Four-Phase
Systems

System IV

Computer

Reference
Manual

B026C

Four-Phase Systems, Inc.
10420 North Tantau Avenue
Cupertino, California 95014

Document Number SIV/70-11-1C
Stock Number 33C

Issue A: 1 November 1970

Issue B: 1 April 1971

Issue C: 1 October 1972

Specifications subject to change.

Copyright 1972, 1971, 1970 Four-Phase Systems, Inc.

All rights reserved.
Price: $4.50

System IV 70

Computer
Reference
Manual

A025C

LIST OF EFFECTIVE PAGES THIS PUBLICATION CONTAINS 110 PAGES

CONSISTING OF THE FOLLOWING:

Page Number Issue Page Number Issue

Front Cover -
Inside Front Cover (Blank). . — ——

TitlePage 1 Oct 72
A 1Oct 72
ithruiv 1O0ct 72
1-1 ..., 1 Oct 72
1-2(Blank) 1 Oct 72
2—1thru2—-2.......... 1 Oct 72
3—1thru3—10 1 Oct 72
4—1thrud4—24 1 Oct 72
5—1thrub5-17 1 Oct 72
5—18 (Blank) 1Oct 72
6—1thru6—5.......... 1 Oct 72
6—6 (Blank) 1 Oct 72
T—1thru7-3 1 Oct 72
7T—4 (Blank) 1 Oct 72
8—1thru8-9.......... 1 Oct 72
8—10(Blank) 1 Oct 72
9—1thru9—-7.......... 1 Oct 72
9—-8 (Blank) 1Oct 72
A—1thruA—4 1 Oct 72
B—1 1Oct 72
B—2(Blank) 1O0ct 72
C—1thruC—5.......... 1 Oct 72
C—6(Blank) 1 Oct 72
D1 1 Oct 72
D—2(Blank)........... 1 Oct 72
User’s Comments -

ReplyCard............ ———

Inside Back Cover (Blank) . . — — —

BackCover............ -

* The asterisk indicates pages changed, added, or deleted by the current change. The portion of the
text affected by the current change (or the portion of the text changed for this issue) is indicated
by a vertical line in the outer margins of the page.

A 1 October 1972

SIV/70—11—1C

1 Introduction
2 System Organization

Introduction
ControlLogic
ArithmeticLogic,
MainMemoryciiiiinennn..
Input/Output System
Priority Interrupt System.
I/OLogiccvviiiimiinnnns
I/OControllers
Peripheral Units.
Video Output Circuits.

3 Machine Language Programming

Instructions
Memory Reference Instructions
Indexing
Indirect Addressing
Non-Memory Reference Instructions
Source and Destination Field

Byte Control Field
Count or Shift Count Field
Decimal Option Instructions
Hardware Organization
Main Storage.t vvennons
Central Processing Unit
ControlLogic
B3Interface
Arithmetic Logic
Working Registers
JonditionCodes
Arithmetic Trap
Programming for the Video/Keyboard
VideoDisplayc. ...
Keyboard
Instruction Descriptions

.........................

.......................

4 Word Oriented Instructions

Load/Store Instructions
Fixed-Point Arithmetic Instructions
Floating Point Instructions.
Comparison Instructions
Shift Instructions.,
Branch ard Skip Instructions
Unconditional Branch Instructions
Conditional Branch Instructions
Branch and Count Instructions
Skip Instructions
Register-to-Register Instructions

.................

1 October 1972

Contents

2—1
2—1
2—1
2-1
2—2
2—-2
2—2
2—-2
2—2
2—2

3—-1
3—1
3—2
3—3
33
3—-3
3-3
3—4
3—4
3—4
3—5
3—5
3—5
3—5
3—5
3—5
35
3—5
3—1
3—1
37
3—8
3—8
3—8
3—9
3—9

Logical Instructions
Control Instructions

String Manipulation Instructions

Word and Character Manipulation Instructions . .
Word Move Instructions.
Character Manipulation Instructions
Character Translate Instruction.

List Processing Instructions
Whole Word Stack Instructions.
Character List Processing Instructions

Decimal Option Instructions

Input/Output System and Instructions

Peripheral Unit I/O.
Organization
Device Address
Peripheral Units.
I/O Instructions.
Execution of I/O Instructions.

External Command and External Sense I/0.

Console KeysInput

Interrupt System and Instructions

Priority Interrupt Levels
Interrupt Processing
Normal Interrupt Processing.
Single Instruction Processing
Indirect Interrupt Processing
Interrupt Controls
Non-Interruptable Instructions
Interrupt Instructions

Assembly Language Programming

General
Assembler Programming
Programs and Routines
Program Elements
Statements
Symbols.
Expressions.
Assembler Language Coding.
Absolute and Relocatable Code
Sequenceof Events
Assembler Instructions
General00,
Data Control Directives. e e e
Assembler Control Directives
Error Conditions e

System Operation

Introduction
Manual Data Display and Entry.
Register Data Display

Contents

Memory Data Display
Register Data and Condition Code Entry.
Memory DataEntry
Program Execution.
Automatic Execution
Manual Execution
Repeated Instruction Execution
Initializing the System
Turning Power On
Bootstrap Loading for Systems With a
BOOT Switch
Bootstrap Loading for Systems Without a
BOOT Switeh

Using the Interrupt Switch. . .
Halting and Clearing Errors . .

SIV/70—11—-1C

Automatically Entering a Word into a Register. 9—6

Tape Drive Operating Procedures

Loading Tape
Unloading Tape
Controls and Indicators.

A System IV/70 Character Set
B Assembler Directives

C Machine Instructions

D Powers of 2 and 8

1 October 1972

SIvV/70—11—-1C

Illustrations

System IV/70 Console and Video Display

Terminals iv
Simplified Block Diagram of System

Architecture 2—-1
Logical and Arithmetic Compare. 4—8
Branching to Subroutines 4—12
Character Byte Control, Shift Count, and

Linkage Tables 5—4
Character Manipulation Instruction Operands . 5-—5
Character List Processing Instructions 5—12
Notation and Special Usages 3-1
Significance of Modification Field. 3—3
Example of Indexing and Indirect Addressing . 3—4
Dedicated Memory Locations. 36
Programmer-Addressable Registers 317

1 October 1972

6—1
6—2

Peripheral Unit I/O Structure
Select Word and Buffer Address Word

System IV/70 Assembler Language Coding
Form............ i,

Assembler Output Listing

Console Controls and Indicators

Magnetic Tape Drive Controls and Indicators. .

System IV/70 Display Characters

Condition Codes for Logical and Arithmetic
Comparisonsvvieeentnannn

Numeric Comparison Results

Dedicated Interrupt Locations

Control Panel Controls and Indicators

ifi

Frontispiece

SIV/70—11-1C

System IV/70 Console and Video Display Terminals

1 October 1972

SIV/70—11—1C

Section 1
Introduction

System IV/70 is a computer-based data display and pro-
cessing system designed for data entry and retrieval to
and from data bases and computing systems. It interfaces
with IBM 360/370 Systems locally or remotely through
System IV/70 foreground communications packages without
requiring the modification of IBM software. Subsets of this
package completely simulate IBM 2848/2260 and 3270 data
station complexes.

The System IV/70 consists of a Processing Unit, up to 32
Video Display Terminals, and peripheral devices.

The System IV/70 Processing Unit is a character-oriented
medium-scale computer with a 2.0 microsecond cycle time
and semiconductor main frame memory. Two units are
available, the 7001 and 7002. The 7001 has a memory
size expandable from 12K to 24K 8-bit bytes in 6K byte
increments; the 7002 has a memory size of 48K, 72K, or
96K bytes. Both are addressable to 96K bytes. Under
software control, parity is calculated on every memory
write and checked on every read.

Both the 7001 and 7002 have a repertoire of 113 machine
instructions including decimal arithmetic, binary fixed-point
and floating-point arithmetic, translate-test, supervisor trap,
register-to-register, interrupt control, list processing with
push-pop stacks, and variable length character string manip-
ulation. The Decimal Option expands the 7002 instruction
set to 119 instructions. Representative operation speeds are:

L Character move 40 us + 2.7 us/byte
L Character compare 28 us + 4 us/byte
° Decimal add or subtract 36 us + 5.3 us/byte
L Binary add, subtract, or 16 us/24 bits

compare

The Computer Input/Output structure includes eight 1/0
channels, each of which may service up to 64 devices, and
eight levels of nested hardware priority interrupt. All types
of I/O transfer are handled with a single I/O instruction.

1 October 1972

A maximum I/O rate of up to 375,000 bytes/second may
be reached for block transfers, and up to 39,000 bytes/
second for interrupt system transfers.

Each Video Display Terminal consists of a Video Display
Unit (screen) and a separate Keyboard Unit. The Video Dis-
play Unit offers up to 1944 characters per screen in formats
of 48 or 81 characters per line with 6, 12, or 24 lines per
screen. The character set is augmented ASCII with 7 x 9 dot
matrix. All video display is under computer control; refresh
and display of keyboard-entered or program-generated
characters are automatic. Standard features include split
screen, protected display areas, and transmission of selected
display data, all under software control. The Keyboard Unit
produces 173 character codes including control and function
codes. A standard adding machine keyboard is also included.
Optional Keyboards offer special keytops for particular
applications. Standard edit capability includes character
insert and delete, line insert and delete, roll up/down, tab,
erase, and ten cursor control functions, all under software
control.

Standard peripherals include removable cartridge disc drives,
asynchronous and bisynchronous communications inter-
faces, IBM-compatible magnetic tape drives, high-speed
printers, and a card reader. Standard software packages
include foreground video-display control packages including
an advanced key-to-disc data entry system, a 2260/2848
simulator package, terminal communications software, disc
operating system with sort and other utility programs, and
a video-oriented COBOL compiler.

The 7002 Processing Unit offers all the proven features of
the standard model 7001 with larger memory size and extra
features. The 7002 is available with a standard 48K byte
memory or an optional 72K or 96K bytes. Other optional
features include 81 character by 24 line video displays
(which may be intermixed with 81 by 12 displays), a
lightpen for menu search on the video display, dual intensity
screens with software control of intensity and blanking, and
an audible keyboard alarm under software control.

1-1/2

SIvV/70—-11-1C

Section 2
System Organization

INTRODUCTION
The System IV/70 Processing Unit is organized into Control

Logic, Arithmetic Logic, Main Memory, the Input/Output -

system, and the Video Output Circuits. See Figure 2-1 for
this configuration.

CONTROL LOGIC

The Control Logic initiates and controls all functions related
to implementation of the computer program instructions.
All these functions take place under control of a micro-
program, which is stored in read only memory and which
generates control signals for all the subsystems of the
computer. These signals control inputting (both through
peripherals and the control panel), processing, testing,
storing, and outputting of data and instructions.

ARITHMETIC LOGIC

The Arithmetic Logic performs all data processing func-
tions, under control of the microprogram. Processing of
numeric, character, and logical data; setting of condition
codes; and generation of addresses are among the functions
of this subsystem. The Arithmetic Logic interacts with the
Control Logic in the performance of data processing func-
tions. The eight programmer-addressable working registers
(RO, R1,RP, RA, RB, X1, X2, and X3) are contained in the
Arithmetic Logic.

MAIN MEMORY

The Processing Unit’s main storage consists of large-scale-
integrated circuit random-access memory. The memory is
all directly addressable by the Control Logic, which controls
data transfer in and out of memory.

~———-——— CONTROL LINES
eeeme= DATA LINES

a/meo TO VIDED
> UTPUT o DISPLAY
CIRCUITS TERMINAL
INSTRUCTION/DATA . o e e e e e e e o o e —— -
e rl/o SYSTEM -1|
MAIN P | |
STORAGE - 1 I
| |
] | |
>+ |
i mmg/é)gmn | - To
LOGI
t controtien || }Egmgw
P I —— (S)
CONTROL | |
LoGIC o i |
- l I
VI PRIORITY |
A INTERRUPT
>l SYSTEM |
Y | |
| |
ARITHMETIC S —— o o o e =
LOGIC & WORKING |—ug
REGISTERS

A019B

Figure 2—1. Simplified Block Diagram of System Architecture

1 October 1972

Section 2
System Organization

INPUT/OUTPUT SYSTEM

The I/O system consists of the priority interrupt system,
the I/O logic, the I/O controllers, and the peripheral units.

Priority Interrupt System

A nested priority system is provided with eight levels of
priority and 64 chained unit addresses within each level.
Each level of interrupt is connected to an I/O channel of
the same number; a unique memory address is also accessible
from each level to facilitate software processing of input
and output over the various channels. The priority interrupt
levels are truly nested, in that a level of lower priority may
be interrupted during its processing by one of higher pri-
ority. These interruptions do not upset the processing of
any level or of the background program. Section 5 discusses
the priority interrupt structure in detail.

1/0 Logic

The I/0 logic responds to the I/O controllers, the Control
Logic, and the interrupt system to switch I/O functions and
channel and unit addresses in an orderly manner. Data to
and from the I/O controllers is channeled through the I/O
logic.

1/0O Controllers

Each I/O device interfaces with a controller, which performs
buffering, switching, and serial/parallel processing to relate
the peripherals to the I/0 interface. Controllers also generate
interrupt signals to initiate data transfers. Each controller is
designed to interface its device or devices to the computer;
up to 18 controllers can be used with one System IV/70
Processing Unit.

Peripheral Units

The computer can interface (using the appropriate con-

SIV/70—11—-1C

troller) with any conventional input/output device, being
fast enough to handle any widely-used data rate and flexible
enough for any format. In addition, a 173-character code
keyboard is used with each video display to form a highly
flexible two-unit terminal. The keyboard interfaces with its
own controller, which can service numerous keyboards.

VIDEO OUTPUT CIRCUITS

The Video Output Circuits receive information stored in
Main Memory every other memory cycle as the result of a
continual scanning process which cycles through all of
memory. However, only selected areas of the memory are
gated through the Video Output Circuits to be displayed at
the video terminals. The addresses of these locations are
listed under the table, ‘“Dedicated Memory Locations” in
Section 3.

For the 7001 Processing Unit, the first four 3072-byte
blocks of memory can support up to eight 24-line, 48
character-per-line screens or eight 12-line, 81 character-per-
line screens. For the 7002 Processing Unit, the first 16
3072-byte blocks of memory can support up to 32 24-line,
48 character-per-line screens or 16 24-line, 81 character-per-
line screens. Using fewer lines per screen allows up to four
screens to be supported by each video display area up toa
maximum of 32 screens per system.

In general, the output is under computer program control:
if the contents of any memory location in the dedicated
area is changed, the display will be changed correspondingly.
Although the software assembler and loader for System
IV/70 are designed to facilitate relocatable programming,
they are designed so that absolute code may be included
with relocatable code. Thus, programmed transfers of data
into the dedicated areas will automatically display data for
the user.

1 October 1972

SIV/[70—11-—-1C

Section 3
Machine Language Programming

INTRODUCTION

This section covers machine language programming in detail.
Topics are Formats, Instructions, Hardware Organization,
Programming for the Video/Keyboard, and Instruction
Descriptions. ‘“Formats” deals with data and instruction
formats, emphasizing the formats needed by the machine
language as contrasted with assembly language formats.
For the assembly language see Section 8. “Instructions”
describes the various fields used in instructions. “Hardware
Organization” describes hardware details needed by the
machine language programmer: dedicated addresses, spe-
cialized usages, constant and variable registers, and the like
are emphasized. “Instruction Descriptions’ explains the
format used to describe the machine language instructions.
The instructions themselves are covered in the following
four sections. Table 3—1 defines notation used in specialized
or conventional ways in this discussion.

FORMATS

Formats for data and instruction words are based on the
computer’s 24-bit word with the bit-positions being num-
bered from 0 (leftmost or most significant) through 23
(rightmost or least significant).

e v ..., WORD L
01234656 7 8 9 1011121314151617 18 1920 21 22 23

This information format is used to represent both data and
instructions. Instructions always occupy a single 24-bit
word; numeric data may occupy single, double, or triple
word formats; and character data may be manipulated in
blocks of up to 256 words. For readability and convenience,
the bits of a word are sometimes marked off in groups of
three and expressed in octal digits. The 24-bit word then
becomes eight octal digits.

Table 3—1. Notation and Special Usages

MEANING

A symbol or name specifying a register or memory location.

The contents of the memory location or register specified by X. [X] is a num-
ber and may specify a memory location or a register. Read [RA] as “the

Bits 9 through 23 of the contents of RA.

The contents of the memory location specified by the contents of the mem-
ory location or register specified by X. Read [[RA]] as “the contents of the
location specified by the contents of RA.”

Replacement symbol. Read EA—~>[RA] or [RA] < EA as “the effective address
replaces the contents of RA” (or “the effective address is loaded into RA”).
“Intersection” or restrictive operator. Also called logical AND; equivalent

“Union” or permissive operator. Also called logical OR; equivalent to + in

XOR or differential operator. Also called exclusive OR; equivalent to @ in

NOTATION

X
[X]

contents of RA.”
[RA]o—23
[[X]1]
->or <
M

to * in some notations.
W)

some notations.
O

some notations.
X

The inverse of X; read “not X” or “X-bar.”

1 October 1972

Section 3
Machine Language Programming

Data Formats
CHARACTER DATA

Characters, including decimal numbers, are represented by
8-bit bytes. Three characters can be packed to a single
computer word.

| CHAR. l CHAR. | CHAR.]
01 2 3 45 5 7 8 91011121314151517181920212223

The internal character code used is ASCII and is shown in
Appendix A.

LOGICAL DATA

Logical data is represented by full 24-bit words. The logical
operations treat all the bits of the word in the same manner,
as contrasted with arithmetic operations which treat the
most significant bit (bit 0) as a sign bit.

[“LOGICAL DATA .)
T 1238567890 TR BT BN DA RZA

ARITHMETIC DATA

All arithmetic data is represented in 2’s complement form
with bit position O as the sign bit; 0 means positive and 1
negative. Therefore, in positive numbers ones are significant

bits and in negative numbers zeros are significant bits. Arith-

metic shifting operations do not affect the sign bit: these
operations shift around the 0 bit. Arithmetic data is of two
kinds: (1) fixed point or integer, and (2) floating point or
fraction-and-exponent.

Fixed Point Data

Fixed-point numbers are stored as 23-bit integers with the
binary point assumed to be to the right of the least signifi-
cant bit. The computer operates on these numbers arith-
metically in a two’s complement number system. Each 23-
bit number has the equivalent precision of just under seven
decimal digits; i.e., from -223 (= -8,388,608) to +223 -1
(= 8,388,607).

Floating Point Data

The computer accommodates two number formats for
floating point arithmetic: standard and extended. Both
formats consist of a fraction (or mantissa) and an exponent
(power of two multiplier, or characteristic). The arithmetic
registers used to store data during the execution of each
floating point instruction are noted in the description of
that instruction.

STANDARD FORMAT. The number is stored in consecu-
tive memory locations with the first word (fraction) in an
even location.

SIv/10—11-1C

Firstword
[s] ~ FRACTION .]

012 3 4 5 6 7 8 91011121314151617181920212223

Second word

[s] . . EXPONENT
012 3 4 5 6 78 91011121314151617181920212223

The fractional part of a standard (single-precision), floating
point number is a 24-bit proper fraction, with the leading
bit being the sign and the assumed binary point just to the
left of the most significant magnitude bit. The floating-point
exponent (power of two) is a 24-bit integer with a leading
sign bit. The standard hardware operates on both fraction
and exponent in two’s complement form.

Single-precision, floating-point numbers have just under sev-
en decimal digits of precision and a decimally equivalent

23
exponent range of + 102+525,223 (= 192"~ X log 2

Single-precision, floating-point numbers are normally gen-
erated from the corresponding decimal numbers using the
DCS assembler directive.

EXTENDED FORMAT. An additional 23 binary bits of
fraction are added to the representation by employing a
three word format which is stored in three consecutive
memory locations, the first being odd.

First word (odd)

[0] " FRACTION (LEAST SIGNIFICANT PART). .
0123452674839 1011 121314151617181920212223

Second word (even) R .
(S| . | FRACTION (MOST SIGNIFICANT PART) |

......

01234546178 91(|11121314151617181920212223

Third word (odd)

L T exeonent |
012345¢67¢8 91011121314151617181920212223

Extended-precision, floating-point numbers have just under
fourteen decimal digits of precision and a decimally equiva-
lent exponent range of + 10?525 223,

Extended-precision, floating-point numbers are normally
generated from the corresponding decimal numbers using the
DCD assembler directive.

1 October 1972

SIvV/[70—11-1C

SPECIAL DATA

Certain instructions use data expressed in other specialized
ways. These special formats are described under the instruc-
tions that use them, and summarized below:

List Processing Instructions

These instructions use a character and an address:

[CHARACTER [ADDRESS
01234'367 91011121314151617181920212223

Character Manipulation and Input Pack Instructions

These instructions use a format with sign bit, byte control,
and count:
‘ I

516 17 18 19 20 21 22 23

6 78 9101

Instruction Format

For purposes of defining instruction formats, the word is
divided into 8 octal digits (3 bits each). It is organized as
follows: op code, 2 digits; modification field, 1 digit; and
operand field, 5 digits.

0P CODE_ [MmoD. | __OPERAND |
01234567891011121314151617181920212223

OP CODE FIELD

This 2-digit field contains the code that designates the
operation to be performed; the instruction repertoire is
approximately doubled by interpreting the code differently
when there is a 75 in the modification field.

Table 3—2. Significance of Modification Field

Contents of

Mod Field Significance
0 Not indexed and directly addressed.
1 Not indexed and indirectly addressed.
2 Indexed using X1 and directly addressed.
3 Indexed using X1 and indirectly addressed.
4 Indexed using X2 and directly addressed.
5 Indexed using X2 and indirectly addressed.
6 Indexed using X3 and directly addressed.
7 Not address modifiable.}

T Note that the hardware does not allow for indirect addressing
when X3 is used for indexing.

1 October 1972

Section 3
Machine Language Programming

MODIFICATION FIELD

This octal digit aids in designating the operation to be
performed as described above, and designates the type
of address modification (if any) as shown in Table 3—2.
Address modification includes indexing and indirect ad-
dressing. Indexing can be performed using any of the three
machine index registers X1, X2, or X3. See “Memory
Reference Instructions” for details.

OPERAND FIELD

This field specifies the information that the programmer
must supply for proper execution of the particular instruc-
tion. The five octal digits may include memory reference
(reference address), shift count, register control, and byte
control, depending on the particular instruction. Since an
address is 15 bits in length, instructions with an address will
not have any other operand information; instructions that
contain an address have a type 1 format. All other instruc-
tions, except decimal option instructions, have type 2 for-
mats. For full discussion of the operand field for any
instruction, see the discussion of that instruction.

INSTRUCTIONS

There are three types of instructions: memory-reference
instructions (type 1 format), non-memory-reference instruc-
tions (type 2 format), and decimal option instructions.

Memory Reference Instructions

Memory reference instructions are either address modifiable
or non-address modifiable. In non-address-modifiable in-
structions (mod field = 0 or 73), the reference address in the
operand field is the final or effective address (EA). The
contents of this address, [EA], are fetched before the
instruction is executed. Since the reference address contains
15 bits, any word in memory (up to 32,768 words) may be
directly addressed without the need for indexing or indirect
addressing.

In address modifiable instructions (mod field # 0 or 7g)
the reference address is modified by either indexing, indirect
addressing, or both. The result of these address modifica-
tions is to transform the original reference address into an
effective address. The effective address is defined as the
final address computed for an instruction.

If both indexed and indirect addressing are specified for an
instruction, indexing will be done before indirect addressing.

INDEXING

The programmer may specify any of the three arithmetic
registers X1, X2, or X3 to be the index register (see Table
3—2 for mod field options). The 15 least-significant bits of
the contents of this designated index register are then
treated as a 15-bit displacement value.

3-3

Section 3
Machine Language Programming

This displacement value is added to the reference address to
obtain a new address. Only the least significant 15 bits of
the sum are kept. This newly developed address is called the
indexed address. Indexing is designated in CODE assembly
janguage (see Section 8) by a tag field after the address; i.e.,
LDB VALUE, X1.

INDIRECT ADDRESSING

Indirect addressing, which is limited to one level, is speci-
fied when octal 1, 3, or 5 is found in the mod field of an
instruction.

If the [mod field] = 1g, then the contents of the reference
address are fetched. The address field of this newly fetched
word (bits 9-23) becomes the effective address, whose
contents are fetched before execution.

If the [mod field] = 33 or 53, the reference address is
ndexed to produce an indexed address; the contents of the
indexed address are then fetched. The address field of this
fetched word contains the effective address.

The CODE assembly program recognizes an * (asterisk) after
the instruction mnemonic as the symbolic designation for
:ndirect addressing, i.e., LDB* VALUE.

Table 3—3 illustrates the effect of indexing and indirect
addressing. The operation code used is 03 for LDA.

Non-Memory Reference Instructions

The operand field may be used to specify other than address
information; when no address is given, the instruction has
a type 2 format. In this case the operand field is used
1o specify: source and destination registers, byte control,
count, or nothing.t The generalized format is as follows:

SIvV/70—11—-1C

(s 1ol ¢]

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

where:

S = Source register field

D = Destination register field
B = Byte control field

C = Count

SOURCE AND DESTINATION FIELD

The digits in these fields specify any of the eight pro-
grammer-addressable registers located in the Arithmetic
Logic. (See “Arithmetic Logic” below for a description of
these registers.) They are used (with few exceptions) by
instructions which operate on two registers in a source-to-
destination manner; i.e., the contents of the source register
replace or modify the contents of the destination register
(in general, the source register will be unmodified after
execution; the destination register is usually changed). Note
that it is always legal to use the same register as both source
and destination in an instruction. RO and R1 are normally
not specified as destination registers because they are sources
of numeric constants and not storage registers. If either of
these is specified as a destination, no operation will result
except that appropriate condition codes will be set or
reset, just as if the instruction had been executed normally.
Source (bits 9-11) and destination (bits 12-14) are specified
in Table 3—5.

Note that caution must be exercised in using the RP as des-
tination: RP contains the program counter, and any change
in the program counter is equivalent to a branch in the
program.

Certain instructions require no operand information. See the
discussion of each instruction for this specification.

Table 3—3. Example of Indexing and Indirect Addressing

Location Contents Symbolic Effect

X1 00000001

1000 00001001

1001 00101002

1002 00001003

1003 00000002

2000 03001000 LDA 01000 [01000] = 00001001 — [RA]

2001 03201000 LDA 01000, X1 01000 + 1 = 01001; [01001] = 00101002 - [RA]

2002 03101000 LDA* 01000 [[01000]] = [01001] = 00101002 - [RA]

2003 03301000 LDA* 01000, X1 01000 + 1 = 01001; [[01001]] = [01002] = 00001003 -~ [RA]

3—4

1 October 1972

SIvV/70—11—-1C

BYTE CONTROL FIELD

Many instructions offer the programmer the option of spec-
ifying which bytes of the word are to be affected by the
instruction. The word is broken, for this purpose, into three
8-bit byteslabeled byte 0 (most significant), byte 1 (middle),
and byte 2 (least significant). Instructions that allow byte
control perform the operation first, then apply byte control
on the word at the time it is stored in the destination regis-
ter. Thus, unselected bytes remain unchanged. Byte con-
trol is mapped into the word rather than encoded: bit 15
set means byte 0 is affected, bit 16 corresponds to byte 1,
and bit 17 corresponds to byte 2.

COUNT OR SHIFT COUNT FIELD

Certain instructions employ a counter to determine the
number of operations desired, e.g., shift counter or the
number of significant bits in a fixed-point multiplication or
division. The count field is always the least significant six
bits (2-digit octal) of its instruction; thus the largest count
that can be entered is 26 -1 = 63, ,.

Note that the shift instructions are the only instructions
which allow indexing or indirect addressing to be used in
generating a Count Field. Thus the shift count of these
instructions is modified in the same way as the memory
address of other instructions, i.e., it may be direct, indirect,
indexed, or both indexed and indirect, as defined by the
mod field of the instruction. After modification is complete
the least significant six bits of the result are used as the
shift count.

Decimal Option Instructions

These instructions use special formats unique to the hard-
ware that processes them. See the discussions of these
instructions in Section 5 for details.

HARDWARE ORGANIZATION

As explained in Section 2, the computer system is logically
divided into Main Storage or Memory, Control Logic, Arith-
metic Logic, and the I/O System. The I/O System is covered
in Section 6; this section notes salient features of the Main
Storage and the Central Processing Unit, which contains
Arithmetic Logic and Control Logic.

Main Storage

Main Storage on the 7001 can be 12K, 18K, or 24K bytes
(4K, 6K, or 8K 24-bit words). On the 7002 it can be 48K,
72K, or 96K bytes (16K, 24K, or 32K words). The 15 bits
in the address (operand) field of the instruction field allows
addressing of 2!5 = 32,768,, words of memory (ranging
from Og through 777774) without need of a base or index
register or indirect addressing. These addresses are usually
referred to by using a 5-digit octal number. If an attempt is

1 October 1972

Section 3
Machine Language Programming

made to address non-existent memory (i.e., it too large a
memory address is generated), garbage will result for the
7001. For the 7002, the last four octal digits (bits 12-23)
will be used to address the first 4K words on a read; on a
write the information will not be written into memory.

0Odd parity is calculated on each memory write and parity is
checked on each read. The parity circuits are disabled by
SYSTEM RESET and controlled by the EXCT instruction
(see Section 6). Control codes are 143 = enable parity,
155 = disable parity, 165 = select odd parity check, 173 =
select even parity check (for diagnostic purposes only).
A parity error halts the computer and activates Machine
Malfunction, which is a bit displayed in position 1 of RP in
MANUAL mode.

Certain memory locations are used for specified purposes
and hence are considered dedicated; although the program-
mer may write into these areas, care must be exercised to be
sure that the special functions are not disturbed. See Table
3—4.

Central Processing Unit

The CPU contains the facilities for controlling the opera-
tional sequence of instructions (the control logic function),
for communicating with external devices and storage (the
B3 interface function), and for performing arithmetic and
logical processing of data (the arithmetic logic function).

CONTROL LOGIC

The control logic function provides the necessary means
of guiding the CPU and the I/O through the operations
required for execution of instructions. Implementation of
system control is accomplished using random logic and a
Microprogram Command Generator (MCG). The random
logic performs a number of random operations and tests
such as preparing the next instruction op code; handling
source, destination, and byte control; and storing and testing
of the status bits. The MCG controls the execution of each
instruction using a stored microprogram composed of 1024
48-bit words. Each instruction is thus performed using a
number of microsteps, each of which is controlled by one
of the 48-bit words of the microprogram.

B3 INTERFACE

Data transfers between 1/0, Main Storage, and the CPU, and
within the CPU take place over B3, a bidirectional data bus
that ties the various functions together. B3 also interfaces
with the lights on the Control Panel: the lights display the
contents of B3 at all times. When operating in the MANUAL
mode, the operator views the contents of a register or a
memory location via B3, for the microprogram is configured
to maintain the contents of the location specified by the
DISPLAY SELECT switches on B3.

3-5

Section 3
Machine Language Programming

Table 3—4. Dedicated Memory Locations

SIV/70—11-1C

Octal Location

Function

Octal Location

Function

00000
00002
00004
00006
00010

Interrupt level 0
Interrupt level 1
Interrupt level 2
Interrupt level 3
Interrupt level 4

00012
00014
00016
00041

Interrupt level 5
Interrupt level 6
Interrupt level 7
Arithmetic Trap, Supervisory Trap

7001, 48 Character/Line Video SystemsT

7001, 81 Character/Line Video Systemst

00060-00657
01060-01657
02060-02657
03060-03657
04060-04657
05060-05657
06060-06657
07060-07657

Video display area A
Video display area B
Video display area C
Video display area D
Video display area E
Video display area F
Video display area G
Video display area H

00140-00732%
00740-01532%
02140-02732%
02740-03532+
04140-04732%
04740-05532%
06140-06732%
06740-07532%

Video display area A
Video display area B
Video display area C
Video display area D
Video display area E
Video display area F
Video display area G
Video display area H

7002, 48 Character/Line Video Systemst

7002, 81 Character/Line Video Systemst

00060-00657
01060-01657
02060-02657
03060-03657
04060-04657
05060-05657
06060-06657
07060-07657

10060-10657
11060-11657
12060-12657
13060-13657
14060-14657
15060-15657
16060-16657
17060-17657

20060-20657
21060-21657
22060-22657
23060-23657
24060-24657
25060-25657
26060-26657
27060-27657

30060-30657
31060-31657
32060-32657
33060-33657
34060-34657
35060-35657
36060-36657
37060-37657

Video display area 000
Video display area 001
Video display area 002
Video display area 003
Video display area 004
Video display area 005
Video display area 006
Video display area 007

Video display area 010
Video display area 011
Video display area 012
Video display area 013
Video display area 014
Video display area 015
Video display area 016
Video display area 017

Video display area 020
Video display area 021
Video display area 022
Video display area 023
Video display area 024
Video display area 025
Video display area 026
Video display area 027

Video display area 030
Video display area 031
Video display area 032
Video display area 033
Video display area 034
Video display area 035
Video display area 036
Video display area 037

00140-00732%
00740-01532%
02140-02732%
02740-03532%
04140-04732%
04740-05532%
06140-06732%
06740-07532%

10140-10732%
10740-11532%
12140-12732%
12740-13532%
14140-14732%
14740-15532%
16140-16732%
16740-17532%

20140-20732%
20740-21532%
22140-22732%
22740-23532+F
24140-24732%
24740-25532+
26140-26732%
26740-27532%

30140-30732%
30740-31532%F
32140-32732%
32740-33532%
34140-34732%
34740-35532%
36140-36732%
36740-37532%

Video display area 00
Video display area 01
Video display area 02
Video display area 03
Video display area 04
Video display area 05
Video display area 06
Video display area 07

Video display area 010
Video display area 011
Video display area 012
Video display area 013
Video display area 014
Video display area 015
Video display area 016
Video display area 017

Video display area 020
Video display area 021
Video display area 022
Video display area 023
Video display area 024
Video display area 025
Video display area 026
Video display area 027

Video display area 030
Video display area 031
Video display area 032
Video display area 033
Video display area 034
Video display area 035
Video display area 036
Video display area 037

T Video systems with 40 or 80 characters/line are
achieved by programming blanks in the appropriate
character positions.

¥ There are 5 unused memory locations at the end of each video
line for 81 character/line systems. For example, the characters for
the first line of area A occupy locations 00140-00172 while the
second line of characters occupies locations 00200-00232.

A312A

3—6

1 October 1972

SIvV/70—11—1C

ARITHMETIC LOGIC

The arithmetic logic performs all logical, arithmetic, and
shift operations on data. Of special interest to the program-
mer are the working registers, the condition codes, and
the arithmetic trap.

Working Registers

There are eight programmer-addressable registers; six are
flexible storage registers and the other two are sources of
numeric constants 0, and 1,. See Table 3—5.

Condition Codes

Four condition codes (CC) are used to indicate the results
of the various arithmetic logic operations. The status of the
condition codes are checked using various branch and skip
instructions.

The condition codes are overflow (0), zero (Z), minus (M),
and carry (C). If the condition code is a 1, the condition is
true; otherwise the condition code is 0 and the condition is
false.

Some instructions do not alter the condition codes (see the
description of each instruction for the condition codes
affected). Therefore, the current value remains unchanged
until altered by the appropriate instruction. An exceptional
case is the overflow CC, which may be set by a number of
arithmetic and shift operations, but may only be reset by
the BOF instruction, which tests this CC specifically; resto-
ration of a 1 or 0 to this CC is also possible using the BRR
or BRD returns from a subroutine.i The reason for this is
that an arithmetic overflow usually indicates that a data
error has occurred and that all arithmetic computation from
this point forward is incorrect or at least suspect. Thus, after
any series of arithmetic steps that could conceivably create
an overflow, a BOF should be given to allow branching to a
diagnostic routine designed to clear up the problem.

Note that the MCC instruction can be used to set the
condition codes on the basis of the contents of any memory
location, and RCC similarly will set the condition codes on
the basis of the contents of a working register. Also, the
operator may change the condition codes from the console,
using RP and the data keys (see Section 9 for this
procedure).

OVERFLOW CC. The overflow CC permits the detection
of erroneous arithmetic results that may occur during the
execution of a program. The overflow CC is reset only by a
BOF instruction that tests it and is set whenever the carry-
outs of bit positions 0 and 1 are different from each other
on a shift-left-arithmetic instruction or an addition, subtrac-
tion, or comparison. The significance of this condition for an
addition or subtraction is that the number generated is too
large for the register.

The significance of overflow for a shift left arithmetic is
that the most significant data bit has been shifted out of the

1 October 1972

Section 3
Machine Language Programming

left side of the register; significant data has been lost.

ZERO CC. The zero CC is set to 1 by certain instructions if
the result of the operation was all zeros; if the result was not
all zeros the CC is set to 0. All arithmetic and logical op-
erations affect this CC.

MINUS CC. The minus CC is set to 1 by certain instruc-
tionsif the result of the operation was minus; this condition
is defined to be true if bit O of the register is a 1. If the re-
sult was not minus, the CC is set to 0.

CARRY CC. When arithmetic operations are performed, a
carry can develop out of the zero position (in subtraction, a
borrow is interpreted as a carry). In this event the carry CC
isset to 1.

Table 3—5. Programmer-Addressable Registers

Symbol | Code Uses

Source of constant 0. This is a read-
only register.

Source of constant 1 (000000015).
This is a read-only register.

RO 0
R1 1

RP 2 Program Register. Bits 9-23 contain
the program counter, which holds
the address of the next instruction
to be executed. Bits 0-5 are used, in
manual mode only, to hold and dis-
play the status bits, which include
stop, machine malfunction, and the

condition codes.

RA 3 Accumulator. Used for arithmetic,

logic, and shift operations.

Extended Accumulator. Used as an
extension to RA in certain arith-
metic operations. Available as a
program scratch pad.

RB 4

X1 5 Index Register 1. A hardware index
register for address modification and
arithmetic operations. Also available

as a program scratch pad.

X2 6 Index Register 2. Same as X1 but
also serves as a link register for
subroutine usage by the BAL

instruction.

X3 7 Index Register 3. Same as X1.

+ Overflow may also be reset from the console when not under
program control. See Section 9 for this procedure.

Section 3
Machine Language Programming

INTERPRETATION OF CONDITION CODES. In compar-
ison instructions, an arithmetic subtraction is performed
and the result is not saved; but the overflow, minus, zero,
and carry condition codes are affected. See ‘“Comparison
Instructions” in Section 4 for details on the uses of the
condition codes.

Arithmetic Trap

Certain arithmetic error conditions will create an arith-
metic trap to Main Storage location 414; this location
should contain an instruction which branches to a program
that will test the preceding operation and discover the
problem. Conditions that will create a trap include:

e An attempt to convert 400000005 (the largest negative
number a single word can hold) to a positive number.
This will occur if 40000000 is in RA at the beginning of
a fixed point multiplication instruction.

® A division operation where the absolute value of the part
of the numerator in RA is equal to or greater than the
absolute value of the denominator [X2].

o In floating point arithmetic, any manipulation that at-
tempts to create an exponent with absolute value greater
than 223,

o Execution of the TRAP instruction.

PROGRAMMING FOR THE VIDEO/KEYBOARD
Video Display

The computer can accommodate up to 32 individual ter-
minal stations, each consisting of a video screen and
alphanumeric keyboard. Each display is controlled by the
CPU’s responses to inputs (both character codes and control
codes) from the corresponding keyboard. The keyboard
input character and the corresponding display outputs are
shown in Appendix A. Character generation and refresh is
accomplished using direct memory access output from the
computer’s main memory, so that memory buffers in each
terminal are not required. The specific output areas that are
displayed are listed in “Dedicated Memory Areas” above.
The part of video display area memory that will appear on
any given screen can be varied by the hardware and will be
selected at the time the system is designed. The particular
format selections are an integral part of the system speci-
fication and the programmer will have this information
available when programming for his particular system.

Note that video-display-area memory may be used by the
programmer for instructions or data, as well as for display
characters. Caution should be used, however, since any
instructions or data appearing in display locations will be
transformed to visual information, byte by byte, causing
meaningless display.

3-8

SIV/70—11—-1C

Dual intensity and hardware blanking under software control
are provided as two separate options on the video display
terminals for the 7002. With these options, the hardware
recognizes certain patterns of bits as intensity controls
and varies the brightness of the characters on the screen
accordingly. With this feature, an attribute character stored
in a given dedicated location affects characters that follow,
with wraparound from one line to the next and from the
bottom right to the top left of the screen. This feature is
under control of the EXCT instruction; if EXCT with an
operand of 11 (octal 13) is given or if SYSTEM RESET is
pressed, no attribute characters will have any effect and the
operation is identical to the 7001. The intensity will be
“bright”. If the DATA IV/70 system option is selected at
time of manufacture and EXCT with an operand of 9 (011)
is given, the 5-10-31 system goes into effect. If the 3270
system option is selected at time of manufacture and the
EXCT operand is 10 (012), the 300 system goes into effect.

L 5-10-31 System. Under this scheme, specific codes
function as attribute characters. When such a character
is placed on the screen, it will appear as a blank,
but any data to the right will take on the video
attribute specified, until another attribute character
is encountered. The codes are as follows:

Code Meaning
05 or 0205 Blank
010 or 0210 Normal
031 or 0231 Extra intensity

L 300 System. Under this scheme, specific bit patterns
are interpreted as attribute controls, with the rest of
the bits in the character being subject to use by the
software as the programmer requires. Thus, if any
character with the specified bit pattern appears on
the screen, that character will be blanked and any
character to its right will take on the video attribute
specified, until another character with any of the
specified attribute bits is encountered. The pattern
of bits is as follows:

012345617

11xxyz XX

Bit Position

Usage

A 1 indicates that the bit must be a 1 for intensity
control. An x indicates don’t care; the software may
interpret these bits as required. The yz are the
intensity control bits: 00 or 01 = normal, 10 = extra
intensity, 11 = blank.

The way the cursors display is also affected by
the 300 system. ASCII 032 is the usual large block
cursor used with much Four-Phase supported software.
ASCII 05 or 0205 are the same cursor, but function
as an attribute character, blanking data to the right.
ASCII 010 or 0210 are the block cursor but function
as attribute characters, forcing “normal”’ display to

1 October 1972

SIvV/70—11—-1C

the right. Similarly, 031 and 0231 display as the
block cursor and force “‘extra intensity” to the right.
These six characters are identical in effect to other
attribute characters except that they appear as block
cursors instead of blanks.

The video attribute system wraps around automatically
within each dedicated video area. For example, half screens
or quarter screens within the same video area are all affected
the same by a single attribute character occurring in any of
the dedicated memory locations of that area. In general,
when the variable intensity feature is used with half or
quarter screens it will be necessary to control the intensities
of each screen separately.

If a single attribute character is placed on the screen, its
effect lingers even if it is replace by a non-attribute char-
acter. The only restriction is that the character must remain
on the screen for 1/60 of a second. If more than one
attribute character is on the screen and the characters are
removed, the last character scanned is the one whose effect
lingers, even if it is not the last one removed. Thus, the
user should wait 1/60 of a second before removing the
last attribute character in a series.

Keyboard

Whenever a key on the keyboard is pressed, the keyboard
controller generates an interrupt which must be serviced
using the IOID instruction (see ‘“Indirect Interrupt” in
Section 7). The controller will present the device address
of the keyboard terminal generating the interrupt; the
program will then branch to the location specified by the
IOID instruction and the device address. This location
should contain an 10 instruction for accepting the keyboard
code from the least significant eight bits of the data bus and
then storing it in a buffer area. The program must then move
the character into the appropriate memory area for display
(character code) or present it to a control program (control
code).

INSTRUCTION DESCRIPTIONS

The following four sections describe the instructions that
may be executed by the computer. Section 4 covers the
conventional binary Word-Oriented Instructions. Section
5 covers the Character String Manipulation Instructions,
including the Decimal Option. Section 6 discusses the Input/
Output Instructions and the operation of the computer’s
I/O interfaces. Section 7 deals with the Priority Interrupt
System Instructions. Each instruction is described sepa-
rately, including all options, formats, etc. The form of each
description is as follows:

Assembly Language Format

The assembly language form of each instruction comes first
in the description. It contains three fields: label, mnemonic,
and operand. The label field is always optional and, if
used, assigns to label the Main Storage location of the

1 October 1972

Section 3
Machine Language Programming

instruction. The mnemonic field contains the name of the
instruction exactly as the assembly language expects to see
it; if more than one mnemonic refers to the same instruc-
tion, this will be footnoted. An asterisk (*) after the
mnemonic may be used to indicate indirect addressing. The
operand field contains from zero to four subfields depending
upon the nature of the instruction. If any operand is
optional or if default options are provided, this will be
noted under “Description.” The contents of the operand
field are numerically coded in the contents of bits 9-23 of
the machine language version of the instruction (see below).
If the instruction format is type 1, the operand field will
contain a symbolic address reference. Indexing is indicated
by adding “,Xn” where n is 1, 2, or 3 after the symbolic
address reference. If the format is type 2, the operand field
may contain source register, destination register, byte con-
trol, and count information.

In the operand field the following conventions apply:

Symbol Name of Field
Expression Symbolic address reference
S Source register
D Destination register
B Byte control
C Count

Name

Descriptive name of the instruction, in one or two lines.

Machine Language Format

Every machine language instruction consists of a 24-bit word
divided into three fields: op code field, modification field,
and operand field. The op code is the 6-bit code used by the
computer to initiate a particular instruction; two instruc-
tions may have the same op code, but the modification
field and/or the operand field will be different. The modi-
fication field will contain a one-digit octal number with the
significance as previously described under “Modification
Field.” Thus, X in the modification field implies that ad-
dress modification is allowed; 7 in the modification field
means either type 2 format or no address modification, as
applicable.

39

Section 3
Machine Language Programming

The Operand Field will contain up to five octal digits with
significance as previously noted under “Operand Field,”
but expressed in a form readable by the computer. The S
(Source) and D (Destination) subfields actually contain
numerical register codes, addressing the working registers
as follows:

Code Register

0 RO
R1
RP
RA
RB
X1
X2
7 X3

S O W N

Note that the assembly language will recognize either the
name or the numerical code of the register, and that the
machine language actually responds only to the binary equiv-
alent of the octal number.

Similarly, the byte control subfield (bits 16-18) are mapped
onto the three bytes of the word in a binary fashion, but
written in octal:

Code Binary Equivalent Bytes Affected

0 000 none

1 001 2

2 010 1

3 011 1,2

4 100 0

5 101 0,2

6 110 0,1

7 111 0,1,2

3—10

SIV/70—11-1C

The count subfield (2-digit octal) may appear in assembler
language as an octal or decimal number or as an expression.

If the format of the instruction is type 1, the operand field
will contain the binary address referred to by the symbolic
expression in the assembly language version of the instruc-
tion. This address is usually written as a 5-digit octal integer.

Description

The instruction will be described in detail from an opera-
tional viewpoint. Sequences of operations and decision logic
will be covered.

Examples

Illustrative examples, with interpretations as needed, will
be given for key instructions.

Condition Codes

Condition codes are overflow, zero, minus, and carry.
Instructions that alter any of these will be noted. Where a
condition code is not altered, it is shown shaded in the box.

Execution Equations

Logical execution equations are provided where appropriate.
- means “replaces,” [X] means “the contents of X.” Thus,
EA — [RP] reads ‘“the effective address replaces the con-
tents of RP.”

Flowcharts

Flowcharts are provided for complicated instructions.

1 October 1972

Section 4
Word Oriented Instructions

This section covers the conventional binary and word
oriented instructions of the computer. Covered are word
and double-word Load/Store, Fixed-Point and Floating-
Point Arithmetic, Comparison, Shift, Branch and Skip,
Register-to-Register, Logical, and Control Instructions.

LOAD/STORE INSTRUCTIONS

Load/store instructions move information between registers
and memory. The condition codes are unaffected on all
load/store instructions. All load/store instructions have type
1 formats (memory reference), and the address may be mod-
ified by indexing and/or indirect addressing.

Single Word Loads

These instructions load the contents of the effective address
into a register. Note that no load RP instruction is provided;
this is to prevent accidental overwriting of the program
counter. The standard methods for modifying the contents
of RP involve register-to-register or branching instructions.

Label LDA Expression
Load RA from EA

o 3 [x [ADDRESS
01234')67891011121314151617101920212223

Execution Equation:

[EA] > [RA]

Label LDB Expression
Load RB from EA

[0 " 4 | X ADDRESS
012345»67891011121314151617181920212223

Execution Equation:
[EA] = [RB]

Label LD1 Expression
Load X1 from EA

[0 5 | Xx IAuoness”.]
01234':67891011121314151611181920212223

Execution Equation:

[EA] ~>[X1]

1 October 1972

Label LD2 Expression
Load X2 from EA

[0 6 | X [.,AnnREssH,_J
01234561891011121314151517181920212223

Execution Equation:

[EA] - [X2]

Label LD3 Expression
Load X3 from EA

o 711]Xx ADDRESS
01234567891011121314151&17181920212223

Execution Equation:

[EA] ~ [X3]

Double Word Loads

These instructions load the contents of the effective address
and the effective address ORed with 1 into two registers.
Hence if EA is odd, the [EA] is loaded into both registers.
In assembly language, the FORCE instruction is used to
assign an even boundary to the starting location of such a
pair of addresses. The double load instructions are com-
monly used to fill registers for floating point arithmetic
operations, and to restore registers saved in a subroutine.

Label LDA1 Expression
Load RA from EA and X1 from EAU 1.

[0 " [x [, . Aoomess]
01234567891011121314151611181920212223

Execution Equation:

[EA] - [RA];[EAU 1]~ [X1]

Label LD23 Expression
Load X2 from EA and X3 from EA U 1.

[0 2 | x| ADDRESS
012345ﬁ7891011121314151617181920212223

Execution Equation:

[EA] - [X2]; [EAU 1] > [X3]

Section 4
Word Oriented Instructions

Single Word Stores

Each instruction stores the contents of a working register
into a memory location. The contents of the register re-
main unchanged. The contents-of RP, RA, RB, X1, X2, or
X3 can each be stored in memory using a unique instruc-
tion. Also the RO register may be “‘stored,” thus setting the
contents of a location to zero.

Label STA Expression
Store the contents of RA in EA.

IL4L A l3] X I ADDRESS 1 1 1]
0123465©617829 1011121314151617181920212223

Execution Equation:

[RA] = [EA]

Label STB Expression

Store the contents of RB in EA.

4 a4 | X ADDRESS .
01234557891011121314151617181920212223

Execution Equation:

[RB] ~ [EA]

Label STP Expression

Store the contents of RP in EA.

[« 2 [x|, ~ ADDRESS
01234567891011121314151617181520212223

Execution Equation:
[RP] > [EA]

Label ST1 Expression
Store the contents of X1 in EA.

| 4 5 [x ADDRESS
012345Ii7891l]11121314151617181920212223

Execution Equation:
IX1] ~> [EA]

Label ST2 Expression
Store the contents of X2 in EA.

SIV/70—11—1C

Label ST3 Expression
Store the contents of X3 in EA.

[7 T x [ADORESS
ll1234567B91011121314151617181920212223

Execution Equation:
[X3] = [EA]
Label STZ Expression

Store a word of all zeros in EA.

[4 0o | x | ADDRESS
01 2 3 4 5 6 7 B 91011121314151617181920212223

Execution Equation:

00000000 > [EA]

Label SAM Expression
Store [RA]9_23 in EA9_23. Store [EA]O—S in RAO—S-

IR RS " ADDRESS
01234557891011121314151617181920212223

Description:

This instruction may be used for modifying address locations
during the execution of a program. The address part (bits
9-23) of RA is transferred into the corresponding locations
in the EA, then the first nine bits (op code and modification
field) of the [EA] are transferred to the corresponding
position in RA.

Example:
Before Exec. After Exec.
[RA] = 04021427 03021427
- [EA] = 03000000 03021427

Execution Equation:

[RA]o—23 > [EA]9—3;[EA]o—s > [RA]o—s

Double Word Stores

These instructions store two registers into memory locations
EA and EA U 1. If EA is odd, the second register is stored
over the first.

Label STA1 Expression
Store {RA] in EA and [X1] in EA U 1.

L4 6 | x| . ADDRESS |

3 1] x| ADDRESS]

0123458678 91011121314151617181920212223

Execution Equation:

[X2] > [EA]

4-2

0 1 2 3 4 5 6 7 8 91011121314151617181920212223

Execution Equation:

[RA] - [EA]; [X1] > [EA U 1]

1 October 1972

SIV/70—11—1C

Label ST23 [Expression
Store [X2] in EA and {X3] in EA U 1.

[3 2] X ADDRESS
01234567591011121314151617181920212223

Execution Equation:

[X2] - [EA]; [X3] > [EA U 1]

FIXED-POINT ARITHMETIC INSTRUCTIONS

Fixed-point arithmetic instructions perform binary addition,
subtraction, multiplication, and division. The fixed-point
arithmetic instructions set the condition codes depending
upon the results. Depending on the instruction, the result
will appear in the corresponding register or memory loca-
tion. Note that the add and subtract instructions operate
between memory and a register, as contrasted with the
register-to-register instructions. For all addition and sub-
traction instructions, the format is type 1 and indexing
and/or indirect addressing may be performed to generate the
effective address. Multiply and Divide instructions use the
type 2 format with a count field to determine the scahngT
and number of significant bits in results.

Label ADAY Expression
Add [EA] to [RA]; result in RA.

[3 | x ADDRESS]
012345li7891011121314151617181920212223

Description:

Adds the contents of the effective address to the RA register
and places the result in RA. If both numbers are of the
same sign but the sign of the result is opposite, overflow has
occurred and the O condition code is set. A carry can
develop out of bit 0.

Example 1: Normal Add

Before Exec. After Exec.
[RA] = 37777776 37777777
[EA] = 00000001 00000001
0ZMC =0000 0000
Example 2: Overflow
Before Exec. After Exec.
[RA] = 37777776 40000000
[EA] = 00000002 00000002
1010

0ZMC = 0000

T Scaling is the process of locating the least or most significant
digit in an integer. See MPY for details.

+ The assembler will also recognize ADD as an ADA instruction.

1 October 1972

Section 4
Word Oriented Instructions

Example 3: Carry

Before Exec. After Exec.
[RA] = 77777776 00000000
[EA] = 00000002 00000002
0ZMC = 0000 0101

Condition Code:

Execution Equation:

[RA] + [EA] = [RA]

Label AD1 Expression

Add [EA] to [X1]; result in X1.

1 5 | x ADDRESS

T 12345678901 121314151617181920212223
Condition Code:

Execution Equation:

[X1] + [EA] — [X1]

Label AD2 Expression
Add [EA] to [X2]; result in X2.

[+ 6 | x |, " ADDRESS |
01234567891011121314151617181920212223

Condition Code:

Execution Equation:

[X2] + [EA] — [X2]

Label AD3 Expression
Add [EA] to [X3]; result in X3.

[1..7.])([lAnuness‘HJj

1
01234586178 91011121314151617181920212223

Condition Code:

Execution Equation:

[X3] + [EA] — [X3]

4-3

Section 4
Word Oriented Instructions

Label ADM Expression
Add [RA] to [EA]; result in EA.

[v 2 | x|, ADDRESS .
01234567891011121314151617181920212223

Condition Code:

Execution Equation:

[RA] + [EA] > [EA]

Label SBAT Expression
Subtract [EA] from [RA]; result in RA.

2 3 [x | AbDRESS |
012]4567ﬂ91|l1112131&151617181920212223

Description:

Subtracts the contents of the effective address from the
contents of RA and places the results in RA. The condition
codes are set in a manner appropriate for a true subtraction:
if [RA] is logically less than [EA] before execution, the
carry condition code will be set; otherwise it will be reset
(see “Comparison Instructions’’). If the two numbers are of
different signs (neither zero) before execution, but the sign
of the result is different from the sign of the [RA], the
overflow condition code will be set.

Example 1:
Before Exec. After Exec.
[RA] = 00000015 77717777
[EA] = 00000016 00000016
[0ZMC] = 0000 0011
Example 2:
Before Exec. After Exec.
[RA] = 37777776 40000000
[EA] =77777776 77777776
[OZMC] = 0000 1011

Condition Code:

Execution Equation:
[RA] - [EA] > [RA]

Label SB1 Expression
Subtract [EA] from [X1]; result in X1.

| 2 5 | x ADDRESS o
01234567891011121314151617181920212223

T The assembler will also recognize SUB as an SBA instruction.

4—4

SIV/70—11—-1C

Condition Code:

Execution Equation:
[X1] - [EA] - [X1]

Label SB2 Expression
Subtract [EA] from [X2]; result in X2.

L2 61 x| _ ADDRESS
01234567891011121314151517181920212223

Condition Code:

Execution Equation:

[X2] - [EA] > [X2]

Label SB3 Expression

Subtract [EA] from [X3]; result in X3.

2 7 | x [ADDRESS
I]1234567891011121314151617181920212223

Condition Code:

Execution Equation:
[X3] - [EA] = [X3]

Label DIV C
Divide [RA-RB] by [X2]; quotient in RA, remainder in RB.

[2 2] 1
Il1234567891l]11121314151617181920212223

Description:

Performs a variable length integer division. The contents of
double register RA-RB are divided by the contents of X2.
The [C] least significant bits of RA, up to a maximum of
23,0, contain the quotient, the [C] most significant bits
of the remainder appear in the [C] least significant bits of
RB, and the 23-[C] least significant bits of the remainder
appear in the 23-[C] most significant bits of RA. The sign
bit of the quotient appears in [RA]23-[C]. If no count is
given, 23, , will assumed.

If | [X2] | < | [RA] | before execution, arithmetic trap to
41; in main storage will occur. The dividend can be 46,
or fewer bits, scaled right, with the sign bit in RA, and zero
in RB, 3, which is not intended to enter into the computa-
tion. In general, the 24-[C] least significant bits of [RB]
must be zero before execution or significance will be lost.

1 October 1972

SIV/70—11—1C

The variable length divide can be used for non-integer
division, if proper alignment is kept by the program. This
is shown in Examples 1 and 2. For integer division, the
program can always keep correct alignment by using the
method shown in Example 3: The divisor is loaded into X2
and the dividend into RA. RB is cleared, and SRAD is
performed, with a count equal to the count to be used in
the DIV instruction. This method will ensure that the
quotient and remainder will appear, right justified, in RA
and RB.

Example 1: Divide 2 in RA by 9 in X2 using DIV 0277.
This is equivalent to an integer divide of 2 x 223 by 9, or
to a fixed-point divide with an assumed binary point located
by the count field offset. In the latter case the binary answer
is 00111000111... with the most significant bit (a zero in
this case) in RA; and the binary point to the left of this bit.

Before Exec. After Exec.
[RA] = 00000002 07070707
[RB] = 00000000 00000001
[X2] = 00000011 00000011

Example 2: Divide 2 in RA by 9 in X2 using DIV 020.

Before Exec. After Exec.
[RA] = 00000002 00034343
[RB] = 060000000 00000005
[X2] = 00000011 00000011

Example 3: Divide 7 in RB by 3 in X2. This is a generalized
method of doing integer division on quantities less than
24 bits. The quotient will appear in the least significant bits
of RA and the remainder in the least significant bits of RB.

C EQU 027
LDA N7 Shift right the same number
RCPY RO,RB of bits as Cin DIV instruction.
SRAD C
LD2 N3
DIV C
HLT $
N7 DCN 7
N3 DCN 3
Before Division After Division
[RA] = 00000000 00000002
[RB] = 00000016 00000001
[X2] = 00000003 00000003

Condition Code:

Execution Equation:

[RA-RB] =~ [X2] » [RA], scaled right;
remainder > [RB-RA] scaled as described above.

1 October 1972

Section 4
Word Oriented Instructions

Label MPY C
Multiply [X2] by [RA]; results in [RA-RB].

[llll IZIIL7
01234526 7 8 91011121314151617 181920212223

Description:

Performs a variable length integer multiplication. The
contents of RA are multiplied by the contents of X2, with
the results appearing in the double register RA-RB. The
count field is used to position the least significant bit of
the product (and/or determine the number of significant
bits that will be produced). The least significant bit of the
product will be found in bit position [C] - 1 of RB. Note
that RB, 3 is always zero and does not participate in the
multiplication; thus the maximum useful count is 23, ¢. For
a greater count, significance will be lost. If no count is given
23, o will be assumed. In general, the count plus one must
be equal to or greater than the number of bits in RA.
RA, always contains a true sign bit for the product, and
bits between the sign bit and the most significant bit of the
product will be equal to the sign bit (i.e., not significant).
Thus, the first bit in RA-RB different from the sign bit is
the most significant bit of the product. A trap to 415 will
occur if [RA] = 400000005 (the largest negative number)
at execution.

Example 1: Multiply -105 by +10g using MPY 027%. The
answer is -100g with the least significant bit in RB,,.

Before Exec. After Exec.
[RA] = 77777770 77777
[RB] = 00000000 77777600
[X2] = 00000010 00000010
OZMC = 0000 0010

Example 2: Multiply -10g by +10g using MPY 020. The
answer is -100g with the least significant bit in RB;s.

Before Exec. After Exec.
[RA] = 77777770 77
[RB] = 00000000 77740000
[X2] = 00000010 00000010

Example 3: In a normal integer multiply (C=23), the answer
in RB should be adjusted using SRAD 1 after execution.

RCPY RO,RB Multiply 7 x 104 and scale the
LDA o7 answer correctly.
LD2 010
MPY 027
SRAD 1
HLT $
07 DCN 7
010 DCN 010

T A zero in front of a numerical constant indicates base 8 in
assembly language.

Section 4
Word Oriented Instructions

Before MPY After MPY After SRAD
[RA] =00000007 00000000 00000000
[RB] = 00000000 00000160 00000070
(X2] = 00000010 00000010 00000010

Condition Code:

Execution Equation:

[RA] X [X2] ~ [RA-RB]

FLOATING POINT INSTRUCTIONS

Floating point hardware instructions are standard. A floating
point number is contained in two or three words; see
“Data Formats”. Standard (single precision) floating point
numbers always start on an even word, extended floating
point numbers on an odd word. The assembler directive
FORCE lets the user insure this. The instructions perform
arithmetic on standard floating point numbers. Arithmetic
on extended floating point numbers is accomplished using
subroutines from the Math Library.

Except for the UFA, unnormalized floating add, all floating
point instructions normalize the result after execution. A
normalized positive floating point number contains a 1 in
bit position 1;a normalized negative number contains a zero
in bit position 1. This means that the normalized number
always has its most significant bit next to the sign bit.

The DCS and DCD assembler directives (see Section 8) gen-
erate constants for these computations. These instructions
convert a number in modified decimal-scientific notation
(absolute value of a fraction <1) to a normalized binary
number to be used by the computer in the floating point
instructions.

Example:
Assembler Input After Assembly

FL1 DCS .99999E20 00176 25536075
00177 00000103

FL2 DCS .1E+16 00200 34327724
00201 00000062

FL3 DCS -1E1 00202 40000000
00203 00000000

FL4 DCS ~16E2 00204 40000000
00205 00000004

1—6

SIV/70—11—1C

Register Usage

During the execution of floating point instructions, register
RA and X1 form a double accumulator register consisting of:

RA Fraction
X1 Exponent

This double register is used for both the first operand and
the results. It may be loaded or stored using the LDA1 and
STA1 instructions. In the case of FMP, the result also uses
RB. The second operand for floating point instructions is
taken from another double register consisting of X2 and X3.

X2 Fraction
X3 Exponent

This double register may be loaded or stored using the LD23
and ST23 instructions. The CDAZ2 instruction allows a double
word copy of:

[RA] - [X2];[X1] - [X3]

Format

The type 2 format is used for all floating point instructions.
The count field must always be 23,,; the assembler will
furnish this count if none is given. A trap to 414 will occur
if the exponents cannot be properly represented or the
maximum negative number (400000005) is converted to
a positive number. Note that if such a trap occurs, the
registers involved (except RP) will contain intermediate
results. RP will contain the address of the next instruction
in sequence after the one where the trap occurred.

Instructions

Label FAD
Floating point addition.

s 171

012 345¢61728379

2 7
1819 20 21 22 23

Description:

The floating point sum of the two floating point numbers
in RA,X1 and X2,X3 replaces RA,X1. After execution, the
sign of RA isset to the sign of the larger factor. The contents
of X2 are replaced by the fraction of the factor with the
larger exponent. The contents of RB are destroyed. If the
fraction of the number with the larger exponent is zero,
the other number will appear as the answer.

1 October 1972

SIvV/70—11—1C

Example:
Before Exec. After Exec.
[RA] = 25536075 25536165
[X1] = 00000103 00000103
[X2] = 34327724 25536075
[X3] = 00000062 00000062

Condition Code:
Unpredictable > C

Execution Equation:
[RA X1] +[X2,X3] > [RAX1]
If [X1] > [X3], then [RA] = [X2]

Intermediate results > [RB]

Label UFA
Unnormalized floating addition.

[1 4[7
012 3456 1789101112

18 19 20 21 22 23

Description:

This instruction functions identically to FAD except that
the result is not normalized.

Condition Code:

Unpredictable > C

Execution Equation:

[RAX1] +[X2,X3] > [RAX1]
If [X1] > [X3], then [RA] = [X2]
Intermediate results > [RB]

Label FSB

Floating point subtraction.

2517 I
012345¢6788910

18 19 20 21 22 23
Description:

The difference of the floating point numbers in RA,X1
and X2,X3 replaces [RA,X1]. The contents of X2 are
replaced by the fraction of the factor with the larger
exponent. The contents of RB are destroyed. This instruc-
tion operates the same as FAD except that the subtrahend
is first complemented.

1 October 1972

Section 4
Word Oriented Insﬂ:ructions

Example:
Before Exec. After Exec.
[RA] = 25536075 25536004
[X1] = 00000103 00000103
[X2] = 34327724 25536075
[X3] = 00000062 00000062

Condition Code:

Unpredictable ~> C

Execution Equation:
[RA,X1] - [X2,X3] ~ [RAX1]
If [X1] > [X3], then [RA] »> [X2]

Intermediate results > [RB]

Label FMP

Floating point multiplication.

[1 ..6.|,7

0123465¢678

14 15 16 17 18 19 20 21 22 23

Description:

The floating point product of the two floating point num-
bers in RA, X1 and X2,X3 replaces [RA-RB,X1].

The fractional part of the product replaces RA and RB with
the most significant part in RA. The product exponent re-
places X1.

Example:

See FDV

Condition Code:

Unpredictable > C
Execution Equation:

[RA,X1] X [X2,X3] > [RA-RB,X1]

Label FDV

Floating point division

L2 6171 .
11 12 13 14 15 16 17 18 19 20 21 22 23

012345678

Description:

The quotient of the two floating point numbers, [RA,X1]
divided by [X2,X3], replaces [RA,X1]. The fractional
remainder replaces [RB].

Section 4
Word Oriented Instructions

Condition Code:

Unpredictable — C

Example:

12,4 is multiplied by 12,, to obtain 144, then divided
by 12, to obtain 12, , again.

LDA1l N12

LD23 N12

FMP

FDV

HLT $
N12 DCS 12E2

END

After Assembly

[N12] = 27777777
[N12+1] = 00000004

Before Exec. After FMP After FDV
[RA] = 27777777 21777776 27777777
[X1] = 00000004 00000010 00000004
[X2] = 27777777 27777777 27777777
[X3] = 00000004 00000004 00000004

Execution Equation:

[RA,X1] + [X2,X3] > [RA,X1]; Remainder - [RB]

COMPARISON INSTRUCTIONS

Comparison instructions compare a value in memory with a
value in a register. The results produce condition codes re-

SIV/70—11—1C

flecting the comparison without altering the contents of
either the register or the memory location. The setting of
the condition codesis identical to that of a subtraction. If R
represents a register, a compare operation performs a sub-
traction to get [R] ~ [EA] and sets the condition codes
appropriately. Note that compares may set the overflow
condition code; execution of a BOF instruction is required
to clear this code.

The same instructions are used for both arithmetic and
logical compares; the operations and results are the same,
but the results are interpreted differently. The logical com-
pare treats the most significant bit as a data bit like any
other bit. The arithmetic compare treats the most significant
bit as a sign bit. See Figure 4—1.

The condition code interpretations for both logical and
arithmetic comparisons are listed in Table 4—1, Also listed
are the conditional branch instructions that either cause a
branch or do not cause a branch if the condition is true.

Example 1:
Before Exec. After Exec.
[R] =T77777774 17777774
[EA] = 37777774 37777774
0ZMC = 0000 0010

Thus, [R] is logically greater, but [EA] is arithmetically
greater. The result TNZ-=1 implies that [R] > [EA],
which is true for a logical compare. The result M = 1 implies
that [R] < [EA], which is true for an arithmetic compare.

LOGICAL COMPARE

[RA] > [EA] means that [RA] are to the right of [EA] on the following number line.

ARITHMETIC COMPARE

<«——— Positive Numbers » - Negative Numbers ————»
I T T T 7 I l; ; T I I I I 1 ¥ | L 1 I T U 1 1 ; % I ¥ LI
08/ 37177177 400000004 T1TT1774 (-1)/

[RA] > [EA] means that [RA] are to the right of [EA] on the following number line.

<l
<

)/ \08

Positive Numbers ————»

.
-

<«—— Negative Numbers

1771177 (-1

pa
T

-
7 4 1 1 T

377777778/

I 1 T T LI 1 1 T T T

AN 400000004

¥ T | T2 71

Figure 4—1. Logical and Arithmetic Compare

1 October 1972

SIV/70—11—1C

Example 2:
Before Exec. After Exec.
[R] = 00000660 00000660
[EA] = 40000620 40000620
0ZMC = 0000 1011

Thus, [R] is arithmetically greater but [EA] is logically
greater. The result C N Z = 1 implies that [R] < [EA],
which is true for a logical compare. The result M N O = 1
implies that [R] > [EA], which is true for an arithmetic
compare,

Label CPA Expression
Compare [RA]:[EA] and set condition codes.

[3 3] x " ADDRESS |
01234567891011121314151617181920212223

Description:

The contents of RA are compared to the contents of the
EA and the condition codes set as if the operation [RA] -
[EA] were performed.

Condition Codes:

Execution Equation:
[RA]:[EA]

Label CP1
Compare [X1]:[EA] and set condition codes.

Expression

[3, .5] . x ADDRESS B

012345867 8 91011121314151617181920212223

Section 4
Word Oriented Instructions

Condition Codes:
o]z m[c]

Execution Equation:
[X1]:[EA]

Label CP2 Expression
Compare [X2]:[EA] and set condition codes.

L3 . 6 [% . ADDRESS]
ll1234567891011121314151617181920212223

Condition Code:
o]z [m]c]

Execution Equation:

[X2]:[EA]
Label CP3 Expression
Compare [X3]:[EA] and set condition codes.

[3 1] x [_ ADDRESS
01234567891011121314151617181920212223

Condition Code:

Execution Equation:
[X3]:[EA]
SHIFT INSTRUCTIONS

Shift instructions operate on the RA register or on a
combined RA and RB register to move data left or right

Table 4—1. Condition Codes for Logical and Arithmetic Comparisons

Logical Arithmetic
Condition Condition Condition
Code Setting Instructiont Code Setting Instruction™
[R] = [EA] Z=1 BZO (BNZ) Z=1 BZO (BNZ)
[R] # [EA] Z=0 BNZ (BZ0) Z=0 BNZ (BZO)
[R] > |EA] C=0,Z=0 BGT M=0,Z=0 N
(and O = 0)
[R] < [EA] C=1,Z=0 —— M=1 BMI (BPL)
[R] > [EA] C=0 (BCR) M=0 (& O =0) BPL (BMI)
M=1,0=1 _
[R] <[EA] c=1 BCR - JE—
T The instructions give a branch on a true condition. Instructions in parentheses allow the next instruction to be executed (do
not give a branch) on a true condition.

1 October 1972

49

Section 4
Word Oriented Instructions

in a variety of ways. Instructions for arithmetic, logical,
and rotate (circular) shifts are provided. Note that the
RRC, RLC, RCL, and RCR instructions are also provided
for general inter-register shifting. See ‘“Register-to-Register
Instructions” for details.

Shift Count

Shift instructions employ the count field of the type 2 for-
mat to control the number of bits in the shift. Unlike other
instructions of type 2 format, however, the count may be
derived in the manner used for address modifiable instruc-
tions. In this case, the shift count is calculated exactly as is
the address for an address modifiable instruction of type 1
format: first the index register is added in (if any), then the
indirect address is fetched (if any) and becomes the shift
count. If indirect addressing without indexing is specified,
the contents of the address specified in the operand field are
fetched, and become the shift count.

The contents of the mod field determine whether the con-
tents of the operand field are an address or a count. In the
discussions below, the mod field is indicated by Y or Z
(Y,Z < T7): Y is even and implies count; Z is odd and im-
plies address. Only the six least significant bits so generated
are used; i.e., the count is treated modulo 64: an operand
field of 74, , will produce a shift count of 10, .

Example:

Given [X1] = 00000006
SLA 1,X1
Results in a left shift of 7.

The mnemonic name of the shift instruction indicates the
direction, type, and number of registers.

S LA
RL D

R(|———>
Blank if single register, D if double.

A if arithmetic, L if logical, R if rotate.
» L if left, R if right.
» Always S.

Example:

SLAD = Shift Left Arithmetic Double.

4—10

SIV/70—11—1C

Instructions

Label SLA Expression

Shift Left Arithmetic [RA]

[lsl IJZIIIYI
0123 45 6 7 8 9 1011213141516 17 18 19 20 21 22 23

or

(5 2 |z | ADDRESS
012345ﬁ7891011121314151617181920212223

Description:

The contents of RA are shifted left [C] places. The sign
position of RA does not participate in the shift. Zeros fill
the vacated bit positions on the right end of register. When
a bit different in value from the sign bit shifts out of RA,
the overflow condition code is set.

Example:

The instruction is SLA 7

Before Exec. After Exec.

[RA] = 76214350 43072000

0=0 0=1
Condition Code:

Label SRA Expression

Shift Right Arithmetic [RA].

5 6 | v
l)1Z34567891l)11121314151617181920212223

or

S 6121, _ADDRESS]
01234567891011121314151517181920212223

Description:

The contents of RA are shifted right [C] places. The bit in
the sign position of RA does not shift, but its value copies
into the vacated bit positions on the left. Bits shifting past
RA, 3 are lost.

Condition Code:

None.

1 October 1972

SIV/70—11—1C

Label SRAD Expression
Shift Right Arithmetic [RA-RB].

s 7] v
012345w57891011121314151617181920212223

rs L 7 l Z 1 ||1ADDRESS -]
0123 4 5 6 7 8 91ll11121314151617181920212223

Description:

The contents of RA-RB are shifted right [C] places. The
bit in the sign position of RA does not shift, but its value
copies into the vacated bit positions on the left. Bits shifting
out of RA, ; shift into RB,. Bitsshifted past RB, 3 arelost.

Example:

The instruction is SRAD 12

Before Exec. After Exec.
[RA] =63417043 77776341
[RB] =62304110 70436230

Condition Code:
None.

Label SLAD
Shift Left Arithmetic [RA-RB].

Expression

18 19 20 21 22 23

or

[5,3[2[_ _ADDRESS . . . |
01234567ﬂ91011121314151617181920212223

Description:

The contents of RA-RB are shifted left [C] places. The
sign position of RA does not participate in the shift. Zeros
fill the vacated bit positions on the right end of RB. Bits
shifted out of RB, go into RA,;. When a bit different in
value from the sign bit shifts out of RA, the overflow con-
dition code is set.

Condition Code:

Label SRL
Shift Right Logical [RA].

Expression

l5.l4IY:
0123856738

18 19 20 21 22 23

1 October 1972

Section 4
Word Oriented Instructions

AR _ ADDRESS
01Z345B7891011121314151617181920212223

Description:

The contents of RA are shifted right [C] places. Zeros fill
the vacated bit positions on the left end. Bits shifted past

RA,; are lost.

Example:
The instruction is SRL 17

Before Exec.
[RA] =41523671

After Exec.
00000103

Condition Code:
None.

Label SRLD Expression
Shift Right Logical [RA-RB].

[5 5 | v

012 3 4 5 6 7 8 9 101112131415 16 17 18 18 20 21 22 23

or

L[5 .5 [.2 __ADDRESS,]
01234567B91011121314151617181920212223

Description:

The contents of RA-RB are shifted right [C] places. The
sign bit in RA and RB shifts with the rest of the number.
Zeros enter RA, to fill vacated positions. Bits shifting out of
RA, 3 enter RB,. Bits shifting past RB, ; are lost.

Condition Code:
None.

Label SLR Expression
Shift Left Rotate [RA].

5 0 | v
012345678

81920212223

or

[5 o] z 1. _ADDREss,,_J
01234567&91I)11121314151617181920212223

Description:

The contents of RA are rotated left [C] places. The bit in
the sign position of RA shifts like any other bit. The register
is treated circularly and cycles onto itself. No bits are lost.
Bits shifting out of RA, shift into RA, ;.

4—11

Section 4
Word Oriented Instructions

Example:

The instruction is SLR 9
Before Exec.
[RA] = 20101010

After Exec.
01010201

Condition Code:
None.

Label SLRD Expression
Shift Left Rotate [RA-RB].

Ls 1 1.y

01234586178

18 19 20 21 22 23

or

1 |z |, TADDRESS |

0 1 2 3 4 5 6 7 8 91011121314151517181920212223

Description:

The contents of RA-RB are shifted left [C] places. The bit
in the sign position of RA shifts like any other bit. The
double length register is treated as if it were circular and
cycles onto itself. No bits are lost. Bits shifting out of RA,
shift into RB, ;.

Example:

The instruction is SLRD 18

Before Exec. After Exec.
[RA] = 26513136 36142753
[RB] = 14275363 63265131

Condition Code:
None.
BRANCH AND SKIP INSTRUCTIONS

Branch and Skip Instructions alter the normal sequence of
the program by changing the program counter, which is con-
tained in the 15 least significant bits of register RP. Branch
instructions can be used to alter the program sequence,
either unconditionally or conditionally. If a branch is
unconditional (or conditional and the branch condition is
satisfied), the instruction pointed to by the effective address
of the branch instruction is the next instruction to be
executed. If a branch is conditional and the condition for
the branch is not satisfied, the next instruction is taken
from the next location, in ascending sequence, after the
branch instruction. Note that, if the branch is taken, the
entire instruction is transferred into RP and the nine left-
most bits of this register are therefore of little meaning to
the programmer. The exceptions are the BRM instruction
and in the manual mode, where the status bits are available
for display and alteration in bits 0-5 of [RP].

4—12

SIV/[70—11—-1C

The branch instructions used to implement the various
types of subroutines are shown in Figure 4—2.

Skip instructions skip the next instruction in sequence if
the condition is satisfied. Except as noted, all branch and
skip instructions are type 1 format, address modifiable.

Interrupt Subroutine

N~
BRM » | BSS
[]
\ .
\ L]
BRD
Non-Interrupt Subroutine
BRM —3p | BSS
L]
\ °
\ L]
BRR
Unconditional Link Subroutine
BAL > o
L] []
. \ .
. T~ RCPY
~ or
BRA 0,X2
Conditional Link Subroutine
BAL »| o
L] L[]
. \ L4
. BPL 0,X2
Co-Routine Linkage
BRM » | BSS
L]
L] L]
L] °
BRM
o~ AN

A311A

Figure 4—2. Branching to Subroutines

Unconditional Branch Instructions

Label BRA Expression

Branch to EA.

[Tz 1x]

0123458678 91011121314151617181920212223

ADDRESS

;;;; bk

1 October 1972

SIvV/70—11—1C

Description:

BRA causes the computer to take the next instruction from
the contents of the effective address. The instruction address
(after indexing and indirect address) is transferred into RP.

Condition Code:
None.

Execution Equation:
EA - [RP]

Label BAL Expression
Branch to EA and link using X2.

[6 6| x ~ ADDRESS ,
01234567n91011121314151617181920212223

Description:

BAL stores [RP] in X2, then replaces [RP] with the instruc-
tion address (after indexing and indirect addressing). If X2
is specified as an index, it is destroyed after the EA is cal-
culated. This instruction is used for subroutine linkage. The
value placed in X2 is the address of the instruction following
the BAL, with the first nine bits indeterminate. If an
interrupt signal occurs during execution of a BAL, it is not
recognized until the completion of the following instruction.
The next instruction can thus be used to disarm certain
interrupt levels (e.g., to prevent undesirable reentrancy).

There are two kinds of return from a BAL subroutine. An
unconditional return is given by RCPY X2, RP or by BRA
0, X2. A flexible return is furnished by a conditional branch
(see below) to 0, X2, Note that if the [X2] are altered
during performance of a BAL subroutine, the return from
the subroutine will be changed.

Arguments may be passed to a BAL subroutine if data
(DCN’s, DCA’s, instructions, etc.) are placed in the source
code following the BAL instruction. This data would be
fetched by performing an indexed load (e.g., LDA 1,X2
would fetch the first argument in calling sequence). The
return from such a routine would come to the location
following the data block; thus if six data words were
transferred, the return would be via BRA 7, X2. The first
location of a BAL routine must be an executable instruction,
as contrasted with a BRM routine, whose first location is
temporary storage.

Condition Code:

None.

Execution Equation:

[RP] > [X2]; EA - [RP]

1 October 1972

Section 4
Word Oriented Instructions

Label BRM Expression
Branch to EA + 1 and mark place in EA.

[7 | x | ADDRESS
01234551891011121314151617181920212223

Description:

First the status bits (Stop, Malfunction, and the four con-
dition codes) are placed in RPy—s. Next [RP] - [EA]
and EA + 1 > [RP]. Thus the contents of the program
counter (i.e., the address of the next instruction in sequence)
is kept in memory, and the next instruction is taken from
the following location in memory. Return from a BRM sub-
routine is via a BRD (interrupt servicing) or a BRR (not
interrupt), unless co-routine linkage is being implemented,
in which case BRM is used on the return. If an interrupt
signal occurs during execution of a BRM, it is not recognized
until the completion of the following instruction. The next
instruction can thus be used to disarm certain interrupt
levels (e.g., to prevent undesirable reentrancy).

Arguments may be passed to a BRM subroutine if data
(DCN’s, DCA’s, instructions, etc.) are placed in the source
code following the BRM instruction. This data would be
fetched by performing an indirect load (e.g., LDA* LOC
would fetch the first argument in the calling sequence of a
routine called using BRM LOC). If such a programming
technique is used, the [EA] must be incremented by one
after each argument is fetched, so that control will return to
executable code, not data. Thus, the first location of a BRM
routine is not normally executable (BSS 1 conventionally);
this contrasts with a BAL routine, whose first location must
be executable.

The exact bit format of the [EA], the word used to store
the return information, is:

STATUS
[sTatus Tolo]?| ~ ADDRESS |
Il1234567891011121314151617181920212223

Where:

The address field (bits 9 through 23) are replaced by
the contents of RP (the location following the BRM
instruction). Note that bit 8 may be 0 or 1.

The status bit field is replaced by the setting of the Indi-
cators as follows:

Bit Position

0 Stop

Malfunction (Parity)
Overflow CC
Zero CC
Minus CC
Carry CC

OV W N

4—13

Section 4
Word Oriented Instructions

Condition Code:
None.
Execution Equation:

Status Bits > [EA]o—s; [RP] = [EAlg—s 3
EA+1->[RP]y_,;

Label BRR Expression
Branch Return to [EA].

E 1 |7 . ADDRESS =
012345ﬁ7891011121314151617181920212223

Description:

BRR furnishes a return from a BRM subroutine. It replaces
[RP] with [EA] and returns all four condition codes to
their state before the BRM was executed. Note that no
address modification may be performed.

Condition Code:
o]z [m]c]

Execution Equation:

(EA]2—s = CC;[EA] > [RP]

Label BRD Expression
Branch Return to [EA] and Debreak.

[5 o] 7 — ADDRESS
01Z345B‘IB91011121314151617181920212223

Description:

BRD furnishes a return from a BRM subroutine that was
executed as the result of an interrupt. It operates identically
to a BRR except that a Debreak signal is issued to the in-
terrupt system, thus allowing another interrupt to be ser-
viced on the level whose servicing was just completed or
any lower level. No address modification is allowed.

Condition Code:

Execution Equation:
[EA];—s » CC; [EA] > [RP]
Conditional Branch Instructions

All these instructions have type 1 formats and allow address
modification. They operate by testing condition codes only;
not by testing the state of any register.

4—14

SIV/70—11—1C

Label BPL Expression

Branch to EA on Plus (not minus).

[e T x [. AopRess |
0123456 7835 1011121314151617181920212223

Description:

If the minus condition code is reset (M = 0), the computer
branches to the location specified by EA. Otherwise, the
next sequential instruction is executed.

Condition Code:
None.
Execution Equation:

If M =0, EA > [RP]

Label BMI Expression
Branch to EA on Minus.

6 4] x ADDRESS
012345€678 91011121314151617181920212223

Description:

If the minus condition code is set (M = 1), the computer
branches to the location specified by EA. If not, the next
sequential instruction is executed.

Condition Code:
None.
Execution Equation:

IfM=1,EA - [RP]

Label BZO Expression

Branch to EA on Zero.

[6 3 | x| ~ ADDRESS
ll1234567891011121314151611181920212223

Description:

If the zero condition code is set (Z = 1), the computer
branches to the location specified by EA. If not, the next
sequential instruction is executed.

Condition Code:

None.
Execution Equation:

If Z = 1, EA > [RP]

1 October 1972

SIvV/70—11—1C

Label BNZ Expression
Branch to EA on Not Zero.

[7 31X ~ ADDRESS |
01234557B91011121314151617181920212223

Description:

If the zero condition code is reset (Z = 0), the computer
branches to the location specified by EA. If not, the next
sequential instruction is executed.

Condition Code:
None.

Execution Equation:
If Z=0,EA - [RP]
Label BOF
Branch to EA on overflow, reset overflow.

[6 2 | x [“ADDRESS
l)1234567891011121314151517181920212223

Expression

Description:

If the overflow condition code is set (O = 1) the computer
branches to the location specified by EA. If not, the next
sequential instruction is executed.

This instruction always resets the overflow condition code.t
The procedure for resetting overflow without changing the
sequence of the program is to execute BOF § + 1.
Condition Code:

0->0

Execution Equation:
If 0=1,EA - [RP]

Label BGT Expression
Branch to EA if logically greater than (Z NC-= 1).

[6 7] x [, ADDRESS |

0t 23 4 5 6 7 8 91011121314151617181920212223

Description:

If the zero and carry condition codes are both reset (C=0
and Z = 0), the computer branches to the location speci-
fied by EA. Otherwise, the next sequential instruction is
executed.

T This is the only program instruction that will unconditionally
reset the overflow CC. Zeros may also be restored to the overflow
CC via the BRR or BRD instruction. The overflow CC may also
be set to zero from the control panel. See Section 9.

1 October 1972

Section 4
Word Oriented Instructions

This instruction is intended primarily for testing logical
operations and index testing. The BPL and BMI instructions
are used for testing general arithmetic results. The BNZ
and BZO instructions are used for testing both logical and
arithmetic results.

Condition Code:

None.
Execution Equation:
If ZNC =1, EA > [RP]

Label BCR Expression
Branch to EA if Carry.

[6 51| x ADDRESS ,
ll1234561891011121314151617181920212223

Description:

If the carry condition code is set (C = 1) the computer
branches to the location specified by EA. If not, the next
sequential instruction is executed. Note that this test implies
“logically less than”; see “Comparison Instructions.”

Condition Code:

None.
Execution Equation:
IfC=1,EA -~ [RP]

Branch and Count Instructions

Branch and count instructions BC1, BC2, and BC3 are gen-
erally used in index control operations. They combine a
means of incrementing an index register, testing the register
for zero, and branching if the result is non-zero. If the index
register is loaded with a negative count, a loop control is
effected. The format is type 1 with address modification
permitted.

Example:

Zero out 100 locations.

LD2 M100 Get minus 100
STZ T + 100, X2 Store Zero
BC2 $-1 Increment and test
DONE HLT O
M100 DCN -100
T BSS 100
END

Note that this test is made on zero, not on any positive
number.

4—15

Section 4
Word Oriented Instructions
Label BC1 Expression

Branch and Count X1.

L7 5] x ‘ADDRESS . |
01234567891011121314151611181920212223

Description:

BC1 increments the contents of X1 by 1. If the result is
non-zero, the branch condition is satisfied and the com-
puter takes the next instruction from the location desig-
nated by the effective address. If the result is zero, the
next sequential instruction is executed.

Condition Code:

None.

Execution Equation:

[X1] +1—-[X1].If [X1]#0, EA ~> [RP]
Label BC2 Expression

Branch and Count X2.

L7 6 [x| ~~ ADDRES§
01234567891011121314151617181920212223

Description:
Same as BC1 except that X2 is used.

Condition Code:
None.

Execution Equation:

[X2] + 1~ [X2].If [X2]# 0, EA > [RP]

Label BC3 Expression
Branch and Count X3

[7 7 [x . ADDRESS]
01234557891011121314151617181320212223

Description:

Same as BC1 except that X3 is used.

Condition Code:

None.
Execution Equation:

[X3] + 1~ [X3].If [X3] #0, EA > [RP]

Skip Instructions
These instructions operate by adding one to the contents

of the program counter if the condition specified is met.
The format is type 1 with address modification.

4—16

SIV/70—11-1C

Note that these instructions alter program flow based on
the contents of a memory location, without altering or
referring to the condition codes.

Label INR Expression

Increment memory, skip if zero.

[1 1] x " ADDRESS
01234567891011121314151617181920212223

Flowchart:

SINGLE
INSTRUCTION
INTERRUPT

[EA] + 1 2> [EA]

[EA] + 1> [EA] NO
YES
y
SKiP
ISSUE DEBREAK
[RP] + 1 > [RP]
NO
[EA] =0 —
YES
SEND INTERRUPT
[y
y
DONE
Description:

There are two cases: single-instruction-interrupts, and others.
If the INR instruction is being used to count interrupts, it

1 October 1972

Siv/70—11—-1C

will be placed in the interrupt location for the level being
serviced; otherwise it may be used to implement a counter
in a memory location. Refer to the flowchart above. First
a test is performed to determine whether this is a single-
instruction-interrupt. If so, 1 is added to the [EA] and a
debreak signal is issued to clear the interrupt being serviced.
The result is then tested for zero. If zero, a signal is
generated which may be wired to another interrupt level for
servicing.

If this is not a single-instruction-interrupt, 1 is added to the
[EA] and the result is tested for zero. If the result is zero,
the skip condition is satisfied and the next sequential in-
struction is skipped; otherwise the next sequential instruc-
tion is executed.
Condition Code:

None.

Execution Equation:

Not a single-instruction interrupt:
[EA] + 1~ [EA];if [EA] = 0,[RP] +1 > [RP]

Single instruction interrupt:
[EA] + 1 —>[EA];issue debreak; if [EA] = 0,send interrupt.

Label DEC Expression

Decrement memory, skip if zero.

(2 1+ | x 1. .~ aopmess, |
01234Er67891011121314151517181920212223

Description:

Fetches the [EA] and subtracts one from it, then stores the
result back into EA. Tests the results for zero; if zero is
found, the skip condition is satisfied and the computer skips
the next instruction. If not, the computer executes the next
instruction in sequence.

Condition Code:
None.

Execution Equation:

[EA] -1 [EA].If [EA] =0, [RP] + 1> [RP]

Label SKZ Expression

Test memory, skip if zero.

[6 o x | . ADDRESS
01234Ei67891011121314151617181920212223

1 October 1972

Section 4
Word Oriented Instructions

Descripiion:

If the contents of the effective address are zero, the com-
puter skips the next instruction in sequence and executes
the following instruction. If the contents are non-zero, the
next instruction in sequence is executed.

Condition Code:
None.

Execution Equation:

If [EA] =0, [RP] + 1~ [RP]

Label SKN Expression

Test memory, skip if negative.

(2 2 [x|, . Aooress |
00123 456 7 8 9101112131415 16 17 18 19202122 23

Description:

If the contents of the effective address are negative (bit 0 = 1),
the computer skips the next instruction in sequence and
executes the following instruction. If the contents are zero
or positive, the next instruction in sequence is executed.

Condition Code:

None.

Execution Equation:

If [EA] <0, [RP] + 1 > [RP]

REGISTER-TO-REGISTER INSTRUCTIONS

Register-to-register instructions perform operations between
a source register (S) and a destination register (D). The range
of sources and destinations is the eight working registers,
RO, R1, RP, RA, RB, X1, X2, and X3. Caution must be
exercised in using RO and R1 as destinations because a
no-op will result except that the condition codes will be set
or reset as if the instruction had been executed normally.
Caution must also be exercised in using RP as a destination
register, because it contains the program counter, and any
change in the program counter changes the next program
location. Note, however, that changing the program counter
is a legitimate programming technique.

Complete facilities are provided in the register-to-register
instructions for copying, rotating, clearing, adding, sub-
tracting, complementing, and for logical operations and
byte control. All instructions have the type 2 format.
Except for the CDA2 and RCM2 instructions, all register-
to-register instructions can use the byte store control for
character selection. Byte control is applied only during data
storage into the selected destination register. Therefore, if

4—17

Section 4
Word Oriented Instructions

reference is made to ‘“‘before store’” in the instruction
description, it means after the operation has been performed
but before byte control has been imposed. Byte store
control is described further under ‘“Non-Memory Reference
Instructions” in Section 3.

Label CDA2
Copy double, RA-X1, X2-X3.

Lz 4171
0123455789101112131415

122 23

Description:

CDA2 copies the double accumulator RA-X1 into X2-X3.
The contents of RA replace the contents of X2 and the con-
tents of X1 replace the contents of X3. Entries in the oper-
and field will be ignored by the assembler.

Example:
Before Exec. After Exec.
[RA] = 23451703 23451703
[X1] = 00000004 00000004
[X2] = 00000000 23451703
[X3] = 00000000 00000004

Condition Code:

None.

Execution Equation:

[RA] - [X2]; [X1] > [X3]

Label RADD S,D,B

Register Addition, source to destination.

IKFRARN BEAN BEN BCA D)

01 2 3 4 5 6 7 8 910111213141515171

Description:

RADD adds the contents of the source register to the con-
tents of the destination register. The condition codes are
set according to this result. Byte store control is then
effected and the result replaces the contents of the desti-
nation register. If RO or R1 are specified as destination, no
registers will be affected, but the condition codes will be
set. If no byte control is specified, the assembler will
furnish 7.

Example:

The instruction is RADD R1, X2, 4

4—18

S1vV/70—11-1C

Before Exec. After Exec.
[R1] = 00000001 00000001
[X2] = 77777777 00177777
0ZMC = 0000 0101

Condition Code:

Execution Equation:

[D] + [S] — [D], selected bytes.

Label RSUB

Register Subtraction, source from destination.

[7 T s 1o
01234557891011121314151617

Description:

RSUB subtracts the contents of the source register from
the contents of the destination register. The condition
codes are set according to this result. Byte store control is
then effected and the result replaces the contents of the
destination register. If no byte control is specified, the
assembler will furnish 7. Note that RSUB R1,RP creates a
closed program loop that can be cleared by moving the
AUTO/MANUAL switch to MANUAL, DISPLAY SELECT
to MEM, activating STEP, DISPLAY SELECT back to TIR,
then AUTO/MANUAL back to AUTO.

Example:

The instruction is RSUB RA, X3, 7

Before Exec. After Exec.
[RA] = 00000005 00000005
[X3] = 00000003 77777776
OZMC = 0000 0011

Condition Code:

Execution Equation:
[D] - [S] = [D], selected bytes.
Label RCPY S,D,B

Copy source to destination.

ICHNGAE EAR DO NG)

0123 456 7 8 9 10111213141516 17 18 19 20 21 22 23

Description:

RCPY copies characters from the contents of the source
register and places them in the contents of the destination

1 October 1972

SIV/70—11—1C

register. The byte store control field selects the charactets to
be copied. A byte control of 7 is assumed if not furnished.

Example:
The instruction is RCPY RO, RA, 3

Before Exec.
[RA] =77777776

After Exec.
77600000

The instruction RCPY RO, RO, O performs no operation.
Condition Code:

None.

Execution Equation:

[S] = [D], selected bytes.

Label RAND S,D,B
Logical AND source to destination.

L2 o7]s [0o]B
012345|Ii7891011121314151617181920212223

Description:

RAND logically ANDs selected bytes of the source register
into selected bytes of the destination register. If the cor-
responding bits of [S] and [D] are both 1,a 1 is placed in
the corresponding bit of the destination register; otherwise
a 0 is placed there. The [S] and the unselected bytes of [D]
are not changed. The zero and the minus condition codes are
updated based on the stored value. A byte control of 7 is

assumed if not given. RAND may be used to set a bit, byte,

or word to 0. If RO or R1 is given as the destination, the
condition codes are set as if the result were 0 or 1.

Condition Code:

Execution Equation:

[S] N [D]
where:
0N0=0,0n1=0,1Nn0=0,1N1=1

- [D], selected bytes.

Example:

To force the [X1] even:

RCM2 R1,RB

RSUB R1,RB

RAND RB,X1
Before Exec. After Exec.
[RB] = 00000000 77777776
[X1] = 22376057 22376056

1 October 1972

Section 4
Word Oriented Instructions

Label ROR S,D,B

Logical OR source to destination.

Ly ol 215]0o].}8
01234567891011121314151617181920212223

Description:

ROR inclusively ORs the selected bytes of the source reg-
ister into selected bytes of the destination register. If the
corresponding bits of [S] and [D] are both 0, a 0 remains
in [D]; otherwise a 1 is placed in the corresponding bit posi-
tion of [D]. The [S] and the unselected bytes of [D] are
not changed. The zero and minus condition codes are up-
dated based on the stored value. A byte control of 7 is
assumed if not given. ROR may be used to set a bit, byte,
or word to 1. If RO or R1 is given as the destination, the
condition codes are set as if the result were O or 1.

Example:

The instruction is ROR RB, X2, 5

Before Exec. After Exec.
[RB] = 25252525 25252525
[X2] = 52525252 77725377

Condition Code:

Execution Equation:

[S] UV [D] — [D], selected bytes.
where:
oV0=0,0VU1=1,1VU0=1,1U1=1

Label RXOR S,D,B

Exclusive OR, source to destination.

(3 o f7[s]p s
0123 456 7 8 9 101112131415 1617 18 19 20 21 22 23

Description:

RXOR exclusively ORs the selected bytes of the source reg-
ister into selected bytes of the destination register. If cor-
responding bits of [S] and [D] are different,a 1 is placed in
the corresponding bit position of [D]; if the contents of the
corresponding bit positions are alike, a 0 is placed in the cor-
responding bit position of [D]. The [S] and the unselected
bytes of [D] are not changed. The zero and minus condi-
tion codes are updated on the stored value. A byte control
of 7 is assumed if not given. If RO or R1 is given as the
destination, the condition codes are set as if the result were
Oorl.

4—19

Section 4
Word Oriented Instructions

Example 1:

Inverting (one’s complement) two bytes. The instruction is

SIV/70—11—-1C

RXOR X2, RA, 6.

Before Exec. After Exec.
[X2] =777777717 777777
[RA] = 32410616 45367216

Example 2:

Swapping the contents of two registers without use of an

intermediate location. The sequence is:

RXOR X1,X2,7
RXOR X2,X1,7
RXOR X1,X2,7

Before Exec. After Exec.
[X1] = 01234567 70707070
[X2] = 70707070 01234567

Condition Code:

Execution Equation:

[S] @ [D] = [D], selected bytes.

where:

000-0,001-1,10Q0-1,101-0

Before Exec. After Exec.

[RA] = 25000052 7777777

0ZMC = 0000 0010
Condition Code:

Execution Equation:

-[81—[D]

Label RCR S,D,B,C
Copy source to destination, then rotate right.

Lo . 6] .21 s{pofp],

0123 452¢6178 91011121314151617181920212223

Description:

First the contents of the source register are copied into the
destination register under byte control then the contents
of the destination register are rotated right by the number
of positions specified in the count field. The shift is per-
formed on all bytes of the destination. If no count is given,
0 will be assumed; if no byte control is given, 7 will be
assumed. (Note that the assembler treats NOP as RCR
0,0,0,0 and RCPY as RCR S,D,B,0.)

Example 1:
The instruction is RCR R1,RA, 4,5

Label RCM2 S,D

Two’s Complement, source to destination.

[3“11]713]0
0012 3 456 7 8 91011213141

1920 21 22 23

Description:

RCM2 forms the two’s complement of the full contents of
the source register and places the result into the destina-
tion register. The computer forms the two’s complement by
obtaining the one’s complement and adding 00000001 to it.
The results of this sum are reflected in the condition codes.
Byte control is not active for this instruction.

Example 1:

The instruction is RCM2 RB, RB
Before Exec. After Exec.
[RB] = 12134025 65643753
OZMC = 0000 0010

Example 2:

The instruction is RCM2 R1, RA

4—20

Before Exec. After Exec.
[RA] =77777777 76003777
Example 2:
The instruction is RCR X3, RB, 5, 8
Before Exec. After Exec.
[X3] = 05210030 05210030
[RB] = 00000000 06012400

Condition Code:

None.

Execution Equation:

[S] — [D] selected bytes; rotate [D] right [C] locations.

Label RCL S,D,B,C

Copy source to destination, then rotate left.

[0 21 171 s

D8], ¢]

0123456178 91011121314151517181920212223

1 October 1972

SIV/70—11—-1C

Description:

This instruction operates the same as RCR except that the
direction of rotation is left.

Condition Code:

None.

Execution Equation:

[S] —» [D] selected bytes; rotate [D] left [C] locations.
Label RRC §,D,B,C

Rotate right then copy, source to destination.

o 71 718 [0]B],]
012345G7891011121314151617181920212223

Description:

First the contents of the source register are rotated right
(the contents of the register itself are unchanged) by the
number of bit positions specified in the count field, then
the rotated quantity is stored in the destination register. This
instruction is particularly useful in assembling characters
into words. If no shift count is given, 0 will be assumed; if
no byte control is given, 7 will be assumed. Compare with
RCR.

Example 1:
The instruction is RRC R1, RA, 4,5

Before Exec. After Exec.
[RA] =77777777 021777717
Example 2:
The instruction is RRC X3, RB, 2, 8
Before Exec. After Exec.
[X3] = 05200030 05200030
[RB] = 060000000 00012400

Condition Code:
None.
Execution Equation:

Rotate [S] right [C] locations; rotated quantity - [D],
selected bytes; original [S] unchanged.

Label RLC S,D,B,C

Rotate left then copy, source to destination.

(o 3T 71 sToTBET. a

Section 4
Word Oriented Instructions

Description:

This instruction operates the same as RRC except that the
direction of rotation is left.

Condition Code:
None.
Execution Equation:

Rotate [S] left [C] locations; rotated quantity - [D],
selected bytes; original [S] unchanged.

LOGICAL INSTRUCTIONS

Logical instructions operate over the entire 24-bits of two
operands ([EA] and [RA]), on a bit by corresponding bit
basis without regard to sign interpretation. Indexing and/or
indirect addressing may be used in producing the EA. Only
the zero and minus condition codes are set or reset by log-
ical operations. In addition to the register-to-memory and
memory-to-register logical operations covered here, register-
to-register logical operations are also available and described
under “Register-to-Register Instructions.”

Label ANAT Expression
Logical AND [EA] into [RA]; results in RA.

[2 4 | X ADDRESS
01234567891I]11121314151617181920212223

Description:

Logically ANDs the [EA] into RA. If corresponding bits
of [RA] and [EA] are both 1, a 1 remains in RA; other-
wise, a 0 is placed in the corresponding bit position of RA.
The [EA] are unaffected.

Example:
Before Exec. After Exec.
[RA] =23476175 03070104
[EA] = 07070706 07070706

Condition Code:

Execution Equation:

[RA] N[EA] = [RA]
where:
0N0=0,0Nn1=0
1N0=0,1Nn1=1

0 1 Z 3456 78 91"‘1121314151617181920212223

1 October 1972

T The assembler will also recognize AND as an ANA instruction.

4-21

Section 4
Word Oriented Instructions

Label ANM Expression
Logical AND [RA] into [EA]; results in EA.

2 0 | x ADDRESS

2, .]

0123 4 56 7 8 !l1011121314151617181920212223

Description:

Operates the same as ANA, except that the result of the
logical AND operation appears in EA, and the [RA] are
unaffected.

Condition Code:

Execution Equation:
[RA] N [EA] - [EA]

Label ORA+ Expression
Logical inclusive OR, [EA] into [RA]; results in [RA].

v o I x| ~ ADDRESS |
01234557891011121314151517181920212223

Description:

Logically ORs the [EA] into RA. If corresponding bits of
[RA] and the [EA] are both 0, a O remains in RA; other-
wise, a 1 is placed in the corresponding bit position of RA.
The [EA] are unaffected.

Example:

Application of a mask for parity on three characters. [RA]
before execution are ASCII “ABC”; after execution, [RA]
have odd parity inserted into the first bit positions of each
character.

Before Exec. After Exec.
[RA] = 20241103 60341103
[EA] = 40100000 40100000

Condition Code:

Execution Equation,

[RA] U[EA] ~ [RA]
where:
0U0=0,0U1=1,1U0=1,1U1i=1

¥ The assembler will recognize OR as an ORA instruction.

422

SIV/70—-11-1C

Label ORM Expression
Logical inclusive OR, [RA] into [EA]; results in [EA].

]110|x[ADDRESSL
012345ﬁ7891011121314151617181920212223

Description:

Operates the same as ORA, except that the result of the
logical OR operation appears in EA, and the [RA] are
unaffected.

Condition Code:

Execution Equation:

[RA] U[EA] ~ [EA]

Label XOAT Expression

Logical exclusive OR, [EA] into [RA]; results in RA.

[3 4 | x | ADDRESS
l]1234567ll91011121314151617181920212223

Description:

Logically exclusive ORs the [EA] into RA. If corresponding
bits of [RA] and [EA] are different, a 1 is placed in the
corresponding bit position of register RA; if the contents
of the corresponding bit positions are alike, a 0 is placed
in the corresponding bit position of register RA. The [EA]
are unaffected.

Example 1:
Before Exec. After Exec.
[RA] =52043716 42733712
[EA] = 10770004 10770004

Example 2: When used with an operand mask of ones, the
XOA functions as a logical inversion (one’s complement) of
the selected bits.

Before Exec. After Exec.
[RA] =52043716 25734061
[EA} =77777777 77777777

Condition Code:

'3' The assembler will also recognize XOR as an XOA instruction.

1 October 1972

SIV/70—11—-1C

Execution Equation:
[RAJQIEA] - [RA]
where:
oU0=0,0U1=1,
1VU0=1,10U1=0

Label XOM Expression
Logical exclusive OR, [RA] into [EA]; results in EA.

|I3ll 0] X I 1 ADDRESS j — IJJ
0123 4 5 6 7 8 91011121314151617181920212223

Description:

Operates the same as XOA, except that the result of the
logical exclusive OR operation appears in EA, and the [RA]
are unaffected.

Condition Code:

Execution Equation:

[RA]OIEA] - [EA]

CONTROL INSTRUCTIONS

Label HLT Expression
Halt operations.

[0 o] x ADDRESS _
012 3 4 5 6 7 8 91011121314151617181920212223

Description:

The HALT flip-flop is set. This causes the computer to
enter the stop mode preventing the execution of any further
instructions. To resume computation and clear the halt, the
operator must either move the AUTO/MANUAL switch to
MANUAL then back to AUTO, or move it to MANUAL and
then activate the STEP switch. If an interrupt is received
during the execution of a HLT, the interrupt will be serviced
immediately after the stop mode is cleared. Note that when
the halt occurs, the [RP] will be the location of HLT + 2.
The [TIR] will be the next instruction after the HLT. Thus,
after a HLT, moving the AUTO/MANUAL switch from
AUTO to MANUAL to AUTO causes the next instruction
in sequence to be executed, and execution to continue
from that point.

Label MCC Expression

Test memory, set condition codes.

0 1 2 3 4 5 G 7 8 910111213141516171819 26212223

1 October 1972

Section 4
Word Oriented Instructions

Description:

MCC updates the zero and minus condition codes based
on the contents of the effective address. The computer
accomplishes this internally by adding 00000000 to the
memory location. The overflow condition code is unchanged
and the carry is always set to 0.

Example:

The instruction is MCC 0100

Before Exec. After Exec.

{0100] = 62317725 62317725

0ZMC = X000 X010
Condition Code:

Execution Equation:

[RO] + [EA] > [EA]

Label RCC S

Test source register, set condition codes.

[1 1[7[s|o

01 2I3 4 5 6 7 8 9 10111213141516 17 1819 20

Description:

RCC updates the zero and minus condition codes based on
the contents of the Source Register. This is accomplished
by adding RO to the Source. Only the source must be
specified. RCC uses the same op code as RADD.

Condition Code:

Execution Equation:

[RO] +[S] ~[S]

Label NOP
No Operation.

[o . 6.7]9 o o 0]

012345¢6738 91011121314151617181920212223

Description:

No operation takes place. The next instruction in sequence
is executed. The operand field of the assembly language
form should be blank.

4-23

Section 4
Word Oriented Instructions

Label XEC Expression
Execute the instruction in [EA].

7 0 x| ADDRESS .
01234567891011121314151617181920212223

Description:

The contents of the effective address are treated like an
instruction and executed in the usual manner. XEC $ is an
illegal operation which will cause the computer to hang up
until SYSTEM RESET is activated.

Condition Code:
None.

Label TRAP Expression
Trap to 415 in main storage

(¢ "6 | 71 [— ADDRESS
01234567891011121314151617181920212223

Description:

Causes a trap or supervisor call to location 415, which nor-
mally contains a BRM to a routine that clears up arithmetic
faults (see ‘Arithmetic Trap” under ‘“‘Hardware Organiza-
tion” in Section 3), and/or generates a supervisor call for a
user defined function.

Condition Code:
None.
Execution Equation:

[415] > [TIR]

Label ODD S,D,B,C

Generate odd parity on source and store in destination.

| s [7 1Ts o]8T, |

01 2 3 4 5 6 7 8 91011121314151617181920212223

Description:

a. The contents of the source register are read and held in
the memory register.

4—24

SIvV/70—11—-1C

b. The destination register is loaded with all ones.

¢. The shift counter (C) is tested for zero; if zero the
instruction ends.

d. The counter is decremented by one ana the contents of
the memory register are rotated left one place.

e. The rotated memory register is then exclusive ORed with
the destination register. This result replaces all of the
destination register, and the instruction loops back to
step c.

The count field (C) is used to specify the number of bits
over which parity is to be calculated; this is one fewer than
the length of the corresponding field (e.g., for a whole word
use a count of 23; for a byte use a count of 7).

Example:

Computation of parity over each of the 8-bit characters in a
word and storing the result in the first bit of each character.
The sequence is:

LDA CHAR
ANA MSK2 Note 1
STA WRD Note 2
ODD RARA7,7T Note 3
ANA MSK1 Note 4
ORM WRD Note 5
HLT DONE

MSK1 DCN 040100200

MSK2 DCN 037677577

WRD PZE 0

CHAR DCA ‘ABC’

1. Masks out parity bit of each character.

. Stores masked characters into WRD.

. Generates parity bit for all positions.

. Masks out all bits but desired parity bits.

. Inserts parity bit into first position of each character.

[SAN VU

After Exec.
20241103
60341103

Before Exec.
[CHAR] = 20241103
[WRD] = 00000000

Condition Code:

None.

1 October 1972

SIV/70—11—1C

Section 5
String Manipulation Instructions

These instructions offer various means for processing strings
of 8-bit bytes. Instructions are provided for moving strings
between memory blocks, for moving characters and strings
between memory and RA, for translation of characters,
and for processing lists of characters and words. These
instructions are covered in three parts: Word and Character
Manipulation Instructions, List Processing Instructions, and
Decimal Option Instructions.

WORD AND CHARACTER MANIPULATION
INSTRUCTIONS

These instructions furnish a means of manipulating charac-
ters (bytes) and blocks of words under programmer control.
A significant application is in assembling blocks of characters
for display on the video screen. For instance, up to 64 words
(192 characters) of data can be assembled anywhere in
memory, then transferred with one instruction into the
display area for immediate display. Alternatively, a single
character may be placed anywhere in a display area. Another
significant application is decimal arithmetic routines that
manipulate ASCII characters directly. A translate instruc-
tion is provided to implement table look-ups of character
information.

No address modification is possible for these instructions.

Word Move Instructions

These instructions copy a block of memory words, from
one to 64 words in length, from a main storage source loca-
tion into a main storage destination location. The MVE
instruction moves blocks of words directly, without offset;
MVL shifts a string of bytes left one byte while moving the
block and MVR shifts it right one byte. Thus, MVL and
MVR can be used to edit blocks into the proper locations for
display or other output; for direct block transfer, the MVE
instruction is much faster.

Before each of these instructions is executed, the source-
block starting address minus one (plus one for MVL) must
be entered into X2, and the relocation constant (i.e., the
distance of the move) must be entered into X3. These
instructions operate by adding the contents of X3 to the
source address to obtain the destination address. No con-
dition codes are affected. Specific byte-masking constants
are required by the microprogram for the MVR and MVL
instructions; they are furnished in the operands of the
instructions.

1 October 1972

Label MVE C

Move a block of words, no offset.

2 37
0123450678

17 18 10 20 21 22 23
Description:

A block of words [C] + 1 in length is moved from a source
area to a destination area. The initial source address is [X2]
+ 1 while the initial destination address is [X3] + [X2] + 1.
The count information must be given. The contents of X2
will be automatically updated when execution is complete;
i.e., after execution [X2] + [C] + 1 > [X2]. RB is used for
storage of intermediate results.

Example: A block of alphabetic characters, starting in a
location identified by BLK1 is moved to BLK2.

LD2 ADR1
LD3 OFFSET
MVE 5
HLT $
BLK1 DCA ‘ABCDEFGHIJKLMNOPQR’
BLK2 BSS 6
ADR1 DCN BLK1-1
OFFSET DCN BLK2-BLK1

Label MVR B,C
Move a block of words, offset right one byte.

B 1. . ¢,]

15 16 17 18 19 20 21 22 23

ILIIII7III7I
012345678

Description:

A block of words [C] + 1 in length is fetched from a source
area, shifted right one byte, and stored in a destination area.
The first character stored in the destination area (i.e., the
last character in the [source block starting address - 1])
must be placed in the left byte of RA before execution of
the MVR instruction. The last character in the source area
is not stored in the destination area but appears in the left
byte of RA at the end of the instruction. The initial source
address is [X2] + 1 while the initial-destination address is
[X3] +[X2] + 1.

Both byte and count information must be given. For a
normal word-move, the byte control must be 3. The B
register is used for temporary storage. After execution, RB
contains the last word stored in the destination block, and
RA contains the last word fetched from the source block,

Section 5
String Manipulation Instructions

rotated right 8 with the last character copied into the left
byte. The contents of X2 will be automatically updated
when execution is complete; i.e., after execution [X2] +
[C] +1 - ([X2].

This instruction is convenient for insert editing of text.

Example:
ORG 1
LDA SM1
RCR RA,RA,7,8
LD2 @SsM1
LD3 OFST
MVR 3.1
LDB D+2
RCPY RB,RA,3
STA D+2
ORG 0140
BLK DCA ‘ZZZ2722772277227217
DCA ‘YYY’
SM1 DCA ‘XXABCDEFG’
D EQU BLK+1
OFST DCN D-SM1-1
@SsM1 DCN SM1
END 1
Result starting at 0140:

ZZ7 ABC DEF GZZ ZZZ YYY XXA BCD EFG
Execution Equation:

[RA] ~ [RB]; [X2] + 1~ [X2];

{1X2]] rotated right 8 > [RA]

[RA] - [RB], selected bytes; [RB] — [[X2] + [X3]]
Repeat the above [C] times.

Label MVL B,C

Move a block of words, offset left one byte.

[1 3 | 7 B] C
0123 456 7 8 9101112131415 16 1718 19 20 21 22 23

Description:

A block of words [C] + 1 in length is fetched from a source
area, shifted left one byte, and stored in a destination area.
The initial source address is the highest address in the source
area. The last character desired in the destination area (left
byte of word in [initial source address + 1]) must be placed
in the right byte of RA before execution of the MVL
instruction. The first character in the source area is not
stored in the destination area but appears in the right byte
of RA at the end of the instruction. The initial source
address is [X2] - 1 while the initial destination address is
[X3] +[X2] - 1.

SIV/70—11—1C

Both byte and count information must be given. For a
normal word-move, the byte control must be 6. The B
register is used for temporary storage. After execution, RB
contains the last word stored in the destination block, and
RA contains the last word fetched from the source block,
rotated left 8 with the last character copied into the right
byte. The contents of X2 will be automatically updated
when execution is complete; i.e., after execution [X2] -
[C]-1-([X2].

This instruction is convenient for delete editing of text.

Example:
ORG 1
LDA SP1
RCL RA,RA/7.8
LD2 SpP1
LD3 OFST
MVL 6,1
LDB D-2
RCPY RB,RA6
STA D-2
ORG 0140
BLK DCA ‘ZZ77Z277272777272727
DCA ‘YYY’
SM1 DCA ‘ABCDEFGXX’
D EQU BLK+2
OFST DCN D-SM1-1
SP1 DCN SM1+2
END 1

Result starting at 0140:

ZZA BCD EFG ZZZ ZZZ YYY ABC DEF GXX

Execution Equation:

[RA] > [RB]; [X2] -1~ [X2];

[[X2]] rotated left 8 > [RA]

[RA] — [RB], selected bytes; [RB] — [[X2] + [X3]]
Repeat the above [C] times.

Character Manipulation Instructions

The character manipulation instructions move data in
eight-bit bytes in a manner appropriate for working with
character strings. The data is moved between RA and
specified memory locations. There are eight character
manipulation instructions; the mnemonics are constructed
as follows:

1st letter L for load, S for store
2nd letter C for character, P for parallel
3rd letter L for left, R for right.

Load is to copy a character or string from memory into
RA; store is to move the character or string from RA into

1 October 1972

SIV/70—11-1C

memory. Character means a single character will be loaded
or stored; load parallel means three consecutive bytes will
be moved from any arbitrary byte boundary in memory
into RA (i.e., all three bytes can be in one word, or the two
leftmost bytes in one word and the rightmost in the next,
or the leftmost in one word and the two rightmost in the
next). Store parallel means the word in RA will be stored
into the appropriate memory location and then the pointer
to that word incremented so that the next word will go into
the next location. Left and right refer to the direction of
the move: a left move starts with the rightmost byte or
word in a string and works to the left; a right move starts
with the leftmost byte or word, and works to the right.
Another way of saying this is that right means working
from a lower toward a higher numbered memory address;
left means from higher to lower.

For these manipulations, certain constants and variables
must be available to the microprogram that controls the
computer. These are furnished by the programmer in the
table shown in Figure 5—1, and in the other operands asso-
ciated with the execution of each instruction. Since there is
room in each instruction for only a single memory reference
operand, the method used is to have the effective address of
the instruction (i.e., the contents of bits 9-23; no address
modification is allowed with these instructions) point to a
word pair on an even memory boundary (FORCE 0), and
have the first word of this pair point to a second word
pair on another even boundary. This furnishes sufficient
information for manipulating one or three byte blocks on
arbitrary boundaries, using the same four operands for load
and store, character and parallel operations. The following
example shows the reasons for sharing the operands: it
is possible to move byte strings on arbitrary boundaries,
moving a character at a time until a word boundary is found
in the destination area, then moving parallel words until the
closing boundary is reached, at which point characters are
moved again to finish the move.

The four operands are illustrated in Figure 5—2 and defined
as follows: The first operand [EA] contains the pointer to
the two-word table entry, explained below. The second
operand [EA U 1] — i.e., the contents of the next word
after the pointer to the table — is a pointer (originally) to
the first word in the source data block (for load) or the first
word in the destination data block (for store). This pointer
is updated every time a word boundary is reached (character
operations) or every time the instruction is executed (parallel
operations). Only the address part of the second operand is
valid after execution; the left nine bits are destroyed.

The third operand [[EA]] — i.e., the word pointed at by
the word stored in the effective address location — is the
first word of one of three word-pairs in the Character Byte
Control, Shift Count, and Linkage Tables. Thus, [[EA] U 1]
is the second word of the pair in the table. As shown in
Figure 5—1, there are four tables of constants: one each for
Load Right, Store Right, Load Left and Store Left. Each

1 October 1972

Section 5
String Manipulation Instructions

table contains three pairs of entries, and each pair has a
pointer in the first word and a byte count and shift control
constant in the second word. The pointers are arranged
circularly and, each time the instruction is executed, the
current pointer replaces the contents of the effective address
for character operations. Thus, whenever a character is taken
from or put into the last byte location of a word, the data
address pointer is updated (+1 for right, -1 for left) and the
next operation involves the first byte (leftmost for right
operations, rightmost for left operations) of the next word.
The shift and byte information in the second word of each
entry is arranged to enable the microprogram to perform
the correct shifting and byte-masking for conventional
character manipulation operations — with different table
entries, different operations might be implemented. This
table is standard with all Four-Phase software and is fur-
nished in relocatable form under DOS. The labels used in
these tables are constructed as follows:

Character

Position

in Label Meaning

1st Character L for load, S for store

2nd Character R for right, L for left

3rd Character 0 for left byte, I for middle byte,
2 for right byte

4th Character Always T for table.

After execution of any of these eight instructions, the zero
condition code is always set.

Example:

This general-purpose block move routine exercises the
Character- and Parallel- Move instructions. It is the fastest
method for moving arbitrary blocks of bytes without the
decimal option. The calling sequence for the routine fur-
nishes the references to the table in Figure 5—1 in the
following manner: SPNT and DPNT each point to a word
pair (first and second operands), the first word of which
points to the appropriate table entry (third and fourth
operands), and the second word to the starting address of
source or destination. The table entries (third operands) are
derived as follows:

Starting
Byte Position [SPNT] [DPNT]}
Leftmost LROT SROT
Middle LR1T SR1T
Rightmost LR2T SR2T
ENTRY MOVE

* BAL MOVE Calling sequence

*+0 DCN LENGTH In bytes

*+1 DCN SPNT Source wrd pair addr

Section 5 SIV/70—11—1C
String Manipulation Instructions

*+2 DCN DPNT Dest word pair addr BZO LP4 Skip branch if X1 <0
*+3 RETURN Next instruction after BPL LP2
* move done LPR SRCE Move dest align part
MOVE ST1 SAVE1 Avg cycles = 260 SPR DEST+1
LDA1* 1,X2 +23+length BRA LP1
STA1l SRCE Get table entries and LP4 LPR SRCE
LDA1* 2,X2 source and destination SPR DEST+1
STA1l DEST addresses BRA RET3
RCPY R0, X1 LP2 SB1 D3
SB1 0,X2 LP3 LCR SRCE Move last non-aligned
BPL RET3 SCR DEST
* BC1 LP3
LPO SKN* DEST Test for word bound RET3 LD1 SAVE1l Restore X1
BRA LP1 BRA 3,X2 Return
LCR SRCE Move til dest aligned D3 DCN 3
SCR DEST SAVE1l BSS 1
BC1 LPO FORCE O
BRA RET3 SRCE BSS 2
* DEST BSS 2
LP1 AD1 D3 END

THE COMMENTS EXPLAIN THE MEANING

Relative OF THE SIGN BIT TAGS.

Mem Standard Four-Phase Software assumes that

Address Contents FORCE 0 the tables are used exactly as shown.
* LOAD RIGHT

00000 00000002 LROT DCN LR1T

00001 00000000 DCN 0000

00002 00000004 LRIT DCN LR2T

00003 00000410 DCN 0410

00004 00000000 LR2T DCN LROT

00005 40000610 DCN 0610+040000000 RIGHT SHIFT
* STORE RIGHT

00006 00000010 SROT DCN SR1T

00007 00000300 DCN 0300

00010 40000012 SRI1T DCN SR2T-+040000000 NOT ALIGNED

00011 00000510 DCN 0510

00012 40000006 SR2T DCN SROT+040000000 NOT ALIGNED

00013 40000610 DCN 0610+040000000 LEFT SHIFT
* LOAD LEFT

00014 00000020 LLOT DCN LL2T

00015 00000300 DCN 0300

00016 00000014 LL1T DCN LLOT

00017 00000110 DCN 0110

00020 00000016 LL2T DCN LL1T

00021 40000010 DCN 0010+040000000 RIGHT SHIFT
* STORE LEFT

00022 40000026 SLOT DCN SL2T+040000000 NOT ALIGNED

00023 00000300 DCN 0300

00024 40000022 SL1T DCN SLOT+040000000 NOT ALIGNED

00025 00000510 DCN 0510

00026 00000024 SL2T DCN SL1T

00027 40000610 DCN 0610+040000000 LEFT SHIFT

00030 00000000 END

Figure 5—1. Character Byte Control, Shift Count, and Linkage Tables

5—4 1 October 1972

SIV/70—11—1C

Section 5
String Manipulation Instructions

Instruction

Effective

Op Code Address

[EA] Area

[[EA]] Area

First Operand,
Word 0 Called [EA].
Contains Pointer
Into Table

Third Operand,
word 0 | Called [[EA]]
Contains Pointer
to Next Table Entry

‘{N

Second Operand
Word 1 Called [EA U 1]
Contains Pointer

to Data

Fourth Operand
Word 1 Called [[EA] U 1]
Contains Shift and
Byte Information

_J

C Data Area
Data Words

Word 2 | Like Third Operand 4')

Word 3 | Like Fourth Operand

Word4| Like Third Operand ——/

Word 5| Like Fourth Operand

A313A

Figure 5—2. Character Manipulation Instruction Operands

Label LCR Expression
Load Character Right

[LDI 1 l4l l I7l] 1 1 1 I 1 AIDIDRIESIs 1 1 H 1 1
0123456 7 8 9101112131415 1617 18 18 2021 22 23

Description:

LCR zeros out RA, then fetches a character out of memory
from the location indicated by the second operand (see
Figure 5—2). One byte of this word is copied into the
leftmost byte of RA; which byte is determined by the
fourth operand in the following manner:

Bit 0 Shift direction (O for rotate left, 1 for
rotate right)
Bits 18-23 Shift count

Thus, if the fourth operand = 000000000, the leftmost
byte is taken; if 000000010, the middle byte; and if
040000010, the right byte of the word is loaded into RA.
The byte controls shown in the Load Right table in Figure
5-—1 are ignored. If the shift direction bit is 1 (right byte),
binary 1 is added to the second operand, so that the next
data will be taken from the next higher word in memory.
The third operand replaces the first operand; this has the
effect of moving the pointer to the next item in the circular
table. RB is used for storage of intermediate results.

1 October 1972

Example:

Storing the three bytes of a data word ([DW] = ABC) in the
left byte of three consecutive memory, locations ([WST] =
A-- [WST + 1] = B, [WST + 2] = C--) using the preceding
character-manipulation table. Note that the [WORD U 1]
(i.e., DW) are incremented by one with the third execution
of the LCR instruction. This allows the next three characters
to be stored in the next three consecutive locations.

BEGIN LD1 M6

LP1 LCR WORD
STA WST+N X1
BC1 LP1
HLT $

N EQU 6
FORCE 0

WORD DCN LROT
DCN DW

DW DCA ‘ABCDEF’

WST BSS N

M6 DCN -6
END BEGIN

Condition Codes:

1-Z

Section 5
String Manipulation Instructions

Execution Equation:
[[EA]] > [EA]
0-[RA]

[[EA U 1]] shifted in the direction and by the number of
bits designated by [[EA]T U 1], and stored in [RA]o—7

If shift direction bit is 1, [EA U 1] + 1 > [EA U 1].

Label LCL Expression
Load Character Left

[o o | ~_ ADDRESS]
01234567891011121314151617181920212223

Description:

LCL operates the same as LCR except that one is sub-
tracted from the second operand if the end condition is
detected; this condition is shift direction bit = 0 and shift
count = 0 (leftmost byte). Thus the LCL instruction is
designed for moving from right to left (higher to lower
memory addresses) in memory, whereas LCR is designed
for going from left to right (lower to higher addresses).
Note that the first operand must start with LROT for LCR
and with LL2T for LCL when starting on a word boundary.

Condition Codes:

Execution Equation:
[[EA]] ~[EA]
0—[RA]

[[EA U 1]] shifted in the direction and by the number of
bits designated by [[EA] U 1], and stored in [RA]q—7.

If shift direction bit is 0 and shift count is 0,[EA U1] -1
- [EAU1].

Label SCR Expression
Store Character Right

[4 a7 | ADDRESS |
01234557891011121314151617181920212223

Description:

SCR stores the leftmost byte of RA into the destination
memory location specified by the second operand. The
byte location in the destination word is determined by the
shift and byte control information specified by the fourth
operand. The fourth operand is configured as follows:

T Use the value of the term [EA] before execution starts.

SIV/70—11—1C

Bit 0 Shift direction (O for right, 1 for left)
Bits 15-17 Byte store control
Bits 18-23 Shift count

The byte control constant is used to store two bytes of
the contents of the destination location into RA before
the contents of RA are placed back into the destination
location. The shift direction and shift count information is
used for rotating the leftmost byte of RA into the right
position before byte control is applied. Thus, if the fourth
operand is 0300, the byte in RA is stored into the leftmost
location in the destination word; if the fourth operand is
0510, the byte goes into the middle byte position; and if
it is 040000610, the leftmost byte in RA goes into the
rightmost location in the destination word.

The first operand points to the appropriate table entry (third
and fourth operands); when the instruction is executed the
first operand is updated for the next execution by having
the third operand copied to the first operand. If the shift
direction bit is 1 (rightmost byte), one is added to the
second operand to specify the next word in the string for
processing. RB is used for storage of intermediate results,
and [RA] will be the word as stored back into memory.
The first operand must start with SROT for SCR and with
SL2T for SCL when starting on a word boundary.

Note that the Store Right and Store Left tables contain
sync bits, which are bit zero of the third operand. These
bits are provided for the convenience of the software: the
bit is 1 if the beginning of a word has not been reached:
thus, for SCR the bit is zero only for the leftmost byte; for
SCL it is zero for the rightmost byte. The use of this bit is
shown in the first example above at location LPO: the bit is
tested and the parallel move loop is entered if it is zero; i.e.,
if a word boundary has been reached in the destination
string.

Condition Codes:

2] [i~z

Execution Equation:
[[EA]] > [EA]

[RA] shifted in the direction and by the number of bits
designated by [[EA] U 1]
[[EAU1]] - [RA], selected bytes

[RA] > [[EAU1]]
If shift direction bit is 1, [EA U 1] + 1 - [EA U 1]

Label SCL Expression
Store Character Left

[4 o] 1 ADDRESS .
01234567891011121314151617181920212223

1 October 1972

SIV/70—11—1C

Description:

SCL operates the same as SCR except that the second
operand is decremented by one if the shift count is zero;i.e.,
if the left boundary of a word has been reached. Also, as
noted under SCR, the sync bit is zero for the rightmost byte
only, which is convenient for testing when the direction of
movement within the string is right to left.

Condition Codes:

Execution Equation:

[[EA]] > [EA]

[RA] shifted in the direction and by the number of bits
designated by [[EA] U 1]

[[EAU1]] = [RA], selected bytes
[RA] - [[EAU 1]}
If shift count is 0, [EAU 1] -1~ [EA U 1]

Label LPR Expression
Load Parallel Right

(o 5] 7] ADDRESS |

0123 4 5 6 7 8 9101112‘1314151617181920212223

Description:

LPR fetches three consecutive bytes from memory and
assembles them as a word into RA. The location from
which the data is fetched is specified by the second operand
(and the second operand plus 1 if required). Which bytes
come from which word is specified by the information
contained in the fourth operand:

Bit 0 Shift direction (0 for left, 1 for right)
Bits 15-17
Bits 18-23

Byte store control
Shift count

The byte control information determines whether 0, 1, or 2
bytes come from the second data word; the shift direction
and shift count information determine what the final align-
ment of the word will be, suitable for storage into a destina-
tion location. Thus, the first word is fetched into RA and
then, under byte control, 0, 1, or 2 bytes of the second
word are masked into the first word, and the result is
rotated if required. If the fourth operand is 0, no bytes
from the second word are masked into the first word and
the result is not rotated; if the fourth operand is 0410, the
left byte of the second word is masked into RA and the
word is rotated left 8 to put it on the proper alignment for
storing; if the fourth operand is 040000610, the left and
middle bytes of the second word are masked into RA and

1 October 1972

Section 5
String Manipulation Instructions

the result is shifted right 8. RB is used for storage of
intermediate results. After execution, one will be added to
the contents of the second operand so that it will point to
the next word to be operated on; the first operand is not
changed, as is done for the character instructions.

Condition Codes:

Execution Equation:

{[EAU1]] > [RA]

[[EAU1] + 1] > [RA], selected bytes
[EAU1]+1->[EAU1]

[RA] shifted in the direction and by the number of bits
designated by [[EA] U 1].

Label LPL Expression

Load Parallel Left

Mo 1 [1] " ADDRESS |

01234 5 6 7 8 91011121314151617181920212223

Description:

LPL operates similarly to LPR except that the direction of
operation is to the left instead of right. A word is assembled
into RA using the data pointed to by the second operand
and the next lower-numbered memory location. Which
bytes come from which words are determined by the
fourth operand:

Bit 0 Shift bit (0 for shift, 1 for no shift)
Bits 15-17
Bits 18-23

Byte store control
Shift Count

First RA is loaded from the location indicated by the
second operand, then RA is loaded from the next lower
location using byte control. At this point, one is subtracted
from the second operand, so that it will point to the next
data word. The contents of RA are then rotated as follows:
if the shift bit is 1, there is no shift. If the shift count is
zero, RA is shifted left 1 byte; if it is non-zero, RA is
shifted right one byte. Thus, if the fourth operand is
040000000, the first word remains in RA unchanged; if the
fourth operand is 0110, the rightmost byte is taken from
the second word and the result is shifted right one byte; if
the fourth operand is 0300, the middle and right bytes are
taken from the second word and the result is rotated left 8.
RB is used for storage of intermediate results. The first
operand is not changed.

Condition Codes:

|12] ji-z

Section 5
String Manipulation Instructions

Execution Equation:

[[EAU1]]~[RA]
[[EAU1] -1] - [RA], selected bytes
[EAVU1]-1->{EA U1}

[RA] shifted if sign bit is O (shifted left 1 byte if shift
count is zero, otherwise right 1 byte).

Label SPR Expression
Store Parallel Right

a4 s 1] —ADDRESS _
0123456789Il111121314151617181920212223

Description:

The contents of RA are stored in the location specified
by the contents of EA. The contents of EA are then
incremented by one. After execution, RB contains the
updated [EA]. SPR is similar to executing STA* PTR,
INR PTR.

In the context of the other Character Move Instructions,
SPR assumes that the word has been properly aligned using
LPR. The second operand is the [EA] for this instruction;
as seen in the first example above, the instruction is written
SPR DEST+1. Thus, the contents of RA are placed into the
location specified in the second operand, then one is added
to the second operand. Note that only the second operand
is used by this instruction.

This instruction has many other uses: for example if [0] = 0
and SPR 0 is executed using the REPEAT and STEP
switches, the [RA] will be copied into every memory
location.

Condition Codes:

Execution Equation:
[RA] ~ [[EA]]
[EA] + 1> [EA]

Label SPL Expression
Store Parallel Left

L4 | 7|~ ADDRESS
01234567891011121314151617181920212223

Description:

The contents of RA are stored in the location specified
by the contents of EA. The contents of EA are then
decremented by one. After execution, RB contains the
updated [EA]. Thus, SPL operates exactly the same as

5—8

SIV/70—11—-1C

SPR except that the second operand is decremented by
one after execution.

Condition Codes:

[12] | 1oz

Execution Equation:

[RA] >~ [[EA]]
[EA] -1~ [EA]

Character Translate Instruction

This instruction enables the programmer to look up three
characters in a table with a single instruction. A branching
feature is provided for special characters.

Label TRT Expression

Translate bytes

| 3 s | 7 | ~ ADDRESS
012345678 9101 121318151617181620212223

Description:

This instruction is normally used to look up entries corre-
sponding to character codes of various kinds in tables and
to record these entries in a variety of ways. The following
functions are performed, depending on the specific table
entries:

° Replacement of each of the three bytes in a word by
separate table entries.

° Addition of the three table entries into a register to
create a sum of table entries.

° Branching on special character codes for implemen-
tation of error routines, control characters, floating
dollar sign, and similar functions.

The effective address of the instruction points to the first
entry in a table set up by the programmer. The table may
contain up to 256 entries, each of which has the following
format:

[. CHARACTER ADDRESS]
012345¢6T78 91011 121314151617181920212223

Each table entry must contain both character and address
information. The instruction proceeds in the following man-
ner (see flowchart):

a. [X3] are set to zero.

b. The table is accessed by adding the bits of the left-
most character in RB (the byte of data being translated) to
a starting address (for the first time through, this is the
effective address of the instruction). The resulting sum is
used to fetch a table entry.

1 October 1972

SIvV/70—11—1C

Flowchart:

[RB] g— + EA16—23
~>EA16—23

CARRY ADDED
IF ANY

Y

FETCH NEW WORD
USING UPDATED
ADDRESS

NEW WORD —EA

EA ODD BRM TO EA

NO

EXIT

EA + [RA] = [RA]

Y

EAg— > [RB] 0—17

ROTATE RB LEFT 8

!

[X3] + 1 > [X3]

-

c. If the address field of the table entry is odd, a branch
and mark (BEM instruction) is made to that address.

THIRD
TIME THRU

EA = [X3]

d. If the address field is even, this address becomes the
starting address for the next loop (see step h), and the word
fetched from memory is added to the contents of RA. RA

1 October 1972

Section 5
String Manipulation Instructions

is not zeroed in execution of this instruction; therefore the
A register may be used to accumulate sums of character
and/or address information for more than one execution of
the instruction.

e. The leftmost byte of the word fetched from memory
is written over the contents of byte 0 in RB; RB is rotated
left 8 bits.

f. One is added to the contents of X3.

g. If this is the third time through the fetch loop (see
step h) of the instruction, the instruction exits with each of
the bytes of RB replaced by new information, with each
newly fetched word added into RA, and with the last word
fetched copied in X3.

h. If this is not the third time through the fetch loop,
the instruction returns to step b.

The BRM exit from this instruction is used to link to
error or exception case routines. Whenever an odd address
is encountered and the exception routine is taken, the
contents of X3 contain the number of the byte whose table
entry caused the branch; testing of X3 provides a ready
manner of determining the exceptional character in the RB
word. If the normal exit is taken, however, the counter is
written over by the last word fetched.

Note that, conventionally, the address part of each non-
exceptional table entry is the address of the first table entry
(see examples); however, there is no requirement that this
be the case. If some different (even) address is used in a table
entry, the new address will be added into RA, and the next
character from RB will be added to the new address. The
resulting sum is used to fetch an entry in a different table.

Example 1: Binary quantities, right justified in each of the
three bytes of RB (i.e., truncated ASCII characters), are
converted to their Excess-Three, Gray equivalents. The
results replace the contents of RB, byte-by-byte.

LDB N316
TRT TBL1
HLT §
FORCE 0
TBL1 DCN 000400000+TBL1

0

DCN 001400000+TBL1 1
DCN 001600000+TBL1 2
DCN 001200000+TBL1 3
DCN 001000000+TBL1 4
DCN 003000000+TBL1 5
DCN 003200000+TBL1 6
DCN 003600000+TBL1 7
DCN 003400000+TBL1 8
DCN 002400000+TBL1 9
D

DCN 002000000+FIX ELIMITER
N316 DCN 000600406

Before Exec. After Exec.

[RB] = 00600406 01203015

5—9

Section 5
String Manipulation Instructions

Example 2: Using RA, the number of bits in nine digits is
computed and stored in the left byte of RA. The digits
are given in the binary-quantity-right-justified form from
Example 1. Also, a sum of address fields is generated in the
right two bytes of RA; when using an extended sum of
terms in RA like this example, the programmer should put
the table in lower-numbered memory addresses so that the
carry from the address field does not enter the byte-sums.

RCPY RO,RA,7

LDB N316

TRT TBL2

LDB N279

TRT TBL2

LDB N805

TRT TBL2

HLT $

FORCE 0
00146 00000146 TBL2 DCN 0+TBL2
00147 00200146 DCN 000200000+TBL2
00150 00200146 DCN 000200000+TBL2
00151 00400146 DCN 000400000+TBL2
00152 00200146 DCN 000200000+TBL2
00153 00400146 DCN 000400000+TBL2
00154 00400146 DCN 000400000+TBL2
00155 00600146 DCN 000600000+TBL2
00156 00200146 DCN 000200000+TBL2
00157 00400146 DCN 000400000+TBL2
00160 00600406 N316 DCN 000600406
00161 00403411 N279 DCN 000403411
00162 02000005 N805 DCN 002000005

Before Exec. After Exec.
[RA] = 00000000 03401626

Example 3: Using TBL1 from Example 1, a delimiter (non-
convertible to a valid Excess-Three, Gray Character) is
sensed, converted to a zero, and counted into a memory
counter. X3 is used as a counter of bytes in this example; if
the delimiter occurred in byte O or byte 1, the exception
routine would have to restore neglected characters from the
rightward bytes of RB.

LDB N88DEL
TRT TBL1
HLT $
FORCE 1
FIX BSS 1
RADD X3,RP,7
BRA BYTEO
BRA BYTE1
BRA BYTE2
BYTE2 RCL RB,RB, 7,8
RCPY RO, RB, 1
INR COUNTR
BRR FIX
HLT $

5—10

SIV/70—11—-1C

NUMBR PZE 0
COUNTR DCN -10
N88DEL DCN 002004012
RB, X1, 4, 8 BYTEO SUBRTN

BYTEO RCL

BYTE1 RCL

RB, X1,4,8 BYTE1l SUBRTN
Before Exec. After Exec.
[RB] = 02004012 02407000
[COUNTR] = 77777766 77777767
[X3] = Irrelevant 00000002

LIST PROCESSING INSTRUCTIONS

The list processing instructions provide a hardware means of
processing queues or stacks of words (24 bits) or characters
(bytes or 8 bits). Queues and stacks are defined conven-
tionally: a queue is a list where the first item entered is the
first item considered (first in, first out or FIFO), and a
stack is a list where the last item entered is the first con-
sidered, (last in, first out or LIFO). A waiting line at a
theater is an example of a queue: the first person arriving
gets the first ticket. The stack in an input basket is a typ-
ical stack: the last item entered will get first treatment.

List processing within the computer involves tying data of
a character or more in length to an address, where the
address is that of the next item in the list. The address
part of the 24-bit computer word is fifteen bits in length,
so that an eight-bit character can be attached to an address.
This is the philosophy employed in the IN, UP, and DOWN
instructions which, respectively, enter a character into a
queue, fetch the character thus stored, or enter the char-
acter into a stack. In other applications — such as the im-
plementation of Polish notation — it is convenient to stack
words (such as instruction words) in memory. PUSH and
POP instructions operate on full words of memory: the
PUSH instruction stores a word into a stack if room is
available in the stack; the POP instruction similarly re-
trieves a word at the top of the stack. Both of these instruc-
tions operate within the constraints of a stack whose limits
are defined by the programmer. Further details of the oper-
ations are included within the discussions of each list pro-
cessing instruction.

The RA and RB registers are used for processing of the in-
formation to be stored or fetched. No condition codes are
affected by any of these instructions.

Whole Word Stack Instructions

These instructions share a three-word group in memory,
defined as follows:

1 October 1972

SIvV/70—11—1C

FORCE O
PNTO PZE BTM -1
PNT1 PZE PNTR PNT1 is working EA
PNT2 PZE TOP+1

BTM and TOP are programmer-defined limits of a block in
memory within which the PUSH and POP instructions op-
erate. Each word stored in this block requires one memory
location. PNT1 is the location specified by the effective
address of the instruction. The contents of PNT1 (PNTR)
are set to BTM -1 before the first word is stored in the stack.
During instruction execution, [RA] are stored into (for
PUSH) or fetched from (for POP) the location specified by
PNTR. Also, PNTR is compared with TOP for PUSH or
with BTM for POP to determine when the stack is full or
empty. Note that to poll the stack the programmer merely
executes LDA* PNT1.

Label PUSH Expression
Push stack — store [RA] conditionally

[4 2 | ~ ADDRESS _ . . .
01234587891011121314151617181920212223

Description:

The contents of EA (where EA = PNT1) are fetched, incre-
mented by one, then compared with the contents of PNT2.
If equal, the stack is full and the next sequential instruction
is fetched (such as a branch to an error routine). If the
comparison is not equal, (1) the incremented result is placed
in PNT1 and becomes the updated pointer for the next
execution; (2) the contents of RA are stored in the location
specified by the new [PNT1] where they may be fetched
by a later POP instruction; and (3) the next sequential in-
struction is skipped.

Execution Equation:

If [EA] + 1 #[EA + 1] then [RP] + 1> [RP],
[EA] + 1 - [RB], [EA] + 1 > [EA], [RA] ~ [[EA]]

Label POP Expression
Pop up stack — fetch [[EA]] conditionally.

L3 . 2171, _ADDRESS,]
01234'567891011121314151617181920212223

Description:

The contents of the location specified by the contents of
EA (where EA = PNT1) are fetched and placed in RA. The
contents of EA are then compared with the contents of
PNTO. If equal, the stack is empty and the next sequential
instruction is executed. If the comparison is not equal, the
contents of PNT1 are decremented by one and the next
sequential instruction is skipped.

1 October 1972

Section 5
String Manipulation Instructions

Execution Equation:

[[EA]] - [RA].If [EA] # [EA - 1] then
[RP] + 1 - [RP], [EA] - 1 > [RB], [EA] - 1 > [EA]

Character List Processing Instructions

The UP, DOWN, and IN instructions can be used conven-
iently for saving and retrieving characters in lists. Each item
in a list contains a character and an address of the next
character in the list as follows:

ADDRESS

[CHARACTER |
9 1ﬂ 11 12 13 14 15 16 17 18 19 le 21 22 23

01234557

An address of zero indicates the last character to be removed
from a queue or a stack.

These instructions normally share a list of available storage
space from which a location may be obtained before adding
a character to any stack or queue and to which a location
may be returned after fetching a character from any stack

or queue. Figure 5—3 illustrates these instructions.

Label UP Expression
Up list

[3 3 |7 _ ADDRESS . |
01234567891011121314151617181920212223

Description:

This instruction fetches a character from the front of a queue
or the top of a stack as designated by the pointer in EA
and places the character in the left byte of RA and RB. The
remaining two bytes of RA are loaded with zeros so that the
character may be ORed into the left byte of a word if de-
sired. The pointer in EA is loaded into the address part of
RB; this allows the location containing the fetched charac-
ter to be returned to a stack of unused locations set aside
for lists by using the DOWN instruction.

If the address part of the contents of EA is zero (i.e., the
list is empty), the next sequential instruction is executed.
Otherwise, the contents of the location specified by the con-
tents of EA (the fetched character and pointer to the next
character) are stored in the contents of EA and the next
sequential instruction is skipped.

The conventional uses of this instruction are: (1) to fetch
an empty cell from a stack for use by DOWN or IN; (2) to
fetch the character at the top of a stack or front of a queue.
See “Examples” following.

Execution Equation:

[EA] > [RB],0~ [RA], [[EA]]o—7 = [RA]o—7,
[[EA])o—7 = [RB]o—7
If [EAlo—;3 # 0 then [[EA]] » [EA], [RP} +1 > [RP]

5—11

Section 5

String Manipulation Instructions

SIV/70—11—-1C

Front Top
-— UP GET DOWN TOP ——— UP TOP
IN PUT
Back Bottom
QUEUE STACK
Instruction Before After
IN PUT e
(Insert into an empty list) RB RB
/

Execute Next Instruction

IN PUT (or READER)

(Insert into a list or the back
of a queue)

Skip Next Instruction

DOWN TOP

(Insert items into a stack)

RB

TOP

UP GET (or TOP)
(All but last cell in a list)

RA
RB
GET

Skip Next Instruction

/
e
e

/
[E[a }
1w

Ve

P
'

UP GET (or TOP)

(Last cell in a list)

X = meaningless

RA
RB

GET

x|

:

Ve

Execute Next Instruction

Note: Linkages shown dashed and boxes shown shaded are those changed by the instruction.

*Or a pointer to another cell if inserting into the middle of a list. The L symbol (end) may be replaced by an arrow pointing to another cell.

B055A

5—12

Figure 5—3. Character List Processing Instructions

1 October 1972

SIV/70—11—1C

Label DOWN Expression

Down list

[4 3|71], _ADDRESS = B
ll1234567II91I]11121314151617181920212223

Description:

This instruction adds the character contained in the left
byte of RB to the top of a stack with the address part of
RB designating the location the character is stored in. The
pointer in EA, which specifies the previous top character of
the stack, is loaded into the address part of RA and stored
in the address part of the location containing the new top
character. The new character is also loaded into the left
byte of RA and EA. The pointer to the new character is
loaded into the address part of EA.

The conventional uses of this instruction are: (1) to put a

character into the top of a stack; (2) to return an empty cell .

to a stack for future use. See ‘“‘Examples” following.
Execution Equation:

[EA] »> [RA], [RB]o—7 > [RA]o—7

[RB] > [EA], [EA] 93 > [[RB]]o—23
[RBlo—7 > [[RB]]o—

Label IN Expression
Insert in list

3 4|, ADDRESS
01234567891011121314151617181920212223

Description:

This instruction inserts the character contained in the left
byte of RB into a list immediately after the character spec-
ified by the pointer in EA. The instruction is normally used
to add a character to the end of a queue. The instruction is
executed as follows: The pointer in the location preceding
the inserted character is loaded into the address part of RA.
The new character is then loaded into the left byte of RA.

If the address part of [EA] is zero (i.e., the list is empty),
the zero address is loaded into RA and stored in the address
part of the location specified by the pointer in RB. The
character in the left byte of RB is also stored in this loca-
tion, which is the first location in a new list. The contents
of RB are also stored in the location specified by EA.

If the address part of [EA] is not zero, the character
specified by the pointer in EA is loaded into the left byte
of RB and EA. The pointer in RB is stored in EA and the
location containing the character preceding the inserted
character; this location is specified by the pointer in EA.
The pointer originally in this location is stored in the
location specified by the pointer in RB. The new character,

1 October 1972

Section 5
String Manipulation Instructions

in the left byte of RB, is then stored in this location and the
next sequential instruction is skipped.

Execution Equation:
[[EA]] —» [RA], [RB]o—7 = [RA]o—.

If [EA]o—s 5 = O then 0 > [RA]o_s 5, [RB] ~ [EA],
0 [[RB]]o—23, [RBlo—7 = [[RB]]o—7.

If [EA)y—3 # 0 then [[EA]]o—7 = [RB]o—7,
[RBlo— 3T > [[EA]]o—23, [[EA]}o—7
[EAlo—7, [RB]o—23T > [EA]s—23
[[EA]]o—3T > [[RB]1o—23, [RB]o—s T~
[[RB]]o—7, [RP] + 1~ [RP].

Examples:

By convention, the character instructions work with a block
of storage called FREE in the assembly language, and use
three pointers: TOP, the pointer to the latest entry in a
stack; GET, the pointer to the earliest remaining entry in a
queue; and PUT, the pointer to the latest entry in a queue.
At the beginning of a queuing routine, GET will be zero
and PUT will point to GET, which means that the queue
is empty. Note that the UP instruction can detect an empty
queue after the last character is taken from the queue.
However, the pointers to the two ends of the queue are
unsynchronized and a new character can be lost when in an
interrupt-driven environment. Therefore, the software must
check for the zero condition. Note that the interrupts to
this level must be disabled during the checking period.

Example 1: An LCR instruction is used to obtain a character
to be queued. UP FREE obtains a storage location in which
to save the character. IN PUT puts the character at the end
of the waiting line. The routine at CONSM1 might be an
output routine.

START LD3 M3

QUEUE LCR SOURCE Get character
RCPY RA X1
UP FREE Get cell
HLT $ Won’t happen
RCPY X1,RB4
IN PUT Put character
NOP Won’t happen
BC3 QUEUE Build loop

FETCH PID ALL No interrupts
[0} 4 GET Take character
BRA DONE Done with queue
DOWN FREE Return cell
LDA MASK Is address
AND GET Zero
BNZ CONSM1 Use character
LDA @GET Fix pointers
STA PUT

+ Use the value of the term before execution starts.

5—13

Section 5
String Manipulation Instructions

CONSM1 PIA ALL Routine to use
character in RB
BRA FETCH Retrieve loop
DONE BSS 0
GET PZE 0 Pointer to top
PUT PZE GET Pointer to bottom
MASK DCN 077777 of queue
M3 DCN -3
@GET PZE GET
FORCE O
SOURCE DCN LROT From char. tables
DCN ALPHA in figure 3—2.
ALPHA DCA @ABCDEF@
ALL DCN 03717 Interrupt mask
FREE PZE $+1 FREE list
PZE $+1
PZE $+1
PZE 0 End of FREE
END START

Execution of this loop will store A, B, and C in a queue,
and then fetch A, B, and C from the queue in that order.
Note that after the execution of any such loop, the order
of pointers within the FREE list will be changed — how-
ever, the integrity of the list will be preserved in that
each FREE location will point to another FREE location,
except the last, which points to zero.

A similar method is used to build and read a stack, except
that the stack does not require the auxiliary software
required to keep two pointers in synchronization. The
basic instruction sequences for the stack and queue are
contrasted in the following table:

Instruction Use For Queue For Stack
Get Free cell UP FREE UP FREE
Put Character IN PUT DOWN TOP
Get Character UP GET UP TOP
Return cell DOWN FREE DOWN FREE

to Free List

Example 2: The corresponding program for processing a
stack, with labels consistent with the queue example, is as
follows:

NEXT LD3 M3

STACK LCR SOURCE From example 1
RCPY RAX1
UP FREE Get cell
HLT $ No more FREE

5—14

SIV/70—11-1C

RCPY X1,RB4
DOWN TOP Put character away
BC3 STACK Build loop

TAKE UP TOP Retrieve character
BRA DONE Stack empty
DOWN FREE Put cell back

CONSM3 BSS 0 Routine to use

character in RB

BRA TAKE

DONE HLT $

TOP PZE 0 Pointer to stack
END NEXT

The code is substantially the same, except that IN PUT is
replaced by DOWN TOP, and there is no equivalent of the
testing and synchronizing logic after UP GET. The execution
of this loop will store D, E, and F in a stack, and then
fetch F, E, and D from the stack in that order. Note that
the characters are fetched in the reverse order from the
queue example.

Example 3: An important feature of the IN instruction is
the ability to insert a cell into a list while maintaining the
integrity of the pointers in the list. In this example, a
queue is built after the manner of Example 1, with the
letters “LISED” in order. The queue is then read using UP
READER (where READER is set equal to the GET pointer
at the start) and tested until the desired insertion point is
found. The letter T is then inserted (using IN READER) to
make LISED into LISTED. Note that after the insertion
point is found, it is necessary to backspace one cell (STB
READER) so that the pointers will align properly.

FIX LD3 M5
BUILD LCR WORD Make a queue
RCPY RA X1
Up FREE Get cell
HLT $
RCPY X1,RB4
IN PUT
NOP
BC3 BUILD Build loop
LDA GET Start a read
STA READER Pointer
TEST UP READER Read the queue
NOP
CPA SMASK Test char. in RA
BNZ TEST Test loop
INSERT STB READER Backstep one
UP FREE Get cell
NOP
LD1 T Get correction
RCPY X1,RB4 Into RB
IN READER Insert
NOP
BRA FETCH Go read queue

1 October 1972

SIV/70—11—-1C

M5 DCN -5
FORCE O
WORD DCN LROT From character
DCN WORD1 tables
WORD1 DCA @LISED@ Misspelled
SMASK DCA @S@0 Right 2 bytes of
* RA will be zero
T DCA @T@0
READER PZE GET
END FIX

These examples illustrate use of the three instructions for
processing lists of characters. Use of a free list constructed
in two word blocks (FREE PZE $ + 2), for example, affords
the possibility of pairing a data word with each address
word.

DECIMAL OPTION INSTRUCTIONS

The decimal option provides instructions for high speed
manipulation of words and characters under program con-
trol. Decimal numbers may be added or subtracted, charac-
ter strings may be compared, numbers may be changed,
and byte strings may be moved rapidly using these instruc-
tions. The instructions are as follows:

DADD Decimal Add (ASCII)

DSUB Decimal Subtract (ASCII)
MVCL Move Characters Left
MVCR Move Characters Right

CPL Compare Logical (bit-by-bit)
CPN Compare Numeric (ASCII)

These instructions operate from a memory Source Location
to a Destination Location. Before execution, the Source
Address must appear in X2 and the Destination Address in
X3. During execution, RB, X2, and X3 are used for gen-
erating addresses; their contents will be meaningless after
execution.

Note that the MVCR and CPL instructions operate on data
from left to right, whereas MVCL, DADD, DSUB, and CPN
operate from right to left. MVCL, MVCR, and CPL do not
recognize sign information; they treat all bits alike. In the
DADD, CPN, and DSUB instructions, however, the least
significant (rightmost) byte contains sign information in its
zone field, encoded as follows:

2nd, 3rd & 4th Bits Sign
011 +
100 +
101 -

Thus, the least significant digit for negative numbers is
represented by the letters P through Y for the digits O
through 9. Note that the parity bit (first bit of each byte) is
never changed by any of the six decimal instructions.

1 October 1972

Section 5
String Manipulation Instructions

The formats for these instructions differ from those for
other instructions. The MVCL, MVCR, and CPL instructions
use the following format:

[opcobe 1 1.1]SBS|SBD .
012345671789 1011121314151617181920212223

SBS and SBD are the Starting Byte of the Source and Desti-
nation locations, respectively; i.e., the first byte to be op-
erated upon when execution begins. SBS and SBD are en-
coded as follows:

SBS or SBD Field Starting Byte
00 0
01 1
10 2
11 Illegal

L is the length in bytes, minus 1, of the block to be operated
upon. The maximum number of bytes is 2566. DADD, DSUB,
and CPN have the following format:

[opcobE |1 .1 1]sBs|sBD| | [tz]

1

012345€678 91011121314151617181920212223

SBS and SBD are the same as for MVCL, MVCR, and CPL.

L2 is the length of the source quantity, in bytes, minus 1.
The maximum number of bytes is 64.

L1 is the difference between the lengths of the source and
destination quantities, in bytes. The maximum difference
is 31. Note that the source may not be longer than the
destination.

Label DADD SBS,SBD,L2,L1

Decimal Add

[6 2 [7 [ses[ssp] L1 | L2
01234567891011121314151617131920212223

Description:

The contents of X2 and the SBS are combined to select
the least significant byte (highest-numbered addresslocation)
of the source quantity. The contents of X3 and SBD are
combined to select the least significant byte of the destina-
tion quantity. The zone bits of these bytes form the sign
of the two quantities, encoded as shown above. These two
bytes are added as ASCII numbers, and the result is placed
back in the destination location. The next sequential char-
acters are fetched and added, and the addition continues
from right to left with the carries propagated in the normal
decimal manner. If the operands are of unequal length
(i.e., L1 is not zero), then the computer supplies ASCII
zeros for the high order bits of the source operand to
complete the add.

5—15

Section 5
String Manipulation Instructions

Addition take place algebraically with regard to sign. If the
intermediate result in the Destination location is a negative
ten’s complement number, it is recomplemented and a
negative sign is attached. The recomplementation operation
is the only operation that will change the sign zone bits.

The condition codes are set to reflect the results of the
operation. If the result is negative, the minus condition
code will be set. If the result is zero, the zero condition
code will be set; a minus zero is possible only if there is an
overflow. If the result is recomplemented, carry will be
set and overflow reset; note that recomplementation is
automatic. If there is an overflow (e.g., if the destination
area was one byte too short and a 1, ; needs to be appended
to the front of the destination quantity) the overflow and
carry condition codes will be set. If not, overflow will be
reset, unlike the case with the non-decimal hardware, where
the overflow condition code is not reset unless it is tested.
The software must make adjustments for the overflow
condition,

Condition Code:

Execution Equation:

[S Memory Block] + [D Memory Block] - [D Memory
Block], ASCII.

Label DSUB SBS,SBD,L2,L1

Decimal Subtraction

[6 4 T 7 Tses[seD] T

012345672839 1011121314151617181920212223
Description:

This instruction operates exactly like DADD except that
the source quantity is subtracted from the destination
quantity. The result replaces the destination location, with
the sign locations set appropriately. The condition codes
are set just as they are for DADD.

Condition Code:

Execution Equation:

[D Memory Block] - [S Memory Block]
Block], ASCII.

- [D Memory

Label CPN SBS,SBD,L2,L1
Compare Block Numeric (ASCII)
| 6 0o | 7 [sses[se0] [

1 L

0123 4 5 6 7 8 91011121314151617181920212223

SIV/70—11—1C

Description:

This instruction performs a numeric comparison operation
on two blocks of memory, and sets the condition codes
accordingly. The comparison is effected by subtracting the
source memory block from the destination block, but the
result is not stored. For the condition code convention, see
DADD, above. Note that CPN treats a minus zero as equal
to a plus zero. See Table 5—~1 for the result of a numeric
comparison.

Table 5—1. Numeric Comparison Results

Condition Code SettingsT
Condition 0 Y/ M C
[D] =[S] 0 0 X
[D] > [S] 0 0 0 X
1 X 0 1
[D] <[S] 0 0 1 X
1 X 1 1
T X indicates don’t care

Condition Code:

Execution Equation:

[D Memory Block] :
dition codes.

[S Memory Block], ASCII, set con-

Label CPL SBS,SBD,L

Compare Logically, bit-by-bit

L.6.3].7 [ses]ss

012 3 456 7 8 91011121314151617181920212223

Description:

The contents of X2 and the SBS are combined to select the
leftmost byte (lowest numbered location) of the source
character string. The contents of X3 and SBD are com-
bined to select the leftmost byte of the destination char-
acter string. The two strings must be of equal length.

The characters of the destination string are compared to the
characters of the source string on a bit-by-bit basis, one
character at a time, left to right. If no difference is found,
the strings are equal, and the instruction ends with the
zero CC set to 1. If a difference is found, the instruction
ends immediately with the zero CC set to 0. If the source
string is greater logically (1 bit found in the source string
at the first difference), the carry CC is set to 1; otherwise
the carry CC is set to 0. The minus CC is unpredictable,

1 October 1972

SIvV/70—11-1C

Note that collating sequences generated using this instruc-
tion will be altered if parity bits are present in the ASCII
characters that are tested. In general, it is recommended
that parity bits be masked off of data before processing in
the computer.

Condition Codes:

Unpredictable > M
Execution Equation:

[D Memory Block] : [S Memory Block], bit-by-bit, set
condition codes

Label MVCR SBS,SBD,L
Move Characters Right

L. 6.1, [.7 [sBs[ssD b
0123456789 1011121314151617 181920212223

Description:

The contents of X2 and SBS are combined to select the
leftmost byte of the source block to be transferred, and
the contents of X3 and SBD are combined to select the
first (leftmost) byte of the destination to which transfer is
to be made. The source byte string and the destination
memory area must be the same length. The bytes of the
source replace the bytes of the destination, a byte at a time
from left to right (from lower numbered address to higher
numbered address). This instruction is intended for delete
editing not insert editing in the case of overlapping fields.

Example:

(alr] fr]s] [a] [s]a]p

[afr] Jrfs] [a

Condition Code:

1-Z

1 October 1972

Section 5
String Manipulation Instructions

Execution Equation:

[S Memory Area] — [D Memory Area], left to right

Label MVCL SBS,SBD,L
Move Characters Left

L. 6.6, | 7 [ses]seo]
0123456728 9101112

: L
16 17 18 19 20 21 22 23

Description:

This instruction operates identically to MVCR except that
the move is from right to left, byte by byte. Thus, the con-
tents of X2 and SBS are combined to select the rightmost
byte of the source, and the contents of X3 and SBD are
combined to select the rightmost byte of the destination.
The move then proceeds from right to left. Note that this
instruction is intended to be used for insert editing, where
overlapping fields are involved; MVCR is convenient for
delete editing not insert editing.

Example:

Condition Code:

1->7Z

Execution Equation:

[S Memory Area] — [D Memory Area], right to left.

5—17/18

SIvV/70—11—1C

Section 6
Input/Output System and Instructions

The input/output system allows the CPU to communicate
with peripheral units, other devices, and the control panel
under program control. All input/output transfers involved
in communicating information are performed directly under
program control using the instructions described in this sec-
tion. Most input/output transfers are initiated using the
interrupt system described in Section 7.

System characteristics allow:

o Block transfers of words between a device and mem-
ory under direct CPU control at rates up to 375,000
bytes/second and under control of the interrupt
system at rates up to 39,000 bytes/second.

° Single word transfer of control and status information
to and from devices.

° Recognition of up to 512 separate device addresses
grouped into eight channels of 64 devices each.

. Concurrent operation of multiple channels, and mul-
tiple devices within channels, up to system bandwidth
limitations.

° Automatic output of information stored in dedicated
storage locations to video devices without need of
program intervention except for changing the infor-
mation displayed.

The input/output system includes: peripheral unit I/0, ex-
ternal command and external sense I/O, and console keys
input.

PERIPHERAL UNIT I/0

The following paragraphs describe the organization of the
peripheral unit I/0O, device addresses, peripheral units, I/O
instructions, and the execution of I/0 instructions.

Organization

Figure 6—1 illustrates the structure of the peripheral unit
I/O. The main components are the I/O interface logic, the
I/0 channels, the peripheral controllers, and the I/O buses.

SYSTEM 1V/70 COMPUTER

1/0 BUS
DATA, UNIT (ONE FOR EACH CONTROLLER)
bs SELECT CODE
DATA, <> ——
94 COMMANDS DATA
<> CHANNEL -
3 SELECT PERIPHERAL PERIPHERAL
CPU 110 CONTROLLER UNIT (ONE
MAIN INTERFACE L[)E:Ecm L"SE"LE) STATUS ogne rgﬂnlsl .
STORAGE |3 yoopcopE | LOGIC 3, |/0OPCODE SIGNALS BUS)
INTERRUPT
«—REQUEST CONTROL
2, DAV, RSP SIGNALS
| 2, DAV,RSP

1/0 CHANNEL (1 of 8)

A017

1 October 1972

Figure 6—1. Peripheral Unit I/O Structure

Section 6
Input/Output System and Instructions

1/O INTERFACE LOGIC

'The I/0 interface logic interfaces the peripheral controilers
with the CPU and main storage by processing all data and
control signals used to input and output information.

I/O CHANNELS

Eight I/O channels are used to connect peripheral controllers
to the I/0 interface logic. One or more controllers may be
connected to each channel depending on the type of con-
troller and the system configuration. Each channel contains
the following lines:

o Eight or 24 bidirectional data lines for transferring
bytes or words to and from peripheral units. Eight of
the data lines are used for unit selection and unit
identification at the appropriate time.

° Three I/O op code lines for selecting I/O operations:
select external device, acknowledge interrupt, input
data, and output data.

° Three channel select lines.

o An interrupt request line with which the peripheral
controller signals the I/O interface logic when the
device needs to be serviced by interrupting the pro-
gram being processed.

o An RSP line with which the controller signals the
CPU that it is responding to a ‘“‘select external device”
signal.

o A DAV signal with which the controller signals the
CPU that it is ready to send or has received data.

PERIPHERAL CONTROLLER

Peripheral controllers electrically and functionally match
each peripheral unit to an I/O channel. Each controller may
control one or more units depending on the type of unit.
A controller is contained on one or more printed circuit
cards housed in either the Processing Unit or the expansion
cabinet. The controllers contain logic for channel and unit
address recognition as well as control logic. Also, buffering
of eight or 24 bits of data is provided so that the CPU may
service the device a byte or word at a time. Each controller
has the ability to generate an interrupt request, to receive
control information (if any), to respond to requests for
status information, and to input and/or output the data as
required.

1/0 BUS

The 1/O bus connected to each controller transfers status
signals, control signals, and data between the controller and
the corresponding peripheral units. The I/O bus is connected
to the peripheral units in “daisy chain” fashion allowing
additional units to be added by simply extending the bus.

Device Address

Each peripheral unit attached to the computer has a device

6—2

SIV/70—11-1C

address. This address includes a 3-bit channel number and a
6-bit unit number. When an input/output operation takes
place, this device address is sent from the CPU to alert the
particular peripheral controller that a transfer is desired.

Each of the eight channel numbers is assigned to a unique
interrupt level. This assignment simplifies the decoding in
the peripheral controllers since the channel address and the
interrupt level have the same number.

Peripheral Units

The I/O system handles various-speed peripheral units in a
manner most economical for the particular unit. Peripherals
fall into three groups:

L “Lock-up” Devices. These high speed devices require
the CPU to lock-up to the device being serviced due
to the high data rates involved. This group includes
devices such as disc files and magnetic tape units.

° Synchronous Devices. These devices include slow-to-
medium speed devices which need not be serviced as
frequently as lock-up devices, but do require servicing
within a fixed time interval. For example, once a
card read is initiated, there is a maximum permissable
time that the controller can wait before receiving
data. If the time period is exceeded, the data in that
column is lost and the card must be reread.

° Asynchronous Devices. These devices, by their hard-
ware nature, may be serviced at any time. This group
includes devices such as printers and data terminals.

/O Instructions

Three instructions (I0, IOB, and BOOT) are used to
input and output information using peripheral units. These
instructions use a select (CUT) word for selecting the
channel, unit, and type of information and a buffer-address
word for designating the main storage location where
information is stored. Figure 6—2 shows the format of
the select word and the buffer address word and describes
the significance of each part. See the “‘Peripheral Unit Pro-
gramming Manual”, document SIV/70—40—1, for detailed
programming information on the various peripheral devices.

Label 10 Expression

Input/Output Words

[Bl 1 7 l l7l IAIDDIRFSSI L 1 1 1 1 1;-|
0 12 3456 7 8 9 10111213141516 171819202122 23

Description:

Most input and output in the system is accomplished using
this instruction. The effective address, which must be even,
contains the select word; the effective address ORed with 1
contains the buffer address word, which is incremented by
one for each data, control, or status transfer. See Figure
6—2. It is normal practice to decrement (using the DEC
instruction) the buffer address word after a status or control
10 instruction.

1 October 1972

Section 6

SIV/70—11—1C
Input/Output System and Instructions

Select Word . el v It
012346567 8 9101112131415 1617 18 1920 21 22 23
Bits Symbol Meaning
0—12 - Not used.
13—15 Device channel number
16—21 U Device unit number
22,23 T Type of operation as follows:

00 Data Out. Data will be sent to the selected device starting from the address
designated by the buffer address word.

01 Data In. Data will be supplied from the selected device to main storage
starting at the address designated by the buffer address word.

10 Control. The control word from the address designated by the buffer
address word is sent to the selected device. This information typically
contains device orders such as read, write, rewind, etc.

11 Status. A status word is supplied from the selected device to the address
designated by the buffer address word. This information contains status
bits peculiar to the device indicating such conditions as device ready,
beginning of tape, end of tape, device error, etc.

Buffer Address Word _ ADDRESS , , |
012385678 NNEZBBBHEIBENNZA
Note that the buffer address (i.e., the contents of the buffer
address word) will be incremented by one automatically at
the time of each byte or word transfer. Thus, for block
transfers, the buffer address will be incremented by the
number of words or bytes transferred.
AO67A
Figure 6—2. Select Word and Buffer Address Word Formats
Label 10B Expression Condition Codes:
Input/Output Bytes 1->7
. . 2345
AN __ADDRESS .,]
0 1 23 45 6 7 8 0101 121314151617 18 1920 21 22 23 Label BOOT S,D

Description:

Inputs bytes and packs them into a word or unpacks bytes
from a word and outputs them. The effective address,
which must be even, contains the select word; the effective
address ORed with 1 contains the buffer address word. See
Figure 6—2. On input, IOB assembles three 8-bit characters
from a peripheral unit and stores them at the location desig-
nated by the buffer address. On output, IOB disassembles
three characters obtained from the buffer address location
and sends them to a peripheral unit. The B register is used
for the assembly and disassembly of a word; the A register
must contain a byte control of 1 and a shift count of 7 for-
matted as follows: [RA] = 000001074. The contents of the
B register are meaningless after execution.

1 October 1972

Bootstrap Load

ERA I O)

01234567891011121314.

Description:

Used to initialize the computer whenever power is turned
on by inputting a loader program and/or assembler program
into main storage. The loader program is used to load any
programs that have been assembled by the assembler or
compiled by a compiler. The destination register may be
any register which contains the select word shown in Figure
6—2. The source register must be RO for inputting words

6—3

Section 6
Input/Output System and Instructions

from the device and must be RA for inputting 8 bit
characters and packing them into a word. In this case RA
contains 40000107 which represents pack, byte control,
and shift count information.

RP is used as a counter in the loading of the bootstrap
program,; it is initially set to 1 at the start of the BOOT
instruction and the first word of the bootstrap program is
then loaded into location 1 of main storage. Each time a
word is loaded by the BOOT instruction, 1 is added to
[RP], and the next word is stored using the address thus
generated. The loading proceeds until the bootstrap device
stops sending (the procedure by which the peripheral
unit controller decides transmission is complete is device
dependent).

When the device stops sending, the current contents of RP
(the location of the last word stored plus one) and the
contents of location 1 are swapped and the computer starts
operating in normal AUTO mode. This has the same effect
as treating the first word read in as a branch instruction; the
first instruction actually executed will be fetched from
the location pointed at by the first word loaded in the
bootstrap procedure. The word thusloaded is conventionally
a BRA START, where START is the starting location of
the program. The word stored in location 1 will be one
more than the count of the number of words loaded by the
BOOT instruction; this is also the last location loaded plus 1.

To initiate a bootstrap load on systems with a BOOT
switch, set all three DISPLAY SELECT switches down and
put the boot word into the 24 console keys. The BOOT
instruction goes into the first five octal digits and the select
word goes into the last four; note that the data overlaps all
but the first bit of the fifth digit and thus the channel
address will determine what destination register can be used.
Next, ready the peripheral unit, and then press the BOOT
switch to start operation.

To initiate a bootstrap load on systems with an INTERRUPT
switch, select MANUAL mode, press SYSTEM RESET to
put the controller in the bootstrap mode, press STEP to
exit from the system reset mode, key in the contents of the
source and destination registers, key the BOOT instruction
into the TIR, ready the peripheral unit, and then select the
AUTO mode to start operation.

Condition Codes:

Execution of 1/O Instructions

All I/O peripheral unit I/O instructions are executed using
the responsive (hand-shaking) method of information trans-
fer. When outputting information, the word (or byte) is pre-
sented to the unit until it indicates that it received the word
(DAV signal true). The CPU presents additional words to
the unit until the unit indicates that it has received the re-
quired data or its limit of data (RSP signal false). When in-

6—4

SIV/70—11—-1C

putting information, the CPU waits until the unit indicates
that it is ready to send a word (DAYV signal true) and then
gates the word into the CPU. The CPU remains connected
to the unit accepting additional words in the same manner
until the unit indicates that all the data has been sent (RSP
signal false).

The following events take place during the execution of
an I/O instruction. The CPU sends the select word (see
Figure 4—2) to the peripheral controller along with a select-
external-device (SE) command. This has the effect of: (1)
selecting the appropriate peripheral controller and peripheral
unit (channel and unit number); (2) signalling that a data
transfer is being initiated (SE); and (3) specifying the type
of operation (type field). Note that sending an address that
is not assigned to any controller is an error that will hang the
computer in a loop that can only be cleared by activating
SYSTEM RESET. The selected controller answers by setting
the response (RSP) signal true as soon as it receives the SE
command. The CPU then drops the select word and the SE
command, proceeds to swap [RP] and [buffer address loca-
tion], and then determines from the select word whether
the transmission is an input to or an output from main
storage.

INPUT TRANSMISSION

If this is an input transfer, the CPU issues an input external
(IE) command to the controller and waits for a true data-
available (DAV) signal. In response to the IE command, the
controller places the word on the data bus and sets the DAV
signal true. The CPU drops the IE command, loads the
word into the memory data register (MDR), and stores the
word at the location specified by the buffer address in the
program counter.

If bytes instead of words are being loaded and packing is
specified (IOB instruction or a pack BOOT instruction),
two additional bytes are inputted using the IE command. All
three bytes are assembled in RB, loaded into the MDR, and
stored in memory. If a multiword transfer is taking place
(lock-up devices), the controller will supply the additional
words and the CPU will increment the program counter
appropriately to provide new buffer addresses.

When the controller is finished with a transfer, it sets the
DAV and RSP signals false. This is true for one-word
or multiword transfers. The CPU adds one to the buffer
address in the program counterf and swaps [RP] and
[buffer address location]. This provides a new buffer address
for the next input operation and restores the address of the
next instruction to the program counter for execution. If
the 1I/0O instruction is the first instruction (excluding IOID)
executed as the result of an interrupt, a debreak signal is
issued to the I/0 interface logic before exiting from the I/O
instruction; this clears the interrupt just serviced.

T Note that a carry may develop into the most significant bits
of the buffer address word and therefore these bits may be
meaningless.

1 October 1972

SIvV/70—11—-1C

OUTPUT TRANSMISSION

If this is an output transfer, the CPU sends the contents of
the buffer address specified by the program counter to the
controller along with an output-external (OE) command.
When the controller accepts the word, it sets the DAV signal
true. The CPU then updates RP by one, fetches the next
word from the address thus generated, and sends it to the
controller. If a multiword transfer is taking place (lock-up
device), the controller will accept the word and the above
process will be repeated. Otherwise, the controller will set
RSP false and not accept the word. The buffer address will
now be one greater than the last word accepted; i.e., it will
be the next address from which output is required. The
CPU then swaps [RP] and [buffer address location] to keep
the updated buffer address and to restore the address of the
next instruction to the program counter. If the I/O instruc-
tion is the first instruction (excluding I0ID) executed as the
result of an interrupt, a debreak signal is issued to the I/O
interface logic to clear the interrupt just serviced.

During unpacking (IOB instruction) the following events
take place in addition to those described above. When the
contents of the buffer address are fetched, the word is
disassembled into three bytes using RB and sent to the
controller one byte at a time. Note that this instruction
destroys [RB]. The controller indicates acceptance of each
byte by setting the DAYV signal true. The CPU updates RP
by one after the first byte has been accepted? and sends the
first byte of the next word to the controller after all bytes
of the present word have been accepted.

EXTERNAL COMMAND AND EXTERNAL
SENSE 1/0

The external command and external sense instructions op-
erate completely independently of the peripheral unit 1/O
channels. The external command instruction allows the user
to simultaneously generate up to four control signals for
general purpose external or internal use. The external sense
instruction allows the user to simultaneously sense up to
four different conditions from external or internal sources.

Label EXCT Expression
External Command

(5, 2 [7 [, .. ADDRES .
[l1234567891011121314151617181920212223

Description:

The four low order bits of the contents of the effective
address ([EA],¢—;3) are placed on the four external com-
mand lines (EXC) of the computer. The presence of a bit in
any position will generate a 4-microsecond output pulse on
the corresponding line.

These lines are used to control the memory parity circuits.
Control codes are 145 = enable parity, 155 = disable parity,

+ Note that a carry may develop into the most significant bits
of the buffer address word and therefore these bits may be
meaningless.

1 October 1972

Section 6
Input/Output System and Instructions
165 = select odd, 175 = select even.
Condition Codes:
None.
Execution Equation:

[EAl20—23 = [EXClo—3

Label EXSN Expression
External Sense

(5 3l 7 [, ., ADORESS |
01234656 7 8 9101112131415 1617 181920212223
Description:

The four low order bits of the contents of the effective
address ([EA],0—23) are compared with the computer’s
four external sense (EXS) lines. If any of the corresponding
lines and bits are both ones, the computer skips the next
instruction.

Condition Codes:
None.

Execution Equation:

If ([EA],o NEXSy) VU ([EA],; NEXS,) U
([EA],, NEXS;) U ([EA],3 NEXS;) =1,
[RP] + 1 - [RP]

CONSOLE KEYS INPUT

This instruction allows the setting of the console keys to be
stored in a register.

Label ECS D,B

Enter Console Switches

Le . n 1.7,

07 7 3 456 7 8 9101112131415161718

20 21 22 23
Description:
The contents of the console keys replace the designated

characters of the destination register. If no byte control is
given, the assembler will furnish 7 (all bytes).

Example:

The instruction is ECS RA,1.
Before Exec. After Exec.
[Keys] = 07007707 07007707
[RA] =55555555 55555707

Condition Codes:
None.

Execution Equation:
[Keys] ~> [D], Selected Bytes

T This instruction is available only on the 7002 Processing Unit.

6—5/6

SIV/70—11—-1C

Section 7
Interrupt System and Instructions

Interrupts allow external events (or certain internal soft-
ware conditions) to alter the Processing Unit’s currently
programmed course of actions. When interrupted, the pro-
cessor will perform an I/O transfer or some other interrupt
“service”’, then return to the programmed course as if no
disturbance had occurred. An interrupt is performed in
response to an interrupt-request signal to the processor
that may originate at a peripheral controller or from the
processor itself. Interrupt requests may be generated for a
variety of reasons, typical of which are:

° An input or output data transfer is required or
possible.

L] A significant change of status has occurred in a
peripheral controller (e.g., printer out of paper; card
reader needs a pick command).

L A program at a higher interrupt level has requested
an interrupt at a lower level (e.g., using the EXCT
instruction).

L Achieving a zero count when using the INR instruction
in an interrupt location.

When an interrupt request is received, the processor’s
internal logic examines the request and initiates a new
course of action (interrupt) at the appropriate point in
its cycle of operation. The current status of affairs in
the program is kept (either undisturbed or restorable as
explained below), and a hardware transfer (an execute,
not a branch) is forced to a memory location assigned to
the device requesting the interrupt. The instruction in this
location is fetched and executed to accomplish the course
of action for which the interrupt was requested. At the
completion of this instruction, or the series of instructions
it initiates, a signal will be issued to cause the interrupted
program to pick up and continue as if nothing had happened.

PRIORITY INTERRUPT LEVELS

Eight unique levels of interrupts are provided, with true
priority nesting within the levels. Each level is assigned a
unique memory location that contains an instruction for
servicing (or initiating a routine to service) the device or
software program initiating the interrupt. Within each of
the eight levels, up to 64 device or “unit” addresses may
be assigned; the way these are used is explained under
“Indirect Interrupt Processing” below.

The highest priority interrupt has the lowest memory loca-
tion (see Table 7—1 “Dedicated Interrupt Locations’’). The
levels are fully nested since (a) an interrupt of higher priority
can interrupt a lower level, but alower level cannot interrupt
a higher level, and (b) the higher level can be interrupted by
a still higher level, up to the maximum eight levels (plus the

1 October 1972

background). The eight interrupt levels are identified with
the eight I/O channels described in Section 6 under “Device
Address’’; each I/O channel is tied to the interrupt level of
the same number.

Table 7—1. Dedicated Interrupt Locations

Memory Location

(Octal) Interrupt Level

0
2
4
6
10
12
14
16

IOt WN O

INTERRUPT PROCESSING

Certain instructions are provided for the express purpose of
processing interrupts, accepting the data input or sending
output as required, etc. The BRM-BRD pair is used for
bracketing subroutines that handle all varieties of interrupt
processing requirements; the I0 and INR instructions pro-
vide for processing interrupts without resort to a subroutine
(single instruction processing); and IOID allows the unit
address as well as the channel address to be used for
discriminating between routines to process an interrupt
from a given device. With certain qualifications as described
below, these instructions are associated with the three kinds
of interrupt servicing that are available: 1) normal interrupt
processing, 2) single instruction processing, and 3) indirect
interrupt processing.

Normal Interrupt Processing

A simple routine is used for servicing many kinds of devices.
First, a BRM instruction (located at the interrupt location
as shown in the table) is executed, to save the contents of
the program counter and the condition codes, then transfer
to the interrupt servicing routine. The proper service routine
is always entered since each interrupt is associated with a
unique memory location and therefore with a BRM to
its own servicing routine. To exit from the routine, a
BRD instruction restores the condition codes and program
counter and sends a debreak signal to clear the interrupt
level. This returns control to the main program at the
appropriate point; the main program is therefore unaware
of the interrupt processing, except for values in memory and
registers which were intentionally altered by the interrupt
program.

Section 7
Interrupt System and Instructions

Single Instruction Processing

Normally when an interrupt occurs the programmer is
responsible for clearing the interrupt level (by using a BRD
instruction, which issues a debreak signal) at the completion
of his service routine. However, if an INR or IO instruction
is executed from the associated memory location in response
to an interrupt, the interrupt is cleared automatically after
the instruction is executed. Any of the eight priority levels
may be used in this manner. The limitations of this method
are that the INR instruction operates only as a counter of
interrupts and cannot identify the source if there is more
than one device on that level; similarly, using the 10 instruc-
tion in this manner precludes daisy-chaining interrupts and
I/O devices on that level. Further extension of the interrupt
system is facilitated by:

Indirect Interrupt Processing

There are occasions when it is desirable to use more than
eight interrupt levels. Using the indirect interrupt capability
(IOID instruction), up to 64 sources on each of the eight
priority levels can be automatically identified by the hard-
ware and easily serviced by software. This is accomplished
by putting more than one device on some level (or levels),
assigning a device address to each device, and using an I0OID
instruction in the corresponding memory location. When
an interrupt occurs, the address field of the IOID instruction
is altered by a hardware feature that replaces the least sig-
nificant six bits of the address field with the six-bit device
address supplied by the interrupting source. This is the same
device address explained under ‘“‘Device Address” in Section
6. The address thus generated is used to fetch an instruction
which is executed. If the instruction thus executed is an
IO or INR instruction, it will function just like a single
instruction interrupt (see above); otherwise, it will be a
BRM to a processing routine as described under ‘“Normal
Interrupt Processing’ above.

Using the indirect interrupt allows up to 512 devices (8
levels times 64 device addresses) to be uniquely identified
by the hardware. Priorities within the level are established
by an enable line connected to all the devices on a level:
when a device of a given priority generates an interrupt, ail
devices of lower priority on the level are locked out. If a
device of higher priority interrupts after a lower priority
device but before the IOID instruction, the higher device
preempts the lower device.

Note that the indirect interrupt feature is a hard-wired
option for each controller card. If a controller is designed to
be used with the IOID instruction, it must always be used
with I0ID; if not, I0ID cannot be used.

INTERRUPT CONTROLS

An interrupt level may be in any of four states: inactive,
waiting, active (requesting service), or busy (being serviced).
In the inactive state, no interrupt signal has been received

7-2

SIV/70—11—1C

into the level and no signal is currently being processed. In
the waiting state, an interrupt has been recorded as entering
the system but is not yet in the priority chain for processing.
In the active state, the level has been recognized for pro-
cessing by the hardware and will interrupt the current pro-
gram as soon as an interruptable point in the program occurs
if it is the highest active level. In the busy state, the level
has interrupted the program that was being processed and
the processor is now performing processing associated with
the level.

An interrupt level may be reset, armed, or disarmed. These
controls are implemented by the PIR, PIA, and PID instruc-
tions, respectively. Use of these instructions controls the
states of any or all of the interrupt levels as specified by the
programmer. The arm and disarm instructions control the
advancement of an interrupt within the specified level from
waiting to active. If tne level is disarmed, an interrupt
request will be recorded as waiting but will not be processed
further until the level is armed. If the level is armed when
the interrupt occurs, the request will be serviced as soon
as an interruptable point in the microprogram is reached
(assuming that no higher level interrupt that is armed has
occurred before the interruptable point).

The reset instruction (PIR) controls the clearing of the
wait, active, and busy states so that if any request has been
recorded, it will be cleared and the level will be placed in
an inactive state. However, if the level was in the busy
state, the associated processing will continue to completion
unless interrupted by any of the levels.

Note that SYSTEM RESET resets and disarms all interrupt
levels and clears out the interrupts on all devices.

NON-INTERRUPTABLE INSTRUCTIONS

For the convenience of the programmer, six instructions
prohibit an interrupt from occurring until after the next
instruction has been executed. The instructions and reasons
are:

e XEC, IOID. These instructions operate by manip-
ulating the TIR (Temporary Instruction Register)
directly. In an interrupt were allowed, it would fetch
another instruction and load it into the TIR over
the XEC or IOID forced instruction. Note that these
two instructions differ from branch, skip, and other
related instructions, which manipulate the program
counter as opposed to the TIR.

L4 BRM, BAL. These instructions branch to subroutines,
which sometimes need to disarm certain interrupt
levels (e.g., to prevent undesirable reentrancy).

L PIA. In implementing interrupt routines that cannot
operate reentrantly, it is desirable to issue the BRR
or BRD immediately after the PIA is executed.

L PIR (7002 Processing Unit only). This instruction
arms all the levels it resets. The programmer may
wish to disarm these levels after resetting them.

1 October 1972

SIV/70—11—1C

INTERRUPT INSTRUCTIONS

Interrupt instructions do not affect the condition codes;
execution equations are not applicable.

Label 10ID Expression
Indirect Interrupt

L5 .7 |7 |, AooRess 0, 0 |
01234567 881011 121318151617 18 18 20 21 22 23
Description:

I0ID is only valid when executed from a dedicated memory
location as a result of an interrupt occurring on the corre-
sponding priority level. At execution of IOID, the 6 least
significant bits of the EA are replaced by the unit address
of the interrupting device. The newly constructed address
is then used to fetch an instruction that is executed.

The instruction must be an INR, 10, or BRM for proper
execution. If INR or 10 is used, the interrupt level is
automatically cleared after execution. If the instruction is
BRM, the user must clear the level by leaving the service
routine with a BRD. I0ID is a non-interruptable instruction.

The assembler treats IOID like any other memory reference
instruction and will not assign it to the proper boundaries.
The programmer must use absolute addressing with this
instruction. See Section 8.

Label PIR Expression

Priority Interrupt Reset

5 6 | 7] AoDRESs. . |
Il1234557B91011121314151617131920212223

Description:

PIR clears out the wait, active, and busy states of the
priority interrupt system according to bits 16-23 of the
contents of the effective address. Levels with a 1 in the
corresponding bit are reset, and levels with a O are not
affected.

On the 7001 Processing Unit, this instruction is intended
for diagnostic purposes only since it does not clear the
interrupt request from the peripheral controller. This version
of the instruction allows an interrupt immediately after its
execution.

On the 7002, PIR resets the interrupt system and the
controller. It operates by giving a signal that allows any
interrupts in wait (on any selected level) to go active, then
acknowledges the interrupt, which clears it and allows
another to be generated. The instruction loops in this
manner until no more interrupts are generated. At this
point the instruction resets the wait, active, and busy states,
then exits. Note that PIR arms all the levels that it resets,
even if they were disarmed before execution; the user may

1 October 1972

Section 7
Interrupt System and Instructions

wish to disarm these levels after resetting them. It will also
clear out any levels that were armed at time of execution;
the user must disarm all the levels in which the wait state
is not to be reset. The active state of all levels will always
be cleared. This new version of the instruction is non-
interruptable; an interrupt will not be loaded into the
priority chain until completion of the following instruction.

This instruction is used primarily during startup. In general,
it is recommended that after a PIR, the following procedure
be followed in starting up an input device. First (imme-
diately after the PIR), disarm the level of the device.
Next, take status on the device and if an input data ready
condition is indicated, issue an IO input (the data can be
ignored). Next, the level can be armed and input started.

The contents of the effective address are interpreted as

follows:
[TITITT]

0123456 7 8 8101112131415 16171819 20212223

s {]

Label PIA Expression
Priority Interrupt Arm
[s a4 | 7] ~ ADDRESS

12385678 0N1IZBRE6TB800223
Description:

PIA arms the selected levels of the priority interrupt system
according to bits 16-23 of the contents of the effective
address. All levels with a 1 in the corresponding bit :are
armed, and levels with a 0 are not affected. Format for the
[EA];6—23 is described under PIR. If an interrupt request
occurs during the execution of this instruction, it is not
loaded into the priority chain until the completion of the
following instruction.

Label PID Expression
Priority Interrupt Disarm

[5 5 [71 . “ADDRESS ,
Il1Z34567891011121314151617181920212223

Description:

PID disarms the selected levels of the priority interrupt
system according to bits 16-23 of the contents of the ef-
fective address. All levels with a 1 in the corresponding bit
are disarmed, and levels with a 0 are not affected. Format
for [EA];6— 3 is as described under PIR.

7-3/4

SIV/70—11—1C

Section 8
Assembly Language Programming

GENERAL

The System IV/70 CODE assembly language is a general
purpose programming language, providing the programmer
full use of the computer’s capabilities without need for
binary or octal coding. Prominent features include:

° All input in alphanumeric form, including instructions
and data.

° Symbolic addressing.

° Separate assembly of easily-managable program rou-
tines with inter-routine linkage automatically handled
using non-local symbols (virtuals).

° Absolute and relocatable code with provisions for
intermixing.

° A full set of assembler directives for data and assem-
bler control.

ASSEMBLER PROGRAMMING

The assembly language programmer writes his program using
symbolic code consisting of alphanumeric mnemonics, sym-
bols, and data. This symbolic code (source program) is
converted into binary code by the assembler and loader
programs, and executed.

Programs and Routines

Programs are developed by breaking them up into routines
which can be composed and checked independently. These
routines are defined as blocks of code that may be assem-
bled: the only restriction on a routine is that it must have
an END statement as its last statement. (Within a routine,
of course, the programmer may have any number of sub-
routines.) The assembler program processes a source routine
and outputs relocatable code and a listing.

Relocatable code is binary-symbolic code written on an
external medium, such as a disc, cards, or paper tape, that
may be loaded into the computer for execution. The listing
is a printed list of the relocatable code in octal form and the
source routine.

One or more routines may be combined to make up a pro-
gram, which is also terminated by an END statement, but
which also must meet the criterion of being executable:
this means that all inter-routine cross references, or linkages,
must be resolved. These linkages are handled using non-local
symbols (virtuals) and ENTRY statements; this concept will
be explained in detail later. As the routines of his program
are assembled, the programmer correlates them using the
routine listings, which include printouts of the virtuals and
ENTRY statements.

1 October 1972

Program Elements

The fundamental program element is the statement, which
may be constructed with the aid of symbols and expressions.

STATEMENTS

Statements are of three types: machine instructions, assem-
bler instructions (also called directives), and comments.

Machine instructions each generate a single line of machine
code (binary code) that will be executed by the computer.
They are explained in detail in Sections 3 through 7.

Assembler directives are instructions to the assembler pro-
gram to perform various tasks such as data definition, con-
ditional assembly, etc. They are explained under ‘‘Assembler
Instructions” in this section.

Comment statements are programmer documentation aids
that appear only in the assembler output listing. They are
designated by an asterisk (*) in the first character position
of the statement.

Both machine instructions and assembler directives contain
a mnemonic operation code and an operand or operands.
They may also contain a symbolic label and comments.

SYMBOLS
General

Many machine instructions and directives refer to addresses
in memory, usually for the purpose of fetching or storing
data. Rather than being forced to keep track of these
addresses, the programmer may refer to each of them with
a symbol which is meaningful to him. These symbols are
symbolic addresses; other symbols, such as reserved symbols
and symbols defined by the EQU directive are symbolic
values. A symbol can be any string of one to six characters,
the first of which must not be numeric.

An address symbol is defined when it occurs in the label
field (see “Assembler Language Coding”) of a machine
instruction or a directive; whenever the assembler program
encounters a symbol used in this manner it assigns the sym-
bol to the address of the location in memory where the
instruction or directive resides. Thus the address in question
can be referred to and used by other statements in the
routine; whenever the symbol appears in the operand field
(see ““Assembler Language Coding”) of another instruction,
the assembler program will supply the address in place of
the symbol. It follows that a given symbol may be defined
only once in any routine, although it may be used any
number of times in operand fields.

Section 8
Assembly Language Programming

[n addition to relieving the programmer from the task
of keeping track of numerical storage addresses, symbolic
addresses also allow routines to be stored and executed
in any part of memory without affecting the coding of
routines. Although the execution addresses of instructions
in such routines are not known at the time of coding, their
position relative to the start of the routine is known. These
instructions are therefore relocatable since the execution
(absolute) address may be produced by adding any desired
base address to the relative addresses in the routine when it
is loaded. All symbolic addresses are relocatable unless they
are defined in a section of a routine designated as absolute
by an ORG directive.

Reserved Symbols -

Reserved symbols, which may appear only in the operand
field, are symbols that identify the eight working registers
of the CPU or the $, which stands for the current value of
the location counter in the assembler. The nine reserved
symbols and their values are:

Symbol Value Symbol Value
RO 0 X1 5
R1 1 X2 6
RP 2 X3 7
RA 3 $ Current value of
RB 4 location counter

Non-Local Symbols

Symbols defined and used within a routine are called locally
defined; but a symbol may be used within a routine without
being defined in that routine. A symbol used in this manner
is called a non-local symbol or a virtual; these symbols are
used to perform linkage between routines of a program.
This linkage function facilitates the combining of easily
written routines into complicated programs.

A program may contain any number of these virtual sym-
bols, but each of them must be resolved for program
execution to take place. A virtual is resolved by the loader
program through the use of the symbol in the operand field
of an ENTRY directive in the source routine where the
symbol is defined. The assembler outputs a notice of all the
virtuals and ENTRY statements within a routine to notify
both the programmer (via the listing) and the loader (via
the binary-symbolic code) of the status of all non-local
symbolic information in the routine.

Zixamples: VIRT is a symbol defined in some other routine.

BRA VIRT Example 1
BRM VIRT Example 2
STA VIRT Example 3

Example 1: This routine transfers control unconditionally
to another routine. No thought is given at this time to
returning control to the first routine.

8—2

SIV/70—11—-1C

Example 2: This routine transfers control to another rou-
tine, and the second routine can easily transfer control back
to the first using a BRR VIRT. This method is particularly
useful for subroutine linkage.

Example 3: This routine stores data for later use by another
routine,

EXPRESSIONS

The assembler program will evaluate expressions repre-
senting addresses and other quantities as required by the
programmer. The expression may be a single symbol or
quantity, or symbols (except virtuals) a’.d quantities may
be combined in an operand field to produce any desired
quantity. The operators allowed are + or & (plus), - (minus),
* (multiply), and / (divide). Whenever the assembler pro-
gram encounters such an expression, the program attempts
to evaluate it. If the program cannot evaluate the expression,
an E error is generated and the program continues. If a
non-integer result is obtained, it will be truncated. Any
numeric expression with a leading zero will be interpreted
as an octal number; other numbers will be treated as
decimal. Note that no grouping of terms in an expression is
allowed: the program merely evaluates the expression from
left to right by combining single symbols or quantities on
each side of the operators. The method of evaluation is very
flexible: the only restriction being that the expression must
be reducible to an absolute quantity plus a term consisting
of the starting address of the routine times a coefficient
with a value of -1, 0, or +1.

Symbols used in the operand field of specified assembler
directives must be defined (cannot be virtuals) before the
assembler evaluates the operand. These directives are BES,
BSS, EQU, FORCE, IFGT, IFLT, IFNZ, IFZ0O, ORG, and
SKIP. The reason for this restriction is that these directives
can affect the value of the location counter in the assembler
and they must be resolved before the location counter is
assigned values.

The assembler evaluates expressions working from left to
right, then stores the results from right to left. Thus, if the
quantity is less than the largest number that can be stored
(37777177 positive or 40000000 negative), it will be stored
correctly, right-justified. But if it is greater than these
constants, it will be truncated on the left and significance
will be lost. See DCN for examples.

Assembler Language Coding

The coding of statements in the assembly language can best
be understood with reference to the coding form shown in
Figure 8—1. Instruction statements may include four fields:
label, operation, operand, and comments. Each instruction
statement must have an operation field and may have label
or comment information. The contents of the operand field
for a given instruction depend on the nature of that instruc-
tion. Both machine and assembler instruction statements
may have from one to four subfields in their operand fields.

1 October 1972

€8

GL6T 134010 T

SIV/70-05-18

PROGRAM

PROGRAMMER

COMMENTS

PAGE

OF

DATE

OPERATION

OPERAND CJCOMMENTS

IDENTIFICATION I
SEQUENCE

1

o 9,10, 11]12] 13| 1a]15] 17] 18| 19] 20] 21] 22, 23] 2425 28] 27 28] 201 30

L

H ¥
35/ 3637, 33? 39140 41142

43, 44 45 | 45! 47 48| 48] 50 51 69 7u§ 71} 72| 73

] 53] 54 55! 561 57 58| 59| 60 | 61] 62, 63| 64) 65}

74| 75! 76| 77, 78] 79, 80)

e

e

o

i
b

iy
o

e

o
o

9110111 12:13{14]15 116 17,18 |19{ 20. 21| 22 23.24}25; 26; 27 } 28, 29 30

33134, 35: 36

40:41.42)43] 4445/ 46;

713

74175 76; 77, 73, 78} 80

80130

Figure 8—1. System IV/70 Assembler Language Coding Form

Suiwresdoiyg afenduer] Ajquiassy

g uoroag

O1—TT—0L/AIS

Section 8
Assembly Language Programming

For machine instructions, this information is detailed in
Sections 3 through 7 and summarized in Appendix C. For
assembler instructions, see ‘“Assembler Instructions” in this
section and Appendix B. Note that a line of code with an
asterisk (*) in column 1 is treated as comments, is not an
instruction, and appears only in the assembler output listing;
also any characters occurring after the first blank following
column 14 are treated as a comment.

LABEL FIELD, COLUMNS 1-6

A label is a symbol consisting of one to six characters of
which the first must not be numeric. It represents sym-
bolically the machine location of an instruction or an item
of data; this location is called a symbolic location. A symbol
may be written anywhere in the label field.

OPERATION FIELD, COLUMNS 8-13

Each machine or assembler instruction has one or more
mnemonics assigned to it; such a mnemonic may be written
anywhere in the operation field. An asterisk written at the
end of the mnemonic for address modifiable instructions
indicates indirect addressing. See Sections 3 through 7 for
machine instructions and ““Assembler Instructions” below
for assembler directives; see Appendices B and C for a
summary.

OPERAND FIELD, COLUMNS 15 TO FIRST BLANK

The operand field contains an operand or operands that are
peculiar to each instruction. The operand information must
be written starting in column 15 and must not contain a
blank except for character string definition in a DCA direc-
tive. With this single exception, the first blank after column
14 marks the end of the operand field. The operand for
memory reference instructions consists of an expression
representing a memory address followed by an index register
symbol when indexed. Non-memory reference instructions
may contain source register, destination register, byte con-
trol, or count control operand subfields depending on the
instruction. These operands must be written in the order
given and must be separated by commas. See the descriptions
of the instructions and Appendices B and C for details.

Examples:
LABEL RCR R1,RA7.8 SEE NOTE 1
STA LOC1 SEE NOTE 2
STA* LOC2,X1 SEE NOTE 3
LOC1 PZE 012345 SEE NOTE 4

Note 1: This instruction will be executed as a register copy
and rotate of R1 into RA, with a shift count of 8 and a byte
control of 7 (all bytes). The instruction will be placed in an
appropriate location in memory, and the label, LABEL,
takes on the value of the address location. “SEE NOTE 1”
is a comment and would appear in the listing only.

Note 2: This instruction will store the contents of RA into
LOC1, a symbolic memory location. Note that the label or

8—4

SIV/10—11—-1C

bperation information may appear anywhere in their allo-
cated fields; only the operand information must begin in
column 15. This instruction will appear in the next memory
location following the RCR instruction. Since no label is
supplied, this location will not appear in the symbol table,
but it could be referenced using LABEL+1 as a symbolic
location.

Mote 3: This instruction is similar to the STA above, except
that indexing (the tag field, “X1”’) and indirect addressing
(*) are specified.

Note 4: A typical assembler instruction. The location LOC1
is assigned and its first nine bits zeroed, and octal 12345 is
entered into its 15 least significant bits. Assembler instruc-
tions are coded in the same manner as machine instructions.

Absolute and Relocatable Code

In the context of assembly programming, the programmer
may think of data and instructions as being absolute (i.e.,
he expects them to be loaded in the locations specified), or
relocatable (i.e., he expects them to be loaded anywhere in
memory as a block).

The use of relocatable code covers the majority of pro-
gramming cases; the principal exception is the absolute code
demanded by dedicated areas within memory (see Table
3—4 “Dedicated Memory Locations”). For example, the
programs that generate and store characters to be displayed
in the video display areas may all be relocatable, but the
symbols pointing to the displayable character storage loca-
tions must be absolute. Relocatability is determined by use
of the ORG directive.

If no ORG statement precedes a block of code, the entire
block is relocatable, and the symbolic addresses defined in
the block are relocatable. A block of code is also relocatable
if it is preceded by an ORG statement containing a relo-
catable operand expression. Relocatable blocks of code will
be assembled relative to an assumed O starting location and
loaded with a relocation bias calculated by the loader for
the most efficient use of memory. Note that the relocation
bias is added not only to the relative locations of instruc-
tions and data, but also to the relocatable address fields
within instructions.

If an ORG statement is used with an absolute expression,
the following block of code will be assembled and loaded
relative to the absolute expression as a starting location.
However, the relocation bias will still be added to relo-
catable address fields within instructions.

The ORG statement is designed to promote easy intermixing
of absolute and relocatable code. Whenever a symbol is
encountered in the label field of an ORG statement, the
symbol is set equal to $ (the current value of the location
counter), then $ is set equal to the value of the operand
expression. Later, when an ORG statement appears with

1 October 1972

S1v/70—11—-1C

the same symbol in its operand field, $ is set equal to its
earlier value, and the program proceeds. Only a block of
code between an ORG statement that designates absolute
code and one that designates relocatable code is treated as
absolute; the rest of the routine is relocatable.

For further information on the operation of the Assembler
and Relocatable Loader, see “Disc Operating System (DOS)
Reference Manual” document SIV/70—50—1.

SEQUENCE OF EVENTS

The sequence of events in generation and execution of an
assembly language program is as follows: first the pro-
grammer writes his program (i.e., one or more routines) in
alphanumeric form with mnemonic operations, symbolic
addresses, etc. Second, the assembler program makes two
separate passes upon each routine.

During the first pass, symbols used as labels in the program
are tabulated in a symbol table along with the corresponding
addresses that define the symbols. Assembler directives
pertaining to assignment of memory locations are also
completely processed so that storage can be allocated for
instructions and data.

The second assembler pass generates and outputs binary-
symbolic object code representing data, machine instruc-
tions, virtuals and their locations, ENTRY statements
identifying symbols used outside this routine, and sufficient
additional information to enable the loader program to
locate the instructions and data properly for execution. The
second pass also outputs the information needed to generate
an assembly listing, which forms the documentation of the
routine as generated by the computer.

Section 8
Assembly Language Programming

An assembly listing is illustrated in Figure 8—2. The first
column on the listing flags any errors (e.g., the E for an
evaluation error at location 04006). The next column shows
the octal memory location, if any, assigned to each state-
ment by the assembler. Note that the ENTRY, ORG, and
comment (*) statements receive no address assignment. The
next column shows the contents of the corresponding mem-
ory location, in octal. The exception to this is the ORG
statement, which shows 000000003 . The rest of the columns
show the symbolic program as entered by the programmer.
This is the same information contained on the coding form,
Figure 8—1. Label, operation, operand, and comment infor-
mation are listed in that order. At the bottom of the listing,
virtual symbols are listed along with associated address
information.

The loader program, used with the assembler, takes the
binary-symbolic relocatable code generated by the assembler
and allocates instructions and data to locations where they
can be executed. Unless directed otherwise by the pro-
grammer or assembler program, the loader always loads
each routine into the lowest- or highest-numbered memory
locations available, to provide the most efficient possible
use of memory. Before program execution is started, the
loader will resolve all virtual symbols, assigning the appro-
priate linkages between routines.

ASSEMBLER INSTRUCTIONS

General

The assembler instructions (directives) perform program
functions that are not a part of the machine instruction set.
The directives perform data definition and storage allo-
cation functions, plus various assembler control functions.
They are discussed as Date Control and Assembler Control
directives.

Ao vbedvaedli ENTRY £

P4vvd Yewdvibuud URG vduipnyg

A4Yuid 2670370 START RCEPY Ku,RA CALCULATE

24vd1 DYV B2 LDt P4 SuM OF YS

Bavw2 132pduld LOUP ADA Y+3, A1

paduI 7953vduul 8C1 LOOP

0adW4 432¥4uv1d STA Z ENTRY USED

QAQBS 72304u0bd BRA FALN RETURN TO MAIN

EQd4ue 7<dovidainn BRA E ERROR

D4ww7 Bodvanul HLT » CONVENTIUONAL HALT

0487 Dedvovve * CUMMENT CARL = PRUGRAM CUNSTANTS FOLLUW,

waedlu Bodvidevy L FLE i ENTRY DEFINED

padll Dedwibvud Y DCN 5 Yi

gevre 777777706 DCN -2 Y2

A4013 040WVVA3 DCN 3 Y3

pduld 77777775 1 DCN -3 INDEX COUNSTANT
MAIN VIRTJAL 24045

P4UL1d 72344auv4 END STakT NEED END TO ASSEMEBLE

Figure 8—2. Assembler Output Listing

1 October 1972

Section 8
Assembly Language Programming

Data Control Directives

These directives define symbols as the storage location
for numbers, character strings, and values of expressions;
allocate storage space; and equate symbols to values of
expressions. Any time the assembler program encounters
an expression in the operand field of one of these directives,
the program attempts to evaluate it. Quantities thus derived
will be stored in binary form, truncated to fit into a com-
puter word. There are whole word definition, part word
definition, storage allocation, and symbol definition data
control directives.

WHOLE WORD DEFINITION

Whenever a label is used with one of these directives, the
label is set equal to the address where the constant is stored.
This contrasts with the EQU directive, which sets the label
equal to the value of the expression.

Label DCA
Define Constant ASCII.

‘6,€,€5....C,,"

The characters between the delimiters (shown here as ') are
treated as a character string, converted to ASCII, and packed
three-to-a-word in memory. The delimiter can be any ASCII
character but must not appear in the string. Unfilled char-
acter positions on the right end of the last word are filled
with blanks unless a zero follows the second delimiter. In
this case, the last word will be filled with zeros. The label
field is optional; if a label is given, it will be assigned to the
location of the first three characters.

Label DCN Expression

Define constant numerical, integer.

Evaluates the expression and stores it as a 24-bit quantity
(or 23 bits + sign). The precision of the quantity stored is
equal to the capacity of a single memory word; i.e., 23 bits.
Thus for a decimal number, the maximum precision is just
under seven digits. Also, the user may enter a number in
octal (an octal quantity is indicated by a leading zero).

Note that if a label is used with a DCN, the label is assigned
to the location, not to the quantity. Examples:

Assembler Input Assembler Output
DCN 040000000 40000000
DCN -2 777717776
DCN 012%256+013*256+014 02405414
DCN 1 00000001
DCN 01122334455 22334455

Label DCN +n,n;n;.nins..npBtm; m,..m,
Define constant numerical, fixed point fraction.

Converts the decimal integer and fraction represented to
the corresponding binary number and places the result in a
24-bit word in memory. The scaling of the result is deter-
mined by the absolute magnitude of the decimal input and

8—6

SIV/70—11—-1C

by the value of M, the number following the B. In general,
M should be greater than the number of bits required to
express the integer part of the decimal input. M specifies
the number of bit positions between the binary point and
the normalized binary point location; i.e., between bit
positions 0 and 1 (M is + for right and - for left displacement
of the binary point). If the input decimal number is negative,
the binary result will be calculated as if a positive number
had occurred, then the result will be 2’s complemented.
A capital B must appear as shown, if the binary point is
used. Examples:

Assembler Input Assembler Output
PI DCN 3.1416B2 31103774
DCN 14.375B4 34577777
DCN -14.375B4 43200001
LOGE DCN .4343B-1 33627110
Label DCS +.n;n;n;.nsExm;m,..m,

Define constant single-precision floating point.

Enables the programmer to define constants for use by the
floating-point arithmetic instructions. The decimal number
in the operand field is converted to a standard two-word
floating-point number (see ‘“Floating Point Data” under
“Formats” in Section 3). The exponent in the operand field
must be signified by an E.

Label DCD <+.n;n,n;...npDtm,;m,..m,
Define constant double-precision floating point.

Enables the programmer to define constants for use in
extended-precision floating-point subroutines. The decimal
number in the operand field is converted to an extended-
precision three-word floating-point number (see “Floating
Point Data” under “Formats” in Section 3). The exponent
in the operand field must be signified by a D. The label is
assigned to the first word. Example:

Assembler Input Assembler Output
FORCE 1

DCD +.142857142857D0 00141 11111040
00142 22222222

00143 77777776
PART WORD DEFINITION

These directives load a constant into the first nine bits of a
memory location and operand information in the remaining
bits. They are used in constructing instructions, reserving
locations, generating constants, etc.

Label PZE Expression
Prefix plus zero.

Puts zeros in the first six bits of the word and the value of
the expression in the last 15 bits.

1 October 1972

SIV/70—11—-1C

The PZE directive enables the programmer to assign a label
to a memory location, to mark the beginning of a BRM
subroutine, and to construct the address part of a memory
reference instruction. For this use, an asterisk (for indirect
addressing) and/or a tag field (for indexing) may be speci-
fied; see “Address Modification’ in Section 3 for details. If
PZE is executed in the object program, a HLT will occur.

Label RPZE S,D,B,C
Register prefix zero.

Puts a prefix of 0075 in the first nine bits of the word and
the value corresponding to the optional source, destination,
byte control, and count information in the last 15 bits.

The RPZE directive enables the programmer to construct
the operand part of non-memory reference instructions. If
executed, an LCL instruction will be performed.

Label MZE Expression
Prefix minus zero.

Puts a prefix of 7775 in the first nine bits of the word and
the value of the expression in the last 15 bits.

The MZE directive enables the programmer to generate a
negative data word; e.g., generation of tables for the char-
acter move instructions. If executed in the object program,
a HLT will occur.

STORAGE ALLOCATION

These directives allocate blocks of storage locations.
Label BSS Expression
Block starting with symbol.

Reserves a block of memory locations whose length equals
the value of the expression, and assigns the label to the first
location in the block. The value of $, the location counter,
is increased by a number equal to the length of the block.

Example:

ORG 0100
AA BSS 020

Setslocation counter to 100g.

Defines AA as location 100g
incrementing the location
counter by 203 words, thus
changing its value to 120j.

LDB VALUE This instruction is placed in

the location immediately af-
ter the 20g reserved words,
namely in location 120g.

Label BES Expression

Block ending with symbol.

1 October 1972

Section 8
Assembly Language Programming

Reserves a block of memory locations whose length equals
the value of the expression; in doing so it increases the value
of $ by that amount. If a label is supplied it is assigned to
the word beyond the last location in the storage area and
identifies the block of storage.

SYMBOL DEFINITION
Label EQU Expression

Symbol equals expression.

The label is given the value of the expression, with an upper
limit of 15 bits. The expression must not be a virtual. Note
that if an EQU is used with a quantity greater than 15 bits,
the most significant bits will be lost (i.e., the expression is
treated modulo 32,768). However, if a quantity defined in
an EQU statement is later used in an expression, the
nine most significant bits will fill with arithmetically non-
significant bits; i.e., 0’s for a positive number and 1’s for a
negative number. Note that this instruction does not assign
a symbol to a memory location. The label field must always
be used.

Example:
Assembiler Input Assembler Output
S1 EQU -12 77764
S2 DCN S1 77777764

Assembler Control Directives

These directives control the assembly process by indicating
starting and ending points, controlling the location counter,
and making the assembly of groups of statements con-
ditional upon programmer-chosen conditions. There are
counter control, conditional assembly, linkage control, and
miscellaneous assembler control directives.

COUNTER CONTROL

The counter control directive selects absolute or relocatable
starting locations.

Label ORG Expression
Origin setting of location counter.

Sets the label equal to the current location counter value
($), then sets $ equal to the value of the expression. The
expression must not be a virtual. If no label is specified,
ORG merely sets $ equal to the value of the expression.

If the expression is absolute, the following code will be
assigned to absolute locations; if the expression is relative,
the following code will be assigned to locations relative to
the start of the routine. (See “Absolute and Relocatable
Code” for details.) A symbolic address is absolute if the
symbol is defined by code assigned to absolute locations,
otherwise the symbol is relative.

Section 8
Assembly Language Programming

Example:

BB ORG 06 Assigns the label BB to the
current contents of the loca-
tion counter and then sets the

location counter to 65.

This instruction is stored in
location 63.

LD2 INDEX

The same effect would have been produced by:

BB BSS 0

ORG 06
LD2 INDEX
CONDITIONAL ASSEMBLY

Conditional assembly directives make the assembly of part
of a routine depend on programmer-determined data items
or relations. These directives are widely used for the imple-
mentation of control cards. They will not skip beyond an
END instruction. No error message is printed if one attempts
to do so.

Label SKIP Expression
Skip assembly on greater than zero.

Inhibits the assembly of the next N statements following
the SKIP instruction, where N is the value of the expression.
There is no skipping if N << 0.

Example: Changing the TRUE statement to EQU 0 causes
a program change.

TRUE EQU 1
SIM EQU TRUE
LD1 TRA

TRA BSS 0

SKIP 1-SIM
DCN -01000 Count 01000
DCN -02000 Count 02000

Label IFGT Expression, LABEL

Skip assembly if greater than zero.

If the value of the expression is greater than zero, the assem-
bly of statements is suspended until LABEL is encountered
in columns 1—6 of some later statement. LABEL must be
supplied. Note that a label in the label field of a conditional
assembly statement is legal only if it is used as an operand-
field LABEL in another conditional assembly statement.
The LABEL can be from one to six characters, and does

88

SIV/70—11—-1C

not have to be a legal symbol. This allows skipping to a
comment statement as shown in the following example:

A DCN $+3
B DCN -15
IFGT A+B,*NEXT
*NEXT Will be assembled if it’s an instruction

Label IFLT Expression, LABEL

Skip assembly if less than zero.

Operates exactly the same as IFGT, except that assembly
is skipped if the value of the expression is negative.

Label IFZ0 Expression, LABEL
Skip assembly if zero.

Operates exactly the same as IFGT, except the assembly
is skipped if the value of the expression is zero.

Label IFNZ Expression, LABEL

Skip assembly if not zero.

Operates exactly the same as IFGT, except that assembly
is skipped if the value of the expression is not zero.

LINKAGE CONTROL

The linkage control directive allows linking of routines to
form a complete program.

ENTRY Symbhol
Enter symbol value in other routines.

Notifies the assembler that the symbol in the operand field
is intended to be used as a virtual link by other routines.
The symbol must be defined by its appearance in the label
field elsewhere in the same routine. The label field must be
left blank.

Label EQP
End of program; link to library.

Terminates the assembly of a program or the processing of
a relocatable library. If the label field of the EQOP directive
contains a symbolic name, the relocatable loader will use
this name as a library name in resolving virtuals. Thus, if
there are unresolved symbolic references in the user program
at load time, and if the name in the label field of the EOP
is the name of a relocatable file on the disc, the loader will
search the relocatable file and fetch any routines that are
needed to resolve the virtuals. This mechanism can also be
used for linking relocatable libraries together. See “Disc
Operating System (DOS) Reference Manual”, document
SIV/70—50—1 for details.

1 October 1972

SIvV/70—11—1C

MISCELLANEOUS
END Expression
End of routine or program.

Terminates the assembly of a routine or program. An
expression may be included in the operand field of the
END statement. Then, depending on the parameters given
at load time, the value of this expression or the lowest
address which is used by the program and contains data
will be taken as the starting location of the program. With
the current loader an attempt to load a program at 0 will
fail; if a program is absolutely origined it must be placed at
1 or higher.

Note that an END statement must be given before a routine
can be assembled — without the END statement the assem-
bler will not process the routine. No label field may be used
with an END statement.

FORCE Oor1
Foree an even or odd starting location.

Forces the next location to even or odd, depending on
whether the contents of the operand field are even (0) or
odd (1). 1 is added to the least significant bit if needed.
The label field must be blank. The FORCE directive is
commonly used to force even boundaries for I/O select
words, load and store double instruction data, etc.

1 October 1972

Section 8
Assembly Language Programming

ERROR CONDITIONS

The assembler detects four kinds of errors: erroneous opera-
tion code (0), doubly defined symbol (D), evaluation error
(E), and symbol table overflow. The relocatable loader
detects various errors as outlined in the “DOS Reference
Manual”’ document SIV/70—50—1.

ERRONEOUS OPERATION CODE (0)

If the assembler detects an entry in an operation field
(columns 8-14) that is not in its op code table, an O will be
printed and 000000005 assembled. Assembly will continue,
but a halt would be executed.

DOUBLY DEFINED SYMBOL (D)

If the assembler detects the same symbol in two label fields
within a routine, a D will be printed. Assembly will con-
tinue, but the second entry will not appear in the symbol
table.

EVALUATION ERROR (E)

If the assembler encounters an expression it cannot evaluate,
an E will be printed and 000005 assembled. Assembly will
continue, but a halt would be executed.

SYMBOL TABLE OVERFLOW

If too many symbolic labels (current limit = 360;,) are
encountered and the symbol table fills, assembly will halt.
This is the only error condition that will terminate assembly.

8—9/10

S1V/70—-11—1C

Section 9
System Operation

INTRODUCTION

This section discusses operation of the computer with
emphasis on use of the control panel. The control panel has
various system control functions; its controls and indicators
are illustrated in Figure 9—1 and described in Table 9—1.
Functions that may be performed using the control panel
include:

Displaying the contents of a register.

Displaying the contents of a memory location; stepping
through a sequence of memory locations.

L Altering the contents of a register; altering the condi-
tion codes.

o Altering the contents of a memory location.

o Executing an instruction; stepping through the se-
quence of operation of a program.

o Automatically executing an instruction repeatedly.

L Initializing the system by bootstrapping a program.

L] Halting operation and clearing certain error conditions.

L4 Automatically entering the contents of the keys into

a register.
MANUAL DATA DISPLAY AND ENTRY
Register Data Display

During normal operation in the AUTO mode, the DISPLAY
switches usually remain in the TIR position (000). When the
AUTO/MANUAL switch is set to MANUAL, the contents
of the instruction register (i.e., the next instruction due for
execution) are displayed immediately. To display the con-
tents of any working register (RA, RB, RP, X1, X2, or X3),
select the register on the DISPLAY switches according to
the table on the control panel.

Note that, in MANUAL mode, the status bits are stored in
the contents of RP, bits 0-5. Whenever RP is selected, these
bits will be displayed. The status bits are stored as follows:

RP Bit Status Bit

Stop (always 1 in MANUAL mode)
Malfunction (Main Memory parity error)
Overflow condition code

Zero condition code

Minus condition code

Carry condition code

UL W N =O

1 October 1972

During operation in AUTO mode, the DISPLAY switches
can also be left in the RP position (010). If this is done,
bit 0 (Stop) will come on brightly if a HLT is executed and
bit 1 (MM) will come on brightly if a memory parity error
occurs.

Memory Data Display

If MEM (001) is selected on the DISPLAY switches in
MANUAL mode, the contents of a memory location will be
displayed. The location thus displayed will be the address
indicated by the program counter; i.e., bits 9-23 of [RP].
If the contents of the program counter are changed, a
different location will be displayed (see “Register Data and
Condition Code Entry,” below). If the STEP switch is
activated with MEM selected, one will be added to the
program counter, and the contents of the next sequential
memory location will be displayed.

Register Data and Condition Code Entry

A register whose contents are being displayed in MANUAL
mode may be altered using the 24 keys across the bottom
of the control panel and the LOAD switch. Whenever the
LOAD switch is activated, the contents of the keys will be
transferred to the contents of the register currently being
displayed. The new contents of the register will be displayed
immediately.

This feature may be used to alter the contents of the four
condition codes. First, RP is displayed, Second, the contents
of RP bits 9-23 are entered into the keys so that the
program counter’s contents will not be lost. Next, the new
condition code settings are entered into key positions 2-5.
Last, the LOAD switch is activated. By this method, any
combination of condition code settings may be entered.

Note that use of RP in MANUAL mode is one way to reset
the overflow condition code; this CC is otherwise normally
reset using the BOF instruction under program control. For
details refer to the BOF, BRR, and Decimal Option (DADD)
instructions in Sections 4 and 5.

Memory Data Entry

With the DISPLAY switches on MEM, the keys and the
LOAD switch may be used to alter the contents of any
memory location. The procedure is the same as for altering
the contents of a register with the provision that the con-
tents of the program counter are used to select the memory
location to be displayed and changed. If the contents of the

Section 9
System Operation

program counter are changed to alter the contents of the
* corresponding memory location, record the contents of the
program counter before changing it to allow the interrupted
point in the operating program to be restored.

PROGRAM EXECUTION
Automatic Execution

In the normal mode of computer operation, the AUTO/
MANUAL s switch is in the AUTO position and the computer
is executing instructions under control of the computer
program. This mode of operation is changed only by moving
the AUTO/MANUAL switch to the MANUAL position.

Note that it is impossible to enter the AUTO mode when
the DISPLAY SELECT switches are set to MEM (001).
Conventionally, the DISPLAY SELECT switches will be set
to TIR (000) before AUTO is selected.

Manual Execution

With the console DISPLAY SELECT on TIR in MANUAL
mode, the contents of the instruction register will be dis-
played; this is the next instruction destined for execution
in the program sequence. If the STEP switch is activated,
this instruction will be executed and the program counter
incremented, just as in AUTO mode. Also, the next sequen-

SIvV/70—11—-1C

tial instruction will be fetched and stored in the instruction
register. If the STEP switch is activated again, this next
instruction will be executed also; this sequence may be
repeated indefinitely.

These executions are identical to executions in AUTO mode:
tests, branches, register and memory changes, etc., will all
occur in the usual manner. The only difference is that a
Stop will occur after the execution of each instruction.
These changes may be examined in detail from the control
panel as outlined in the paragraphs above.

Similarly, the contents of the instruction register may be
altered using the keys and the LOAD switch before exe-
cuting using the STEP. If this is done, record the contents
of the instruction register and the program counter so that
you may restore the halted program when the console
intervention is complete.

Repeated Instruction Execution

In some testing situations, it is desirable to automatically
execute an instruction an indefinite number of times. The
REPEAT switch is provided for this purpose. To use the
REPEAT switch, proceed as follows:

a. Start in MANUAL mode.

CONSOLE Y

ENABLE

Figure 9—1. Console Controls and Indicators

1 October 1972

SIv/70—11--1C Section 9
System Operation

Table 9—1. Control Panel Controls and Indicators

Figure 9--1
Index No. Control or Indicator Function

1 POWER Applies power to the computer and built-in peripheral devices, such as data
sets. Whenever the POWER is turned on, the system reset mode is forced and
can not be cleared for 2-3 seconds. Activated when key is turned clockwise.

2 CONSOLE ENABLE Locks out the functioning of all the console switches, except the keys when
key is turned counterclockwise.

3 SYSTEM RESET Forces the computer into the system reset mode. Resets all interrupts and
I/O flip-flops, and forces the computer into a no-operation loop which can
only be cleared by activating the STEP switch (9). May be used to clear certain
error conditions, such as execution of XEC $ or an attempt to send a non-
existent unit address, but not intended for clearing normal programming
errors such as closed program loops; the MANUAL mode is intended for
clearing this kind of problem. Activation of SYSTEM RESET also disables
the memory parity checking circuits. Momentary switch, active down.

4 BOOT Enables the operator to bootstrap load the computer with a single switch
setting. The use of this switch requires that the DISPLAY SELECT switches
all be set down (000 = TIR selected), and that an appropriate constant be set
into the 24 keys depending on the peripheral input device. The switches are
normally left in these positions during operation. Momentary switch, active
down.

7001 Processing Units shipped before May 1972 used an INTERRUPT switch
in place of the BOOT switch. It initiates a programmed interrupt from the
control panel. Momentary switch, active down.

5 NORMAL/REPEAT May be used to repeat an instruction; see “Repeated Instruction Execution”
in this section. Two-position switch; NORMAL up, REPEAT down.

6 AUTO/MANUAL Selects the two principal modes of computer operation. In AUTO mode, the
computer is executing programs at its normal speed under its own control. In
MANUAL mode, the computer is under control of the control panel switches.
Various paragraphs in this section explain the uses of the MANUAL mode.
Two-position switch; AUTO up, MANUAL down.

7 DISPLAY SELECT Selects the Temporary Instruction Register (TIR), the working registers (RP,
RA, RB, X1, X2, and X3) or a MEMory location for display or alteration.
The uses of these switches are explained in this section. Three two-position
switches; one up, zero down.

8 LOAD Loads the register or memory location selected using the DISPLAY SELECT
switches. The uses of the LOAD switch are detailed in this section. Momentary
switch, active down.

9 STEP Used to clear the system reset mode, to step through memory locations, or to
execute a program step-by-step; works in MANUAL mode only. Momentary
switch, active down.

10 Lights Displays the contents of B3, the computer’s main data bus. In MANUAL
mode the contents of the memory location or register selected by DISPLAY
SELECT are kept loaded on B3 by the microprogram and thus displayed.

11 Keys Used to alter the contents of a selected register or memory location under
control of the LOAD switch, or the ECS instruction. Two-position switches;
one up, zero down.

A0668B

1 October 1972 93

Section 9
System Operation

b. Set the keys to the op code, mod field, and operand
field of the instruction desired (see Sections 3, 4, 5, 6,
and 7 for complete information on any instruction).

c. Select TIR on the DISPLAY SELECT switches.
d. Press the LOAD switch.

e. Set NORMAL/REPEAT switch to REPEAT.

f. Press the STEP switch.

The instruction will repeat indefinitely. To clear the
REPEAT mode, set the REPEAT switch to NORMAL.
'The computer will now be in MANUAL mode.

This procedure can be used for clearing memory to zero or
storing any other constant. Just use the SPR instruction
(45700000 into the TIR) after placing zero bits (00000000)
or another value intended for repetition into RA.

INITIALIZING THE SYSTEM

Whenever power has been off, the system must be initialized
before operation can begin. The normal sequence of events
is as follows: turn power on (see ‘“Turning Power On’’). This
initializes the system reset mode automatically and prevents
clearing of the system reset mode for 2-3 seconds so that
the I/O system may initialize itself, certain capacitors may
charge, etc. Next, the desired program is loaded into the
system using the bootstrap loading procedure (see the
following procedures).

Turning Power On

The procedure for turning the power on varies depending
on system configuration. Proceed as follows:

a. If the system uses an 8701 Mounting Cabinet but no
7071 Channel Adapter, turn on circuit breaker at the
bottom rear of mounting cabinet by placing it in the up
position.

b. If the system is connected to a Channel Adapter
and power is controlled by the Channel Adapter, press
POWER ON button on the Channel Adapter. The
computer POWER indicator should light.

NOTE

Power to systems using a Channel Adapter is
controlled by either the 360/370 or the POWER
ON and OFF buttons on the Channel Adapter.
The key-operated POWER switch on the com-
puter is left in the ON position at all times. If
power is controlled by the 360/370, the power
will be on when the 360/370 is on.

c. If no Channel Adapter is attached, turn POWER key
switch on (fully clockwise). The POWER indicator should
light.

9—4

SIV/70—11-1C

Bootstrap Loading for Systems With aBOOT Switch

a. Turn computer power on (see “Turning Power On”).

b. Turn CONSOLE ENABLE key switch on (fully clock-
wise). The CONSOLE ENABLE indicator should light.

c. Set AUTO/MANUAL switch to AUTO.

d. Enter the following boot word into the 24 console
keys:

Device Boot Word
Card Reader 37705101
Disc Drive 37705121
Magnetic Tape Drive 37705221

e. Select TIR by setting all three DISPLAY SELECT
switches down.

f. Prepare the bootstrap device for loading as follows:

(1) For the card reader: press ON switch, place the
binary deck in the card hopper, and then press START
switch.

(2) For the disc drive: set LOAD/RUN switch to
LOAD; after LOAD light comes on, open door at
front of unit and install disc cartridge (it must slide
in completely without forcing or twisting); close door
securely; set LOAD/RUN switch to RUN. The LOAD
light will go out and the disc will accelerate. After
about one minute, the READY light will come on. Do
not perform step g until the light comes on.

(3) For the magnetic tape drive: load the tape drive
and place it on-line (refer to “Tape Drive Operating
Procedures” in this section).

g. Firmly press BOOT switch. If this does not work,
make sure that AUTO is selected.

NOTE

If the bootstrap device is not ready when the
BOOT switch is pressed, the system will hang
waiting for it to become ready.

Bootstrap Loading for Systems Without a BOOT
Switch

a. Turn computer power on (see “Turning Power On”).
If power is on, perform step b and then press SYSTEM
RESET to initiate the bootstrap mode at the device
controller.

b. Turn CONSOLE ENABLE key switch to on (fully

clockwise). The CONSOLE ENABLE indicator should
light,

1 October 1972

SIV/70—11-1C

c. Set AUTO/MANUAL switch to MANUAL and press
STEP switch. Two or three seconds may be required
from the time of supplying power to the computer
before the STEP switch will function.

d. Enter the boot word (37705101 for card reader,
37705121 for disc drive, and 37705221 for magnetic
tape drive) into X1 and TIR as follows:

(1) Enter the boot word into the 24 console keys.

(2) Select X1 (101) on DISPLAY SELECT switches
and then press LOAD switch. The indicators above
the console keys should light; if not press SYSTEM
RESET and STEP, then press LOAD again. If this
fails, make sure that MANUAL is selected before
STEP is pressed.

(3) Select TIR (000) on DISPLAY SELECT switches
and then press LOAD switch.

e. Prepare the bootstrap device for loading as follows:

(1) For the card reader: press ON switch, place the
binary deck in the card hopper, and then press START
switch.

(2) For the disc drive: set LOAD/RUN switch to
LOAD; after LOAD light comes on, open door at
front of unit and install disc cartridge (it must slide
in completely without forcing or twisting); close door
securely; set LOAD/RUN switch to RUN. The LOAD
light will go out and the disc will accelerate. After
about one minute, the READY light will come on.
Do not perform step f until the light comes on.

(3) For the magnetic tape drive: load the tape drive
and place it on-line (refer to “Tape Drive Operating
Procedures” in this section).

f. PressSYSTEM RESET and then STEP, and set AUTO/
MANUAL switch to AUTO.

MISCELLANEOUS PROCEDURES

Using the interrupt Switch

The INTERRUPT switch, provided on 7001 Processing
Units shipped before May 1972, allows the operator to
enter a special interrupt routine at any time. This interrupt
operates under control of the priority interrupt system of
the computer as described in Section 7. In normal use the
control panel interrupt is wired to an interrupt level that
causes a trap to a special interrupt routine. This routine
could be used for displaying special information on all
video screens, for halting operations for the day, or for
any other function that might be programmed.

Halting and Clearing Errors

Various error conditions can cause the normally pro-
grammed course of operations to stop; also, moving the

1 October 1972

Section 9
System Operation

AUTO/MANUAL switch to MANUAL, or pressing SYSTEM
RESET will cause stops. Use of these two switches plus
other techniques for correcting error stops are described
here. The error conditions, plus the methods for detecting
and clearing them are:

EXECUTION OF A HLT INSTRUCTION OR ILLEGAL
INSTRUCTION

The illegal instructions are those with op codes 0707
through 0777 and also Decimal Option instructions on a
machine without a Decimal Option installed. The method
for detecting such a halt is to leave the computer in AUTO
and select RP (010) with the DISPLAY SELECT switches.
If STOP (bit 0) comes on in the lights at the bottom of the
control panel, this sort of halt has occurred; if not, the
machine is looping or hung on I/0. If bit 0 and bit 1 (MM)
are both on, see “Parity Error” below. To clear a STOP bit
halt, one of two procedures is required:

® If this is an expected halt in the program (e.g.,
waiting for a quantity to be loaded into the keys or
a tape to be loaded), perform any required actions,
then move AUTO/MANUAL switch to MANUAL and
back to AUTO.

L If this is an unexpected error, such as the program exe-
cuting data, set AUTO/MANUAL switch to MANUAL,
select TIR (000) with the DISPLAY SELECT switches,
key in a BRA instruction to a convenient program
starting point, press LOAD, then set AUTO/MANUAL
switch back to AUTO. In case of unexpected errors,
it is good practice to record conditions at the time of
the halt ([RP], [TIR] etc.). On Four-Phase supported
software, a branch to the starting location of the
program is conventionally placed in location 1; this
practice is encouraged. A branch to location 1 will
then restart the program.

PARITY ERROR (MACHINE MALFUNCTION)

If a parity error occurs, the processing of the program will
stop. To check for this condition, select RP (010) with the
DISPLAY SELECT switches and see if the bit 1 (MM) light
at the bottom of the control panel is on. (The light will be
on in AUTO or MANUAL mode.) If so, a parity error has
occurred. At this point, it is recommended that the machine
be left untouched (power on) and a Four-Phase Field Service
Engineer should be contacted immediately. If it is desired
to clear this condition and proceed with the program, set
AUTO/MANUAL switch to MANUAL, press STEP, then
go back to AUTO.

PROGRAM LOOP

If the program is in a closed loop, STOP (bit 0) will not
display when RP is selected in the AUTO mode. To clear
a closed loop, set AUTO/MANUAL switch to MANUAL,
key a BRA instruction to a convenient point outside the
loop into the TIR, then go back to AUTO. Such a closed
loop is usually a program bug, and normal procedure is to

Section 9
System Operation

record conditions in the loop, step through it, etc., for

diagnostic purposes. Execution of a BRA $ acts exactly like
rhis kind of loop.

1/0 HANGUP, EXECUTION OF XEC $

Certain I/O problems can hang the processor as well as
the execution of an XEC to the current RP location. An
example of such an I/O bug is the attempt to address a
non-existent I1/O controller; i.e., the sending of a non-
existent channel or unit address. A hardware failure in the
controller circuit can also cause this problem. The symptom
is that the machine is hung and will not respond to the
AUTO/MANUAL, DISPLAY SELECT, LOAD, or STEP
xeys. The cure is to select MANUAL, then press SYSTEM
RESET and STEP. The machine is now in normal MANUAL
mode and error recovery procedures (such as those outlined
in these paragraphs) may proceed. In general, SYSTEM
RESET should be used with caution, for although it has no
effect on the computer’s memory and will not destroy the
program, it resets all I/O operations including interrupts,
disarms all interrupts, and may cause data to be lost.

Note that when the computer is halted (HLT or illegal
instruction or MANUAL mode), [RP] will be the address
of the current instruction plus two, and [TIR] will be the
next instruction destined for execution.

Automatically Entering a Word into a Register

The ECS instruction offers the operator the opportunity
of entering a word into a register under program control,
without taking the computer out of AUTO mode. The
instruction ECS is explained in detail in Section 6; in typical
use the instruction will operate in a loop that expects the
keys to contain information specifying performance of
some special function by the operator, such as loading a
magnetic tape, or information needed by the software,
such as memory size. This loop would be exited when the
position of the keys is changed and would respond to their
new condition in a selective manner.

TAPE DRIVE OPERATING PROCEDURES

These paragraphs describe tape loading and unloading, and
the functions of the 8512 controls and indicators. Tape
threading techniques are easily mastered. The only pre-
caution to be observed concerns the handling of tape reels
rather than the unit itself — avoid exerting pressure on the
reel flanges. They are a relatively flexible material; squeezing
them together can exert pressure on the tape edges. This
can damage the tape and might result in dropouts and
other errors. Therefore, handle tape reels with care.

Loading Tape

Examine the tape threading path shown in Figure 9—2. Not
shown is the beige plastic protective cover over the head

9—6

SIV/70—11—1C

assembly and associated components. The protective cover
may be removed by gently pulling it straight out from the
tape deck (it mounts on two friction-loaded pins). Tape
may be loaded with this cover in place; hence, its removal
is not recommended.

a. Press the toggle in the center of the left-hand spindle
at the point marked “PRESS”. The opposite end will
pivot forward and so remain.

b. Place the reel of tape on the spindle with the write-
enable ring toward the tape deck. Ensure that it is
completely seated, and press the toggle on the end
opposite “PRESS”. The reel is now locked in place.

c. Thread the tape around the movable guides and the
capstan, and over the fixed guides and the read/write
head assembly exactly as shown in the illustration. There
is a spring-loaded black plastic pressure pad over the
head which may be temporarily lifted. The tape must
pass between it and the head.

d. Wrap the tape around the take-up reel in the direction
shown. Hold it in place with the forefinger. With the
other hand, turn the take-up reel counterclockwise until
the end of the tape is overlapped and secured by the
next layer. Close the transparent protective cover.

e. Press POWER switch on control panel and then press
LOAD switch. They will light, and the buffer arms
carrying the movable guides will move to their normal
positions, approximately centered in their slots. The tape
will load onto the tape-up reel until the load point is
sensed. The LOAD indicator will then light. Pressing the
ON LINE switch will place the unit on line, and System
IV/70 will take control; no further action is needed.

Unloading Tape

Normally, System 1V/70 will command the tape to rewind
at the end of a tape operation. A rewound tape is one that
is almost completely contained on the supply reel, but is
still attached to the take-up reel. If it is desired to unload
a tape in this state, ignore step a and proceed directly to
step b. The unit must be off line to unload or rewind tape.
If necessary press RESET switch to take unit off line.

a. Press the REWIND switch on the control panel. The
tape will rewind until the beginning-of-tape marker is
reached. It will then reverse direction and run briefly
until load point is sensed.

b. Press REWIND switch. The tape will be completely
returned to the supply reel.

c. Press the toggle in the center of the left-hand spindle
at the point marked “PRESS”. The supply reel unlocks
and may be removed.

1 October 1972

SIvV/70—11-1C

Controls and Indicators

Section 9
System Operation

write operation cannot be performed, and
data on the tape cannot be erased.

POWER A combination pushbutton switch and indi- REWIND A pushbutton switch that functions only
cator. It controls AC power to the unit and when tape unit is off-line. It causes high-
illuminates when power is on. speed reverse tape motion. Rewind can be

stopped by pressing RESET; otherwise, tape

LOAD A combination pushbutton switch and indi- will stop at load point.
cator. Pressing it after threading tape causes .
tape to load until load point is sensed. It FORWARD A combination pushbutton switch and indi-
will remain illuminated as long as tape is at cator that functions only when tape unit is
load point. off-line. It causes tape to move forward at

normal speed until RESET is pressed.

ON LINE A combination pushbutton switch and indi- REVERSE A combination pushbutton switch and indi-
cator. It is illuminated when the tape unit is cator whose function is identical to REWIND,
}mder f:ontrol of‘ System IY/70. .If the un{t except speed is normal.
is off-line, pressing the switch will place it
on-line. RESET A pushbutton switch that stops tape motion

regardless of the command that started it

FILE An indicator light which illuminates when and regardless of on-line/off-line condition.

PROTECT the write-enable ring is not attached to the If pressed when unit is on-ine, it will take
supply reel. If the ring is not attached, a unit off-line and turn off ON LINE indicator.

Controls and Indicators
\|L = RN [reme] T s | [reee | oo | I v ||
q“‘é
\ / RS)
— -
©] \
! ° AR ‘
Muv-hh/(;uid-s Pressure Pad (Lift to Thread Tape) \
Supply Reel Take Up Reel

Read/Write Head Assembly

Capstan

PEYYN

Figure 9—2. Magnetic Tape Drive Controls and Indicators

1 October 1972

9-17/8

SIv/70—11—1C

Appendix A

System IV/70 Character Set

Octal Keyboard Control Character Display Display Character
Code Character Interpretation (ASCII) Character Meaning
000 =C NUL Null L] Dot
001 AC SOH Start of Heading (CC) A @
002 BC STX Start of Text (CC) b @
003 cc ETX End of Text (CC) ¢ Cent Sign
004 D¢ EOT End of Transmission (CC) A New Line Symbol
005 EC ENQ Enquiry (CC) : Q@
006 FC ACK Acknowledge (CC) + @
007 e BEL Bell o @
010 HC BS Backspace (FE) #+ DO
011 I HT Horizontal Tabulation (FE) “~ Back Arrow
012 Jc LF Line Feed (FE) \ Left Diagonal Graphic
013 K¢ VT Vertical Tabulation (FE) / Right Diagonal Graphic
014 LC FF Form Feed (FE) £ British Pounds
015 MC CR Carriage Return (FE) u Check Symbol
016 NC SO Shift Out - Logical Not
017 o°¢ SI Shift In | Left Vertical Graphic
020 pc DLE Data Link Escape (CC) I Right Vertical Graphic
021 Q¢ DC1 Device Control 1 [Opening Bracket
022 RC DC2 Device Control 2 N Check Symbol
023 S¢ DC3 Device Control 3 - Destructive Cursor or
End of Message Symbol
024 TC DC4 Device Control 4 v @
025 Uc NAK Negative Acknowledge (CC) — Overline Graphic
026 v¢ SYN Synchronous Idle (CC) A Circumflex
027 w¢ ETB End of Transmission Block (CC)] Closing Bracket
030 Xc CAN Cancel] Frame Cursor
031 y¢ EM End of Medium vy O®
032 z¢ SUB Substitute [Block Cursor
033 +C ESC Escape ° Degrees Sign
034 c FS File Separator (IS) < Stop Delta
(comma)
035 - GS Group Separator (IS) 1 Nondestructive Cursor
(minus)
036 ¢ RS Record Separator (IS) » Start Manual Input Symbol or
Start of Message Symbol or
Start Delta
037 /€ Us Unit Separator (IS) \ Reverse Slash
[} CONTROL key pressed at same time (FE) Format Effector @These symbols are currently displayed but
(CC) Communication Control (IS) Information Separator not supported. Other symbols may be
@ Blank for 7002 Processing Unit. substituted on later models.

1 October 1972

Appendix A
System IV /70 Character Set

SIV/70—11—-1C

Octal | Keyboard Display Display Character Octal | Keyboard Display Display Character
Code | Character Character Meaning Code | Character Character Meaning
040 | space Space or blank 100 @ (=%) @ Commercial at sign
041 ! ©) ! Exclamation point 101 AS A
042 @ " Quotation marks 102 BS B
043 # Q@ # Number sign 103 cs C
044 s @ $ Dollar sign 104 DS D
045 % @© % Percent sign 105 ES E
046 & Q@ & Ampersand 106 FS F
047 (1)@ ‘ Apostrophe, prime, 107 GS G
or closing single 110 HS H
quotation mark 111 IS I
050 (@ (Opening parenthesiaH 112 Js J
051) ©)) Closing parenthesis 113 KS K
052 * * Asterisk 114 LS L
053 + + Plus sign 115 MmS M
054 s s Comma 116 NS N
(comma) 117 oS o
055 - - Minus sign or 120 pPS P
(minus) hyphen (dash) 121 (S Q
056 Period or decimal 122 RS R
point 123 ss S
057 / / Slash 124 TS T
060 0 0 125 Us U
(zero) 126 VS \Y
061 1 1 127 wS w
062 2 2 130 XS X
063 3 3 131 YS Y
064 4 4 132 VA Z
065 5 5 133 + Divide sign
066 6 6 134 X X Multiply sign
067 7 7 135 [(-5) | Logical OR or
070 8 8 centered vertical
071 9 9 graphic
072 Colon 136 |EXP 1 (+5) t Up arrow,
073 ; ; Semicolon exponent sign, or
074 < < Less than sign alternate cursor
075 = = Equals sign 137 —(X8) - Underline graphic,
076 > > Greater than sign nondestructive or
077 ? ? Question mark alternate cursor
Shifted numeric key only; not a shifted numeric data
island key. S SHIFT key pressed at same time
s SHIFT key pressed at same time

1 October 1972

SIV/70—11—1C Appendix A
System IV/70 Character Set
Octal |Keyboard Display Display Character Octal Keyboard Conventional Keyboard
Code |Character Character Meaning Code Character Code Interpretation
140 0% @ Grave accent or 200 1 Cursor Up
(zero) opening single 201 « Cursor Left
quotation mark 202 N Cursor Right
141 A a 203 { Cursor Down
142 B b 204 EOM End of Message
143 © ¢ 205 ATTEN Attention
144 D d
145 . 206 ROLL ({5) Roll Down
) e
146 P ¢ 207 ERASE (HOMES) Erase Screen
; 210 HOME Cursor Home
147 ¢ g
150 H h 211 TAB Horizontal Tab
151 I i 212 ROLL (19) Roll Up
152 d i 213 TABS Vertical Tab
153 K 214 EOMS Shifted EOM
154 L 1 215 CURSOR Cursor Return
155 M m RETURN
156 N n 216 CURSOR Shifted Cursor Return
157 0 o RETURNS
160 P P 217 INSERT (S) Insert
161 ¢
) a 220 DELETE (<S) Delete
162 R r)
163 S s 221 F1 Function Key 1
165 18] u 223 F3 Function Key 3
166 \% v 224 F4 Function Key 4
167 w w 225 F5 Function Key 5
170 < X 226 F6 Function Key 6
1n Y y 227 F7 Function Key 7
172 zZ {z 230 F8 Function Key 8
=C i
173 § , Opening brace 231 | Fo Function Key 9
(' Centered stylized
174 X entered stylize 232 F10 Function Key 10
vertical line
L 233 F11 Function Key 11
(distinguishable 934 c
from logical OR) - Control —
175 #C } Closing brace 235 TOTAL Total
176 1C ~ Tilde 236 € Control Roll Down
177 «C #% Delete symbol 237 EOMC Control EOM
@ Shifted numeric key only; not a shifted numeric data
island key.
(o CONTROL key pressed at same time [CONTROL key pressed at same time
S SHIFT key pressed at same time S SHIFT key pressed at same time

1 October 1972

Appendix A
System IV/70 Character Set

SIV/70—11—1C

Octal Keyboard Conventional Keyboard Octal Keyboard Conventional Keyboard
Code Character Code Interpretation Code Character Code Interpretation

240 Not in Use 300 T
241 Lightpen Character .
242 ' \ | Not in Use

Not in Use
257
260 0@ Control 0 .
261 1I€® Control 1 337 _J
262 AN Control 2 340)
263 Q@ Control 3
264 4 @ Control 4 g
265 5¢ @ Control 5 .
266 0) Control 6 Not in Use
267 €@ Control 7
270 8¢ @ Control 8 .
271 ¢ Q@® Control 9 374
272 375 HOMEC® Control Home

. 376 CURSOR Control Cursor Return

Not in Use RETURNC

277 377 TABC Control TAB
Controlled numeric key only; not a controlled numeric
data island key.

C CONTROL key pressed at same time (] CONTROL key pressed at same time

AQ24A

Figure A—1. System IV/70 Display Characters

1 October 1972

SIV/70-11—1C

Appendix B
Assembler Directives

ASSEMBLY FORMATTY DESCRIPTION PAGE
DATA CONTROL DIRECTIVES

Whole Word Definition

1 DCA “Character String’ Define Constant in ASCII 8—6
1 DCN Expression Define Constant Numeric (decimal or octal) 8—6
1 DCS Expression Define Constant Single-precision floating 8—6
1 DCD Expression Define Constant Double-precision floating 8—6

Part Word Definition

1 PZE* Expression, x Prefix 004 8—6
1RPZEs,db,c Prefix 0074 8—17
1 MZE Expression Prefix 7774 8—17

Storage Allocation

1 BSS Expression Block Starting with Symbol 8—17
1 BES Expression Block Ending with Symbol 87

Symbol Definition

1 EQU Expression Label Equals expression (label mandatory) 8—17
ASSEMBLER CONTROL DIRECTIVES

Counter Control
1 ORG Expression Set 1 equal to $, then set $ equal to expression 8—17

Conditional Assembly

L SKIP Expression Skip assembly of val (expr) cards 8—8
L IFGT Expression, LABEL Skip to LABEL on Greater than zero 8—8
L IFLT Expression, LABEL Skip to LABEL on Less Than zero 8—8
L IFZO Expression, LABEL Skip to LABEL on Zero 8—8
L IFNZ Expression, LABEL Skip to LABEL on Non-Zero 88

Linkage Control

ENTRY Symbol Entry for a virtual symbol (label not legal) 8—8

1 EOP Link to library and End Of Program 8—8
Miscellaneous

END Expression End of routine or program (label not legal) 8—9

FORCEOQOor1 Force an even or odd location (label not legal) 8—9

T 1= label. A label may be attached to any of the assembler directives preceded by 1 except for EQU where the
label is mandatory. L is a label in the operand field of a conditional assembly statement.

1 October 1972 B—1/2

SIV/70—11--1C

Appendix C
Machine Instructions

LISTED BY OPERATION CODES (x means indexing and/or indirect addressing; x <7)

00x HLT 10x ORM 20x ANM 30x XoMm 40x STZ

01x LDA1 | 11x INR 21x DEC 3ix STA1 41x SAM

02x LD23 12x ADM 22x SKN 32x ST23 42x STP

03x LDA 13x ADA,ADD 23x SBA, SUB 33x CPA 43x STA

04x LDB 14x ORA,OR 24x ANA,AND 34x X0A XO0R 44x STB

05x LD1 15x AD1 25x SB1 35x cP1 45x ST1

06x LD2 16x AD2 26x SB2 36x cP2 46x ST2

07x LD3 17x AD3 27x SB3 37x CP3 47x ST3

50x SLR 60x SKZ 70x XEC 007 LCL 107 ROR

51x SLRD | 61x MCcC 71x BRM 017 LPL 117 RADD,RCC

52x SLA 62x BOF 72x BRA 027 RCL 127 MPY

53x SLAD | 63x BZO 73x BNZ 037 RLC 137 MVL

54x SRL 64x BMI 74x BPL 047 LCR 147 UFA

b5x SRLD | 65x BCR 75x BC1 057 LPR 157 FAD

56x SRA 66x BAL 76x BC2 067 RCR,RCPY,NOP 167 FMP

57x SRAD | 67x BGT 17x BC3 077 RRC 177 MVR

207 RAND | 307 RXOR 407 SCL 507 BRD 607 CPN

217 RSUB | 317 RCM2 4117 SPL 517 BRR 617 MVCR

227 DIV 327 POP 427 PUSH 527 EXCT 627 DADD

237 MVE 337 upP 437 DOWN 537 EXSN 637 CPL

247 CDA2 | 347 IN 4417 SCR 547 PIA 647 DSUB

257 FSB 357 TRT 457 SPR 557 PID 657 0DD

267 FDV 367 1 467 TRAP 567 PIR 667 MVCL

277 108 377 BOOT 477 ECS 577 101D 677 10

t Unpredictable results will be obtained if this op code is executed.
LISTED BY MNEMONICS AND FUNCTIONAL GROUPS (see page C-2)
ADA 13x E BRD 507 | FMP 167 F | MVCL 667 A RCR 067 J SRA 56x H
ADD 13x E BRM x| FSB 257 F | MVCR 617 A RLC 037 J SRAD 57x H
ADM 12x E BRR 517 | HLT 00x L | MVE 237 B ROR 107 J SRL bdx H
AD1 15x E BZO 63x | IN 347 C | MVL 137 B RRC 077 J SRLD 55x H
AD2 16x E CDA2 247) INR x| MVR 177 B RSUB 217 STA 43x D
AD3 17x E CPA 33x G 10 677 N | NOP 067 L RXOR 307 J STA1 3ix D
ANA 24x K CPL 637 A 108 277 N | ODD 657 L SAM 41x D STB 44x D
AND 20x K CPN 607 A 101D 577 M| OR 14x K SBA 23x E STP 42x D
ANM 20x K CP1 35x G LCL 007 B | ORA 14x K SB1 25x E STZ 40x D
BAL 66x | cP2 36x G LCR 047 B | ORM 10x K SB2 26x E ST1 45x D
BCR 65x | CcP3 37x G LDA 03x D| PIA 47 M SB3 27x E ST2 46x D
BC1 75x | DADD 627 A LDA1 01x D] PID 557 M SCL 407 B ST3 47x D
BC2 76x | DEC 21x | LDB 04x D| PIR 567 M SCR 447 B S$T23 32x D
BC3 17x | DIV 221 E LD1 05x D | POP 327 C SKN 22x | SUB 23x E
BGT 67x | DOWN 437 C LD2 06x D | PUSH 427 C SKZ 60x | TRAP 467 L
BMI 64x | DSUB 647 A LD3 07x D| RADD 117) SLA 52x H TRT 357 B
BNZ 73x | ECS 477 N LD23 02x D | RAND 207 J SLAD 53x H UFA 147 F
BOF 62x | EXCT 527 N LPL 017 B | RCC 17 L SLR 50x H upP 337 C
BOOT 377 N EXSN 537 N LPR 057 B | RCL 027 J SLRD 51x H XEC 70x L
BPL T4x | FAD 157 F MCC 61x L | RCM2 317 J SPL 417 B X0A 3x K
BRA 72x | FDV 267 F MPY 1271 E] RCPY 067 J SPR 457 B XOM 30x K

XOR 3x K

1 October 1972

i
p—

Appendix C
Machine Instructions

LISTED BY FUNCTIONS

SIvV/10—11-1C

gz‘::::lg g(c):lael C(I:noti;::son Name Timing @ Equation Page
A DECIMAL OPTION
1 CPL sbs,sbd,L 637 ZMC Compare block Logic 14+6Q [D Memory Block] : {S Memory 5—16
Block] ; bit-by-bit.
1 CPN sbs,sbd,L1,L2 607 0ZMC Compare block Numeric| 16+6P [D Memory Block] : [S Memory 5—16
Block]; ASCII
1 DADD sbs,sbd,L1,L2 | 627 0oZMC Decimal Addition 18+8P [D Memory Block] + [S Memory 5-15
(+6+6P if Block] = [D Memory Block];
recompl) ASCILI.
| DSUB sbs,sbd,L1,L.2 647 0ZMC Decimal Subtraction 18+8P [D Memory Block] - [S Memory 5—16
(+6+6P if Block] = [D Memory Block];
recompl) ASCILI.
1 MVCR sbs,sbd,L 617 - Move Character Right 20+4Q [S Memory Block] -> [D Memory 5—17
Block |, left to right
1 MVCL sbs,sbd,L 667 _— Move Character Left 20+4Q | S Memory Block] - [D Memory 5—17
Block |, right to left
B WORD- AND CHARACTER-MANIPULATION
ILCLe 007 VA Load Character Left 22,32,32 See Text, Section 5 5—6
I1LCR e 047 VA Load Character Right 16,32,36 See Text, Section 5 5—5K
1LPLe 017 Z Load Parallel Left 42,42,26 See Text, Section 5 5—7
1LPR e 057 Z Load Parallel Right 20,38,42 See Text, Section 5 5—7
I MVE ¢ 237 —— Move block 6+4W See Text, Section 5 5—1
IMVL b,c 137 —-—— Move block Left 2+28W See Text, Section 5 5—9
I MVR b,e 177 —— Move block Right 2+28W See Text, Section 5 5—1
1SCLe 407 Z Store Character Left 24,38,38 See Text, Section 5 5—6
ISCRe 447 Z Store Character Right 20,38,42 See Text, Section 5 56
1SPLe 417 Z Store Parallel Left 14 See Text, Section 5 5—8
1SPR e 457 Z Store Parallel Right 14 See Text, Section 5 5—8
1TRT e 357 - Translate bytes 144 max See Text, Section 5 5—8
C LISTPROCESSING
1 DOWN e 437 - = Down list 12 See Text, Section 5 5—13
1INe 347 - Insert into list 20, 16ns See Text, Section 5 5—13
1POPe 327 - Pop up list 16 See Text, Section 5 5—11
1PUSH e 427 _— Push down list 22, 18ns See Text, Section 5 5—11
1UPe 337 - Up list 12,10ns See Text, Section 5 5—11
D LOAD/STORE
1 LDA* e,x 03x - Load RA 6 [EA] = [RA] 4—1
1 LDAl* ex 01x —-— Load RA & X1 12 [EA] -~ [RA];[EAVU 1]~ [X1] 4—1
1 LDB* e,x 04x -— Load RB 6 [EA] -~ [RB] 4—1
1 LD1* ex 05x —-— Load X1 6 [EA] - [X1] 4—1
1 LD2* e,x 06x - Load X2 6 [EA] » [X2] 4—1
1LD3* ex 07x -— Load X3 6 [EA] > [X3] 4—1
1 LD23* e,x 02x —— Load X2 & X3 12 [EA] > [X2]; [EAU 1] > [X3] 4—1
1 SAM¥* e x 41x - Store RA address 12 [RA)o—23 > [EA)g—23; 42
{EA]o—s > [RA] 0
1STA* ex 43x - Store RA 8 [RA] » [EA] 4—2
1STA1* e,x 31x - Store RA & X1 12 [RA] »> [EA]; [X1] > [EAU1] 4—2
1 STB* e,x 44x -— Store RB 8 [RB] > [EA] 42
1 STP* e x 42x —— Store RP 8 [RP] > [EA] 4—2
1STZ* e, x 40x - Store Zero 8 [RO] = [EA] 4-2
1ST1* ex 45x - Store X1 8 [X1] ~[EA] 4—2
1 ST2* ex 46x - — Store X2 8 [X2] ~ [EA] 4—2
1 ST3* e,x 47x — Store X3 8 [X3] = [EA] 4-2
1ST23* e x 32x - Store X2 & X3 12 [X2] > [EA]; [X3] > [EAU1] 4—3
A027C
Cc—2 1 October 1972

Appendix C
Machine Instructions

SIV/70—11—1C

Assembler Octal| Condition Name Timing @ Equation Page
Format (D Code Codes
E FIXEDPOINT
1 ADA* ex 13x | OZMC | AddtoRA 8 [EA] + [RA] ~ [RA] 4-3
1 ADM* e x 12x 0ZMC Add to Memory 10 [RA] + [EA] = [EA] 4—4
1AD1*ex 16x 0ZMC Add to X1 8 [EA] +[X1] —[X1] 4-3
1 AD2* e x 16x 0ZMC Add to X2 8 [EA] +[X2] = [X2] 4—3
1 AD3* e,x 17x 0ZMC Add to X3 8 [EA] +([X3] ~[X3] 4-3
1DIVe 227 | ZMC Divide 18+8N [RA-RB] + [X2] ~ [RA], 4—4
scaled right; remainder > [RB],
scaled left
1 MPY ¢ 127 ZMC Multiply 24+8N [RA] X [X2] - [RA-RB] 4—5
1 SBA* ex 23x 0ZMC Subtract from RA 8 [RA] — [EA] » [RA] 4—4
1SB1* e x 25x | OZMC | Subtract from X1 8 [X1] — [EA] ~ [X1] 4—4
1 SB2* e,x 26x 0ZMC Subtract from X2 8 [X2] — [EA] - [X2] 4—4
1SB3* e,x 27x 0ZMC Subtract from X3 8 [X3] — [EA] = [X3] 4—14
F FLOATING POINT
1 FAD 157 | ZMC Floating Add 46+4N,+8N,| [RAX1] +[X2,X3] » [RAX1]. 4—6
If [X1] > [X3], [RA] ~ [X2]
1 FDV 267 ZMC Floating Divide 228 [RA,X1] +[X2,X3] > [RA,X1]. 4-7
Remainder - [RB]
| FMP 167 ZMC Floating Multiply 220+8N3 [RA,X1] X [X2,X3] » [RA-RB,X1] 4—17
1 FSB 257 ZMC Floating Subtract 52+4N, +8N, [RA,X1] - [X2,X3] > [RAX1]. 47
If [X1] > (X3}, [RA] —> [X2].
1 UFA 147 ZMC Unnormalized Floating | 90 Same as FAD 4—17
Add
G COMPARISON
1 CPA* ex 33x 0zZMC Compare RA 8 [RA] : [EA], set CC. 4—9
1 CP1* ex 35x 0ZMC Compare X1 8 [X1] : [EA], set CC. 4—9
1 CP2* ex 36x 0ZMC Compare X2 8 [X2] : [EA],set CC. 4—9
1CP3* ex 37x 0ZMC Compare X3 8 [X3] : [EA], set CC. 4—9
H SHIFT ACCUMULATOR
1 SLA* ex 52x 0] Left Arithmetic single 9+3K (+1) 0 4-10
1 SLAD* e,x 53x 0 Left Arithmetic Double | 8+4K T T BT T 0 4—11
I SLR* e,x 50x —— Left Rotate single 6+2K 4-11
I SLRD* e x 51x | —— Left Rotate Double 9+5K (+1) Lt i Je 4-12
1SRA* ex 56x -— Right Arithmetic single | 6+2K 4—-10
1 SRAD* e x 57x -— Right Arithmetic Double | 3+4K ER = NI e WAL TR 4-11
1 SRL* ex Bax | —— Right Logical single 6+2K R LI 411
ISRLD* ex 55x | —— Right Logical Double | 8+4K o A 411
| BRANCH/SKIP
1 BAL* e,x 66x - Branch & Link 6 [RP] - [X2]; EA > [RP] 4—13
1 BCR* e,x 65x —-— Branch if Carry 6 IfC=1,EA—[RP] 4—15
1 BC1*e,x 5% - Branch & Count X1 10 [X1] +1—->[X1].If [X1] # O, 4—16
EA > [RP]
1 BC2* e, x 76x —-— Branch & Count X2 10 [X2] +1—>[X2].If [X2] # O, 4—-16
EA - [RP]
1 BC3* e x TTx -— Branch & Count X3 10 [X3] +1—>[X3].1f [X3] #0, 4—-16
EA ~ [RP]
1 BGT* e,x 67x - Branch if logically 6 IfZNC= 1, EA- [RP] 4—15
Greater
A028C
1 October 1972 Cc-3

Appendix C SIV/70—11—1C
Machine Instructions
embler iti
?:ma t® 8{2::: Cc::noddlilson Name Timing @ Equation Page
| BRANCH/SKIP
I BMI* e x 64x - Branch on Minus 6 IfM=1, EA - [RP] 4—14
| BNZ* e x 73x - Branch on Nonzero 6 IfZ=0,EA - [RP] 4—15
1 BOF* e x 62x 0 Branch on Overflow 6 IfO=1,EA~[RP];0—~>0 4—15
1 BPL* e x T4x —— Branch on not minus 6 IfM=0, EA - [RP] 4—14
| BRA* e, x 72x - Branch unconditional 6 EA - [RP] 4-12
I BRDe 507 0zZMC Branch Return Debreak | 8 [EA],—s > CC;[EA] ~ [RP]; 4—14
issue debreak
| BRM* e x T1x —_— Branch & Mark 10+I [RP}g—, 3 > [EA]y -, 3;status 4—13
bits > [EA]q—s; EA+ 1~ [RP]¢_, 4
IBRR e 517 0ZMC Branch Return 8 [EA],_s > CC;[EA] = [RP] 4—14
I BZO* e x 63x —— Branch on Zero 6 IfZ=1,EA~[RP] 4—14
| DEC* e x 21x —— Decrement memory, 14 [EA] -1 - [EA]. If[EA] =0, 4—17
skip if zero [RP] +1 —>[RP]
| INR* e x 11x - Increment memory, 10+1 See Text, Section 4 4—16
skip if zero
1 SKN* e x 22x | —— Test memory, Skip 8 If[EA] <0, [RP] + 1 > [RP] 417
if Negative
1 SKZ* e x 60x —— Test memory, Skip 10 If [EA] =0, [RP] +1~[RP] 4—17
if Zero
J REGISTER-TO-REGISTER
1 CDA2 247 - Copy Double 8 [RA] - [X2];[X1] - [X3] 4—18
I RADDs.d,b 117 0ZMC Register Add 8 {S] + [D] = [D], selected bytes 4—-18
1 RAND s, d,b 207 M AND source to dest 8 [S]N[D] - D], selected bytes 4-19
1 RCL s,d,b,c 027 - Copy then Rotate Left | 6+2K [S] = [D], selected bytes; rotate 4—920
[D] left [C] locations
1 RCM2s,d 317 0ZMC 2’s Complement 10 -{S] - [D] 4—90
1 RCPY s,d,b 067 - Copy source to dest 6 [S] = [D], selected bytes 4—18
1 RCR s,d,b,c 067 - Copy then Rotate 6+2K [S] = [D], selected bytes; rotate 4—920
Right [D] right [C] locations
1 RLCs,d,b,c 037 - — Rotate Left, then Copy | 8+2K Rotate [S] left [C] locations; 4-21
rotated quantity = [D], selected
bytes; [S] unchanged.
1 ROR s.d,b 107 M OR source to dest 8 [S] U [D] — [D], selected bytes 4—19
1 RRCs,d,b,c 077 - Rotate Right, then Copy | 8+2K Rotate [S] right {C] locations; 4—921
rotated quantity > [D], selected
bytes; [S] unchanged.
1 RSUBs,d,b 217 0zZMC Register Subtract 8 [D] -[S] — [D], selected bytes 4—18
1 RXOR s, d,b 307 M XOR source to dest 8 [S] U [D] = [D], selected bytes 4—19
K LOGICAL
1 ANA*ex 24x ZM AND to RA [EA] N[RA] —~ [RA} 4—921
| ANM* e x 20x M AND to Memory 10 [RA] N {EA] > [EA] 4—29
I ORA* e x 14x M OR to RA [EA] U[RA]} = [RA]} 4—99
1 ORM* e x 10x M OR to Memory 10 [RA] U[EA] > [EA)] 4—22
1 XOA* e x 34x M XOR to RA 8 [EA] U [RA] —» [RA] 429
1 XOM* e x 30x M XOR to Memory 10 [RA] U [EA]} — [EA] 4—23
L CONTROL
1 HLT e 00x - Halt 6 Not applicable 4—23
1 MCC* e x 61x ZM Memory set CC 8 [RO] + [EA] - [EA], set CC 4-—23
10DDsd,b,c 657 - Compute odd parity 10+3K (+1) See Text, Section 4. 4—24
1 NOP 067 —_— No operation 6 Not applicable 4—23
1RCC s 117 | zMm Register set CC 8 [RO] +[S] ~ [S], set CC 4-23
| TRAPe 467 - Trap to 414 6 [414] = [TIR] 4—24
1 XEC* e x T0x —_— Execute [EA] 2 [EA] ~[TIR] 4—24
A029C

1 October 1972

SIvV/70—11-1C

Appendix C
Machine Instructions

(DThe assembly language form of the instruction is given for
reference purposes. The mnemonic is given in capital letters,
label and operand information, with a few exceptions, in
lower case. An asterisk (*) attached to the mnemonic
indicates that indirect addressing may be used with this
instruction. The significance of the other entries in the first
column is as follows:

1 = label. Alabel may be attached to any machine instruction.

e = expression. It must be possible for the assembler to
reduce a multiterm expression to an address or a count. If
the expression is a single symbol virtual, it will be evaluated
by the loader. e is not optional.

e,x = expression plus indexing. The expression is the same
as above, but indexing may also be applied. Indexing is
always optional.

s,d = source and destination registers. These are not options.

b = byte control. If no byte control is given by the pro-
grammer for instructions where it is indicated, the assembler
will supply 7 (all bytes).

¢ = count. For the various count options, see the discussion
of the specified instruction in Section 4 or 5. Any count
entered will be treated modulo 64.

sbs,sbd = Starting Byte locations, Source and Destination.
Values may be 0, 1, or 2, indicating the starting bytes for
operations in a Decimal Option instruction.

L = Length of memory block in bytes for a Decimal Option
instruction.

1 October 1972

Assembler Octal | Condition . .
Format(D Code Codes Name Timing @ Equation Page
M INTERRUPT
1I0ID e 577 -— Indirect Interrupt 10 See Text, Section 7 -3
1PIA e 547 —— Priority Interrupt Arm 6 See Text, Section 7 -3
IPIDe 557 - Priority Interrupt 6 See Text, Section 7 -3
Disarm
1PIR e 567 - Priority Interrupt Reset 8+6T@ See Text, Section 7 7—3
N INPUT/QUTPUT
1 BOOT s,d 377 VA Bootstrap load NA See Text, Section 6 6—3
1ECSd,b 477 —— Enter Console keys 8 [Keys] = {D] 6—5
1EXCTe 527 —-— External Command 6 [EA);0-23 2 [EXC]o—3 6—5
lEXSNe 537 -— External Sense 6 If ([EA}, 9 NEXSy) U 6—5
([EA],; NEXS,)U
([EA],, NEXS,) U
([EA]3 NEXS;) =1,
[RP] +1 > [RP]
1I0e 677 —— Input/Qutput words 28+1+6(W-1) See Text, Section 6 6—2
1I0Be 277 Z Input/Output Bytes 82+1 See Text, Section 6 6—3
A030C

L1 = Difference in lengths of memory blocks in bytes for a
Decimal Option instruction.

L2 = Length in bytes of the Source memory block for a
Decimal Option instruction.

® Timing is given in machine cycles; the cycle time may be
1.9 or 2.03 microseconds. A cycle time of 2.03 microseconds
is recommended for optimum video display. Indexing adds
four cycles; indirect addressing adds two cycles. Other
symbols are as follows:

K = shift count (range = 0-63)

W = word count = count field plus 1 (range = 1-64)

ns = no skip

N = count (range = 0-23)

N; = prealign (range 0-63, average 8-9)

N, = normalize (range = 0-23, average = 5-6)

N3 =0,1,0r2

I =0 normal, 4 if fetched at interrupt

(+1) = one is added if number of cycles is odd

P = Length of Destination in words, Maximum 22

Q = Length of Block in words, Maximum 86

T = Number of interrupts

®6 for 7001 Processing Unit

C-5/6

SIV/70—11-1C

Appendix D
Powers of 2 and 8

N

17

68
137
274

549
1 099
2 199
4 398
8 796
17 592

35 184
70 368
140 737

281 474
562 949
1 125 899

2

]
16
33
67
134

268
536

073
147
294

589
179
3569

719
438
877

755
511
023

046
093
186

372
744
488

976
953
906

255

511
022
044

088
177
355

710
421
842

384

768
536
072

144
288
576

152
304
608

216
432
864

728
456
912

824
648
296

592
184
368

736
472
944

888
776
552

104
208
416

832
664
328

656
312
624

10

11

12

13

14

15

16

=

R BRBE BRBD BRC WKW WO WWe NN NN NDNN N e e e
SWC® USRS RWN HOD® BI® TAR® MRS ©XPT GO WNR OO® IRU AN HO® OIR TThw BHO

2 g gMm

1.0
0.25
0.125

0.062
0.031

0.015
0.007
0.003

0.001
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

625
812
906

953
976
488

244
122
061

030
015
007

003
001
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

5
25

125
562
281

140
070
035

517
258
629

814
907
953

476
238
119

059
029
014

007
003
001

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

000
000
000

5
25

625
312
156

578
789
394

697
348
674

837
418
209

604
802
901

450
725
862

931
465
232

116
058
029

014
007
003

001
000
000

000
000
000

000
000
000

000
000
000

5
25

125
062
531

265
632
316

158
579
289

644
322
161

580
290
645

322
661
830

415
207
103

551
275
637

818
909
454

227
113
056

028
014
007

003
001
000

5
25

625
812
406

203
101
550

775
387
193

596
298
149

574
287
643

321
660
830

915
957
978

989
494
747

373
686
843

421
210
105

552
776
888

25

125
562
781

390
695
847

923
461
230

615
307
653

826
913
456

228
614
807

403
701
350

675
837
418

709
854
427

713
356
178

5
25

625
312
656

828
914
957

478
739
869

934
467
733

366
183
091

545
772
886

443
721
860

430
715
357

678
839
419

5
25

125
062
031

515
257
628

814
407
703

851
425
712

856
928
464

232
616
808

404

601

800
400
700

25

625
812
906

453
226
613

806
903
951

475
237
118

059
029
014

007
003
001

500
250
125

25

125
562
281

640
320
660

830
915
957

478
739
869

434
717
858

929
464
232

25

625
312
156

078
039
519

759
379
689

844
422
711

3565
677
338

5
25

125
062
531

765
882
941

970
485
242

621
810
905

25

625
812
406

703
351
675

337
668
334

5
25

125
562 5
781 25

890 625
945 312 5
472 656 25

1 October 1972

D—1/2

USER’S COMMENTS

System IV/70 Computer Reference Manual
SIvV/70—11—1C

Your comments will be considered for improving future documentation. Please give specific page
and line references if appropriate.

] Which of the following best describes your occupation:

O Programmer O Instructor
0 Systems Analyst/Designer o Student
o Engineer O Manager
0 Operator 0O Customer Engineer
O Other
L] In what ways do you use this document?
0 Reference Manual O Introduction to the Subject
0 In aclass 0 Introduction to this System
o Self Study a0 Other

° Comments/Criticisms

Thank you for your assistance. No postage required if mailed in the USA.

SIV/70—11—-1C

fold fold
FIRST CLASS
Permit No. 194
Cupertino,
California
BUSINESS REPLY MAIL
No Postage Necessary if Mailed in the United States
]
Postage will be Paid by
FOUR-PHASE SYSTEMS |
10420 North Tantau Ave.
. .]
Cuperting, Calif. 35014
|
Attention: Technical Publications]
fold fold

SIV/70—11-1C

Staple Here

Cut Along Here

10420 North Tantau Avenue, Cupertino, California 95014 e (408) 255-0900

jenuey soualayay J4a1ndwio) 0L/Al WILSAS

JT1—T1—0L/AIS

	0001
	0002
	0003
	001
	002
	003
	004
	1-01
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	7-01
	7-02
	7-03
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	A-01
	A-02
	A-03
	A-04
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	replyA
	replyB
	xBack

