to write down the current allocations. These can be found
in "Total" Fields on the far right of the uconf screen.(the total number of 512 character blocks
allocated for swapping is in the middle of the page). Once you have written down these current
totals you may change auto params to no and plug in these numbers as a starting place. NOTE:
even if you set auto params equal to no you must maintain the approximate number of user field
as it is used elsewhere by the operating system. What we are actually attempting to do here is to
make as much memory available to users as possible. Changing some fields such as the number of
clist for example really do not make that much difference so it may be best to leave them alone.
However, the number of buffers allocated reflect lK buffers. If we look at the above example
there are 89 lK buffers reserved on my system. If I determined that I never used more than 30
buffers for example and I changed that field to 39 just for safety I would have reclaimed 50K
of users use. That 50K might be just enough to keep me from swapping in certain applications.

The other important field is the maximum process size. This field represents the maximum
amount of memory that anyone process can allocate. The system will not allow any more than
that amount. Additionally if there is not enough available after allocations and the kernal it will
reduce this field. Many applications and languages instruct the user to modify this field as part
of the installation process. Other time people are instructed via word of mouth to increase this
field for efficiency in certain applications such as word processing. The real danger in setting
this field to high lays in the possibility that programs and utilities my not adequately call for
resources and will hence lock on to this amount.

The Business Basic Interpreter and applications written with it handles the maximum process size
a little differently. They have ipl files located in jbjipl that are used when a program is loaded.
There are usually front end shell scripts that determine which ipl will be used for an
application. The ipls allow for a memory "partition" size. On most systems this will be set to 20K.
This field can be increased for larger applications. The reason it is set to 20K is due to the BAS
applications which are predominantly written in 7 to 8 K modules. The system will use this
partition size parameter to lock on to memory space. For example if set to 30K each user that
uses that ipl will be allocated 30K. This is true even if the program and data they are actually
using is 10K. So we can see by this that there is a danger in setting this field to high.

System Utilities

1. Pstat

2. vmstat

3. size

4. ps

This command is documented in the For:Pro Manuals. It can be used to take a
snapshot of system utilization. Two of it's arguments not too widely known
allow for the number of times and at what interval the command will run. For
example the following command

pstat -m 2 5
This will have the effect of checking memory availability every two seconds
until it reaches a count of five. Additionally as with most unix commands the
output can be redirected as in the following

pstat -m 360 10 » junk
The above should check memory availability every hour up to 10 times and
append that output to a file called junk in the current directory. This all gives
us the ability to check on resources at prescribed time at save the output that
could be printed at a latter date for evaluation.
This command can also be used to check on the use of system resources by
programs. Check the For:Pro manual for options and descriptions of output. This
utility is probably of most use when you are developing programs as opposed to
checking on applications supplied by Fortune or other vendors.
The size command will allow you to determine the size of an object program for
both text and data. With this you can determine the overhead of a program on
both a one time and per user basis.
This command in addition to being useful for determining what processes are
active is useful in finding programs that may not be shared. The SZ parameter
if very large is probably a good indication that the code is not shared.

Performance Enhancements

1. Menu System The Fortune Global Menu system is of course a very user friendly
interface to the Fortune System and software. As is the case with
everything that is nice there is a cost associated with it. For the
following example I am using this document as a control using
Fortune:Word for editing. I am going to present the memory usage
in creating this document using different modes of accessing the
word processing software. First I will enter via the global menu
system. I use the pstat -m command on my console while using
terminal 02 to do my work. The following is the memory available
to other tasks and users along the way.

Step
437 At login prompt

3"2-1 ~O)... At global menu
At wp menu
In edit
In edit via index

Memory available
610
531
405
263
191

Now I set up my login to go directly into the word processing
menu.

Step
At wp menu
In edit

Memory available
502
360

Now I set up my login to go into the borne shell from there I will
run wp2

Step
At shell
At wp menu
In edit

Memory available
609
483
341

Now I set up my login to execute a shell script that execs
/m/wp2/wped "filename" This in essence takes me directly into
the editing session.

Step
In edit

Memory available
486

What the above really shows is the difference between worse case
and best case. The worst case is where I went through the menu
system, into Fortune:Word, into the index, and then pressed the
goto key. In this case I had only 191K available to other users on
the system. In the best case where I went directly into the editing
session there was 486K available. This represents a difference of
295K ..

Of course the above methods may not always be possible, however
tests with Multiplan and Business Basic show the same kind of
results. In word processing in particular if there is anyway of
implementing the above great savings can be made. In addition to
saving memory word processors can be saved from going through
multiple menus and security is enhanced as when finished in the
application the user is taken back to the login screen.

Most all of Fortune distributed applications can be directly called.
When in doubt as to how to do so run the application via the
menu system on one terminal and use the ps command on another
terminal to see what is actually being run.

The examples above really represent a utopian environment in
that it is only considering one user. Of course most applications
are sharable so the savings would not be as great if for example
you had one user going directly into Fortune:Word for example
and another accessing Fortune:Word via the global menu.

Before leaving Fortune:Word an additional note. As we saw above
the ability to enter a document from the index creates extra
overload. The use of the insert mode in document creations also
seems to improve the throughput to the user. A major
consideration is using page breaks when creating documents. A
simple test will show this. Take a 10 page document that has been
properly paginated. Go in and edit that document. On another
terminal do a ps and pay close attention to the SZ entry for wped.
Now make a copy of that same document. Edit the copied
document and remove the page breaks. Save the copy and then go
back into edit on the modified document. Again run ps on another
terminal. You should see a change on the SZ entry for wped. This
would appear to show that unpaginated documents will take more
and more memory until reaching the maximum process size.

.. ,) .
Remember the earlier discussions of the Business Basic ipl files.
The memory partition field is going to lock in memory for each
user that accesses it. Lets assume a multi module application where
most modules are under 20K but one big one is 50K. If the ipl is
set to 50K that is what is allocated. If there is anyway to put the
entrance into the 50K module from a different ipl and disallow
users of a 20K ipl access to that module substantial memory can
be saved. A good example of this would be a ghost process.

Most often ipl files and the Basic Interpreter are accessed through
front end shell scripts such as DBASIC, BASIC, TBASIC, SBASIC
and so on. The preceding four in order we the Basic interpreter,
the BAS applications, the training data base for BAS, and Business
Surveys. All of these shell scripts provide the same function. They
allocate an ipl based on a round robin approach, set terminal
characteristics, start the interpreter, and wait for completion to
reset terminal characteristics. Since this shell waits for completion
is can be using 20K of memory. An alternative method would be
to have the shell script exec basic.psd instead of just running it.
This would cause the shell script not to wait. Of course the
terminal would be in high intensity but if you are returning to
the login screen that should be no problem. Additionally decision
logic could be added to the shell script to allocate the ipl based on
the tty number or login name as opposed to the round robin
approach. This would allow for more customized ipls.

'.. ~ Ii'
Performance Enhancements (cont)

2. Swap Allocation

3. Sticky bits

4. Spooling

By default Fortune formats hard and flexible disks with up to 3
partitions. Partition ° is usually boot, partition I swap, and
partition 2 is the file system. On a single hard disk system hdOI is
used for swap. If you have a system with an expansion disk you
may find performance improvement by placing the swap on the
expansion disk. This seems to make an improvement in
performance in that head movement is reduced for data
acquisition and swapping. Of course to be able to do this you must
manually format and set up the expansion disk for swap use. The
menu driven software distributed with the expansion disk sets up
little if any room in partition 1. So you would have to manually
setup the expansion disk for more swap space. To do so refer to
the format, mkconf, mkfs, and lost+found entries in the For:Pro
manual. Once this has been set up it will be necessary to modify
the uconf menu to place swap on hdll instead of hdOI for
example. It is then necessary to use the setnswap command so that
the kernal will know the proper device and partition. The above
assumes two disks of like type and access speeds. If you have
system with an internal stepper motor 20 and an Expansion with a
voice coil 20,30, or 45 you may want to put the os on the
expansion and use the internal for swap.

As stated before we usually set up 3 partitions. Actually 8 are
allowed (0-7). You may find it desirable to set up more partitions
on a device and mount them at startup time. The benefit of this is
that you can have smaller file systems. It may also be desirable in
case of file system damage to have the other partitions for
backup.

Over time the possibility of disk fragmentation exists. This is
especially true on systems where a lot of archiving and
installation and de-installation of products takes place. It is
possible for files to be segmented all over the disk based on the
free list. Currently the only correction for this is to back up
applications and data; cold boot the system and reinstall.

Fortune as a unix based system allows for the ability to set stick
bits on programs. To see how to do this refer to the chmod
command in the For:Pro manual. What this does is to allow that
program or application to use contiguous swap space. This may
require that a greater amount of swap space is set aside. This
should, however, allow for faster initial and swap loaded of those
applications.

Printer spooling can also have an impact on system performance.
Some improvement can be derived by attaching faster printers to
the system. Example of these are the laser printers. Since the
spooler finishes faster it is not a burden on the system for as long.
Additionally the current spooler has default options set for
priority and number of pages to save in memory. You may wish to
modify those using the lpdun command. For example by default
the number of pages default to 2. This is so you can stop and
restart print jobs. If you really don't care it can be sent to zero.

