
TECHNOLOGY INCORPORATED

XENIXTM
SYSTEM
SYSTEM
REFERENCE

VOLUME 4

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft. The
soft\.vare described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

© 1982, Microsoft Corporation

© 1979, Bell Telephone Laboratories, Incorporated
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated

Holders of a UNIXl'~ software license are permitted to copy this
document, or any portion of it, as necessary for licensed use of the
software, provided this copyright notice and statement of
permission are included. .

Catalog no. 9100
Part no. 91 FOOD

Document no. 8603d-100-00

CONTENTS

Introduction.. 1-1

2. INTRODUCTION TO SYSTEM ADMINISTRATION ••••••••••••• 2-1
2.1 OPERATING SYSTEM OVERVIEW........................ 2-2

2.1.1 A Brief History 2-2
2.1.2 The Contents of an Operating System

2-2
2.1.3 Why Operating Systems Are Important

2-3
2.1.4 The XENIX Operating System 2-3

2.2 USERS, GROUPS, AND PROTECTIONS................... 2-4
2.2.1 Users 2-4
2.2.2 Groups 2-5
2.2.3 Protection 2-5
2.2.4 Protection and Directories 2-6
2.2.5 Search Permission 2-6
2.2.6 Read Permission 2-7
2.2.7 Write Permission 2-7
2.2.8 Adding a New User: Things to

Consider 2-8
2.2.9 Removing a User 2-10

2.3 THE XENIX FILE SySTEM .••.•••...•.•.•••....•...•. 2-10
2.3.1 What a File System Is 2-10
2.3.2 A Simple File System: An Example 2-11
2.3.3 The Disk 2-12
2.3.4 A Canonical File System 2-12
2.3.5 Mounted File Systems 2-13
2.3.6 The /ete/rc File 2-13
2.3.7 The File /etc/ttys 2-14
2.3.8 The File /etc/motd 2-15
2.3.9 Mounting Other File Systems 2-15

2.4 MAINTENANCE TASKS OF THE SYSTEM
ADMINISTRATOR •..•..•••..••...•.•.•• , ••• o......... 2-16
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.4.14

Daemon Processes 2-16
The Importance of Disk Space 2-16
Checking for Disk Space 2-16
The df Command 2-17
The du Command 2-17
The find Command 2-17
The quot Command 2-18
Other Tools 2-18
File System Integrity 2-18
The fsck Program 2-19
The dcheck Program 2-20
The icheck Program 2-21
Error Conditions 2-22
Errors in the Free List 2-22

- i -

2.4.15 Errors in the Internal File
Descriptors 2-23

2.5 BACKUPS.. 2-24
2.5.1 When to Take Backups 2-24
2.5.2 A Full Backup 2-24
2.5.3 Incremental Backups 2-25
2.5.4 How to Perform a Backup 2-26
2.5.5 Saving Backup Tapes 2-26
2.5.6 Recovering From a Disaster 2-27
2.5.7 Restoration: Step 1 2-27
2.5.8 Restoration: Step 2 2-28
2.5.9 Fsck After the Level 0 Backup: St~p

3 2-29
2.6 SOME ADVICE FOR SYSTEM ADMINISTRATORS •.••.••••••• 2-30

2.6.1 Disk Free Space 2-30

3.
3.1

3.2

3.3

4.

2.6.2 A Few Words About System Tuning 2-31
2.6.3 Spare Disk Drive 2-31
2.6.4 Disk Packs 2-31
2.6.5 Protecting User Files 2-31
2.6.6 XENIX File System Backup Programs 2-32
2.6.7 Controlling Disk Usage 2-33

ADVANCED
DEVICE
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6

UUCP
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

3.2.6
3.2.7
3.2.8

XENIX
3.3.1
3.3.2
3.3.3
3.3.4

COMMAND

SY STEM FUNCTIONS ..•.•...•••.......••••••• 3-1
DRIVER & I/O GUIDE........................ 3-2

The XENIX I/O System 3-2
Device Numbers 3-3
Block I/O System 3-3
Character I/O System 3-4
Configuration Tables 3-4
Writing the New Device Driver 3-7

IMPLEMENTATION DESCRIPTION •••.•.••••••.... 3-9
Uucp-XENIX to XENIX File Copy 3-10
Uux-XENIX To XENIX Execution 3-13
Uucico-Copy In, Copy Out 3-15
Uuxqt-Uucp Command Execution 3-19
Uuclean-Uucp Spool Directory
Cleanup 3-20
Security 3-21
Uucp Installation 3-22
Administration 3-29

SECURITY CONSIDERATIONS•••••••...•• 3-33
Crashes and Slow-downs 3-33
Protection and Permission 3-34
Password Security 3-36
Mounting Unauthorized Discs and Tapes

3-37

REFERENC E. • • • • . • • • • . . • . . . • • • • . • • • . 4-1

APPENDIX A: Device DrltJ~t Routines •.•.•...•........•• A-l
APPENDIX B: Games .•. ~~.~~ •.•.....•.•.••......•..••... B-l

XENIX System'Reference

CHAPTER 1

Introduction

This volume of the XENIX Programmer's Manual contains
material primarily about system level concepts, functions,
and commands: while some of these topics may not be of
immediate concern to the average user, everyone should
become familiar with maintenance functions and the utilities
available on the system. This is especially the case if
there is no administrator designated for a system, or if for
some reason the user must undertake a system task, such as
recovering from a crash or restoring files from a backup
tape.

The first section of the volume deals wi th the dutie,s
assigned to the role of system administrator. These duties
include: establishing user directories, passwords, and
accounts: maintaining system security and file structure
integrity: performing periodic backups of the file system
and restoring these files in the case of disaster. The XENIX
tools pertinent to these functions are described and some
final words of advice are offered.

The second section of the volume deals with some special
system functions. One of these is writing device driver
routines to allow XENIX to communicate with the I/O devices
configured for its system. Another is establishing
communication between two or more XENIX systems connected by
telecommunication or hard link. Finally, the topic of
system security is addressed.

The last section of the volume contains a summary of some
system level programs, commands, and utilities not dealt
with elsewhere in this manual. Once again, although the
user may not find these of immediate use, he should become
aware of their existence, as well as their: location in the
manual, for future reference. Also included here are the
games available on the XENIX system.

1 1

XENIX System Reference

CHAPTER 2

INTRODUCTION TO SYSTEM ADMINISTRATION

Unlike those users for whom the operating system is merely a
tool for program development and applications, the system
administrator must take responsibility for the health and
welfare of the system as a whole. These tasks include adding
new users, insuring that adequate disk space is available
for all users at all times, making backups to protect
against user and hardware errors, and givIng training and
support. In short, it is the system administrator's job to
undertake all the maintenance functions necessary to
maintain efficient system operation.

It is the intent of this document to provide the necessary
background information and instill the confidence required
for a system administrator (or site coordinator). It is
intended to be read as an initial orientation to the system
administrator's functions, as well as a reference for later
use. This document is a supplement, not a substitute, for
the XENIX Programmer's Introduction. It is strongly
recommended that all the documentation be read thoroughly
before any attempt is made to administer the total system.

2-1

XENIX System Reference

2.1 OPERATING SYSTEM OVERVIEW

Before introducing the actual duties of the XENIX system
administrator, it is helpful to examine the evolution of
operating systems in general, and the XENIX system in
particular.

2.1.1 A Brief History

Early computer users often had the sole use of an entire
computer system, and thus they were able to manage its
resources for their own convenience. But as the number of
users grew, it became clear that some kind of formal
resource management would be necessary to ensure the
efficient, equitable distribution of a system's physical
resources among all the users of a single system.

Even in a system where jobs could only be processed one at a
time, a user had to be prevented from monopolizing the
computer and its resources. System management of the central
processor was required to limit the time consumed by user
programs. It was also obvious that computer memory had to be
managed in order to protect users from destroying each
other's data or programs. When direct access secondary
memory was available in sufficient quantity to make
permanent data stbrage feasible, system management of I/O
devices and secondary memory became still more critical.
Operating systems were developed to meet these requirements
for system management.

2.1.2 The Contents of an Operating System

An operating system consists of those program modules
resident in a computer which control its physical resources,
including:

1. Processors

2 . Main storage

3. I/O devices

4 • Secondary storage

5. Files

These modules resolve conflicts, attempt to maximize
performance, and simplify the effective use of the system.
They act as the interface between user programs and the

2-2

XENIX System Reference

physical computer hardware.

2.1.3 Why Operating Systems Are Important

While executing, an operating system controls the entire
operation of a computer. For example, when several user
programs compete simultaneously for resources, the operating
system determines in which order the users will have
access, and for what period of time. In addition, an
operating system prevents a computer system from crashing if
a device becomes inoperable, and assigns "paths" to I/O
devices when they are needed.

In present day operating systems, the command language
serves as an interface to the operating system. This
language is the essential tool of the system administrator.
Some special features of the XENIX command language and of
the XENIX file structure are detailed below; they are also
dealt with in the Programmer'~ Introduction.

2.1.4 The XENIX Operating System

XENIX is derived from UNIX, an operating system which has
been field tested for almost a decade, largely in university
environments where it has demonstrated a capacity to
withstand abuse and function under heavy workloads.

XENIX is a multi-user, multi-tasking operating system. It
allows more than one user full and complete access to all of
its resources on a time sharing basis. Each user has the
illusion that he, and he alone, has absolute access to the
computer's resources. XENIX satisfies all the needs of the
modern computer user, while offering a wealth of supporting
programs which aid its users in performing a wide range of
tasks. of the operating system and the activities of the
system administrator are described.

2-3

XENIX System Reference

2.2 USERS, GROUPS, AND PROTECTIONS

In this section, the concepts of "user' ',"group' " and
"protection" are introduced; these are concepts that
should be understood thoroughly in order to properli
administer the system.

2.2.1 Users

Generally, a user is an individual authorized to access tl1~

computer's resources. This authorization consists of a
valid login name and, optionally, a unique password. The
process of gaining access to the system is called "logging
in." It is the system administrator's responsibility to
decide which individuals are authorized to use the computer,
and to what extent.

In general, a user is one who logs in and proceeds to edit,
compile, or perform any every day function~. Th~ us~r's
scope of access to the other files in the system is
determined by the various protection settings for
directories and files. The normal user is prohibited from
accessing files and directories which do not have the
necessary permissions set.

There is, however, a type of user who has unlimited access
to the entire system: the super-user.' I As the name
implies, the super-user has extraordinary capaLilities, ane
is not restricted by any protection setting: the super-user
can access any file in the system. Since the XENIX file
protection mechanism does not apply to the super-user, a
simple mistake or mistype by the super-user can cause
massive damage to everyone else's programs and data, and
possibly even bring down the entire system.

When you first log into the system, you are automatically
positioned in your 'home' directory as defined by an entry
in the file ~tc/~asswd. Then, from this directory, you can
move to any directory or file in the system depending on its
access and protection settings~ .

It is for this reason that the number of individuals who can
assume super-user powers must be kept to an absolute
minimum. Even those users who are given the super-user
password must be careful to log in as the super-user only
when necessary: this includes the system administrator.

Once logged in, a user has access to any directory or file
in the system which allows the appropriate access. A user
has full access rights to all files and directories which

2-4

XENIX System Reference

extend from his home directory.

2.2.2 Groups

It is generally good policy for a user to restrict access to
the files and directories he owns by setting the various
permission bits associated with that file. However, there
may be certain files and directories that need to be shared
among members of a group, while still remaining restricted
to everyone else.

The group affiliation is a faqility that allows groups of
users to share files while still restricting access to
unaffiliated users~ otherwise, the group id may be made the
same as the user id for j6int access.

2.2.3 Protection

Each file or directory created has a set of "protection
bits." There are a total of nine (9) bits, which are
divided into three categories of three bits each. The three
bits in each category are, in order, the read, write, and
execute permissions (rwx). The three categories are: user,
group, and other, where the "user" is generally the owner
of the file, the "group" includes members of the same
group, and "other" is everyone else. Thus, a file can
have different protection or access permission depending on
the way each of the bits are set in each category.

When you examine a long listing from the 1 command, the
following holds true:

r = read permission, '-' denies it.
w = write permission, '-' denies it.
x = execute permission, '-' denies it.

For example,

-rwxrwxrwx 1 joe 32 Oct 19' 10:00 example

means that everyone, owner, group, and other, has full
access rights. In the following file, permissions allow the
owner and the members of his group full access rights, but
everyone else has only read permission to the file:

-rwxrwxr-- 1 joe 32 Oct 19 10:00 example

Here is a case where the file permits the owner read and
write access, but everyone else (group and other) only read

2-5

XENIX System Reference

access:

-rw-r--r-- 1 joe 32 Oct 19 10:00 example

In this example, the permissions allow only the owner to
read or write the file:

-rw------- 1 joe 32 Oct 19 10:00 example

No one else is able to access this file for any reason,
(except the super-user).

In this final example, the permissions allow execute status
for the owner, members of the group, and all other members:

-rwxr-xr-x 1 joe 32 Oct 19 10:00 example

2.2.4 Protection and Directories

A directory is just like any other file except that no user,
not even the super-user, can write on a directory~
Directories provide the mapping between the names of files
and the files themseives, and thus impose a structure on the
file system as a whole.

Each directory created has a set of protection bits
associated with it, but these protection bits have somewhat
different meanings for directories than they do for files,
as described below.

2.2.5 Search Permission

drwx--x--- 2 joe 32 Oct 19 10:00 book

In an ordinary file, the 'x' bit signifies execution
capability, but it is obviously impossible to execute a
directory. The 'x' in this case means that the owner can
search the contents of the directory for other· directories
or files. Search permission may be given for that
particular user, group, or other, depending on how the
protection bits are set. In this example, the owner has
read, write, and execute permission on the file. Search
permission is also given to members of the same group;
however, no one else can search the directory named
"book' '. If either the owner or group wishes to access
this directory, there is no problem. However, if anyone
else desires to access this directory, they will get the
following message:

2-6

(

XENIX System Reference

/usr/joe/book: bad directory

Of course, the directory book is not actually a "bad
directory". It simply can not be accessed by those who are
denied search permission. If a user has search permission
and read or write permission, that user may change the
contents of that directory.

2.2.6 Read Permission

drwxr-xr-- 2 joe 32 Oct 9 23:32 book

When an individual has read 'r' permission for a directory,
the user can read any file within that directory for which
the read bit has been set.

In this example the owner is given read, write, and search
access to all the files in this particular directory. The
members of the same group are only given read access and
search access. Any member of the same group as the user's
can search this directory and read any file in it. However,
if the directory contains a subdirectory, that subdirectory
must also allow search permission. Everyone else has only
search permission in this directory.

As in the previous example, the file is in the directory
book:

-rw-r---r-- 2 joe 108 Oct 19 23:44 chapterl

The protection setting for chapterl allows the owner both
read and write permission, while the other members of the
group and everyone else have only read permission. However,
due to the protection setting on the parent directory book,
only the owner can add (create) or delete (remove) it.

2.2.7 Write Permission

drwxrw---x 2 joe 32 Oct 20 09:32 book

Write permission on a directory allows the user to add,
delete, remove, and rename any file within the specified
directory.

2-7

XENIX System Reference

2.2.B Adding a New User: Things to Consider

When a new user is to be allowed to log in, the login name
and, optionally, the password need to be entered in the
appropriate file. This file is named etc/passwd and can only
be edited by the super-user. Each entry contains the
following information:

~ login name

~ encrypted password

~ numerical user id

e numerical group id

~ initial working directory

~ program to use as the shell

The initial working directory is the user root, or home,
directory described earlier in this chapter. This is the
user's position after a proper login. The last field is the
program that is to be the user's shell, or command line
interpreter. Below is a sample /etc/passwd file:

root:/H4Gq15HCW7uk:O:5Q:Super User:/:
daemon:x:l:50::/:
cron:x:l:50::/:
sys:qa.vOrOz90Hlc:2:50::/sys:
bin:Ob3cNJIVqpk2A:3:50::/bin:
joe:MWxG240.llBfM:50:50:Joe Smith:/usr/joe:

Using the entry 'joe' from the example above, we can see
that the login name is 'joe'. The password is encrypted here
for security reasons; this is done automatically by the
passwd command. When the password is assigned to 'joe', it
should be entered in normal alphanumeric text. Next in the
/etc/passwd file is the user's numerical identification.
This id is associated with each file that 'joe' creates and
thus owns. The next entry is the numerical identification of
the group with which joe is affiliated. The entry 'Joe
Smith' is optional and serves to further identify this user.
The final entry is joe's home directory, where he is
positioned after a valid login. Since there is no entry in
the field that defines the shell, the default shell is
specified. The above is a typical entry in the /etc/passwd
file for a user.

The following procedure creates an entry in the /etc/passwd
file for any authorized user. It is a straightforward

2-8

XENIX System Reference

procedure: just follow the directions:

ed /etc/passwd must be super-user)
$a (append to end of file
joe::lO:l::/usr/joe:(new user's entry)

w
q
mkdir /usr/joe

nhange its owner to
login joe

(end of current input)
(write it to the file)
(quit the editor)
(created working directory

joe)
(test to see if it works

Although the initial assignment of a password is optional,
the new user should be encouraged to assign a password
immediately after the initial login. Alternatively, the
system administrator may assign a password or suggest that
it be changed.

When any user, including the super-user, first logs on, a
file called .profile runs automatically. The information in
this file sets some terminal characteristics and initializes
some pathname variables. The .profile file should be placed
in the users' home directory (i.e., /usr/joe/.profile).
Here is a sample .profile file:

stty erase ,Ah' kill ,AU' set terminal}
date write out date)
MAIL=/usr/spool/mail/joe (path to mailbox
PATH=:/usr/joe/bin:/bin:/usr/bin:(search path)

The first entry sets the kill and backspace characters for
the terminal. These are set by XENIX when it is first
booted, and are different characters. The next line sets the
variable "MAIL" to the pathname of the user's (joe's)
mailbox so that joe may send and receive mail. Finally, the
variable "PATH" lists nam~s and order of the directories
that are to be searched when joe wants to execute a command.

Each user can send and receive mail from and to other users.
However, a unique mailbox must be created for each user. The
procedure, similar to the creation of a working directory,
is given below:

cd /usr/spool/mail (change directories
>joe (create mailbox)
chown joe /usr/spool/mail/joe(change owner)

2-9

XENIX Sy~tem Reference

2.2.9 Removing a User

Occasionally, it may be necessary to edit the password file
and remove old entries. Removing the entry from etc/passwd
removes the "user" from the system, any files belonging to
that user still remain in the system. Therefore, it is
often wise to save the old user's files on tape or diskette.
The commands tar and cd write all of joe's files to a tape.

cd /usr/joe
tar cmv *

After saving all of joe's files on tape, his directory can
now be removed.

rm -fr /usr/joe

2.3 THE XENIX FILE SYSTEM

In this section, the XENIX concept of file systems is
discussed, and some file system structures and formats are
examined. The system administrator's duties in maintaining'
these file systems are also introduced. This chapter is
crucial; however, the relevance of each section depends on
the individual system's configuration, particularly in
respect to the size of the disks and how they are
partitioned.

2.3.1 What a File System Is

Because the earliest computer systems had no file systems,
disk storage space had to be managed manually by the
programmer. For instance, the programmer might decide that a
certain program would need, say, 400 blocks of disk space.
He might then consult a notebook, locate 400 unused blocks,
and code the numbers of those blocks directly into his
program. This technique may have been adequate for the
earliest machines, with only a few hundred blocks of
storage, running perhaps a dozen tasks a day. Clearly it is
inadequate for a modern system like XENIX, which supports
dozens of users simultaneously, running tens of thousands of
tasks per day.

XENIX, therefore, handles the burden of
management for all users of the system,
space upon demand, keeping track of where on
data is written and retrieving any part of it
"pathname" of the file. When the data file
needed XENIX will, upon command, return

2-10

disk storage
allocating disk

the disk the
when given the
is no longer
the space it

XENIX System Reference

occupied to the free pool. Thus, a disk device contains not
only the files themselves, but also various items of
information needed to locate and manage the files.

This information, along with the data files themselves, is
called a "file system"; it is critical to XENIX system
management. The simplest XENIX system contains only one disk
device and, except for a small section reserved for
swapping, the entire disk will be set up as a single file
system.

A disk may be used as a single storage area or it may be
partitioned into several distinct areas. Each of these
distinct partitions may be a file system. In general, an
organized collection of files is referred to as a "file
system' '. Each file system has its own set of identifying
information about the files that belong to it, including the
size and number of files and free blocks contained. The
block of the file system which contains this identifying
information is called the "super-block".

Each XENIX system has at least one disk drive containing
either a fixed disk or a removable disk pack. These disks
contain all the data in the system that is not actually
being processed at any given moment, as well as the programs
themselves. In the XENIX system, a file is simply a string
of bytes. There is no logical record length and no
particular record or file format imposed by the system.

2.3.2 A Simple File System: An Example

To XENIX, a file system is an organization of files which
may occupy all or part of a disk. On a newly installed
XENIX system there are two file systems resident on the
disk. One of these is the root file system, where the
operating system itself resides. The second is the user file
system, consisting of user-created files. These file systems
are distinct and logically separate from each other.
Accordingly, each has a unique logical name. The name of the
root file system is /dev/root: the name of the user file
system is /dev/usr. If the name is preceded by an 'r':
/dev/rroot, /dev/rusr, the same XENIX file system is
differently accessed. Some XENIX commands expect one name or
the other, and will not operate if given the wrong one.
Typically, when the prefix 'r' is used, the command will run
faster.

XENIX System Reference

2 . 3 • 3 'l'he Dis k

Below is a diagram of a disk showing the relative size, in
512 byte blocks, of the root and user file systems. The
relatively large section of blocks between them is not,
strictly speaking, a. file system; it is the system's
"swap" device, a logical device resident on the disk which
is used by XENIX to temporarily store images of the system's
main memory during the execution of system processes. The
swap device is distinct and logically separate from the user
and root file systems. Accordingly, it has its own unique
logical name: /dev/swap.

/dev/root

root file system

/dev/swap
swap device

/dev/usr

user file system

2.3.4 A Canonical File System

14000
blocks

2000
blocks

33000
blocks

XENIX regards any disk, or part of a large disk, as a
randomly addressable array of 5l2-byte blocks. These blocks
are numbered consecutively 0, 1, 2, , on up to the size
of the disk.

The first block (block 0) is unused by the file system, and
is reserved for booting purposes. Block 1 (the second
block) is the "super-block" which contains information
about the file system. The third block contains the list of
file definitions. The rest of the blocks are either
occupied by file storage or remain free blocks.

The primary file system in XENIX is called the "root" file
system. It contains the minimum data necessary to run the

2-12

XENIX System Reference

system. It is always "mounted", or accessible.

Is -al /

drwxr-xr-x 2
-r--r----- 1
-rwxr----- 1
drwxr-xr-x 3
drwxr-x--x 3
drwxr-x--- 9
drwxr-x--x 2
drwxr-x--- 2
drwxrwxrwx 2
drwxr-x---ll
drwxr-x---ll
drwxrwxrwx 7
drwxr-xr-x75
drwxr-x--- 3
-rwxr-xr-- 1

bin
root
root
bin
root
root
root
root
root
root
root
root
root
root
root

2704 Oct
11388 Apr

374 Dec
2320 Oct
1088 Oct

464 Jul
592 Sep
256 May

32 Ju1
288 Oct
336 Jun

1936 Oct
1248 Sep

48 Dec
73368 Sep

7 08:32 bin
24 05:27 boot
10 1980 checka11

7 15:25 dev
5 14: 02 etc

25 16:54 fs
29 01:03 lib
19 09:37 lost+found
20 23:12 mnt

3 15:17 stuff
11 08:29 sys

7 16:08 tmp
28 20:49 usr
16 1980 v

8 15:22 xenix

As seen in the above example, all but three entries are
directories; these files are the absolute minimum required
to bring up XENIX. When XENIX is first booted, it is in
single user mode; that is, it operates with the super-user,
or root. When given the command to go multi-user, a shell
program, /etc/rc is executed. One of the functions of this
file it to make~he other file systems accessible. All
other file systems are extended from the root file system.
In order to access other file systems, they must be made
known to XENIX. This is done with the mount command.

2.3.5 Mounted File Systems

The root file system contains the bare essentials needed to
bring XENIX up and running; if others are to use the system,
access to the other file systems is given with the mount
command. The mount commands for normally mounted file
systems should be put into /etc/rc to ensure that they will
be available when mu1ti-user-mode-is entered.

2.3.6 The /ete/rc File

Here is what a sample /ete/re file should look like:

2-13

XENIX System Reference

PATH=/bin:/usr/bin
rm /ete/mtab
cat /dev/null~/ete/utmp

jete/mount /dev/r51 /tmp
if test $? = 2; then

>/dev/console

echo "cleaning /dev/rr51"
fsek -y -t /tmpfsek /dev/rr51
jete/mount /dev/r51 /tmp

fi
jete/mount /dev/usr /usr
if test $? = 2; then

>/dev/console
>/dev/eonsole

echo "cleaning /dev/rusr"
>/dev/console

fi

fsek -y -t /tmp/fsck /dev/rusr
>/dev/console

jete/mount /dev/usr /usr
>/dev/console

/ete/asktime </dev/eonsole >/dev/eonsole 2>&1
(
/bin/mount /dev/stuff /stuff l>/dev/eonsole 2>&1) &

/ete/dmesg - »/usr/adm/messages
date >/ete/reboot.date
ehmod a+w /ete/mtab
/usr/lib/ex2.0preserve -
rm -f /usr/spool/lpd/loek; /usr/lib/lpd
rm -f /usr/tmp/* /usr/tmp/.,* /usr/tmp/.e*
rm -f /tmp/* /tmp/.,* /tmp/.e*
jete/update
/etc/eron
/ete/aecton /usr/adm/aect

This single file performs three types of tasks:

$ the mounting of file systems

~ housekeeping tasks

~ initiation of Daemon processes

2.3.7 The File /etc/ttys

This file is also essential to bringing the system up from a
single- to a multi-user mode. It controls whether or not a
login process will run at each terminal and what baud
rate{s) the system will use to communicate with it.

Each line of the file describes one terminal port. For
example, the following /etc/ttys file contains entries for
four devices, the system console and three user terminals:

2-14

XENIX System Reference

14 console
IhttyOO
IhttyOl
Ihtty02

The first character of a line in /etc/ttys tells the system
whether or not to run a login process at the terminal
attached to the port. If the character is an 'I' then a
login process will run at the terminal. If the character is
a '0' then a login process will not run at the terminal.

The second character in each line in /etc/ttys tells the
system what baud rate(s) to use when communicating with a
terminal attached to the port. This may be a single fixed
baud rate or a number of baud rates through which the system
cycles before it finds the right one for a particular
terminal. .

2.3.8 The File /etc/motd

The file /etc/motd is the system's "message of the day".
This text---fire--is sent to the user's terminal after the
login procedure, containing any announcement the system
administrator wishes to make to all users.

2.3.9 Mounting Other File Systems

In addition to the root file system, which is always mounted
first, there will be a standard set of file systems that
will need to be mounted every time the system is booted.
These will typically include:

$ a user file system (referred to as usr), where all the
users' directories reside

$ a temporary file system for intermediate, temporary
files created by compilations and assemblies

$ others for specific needs

2-15

XENIX System Reference

2.4 MAINTENANCE TASKS OF THE SYSTEM ADMINISTRATOR

Two of the system administrator's primary responsibilities
are maintaining file system integrity and ensuring that
adequate free disk space is available to the users. This
section describes the tools provided by XENIX to perform
these and other maintenance tasks. These commands clean up
files and file systems, initiate system or job accounting
programs, and determine disk space usage.

2.4.1 Daemon Processes

In addition to those programs initiated by the system
administrator, there are "daemon" programs that run,
automatically as long as the system is up, periodically
checking the system or performing system functions. As' an
example, the /etc/update program is a daemon which forces
disk updates every thirty seconds. Another example is the
lineprinter daemon, lpr. Check the Programmer'~
Introduction for descriptions of some other daemon programs.

2.4.2 The Importance of Disk Space

As users compile programs, edit files, or perform other
tasks, they are competing for a valuable resource: free disk
space. On a typical system, the potential for running out of
free disk space is very high. When this occurs, no new files
can be created, nor can any existing files expand.

To prevent this situation, the system administrator needs to
estimate in advance the amount of space required for each
file system when the system is first configured. If
possible, a file system should contain approximately 15%
free space, more if the file system fluctuates, less if it
is relatively static.

XENIX offers some tools for determining the status of free
space in a particular file system as well as som~ techniques
for freeing space if there is a shortage. This section
summarizes the use of these XENIX tools. For more detailed
information, read the corresponding sections in the XENIX
Programmer'~ Introduction

2.4.3 Checking for Disk Space

There are
determining
are:

some XENIX commands that will aid you in
the status of disk space on a file system. They

2-16

XENIX System Reference

$ df- disk free

$ du- disk usage

$ find- find files

$ quot- summarize file ownership

Each of these is discussed below with examples.

2.4.4 The df Command

This command prints out the number of free blocks available
in whatever file system is specified. If no file system is
specified, the free space in all normally mounted file
systems is printed.

$df
/dev/root 1195
/dev/usr 5962

This indicates that the root file system contains 1195 free
blocks; the usr file system has 5962 free blocks.

2.4.5 The du Command

Du gives the number of blocks that are used by files in the
specified directory and each of its subdirectories.

$du /tmp
29
1
2568
3
1
156
3513

/tmp/nedtmp
/tmp/henry
/tmp/jgl
/tmp/susr
/tmp/jerry/myfs
/tmp/jerry
/tmp

The last line reports the total number of blocks used by
that directory and its subdirectories.

2.4.6 The find Command

The find command is a powerful tool for finding files by
size, date, owner, and date of last access. This helps the
system administrator locate old files that the user has
neglected to remove.

2-17

XENIX System Reference

In the following example, the find command searches for all
binary files named core produced by the system during a
local core dump, which have not been accessed in the last
seven days. In this case it is probably safe to remove
these files, since users rarely re-access core files a week
later.

find lie -name core - atime +7 -exec Is-al\;

2.4.7 The quot Command

This command reports the number of blocks currently owned by
each user in the specified file system, revealing the
largest consumers of disk space in a particular file system.

2.4.8 Other Tools

There are a few other tools available to the system
administrator. For example, the file, etc/motd, which
contains the "message of the day' " can be edited to inform
users that space is low and that old files should be
deleted, or a personal message, using the mail command, may
be used to remind the offender to remove old files.
However, these techniques may not prove sufficiently
persuasive.

2.4.9 File System Integrity

A file system consists of files, and these files, in turn,
consist of blocks of bytes. If a block of information is
bad, then the file, and potentially the entire file system,
is compromised. A file system's integrity is compromised
when it is internally inconsistent; it does not necessarily
imply any physical damage to the disk. XENIX has some tools
to check file systems and, if necessary, repair them.

The file system should be checked:

e Whenever the system is first brought up

~ When it exhibits any abnormal behavior

e Daily, simply as a precaution

Some of the programs used to check the integrity of the file
system are described below.

2-18

XENIX System Reference

2.4.10 The fsck Program

Every time a file is created, modified, or removed, the
XENIX system performs a series of file system updates. These
updates yield a consistent file system.

When the system is first brought up in single user mode, a
file consistency check program is sometimes run
automatically. Fsck is a multi-pass file system check
program. Each pass over the file system invokes a different
phase of the fsck program. After the initial setup, fsck
performs successive phases on each file system. It checks
blocks and sizes, path-names, connectivity, reference
counts, and the free block list; it also performs some
cleanup.

Here is a sample output:

$ fsck lusr

Phase 1 - Check Blocks
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
xxx files xxx blocks xxx free

PHASE 1: CHECK BLOCKS (AND SIZES)
This phase involves the internal file descriptors
(inodes) , reporting on errors resulting from
examining file 'blocks for bad or duplicate blocks,
after checking file size and format.

PHASE 2: CHECK PATH-NAMES
In this phase, directory
erroneous file descriptors
Phase 1, are removed.

PHASE 3: CHECK CONNECTIVITY

entries pointing to
(inodes) reported in

This phas~ checks directory connectivity from the
results of Phase 2, reporting error conditions
resulting from unreferenced directories.

PHASE 4: CHECK REFERENCE COUNTS
Phase 4 checks the link count information from
Phases 2 and 3. It reports on error conditions
resulting from unreferenced files, incorrect link
counts for files, directories, or special files,
unreferenced files and directories, bad and
duplicate blocks in files and directories, and
incorrect total free inode counts.

2'-19

XENIX System Reference

PHASE 5: CHECK FREE-LIST
This phase checks the free-block list, and reports
errors resulting from bad blocks in the free-list,
bad free block counts, duplicate blocks in the
free-list, unused blocks from the file system not
in the free block list, and incorrect total free
block counts.

2.4.11 The dcheck Program

In XENIX, a "link" allows a single file to appear in
multiple directories; linked files are indistinguishable
from each other. Dcheck reads the directories in a file
system, comparing the number of links for each file to the
number of directory entries by which it is referenced. As
links to a file are removed, the link count is decremented
by one. When the last link to a file is removed, the blo~ks
of data containing that file are released and added to the
free-list for use by other files. Dcheck reports when the
number of entr ies (f iles) and links to the files are ei ther
not equal or are both equal to zero.

If there are no errors, dcheck's output is simply the name
of the disk on which the file system is stored:

$ dcheck /dev/rroot
/dev/rroot:

If there are inconsistencies, it will output the following
table:

$dcheck /dev/rusr
/dev/rusr:

entries link cnt
15040
17887

10
01

The numbers 15040 and 17887 represent the
definitions (inodes) of the erroneous files.
indicates that file definition 15040 has been
has no links; it does not appear in any
second line indicates a link to a nonexistent

internal file
The first line
allocated, b'Jt
directory. The
file.

As stated above, Dcheck reports instances when the number of
files and links are either zero or are unequal. In this
case, a file is allocated, but it does not appear in any
directory. To correct this, remove the file definition from
the file system with the following command:

2-20

XENIX System Reference

clri device inode(s)

Here the device is the disk on which the file system is
stored and the inode is the internal file descriptor. The
inode number can be determined with:

Is -i

After removing all the necessary file descriptors, the file
system must be updated in order to reclaim the blocks
previously allocated to the file. This can be done by
entering fsck with the -~ option:

fsck -s file system

The number of links to a file may be greater than the number
of times it is referenced in directories. Each time a link
to that file is removed (i.e., the file itself is removed)
the link count and the number of entries will be decremented
by one, until the number of entries is zero; then the
procedure described above can be followed.

The situation in which the number of entries is greater than
the link count is more serious. The file has some links to
it, but the internal file descriptor count is less than the
number of actual links. As the links to a file are removed,
the link count is decremented by one until it equals zero;
then the file blocks are deallocated and returned to the
free list. However, the file will appear valid in some
directories, even though it has been deallocated, resulting
in a reference to a nonexistent file.

Although dcheck reports on this problem, it is fsck which
actually performs the correction. Phase 4 of fsck repairs
the reference count of a file within a file system.

2.4.12 The icheck Program

Each of the 5l2-byte blocks in a file system must be
accounted for once, as either in use by a file, as free, or
bad. Icheck counts all the blocks in a file system.

Any block number which appears more than once is, of course,
a duplicate block number; any block number which does not
occur is referred to as "missing' '. Every block number in
a file system must fall within the starting. and ending block
numbers (the range) of that file system. Icheck does this
'range checking' on each block, and each block out of range
is designated a bad block. In this way, each block of a file

2-21

XENIX System Reference

system is accountable.

Below is an example of the icheck output:

$ icheck /dev/rroot

files 320 (r=210,d=70,b=10,c=30)
used 2443 (i=143,ii=9,iii=0)
free 1315
missing °

This output is explained as follows:

~ files - refers to the total number of files in the file
system stored on the particular device. It is broken
down by the type of file: regular(r), block(b), and
character(c) devices.

~ used - is the total number of blocks that are used by
the file system. In XENIX, a file can grow to a maximum
of 1,082,201,087 bytes. This is accomplished by having
three levels of indirection. An internal file
descriptor contains 13 disk addresses. The first 10
point directly to the first 10 blocks of a file. If
the file is larger than 10 blocks, then the 11th
address points to a block that contains the addresses
of the next 128 blocks of the file. If the file is
still larger than this, then the 12th block points to
up to 128 blocks, each, in turn, pointing to 128 blocks
of the file. Files yet larger use the 13th address for
a "triple indirect" address. Thus, the total number
of blocks used is broken down into the blocks used by
each level of indirection.

~ free - this is the number of blocks that are currently
free, and therefore available for allocation for use by
other files.

2.4.13 Error Conditions

There are two classes of errors which
icheck: errors in the free-list and
descriptors. These are discussed below.

2.4.14 Errors in the Free List

are reported by
errors in the file

The number of free blocks is the number of blocks which are
available for allocation for use by other files. If blocks
are missing, they are unavailable for allocation; This is

2-22

not a
missing
on the
already
another
follows:

XENIX System Reference

disastrous situation, unless the total number of
blocks is unusually high. However, if blocks appear
free list which have already been allocated, blocks

allocated to an existing file may be allocated to
file. Icheck reports on this error class as

$ icheck /dev/rusr
/dev/rusr:
files 18571 (r=16878,d=1693,b=0,c=0)
used 215617 (i=4696,ii=210,iii=0,d=2l0501)
free 10498
missing 793

The first line is simply the number of blocks that are
missing from that file system; this disk space will be lost.
The second line reports on blocks found in the free-list
which are duplicates of blocks appearing either in some
file, or earlier in the free-list. The very last line
reports the total number of such blocks. If the last two
diagnostics appear, the situation is potentially dangerous.
It can be repaired with the fsck -s option. The first entry
is the block number in questIOn; the next entry is the file
(inode) to which that block is allocated.

2.4.15 Errors in the Internal File Descriptors

In XENIX, the file descriptor is called an "inode", an
integer used to refer to a file. Errors in this class are
reported with:

b*badiinode=i#iclass=[iclass]
b*dupiinode=i#iclass=[iclass]
99794 dUPi inode=14l3l, class=data (huge)
75013 dUPi inode=14l3l, class=data (huge)
75366 dUPi inode=14l31, c1ass=data (huge)
164422 dUPi inode=14131, class=data (huge)
75327 dUPi inode=14131, class=data (huge)
193376 dUPi inode=1413l, class=data (huge)
195902 dUPi inode=14131, class=data (huge)
74993 dUPi inode=141)1, c1ass=data (huge)
31826 dUPi inode=15002, c1ass=data (small)
files 18571 (r=16878,d=1693,b=0,c=0)
used 215617 (i=4696,ii=2l0,iii=0,d=210501)
free 10498
missing 793

In each of these cases, unfortunately, all the files
involved must be removed. In the"b*dup" case, the
duplication is noted at the second occurrence of the blocki

2-23

XENIX System Reference

the first occurrence must be located. The following command
lists all the inodes associated with the same block number.
All will have to be removed. ~.

icheck -b /dev/file system

2.5 BACKUPS

This chapter deals with backups of the file system(s).· The
system administrator must have a systematic plan for
scheduling the time and frequency of backups, determining
what level of c comprehensiveness is required, and deciding
where, and for how long, backup tapes should be stored.
Suggestions are provided here, along with procedures for
doing routine restores and recovering from disasters.

2.5.1 When to Take Backups

A backup of a compromised file system is worthless. Before
performing a backup, file system integrity should be checked
and restored, if necessary, using the tools described in the
preceding section.

Preferably, the file system should be dismounted; at the
very least, there should be little or no activity on the
file system proper, to avoid the modification of a file, or
files, while a backup is in progress. Backups should be
scheduled so that they have the least possible impact on
users.

Regular backups are insurance against partial
system loss. Because the file system is critical
it is suggested that a full and complete backup be
least once a month; intermediate backups should be
daily. Considerable flexibility exists for the
which intermediate backups are performed.

2.5.2 A Full Backup

or total
to XENIX,
done at

performed
level at

A full backup copies the entire file system to a secondary
storage medium, usually a tape. Since a relatively small
proportion of the files in a file system change frequently,
full backups at regular intervals may be supplemented by
intermediate, or incremental, backups. The full backup is
called a"level 0 dump". In case total disaster strikes,
the file system is restored primarily from the level 0 dump,
supplemented with files restored from intermediate backups,
as necessary. A level o dump should be performed for each

2-24

XENIX System Reference

file system at least once a month, and kept on site so that
it is readily available if a file system needs to be
rebuilt. On the other hand, the second most recent level 0
dump should be kept off site, so if something happens to the
on site storage area, recovery is still possible.

As an alternative to using the dump program, a complete copy
of a disk can be made either to another disk, or tape. This
method will make a copy, but it does not update other files
used by the dump program. The name of this program is dd.
Dd copies the specified input file to the specified output;
block size may be specified to take advantage of physical
I/O capacity:

dd if=/dev/filesystem of=/dev/device-name

The following will completely copy the usr file system to a
800bpi tape

dd if=/dev/usr of=/dev/rmtO

To copy the file system to another disk:

dd if=/dev/usr of=/dev/device

However, the dump program is recommended for performing full
backups.

2.5.3 Incremental Backups

An "incremental" backup copies only those files that have
been changed after a given date, generally that of the last
backup. There are ten different levels of dumps: 0-9,
starting with the level 0 dump presented above, and passing
through successive intermediate levels. Each time a
successful backup is performed, the date of the backup is
entered in the file /etc/ddate along with the name of the
file system from which the backup was taken. All files
modified since the most recent date stored in /etc/ddate for
that file system at a lesser level will be copied.

For example, if a level 0 dump was taken of the usr, file
system on Oct 1, 1981, and on the next day, Oct 2, 1981, a
level 9 backup was done, the files that would appear on the
level 9 dump would be those that were modified between the
level 0 dump and the level 9 dump. Or, using another
example, assume that on Oct 24, 1981 a level 9 dump was
performed, and on Oct 25, 1981 a level 5 dump was performed;
The files appearing on the level 5 dump are those modified
between the level 0 dump and the level 5 dump. On

2-25

XENIX System Reference

subsequent level 9 backups, only those files that were
modified since the last lower level backup (in this example,
the level 5 backup) will be copied for that file system.

2.5.4 How to Perform a Backup

The Dump program copies the file system which resides on
disk, to a secondary storage medium, usually a magnetic
tape. The storage media should either be marked or
cataloged so that there is,a record'of how much of a fi]~
system is backed-up, and where. As explained above, the file
system to be backed-up should preferably be dismounted, or
at least quiet. This is the command line which initiates
the backup procedure.

dump level iiJ~-system

Dump is the name of the command; level is the lev01 of the
backup which is about to be done, and fi.!.~ system is the
name of the file system which is abo~t to be backed up.

dump Ou /dev/usr

This example initiates a full leT,Tel 0 dump of thE: u~;,r file
system. The u argu::tent is used to up:iate the/etc/dc1at.e file
wit h the d ate -of the d u J~ 1? T his f i 1 e i sus e d - -to --deti:.- r min e
which files are to be dumped for any interhediate
incremental dump.

dump 7u /dev/usr

This command initiates a level '7 incremental bc::-::kup of tLe
usr file system. All files modified sincE. t!1e last date
stored in/ets:/ddate for the usr file system will be backed
up.

2.5.5 Saving Backup Tapes

The system administrator should develop a consistent policy
for the location and duration of tape storage. One possible
approach is to save the full level 0 backup for an
indefinite period after they are made, and the increme~ ~l
backups for ab0ut four weeks.

It is very strongly recommended that the most recent
backups, regardless of level, be stored on site for
immediate use; the next most recent backups should be stored
off site in a secure place, in case the on site backups are
damaged or unusable.

2-26

XENIX System Reference

2.5.6 Recovering From a Disaster

Backup tapes should be considered insurance against
disaster, and hopefully, should rarely be used. Commonly,
backup tapes are needed to restore files that are
accidentally deleted or changed by users. The system
administrator must often decide whether to restore lost
files from backup tapes or attempt to repair the file
system. Even with file systems that seem to be hopelessly
corrupted, less time and data may be lost in repairing the
file system than in attempting to recover an old version
with a succession of incremental backup tapes.

The worst case is the total loss of an entire file system.
To recover, the file system must be rebuilt from scratch,
and as much information as possible restored.

Required for recovery are the most recent level 0 and
intermediate level backups. By reading the backups in the
correct order, the entire file system can often be restored
to 98% of its normal state before it was destroyed.
Restoring a file system is a long process; patience and a
refusal to panic are essential. Backups are taken for just
this type of emergency.

2.5.7 Restoration: Step I

First, the file system needs to be reconstructed according
to specifications. These specifications include the number
of blocks in the file system and the size of the i-list.
These parameters can be given with the command or placed in
a file to be read by the system whenever the file system
needs to be reconstructed. The example below constructs a
file system called 'usr'.

/etc/mkfs /dev/usr 9874 526

Its size will be 9874 blocks; the next number represents the
size of the i-list in terms of inodes (an inode is 64 bytes;
there are 8 i-nodes to a 512 byte block). This number
represents the maximum number of files that the file system
can hold. /etc/mkfs simply constructs an empty file system.
The information--from the backup tapes must still be
restored.

The file system specifications can also be placed in a
prototype file read by /etc/mkfs. This method is superior
because it provides documentation for - the file system in
case it ever needs to be rebuilt. The following is a sample
prototype file:

2-27

/sys/mdec/boot
31030 5024
d--755 3 1
$

XENIX System Reference

The boot program is the first entry, on block 0 of the
device upon which the file system resides. The next line,
which specifies the size of the file system, is 31030 blocks
in size: the i-list, in this case, is to be 5024 inodes (an
inode is 64 bytes: there are 8 inodes to a 512 byte block).
The next line represents the specifications of the root file
for this file system. It consists of six characters: the
first character represents the type of file, and skipping
the next two characters, the rest of the string is a three
digit octal number giving the owner, group, and other r~~d,

wr i te, or execute permi 5S ions; the next. tVv'O dec Imai. THlmbe r s

specify the user and group id of the ownEr of the fil~.
Thus, the example above translates int.o:

/sys/mdec/uboot
31030 5024
d-- 755 3 1
$

(boot program)
(size ot file system)
(svecifications for root file)
(end of input)

The system will construct the file system base~ on the
information given to/etc/mkfs; this process takes
approxima te 1y 15- 20 minutes.- Once the file sys tem has bct;'rl
built, the next step, that of restering the file, tegins.
Remember, that except for the root file system, all other
file systems must be explicitly mounted on a dir~ct:..'ry wh:c.~:·:
then becomes the root of that file system. '

2.5.8 Restoration: SleD 2 ----- ..
Now that an empty file system is reconstructed, the file
system can ~e restored based on th~ information c0ntained on
the backup media. The level 0 backup must be d~);·.l: first.'
since it contains the entire file system; the incremci:tal
backups contain those files that have heen mo~ificd
subsequen t to the leve 1 C back up. Mount the me.i i a ,. a nl"~ :~!" f);T,

the console, type:

restor r /dev/usr

The system responds with:

Last chance before scribbling on /dev/usr.

At this point, a skeleton file system resides on the dev~ce

and the first volume of the level 0 dump is mounted. If

2-28

XENIX System Reference

everything is ready, hit return. Reading the tape in this
restoration process takes a while. After the first volume is
read, the system prompts:

Mount volume 2

It will continue to prompt for additional volumes until it
reaches the end of the backup.

2.5.9 Fsck After the Level 0 Backup: Step 3

At this point, most of the file system has been restored. In
order to insure that the file system is consistent, fsck and
the other file system aids should be run. Once file system
integrity is established, restore the information on the
other incremental backups with:

fsck /dev/usr

Fsck may ask you to supply a temporary scratch file; simply
enter the name of a temporary file:

NEED SCRATCH FILE (212 BLOCKS)
ENTER FILENAME: /tmp/fsckaa
(this file should be on a file system that is,
or could be, accessible).

At this point, fsck will begin going through the five phases
of checking the internal consistency of the file system.

2-29

XENIX System Reference

2.6 SOME ADVICE FOR SYSTEM ADMINISTRATORS

Getting started as a system administrator is hard wo~k, and
there are no real shortcuts to a working knowledge of the
system. You will need ample time for reading, sttidy and
hands-on e~perimenting. Don't commit yourself td "going
live" wi th your system until you·; have had two weeks to
teach yourself your job, and get the initial hardware quirks
ironed-out.

Don't consign this guide to oblivion after initiar syste;n
generation. In addition to needing it again whenevec you add
or change equipment, you will find that it contains valuable
material about system tuning that appears nowhere else. As
an administrator, you should be familiar wi th as mucp of tbe
documentation as possible. -

2.6.1 Disk Free Space

Making files is easy with XENIX. It has been said th~t the
only standard thing about all XENIX systems is the message
of the day telling users to clean up their files. If the
free inode count falls below 100, the system spends most of
its time rebuilding the free inode array. If a file system
runs out of space, the system prints "no-space" messages
and does little else. To avoid problems, the following free
counts should be maintained:

d> The file system containing /tmp (temporary tiles):
- 16-user system: 1,500 free blocks.

- 40-user system: 3,000 free blocks.

d> The file system containing lusr:
- 3,000 to 6,000 free blocks, depending on load.

d> Other user file systems:
- 6% to 10% free, depending on user habits (3,000

blocks minimum).

This brings up the associated question of how big a fil~

system should be. Our preference is to set aside space on
each drive for a copy of root/swap and use the rest of the
pack for a single file system. However, if you have user
groups that fight over disk space, it may be better to split
them up arbitrarily (i.e., divide a pack into more than one
file system).

Warning: if you set up different disk drives with differing
cylinder partitions between file systems, it will probably

2-30

XENIX System Reference

lead to an operations problem someday.

2.6.2 A Few Words About System Tuning

$ File system reorganization, as described below, can
help throughput, but at the expense of down time. It
is helpful to undertake reorganization when the users
are all asleep.

$ If you use normal shutdown procedures, the file system
check program, fsck,will help keep the disk free list
in reasonable order.

$ Try to keep disk drive usage balanced. If you have
over 20 users, the root file ~ystem (/bin, /tmp, /etc,
and swap) deserves aarTve of lts own.

$ If you have a noisy modem
yourself null-modem) or a
XENIX will spend a lot of CPU
logged in. A random check of
this going on.

2.6.3 Spare Disk Drive

(poorly executed do-it­
disconnected modem cable,
time trying to get it
systems uncovers a lot of

$ without a spare disk drive, the system will be down
when a drive is down.

$ without a spare drive, it is difficult to reorganize
file systems or to restore user files.

2.6.4 Disk Packs

$ Buy only fully ECC correctable packs and test them.

$ If a pack develops uncorrectable errors, recondition
it, or get rid of it.

2.6.5 Protecting User Files

Users, especially ine~perienced ones, occasionally remove
their own files. Open files are sometimes lost when the
system crashes, and once in a great while, an entire file
system will be destroyed (picture a disk controller that
goes bad and writes when it should read). Here is a
suggested file backup procedure:

2:-31

XENIX System Refer~nce

~ Each day, copy all user file systems to backup packs.
Keep these packs 3 to 5 days before reusing them.

~ Once a week, copy each file system to tape. Keep
weekly tapes for 8 weeks.

~ Keep bi-monthly tapes "forever' , (they should be
recopied once a year).

e The most recent weekly tapes should be kept off
premises. The other tapes should be in a fire-proof
safe, if you can afford one.

When XENIX goes down, active files can get scrambled. Your
users will not want to start the day over each time your
system fails. In addition to, good backup, you must have
file-system patching expertise available (on-site or' on-­
call). If you ever re-boot the system for general use
without checking out the file systems, disasters will occur.
(in one case, five duplicate entries on a file-system free
list ruined over 100 new files in just three days).

2.6.6 XENIXFile System Backup Programs

The following backup programs are distributed:

$ Dump/restor: This is a familiar tape-based system that
has been used for several years. Full dumps are
usually taken when the dump program warns that an
incremental dump will run to more than one reel.

$ Volcopy: physical file system copying to disk or tape.
For those who can afford a spare drive, ~olc<2EY to disk
provides convenient file restore and quick recovery
from disk dfsasters (remember the spare drive). Tape
vol~ provides good long-term backup because the file
system' can be read in and mounted quickly. Disk and
tape volcopy are generally used together for short- and
long-term backup •. VolcoI2X can also beu~ed for full
dumps with either dUJ!£/restor or epio/find.

We strongly recommend the spare disk drive; as explained
above, the speed and convenience of volcopy are by no means
the only advantage of a spare drive.

2-32

XENIX System Reference

2.6.7 Controlling Disk Usage

If your XENIX system is a success, you will soon run out of
disk space:

$ During the considerable delay before you can get more
drives, you will need to control usage:

- Try to maintain the free space counts recommended
above. Watch usage during the day by executing
the df command regularly.

- The du command should be executed after hours on a
regular basis and the output kept in an accessible
file for later comparison. In this way you can
spot users who are rapidly increasing their disk
usage.

- The find can be used to locate inactive or large
files. Example:

find / -mtime +90 -atime +90 -print >somefile

records in "somefile" the names of files neither
written nor accessed in the last 90 days. Of
course, this works best if you are super-user.

$ You will also have to balance usage between file
systems. To do this you will have to move user
directories. Users should be taught to accept file
system name changes (and to program around them,
preferably ahead of time). The user's login directory
name (available in the shell variable HOME) should be
utilized to mlnlmlze path name dependencies. User
groups with more extensive file system structures
should set up a shell varjable to refer to the file
system name (e.g.: FS).

$ The find and epio commands can be
directories and to manipulate
The following sequence moves, via
directory trees:

used to move user
the file system tree.
magnetic tape, the

user and usery from file system filesysl to file system
fII"esys2

where more space is available:

2-33

XENIX System Reference

cd /filesysl
find userx usery -cpio /dev/rmtO
cd /filesys2
mkdir userx usery
chown userx userx
chown usery usery
cpio -idmB </dev/rmtO

Make sure new copy is okay. Change userx and usery
login directories in the /etc/passwd file:

rm -rf /filesysl/userx /filesysl/usery

When moving more than one user in this way:

- Keep users with common interests in the same file
system (they may have linked files).

- Move groups of users who may have linked files
with a single cpio (otherwise linked files will be
unlinked and duplicated).

2.6.8 Reorganizing File Systems

The procedure for moving users described above can be
expanded to provide a way to reorganize whole file systems.
Reorganization can improve system response time. This is
particularly true of the root file system which must be
reorganized wi th all othe-r--file systems unmounted.
Unfortunately, reorganization of a large file system is
slow.

2.6.9 Keeping Directory Files Small

Directories larger than 5K bytes (320 entries) are very
inefficient because of file system indirection. A user
once complained that it took the system ten minutes to
complete the login process; it turned out that his login
directory was 25K bytes long, and the login program spent
that time fruitlessly looking for a non-existent .profile
file. A large /usr/mail or /~/spool/~ucp ,directory can
also slow the system down. The followlng wlll locate such
directories:

find / -type d -size +10 -print

Removing files from directories does not make the
directories get smaller (the empty directory entries are
available for reuse). The following will "compact' ,

2-34

XENIX System Reference

/usr/mail (or any other directory):

mv /usr/mail /usr/omail
mkdir /usr/mail
chmod 777 /usr/mail
cd /usr/omail
find. -print I cpio -plm •• /mail
cd
rm -rf omail

2.6.10 Administrative Use of "CRON"

The program cron is useful in the administration of the
system: it can be used to:

$ Turn off the programs in directory /~/games during
prime time.

$ Run programs off-hours:
- accounting

- file system administration

- long-running, user-written shell procedures (using
the su command), for example:

su - userx userx shell arg

2.6.11 Watch Out For Files and Directories That Grow

$ /usr/adm/wtmp-login information:

$ /usr/adm/pacct-process accounting: gets big quickly.

$ /usr/lib/cronlog-status log of commands executed by
£E..2!! (1M) :

$ /~/spool-spodling directory for line printers, uucp,
etc., and whose sub-directories should be compacted as
described above.

2.6.12 Allocating Resources to Users

A prospective user should obtain connect-time and file-space
authorization through appropriate channels. Once this is
done, the user should apply for a login by providing the
following information to the "system administrator":

2-35

XENIX System Reference

$ User's name.

$ Suggested login name (not more than 8 characters,
beginning with a lower-case letter).

$ Relationships to· other users (this influences the
choice of the file system).

$ Estimate of required file space (this also influences
the choice of the file system).

Users should be forced to have passwords (not more than 8
characters long, but more than 5, and not in Webster's
Unabridged) ;

2.6.13 Accounting and Usage

You should run the accounting programs even if you do not
"bill" for service. Otherwise, your users' habits will be
a mystery to you. Accounting information can also help you
find performance bottlenecks, unused log ins, bad phone
lines, etc.

2.6.14 Line Printers

Most line printers are troublesome and impose considerable
overhead on the system. Most also lack hardware tabs,
character overstrike capability, etc. A printer that will
work over an asynchronous link (DC1/DC3 protocol required)
may be the best bet.

2.6.15 Security

The current XENIX is not tamper-proof. You can't keep
people from "breaking" the system, but you can usually
detect that they have done so. The following command will
mail (to root) a list of all "set user ID" programs owned
by root (super-user): .

find / -user foot -perm -4100 -exec Is -1 {} ;
Imail root

Any surprises in root's mail should be investigated.
is some related advice:

Here

$ Change the super-user password regularly. Don't pick
obvious passwords (choose 6-to-8 character nonsense
strings that combine alphabetics with digits or special

2-36

XENIX System Reference

characters) •

$ If you have dial ports and do not re9uire passwords,
you are courting trouble.

$ The chroot and ~ commands are inherently dangerous, as
are group passwords~ consider removing them from
"production" systems.

$ Login directories, .profile files, and files in /bin,
/usr/bin, /lbin, and /etc that can be written to by
other than their respective owners are security weak
spots; police your system regularly against them.

$ Remember, no time-sharing system with dial ports is
really secure. Don't keep top-secret stuff on the
system.

2.6.16 Communicating with Your Users

The directory /usr/news and the news command are provided as
a way to get~r~ announcements to your users. More
pressing items (one-liners) can be entered in the /etc/motd
(message of the day) file; motd and (new to the user) news
are announced at login time. ----

To reach users who are already logged in, use the wall
(write all) command. Don't use wall while logged-in as
super-user, except in emergencies.

The /usr/news directory should be cleaned out every few
weeks~o that nothing older than, say, three months is ever
found there. The motd file should be cleaned out daily.

We have found that, on most systems, a file in /usr/news
will reach 50% of users within a day and over 80% of users
within a week.

2.6.17 Troubleshooting

It would be easy to write a book on this topic. The
following are some of the key items involved in dealing with
the hardware service contractor:

$ Before you take out a hardware service contract, be
sure that the contractor agrees to get along with the
XENIX software ("It's the hardware," says you: "It's
the software," says the hardware service contractor).

2-37

XENIX System Reference

$ Keep on top of problems. Your contractor may have a
problem-aging priority scheme; if so, make them prove
that they are following it. Remember that an
unreported problem is getting no priority at all. If a
problem persists, escalate it up your contractor's
local management chain; it may also be effective to
complain to your contractor's sales representative.

$ If you are serious about service to your users, you
should have an extended-period service contract (e.g.,
16 hours/day, 6 days/week). Arrange for preventive
maintenance, non-critical repair, and add-on
installation work to be done before or after prime
time.

$ If you have a service contract, learn the details. In
particular, make sure that preventive maintenance is
scheduled in advance and that it is completed.

$ Ask the hardware service
maintain a "site 10gll.
log as well.

contractor to provide and
you will have to work on the

$ Make sure that your hardware vendor (as well as your
hardware service contractor, if the two are different)
agrees to the presence of other vendor's equipment on
your system (even if you have none to start with) .

$ Run error logging. Keep console sheets. Make sure
error messages are shown to your contractor's Customer
Engineers.

$ Take core dumps after system crashes and interpret
results for Customer Engineers.

$ Keep down-time records and make sure that your hardware
service contractor knows about them.

Over 50% of your problems are likely to be related to the
disk subsystem. As mentioned earlier, the way to keep your
system up is to have a spare disk drive. Here ar,e some key
points to remember:

$ Preventive maintenance of
important.

disk drives is very

$ Make sure that the Customer Engineers who service your
hardware see the error-logging printouts and console
error messages produced by XENIX (and that they
understand them).

2-38

XENIX System Reference

$ Disk failure can ruin a XENIX file system. The only
defense is to make a complete, daily file backup!

Power supply modules are another common source of failure.
Hard failure can be detected at the console; voltage drift
is tougher.

XENIX System Reference

CHAPTER 3

ADVANCED SYSTEM FUNCTIONS

In this section, tools which aid in the implementation of
three advanced system functions are introduced: the writing
of device driver routines, the establishment of inter­
machine communication, and the maintenance of system
security. Although the use of the XENIX tools described here
may be limited to system administration, or some very
specialized users, everyone should be familiar with their
existence. In order to to assign I/O devices to a XENIX
system, device driver routines are necessary; in order to
establish either dial-up or hardwired communication between
two or more XENIX systems, a series of UUCP programs are
required. Detailed procedures for both of these functions
are described below, followed by some words of advice
concerning XENIX system security.

3-1

XENIX System Reference

3.1 DEVICE DRIVER & I/O GUIDE

In order for the XENIX system to 'talk' to a device, whether
a tape, disk, terminal, or printer, a set of subroutines
must be written and linked into the XENIX kernel. These
subroutines are called device drivers, since they "drive"
the devices they are written for. A device driver does two
things: it .interfaces the physical characteristics of a
device to the operating system and it performs the low level
data transfers that the operating system expects.
Therefore, a device driver must be able to implement a set
of standard I/O functions in a manner that is appropriate to
a specified device. This section explains the XENIX I/O
system, and provides the necessary information to write a
device driver for a peripheral I/O device.

I
All devices have different characteristics; however, there
are certain characteristics which are common to all devices.
In addition to describing these common characteristics and
giving an overview of the XENIX I/O system, this section
presents prototype device drivers for the devices in the
XENIX block I/O class. These drivers should be used only as
models, and should not be copied as is.

3.1.1 The XENIX I/O System

The I/O system is broken into two separate systems or
classes: the block I/O system and the character I/O system.
The block I/O class is suitable for devices such as disks
and tapes that work with addressable 512-byte blocks.
Ordinary magnetic tapes just barely fit in this category,
since by the use of forward and backward spacing any block
can be read, even though blocks can only be written at the
end of the tape. The block I/O class interface is very
highly structured: these drivers share many routines, as
well as a pool of buffers.

When a read or write takes place, the user's arguments and
the file table eritry are used to set up the following
variables

u.u base
u.u-count
u.u-offset

These contain the address of the I/O target area, the byte
count for the transfer, and the current location in the
file, respectively. If the file is a character-type special
file, the appropriate read or write routine is called. It is
responsible for transferring data and updating the count and

3-2

XENIX System Reference

current location. Otherwise, the current location is used to
calculate a logical block number in the file. If the file is
an ordinary file, the logical block number must be mapped to
a physical block number. All of this is done before the
device driver is called.

3.1.2 Device Numbers

All XENIX devices are characterized by a major device
number, a minor device number, and an I/O class (either
block or character). These numbers are generally stored as
an integer with the minor device number in the low-order 8
bits and the major device number in the next-higher 8 bits.
The macros major and minor must be used to access these
numbers. Both macros are found in the file /~/g/param,g

XENIX uses the major device number to determine which driver
will deal with which device. The minor device number is used
internally by the driver at appropriate times, and is not
used externally by the operating system.

Each I/O class has a table of entry points in /~/conf/£.£
for its device drivers. This configuration file is described
in a later section. The major device number, is used to
index into the appropriate table for a particular device
driver. The minor number is passed to the device driver as
an argument. Typically, the minor number selects a subdevice
attached to a given controller, or one of several similar
hardware interfaces. It has no significance other than that
attributed to it by the driver.

3.1.3 Block I/O System

A canonical block I/O device consists of randomly addressed,
secondary memory blocks of 512 bytes each. The blocks are
uniformly addressed from 0 up to the size of the device. The
block device driver has the job of emulating this model on
the physical devic~.

The block I/O devices are accessed through a layer of
buffering software. The system maintains a list of buffers,
each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices.
On a read request, the cache is searched for the desired
block. If the block is found, the data is made available to
the requester without any physical I/O. If the block is not
in the cache, the least recently used block in the cache is
renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available.

3-3

XENIX System Reference

Write requests a~e handled in a similiar manner. The correct
buffer is found and relabeled if necessary. The write is
performed simply by marking the buffer as 'dirty'. The
physical I/O is then deferred until the buffer is renamed.

3.1.4 Character I/O System

The character I/O system consists of all devices that do not
fall into the block .I/O model. This includes the "classical"
character devices such as communication lines, paper tape,
and line printers. It also includes magnetic tape and disks
when they are not used in a stereotyped manner. For
example, tape containing aD-byte records and disks that are
copied a track at a time fall into this category. I/O
requests are sent to the device driver essentially
unaltered. The implementation of these requests is up to the
device driver.

3.1.5 Configuration Tables

The file /~/conf/£.£ contains configuration tables for all
XENIX devices. This table must be updated whenever a new
device or a new device driver is added to the system. The
major device numbers given in these tables for block and
character devices are used as an index to their respective
device tables. To add a new device to the configuration
table, the major device number is selected by counting the
line number (from zero) until the device is found, or a new
entry (line) must be made. The minor device is the drive
number., unit number, or partition. Each of the I/O classes
requires a different interface, and therefore, different
entries are made in the configuration table. The cdevsw
table lists the interface routines which are present for a
specific character device. Each line in the table specifies
a device specific routine for open, close, read write, and
special functions. If there is no open or close routine,
'nulldev' may be given1 if there is no read, write, or
status routine, 'nodev' may be given. Nodev sets an error
flag and returns. '

Each of the device driver categories is described below.

open - the open routine is called each time the file is
opened. Its first argument is the full device
number. The second argument is a flag which is
nonzero only if the device is to be written upon.

3-4

XENIX System Reference

devopen(dev, flag)

i
close - the close routine is called only when the file is

closed for the last time; that is, when the very
last process in which the file is open closes it.
The first argument is the device number: the
second is a flag which is nonzero if the file was
open for writing in the process which performs the
final close. Note that the flag does not indicate
if the file has· been written sihce the initial
open.

devclose(dev,flag)

i
write - the write routine should copy the transfer count

characters (u.u count in /sys/h/user.h) from the
buffer to the device, decrementing the count for
each character passed. Successive calls on it
return the characters to be written until the
transfer count goes to zeroeD) or an error occurs,
in which case it a returns a negative one (-I).

devwrite(dev)

i
read - the read routine is called under conditions similar

to write, except that the transfer count
(~.u count) is guaranteed to be nonzero.

devread(dev)

i
special-function the 'special-function' routine is

invoked by the ioctl system call as follows:

devioctl(dev,cmd,cmarg,flag)

where dev is the device number, cmd is the
command, and cmarg is a pointer to somewhere in
user's memory, and flag is a copy of the flags
associated with the file (see /sys/h/file.h) •

Finally, each device should have appropriate interrupt-time
routines. When an interrupt occurs, it is turned into a C­
compatible call to the device's interrupt routine. After the

3-5

XENIX System Reference

interrupt has been processed, a return from the interrupt
handling routine returns from the interrupt itself.

When a device driver is running, it is often necessary to
disable the processor's interrupt facility while critical
sections of the interrupt code are being executed. This is
done by changing the system priority level. The following
functions ar~ available for this purpose: spI4(), spI5(),
spI6(), and spI7() These routines return a value which is
suitable as an argument to splx(E!) which is used to restore
the previous priority.

devintr(dev)

j
The bdevsw table contains the names of the interface
routines and that of a table for each block device. As with
character devices, block device drivers may supply an open
and close routine called on each open and on the final close
of the device. Instead of separate read and write routines,
each block device driver has a strategy routine which is
called with a pointer to a buffer header as an argument. The
header contains a read/write flag, the core address, the
block number, a byte count, and the major and minor device
number. The role of the strategy routine is to carry out the
operation as requested by the information in the buffer
header, to sort the buffer headers (in cylinder order) for
more efficient I/O, and then to call the device startup
routine if the device is not already active. Although the
most usual argument to the strategy routines is a genuine
buffer header, all that is actually required is that the
argument be a pointer to a place containing the appropriate
information. The definition of a buffer header is given in
/~/!!/buf.h ••

The device's table specified by bdevsw has a byte to contain
an active flag and an error count, a pair of links which
constitute the head of the chain of buffers for the device
(b forw, b back), and a fir~t and last pointer for a device
queue. Of these, all are used solely by the device driver
itself except for the buffer-chain pointers. Since the
buffers which have been handed over to the strategy routines
are never on the list of free buffers, the pointers in the
buffer which maintain the free list (av forw, av back) ,. are
also used to contain the pointers which maintain the device
queues. The table used by the driver conventionally has the
same format as a buffer header, with redefinitions of some
of the names.

3-6

XENIX System Reference

In addition to the routines contained in· the drivers
themselves, other system routines may be called and used by
each driver. They are iodone, disksort, deverror and physio.
Each of these will be briefly explained below.

The routine iodone arranges that the buffer to which points
be released or awakened, as appropriate. This should be
called when the driver has finished with the buffer, either
normally or after an error.

Disksort (dp,bp) is called with two arguments: a pointer to
the device and a pointer to the buffer header. Disksort
sorts the buffer £E into the queue headed by £E. The I/O
requests are sorted by cylinder number; the cylinder number
must be computed before the call to disksort.

The routine deverror (bp, csr, stat) is called with three
arguments: a pointer to the buffer header; the command
register; the status register; The latter two arguments are
used at the discretion of the driver. Deverror prints a
diagnostic from a device driver. It prints the device, block
number, and an octal word (usually some error status
register) which were passed to it as arguments.

Physio (bp,&buf,dev,flag) is called with four arguments: a
pointer to the buffer header, a buffer for raw I/O, a
device, and a flag to indicate a read or write operation.
Physio provides a means of using the raw, physical I/O to
avoid the normal block buffering of the operating system,
which improves transfer efficiency. The primary function of
physio is to compute and validate physical addresses from
the current logical address.

3.1.6 Writing the New Device Driver

To demonstrate how the new driver should be written, sources
for the following two device drivers are presented:

bdproto
btproto

block type disk driver
block type tape driver

These psuedo-drivers are modeled from actual drivers on a
PDP-II, and will differ from other device drivers primarily
in their device register layout and the assignment of bits
in the device registers. Each driver has a structure named
'device' and a manifest named 'XXADDR'. These define the
device's register layout and its base address. To
accommodate machines in which devices have a separate
address space (unlike the PDP-II), all references to the
device registers are through the subroutines in(addr) and

3-7

XENIX System Reference

out(addr,va1). .To help identify areas in the driver that
may be controller or device dependent, the comment '/*
DEVICE DEPENDENT */' is used. When beginning to write a new
device driver, it is best to begin with previously written
routines such as those presented here. It is also necessary
that the important information required to write a device
driver be readily available. Thus, to describe the physical
device to th~ system, it is necessary to have the following
specifications:

1. Number of tracks

2. Number of sectors per track

3. Number of devices to be included

4. The device's address

5. The device's registers and their bit settings

6. The device's priority level

Sources for sample device drivers are given in Appendix A.

3-8

.II
\

XENIX· Syst~em Ref~rehce

3.2 UUCP IMPLEMENTATION DESCRIPTION

Uucp is a series of programs designed to permit
communication between XENIX .. systems using ei ther dial-up or
hardwired communication lines. It can be used for file
transfers and remote command execution. This section
describes the current implementation of the system.

Uucp is a batch operation. Files are created in a spool
directory for processing by the uucp daemons. There are
three types of files used for the execution of work:

$ Data files contain data for transfer to remote systems.

$ Work files contain directions for file
between systems.

transfers· .

$ Execute files are scripts for commands that involve the
resources of one or more systems.

There are four primary programs:

uucp builds work files and gathers data files in the spool
directory for data transmission.

uux creates work files, execu.te files, and gathers data
fires-for the remote execution of commands.

uucico executes the work files for data transmission.

uuxqt executes the scripts for XENIX command execution.

There are a couple of administrative programs:

uulog gathers temporary log files that may occur due to
lockout of the uucp log file and reports some
information such as copy requests and completion
status.

uuclean removes old· files from the spool directory.

The remainder of this section will describe the operation of
each program, the installation of the system, the security
aspects of the system, the files required for execution, and
the administration of the system.

3-9

XENIX System Reference

3.2.1 Uucp-XENI~ to XENIX File Copy

The uucp command is the user's primary interface with the
system. The command is designed to look like £E to the
user. The syntax is

uucp
[
option
] . . . source ••• destination

where the source and destination may contain the prefix
system-~!, which indicates the system where the file or
files reside or where they will be copied.

Uucp has several options:

-d Make directories when necessary for co~yin~ the file.

-c Don't copy source files to the spool directory, but use
the specified source when the actual transfer
takes place.

-e~ Send this job to system ~ to execute. (Note that
this will only work when the system ~ allows
uuxqt to execute a uucp command.)

-gletter Put letter in as the grade in the name of the work
file. (This can be used to change the order of
work for a particular machine.)

-m Send mail to the requester on completion of the work.

-nuser Notify user on the remote machine that a file has
been sent.

There are several options available for debugging:

-r Queue the job btit do not start uucico program.

-xnum is a level number between I and 9~ higher numbers give
more debugging output.

The destination may be a directory name, in which case the
file name is taken from the last part of the source's name.
If the directory exists, it must be writable by everybody.
(Note that if the destination is a directory name and the
"-d" option is specified to create the directory, the
directory name must be followed by "I' '.) The source name
may contain special shell characters such as "?*[] 'I.

3-10

· . .

XENIX System Reference

These will be expanded on the appropriate system.

The command

uucp *.c usg!/usr/dan

will set up the transfer of all files whose names end with
".c" to the "/usr/dan" directory on the"usg" machine.

The source and/or destination names may also contain a user
prefix. This translates to the login directory of user on
the specified system. File names beginning with ~/' I

translate into the public directory (usually
/usr/spool/uucppublic) on the remote system. For names with
partial path-names, the current directory is prepended to
the file name. File names with •• / are not permitted for
security reasons.

The command

uucp usg! dan/*.h dan

will set up the transfer of files whose names end with
".h" in dan's login directory on system "usg" to dan's
local login directory.

For each source file, the program will check the source and
destination file-names, the system-part of each argument,
and the options to classify the work into several types:

1. Copy source to destination on local system.

2. Receive files from other systems.

3. Send files to a remote system.

4. Send files from remote systems to another remote
system.

5 • Receive files' from remote systems when. the source
contains special shell characters as mentioned above.

6. Request that the uucp command be executed by a remote
system.

After the work has been set up in the spool directory, the
uucico program is started to try to contact the other
machine and execute the work (unless the -r option was
specified) •

3-11

XENIX System Reference

Type 1 - local copy The copy is done locally. The -m and
-9. options are not honored in this case.

Type 2 - receive files A workfile is created or appended
with a one line entry for each request. The upper limit to
the number of files per workfile is set in uucp.h. (The
default setting is 20.) Afte~ the limit has been reached, a
new work file is created. (All workfiles and executefiles
use --a--blank as the field separator.) The fields for these
entries are given below. .

1. R

2. The full path-name of the source or a
something/path-name. The something part will be

expanded on the remote system.

3. The full path-name of the destination file. If the
something notation is used, it will be immediately

expanded.

4. The user's login name.

5. A "-" followed by an option list.
and -d may appear.

The options -m

Type 3 - send files Each source file is copied into a data
file in the spool directory. (A "-c" option on the uucp
command will prevent the datafile from being made. In this
case, the file will be--transmitted from the indicated
source.) The fields for these entries are given below.

1. S

2. The full pathname of the source file.

3. The full pathname
something/file-name.

4. The user's login name.

of the destination or

5. A "-" followed by an option list. The options -d,
-m, and -n may appear.

6. The name of the datafile in the
dummy name, "0.0" is used
specified.

3-12

spool directory. A
when the -c option is

XENIX System Reference

7. The file mode bits of the source file in octal print
format (e.g., 0666).

8. The user on the remote system to be notified upon
completion of the file copy when the "-n" option is
specified.

Type 4 and Type 5 - remote uucp required Uucp generates a
uucp command and sends it to the remote machine; the remote
uucico executes the uucp command.

Type 6 - remote execution This occurs when the "-e"
option is used. In this case, the uux facility is used to
create and send the request. This requires that the remote
uuxqt program allows the uucp command.

3.2.2 Uux-XENIX To XENIX Execution

The uux command is used to set up the execution of a command
where the execution machine and/or some of the files are
remote. The syntax of the uux command is

uux
[

"] ["
option

]
command-string

where the command-string is made up of one or more
arguments. All special shell characters such as "<>I~"
must be quoted either by quoting the entire command-string
or quoting the character as a separate argument. Within the
command-string, the command and file names may contain a
s~stem-name! prefix. All arguments that do not contain a
< 1" will not be treated as files. (They will not be
copied to the execution machine.) An argument that contains
a "1" but is not to be treated as a file at the present
time, can be escaped by using "~C)"~ around the argument.
(Note that the "()I' symbols must usually be escaped with a
"\" symbol.) The "-" is used to indicate that the
standard input for command-string should be inherited from
the standard input of the uux command. The following
options are available for debugging:

-r Don't start uucico or uuxqt after queuing the job.

3-13

XENIX System Reference

-xnum is a level number between land 9; higher numbers give
more debugging output.

The command

pr abc uux usg!lpr

will set up the output of "pr abc" as standard input to an
lpr command to be executed on system "usg".

Uux generates an execute file that contains the names of the
files required for execution (including standard input), the
user's login name, the destination of the standard output,
and the command to be executed. This file is either put in
the spool directory for local execution or sent to the
remote system using a send command (type 3 above).

For required files that are not on the execution machine,
uux will generate receive command files (type 2 above).
These command-files will be put on the execution machine for
execution by the uucico program.

The execute file contains a script that will be processed by
the uuxqt program. It is made up of several lines, each of
which contains an identification character and one or more
arguments. The lines are described below.

User Line

U user system

where the user and system are the requester's login name and
system.

Required File Line

F file-name real-name

where the file-name is a unique name used for file
transmission--and real-~ is the last part of the actual
file name (contains no path information). Zero or more of
these lines may be present. The uuxqt program will check
for the existence of all these files before the command is
executed.

Standard Input Line

3-14

XENIX System Reference

I file-name

The standard input is either specified by a "<" in the
command-string or inherited from the standard input of the
uux command if the "-" option is used. If a standard
input is not specified, "/dev/null" is used. (Note that
if there is a standard input specified, it will also appear
in an "F" line.)

Standard Output Line

o file-name system-name

The standard output is
command-string. If a
"/dev/null" is used.
implemented.)

Command Line

C command
[
arguments
]

specified by a">" within the
standard output is not specified,

(Note that the use of "»" is . not

The arguments are those specified in the command-string~
The standard input and standard output will not appear on
this line. All required files will be moved to the
execution directory (usually /usr/lib/uucp/.XQTDIR) and the
XENIX command is executed using the shell specified in the
~ucp.h header file. In addition, a shell "PATH" statement
1S prepended to the command line as specified in the uuxqt
program. (Note that a check is made to see that the command
is allowed as specified in the uuxqt program.) After
execution, the standard output is copied or sent to the
proper place.

3.2.3 Uucico-Copy In, Copy Out

The uucico program will perform several major functions:

1. Scan the spool directory for work.

2. Place a call to a remote system.

3. Negotiate a line protocol to be used.

3-15

XENIX System Reference

4. Execute all requests from both systems.

5. Log work requests and work completions.

Uucico may be started in several ways:

1. By a system daemon specified in a crontab entry,

2. By one of the uucp, uux, uuxqt or uucico programs,

3. directly by the user (this is usually for testing),

4. By a remote system. (The uucico program
specified as the "shell" field
"/etc/passwd'i file for the logins used
systems to access uucp.)

should be
in the

by remote

When started by method 1, 2 or 3, the program is considered
to be in MASTER mode. In this mode, a connection will be
made to a remote system. If started by a remote system
(method 4), the program is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no
system name is specified (-s option not specified) the
program will scan the spool directory for systems to call.
If a system name is specified, that system will be called,
and work will only be done for that system.

Uucico is generally started by another program.
several options used for exec~tion:

There are

-rl -Start the program in MASTER mode. This is used when
uucico is started by a program or "cron" shell.

-s~ Do work only for system~. If -~ is specified, a
call to the specified system will be made even if
there is no work for system ~ in the spool
directory. This is useful for polling systems
that do not have the hardware to initiate a
connect ion'.

The following options are used primarily for debugging:

-ddir Use directory dir for the spool directory.

-xnum Num is a level number between 1 and 9~ higher numbers
give more debugging output.

The next part of this section will describe the major steps
within the uucico program.

3-16

XENIX System Reference

Scan For Work The names of the work related files in the
spool directory have the format

type • system-name grade number

where

1. ~ is an upper case letter (C - copy command file,
g - data file, X - execute file),

2. system-name is the remote system,

3. grade is a character,

4. number is a four digit, zero padded sequence number.
The file C.res45n0031 would be a workfile for a file
transfer -between the local machine--and the "res45 1

I

machine.

The scan for work is done by looking through the spool
directory for work files (files with prefix "e. I

'). A list
is made of all systems to be called. Uucico will then call
each system and process all work files.

Call Remote System The call is made using information from
several files that reside in the uucp program directory
(usually /usr/lib/uucp). At the start of the call process,
a lock is set to forbid multiple conversations between the
same two systems.

The !!.~ file contains information required to make the
remote connection:

1. System name

2. Times to call the system (days-of-week and times-of­
day) and the minimum time delay before retry

3. Device or device type to be used for call

4. Line class (this is the line speed on almost all
systems)

5. Phone number if field 3 is Aeu or the device if not
Aeu

6. Login information (zero or more fields)

The time field is checked against the present time to see if
the call should be made. The phonenumber may contain

3-17

XENIX System Reference

abbreviations (e.g., mh, py, boston) that get translated
into dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields 3 and 4 from the
~.sys file to find an available device for the call. The
program will try each devices that satisfy 3 and 4 until a
call is made, or no more devices can be tried. If a device
is successfully opened, a lock file is created. If the call
is completed, the login information (field 6 of ~.~) is
used to login.

The conversation between the two uucico programs begins with
a handshake started by the called, SLAVE, system. The SLAVE
sends a message to let the MASTE~ know it is ready to
receive the system identification and conversation sequence
number. The response from the MASTER is verified by the
SLAVE and if acceptable, protocol selection begins. The
SLAVE can also reply with a "call-back required" message
in which case, the current conversation is terminated.

Line Protocol Selection The remote system sends a message

P proto-list

where proto-list is a string
representing a line protocol.

of characters, each

The calling program
corresponding to an
~-protocol message.

Ucode

checks proto-list for a letter
available line protocol and returns a
The use-protocol message is

where code is either a one character protocol letter or
"N", which means there is no common protocol.

Work Processing The MASTER program does a work search
similar to the one used in the "Scan For Work" section.
(The MASTER has been specified by the "-rl" uucico
option.) Each message used during the work processing is
specified by the first character of the message:

S - send a file,

R -receive a file,

C -Copy complete,

3-18

XENIX System Reference

X -execute a uucp command,

H -hang up.

The MASTER will send R, S or X messages until all work for
the remote system is complete, at which point an H message
will be sent. The SLAVE will reply with SY, SN, RY~ RN, HY,
HN" XY, or XN, corresponding to yes or no foreach request.

The send and receive replies are based on permission to
access the requested file/directory using the USERFILE and
read/write permissions of the file/directory. After each
file is copied into the spool directory of the receiving
system, a copy-complete message is sent by the receiver of
the file. The message CY will be sent if the file has
successfully been moved from- the spool directory to the
destination. Otherwise, a CN message is sent. (In this
case, the file is put in the- public directory, usually
/usr/spool/uucppublic, and the requester is notified by
mail.) The requests and results are logged on both systems.

The hangup response is determined by a work scan of the
SLAVE's spool directory. If work for the remote system
exists an HN message is sent and the programs switch roles.
If no work exists, an HY response is sent.

Conversation Termination When a HY message is received by
the MASTER it is echoed back to the SLAVE and the protocols
are turned off. Each program sends a final "00" message
to the other. The original SLAVE program will clean up and
t~rminate. The MASTER will proceed to call other systems
unless a "-s" option was specified.

3.2.4 Uuxqt-Uucp Command Execution

The uuxqt program is used to execute scripts generated by
uux. The uuxqtprogram may be started by either the uucico
or uux programs or 'a demon specified by a crqntab entry.
The program scans the spool directory for execute files
(prefix "X.' I). Each one is checked to see if all the
required files are available and if so, the command line is
verified and executed.

The execute file is described in the "Uux" section above.

The execution is accomplished by executing a "sh -c" of
the command line after appropriate standard input and
standard output have been opened. If a standard output is
specified, the program will create a send command or copy

3-19

XENIX System Reference

the output file as appropriate.

Uulog-Uucp Log Inquir¥ When a uucp program can not make a
log entry directly Into the LOGFILE an individual log file
is created: a file with prefix LOG. This will sometimes
occur when more than one uucp process is running.
Periodically; uulog may be executed to append these files to
the LOGFILE.

The uulog program may also be used to request the output of
LOGFILE entries. The request is specified by the use of the
options:

-s~ Print entries where §..Y.:! is the remote system name

-uuser Print entries for user user.

The intersection of lines satisfying the two options is
output. A null ~ or ~ means all system names or users
respectively.

3.2.5 Uuclean-Uucp Spool Directory Cleanup

This program is typically started by the uucp daily demon.
Its function is to remove files from the spool directory
that are more than 3 days old. These are usually files for
work that can not be completed. The requester of this work
is notified that the files have been deleted.

There are several options:

1. -ddir The directory to be scanned is dire

2. -m Send mail to the owner of each file being removed.
(Note that most files put into the spool directory
will be owned by the owner of the uucp programs since
the setuid bit will be set dn these programs. This
mail is sometimes useful for administration.)

3. -nhours Change the aging time from 72 hours to hours
hours.

4. -p~ Examine files with prefix ~ for deletion. (Up
to 10 of these options may be specified.)

5. -xnum This is the level of debugging output desired.

3-20

XENIX System Reference

3.2.6 Security

The uucp system~ left unrestricted, will let any outside
user execute any commands and copy out/in any file that is
readable/writable by a uucp login user. It is up to the
individual sites to be aware of this and apply the
protections that they feel are necessary.

There are several security features available aside from the
normal file mode protections. These must be set up by the
administrator of the uucp system.

1. The login for uucp does not get a standard shell.
Instead, the uucico program is started so that all
work is done through uucico.

2. The owner of the uucp programs should be an
administrative login. It should not be one of the
log ins used for remote system access to uucp.

3. A path check is done on file names that are to be sent
or received. The USERFILE supplies the information
for these checks. The USERFILE can also be set up to
require call-back for certain login-ids. (See the
"Files Required For Execution" section for the file
descr iption.)

4. A conversation sequence count can be set up so
the called system can be more confident of
caller's identity.

that
the

5. The uuxqt program comes with a list of commands that
it will execute. A "PATH" shell statement is
prepended to the command line as specified in the
uuxqt program. The installer may modify the list or
remove the restrictions as desired.

6. The ~.~ file should be owned by the uucp
administrative login and have mode 0400 to protect the
phone numbers and login information for re~ote sites.

7. The programs uucp, uucico, uux, uuxqt, uulog, and
uuclean should be owned by the uucp administrative
login, have the setuid bit set, and have only execute
permissions.

3-21

XENIX System Reference

3.2~7 Uucp Installation

It is assumed that the login ~ used by a remote computer
to call into a local computer is not the same as the login
name of a normal user or the uucp administrative login.
However, several remote computers may use the same login
name.

Each computer should be given a unique system ~ that is
transmitted at the start of each call. This name identifies
the calling machine to the called machine. The login/system
names are used for security as described later in the
USERFILE section.

There are several source modifications that may be required
before the system programs are compiled. These relate to
the directories, local system name, and attributes of the
local environment.

There are several directories used by the uucp system:

1. lib (/usr/src/cmd/uucp) - This directory contains the
uucp system source files.

2. program (/usr/lib/uucp) - This is the directory used
for some of the executable system programs and the
system files. Some of the programs reside in
"/usr/bin' , •

3. spool (/usr/spool/uucp)
spool directory.

This is the uucp system

4. xqtdir (/usr/lib/uucp/.XQTDIR) This directory is
used during execution of the uux scripts.

The names in parentheses above are the default values for
the directories. The italicized names lib, program, xqtdir,
and spool will be used in the following text to represent
the appropriate directory names.

There are two files that may require modification, the
makefile file and the uucp.!! file. (On some systems, the
makefile is named uuae.mk.) In addition, the "uuxqt.c'·
program may be mo lfTed as indicated in the "Security"
section above. The following paragraphs describe the
modifications.

Uucp.h modification Several manifests in "uucp.h" may
need modification for the local system environment:

3-22

XENIX System Reference

$ UNAME should be defined if the "uname" function is
available.

$ MYNAME should be modified to the name of the local
system if UNAME is not defined.

$ ACULAST is the character required by the ACU as the
last character. For most systems, it is a "-"

$ DATAKIT should be defined if the system is on a datakit
network.

$ DIALOUT should be defined if the "c" library routine
"dialout" is available.

Makefile Modification There are several make
definitions that may need modification:

$ INSDIR 10 is the program directory
INSDIR=/usr/lib/uucp) • This parameter is
"make cp" or "make install" is used.

variable

(e.g. ,
used if

$ IOCTL is required to be set if the "ioctl" routine is
not available in the standard "c" library; the
statement "IOCTL=ioctl.o" is required in this case.

$ PUBDIR is a public directory for remote access.
is also the login directory for remote uucp users.
should be the same as that defined in "uucp.h".

This
It

$ SPOOL is the uucp spool directory. This should be the
same as that defined in "uucp.h".

$ XQTDIR is the directory for uuxqt to use for command
execution. It is also defined in "uucp~h".

$ OWNER is the administrative login for uucp.

Compile the System The command

make install

makes the required directories, compile all programs, set
the proper file modes, and copy the programs to the proper
directories. This command should be run as root. The
command

make

3-23

XENIX System Reference

compiles the entire system.

The programs uucp, uux, and uulog should
"/usr/bin". The programs uuxqt, uucico,
should be put in the program directory.

be put in
and uuclean

Files Require~ For Execution There are four files that are
required for execution. They should reside in the program
directory. The field separator for all files is a space.

L-devices This file contains call-unit device and hardwired
connection information. The special device files are
assumed to be in the /dev directory. The format for each
entry is

type line call-unit speed

where

1. type is a device type such as ACU or DIR. The field
can also be used to specify particular ACUs for some
calls by using a suffix on the ACU field, e.g., ACU3.
This names should be used in ~.~.

2. line is the device for the line (e.g., cuIO).

3. call-unit is the automatic call unit associated with
line (e.g., cuaO). Hardwired lines have a number
~, in this field.

4. speed is the line speed.

The line

ACU culO cuaO 300

would be set up for a system that has device "/dev/cuIO"
wired to a call-unit' "/dev/cuaO" for use at 300 baud.

L-dialcodes This file contains the dialcode abbreviations
used in the ~.~ file (e.g., py, mh, boston). The entry
format is

abb dial-seq

where abb is the abbreviation, dial-seq is the dial sequence
to call that location. The line

3-24

XENIX System Reference

py 165-

would be set up so that entry py7777 would send 165-7777 to
the dial-unit.

USERFILE This file contains user accessibility information.
It specifies four types of constraint:

1. which files can be accessed by a normal user of the
local machine

2. which files can be accessed from a remote computer

3. which login name is used by a particular remote
computer

4. whether a remote computer should be called back in
order to confirm its identity.

Each line in the file has the format

login,sys
[
c
]

path-name
[
path-name
]

where login is the login name for a user or the remote
computer, sys is the system name for a remote computer, c is
the optional call-back required flag, path-name is a path­
name prefix that is-acceptab1e for ~.

The constraints are implemented as follows.

1. When the prog'ram is obeying a command stored on the
local machine, MASTER mode, the path-names allowed are
those given on the first line in the USERFILE that has
the login name of the user who entered the command.
If no such line is found, the first line with a null
login name is used.

2. When ~he program is responding to a command from a
remote machine, SLAVE mode, the path-names allowed are
those given on the first line in the file that has the
system name that matches the remote machine. If no
such line is found, the first one with a null system

3-25

3.

XENIX System Reference

name is used.

When a remote computer logs in, the login name
uses must appear in the USERFILE. There
several lines with the same login name but one
must either have the name of the remote system
contain a null system name.

that it
may be

of them
or must

4. If the line matched in 4 contains a ~~c", the remote
machine is called back before any transactions take
place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the
transfer of files whose names start with-~~/usr/xyz".

The line

dan, /usr/dan

allows the ordinary user dan to issue
whose name starts with "/usr/dan".
restriction is seldom used.)

The lines

u,m /usr/xyz /usr/spool
u, /usr/spoo1

commands for files
(Note that this type

allows any remote machine to login with name u. If its
system name is not m, it can only ask to transfer files
whose names start with ~'/usr/spool". If it is system ro,
it can send files from paths "/usr/xyz" as well as
'~/usr/spool".

The lines

root, /
/usr

allow any user to transfer files beginning with "/usr" but
the user wi th log in root can transfer any file. (Note that
any file that is to ~transferred must be readable by
anybody.)

Lsys Each entry in this file represents one system that can
be called by the local uucp programs. More than one line

3-26

XENIX System Reference

may be present for a particular system. In this case, the
additional lines represent alternative communication paths
that will be tried in sequential order. The fields are
described below.

$ system name

The name of the remote system.

$ time

This is a string that indicates the days-of-week and
times-of-day when the system should be called (e.g.,
MoTuTh0800-l730).

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g., 0800-1230).
If no time portion is specified, any time of day is
assumed to be okay for the call. Note that a time
range that spans 0000 is permitted, for example, 0800-
0600 means all times are ok other than times between 6
and 8 am.

An optional subfield is available to indicate the
mlnlmum time (minutes) before a retry following a
failed attempt. The subfield separator is a","
(e.g., Any,9 means call any time but wait at least 9
minutes after a failure has occurred.)

$ device

This is either ACU or the hardwired device to be used
for the call. For the hardwired case, the last part of
the special file name is used (e.g., ttyO).

$ class

This is usually the line speed for the call (e.g.,
300). The exception is when the "C" library routine
"dialout" is available in which case this is the
dialout class.

$ phone

The phone number is made up of an optional alphabetic
abbreviation and a numeric part. The abbreviation

3-27

XENIX System Reference

should be one that appears in the L-dialcodes file
(e.g., mh5900, boston995-9980). For the hardwired
devices, this field contains the same string as used
for the device field.

(I)) login

The login information is given as a series of fields
and subfields in the format

expect send
]

where expect is the string expected to be read and send
is the string to be sent when the expect string is
received.

The expect field may be made up of subfields of the
form

expect [-send-expect] •••

where the send is sent if the prior expect is not
successfully read and the expect following the send is
the next expected string. (e.g., login--login will
expect login; if it gets it, the program will go on to
the next field: if it does not get login, it will send
null followed by a new line, then expect login again.)

The~e are two special names available to be sent during
the login sequence. The string EOT will send an EOT
character and the string BREAK will~y to send a BREAK
character. (The BREAK character is simulated using
line speed changes and null characters and may not work
on all devices and/or systems.) A number from 1 to 9
may follow the BREAK for example, BREAKI will send 1
null character instead of the default of 3. Note that
BREAKl usually works best for 300/1200 baud lines.

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm match all or part of the input
string as illustrated in the password field above.

3-28.

XENIX System Reference

3.2.8 Administration

This section indicates some events and files that must be
administered for the uucp system. Some administration can
be accomplished by shell files initiated by crontab entries.
Others will require manual intervention. Some sample shell
files are given toward the end of this section.

SQFILE - sequence check file This file is set up in the
program directory and contains an entry for each remote
system with which you agree to perform conversation sequence
checks. The initial entry is just the system name of the
remote system. The first conversation will add the
conversation count and the date/time of the most recent
conversation. These items will be updated with each
conversation. If a sequence check fails, the entry will
have to be adjusted manually.

TM - temporary data files These files are created in the
spool directory while a file is being copied from a remote
machine. Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three
digit number starting at zero. After the entire file is
received, the TM file is moved/copied to the requested
destination. -Yf processing 1S abnormally terminated the
file will remain in the spool directory. The leftover files
should be periodically removed; the uuclean program is
useful in this regard. The command

program/uuclean -pTM

removes all TM files older than three days.

LOG - log entry files' During execution, log information is
appended to the LOGFILE. If this file is locked by another
process, the log information is placed in individual log
files which will have prefix LOG. These files should be
combined into the LOGFILE by ~sing-the uulog program. This
program appends the LOGFILE with the individual log files.
The command

uulog

accomplishs the merge. Options are available to print some
or all the log entries after the files are merged. The

3-29

XENIX System Reference

LOGFILE should be removed periodically.

The LOG. files are created initially with mode 0222. If
the program that creates the file terminates normally, it
changes the mode to 0666. Aborted runs may leave the files
with mode 0222 and the uulog program will not read or remove
them. To remove them, either use rm, uuclean, or change the
mode to 0666 and let uulog merge them into the LOGFILE.

STST - system status files These files are created in the
spool directory by the uucico program. They contain
information such as login, dialup or sequence check failures
or will contain a TALKING status when two machines are
conversing. The form of the file name is

STST.sys

where ~ is the remote system name.

For ordinary failures, such as dialup or login, the file
will prevent repeated tries for about 55 minutes. This is
the default time; it can be changed on an individual system
basis by a subfiel~ of the tim~ field in the ~.~ file.
For sequence check fallures, the flle must be removed before
any future attempts to converse with that remote system.

LCK - lock files Lock files are created for each device in
use (e.g., automatic calling unit) and each system
conversing. This prevents duplicate conversations and
multiple attempts to use the same device. The form of the
lock file name is

LCK •• str

where str is either a device or system name. The files may
be le~ in the spool directory if runs abort (usually only
on system crashes). They will be ignored (reused) after 1.5
hours. When runs' abort and calls are desired before the
time limit, the lock files sh6uld be removed.

ERRLOG - uucp system error file This file is created in the
spool directory to record uucp system errors. Entries in
this file should be rare. The messages corne from the ASSERT
statements in the various programs. Wrong modes on files or
directories, missing files, and read/write system call
failures on the transmission channel may cause entries in
the ERRLOG file.

3-30

XENIX·System Reference

Shell Files The uucp program will spool work and attempt to
start the uucico program, but uucico will not always be able
to execute the request immediately. Therefore, the uucico
program should be periodically started. The command to
start uucico can be put in a "shell" file with a command
to merge LOG. files and started· by· a cronta.b entry on an
hourly basis. The file could contain the commands

/usr/bin/uulog
program/uucico

-rl -sinter
program/uucico

-rl

The "-rl" option is required to start the uucico program
in MASTER mode. The "-s" option can be used for polling
as illustrated in the second line where machine inter ·is
being polled. The third line will process all other spooled
work.

Another shell file may be set up on a daily basis to remove
TM, ST and LCK files and C. or D. files for work that can
not be-accomplished for reasons lIke bad phone number, login
changes etc. A shell file containing commands like

program/uuclean
-pTM -pC. -pD.

program/uuclean
-pST -pLCK -n12

can be used. Note that the "-n12" option causes the ST
and· LCK files older than 12 hours to be deleted. The
absence of the "-n" option will use a three day time
limit.

A daily or weekly shell should also be created to remove or
save old LOGFILEs. A shell like

cp
spool/LOGFILE

spool/o.LOGFILE
rm
spool/LOGFILE

can be used.

Login Entry Two or more log ins should be set up for uucp.
One should be an administrative login: the owner of all the
uucp programs, directories and files. All others are used

3-31

XENIX System Reference

by remote systems to
"/etc/passwd" entries
"program/uucico" as
directory should be
/usr/spool/uucppublic) •
used in the USERFILE to

access the uucp
for the access
the shell to be

system. Each of the
log ins should have
executed. The login
directory (usually the public

The various
restrict file

access login names are
access.

File Modes The programs uucp, uux, uucico, uulog, uuclean
and uuxqt should be owned by the uucp administrative login
with the "setuid" bit set and only execute permissions
(e.g., mode 04111). The ~~ys, SQFILE and the USERFILE,
which are put in the program lrectory should be owned by
the uucp administrative login and set with mode 0400. The
mode of spool should be "0755' '. The mode of xqtdir should
be "0777' '. The L-dialcodes and the L-devices files should
have mode 0444.

3-32

XENIX System Reference

3.3 XENIX SECURITY CONSIDERATIONS

Recently there has been much interest in the security
aspects of operating systems and software. At issue is the
ability to prevent undesired disclosure or destruction of
information, and harm to the functioning of the system.
This section discusses the degree of security which can be
provided under the XENIX system and offers a number of hints
on how to improve security.

3.3.1 Crashes and Slow-downs

XENIX like most other systems, was not developed with
security in mind. The area of security in which XENIX is
theoretically weakest is in protecting against crashing or
at least crippling the operation of the system. The problem
here is not mainly in uncritical acceptance of bad
parameters to system calls- there may be bugs in this area,
but none are known- but rather in lack of checks for
excessive consumption of resources. Most notably, there is
no limit on the amount of disk storage used, either in total
space allocated or in the number of files or directories.
Here is a particularly ghastly shell sequence guaranteed to
stop the system:

while : : do
mkdir x
cd x

done

Either a panic will occur because all the inodes on the
device are used up, or all the disk blocks will be consumed,
thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from
creating more than a set number of processes simultaneously,
so unless users are in collusion it is unlikely that anyone
can stop the system altogether. However, creation of 20 or
so CPU or disk-bound jobs leaves few resources a~ailable for
others~ Also, if many large jobs are run simultaneously,
swap space may run out, causing a panic.

It should be evident that excessive consumption of disk
space, files, swap space, and processes can easily occur
accidentally in malfunctioning programs as well as at
command level. In fact XENIX is essentially defenseless
against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to
detect what has happened when disaster strikes, to identify
the user responsible, and take appropriate action. In

3-33

XENIX System Reference

practice, we have found that difficulties in this area are
rather rare, but we have not been faced with malicious
users, and enjoy a fairly generous supply of resources which
have served to cushion us against accidental
overconsumption.

3.3.2 Protection and Permission

The picture is considerably brighter in the area of
protection of information from unauthorized perusal and
destruction. Here the degree of security seems nearly
adequate theoretically, and the problems lie more in the
necessity for care in the actual use of the system.

Each XENIX file has associated with it eleven bits of
protection information together with a user identification
number and a user-group identification number (UID and GID) •
Nine of the protection bits are used to specify
independently permission to read, to write, and to execute
the file to the user himself, to members of the user's
group, and to all other users. Each process generated by or
for a user has associated with it an effective UID and a
real UIO, and an effective and real GID.

When an attempt is made to access the file for reading,
writing, or execution, the user process's effective UIO is
compared against the file's UIO; if a match is obtained,
access is granted provided the read, write, or execute bit
for the user himself is present. If the UID for the file
and for the process fail to match, but the GIO'S do match,
the group bits are used; if the GIO's do not match, the bits
for other users are tested.

The last two bits of each file's protection information,
called the set-UID and set-GID bits, are used only when the
file is ex~cuted as a program~ If, in this case, the set­
UIO bit is on for the file, the effective UIO for the
process is changed to the UIO associated with the file; the
change persists uritil the process terminates or until the
UIO changed again by another execution of a set-UID file.

Similarly the effective group ID of a process is
the GIO associated with a file when that file
and has the set-GIO bit set. The real UIO and
process do not change when any file is executed,
the result of a privileged system call.

changed to
is executed
GIO of a

but only as

The basic notion of the set-UID and set-GID bits is that one
may write a program which is executable by others and which
maintains files accessible to others only by that program.

3-34

XENIX System Reference

The classical example is the game-playing program which
maintains records of the scores of its players. The program
itself has to read and write the score file, but no one but
the game's sponsor .can be allowed unrestr icted access to the
file lest they manipulate the game to their own advantage.
The solution is to turn on the set-UID bit of the game
program. When, and only when, it is invoked by players of
the game, it may update the score file but ordinary programs
executed by others cannot access the score.

There are a number of'special cases involved in determining
access permissions. Since executing a directory as a
program is a meaningless operation, the execute-permission
bit, for directories, is taken instead to mean permission to
search the directory for a given file during the scanning of
a path name; thus if a directory has execute permission but
no read permission for a given user, he may access files
with known names in the directory, but may not read (list)
the entire contents of the directory. write permission on a
directory is interpreted to mean that the user may create
and delete files in that directory; it is impossible for any
user to write directly into any directory~

Another, and from the point of view of security, much more
serious special case is that there is a "super user" who
is able to read any file and write any non-directory. The
super-user is also able to change the protection mode and
the owner UID and GID of any file and to invoke privileged
system calls. It must be recognized that the existence of a
super-user is a potential threat to any protection scheme.

The first prerequisite for a secure system is arranging for
all files and directories have the proper protection modes.
Traditionally, XENIX software has been exceedingly
permissive in this regard; essentially all commands create
files readable and writable by everyone. In the current
version, this policy may be easily adjusted to suit the
needs of the installation or the individual user.
Associated with each process and its descendants is a mask,
which is in effect and-ed wi th the mode of every. file' and
directory created --oy that process. In·this way, users can
arrange that, by default, all their files are no more
accessible than they wish. The standard mask, set by login,
allows all permissions to the user himself and to his group,
but disallows writing by others.

To ensure both data privacy and integrity, it is usually
sufficient, to make one's files inaccessible to others. A
lack of sufficiency could result from the existence of set­
UID programs created by the user and the possibility of a
total breach of system security in ways such as those

3-35

XENlX System Reference

discussed below. For greater protection, an encryption
scheme is available. Since the editor is able to create
encrypted documents, and the crypt command can be used to
pipe such documents into the other text-processing programs,
the length of time during which cleartext versions need be
available is strictly limited. The encryption scheme used
is not one of the strongest known, but it is judged
adequate, in-the sense that cryptanalysis is likely to
require considerably more effort than more direct methods of
reading the encrypted files. For example, a user who stores
data that he regards as truly secret should be aware that he
is implicitly trusting the system administrator not to
install a version of the crypt command that stores every
typed password in a file.

Needless to say, the system administrators must be at least
as careful as their most demanding user to place the correct
protection mode on the files under their control. In
particular, it is necessary that special files be protected
from writing, and probably reading, by ordinary users when
they store sensitive files belonging to other users. It is
easy to write programs that examine and change files by
accessing the device on which the files are resident.

3.3.3 Password Security

On the issue of password security, XENIX is probably better
than most systems. Passwords are stored in an encrypted
form which, in the absence of serious attention from
specialists in the field, appears reasonably secure,
provided its limitations are understood. In the current
version, it is based on a slightly defective version of the
Federal DES; it has been purposely altered so that readily
available hardware is useless for attempts at exhaustive
key-search. Since both the encryption algorithm and the
encrypted passwords are available, exhaustive enumeration of
potential passwords is still·· feasible up to a point. We
have observed that users choose passwords that are easy to
guess: they are shor·t, or from a limited alphabet, or in a
dictionary. Passwords should be at least six characters
long and randomly chosen from an alphabet which includes
digits and special characters.

The set-UlD (set-GID) notion must be used carefully if any
security is to be maintained. The first thing to keep in
mind is that a writable set-UID file can have another
program copied onto it. For example, if the super-user (su)
command is writable, anyone can copy the shell onto it and
get a password-free version of SUe A more subtle problem
can come from set-UID programs which are not sufficiently

3-36

) XENIX System Reference

careful of what is fed into them. To take an obsolete
example, the previous version of the mail command was set­
uro and owned by the super-user. This version sent mail to
the recipient's own directory. The notion was that one
should be able to send mail to anyone even if they want to
protect their directories from writing. The trouble was
that mail was rather dumb: anyone could mail someone else's
private-1Ile to himself. Much more serious is the following
scenario: make a file with a line like one in the password
file which allows one to log in as the super-user. Then
make a link named ".mail'· to the password file in some
writable directory on the same device as the password file
(say /tmp) • Finally, mail the bogus login line to
/tmp/.mail; you can then login as the super-user, clean up
the incriminating evidence, and have your will.

3.3.4 Mountins Unauthorized Discs and Tapes

The fact that users can mount their own disks and tapes as
file systems can be another way of gaining super-user
status. Once a disk pack is mounted, the system believes
what is on it. Thus one can take a blank disk pack, put on
it anything desired, and mount it. There are obvious and
unfortunate consequences. For example: a mounted disk with
garbage on it will crash the system; one of the files on the
mounted disk can easily be a password-free version of SUi

other files can be unprotected entries for special files.
The only easy fix for this problem is to forbid the use of
mount to unprivileged users. A partial solution, not so
restrictive, would be to have the mount command examine the
special file for bad data, set-UID programs owned by others,
and accessible special files, and balk at unprivileged
invokers.

3~37

XENIX System Reference

CHAPTER 4

COMMAND REFERENCE

Included in this chapter are the XENIX Pro9rammer'~ Manual
manual pages for commands discussed in this manual. They
have been included here for completeness.

4-1

AC (1M) XENIX System Reference AC (1M)

NAME
ac - login accounting

SYNOPSIS
ac [-w wtmp [-p] [-d] [people] .••

DESCRIPTION
Ac produces a printout giving connect time for each user who
has logged in during the life of the current wtmp file. A
total is also produced. -w is used to specify an alternate
wtmp file. -p prints individual totals; without this
option, only totals are printed. -d causes a printout for
each midnight to midnight period. Any people will limit the
printout to only the specified login names. If no wtmp file
is given, /usr/adm/wtmp is used.

The accounting file /~/adm/wtmp is maintained by ini.t and
login. Neither of these programs creates the file, so if it
does not exist no connect-time accounting is done. To start
accounting, it should be created with length O. On the
other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired
should be collected and the file truncated.

FILES
/usr/adm/wtmp

SEE ALSO
in i t (8), log in (1), u tmp (5) •

4-2

ARCV(lM) XENIX System Reference ARCV(lM)

NAME
arcv - convert archives to new format

SYNOPSIS
arcv file

DESCRIPTION

FILES

Arcv converts archive files (see ar(l), ar(S)) from 6th edi­
tion to 7th edition format. The conversion is done in
place, and the command refuses to alter a file not in old
archive format.

Old archives are marked with a magic number of 0177555 at
the start; new archives have 0177545.

/tmp/v*, temporary copy

SEE ALSO
ar (1), ar (5)

4-3

CLRI(IM) XENIX System Reference CLRI(lM)

NAAE
clri - clear i-node

SYNOPSIS
clri filesystem i-number •••

DESCRIPTION
Clri writes zeros on the i-nodes with the decimal i-numbers
on the filesystem. After clri, any blocks in the affected
file will show up as 'missing' in an icheck(l) of the
filesystem.

Read and write permission is required on the specified file
system device. The i-node becomes allocatable.

The primary purpose of this routine is to remove a file
which for some reason appears in no directory. If it is
used to zap an i-node which does appear in a directory, care
should be taken to track down the entry and remove it. Oth­
erwise, when the i-node is reallocated to some new file, the
old entry will still point to that file. At that point
removing the old entry will destroy the new file. The new
entry will again point to an unallocated i-node, so the
whole cycle is likely to be repeated again and again.

SEE ALSO
icheck(l)

BUGS
If the file is open, clri is likely to be ineffective.

4-4

CONFIGURE (1M) XENIX System Reference CONFIGURE (IM)

N~E

configure generate new system configuration

SYNOPSIS
cd /sys/conf
configure [auto

DESCRIPTION
Configure is used to create a new XENIX operating system.
It interactively asks questions concerning the CPU and peri­
pherals on the target computer in order to adjust certain
internal parameters of the OS. After configure runs and the
correct responses are made to the set of questions, the file
xenix will be made in /sys/conf. This file can then be used
for booting by moving it to the root. (It is wise to
preserve the old xenix until the new one is proven.),

Configure is designed to be self-documenting and initially
asks if the user wants information. Yes/no questions should
be responded to with lines beginning with a y or~. Devices
are always referred to by a two letter code; configure will
list the appropriate codes for all devices it currently
knows about. Numbers are decimal except when preceded by a
o signifying octal radix.

Several files are produced by configure based on the
responses to its questions. First, an assembly language
support file is selected from /~/conf/LIBO and renamed to
mch i.o or mch id.o depending on the particular target CPU.
Next, numerous questions are asked concerning the peripheral
devices, desired location of root, swap, and pipe file sys­
tems, internal parameter values, etc. The result is the
file xenixconf. This file is then fed to the mkconf program
which generates the files c.c and l.s. Finally, a make
xenix i or make xenix id command 'is Issued to perform-the
necessary assembly and linkage of the new executable operat­
ing system.

Except for the first execution, it is likely that some or
all of the above' files will remain valid when regenerating
the system. Calling configure with the auto option causes
the program to look for these files and bypass any questions
and operations relating to the regeneration of files already
present. This option is especially meaningful if the l.s
file must be edited due to a non-standard configuration,-or
if the xenixconf file to be used has been set up by other
than the last execution of configure. In general, once run
without the auto option, the user may delete any of mch i.o,
mch id.o, xenixconf, c.c, l.s, c.o, 1.0, or xenix and then­
use configure auto to-regenerate the-mIssing data.

CONFIGURE (1M) XENIX System'Reference CONFIGURE (1M)

FILES

Release 2 of configure does not automate the handling of
non-standard vectors, device addresses, and additional
(user) device drivers. For now, the user must manually edit
the l.s file and add any additional drivers to the
/~7dev/LIB2 archive to handle these situations. The auto
option is useful under these circumstances.

mkconf
xenixconf
LIBO

SEE ALSO
mkconf(lm), Setting up XENIX' in Volume 2

DIAGNOSTICS
Configure prints a set of messages and asks for the input
again whenever the user types an unacceptable answer. Oth­
erwise, the answers are fed, interactively line by line, to
mkconf. The latter may also complain with sometimes cryptic
messages. Since configure does not currently watch for com­
plaints from mkconf, the user should probably hit the delete
attention key, remove the xenixconf file and issue a config­
ure auto command should an input error be reported by
iTikCo rlf":-

4-6

COpy (1) XENIX System Reference COpy (l)

NAME
copy - copy groups of files

SYNTAX
copy option] ••• source. • • dest

DESCRIPTION
The ~.command copies the contents of directories to
another directory. It is possible to copy whole file sys­
tems since directories are made when needed.

If files, directories, or special files do not exist at the
destination, then they are created with the same modes and
flags of the source. In addition, the super-user may set
the user and group ids. The owner and mode will not be
changed if the destination file exists. Note that there may
be more than one source directory. If so, then the ,effect
is the same as if the ~ command had been issued, each
with only one source.

All of the options must be given as separate arguments and
they may appear in any order even after the other arguments.
The arguments are:

-a Asks the user before attempting a copy. If the
response does not begin with a 'y', then a copy will
not be done. This option also sets the '-ad' flag.

-1 Uses links instead whenever they can be used. Oth­
erwise a copy is done. Note that links are never
done for special files or directories.

-n Requires the destination file to be new. If not,
then the copy command will not change the destina­
tion file. Of course the '-n' flag is meaningless
for directories. For special files a '-n' flag is
assumed (i.e., the destination of a special file
must not exist).

-0 Only the super user may set this option. If set
then every file copied will have its owner and group
set to those of the source. If not set, then the
owner will be that of the user who invoked the pro­
gram.

-rn If set then every file copied will have its modifi­
cation time and access time set to that of the
source. If not set, then the modification time will
be set to the time of the copy.

-r If set, then every directory is recursively examined
as it is encountered. If not set then any

4-7

COpy (1) XENIX System Reference COPY(l)

directories that are found will be ignored.

-ad Asks the user whether a '-r' flag applies when a
directory is discovered. If the answer does not
begin with a 'y', then the directory will be
ignored.

-v If the verbose option is set, then all kinds of mes­
sages will be printed that reveal what the program
is doing.

source This may be a file, directory or special file. It
must exist. If it is not a directory, then the
results of the command will be the same as for the
cp command.

dest The destination must be either a file or directory
different from the source.

If the source and destination are anything but directories,
then copy will act just like a cp command. If both are
directories, then copy will copy each file into the destina­
tion directory according to the flags that have been set.

DIAGNOSTICS
Should be self-explanatory

4-8

CRYPT (1) XENIX System Reference CRYPT (1)

NAME
crypt - encode/decode

SYNTAX
crypt [password

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the stan­
dard output. The password is a key that selects a particu­
lar transformation. If no password is given, crypt demands
a key from the terminal and turns off printing while the key
is being typed in. Crypt encrypts and decrypts with the
same key:

crypt key <clear >cypher
crypt key <cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated
by the editor ed in encryption mode.

The security of encrypted files depends on three factors:
the fundamental method must be hard to solve; direct search
of the key space must be infeasible; 'sneak paths' by which
keys or cleartext can become visible must be minimi~ed.

Crypt implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not
widely; moreover the amount of work required is likely to be
l~rge.

The transformation of a key into the internal settings of
the machine is deliberately designed to be expensive, i.e.
to take a substantial fraction of a second to compute. How­
ever, if keys are restricted to (say) three lower-case
letters, then encrypted files can be read by expending only
a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is
potentially visible to users executing ~(l) or a deriva­
tive. To minimize this possibility, crypt takes care to
destroy any record of the key immediately upon entry. No
doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO
ed(l), makekey(8)

4-9

CRYPT(l) XENIX System Reference CRYPT(l)

NOTES
There is no warranty of merchantability nor any warranty of
fitness for a particular purpose nor any other warranty,
either express or implied, as to the accuracy of the
enclosed materials or as to their suitability for any par­
ticular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient.
Further, Bell Laboratories assumes no obligation to furnish
any assistance of any kind whatsoever, or to furnish any
additional information or documehtation.

4-10

CU(IC) XENIX System Reference CU(IC)

NAME
cu - call UNIX

SYNOPSIS
cu telno [-t] [-s speed] [-a acu] [-1 line] [-nh

DESCRIPTION
Cu calls up another XENIX system, a terminal, or possibly a
non-XENIX system. It manages an interactive conversation
with possible transfers of text files. Telno is the tele­
phone number, with minus signs at appropriate places for
delays, or 'wait', to indicate a manual connection. If
'wait' is specified, '/dev/null' is used as the dial unit
and cu waits up to five minutes for the carrier to turn on.
The -t flag is used to dial out to a terminal. Speed gives
the transmission speed (110, 134, 150, 300, 600, 1200, 2400,
4800, 9600); 300 is the default value. The -nh flag
prevents ~ from hanging up the terminal line upon exit.

The -a and -1 values may be used to specify pathnames for
the ACU and communications line devices. They can be used
to override the following built-in choices:

-a /dev/cuaO -1 /dev/culO

After making the connection, cu runs as two processes: the
send process reads the standard input and passes most of it
to the remote system; the receive process reads from the
remote system and passes most data to the standard output.
Lines beginning with '-I have special meanings.

The send process interprets the following:

terminate the conversation.
-EDT terminate the conversation

-<file send the contents of file to the remote
system, as though typed at the terminal.

-! invoke an interactive shell on the local
system.

-!cmd .•. run the command on the local system (via
sh -c) •

-$cmd ••• run the command locally and send its out­
put to the remote system.

-%take from [to] copy file 'from' (on the remote system) to
file 'to' on the local system. If 'to' is
omitted, the 'from' name is used both
places.

4-11

CU (lC) XENIX Sys£em Reference CU(lC)

-%put from [to]

-%speed n

copy file 'from' (on local system) to file
'to' on remote system. If 'to' is omit­
ted, the 'from' name is used both places.

set speed of transmission line to 'nt,
where n is one oflllO, 134, 150, 300, 600,
1200, 2400, 4800, 9600.

send the line ' ,.

The receive process handles output diversions of the follow­
ing form:

.... >[>] [:]file
zero or more lines to be written to file
->

In any case, output is diverted (or appended, if '»' used)
to the file. If ':' is used, the diversion is silent, i.e.,
it is written only to the file. If ':' is omitted, output
is written both to the file and to the standard output. The
trailing '->' terminates the diversion.

The use of -%put requires stty and cat on the remote side.
It also requires that the current erase and kill characters
on the remote system be identical to the current ones on the
local system. Backslashes are inserted at appropriate
places.

The use of -%take requires the existence of echo and tee on
the remote system. Also, stty tabs mode is required on the
remote system if tabs are to be copied without expansion.

FILES
/dev/cuaO
/dev/cul0
/dev/null

SEE ALSO
dn(4}, tty(4)

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, nonzero (various values)
otherwise.

The syntax is unique.

4-12

DATE(l) XENIX System Reference DATE(l)

NAME
date - print and set the date

SYNTAX
date [yymmddhhmm [.ss]]

DESCRIPTION

FILES

If no argbment is given, the current date and time are
printed. If an argument is given, the current date is set.
yy is the last two digits of the year: the first mm is the
month number: dd is the day number in the month: hh is the
hour number (2~hour system): the second mm is the-minute
number: .~ is optional and is the secondS. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day
may be omitted, the current values being the defaults. The
system operates in GMT. Date takes care of the conversion
to and from local standard and daylight time.

/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS
'No permission' if you aren't the super-user and you try to
change the date: 'bad conversion' if the date set is syntac­
tically incorrect.

4-13

DCHECK (1M) XENIX' System Reference DCHECK (1M)

NAME
dcheck - file system directory consistency check

SYNOPSIS
dcheck [-i numbers] [filesystem J

DESCRIPTION
Dcheck reads the directories in a file system and compares
the link-count in each i-node wi th 'the number of directory
entries by which it is referenced. If the file system is
not specified, a set of default file systems is checked.

The -i flag is fol~owed by a list of i-numbers: when one of
those i-numbers turns up in a directo~y, the number, the i­
number of the directory, and the name of the entry are
repor ted ~ .

The program is fastest if the raw version of the special
file is used, since the i-list is read in large chunks.

FILES
'.' Default file systems vaiywith installation.

SEE ALSO
icheck (1), filsys (5), clri (1), ncheck (1)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number
of directory entries disagree, the relevant facts are
reported. Allocated files which have 0 link-count and no
entries are also listed. The only dangerous situation
occurs when there are more entries than links: if entries
are removed, so the link-count drops to' 0, the remaining
entries point to thin air. They should be removed. When
there are more links than entries, or there is an allocated
file with neither links nor entries, some disk space may be
lost but the situation will no~ degenerate.

Since dcheck is inherently two-pass in natur~, extraneous
diagnostics may be produced if applied to active file sys­
tems.

4-14 '

00 (1) XENIX System Reference 00(1)

NAME
dd - convert and copy a file

SYNTAX
dd [option=value] •••

DESCRIPTION
Od copie~ the specified input file to the specified output
with possible conversions. The standard input and output
are used by default. The input and output block size may be
specified to take advantage of raw physical I/O.

option
if=
of=
ibs=n
obs=n
bs=n-

cbs=n
skip;;n
files;;n
seek=n-

count=n
conv=ascii

ebcdic
ibm
lcase
ucase
swab
noerror
sync . .. , ...

values
input file name~ standard input is default
output file name~ standard output is default
input block size n bytes (default 512)
output block size-(default 512)
set both input and output block size,
superseding ibs and obs~ also, if no conver­
sion is specified, i~s particularly effi­
cient since no copy need be done
conversion buffer size
skip n input records before starting copy
copy n files from (tape) input
seek n records from beginning of output file
before copying
copy only n input records
convert EBCDIC to ASCII
convert ASCII to EBCDIC
slightly different map of ASCII to EBCDIC
map alphabetics to lower case
map alphabetics to upper case
swap every pair of bytes
do not stop processing on an error
pad every input record to ibs
several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A
number may end with k, b or w to specify multiplication by
1024, 512, or 2 respectively~ a pair of numbers may be
separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified.
rn-the former case cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks
trimmed and new-line added before sending the line to the
output. In the latter case ASCII characters are read into
the conversion buffer, converted to EBCDIC, and blanks added
to make up an output record of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

4:-15

00(1) XENIX System Reference

For example, to read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per record into the ASCII file ~:

DD(I)

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O
on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

To skip over a file b~fore copying from magnetic tape do

(dd of=/dev/null: dd of=x) </dev/rmtO

SEE ALSO
cp (1), t r (1)

DIAGNOSTICS

NOTES

f+p records in(out): numbers of full and partial records
read(written)

The ASCII/EBCDIC conversion tables are taken from the 256
character standard in the CACM Nov, 1968. The 'ibm' conver­
sion, while less blessed as a standard, corresponds better
to certain IBM print train conventions. There is no univer­
sal solution.

Newlines are inserted only on conversion to ASCII; padding
is done only on conversion to EBCDIC. These should be
separate options.

4-16

DF (1M) XENIX System Reference DF(lM)

NAME
df - disk free

SYNOPSIS
df [filesystem

DESCRIPTION
Df prints out the number of free blocks available on the
fIlesystems. If no file system is specified, the free space
on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck(l)

DU (1) XENI~ Sy~tem R~fe~ence DU(1)

NAME
du summarize disk usage

SYNTAX
du [-5 [-a 1 [name .".]

DESCRIPTION

NOTES

Du gives the n~mber of blQcks contained in all files and
Trecursively) directories within each specified directory or
file name. If name i$ missing, ~.' is used. --.--

The optional argument -5 ~auses only the grand total to be
given. The optional ar9um~nt -a causes an entry to be gen­
erated for each file. Absence of either causes an entry to
be generated for each directory only.

A file which has two links to it is only counted once~

Non-directori~s given a~ arguments (not under -a option) are
not listed.
If there are too many distinct ;Linked files, du counts the
excess files multiply,

4 18

DUMP (1M) XENIX System Reference DUMP (1M)

NAAE
dump - incremental file system dump

SYNOPSIS
dump key argument •••] filesystem

DESCRIPTION
Dump copies to magnetic tape all files changed after a cer­
tain date in the filesystem. The ~ specifies the date and
other options about the dump. The ~ consists of charac­
ters from the set Q123456789fusd.

f Place the dump on the next argument file instead of the
tape.

u If the dump completes successfully, write the date of
the beginning of the dump on file '/etc/ddate'~ This
file records a separate date for each filesystem and
each dump level.

0-9 This number is the ~dump level'. All files modified
since the last date stored in the file '/etc/ddate' for
the same filesystem at lesser levels will be dumped.
If no date is determined by the level, the beginning of
time is assumed; thus the option 0 caus~s the entire
filesystem to be dumped.

s The size of the dump tape is specified in feet. The
number of feet is taken from :the next argument. When
the specified size is reached~' the dump will wait for
reels to be changed. The default size is 2300 feet.

d The density of the tape, expressed in BPI, is taken
from the next argument. This is used in calculating the
amount of tape used per write. The default is 1600.

If no arguments are given, the ~ is assumed to be 9u and
the program attempts to dump the default filesystem to the
default tape.

Now a short suggestion on how perform dumps. Start with a
full level 0 dump

dump Ou

Next, periodic level 9 dumps should be made on an exponen­
tial progression of tapes. (Sometimes called Tower of Hanoi
- I 2 1 3 1 2 1 4 ••• tape I used every other time, tape 2
used every fourth, tape 3 used every eighth, etc.)

dump 9u

4-19

DUMP (lM) XENIX System ~eference DUMP (lM)

When the level 9 incremental approaches a full tape (about
78000 blocks at 1600 BPI blocked 20), a level 1 dump should
be made.

dump lu

After this, the exponential series should progress as unin­
terrupted. These level 9 dumps are based on the level 1
dump which is based on the level 0 full dump. This progres­
sion of levels of dump can be carried as far as desired.

FILES
Default filesystem and tape vary with installation. For
safety, however, we recommend that default disk filesystems
not be used, as common operator errors can destroy that
default disk.
/etc/ddate: record dump dates of filesystem/level.

SEE ALSO
restor(l), dump(S), dumpdir(l), sddate (1M)

DIAGNOSTICS

BUGS

If the dump requires more than one tape, it will ask you to
change tapes. Reply with a new-line when this has been
done.

Sizes are based on 1600 BPI blocked;tape. The raw magtape
device has to be used to approach these densities. Read
errors on the filesystem are ignored. Write errors on the
magtape are usually fatal.

DUMPDIR(lM) XENIX System Reference DUMPDIR (1M)

NAME
dumpdir - print the names of files on a dump tape

SYNOPSIS
dumpdir f filename]

DESCRIPTION

FILES

Dumpdir is used to read magtapes dumped with the dump com­
mand and list the names and inode numbers of all the files
and directories on the tape.

The f option causes filename as the name of the tape instead
of the default.

default tape unit varies with installation
rst*

SEE ALSO
dump(l), restor(l)

DIAGNOSTICS

BUGS

If the dump extends over more than one tape, it may ask you
to change tapes. Reply with a new-line when the next tape
has been mounted.

There is redundant information on the tape that could be
used in case of tape reading problems. Unfortunately, dump­
dir doesn't use it.

4-21

FACTOR (1) XENIX System Reference FACTOR (1)

NAME
factor, primes - factor a number, generate large primes

SYNTAX
factor [number

primes

DESCRIPTION
When factor is invoked without an argument, it waits for a
number to be typed in. If you type in a positive number
less than 2~6 (about 7.2e16) it will factor the number and
print its prime factors; each one is printed the proper
number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the ,number
as above and then exits.

Maximum time to factor is proportional to sqrt(n) and occurs
when n is prime or the sq~lre of a prime. It takes 1 minute
to fa~tor a prime near 10 on a PDP11.

When primes is invoked, it waits for a number to ~g typed
in. If you type in a positive number less than 2 it will
print all primes greater than or equal to this number.

DIAGNOSTICS
'Ouch.' for input out of range or for garbage input.

4-22

FILE (1) XENIX System Reference FILE(l)

NAME
file - determine file type

SYNTAX
file filename •••

file -f fileofnames

DESCRIPTION

NOTES

File performs a series of tests on each argument in an
attempt to classify it. If an argument appears to be ascii,
file examines the first 512 bytes and tries to guess its
language.

If the first argument is a -f flag, file will take the list
of filenames from the file. -

For a.out files, the relationship between flags to cc and
the file classification is:

cc flag
i
n
s
Z

classification
separate
pure
not "not stripped"
23fixed

It often makes mistakes. In particular it often suggests
that command files are C programs. Also, programs that
begin with comments are described as English text.

4-23

FINO(l) XENIX System Reference FINDel)

NAME
find - find files

SYNTAX
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each
pathname in the pathname-list (i.e., one or more pathnames)
seeking files that match a boolean expression written in the
primaries given below. In the descriptions, the argument n
is used as a decimal integer where +n means more than ~, -~
means less than n and ~ means exactly ~.

-name filename
True if the filename argument matches the current
file name. Normal Shell argument syntax may~be
used if escaped (watch out for '[', '?' and '*').

-perm anum

-type c

-links n

True if the file permission flags exactly match
the octal number anum (see chmod(l)). If anum is
prefixed by a minus sign, more flag bits (017777,
see stat(2)) become significant and the flags are
compared: (flags&~) ==~.

True if the type of the file is c,where c is b,
c, d or f for block special file; charact~r spe­
cial file, directory or plain file.

True if the file has n links.

-user uname
True if the file belongs to the user uname (login
name or numeric user 10).

-group gname

-size n

-inurn n

-atime n

-mtime n

True if the file belongs to group gname (group
name or numeric group 10).

True if the file is n blocks long (512 bytes per
block) •

True if the file has inode number n.

True if the file has been accessed in n days. -

True if the file has been modified in n days.
-

-exec command
True if the executed command returns a zero value
as exit status. The end of the command must be

4-24

FIND(l) XENIX System Reference FIND(l)

punctuated by an escaped semicolon. A command
argument '{}I is replaced by the current pathname.

-ok command

-print

Like -exec except that the generated command is
written on the standard output, then the standard
input is read and the command executed only upon
response y.

Always true; causes the current pathname to be
printed.

-newer file
True if the current file has been modified more
recently than t~e argument file.

The primaries may be combined using the following operators
(in order of decreasing precedence) :

1) A parenthesized group of primaries and operators
(parentheses are special to the Shell and must be
escaped) .

2) The negation of a primary ('1 I is the unary not opera­
tor) •

3) Concatenation of primaries (the and operation is implied
by the juxtaposition of two primaries) •

4) Alternation of primaries ('_Of is the or operator).

EXAMPLE
To remove all files named 'a.out' or '*.0' that have not
been accessed for a week:

find / \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm
{} \;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh{l), test(l), filsys(5)

NOTES
The syntax is painful.

4-25

FSCK(lM) XENIX System Reference FSCK (1M)

NAME
fsck file system consistency check and interactive repair

SYNOPSIS
fsck [option] . . . [filesystem] •••

DESCRIPTION
Fsck audits and interactively repairs inconsistent condi­
tions for the named filesystems. Fsck ignores the 'file
system clean' flag in the super block; upon completion fsck
sets 'file system clean' (if it was not already set). ----

If a file system is consistent then the number of files,
number of blocks ~sed, and number of blocks free are
reported. If the file system is inconsistent the operator
is prompted for concurrence before eaoh correction £s
attempted. Most corrections lose data; all losses are
reported. The defa~lt action for each correction is to wait
for the operator to respond 'yes' or 'no'. Without write
permission fsck defaults to -n action. --.-- . ,

These options are recognized:

-y

-n

-sx

Assume a yes response to all questions.

Assume a no response to all questions.

Ignore the actual free list and (unconditionally) con­
struct a new one by rewriting the super-block of the
file system. The file system should be unmounted while
this is done, or extreme care should be taken that the
system is quiescent and that it is rebooted immediately
afterwards. This precaution is necessary so that the
old, bad, in-core copy of the superblock will not con­
tinue to be used, Qr written on the file system.

The free list is created with optimal interleaving
according to the specification !:

-53 optimal for RP03
-54 optimal for RP04, RP05, RP06
~5C:S space freeblock5 s ~locks apart in
cylinders of £ blocks each.

If X is not given, the values used when the filesystem
was-created are used. If these values were not speci­
fied, then £=400, !~9 is assumed.

-sx Conditionally reconstruct the free list. This option
is like -5X except that the free 1ist is rebuilt only
if there were no discrepancies di~covered in the file
system. It is usefu~ for forcing 'free list

4-26

FSCK(lM) XENIX System Reference FSCK(lM)

reorganization on uncontaminated file systems. -S
forces -n.

-t If fsck cannot obtain enough memory to keep its tables,
it uses a scra~ch file. If the -t option is specified,
the file named' in the next argument is used as the
scratch file. Without the -t option, fsck prompts if
it needs a scratch file. The file should not be on the
file system being checked, and if it is not a special
file or did not already exist, it is removed when fsck
completes.

If no filesystems are given to fsck then a default list of
file systems is read from the file /etc/checklist.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the
range of the file system.

3. Incorrect link counts.

4. Size checks:
Incorrect number of blocks in file.
Directory size not a multiple of 16 bytes.

5. Bad inode format.

6. Blocks not accounted for anywhere.

7. Directory checks:
File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file sys­
tem.

9. Bad free block list format.

10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the "lost+found" directory. The name assigned is
the inode number. The only restriction is that the directory
"lost+found" must preexist in the root of the filesystem
being checked and must have empty slots in which entries can
be made. This is accomplished by making "lost+found",

4-27

FSCK(IM) XENIX System Refe~ence FSCK(IM)

FILES

copying a number of files to the directory, and then remov­
ing them (before ~ is exec~ted).

Checking the raw device is almost always faster.

/etc/checklist default list of file systems to check.
lost+found home for orphans

SEE ALSO

BUGS

dcheck(l), icheck(l), filsys(S), crash(8), mount(lM)
/etc/rc the system startup script which uses fsck heavily.

Inode numbers for. and •• in each directory should be
checked for validity.
The -b option of icheck(l) should be availab~e.

4-28

GRAPH (lG) XENIX System Reference GRAPH (lG)

NAME
graph - draw a graph

SYNOPSIS
graph [option] •••

DESCRIPTION
Graph with no options takes pairs of numbers from the stan­
dard input as abscissas and ordinates of a graph. Succes­
sive points are connected by straight lines. The graph is
encoded on the standard output for display by the plot(l)
filters.

If the coordinates of a point are followed by a nonnumeric
string, that string is printed as a label beginning on the
point. Labels may be surrounded with quotes " ..• ", ,in which
case they may be empty or contain blanks and numbers; labels
never contain newlines.

The following options are recognized, each as a separate
argument.

-a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument
(default I). A second optional argument is the start­
ing point for automatic abscissas (default 0 or lower
limit given by -x).

-b Break (disconnect) the graph after each label in the
input.

-c Character string given by next argument is default
label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with
ticks~ 2 full grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0
disconnected, 1 connected (default). Some devices give
distinguishable line styles for other small integers.

-s Save screen, don't erase before plotting.

-x 1]
If 1 is present, x axis is logarithmic. Next 1 (or 2)
arguments are lower (and upper) x limits. Third argu­
ment, if present, is grid spacing on x axis. Normally
these quantities are determined automatically.

-y [1]

4-29

GRAPH (IG) XENlX System Reference GRAPH (lG)

Similarly for l.

-h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of spaoe to move right before
plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option -x now
applies to the vertioal axis.)

A legend indicating grid range is produced with a grid
unless the -8 option is present.

If a specified lower limit exceeds the upper limit, th~ axis
is reversed.

SEE ALSO

BUGS

spline(l), plot(l)

Graph stores all points. internally and drops those for which
there isn't room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

4-30

ICHECK (1M) XENIX System Reference ICHECK (1M)

NAME
icheck - file system storage consistency check

SYNOPSIS
icheck -s] -b numbers] [filesystem]

DESCRIPTION

FILES

Icheck examines a file system, builds a bit map of used
blocks, and compares this bit map against the free list
maintained on the file system. If the file system is not
specified, a set of default file systems is checked. The
normal output of icheck includes a report of

The total number of files and the numbers of regular,
directory, block special and character special files.

The total number of blocks in use and the numbers of
single-, double-, and triple-indirect blocks and direc­
tory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor
in the free list.

The -s option causes icheck to ignore the actual free list
and reconstruct a new one-by rewriting the super-block of
the file system. The file system should be dismounted while
this is done; if this is not possible (for example if the
root file system has to be salvaged) care should be taken
that the system is quiesc~nt and that it is rebooted immedi­
ately afterwards so that the old, bad in-core copy of the
super-block will not continue to be used. Notice also that
the words in the super-block which indicate the size of the
free list and of the i-list are believed. If the super­
block has been curdled these words will have to be patched.
The -s option causes the normal output reports to be
suppressed.

Following the -b option is a list of block numbers; whenever
any of the named blocks turns up in a file, a diagnostic is
produced.

Icheck is faster if the raw version of the special file is
used, since it reads the i-list many blocks at a time.

Default file systems vary with installation.

SEE ALSO
dcheck(l) , ncheck(l) , filsys(5) , c1ri(1)

4-31

rCHECK (1M) XENI~ System Reference ICHECK (1M)

DIAGNOSTICS

BUGS

For duplicate blpcks and b~d blocks (which lie outside the
f~le s¥stem) ich~ck announces the difficulty, the i-number,
and ~he kind of block involved. If a read error is encoun­
tereq, the blccK number of ~he bad blqck is printed and
icheGk con~iders ~t to contpin Q. 'Bad [reeblock' means
that ~ block number outside th$ available space was encoun­
tered in the free list. 'n dup$ in free' means that n
blocks were found in the free list which duplicate blocks
either in some file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous
diagnoiticsmay be pro4uoed if ~pplied to active file sys­
tems.
It b~lieves even preposterous quper-blocks ~nd conseq~ently
cqn ge~ core images.

4-3:2

IOSTAT(lM) XENIX System Reference IOSTAT(lM)

NAME
iostat - report I/O statistics

SYNOPSIS
iostat [option] ••• [interval [count]]

DESCRIPTION
Iostat delves into the system and reports certain statistics
kept about input-output activity. Information is kept about
up to three different disks (RF, RK, RP) and about typewrit­
ers. For each disk, IO completions and number of words
transferred are counted: for typewriters collectively, the
number of input and output characters are counted. Also,
each sixtieth of a second, the state of each disk is exam­
ined and a tally is made if the disk is active. The tally
goes into one of four 'categories, depending on whether the
system is executing in user mode, in 'nice' (background)
user mode, in system mode, or idle. From all these numbers
and from the known transfer rates of the devices it is pos­
sible to determine information such as the degree of 10
overlap and average seek times for each device.

The optional interval argument causes iostat to report once
each interval seconds. The first report is for all time
since a reboot and each subsequent report is for the last
interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the
number of transfers per minute, the milliseconds per average
seek, and the milliseconds per data transfer exclusive of
seek time. It also gives the percentage of time the system
has spend in each of the f6ur categories mentioned above.

The following options are available:

-t Report the number of characters of terminal IO per
second as well.

-i Report the percentage of time spend in each of the four
categories mentioned above, the percentage of time each
disk was active (seeking or transferring), the percen­
tage of time any disk was active, and the percentage of
time spent in '10 wait;' idle, but with a disk active.

-s Report the raw timing information: 32 numbers indicat­
ing the percentage of time spent in each of the possi­
ble configurations of 4 system states and 8 IO states
(3 disks each active or not).

-b Report on the usage of IO buffers.

4-33

IOSTAT(lM) XENIX System Reference IOSTAT(lM)

FILES

BUGS

/dev/mem, /xenix

This program is very configuration dependent and will have
to be modified by every installation.

4-34

JOIN(l) XENIX System Reference JOIN (1)

NAME
join - relational database operator

SYNTAX
join [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two rela­
tions specified by the lines of filel and file2. If filel
is '-', the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, nor­
mally the first in each line.

There is one line in the output for each pair of lines in
filel and file2 that have identical join fields. The output
line normally consists of the common field, then the rest of
the line from filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In
this case, multiple separators count as one, and leading
separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for
each unpairable line in file ~, where n is 1 or 2.

-e s Replace empty output fields by string s.

-j~ m
Join on the mth field of file n. If n is missing, use
the roth field in each file.

-0 list
~ch output line comprises the fields specifed in list,

each element of which has the form n.m, where n is--a-­
file number and m is a field number~ -

-tc Use character c as a separator (tab character). Every
appearance of c in a line is significant.

SEE ALSO

NOTES

sor t (1), comm (1), awk (1)

With default field separation, the collating sequence is
that of sort -£; with -t, the sequence is that of a plain
sort.

4-35

JOIN(l) XENIX System Reference JOIN(l)

The conventions of join, ~, ~, unig, look and aWk(l)
are wildly incongruous.

4-36

LN(l) XENIX System Reference LN(l)

NAAE
In make a link

SYNTAX
In namel [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same
file (together with its size, all its protection informa­
tion, etc.) may have several links to it. There is no way
to distinguish a link to a file from its original directory
entry; any changes in the file are effective independently
of the name by which the file is known.

Ln creates a link to an existing file namel. If narne2 is
given, the link has that name; otherwise it is placed in the
current directory and its name is the last component of
narnel.

It is forbidden to link to a directory or to link across
file systems.

SEE ALSO
rm(l)

4-37

LOGIN(1) XENIX System Reference LOGIN (1)

NAME
login sign on

SYNTAX
login [username

DESCRIPTION

FILES

The login command is used when a user initially signs on, or
it may be used at any time to c~ange from one user to
another. The latter case is the one summarized above and
described here. See 'How to Get Started' for how to dial up
initially.

If login is invoked without an argument, it asks for a user
name, and, if appropriate, a passWord. Echoing is turned
off (if possible) during the typing of the password,- so it
will not appear on the written record of the session.

After a successful login, accounting files are updated and
the user is informed of the existence of .mail and message­
of-the-day files. Login initializes the user-and group IDs
and the working directory, then executes a command inter­
preter (usually shell) according to specifications found in
a password file.-Argument 0 of the command interpreter is
'-she

Login is recognized by sh{l) and executed directly (without
forking) .

/etc/utmp
/usr/adm/wtmp
/usr/mail/*
letc/motd
/etc/passwd

accounting
accounting
mail
message-of-the-day
password file

SEE ALSO
init{8), newgrp{l), getty(8), mail(l), passwd(l), passwd(5)

DIAGNOSTICS
'Login incorrect,' if the name or the password is bad.
'No Shell', 'cannot open password file', 'no directory':
consult a programming counselor.

4-38

LOOK (1) XENIX System Reference LOOK (1)

NAME
look - find lines in a sorted list

SYNTAX
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begi~
with string. It uses binary search.

The options d and f affect comparisons as in sort(l):

d 'Dictionary' order: only letters, digits, tabs and
blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /~/dict/words is assumed with
collating sequence -df.

FILES
/usr/dict/words

SEE ALSO
sor t (l), gr ep (1)

4-39

LORDER(l) XENIX System Reference LORDER (l)

NAME
lorder - find ordering relation for an object library

SYNTAX
lorder file •••

DESCRIPTION

FILES

The input is one or more object or library archive (see
ar(l)) files. The standard output is a list of pairs of
Object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The
output may be processed by tsort(l) to find an ordering of a
library suitable for one-pass access by ld(l).

This brash one-liner intends 'to build a new library from
existing '.0' files.

ar cr library 'lorder *.0 I tsort'

*symref, *symdef
nm(l), sed(l), sort(l), join(l)

SEE ALSO

NOTES

t so r t (l), 1 d (l), a r (l)

The names of object files, in and out of libraries, must end
with '.0'; nonsense results otherwise.

4-40

MKCONF (1M) XENIX System Reference MKCONF (1M)

NAME
mkconf - generate configuration tables

SYNOPSIS
/sys/conf/mkconf

DESCRIPTION
Mkconf examines a machine configuration table on its stan­
dard input. Its output is three files; l.s, c.c and mchO.s.
~.~ is an assembler program that represents the-interrupt -
vectors located in low memory addresses and the device
register addresses. C.c contains initialized block and
character device switch-tables, a switch table for line pro­
tocols and declarations of various configuration dependent
and parameterized variables. MchO.s contains conditional
assembly switches which define the tape controller to be
used for system crash dumps.

Input to mkconf is a sequ~nce of lines. The following
describe devices on the machine:

lp (LPll)
r f (RSll)
tc (TU56)
rk (RK03/RK05)
tm (TU10/TE10)
rp (RP03)
hp (RP04/5/6/RM02/3)
ht (TU16/TE16)
ts (TSll)
rx (RX01/2)
hk (RKO 6/7)
rl (RL01/2)
dc* (DCll)
kl* (KLll/DLll-ABC)
dl* (OLll-E)
dn* (ONll)
dh* (OHll)
dhdm* (DMll-BB)
du* (OUll)
dz* (OZll)

The devices marked with * may be preceded by a number tel­
ling how many are to be included. The console typewriter is
automatically included; don't count it as part of the KL or
DL specification. Count ON's in units of 4 (1 system unit).

The following lines are also accepted.

root dev minor
The specified block device (e.g. hp) is used for the
root. minor is a decimal number giving the minor

4-41

MKCONF (1M) XENIX System Reference MKCONF (1M)

FILES

device. This line must appear exactly once.

swap dev minor
The specified block device is used for swapping. If
not given the root is used.

pipe dev minor
The specified block device is used to store pipes.
not given the root is used.

swplo number

nswap number
Sets the origin (block number) and size of the area
used for swapPlng. By default, the not very useful
numbers 4000 and 872.

time zone dst
Changethe default tim~zone to be zone. Zone may be
the name of any timezone in the continental u.s. or
the number of minutes westward of Greenwich. Dst
should be 1 if the daylight savings time conversion
should be done.

hertz num
The line clock frequency is set to num Hertz. The
default value is taken from the parameter DHZ in
param·h·

nbufs num
The number of system buffers is set to num. The
default value is taken from the parameter-DNBUF in
param·h·

If

pack Include the packet driver. By default it is left out.

mpx Include the multiplexor driver. By default it is left
out.

1.5, c.c, mchO.s output files

SEE ALSO
configure(lm)

BUGS

Device driver descriptions in section 4.
"'Setting up XENIX', in Volume ~B.

Because of floating v~ctors that may have been missed, it is
mandatory to check the 1.s file to make sure it corresponds
with reality.

4-42

MKFS (1M) XENIX System Reference MKFS (1M)

NAME
mkfs - construct a file system

SYNOPSIS
/etc/mkfs special proto [m n]

DESCRIPTION
Mkfs constructs a file system by writing on the special file
special according to the directions found in the prototype
file proto. The prototype file contains tokens separated by
spaces or new lines. The first token is the name of a file
to be copied onto block zero as the bootstrap program, see
bproc(8). The second token is a number specifying the size
of the created file system. Typically it will be the number
of blocks on the device, perhaps diminished by space for
swapping. The next token is the number of i-nodes in the
i-list. The next set of tokens comprise the specification
for the root file. File specifications consist of tokens
giving the mode, the user-id, the group id, and the initial
contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The
first character specifies the type of the file. (The char­
acters -bcd specify regular, block special, character spe­
cial and directory files respectively.) The second character
of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The
rest of the mode is a three digit octal number giving the
owner, group, and other read, write, execute permissions,
see chmod(l}.

Two decimal number tokens come after the mode; they specify
the user and group IO's of the owner of the file.

If the file is a regular file, the next token is a pathname
whence the contents and size are copied.

If the file is a block or character special file, two
decimal number tokens follow which give the major and minor
device numbers.

If the file is a directory, mkfs makes the entries. and ••
and then reads a list of names and (recursively) file
specifications for the entries in the directory. The scan
is terminated with the token $.

If the prototype file cannot be opened and its name consists
of a string of digits, mkfsbuilds a file system with a sin­
gle empty directory on ~ The size of the file system is
the value of proto interpreted as a decimal number. The
number of i-nodes is calculated as a function of the

4-43

MKFS (1M) XENIX System Reference MKFS (1M)

filsystem size. The boot program is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d--777 3 1
usr d--777 3 1

sh '---755 3 1 /bin/sh
ken d -755 6 1

$
bO b--644 3 1 0 0
cO c- 644 3 1 0 0
$

$

SEE ALSO
f i 1 s y s (5), d i r (5), bp roc (8)

BUGS
There should be some way to specify links.

4-44

MKNOD (1M) XENIX System Reference MKNOD(lM)

NAME
mknod - build special file

SYNOPSIS
/etc/mknod name [c] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name
of the entry. The second is b if the special file is ---­
block-type (disks, tape) or c if it is character-type (other
devices). The last two arguments are numbers specifying the
major device type and the minor device (e.g. unit, drive, or
line number).

The assignment of major device numbers is specific to each
system. They have to be dug out of the system source file
conf.c.

SEE ALSO
mknod(2)

4-45

MOUNT (1M) XENIX Syptem Re~erence MOUNT (1M)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
fete/mount [special nam~ [-r J]

/ete/umount special

DESCRIPTION
Mount announces to the system that a removable file system
is present on the device special. The file name must exist
already; it must be a directory (unless the root of the
mounted file system is n~t a directory). It becomes the
name of the newly mounted root. The optional last argument
indicates that the file .ystem is to be mQunted read-only.

Umount announces to the pystem that the removable file sys­
tem previously mounted on device special is to be removed.
First, any pending I/O fpr the file $ystem is completed, and
the file system is fla9g~d clean.Mo~nt will refuse to
mount a file system which is notfla99~d clean; this can
happen if a system cr~~hp[ev~nted the use of umount or
haltsys(8). In such a tase, use fsck(lM) to clean the file
system, then try mount again. ----

These commands maintain a table of mounted devices. If
invoked without an argu~~nt, mount prints the table.'

Physically writ~-protect.d and magnetic tape file systems
must be mounted read-0111y or errors will occur when access
times are updated, whe~h~r or not any explicit write is
attempted.

FILES
/etc/mtab: mount table

SEE ALSO
mount(2), mtab(S)

DIAGNOSTICS

BUGS

Exit code 0 is returned for a successful mou~t, 1 for a
failure, 2 for attempting to mount an unclean structure.

Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some
apparently good; pathqaw~s invalid.

4-46

NCHECK (1M) XENIX System Reference NCHECK (1M)

NAME
ncheck generate names from i-numbers

SYNOPSIS
ncheck -1 numbers] [-a] [-8] [filesystem]

DESCRIPTION
Ncheck with,no argument generates a pathname vs. i-number
list of all files on a set of default file systems. Names
of directory files are followed by 'j.'. The -i option
reduces the report to only those files whose i-numbers fol­
low. The -a option allow~ printing of the names '.' and
' •• ', which are ordinarily suppressed. The -s option
reduces the report to special files and files with set­
user-ID mode; it is intended to discover concealed viola­
tions of security policy.

A file system may be specified.

The report is in no useful order, and probably should be
sorted.

SEE ALSO
dcheck(l), icheck(l), sort{l)

DIAGNOSTICS
When the filesystem structure is improper, '11' denotes the
'parent' of a parentless file and a pathname beginning with
' .•• ' denotes a loop.

4-47

NM(l) XENIX System:Reference NM(l)

NAME
nm print name list

SYNTAX
nm [-gnoprucx [file .".]

DESCRIPTION

FILES

Nm prints the name list (symbol table) of each object file
10 the argument list. If an argument is an archive, aUSt­
ing for each object file in the archive will be produced.
If no file Is given, the symbols in 'a.out' are listed.

Each symbol name is preceded by its value (blanks if unde­
fined) and one of the letters U (undefined), A (absolute), T
(te~t segment symbol), D (data segment symbol), B (bss seg-
ment symbol), or C (common symbol). If the symbol is local
(non-external) the type letter is in lower case. The output
is sorted alphabetically.

Options are:

-9 Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output
line rather than only once.

-p Don't sort: print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

-c Print only C program symbols (symbols which begin with
, ') as they appeared in the C program.

-x Symbol values are printed in hexadecimal rather than
octal.

a.out Default input file.

SEE ALSO
ar (1), ar (5), a.out (5)

4-48

PLOT (lG) XENIX System Reference PLOT (lG)

NAME
plot - graphics filters

SYNOPSIS
plot [-Tterminal [raster]

DESCRIPTION

FILES

These co~mands read plotting instructions (see plot(S» from
the standard input, and in general produce plotting instruc­
tions suitable for a particular terminal on the standard
output.

If no terminal type is specified, the environment parameter
$TERM (see environ(S» is used. Known terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 450 terminal (Diablo mechanism).

300 DASI 300 or GSI terminal (Diablo mechanism).

300S DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plot
places a scan-converted image in '/usr/tmp/raster' and
sends the result "directly to the plotter device rather
than to the standard output. The optional argument
causes a previously scan-converted file raster to be
sent to the plotter.

/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster

SEE ALSO
plot (3), plot (5)

BUGS
There is no lockout protection for /usr/tmp/raster.

4-49

PSTAT (1M) XENIX System Reference PSTAT(lM)

NAME
pstat - print system facts

SYNOPSIS
pstat [-aixptuf] [suboptions] file]

DESCRIPTION
Pstat interprets the contents of certain system tables. If
file is given, the tables are sought there, otherwise in
/dev/mem. The required namelist is taken from /xenix.
Options are

-a Under -p, describe all process slots rather than just
active ones.

-i Print the inode table with the these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time filsys(5)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (Lflag is on)
T contains a text file
C changed time must be corrected

CNT Number of open file table entries ,for this inode.
DEV Major and minor device number of file system in which

this inode resides.
INO I-number within the device.
MODE Mode bits, see chmod(2}.
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

Number of bytes in an ordinary file, or major and
minor device of special file. "

-x Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect .
W text not yet written on swap device
L loading in progress
K locked"
w wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of 512
bytes.

CADDR Core address, measured in multiples of 64 bytes.

4-50

PSTAT(lM) XENIX System Reference PSTAT(lM)

SIZE Size of text segment, measured in multiples of 64
bytes.

IPTR Core location of corresponding inode.

INUM Inode number of corresponding inode (executable file).

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

-p Print process table for active processes with these
headings:

LOC
S

F

The core location of this table entry.
Run state encoded thus:
o no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace
Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced
040 used in tracing
0100 locked in by lock(2).

PRI Scheduling priorit~ee nice(2).
SIGNAL ~

UID
TIM
cro
NI
PGRP

Signals received (signals 1-16 coded in bits 0-15),
Real user 10.
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see nice(2).
Process number of root of process group (the opener of
the controlling terminal).

PIO The process ID number.
PPIO The process 10 of parent process.
AOOR If in core, the physical address of the 'u-area' of

the process measured in multiples of 64 bytes. If
swapped out, the position in the swap area measured in

SIZE
WCHAN
LINK
TEXTP

multiples of 512 bytes.
Size of process image in multiples of 64 bytes.
Wait channel number of a waiting process.
Link pointer in list of runnable processes.
If text is pure, pointer to location of text table
entry.

CLKT Countdown for alarm(2) measured in seconds.

4-51

PSTAT (1M) XENIX System Reference PSTAT(1M)

NAME
pstat - print system facts

SYNOPSIS
pstat [-aixptuf] [suboptions] [file]

DESCRIPTION
Pstat interprets the contents of certain system tables. If
file is given, the tables are sought there, otherwise in
/dev/mem. The required namelist is taken,' ftom /xenix.
Options-are

-a Under -p, describe all process slots rather than just
active ones,

-i Print the inode table with the these headings:

LOC The core location of this table entry,
FLAGS Miscellaneous state vari~bles encoded thus:

L locked .
U update time filsys(5» must be corrected
A access time must be corrected '
M file system is mounted here
W wanted by another process (L f189 is on)
T contains a text file .
C changed time must be corrected

CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which

this inode resides.
INO I-number within the device_
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID user ID of owner.
SIZ/DEV

Numper of bytes in an ordinary file, or major and
minor device of special file.

-x Print the text table with these headi~9s:

LOC The core location of this table entry_
FLAGS Miscellaneous state variables encoded thus:

T ptrace(2) in effect .
W text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)

DADDR Disk address in swap, measured in mult~ples of 512
byte?

CADDR Core address, ,measured in multiples of p4 bytes.

4-50

PSTAT(lM) XENIX System Reference PSTAT(lM)

SIZE Size of text segment, measured in multiples of 64
bytes.

IPTR Core location of corresponding inode.

lNUM Inode number of corresponding inode (executable file).

CNT Number of processes using this text segment.

CCNT Number of processes in core using this text segment.

-p Print process table for active processes with these
headings:

LOC
S

F

The core location of this table entry.
Run state encoded thus:
a no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace
Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced
040 used in tracing
0100 locked in by 10ck(2).

PRI Scheduling prioritY;-See nice{2}.
SIGNAL ----

UID
TIM
cro
NI
PGRP

Signals received (signals 1-16 coded in bits 0-15),
Real user ID.
Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.
Nice level, see nice(2).
Process number of root of process group (the opener of
the controlling terminal).

PID The process ID number.
PPID The process ID of parent process.
ADDR If in core, the physical address of the 'u-area' of

the process measured in multiples of 64 bytes. If
swapped out, the position in the swap area measured in

SIZE
WCHAN
LINK
TEXTP

multiples of 512 bytes.
Size of process image in multiples of 64 bytes.
Wait channel number of a waiting process.
Link pointer in list of runnable processes.
If text is pure, pointer to location of text table
entry.

CLKT Countdown for alarm(2) measured in seconds.

4-51

PSTAT(lM) XENIX System Reference PSTAT(IM)

FILES

-t

AAW
C~

OUT
MODE
ADDR
DEL

COL
STATE

PGRP

-u

-f

LOC
F~

CNT
INO
OFFS

Print table for terminals (only DHII and DLll handled)
with these headings:

Number of characters in raw input queue.
Number of characters in canonicalized input queue.
Number of characters in putput queue.
See ~(4) •
Physlcal device address.
Number of delimiters (newlines) in canonicalized input
queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
W waiting for open to complete
o open
S has special (output) start routine
C carrier is on
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close
Process group for which this is controlling terminal.

print information about a user proc~ssi the next argu­
ment is its address as given by ~(l). The process
must be in main memory, or the file used can be a core
image and the address O.

print the open file table with these headings:

The core location 6f this table entry.
Miscellaneous state variables encoded thus:
R open "for reading
W open for writing
P pipe .
Number of processes that know this open file.
The location of the inode table entry for this file.
The file offset, see lseek(2).

/xenix
/dev/mem

namelist
default source of tables

SEE ALSO
pa(l), stat(2), filsys(5)
K. Thompson, UNIX Irnp'l~mentation

4-52

QUOT (1M) XENIX System Reference QUOT (1M)

NAME
quot - summarize file system ownership

SYNOPSIS
quot [option] filesystem]

DESCRIPTION

FILES

Quot prints the number of blocks in the named filesystem
currently owned by each user. If no filesystem is named, a
default name is assumed. The following options are avail­
able:

-n Cause the pipeline ncheck filesystem 1 sort +Onl quot
-n filesystem to produce a list of all files and their
owners.

-c Print three columns giving file size in blocks, number
of files of that size, and cumulative total of· blocks
in that size or smaller file.

-f Print count of number of files as well as space owned
by each user.

Default file system varies with system.
/etc/passwd to get user names

SEE ALSO

BUGS

ls{l), du{l)

Holes in files are counted as if they actually occupied
space.

4-53

,I

\,

RESTOR (1M) XENIX System Reference RESTOR (1M)

NAME
restor - incremental file system restore

SYNOPSIS
restor key [argument •..

DESCRIPTION
Restor is used to read magtapes dumped with the dump com­
mand. The ~ specifies what is to be done. Key is one of
the characters rRxt optionally combined with f.

f Use the first argument as the name of the tape instead
of the default.

r or R
The tape is read and loaded into the file system speci­
fied in argument. This should not be done lightly (see
below). If the key is R restor asks which tape of a
multi volume set to start on. This allows restor to be
interrupted and then restarted (an icheck -s must be
done before restart).

x Each file on the tape named by an argument is
extracted. The file name has all 'mount' prefixes
removed; for example, /usr/bin/lpr is named /bin/lpr on
the tape. The file extracted is placed in a file with
a numeric name supplied by restor (actually the inode
number). In order to keep the amount of tape read to a
minimum, the following procedure is recommended:

Mount volume 1 of the set of dump tqpes.

Type the restor command.

Restor will announce whether or not it found the files,
give the number it will name the file, and rewind the
tape.

It then asks you to 'mount the desired tape volume'.
Type the number of the volume you choose. On a multi
volume dump the recommended procedure is to mount the
last through the first volume in that order. Restor
checks to see if any of the files requested areOn"the
mounted tape (or a later tape, thus the reverse order)
and doesn't read through the tape if no files are. If
you are working with a single volume dump or the number
of files being restored is large, respond to the query
with '1' and restor will read the tapes in sequential
order.

If you have a hierarchy to restore you can use dump­
dir(l), to produce the list of names and a shell script

4-54

RESTOR (1M) XENIX System Reference RESTOR (1M)

FILES

to move the resulting files to their homes.

t Print the date the tape was written and the date the
filesystem was dumped from.

The r option should only be used to restore a complete dump
tape onto a clear file system or to restore an incremental
dump tape onto this. Thus

/etc/mkfs /dev/rpO 40600
restor r /dev/rpO

is a typical sequence to restore a complete dump. Another
restor can be done to get an incremental,dump in on top of
this.

A dump followed by a mkfs and a restor is used to change the
size of a file system.

default tape unit varies with installation
rst*

SEE ALSO
dump(l), mkfs(l), dumpdir(l)

DIAGNOSTICS

BUGS

There are various diagnostics involved with reading the tape
and writing the disk. There are also diagnostics if the i­
list or the free list of the file system is not large enough
to hold the dump.

If the dump extends over more than one tape, it may ask you
to change tapes. Reply with a new-line when the next tape
has been mounted.

There is redundant information on the tape that could be
used in case of tape reading problems. Unfortunately, res­
tor doesn't use ·it. ----

4-55

SA (1M) XENIX System Reference SA(lM)

NAME
sa, accton - system accounting

SYNOPSIS
sa [-abcijlnrstuv [file]

/etc/accton [file

DESCRIPTION
With an argument naming an existing file, accton causes sys­
tem accounting information for every process executed to be
placed at the end of the file. If no argument is given,
accounting is turned off.

Sa reports on, cleans up, and generally maintains accounting
files.

Sa is able to condense the information in /usr/adm/acct into
a-summary file /usr/adm/savacct which contains a count of
the number of times each command was called and the time
resources consumed. This condensation is desirable because
on a large system acct can grow by 100 blocks per day. The
summary file is read before the accounting file, so the
reports include all available information.

If a file name is given as the last argument, that file will
be treated as the accounting file; /usr/adm/acct is the
default. There are zillions of options:---· ----

a Place all command names containing unprintable charac­
ters and those used only once under the name
'***other.'

b Sort output by sum of user and system time divided by
number of calls. Default sort is by sum of user and
system times.

c Besides total user, system, and real time for each com­
mand priht percentage of total time over all commands.

i Ignore the summary files /usr/adm/savacct and
/usr/adm/usracct; do not include their contents in this
repor~

j Instead of total minutes time for each category, give
seconds per call.

I Separate system and user time; normally they are com­
bined.

m Print number of processes and number of CPU minutes for
each user.

4 56

SA (1M) XEN1X System Reference SA (1M)

FILES

n Sort by number of calls.

r Reverse order of sort.

s Merge accounting file into summary file
/usr/adm/savacct when done.

t For each command report ratio of real time to the sum
of user and system times.

u Superseding all other flags, print for each command in
the accounting file the user 1D and command name.

v If the next character is a digit n, then type the name
of each command used n times or fewer. Await a reply
from the typewriter; If it begins with 'y', add the
command to the category '**junk**,.' This is .used to
strip out garbage.

(default)
A table of 4 columns is printed: the number of calls,
the total real time, the total combined system and user
time, and the name of the command. The first line in
the table contains the sum of each column.

/usr/adm/acct raw accounting
/usr/adm/savacct summary
/usr/adm/usracct per-user summary

SEE ALSO
ac (l), acct (2)

4-57

SDDATE (1M) XENIX System'Reference SDDATE(lM)

NAME
sddate - print and set dump dates

SYNOPSIS
sddate [name lev date]

DESCRIPTION
If no argument is given, the contents of the dump date file
'/etc/ddate' are printed. The dump date file is maintained
by dump(lM) and contains the date of the most recent dump
for each dump level for each filesystem.

If arguments are given, an entry is replaced or made in
'/etc/ddate'. name is the last component of the device
pathname. lev is the dump level number (from 0 to 9), and
date is a time in the form taken by date(l).

Some sites may wish to backup filesystems by coping them
verbatim to dismountable packs. Sddate could be used to
make a 'level 0' entry in '/etc/ddate', which would then
allow incremental mag tape dumps.

For example:

sddate rrp3 5 10081520

makes an '/etc/ddate' entry showing a level 5 dump of
'/dev/rrp3' on October 8, at 3:20 PM.

FILES
/etc/ddate

SEE ALSO
dump(lM), date(l)

DIAGNOSTICS
'bad conversion' if the date set is syntactically incorrect.

4-58

SPLINE(lG) XENIX System Reference SPLINE(lG)

N~E

spline - interpolate smooth curve

SYNOPSIS
spline [option]

DESCRIPTION
Spline takes pairs of numbers from the standard input as
abcissas and ordinates of a function. It produces a similar
set, which is approximately equally spaced and includes the
input set, on the standard output. The cubic spline output
(R. W. Hamming, Numerical Methods for Scientists and
Engineers, 2nd ed., 349ff) has two continuous derivatives,
and sufficiently many points to look smooth when plotted,
for example by graph(l).

The following options are recognized, each as a separate
argument.

-a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument, or
is assumed to be 1 if next argument is not a number.

-k The constant k used in the boundary value computation

(2nd derive at end) = k*(2nd derive next to end)

is set by the next argument. By default ~ = o.

-n Space output points so that approximately n intervals
occur between the lower and upper ~ limits~ (Default n
= 100.)

-p Make output periodic, i.e. match derivatives at ends.
First and last input values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits.
Normally these limits are calculated from the data.
Automatic abcissas start at lower limit (default 0).

SEE ALSO
graph(l)

DIAGNOSTICS

BUGS

When data is not strictly monotone in ~, spline reproduces
the input without interpolating extra points.

A limit of 1000 input points is enforced silently.

4-59

STTY(l) XENIX System Reference STTY(l)

NAME
stty - set terminal options

SYNTAX
stty option •.•]

DESCRIPTION
Stty sets certain I/O options on the current output termi­
nal. With no argument, it reports the current settings of
the options. The option strings are selected from the fol­
lowing set:

even
-even
odd
-odd
raw

-raw
cooked
cbreak

-cbreak

-nl

nl
echo
-echo
lcase
-lcase
-tabs
tabs
ek

allow even parity
disallow even parity
allow odd parity
disallow odd parity
raw mode input (no erase, kill, interrupt, quit,
EOT; parity bit passed back)
negate raw mode
same as -raw'
make each character available to read(2) as
received; no erase and kill
make characters available to read only when newline
is received ----
allow carriage return for new-line, and output CR-LF
for carriage return or new-line
accept only new-line to end lines
echo back every character typed
do not echo characters
map upper case to lower case
do not map case
replace tabs by spaces when printing
preserve tabs
reset erase and kill characters back to normal # and
@

erase c set erase character to c. C can be of the form 'AX'
which is interpreted as-a control X'.

kill c set kill character to c.AX, works here also.
crO crl cr2 cr3

select style of delay for carriage return (see
ioctl(2»

nlO nIl n12 n13
select style of delay for linefeed

tabO tabl tab2tab3
select style of delay for tab

ffO ffl select-style of delay for form feed
bsO bsl select style of delay for backspace
tty33 set all modes suitable for the Teletype Corporation

Model 33 terminal.
tty37 set all modes suitable for the Teletype Corporation

Model 37 terminal.
vt05 set all modes suitable for Digital Equipment Corp.

4-60

STTY(l)

tn300

ti700

tek
hup
-hup
o
50 75

SEE ALSO

XENIX System Reference STTY(l)

VT05 terminal
set all modes suitable for a General Electric Ter­
miNet 300
set all modes suitable for Texas Instruments 700
series terminal
set all modes suitable for Tektronix 4014 terminal
hang up dataphone on last close.
do not hang up dataphone on last close.
hang up phone line immediately

110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb
Set terminal baud rate to the number given, if pos­
sible. (These are the speeds supported by the DH-ll
interface) •

ioctl(2), tabs(l)

4-61

SU (1) XENIX System Reference SU (1)

NAME
su substitute user id temporarily

SYNTAX
su [userid

DESCRIPTION
Su demands the password of the specified userid, and if it
is given, changes to that userid and invokes the Shell sh(l)
without changing the current directory or the user environ­
ment (see environ(S)). The new user ID stays in force until
the Shell exits.

If no userid is specified, 'root' is assumed. To remind the
super-user of his responsibilities, the Shell substitutes
'#' for its usual prompt.

SEE ALSO
sh (1)

4-62

SUM (l) XENIX System Reference SUM (1)

NAME
sum - sum and count blocks in a file

SYNTAX
sum file

DESCRIPTION
Sum calculates and prints a l6-bit checksum for the named
file, and also prints the number of blocks in the file. It
is typically used to look for bad spots, or to validate a
file communicated over some transmission line.

SEE ALSO
wc (1)

DIAGNOSTICS
'Read error' is indistinuishable from end of file on most
devices; check the block ~ount.

4-63

SYNC (1M) XENIX System Reference

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION

SYNC (1M)

Sync executes the sync system primitive. If the system is
to be stopped, sync must be called to insure file system
integrity. See sync(2) for details.

SEE ALSO
sync(2), update(8)

4-64

TABS(l) XENIX System Reference TABS(l)

NAME
tabs - set terminal tabs

SYNTAX
tabs [-n terminal

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various of
the terminal names given in terrn(7) are recognized; the
default is, however, suitable for most 300 baud terminals.
If the -n flag is present then the left margin is not
indented as is normal.

SEE ALSO
stty(l), term(7)

4-65

TAR (I) XENIX System Reference TAR(I)

NAME
tar tape archiver

SYNTAX
tar [key name •••

DESCRIPTION
~ saves and restores files on magtape. Its actions are
controlled by the ~ argument. The ~ is a string of
characters containing at most one function letter and possi­
bly one or more function modifiers. Other arguments to the
command are file or directory names specifying which files
are to be dumped or restored. In all cases, appearance of a
directory name refers to the files and (recursively) sub­
directories of tpat directory.

The function portion of the key is specified by one of the
following letters:

r The named files are written on the end of the tape.
The c function implies this.

x The named files are extracted from the tape. If the
named file matches a directory whose contents had
been written onto the tape, this directory is
(recursively) extracted. The owner, modification
time, and mode are restored (if possible). If no
file argument is given, the ~ntire content of the
tape is extracted. Note that if multiple entries
specifying the same file are 'on the tape, the last
one overwrites all earlier.

t The name,s' of the specified files are listed each
time they occur on the tape. If no file argument is
given, all of the names on the tape are listed.

u The named files are added to the tape if either they
are not already there or have been modified since
last put on the tape.

c Create a new tape: writing begins on.the beginning
of the tape instead of after the last file. This
command implies r.

The following characters may be used in addition to the
letter which selects the function desired.

0, ••• ,7

v

This modifier selects the drive on which the tape
is mounted. The default is 1.

Normally tar does its work silently. The v (~er­
bose) :option Gauses it to type the name of each

4-66

TAR (1) XENIX System Reference TAR (1)

w

f

b

1

file it treats preceded by the function letter.
With the t function, v gives more information
about the tape entries than just the name.

causes tar to print the action to be taken fol­
lowed by file name, then wait for user confirma­
tion. If a word beginning with 'y' is given, the
action is performed. Any other input means don't
do it.

causes tar to use the next argument as the name of
the archive instead of /dev/mt? If the name of
the file is '-', tar writes to standard output or
reads from standard input, whichever is appropri­
ate. Thus, tar can be used as ~he head or tail of
a filter chain Tar can also be used to move
hierarchies with the command

cd fromdir; tar cf - • I (cd todir; tar xf -)

causes tar to use the next argument as the block­
ing factor for tape records. The default is 1, the
maximum is 20. This option should only be used
with raw magnetic tape archives (See f above).
The block size is determined automatically when
reading tapes (key letters 'x' and 't').

tells tar to complain if it cannot resolve all of
the links to the files dumped. If this is not
specified, no error messages are printed.

,m tells tar to not restore the modification times.
The mod time will be the time of extraction.

FILES

s

/dev/mt?
/tmp/tar*

causes tar to use the next argument as the size of
a tape volume. The minimum value allowed is 500.
This option is useful when the archive is not
intended for a magnetic tape device, but for some
fixed size device, such as floppy disk (See f
above) •

DIAGNOSTICS
Complaints about bad key characters and tape read/write
errors.
Complaints if enough memory is not available to hold the
link tables.

4-67

TAR (1) XENIX System Refe~ence TAR(l)

EXAMPLES
To backup a disk directory tree to tape using raw I/O and a
blocking factor of 20:

tar cfb /dev/rmtl 20 directory name
To restore the above files from tape to di~k:

tar xf /dev/rmtl directory_name

SEE ALSO

NOTES

tp(l), dump(l), restor (1), copy(l), dd (1)

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going
to be updated. The current magtape driver cannot backspace
raw magtape. If the archive is on a disk file the b option
should not be used at all, as updating an archive stored in
this manner can destroy it.
The current limit on file name length is 100 characters.

4-68

TP(I) XENIX System Reference TP (1)

NAME
tp - manipulate tape archive

SYNTAX
tp [key] name •••

DESCRIPTION
!2 saves and restores files on DECtape or magtape. Its
actions are controlled by the ~ argument. The key is a
string of characters containing at most one function letter
and possibly one or more function modifiers. Other argu­
ments to the command ar~ file or directory names specifying
which files are to be dumped, restored, or listed. In all
cases, appearance of a directory name refers to the files
and (recursively) subdirectories of that directory~

The function portion of the key is specified by on~ of the
following letters:

r The named files are written on the tape. If files
with the same names already exist, they are
replaced. 'Same' is determined by string com­
parison, so './abc' can never be the same as
'/usr/dmr/abc' even if '/usr/dmr' is the current
directory. If no file argument is given, '.' is the
default.

u updates the tape. u is like r, but a file is
replaced only if its modification date is later than
the date stored on the tape; that is to say, if it
has changed since it was dumped. u is the default
command if none is given.

d- deletes the named files from the tape. At least one
name argument must be given. This function is not
permitted on magtapes.

x extracts the named files from the tape to the file
system. The owner and mode are restored~ If no
file ar~urnent is given, the entire contents of the
tape are extracted.

t lists the names of the specified files. If no file
argument is given, the entire contents of the tape
is listed.

The following characters may be used in addition to the
letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

0, ••• , 7 This modifier selects the drive on which the tape

4-69

TP(l)

v

c

i

f

w

XENIX System Reference

is mounted. For DECtape, x is default; for
magtape '0' is the default.

TP (1)

Normally !£ does its work silently. The v (ver­
bose) option causes it to type the name of each
file it treats preceded by the function letter.
With the t function, v gives more information
about the tape entries than just the name.

means a fresh dump is being created; the tape
directory is cleared before beginning. Usable
only with rand u. This option is assumed with
magtape since it is impossible to selectively
overwrite magtape.

Errors reading and writing the tape are noted, but
no action is taken. Normally, errors cause a
return to the command level.

Use the first named file, rather than a tape, as
the archive. This option is known to work only
with x.

causes !E to pause before treating each file, type
the indicative letter and the file name (as with
v) and await the user's response. Response y
means 'yes', so the file is treated. Null
response means 'no', and the file does not take
part ih whatever is being done. Response x means
'exit'; the !E. command terminates immediately. In
the x function, files previously asked about have
been extracted already. with r, u, and d no
change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

SEE ALSO
ar(l), tar(l)

DIAGNOSTICS

NOTES

Several; the non-obvious one is 'Phase error', which means
the file changed after it was selected for dumping but
before it was dumped.

A single file with several links to it is treated like
several files.

Binary-coded dontrol information makes magnetic tapes writ­
ten by !£difficult to carry to other machines; tar(l)

4-70

TP(l) XENIX System Reference TP(l)

avoids the problem.

A ..."

TTY (1) XENIX System Reference

NAME
tty - get terminal na~e

SYNTAX
tty

DESCRIPTION
Tty prints the pathname of the user's terminal.

DIAGNOSTICS

TTY (I)

'not a tty' if the standard input file is not a terminal.

4-72

UUCP(lC) XENIX System Reference UUCP(lC)

N~E

uucp, uulog - unix to unix copy

SYNOPSIS
uucp [option] ••• source-file ••• destination-file

uulog [option] •••

DESCRIPTION
Uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name
on your machine, or may have the form

system-name!pathname

where 'system-name' is taken from a list of system names
which uucp knows about. Shell metacharacters ?*[] appearing
in the pathname part will be expanded on the appropriate
system.

Pathnames may be one of

(1) a full pathname:

(2) a pathname preceded by -user: where user is a userid on
the specified system and-rs-replaced~that user's
login directory:

(3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system
the copy will fail. If the destination-file is a directory,
the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission
and gives 0666 read and write permissions (see chmod(2».

The following options are interpreted by uucp.

-d Make all ne~essary directories for the file copy.

-c Use the source file when copying out rather than copy­
ing the file to the spool directory.

-m Send mail to the requester when the copy is complete.

Uulog maintains a summary log of uucp and uux(l) transac­
tions in the file '/usr/spool/uucp/LOGFILE' by gathering
information from partial log files named
'/usr/spool/uucp/LOG.*.?'. It removes the partial log
files.

4-73

UUCP (IC) XENIX System Reference UUCP(IC)

FILES

The options cause uulog to print logging information:

-s~

Print information about work involving system ~.

-uuser
----Print information about work done for the specified

user.

/usr/spool/uucp - spool directory
/usr/lib/uucp/* - other data and program files

SEE ALSO
uux(l), mail(l)
D. A. Nowitz, Uucp Implementation Description

WARNING

BUGS

The domain of remotely accessible files can (and for obvious
security reasons, usually should) be severely restricted.
You will very likely not be able to fetch files by pathnamei
ask a responsible person on the remote system to send them
to you. For the same reasons you will probably not be able
to send files to arbitrary pathnames.

All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a
single file. (Receiving multiple files specified by special
shell characters ?*[] will not activate the -m option.)

4-74

UUX(lC) XENIX System Reference UUX(lC)

NAAE
uux - unix to unix command execution

SYNOPSIS
uux [-] command-string

DESCRIPTION

FILES

Uux will gather 0 or more files from various systems, exe­
cute a command on a specified system and send standard out­
put to a file on a specified system.

The command-string is made up of one or more arguments that
look like a shell command line, except that the command and
file names may be prefixed by system-name!. A null system­
name is interpreted as the local system.

File names may be one of

(1) a full pathnamei

(2) a pathname preceded by -XXXi where xxx is a userid
on the specified system and ~replaced by that user's
login directorYi

(3) anything else is prefixed by the current directory.

The '-' option will cause the standard input to the uux com­
mand to be the standard input to the command-string.---

For example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fi.diff"

will get the fl files from the usg and pwba machines, exe­
cute a diff command and put the results in fl.diff in the
local dIreCtory.

Any special shell characters such as <>;1 should be quoted
either by quoting the entire command-string, or quoting the
special characters as individual arguments.

/usr/uucp/spool - spool directory
/usr/uucp/* - other data and programs

SEE ALSO
uucp(l)
D. A. Nowitz, Uucp implementation description

WARNING
An installation may, and for security reasons generally
will, limit the list of commands executable on behalf of an

4-7~

UUX(lC) XENIX System Reference UUX(lC)

BUGS

incoming request from uux. Typically, a restricted site will
permit little other than the receipt of mail via uux.

Only the first command of a shell pipeline may have a
system-name!. All other commands are executed on the system
of the first command.
The use of the shell metacharacter * will probably not do
what you want it to do.
The shell tokens « and » are not implemented.
There is no notification of denial of execution on the
remote machine.

4-76

WALL (1M)

NAME
wall

SYNOPSIS
jete/wall

DESCRIPTION

XENIX System Reference WALL (1M)

write to all users

Wall reads its standard input until an end-of-file. It then
sends th~s message, preceded by 'Broadcast Message •.• ', to
all logged in users.

The sender should be super-user to override any protections
the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
me sg (I), wr i te (I)

DIAGNOSTICS
'Cannot send to ••• ' when the open on a user's tty file
fails.

4-77

XSEND, XGET XENIX System Reference XSEND, XGET

N~E

xsend, xget, enroll - secret mail

SYNTAX
xsend person
xget
enroll

DESCRIPTION

FILES

These commands implement a secure communication channel; it
is like mail(l), but no one can read the messages except the
intended recipient. The method embodies a public-key cryp­
tosystem using knapsacks.

To receive messages, use enroll; it asks you for a password
that you must subsequently quote in order to receive secret
mail.

To receive secret mail, use xget. It asks for your pass­
word, then gives you the messages.

To send secret mail, use xsend in the same manner as the
ordinary mail command. (However, it will accept only one
target). A message announcing the receipt of secret mail is
also sent by ordinary mail.

/usr/spool/secretmail/*.key: keys
/usr/spool/secretmail/*. [0-9]: messages

SEE ALSO
mail (1)

NOTES
It should be integrated with ordinary mail. The announce­
ment of secret mail makes traffic analysis possible.

4-78

)ft--IX

APPENDIX A:

Device Driver Routines

Includp.d here are two device driver routines, for disk and
ta~e respectively, as ~escrlbed In Chapter 3. keep In .Ind
ttlat these are intended solely as examples of device driver
routines; much of the material may not be applicable to a
specific machine.

A-i

A.l Prototype disk driver

Whdt follo\o/s i~ ;) sample disk dri .. er. It does not represent
any p;:trttcular or iver but c1erronstrates features common to
most Cisk driv~rs. ThedriYer is intended for a controller
supporting multiple larqe dr·ives suitable for a
root/sw3fJ/IJsr f ilesyste". The driver currently assumes that
thf! controller is intelligent enough to perform seeks when
re~ujrAd. It t~is is not the case, an array for current
cyl indr>r ti'ldrcss .ould t"l3ve to he added.

The loqic~1 device addressing Is set up so that the low­
oraer three hits spp.cif~ a psuedo-drive nu~ber. The
psuedo-orives fJartition the disk intc convenient sized
chunks th::Jt allew multiple filesystems on the disk. For the
ex~ct layout of the psu~do-drlves see the definition of
bd_sjzes helow. The re~ainder of the minor n~mber specifies
the physical drive nu~b~r.

*1

r#jnclude " •• /h/~aram.h" ,. SYSTI:M PA~AMTERS ·1
'include /h/systlfl.h" ,. SYSTEM VARIABLES ·1
,jnclude " •• /h/but.h" ,. BUFFER ST~UCTURE ·1
"include " •• /h/dir.h" ,. DIRECTORY STRUCTURE .,
"include " •• /h/cant.h" ,. CONFIGURATION TABLE FORMATS
'include " •• /h'user.h" ,. lJSE~

'* LAYOlT OF OEVICF REGISTERS *' '* DEVICF nEPF.~nENT .1

STRUCTURE .,

struct device {

in t bddsj '* DRIVE STATUS *1
I nt bder; '* ERROr< REGIS1ER *'
int bdcs; ,+ COMMAND ~ STATUS +,
int bdbc; ,+ BYTE COUNT .,
cdddr t bdbaj '* BUS ADDRESS *' Int bdca; '* CYLI~()ER ACORESS .,
int bdda; '* DISK ADDRESS (HEAO+SECTOR)
char llde'3; /. FOR EXTENDEO ADO~ESSING .,

};

,+ DEVICE nFPENOENl */

.,

.,

"define BI}AOD~ (struct rjevice *) 00) /. OEVICE REGISTER ADDRESS *'
'* DEFINITIONS OF eocs BITS +/

1* UEVICE DEPENCF~T *'

A-2

)(Et.I)(

#define GO 0000001 ,. EXECUTE CO~~AND .,
¥define RESET 0000000 ,. RESET CONTROLLER .,
"dcfine SKCMO 0000006 '* SEEK COHHA~D .,
"define ~DCHO 0000004 '* READ COKMANO *'
Itdefine WTCHD 0000002 '* wRITE COMfUND .,
'define IF.NABLE 0000100 ,. INTERRUPT ENABLE *'
"d,d ine READY 0000200 ,. CONTROLLER READY .,
"define [-RK 0100000 '* ERROR .,

'* DEFINITION OF BOOS BITS *'
'* CEVICE OEPfNCFNT *'

"define SKCMPL 0000100 ,. SEEK COMPLETED .,

Itdefine S PL () spl~() ,. CEVICE PRIORITY LEVEL .,
/* DEVICE PAPAMFTE~S ., ,. DFVICE DEPENDf~T *'

"define NBD ~ I· NUMBfR OF DRIVES *1
"dF! tine NCYL 150 '* ,..UM8ER OF CYLINDERS *'
"detine NBPC 100 ,. NUMBER OF BLOCKS PER CYLINDER */
"def Ine NSPT 10 '* NUMBER OF SECTORS PER TRAC~ .,
"define ROOTSI (,~qqq'NgPC)+l) I· SIZE OF ROCT FILSYS AREA (IN ClY'INDERS)
"d e fine S~APSZ (lQqqINflPC)+l) ,+ SIZE OF SWAP AREA (IN CYLINDERS) ./

"aefine USROFS (ROOTSZ+SWAPSZ) ,. HEGINtdNG CF USR AREA (IN CYLINDERS) .,
"define USERSZ (NCYl-lJSROFS) ,. SIZE OF USER FILSYS AREA (IN CYLINDERS)
"define NCYLZ (NCYL/2)

'* TABLE OF PSLEDO-DISK SIZES .,

struct {
daddr.t nblocks;:
Int cVlo tf ;

} bd_sizesl61 = {
NCYl+NBPC.
RQOTSZ*NBPC.
SwAPSZ*t.BPC.
USfRSZ*t,BPC.

} ;

O. 0 t
o. O.
NCYLZ·NBPC,
NCYLZ*NBPC.

0,
0.
Q.001Sl,
USROFS,

0.
~CYL2t

'* NU~8ER OF elOCKS IN PARTITION +,
,. OFFSET TO PARTITION IN CYLINDERS .,
,. NUMBER OF PARTITIONS ON DEVICE ./ ,+ CYL a THRU END OF DISK ./
'*ROOT AREA (ABOUT 5000 BLOC~S)
'* SNAP AREA (ABOUT 2000 BLOCKS) '* USR AREA (PEST OF DISK)
'* SPARE
,. SPARE
,. FIRST HALF OF THE DISK
'* LAST HALF CF THE DISK

,. STRUCTUPES USED .,
struct but
struct but

bdtabi
rbdbufj

A-3

,+ START OF eUFFfR QUEUE */ '* USED FOR RA~ 1'0 *'

*/ .,
+/
./
+/
./
*/

./

+/

1*
* r-ONI TU~ING r,EVICE NIJ"lRER
*1

Unetinp. OK_N 0

1*
* 5trate~y ~outine:
* Arquments:
* Pointer to buffer structure
* J-=uncti on:
* Check v~lidity of reQuest
* Queue the requp.st
• St3rt-u~ the f1evlce if Idle

*
*1

bostrateg:l(bp)
re9i~t~r struct but *bp;
{

reqister struct buf *dp;
registpr int unit;
long sz;

unit = rrinor(bp->b_dev)j
S7. bp-)u_bcount;
S2 = (s2+BMASK»)BS~IFT;

'* POINTER TO BUFFER STRUCTURE .,

,. UNIT NU~BcR .,

'* CC~PUTE PARTITION DESIRED *'
1* CC~PUTE NUMBER OF CHARACTERS .1

if (unit)= (Nsn«3) :: '* CHEC~ FOR DfV'BLK OUT OF RANGE .,

)

bp-)b_blkno+s2)= bd~sizp.s(unit(071.nblocks) {
if (bo-)o_f lags (. B_READ E.E. unit < (NBO«3)'

bp-)b_resid = bp-)b_countj /* CHECK FOR EOF ./
else

bp-)b_flags :=
iodone(bp) ;
rp.turn;

B_ERRORj '* SET ERROR BIT ./
1* LET OTHERS KNO~ IT IS FREE ./

,. TAKE OFF FREE LIST ./

'* Here we add the buffer to t~e queue of requests; lock out
interrupts whi Ie updatinq queue pointers; and start the
device if it is not active .. Requests are sorted by cylinder
number by the routine ·dlsksort'. This will minimize seek
time and m~ke the 1'0 more efficient. The field 'b_cYlint
is not in the but.h structure of V2.2A of XENIX. It will be
in at I suhsequent XENIX releases. To compensate for Its
omission, simply remove the com"ent del imlters from the
following staten:ent • . ,

A-4

}

., 1* DEPENDS ON VERSION NU~BER .,

h_blkno/N8PC+(bd_sizes[unltlE07) ,. CYLINDER NU~BER ., hO-)b_c'Ilin=
dp = tt:.,ejtab
unit: SPL(H
disksort(dp,bpl
if (dp-)b_dclive ==

bdstartC);
splx(uniUi

NULL)

'* SET DEVICE POINTER TO BUFFER ., '* LOCK OUT INTERRUPTS *' '* SORT RECUESTS *' '* START UP THE DEVICE .,

'* ALLOW INTERRUPTS .,

I·
* Startup Routine:
• Arguments:
• ~one
• Functior.:
• Compute device de~endent para~eters
• Start-up device
• Indicate reQu~st to 1/0 monitor routines +,

hdst.:irt()
{

register struct huf tbp;
register int unit;
int cmo,cn,tn,sn,dnj
daddr_t bni

It BUFFE~ POINTER t,
,. MINO~ DEVICE NUMBER ., '* 1/0 PARAMETERS ., '* DISK ADDRESS OF BUFFER .,

if ((bp = bdtab.b_actf) == t-iULL)
return;

bdtab.b_~ctive++;

'* QUEUE IS EMPTY t,
,. ACTIVATE DEVICE .,

'* * Compute p.:iramet~rs for device registers:
• dn=drive nuwber,
• cn=block nunber,
• cn=cylinder number
• In=track number,
• sn=sector number,

*
*'

cmd=ccrnrn':Jnd.

unit a minor(bp-)b_dev);
dn '" unit»);
bn z bp-)b_blkno;
cn z bn-)b_cylin;
sn = bn4(NBPC);
tn a sn/(NSPT);
s n s n 4 (~~ S P T) ;

cmd;:z IfNA[3LE: GO;
if (tJp-)b_flags fa B_PEAO)

cmd := ROCNe; else

A- '5

'* IF ITS A READ */ ,t SET CMO : READ .,

cmd := WTCMC;

'* * ~rite to device registers
*/

I·

out(~eO~OOR-)bdca, en);
out(~BOAOOR-)bddat (tn«4) I snIt
out(tBOAOD~-)bdba, tp-)b_un.b~a~dr);
outC~BO~DD~-)hdea, bp-)xmem);
outC~HO~OOR-)bdbc, tp-)b_beounl);
out(lP.OAOO~-)hdcs, (dn«8) : emd);

/. ELSE CHOc WRITE ./

/. CYLINDER ADORESS ./
/. DISK ADDRESS ./
/. BUS ADDRESS ./
/. HIGH ORDER CORE ADDRESS ./
/. BYTE COUNT ./
/. C(H~ANO AND STATUS ./

• THIS SECTION OF cooe IS OPTIONAL FOR PERFORMANCE MONITORING ROUTINES
•
* Set UP 1/0 ~onitor routines

*'
.ifdef OK_N

Mendl'
}

I·
• • • • •
./

bdjntrC)
{

dk_busy := l«OK_N;
dk_numb(OK_Nl +- 1;
unit = bp-)b_bcount»6;
dk_~ds{CK_N] += unit;

Interrupt routine:
Check completion status
Indicate co",pletton to I/o ~onitor routines
Log errors
Re-start (on error) or start next request

register struct but *bo;

If (hdlab.b_actlve == 0)
return;

/. IGNORE SPURIOUS INTRPT ./

"fdef OK_N
dk_busy E= (l«OK_N);

(bp ~ bdlab.b_aclf);
bdtab.b~actlve = 0;
If (in(£AOADOR-)hdcs) E E~R) {

deverror(bp, in(~nOAODR-)bder),

out(~BOAOOP'-)bdcs, RESET:GO);
It (•• bdlab.b_errent (= 10) {

bdstartC);
return;

}

/. error bit .,
.n(&BDADOR-)bdds));

)c€NIX

}

/v

}

* Ftdl current reQuest co"plete, start next one
*/

bdtab.b_errcnt = 0;
bdtab.b_actt = bo-)av_forw;
bp-)b_resid :I 0;
iorjoneCbp);
tJ:1startC);

I·
• r~w read !outine:
• This rOlJtine c~lls 'physlo' which computes and validates a physical
• a~dress from th~ current logical address.
•
• Arquments
• Ful I Device Number
* Functions:
• C~II physio which do the actual raw (physical) I/O
• The argump.nts to physlo are:
• pointer to the strategy routine
• buf fer for r~w 1/0
* device
* read/write flag
*/

bdread(dev)
{

}

/*

* * • • •
*

physlo(bdstrateqy, trbdbuf, dey, B_READ);

Raw write routine:
Arguments(to bdwrlte):

Full Device Number
Functions:

Call physlo which will perform the actual raw (physical) I/O

• The routine 'physic' co~putes and validates a physical
• address from the current logical address.

*
* *
* *
•
* */

The arguments to physlo are:
pointer to the strategy routine
buffer for raw I/O
device
reaO/wrlte flag

A-1

tJdwriteCdevt
(

)["'1)(

physioCbdstrateqy, trbdbuf, dev, 8_WRITE);
}

A.2 Prototype tape driver

This is a prototype of a ma~netic tape oriver. The logical
~ddressing is set up so that the 0200 bit of the .'nor
nu~ber indicates that the device should not be re~ound on
close. The OICO bit Is used to indicate high-density. The
re~aining bits of the miner device numb~r are used te
ddoress the physical drive number. Some of these bits could
~I~o be used to address a tape controller. The driver Is
set up so that commands to the drive are sent through a
special buffer header. Provisions are made to interlock
when required.

t'
"include
"include
.'nclude
'include
'include
lIincludp.

It •• /h/param.h" /t SYS1ErI PAIlAfIIfTERS .,
" •• /h/tuf.h" ,t BUFFER STPUCTURf .,
.... /h/dir.h" /t DIRECTORY STRUCTURE *'
" •• /h/conf.h" /* RLOCK DEVICE DECLARATIONS
.... /h/tile.h" ,. FILE STRUCTURE
.... /h/user.h .. /. USEP STRUCTURE

,t ST~lCTURf OF OEVICf. RF.GISTf.RS ./ ,t DEVICF. DEPfNOr:~T ./

., .,

struct device (

Int b td s; /. CRIVE STATUS .1
int btcs; /. CGP4P'lANO t STATUS ./
int btbc; /. BYTE/RECORe COUNT .,
caddr. t blbit; ,. 8US ADDRESS .,
char btea; /. EXTE~DED ACDRESSING .,

) ;

,t DEVICE OEPENDENT ./

.,

~define BTADUP (Cstruct ~eyice .)00)
*define SPLC) spt5()

/. ADDRESS OF DEVICE REGISTERS .,
1* INTERRUPT LEVEL OF OEV1CE .,

1*

#de"ne GO
"define RCOM
#define l-ICOM

DEFI~ITIONS OF BITS IN BlCS ,t OeVICE OEP~NDE~T .,
./

C000001
0000002
oooaool!

.A-8

/. READ CMO .,
/* .. RITE CMO .,

"define "EOf
!ldefine SFllRw
IIdefine SREV
lidefine WIRG
"define IoIEW
"Gefine !\lOP
"define It~ABLE.

"define CI<OY
#dcfine DENS16
"define OENS8
"define E~R

0000006
0000010
0000012
C00001'i
0000016
0000200
0000100
0000200
0040000
0000000
0100000

)cF.t.{X

/. WRITE END OF FILE ./
/. SP~CE FORW~RD CMO ./
/. SPACE REVERSE CMD ./
/. WRITE INTER-RECORD-GAP .,
,. REWIt.O CMD ./
/. NO OPERATICN ./ '* INTERRUPT ENABLE ./
/. CONTROLLER READY.,
,. 1600 BPI.'
,. 800 BPI.'
/. ERROR ./

,. D~FIt.ITIONS OF BITS IN BTOS ./
,. OfVICF. DEPENDENT .,

Itdefine TUR
"def ine wL
'define RLl:
"define EOf
'define HAI<O

0000001
00000,)"
0001000
0040000
0102200

,+ TAPE UNIT ~EAOY ./
/. ~RITE LOCKED ./
/. ~ECORD LENGTH ERROR ./
,. END Cf FILE ./
,. HARD ERROR BITS: ILC, EaT .,

,. LOCAL STRUCTURES USED *'
s t r \JC t bu f
struct bur
struct buf

"define NST

bttabi
rbtbuf;
cbtbuf;

,. hEAD OF REQUEST QUEUE ./ ,+ BUFFER FOR RAW 1'0 REQUESTS .,
,+ COMM~ND BUFFER *'
,+ ~UMBE.R OF DRIVES */

,. THE FnLL~WING ARRAYS ARE EACH COMPRISED DF "
ELEMENTS, ONE FOR FACH POTENTIAL DRIVE .,

ch~r t_flags[NSTli
daddr_t t_blkno[NBT1;
daddr_t t_nxrec[NBT1.
int t_dens [N8T];

,+ PER-DEVICE FLAGS ./
,. ADDRESS OF BLOCK +/
,. ADDRESS OF NEXT RECORD *'
,. TAPE DENSITY */

,+ DEFINITIONS OF ORIvER STATES *'
"define SSEEK
.define SIO
"define SCOM

1
2
3

,+ EXECUTING SPACING CO~MANO */ '* EXECLTING I,D COM~AND *'
/. EXECUTING CC~MAND BUFFER .,

/. DEFINITIONS OF FLAG AITS .,

'define T_~ROTE 1
.define T_OPEN 2
#define T_ERR 4

A-9

'* UNIT HAS BEEN WRITTEN ON */
,. UNIT IS OPEN ./ '* LNIT HAS HAD HARD ERROR */

)CF~I)(

1*
* Open Routine
* Arguments:
* Oevice number
• Read""H i te f laQ
* FUflcti ons:
• (hp.ck unit number
• [nsure one open per unit
* Sptup the device parameters

*'
b top en (dey, f I a 9)
(

}

register unit, dsi

unit = "inorfdev) t 077; ,. CALCULATE UNIT NUMBER .,
if (unit)= NST :: t_tlag5[unltJET_OPE~) { '* YALID UNIT 11 .,

u.u_error a ENXIOi
return;

}

t_blkno(unit1 = 0; /* SET BLOCK NUMBER TO ZERO .,
t_nxrec[unitl = lOOOOOOl; /* SET SEEKING RANGE .,
t_dens(unitl = ~lnor(dev)E0100? OfNS16: DENS8; ,. DENSITY ./

bttab.b_flags := B_TAPE; '* THIS IS A MAGTAPE .,
ds 2 tcommand(dev, ~OP); /* DETERMINE DRIYE STATUS .,
It (CdsETUR)==O) (,. IF DRlYE IS NOT REAOY ./

printf("rntXd off lineO,unlt);
u.u_error • FNXIOj

}

It (flag ££ dsEWL) { '* CHECK WRITE PROTECTION *'
printf("mt%d needs krlte ringO,unit);
u.u_error = ENXIO;

}

if (u.u_error==O) ,. IF NO ERROR, OPEN UNIT .,
T_OPEN; ,. SET FLAG ., t ... flags[unltl

'* * Close R~utine

• Arguments:
• Device number
• Flag * Functions:
• If writinq, write end of tape
• If a rewind dp.vlcp., re",ind and
* at low opens

*'
btc'ose(dev, flag)
dev_t dev;

A-IO

int tlaq;
{

}

if' f I a q :1:2: F W·R IT f ::
((flag(~WRITF) E& (t flags(.lnor(devlE0771ET WROTE») {

tcommand(dev~ WEOF); 't WRITE END OF TAPE ~ARK .,
tcommandCdev, WEOF)i
tcomm~nd(dev, SREV); 't SPACE TO BET~EEN EOFs ./

}

if (minor(dev)EOlOC) == OJ
tcomm~nd(deVt RE~);

t_fl~gs(m'nor(d~v)E0711 • 0;

'* IS TAPE IS TO BE RE~OUND .,
'* YES, REWIND TAPE *'
'* CLEAR OUT FLAC BITS .,

'* • Command Routine
• Arguments:
* Oevi~e number
* Device comm~nd
* Functions:
* Walt unitl device Quip-scent
* Send requested coamand to device .,

tcommand(dev, c~d)
{

}

,.

register struct buf *bp;
register psi

bp .:I (cbtbufi
ps - SPL();
w h i I e (b p-> b _ f I a 9 5 f. B _ BUS Y) {

bp-)b_fl~gs :2 B_WANTED;
sleep«caddr_t)bp, PRIBIO.;

}

'* ASSIGN CO~~ANO BUFFER *' '* LOCK OUT INTERRUPTS *'
,. WHILE CO~MAND BUFFER IS BUSY.'
'* INDICATE IT'S WANTED *'
,. SLEEP UNTIL READY *'

bp-)b_flags .:I B_BUSY:B_~[AD; ,. INCICATE IT IS aUSY READING.'
splx(ps); ,. ALLOW INTERRUPTS *'
bp-)b_dev = dev; '* SET DEVICE TO CO~MANO BUFFER *'
bp-)b_resid = cmd; '* SET COMMAND .,
bp-)b_blkno 2 0; /* SET RLOCK NUMBER *'
btstrateqy(bp); '* CALL STRATEGY ROUTINE *'
lowalt(bp); ,. WAIT UNTIL 1'0 IS OONE *'
It (bp-)b_tlags£B_WANTEDl { '* IF DEVICE IS WANTED *'

bp-)b_flaqs~· 'B_WANTEO:B_BUSY)
wakeup(cador_tlbp)j ,. WAKEUP *'

}

/* RETURN DRIVE STATUS .,

• Strategy Routine: Entry point to driver proper

~-ll

• Arquments:
• Pointer to Butfer
* Functio~s:
* ~ueue Requests

*'
otstrate9Y(Op)
reQister struct but .bp;
{

)FNIX

re~lster daddr_t .0;
register unit;

if (op !w tcbtbuf) {
unit • ~lnorCbp~>b_dev)E071;
p = ~t_nxrec[unit1;
If '.p <- bp->b_blkno) {

,. UNIT NUMBER .,

,. IF NOT A COMMAND .,
,. GET "tNOR DEVICE NU~8ER .,
,. MAXI"U" RECORD NU"BER .,
,. RANGE C~ECKING .,

If 'tp < bp-)b_blkno) (I. OUT OF RANGE .,

}

bp-)b_flags :. R_ERROR; ,. SET ERROR .,
lodoneCbp); '* INDICATE COMPLETION .,

}

}

return;
}

if (bp->b_ fI agstB_READ) (
clrbufCbp);
bp-)b_res~d • 0;
'odoneCbp);
return;

}

If ((bp->b_flaqstB_~EAD) zs: 0) {
t_f lags[unlt] :- T_WROtE;
*p • bp->b_blkno+l;

}

bp->av_forw :a 0;
unit 11: SPL(l;
If (bttab.b_actf =c NULL)

bttab.b_3ctt ,. bpj
else

bttab.b_actl-)av_forw = bpj
httab.b_actl :a bo;
If (bttab.b_actiye a= 0)

btstartCH
splx(unlt);

'* IF READING ., '* CLEAR BUFFER .,
,. CLEAR CO~"ANO .,
,. INDICATE COMPLETION .,
,. RETURN .,

't IF IT IS A WRITE ., ,t SET FLAG ., '* NEW MAX. RECORP .,

,. IGNORE INTERRUPTS .,
,. QUEUE REQUEST .,

,. IF DEVICE NOT ACTIVE .,
,. START DEVICE .,
,. ALLOW IN1ERRUPTS .,

'* * Startup Routine: Initiate a request
* Arguments:
• None
t Functions:

•
*
*1

)E~IX

If butfer ptr is command but, execute command
else execute read'write

btst~rt()

{

loop:

,.

r~qister struct but .bpj
reqister int cmdj
int unil;
re~jster daddr_t .blkno;

,. POINTER TO BUFFER */
'* CO~~AND */ '* DEVICE NU~BER ./
,. BLOCK ADDRESS */

if «bp = bttab.b_actft =~ ~ULL) ,. QUEUE IS E"PTY */
return;

unit = minor(bp-)b_devlE011; ,. GET DEVICE NUMBER .,
blkno = £t_blkno[unit); ,. GET CURRENT BLOCK NU~8ER .,
if (t_flaqs[unit1tT_fRR :: (in(~BTADDR->htcs)tCROY)··O) {

}

bo->b_flags :: B_ERROR;
gata next;

,. Set up common part af command .,
,. CfVICf DEPENDENT .,

cmd t_dens[unitl: (unit«B) : IENABlE;

• Execute tape com~anos as specified in the bufter .,

,.

it (bp 2= £cbtbuf) { ,. IF IT'S THE CO""AND BUFER *'
if (bp-)b_resid == NOP) { ,+ AND THE COM"AND m NCP ./

bp-)b_resid z in(tRTACD~->btds); ,. READ DRIVE STATUS *'
qoto next; ,. CONTINUE .,

}
,. START EXECUTING C"O BUFFER .,

'* Oeter"ine Co~mand and Write CantraltStatus register .,

}

,. DEVICE DEPENOENT .,

cmd := hp-)b_resld: GC
aut(F.BTAODR-)btcs, cmd);

return;

• Determine if ~ spacing command is required
• It it is, then:

A-l3

Set state to SSEEK
Give spacing Command

if '.blkno !a oo->b_blkno) (
bttab.b_actiye z SSEEKi
It ,tblkno < bp-)b_blkno) {

cmd :a SFOR~:CO;

,t IF NOT CORRECT BLOCK t/
/t SET STATE TO SEEK t/ ,t DETERMINE DIRECTION t/
/t FORWARD SEEK .,

/. Write Pecord Count Register OEVDEP./
out(EBTADDR-)btbc. (int) (bp-)b_blkno-tblkno));

} else {
I' (bp-)b_blkno .c OJ

cmd 1= REW:GOi
else {

c~d := SREVIGOi

,t AT BEGINNI~G .,
/. REWIND t/

/t REVERSE WIND t/

/t Update Record Count Register DEVOEP./
outC£BTADOR-)btbc, ('nt) (tblkno-bp-)b_blkno)Ji

}

}
}
outC~BTAODR->btcs, cmd);
return;

/. WRITE THE C£S RECISTER ./

/. NQ seeking was required; start I/O and update registers ./

,t DEVICF. OEPENDENT ./

bttdb.b_act've = SIO;
out(£BTADDR-)btba, bp-)b_un.b_acdr);
out(EBTAODR->btea, tp-)b_xmem)i /t HIGH ORDER CORE ADDRESS ./
outCEOTADDR->htbc. bp->b_bcount);
outCEBTAODR->btcs.

cmd: «bp-)b_,tags'B_REAO)? RCOMfCO:
«bttab.b_errcnt)? kIRGIGO: ~COM:GO))J;

return;

next:

}

bttab.b_actt • bo-)av_forw;
bttab.b_actlve = 0;
lodone(bp);
goto loop;

/.
• Interrupt Routine:
• Arguments:
t None
• Functions:

A-l~

/t ALERT OTHER PROCESSES ./

'* «

0,
btintrC)
{

ret:

log i:rrors
Restart controller

register struct buf .bp;
register int unit, err;

,. POINTER TO 8UFFER .,

Int state;

I' (Cbp • bttah.b_actf) =- NULL)
return;

unit = mlnorlbp-)b_de¥)E077; /. GET DEVICE NU"BER .,
state a bttab.b_active; /. SAVE STATE OF DEVICE .,
bttab.b_act6vp. a OJ /. REINITIAlIZE THE STATE ./
if (in(£BTADOR-)btcs) E EPR) { /. CHECK FOR ERROR ./

}

err • InCEBTACDR-)btds); /. DETER~INE TYPE ./
if CerrEEOF) { ,. END OF FILE .,

}

t_nxreclunltJ • bp-)b_blkno;
state'" SCO,.;
outCE8TAODR->btbc, bp-)b_bcount);
<loto ret;

if CCerr&HAROJ sa 0 EE errERLE) { /. RECORD LENGTH E~ROR ./
state • S[O; ,. EXECUTING 1'0 .,
goto reti

}

If (errECHARO:ECF» =. 0 EE statec=SIO) { /. EXECUTING 1'0 .,

} else

I' (++bttab.b_errcnt (3) (
t_blkno[unit]++;
bttab.b_actlve • 0;
btstart();
return;

}

If (Ct_flags[un.tlET_ERRJa·O EE bp!-Erbtbuf EE
(er rEEOF)1"':0) (
t_flags[unltl I- T_ERR;
deverrorCbp, err, tn(EBTADOR-)btcs);

}

bp->b_flags I- B_E~ROP.;

s tat e = S I' n ;

switch (state) {
case SID:

t_blkno(unitl .- (bp-)b_bcount»BSHIFT);
case SCOM:

bttab.b_errcnt • 0;
bttab.b_3ctf a bp-)av_forw;
bp-)b_resld ~ in(EBTADOR->btbc);

A-IS

/. WRITE BYTE/RECORD REG .,

}

iodone(bo);
hreak;

case SS£FK:
t_hlknofunitl
break;

default:
return;

)

htstart();

,. ALERT OTHER PROCESSES .,

'* * tHread
• Arquments:
• Device Number
* Functions:
• Oetermine block address on device
• Call the routine to do the aCutal physical 110

•
• 'physio' is the routine which pertQr~5 the actual physical 110
9 from the current logical address; essentially, all the work
• of physio is computing physical and validating physical addresses • . ,

btread(dey)
{

btphys(dev); 1* CALCULATE BLOCK ADDRESS .1
physio(btstrateqy, Erbtbuf. dey, 8_~EAD); '* DO RAW 110 *1

}

,.
• Btwrlte .
• Arquments:
• Device number
• Functions: * ()~ter"ine bloc~ address on device
* Perform actu~1 physical 110

•
• 'physlo' Is the routine which pertor~s the actual physical 1/0
• from the current logical address; e~sentlally, all the work
• of physio is computinq phy~ical and validating physical addresses • . ,

btwritefdev)
{

btphys(dev);
physjo(btstrate~v, Erbtbuf, dey. B_WRITE);

)

,. Btphys

A-16

/. GET BLOCK ADDRESS *1
,. DO RAW 110 ./

• Arguments:
• Oevice nu~ber
• Functions:.
• Calculate block address on device

*'
btphys(dev)
{

}

register unit;
daddr_t a;

unit s ~inor(d~v) t 011;
it(unit < NBT) {

}

a = ueu_offset » BSHIFT;
t_blkno[unitJ 2 a;
t_nxrec[unit1 = a+1i

A-11

'* GET DEVICE NU~8ER .,

,t CO~PUTE BLOCK NU~BER .,
,. DISALLOW SEEKS ON t,
,. RAW DEVICES .,

APPENDIX B:

Games

Included here are the games available on the XENIX system.

B-1

ARITHMETIC (6) XENIX System Reference ARITHMETIC (6)

NAAE
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+-x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits
for an answer to be typed in. If the answer is correct, it
types back "Right!", and a new problem. If the answer is
wrong, it replies "What?", and waits for another answer.
Every twenty problems, it publishes statistics on correct­
ness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem
to be generated; +-x/ respectively cause addition, subtrac­
tion, multiplication, and division problems to be generated.
One or more characters can be given; if more than one is
given, the different types of problems will be mixed in ran­
dom order; default is +-

Range is a decimal number; all addends, subtrahends, differ­
ences, multiplicands, divisors, and quotients will be less
than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are
equally likely to appear. If the respondent makes a mis­
take, the numbers in the problem which was missed become
more likely to reappear.

As a matter of educational philosophy, the program will not
give correct answers, since the learner should, in princi­
ple, be able to calculate them. Thus the program is
intended to provide drill for someone just past the first
learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per
problem, not percent correct.

B-2

BACKGAMMON (6) XENIX System Reference BACKGAMMON (6)

NAME
backgammon - the game

SYNOPSIS
/usr/games/backgammon

DESCRIPTION
This program does what you expect.
need instructions.

B-3

It will ask whether you

QUIZ(6) XENIX System Reference QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t

I
[categoryl category2]

DESCRIPTION
Quiz gives associative knowledge tests on various subjects.
It asks items chosen from categoryl and expects answers from
category2. If no categories are specified, quiz gives
instructions and lists the available categories.

Quiz tells a correct answer whenever you type a bare new­
line. At the end of input, upon interrupt, or when ques­
tions run out, quiz reports 'a score ana terminates.

The -t flag specifies 'tutorial' mode, where missed ques­
tions are repeated later, and material is gradually intro­
duced as you learn.

The -i flag causes the named file to be substituted for the
default index file. The lines of these files have the syn­
tax:

line
category
alternate
primary
option

= category newline I category':' line
= alternate 1 category 'I' alternate
= empty I alternate primary
= character I '[I category']' I option
= '{I category'}'

The first category on each line of an index file names an
information file. The remaining categories specify the
order and contents of the data in each line of the informa­
tion file. Information files have the same syntax.
Backslash '\' is used as with sh{l) to quote syntactically
significant characters or to insert transparent newlines
into a line. When either a question or its answer IS empty,
quiz will refrain from asking it.

FILES
/usr/games/quiz.k/*

BUGS
The construct 'alab' doesn't work in an information file.
Use 'a{b}'.

B-4

WORDS (6) XENIX System Reference WORDS (6)

NAME
hangman, words - word games

SYNOPSIS
/usr/games/hangman [diet]

/usr/games/words

DESCRIPTION
Hangman chooses a word at least seven letters long from a
word list. The user is to guess letters one at a time.

The optional argument names an alternate word list. The
special name '-a' gets a particular very large word list.

Words prints all the uncapitalized words in the word list
that can be made from letters in string.

FILES
/usr/diet/words
/crp/diet/web2

the regular word list
the the -a word list

DIAGNOSTICS

BUGS

After each round, hangman reports the average number of
guesses per round and the number of rounds.

Hyphenated compounds are run together.

UNIX software is distributed without the -a word list.

B-5

WUMP(6) XENIX System Reference WUMP(6)

N~E

wump - the game of hunt-the-wurnpus

SYNOPSIS
/usr/garnes/wump

DESCRIPTION

BUGS

Wump plays the game of 'Hunt the Wumpus.' A Wumpus is a
creature that lives in a cave with several rooms connected
by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the
Wumpus and falling into Bottomless Pits. There are also
Super Bats which are likely to pick you up and drop you in
some random room.

The program asks various questions which you answer one per
line: it will give a more detailed description if you want.

This program is based on one described in People'~ Computer
Company, ~, 2 (November 1973).

It will never replace Space War.

B-6

