TECHNOLOGY INCORPORATED

XENIX'
SYSTEM

SYSTEM
REFERENCE

VOLUME 4

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft. The
software described in this document is furnished under a license
agreement or nondisclosure agreement. The software may be
used or copied only in accordance with the terms of the agreement.

© 1982, Microsoft Corporation

© 1979, Bell Telephone Laboratories, Incorporated
Reprinted with permission.

Copyright 1979, Bell Telephone Laboratories, Incorporated

Holders of a UNIX™ software license are permitted to copy this
document, or any portion of it, as necessary for licensed use of the
software, provided this copyright notice and statement of
permission are included.

Catalogno. 9100
Partno. 91F00D

Document no. 8603d-100-00

Introduction"...l.....O....'..Q.'..,.........'....0.. 1_1
2. INTRODUCTION TO SYSTEM ADMINISTRATION ..ccccceecccs 2-1
2.1 OPERATING SYSTEM OVERVIEW.:essececceensssscccanss 2-2

2.1.1
2.1.2

2.1.3

’

e« o N

Doy NDNNE -
e *» e s+ e

DO NNNDTN
. . . L . .
» . L] L] . . L] L
O OJdOEeWNHN &

e o o o o e e e

e o o

O e -
SRR LBAELEAELETHWWWWWWWWWHEHN
o.ocoHZ‘.

HHEMHEMHEWOJOUIOWNHFZMH OO IO U D WK -

B> WO

o o o o s o e o o e o o o .
e ¢ o o e o o o e

- CONTENTS

A Brief History 2-2

The Contents of an Operating System
2-2 ‘

Why Operating Systems Are Important
2-3

The XENIX Operating System 2-3

GROUPS' AND PROTECTIONS.-..0..0..........- 2“4

Users 2-4

Groups 2-5

Protection 2-5

Protection and Directories 2-6
Search Permission 2-6 '
Read Permission 2-7

Write Permission 2-17

Adding a New User: Things to.
Consider 2-8

Removing a User 2-10

XENIX FILE SYSTEM..Q..D.QQo.oo...ol..l.uOQI. 2—10

What a File System Is 2-10

A Simple File System: An Example 2-11
The Disk 2-12

A Canonical File System 2-12

Mounted File Systems 2-13

The /etc/rc File 2-13

The File /etc/ttys 2-14

The File /etc/motd 2-15

Mounting Other File Systems 2-15

ENANCE TASKS OF THE SYSTEM
ISTRATORQC.Oc'QQ....loo..'..."".'lt.coo.-t 2_16

Daemon Processes 2-16

The Importance of Disk Space 2-16
Checking for Disk Space 2-16
The 4f Command 2-17

The du Command 2-17

The find Command 2-17

The quot Command 2-18

Other Tools 2-18

File System Integrity 2-18
The fsck Program 2-19

The dcheck Program 2-20

The icheck Program 2-21
Error Conditions 2-22

Errors in the Free List 2-22

2.4.15 Errors in the Internal File
Descriptors 2-23

2.5 BACKUPS.:eeteeosscoesssasssssssessssssssssssceces 2-24
2.5.1 When to Take Backups 2-24
2.5.2 A Full Backup 2-24
2.5.3 Incremental Backups 2-25
2.5.4 How to Perform a Backup 2-26
2.5.5 Saving Backup Tapes 2-26
2.5.6 Recovering From a Disaster 2-27
2.5.7 Restoration: Step 1 2-27
2.5.8 Restoration: Step 2 2-28
2.5.9 Fsck After the Level 0 Backup: Stép
3 2-29
2.6 SOME ADVICE FOR SYSTEM ADMINISTRATORS.:eecssecsss 2-30
2.6.1 Disk Free Space 2-30
2.6.2 A Few Words About System Tuning 2-31
2.6.3 Spare Disk Drive 2-31
2.6.4 Disk Packs 2~31
2.6.5 Protecting User Files 2-31
2.6.6 XENIX File System Backup Programs 2-32
2.6.7 Controlling Disk Usage 2-33
3. ADVANCED SYSTEM FUNCTIONS ..c.cecevccecccassscncocnce 3-1
3.1 DEVICE DRIVER & I/O GUIDE::cssecsseevscsoasnnscacs 3-2
3.1.1 The XENIX I/O System 3-2
3.1.2 Device Numbers 3-3
3.1.3 Block I/O System = 3-3
3.1.4 Character I/0 System 3-4
3.1.5 Configuration Tables 3-4
3.1.6 Writing the New Device Driver 3-7
3.2 UUCP IMPLEMENTATION DESCRIPTION .cccececocscsneas 3-9
3.2.1 Uucp-XENIX to XENIX File Copy 3-10
3.2.2 Uux-XENIX To XENIX Execution 3-13
3.2.3 Uucico~-Copy In; Copy Out 3-15
3.2.4 Uuxgt-Uucp Command Execution 3-19
3.2.5 Uuclean-Uucp Spool Directory
Cleanup 3-20
3.2.6 Security 3-21
3.2.7 Uucp Installation 3-22
3.2.8 Administration 3-29
3.3 XENIX SECURITY CONSIDERATIONS .:.cceeeeccccaccsssns 3-33
3.3.1 Crashes ‘and Slow-downs 3-33
3.3.2 Protection and Permission 3-34
3.3.3 Password Security 3-36
3.3.4 Mounting Unauthorized Discs and Tapes

3-37
4, COMMAND REFERENCE. .:ctteeeecccccccsccccscacsacseses 4-1

APPENDIX A: Device DFiver ROUEINES..ceveeeeeveeesons .A-1
APPENDIX B: GameS...é-.;.....-..-...............-.....B—l

XENIX System Reference

CHAPTER 1
Introduction

This volume of the XENIX Programmer's Manual contains
material primarily about system level concepts, functions,
and commands; while some of these topics may not be of
immediate concern to the average user, everyone should
become familiar with maintenance functions and the utilities
available on the system. This is especially the case if
there is no administrator designated for a system, or if for
some reason the user must undertake a system task, such as
recovering from a crash or restoring files from a backup
tape.

The first section of the volume deals with the duties
assigned to the role of system administrator. These duties
include: establishing wuser directories, passwords, and
accounts; maintaining system security and file structure
integrity; performing periodic backups of the file system
and restoring these files in the case of disaster. The XENIX
tools pertinent to these functions are described and some
final words of advice are offered.

The second section of the volume deals with some special
system functions. One of these 1is writing device driver
routines to allow XENIX to communicate with the I/0 devices
configured for its system, Another 1is establishing
communication between two or more XENIX systems connected by
telecommunication or hard 1link. Finally, the topic of
system security is addressed.

The last section of the volume contains a summary of some
system level programs, commands, and utilities not dealt
with elsewhere in this manual. Once again, although the
user may not find these of immediate use, he should become
aware of their existence, as well as their location in the
manual, for future reference. Also included here are the
games available on the XENIX system. '

XENIX System Reference

CHAPTER 2
INTRODUCTION TO SYSTEM ADMINISTRATION

Unlike those users for whom the operating system is merely a
tool for program development and applications, the system
administrator must take responsibility for the health and
welfare of the system as a whole. These tasks include adding
new users, insuring that adequate disk space is available
for all wusers at all times, making backups to protect
against user and hardware errors, and giving training and
support. In short, it is the system administrator's job to
undertake all the maintenance functions necessary to
maintain efficient system operation.

It is the intent of this document to provide the necessary
background information and instill the confidence required
for a system administrator (or site coordinator). It 1is
intended to be read as an initial orientation to the system
administrator's functions, as well as a reference for later
use. This document is a supplement, not a substitute, for
the XENIX Programmer's Introduction. It is strongly
recommended that all the documentation be read thoroughly
before any attempt is made to administer the total system.

XENIX System Reference

2.1 OPERATING SYSTEM OVERVIEW

Before introducing the actual duties of the XENIX system
administrator, it is helpful to examine the evolution of
operating systems in general, and the XENIX system in
particular.

2.1.1 A Brief History

Early computer users often had the sole use of an entire
computer system, and thus they were able to manage its
resources for their own convenience. But as the number of
users dgrew, it became clear that some kind of formal
resource management would be necessary to ensure the
efficient, equitable distribution of a system's physicail
resources among all the users of a single system. :

Even in a system where jobs could only be processed one at a
time, a wuser had to be prevented from monopolizing the
computer and its resources. System management of the central
processor was required to limit the time consumed by user
programs. It was also obvious that computer memory had to be
managed 1in order to protect users from destroying each
other's data or programs. When direct access secondary
memory was available in sufficient quantity to make
permanent data storage feasible, system management of I/0
devices and secondary memory became still more critical.
Operating systems were developed to meet these requirements
for system management.

2.1.2 The Contents of an Operating System

An operating system consists of those program modules
resident in a computer which control its physical resources,
including:

1. Processors
2. Main storage
3. 1I/0 devices
4. Secondary storage
5. Files
These modules recolve conflicts, attempt to maximize

performance, and simplify the effective use of the system.
They act as the interface between wuser programs and the

XENIX System Reference

physical computer hardware.

2.1.3 Wwhy Operating Systems Are Important

While executing, an operating system controls the entire
operation of a computer. For example, when several user
programs compete simultaneously for resources, the operating
system determines in which order the users will have

access, and for what period of time. In addition, an
operating system prevents a computer system from crashing if
a device becomes inoperable, and assigns "~ “paths'' to I/0

devices when they are needed.

In present day operating systems, the command language
serves as an interface to the operating system. This
language is the essential tool of the system administrator.
Some special features of the XENIX command language and of
the XENIX file structure are detailed below; they are also
dealt with in the Programmer's Introduction.

2.1.4 The XENIX Operating System

XENIX is derived from UNIX, an operating system which has
been field tested for almost a decade, largely in university
environments where it has demonstrated a capacity to
withstand abuse and function under heavy workloads.

XENIX is a multi-user, multi~tasking operating system. It
allows more than one user full and complete access to all of
its resources on a time sharing basis. Each wuser has the
illusion that he, and he alone, has absolute access to the
computer's resources. XENIX satisfies all the needs of the
modern computer user, while offering a wealth of supporting
programs which aid its users in performing a wide range of
tasks. of the operating system and the activities of the
system administrator are described.

2-3

XENIX System Reference

2.2 USERS, GROUPS, AND PROTECTIONS

In this section, the concepts of ““user'',““group'', and
“protection'' are introduced; these are concepts that

should be understood thoroughly in order to properly

administer the system.

2.2.1 Users

Generally, a user is an individual authorized to access the
computer's resources. This authorization consists of a
valid login name and, optionally, a unique password. The
process of gaining access to the system is called "“logging
in.'' It is the system administrator's responsibility to
decide which individuals are authorized to use the computer,
and to what extent.

In general, a user is one who logs in and proceeds to edit,
compile, or perform any every day functions. The user's
scope of access to the other files in the system is
determined by the various protection settings for
directories and files. The normal user is prohibited from
accessing files and directories which do not have the
necessary permissions set.

There is, however, a type of user who has unlimited access
to the entire system: the ~‘“super-user. '' As the name
implies, the super-user has extraordinary capahbilities, and
is not restricted by any protection setting; the super-user
can access any file in the svstem. Since the XENIX file
protection mechanism does not apply to the super-user, a
simple mistake or mistype by the super-user can cause
massive damage to everyone else's programs and data, and
possibly even bring down the entire system.

When you first log into the system, you are automatically
positioned in vyour “home' directory as defined by an entry
in the file etc/passwd. Then, from this directory, you can
move to any directory or file in the system depending on its
access and protection settings. '

It is for this reason that the number of individuals who can
assume super-user powers must be kept to an absolute
minimum. Even those users who are given the super-user
password must be careful to log in as the super-user only
when necessary; this includes the system administrator.

Once logged in, a user has access to any directory or file
in the system which allows the appropriate access. A user
has full access rights to all files and directories which

XENIX System Reference

extend from his home directory.

2.2.2 Groups

It is generally good policy for a user to restrict access to
the files and directories he owns by setting the various
permission bits a35001ated with that file. However, there
may be certain files and directories that need to be shared
among members of a group, while still remaining restricted
to everyone else.

The group affiliation is a facility that allows groups of
users to share files while still restricting access to
unaffiliated users; otherwise, the group id may be made the
same as the user id for joint access.

2.2.3 Protection

Each file or directory created has a set of "“protection
bits.'' There are a total of nine (9) bits, which are
divided into three categories of three bits each. The three
bits in each category are, in order, the read, write, and
execute permissions (rwx). The three categories are: user,
group, and other, where the ““user'' is generally the owner
of the file, the ““group'' includes members of the same
group, and "~“other'' 1is everyone else. Thus, a file can
have different protection or access permission depending on
the way each of the bits are set in each category.

When you examine a long 1lst1ng from the 1 command, the
following holds true:

read permission, "-' denies it.
write permission, “-' denies it.
execute permission, "-' denies it.

r
w
X
For example,

-IWXIWXrwx 1 joe 32 Oct 19 10:00 example

means that everyone, owner, group, and other, has full
access rights. 1In the following file, permissions allow the
owner and the members of his group full access rights, but
everyone else has only read permission to the file:

-rwxrwxr-- 1 joe 32 Oct 19 10:00 example

Here is a case where the file permits the owner read and
write access, but everyone else (group and other) only read

XENIX System Reference

access:
-rw-r--r-- 1 joe 32 Oct 19 10-00 example

In this example, the permissions allow only the owner to
read or write the file:

“IW——————— 1 joe 32 Oct 19 10:00 example

No one else is able to access this file for any reason,
(except the super-user).

In this final example, the permissions allow execute status
for the owner, members of the group, and all other members:

-rwxr-xr-x 1 joe 32 Oct 19 10:00 example

2.2.4 Protection and Directories

A directory is just like any other file except that no user,
not even the super-user, can write on a directory.
Directories provide the mapping between the names of files
and the files themselves, and thus impose a structure on the
file system as a whole.

Each directory «created has a set of protection bits
associated with it, but these protection bits have somewhat
different meanings for dlreCtOIICS than they do for files,
as described below.

2.2.5 Search Permission

drwx--x--- 2 joe - 32 Oct 19 10:00 boock

In an ordinary file, the “x' bit signifies execution
capability, but it 1is obviously impossible to execute a
directory. The 'x'" in this case means that the owner can
search the contents of the directory for other directories
or files. Search permission may be given for that
particular user, dgroup, or other, depending on how the
protection bits are set. In this example, the owner has
read, write, and execute permission on the file. Search
permission is also given to members of the same group;
however, no one else can search the directory named
““book''. 1If either the owner or group wishes to access
this directory, there 1is no problem. However, if anyone
else desires to access this directory, they will get the
following message:

XENIX System Reference

/usr/joe/book: bad directory

Of course, the directory book is not actually a "“bad
directory''. It simply can not be accessed by those who are
denied search permission. If a user has search permission
and read or write permission, that user may change the
contents of that directory.

2.2.6 Read Permission

drwxr-xr-- 2 joe 32 Oct 9 23:32 book
When an individual has read “r' permission for a directory,
the wuser can read any file within that directory for which
the read bit has been set.

In this example the owner is given read, write, and search
access to all the files in this particuldr directory. The
members of the same group are only given read access and
search access. Any member of the same group as the user's
can search this directory and read any file in it. However,
if the directory contains a subdirectory, that subdirectory
must also allow search permission. Everyone else has only
search permission in this directory.

As in the previous example, the file 1is in the directory
book: '

-rw-r---r-- 2 joe 108 Oct 19 23:44 chapterl

The protection setting for chapterl allows the owner both
read and write permission, while the other members of the
group and everyone else have only read permission. However,
due to the protection setting on the parent directory book,
only the owner can add (create) or delete (remove) it.

2.2.7 Write Permission

drwxrw---x 2 joe 32 Oct 20 09:32 book
Write permission on a directory allows the user to add,

delete, remove, and rename any file within the specified
directory.

2-7

XENIX System Reference

2.2.8 Adding a New User: Things to Consider

When a new user is to be allowed to log in, the 1login name
and, optionally, the password need to be entered in the
appropriate file. This file is named etc/passwd and can only
be edited by the super-user. Each entry contains the
following information:

¢ login name

& encrypted password

® numerical user id

¢ numerical group id

® initial working directory

® program to use as the shell
The initial working directory is the user root,- or hone,
directory described -earlier in this chapter. This is the
user's position after a proper login. The last field is the

program that is to be the user's shell, or command line
interpreter. Below is a sample /etc/passwd file:

root:/H4Ggl5HCW7uk:0:50:Super User:/:
daemon:x:1:50::/: ‘

cron:x:1:50::/:
sys:qa.v0r0z90H1lc:2:50::/sys:
bin:0Ob3cNJIVgpk2A:3:50::/bin:
joe:MWxG240.118fM:50:50:Joe Smith:/usr/joe:

Using the entry “joe' from the example above, we can see
that the login name is “joe'. The password is encrypted here
for security reasons; this is done automatically by the
passwd command. When the password is assigned to “joe', it
should be entered in normal alphanumeric text. Next in the
/etc/passwd file is the user's numerical identification.
This id is associated with each file that “joe' creates and
thus owns. The next entry is the numerical identification of
the group with which joe 1is affiliated. The entry “Joe
Smith' is optional and serves to further identify this user.
The final entry 1is Jjoe's home directory, where he 1is
positioned after a valid login. Since there is no entry in
the field that defines the shell, the default shell 1is
specified. The above is a typical entry in the /etc/passwd
file for a user.

The following procedure creates an entry in the /etc/passwd
file for any authorized user. It 1is a straightforward

XENIX System Reference

procedure; just follow the directions:

ed /etc/passwd must be super-user)

(
Sa (append to end of file)
joe::10:1::/usr/joe: (new user's entry)
. (end of current input)
w (write it to the file)
q (quit the editor)
mkdir /usr/joe (created working directory)

nhange its owner to joe) ,
login joe (test to see if it works)

Although the initial assignment of a password 1is optional,
the new wuser should be encouraged to assign a password
immediately after the 1initial login. Alternatively, the
system administrator may assign a password or suggest that
it be changed.

When any user, including the super-user, first 1logs on, a
file called .profile runs automatically. The information in
this file sets some terminal characteristics and initializes
some pathname variables. The .profile file should be placed
in the wusers' home directory (i.e., /usr/joe/.profile).
Here is a sample .profile file:

stty erase '“h' kill '"“u’ (set terminal)
date . (write out date)
MAIL=/usr/spool/mail/joe (path to mailbox)
PATH=:/usr/joe/bin:/bin:/usr/bin:(search path)

The first entry sets the kill and backspace characters for
the terminal. These are set by XENIX when it is first
booted, and are different characters. The next line sets the

variable ““MAIL'' to the pathname of the user's (joe's)
mailbox so that joe may send and receive mail. Finally, the
variable ““PATH'' 1lists names and order of the directories

that are to be searched when joe wants to execute a command.

Each user can send and receive mail from and to other users.
However, a unique mailbox must be created for each user. The
procedure, similar to the creation of a working directory,
is given below:

cd /usr/spool/mail (change directories)
$ >joe (create mailbox)
chown joe /usr/spool/mail/joe(change owner)

XENIX System Reference

2.2.9 Removing a User

Occasionally, it may be necessary to edit the password file
and remove old entries. Removing the entry from etc/passwd
removes the ““user'' from the system, any files belonging to
that user still remain in the system. Therefore, it is
often wise to save the old user's files on tape or diskette.
The commands tar and cd write all of joe's files to a tape.

cd /usr/joe
tar cmv *

After saving all of joe's files on tape, his directory can
now be removed.

rm -fr /usr/joe

2.3 THE XENIX FILE SYSTEM

In this section, the XENIX concept of file systems |is
discussed, and some file system structures and formats are
examined. The system administrator's duties in maintaining
these file systems are also introduced. This chapter is
crucial; however, the relevance of each section depends on
the individual system's configuration, particularly in
respect to the size of the disks and how they are
partitioned.

2.3.1 WwWhat a File System Is

Because the earliest computer systems had no file systems,
disk storage space had to be managed manually by the
programmer. For instance, the programmer might decide that a
certain program would need, say, 400 blocks of disk space.
He might then consult a notebook, locate 400 unused blocks,
and code the numbers of those blocks directly into his
program. This technique may have been adequate for the
earliest machines, with only a few hundred blocks of
storage, running perhaps a dozen tasks a day. Clearly it is
inadequate for a modern system like XENIX, which supports
dozens of users simultaneously, running tens of thousands of
tasks per day.

XENIX, therefore, handles the burden of disk storage
management for all wusers of the system, allocating disk
space upon demand, keeping track of where on the disk the
data is written and retrieving any part of it when given the
"pathname" of the file. When the data file 1is no longer
needed XENIX will, upon command, return the space it

2-10

XENIX System Reference

occupied to the free pool. Thus, a disk device contains not
only the files themselves, but also various items of
information needed to locate and manage the files.

This information, along with the data files themselves, is
called a "~“file system''; it is critical to XENIX system
management. The simplest XENIX system contains only one disk
device and, except for a small section reserved for
swapping, the entire disk will be set up as a single file
system.

A disk may be used as a single storage area or it may be
partitioned 1into several distinct areas. Each of these
distinct partitions may be a file system. In general, an
organized collection of files 1is referred to as a ~“file
system''. Each file system has its own set of identifying
information about the files that belong to it, including the
size and number of files and free blocks contained. The
block of the file system which contains this identifying
information is called the " “super-block''.

Each XENIX system has at least one disk drive containing
either a fixed disk or a removable disk pack. These disks
contain all the data in the system that is not actually
being processed at any given moment, as well as the programs
themselves. In the XENIX system, a file is simply a string
of bytes. There 1is no logical record 1length and no
particular record or file format imposed by the system.

2.3.2 A Simple File System: An Example

To XENIX, a file system is an organization of files which
may occupy all or part of a disk. On a newly installed
XENIX system there are two file systems resident on the
disk. One of these 1is the root file system, where the
operating system itself resides. The second is the user file
system, consisting of user-created files. These file systems
are distinct and logically separate from each other.
Accordingly, each has a unique logical name. The name of the
root file system is /dev/root; the name of the user file
system is /dev/usr. If the name is preceded by an “r':
/dev/rroot, /dev/rusr, the same XENIX file system is
differently accessed. Some XENIX commands expect one name oOr
the other, and will not operate if given the wrong one.
Typically, when the prefix “r' is used, the command will run
faster. i

XENIX System Reference

2.3.3 The Disk

Below is a diagram of a disk showing the relative size, in
512 byte blocks, of the root and user file systems. The
relatively large section of blocks between them 1is not,
strictly speaking, a file system; it 1is the system’s
““swap'' device, a logical device resident on the disk which
ts used by XENIX to temporarily store images of the system's
main memory during the execution of system processes. The
swap device is distinct and logically separate from the user
and root file systems. Accordingly, it has 1its own unique
logical name: /dev/swap.

——————— i ———— — o ———————— ——

/dev/root 14000
blocks

root file system

—— ———— ——— — - ——— - ———— - — — - o w—

/dev/swap -.2000

swap device , blocks

/dev/usr ' 33000
blocks

user file system

2.3.4 A Canonical File System

XENIX regards any disk, or part of a large disk, as a
randomly addressable array of 512-byte blocks. These blocks
are numbered consecutively 0, 1, 2, ... , on up to the size
of the disk.

The first block (block 0) is unused by the file system, and
is reserved for booting purposes. Block 1 (the second
block) is the "“super-block'' which contains information
about the file system. The third block contains the list of
file definitions. The rest of the blocks are either
occupied by file storage or remain free blocks.

The primary file system in XENIX is called the ““root'' file
system. It contains the minimum data necessary to run the

XENIX System Reference

-

system. It is always " “mounted'', or accessible.

ls -al /

drwxr-xr-x 2 bin 2704 Oct 7 08:32 bin
-r--r----- 1 root 11388 Apr 24 05:27 boot
—~IWXL === 1 root 374 Dec 10 1980 checkall
drwxr-xr-x 3 bin 2320 Oct 7 15:25 dev
drwxr-x--x 3 root 1088 Oct 5 14:02 etc
drwxr~-x--- 9 root 464 Jul 25 16:54 fs
drwxr-x--x 2 root 592 Sep 29 01:03 1lib
drwxr-x--- 2 root 256 May 19 09:37 lost+found
drwxrwxrwx 2 root 32 Jul 20 23:12 mnt
drwxr-x---11 root 288 Oct 3 15:17 stuff
drwxr-x---11 root 336 Jun 11 08:29 sys
drwxrwxrwx 7 root 1936 Oct 7 16:08 tmp
drwxr-xr-x75 root 1248 Sep 28 20:49 usr
drwxr-x--- 3 root 48 Dec 16 1980 v
-rwxr-xr-- 1 root 73368 Sep 8 15:22 xenix

As seen in the above example, all but three entries are
directories; these files are the absolute minimum required
to bring up XENIX. When XENIX is first booted, it 1is in
single wuser mode; that is, it operates with the super-user,
or root. When given the command to go multi-user, a shell
program, /etc/rc is executed. One of the functions of this
file it to make the other file systems accessible. aAll
other file systems are extended from the root file system.
In order to access other file systems, they must be made
known to XENIX. This is done with the mount command.

2.3.5 Mounted File Systems

The root file system contains the bare essentials needed to
bring XENIX up and running; if others are to use the system,
access to the other file systems is given with the mount
command. The mount commands for normally mounted file
systems should be put into /etc/rc to ensure that they will
be available when multi-user mode is entered.

2.3.6 The /etc/rc File

Here is what a sample /etc/rc file should look like:

2-13

XENIX System Reference

PATH=/bin:/usr/bin
rm /etc/mtab
cat /dev/null >/etc/utmp

/etc/mount /dev/r51 /tmp >/dev/console
if test $? = 2; then
echo "cleaning /dev/rr51"
fsck -y -t /tmpfsck /dev/rr51
/etc/mount /dev/r51 /tmp
fi >/dev/console
/etc/mount /dev/usr /usr >/dev/console
if test $2?2 = 2; then
echo "cleaning /dev/rusr"

>/dev/console
fsck -y -t /tmp/fsck /dev/rusr
>/dev/console
/etc/mount /dev/usr /usr
>/dev/console

fi
/etc/asktime </dev/console >/dev/console 2>&l

(
/bin/mount /dev/stuff /stuff 1>/dev/console 2>&l) &

/etc/dmesg - >>/usr/adm/messages

date >/etc/reboot.date

chmod a+w /etc/mtab
/usr/lib/ex2.0preserve -

rm -f /usr/spool/lpd/lock; /usr/lib/lpd

rm -f /usr/tmp/* /usr/tmp/.,* /usr/tmp/.e*
rm -f /tmp/* /tmp/.,* /tmp/.e*

/etc/update ‘

/etc/cron

/etc/accton /usr/adm/acct

This single file performs three types of tasks:
@& the mounting of file systems
® housekeeping tasks

¢ initiation of Daemon processes

2.3.7 The File /etc/ttys

This file is also essential to bringing the system up from a
single- to a multi-user mode. It controls whether or not a
login process will run at each terminal and what baud
rate(s) the system will use to communicate with it.

Each line of the file describes one terminal port. For

example, the following /etc/ttys file contains entries for
four devices, the system console and three user terminals:

2-14

XENIX System Reference

14 console
lhtty00
IhttyOl
Ihtty02

The first character of a line in /etc/ttys tells the system
whether or not to run a 1login process at the terminal
attached to the port. If the character is an “1' then a
login process will run at the terminal. If the character is
a "0' then a login process will not run at the terminal.

The second character in each line in /etc/ttys tells the
system what baud rate(s) to use when communicating with a
terminal attached to the port. This may be a single fixed
baud rate or a number of baud rates through which the system
cycles before it finds the right one for a particular
terminal.

2.3.8 The File /etc/motd

[

The file /etc/motd is the system's “message of the day''.
This text file 1is sent to the user's terminal after the
login procedure, containing ‘any announcement the system
administrator wishes to make to all users.

2.3.9 Mounting Other File Systems

In addition to the root file system, which is always mounted
first, there will be a standard set of file systems that
will need to be mounted every time the system is booted.
These will typically include:

® a user file system (reférred to as usr), where all the
users' directories reside

@& a temporary file system for intermediate, temporary
files created by compilations and assemblies

@ others for specific needs

2-15

XENIX System Reference

2.4 MAINTENANCE TASKS OF THE SYSTEM ADMINISTRATOR

Two of the system administrator's primary responsibilities
are maintaining file system integrity and ensuring that
adequate free disk space is available to the users. This
section describes the tools provided by XENIX to perform
these and other maintenance tasks. These commands clean up
files and file systems, initiate system or job accounting
programs, and determine disk space usage.

2.4.1 Daemon Processes

In addition to those programs initiated by the system
administrator, there are "~“daemon'' programs that run
automatically as long as the system 1is wup, periodically
checking the system or performing system functions. As an
example, the /etc/update program is a daemon which forces
disk updates every thirty seconds. Another example is the
lineprinter daemon, lpr. Check the Programmer 's
Introduction for descriptions of some other daemon programs.

2.4.2 The Importance of Disk Space

As users compile programs, edit files, or perform other
tasks, they are competing for a valuable resource: free disk
space. On a typical system, the potential for running out of
free disk space is very high. When this occurs, no new files
can be created, nor can any existing files expand.

To prevent this situation, the system administrator needs to
estimate in advance the amount of space required for each
file system when the system 1is first configured. If
possible, a file system should contain approximately 15%
free space, more if the file system fluctuates, less if it
is relatively static.

XENIX offers some tools for determining the status of free
space in a particular file system as well as some techniqgues
for freeing space if there 1is a shortage. This section
summarizes the wuse of these XENIX tools. For more detailed
information, read the corresponding sections in the XENIX
Programmer's Introduction

2.4.3 Checking for Disk Space

There are some XENIX commands that will aid you in
determining the status of disk space on a file system. They
are:

2-16

XENIX System Reference

¢ df- disk free

¢ du- disk usage

¢ find- find files

® quot- summarize file ownership

Each of these is discussed below with examples.

2.4.4 The 4f Command

This command prints out the number of free blocks available
in whatever file system is specified. If no file system is
specified, the free space in all normally mounted file
systems is printed. '

Sdf
/dev/root 1195
/dev/usr 5962

This indicates that the root file system contains 1195 free
blocks; the usr file system has 5962 free blocks.

2.4.5 The du Command

Du gives the number of blocks that are used by files in the
specified directory and each of its subdirectories.

$du /tmp

29 /tmp/nedtmp

1 /tmp/henry

2568 /tmp/jgl

3 /tmp/susr

1 /tmp/jerry/myfs
156 /tmp/jerry

3513 /tmp

The last line reports the total number of blocks used by
that directory and its subdirectories.

2.4.6 The find Command

The find command is a powerful tool for finding files by
size, date, owner, and date of last access. This helps the
system administrator locate old files that the user has
neglected to remove.

2-17

XENIX System Reference

In the following example, the find command searches for all
binary files named core produced by the system during a
local core dump, which have not been accessed in the last
seven days. In this case it is probably safe to remove
these files, since users rarely re-access core files a week
later.

find //e -name core - atime +7 -exec ls-al\;

2.4.7 The quot Command

This command reports the number of blocks currently owned by
each wuser in the specified file system, revealing the
largest consumers of disk space in a particular file system.

2.4.8 Other Tools

There are a few other tools available to the system
administrator. For example, the file, etc/motd, which
contains the "““message of the day'', can be edited to inform
users that space is 1low and that old files should be
deleted, or a personal message, using the mail command, may
be wused to remind the offender to ~remove old files.
However, these techniques may not prove sufficiently
persuasive. ’

2.4.9 File System Integrity

A file system consists of files, and these files, in turn,
consist of blocks of bytes. If a block of information is
bad, then the file, and potentially the entire file systenm,
is compromised. A file system's integrity is compromised
when it is internally inconsistent; it does not necessarily
imply any physical damage to the disk. XENIX has some tools
to check file systems and, if necessary, repair them.

The file system should be checked:
@& Whenever the system is first brought up
@& When it exhibits any abnormal behavior
® Daily, simply as a prgcaution

Some of the programs used to check the integrity of the file
system are described below.

XENIX System Reference

2.4.10 The fsck Program

Every time a file is created, modified, or removed, the
XENIX system performs a series of file system updates. These
updates yield a consistent file system.

When the system is first brought up in single user mode, a
file consistency check program is sometimes run
automatically. Fsck 1is a multi-pass file system check
program. Each pass over the file system invokes a different
phase of the fsck program. After the initial setup, fsck
performs successive phases on each file system. It checks
blocks and sizes, path-names, connectivity, reference
counts, and the free block 1list; it also performs some
cleanup. ‘

Here is a sample output:
$ fsck /usr

Phase 1 - Check Blocks

** Phase 2 - Check Pathnames

** Phase 3 - Check Connectivity

** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List

xxx files xxx blocks xxx free

PHASE 1l: CHECK BLOCKS (AND SIZES)
This phase involves the internal file descriptors
(inodes), reporting on errors resulting from
examining file blocks for bad or duplicate blocks,
after checking file size and format.

PHASE 2: CHECK PATH-NAMES
In this phase, directory entries pointing to
erroneous file descriptors (inodes) reported in
Phase 1, are removed.

PHASE 3: CHECK CONNECTIVITY
This phase checks directory connectivity from the
results of Phase 2, reporting error conditions
resulting from unreferenced directories.

PHASE 4: CHECK REFERENCE COUNTS

Phase 4 checks the 1link count information from
Phases 2 and 3. It reports on error conditions
resulting from unreferenced files, incorrect 1link
counts for files, directories, or special files,
unreferenced files and directories, bad and
duplicate blocks in files and directories, and
incorrect total free inode counts.

2-19

XENIX System Reference

PHASE 5: CHECK FREE-LIST
This phase checks the free-block iist, and reports
errors resulting from bad blocks in the free-list,
bad free block counts, duplicate blocks 1in the
free-list, unused blocks from the file system not
in the free block list, and incorrect total free
block counts.

2.4.11 The dcheck Program

In XENIX, a ~"link'' allows a single file to appear in
multiple directories; linked files are indistinguishable
from each other. Dcheck reads the directories in a file
system, comparing the number of links for each file to the
number of directory entries by which it is referenced. ks
links to a file are removed, the link count is decremented
by one. When the last link to a file is removed, the blocks
of data containing that file are released and added to the
free-list for use by other files. Dcheck reports when the
number of entries (files) and links to the files are either
not equal or are both equal to zero.

If there are no errors, dcheck's output is simply the name
of the disk on which the file system is stored:

S dcheck /dev/rroot
/dev/rroot:

If there are inconsistencies, it will output the following
table: .

Sdcheck /dev/rusr
/dev/rusr:
entries 1link cnt
15040 10
17887 01

The numbers 15040 and 17887 represent the internal file
definitions (inodes) of the erroneous files. The first line
indicates that file definition 15040 has been allocated, but
has no 1links; it does not appear in any directory. The
second line indicates a link to a nonexistent file.

As stated above, Dcheck reports instances when the number of
files and 1links are either zero or are unequal. In this
case, a file is allocated, but it does not appear in any
directory. To correct this, remove the file definition from
the file system with the following command:

XENIX System Reference

clri device inode(s)

Here the device is the disk on which the file system is
stored and the 1inode is the internal file descriptor. The
inode number can be determined with:

1s ~i

After removing all the necessary file descriptors, the file
system must be wupdated in order to reclaim the blocks
previously allocated to the file. This can be done by
entering fsck with the -s option:

fsck -s file system

The number of links to a file may be greater than the number
of times it is referenced in directories. Each time a link
to that file is removed (i.e., the file itself is removed)
the link count and the number of entries will be decremented
by one, until the number of entries 1is 2zero; then the
procedure described above can be followed.

The situation in which the number of entries is greater than
the 1link count is more serious. The file has some links to
it, but the internal file descriptor count is less than the
number of actual links. As the links to a file are removed,
the link count is decremented by one until it equals zero;
then the file blocks are deallocated and returned to the
free list. However, the file will appear valid in some
directories, even though it has been deallocated, resulting
in a reference to a nonexistent file.

Although dcheck reports on this problem, it is fsck which

actually performs the correction. Phase 4 of fsck repairs
the reference count of a file within a file system.

2.4.12 The icheck'P;ogram

Each of the 51l2-byte blocks in a file system must be
accounted for once, as either in use by a file, as free, or
bad. Icheck counts all the blocks in a file system.

Any block number which appears more than once is, of course,
a duplicate block number; any block number which does not
occur is referred to as "~ "missing''. Every block number in
a file system must fall within the starting and ending block
numbers (the range) of that file system. Icheck does this
“range checking' on each block, and each block out of range
is designated a bad block. In this way, each block of a file

2-21

XENIX System Reference

system is accountable.
Below is an example of the icheck odtput:
$ icheck /dev/rroot

files 320 (r=210,d=70,b=10,c=30)
used 2443 (i=143,ii=9,1iii=0)
free 1315

missing O

This output is explained as follows:

& files - refers to the total number of files in the file
system stored on the particular device. It is broken
down by the type of file: regular(r), block(b), and
character (c) devices.

¢ used - is the total number of blocks that are used by
the file system. In XENIX, a file can grow to a maximum
of 1,082,201,087 bytes. This is accomplished by having
three levels of indirection. An internal file
descriptor contains 13 disk addresses. The first 10
point directly to the first 10 blocks of a file. If
the file is 1larger than 10 blocks, then the 1lth
address points to a block that contains the addresses
of the next 128 blocks of the file. If the file is
still 1larger than this, then the 12th block points to
up to 128 blocks, each, in turn, pointing to 128 blocks
of the file. Files yet larger use the 13th address for
a ““triple indirect'' address. Thus, the total number
of blocks wused is broken down into the blocks used by
each level of indirection.

¢ free - this is the number of blocks that are currently
free, and therefore available for allocation for use by
other files.

2.4.13 Error Conditions

There are two classes of errors which are reported by
icheck: errors in the free-list and errors in the file
descriptors. These are discussed below.

2.4.14 Errors in the Free List

The number of free blocks is the number of blocks which are
available for allocation for use by other files. If blocks
are missing, they are unavailable for allocation; This is

XENIX System Reference

not a disastrous situation, wunless the total number of
missing blocks is unusually high. However, if blocks appear
on the free list which have already been allocated, blocks
already allocated to an existing file may be allocated to
another file. Icheck reports on this error <class as
follows:

$ icheck /dev/rusr

/dev/rusr:

files 18571 (r=16878,d=1693,b=0,c=0)

used 215617 (i=4696,1i=210,iii=0,d=210501)
free 10498

missing 793

The first line is simply the number of blocks that are
missing from that file system; this disk space will be lost.
The second line reports on blocks found in the free~list
which are duplicates of blocks appearing either in some
file, or earlier in the free-list. The very last 1line
reports the total number of such blocks. If the last two
diagnostics appear, the situation is potentially dangerous.
It can be repaired with the fsck -s option. The first entry
is the block number in question; the next entry is the file
(inode) to which that block is allocated. '

2.4.15 Errors in the Internal File Descriptors

In XENIX, the file descriptor is called an ~“inode'', an
integer used to refer to a file. Errors in this class are
reported with:

b*bad;inode=i$;class=[iclass]
b*dup;inode=i#;class=[iclass]

99794 dup; inode=14131, class=data (huge)
75013 dup; inode=14131, class=data (huge)
75366 dup; inode=14131, class=data (huge)
164422 dup; inode=14131, class=data (huge)
75327 dup; inode=14131, class=data (huge)
193376 dup; inode=14131, class=data (huge)
195902 dup; inode=14131, class=data (huge)
74993 dup; inode=14131, class=data (huge)
31826 dup; inode=15002, class=data (small)
files 18571 (r=16878,d=1693,b=0,c=0)

used 215617 (i=4696,ii=210,iii=0,d=210501)
free 10498 4

missing 793

In each of these cases, unfortunately, all the files
involved must be removed. In the""b*dup'' case, the
duplication is noted at the second occurrence of the block;

2-23

XENIX System Reference

the first occurrence must be located. The following command
lists all the inodes associated with the same block number.
All will have to be removed. -

icheck -b /dev/file system

2.5 BACKUPS

This chapter deals with backups of the file system(s). The
system administrator must have a systematic plan for
scheduling the time and frequency of backups, determining
what level of ° comprehensiveness is required, and deciding
where, and for how long, backup tapes should be stored.
Suggestions are provided here, along with procedures for
doing routine restores and recovering from disasters.

2.5.1 When to Take Backups

A backup of a compromised file system is worthless. Before
performing a backup, file system integrity should be checked
and restored, if necessary, using the tools described in the
preceding section.

Preferably, the file system should be dismounted; at the
very least, there should be little or no activity on the
file system proper, to avoid the modification of a file, or
files, while a backup 1is in progress. Backups should be
scheduled so that they have the 1least possible impact on
users.

Regular backups are insurance against partial or total
system loss. Because the file system is critical to XENIX,
it is suggested that a full and complete backup be done at
least once a month; intermediate backups should be performed
daily. Considerable flexibility exists for the level at
which intermediate backups are performed.

2.5.2 A Full Backup

A full backup copies the entire file system to a secondary
storage medium, wusually a tape. Since a relatively small
proportion of the files in-a file system change frequently,
full backups at regular intervals may be supplemented by
intermediate, or incremental, backups. The full backup is
called a““level 0 dump''. In case total disaster strikes,
the file system is restored primarily from the level 0 dump,
supplemented with files restored from intermediate backups,
as necessary. A level 0 dump should be performed for each

2-24

XENIX System Reference

file system at least once a month, and kept on site so that
it is readily available if a file system needs to be
rebuilt. On the other hand, the second most recent level 0
dump should be kept off site, so if something happens to the
on site storage area, recovery is still possible.

As an alternative to using the dump program, a complete copy
of a disk can be made either to another disk, or tape. This
method will make a copy, but it does not update other files
used by the dump program. The name of this program is d4d.
Dd copies the specified input file to the specified output;
block size may be specified to take advantage of physical
I/0 capacity:

dd if=/dev/filesystem of=/dev/device-name

The following will completely copy the usr file system'to a
800bpi tape

dd if=/dev/usr of=/dev/rmt0
To copy the file system to another disk:
dd if=/dev/usr of=/dev/device
However, the dump program is recommended for performing full

backups.

2.5.3 Incremental Backups

An ““incremental'' backup copies only those files that have
been changed after a given date, generally that of the last
backup. There are ten different 1levels of dumps: 0-9,
starting with the level 0 dump presented above, and passing
through successive intermediate levels. Each time a
successful backup 1is performed, the date of the backup is
entered in the file /etc/ddate along with the name of the
file system from which the backup was taken. All files
modified since the most recent date stored in /etc/ddate for
that file system at a lesser level will be copied. ‘

For example, if a level 0 dump was taken of the wusr file
system on Oct 1, 1981, and .on the next day, Oct 2, 1981, a
level 9 backup was done, the files that would appear on the
level 9 dump would be those that were modified between the
level 0 dump and the 1level 9 dump. Or, wusing another
example, assume that on Oct 24, 1981 a level 9 dump was
performed, and on Oct 25, 1981 a level 5 dump was performed;
The files appearing on the level 5 dump are those modified
between the level 0 dump and the level 5 dump. On

2-25

XENIX System -Reference

subsequent level 9 backups, only those files that were
modified since the last lower level backup (in this example,
the level 5 backup) will be copied for that file system.

2.5.4 How to Perform a Backup

The Dump program copies the file system which resides on
disk, to a secondary storage medium, usually a magnetic
tape. The storage media should either be marked or
cataloged so that there is.a record of how much of a file
system is backed-up, and where. As explained above, the file
system to be backed-up should preferably be dismounted, or
at least guiet. This is the command 1line. which 1initiates
the backup procedure. :

dump level file-system
Dump is the name of the command; level is the level c¢f the

backup which 1is about to be done, and file system is the
name of the file system which is about to be backed up.

dump Ou /dev/usr

This example initiates a full level C dump of the usr file
system. The u argument is usecd to update the/etc/ddate file
with the date of the dump. This file is wused ~to determine
which files are to be dumped for any intermediate
incremental dump.

dump 7u /dev/usr
This command initiates a level 7 incremental beckup of the

usr file system. All files modified since the last date
stored in/etc/ddate for the usr file system will be Dbacked

up.

2.5.5 Saving Backup Tapes

The system administrator should develop a consistent policy
for the location and duration of tape storage. One possible
approach 1is to save the full 1level 0 backup for an
indefinite period after they are made, and the increme:r 3l
backups for about four weeks.

It 1is wvery strongly recommended that the most recent
backups, regardless of 1level, be stored on site for
immediate use; the next most recent backups should be stored
off site in a secure place, in case the on site hackups are
damaged or unusable.

XENIX System Reference

2.5.6 Recovering From a Disaster

Backup tapes should be considered insurance against
disaster, and hopefully, should rarely be used. Commonly,
backup tapes are needed to restore files that are
accidentally deleted or changed by users. The system
administrator must often decide whether to restore lost
files from backup tapes or attempt to repair the file
system. Even with file systems that seem to be hopelessly
corrupted, 1less time and data may be lost in repairing the
file system than in attempting to recover an o0ld version
with a succession of incremental backup tapes.

The worst case is the total loss of an entire file system.
To recover, the file system must be rebuilt from scratch,
and as much information as possible restored.

Required for recovery are the most recent level 0 and
intermediate level backups. By reading the backups in the
correct order, the entire file system can often be restored
to 98% of its normal state before it was destroyed.
Restoring a file system is a long process; patience and a
refusal to panic are essential. Backups are taken for just
this type of emergency.

2.5.7 Restoration: Step 1

First, the file system needs to be reconstructed according
to specifications. These specifications include the number
of blocks in the file system and the size of the i-list.
These parameters can be given with the command or placed in
a file to be read by the system whenever the file system
needs to be reconstructed. The example below constructs a
file system called “usr'.

/etc/mkfs /dev/usr 9874 526

Its size will be 9874 blocks; the next number represents the
size of the i-list in terms of inodes (an inode is 64 bytes;
there are 8 i~nodes to a 512 byte block). This number
represents the maximum number of files that the file system
can hold. /etc/mkfs simply constructs an empty file system.
The information from the backup tapes must still be
restored.

The file system specifications can also be placed in a
prototype file read by /etc/mkfs. This method is superior
because it provides documentation for - the file system in
case it ever needs to be rebuilt, The following is a sample
prototype file:

2-27

XENIX System Reference

/sys/mdec/boot
31030 5024
d--755 3 1

$

The boot program is the first entry, on 'block 0 of the
device wupon which the file system resides. The next line,
which specifies the size of the file system, is 31030 blocks
in size; the i-list, in this case, is to be 50624 inodes (an
inode is 64 bytes; there are 8 inodes to a 512 byte Dblock).
The next line represents the specifications of the root file
for this file system. It consists of six characters: the
first character represents the type of file, and skipping
the next two characters, the rest of the string is a three
digit octal number giving the owner, group, and other reccd,
write, or execute permissions; the next two decimali numbers
specify the wuser and group id of the owner of the file.
Thus, the example above translates into:

/sys/mdec/uboot (boot program)

31030 5024 (size of file sycstem)

d-- 755 31 ' -~ {specifications for root file)
$ (end of input)

The system will construct the file system based on the
information given to/etc/mkfs; “this process. takes
approximately 15-20 minutes. ©Once the file system has bheen
built, the next step, that of restcring the file, Lkegins.
Remember, that except for the root file system, all other
file systems must be explicitly mounted on a directory whioh
then becomes the root of that file system. '

2.5.8 Restoration: Step 2

Now that an empty file system 1is reconstructed, the file
system can be restored based on tne information contained on
the backup media. The level 0 backupr must be done first,
since it contains the entire file system; the incremantal
backups contain those files that have been modified
subsequent to the level C backup. cunt the media. and Irom
the console, type:

restor r /dev/usr
The system responds with:
Last chance before scribbling on /dev/usr.

At this point, a skeleton file svstem resides on the device
and the first volume of the level 0 dump is mounted. 1f

XENIX System Reference

everything is ready, hit return. Reading the tape 1in this
restoration process takes a while. After the first volume is
read, the system prompts:

Mount volume 2
It will continue to prompt for additional volumes until it
reaches the end of the backup.

2.5.9 Fsck After the Level 0 Backup: Step 3

At this point, most of the file system has been restored. In
order to insure that the file system is consistent, fsck and
the other file system aids should be run. Once file system
integrity 1is established, restore the information on the
other incremental backups with: '

fsck /dev/usr

Fsck may ask you to supply a temporary scratch file; simply
enter the name of a temporary file:

NEED SCRATCH FILE (212 BLOCKS)

ENTER FILENAME: /tmp/fsckaa

(this file should be on a file system that is,
or could be, accessible).

At this point, fsck will begin going through the five phases
of checking the internal consistency of the file system.

XENIX System Reference

2.6 SOME ADVICE FOR SYSTEM ADMINISTRATORS

Getting started as a system administrator is hard work, and
there are no real shortcuts to a working knowledge of the
system. You will need ample time for reading, study and
hands-on experimenting. Don't commit yourself to ““goirng
live'' with your system until you ' 'have had two weeks to
teach yourself your job, and get the initial hardware quirks
ironed-out. o ‘ -

Don't consign this guide to oblivion after initial system
generation. In addition to needing it again whenever: you add
or change equipment, you will find that it contains wvaluable
material about system tuning that appears nowhere else. As
an administrator, you should be familiar w1th as much of tha
documentation as possible. :

2.6.1 Disk Free Space

Making files is easy with XENIX. It has been said that the
only standard thing about all XENIX systemes is the message
of the day telling users to clean up their files. = If the
free 1inode count falls below 100, the system spends most of
its time rebuilding the free inode array. If a file system
runs out of space, the system prints " “no-space'' messages
and does little else. To avoid problems, the following free
counts should be maintained:

& The file system containing /tmp (temporary files):
- l6-user system: 1,500 free blocks. '

- 40-user system: 3,000 free blocks.

& The file system containing /usr:
- 3,000 to 6,000 free blocks, dependlng on load.

& Other user file systems:
- 6% to 10% free, depending on user habits (3,030
blocks minimum). , .

This brings up the associated question of how bhig a fil2
system should be. Our prefercnce is to set aside space on
each drive for a copy of root/swap and use the rest of the
pack for a single file system. However, if you have user
groups that fight over disk space, it may be better to split
them up arbitrarily (i.e., divide a pack into more than one
file system). :

_Warning: if you set up different disk drives with differing
cylinder partitions between file systems, it will probably

XENIX System Reference

lead to an operations problem someday.

2.6.2 A Few Words About System Tuning

® File system reorganization, as described below, can
help throughput, but at the expense of down time. It
is helpful to undertake reorganization when the users
are all asleep.

® If you use normal shutdown procedures, the file system
check program, fsck, will help keep the disk free list
in reasonable order.

® Try to keep disk drive usage balanced. If you have
over 20 users, the root file system (/bin, /tmp, /etc,
and swap) deserves a drive of its own.

& If you have a noisy modem (poorly executed do-it-
yourself null-modem) or a disconnected modem cable,
XENIX will spend a lot of CPU time trying to get it
logged in. A random check of systems uncovers a lot of
this going on. %

2.6.3 Spare Disk Drive

® Without a spare disk drive, the system will be down
when a drive is down.

® Without a spare drive, it is difficult ¢to kreorganize
file systems or to restore user files.
2.6.4 Disk Packs
& Buy only fully ECC correctable packs and test them.
& If a pack develops uncofrectable errors, recondition

it, or get rid of it.

2.6.5 Protecting User Files

Users, especially inexperienced ones, occasionally remove
their own files. Open files are sometimes lost when the
system crashes, and once in a great while, an entire file
system will be destroyed (picture a disk controller that
goes bad and writes when it should read). Here 1is a
suggested file backup procedure:

2-31

XENIX System Reference

& Each day, copy all user file systems to backup packs.
Keep these packs 3 to 5 days before reusing them.

@& Once a week, copy each file 5ystem to tape. Keep
weekly tapes for 8 weeks.

® Keep bi—ﬁonthly tapes ~“forever'' (they should be
recopied once a year).

¢ The most recent weekly tapes should be kept off
premises. The other tapes should be in a fire-proof
safe, if you can afford one.

When XENIX goes down, active files can get scrambled. Your
users will not want to start the day over each time your
system fails. In addition to good backup, you must have
file-system patching expertise available (on-site or on-
call). If you ever re-boot the system for general use
without checking out the file systems, disasters will occur.
(in one case, five duplicate entries on a file-system free
list ruined over 100 new files in just three days).

2.6.6 XENIX File System Backup Programs

The following backup programs are distributed:

® Dump/restor: This is a familiar tape-based system that
has been used for 'several vyears. Full dumps are
usually taken when the dump program warns that an
incremental dump will run to more than one reel.

® Volcopy: physical file system copying to disk or = tape.
For those who can afford a spare drive, volcopy to disk
provides convenient file restore - and quick recovery
from disk disasters (remember the spare drive). Tape
volcopy provides good long term backup because the file
system- can be read in and mounted quickly. Disk and
tape volcopy are generally used together for short- and
long-term backup. Volcopy can also be used for full
dumps with either dump/restor or cpio/find.

We strongly recommend the spare disk drive; as explained
above, the speed and convenlence of volcogz are by no means
the only advantage of a spare drive. o

2-32

XENIX System Reference

2.6.7 Controlling Disk Usage

If your XENIX system is a success, you will soon run out of
disk space: '

® During the considerable delay before you can get more
drives, you will need to control usage:

- Try to maintain the free space counts recommended

above. Watch wusage during the day by executing
the df command regularly.

- The du command should be executed after hours on a
regular basis and the output kept in an accessible
file for later comparison, In this way you can
spot users who are rapidly increasing their disk
usage.

- The find can be used to locate inactive or large
files. Example:

find / -mtime +90 -atime +90 -print >somefile
records in ““somefile'' the names of files neither
written nor accessed in the 1last 90 days. Of
course, this works best if you are super-user.

@ You will also have to ' balance wusage between file

"~ systems. To do this you will have to move user
directories. Users should be taught to accept file
system name changes (and to program around them,
preferably ahead of time). The user's login directory
name (available in the shell variable HOME) should be
utilized to minimize path name dependencies. User
groups with more extensive file system structures
should set up a shell variable to refer to the file
system name (e.g.: FS).

® The find and cpio commands can be used to move user
directories and to manipulate the file system tree.
The following sequence moves, via magnetic tape, the
directory trees: '

user and usery from file system filesysl to file system
filesys2

where more space is available:

2-33

XENIX System Reference

cd /filesysl

find userx usery -cpio /dev/rmtO
cd /filesys?

mkdir userx usery

chown userx userx

chown usery usery

cpio -idmB </dev/rmt0

Make sure new copy is okay. Change userx and usery
login directories in the /etc/passwd file:

rm -rf /filesysl/userx /filesysl/usery
When moving more than one user in this way:

- Keep users with common interests in the same file
system (they may have linked files).

- Move groups of users who may have lihked files
with a single cpio (otherwise linked files will be
unlinked and duplicated). ‘

2.6.8 Reorganizing File Systems

The procedure for moving users described above can be
expanded to provide a way to reorganize whole file systems.

Reorganization can improve system response time. This 1is
particularly true of the root file system which must be
reorganized - with all other file systems unmounted.

Unfortunately, reorganization of a 1large file system is
slow. '

2.6.9 Keeping Directory Files Small

Directories larger than 5K bytes (320 entries) are very
inefficient because of file system indirection. A user
once complained that it took the system ten minutes to
complete the login process; it turned out that his login
directory was 25K bytes long, and the 1login program spent
that time fruitlessly 1looking for a non-existent .profile
file. A large /usr/mail or /Jusr/spool/uucp directory can
also slow the system down. The following will locate such
directories:

find / -type d -size +10 -print
Removing files from directories does not make the

directories get smaller (the empty directory entries are
available for reuse). The following will ““compact''

2-34

XENIX System Reference

/usr/mail (or any other directory):

mv /usr/mail /usr/omail

mkdir /usr/mail

chmod 777 /usr/mail

cd /usr/omail

find . -print | cpio -plm ../mail
cd ..

rm -rf omail

2.6.10 Administrative Use of ““CRON''

The program cron is useful in the administration of the
system; it can be used to:

® Turn off the programs in directory /usr/games during
prime time.

& Run programs off-hours:
- accounting

- file system administration

- long-running, user-written shell procedures (using
the su command), for example:

su - userx userx shell arg ...

2.6.11 Watch Out For Files and Directories That Grow

‘@ /usr/adm/wtmp-login information;

¢ /usr/adm/pacct-process abcounting; gets big quickly.

& /usr/lib/cronlog-status log of commands executed by
cron(1M) ; '

® /usr/spool-spooling directory for line printers, uucp,
etc., and whose sub-directories should be compacted as
described above.

2.6.12 Allocating Resources to Users

A prospective user should obtain connect-time and file-space
authorization through appropriate channels., Once this is
done, the user should apply for a login by providing the
following information to the ““system administrator'':

2-35

XENIX System Reference

® User's name.

¢ Suggested login name (not more than 8 characters,
beginning with a lower-case letter).

@ Relationships to other wusers (this influences the
choice of the file system).

® Estimate of required file space (this also influences
the choice of the file system). :

Users should be forced to have passwords (not more than 8
characters 1long, -but more than 5, -and not in Webster's
Unabridged) ;

2.6.13 Accounting and Usage

You should run the accounting programs even if you do not
“*bill'' for service. Otherwise, your users' habits will be
a mystery to you. Accounting information can also help vyou
find performance bottlenecks, unused 1logins, bad phone
lines, etc. '

2.6.14 Line Printers

Most line printers are troublesome and impose considerable
overhead on the system. Most also lack hardware tabs,
character overstrike capability, etc. A printer that will
work over an asynchronous link (DC1/DC3 protocol required)
may be the best bet.

2.6.15 Security

The current XENIX is not tamper-proof. You <can't keep
people from ~“breaking'' the system, but you can usually
detect that they have done so. The following command will
mail (to root) a list of all "“set user ID'' programs owned
by root (super-user):

find / -user root -perm -4100 -exec 1ls -1 {} ;
|mail root

Any surprises in root's mail should be investigated. Here
is some related advice:

& Change the super-user password regularly. Don't pick

obvious passwords (choose 6-to-8 character nonsense
strings that combine alphabetics with digits or special

2-36.

XENIX System Reference

characters).

® If you have dial ports and do not require passwords,
you are courting trouble.

® The chroot and su commands are inherently dangerous, as
are rou passwords; consider removing them from
““production'' systems.

® Login directories, .profile files, and files in /bin,
/usr/bin, /lbin, and /etc that can be written to by
other than their respective owners are security weak
spots; police your system regularly against them.

@ Remember, no time-sharing system with dial ports is
really secure. Don't keep top-secret stuff on the
system.

2.6.16 Communicating With Your Users

The directory /usr/news and the news command are provided as
a way to get brief announcements to your users. More
pressing items (one-liners) can be entered in the /etc/motd
(message of the day) file; motd and (new to the user) news
are announced at login time.

To reach users who are already 1logged in, use the wall
(write all) command. Don't use wall while logged-in as
super-user, except in emergencies.

The /usr/news directory should be cleaned out every few
weeks so that nothing older than, say, three months is ever
found there. The motd file should be cleaned out daily.

We have found that, on most systems, a file in /usr/news

will reach 50% of users within a day and over 80% of users
within a week.

2.6.17 Troubleshooting

It would be easy to write a book on this topic. The
following are some of the key items involved in dealing with
the hardware service contractor:

® Before you take out a hardware service contract, be
sure that the contractor agrees to get along with the
XENIX software (““It's the hardware,'' says you; "“"It's
the software,'' says the hardware service contractor).

Over
disk

XENIX System Reference

Keep on top of problems. Your contractor may have a
problem-aging priority scheme; if so, make them prove
that they are following it. Remember that an
unreported problem is getting no priority at all. 1If a
problem persists, escalate it up your contractor's
local management chain; it may also be effective to
complain to your contractor's sales representative.

If you are serious about service to your users, you
should have an extended-period service contract (e.g.,
16 hours/day, 6 days/week). Arrange for preventive
maintenance, non-critical repair, and add-on
installation work to be done before or after prime
time.

If you have a service contract, learn the details. In
particular, make sure that preventive maintenance is
scheduled in advance and that it is completed. '

Ask the hardware =service contractor to provide and
maintain a ““site log''. You will have to work on the
log as well.

Make sure that your hardware vendor (as well as your
hardware service contractor, if the two are different)
agrees to the presence of other vendor's equipment on
your system (even if you have none to start with).

Run error logging. Keep console sheets. Make sure
error messages are shown to your contractor's Customer
Engineers.

Take core dumps after system <crashes and interpret
results for Customer Engineers.

Keep down-time records and make sure that your hardware
service contractor knows about them. :

50% of your problems are likely to be related to the
subsystem. As mentioned earlier, the way to keep your

system up is to have a spare disk drive. Here are some key
points to remember:

& Preventive maintenance of disk drives is very

o

important.

Make sure that the Customer Engineers who service your
hardware see the error-logging printouts and console
error messages produced by XENIX (and that they
understand them).

2-38

XENIX System Reference

® Disk failure can ruin a XENIX file system. The only

defense is to make a complete, daily file backup!
of failure.

Power supply modules are another common source
Hard failure can be detected at the console; voltage drift

is tougher.

XENIX System Reference

CHAPTER 3
ADVANCED SYSTEM FUNCTIONS

In this section, tools which aid in the implementation of
three advanced system functions are introduced: the writing
of device driver routines, the establishment of inter-
machine communication, and the maintenance of system
security. Although the use of the XENIX tools described here
may be 1limited to system administration, or some very
specialized users, everyone should be familiar with their
existence. In order to to assign I/O devices to a XENIX
system, device driver routines are necessary; in order to
establish either dial-up or hardwired communication between
two or more XENIX systems, a series of UUCP programs are
required. Detailed procedures for both of these functions
are described below, followed by some words of advice
concerning XENIX system security.

XENIX System Reference

3.1 DEVICE DRIVER & I/0 GUIDE

In order for the XENIX system to “talk' to a device, whether
a tape, disk, terminal, or printer, a set of subroutines
must be written and linked into the XENIX kernel. These
subroutines are called device drivers, since they "drive"
the devices they are written for. A device driver does two
things: it interfaces the physical characteristics of a
device to the operating system and it performs the low level
data transfers that the operating system expects.
Therefore, a device driver must be able to implement a set
of standard I/0 functions in a manner that is appropriate to
a specified device. This section explains the XENIX 1I/0
system, and provides the necessary information to write a
device driver for a peripheral I/O device.
)

All devices have different characteristics; however, there
are certain characteristics which are common to all devices.
In addition to describing these common characteristics and
giving an overview of the XENIX I/O system, this section
presents prototype device drivers for the devices in the
XENIX block I/O class. These drivers should be used only as
models, and should not be copied as is.

3.1.1 The XENIX I/O System

The I/0 system is broken into two separate systems or
classes: the block I/0 system and the character I/O system.
The block I/O class is suitable for devices such as disks
and tapes that work with addressable 512-byte blocks.
Ordinary magnetic tapes just barely fit in this category,
since by the use of forward and backward spacing any block
can be read, even though blocks can only be written at the
end of the tape. The block I/0 class interface is very
highly structured: these drivers share many routines, as
well as a pool of buffers.

When a read or write takes place, the user's arguments and
the file table entry are used to set up the following
variables ,

u.u_base
u.u_count
u.u offset

These contain the address of the I/O target area, the byte
count for the transfer, and the current location in the
file, respectively. If the file is a character-type special
file, the appropriate read or write routine is called. It is
responsible for transferring data and updating the count and

3-2

XENIX System Reference

current location. Otherwise, the current location is used to
calculate a logical block number in the file. If the file is
an ordinary file, the logical block number must be mapped to
a physical block number. All of this is done before the
device driver is called. :

3.1.2 Device Numbers

All XENIX devices are characterized by a major device
number, a minor device number, and an I/O class (either
block or character). These numbers are generally stored as
an integer with the minor device number in the low-order 8
bits and the major device number in the next-higher 8 bits.
The macros major and minor must be used to access these
numbers. Both macros are found in the file /sys/h/param.h

XENIX uses the major device number to determine which driver
will deal with which device. The minor device number is used
internally by the driver at appropriate times, and 1is not
used externally by the operating system.

Each I/0 class has a table of entry points in /sys/conf/c.c
for its device drivers. This configuration file is described
in a later section. The major device number is wused to
index into the appropriate table for a particular device
driver. The minor number is passed to the device driver as
an argument. Typically, the minor number selects a subdevice
attached to a given controller, or one of several similar
hardware interfaces. It has no significance other than that
attributed to it by the driver.

3.1.3 Block I/0 System

A canonical block I/0 device consists of randomly addressed,
secondary memory blocks of 512 bytes each. The blocks are
uniformly addressed from 0 up to the size of the device. The
block device driver has the job of emulating this model on
the physical device. :

The block I/0 devices are accessed through a 1layer of
buffering software. The system maintains a list of buffers,
each assigned a device name and a device address. This
buffer pool constitutes a data cache for the block devices.
On a read request, the cache is searched for the desired
block. 1If the block is found, the data is made available to
the requester without any physical I/O. If the block is not
in the cache, the least recently used block in the cache is
renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available.

 XENIX System Reference

Write requests are handled in a similiar manner. The correct
buffer is found and relabeled if necessary. The write is
performed simply by marking the buffer as “dirty'. The
physical I/O is then deferred until the buffer is renamed.

3.1.4 Character I/0 System

The character I/0 system consists of all devices that do not
fall into the block I/0 model. This includes the "classical"
character devices such as communication lines, paper tape,
and 1line printers. It also includes magnetic tape and disks
when they are not used in a stereotyped manner. For
example, tape containing 80-byte records and disks that are
copied a track at a time ' fall into this category. 1/0
requests are sent to the device driver essentially
unaltered. The implementation of these requests is up to the
device driver.

3.1.5 Configuration Tables

The file /sys/conf/c.c contains configuration tables for all
XENIX devices. This table must be updated whenever a new
device or a new device driver is added to the system. The
major device numbers given in these tables for block and
character devices are used as an index to their respective
device tables. To add a new device to the configuration
table, the major device number is selected by counting the
line number (from zero) until the device is found, or a new
entry (line) must be made. The minor device 1is the drive
number, unit number, or partition. Each of the I/O classes
requires a different interface, and therefore, different
entries are made in the configuration table. The cdevsw
table lists the interface routines which are present for a
specific character device. Each line in the table specifies
a device specific routine for open, close, read write, and
spec1a1 functions. 1If there 1is no open or close routine,
“nulldev' may be glven, if there 1is no read, write, or
status routine, “nodev' may be given. Nodev sets an error
flag and returns. ‘

Each of the device driver categories is described below.
open - the open routine is called each time the file |is
opened. Its first argument is the full device

number. The second argument is a flag which is
nonzero only if the device is to be written upon.

3-4

XENIX System Reference
devoren(dev, flaqg)

close - the close routine is called only when the file is
closed for the last time; that is, when the very
last process in which the file is open closes it.
The first argument is the device number; the
second is a flag which is nonzero if the file was
open for writing in the process which performs the
final close. Note that the flag does not indicate
if the file has been written since the initial -
open.

devclose (dev,flag)

. write - the write routine should copy the transfer count
characters (u.u count in /sys/h/user.h) from the
buffer to the device, decrementing the count for
each character passed. Successive calls on it
return the characters to be written until the
transfer count goes to zero(0) or an error occurs,
in which case it a returns a negative one (-1).

devwrite (dev)

read - the read routine is called under conditions similar
to write, except that the transfer = count
(u.u count) is guaranteed to be nonzero. ‘

devread (dev)

special-function - the “special-function' routine is
invoked by the ioctl system call as follows:

devioctl (dev,cmd,cmarg, flag)

where dev is the device number, cmd is the
command, and cmarg 1is a pointer to somewhere in
user's memory, and flag is a copy of the flags
associated with the file (see /sys/h/file.h).

Finally, each device should have appropriate interrupt-time
routines. When an interrupt occurs, it is turned into a C-
compatible call to the device's interrupt routine. After the

XENIX System Reference

interrupt has heen processed, a return from the interrupt
handling routine returns from the interrupt itself.

When a device driver is running, it is often necessary to
disable the processor's interrupt facility while critical
sections of the interrupt code are being executed. This is
done by changing the system priority level. The following
functions are available for this purpose: spl4(), sng(),

splé(), and spl7() These routines return a value which is
suitable as an argument to splx(ps) which is used to restore
the previous priority.

devintr (dev)

The bdevsw table contains the names of the interface
routines and that of a table for each block device. As with
character devices, block device drivers may supply an open
and close routine called on each open and on the final close
of the device. Instead of separate read and write routines,
each block device driver has a strate routine which is
called with a pointer to a buffer header as an argument. The
header contains a read/write flag, the core address, the
block number, a byte count, and the major and minor device
number. The role of the strategy routine is to carry out the
operation as requested by the information in the buffer
header, to sort the buffer headers (in cylinder order) for
more efficient I/0, and then to <call the device startup
routine if the device is not already active. Although the
most usual argument to the strategy routines is a genuine
buffer header, all that 1is actually required is that the
argument be a pointer to a place containing the appropriate
information. The definition of a buffer header is given in

/sys/h/buf.h..

The device's table specified by bdevsw has a byte to contain
an active flag and an error count, a pair of links which
constitute the head of the chain of buffers for the device
(b forw, b back), and a first and last pointer for a device
queue. Of these, all are used solely by the device driver
itself except for the buffer-chain pointers. Since the
buffers which have been handed over to the strategy routines
are never on the list of free buffers, the pointers in the
buffer which maintain the free list (av forw, av back), are
also used to contain the pointers which maintain the device
queues. The table used by the driver conventionally has the
same format as a buffer header, with redefinitions of some
of the names.

3-6

XENIX System Reference

In addition to the routines contained in the drivers
themselves, other system routines may be called and used by
each driver. They are iodone, disksort, deverror and physio.
Each of these will be briefly explained below.

The routine iodone arranges that the buffer to which points
be released or awakened, as appropriate. This should be
called when the driver has finished with the buffer, either
normally or after an error.

Disksort (dp,bp) is called with two arguments: a pointer to
the device and a pointer to the buffer header. Disksort
sorts the buffer bp into the queue headed by dp. The I/0
requests are sorted by cylinder number; the cylinder number
must be computed before the call to disksort.

The routine deverror (bp, csr, stat) is called with three
arguments: a pointer to the buffer header; the command
register; the status register; The latter two arguments are
used at the discretion of the driver. Deverror prints a
diagnostic from a device driver. It prints the device, block
number, and an octal word (usually some error status
register) which were passed to it as arguments.

Physio (bp,&buf,dev,flag) is called with four arguments: a
pointer to the buffer header, a buffer for raw 1/0, a
device, and a flag to indicate a read or write operation.
Physio provides a means of using the raw, physical I/0 to
avoid the normal block buffering of the operating system,
which improves transfer efficiency. The primary function of
physio is to compute and validate physical addresses from
the current logical address.

3.1.6 Writing the New Device Driver

To demonstrate how the new driver should be written, sources
for the following two device drivers are presented:

bdproto ' block type disk driver
btproto block type tape driver

These psuedo-drivers are modeled from actual drivers on a
PDP-11, and will differ from other device drivers primarily
in their device register layout and the assignment of bits
in the device registers. Each driver has a structure named
“device' and a manifest named “XXADDR'. These define the
device's register layout and 1its base address. To
accommodate machines in which devices have a separate
address space (unlike the PDP-11), all references to the
device registers are through the subroutines in(addr) and

XENIX System Reference

out (addr,val). To help identify areas in the driver that
may be controller or device dependent, the comment °/*
DEVICE DEPENDENT */' is used. When beginning to write a new
device driver, it is best to begin with previously written
routines such as those presented here. It is also necessary
that the important information required to write a device
driver be readily available. Thus, to describe the physical
device to the system, it is necessary to have the following
specifications:

1. Number of tracks

2. Number of sectors per track

3. Number of devices to be included

4. The device's address

5. The device's registers and their bit settings
6. The device's priority level |

Sources for sample device drivers are given in Appendix A.

3-8

XENIX: System Reference

3.2 UUCP IMPLEMENTATION DESCRIPTION

Uucp is a series of programs designed to permit
communication between XENIX systems using either dial-up or
hardwired communication lines. It can be used for file
transfers and remote command execution. This section
describes the current implementation of the system.

Uucp is a batch operation. Files are created in a spool
directory for processing by the uucp daemons. There are
three types of files used for the execution of work:

¢ Data files contain data for transfer to remote systems.

@& Work files contain directions for file transfers7l
between systems.

& Execute files are scripts for commands that involve the
resources of one or more systems.

There are four primary programs:

uucp builds work files and gathers data files in the spool
directory for data transmission.

uux creates work files, execute files, and gathers data
files for the remote execution of commands.

uucico executes the work files for data transmission.
uuxgt executes the scripts for XENIX command execution.
There are a couple of administrative programs:

uulog gathers temporary log files that may occur due to
lockout of the uucp log file and reports some
information such as copy requests and completion
status. :

uuclean removes old files from the spool directory.

The remainder of this section will describe the operation of
each program, the installation of the system, the security
aspects of the system, the files required for execution, and
the administration of the system.

XENIX System Reference

3.2.1 Uucp-XENIX to XENIX File Copy

The uucp command is the user's primary interface with the
system. The command is designed to look like cp to the
user. The syntax is :

uucp
(
option

]

o SOUrcCe ... destination

where the source and destination may contain the prefix
system-name!, which indicates the system where the file or
files reside or where they will be copied.

Uucp has several options:
-d Make directories when necessary for copyiny the file.

-c Don't copy source files to the spool directory, but use
the specified source when the actual transfer
takes place.

-esys Send this job to system sys to execute. (Note that
this will only work when the system sys allows
uuxgt to execute a uucp command.)

-gletter Put letter in as the grade in the name of the work
file. (This can be used to change the order of
work for a particular machine.)

-m Send mail to the requester on completion of the work.

-nuser Notify user on the remote machine that a file has
» been sent.

There are several options available for debugging:
-r Queue the job but do not start uucico program.

-xnum is a level number between 1 and 9; higher numbers give
more debugging output.

The destination may be a directory name, in which case the
file name is taken from the last part of the source's name.
If the directory exists, it must be writable by everybody.
(Note that if the destination is a directory name and the
“*-d'' option is specified to create the directory, the
directory name must be followed by ““/''.) The source name
may contain special shell characters such as “"2*%[]''.

3-10

XENIX System Reference

These will be expanded on the appropriate system.
The command
uucp *.c usg! /usr/dan

will set up the transfer of all files whose names end with
“*.c'' to the "“/usr/dan'' directory on the"“usg'' machine.

The source and/or destination names may also contain a user
prefix. This translates to the login directory of user on
the specified system. File names beginning with ~ = /"'
translate into the public directory (usually
/usr/spool/uucppublic) on the remote system. For names with
partial path-names, the current directory is prepended to
the file name. File names with ../ are not permitted for
security reasons. ‘

The command
uucp usg! dan/*.h dan

will set up the transfer of files whose names end: with
**.h'' in dan's login directory on system "““usg'' to dan's
local login directory. ' '
For each source file, the program will check the source and
destination file-names, the system-part of each argument,
and the options to classify the work into several types:

1. Copy source to destination on local system.

2. Receive files from other systems.

3. Send files to a remote system.

4. Send files from remote systems to another remote
system.

5. Receive files from remote systems when .the source
contains special shell characters as mentioned above.

6. Request that the uucp command be executed by a remote
system. '

After the work has been set up in the spool directory, the
uucico program is started to try to contact the other
machine and execute the work (unless the -r option was
specified).

XENIX System Reference

Type 1 - local copy The copy is done locally. The -m and
-d options are not honored in this case.

Type 2 - receive files A workfile is created or appended
with a one line entry for each request. The upper limit to
the number of files per workfile is set in uucp.h. (The
default setting is 20.) After the limit has been reached, a
new work file is created. (All workfiles and executefiles
use a blank as the field separator) The fields for these
entries are given below.

1. R

2. The full path-name of the source or a

something/path-name. The something part will be
expanded on the remote system. Co

3. The full path-name of the destination file. If the
something notation is wused, it will be immediately
expanded.

4. The user's login name.

5. A ““='' followed by an option list. The options -m
and -d may appear.

Tvype 3 - send files Each source flle is copied into a data
file in the spool directory. (A ““-c'' option on the uucp
command will prevent the datafile from being made. 1In this
case, the file will be transmitted from the indicated
source.) The fields for these entries are given below.

1. S
2. The full pathname of the source file.

3. The full pathname of the destination or
something/file-name.

4. The user's login name.

5. A “°-'' followed by an option list. The options -4,
-m, and -n may appear.

6. The name of the datafile in the spool directory. A
dummy name, ~D.0'' is wused when the -c option is
specified.

3-12

XENIX System Reference

7. The file mode bits of the source file in octal print
format (e.g., 0666).

8. The user on the remote system to be notified upon
completion of the file copy when the ““-n'' option is
specified. '

Type 4 and Type 5 - remote uucp réquired Uucp generates a

uucp command and sends it to the remote machine; the remote
uucico executes the uucp command.

Type 6 - remote execution This occurs when the Steet!
option 1is wused. 1In this case, the uux facility is used to
create and send the request. This requires that the remote
uuxqt program allows the uucp command. '

3.2.2 Uux-XENIX To XENIX Execution

The uux command is used to set up the execution of a command
where the execution machine and/or some of the files are
remote., The syntax of the uux command is

uux

[

ll] ["
option
]

«.. command-string

where the command-string is made up of one or more
arguments. All special shell characters such as ““<>|"'!
must be quoted either by quoting the entire command-string
or quoting the character as a separate argument. Within the
command-string, the command and file names may contain a
sxstem name! prefix. All arguments that do not contain a

!1'"" will not be treated as files. (They will not be
copied to the execution machine.) An argument that contains
a “"1'' but is not to be treated as a file at the present

time, can be escaped by using ““()'' around the argument.
(Note that the ““()'' symbols must usually be escaped with a
**\''" symbol.) The **-'* is used to indicate that the

standard input for command-string should be inherited from
the standard input of the uux command. The following
options are available for debugging:

-r Don't start uucico or uuxgt after queuing the job.

3-13

XENIX System Reference

-xnum is a level number between 1 and 9; higher numbers give
more debugging output.

The command

pr abc | uwux - usgllpr

[N

will set up the output of
lpr command to be executed on system

*pr abc'' as standard input to an
““usg''.

Uux generates an execute file that contains the names of the
files required for execution (including standard input), the
user's login name, the destination of the standard output,
and the command to be executed. This file is either put in
the spool directory for 1local execution or sent to the
remote system using a send command (type 3 above).

For required files that are not on the execution machine,
uux will generate receive command files (type 2 above).
These command-files will be put on the execution machine for
execution by the uucico program. ’

The execute file contains a script that will be processed by
the wuuxgqt program. It is made up of several lines, each of
which contains an identification character and one or more
arguments. The lines are described below.
User Line

U wuser system
where the user and system are the requester's login name and

system.

Required File Line

F file-name real-name

where the file-name is a unique name used for file
transmission and real-name 1is the last part of the actual
file name (contains no path information). Zero or more of
these 1lines may be present. The uuxgt program will check
for the existence of all these files before the command is
executed. ‘

Standard Input Line

3-14

XENIX System Reference

I file-name

The standard input is either specified by a “"<'' in the
command-string or inherited from the standard input of the
uux command if the “*-'' option is used. If a standard
input is not specified, ““/dev/null'' is used. (Note that
if there is a standard input specified, it will also appear
in an "“F'' line.)

Standard OQutput Line

O file-name system~name

The standard output is specified by a “">'' within the
command-string. If a standard output is not specified,
**/dev/null'' is used. (Note that the use of “">>'' is not
implemented.)

Command Line

C command

[

arguments

]

The arguments are those specified in the command-string.
The standard input and standard output will not appear on
this 1line. All required files will be moved to the
execution directory (usually /usr/lib/uucp/.XQTDIR) and the
XENIX command is executed using the shell specified 1in the
uucp.h header file. 1In addition, a shell “"PATH'' statement
is prepended to the command line as specified in the uuxqgt
program. (Note that a check is made to see that the command
is allowed as specified in the uuxgt program.) After
execution, the standard output is copied or sent to the
proper place.

3.2.3 Uucico-Copy In, Copy Out

The uucico program will perform several major functions:
1. Scan the spool directory for work.
2. Place a call to a remote system.

3. Negotiate a line protocol to be used.

3-15

XENIX System Reference

4. Execute all requests from both systems.
5. Log work requests and work completions.
Uucico may be started in several ways:
l. By a system daemon specified in a crontab entry,
2. By one'of the uucp, uux, uuxgt or uucico programs,
3. directly by the user (this is usually for testing),

4, By a remote system. (The wuucico program should be
specified as the *“shell"’ field in the
“*/etc/passwd'' file for the 1logins used by remote
systems to access uucp.)

When started by method 1, 2 or 3, the program is considered
to be in MASTER mode. In this mode, a connection will be
made to a remote system. If started by a remote system
(method 4), the program is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no
system name is specified (-s option not specified) the
program will scan the spool directory for systems to call.
If a system name is specified, that system will be called,
and work will only be done for that system.

Uucico is generally started by another program. There are
several options used for execution:

-rl ~-Start the program in MASTER mode. This is used when
uucico is started by a program or ~“cron'' shell.

-ssys Do work only for system sys. If -s is specified, a
call to the specified system will be made even if
there is no work for system sys in the spool
directory. This 1is wuseful for polling systems
that do not have ' the hardware to initiate a

connection.
The following options are used primarily for debugging:
~ddir Use directory dir for the spool directory.

-xnum Num is a level number between 1 and 9; higher numbers
‘give more debugging output.

The next part of this section will describe the major steps
within the uucico program.

3-16

XENIX System Reference

Scan For Work The names of the work related files in the
spool directory have the format

type . system-name grade number
where

1., type is an upper case letter (C - copy command file,
D - data file, X - execute file)

2. system-name is the remote system,

3. grade is a character,

4. number is a four digit, zero padded sequence number.
The file C. C.res45n0031 would be a workfile for a file
transfer ~between the 1local machine and the ““res45''
machine.

The scan for work is done by 1looking through the spool
directory for work files (files with prefix “°C.''). A list
is made of all systems to be called. Uucico will then call
each system and process all work files.

Call Remote System The call is made using information from
several files that reside 1in the uucp program directory
(usually /usr/lib/uucp). At the start of the call process,
a lock 1is set to forbid multiple conversations between the
same two systems.

The L.sys file contains information required to make the
remote connection:

1. System name

2. Times to call the system (days-of-week and times-of-
day) and the minimum time delay before retry

3. Device or device type to be used for call -

4. Line class (this is the 1line speed on almost all
systems)

5. Phone numbei if field 3 is ACU or the device if not
ACU

6. Login information (zero or more fields)

The time field is checked against the present time to see if
the call should be made. The phonenumber may contain

3-17

XENIX System Reference

abbreviations (e.g., mh, py, boston) that get translated
into dial sequences using the L-dialcodes file.

The L-devices file is scanned using fields 3 and 4 from the
L.sys file to find an available device for the call. The
program will try each devices that satisfy 3 and 4 until a
call 1is made, or no more devices can be tried. If a device
is successfully opened, a lock file is created. If the call
is completed, the login information (field 6 of L.sys) is
used to login.

The conversation between the two uucico programs begins with
a handshake started by the called, SLAVE, system. The SLAVE
sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence
number. The response from the MASTER is verified by the
SLAVE and if acceptable, protocol selection begins. The
SLAVE can also reply with a ““call-back required'' message
in which case, the current conversation is terminated.

Line Protocol Selection The remote system sends a message

P proto-list

where proto-list is a string of characters, each
representing a line protocol.

The calling program checks proto-list for a letter
corresponding to an available line protocol and returns a
use-protocol message. The use-protocol message is

Ucode

where code is either a one character protocol 1letter or
“*N'', which means there is no common protocol.

Work Processing The MASTER program does a work search
similar to the one used in the “~“Scan For Work'' section.
(The MASTER has been specified by the ““-rl'' uucico
option.) Each message used during the work processing is
specified by the first character of the message:

S - send a file,
R -receive a file,

C -Copy complete,

3-18

XENIX System Reference

X —-execute a uucp command,
H -hangup.

The MASTER will send R, S or X messages until all work for
the remote system is complete, at which point an H message
will be sent. The SLAVE will reply with SY, SN, RY, RN, HY,
HN, XY, or XN, corresponding to yes or no for each request.

The send and receive replies are based on permission to
access the requested file/directory using the USERFILE and
read/write permissions of the file/directory. After each
file 1is copied into the spool directory of the receiving
system, a copy-complete message is sent by the receiver of
the file. The message CY will be sent if the file has
successfully been moved from the spool directory to the
destination. Otherwise, a CN message is sent. (In this
case, the file is put in the public directory, usually
/usr/spool/uucppublic, and the requester is notified by
mail.) The requests and results are logged on both systems.

The hangup response is determined by a work scan of the
SLAVE's spool directory. If work for the remote system
_—— . 3

exists an HN message is sent and the programs switch roles.
If no work exists, an HY response is sent.

Conversation Termination When a HY message is received by
the MASTER it is echoed back to the SLAVE and the protocols
are turned off. Each program sends a final ~700'' message
to the other. The original SLAVE program will clean up and
terminate. The MASTER will proceed to call other systems
unless a “"-s'' option was specified.

3.2.4 Uuxgt-Uucp Command Execution

The uuxgt program is used to execute scripts generated by
uux. The uuxgt program may be started by either the uucico
or uux programs or a demon specified by a crontab entry.
The program scans the spool directory for execute files
(prefix ““X.''). Each one is checked to see 1if all the
required files are available and if so, the command line is
verified and executed.

The execute file is described in the ““Uux'' section above.

The execution is accomplished by executing a ““sh -c'' of
the command 1line after appropriate standard input and
standard output have been opened. 1If a standard output is
specified, the program will create a send command or copy

3-19

XENIX System Reference

the output file as appropriate.

Uulog-Uucp Log Inquiry When a uucp program can not make a
log entry directly into the LOGFILE an individual log file
is created: a file with prefix LOG. This will sometimes
occur when more than one uucp process 1is running.
Periodically, uulog may be executed to append these files to
the LOGFILE.

The uulog program may also be used to request the output of
LOGFILE entries. The request is specified by the use of the
options:

' -ssys Print entries where sys is the remote system name
~uuser Print entries for user user.
The intersection of lines satisfying the two options is

output. A null sys or user means all system names or users
respectively.

3.2.5 Uuclean-Uucp Spool Directory Cleanup

This program is typically started by the uucp daily demon.
Its function is to remove files from the spool directory
that are more than 3 days old. These are usually files for
work that can not be completed. The requester of this work
is notified that the files have been deleted.

There are several options:

1. -ddir The directory to be scanned is dir.

2. -m Send mail to the owner of each file being removed.
(Note that most files put into the spool directory
will be owned by the owner of the uucp programs since
the setuid bit will be set on these programs. This
mail is sometimes useful for administration.)

3. -nhours Change the aging time from 72 hours to hours
hours.

4. -ppre Examine files with prefix pre for deletion. (Up
to 10 of these options may be specified.)

5. =-xnum This is the level of debugging output desired.

3-20

XENIX System Reference

3.2.6 Security

The uucp system, left unrestricted, will let any outside
user execute any commands and copy out/in any file that is
readable/writable by a uucp login user. It is up to the
individual sites to be aware of this and apply the
protections that they feel are necessary.

There are several security features available aside from the
normal file mode protections. These must be set up by the
administrator of the uucp system.

1. The login for uucp does not get a standard shell.
Instead, the wuucico program is started so that all
work is done through uucico.

2, The owner of the wuucp programs should be - an
administrative login. It should not be one of the
logins used for remote system access to uucp.

3. A path check is done on file names that are to be sent
or received. The USERFILE supplies the information
for these checks. The USERFILE can also be set up to
require call-back for certain 1login-ids. (See the
““Files Required For Execution'' section for the file
description.) ‘

4. A conversation sequence count can be set up so that
the called system can be more confident of the
caller's identity.

5. The uuxqt program comes with a list of commands that

it will execute. A “"PATH'' shell statement is
prepended to the command 1line as specified in the
uuxgt program. The installer may modify the list or

remove the restrictions as desired.

6. The L.sys file should be owned by the uucp
administrative login and have mode 0400 to protect the
phone numbers and login information for remote sites.

7. The programs uucp, uucico, uux, uuxqgt, uulog, and
uuclean should be owned by the uucp administrative
login, have the setuid bit set, and have only execute
permissions.

3-21

XENIX System Reference

3.2.7 Uucp Installation

It is assumed that the login name used by a remote computer
to call into a local computer is not the same as the login
name of a normal user or the uucp administrative 1login.
However, several remote computers may use the same login
name.

Each computer should be given a unique system name that is
transmitted at the start of each call. This name identifies
the calling machine to the called machine. The login/system
names are used for security as described 1later in the
USERFILE section. :

There are several source modifications that may be required
before the system programs are compiled. These relate to
the directories, local system name, and attributes of the
local environment.

There are several directories used by the uucp system:

1. 1lib (/usr/src/cmd/uucp) - This directory contains the
uucp system source files.

2. program (/usr/lib/uucp) - This is the directory used
for some of the executable system programs and the
system files. Some of the programs reside in
**/usr/bin'"'.

3. spool (/usr/spool/uucp) - This is the uucp system
spool directory.

4. =xqtdir (/usr/lib/uucp/.XQTDIR) - This directory is
used during execution of the uux scripts.

The names in parentheses above are the default values for
the directories. The italicized names lib, program, xqtdir,
and spool will be used in the following text to represent
the appropriate directory names.

There are two files that may require modification, the
makefile file and the uucp.h file. (On some systems, the
makefile is named uucp.mk.) In addition, the ~“uuxgt.c''
program may be modified as indicated in the ““Security"'’
section above. The following paragraphs describe the
modifications. :

-

Uucp.h modification Several manifests in “uucp.h'' may
need modification for the local system environment:

3-22

XENIX Systém Reference

UNAME should be defined if the ““uname'' function is
available. -

MYNAME should be modified to the name of the 1local
system if UNAME is not defined.

ACULAST is the character required by the ACU as the
last character. For most systems, it is a “"-''.

DATAKIT should be defined if the system is on a datakit
network.

DIALOUT should be defined if the “°C'' library routine
““dialout'' is available.

Makefile Modification There are several make variable

definitions that may need modification:

®

o

INSDIR 10 is the program directory (e.qg.,
INSDIR=/usr/lib/uucp) . This parameter is wused if

- N LY

make cp'' or ““make install'' is used.

IOCTL is required to be set if the ““ioctl'' routine is
not available in the standard “°C'' 1library; the
statement " “IOCTL=ioctl.o'' is required in this case.

PUBDIR is a public directory for remote access. This
is also the login directory for remote uucp users. It
should be the same as that defined in ““uucp.h''.

SPOOL is the uucp spool directory. This should be the
same as that defined in " “uucp.h''.

XQTDIR is the directory for uuxgt to use for command
execution. It is also defined in "~ “uucp.h''.

OWNER is the administrative login for uucp.

Compile the System The command

make install

makes the required directories, compile all programs, set

the proper file modes, and copy the programs to the proper
directories. This command should be run as root. The
command

make

3-23

XENIX System Reference

compiles the entire system.

The programs wuucp, wuux, and wuulog should be put in
**/usr/bin'"'. The programs uuxgt, uucico, and uuclean
should be put in the program directory.

Files Required For Execution There are four files that are
required for execution. They should reside in the program
directory. The field separator for all files is a space.

L-devices This file contains call-unit device and hardwired
connection information. The special device files are
assumed to be in the /dev directory. The format for each
entry is

type 1line call-unit speed
where
1. type is a device type such as ACU or DIR. The field

can also be used to specify particular ACUs for some
calls by using a suffix on the ACU field, e.g., ACU3.

This names should be used in L.sys.
2. 1line is the device for the line (e.g., cul0).
3. call-unit is the automatic call unit associated with
line (e.g., cual). Hardwired 1lines have a number
“~0"' in this field.
4. speed is the line speed.
The line
ACU cul0 cua0 300
would be set up for a system that has device *%/dev/cull'’

wired to a call-unit “~“/dev/cual0'' for use at 300 baud.

L-dialcodes This file contains the dialcode abbreviations
used in the L.sys file (e.g., py, mh, boston). The entry
format 1is

abb dial-seq

where abb is the abbreviation, dial-seq is the dial sequence
to call that location. The 1line

3-24

XENIX System Reference

py 165-

would be set up so that entry py7777 would send 165-7777 to
the dial-unit.

USERFILE This file contains user accessibility information.
It specifies four types of constraint:

1. which files can be accessed by a normal user of the
local machine '

2. which files can be accessed from a remote computer

3. which login name is used by a particular remote
computer

4. whether a remote computer should be called back in
order to confirm its identity.

Each line in the file has the format
login, sys

C

]

path-name

[

path-name

]

o o 0

where login is the login name for a user or the remote
computer, sys is the system name for a remote computer, c is
the optional call-back required flag, path-name is a path-
name prefix that is acceptable for sys.

The constraints are implemented as follows.

1. WwWhen the program is obeying a command stored on the
local machine, MASTER mode, the path-names allowed are
those given on the first line in the USERFILE that has
the login: name of the user who entered the command.
If no such line is found, the first line with a null
login name is used. ,

2. When the program is responding to a command from a
remote machine, SLAVE mode, the path-names allowed are
those given on the first line in the file that has the
system name that matches the remote machine. If no
such line is found, the first one with a null system

3-25

XENIX System Reference

name is used.

3. When a remote computer logs in, the login name that it
uses must appear in the USERFILE. There may be
several lines with the same login name but one of them
must either have the name of the remote system or must
contain a null system name.

[N

4, If the line matched in 4 contains a ““c¢'', the remote
machine 1is called back before any transactions take
place.

The line
u,m /usr/xyz

allows machine m to login with name u and request ' the
transfer of files whose names start with “"/usr/xyz'’'.

The line
dan, /usr/dan

allows the ordinary user dan to issue commands for files
whose name starts with ““/usr/dan''. (Note that this type
restriction is seldom used.)

The lines

u,m /usr/xyz /Jusr/spool
u, /usr/spool

allows any remote machine to login with name u. If its
system name is not m, it can only ask to transfer files
whose names start with ~ /usr/spool''. If it is system m,
it can send files from paths ““/usr/xyz'' as well as
*%/usr/spool''.

The lines

root, [/
’ /usr

allow any user to transfer files beginning with ““/usr'' but
the user with login root can transfer any file. (Note that
any file that is to be transferred must be readable by
anybody.)

Lsys Each entry in this file represents one system that can
be called by the local uucp programs. More than one line

3-26

XENIX System Reference

may be present for a particular system. In this case, the
additional 1lines represent alternative communication paths
that will be tried in sequential order. The fields are
described below.

& system name
The name of the remote system.

& time

This is a string that indicates the days-of-week and
times-of-day when the system should be called (e.g.,
MoTuTh0800-1730).

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

— — — — ar— a—— e——

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g., 0800-1230).
If no time portion 1is specified, any time of day is
assumed to be okay for the call. Note that a time
range that spans 0000 is permitted, for example, 0800-
0600 means all times are ok other than times between 6
and 8 am.

An optional subfield is available to indicate the
minimum time (minutes) before a retry following a
failed attempt. The subfield separator is a *%,'"'.
(e.g., Any,9 means call any time but wait at least 9

minutes after a failure has occurred.)
@& device

This is either ACU or the hardwired device to be used
for the call. For the hardwired case, the last part of
the special file name is used (e.g., tty0).

® class
This is usually the line speed for the call (e.g.,
300). The exception is when the “°C'' library routine

““dialout'' is available in which case this is the
dialout class.

& phone

The phone number is made up of an optional alphabetic
abbreviation and a numeric part. The abbreviation

3-27

XENIX System Reference

should be one that appears in the L-dialcodes file
(e.g., mh5900, boston995-9980). For the hardwired
devices, this field contains the same string as used
for the device field.

login

The login information is given as a series of fields
and subfields in the format

[

expect send

]

* o0

where expect is the string expected to be read and send
is the string to be sent when the expect string is
received.

The expect field may be made up of subfields of the
form

expect[-send-expect] ...

where the send is sent if the prior expect is not
successfully read and the expect following the send is
the next expected string. (e.g., 1login--login will
expect login; if it gets it, the program will go on to
the next field; if it does not get login, it will send
null followed by a new line, then expect login again.)

There are two special names available to be sent during
the login sequence. The string EOT will send an EOT
character and the string BREAK will try to send a BREAK
character. (The BREAK character 1is simulated using
line speed changes and null characters and may not work
on all devices and/or systems.) A number from 1 to 9
may follow the BREAK for example, BREAK1 will send 1
null character instead of the default of 3. Note that
BREAK1 usually works best for 300/1200 baud lines.

A typical entry in the L.sys file would be
sys Any ACU 300 mh7654 1login wuucp ssword: word

The expect algorithm match all or part of the input
string as illustrated in the password field above.

3-28

XENIX System Reference

3.2.8 Administration

This section indicates some events and files that must be
administered for the uucp system. Some administration can
be accomplished by shell files initiated by crontab entries.
Others will require manual intervention. Some sample shell
files are given toward the end of this section.

SQFILE - sequence check file This file is set up in the
program directory and contains an entry for each remote
system with which you agree to perform conversation sequence
checks. The initial entry is just the system name of the
remote system. The first conversation will add the
conversation count and the date/time of the most recent
conversation. These items will be wupdated with each
conversation. If a sequence check fails, the entry will
have to be adjusted manually.

TM - temporary data files These files are created in the

spool directory while a file is being copied from a remote
machine. Their names have the form :

T™.pid.ddd

where pid is a process-id and ddd is a sequential three
digit number starting at zero. After the entire file is
received, the TM file is moved/copled to the requested
destination. ~If processing is abnormally terminated the
file will remain in the spool directory. The leftover files
should be periodically removed; the uuclean program is
useful in this regard. The command

program/uuclean -pTM

removes all TM files older than three days.

LOG - log entry files During execution, log information is
appended to the LOGFILE. If this file is locked by another
process, the log information is placed in individual 1log
files which will have prefix LOG. These files should be
combined into the LOGFILE by using the uulog program. This
program appends the LOGFILE with the individual log files.
The command '

uulog

accomplishs the merge. Options are available to print some
or all the 1log entries after the files are merged. The

3-29

XENIX System Reference

LOGFILE should be removed periodically.

The LOG. files are created initially with mode 0222. If
the program that creates the file terminates normally, it
changes the mode to 0666. Aborted runs may leave the files
with mode 0222 and the uulog program will not read or remove
them. To remove them, either use rm, uuclean, or change the
mode to 0666 and let uulog merge them into the LOGFILE.

STST - system status files These files are created in the
spool directory by the wuucico program. They contain
information such as login, dialup or sequence check failures
or will contain a TALKING status when two machines are
conversing. The form of the file name is

STST.sys
where sys is the remote system name.

For ordinary failures, such as dialup or 1login, the file
will prevent repeated tries for about 55 minutes. This is
the default time; it can be changed on an individual system
basis by a subfield of the time field in the L.sys file.
For sequence check failures, the file must be removed before
any future attempts to converse with that remote system.

LCK - lock files Lock files are created for each device in
use (e.g., automatic calling wunit) and each system
conversing. This prevents duplicate conversations and
multiple attempts to use the same device. The form of the
lock file name is

ICK..str

where str is either a device or system name. The files may
be left 1in the spool directory if runs abort (usually only
on system crashes). They will be ignored (reused) after 1.5
hours. When runs abort and calls are desired before the
time limit, the lock files should be removed.

ERRLOG - uucp system error file This file is created in the
spool directory to record uucp system errors. Entries in
this file should be rare. The messages come from the ASSERT
statements in the various programs. Wrong modes on files or
directories, missing files, and read/write system call
failures on the transmission channel may cause entries in
the ERRLOG file.

3-30

XENIX System Reference

Shell Files The uucp program will spool work and attempt to
start the uucico program, but uucico will not always be able
to execute the request immediately. Therefore, the uucico
program should be periodically started. The command to
start uucico can be put in a ““shell"'' file with a command
to merge LOG. files and started by a crontab entry on an
hourly basis. The file could contain the commands

/usr/bin/uulog
program/uucico -

-rl -sinter

program/uucico
-rl

The ““-rl'' option is required to start the uucico program
in MASTER mode. The ““-s'' option can be used for polling
as illustrated in the second line where machine inter is
being polled. The third line will process all other spooled
work.

Another shell file may be set up on a daily basis to remove
TM, ST and LCK files and C. or D. files for work that can
not be accomplished for reasons like bad phone number, login
changes etc. A shell file containing commands like

program/uuclean
—pTM -pC . -pD.

program/uuclean
-pST ~pLCK =~-nl2

can be used. Note that the ““-nl2'' option causes the ST
and LCK files older than 12 hours to be deleted. The
absence of the ““-n'' option will use a three day time
limit.

A daily or weekly shell should also be created to remove or
save old LOGFILEs. A shell like

cp
spool /LOGFILE

spool/o.LOGFILE
rm
sgool/LOGFILE
can be used.
Login Entry Two or more logins should be set up for uucp.

One should be an administrative login: the owner of all the
uucp programs, directories and files. All others are used

3-31

XENIX System Reference

by remote systems to access the uucp system. Each of the
“~/etc/passwd'' entries for the access 1logins should have
“*program/uucico'' as the shell to be executed. The login
directory should be the public directory (usually
/usr/spool/uucppublic). The various access login names are
used in the USERFILE to restrict file access.

File Modes The programs uucp, uux, uucico, uulog, uuclean
and uuxgt should be owned by the uucp administrative login
with the ““setuid'' bit set and only execute permissions
(e.g., mode 04111). The Lsys, SQFILE and the USERFILE,
which are put in the program directory should be owned by
the uucp administrative login and set with mode 0400. The
mode of spool should be “"0755''. The mode of xqtdir should
be “"0777''. The L-dialcodes and the L-devices files should
have mode 0444. :

3-32

XENIX System Reference

3.3 XENIX SECURITY CONSIDERATIONS

Recently there has been much interest in the security
aspects of operating systems and software. At issue is the
ability to prevent undesired disclosure or destruction of
information, and harm to the functioning of the system.
This section discusses the degree of security which can be
provided under the XENIX system and offers a number of hints
on how to improve security.

3.3.1 Crashes and Slow-downs

XENIX like most other systems, was not developed with
security in mind. The area of security in which XENIX is
theoretically weakest is in protecting against crashing or
at least crippling the operation of the system. The problem
here is not mainly in wuncritical acceptance of bad
parameters to system calls- there may be bugs in this area,
but none are known- but rather in 1lack of checks for
excessive consumption of resources. Most notably, there is
no limit on the amount of disk storage used, either in total
space allocated or in the number of files or directories.
Here is a particularly ghastly shell sequence guaranteed to
stop the system:

while : ; do
mkdir x
cd x
done

Either a panic will occur because all the inodes on the
device are used up, or all the disk blocks will be consumed,
thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from
creating more than a set number of processes simultaneously,
SO unless users are in collusion it is unlikely that any one
can stop the system altogether. However, creation of 20 or
so CPU or disk-bound jobs leaves few resources available for
others. Also, 1if many large jobs are run simultaneously,
swap space may run out, causing a panic.

It should be evident that excessive consumption of disk
space, files, swap space, and processes can easily occur
accidentally in malfunctioning programs as well as at
command level, In fact XENIX is essentially defenseless
against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to
detect what has happened when disaster strikes, to identify
the user responsible, and take appropriate action. 1In

3-33

XENIX System Reference

practice, we have found that difficulties in this area are
rather rare, but we have not been faced with malicious
users, and enjoy a fairly generous supply of resources which
have served to cushion us against accidental
overconsumption.

3.3.2 Protection and Permission

The picture 1is considerably brighter in the area of
protection of information from unauthorized perusal and
destruction. Here the degree of security seems nearly
adequate theoretically, and the problems lie more in the
necessity for care in the actual use of the system.

Each XENIX file has associated with it eleven bits of
protection information together with a user identification
number and a user-group identification number (UID and GID).
Nine of the protection bits are used to specify
independently permission to read, to write, and to execute
the file to the user himself, to members of the user's
group, and to all other users. Each process generated by or
for a user has associated with it an effective UID and a
real UID, and an effective and real GID.

When an attempt is made to access the file for reading,
writing, or execution, the user process's effective UID is
compared against the file's UID; if a match 1is obtained,
access is granted provided the read, write, or execute bit
for the user himself is present. 1If the UID for the file
and for the process fail to match, but the GID's do match,
the group bits are used; if the GID's do not match, the bits
for other users are tested.

The last two bits of each file's protection information,
called the set-UID and set-GID bits, are used only when the
file is executed as a program. If, in this case, the set-
UID bit 1is on for the file, the effective UID for the
process is changed to the UID associated with the file; ' the
change persists wuntil the process terminates or until the
UID changed again by another execution of a set-UID file.

Similarly the effective group ID of a process is changed to
the GID associated with a file when that file is executed
and has the set-GID bit set. The real UID and GID of a
process do not change when any file is executed, but only as
the result of a privileged system call. '

The basic notion of the set-UID and set-GID bits is that one
may write a program which is executable by others and which
maintains files accessible to others only by that program.

3-34

XENIX System Reference

The classical example 1is the game-playing program which
maintains records of the scores of its players. The program
itself has to read and write the score file, but no one but
the game's sponsor can be allowed unrestricted access to the
file 1lest they manipulate the game to their own advantage.
The solution is to turn on the set-UID bit of the game
program. When, and only when, it is invoked by players of
the game, it may update the score file but ordinary programs
executed by others cannot access the score.

There are a number of special cases involved in determining
access permissions. Since executing a directory as a
program is a meaningless operation, the execute-permission
bit, for directories, is taken instead to mean permission to
search the directory for a given file during the scanning of
a path name; thus if a directory has execute permission but
no read permission for a given user, he may access files
with known names in the directory, but may not read (list)
the entire contents of the directory. Write permission on a
directory 1is interpreted to mean that the user may create
and delete files in that directory; it is impossible for any
user to write dlrectly into any dlrectory.~

Another, and from the p01nt of view of security, much more
serious special case is that there is a "“super user'' who
is able to read any file and write any non-directory. The
super-user 1is also able to change the protection mode and
the owner UID and GID of any file and to invoke privileged
system calls. It must be recognized that the existence of a
super-user is a potential threat to any protection scheme.

The first prerequisite for a secure system is arranging for
all files and directories have the proper protection modes.
Traditionally, XENIX software has been exceedingly
permissive in this regard; essentially all commands create
files readable and writable by everyone. In the current
version, this policy may be easily adjusted to suit the
needs of the installation or the individual user.
Associated with each process and its descendants is a mask,
which is in effect and-ed with the mode of every file and
directory created ~by that process. In this way, users can
arrange that, by default, all their files are no more
accessible than they wish. The standard mask, set by login,
allows all permissions to the user himself and to his group,
but disallows writing by others.

To ensure both data privacy and integrity, it is wusually
sufficient, to make one's files inaccessible to others. A
lack of sufficiency could result from the existence of set-
UID programs created by the user and the possibility of a
total breach of system security in ways such as those

3-35

XENIX System Reference

discussed below. For greater protection, an encryption
scheme is available. Since the editor is able to create
encrypted documents, and the crypt command can be used to
pipe such documents into the other text-processing programs,
the 1length of time during which cleartext versions need be
available is strictly limited. The encryption scheme used
is not one of the strongest known, but it is judged
adequate, in-the sense that «cryptanalysis 1is 1likely to
require considerably more effort than more direct methods of
reading the encrypted files. For example, a user who stores
data that he regards as truly secret should be aware that he
is implicitly trusting the system administrator not to
install a version of the crypt command that stores every
typed password in a file. :

Needless to say, the system administrators must be at 1least
as careful as their most demanding user to place the correct
protection mode on the files under their control. In
particular, it is necessary that special files be protected
from writing, and probably reading, by ordinary users when
they store sensitive files belonging to other users. It is
easy to write programs that examine and change files by
accessing the device on which the files are resident.

3.3.3 Password Security

On the issue of password security, XENIX is probably better
than most systems. Passwords are stored in an encrypted
form which, in the absence of serious attention from
specialists in the field, appears reasonably secure,
provided its limitations are understood. In the current
version, it is based on a slightly defective version of the
Federal DES; it has been purposely altered so that readily
available hardware is useless for attempts at exhaustive
key-search. Since both the encryption algorithm and . the
encrypted passwords are available, exhaustive enumeration of
potential passwords is still feasible up to a point. We
have observed that users choose passwords that are easy to
guess: they are short, or from a limited alphabet, or in a
dictionary. Passwords should be at least six characters
long and randomly chosen from an alphabet which includes
digits and special characters.

The set-UID (set-GID) notion must be used carefully if -any
security is to be maintained. The first thing to keep in
mind is that a writable set-UID file can have another
program copied onto it. For example, if the super-user (su)
command is writable, anyone can copy the shell onto it and
get a password-free version of su. A more subtle problem
can come from set-UID programs which are not sufficiently

3-36

XENIX System Reference

careful of what 1is fed into them. To take an obsolete
example, the previous version of the mail command was set-
UID and owned by the super-user. This version sent mail to
the recipient's own directory. The notion was that one
should be able to send mail to anyone even if they want to
protect their directories from writing. The trouble was
that mail was rather dumb: anyone could mail someone else's
private file to himself. Much more serious is the following
scenario: make a file with a line like one in the password
file which allows one to log in as the super-user. Then
make a 1link named ““.mail'' to the password file in some
writable directory on the same device as the password file
(say /tmp) . Finally, mail the bogus 1login 1line to
/tmp/.mail; you can then login as the super-user, clean up
the incriminating evidence, and have your will.

3.3.4 Mounting Unauthorized Discs and Tapes

The fact that users can mount their own disks and tapes as
file systems can be another way of gaining super-user
status. Once a disk pack is mounted, the system believes
what 1is on it. Thus one can take a blank disk pack, put on
it anything desired, and mount it, There are obvious and
unfortunate consequences. For example: a mounted disk with
garbage on it will crash the system; one of the files on the
mounted disk can easily be a password-free version of su;
other files can be unprotected entries for special files.
The only easy fix for this problem is to forbid the use of
mount to unprivileged users. A partial solution, not so
restrictive, would be to have the mount command examine the
special file for bad data, set-UID programs owned by others,
and accessible special files, and balk at unprivileged
invokers. '

3-37

XENIX System Reference

CHAPTER 4
COMMAND REFERENCE
Included in this chapter are the XENIX Programmer's Manual

manual pages for commands discussed in this manual. They
have been included here for completeness.

4-1

AC (1M

NAME

SYNOP

) XENIX System Reference AC (1M)

ac - login accounting

SIS .
ac [-wwtmp] [-p] [-d] [people] ...

DESCRIPTION

Ac produces a printout giving connect time for each user who
has logged in during the life of the current wtmp file. A
total is also produced. -w is used to specify an alternate
wtmp file. -p prints individual totals; without this
option, only totals are printed. -d causes a printout for
each midnight to midnight period. Any people will limit the
printout to only the specified login names. 1If no wtmp file
is given, /usr/adm/wtmp is used.

The accounting file /usr/adm/wtmp is maintained by init and

. login. Neither of these programs creates the file, so if it

FILES

does not exist no connect-time accounting is done. To start
accounting, it should be created with length 0. On the
other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired
should be collected and the file truncated.

/usr/adm/wtmp

SEE ALSO

init(8), login(l), utmp(5).

4-2

ARCV(1M) XENIX System Reference ARCV (1M)

NAME
arcv - convert archives to new format

SYNOPSIS
arcv file ...

DESCRIPTION
Arcv converts archive files (see ar(l), ar(5)) from 6th edi-
tion to 7th edition format. The conversion is done in
place, and the command refuses to alter a file not in old
archive format.
014 archives are marked with a magic number of 0177555 at
the start; new archives have 0177545,

FILES
/tmp/v*, temporary copy

SEE ALSO

ar(l), ar(5)

CLRI (1M) XENIX Systevaeference CLRI (1M)

NAME
clri - clear i-node

SYNOPSIS
clri filesystem i-number ...

DESCRIPTION
Clri writes zeros on the i-nodes with the decimal i-numbers
on the filesystem. After clri, any blocks in the affected
file will show up as “missing' in an icheck(l) of the
filesystem.
Read and write permission is required on the specified file
system device. The i-node becomes allocatable.
The primary purpose of this routine is to remove a file
which for some reason appears in no directory. If it is
used to zap an i-node which does appear in a directory, care
should be taken to track down the entry and remove it. Oth-
erwise, when the i-node is reallocated to some new file, the
old entry will still point to that file. At that point
removing the o0ld entry will destroy the new file. The new
entry will again point to an unallocated i-node, so the
whole cycle is likely to be repeated again and again.

SEE ALSO
icheck (1)

BUGS

If the file is open, clri is likely to be ineffective.

CONFIGURE (1M) XENIX System Reference CONFIGURE (1M)

NAME
configure - generate new system configuration

SYNOPSIS
cd /sys/conf
configure [auto]

DESCRIPTION

Configure is used to create a new XENIX operating system.

It interactively asks questions concerning the CPU and peri-
pherals on the target computer in order to adjust certain
internal parameters of the 0S. After configure runs and the
correct responses are made to the set of questions, the file
xenix will be made in /sys/conf. This file can then be used
for booting by moving it to the root. (It is wise to
preserve the old xenix until the new one is proven.).

Configure is designed to be self-documenting and initially
asks if the user wants information. Yes/no questions should
be responded to with lines beginning with a y or n. Devices
are always referred to by a two letter code; conflgure will
list the appropriate codes for all devices it currently
knows about. Numbers are decimal except when preceded by a
0 signifying octal radix.

Several files are produced by configure based on the
responses to its questions. First, an assembly language
support file is selected from /sys/conf/LIBO and renamed to
mch i.o or mch id.o depending on the partlcular target CPU.
Next, numerous questions are asked concerning the peripheral
devices, desired location of root, swap, and pipe file sys-
tems, internal parameter values, etc. The result is the
file xenixconf. This file is then fed to the mkconf program
which generates the files c.c and l.s. Finally, a make

Xxenix i or make xXenix id command is issued to perform the
necessary assembly and llnkage of the new executable operat-
ing system.

Except for the first execution, it is likely that some or
all of the above files will remain valid when regenerating
the system. Calling configure with the auto option causes
the program to look for these files and bypass any questions
and operations relating to the regeneration of files already
present. This option is especially meaningful if the l.s
file must be edited due to a non-gstandard conflguratlon, “or
if the xenixconf file to be used has been set up by other
than the last execution of configure. In general, once run
without the auto option, the user may delete any of mch i.o,
mch id.o, xenixconf, c.c, l.s, c.0, 1.0, oOr xenix and then
use configure auto to regenerate the missing data.

CONFIGURE (1M) XENIX System Reference CONFIGURE (1M)

Release 2 of configure does not automate the handling of
non-standard vectors, device addresses, and additional
(user) device drivers. For now, the user must manually edit
the 1l.s file and add any additional drivers to the
/sys/dev/LIB2 archive to handle these situations. The auto
option is useful under these circumstances.

FILES
mkconf
xXenixconf
LIBO

SEE ALSO
mkconf (1m) , “Setting up XENIX' in Volume 2

DIAGNOSTICS
Confiqure prints a set of messages and asks for the input
again whenever the user types an unacceptable answer. Oth-
erwise, the answers are fed, interactively line by line, to
mkconf. The latter may also complain with sometimes cryptic
messages. Since configure does not currently watch for com-
plaints from mkconf, the user should probably hit the delete
attention key, remove the xenixconf file and issue a config-
ure auto command should an input error be reported by

mkconf.

4-6

COPY (1) XENIX System Reference COPY (1)

NAME

copy - copy groups of files
SYNTAX

copy [option] ... source ... dest
DESCRIPTION

The copy.command copies the contents of directories to
another directory. It is possible to copy whole file sys-
tems since directories are made when needed.

If files, directories, or special files do not exist at the
destination, then they are created with the same modes and
flags of the source. 1In addition, the super-user may set
the user and group ids. The owner and mode will not be
changed if the destination file exists. Note that there may
be more than one source directory. If so, then the effect
is the same as if the copy command had been issued, each
with only one source.

All of the options must be given as separate arguments and
they may appear in any order even after the other arguments.
The arguments are: ‘

-a Asks the user before attempting a copy. If the
response does not begin with a 'y', then a copy will
not be done. This option also sets the “-ad' flag.

-1 Uses links instead whenever they can be used. Oth-
erwise a copy is done. Note that links are never
done for special files or directories.

-n Requires the destination file to be new. If not,
then the copy command will not change the destina-
tion file. Of course the “-n' flag is meaningless
for directories. For special files a “-n' flag is
assumed (i.e., the destination of a special file
must not exist).

-0 Only the super user may set this option. If set

' then every file copied will have its owner and group
set to those of the source. 1If not set, then the
owner will be that of the user who invoked the pro-
gram.

-m If set then every file copied will have its modifi-
cation time and access time set to that of the
source. If not set, then the modification time will
be set to the time of the copy.

-r If set, then every directory is recursively examined
as it is encountered. If not set then any

COPY (1)

-V

source

dest

XENIX System Reference COPY (1)

directories that are found will be ignored.

Asks the user whether a “-r' flag applies when a
directory is discovered. 1If the answer does not
begin with a 'y', then the directory will be
ignored.

If the verbose option is set, then all kinds of mes-
sages will be printed that reveal what the program
is doing.

This may be a file, directory or special file. It
must exist. If it is not a directory, then the
results of the command will be the same as for the
cp command.

The destination must be either a file or directory
different from the source.

If the source and destination are anything but directories,
then copy will act just like a cp command. If both are
directories, then copy will copy each file into the destina-
tion directory according to the flags that have been set.

DIAGNOSTICS

Should be self-explanatory

CRYPT (1) XENIX System Reference CRYPT (1)

NAME
crypt - encode/decode

SYNTAX
crypt [password]

DESCRIPTION
Crypt reads from the standard input and writes on the stan-
dard output. The password is a key that selects a particu-
lar transformation. If no password is given, crypt demands
a key from the terminal and turns off printing while the key
is being typed in. Crypt encrypts and decrypts with the
same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated
by the editor ed in encryption mode.

The security of encrypted files depends on three factors:
the fundamental method must be hard to solve; direct search
of the key space must be infeasible; “sneak paths' by which
keys or cleartext can become visible must be minimized.

Crypt implements a one-rotor machine designed along the
lines of the German Enigma, but with a 256-element rotor.
Methods of attack on such machines are known, but not
widely; moreover the amount of work required is likely to be
large.

The transformation of a key into the internal settings of
the machine is deliberately designed to be expensive, i.e.
to take a substantial fraction of a second to compute. How-
ever, if keys are restricted to (say) three lower-case
letters, then encrypted files can be read by expending only
a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is
potentially visible to users executing ps(l) or a deriva-
tive. To minimize this possibility, crypt takes care to
destroy any record of the key immediately upon entry. No
doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(l), makekey(8)

4-9

CRYPT (1) XENIX System Reference CRYPT (1)

NOTES
There is no warranty of merchantability nor any warranty of
fitness for a particular purpose nor any other warranty,
either express or implied, as to the accuracy of the
enclosed materials or as to their suitability for any par-
ticular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient.
Further, Bell Laboratories assumes no obligation to furnish
any assistance of any kind whatsoever, or to furnish any
additional information or documentation.

4-10

CU(1C) XENIX System Reference CU(1lC)

NAME
cu - call UNIX

SYNOPSIS
cu telno [-t] [-s speed] [-a acu] [-1 line] [-nh]

DESCRIPTION
Cu calls up another XENIX system, a terminal, or possibly a
non-XENIX system, It manages an interactive conversation
with possible transfers of text files. Telno is the tele-
phone number, with minus signs at appropriate places for
delays, or “wait', to indicate a manual connection. If
“wait' is specified, “/dev/null' is used as the dial unit
and cu waits up to five minutes for the carrier to turn on.
The -t flag is used to dial out to a terminal. Speed gives
the transmission speed (110, 134, 150, 300, 600, 1200, 2400,
4800, 9600); 300 is the default value. The -nh flag
prevents cu from hanging up the terminal line upon exit.

The -a and -1 values may be used to specify pathnames for
the ACU and communications line devices. They can be used
to override the following built-in choices:

-a /dev/cual -1 /dev/culo

After making the connection, cu runs as two processes: the
send process reads the standard input and passes most of it
to the remote system; the receive process reads from the
remote system and passes most data to the standard output.
Lines beginning with ~7! have spec1al meanings.

The send process interprets the following:

~

. terminate the conversation.
~“EOT terminate the conversation

“<file send the contents of file to the remote
system, as though typed at the terminal.

! invoke an interactive shell on the local

system.

“lemd ... run the command on the local system (via
sh -c).

“S$cmd ... run the command locally and send its out-

put to the remote system.

~“$take from [to] copy file “from' (on the remote system) to
~ file “to' on the local system. If “to' is
omitted, the “from' name is used both
places.

4-11

cu(1lcC

) XENIX System Reference Cu(1C)

~“gput from [to] copy file “from' (on local system) to file
“to' on remote system. If “to' is omit-
ted, the “from' name is used both places.

“$speed n set speed of transmission line to “n',
where n is one of. 110, 134, 150, 300, 600,
1200, 2400, 4800, 9600.

~ ~]

oo send the line “~...'.

The receive process handles output diversions of the follow-
ing form: :

“>[>]1[:1file
zero or more lines to be written to file

~

>

In any case, output is diverted (or appended, if “>>' used)
to the file. 1If “:' is used, the diversion is silent, i.e.,
it is written only to the file. If “:' is omitted, output
is written both to the file and to the standard output. The
trailing “7>' terminates the diversion.

The use of “%put requires stty and cat on the remote side.
It also requires that the current erase and kill characters
on the remote system be identical to the current ones on the

local system. Backslashes are inserted at appropriate

FILES

places.

The use of “%$take requires the existence of echo and tee on
the remote system. Also, stty tabs mode is required on the
remote system if tabs are to be copied without expansion.

/dev/cual
/dev/cull
/dev/null

SEE ALSO

dn(4), tty(4)

DIAGNOSTICS

BUGS

Exit code is zero for normal exit, nonzero (various values)
otherwise.

The syntax is unique.

4-12

DATE (1) : XENIX System Reference DATE (1)

NAME
date - print and set the date

SYNTAX
date [yymmddhhmm [.ss]]

DESCRIPTION
If no argument is given, the current date and time are
printed. If an argument is given, the current date is set.
is the last two digits of the year; the first mm is the
month number; dd is the day number in the month; hh is the
hour number (24 hour system); the second mm is the minute
number; .ss is optional and is the seconds. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The year, month and day
may be omitted, the current values being the defaults. The
system operates in GMT. Date takes care of the conversion
to and from local standard and daylight time.

FILES
/usr/adm/wtmp to record time-setting

SEE ALSO
utmp (5)

DIAGNOSTICS
“"No permission' if you aren't the super-user and you try to
change the date; “bad conversion' if the date set is syntac-
tically incorrect.

DCHECK (1M) | XENIX System Reference DCHECK (1M)

NAME
dcheck - file system directory consistency check

SYNOPSIS
dcheck [-i numbers] [filesystem]

DESCRIPTION .
Dcheck reads the directories in a file system and compares
the link-count in each i-node with the number of directory
entries by which it is referenced. 1If the file system is
not specified, a set of default file systems is checked.

The ~-i flag is followed by a list of i-numbers; when one of
those i-numbers turns up in a directory, the number, the i-
number of the directory, and the name of the entry are
reported.

The program is fastest if the raw version of the special
file is used, since the i-~list is read in large chunks.

FILES _ ‘ y ‘ T
Default file systems vary with installation.

SEE ALSO
1check(l), filsys(5), clrl(l), ncheck(l)

DIAGNOSTICS v , , .
When a file turns up for which the link-count and the number
of directory entries disagree, the relevant facts are
reported. Allocated files which have 0 link~-count and no
entries are also listed. The only dangerous situation
occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining
entries point to thin air. They should be removed. When
there are more links than entries, or there is an allocated
file with neither links nor entries, some disk space may be
lost but the situation will not degenerate.

BUGS :
Since dcheck is inherently two-pass in nature, extraneous
diagnostics may be produced if applied to active file sys-
tems.

4-14

DD(1) XENIX System Reference DD(1)

NAME

dd - convert and copy a file
SYNTAX

dd [option=value] ...
DESCRIPTION

Dd copies the spec1f1ed input file to the specified output
with possible conversions. The standard input and output
are used by default. The input and output block size may be
specified to take advantage of raw physical I/O.

option values

if= input file name; standard input is default
of= output file name; standard output is default
ibs=n ' input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n ' set both input and output block size,

supersedlng ibs and obs; also, if no conver-
sion is specified, it is particularly effi-
cient since no copy need be done

cbs=n v conversion buffer size
skip=n skip n input records before starting copy
flles—n copy n files from (tape) input
seek-g seek n records from beginning of output file
before copying
count=n copy only n input records
conv=ascii convert EBCDIC to ASCII
ebcdic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lcase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs

e+ 4, ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A
number may end with k, b or w to specify multiplication by
1024, 512, or 2 respectively; a pair of numbers may be
separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified.
In the former case cbs characters are placed into the
conversion buffer, converted to ASCII, and trailing blanks
trimmed and new-line added before sending the line to the
output. 1In the latter case ASCII characters are read into
the conversion buffer, converted to EBCDIC, and blanks added
' to make up an output record of size cbs.

After completion, dd reports the number of whole and partial
input and output blocks.

4-15

DD(1) ’ XENIX System Reference DD (1)

For example, to read an EBCDIC tape blocked ten 80-byte
EBCDIC card images per record into the ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/0O
on the raw physical devices because it allows reading and
writing in arbitrary record sizes.

To skip over a file béfore copying from magnetic tape do
(dd of=/dev/null; dd of=x) </dev/rmt0

SEE ALSO
cp(l), tr(l)

DIAGNOSTICS .
f+p records in(out): numbers of full and partial records
read(written) ,

NOTES .
The ASCII/EBCDIC conversion tables are taken from the 256
character standard in the CACM Nov, 1968. The “ibm' conver-
sion, while less blessed as a standard, corresponds better
to certain IBM print train conventions. There is no univer-
sal solution.

Newlines are inserted only on conversion to ASCII; padding

is done only on conversion to EBCDIC. These should be
separate options. ‘

4-16

DF (1M) XENIX System Reference DF (1M)

NAME
df - disk free

SYNOPSIS
df [filesystem] ...

DESCRIPTION
Df print$s out the number of free blocks available on the
filesystems. If no file system is specified, the free space
on all of the normally mounted file systems is printed.

FILES
Default file systems vary with installation.

SEE ALSO
icheck (1)

A1

DU (1) XENIX System Reference DU(1)

NAME
du - summarize disk usage

SYNTAX
du [-s] [-a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and
{recursively) directories w1th1n each specified directory or
file name. If name is missing, *.' is used.
The optional argument -s causes only the grand total to be
given. The optional argument -a causes an entry to be gen-
erated for each file. Absence of either causes an entry to
be generated for each directory only.
A file which has twa links to it is only counted once.

NOTES
Non-directories given as arguments (not under ~-a option) are
not listed.

If there are too many distinct linked files, du counts the
excess files multiply,

4-18

DUMP (1M) XENIX System Reference DUMP (1M)

NAME
dump - incremental file system dump

SYNOPSIS
dump [key [argument ...] filesystem]

DESCRIPTION
Dump copies to magnetic tape all files changed after a cer-
tain date in the filesystem. The key specifies the date and
other options about the dump. The key consists of charac-
ters from the set 0123456789fusd.

f Place the dump on the next argument file instead of the
tape.
u If the dump completes successfully, write the date of

the beginning of the dump on file “/etc/ddate'. This
file records a separate date for each filesystem and
each dump level.

0-9 This number is the “dump level'. All files modified
since the last date stored in the file “/etc/ddate' for
the same filesystem at lesser levels will be dumped.

If no date is determined by the level, the beginning of
time is assumed; thus the option 0 causes the entire
filesystem to be dumped

s The size of the dump tape is specified in feet. The
number of feet is taken from the next argument. When
the specified size is reached;, the dump will wait for
reels to be changed. The default size is 2300 feet.

d The density of the tape, expreSsed in BPI, is taken
from the next argument. This is used in calculatlng the
amount of tape used per write. The default is 1600.

If no arguments are given, the key is assumed to be 9u and
the program attempts to dump the default filesystem to the
default tape.

Now a short suggestion on how perform dumps. Start with a
full level 0 dump

dump Ou
Next, periodic level 9 dumps should be made on an exponen-
tial progression of tapes. (Sometimes called Tower of Hanoi
-12131214... tape 1l used every other time, tape 2
used every fourth, tape 3 used every eighth, etc.) :

dump 9u

4-19

DUMP (1M) XENIX System Reference DUMP (1M)

When the level 9 incremental approaches a full tape (about
78000 blocks at 1600 BPI blocked 20), a level 1 dump should
be made.

dump 1lu

After this, the exponential series should progress as unin-
terrupted. These level 9 dumps are based on the level 1
dump which is based on the level 0 full dump. This progres-
sion of levels of dump can be carried as far as desired.

FILES :
Default filesystem and tape vary with installation. For
safety, however, we recommend that default disk filesystems
not be used, as common operator errors can destroy that
default disk.

/etc/ddate: record dump dates of filesystem/level,

SEE ALSO
restor (1), dump(5), dumpdir(l), sddate (1M)

DIAGNOSTICS :
If the dump requires more than one tape, it will ask you to
change tapes. Reply with a new-line when this has been
done. v '

BUGS
Sizes are based on 1600 BPI blocked tape. The raw magtape
device has to be used to approach these densities. Read
errors on the filesystem are ignored. Write errors on the
magtape are usually fatal.

4-.7270

DUMPDIR(1M) XENIX System Reference DUMPDIR (1M)

NAME
dumpdir - print the names of files on a dump tape

SYNOPSIS
dumpdir [£ filename]

DESCRIPTION
Dumpdir is used to read magtapes dumped with the dump com-
mand and list the names and inode numbers of all the files
and directories on the tape.

The £ option causes filename as the name of the tape instead
of the default.

FILES
default tape unit varies with installation
rst*

SEE ALSO ;
dump(l), restor(l)

DIAGNOSTICS
If the dump extends over more than one tape, it may ask you
to change tapes. Reply with a new-line when the next tape
has been mounted.

BUGS
There is redundant information on the tape that could be
used in case of tape reading problems. Unfortunately, dump-
dir doesn't use it.

4-21

FACTOR (1) XENIX System Reference FACTOR (1)

NANE factor, primes -~ factor a number, generate large primes
SYNTAX

factor [number]

primes
DESCRIPTION

When factor is invoked without an argument, it waits for a
number to 5g6typed in. If you type in a positive number
less than 277 (about 7,2el6) it will factor the number and
print its prime factors; each one is printed the proper
number of times. Then it waits for another number. It
exits if it encounters a zero or any non-numeric character.

If factor is invoked with an argument, it factors the number
as above and then exits.

Maximum time to factor is proportional to sgrt(n) and occurs
when n is prime or the sqypgre of a prime. It takes 1 minute
to factor a prime near 10 on a PDP11l.

When primes is invoked, it waits for a number to Bg typed
in. If you type in a positive number less than 2 it will
print all primes greater than or equal to this number.

DIAGNOSTICS ‘
*Ouch.' for input out of range or for garbage input.

4-22

FILE(1l) XENIX System Reference FILE (1)

NAME
file - determine file type

SYNTAX
file filename ...

file -f fileofnames

- DESCRIPTION

File performs a series of tests on each argument in an
attempt to classify it. If an argument appears to be ascii,
file examines the first 512 bytes and tries to guess its
language.

If the first argument is a -f flag, file will take the list
of filenames from the file.

For a.out files, the relationship between flags to cc and
the file classification is:

cc flag classification
i separate
n pure
s not "not stripped"
yA 23fixed :
NOTES

It often makes mistakes. 1In particular it often suggests
that command files are C programs. Also, programs that
begin with comments are described as English text.

FIND(1) XENIX System Reference FIND (1)

NAME
find - find files

SYNTAX ,
find pathname-list expression

DESCRIPTION
Find recursively descends the directory hierarchy for each
pathname in the pathname-list (i.e., one or more pathnames)
seeking files that match a boolean expression written in the
primaries given below. In the descriptions, the argument n
is used as a decimal integer where +n means more than n, -n
means less than n and n means exactly n.

-name filename ,
True if the filename argument matches the current
file name. Normal Shell argument syntax mayq«be
used if escaped (watch out for “[', “?' and “*'),.

-perm onum _
True if the file permission flags exactly match
the octal number onum (see chmod(l)). If onum is
prefixed by a minus sign, more flag bits (017777,
see stat(2)) become significant and the flags are
compared: (flags&onum)==onum.

~-type ¢ True if the type of the file is ¢, where ¢ is b,
c, d or £ for block special file, character spe-
cial file, directory or plain file.

-links n True if the file has n links.

-user uname
True if the file belongs to the user uname (login
name or numeric user ID).

-group gname
True if the file belongs to group gname (group
name or numeric group ID).

-size n True if the file is n blocks long (512 bytes per
block) .

-inum n True if the file has inode number n.
-atime n True if the file has been accessed in n days.

-mtime n True if the file has been modified in n days.
-exec command ,
True if the executed command returns a zero value
as exit status. The end of the command must be

FIND(L1) XENIX System Reference FIND (1)

punctuated by an escaped semicolon. A command
argument “{}' is replaced by the current pathname.

-ok command
Like -exec except that the generated command is
written on the standard output, then the standard
input is read and the command executed only upon
response Y.

-print Always true; causes the current pathname to be
printed.

-newer file
True if the current file has been modified more
recently than the argument file. :

The primaries may be combined using the following operators
(in order of decreasing precedence):

1) A parenthesized group of primaries and operators
(parentheses are special to the Shell and must be
escaped) .

2) The negation of a primary ("!' is the unary not opera-
tor).

3) Concatenation of primaries (the and operation is implied
by the juxtaposition of two primaries).

4) Alternation of primaries (=o' is the or operator).

EXAMPLE N
To remove all files named “a.out' or “*,0' that have not
been accessed for a week:

find / \(-name a.out -o -name '*,0' \) -atime +7 -exec rm

\;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(l), test(l), filsys(5)

NOTES
The syntax is painful.

4-25

FSCK (1M) ‘ XENIX System Reference FSCK (1M)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS . .
fsck [option] ... [filesystem] ...

DESCRIPTION
Fsck audits and interactively repairs inconsistent condi-
tions for the named filesystems. Fsck ignores the “file
system clean' flag in the super block; upon completion fsck
sets “file system clean' (if it was not already set).

If a file system is consistent then the number of files,
number of blocks used, and number of blocks free are
reported. If the file system is inconsistent the operator
is prompted for concurrence before each correction is
attempted. Most corrections lose data; all losses are
reported. The default action for each correction is to wait
for the operator to respond “yes' or “no'. Without write
permission fsck defaults to -n action. ‘

These options are recognized:
-y Assume a yes response to all questions.
-n Assume a no response to all questions.

-sX Ignore the actual free list and (unconditionally) con-
struct a new one by rewriting the super-block of the
file system. The file system should be unmounted while
this is done, or extreme care should be taken that the
system is quiescent and that it is rebooted immediately
afterwards. This precaution is necessary so that the
old, bad, in-~core copy of the superblock will not con-
tinue to be used, or written on the file system.

The free list is created with optimal interleaving
according to the specification X:

-s3 optimal for RPO3

-s4 optimal for RP04, RP05, RPO6

-sc:s space free blocks s blocks apart in
cylinders of c blocks each.

If X is not given, the values used when the filesystem
was created are used. If these values were not speci-
fied, then ¢=400, s=9 is assumed.

-SX Conditionally reconstruct the free list. This option
is like ~sX except that the free list is rebuilt only
if there were no discrepancies discovered in the file
system. It is useful for forcing free list

4426

FSCK (1M) XENIX System Reference FSCK (1M)

reorganization on uncontaminated file systems. -8S
forces =-n. :

-t If fsck cannot obtain enough memory to keep its tables,
it uses a scrapch file. If the -t option is specified,
the file named in the next argument is used as the
scratch file. Without the -t option, fsck prompts if
it needs a scratch file. The file should not be on the
file system being checked, and if it is not a special
file or did not already exist, it is removed when fsck
completes.

If no filesystems are given to fsck then a default list of
file systems is read from the file /etc/checklist.

Inconsistencies checked are as follows:
1. Blocks claimed by more than one inode or the free list.

2. Blocks claimed by an inode or the free list outside the
range of the file system.

3. Incorrect link counts.

4. Size checks:
Incorrect number of blocks in file.
Directory size not a multiple of 16 bytes.

5. Bad inode format.
6. Blocks not accounted for anywhere.

7. Directory checks:
File pointing to unallocated 1node.
Inode number out of range.

8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file sys-
tem. '

9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

Orphaned files and directories (allocated but unreferenced)
are, with the operator's concurrence, reconnected by placing
them in the ““lost+found'' directory. The name assigned is
the inode number. The only restriction is that the directory

“lost+found'' must preexist in the root of the filesystem
being checked and must have empty slots in which entries can
be made. This is accomplished by making "~ “lost+found'',

FSCK (1M) XENIX System Reference FSCK (1M)

copying a number of files to the directory, and then remov-
ing them (before fsck is executed).

Checking the raw device is almost always faster.

FILES
/etc/checklist default list of file systems to check.
lost+found home for orphans

SEE ALSO

dcheck (1), icheck(l), filsys(5), crash(8), mount (1M)
/etc/rc the system startup script which uses fsck heavily.

BUGS , . -
Inode numbers for . and .. in each directory should be
checked for validity.

The -b option of icheck(l) should be available.

4-28

GRAPH (1G) XENIX System Reference GRAPH (1G)

NAME

graph - draw a graph
SYNOPSIS

graph [option] ...
DESCRIPTION

Graph with no options takes pairs of numbers from the stan-
dard input as abscissas and ordinates of a graph. Succes-
sive points are connected by straight lines. The graph is
encoded on the standard output for display by the plot(l)
filters. '

If the coordinates of a point are followed by a nonnumeric
string, that string is printed as a label beginning on the
point. Labels may be surrounded with quotes "...", in which
case they may be empty or contain blanks and numbers; labels
never contain newlines.

The following options are recognized, each as a separate
argument.

-a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument
(default 1). A second optional argument is the start-
ing point for automatic abscissas (default 0 or lower
limit given by -x). .

-b Break (disconnect) the graph after each label in the
input.

-C Character string given by next argument is default
label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with
ticks, 2 full grid (default).

-1 Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0
disconnected, 1 connected (default). Some devices give
distinguishable line styles for other small integers.

-s Save screen, don't erase before plotting.

-x [1]
If 1 is present, x axis is logarithmic. Next 1 (or 2)
arguments are lower (and upper) x limits. Third arqu-
ment, if present, is grid spacing on x axis. Normally
these quantities are determined automatically.

-y [1]

GRAPH (1G) XENIX System Reference § GRAPH (1G)

Similarly for y.
-h Next argument is fraction of space for'height.
-w Similarly for width.

-r Next argument is fraction of space to move right before
plotting.

~-u Similarly to move up'béfore plotting.

-t Transpose horizontal and vertical axes. (Option -x now
applies to the vertical axis.)

A legend indicating grid range is produced with a grid
unless the -s option is present.

If a specified lower limit exceeds the upper limit, the axis
is reversed.

SEE ALSO

BUGS

spline(l), plot(l)

Graph stores all points internally and drops those for which
there isn't room. -

Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

4-30

ICHECK (1M) XENIX System Reference ICHECK (1M)

NAME
icheck - file system storage consistency check

SYNOPSIS
~icheck [-s] [=b numbers] [filesystem]

DESCRIPTION
Icheck examines a file system, builds a bit map of used
blocks, and compares this bit map against the free 1list
maintained on the file system. If the file system is not
specified, a set of default file systems is checked. The
normal output of icheck includes a report of

The total number of files and the numbers of regular,
directory, block special and character special files.

The total number of blocks in use and the numbers of
single-, double-, and triple-indirect blocks and direc-
tory blocks. '

The number of free blocks.

The number of blocks missing; i.e. not in any file nor
in the free list.

The -s option causes icheck to ignore the actual free list
and reconstruct a new one by rewriting the super-block of
the file system. The file system should be dismounted while
this is done; if this is not possible (for example if the
root file system has to be salvaged) care should be taken
that the system is quiescent and that it is rebooted immedi-
ately afterwards so that the o0ld, bad in-core copy of the
super-block will not continue to be used. Notice also that
the words in the super-block which indicate the size of the
free list and of the i-list are believed. If the super-
block has been curdled these words will have to be patched.
The -s option causes the normal output reports to be
suppressed.

Following the -b option is a list of block numbers; whenever
any of the named blocks turns up in a file, a diagnostic is
produced.

Icheck is faster if the raw version of the special file is
used, since it reads the i-list many blocks at a time.

FILES
Default file systems vary with installation.

SEE ALSO
dcheck (1), ncheck(l), filsys(5), clri(l)

4-31

ICHECK (1M) XENIX System Reference ~ ICHECK (1M)

DIAGNOSTICS

BUGS

For duplicate blpcks and bad blocks (which lie outside the
file system) icheck announces the difficulty, the i-number,

and the kind of block involved. If a read error is encoun-

tered, the block number of the bad block is printed and
icheck considers it to contain 0. "Bad freeblock' means

that a block,number outsxde the available space was encoun-

tered in the free list. “n dups in free' means that n
blocks were found in the free list which duplicate blocks
either in some file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous
diagnostics may be produced if applied to active file sys-
tems.

It belleves even preposterous super-blocks and consequently
can get core images.

4-32

IOSTAT (1M) XENIX System Reference IOSTAT (1M)

NAME
iostat - report I/O statistics

SYNOPSIS
iostat [option] ... [interval [count]]

DESCRIPTION
Jostat delves into the system and reports certain statistics
kept about input-output activity. Information is kept about
up to three different disks (RF, RK, RP) and about typewrit-
ers. For each disk, I0 completions and number of words
transferred are counted; for typewriters collectively, the
number of input and output characters are counted. Also,
each sixtieth of a second, the state of each disk is exam-
ined and a tally is made if the disk is active. The tally
goes into one of four categories, depending on whether the
system is executing in user mode, in “nice' (background)
user mode, in system mode, or idle. From all these numbers
and from the known transfer rates of the devices it is pos-
sible to determine information such as the degree of IO
overlap and average seek times for each device.

The optional interval argument causes iostat to report once
each interval seconds. The first report is for all time
since a reboot and each subsequent report is for the last
interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the
number of transfers per minute, the milliseconds per average
seek, and the milliseconds per data transfer exclusive of
seek time. It also gives the percentage of time the system
has spend in each of the four categories mentioned above.

The following options are available:

-t Report the number of characters of terminal IO per
second as well.

-i Report the percentage of time spend in each of the four
categories mentioned above, the percentage of time each
disk was active (seeking or transferring), the percen-
tage of time any disk was active, and the percentage of
time spent in “IO wait:' idle, but with a disk active.

-s Report the raw timing information: 32 numbers indicat-
ing the percentage of time spent in each of the possi-
ble configurations of 4 system states and 8 IO states
(3 disks each active or not).

-b Report on the usage of IO buffers.

33

-
B |

IOSTAT (1M) XENIX System Reference IOSTAT (1M)

FILES
/dev/mem, /xenix

BUGS

This program is very configuration dependent and will have
to be modified by every installation.

2 ‘ 4"'34

JOIN(1) XENIX System Reference JOIN(1)

NAME
join - relational database operator

SYNTAX
join [options] filel file2

DESCRIPTION
Join forms, on the standard output, a join of the two rela-
tions specified by the lines of filel and file2. If filel
is *=', the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating
sequence on the fields on which they are to be joined, nor-
mally the first in each line.

There is one line in the output for each pair of lines in
filel and file2 that have identical join fields. The output
line normally consists of the common field, then the rest of
the line from filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. 1In

this case, multiple separators count as one, and leading
separators are discarded.

These options are recognized:

-an In addition to the normal output, produce a line for
each unpairable line in file n, where n is 1 or 2.

-e s Replace empty output fields by string s.

-jnm
“Join on the mth field of file n. If n is missing, use
the mth field in each file.

-0 list
Each output line comprises the fields specifed in list,
each element of which has the form n.m, where n is a
file number and m is a field number.,

-tc Use character ¢ as a separator (tab character). Every

appearance of ¢ in a line is significant.

SEE ALSO
sort(l), comm(l), awk(1l)

NOTES
With default field separation, the collating sequence is
that of sort -b; with -t, the sequence is that of a plain
sort.

4-35

JOIN(1) XENIX System Reference JOIN(1)

The conventions of join, sort, comm, uniqg, look and awk(1l)
are wildly incongruous.

4-36

LN (1) XENIX System Reference LN(1)

NAME ,
In -~ make a link

SYNTAX
In namel [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same
file (together with its size, all its protection informa-
tion, etc.) may have several links to it. There is no way
to distinguish a link to a file from its original directory
entry; any changes in the file are effective independently
of the name by which the file is known.
Ln creates a link to an existing file namel. If name2 is
given, the link has that name; otherwise it is placed in the
current directory and its name is the last component of
namel. ‘
It is forbidden to link to a directory or to link across
file systems. '

SEE ALSO

rm(l)

LOGIN

(1) XENIX System Reference LOGIN (1)

NAME
login - sign on
SYNTAX
login [username]
DESCRIPTION
The login command is used when a user initially signs on, or
it may be used at any time to change from one user to
another. The latter case is the one summarized above and
described here. See “How to Get Started' for how to dial up
initially.
If login is invoked without an argument, it asks for a user
name, and, if appropriate, a password. Echoing is turned
off (if possible) during the typing of the password, so it
will not appear on the written record of the session.
After a successful login, accounting files are updated and
the user is informed of the existence of .mail and message-
of-the-day files. Login initializes the user and group IDs
and the working directory, then executes a command inter-
preter (usually sh(l)) according to specifications found in
a password file. Argument 0 of the ‘command interpreter is
*-sh.
- Login is recognized by sh(l) and executed directly (without
forking).
FILES
/etc/utmp accounting
/usr/adm/wtmp accounting
/usr/mail/* mail
/etc/motd message-of~the-day
/etc/passwd password file
SEE ALSO : '
init(8), newgrp(l), getty(8), mail(l), passwd(l), passwd(5)
DIAGNOSTICS

“Login incorrect,' if the name or the password is bad.
“No Shell', “cannot open password file', “no directory':
consult a programming counselor. '

4-38

LOOK (1) XENIX System Reference LOOK (1)

NAME
look - find lines in a sorted list

SYNTAX
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin
with string. It uses binary search.
The options 4 and £ affect comparisons as in sort(l):

d “Dictionary' order: only letters, digits, tabs and
blanks participate in comparisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with
collating sequence -df.

FILES
/usr/dict/words

SEE ALSO
sort(l), grep(l)

4-39

LORDER (1) XENIX System Reference LORDER (1)

NAME :
lorder - find ordering relation for an object library
SYNTAX
lorder file ...
DESCRIPTION :
The input is one or more object or library archive (see
ar(l)) files. The standard output is a list of pairs of
object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The
output may be processed by tsort(l) to find an ordering of a
library suitable for one-pass access by 1d(1).
This brash one-liner intends to build a new library from
existing “.0' files.
ar cr library “lorder *.o | tsort"
FILES
*symref, *symdef
nm(l), sed(l), sort(l), join(l)
SEE ALSO
tsort(l), 14(1), ar(l)
NOTES

The names of object files, in and out of libraries, must end
with “.o'; nonsense results otherwise.

MKCONF (1M) XENIX System Reference MKCONF (1M)

NAME

mkconf - generate configuration tables
SYNOPSIS

/sys/conf/mkconf
DESCRIPTION

Mkconf examines a machine configuration table on its stan-
dard 1) input. 1Its output is three files; l.s, c.c and mch0.s.
L.s is an assembler program that represents the interrupt
vectors located in low memory addresses and the device
register addresses. C.c contains initialized block and
character device switch tables, a switch table for line pro-
tocols and declarations of various configuration dependent
and parameterized variables. MchO.s contains conditional
assembly switches which define the tape controller to be
used for system crash dumps.

Input to mkconf is a sequence of lines. The following
describe devices on the machine:

1p (LP1l)
rf (RS11)
tc (TU56)

rk (RK0O3/RK05)

tm (TUl0/TELQ)

rp (RPG3) ‘
hp (RP04/5/6/RM02/3)
ht (TUl6/TELl6)

ts (TS1ll)

rx (RX01/2)

hk (RKO6/7)

rl (RLOL1/2)

dc* (DC1l1l)

kl* (KL1l/DL11-ABC)
dl* (DL1l-E)

dn* (DN11)
dh* (DH11l)
dhdm* (DM11-BB)
du* (DU1ll)
dz* (DZ1l1l)

The devices marked with * may be preceded by a number tel-
ling how many are to be included. The console typewriter is
automatically included; don't count it as part of the KL or
DL specification. Count DN's in units of 4 (1 system unit).

The following lines are also accepted.
root dev minor

The specified block device (e.g. hp) is used for the
root. minor is a decimal number giving the minor

MKCONF (1M) 'XENIX System Reference MKCONF (1M)

device. This line must appear exactly once.

swap dev minor

The specified block device is used for swapping. If
not given the root is used.

pipe dev minor :
The specified block device is used to store pipes. If
not given the root is used.

swplo number

nswap number
Sets the origin (block number) and size of the area
used for swapping. By default, the not very useful
numbers 4000 and 872.

time zone dst
Change the default timezone to be zone. Zone may be
the name of any timezone in the continental U.S. or
the number of minutes westward of Greenwich. Dst
should be 1 if the daylight savings time conversion
should be done.

hertz num .
The 1line clock frequency is set to num Hertz. The
default value is taken from the parameter DHZ in

Earam.g.

nbufs num ' , *
The number of system buffers is set to num. The
default value is taken from the parameter DNBUF in

param.h.
pack Include the packet driver. By default it is 1éft out.

mpx Include the multiplexér driver. By default it is left
out. :

FILES ‘
l.s, c.c, mchO.s output files

SEE ALSO
configure(lm)
Dev1ce driver descrlptlons in sectlon 4.
- "Setting up XENIX', in Volume 2B.

BUGS ,
Because of floating vectors that may have been missed, it is
mandatory to check the l.s file to make sure it corresponds
with reallty.

4-42

MKFS (1M) XENIX System Reference MKFS (1M)

NAME

mkfs - construct a file system
SYNOPSIS

/etc/mkfs special proto [m n]
DESCRIPTION

Mkfs constructs a file system by writing on the special file
special according to the directions found in the prototype
file proto. The prototype file contains tokens separated by
spaces or new lines. The first token is the name of a file
to be copied onto block zero as the bootstrap program, see
bproc(8). The second token is a number specifying the size
of the created file system. Typically it will be the number
of blocks on the device, perhaps diminished by space for
swapping. The next token is the number of i-nodes in the
i-list. The next set of tokens comprise the specification
for the root file. File specifications consist of tokens
giving the mode, the user-id, the group id, and the initial
contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The
first character specifies the type of the file. (The char-
acters -bcd specify regular, block special, character spe-
cial and directory files respectively.) The second character
of the type is either u or - to specify set-user-id mode or
not. The third is g or - for the set-group-id mode. The
rest of the mode is a three digit octal number giving the
owner, group, and other read, write, execute permissions,
see chmod(l). '

Two decimal number tokens come after the mode; they specify
the user and group ID's of the owner of the file.

If the file is a regular file, the next token is a pathname
whence the contents and size are copied.

If the file is a block or character special file, two
decimal number tokens follow which give the major and minor
device numbers. :

If the file is a directory, mkfs makes the entries . and ..
and then reads a list of names and (recursively) file
specifications for the entries in the directory. The scan
is terminated with the token §. :

If the prototype file cannot be opened and its name consists
" of a string of digits, mkfs builds a file system with a sin-
gle empty directory on it. The size of the file system is
the value of proto interpreted as a decimal number. The

number of i-nodes is calculated as a function of the

P

MKFS (1M) XENIX System Reference MKFS (1M)

filsystem size. The boot program is left uninitialized.

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d--777 3 1
usr d4d--777 3 1
sh ---755 3 1 /bin/sh
ken d--755 6 1
$

b0 b--644 3 1 0
c0 c--644 3 1 0
¢ ‘

0
0

SEE ALSO .
filsys(5), dir(5), bproc(8)

BUGS o
There should be some way to specify links.

4-44

MKNOD (1M) XENIX System Reference MKNOD (1M)

NAME .
mknod - build special file

SYNOPSIS
/etc/mknod name [¢] [b] major minor

DESCRIPTION
Mknod makes a special file. The first argument is the name
of the entry. The second is b if the special file is
block-type (disks, tape) or c¢ if it is character-type (other
devices). The last two arguments are numbers specifying the
major device type and the minor device (e.g. unit, drive, or
line number). '
The assignment of major device numbers is specific to each
system. They have to be dug out of the system source file
conf.c. :

SEE ALSO
mknod (2)

¢

4-45

MOUNT (1M) XENIX System Reference MOUNT (1M)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special name [-r]]

/etc/umount special

DESCRIPTION
Mount announces to the system that a removable file system
1s present on the device special. The file name must exist
already; it must be a directory (unless the root of the
mounted file system is not a directory). It becomes the
name of the newly mounted root. The optional last argument
indicates that the file system 1s to be mounted read-only.

Umount announces to the system that the removable file sys-
tem previously mounted on device sgecial is to be removed.
First, any pendlng I/O for the f11e system is completed, and
the file system is flagged clean. Mount will refuse to
mount a file system which is not flagged clean; this can
happen if a system crash prevented the use of umount or
haltszs(B In such a case, use fsck(lM) to clean the file
system, then try mount agaln.

These commands malntaln a table of meunted devices. 1If
invoked without an argument, mount prints the table.

Phy31cally write- protected and magnetlc tape file systems
must be mounted read-only or errors will occur when access
times are updated, whether or not any explicit write is
attempted.

FILES
/etc/mtab: mount table

'SEE ALSO
mount (2), mtab(5)

DIAGNOSTICS
Exit code 0 is returned for a successful mount, 1 for a

failure, 2 for attempting to'moqnt'an unclean structure,

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non- dlrectory makes ‘some
apparently good pathnames invalid.

4-46

NCHECK (1M) XENIX System Reference NCHECK (1M)

NAME ,
ncheck - generate names from i-numbers

SYNOPSIS
ncheck [=i numbers] [-a] [-s] [filesystem]

DESCRIPTION
Ncheck with no argument generates a pathname vs. i-number
list of all files on a set of default file systems. Names
of directory files are followed by “/.'. The -i option
reduces the report to only those files whose i-numbers fol-
low. The -a option allows printing of the names “.' and
“es', which are ordinarily suppressed. The =-s option
reduces the report to special files and files with set-
user-ID mode; it is intended to discover concealed viola-
tions of security policy.

A file system may be specified.

The report is in no useful order, and probably should be
sorted.

SEE ALSO
dcheck (1), icheck(l), sort(l)

DIAGNOSTICS
When the filesystem structure is improper, “??' denotes the
parent' of a parentless f11e and a pathname beglnnlng with
“...' denotes a loop.

4-47

NM (1) XENIX System Reference NM (1)

NAME -
nm - print name list

SYNTAX .
nm [-gnoprucx] [file ..,]

DESCRIPTION , _
Nm prints the name list (symbol table) of each object file
in the argument list. If an argument is an archive, a list-
ing for each object file in the archive will be produced.
If no file is given, the symbols in “a.out' are listed.
Each symbol name is preceded by its value (blanks if unde-
fined) and one of the letters U (undefined), A (absolute), T
(text segment symbol), D (data segment symbol), B (bss seg-
ment symbol), or C (common symbol). If the symbol is local
(non-external) the type letter is in lower case. The output
is sorted alphabetically.
Options are:v
-g Print only global (external) symbols.
-n Sort numerically rather than alphabetically.
-0 Prepend file or archive element name to each output

line rather than only once.
-p Don't sort; print in symbbl—table'drder.
-r Sort in reverse order.
-u Print only undefined symbols.
-C Print only C program symbols (symbols which begin with
‘ ® ') as they appeared in the C program.
-X Symbol values are printed in hexadecimal rather than
octal.

FILES
a.out - Default input file.

SEE ALSO |

ar(l), af(5), a70ut(5)

4-48

PLOT (1G) XENIX System Reference PLOT (1G)

NAME
plot - graphics filters
SYNOPSIS
plot [-Tterminal [raster]]
DESCRIPTION
These commands read plotting instructions (see plot(5)) from
the standard input, and in general produce plotting instruc-
tions suitable for a particular terminal on the standard
output.
If no terminal type is specified, the environment parameter
STERM (see environ(5)) is used. Known terminals are:
4014 Tektronix 4014 storage scope.
450 DASI Hyterm 450 terminal (Diablo mechanism).
300 DASI 300 or GSI terminal (Diablo mechanism).
300S DASI 300S terminal (Diablo mechanism).
ver Versatec D1200A printer-plotter. This version of plot
places a scan-converted image in “/usr/tmp/raster' and
sends the result directly to the plotter device rather
than to the standard output. The optional argument
causes a previously scan-converted file raster to be
sent to the plotter. ,
FILES
/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster
SEE ALSO
plot(3), plot(5)
BUGS

There is no lockout protection for /usr/tmp/raster.

PSTAT (1M) XENIX System Reference PSTAT (1M)

NAME
pstat - print system facts

SYNOPSIS
pstat [-aixptuf] [suboptions] [file]

DESCRIPTION
Pstat interprets the contents of certain system tables. If
file is given, the tables are sought there, otherwise in
/dev/mem. The required namellst is taken from /xenix.
Optlons are

-a Under -p, describe all process slots rather than just
active ones,

-i Print the inode table with the these headings:

LOC The core location of this table entry.

FLAGS Miscellaneous state variables encoded thus:

locked

update time fllszs(S)) must be corrected

access time must be corrected

file system is mounted here

wanted by another process (L flag is on)

contains a text file ;

changed time must be corrected

CNT Number of open file table entries for this inode.

DEV Major and minor device number of file system in which
this inode resides.

INO I-number within the device.

MODE Mode bits, see chmod(2).

NLK Number of links to this inode.

UIlD User ID of owner. :

SIZ/DEV
Number . of bytes in an ordinary flle, or major and
minor device of special file.

OREIPpar

-X Print the text table with these headings:

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
ptrace(2) in effect

text not yet written on swap device
loading in progress

locked

wanted (L flag is on)

€ERpUEAS

DADDR Disk address in swap, measured in multiples of 512
bytes.

CADDR Core address, measured in multiples of 64 bytes.

PSTAT (1M)

SIZE

IPTR

INUM
CNT

CCNT

-p

LOC

PRI

XENIX System Reference PSTAT (1M)

Size of text segment, measured in multiples of 64
bytes.

Core location of corresponding inode.

Inode number of corresponding inode (executable file).
Number of processes using this text segment.

Nuﬁber of processes in core using this text segment.

Print process table for active processes with these
headings:

The core location of this table entry.
Run state encoded thus:

no process

waiting for some event

runnable

being created

being terminated

stopped under trace
Miscellaneous state variables, or-ed together:
01 loaded

02 the scheduler process

AU W O

04 locked
010 swapped out
020 traced

040 used in tracing
0100 locked in by lock(2).
Scheduling priority, see nice(2).

SIGNAL

UibD
TIM
CPU
NI
PGRP

PID
PPID
ADDR

SIZE
WCHAN
LINK
TEXTP

CLKT

Signals received (signals 1-16 coded in bits 0-15),
Real user 1ID. ,

Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.

Nice level, see nice(2).

Process number of root of process group (the opener of
the controlling terminal).

The process ID number.

The process ID of parent process.

If in core, the physical address of the “u-area' of
the process measured in multiples of 64 bytes. If
swapped out, the position in the swap area measured in
multiples of 512 bytes.

Size of process image in multiples of 64 bytes.

Wait channel number of a waiting process.

Link pointer in list of runnable processes.

If text is pure, pointer to location of text table
entry.

Countdown for alarm(2) measured in seconds.

PSTAT (1M) XENIX System Reference PSTAT (1M)

NAME

pstat - print system facts
SYNOPSIS

pstat [—-aixptuf] [suboptions] [file]
DESCRIPTION

Pstat interprets the contents of certain system tables. 1If
file is given, the tables are sought there, otherwise in
/dev/mem. The required namelist is taken from /xenix.
Options are

-a Under -p, describe all process slots rather than just
active ones,

-i Print the inode table with the these headings:

LOC The core location of this table entry,

FLAGS Miscellaneous state variables encoded thus:

locked

update time filsys(5)) must be corrected

access time must be corrected.

file system is mounted here

wanted by another process (L flag is on)

contains a text file

changed time must be corrected

CNT Number of open file table entries for this inode.

DEV Major and minor device number of flle system in which
this inode resides.

INO I-number within the device.

MODE Mode bits, see chmod(2).

NLK Number of links to this inode.

UID User ID of owner.

SIZ/DEV
Number of bytes in an ordinary file, or major and
minor device of special file.

axlExIPCH

-X Print the text table with these headings:

LOC The core location of this table entry.

FLAGS Miscellaneous state variables encoded thus:
T ptrace(2) in effect

text not yet written on swap device

loading in progress

locked :

wanted (L flag is on)

£ R =

DADDR Disk address in swap,tmeasured in multlples of 512
bytes.

CADDR Core address,,méasured in multiples of 64 bytes.

PSTAT (1M)

SIZE

IPTR
INUM
CNT

CCNT

-P

LOC

PRI

XENIX System Reference PSTAT (1M)

Size of text segment, measured in multiples of 64
bytes.

Core location of corresponding inode.

Inode number of corresponding inode (executable file).
Number of processes using this text segment.

Nuﬁber of processes in core using this text segment.

Print process table for active processes with these
headings:

The core location of this table entry.
Run state encoded thus:

no process

waiting for some event

runnable .

being created

being terminated

stopped under trace
Miscellaneous state variables, or-ed together:
01 loaded

02 the scheduler process

04 locked

010 swapped out

020 traced

040 wused in tracing

0100 locked in by lock(2).

Scheduling priority, see nice(2).

UL W O

SIGNAL

UID
TIM
CpPU
NI
PGRP

PID
PPID
ADDR

SIZE
WCHAN
LINK
TEXTP

CLKT

Signals received (signals 1-16 coded in bits 0-15),
Real user 1D,

Time resident in seconds; times over 127 coded as 127.
Weighted integral of CPU time, for scheduler.

Nice level, see n1ce(2)

Process number of root of process group (the opener of
the controlling terminal).

The process ID number.

The process ID of parent process.

If in core, the physical address of the “u-area' of
the process measured in multlples of 64 bytes. 1If
swapped out, the position in the swap area measured in
multiples of 512 bytes.

Size of process image in multiples of 64 bytes.

Wait channel number of a waiting process.

Link pointer in list of runnable processes.

If text is pure, pointer to location of text table
entry.

Countdown for alarm(2) measured in seconds.

===y

PSTAT (1M)

RAW
CAN
ouT
MODE
ADDR
DEL

CoL
STATE

PGRP

-u

LoC
FLG

CNT
INO
OFFS

FILES
/xenix
/dev/m

SEE ALSO

ps(1l),
K. Tho

XENIX System Reférence PSTAT (1M)

Print table for terminals (only DH1l and DL11l handled)
with these headings:

Number of characters in raw input queue.
Number of characters in canonicalized input queue.
Number of characters in putput queue.
See tty(4).
Physical device address.
Number of delimiters (newlines) in canonlcallzed input
queue.
Calculated column p051t10n of terminal.
Miscellaneous state variables encoded thus:
waiting for open to complete :

=

0] open

S has special (output) start routine

C carrier is on

B busy doing output

A process is awaiting output

X open for exclusive use

H hangup on close

Process group for which thlS is controlling terminal.

print information about a user process; the next argu-
ment is its address as given by ps(l). The process
must be in main memory, or the file used can be a core
image and the address 0.

Print the open file tazble with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:

R open -for reading
W open for writing
P pipe

Number of processes that know this open file.
The location of the inode table entry for this file.
The file offset, see lseek(Z).

namelist
em default source of tables

stat(2), filsys(5)
mpson, UNIX Implementation

4-52

QUOT (1M) - XENIX System Reference QUOT (1M)

NAME
quot - summarize file system ownership

SYNOPSIS
quot [option] ... [filesystem]

DESCRIPTION
Quot prints the number of blocks in the named filesystem
- currently owned by each user. If no filesystem is named, a
default name is assumed. The following options are avail-
able: :

-n Cause the pipeline ncheck filesystem | sort +0n | quot
-n filesystem to produce a list of all files and their
owners.

-C Print three columns giving file size in blocks, number
of files of that size, and cumulative total of blocks
in that size or smaller file.

-f Print count of number of files as well as space owned
by each user.

FILES
Default file system varies with system.
/etc/passwd to get user names

SEE ALSO
1s(1l), du(l)

BUGS
‘ Holes in files are counted as if they actually occupied
space. -

~

RESTOR (1M) _ XENIX System,Reference RESTOR (1M)

NAME .
restor - incremental file system restore
SYNOPSIS
restor key [argument ...]
DESCRIPTION

Restor is used to read magtapes dumped with the dump com-
mand. The key specifies what is to be done. Key is one of
the characters rRxt optionally combined with f.

f Use the first argument as the name of the tape instead
of the default.

r or R
The tape is read and loaded into the file system speci-
fied in argument. This should not be done lightly (see
below). TIf the key is R restor asks which tape of a
multi volume set to start on. This allows restor to be
interrupted and then restarted (an icheck ~-s must be
done before restart). ~ o

X Each file on the tape named by an argument is
extracted. The file name has all “mount' prefixes
removed; for example, /usr/bin/lpr is named /bin/lpr on
the tape. The file extracted is placed in a file with
a numeric name supplied by restor (actually the inode
number). In order to keep the amount of tape read to a
minimum, the following procedure is recommended:

Mount volume 1 of the set of dump tapes.
Type the restor command.

Restor will announce whether or not it found the files,
give the number it will name the file, and rewind the
tape.

It then asks you to “mount the desired tape volume'.
Type the number of the volume you choose. On a multi
volume dump the recommended procedure is to mount the
last through the first volume in that order. Restor
checks to see if any of the files requested are on the
mounted tape (or a later tape, thus the reverse order)
and doesn't read through the tape if no files are. If
you are working with a single volume dump or the number
of files being restored is large, respond to the query
with “1' and restor will read the tapes in sequential
order, ; ‘

If yéu‘have a hierarchy to restore you can use dump-
dir (1) to produce the list of names and a shell script

RESTOR(1M) XENIX System Reference RESTOR (1M)

FILES

to move the resulting files to their homes.

t Print the date the tape was written and the date the
filesystem was dumped from.

The r option should only be used to restore a complete dump
tape onto a clear file system or to restore an incremental
dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

is a typical sequence to restore a complete dump. Another
restor can be done to get an incremental dump in on top of
this.

A dump followed by a mkfs and a restor is used to change the
size of a file system. '

default tape unit varies with installation
rst*

SEE ALSO

dump(1l) , mkfs (1), dumpdir (1)

DIAGNOSTICS

BUGS

There are various diagnostics involved with reading the tape
and writing the disk. There are also diagnostics if the i-
list or the free list of the file system is not large enough
to hold the dump.

If the dump extends over more than one tape, it may ask you
to change tapes. Reply with a new-line when the next tape
has been mounted.

There is redundant information on the tape that could be
used in case of tape reading problems. Unfortunately, res-
tor doesn't use it.

SA (1M) XENIX System Reference SA (1M)

NAME
sa, accton - system accounting

SYNOPSIS
sa [-abcijlnrstuv] [file]

/etc/accton [file]

DESCRIPTION :
With an argument naming an existing file, accton causes sys-
tem accounting information for every process executed to be
placed at the end of the file. If no argument is given,
accounting is turned off.

Sa reports on, cleans up, and generally maintains accounting
files. ’

Sa is able to condense the information in /usr/adm/acct into
a summary file /usr/adm/savacct which contains a count of
the number of times each command was called and the time
resources consumed. This condensation is desirable because
on a large system acct can grow by 100 blocks per day. The
summary file is read before the accounting file, so the
reports include all available information.

If a file name is given as the last argument, that file will
be treated as the accounting file; /usr/adm/acct is the
default. There are zillions of options:

a Place all command names containing unprintable charac-
ters and those used only once under the name
“***other.'

E

b Sort output‘by sum of user and system time divided by
number of calls. Default sort is by sum of user and
system times,

c Besides total user, system, and real time for each com-
mand print percentage of total time over all commands.

i Ignore the summary files /usr/adm/savacct and
/usr /adm/usracct; do not include their contents in this
report.

j Instead of total minutes time for each category, give
seconds per call.

1 Separate system and user time; normally they are com-
bined.

m Print number of processes and number of CPU minutes for

each user,

SA (1M) XENIX System Reference SA (1M)

n Sort by number of calls.
r Reverse order of sort.
s Merge accounting file into summary file

/usr/adm/savacct when done.

t For each command report ratio of real time to the sum
of user and system times,

u Superseding all other flags, print for each command in
the accounting file the user ID and command name. ’

v If the next character is a digit n, then type the name
of each command used n times or fewer. Await a reply
from the typewriter; 1f it begins with “y', add the
command to the category “**junk**.' This is used to
strip out garbage. '

(default)
A table of 4 columns is printed: the number of calls,
the total real time, the total combined system and user
time, and the name of the command. The first line in
the table contains the sum of each column.

FILES
/usr/adm/acct raw accounting
/usr/adm/savacct summary
/usr/adm/usracct = per-user summary
SEE ALSO

ac(l), acct(2)

SDDATE (1M) XENIX System Reference SDDATE (1M)

NAME
sddate - print and set dump dates

SYNOPSIS
sddate [name lev date]

DESCRIPTION
If no argument is given, the contents of the dump date file
“/etc/ddate' are printed. The dump date file is maintained
by dump(1lM) and contains the date of the most recent dump
for each dump level for each filesystem.
If arguments are given, an entry is replaced or made in
“/etc/ddate'. name is the last component of the device
pathname. 1lev is the dump level number (from 0 to 9), and
date is a time in the form taken by date(l).
Some sites may wish to backup filesystems by coping them
verbatim to dismountable packs. Sddate could be used to
make a “level 0' entry in “/etc/ddate’, which would then
allow incremental mag tape dumps. ~
For example:

sddate rrp3 5 10081520

makes an “/etc/ddate' entry showing a level 5 dump of
“/dev/rrp3' on October 8, at 3:20 PM.

FILES
/etc/ddate

SEE ALSO
dump (1M) , date(1l)

DIAGNOSTICS

“bad conversion' if the date set is syntéctically incorrect.

SPLINE(1G) XENIX System Reference SPLINE(1G)

NAME
spline - interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as
abcissas and ordinates of a function. It produces a similar
set, which is approximately equally spaced and includes the
input set, on the standard output. The cubic spline output
(R. W. Hamming, Numerical Methods for Scientists and
Engineers, 2nd ed., 349ff) has two continuous derivatives,
and sufficiently many points to look smooth when plotted,
for example by graph(l).

The following options are recognized, each as a separate
argument.

-a Supply abscissas automatically (they are missing from
the input); spacing is given by the next argument, or
is assumed to be 1 if next argument is not a number.

-k The constant k used in the boundary value computation
{2nd deriv. at end) = k*(2nd deriv. next to end)

is set by the next argument. By default k = 0.

. -n Space output points so that approximately n intervals
occur between the lower and upper x limits. (Default
= 100.)

13

-p Make output periodic, i.e. match derivatives at ends.
First and last input values should normally agree.

-X Next 1 (or 2) arguments are lower (and upper) x limits.
Normally these limits are calculated from the data.
Automatic abcissas start at lower limit (default 0).

SEE ALSO
graph(l)

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces
the input without interpolating extra points.

BUGS
A limit of 1000 input points is enforced silently.

STTY (1)

NAME

XENIX System Reference STTY (1)

stty - set terminal options

SYNTAX

stty [option ...]

DESCRIPTION

Stty sets certain I/O options on the current output termi-
nal. With no argument, it reports the current settings of
the options. The option strings are selected from the fol-
lowing set: -

even
-even
odd
-odd
raw

-raw
cooked
cbreak

-cbreak
-nl

nl
echo
-echo
lcase
~lcase
~-tabs
tabs
ek

erase Cc
kill ¢

cr0 crl

nl0 nll

allow even parity

disallow even parity

allow odd parity

disallow odd parity

raw mode input (no erase, kill, interrupt, quit,
EOT; parity bit passed back) '
negate raw mode

same as ~-raw'

make each character available to read(2) as
received; no erase and kill

make characters available to read only when newline
is received

allow carriage return for new-line, and output CR-LF
for carriage return or new-line

accept only new-line to end lines

echo back every character typed

do not echo characters

map upper case to lower case

do not map case

replace tabs by spaces when printing

preserve tabs

reset erase and kill characters back to normal # and
@

set erase character to c. C can be of the form ~"X'
which is interpreted as a “control X'.

set kill character to c. “"X' works here also.

cr2 cr3

select style of delay for carriage return (see
ioctl (2))

nl2 nl3

select style of delay for linefeed

tab0 tabl tab2 tab3

£f£f0 ff1l
bs0 bsl
tty33
tty37

vt05

select style of delay for tab

select -style of delay for form feed

select style of delay for backspace

set all modes suitable for the Teletype Corporation
Model 33 terminal.

set all modes suitable for the Teletype Corporation
Model 37 terminal.

set all modes suitable for Digital Equipment Corp.

STTY (1) XENIX System Reference STTY (1)

VT05 terminal

tn300 set all modes suitable for a General Electric Ter-
miNet 300 '

ti700 set all modes suitable for Texas Instruments 700
series terminal

tek set all modes suitable for Tektronix 4014 terminal
hup hang up dataphone on last close.

-hup do not hang up dataphone on last close.

0 hang up phone line immediately

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb
Set terminal baud rate to the number given, if pos-
sible. (These are the speeds supported by the DH-11
interface).

SEE ALSO
ioctl(2), tabs (1)

SU (1) XENIX System Reference SuU(l)

NAME
su - substitute user id temporarily

SYNTAX
su [userid]

DESCRIPTION
Su demands the password of the specified userid, and if it
is given, changes to that userid and invokes the Shell sh(1l)
without changing the current directory or the user environ-
ment (see environ(5)). The new user ID stays in force until
the Shell exits.
If no userid is specified, “root' is assumed. To remind the
super-user of his responsibilities, the Shell substitutes
“#' for its usual prompt.

SEE ALSO

sh(1l)

SUM(1) XENIX System Reference SUM(1)

NAME
sum - sum and count blocks in a file

SYNTAX
sum file

DESCRIPTION
Sum calculates and prints a l16-bit checksum for the named
file, and also prints the number of blocks in the file. It
is typically used to look for bad spots, or to validate a
file communicated over some transmission line.

SEE ALSO
wc (1)

DIAGNOSTICS

“Read error' is indistinuishable from end of file on most
devices; check the block count.

SYNC (1M) XENIX System Reference SYNC (1M)

NAME
sync - update the super block

SYNOPSIS
sync

DESCRIPTION '
Sync executes the sync system primitive. If the system is
to be stopped, sync must be called to insure file system
integrity. See sync(2) for details.

SEE ALSO

sync(2), update(8)

TABS (1) XENIX System Reference TABS (1)

NAME
tabs - set terminal tabs

SYNTAX
tabs [-n] [terminal]

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various of
the terminal names given in term(7) are recognized; the
default is, however, suitable for most 300 baud terminals.

If the -n flag is present then the left margin is not
indented as is normal.

SEE ALSO
stty(l), term(7)

TAR(1) XENIX System Reference TAR (1)

NAME
tar -~ tape archiver

SYNTAX
tar [key] [name ...]

DESCRIPTION
Tar saves and restores files on magtape. Its actions are
controlled by the key argument. The key is a string of
characters containing at most one function letter and possi-
bly one or more function modifiers. Other arguments to the
command are file or directory names specifying which files
are to be dumped or restored. 1In all cases, appearance of a
directory name refers to the files and (recursively) sub-
directories of that directory.

The function portion of the key is specified by one of the
following letters:

r The named files are written on the end of the tape.
The ¢ function implies this.

p 4 The named files are extracted from the tape. If the
named file matches a directory whose contents had
been written onto the tape, this directory is
(recursively) extracted. The owner, modification
time, and mode are restored (if possible). If no
file argument is given, the entire content of the
tape is extracted. Note that if multiple entries
specifying the same file are on the tape, the last
one overwrites all earlier.

t The names of the specified files are listed each
time they occur on the tape. If no file argument is
given, all of the names on the tape are listed.

u The named files are added to the tape if either they
are not already there or have been modified since
last put on the tape.

c Create a new tape; writing begins on.the beginning
of the tape instead of after the last file. This
command implies r.

The following characters may be used in addition to the
letter which selects the function desired.

Opece,? This modifier selects the drive on which the tape
is mounted. The default is 1.

v Normally tar does its work silently. The v (ver-
bose) joption causes it to type the name of each

4-66

TAR (1)

FILES

/dev/mt?
/tmp/tar*

DIAGNOSTICS

XENIX System Reference . TAR(1)

file it treats preceded by the function letter.
With the t function, v gives more information
about the tape entries than just the name.

causes tar to print the action to be taken fol-

lowed by file name, then wait for user confirma-
tion. If a word beginning with “y' is given, the
action is performed. Any other input means don't
do it.

causes tar to use the next argument as the name of
the archive instead of /dev/mt?. If the name of
the file is "-', tar writes to standard output or
reads from standard input, whichever is appropri-
ate. Thus, tar can be used as the head or tail of
a filter chain Tar can also be used to move
hierarchies with the command :

cd fromdir; tar cf - . | (cd todir; tar xf -)

causes tar to use the next argument as the block-
ing factor for tape records. The default is 1, the
maximum is 20. This option should only be used
with raw magnetic tape archives (See f above).

The block size is determined automatically when
reading tapes (key letters “x' and “t').

tells tar to complain if it cannot resolve all of
the links to the files dumped. If this is not
specified, no error messages are printed.

tells tar to not restore the modification times.
The mod time will be the time of extraction.

causes tar to use the next argument as the size of
a tape volume. The minimum value allowed is 500.
This option is useful when the archive is not
intended for a magnetic tape device, but for some
fixed size device, such as floppy disk (See £
above).

Complaints about bad key characters and tape read/write

errors.

Complaints if enough memory is not available to hold the
link tables.

TAR (1) XENIX System Reference TAR (1)

EXAMPLES
To backup a disk directory tree to tape using raw I/0 and a
blocking factor of 20:
tar cfb /dev/rmtl 20 directory name
To restore the above files from tape to disk:
tar xf /dev/rmtl directory name

SEE ALSO
tp(l), dump(l), restor(l), copy(l), dd(l)

NOTES
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are gocing
to be updated. The current magtape driver cannot backspace
raw magtape. If the archive is on a disk file the b option
should not be used at all, as updating an archive stored in
this manner can destroy it.
The current limit on file name length is 100 characters.

TP(1l) XENIX System Reference v TP (1)

NAME ,
tp - manipulate tape archive

SYNTAX :
tp [key 1 [name ...]

DESCRIPTION
Tp saves and restores files on DECtape or magtape. Its
actions are controlled by the key argument. The key is a
string of characters containing at most one function letter
and possibly one or more function modifiers. Other argu-
ments to the command are file or directory names specifying
which files are to be dumped, restored, or listed. 1In all
cases, appearance of a directory name refers to the files
and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the
following letters:

r The named files are written on the tape. If files
with the same names already exist, they are
replaced. “Same' is determined by string com-
parison, so “./abc' can never be the same as
“/usr/dmr/abc' even if “/usr/dmr' is the current
directory. If no file argument is given, ~.' is the
default.

u updates the tape. u is like r, but a file is
replaced only if its modification date is later than
the date stored on the tape; that is to say, if it
has changed since it was dumped. u is the default
command if none is given.

d- deletes the named files from the tape. At least one
name argument must be given. This function is not
permitted on magtapes.

X extracts the named files from the tape to the file
system. The owner and mode are restored. If no
file argument is given, the entire contents of the
tape are extracted. :

t lists the names of the specified files. If no file
argument is given, the entire contents of the tape
is listed.

The following characters may be used in addition to the
letter which selects the function desired.

m Specifies magtape as opposed to DECtape.

O0secer? This modifier selects the drive on which the tape

TP (1) XENIX System Reference TP (1)

is mounted. For DECtape, x is default; for
magtape “0' is the default.

v Normally tp does its work silently. The v (ver-
bose) option causes it to type the name of each
file it treats preceded by the function letter.
With the t function, v gives more information
about the tape entries than just the name.

c means a fresh dump is being created; the tape
directory is cleared before beginning. Usable
only with r and u. This option is assumed with
magtape since it is impossible to selectively
overwrite magtape.

i Errors reading and writing the tape are noted, but
no action is taken. Normally, errors cause a
return to the command level.

£ Use the first named file, rather than a tape, as
the archive. This option is known to work only
with x.

w causes tp to pause before treating each file, type

the indicative letter and the file name (as with
v) and await the user's response. Response y
means "yes', so the file is treated. Null
response means "no', and the file does not take
part in whatever is being done. Response x means

“exit'; the tp command terminates immediately. In
the x function, files previously asked about have
been extracted already. With r, u, and d no
change has been made to the tape.

FILES
/dev/tap?
/dev/mt?

SEE ALSO
ar(l), tar(l)

DIAGNOSTICS
Several; the non-obvious one is “Phase error', which means
the file changed after it was selected for dumplng but
before it was dumped

NOTES
A single file with several llnks to it is treated like

several files.

Binary-coded COntrol information makes magnetic tapes writ-
ten by tp difficult to carry to other machines; tar(1l)

TP (1) XENIX System Reference . TP(1)

avoids the problem.

TTY (1) XENIX System Reference TTY (1)

NAME
tty - get terminal name

SYNTAX
tty

DESCRIPTION
Tty prints the pathname of the user's terminal.

DIAGNOSTICS
“not a tty' if the standard input file is not a terminal.

UUCP (1C) XENIX System Reference UUCP (1C)

NAME
uucp, uulog - unix to unix copy

SYNOPSIS
uucp [option] ... source-file ... destination-file
uulog [option] ...

DESCRIPTION

Uucp copies files named by the source-file arguments to the
destination-file argument. A file name may be a path name
on your machine, or may have the form

system-name !pathname

where “system-name' is taken from a list of system names
which uucp knows about. Shell metacharacters ?*[] appearing
in the pathname part will be expanded on the appropriate
system.

Pathnames may be one of

(1) a full pathname;

(2) a pathname preceded by “user; where user is a userid on
the specified system and is replaced by that user's
login directory;

(3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system

the copy will fail. If the destination-file is a directory,

the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission
and gives 0666 read and write permissions (see chmod(2)).

The following options are interpreted by uucp.
~-d Make all necessary directories for the file copy.

-C Use the source file when copying out rather than copy-
ing the file to the spool directory.

-m Send mail to the requester when the copy is complete.

Uulog maintains a summary log of uucp and uux(l) transac-
tions in the file “/usr/spool/uucp/LOGFILE' by gathering
information from partial log files named
~/usr/spool/uucp/LOG.*.?'. It removes the partial log
files.

UUCP (1C) XENIX System Reference UUCP (1C)

FILES

The options cause uulog to print logging information:

-ssys
Print information about work involving system sys.
-uuser
Print information about work done for the specified
user.

/usr/spool/uucp - spool directory
/usr/lib/uucp/* - other data and program files

SEE ALSO

uux(l), mail(l)
D. A. Nowitz, Uucp Implementation Description

WARNING

BUGS

The domain of remotely accessible files can (and for obvious
security reasons, usually should) be severely restricted.
You will very likely not be able to fetch files by pathname;
ask a responsible person on the remote system to send them
to you. For the same reasons you will probably not be able
to send files to arbitrary pathnames.

All files received by uucp will be owned by uucp.

The -m option will only work sending files or receiving a
single file. (Receiving multiple files specified by special
shell characters ?*[] will not activate the -m option.)

4-74

Uux (1C) XENIX System Reference UuUX (1C)

uux - unix to unix command execution

SYNOPSIS

uux [-] command-string

DESCRIPTION

Uux will_gather 0 or more files from various systems, exe-
cute a command on a specified system and send standard out-
put to a file on a specified system.

The command-string is made up of one or more arguments that
look like a shell command line, except that the command and
file names may be prefixed by system-name!. A null system-
name is interpreted as the local system.

File names may be one of
(1) a full pathname;
(2) a pathname preceded by “xxx; where xxx is a userid
on the specified system and is replaced by that user's
login directory;

(3) anything else is prefixed by the current directory.

The “-' option will cause the standard input to the uux com-
mand to be the standard input to the command-string.

For example, the command

uux "!4iff usg!/usr/dan/fl pwba!/a4/dan/fl > 1fi.diff"
will get the fl files from the usg and pwba machines, exe-
cute a diff command and put the results in fl.diff in the

local directory.

Any special shell characters such as <>;| should be quoted
either by quoting the entire command-string, or quoting the
special characters as individual arguments.

/usr/uucp/spool - spool directory
/usr/uucp/* - other data and programs

SEE ALSO

uucp (1)
D. A. Nowitz, Uucp implementation description

WARNING

An installation may, and for security reasons generally
will, limit the list of commands executable on behalf of an

UUX (1C) XENIX System Reference UUX (1C)

BUGS

incoming request from uux. Typically, a restricted site will
permit little other than the receipt of mail via uux.

Only the first command of a shell pipeline may have a
system-name!. All other commands are executed on the system
of the first command.

The use of the shell metacharacter * will probably not do
what you want it to do.

The shell tokens << and >> are not implemented.

There is no notification of denial of execution on the
remote machine.

WALL (1M) XENIX System Reference WALL (1M)

NAME
wall - write to all users

SYNOPSIS
/etc/wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then

sends this message, preceded by “Broadcast Message ...', to
all logged in users.

The sender should be super-user to override any protections
the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesg(l), write(l)

DIAGNOSTICS

“Cannot send to ...' when the open on a user's tty file
fails.

XSEND, XGET XENIX System Reference XSEND, XGET

NAME
xsend, xget, enroll - secret mail

SYNTAX
xsend person
Xget
enroll

DESCRIPTION
These commands implement a secure communication channel; it
is like mail (1), but no one can read the messages except the
intended recipient. The method embodies a public-key cryp-
tosystem using knapsacks.

To receive messages, use enroll; it asks you for a password
that you must subsequently quote in order to receive secret
mail.

To receive secret mail, use xget. It asks for your pass-
word, then gives you the messages.

To send secret mail, use xsend in the same manner as the
ordinary mail command. (However, it will accept only one
target). A message announcing the receipt of secret mail is
also sent by ordinary mail.

FILES
/usr/spool/secretmail/*.key: keys
/usr/spool/secretmail/*. [0-9]: messages

SEE ALSO
mail (1)

NOTES
It should be integrated with ordinary mail. The announce-
ment of secret mail makes traffic analysis possible.

XENIX

APPENDIX A:

Device Driver Routines

Included here are two device driver routinesy for disk and
tape respectivelyy as described in Chapter 3. Keep In mind
that these are intended solely 3as examples of device driver
routines; much of the material may not be applicabte to a
specific machine,

XENTX

Adl Prototype disk driver

Wwhat follows is a sample disk driver. It does not represent
any particular driver but demonstrates features common to
most cisk driverss. The driver is intended for a controller
supporting nultiptle large drives suitable for a
root/swap/usr tilesysters The driver currently assumes that
the controller is intefliaent enough to perform seeks when
requiredes If this is not the casey an array for current
cylinder atdress «ould have to be added.

The tugical device addressing is set up so that the low-
oruer three ©bits specify a psuedo-drive numbere. The
psuedo-drives partition the disk intc convenient sijzed
chunks that allcw multiple filesystems on the diske For the
exact flayout of the psuedo~drives see the definition of
bd_sizes helowe The remainder of the minor number specifies
the physical drive number,

*/

finclfude "e.o/h/garamsh™ /¢ SYSTEM PARAMTERS #%/

#include "eo/h/systmeh® /% SYSTEM VAKIABLES #/

#include “.o/h/bufeh™ /* BUFFER STRUCTURE #*/

#include ".o/h/0cir.h" /% DIRECTORY STRUCTURE =#/
ginclude ".e/h/conf.h" /% CONFIGURATICN TABLE FORMATS */
#include "../h/usar.h" /% USER STRUCTURE #/

/% LAYOUT OF DEVICF REGISTERS */
/* DEVICE DEPENDENT */

struct device {

int bdds; /% CRIVE STATUS */
int bder; /% ERROK REGISTER #*/
int bdcss /% COMMAND & STATUS %/
int bdbdbc; /% BYTE COUNT %/
caddr_t bdbaj; /% BUS ADDRESS #%/
int bdcaj; /% CYLINDER ACORESS #/
int bddas /% DISK ADDRESS (HEAD+SECTOR) */
char bdea;) /* FOR EXTENDED ADDRESSING #*/
Y
/¢ DEVICE DEPENDENT #*/
#define BUADDR ((struct device *} 00) /¢ DEVICE REGISTER ADDRESS #/
/* DEFINITIONS OF BDCS BITS */
/* UEVICE DEPENCENT */

XENIX

#oefine GO 0000001 /% EXECUTE COFMMAND #/

#aoetine RESET 0000000 /% RESET CONTROLLER #/
#define SKCMD 0000006 /% SEEK COMMAND */
#define RDCMD 0000004 /% READ COMMAND ¢/
#define WICMD aun0o002 /* WRITE COMMAND ¢/
#define [ENABLE 0000100 /% INTERRUPT ENABLE */
tdefine READY 6000200 /% CONTROLLER READY #/
#define ERR 0100000 /% ERROR %/

/% DEFINITION OF BDDS BITS */

/* CEVICE DEPENCFENT */

#define SKCMPL 0000100 /% SEEK COMPLETED #/
#detine SPL() spls() /* CEVICE PRIORITY LEVEL */

/% DEVICE PARAMETERS #*/
/% DEVICE DEPENDENT */

#define NBO 4 /* NUMBER OF DRIVES */

#define NCYL 150 /* NUMBER OF CYLINDERS ¢/

#define NBPC 100 /% NUMBER OF BLCOCKS PER CYLINDER #/
#define NSPT 10 /* NUMBER OF SECTORS PER TRACK #/

#define ROOTSZ ((4999/NBPC)+1) /# SIZE OF ROCT FILSYS AREA (IN CLYINDERS) */
#define SWAPSZ ((1G99/NRPC)I+1) /% SIZE OF SWAP AREA (IN CYLINDERS) #/
#oefine USROFS (ROCTSZ+SWAPSZ) /% REGINNING CF USR AREA (IN CYLINDERS) ¢/
#define USERSZ (NCYL-USRCFS) /% SIZE OF USER FILSYS AREA (IN CYLINDERS) #/
#define NCYL2 (NCYL/2)

/% TABLE OF PSUEDO-DISK SIZES #*/

struct {
daddr _t nblocks;- /* NUMBER OF BLOCKS IN PARTITION */
int cyloff; /% OFFSET TO PARTITION IN CYLINDERS */

} bd_sizes(81 = (/% NUMBER OF PARTITIDONS ON DEVICE #/
NCYL#NBPC, Oy /% CYL O THRU END OF DISK */
ROOTSZ*NBPCo Oy /% ROOT AREA (ABOUT 5000 BLOCKS) */
SWAPSZ*NBPC, RONTSZ, /% SWAP AREA (ABQUT 2000 BLOCKS) */
USERSZ*NBPC USRQOFSs /% USR AREA (REST OF DISK) */
Oy 0y : /% SPARE L ¥4
O Oy /% SPARE */
NCYL2#*NBPC, 0y /% FIRST HALF OF THE DISK +)
NCYL2#NBPC, NCYL2y /% LAST HALF CF THE DISK */

35

/* STRUCTURES USED */

struct buf bdtab3 /% START OF BUFFER QUEUE #/

struct buf rbdbuf; /% USED FOR RAW 170 %/

YFNIX

/%
¥ MONITORING GEVICE NUMBER

*/
#define UK_N 0

/%

¥ Strateqy Routine:

% Arquments:

® Pointer to buffer structure
L Function:

% Check validity of request

¥ Queue the request

¥ Start—-up the device if idle
%

*/

bastrategylbp)

register struct but *bp; /% POINTER YO BUFFER STRUCTURE #*/
{
register struct but *dp;
register int unit; /% UNIT NUPFBER */
fong sz;
unit = minor(bp->b_dev); /% CCMPUTE PARTITION DESIRED #/
sz = bp=->b_bcount; /% CCMPUTE NUMBER OF CHARACTERS #/

s2 = (sz2+BMASK)IDDBSFHIFT;

if funit >= (NBDNKLK3) 33} /* CHECK FOR DEV/BLK OUT OF RANGE %/

bp->b_bilkno+sz >= bd_sizes{unitE07l.nblocks) {
if (bo->h_tlags & B_READ E£E unit < (NBD<K3))

bp~>b_resid = bp->b_counti /¢ CHECK FOR EQOF #/

else
bp->b_flags i= B_ERROR; /% SET ERROR BIT »/
iodaone(op); /% LET OTHERS KNOW IT IS FREE ®/
return;
}
bp->av_forw = NULL; /* TAKE OFF FREE LIST */

/* Here we add the buffer to the queue of requests; lock out
interrupts white wupdating queue pointers; and start the
device if it is not active. Reguests are sorted by cylinder
number by the routine ‘disksort'e This will minimize seek
time and make the [/0 more efficiente The ftield ‘b_cylin®
is not in the buf.h structure of V2,2A of XENIX. It will be
in all subsequent XENIX retleases, To compensate for ts
omissions simply remove the comrent delimiters from the
following statement.

*/

XENTX

/*4detine o_cylin b_resid ¢/ /% DEPENDS ON VERSION NUMBER #/
ho=>b_cylin = b_blkno/NBPC+(bd_sizeslunit]lE07) /* CYLINDER NUMBER %/
dp = Lbotab /* SET DEVICE POINTER TG BUFFER */
unit = SPLO); . /% LOCK QUT INTERRUPTYS #/
disksort{dps,bp) /* SORT REQUESTS #/
if (dp->b_active == NULL) /* START UP THE DEVICE #*/

bdstartl);
spixtunit); /% ALLGW INTERRUPTS #/

}

/%

* Startup Routine:

* Arquments:

& None

% Function:

* Compute device degendent paramreters

* Start-up device

* Indicate request to I/0 monitor routines
*/

bdstart()

{
register struct huf #bp; /7% BUFFER POINTER #/
register int unit; /7% MINOR DEVICE NUMBER #/
int cmdscnystnysnsdn; /7% 1/0 PARAMETERS ¢/
daddr_t bn; /% DISK ADDRESS OF BUFFER #/
if ((bp = bdtab.b_actf) == NULL) /% QUEUE IS EMPTY #/

return;
bdtabesb_active+s+; /¢ ACTIVATE DEVICE */

/%

. Compute parameters for device registers:
* dn=drive numbery,

* tn=block numrbery,

* cn=cylinder number

* tn=track number,

* sn=sectar number,

* cmd=ccmmande.

*/

unit = minor{bp->b_cevl);
dn = unit>>3; ’

bn = bp->b_blknoj
cn = bn->b_cylin;
sn = bnZ(NBPC);
tn = sn/INSPT);
sn = snZ(NSPT);

cmd = [ENABLE | GO;
it (bp->b_flags & B_READ) /7% 1IF IYS A READ ¢/
cmd {= RDCMC; else /% SET CMD = READ #/

YENIX

cmd (= WYCMC; /¢
/%
Wwrite to device registers
*/
out{LBEDADDR->bdcay cn); } /7% CYLINDER ADDRESS &/
out (LBOADDR->bddas (tn<<4) | sn); /% DISK ADDRESS ¢/
out(EBDADDR->bdbay Etp=-D>b_un.b_acdr); /% BUS ADDRESS o/
out{ELBDADDR~>bdeay bp->xmeml); /¢ HIGH. ORDER CORE ADDRESS #*/
out{&LEDADDR->bdbcs tp=>b_bcount); /% BYTE COUNT #/
out (EBRDADNR~->hdcss (dn<<8) ! cmd); /% CCMMAND AND STATUS &/
/%
* THIS SECTION OF CODE IS OPTICNAL FOR PERFORMANCE MONITORING ROUTINES.
*
* Set up i/0 monitor routines
*/
#ifdef DK_N
dk_busy {= 1<<DK_Nj;
ok_numb{DK_N] += 1;
unit = bp=>b_bcountd>6;
dk_wds[CK_N] ¢= unit;
¥endit
}
/% :
* Interrupt routineas
* Check completion status) :
* Indicate completion to i/0 monitor routines
* Log errors } .
* Re-start (on error) or start next request
*/
bdintr()
{
register struct but *bo;}
it (hotab.b_active == 0) /¢ IGCNDRE SPURIQUS INTRPT #/
return;
#itdef DK_N ;
: dk_busy &= (1<<DK_N);
#enaif

(bp = bdtab.b_actf);

bdtabeb_active = 0;

it (in{EBDADDR->hdcs) & ERR) {
deverror(bps

bdstart();
return;

ELSE CMD= WRITE */

/* error bit */

in{ERDADDR=->bder)y in(EBDADDR->bdds))}
out (EBDADDR->bdcsy RESETIGD);
if (++bdtabe.b_errcnt <= 10) {

XENTX

bp->b_flags {= B_ERROR;
}
/¥
% Flaj current request corpletey, start next one
%/
bdtab.b_errcnt = 0;
bdtabe.b_actf = bo=-dav_forw;
bp=->b_resiad = 0;
iodonelhp);
bistart();

raw read routines
This routine calls *physio®' which computes and validates a physical
address trom the current logical address,

Arquments
Full Device Numbter
Functions:
Catl physio which do the actual raw (physical) 1/0
The arguments to physioc are:
pointer to the strategy routine
buffer for raw [/0
device
reac/write flag

L K K S BE B SR B BB B R K R

~

bdread(dev)

{
pnysltotbdstrateqys Erbdbufs devs B_READ);
}
/*
* Raw write routine:
* Arguments{(to bdwrite):
* Futl Device Number
* Functions:
* Call physio which will perform the actual raw (physlical) [/0
»
L The routine ‘physlc' computes and validates a physical
* address from the current logical address,
*
* The arquments to physio are:
* pointer to the strategy routine
» bufter for raw 1/0
* devicse
* read/write flag
*
*/

YENIX

bdwritel{dev)
(

physiolbdstrateqys E&rbdbufs dev, B_WRITE);

As2 Prototype tape driver

This is a nrototype of a3 magnetic tape ariver., The logical
addressing is set wup so that the 0200 bit of the minor
nurber indicates that the device should not be rewound on
closea The 01CO bit Is used to indicate high-density., The
remaining bits of the minor device number are used to
adoress the physical drive number. Some of these bits could
also be used to address a tape controller, The driver s
set up so that commands to the drive are sent through a
special buffer headers Provisions are made to interlock
when required,

$/

finclude ".o/h/param.h" /% SYSTEM PARAMETERS #/
#include "../h/tuf.h” /% BUFFER STRUCTURE ¥/

¥include ",./h/dir.h" . /7% DIRECTORY STRUCTURE #/
finclude "../h/cont.h" /% BLOCK DEVICE DECLARATIONS #*/
#include "Jo/h/filesh® /¢ FILE STRUCTURE #/

#ginctude "../h/user.h" /* USER STRUCTURE ¢/

/% STRUCTURE OF DEVICE REGISTERS #/
/% DEVICE DEPENDENT &/

struct device

int btds; /* CRIVE STATUS &/

int btcs; /4 CCMMAND & STATUS */
int btbes /% BYTE/RECORC COUNT ¢/
caddr t btha; /% BUS ADURESS #/

char bteaj /% EXTENDED ACDRESSING &/

/¢ DEVICE DEPENDENT @/

#define BTAUDR ((struct device *)00) /#» ADDRESS OF DEVICE REGISTERS s/
fcdefine SPL{) spl5() /7% INTERRUPT LEVEL OF DEVICE ¢/

A DEFINITIONS OF BITS IN BTCS */
/¢ DEVICE DEPENDENT %/

#defijne GO c000001
#define RCOM 0000002 /% READ CMD */
#define WCOM 0000004 /% WRITE CMD %/

A-8

Magefine
tdefine
#define
g#cefine
#define
#cefine
#define
#define
#define
#deftine
4define

#define
#detine
#detine
#oefine
#tdefine

struct
struct
struct

#define

char
daddr_t
daddr_t
int

Bdefine
¥gefine
#define

#define
#detine
#detfine

XENIX

wEOF 0000006 /% WRITE END CF FILE #/
SFORW 0000010 /% SPACE FORWARD CMD #*/
SREV 0000012 /% SPACE REVERSE CMD #/
WIRG C000014 /% WRITE INTER-RECORD-GAP */
REW 0000016 /% REWIND CMD ¢/

NOP 0000200 /% NO OPERATICN */
TENABLE 0000100 /% INTERRUPT ENABLE */
CRDY 0000200 /% CONTROLLER READY #/
DENS16 GO040000 /% 1600 BPI */

DENSS8 000000Q0 /% 800 BPI */

ERR 0100000 /% ERRQOR #/

/* DEFINITIONS OF BITS IN BYDS #/
/% DEVICF DEPENDENT #/

TUR 0000001 ' /% TAPE UNIT READY #/

Wi 0000074 /% WRITE LOCKED */

RLE 0001000 /% RECORD LENGTH ERRQOR #/

EQF 0040000 /% END CF FILE #/

HAKD 0102200 /* HARD ERROR BITS: ILCy EOT #/

/* LOCAL STRUCTURES USED %/

buf bttabs /% HEAD OF REQUEST QUEUE */

buf rotbuf; /* BUFFER FOR RAW I/0 REQUESTS */
buf cbtbuf; /% COMMAND BUFFER */ .
NBT 4 /* NUMBER OF DRIVES #/

/% THE FNLLOWING ARRAYS ARE EACH COMPRISED OF 4
ELEMENTSy ONE FOR FACH POTENTIAL DRIVE #/

t_flagsINBT]; " /% PER-DEVICE FLAGS #*/
t_bikno[NBT}; /% ADDRESS OF BLOCK #*/
t_nxrecINBTI1; /% ADDRESS OF NEXT RECORD */
t_dens [NBTI]; /¢ TAPE DENSITY #/

/% DEFINITIONS OF DQIVER STATES */

SSEEK 1 /% EXECUTING SPACING COMMAND &/
SIO 2 /% EXECUTING I/0 COMMAND #/
SCOM 3 /% EXECUTING CCMMAND BUFFER %/

/% DEFINITIONS OF FLAG BITS #/

T_WROTE 1 /% UNIT HAS BEEN WRITTEN ON #*/
T_OPEN 2 /% UNIT 1S QOPEN */
T_ERR 4 /% UNIT HAS HAD HARD ERROR #/

l XENIX

Open Routine
Arqgquments:
Deviaoe number
Read’write flag
Functions?
Check unit number
[nsure one open per unit
Setup the device parameters

LR R R - B - RN

/

htopen(devy flag)

{
reqgister unity ds;
unit = minor(dev) & 0773 /% CALCULATE UNIT NUMBER %/
if (unit >= NBT 37 t_flagslunit]}eT_OPEN) { /% VALID UNIT 27 #/
veu_error = ENXIO;
return;
}
t_blknoflunit] = 0; /% SET BLOCK NUMBER TO ZERO #/
t_nxreclunit]l = 1000000L; /¢ SET SEEKING RANGE #/
t_dens{unit] = minor(dev)£0100? DENS16: DENSS; /¢ DENSITY ¢/
bttabe.b_flags = B_TAPE; /% THIS IS A MAGTAPE %/
ds = tcommand(devy NOP); /7% DETERMINE DRIVE STATUS &/
if ((ds&TUR)==0) (/% 1F DRIVE IS NOT READY %/
printf("mt%Zd off tineOyunit);
ueu_error = ENXIO;
} B
iIf (flag €& dsEWL) { /% CHECK WRITE PROTECTION #*/
printf(®mtXd needs write ringCsunit);
Ueu_error = ENXIO;
3
if (ueu_error==0) /% IF NO ERRCRs OPEN UNIT #*/
t_flagslunitl = T_OPEN; /% SET FLAG */
} .
1¢
* Close Rgutine
* Argumengs:
* Device number
* Flag
* Functions:
¥ If writings write end ot tape
* If a rewind devicey rewind and
* allow opens
*/

btclosel(devy flag)
dev_t dev;

A-10

XENIX

int tlaq;

{

if { ftlag == FWRITF !

((t1agEFWRITE) €& (t_flagsiminor{dev)EQ771ET_WROTE))) (
tcommand{deve WEOF); /7% WRITE END OF TAPE MARK ¢/
tcommand(devy WEOF);
tcommand{devy SREV); /¢ SPACE TO BETWEEN EQOFs #*/

} .

if ({(minor(dev)£&020C) == Q) /7% 1S TAPE IS TO BE REWOUND ¢y
tcommand{devs REW)S /% YESs REWIND TAPE @®/

t_flagsiminortdevYL 0771 = 0; /% CLEAR OUT FLAG BITS #;

}
/®
* Command Routine
. Arquments:
* Device number
* Device command
* Functions:
L Wailt unitl device quiescent
* Send requested cormand to device
./
tcommand{devy cmd)
{

register struct buf #*bp;

register ps;

bp = ELcbtbuf; /% ASSIGN COMMANDC BUFFER #/

ps = SPLU); /% LOCK QUT INTERRUPTS #/

while (bp=>b_flags&B_BUSY) (/% WHILE COMMAND BUFFER IS BUSY #7
bp=>b_flags {= B_WANTED; /% INDICATE IT'S WANTED #/
sleep{{caddr_t)bps PRIBIO); /¢ SLEEP UNTIL READY &/

}

bp->b_flags = B_BUSY{B_KLAD; /% INCICATE IT IS BUSY READING#*/

spix{ps); /% ALLOW INTERRUPTS #/

bp->b_dev = dev; /¢ SET DEVICE TO COMMAND BUFFER 8/

bp->b_resid = cmd} /% SET COMMAND #/

bp->b_blkno = 0} /* SET BLOCK NUMBER ®/

btstrategy(bp); /7% CALL STRATEGY ROUTINE #/

lowalttbp); /% WAIT UNTIL 1/0 IS DONE */

if (bp=>b_flagst&B_WANTED) { /% 1F DEVICE IS WANTED #*/
bp~>b_flags& = (B_WANTEDIB_BUSY)
wakeup(lcaddr_t)bp); /% WAKEUP &/

}

return{bp->b_resid}; /¥ RETURN DRIVYE STATUS #*/

) i
/%
* Strategy Routine: Entry point to driver proper

XENTX

Argquments:
Pointer to Buffer
Functions: i
Yueue Requests

*+ O o %

/

btstrateay(op)
reaqister struct buf #*bp;

{
reqister daddr_t %o; }
register unit; /% UNIT NUMBER ¢/
it (vp '= &chtbuf) { /* IF NOT A COMMAND ¢/
unit = minor{bp=->b_dev)E077; /*%* GET MINOR DEVICE NUMBER #/
p = &Lt_nxreclunitl; /% MAXIMUM RECORD NUMBER ¢/
if (#p <= bp->b_bikno) { /* RANGE CHECKING */

If (*p < bp->b_bikno) {/% OUT OF RANGE ¢/
bp->b_flags i= R_ERROR; /% SET ERROR #/
todonel(bp); /% INDICATE COMPLETION ¢/
return;

}

it (bp=>b_flagseB_READ) (/* IF READING */
clrbut{bp); /* CLEAR BUFFER %/
bp=->b_resid = 0; /% CLEAR COMMAND */
iodone({bp}; /% INDICATE COMPLETION &/
return; /* RETURN %/

} :

}) :
it ((bp=>b_tlagsE&B_READ) == 0) (/% IF 1T 1S A WRITE &/
t_flagslunit] = T_WRCYE; /% SET FLAG %/

#p = bp=>b_blkno+l; /% NEW MAX. RECORD #/

) .
}
bp->av_forw = 0}
unit = SPL(); : /% IGNORE INTERRUPTS #/
it (bttabeb_actf == NULL) /* QUEUE REQUEST *»/
bttabe.b_actt = bp;
else
bttab.b_acti=-Dav_forw = bp;
bttabe.b_actl = bp;
It (bttab.b_active == 0) /% IF DEVICE NOT ACTIVE ¢/
btstartt); /% START DEVICE %/
spix(unit); /% ALLOW INTERRUPTS #/
>
/*
* Startup Routine: Initiate a request
* Arguments?
* None
* Functions:

A-12

XENIX

* If butfer ptr is command buf, execute command
% else execute read/write
*/
btstart()
{
reqgister struct buf #*bp; /% POINTER TO BUFFER #/
register int cmd; /% COMMAND #*/
int unit; /* DEVICE NUMBER #/
reqister daddr_t #*bikno; /% BLOCK ADDRESS ¢/
foop:
if ((bp = bttab.b_actf) == MULL) /¢ QUEUE IS EMPTY #y
return;
unit = minor{bp~>b_dev)ED77; /% GET DEVICE NUMBER &/
blkno = &t_blknolunitl]; /% GET CURRENT BLOCK NUMBER ¥/

if (t_fltagslunit]E&T_FRR {1 (in(EBTADDR=Dhtcs)ECRDY)==0) (
bp=->b_flags 1= B_ERROR;
goto next;

/% Set up common part of command %/
/* CEVICE DEPENDENT #/

cmd = t_densfunit] | (unit<<B) | TENABLE;

s

/%
& Execute tape commanos as specified in the buffer
s/
it (bp == Lcbtbuf) { /% IF IT'S THE COMMAND BUFER %/
if (bp=>b_resid == NOP) (/7% AND THE COMMAND = NCP #/
bp=>b_resid = in{&BTACDR->btds); /¢ READ DRIVE STATUS #/
gotoc next; /% CONTINUE #/
}
bttabe.b_active = SCOM; /% START EXECUTING CmMD BUFFER %/
/% Deterrine Command and Write ControltStatus register */
/% DEVICE DEPENDENT #/
cmd i= bp->b_resid } GC
out (EBTADDR=->btcsy cmd)s
return;
}
/%
* Determine if 2 spacing command is required
* It it isy then:

A-13

S &

next:

N W

L2 3R BR 2K

,XENTX

Set state to SSEEK
Give spacing Command

it (*blkno != bp=->b_blkno) { /% IF NOT CCRRECT BLOCK #/
bttab.b_active = SSEEK; /* SET STATE TO SEEK ¥/
if (*blkno < bp->b_bikno) { /% DETERMINE DIRECTION #/
cmd 3= SFORWIGO; /* FORWARD SEEK %/

/% Write Record Count Register DEVDEP #/
out (EBTADDR->btbcs (int) (bp=D>b_blkno-¢bltkno));

} else { '

it (bp->b_bilkno == 0) /% AT BEGINNING ¢/
cmd {= REW!GO; /% RERIND #/

else { .
cmd = SREVIGO; /% REVERSE WIND #/

/% Update Record Count Register DEVDEP @/
out(EBTADDR~>btbcy (int) (*blikno-bp->b_blkno));
) .

}
out(ELBTANDR->btcsy cmd); /% WRITE THE CES REGISTER ¢/

return;

}
/* No seeking was required; start 1/0 and update registers */

/¢ DEVICE DEPENDENT #/

bttabeb_active = SIC3
out{E&BTADDR=->btbas bp->2b_un.b_acdr);
out{E&BTADDR=>hteay Ep-D>b_xmem); /7% HIGH ORDER CORE ADDRESS #/
out (ERTADDR=->hthcs bp=>b_bcount);
out (EBTADDR->btcss : i
cmd } ((bp=->b_flagstB_READ)? RCOMIGO:
((bttabeb_errcnt)? WIRGIGO: WCOMIGO)));
return;

bttabeb_actf = bo->av_forw;
bttabeb_active = 0j
iodone(bp); /% ALERT OTHER PROCESSES #/

goto loop;

Interrupt Routine:
Arquments:

None
Functions:

A-14

%
#*

s/

btintr()

{

ret:

XENTX

Log Errors
Restart controller

register struct buf #®bp; /¢ POINTER TO BUFFER #/
register int unity err;

int

state;

if ((bp = bttabeb_actf) == NULL)

return;
unit = minoribp->b_dev)E077; /7% GET DEVICE NUMBER #/
state = httab.b_active; /7% SAVE STATE OF DEVICE ¢/
bttabesb_active = 0; /% REINITIALIZE THE STATE %/
if (inlEBTADDR=>btcs) & ERR) { /% CHECK FOR ERROR #/
err = in(EBTACDR=->btds); /¢ DETERMINE TYPE #*/
if (err&EQF) { /* END OF FILE #/
t_nxreclunit] = bp->b_blkno;
state = SCONM;
out (EBTADDR->btbcy bp->b_bcountl);
qoto ret;
} ﬂ
if (lerr€HARD) == 0 EE err&RLE) { /¥* RECORD LENGTH ERROR #*/
state = SIO; /7% EXECUTING I/0 #/
goto retj

}

}
If ((errE(HARDIECF)) == 0 E& state==SI0) { /% EXECUTING I/0
if (++4bttabeb_errcnt < 3) (
t_biknofunit]+e;
bttab.b_active = 0;
btstart();
return;
}
} else
If ((t_flagslunit)ET_ERR)==0 €E bp!=Erbtbuf EE
(err&EQF)==0) {(
t_flagsfunit) }= T_ERR;
deverror{bps erry IN(EBTADDR-D>btcs))}
)
bp=->b_flags != B_ERROR;
state = SI0;

switch (state) {
case SI0:

t_blknofunit] #= (bp->b_bcountd>>BSHIFT);

case SCOM:

bttabeb_errcnt = 0;
bttab.b_actt = bp-D>av_forw;
bp->b_resid = in(EBTADDR->btbc); /% WRITE BYTE/RECORD REG

A-15

*/

¢/

XENTX

iodone(bo); /% ALERT OTHER PROCESSES #/
break;

case SSEFK:
t_blknofunitl]l = bp->b_bilkno;

break;
default:
return;
)}
btstart();
}
/1%
* Btread
* Arquments:
» Device Number
» Functions:
* Netermine block address on device
* Call the routine to do the acutal physical I/0
*
* *physio' is the routine which performs the actual physical 1/0
s from the current logical address; essentially, all the work
* of physio is computing physical and vatidating physical addresses.
*/

btread{dev)

< .
btohys{dev); ' /7% CALCULATE BLOCK ADDRESS #/
physiolblstrateqgys Erbtbuts devs B_REALC); /% DO RAW 1/0 %/

}

/%

* Btwrite

* Arquments:

* Device number

* Functlions:

* Determine block address on device

* Perform actual physical I/C

* . : .

. *physio® is the routine which performs the actual physical I1/0
* from the current lcgical address; essentialiys all the work
* of physio is computing physical and validating physical addresses.
*/ :

btwrite(dev)

{
btphys{dev); /7% GET BLOCK ADDRESS ¢/
physio{btstrategys Erbtbuty deve B_WRITE); /* DO RAW I/0 */

)

/% Btphys

% Arquments:

* ODevice number

* Functions:

* Calcutlate block address on device
*/

btphys(dev)

{
register unit;
daddr_t aj
unit = minorldev) & 077; /% GET DEVICE NUMBER ¥/
iftunit < NBT) {
3 = ueu_offset >> BSHIFT; /7% COMPUTE BLOCK NUMBER #/
t_blknolunit] = a; /7% DISALLOW SEEKS ON #/
t_nxreclunitl]l = a+l; /% RAW DEVICES ¢/
) .
}

APPENDIX B:

Games

Included here are the games available on the XENIX system.

ARITHMETIC (6) XENIX System Reference ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
/usr/games/arithmetic [+-x/ 1 [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits
for an answer to be typed in. If the answer is correct, it
types back "Right!", and a new problem. If the answer is
wrong, it replies "What?", and waits for another answer.
Every twenty problems, it publishes statistics on correct-
ness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem
to be generated; +-x/ respectively cause addition, subtrac-
tion, multiplication, and division problems to be generated.
One or more characters can be given; if more than one is
given, the different types of problems will be mixed in ran-
dom order; default is +-

Range is a decimal number; all addends, subtrahends, differ-
ences, multiplicands, divisors, and quotients will be less
than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are
equally likely to appear. If the respondent makes a mis-
take, the numbers in the problem which was missed become

more likely to reappear.

As a matter of educational philosophy, the program will not
give correct answers, since the learner should, in princi-
ple, be able to calculate them. Thus the program is
intended to provide drill for someone just past the first
learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per
problem, not percent correct.

-

BACKGAMMON (6) XENIX System Reference BACKGAMMON (6)

NAME
backgammon - the game

" SYNOPSIS
/usr/games/backgammon

DESCRIPTION ,
This program does what you expect. It will ask whether you
need instructions. '

QUIZ(6) XENIX System Reference QUIZ(6)

NAME
quiz - test your knowledge

SYNOPSIS
/usr/games/quiz [-i file] [-t] [categoryl category2]

DESCRIPTION
Quiz gives associative knowledge tests on various subjects.
It asks items chosen from categoryl and expects answers from
category2. If no categories are specified, quiz gives
instructions and lists the available categories.

Quiz tells a correct answer whenever you type a bare new-
line. At the end of input, upon interrupt, or when ques-
tions run out, quiz reports a score and terminates.

The -t flag specifies “tutorial' mode, where missed ques-
tions are repeated later, and material is gradually intro-
duced as you learn.

The -i flag causes the named file to be substituted for the
default index file. The lines of these files have the syn-

tax:
line = category newline | category “:' line
category = alternate | category ‘|‘ alternate
alternate = empty | alternate primary
primary = character | “[' category “]' | option
option = “{' category “}'

The first category on each line of an index file names an
information file. The remaining categories specify the
order and contents of the data in each line of the informa-
tion file. Information files have the same syntax.
Backslash “\' is used as with sh(l) to quote syntactically
significant characters or to insert transparent newlines
into a line. When either a question or its answer is empty,
quiz will refrain from asking it.

FILES
/usr/games/quiz.k/*

BUGS
The construct “alab' doesn't work in an information file.

Use “afib}"'.

WORDS (6) XENIX System Reference WORDS (6)

NAME

hangman, words - word games
SYNOPSIS

/usr/games/hangman [dict]

/usr /games/words
DESCRIPTION

Hangman chooses a word at least seven letters long from a
word list. The user is to guess letters one at a time.

The optional argument names an alternate word list. The
special name "-a' gets a particular very large word list.

Words prints all the uncapitalized words in the word list
that can be made from letters in string.

"FILES
/usr/dict/words the regular word list
/crp/dict/web2 the the -a word list
DIAGNOSTICS

After each round, hangman reports the average number of
guesses per round and the number of rounds.

BUGS
Hyphenated compounds are run together.

UNIX software is distributed without the -a word list.

WUMP (6) XENIX System Reference WUMP (6)

NAME

wump - the game of hunt-the-wumpus

SYNOPSIS

/usr/games/wump

DESCRIPTION

BUGS

Wump plays the game of “Hunt the Wumpus.' A Wumpus is a
creature that lives in a cave with several rooms connected
by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the
Wumpus and falling into Bottomless Pits. There are also
Super Bats which are likely to pick you up and drop you in
some random room.

The program asks various questions which you answer one per
line; it will give a more detailed description if you want.

This program is based on one described in People's Computer
Company, 2, 2 (November 1973).

It will never replace Space War.

