FLOATING POINT
S5YSTEMS, INC.

AP—12OB

- ARRAY TRANSFORM PROCESSOR

PROCESSOR
HANDBOOK

7259-02

FLOATING POINT
SYSTEMS, INC.

PROCESSOR
HANDBOOK

7259-02

Form #7239 :

®Floating Point Systems 1276

All Rights Reserved

Printed in the United States of America
Rev 02, May 1976

" PO.BOX 23489 PORTLAND, OR97223 NOOO SW. 1NTH STREET, BEAVERTON, OR97005 (503) 6413151 TLX- 360470 FLOATPOINT PTL

PREFACE

Historically, array transform processors have been largely
integer-arithmetic devices, since the slower processing rate
of - floating-point arithmetic was undesirable when working
with large arrays. of data. However, integer methods have
problems which make programming awkward due to the limited
dynamic range of integer arithmetic. Array scaling and "block"
floating-point techniques have either allowed human and other
errors to creep into the results, or were costly and time
consuming. Further, as processing became more sophisticated,
even 1l6-bit integer data words were insufficiently precise

for preserving the accuracy of simple 8-bit analog-to-digital
converted input data. This is because the many multiplications
and additions in typical cascaded array processing can cause
the propagation of truncation errors*, . o

"With the advent of faster digital logic, many users realized
that floating-point Processing makes programming easier, virt-
ually eliminates dynamic range problems, greatly alleviates
the precision problem, and that it is potentially as fast as
the last generation of integer processors. Floating Point
Systems, Inc. recognized this trend in 1970, and was formed

to specialize in floating-point peripheral processors.

The rush to floating-point processing was not a smooth one.

Many floating-point formats sprang up, and Floating Point
Systems became expert in format converting "on the fly'", so
processing time would not be lost during a format conversion.
Why convert formats? Simple. Not all formats are mathematically
clean. For example, it is unwise to use 2 hexadecimal-exponent
format for serious number crunching because a hexadecimal normal-
ization can cause as many as 3 leading zeros between the binary
point of the mantissa and the first significant bit., This

means as many as 3 least-significant bits may be lost, due

to right-shifting the mantissa past the available word length
(truncation), when an extreme hexadecimal normalization occurs
(about 25% of the time), and of course, 2, or 1, or no bits

may be lost (with equal probability) for other possible hex-
adecimal cases.,. - '

*A 16-bit integer multiplied by a 16-bit intege} results in

a 32-bit product. If the result is truncated to the 16 most-
significant bits, then half the time the resultant's least-
significant bit (1lsb) is wrong since it should have been
rounded up. Now the producdt of two of these potentially wrong
lsb numbers results in the next 1lsb being wrong part of the
time; thus cascaded operations propagate the errors leftward
toward the more significant bits.

The FPS solution is to use a true 10-bit binary exponent,
which has more dynamic range than the standard 7-bit hex-
adecimal or 8-~bit binary exponent, FPS then uses a 28-bit
mantissa, plus 3 guard bits, which provides enough bits to
not only allow for hexadecimal in/out formats, but also to
carry enough information to permit post-normalization and con-
vergent-rounding after each arithmetic operation. Thus FPS
can receive any reasonable floating-point format that is de-
sired as the input format, convert it on-the-£fly to the FPS
format, process it in FPS format with minimal truncation
error propagation, and then convert on-the-fly to the desired
output format. This procedure allows transparent ''no pena-

1ty" operation on the data, thus preserving the integrity
-0f the input data.

In addition to the well chosen floating-point format, the
AP-120B has a general-purpose, non-bus oriented architecture
for the arithmetic units. This allows great flexibility in
that operands and resultants can be moved simultaneously from
any register in the AP-120B to any other. This rather general-
ized structure of the AP-120B allows it to execute special-
ized aigorithms, such as the FFT, in times comparable to

those achieved by hardwired special-purpose processors, but

it also makes the AP-120B well suited to less highly organ-
ized computations. :

In the matter of software, it should be noted that this mach-
ine is a synchronous monolithic multiprocessor, as opposed to
an asynchronous multiprocessor. The practical significance of
this is that programming by the user and/or FPS (Standard
Algorithms, System and Test Software) is tremendously simpli-
fied, due to the predictability of data flow and timing con-
siderations. There is no need for internal hand-shaking be-
tween arithmetic units, memories, and microprocessor; data

and results are available at precisely determined times. The
synchronous approach not only allows a non-stocastic simulator
to be written for easy program debugging, but in addition pro-
grams may be single-stepped in the real processor, with exe-
cution identical to free-running programs. A4 further bonus

of the synchronous design is the easy produceability, main-
tainability, interchangeability, and reliability (there is no
need to explore an infinite number of possible timing con-
ditioans as one clock phases by another, as happens in an
asynchronous machine). Convenient and rapid data-dependent
‘branching, simple overlapping of data input, arithmetic pro-
cessing, and data output are further examples of the care
taken to assure a fast, accurate, convenient and reliable array
processor. ‘

TABLE OF CONTENTS

SECTION 1 GENERAL INFORMATION

e
D W

[\

(o]}

SECTION 2

2.

NNNDND NN D
w 1 O U w N

SECTION

3.

W w ww w
B w N+

(0}

(91}

3

SECTION 4

SO U SN SN
o O W N

Introduction

- System OQOverview

Example AP-120B Application
Physical Description
Software

FUNCTIONAL DESCRIPTION

Control Unit

S-Pad Unit

Floating Point Adder Unit _
Floating Point Multiplier Unit
Data Pad Unit

Data iemory Unit

Table Memory Unit

Internal Floating Point Format

PROGRAMMING CONSIDERATIONS
Floating Point Adder
Floating Point #ultiplier
Data Pad

Data Mémory

Table Menmory

S-Pad

INTERFACE

Front Panel

Use of Front Panél

Direct ¥Memory Access
Format Conversion Register
AP-210B Internal

Loading Programs into the AP-210B

iii

3-1
3-5
3-9
3-12
3-16
3-19

4-6
4-9
4-12
4-13
4-14

SECTION 5 PARTICULAR HOST INTERFACES

5.

(]

bo

ne

o

o oo m
O G W

NN 3] [\v]

(4]}

1

\-}

General Interface

- DEC PDP-11

Data General NOVA/Eclipse
Raytheon R704/RDS-500
Texas Instruments TI980

Variah 620

TABLES
Floating Point Arithmetic Times
Basic Scalar Functions
FORTRAN Callable Routines
FIGURES
General AP-120B Block Diagram
Physical Configuration
Control Unit
S-Pad Unit
Floating-Pbint Adder Unit
Floating-Point Multiplier Unit
Data Pad | |
Data.MemOry Unit
Table Memory Unit

AP-lZOB‘Panel and Host Interface

General AP-120B/Host Computef Interfaces

Civ

5-1
5-3
5-5
5-7
5-10
5-20

2-5
9-7
2-9
2-10
2-11
4-2

5-1

~ SECTION 1 .
GENERAL IN" “RMATION

1.1 INTRODUCTION

The AP-120B is a high-speed (167-ns cycle time) per-
ipheral floating-point arithmetic Array Processor, which’
is intended to work in parallel with a host computer.

Its internal organization is particularly well suited
to performing the large numbers of reiterative multiplications
and additions required in digital signal processing, matrix
arithmetic, statistical analysis, and numerical simulation.

The highly parallel structure of the AP-120B allows
the "overhead" of array indexing, loop counting, and data
fetching from memory to be performed simultaneously with
arithmetic operations on the data. This allows much faster
execution than on a typical general-purpose computer, where
each of the above operations must occ¢ur sequentially.

The AP-120B achieves its high speed through the use of
fast commercial integrated circuit elements and an archi-
tecture that permits each logical unit of the machine to
operate independently and at max1mum speed.

Specifically:

1) Programs, constants, and data each reside in separate,
independent memories, to eliminate memory accessing
conflicts.

2) Independent floating-point multiply and adder units
allow both arithmetic operations to be initiated every
167 ns.

3) Two large (32 locations each) blocks of floating-point
accumulators are available for temporary storage of
intermediate results from the multiplier, adder, or
from memory.

4) Address indexing and counting functions are performed
by an 1ndependent integer arithmetic unit that includes
16 integer accumulators.

In a typical application, such as a Fast Fourier Trans-
form, the above features allow nearly the entire computation
to be overlapped with data memory access time.

Effective processing precision is enhanced by 38-bits
of internal data width, an intermnal floating-point format
with optimum numerical propertles and a convergent rounding
alcorlthm

1.2 SYSTEM OVERVIEW

A general block diagram of AP-120B arithmetic paths
appears in Figure 1.1.

Connection is made to the host in a manner that permits
data transfers to occur under control of either the Host
Computer or the AP-120B. For most host computers, this will
mean that the AD-120B is interfaced to both the programmed
I/O and DMA channels. :

1-1

MULTIPLE

HOST

CPU

I/0

|

DMA

4
3

4
3

[INTERFACE |

Figure 1.1 General AP-120B Block Diagram

[16 BITS
] [|
38-BIT DATA PATHS i
. r y \
| DATA DATA MAIN S-PAD
MEMORY PAD PAD DATA MEMORY
X Y MEMORY S-PAD
ALU
i
|
R
!
¢ !
S —~— — —
~ MULTIPLE
38-BIT DATA PATHS 16 BITS
1 ¥ | B
M1 | M2 Al | A2
| STAGE 1 FLOATING STAGE 1 FLOATING
- MULTIPLIER - : ADDER
STAGE 2 : STAGE 2
|{STAGE 3

- 5
—C

MULTIPLE PATHS

S

The system elements are interconnected with multiple
parallel paths so that transfers can occur in parallel. All
internal floating-point data paths are 38-bits in width (10-
bit biased binary exponent and - -bit 2's complement mantissa).

Data Memory (MD) is organized in 8K-word modules of 38-
bit words each, expandable up to 64K words in the main chassis.
The effective memory cycle time (interleaved) is 333 ns.

Table Memory (TM) is used for storage of constants (FFT
constants), and is tied to a separate data path so as not to
interfere with Data Memory. It is bipolar, 167 ns read-only
memory, and is organized in 512-word, 38-bit increments.

Data Pad X (DPX) and Data Pad Y (DPY) are two blocks of

32 floating accumulators each. ZEach is a two-part register
- block, Whereln one register may be read and another written
foom each block in one instruction cycle.

The Floating Adder (FA) consists of two input registers
(Al and A2) and a two-stage pipe-line which performs tae operations,
.and convergently rounds the normalized result.

‘ The floating iultiplier (FM) consists of input registers

(M1 % 42) and a three stage pipe-line which performs the multlply
operation. Products are normalized and convergently rounded
38-bit numbers.

The S-PAD consists of 16 1nteoer registers and an 1nteaer
arithmetic unit which is used to form operand addresses and to
perform integer arithmetic.

Section 2 contains a more detailed description of each of
the functional elements, and Section 3 describes programming
considerations.

Section 4 describes in detail the host computer interface,
which Floating Point Systems supplies. A number of off-the-
shelf interfaces are available.

.1.3 EXAMPLE AP-120B APPLICATION

A simple FFT processing sequence would go as follows:

Initial conditions are that the FFT program is resident
in Program Source Memory internal to the AP-120B, the array
to be transformed is resident in host memory, and the host CPU
has initiated the AP-120B processor with an I/O instruction.

1. The AP-120B requests host DMA cycles to transfer the array
from host memory to internal data memory. Data is con-
verted from host floating-point format to internal AP-120B
floating-point format '"on the fly'".

2. The FFT algorithm is performed, with data remaining in
internal AP-120B format. This yields .the .benefit of 38-
bit precision and convergent rounding during the critical
phases of processing.

3. The frequency domain array is transferred back to host

memory by requesting host DMA cycles. Data is converted from

internal format to host format "on the fly.

The AP-120B proceeds to another process or stops executing,

depending on previously established conditions. An 1nterrupt

to the host can vbe issued.

>

1-3

The AP-120B is most efficiently :sed when a sequence of oper-
ations is performed on one or more sets of data which reside in
internal data memory. This reduces data-transfer overhead, and
retains maximum numerical precision. For example, a reasonable
‘sequence would be to transfer a trace and a filter, FFT both,:
array multiply, inverse FFT, and transfer the result back to host
memory. :

The AP-120B Data Memory has DMA capability. That is to say
that MD cycles can be stolen from the AP-120B microprocessor by
the interface. This capability allows Host Computer DMA to AP-
120B DMA data transfers to occur, thereby minimizing both host
CPU and AP-120B overhead. '

The AP-120B has been designed with enough flexibility built-
in so that its power can be harnessed in a variety of ways. Sub-
sequent sections describe its use in detail,

1.4 PHYSICAL DESCRIPTION

1.4.1 General. The AP-120B is available in rack configura-
tion. Mounting is as a stan‘dard 19-inch EIA rack-mounted
unit, requiring 22-3/4 vertical inches of space. The unit

is equipped with rack slides, permitting easy access to the
etched and/or wire-wrapped circuitry, chassis mounted on the forwar:
portion of the unit. The Power Panel is mounted at the rear.
1-3/4" of space should be available above and below the
22-3/4" of the Processor. This is for proper intake and
exhaust of air thru the Processor. The Control Panel
(see 1.4.4), and/or blank panels, may be used for proper
spacing, if the customer's equipment mounted above and below
the Processor do not have the proper free—a%r space huilt
into them. Intake air should be between 10°C and 40°C.

1.4.2 TForward Unit. The forward unit contains all AP-120B
circuitry except the power supply. There is provision for up
to 28 15~ by 10-inch etched-circuit boards (ECB). The ECBs
plug into a mother board. The ECBs are arranged in a vertical

- plane (chimney style) with push-pull fans to assure adequate
upwards air circulation even in the event of a fan failure.

The I/0 cable exits at the bottom rear (the exact configura-
tion is computer dependent). This unit is called the Processor.

1.4.3 Rear Unit. The Power Supply consists of three assemolies.
- The first is the main +5-volt supply, and is capable of 100-
amperes output. The two other smaller supplies are -5, and

+12 volts. The power supplies have forced convection cooling.
All supplies are rear mounted, along with the line box (con-
taining line filters and contactor, on the Power Panel).

1.4.4 DPower, Controls and Indicators. The AP-120B is ex-
pected to be normally powered up and down with the rest of a
system. The AP-120B switch and indicators are on a Control
Panel. There is a single power cord (U.S. standard 3-wire
with ground) which must be connected to 105 to 125 volts,

90 to 60 hertz). The service should be rated for 20 amperes

- (or 10 amperes in the case of the higher ranges) in order

to provide a low impedance source (power required is approx-
imately 1200 volt-amps). The Control Panel may. be mounted above
or below either the Processor or the Power Panel. Availa-
bility of line power is indicated by a neon '"Line Voltage"
indicator. If the "On Off" switch is On, then the power
supplies should come on. There are two opération indicators;
one shows Array Processor action, and the other shows DMA
transfers. The three individual power supplies have Separate
indicators (electrxoluminescent diodes). There are no external
adjustments. The internal adjustments are the three power-
supply setting potentiometers on the Power Panel.

1.4.5 Serial Numbers. The Processor has a serial-pnumber tag

on its starboard side, near the top, forward, ending in "A'". The
Power Panel tag, ending in "B'", is located inside near the top.
The Control Panel has its tag, ending in "C", also "inside'".

1-5

Y-

-~
"
o

EEIEETS: | IR e
1. ENYIRDSSENT: , """JL______A e
(1~ 40°C.@ @ - 903 RELATIVE HUMIDITY. '

(LERATE 1°C FER 2503 ¢t. (752 M) ABOVE } J 3
SkA LEVEL, 5°C FOR SO HERTZ OPERATIGN.) T N

2. FOAR CONSHPTION = 1090 W: SERVICE: ToP

A, 105 ~ 105 vOLTS, SO - €3 HERTZ @ 20 AnPS. - AP‘lZﬂﬁ
B. 188 — 223 VOLTS, Sd - 50 HERTE @ 13 AIWS. - '

C. 218 - 252 VOLTS, 5@ - €3 HERTE € 10 APS.
NOTE: '

|
|
|
|

VOLTAST GPTICN “A" HAS A UHITE WIRE IN THE .
Al F TR CABRLE. .
VOLTASE CRTION “B” HAS A BLUC WIRE IN THE ! 19] ') gg; a] (N .
FAN PINER CABLE. I " : ’ 257 MaX.
- ~ ~ MM LiAD A DT ITOC TR Tl 17 .
“b“CL TAGE GFTION "C" HAS A RID WIRE IN THE) 1 127 HIN
FanN GER CABLE. ,] : - R el i
D. LW IPFCCANCE SERYICE ADVISED. I . - — .
SPACE: FRONT 1 SIDE | {77777
~ " eadas -
3 LT IGHT ' . !
) A: WITH CONTROL PAIIEL AT THE rRonr- : *24 Y2’ ’ : ng{g_(R
ALV, (52,73 C RACKR . ¥ | h N\ X
<" (82.23 <n).) AP-120 13 space w1 AP-120B : X B
B: WITH CONTROL PANEL AT THE REAR; : (\j ﬁ
1 / - ~ ! [x
23307 {ST.79 Ny, 1 . . | .
VI TH: L‘j" (6.6 Cr.) I : a3) 7] u)(’ —
EPTH: 20 - 237 (58.:3 - 63.S0 Cn). ' .
PEPTH: 20 - 257 (AD.e3 0 c). _ THE POWMCR PAHEL TO AP-12@ POVER CABLE IS
BTN _ b iy > -J 1 LOCATED ON THE LIMCR RIGHT SIDE (NGT ..HONN)
Q—:I-LQ—’—- P CONTROL. PANEL 1347 1 d 7 POWER CORD

ALLCW AT LEAST |.75" OF FREC AIR SPACE ‘ B
ALZZVE Teill AP-1208 IF USED AS SHOWN. IF THE
CONTROL PRNEL [S ROVED, ALLOW 1.75% OF FREE
AIR SPaCE ECLOW THE AP-120B

—CONPUTER INTERFACE CAPELE

. . R ! PRO #RAC.TOL fl
_ HOPRIETARY INFORMATION ¢ 132 AP-12D03 Q(_‘dmg
. This documant containg proprisiary |- @noynl
informatlon and Is supplisd for ldentiticalion, TR) MOUNT ING :
maialesance, anginscring svaiuation os lazpec-
tion purposes caly and shatl not be duplicalsd t.008 REQU I REMENTS m
ar dlaclossd withoul wrillsn purmiscon of ANG TOGLIREV & CAN CThK
FLOATING POINT SYSTEMS, INC. T Lyzefre \Trgaal Yo/er

By accepting this docuinenl the racipleat REV Chx Eue Arro

agrevs 10 make evary eflorl to prevent SCALE |owe N0,
uaduthorized use ef thia Informaiioa

Figure 1.2 AP-120B.Physical Configuration

1.5 SOFTWARE

, Four packages of software are supplied with the AP-120B
which assist the user toward the solutlon of his particular
processing task.

1.5.1 APEX (A.P. Executive). " APEX is a mechanism for commu-
nicating with the AP-120B via a series of FORTRAN or machine
language subroutine 'calls'". The executive driver routine
interprets the particular user call and directs the AP-120B
to perform the specified action. For example, in Fortran, to
load an array A containing N real data points into the AP-120B,
- and perform a real Fast Fourler Transform upon that data:

IA=(

CALL APPUT (A;IA,N,2)
CALL RFFT (IA,N,1)

Both the Standard Applications Subroutines described below
and user developed AP-1203B programs may be called from the host
computer using APEX.

1.5.2 APMATH (A.P. Math Library). These are 70 sub-

routines written in AP-120B assembly language. They are callable
from the host computer Fortran or machine language using APEX.
They are listed in Tacle 1-2.

1.5.3 Program Development'Package,k Four'Fortran IV programs
which are compiled on the host computer during installation
ald user program development.

These are:

1. APAL A.P. Assembly Language. A cross-assembler
- which provides a two pass assembly of
symbolic coding into an cbject module. APAL

generates detailed error diagnostics.

2. APLINK A.P. Linker. Links and relocates éeparate
APAL object modules together into a single
execution module.

3. APDBUG A.P. Debugger. An lnteractlve debugging
: ' program. The user may selectively set
breakpoints, examine and change memory
and register contents, and run program
 segments. :

4. APSIH D A.P. Simulator. Called by APDBUG, APSIM
provides a programmed simulation of the

APSIM (con't) various hardware elements of the AP-120B.
All timing ch»racteristics of the AP-120B
are emulated, 'nd the floating point
carithmetic is simulated (including rounding)
to the least significant bit. APSIM is a
convenient tonl in bringing up new AP-120B
programs off line without 1nterferr1ng with
production runs.

1.5.4 APTEST. (A. P. Test programs). APTEST is a collection of
interactive diagnostic test and verify programs which aid in
isolation of hardware faults. These are:

-1. APTEST , A. P. Tester. Exercises the Panel, DMA
interface, and various internal registers
and memories. Tests Main Data Memory with
simple patterns and then with random numbers.
Board level dlagnostlc 1ndlcators are

provided.
2. APPATH A. P. Path Tester. Tests the various inter-
‘ nal data paths and gives board level diag-
nostics.
3. APARTH A. P. Arithmetic Test. Tests the floating

point adder, multiplier, and S-Pad arith-
metic unit w1th pseudo-random number and
operatlon sequences.

4. FIFFT Forward/Inverse FFT Test. Verifies the
correct operation of the AP-120B as a com-
plete unit by doing forward/inverse FFT
transforms on both spikes and random num-
ber sequences.

TABLE 1.1

FLOATING POINT ARITHMETIC TIMES

Travel o Pipeline

Time . Interval
Add/Subtract 0.333 us 0.167 us
Multiply 0.500 us 0.167 us
Multiply-Add -0.833'us ~0.167 us
“Complex Add/Subtract 0.500 us 0.333 us
Complex Multiply 1.333 us 0.667 us
Complex Multiply-Add 1.667 us 0.667 us

Travel time is the total time required to get from the data
source to the destination, including the full transport through
‘the arithmetic units. Pipeline Interval is the time between
successively available resultants. The former is important
‘when the successive arguments of a computation are dependent
upon previous calculations. The latter is indicative of the
maximum throughput rate available for successively independent
calculators.

~ BASIC SCALAR {UNCTIONS

Divide

Square Root

- Exponential

Natural Logarithm
"Base 10 Logarithm

~ Sine

Cosine

Arctangent '
Arctangent of (Y/X)

TABLE 1.2

Timing

WO bW

[y

.83
.83
17
.00
.67
.42
.75
.67
.83

us’

us
us
us
us
us
us
us
us

Program Size
(AP-120B Program Words)

28
28
27
37
37
31
31
46
46

These functions take arguments from Data Pad and return full-
word accuracy results to Data Pad.

- coefficients for these functions
512 words of Table Memory.

'1-10

Full-precision polynomial

are contained on the standard

TABLE 1.

SUMMARY OF AP-120B FORTRAN CALLABLE ROUTINES

" cal Vector Operations

Operation _ : Name Timing Size
V ‘ (us per point) (AP-120B
Prog. Words)

Vector Clear VCLR

.4 4
Vector Move VMOV .8 6
Vector Negate VNEG .8 7
Vector Add- VADD 1.2 8
Vector Subtract - VSUB 1.2 8
Vector Multiply VMUL 1.2 11
Vector Divide : VDIV 1.8 44
Vector-Scalar Add ‘ VSADD .8 8
Vector-Scalar Multiply 3 VSMUL .8 9
Vector-Signed Square g vVSSQ .8 10
Vector Absolute Value VABS .8 7
Vector Square Root =~ " VSQRT 1.8 43
Vector Logarithm (Base 10) . VLOG 5.6 52
Vector Natural Logarithm . VLN 4.9 52
Vector Exponential ‘ VEXP 5.1 42
Vector Sine ' ' - VSIN 5.1 46
Vector Cosine ' VCOS 5.6 46
Vector Arctangent : VATN 9.6 89
Vector Arctangent of (Y/X) VATN2 15.0 90
Sum of Vector Elements SVE - .4 7
Sum of Vector Squares SVS .4 11
vot Product of two Vectors . DOTPR .8 9
Vector Float VFLT .3 11
Vector Scan and Scale (Fix) VSCSCL 1.5 19
Vector Maximum/Minimum Operation
Maximum Element in a Vector MAXV o2 19
Minimum Element in a Vector MINV .2 19
Maximum Magnitude Element in a Vector MAXMGV w2 19
Minimum Magnitude Element in a Vector MINMGV 2 19
Maximum and Minimum of a Vector MAXMIN .8 20
Maximum and Minimum Magnitude of .
a Vector o MXMNMG .8 28
Vector Maximum (of two vectors) VMAX 1.2 13
Vector Minimum (of two vectors) , VMIN 1.2 13
Vector Maximum Magnitude of two .
vectors ' ~ VMAXMG 1.2 14
Vector Minimum Magnitude of two
1.2 14

vectors v - YMINMG

1-11

_Vector Filter Operations

Vector Polynomial evaluate
Difference Equations

4 pole filter (difference equation)’

Complex Vector Operations

Complex Vector Multiply

Complex Vector Reciprocal
Complex Vector Magnitude (Square)
‘Rectangular to Polar Conversion
‘Polar to Rectangular Conversion

Matrix Operations

‘Matrix Transpose

Matrix Multiply

Matrix Multiply (Dimension <32)
Matrix Inverse

Matrix Vector Multiply (3 X 3)
Matrix Vector Multiply (4 X 4)

Fast Fourier Transform Operations

Complex FFT

Real FFT _

Scrambled to True Order FFT Passes
Bit-reverse Order an Array

- Real Transform Unravel Pass

Signal Processing Operatidns

Convolution (or correlation)
Wiener-Levinson Algorithm

" Bandpass Filter

Power Spectrum

Complex Cepstrum

Inverse Complex Cepstrum
Schaffer's Phase Unwrapping

*See examples below - 1-12

VPOLY
DIFEQ
RECUR4

CVMUL
CVRCIP
CVMAGS
POLAR
RECT

MTRANS
MMUL

-MMUL32

MATINV
MVML3
MVML4

CFFT
RFFT
STFFT
BITREV
REACTR

CONV
WIENER
BNDPS
PWRSPC
ICEPST
ICEPST
SHPH

s
O MWL
NbhOOO

.8
*
*
*

2.5/vector
4.6/vector

*
*
*

1.75/complex ptl140
*

40
27
15

26
51
18
118
45

17
58
27
130
30
39

- 187

235
139

42

102

68
287
268
289
289

17

EXAMPLE TIMINGS FOR STANDARD MEMORY (333ns in milliseconds)

Fast Fourier Transform

Real Data
Points Bit- Real
Reverse FFT Total
256 0.23 0.90 1.13
512 0.45 1.76 2.22
1,024 0.90 4.18 5.08
2,048 1.80 8.32 10.12
4,096 3.59 19.37 22,96
- 8,192 7.17 38.69 45.86
16,384 14.34 88.36 102.70
32,768 28.68 176.68 205.35
65,536 57.6 417.5 475.1
Convolution or correlation
Operator -Result
Length Length Time’
32 100 0.70
32 1,000 6.7
100 1,000 19.0
1,000 1,000 181.4
Wiener-Levenson Algorithm
Size Spike Case General Case
50 1.9 4.1
100 7.0 15.5
200 26.6 60.4
Matrix Operations
Dimension Transpose Add
10 X 10 0.10 0.13
20 X 20 0.37 0.51
30 X 30 0.81 1.1
50 X 50 2.2 3.2
100 X 100 8.6 12.6

Complex Data

Bit- Complex
Reverse FFT Total
0.45 1.41 1.86
0.90 3.48 4.38
1.80 6.93 8.73
3.59 16.60 20.19
S 7.17 33.16 40.33
14.34 77.31 91.66 -
28.68 154.59 183.27
57.35 353.29 410.64
Multiply Inverse
0.63 2
4.2 8
'13.2 55
68.3 230
540.8

1,840

(INTENTIONALLY BLANK)

AP-120B

CONFIGURATION GUIDE

Configuration:

Input Power:

Data Memory:

Table Memory:

Rack Mount
Common : floating or Connected to
' Chassis
1105/125 V or 188/228 V
or 210/250 V (20/11/10 A Service)
50/60 Hz ~ or 50/400 Hz

38-bit words, MOS. 333 ns interleaved

cycle time. 8K word increments: K
56K maximum without expansion chassis. 1
million words maximum with expansion chassis.

512 words of 38-bit bipolar ROM standard
for transcendental coefficients. Order

- optional N-words for each 4N-point real

or complex FFT in 512-word increments.
" words (65K maximum).

Progfam Source Memory: 256 words of 64-bit bipolar RAM

Host Computer Type:

Host Operating System:‘

Purchaser:

standard. Order in 256-word increments.
words (4K maximum).

Company & Model

(name)

(company)

(address)

(phdne)

(P. O. Number)

1-15

(INTENTIONALLY BLANK)

SECTION 2
FUNCTIONAL DESCRIPTION

' The hardware of the AP-120B is composed of three
types of functional elements. ,

1. Logical and’control elements
a. Control unit
b. S-Pad unit
2. Floating-Point arithmetic elements
~a. Floating-point adder
b. Floating-point multiplier
3. Memory elements
a. Data Pad unit
b. Main data memory unit
c. Table memory unit

Each of these functional units is independent and thus
can independently perform the programmed operations for which
it was designed in parallel with the other functional units.

2.1 CONTROL UNIT

The Control Unit, as illustrated by Figure 2.1, consists of:

Program Source Memory (PS).

Program Source Address (PSA) Register.
Control Buffer (CB) with decoding loglc
Subroutine Return Stack (SRS)

200

The operation of the AP-120B is controlled by the execu-
tion of 64-bit instruction words which reside in Program
Source (PS) Memory. The program word for the next instruc-
tion to be performed is selected by the address in the
Program Source Address (PSA) register. At the initiation
'of the next machine cycle, this program word is transferred
to the Control Buffer (CB) where it is decoded and executed.
The PSA is incremented by one unless a branch in the current
‘instruction causes the PSA to move to another location in
Program Source (PS)memory. Access to Program Source memory
and instruction decoding are overlapped so that the AP-120B
can operate at a 6 MHz rate (167 ns). &

Branching is accomplished in two manners. A short-range
‘branch is provided by adding the 5-bit branch displacement
field to the current PSA. This gives a branch range of from
-20g to +17g. A long-range jump to any location in PS is
accomplished by loading the desired target address into PSA.

Subroutine Jjumps are made by a "JSR" instruction which
saves the current PSA in the Subroutine Return Stack (SRS)
and sets PSA to the subroutine address. Return is via a
"RETURN", which loads the PSA with the last entered return
address on the SRS.

SR.a (Subroutine Return Address. 5 the Subroutine Return Stack
pointer, which is automatically incremented or decremented as
subroutines are called and returns are made from the subroutine.

Figure 2.1 Control Unit,

Program v
Source ‘ Program Source Address (PSA)
| Memory ,

I+

P
L (PS) [« |
| o : Subroutine
Return
: SRA Stack
Y) %
Control
Buffer(CB)

2.2 S=PAD UNIT

This unit, illustrated by Figure 2.2, performs the integer
address indexing, loop counting and control functions necessary
to direct completion of a given algorithm. In form, it is similar
to familiar mini-computers such as the PDP-11 or Vova

. The S-Pad contains sixteen 16-bit directly-addressable
registers. The contents of these registers pass through a special
integer ALU associated with this unit.

The output of the ALU may be dlrected back to the specified
S-Pad destination register, and also to any of the follow1ng address

memory registers: Memory Address (WA), Table Memory Address (TMA),
Data Pad Address (DPA).

The S-PAD integer ALU functions include:

"Function Effect

a. Move —"'TTTT S-Source register
b. Logical complement ' S+D D-Destination register
c. Clear , - @-D

d. Increment N S+1-D

e, Decrement S-1-+D

f. Add : D+S-+D
- g. Subtract D-S-D

n. Logical AND - D AND S-+D

i. Logical OR D OR S+D

j. Logical Equivalence D EQVS-D

The output of the S-PAD ALU (called S-PAD FUNCTION or SPFN), may

be used unmodified, shifted left once ,- shifted right once, or Shl;ted
right twice.

A hardware bit-reverse function included in the S-Pad accomplishes

the bit swapping necessary to access data in scrambled order after an
FFT. . -

The S-PAD ALU also sets three condition bits in the AP -120B
‘Status Register depending upon the output of the ALU/shifter :

N: set if result <@; cleared otherwise
Z: set 1f result =p; cleared otherwise
C: set if a carry occurred; cleared otherwise

These blts may be tested by the next AP 1nstruc-,
tion, and a branch made depending upon whether the spec1f1ed
conditlon was true. :

De Figure 2.2 S=Pad Unit
: 'S-Pad . | = _ | . 1
' Registers‘ =t Data Pad Address (DPA) Register _*J
‘ ' +]1
_ 16 : +1Memory Address (MA) Register o
] _
Bit Rev
I3 l S _ 7 1
S-Pad .. Table Memory Address (TMA) Register _+J
" ALU/Shlftez :
(SPFN)
k4

R
Data Pad Bus (DPBS)

2.3 FLOATING POINT ADDER UNIT

The Floating Point Adder, shown in Figure 2.3, does addition
(or subtraction) operations on the contents of the Adder input
registers (Al and A2). The operation is performed in two stages,
each of which takes one machine cycle.

In the first stage, the exponents of the two numbers are com-
pared and the fractions are aligned by shifting the fraction of
the smaller number right. The fractions are then added (or sub-
tracted). In the second stage the resulting fraction is normalized
and convergently rounded.

Since the two stages are 1ndependent of each other, a new pair
of numbers may be entered into Al and A2 every AP cycle (167 ns).
The result is available for use two cycles later (333 ns).

In effect, the Floating Adder (FA) is a pipeline, where new
inputs may be entered into the pipeline stream every cycle. Ini-
tiation of an add operation loads the two numbers to be added into
the Al and A2 input registers. The previous Adder input is pushed
down the pipeline to the Adder Buffer register. One cycle later
the completed result (called FA) from the Buffer is available for
storage or use by another unit. Thus a new add may be started every
167 ns, and the result is ready 333 ns later.

Al may be loaded from Data Pad (DP), from the output of the Float-
ing Multiplier (FM), or from Table Memory (TM). A2 may be loaded
from Data Pad (DP), from the output of the Floating Adder (FA),
or from Data. Memory (MD).

The output of the Floating Adder (FA) may be directed to the
Multiplier (M2), to the Adder (A2), to Data Pad (DP), or to Memory
Input (MI). ' , :

The operations performed by the Floating Adder are:

Al1+A2

Al-A2

A2-Al

Al EQV A2

Al AND A2

Al OR A2

Convert A2 from signed magnitude to 2's complement format.
Convert A2 from 2's complement to signed magnitude format.
Scale A2 .

Absolute value of A2.

Fix A2,

R Qg H O 0 O

Four condition bits in the AP Status Register are set or
cleared by the Floating Adder depending upon tge current result:

FZ - set to one if result is zero, else cleared to zero.
FN - set to one if result is negative, else cleared to zero.
~FO - set to one if exponent overflow occurred. The result
was forced to the signed maximum value.
FU - set to one if exponent underflow occurred. The result
was forced to zero.

The overflow and un-ierflow bits remain set until cleared by
the pro*ram

These bits may be tested by the instruction after the
Floating Adder result is completed; i.e., three cycles after
the Floating Adder operation was initiated. '

‘Figure 2.3 Floating-Point Adder Unit
Al ZERO DPX DPY TM TFM TFA ~DPX DPY D ZERO A2
\ |] I | L] | | '
Y .
Al A2

Align .
fractions Stage 1
and add '

Buffer

Normalize | :
and Stage 2
round :

(Fa)

{ ¥ ¥ e
M2 A2 MI . DPX DPY

2.5

2.4 FLOATING POINT MﬁLTIPLIER UNIT

Thé Floating Multiplier, Figure 2.4, forms the product of
the two multiplier input registers (M1 and M2). The product
is formed in three stages, each of which takes one machine
cycle.

In the first stage, the 56-bit product of the two 28-bit
fractions are partially completed. The second stage completes
the product of the fractions. In the third and final stage the
exponents are added, and the mantissa product is normalized and
convergently rounded. , :

The Floating Multiplier, like the Floating Adder, is or-
ganized as a pipeline. Initiation of a multiply loads the two
numbers to be multiplied into the M1 and M2 input registers.
The two previous multiplier inputs are pushed down the pipeline
‘to Buffer 2 and Buffer 3 respectively. One cycle later, the
result from Buffer 3 is available for storage or use by another
unit.

‘Thus a new product may be started every 167 ns, and the
result is ready 500 ns later.

M1 may be loaded from Data Pad (DP), the output of the
Floating Multiplier (FM) or from Table Memory (TM). M2 is
loaded from Data Pad (DP), the Adder (Al), the Multiplier
(Ml) or to main Data‘Mémory (MD).

Two error bltS in the AP Status Reglster are affected by the Float-
ing Multiplier:

FO - set if exponent overflow occurrred. The fesult was forced
to the signed maximum value. : '

FU - set 1f exponent underflow occurred. The result was forced
to zero.

Figure 2.4 Floating Multiplier

3

FM FA DPX

D?Y

%D

E Y

ML | M2

Start product
of fractions

Buffer 2

Complete
product of
fractions

Buffer 3

Add exponents
Normalize

and

Round:

(FM)
A

Stage 1

Stage 2

Stage 3

Y

M1

1T

Al MI DPX

DPY

2.5 DATA PAD UNIT

Data Pad, illustrated by Figure 2.5, consists of two
fast accumulator blocks, each with 32 floating-point locations,
called Data Pad X (DPX) and Data Pad Y (DPY). In a single
machine cycle the contents of one location from each Data Pad
may be read out and used. In addition, data may also be
stored into one location in each Data Pad in the same cycle.
That is, for example, in a single instruction (167 ns) a multiply
may be initiated specifying one argument from DPX and another
from DPY; an Adder result (FA) may be stored into a DPX location,
and a data element in Main Data stored into a DPY location. On
the very next instruction similar multiple Data Pad accessing could
be accomplished again.

The two memories are addressed via a combination of the
Data Pad Address (DPA) register and four index field values
contained in 2 given instruction word. DPA may be thought of
as a base address register or stack pointer. It may be loaded
from the S-Pad (SPFN) or its contents may be incremented or
decremented by one.

For a given read or write operation, say reading from Data
Pad X, an index value contained in the instruction is added to the
current contents of DPA to give the effective address for that
particular operation. The four index fields (one each for read
DPX, read DPY, write DPX, and write DPY) are each 3 bits wide,
and have a range from -4 to +3 relative to DPA.

Data from either Data Pad may be used by the Multiplier
(M1, M2), Adder (Al, A2), or Memory Input (MI). Data may be stored
into Data Pad from the Adder (FA), Multiplier (FM), S-Pad Function
output (SPFN), the Command Buffer Value (VALUE),. or from Data
Pad (DP). ’ ' ’ .

2-8

Figure 2.5 Data Pad

INBS VALUE DPX DPY MD SPFN TM

- L I | | | |
[(Data Pad Bus = DPBS) :
- : FA =~ FM
FA FM | | | |
\
¥ N
Write Index : . 4———— Write Index
| DPX k— DPA 5 DPY}
Read Index q______QRead Index
l (DPX) ’ (DPY)
, ‘ Y
v v ¥ N N v N
M1 M2 Al A2 DPBS M1 M2 Al = A2 DPBS

2.6 DATA MEMORY UNIT

The Data Memory unit, illustrated in Figure 2.6, is
the primary data store for the AP-120B. It is available
in 38-bit wide 8K modules which have an interleaved cycle
time of 333 ns.

The memory unit contains a Memory Data (MD) buffer and
a Memory Input (MI) buffer. Data read from memory is placed
by the controller into MD, while data is written into memory
from the MI. The Memory Address (MA) register points to the
desired memory location.

. In referencing memory for read or write operatlons the
selected operation is initiated by making a change to the
Memory Address (MA) register. The MA register may be loaded
from the S-Pad (SPFN) or its contents incremented or decre-
mented by one.

A write operatlon is spec1f1ed by loading MI with the
data to be written during the same instruction in which MA
is changed. This data is then written into memory from MI
during the next two AP cycles. Data may be loaded into MI
from the Floating Adder (FA), Floating Multiplier (FM), Data
Pad (DP), Memory (MD), Table Memory (TM), the Input Bus (INBS),
" S-Pad Function (SPFN), or the Command Buffer Value (VALUE).
A memory operation may be initiated every other cycle. The
intervening cycle may be used for any other AP-120B function
except another memory initiate.

" When a memory read is initiated, the requested memory
data is placed by the memory controller into the Memory Data
(MD) register 3 cycles after the request was made. Two in-
structions after the read request, another memory operation
may be initiated. Again, the intervening cycle may be used
for any non-memory functions. Data in MD may be used by the
Floating Adder (A2), Floating Multiplier (M2), or Data Pad
(DP). ’

To optimize the coperation of the AP-120B it is necessary
for the programmer to '""look ahead'" and initiate memory reads
prior to the actual time that arguments from data memory are
to be used in a calculation.

The system provides a '"memory lock-out' which serves to
insure that erroneous reads and writes of memory do not occur.
If a memory initiate occurs while memory is "busy,'" further
program execution is halted until the prev1ous memory cycle
is completed.

Figure 2.6 Data Memory Unit

FA FM INBS VALUE DPX DPY MD SPEN TM
¥ + ¥ b v ¥ ¥ A ¥
L l (Data Pad Bus)

MI

Main
Data - MA
Memory o

MD

DPBS - A2 M2

o

-10

2.7 TABLE MEMORY UNIT

The repeated use of standard constants (such as complex
roots of unity and transcendental values) in signal processing
-routines dictates their ready availability to the programmer.
A separate Table Memory (TM), shown in Figure 2.7, eliminates
memory accessing conflicts by allowing data values and table
values (constants) to be placed in separate memory banks.

Values read from Table Memory are placed by the controller
into the Table Memory (TM) buffer register. The Table Memory
Address (TMA) register serves as a pointer to the desired lo-
cation. ‘

A Table Memory read is initiated by changing the contents
of TMA, either by loading a value from the S-PAD (SPFN),
or by incrementing or decrementing the contents of TMA.

A new table value may be requested every machine cycle.
This value is available for use two cycles later. The value
may be used by the Floating Adder (Al), Floating Multiplier
(M1), or Data Pad (DP).

" In FFT mode (i.e., when a FFT is being computed), the
address in TMA is interpreted by the hardware to be an angle
which points to the appropriate root of unity for a particular
" step in the algorithm. This allows the full table of roots
of unity to be compressed into a single quadrant of cosines.

Figure 2.7 Table Memory

Table
- Memory
(ROM) S——TMA

™

- |
v %
Al M1 DPBS

2.8 INTERNAL FLOATING POINT FORMAT

-Floating-point data internal to the AP-120B is represented as
follows:

Exponent © Mantissa ,
/)] 9 10 - 37
- EQ E9 M@ o M27
Where:
Mantissa 28-bit two's complement fraction
Exponent 10-bit binary exponent, biased by 512

The value of a floating-point number in this format is defined
as: ;

Mantissa * 2 (Exponent -512)

The d¥namlc range of this format is from 0.5 * 2~ 512 ¢o
(1-2-283)x251l. or from 3.7*1071!55 to 6.7%10!53,

The 28-bit fraction, combined with the convergent rounding
algorlthm used in the Floatlng Adder and Multiplier, gives a
maximum relative error of 7.5*%107°7 per arithmetic operation.

This is a precision of 8.1 dec1mal digits. As a comparison,
unrounded IBM 360 format gives only 6.0 decimal dlglts of arith-
metic accuracy.

The convergent rounding hardware rounds up when the mag-
nitude of the remainder is greater than 4 of the least signi-
ficant bit of the mantissa. This serves to minimize truncation
errors in long series of arithmetic calculations.

_ Format conversion between Host format and AP-120B format
occurs in the Interface and in the Floating Adder unit. The
dynamic range of the internal format is large enough to accom-
modate IBM 360 format and other Host formats. The extended
precision of the AP-120B internal format insures that accuracy
is maintained during critical stages of data analysis.

2-12

SECTION =*
PROGRAMMING- CONS...ERATIONS

This section provides an introduction to programming
the AP-12OB. The principal operations which control each
of the six functional units are described below. A complete
listing of the AP-120B instruction Word fields may be found
in Appendix B.

In the coding examples semlcolon (;) is used to separate
operations within a complete instructlon word. A comma
(,) separates operands. A quote mark (") is used to denote
a comment. A less than ("<") is used to mean "+" (replaced bv)
where the operation involved is a data transfer

3.1 FLOATING POINT ADDER.

3.1.1 Floating Adder Operations. Floating Adder operatlons
are initiated by the following instructions:

(Instructlon) (Operands) (Operatlons Initiated)
FADD Al, A2 ' Al+A2
~FSUB , Al,A2 Al-A2
FSUBR Al, A2 A2-A1
FAND . CAl,A2 ' Al AND A2
FOR ' Al,A2 ' Al OR A2
FEQV ‘ Al, A2 Al LQV A2
FABS A2 v - ABS(A2)
FIX A2 Convert A2, floating to
v fixed
F3M2C A2 : Convert A2, Signed Mag-
- - nitude to 2's complement.
F2CcsSM : A2 Convert A2, 2's complement
o " to 51gned macnltude
FSCALE : A2 Scale A2 '

where Al and A2 are'any of the following data sources:

Al: FM Floating Mulitplier result.
DPX Data Pad X accumulator
DPY . Data Pad Y accumulator
™ ‘ Last data read from Table Memory
ZERO Floating-point zero
A2: FA Floating Adder result
DPX
DPY . _
MD Last data read from Data Memory
ZERO ' : ‘

3-1

Any data source listed under Al may be combined with
any data source listed under A2. For example, to add a
number from Data Pad X to an her from Data Pad Y:

'FADD DPX, DPY "DPX + DPY

or to subtract a number read out of Data Memory from a con-
stant in Table Memory

'FSUB TM, MD | "TM - MD
A reverse subtract changes the order of the subtraction, i.e.
FSUBR TM,MD ~ "MD - TM

subtracts a constant from Table Memory from a number in Data
Memory. ‘ o

To negate a number from DPX:
FSUB ZERO, DPX ' | "0.0 - DPX = -DPX

To take the'absoiuteivalue of a number from Data Memory:
FABS MD | "ABS (MD)

~ To fix (convert from floatlng point to integer) a number frdm
DPY

FIX DPY ' " "FIX (DPY)

- 3.1.2 Adder Pipeline. The Floating Adder is a two-stage
pipeline. A "FADD" instruction loads the designated operands
into the Al and A2 registers. The previous contents of Al
and A2 are pushed down the pipeline to the Buffer register.
One AP cycle later the new contents of Buffer have been nor-
malized and rounded, and are then available for use or storage
elsewhere. v ‘

The following instruction sequence illustrates how the
Adder pipeline works, where A,B...G,H are floating-point
numbers to be added: '

Adder Pipeline:

» Adder

Time Cycle Instruction Al, A2 Bufferi Result (FA)
) 1. FADD A,B A,B _— _—
167ns 2. FADD C,D C,D A,B™* -———
333ns 3. FADD E,F E,F “C,D* A+B
500ns 4. FADD G,H G,H E,F C+D
667ns 5. FADD -—— G,H E+F

6. ——— - G,H G+H

833ns

The "FADD'" without arguments in cycle 5 is used only to
push the last computation into '"e Buffer Register, and hence
to the end of the pipeline. Thus, it is a dummy add in the
sense that we don't care what it$ arguments are, since we will
never use the results. In the above example we completed
our floating-point adds in one microsecond. During cycles
2-4, while we kept the pipeline full, adds were being done
every 167ns, the maximum rate. -

The completed results, as they come out of the Adder
pipeline, are referred to by the mnemonic "FA". FA is
dynamic, in the sense that it must be used or stored else-
where before being changed by the next floating-adder
instruction. The programmer has, however, complete control
over the pipeline. Arguments advance only when pushed through
the pipeline by floating-adder instructions.

3.1.3 An Example. A complete computational Sequence is to

do the vector sum Ai=A~+Bi, i=0,1,2,3. A; is stored in Data

Pad X locations O—B;ané B; i1s stored in Data Pad Y location

0-3. ’

1. FADD DPX(@), DPY(() "Do Ag+B,

2., FADD DPX(1), DPY(Ll) . "Do A;+B;

3. FADD DPX(2), DPY(2); DPX(¢)<FA "Do A2+B2, Ao+Bo is now
' _ done, save it in Ag

4. FADD DPX(S}, DPY(3); DPX(1l)<FA "Do A3+B3, A1+B1 is now

, done, save it in A:
5. FADD DPX(2)<FA "Pﬁsh'Adder; save A2+B2in A2
6. DPX(3)<FA ' "Save A3+Bj in A3

Below is a chart of this computation, showing the state of
the Adder pipeline and Data Pad after each instruction is
executed.

Adder Pipeline Adder Data Pad X:

Cycle fal, A2 Buffer | Result 0 1 2 3

1. Ag, Bgp =-- ' —_— Ay A Ap Aj
2. A1, B1 Ag, Bo - Ao A A A3

3. A2, Bo Alf’ Bi Ag+Byo - Ap+Bo A A A3

4. . A3, B3 A,, B, A[+B; Ag#By A,+B; A, A,

5, — Ay, By A,+B, Ag+By A +B; A,+B, Aj
6.‘ - A3, Bg A3+B3 -A0+.BO A1+B1 A2+B2 A3+Bg

3.1.4 Floating Adder Tests. The foilowing conditional branches
test the Floating Adder result (FA). '

BR LOOP "Branch unconditionally to program
""location '"'LOOP"

BFEQ LOOP "Branch if FA=0.0

BFNE LOOP "Branch if FA#0.0

BFGE LOOP "Branch if FA>0.0

BFGT LOOP "Branch if FA>0.0

The above branches test ”FA”,one instruction cycle after
1t is ready for use. That is, an Adder result may be tested
one cycle after it has come out of the Adder pipeline. An example:

FSUB DPX,DPY - "Do a computation

1.

2. FADD "Push the result out

3. DPX>FA ' "Save the result

4. BFEQ LOOCP "Test the result here (branch to

: ' " location "LOOP'" if result was
" zero)

Compound tests may be made also. Test MD to see if it is between
a lower limit contained in DPX (1) and an upper limit in DPX (2),
i.e., see if DPX(1)<MD<DPX(2):

1. FSUBR DPX(2), MD "Do MD-DPX(2)

2. FSUB DPX(1), MD "Do DPY(1)-MD

3. FADD . "Push first test result out
4. BFGT BIG ' "Was too big

5. BFGT SMALL "Was too small

6. e ‘ "OK

The branches are made relative to the current Program
Source Address (PSA), with a 5-bit displacement value., This
means that the conditional branch target address must be with-
in 4208 to +178 locations of the current instruction.

3.1.5 Floating Point Logical Operations. These instructions
(FAND, FOR, FEQV) perform logical operations on floating-point
numbers. Exponent alignment occurs as for a normal floating-
point add. The two mantissas are then combined using the
specified logical operation. The result is then normalized and
rounded. :

3-4

3.2 FLOATING‘POINT MULTIPLIER

- 3.2.1 Multiply Instruction. Floating-point multlplles are
initiated by the following 1nstruct10n

FMUL M1, M2

which initiates a multlply between Ml and M2, Where Ml
and M2 are any of the following data sources:

M1 M Floating Multiplier result
: DPX Data Pad X accumulator
- DPY Data Pad Y accumulator

™ Last data read from Table Memory
M2 FA Floating Adder result

DPX ‘

DPY

MD Last data read from Data Memory

Thus, any of the data sources listed under M1 may be multi-
plied by any of the data sources in M2. For example, to mul-
tiply a number read from Data Memory by a constant from Table
Memory: :

FMUL TM,MD "TM * MD

or, to multiply a number in Data Pad X by another number in
Data Pad Y:

FMUL DPX,DPY "DPX * DPY

3.2.2 Multiplier.Pipellne. The Floating Multiplier is a
three-stage pipeline. An "FMUL" instruction loads the
specified operands into the M1 and M2 registers. The two
previous partially completed products are pushed down the
pipeline to Buffer 2 and Buffer 3 respectively. One AP
. cycle later the new contents of Buffer 3 have been normalized
~and rounded, and are then available for use or storage else-
where.

The following instructiocn sequence illustrates how the
Multiplier pipeline works, where A,B...G,H are floating- .
point numbers to be multiplier together.

Multiplier Pipeline

Multiplier
Time Cycle Instruction M1,M2 Buffer 2. Buffer 3| Result (FM)
] 1. FMUL A,B A,B - - -———
167ns 2 FMUL C,D C,D A,B - -
333ns 3. - FMUL E,F E,F C,D A,B ———
500ns 4. FMUL G,H G,H E,F C,D A*B
667ns 5 ~ FMUL —— G,H ' E,F ' C*D
833ns 6 FMUL L —— —-_—— G,H ‘ E*F
1.0us 7 - A T——— G,H G*H

The "FMUL " in cycles 5 and 6 » o dummy multiplies used
to push the last two computations to the end of the pipeline.
In the above example we completed four floating-point multi--
plies in 1.0us. During cycles 3-4, while the pipeline was
full, products were being done every 167ns, the maximum rate.

- The completed products as they come out of the Multiplier
~pipeline are referred to by the mnemonic "FM." FM is dynamic,
in that it must be used or stored before being changed by

the next "FMUL" instruction.

3.2.3 An example. A computational example is to square the
elements in a vector: . -

Aj = Aj*Ay, 1=0,1,2,3, A is stored in Data Pad X.

1. FMUL DPX(P),DPX(9) | | "Do A2

2. FMUL DPX(i),DPX(l) | | -~ "Do Af

3. FMUL DPX(2),DPX(2) - "Do Ai

4. FMUL DPX(3),DPX(3); DPX(()<FM "Do Ai, save Ag
5. FMUL; DPX(1)<FM ‘ "Save Af

6. FMUL: DPX(2)<FM "Save a2

7.‘ DPX(3)<FM o _ - "Save A§

Below is a chart of this computation, showing the state
of the Multiplier pipeline and Data Pad X after each instruc-
tion is executed. :

Multiplier Pipeline

. Multiplier Data Pad X
Cycle [M1,M2 Buffer 2 Buffer 3 Result (FM) O 1 2 3
1. - —_—— —_—

Ag,Ag ——= Ag Ay A, A,
2. A;,A AgAg ——- B Ag Ay A, Aj
3. Ay,Ap ApLA] Ag, Ay — A Ap A, 4,
4. Aj,A; As, A 1,4 A§ Ag Ay 4, A4
5. —=— Ay A; Ay LAy 4% A a2 ay
B. ——— == A, a2 a27 42’ a2 A,
7. ——— - Az, a5 A2 A2 A2 a2 p2

Qs
O -

3.2.4 Multiply-Adds. The {11 floating-point computational
power of the AP-120B is utilized when we consider a process:
involving both mutiplies and adds. Form the dot product of
two eight-element vectors A;j-Bj = IAB,, i=-4, -3, ... 1, 2, 3
where A; is in Data Pad X and Bi is in Data Pad Y:

Fill the J‘l. FMUL DPX(-4) DPY(-4) "Do A_,B_,
Multiplier< 2. FMUL DPX(-3) DPY(-3) "Do A_3B_;
Pipeline |_3. FMUL DPX(-2),DPY(-2) "Do A_,B., - :
4, FMUL DPX(-1) DPY(-1); "Do A_jB_;. A_4B_, is
: FADD FM, ZERO ' " now done, save it in
Fill the " adder,.
Adder - < 5. FMUL DPX (%) ,DPY(Q); . "Do ApBg. A_3B_3 is now
Pipeline FADD FM, ZERO " done, save it in the
~ ‘ ~ """ adder. .
6. TFMUL DPX(1),DPY(1); "Do AB;. A_»B_, is now -
: FADD FM, FA- " coming out of the mul-

""" tiplier, and A_,B.,
" from the adder, add
Both . ' : " them toget*ther.
Pipelines< 7, FMUL DPX(2) ,DPY(2); "Do A;B;. A_;B.; is now :
full FADD FM, FA " coming out of the mul- .
; ‘ " tiplier, and A_3B_;
" from the adder, add
" them together.
8. TFMUL DPX(3),DPY(3): "Do A3B;. AgBy is now
FADD FM, FA " coming out of the mul- .
| ' " tiplier, and (A-,B_, +
- : " A_,B.,) from the adder,
: " add them together.
9. FMUL; FADD FM,FA _ "A}B; is coming out of the
‘ ' ' " multiplier, and (A_3B_j
" +A_1B_;) from the
" adder, add them to-
Empty the : " gether.
Multiplier{ 10, FMUL; FADD FM,FA "A2B, is coming out of the
Pipeline A , " multiplier, and (A_,B_,:
' +*A_;,B.+ApBy) from the .
adder, add them to-
‘ » gether.
11. FADD FM,FA ‘ "A3B3 is coming out of
' , " the multiplier, and
. (A-aB-a*A_lB_1+A1B1)
= : " from the adder, add
‘ " them together.
12, TFADD; DPX(3)<FA - "(A-yBLy+A_,B_,+AgBg+4,B,)
: " +is coming out of the

e

iy

Empty ' - “adder, save it in DPX(3).
the Adder <13, FADD DPX(3),FA | "(A-3B_3+A_|B_{+A;B{+A3B;)
Pipeline -"" is coming out of the
: " adder, add it to
' ! (A-qB_u+A~ZB-2+AQB0+
L . " A2B;) which was saved

" in DPX(3). ‘

3-7 .

14, FADD "Push result out of Adder
15, DPX(3}<FA "The result: (A_,B_,+
' . " A_3B_3+A_;2B__2+A._1B_1+
" AgBo+A;By*+A;B,+A3B;),
" saved in DPX(3).

In accumulating the sum-of-products, the even term sum
was kept in one half of the adder pipeline and the odd term
sum in the other half, During cycles 5-7 when both pipelines

were full, floating-point multiply-adds were being computed
- every 167ns This is 12 million floating-point computations
der second. A longer sum of products calculation, involving
more terms, would maintain this maximum computation rate for
nearly all of the computation 1loop. Here, in a short calcu-
lation, most of the time was spent filling and emptying pipe-
lines, Even so, the seven adds and elght multiplies took 15
cycles (2,5us) to complete, or an overall rate of 333ns per
floating-point multiply-add.

As a further aid in understanding the multiply-add inter-
action in the above sum-of-products computation, the chart
below summarizes the computation:

‘Multiplier: Adder: | . Data Pad:
Cycle [ML,M2 FM | [Al, A2 FA | 3
1. A 4,B Yy - -——— _—— e
2, A_3,B_g —== - | —_— o
3. A.3,Boy —-= ——— -— -—
4. Ay ,Boy A_u*B_y ALuB_y,0.0 —- -—=
5, Ag,Bg A_3*B_3 A_3B_;,0.0 _— -
6. A;,B; A_,*B_, A_,B_,,A_,B_, A_,B_, --—-
7. A2,B2 Aoy *A.y A By ,A3Boy A.3B.y ---
8. A;,By AO*AO A¢By, ESé ES, -—
9. - Ay*A; ABy, O0S, 0S, ——
10 - A,%A, A,B,, ES; ES, _—
11 —- As*43 A3B;, 0S, 0S5 ——-
12, e e ES, ES, "
13, _— --- ~ 0S,, ES, 08, ES,
14, --- ~—- ——- - -—- ES,
15, —mm ooee ce= 0S,4ES. 0S44ES.
EC ié n terms of the even term Sum: A4 B1, = -4, -2,0,2
OS is n terms of the odd term Sum: As Bl, = -3,-1,1,3

3.3 DATA PAD

3.83.1 Data Pad Addressing. Data Pad is a block of 64 high-
speed accumulators used to store intermediate results during

a computation. In any given AM-120B instruction the pro-
grammer has 16 of the Data Pad accumulators to work with, 8

in Data Pad X (DPX) and 8 in Data Pad Y (DPY). They are
addressed relative to the current value of the Data Pad Address
(DPA) register, which functions as a base register for Data
Pad. For example if DPA has a value of 24g, locations 20g
through 27 would be avallable for use. -

DPX __ DPY
] : !
17 .
| ;'2¢ ’/" Pl AN /'-.i
¥ 21 | . el v A
-4 22 |~ 2 AT T T
l 28 [T 7 A — |
DPA-—%%———%Q4 AT 7] bAvailable for use when DPA=24g
| 25 [~ 7 7 T 1|
+3 26 T P
: 27 _ - B
30 |
374! |

A displacement value from -4 to +3 may be specified
when using DPX and DPY, i.e., if DPA=24g: :

DPX(3) means DPX location 24+3=27
DPY(-4) , means DPY location 24-4=20
DPX(9) ~ means DPX location 24+0=24
DPY - means DPY location 24+0=24

Four separate displacements are provided, one each for
'reading and writing DPX and DPY. Thus four separate locations
in Data Pad may be used in a given instruction. With DPA=24g,
the following instruction occurs in one cycle: ‘

FADD DPX(3),MD; FMUL TM,DPY(-2); DPX(-3)<Fa&; DPY(1)<FM
(read DPX) (read DPY) (write DPX) . (write DPY)

. This would 1) add DPX location to the last data read from Data
Memory, 2) multiply the last data read from Table Memory by the
contents of DPY location 22, 3) store the results of a previous
add into DPX location 21, and 4) store the results of a previous
multiply into DPY location 25.

All 64 locations of Data Pad are accessed by changing
the DPA p01nter

INCDPA - "Increments DPA by 1
DECDPA "Decrements DPA by 1
SETDPA . "Loads DPA wit! the current S-PAD

" function (SPFN, see Section 3.6)

'Changes in DPA take effect for the next instruction after
they occur; i.e., if we start with DPA=24: '

1. FADD DPX(Q), DFY(Q); INCDPA "DPA is still 24, so we add
‘ ' : DPX,y4 to DPYoy
2. TFADD DPX(Q), DPY(®); INCDPA "Now DPA=25, so we add
o : DPX;5 to DPYjys5:
3. FADD DPX(Q@), DPY(Q) : Now DPA=26, so we add

DPXog to DPYj¢

Thus, by successively 1ncrement1ng DPA we can use Data
Pad as a queue or by properly incrementing and decrementing
DPA, we can use Data Pad as a stack. Data Pad Address is
circular. That is, with successive increments of DPA the
next location after 373 is @; with successive decrements
of DPA the next location after 9 is 373.

3.3.2 Writing into Data Pad. Data may be stored 1nto DPX
and DPY -from FA, FM, or DB (Data Pad Bus).

DPX<FA "Store adder result into DPX

DPX<FM "Store Multiplier result into DPX
DPX<DB "Store Data Pad Bus into DPX
and DPY<FA "Store into DPY
DPY<DB
DPY<DB

The following may be selected onto the Data Pad Bus (DB):

DB=ZERO "Floating-point zero

DB=INBS "Input Bus '
DB=VALUE "A 16-bit 1mmed1ate value

DB=DPX "DPX

DB-DPY - "DPY v

DB=MD "Last data read from Data Memory
DB=SPFN - "S-Pad Function (16-bit integer)
DB=TM "Last data read from Table Memory

Thus, if DPA=248, we could have an instruction
DPX(3)<FA; DPY(-2)<DB; DB=MD
which would store the current Adder result into DPX location

27 and store the last data read from Main Data memory into
DPY location 22 via the Data Pad Bus.

3.3.3 Data Pad Bus. Data t be stored into DPX and DPY .
can be moved through three pathways: FM, FA, and DB.
While FM and FA are fixed in meaning (output from the
Floating-Multiplier and Adder respectively), the Data Pad
Bus (DB) pathway can be connected to any one of eight
possibilities, depending upon the programmers ch01ce.
Some example situations:

1. We want to put MD into both DPX and DPY:
DPX<DB; DPY<DB; DB=MD

We put MD onto the Data Pad Bus, and
-store the Data Pad Bus into DPK and DPY.

2. We want to put MD into DPX and TM into DPY:
DPX<DB; DB=MD; DPY<DB; DB=TM
This is an error! Only one choice at a time
~can be made for the Data Pad Bus. Alas, not all
things are possible even with 64-bits of program
word. This double transfer would take two separate
instructions to accomplish.
3. We want to store FA into DPX and MD into DPY:
. DPX<FA; DPY<DB; DB=MD

We put MD onto the Data Pad Bus in order to get
it into DPY. FA goes directly into DPX.

To simplify notation, data transfers involving Data Pad
Bus can be written in a shorthand manner, as illustrated
by the three above examples

Shorthand’ Longhand
1. DPX<MD; DPY<MD DPX<DB; DPY<DB; DB=MD
2. DPX<MD; DPY<TM. DPX«<DB; DB=MD; DPY<DB; DB=TM
. (Still an error no matter how we write it!l)
3. DPX<FA; DPY<MD DPX<FA; DPY<DB; DB=MD

In the shorthand notation, choices for the Data Pad Bus

are not explicitly indicated. We write the transfers -

as if there was a direct connection between .the source

and destination, while in fact it is the Data Pad Bus
which does the connecting. The programmer must remember,
however, that he is still making a Data Pad Bus choice, and
that only one choice is allowed per instruction. Errors
like that in #2 (where we tried to make two Data Pad Bus
choices) are detected and flagged by the assembler.

3.4 DATA MEMORY

3.4.1 Memdry’Addressing. Maian Data Memory cycles are
initiated by changing the Memory Address (MA) register,
which points to the memory location to be read from or

" written into:

INCMA ’ "Increment MA by 1

-DECMA : "Decrement MA by 1
"SETMA "function (SPFN, see Section 3.86)

All of the above initiate a memory cycle at the add-
ress pointed at by the new contents of MA. If an "MI"
(Memory Input) field is also included in the instruction,
then the memory cycle is a write cycle, otherwise a read
cycle 'is initiated. When sequential memory locations are
accessed, a new memory cycle may be initiated by every other
AP instruction.

3.4.2 Data Memory Reads. Data read from memory 1is avail-
able for use three AP instructions cycles after the "read"
was initiated, The following instruction sequence illus-
trates how memory data is accessed: A, B, & C are floating-
point numbers in memory locations 101, 102, 103 respectively.
We assume that MA was set to 100 before we started.

AP : Memory Memory Data
" Time Cycle Instruction Address (MA) ‘Result (MD)
0 . 1. INCMA 101 . -——=
167ns 2. — 101 -——
. 333ns 3 INCMA 102 - ——
500ns 4. - 102 A
667ns 5. INCMA 103 A
'833ns 6. -——- 103 ' B
1.0us 7 -—— . 103 B
1.17us 8 -—— : 103 C

Three AP cycles after a given memory location was ''read"
the data from that location is ready in the Memory Data (MD)
. register and available for use. MD may be used by the Adder
or the Multiplier: .

FADD DPX(3),MD; FMUL DPY(-2),MD "Do MD+DPX and MD*DPY.

or also put on the Data Pad Bus and stored in Data Pad or
back into nmiemory: ‘

DPX(2)<MD S "Store"MD into DPX.

3.4.3 An Example, Load a vector A] i= O ,1,2 stored in
Memory locations 101, 102, 103 into pX 1ocatlons 10, 11,
12, We will assume that MA was set to 100 and DPA Was
set to 10 before we started.

1. 1INCMA . | "Fetch Ay frombMemory
2, ——-
3. INCMA . "Fetch A; from Memory
4, DPX<MD; INCDPA "Store Ay into DPX location 10
' : " and bump DPA pointer to 11.
5, INCM4A; - o "Fetch A, from Memory
6, DPX<MD; INCDPA "Store A; into DPX location 11 -
. " and bump DPA pointer to 12.
((R— - 3 | o |
8. DPX<MD "Store A, into DPX location 12.

Below is a chart of the above transfer, showing the state
of each component after each instruction.

- Memory Data Pad

Cycle 'Ma wp ! TDPA DPX,, DPX,; DPX;,!
1, 101 ——- 10 _— T _—

2. 101 --- 10 _— —— _—

3. 102 ——= 10 eea S ——

4, 102 - Aq - 10 Ag _— —_——

5. 103 4 11 Ag J— ——

6. 103 Ay 11 Ag A —

7. 103 4 12 A Ay -

8. 103 Ap 120 Ay A A

3, 4.4 Data Memory ertes Data Memory write c&cles are in-
dicated by:

MI< FA 'Write the Adder result into memory
MI< FM ' - '"Write the Multiplier result into memory
MI<DB "Write Data Pad Bus into memory

These instructions load data into the Memory Input (MI) buffer
register, from whence it is written into memory.

Data may be written into sequentlal memory locations by
every other AP instruction.

3.4.5 An Example. Square the elements of a vector A4,1i=0,1,2
in DPX locations 10, 11, 12 and store the results into Data
Memory locations 101 102 103, We will assume that MA was
seu to 100 and DPA Was set to 10 before we started.,

’

1. FMUL DPX,DPX; INCDPA ' "Square Ag, bump DPA pointer
" to 11.

2. FMUL . - "Push down the multiplier

| I v pipeline.
3. FMUL DPX,DPX; INCDPA "Square A;, bump DPA pointer
' : "ooto 12, ,

4 FMUL,; MI<IM; IVCIA : "Write A% into memory location

v 101,

FMUL DPX, DPX
FMUL,; MI<FM; INCMA
FMUL ’

MI<FM; INCMA

(S IL N O N}

"Square A

"Write A

into memory loc.

102

"Dummy FMUL to empty pipeline.

"Write A

Below is a chart of this computation:

Mulitplier

Memor

Y

Cycle DPA [MI, M2 FM| [MA

o

1. 10 AO,AO -
2. N 11 J—— -
. 5

12 L m— Ay

5. 12 “Ap LA -=
2

12 - - Al

12 - -

T2

12 —_— A2

© 4 o

3.4.6 Memory Interleave.

different banks may be made every 2 AP cycles,

"101
101
102
102
103

MI |

into memory loc.

Data Memory is divided into 16
banks of 4K words each using MAOO-MAO2 and MAl5 as a memory
bank select. (These are the three highest-order bits and
the least-significant bit of MA.)

Memory references to

ences to the same bank may be made every 3 AP cycles
some possible memory addressing sequences we have

Memory Address
"Sequence (Octal) _
101, 102, 103, 104,..
166, 165, 164, 163,
‘100, 102, 104, 10s6,...
233, 10374, 234, 103786,

Thus references to successive sequential memory locations may

be made every other AP cycle, but references to successive-

Memory Bank

Sequence
1, 0, 1,
o, 1, O,
Oy O) O)‘
1, 2, 0,

NOHO

y .

2
3 e v
H

while refer-

For

Memory Reference

Timing

every 2 AP
every 2 AP
every 3 AP

every 2 AP

cycles
cycles
cycles
cycles

odd or successive-even locations must be 3 cycles apart.

3-14

103

3.4.7 Memory Lockout. If memc - references are made too
rapidly for memory tc handle, the CPU suspends program exe-
cution and "spins'" until the memory is no longer busy. Thus
if we coded: ' ’

1. INCMA : : "We are trying to refer-
o "ence memory every cycle.
2. INCMA ‘
3. INCMA

We will get fhe~following execution:

0 ns 1. INCMA
167 ns 2. INCMA

333 ns "SPIN"
500 ns 3. INCMA
667 ns "SPIN"

The processor "Waits'" an extra cycle after instructions 2 and

3 because memory is still busy from the previous memory refer-
ences. This arrangement is fine if there is no useful computing
to do during the '"spin" cycles. Otherwise, it is better. to
space our the "INCMA's" and to do something useful during the
cycles between memory references.

3-15

3.5 TABLE MEMORY

3.5.1 Table Memory Addressing. Constants stored in Table
Memory are read by setting the Table Memory Address (TMA)
register to the address of the desired Table Memory location.
This is done by the instructions:

INCTMA ' "Increment TMA by 1
DECTMA "Decrement TMA by 1
- SETTMA "Set TMA to the current S-Pad

" function (SPFN, see Section 3.6)

Each of the above initiates a fetch from the Table
Memory location pointed at by the new contents of TMA.
Two AP cycles later the contents of the desired location are
"available for use. A new location may be fetched every
AP cycle, The following sequence illustrates how Table Mem-
ory is accessed. K@, K1, and K2 are constants stored in
‘Table Memory location 235, 236, 237. We assume that TMA
was set to 234 before we start.

AP Table Memory Table Memory

Time Cycle Instruction Address (TMA) Result (TM)
0 1, INCTMA : 235 T m——

167ns 2, INCTMA - .236 v -

333ns 3. INCTMA 237 K@
" 500ns 4, _— ' 237 K1

667ns 5.

—_— 237 K2

Two cycles after a given Table Memory location was fetched,
the data is ready in the Table Memory (TM) data register, and
is available for use. TM may be used by the adder or the multi-
plier: o ’
FADD T¥M, DPX(2);FMUL TM,DPY(-3) "Do TM+DPX and TM*DPY
or put on the Data Pad Bus and stored into Data Pad:

DPX(-1)<TM ' "Store TM into DPX.

3-16

3.5.2 An Example. Do the vector sum Ai = B +K , 1=0,1,2, where

Aj is in DPX locations 10-12, B; is in DPY 10-12, and Ki is a

series of constants stored in T:hle Memory location 235-237. Aj
will be stored back into DPX. we will assume that DPA was set to 10
and TMA was set to 234 before we start. '

SOOI W

INCTMA "Fetch K,
INCTMA 'Fetch K,
INCTMA; FADD TM, CPY; INCDPA "Do Kg +7Bg, bump DPA to 11
FADD TM, DPY; .INCDPA . “Do K1 + Bi, bump DPA to 12
FADD TM, DPX (0); DPX(-2)<FA "Do Kz + Bz, store A in DPXjio
FADD: DPX(-1)<FA "Store Aj; in DPXjij1
. DPX(0)<FA "Store Az in DPXji2
The following charts the above computation:
Table Memory Adder Data Pad X
Cycle TMA ™ Al A2 FA DPA 10 11 12
1. 235 -——— -— -—- 10 -— - -
2. - 236 —-——— -_— - 10 —— - —_—
3. 237 Ky Kqo,Bp -— 10 - -
4. 237 Ky K,,B; - 11 ——- -— -
5. . 237 Kj K,,B; Ko+Bg 12 Aq -—- -——
6. 237 K, —_— K,+B; 12 Aq A, -—-
7. 237 K, -— K,+B, 12 Ag A, A,

'3.5.3 A Complex Multipiy. An example using both memories
is a complex multiply from the FFT (Fast Fourier Transform)

algorithm.

The multiply is between a complex signal point

held in Data Memory and a complex exponential value (a root

of unity,
- is:
= R - *
XR CR; WR CI
= *
Rp=Cr *¥Wp* CpW

W

R

eie),fetched from Table Memory. The'computation

where C is the data point and W is the complex‘exponential

"R'" and "I" denote real and imaginary parts respectively.

- Main Data Memory, and W is in Table Memory.

- Fetch the 1.

4 arguments
4.
Do the 5.
mﬁltiplies VG.
7.
8.
Do the 2 9.

adds.

2.

10.

INCMA
INCTM
FMUL
FMUL
| FMUL

FMUL

A

TM, MD |

TM, MD; DECTMA
TM, MD

T™,

INCMA; - INCTMA

FMUL: DPX(1)<FM

FMUL; FSUBR FM, DPX(9) "Do Xp

FADD FM, DPX(1)

3-17

"Fetch C

"'Fetch C

av‘Db CR *
"Do C
"Do C; *

MD; DPX(@)<FM "Do C

R

C is in

R from Data Memory

- "Fetch WR from Table Memory

I fetch W

I
Wy
W

W

fetch,WI

I

*W Save CLW In DPX

I."R R'R’

"Save CRWIvin DPX

"Do Xp =

+ CRWR—CIWI

CgWy+ Cpig

11. DPX(@)<FA; FADI Xg is ready, save in DPX
12. DPX(1)<FA X, is ready, save in DPX
The total elapsed time is 12 cycles or 2us. In practice,
however, we can overlap all but cycles 4-7 with the preceding
and following computations. The complex multiply then: takes
us only 667ns, when mixed in with other computations.

Below is a summary chart of the compiex multiply:

Memories Multiplier Adder v' Data Pad
Cycle { TM MDII M1,M2 FM | | Al,A2 FAl |9 1 l
1. —— e —_—— _— - —— —_—
2. ——— e ——— -—— - -——— ——— -
3. ——— ——— ——— - - - -— —-——
4. W, C w_,C -——- -—— -—- -—— -——-

. R » R .

5. W1 Cg W?,CR —— === -—- - -——
6. WI C. Wi,Cr —— ——= ——— - -
7. Wr C w_,C1r WR*CR -——= - WrCr -
8. —e- =Io RO - Wi*Cgp —-- -——- WrCqr w.Cq
9. ——— m—— = Wr*Cy WICI’WRCR“' WrCr W3iCr
10. e Wp*Co WRCI,WICRXR WgCr - WiCr
11. —_—— m—— === -—— -—— X1 Xr W:Cgr
12. B L - - XRr X1

3.6 S-PAD

The S-Pad is a 16-bit wide inte-or unit used primarily
to compute memory address pointers.and to test loop counters.
It is similar in capability to a minicomputer and programs
like the register-to-register instructions of a Nova or
PDP-11 computer. There are 16 registers in the S-Pad unit.

3.6.1 Single Operand Instructions; Choose oﬁe;from each column.

]

Operation Shift | No Destination
‘ Load Register

INC —_— —_—— dst;
DEC R #

COM . L '

CLR RR

The Operation is performed upon the contents of the
Destination Register (dst) and that result is Shifted. The
shifted result is stored into the Destination REgister unless
a No Load (#) is specified. The shifted result is the S-Pad
Function (SPFN), which may be stored into an address register
(MA,TMA, or DPA), or placed onto the Data Pad Bus (DB=SPFN).
Some examples, where SP, refers to the contents of S-Pad
register '"'n'": ‘ '

INC 6 " (SPg+1)+SPg

DECR 3 B - | "(SP3-1)/2+SP;

COM 3; DPX<SPFN | "5P ;+5P ;+DPX

CLR# 2; SETDPA ' "0+-DPA; because of # (no load)

SP, remains unchanged.

3.6.2 Double Operand Instructions. Choose one from each column.

-

No Source Destination
Operation Shift Load Decimate Register Register
MOV R -——- -— src, dst,
ADD R # &
SUB L
AND ‘ RR
OR
- EQV

The Operation is performed between the Source (src) and Des-
tination (dst) registers. 1If Bit Reverse (&) is specified the con-
tents of Source are bit-reversed before being used. The Shift is
performed on the result, which is then stored into the Destination
Register, unless No Load (#) is specified. The shifted result is the
S-Pad Function (SPFN), which may be stored into TMA, MA, or DPA., or
placed onto the Data Pad Bus. Some examples:

3-19

MOV 3,15 "SP, SP; s

ADDL 6,10; SETMA "(SP,,+SP,)*2 SP, ,-MA

SUB 7,13 ; "(SP, 4-SP,) SP,,

AND#5,11; SETDPA "(SP;,AND SPg)~DPA

OR# ¥6,7; SETTMA - "(SP, OR SP, (Bit-reversed)) ~TM
MOVRR 2,2 "(8SP,) /48P,

For purposes of program clarity, the assembler allows
names to be given to the S-Pad registers. If register "PTR"
is a pointer to an array in Data Memory, and register "STEP"
contains the increment value we are using to step through
array, then:

. ADD STEP,PTR; SETMA

will advance our array pointer by the proper increment and
fetch the next array element from memory.

3.6.3 S-Pad Tests. The following conditional branches test
the SfPad Function (SPFN).

‘BR LOOP "Branch uhconditionally to program location '"'LOOP"
BEQ LOOP "Branch if SPFN=0
BNE LOOP "Branch if SPFN#0
BGE LOOP ~ "Branch if SPFN>0
BGT LOOP "Branch if SPFN>0

The above branches test the S-Pad result from the imme-
diately preceding AP instruction. Thus an S-Pad operation
must be done one instruction cycle before it is desired to test
the result: A loop counting example:

1. DEC 2 . "Decrement SP»
2. BNE LOOP "Branch to "LOOP if Schas not yet reached
: "zero.

~Test the contents of SP3to see if it is between a lower
limit contained in SP2 and an upper limit in SPu4, i.e. see

1. SUB# 3,2 .
2., SUB 4,3, BGT SMALL "Too small, SP3<SP,
3. BGT BIG "Too big, SP3>SP.

Source Address (PSA) with a 5-btt displacement value.

The branches are made relativé to the current Program

This

means that the branch. target ad: ress must be within -20gto +17
locations of the current instruction.

3.6.4 An example.

Load Data Pad X with an array "A", with

" N elements starting at Main Data Memory location 3721,.
"CTR'" is in S-Pad register which will be used as a counter.

b wnoH

Below is a chart of the above loop, for

1S NS TS I N OUI S IR Py

The increment is stored in S-Pad register "STEP",

nst.

CLR# CTR; SETDPA
LDMA; DB=3721
LDSPI CTR; DB=N
INCMA; DEC CTR.
DPX <MD;

INCDPA; BNE LOOP

LOOP:

Memory Data Pad

MA MI ~DPA 0 1

—_—— _—— 0 _——
3721 —-- 0 _— -
— —_——— 0 -— -
3722 ——- 0 - -
=== Ag 0 Ay --
3723 --- 1 Ag --
_—— A, 1 Ag A1
—_— - 2 Ay A
-——— Aj 2 Ag Ay

Az‘

"Set DPA to @
"Fetch the first element

- "Initialize "CTR" to N
"Fetch next element, A, +!
"Store A, into DPXj, advance
"DPA and test counter.

N=3 elements.

S-Pad
"CTR'' Test
3

3

2 true
2 ,
1 true
1

0 false

A generalization on the above example is to fetch array
"A" from every Kth memory location.

array pointer is stored in "PTR':

1
2.
3.
4
5

LDSPI STEP; DB=K

CLR# CTR; SET DPA

LDMA; DB=BASE

LDSPI CTR; DB=N

ADD STEP,PTR; SETMA
BEQ DONE

- LOOP:

DPX<«MD; INCDPA
DEC CTR; BR LOOP

- DONE:---

and the
"Initialize "STEP'" to K
"Set DPA to O
"Fetch the first element, Ag
"Initialize "CTR" to N
.""Advance memory pointer. Fetch
" "next element, Aj+1l. Test

- """ done.

" counter and jump out if

X4 advance DPA
" Decrement "CTR" and jump
" back to LOOP.

"Store Ajinto DPX

SECTION
INTERFACE

This section describes the interface between the Host.
computer and the AP-120B. The interface is composed of two

basic parts,
access control (DMA).

to examine or modify the internal AP-120B registers,
to start and stop program execution.

4.1

1) a simulated front panel and 2) direct memory
The front panel allows the host computer
as well as

FRONT PANEL

(loading and starting programs) and for debugging of

and vice versa.

The DMA control
provides for block transfer of data from the host computer
tp the AP--120B, v

The AP-120B "Panel'" is used for bootstrap operations

user software (inserting hardware breakpoints and examining
The
consists of three 16-bit registers which are under the control
of the Host via the Host interface.
registers closely parallels that of the switches and lights on
the console of a stand-alone computer.

and/or set .these registers at any time,
state of the AP-120B. :

and modifying AP-120B registers and memory).

4.1.

1 Switch Register.
enter data and addresses into the AP-120B.

"Panel"

The functioning of these .

The Host can examine
irrespective of the

The Switch Register (SWR) is used to

and written by the Host computer.
can also read the switches.

4.1.2 Lights Register.
front panel lights,
internal AP-120B registers.

by the Host.

‘The SWR can be read
An executing AP-120B program

The Lights Register (LITES) simulates

and is used to display the contents of

This register can only be read
The executing AP-120B program can set the Lights

Register.
4.1.3 Function Register. The Function Register (FN) provides
front-panel control operations (start, stop, continue, etc.).
It can bé read or written by the Host. :
PANEL FUNCTION REGISTER FORMAT
_ | |

0 1l 2 3 4 5 6 7 8 10 11 12 13 14 15

STOP| START STEP | RESET| EXAM DEP|BREAK| INC REGISTER SELECT

CONT

"WORD

.-

When the AP-120B’ is running only the STOP and RESET panel functions

are valid.

the AP-120B has been halted.

The other panel functions can only be exercised after

4-1

4
€
g
T
0

vd

LYWHOAL
VA4V
LD
YIWH

oM

Jo31sT39Yy

S9SS9Jppy ©9TASQ 40g1-dV

MO ©18(q ULEW

. . (a0}
S ” sa191s135Y f1dJ %
SsSaJappy AJowsy R ! _____890g1-av HOS1T —av
01 3o8atd L i88dq’
A 1
‘ U] e3eq aT1on ? + + 4 A
- I SUH 071
- q4031-dv —p— °oxedwod 4
Viav . : Jutodi{es xg
w A 4 w -
& A F S § -
. 1
Nelai g1 -
o1 P<%mmf.w~ oM SLHDIT .mm:OEHBm NOIIDNNT
“
b - -w A 4 - L 4 -
h & P'S -~ 4 ¥ N
sng ©l1v¥(1SOji >
— v..

HOVIUALNI LSOh GV TUNVd a-0g1dv

. 4

1'% SHNDLJ

Sty §S94PPV VARG 15001

Function Register Bits

Bit Mnemonic Effect

Bit O STOP/HALTED Stop AP-120B program execution upon com-
: . pletion «f the current instruction. When

the Host reads the FN register this bit
reflects the current state of the pro-
cessor, i.e., it will be a "1" if the
AP-120B is halted. NOTE: If the current
instruction does a "SPIN" while waiting
for I/0O or memory, the STOP will not
take effect until the spin condition is
satisfied and the instruction completed.

Bit 1 START - Start program execution at the address
specified in SWR.

Bit 2 ~ CONT Continue program execution at the
instruction pointed at by PSA (Program
Source Address).

Bit & STEP Execute the instruction pointed at
by PSA and then halt. Advance PSA to
point to the next instruction.

Bit 4 RESET Stop the AP-120B immediately. Clear
‘ S-Pad register @, set SPFN to SPgpp ,
clear the AP-120B status register, stop
the host DMA (CTL bit 15 set to @) and
clear Main Data Memory timing.

Bit 5 EXAM Examine the register or memory selected
" by the Register Select field. Display
the portion selected by the WORD field
in the Panel Display .Register.

Bit 6 DEP Deposit the contents of the Switch Register
' into the register or memory selected by
the Register Select field. Deposit into
the portion selected by the WORD field.

Bit 7 BREAK Enables hardware breakpointing if PSA, MA,
' or TMA is specified in the Register Select
field. The breakpoint causes the ‘AP-12(0B
to halt one instruction after any instruction
where the contents of the selected register
~was equal to the Switch Register. Thus, if
- a breakpoint is specified with PSA selected
the AP-120B will halt after executing the
instruction at the program location set in
the Switch Register. PSA will be pointing
at the next micro-instruction in sequence.
If a breakpoint is called for on MA or TMA,
the AP-120B will halt after executing the
instruction following the one that referenced
the trapped memory location. PSA will point
to the second following sequential instruction
after the one that caused the breakpoint.
Memory breakpoints aid in debugging those

elusive errors that modify. memory unexpectedly. .

4-3

Bit Mnemonic

"Bits 8-9 INC

Value in Bits 8-9

Effect

Increment MA, TMA, or DPA following completion
of the other specified panel functions. This
allows sequential memory locations to bhe
examined or deposited into. '

Address Register
to be incremented

Bits 10-11 WORD

Value Set in

wikH- o

None

MA (Memory Address)

DPA (Data Pad Address)

TMA (Table Memory Address)

Specifies which portion of a register is
being examined or deposited into.

Portion of Register Affectad

<16-Bit 38-Bit 64-Bit
Bits 10-11 Register Register - Register
] ALL ' N/A Word g, Bits @-15
1 N/A Exponent Bits Word 1, Bits 16-31
99:to @9. Right
justified in 16-
bit field.
2 N/A ' High Mantissa Word 2, Bits 32-47
Bits 49 to 11.
Right justified
3 N/A ' Low Mantissa

3its 12-15 REG.SELECT

Word 3, Bits 48-63

Specifies which AP-120B internal register
or memory location to examine or deposit
into, ’ :

o>
)
oS

Function Register Bits Cont'

. Register
Octal Value set in or Memory
Bits 12-15 Selected
] PSA
1 SPD
2 MA
3 TMA
4 DPA
5 SPFN
SPspp
6 AP Status
7 DA
10 PS rua
11 " HD
12 CB
13 DPX ppa-4
14 DPY ppa-4a
15 MD
16 SPFN
17 TM.TMA

Program Source Address

. 8S-Pad Destination Address

Main Data Address
Table Memory Address
Data Pad Address
S-Pad Function (EXAM)

S-Pad addressed by SPD (DEPOSIT)

AP-120B Internal Status Reg.
Device Address Register
Program Source Memory addressed
by TMA
Host Data (EXAM only) - Reads
output of Format Conversion Reg. :
Control Buffer, Bits 48-63
(EXAM only)
Data Pad X addressed by (DPA-4)
Nata Pad Y addressed by (DPA-4)
Main Data Memory addressed by MA
S-Pad Function (EXAM only)
Table Memory addressed by TMA
(EXAM only) '

4.2 NOTES ON THE USE OF THE FRON. PANEL AND BREAKPOINT

4.2.1 Where does the AP stop on a breakpoint?

a) With the'breikpoint set on PSA, the AP-120B will stop

with PSA pointing to the next 1nstructlon to be exe-
cuted.

Thus breaking on a branch instruction and then ex-
camining FSA will show whether the branch condition
was true or false.

b) With the breakpoint set on TMA the AP-120B will stop
with PSA pointing to the second instruction following
the one that set TMA to the break address.

c) With the breakpoint set on MA the AP-120B will stop on
either the next instruction or the second instruction
after the one that set MA to the break address, depending
on the state of the memory lockout hardware (next in-

struction if memory lockout, second instruction if no
memory lockout). ‘

Thus the stopping point following an MA breakpoint
will have a one instruction uncertainty.

4.2.2 Does the instruction on which the AP stops execute?

Since SPFN is current, it will be set to the operation
specified in the instruction that PSA is pointing to.
Otherwise, the instruction that PSA is pointing to
remains unexecuted and will execute correctly when the
user steps or proceeds from the breakpoint.

4,2.3 What about MD timing and lockout on a breakpoint in the
middle of an MD memory cycle?

a) The hardware has been designed so that the AP can be
stopped in the middle of a memory cycle. The hard-
ware remembers where the memory timing was when the
AP stopped so that the processor can continue correctly
from a breaprLnt that occurs during a memory cycle.

b) EHowever, the user must not examine MD nor should
there be any DMA transfers going to or from MD
while the AP is stopped if the user w1shes to
proceed from the breakpoint.

Thus, for example, it 1is possible to break in the
tight-to-memory portions of the FFT and examine

DATA PAD or the address registers (PSA, SPA, etc)

and then proceed. But it is not possible uO proceed
if the user or the. host interface disturbs the memory
timing by reading or writing MD or TM.

iy
9]

.2,

.2,

2.

Summary of the rules for proceeding from breakpoint.
If the breakpoint causes the AP to stop in the middle
of the memory cycle (PSA pointing to first or second

instruction following SETMA, INCMA, DECMA or LDMA), the
user should not try to examine or modify MD.

What about stepping the AP?

TheAsame rules as for proceeding from a breakpoint

-apply to stepping the AP through a program. The user

can examine and modify any register of memory within
the constraints mentioned in 4.2.4 above.

What other pitfalls are there in the use of the virtual
front panel? _

a) Note that the panel always examines SPFN not SPgpp-
Thus, if the user wishes to see SP gpp he must
force SPFN = SP gpp - This can most easily be done
via the panel reset:. function which has the unhappy
side effect of also clearing SP(().

 b) To examine TM, the'user should first set TMA and

“then do a dummy panel operation (deposit TMA again
for example) in order to enter the output of table

memory into the table memory buffer register. He can

then proceed to examine the addressed location using
the appropriate panel functions.

c) MD

Setting MA from the panel initiates an MD memory
read cycle. Depositing into MD from the panel
‘initiates an MD memory write cycle.

Thus, to write MD and then examine what was Jjust
.written, the user must perform a deposit into MA
operation (with the same address) to initiate a

read cycle before examining MD.

d) Using the Increment field in the FN register.

DPA and TMA always increment after the EXAM or DEP
operation is complete (remember that TMA is used

to address program source memory for pdnel operations).

MA post-increments and initiates a new memory read
cycle on an EXAM operation.

" MA pre-increments on a DEP operation.

15
i
~}

e)

Starting the AP
The recommended starting procedure is as follows:

i) Set the SWR to the startlng address and do a
deposit into PSA

ii) Set the SWR to the desired breakp01nt and do a
: contlnue to start the AP-120B.

This procedure has the781gn1flcant advantage that it
places the necessary breakpoint code into the user's
program should he need to debug his AP program.

 The panel START function can be used but the user

should observe the following restrictions on the first

~instruction executed by the AP-120B:

The first instruction should not branch or Jjump or
modify PSA in any way other than fto advance to the
next instruction. The first instruction should not
use the SPEC or IO fields. In fact, the preferred
first instruction is a NOP (all =zeros).

4.3 DIRECT MEMORY ACCESS ‘

In addition to the Panel func’ 1on, the AP-120B contains
four 16-bit registers that are use for Direct Memory Access
(DMA) to both Host and AP-120B data memory plus a 38-bit
Format Conversion Register that acts as buffer between the two
memories., These registers may be 1<ad and/or loaded from either
the Host computer or the AP-120B. :

4.3.1 Host Memory Address Register. The Host Memory Register
(HMA) points to consecutive locations in . the memory of the Host
Computer. It operates in either an auto-increment or auto-
decrement mode during DMA transfers to and from Host memory.
HMA is Device Address 1 for AP-120B internal I/0 transfers.

4.3.2- Word Count Register. The Word Count Register (WC) counts
the number of Host memory words transferred in a DMA operation.

It is preset to the desired number of words to be transferred and

counts down as the transfer proceeds, stopping the DMA transfer

when it reaches zero. Hardware logic prevents this register from

being counted past zero. WC has AP-120B Device Address 0.

4.3.3 AP Direct Memofy‘Address Register. The AP-120B Memory

Address Register (APDMA) points to consecutive locations in AP-120B
Main Data Memory during DMA transfers to and from MD. This register
can operate in either auto-increment or auto-decrement mode. APDMA

 has AP-120B Device Address 3.

~4.3.4 Control Register. The Control Register (CTL) acts as a

~control over the DMA and interrupt functions of the Host Interface.

This register controls the direction and mode of transfer (DMA or

program control), the type of data format, and provides certain

bits a status 1nformatlon pertalnlng to the transfer. CTL has AP-120B

Device Address 2.

DMA CONTRO% REGISTER FORMAT

0 1 2 3 | 4 5 6 7 8 | 9 | 10 | 11 | 12{1314] 15
WC=@g| INTR| IAP| IH IH IH |FERR |DLATE |[CC |AP |WRT |DEC |DEC|FMT HDMA.
AP WC|HALT | wWC ENB| - DMA |HOST [APMA | HMA START
All bits are read/write except as noted.
Bit 0 WC=9 Indicates that the Word Count Register is zero. Note

that WC is decremented only during DMA Transfers to/from
Host Memory (Read only bit). Should not be used to

~monitor DMA activity.

Bit 1 INTR AP Set the INTRQ (Interrupt Request) flag in the AP—120B.

.Bit 2 IAPWC Set IVTRQ'(Interrupt Request) flag in the AP-120B when

the DMA transfer is done.

Bit 3 IHALT Enable a Hc~t interrupt when the AP-120B halts.

Bit 4 THWC Enable a Host interrupt when the DMA transfer
is done. } '
Bit 5 IHENB Interrupt Host Enable. Interrupt Host if

AP-120B attempts to set this Bit. This bit
can actually be written only by the Host.

Bit 6 FERR Format Error. Indicates that exponent
underflow or overflow occurred in conversion
from AP-120B format to Host floating-point
format. -

Bit 7 DLATE Data Late. Indicates that the AP-120B did
not empty the format buffer before the
- Host attempted to reload it. On some Hosts
this bit also indicates an attempt to access
non-existent Host memory. In either case
the DMA transfer is terminated.

Bit 8 cc . Consecutive Cycle. Block DMA transfers
to/from Host memory will occur without
interruption. On typical Hosts, the Host
CPU will be locked out but other higher
priority DMA devices will still have access
to Host memory.

Bit 9 APDMA Allows the interface to perform DMA transfers
‘to/from AP-120B memory. Depending on the
direction of transfer, a Main Data memory
¢ycle is initiated every time the Host
finishes reading or loading the format
register, whether via DMA or program control.
On the AP-120B side, the format register is
loaded from the Main Data Bus instead of the
Data Pad Bus.

Bit 10 WRTHOST Write to Host. This bit controls the
direction of transfer. If set, data is
read from the AP-120B, passed through the
format register, and written to the host.
If clear, the direction of transfer is
reversed.

Bit 11 DECAPMA Decrement APMA. If set, APMA is decremented
' " during DMA transfers to/from AP-120B Main
Data memory. If clear, APMA is incremented.

Bit 12 DECHMA Decrement HMA. If set, HMA is decremented
during DMA transfers to/from Host memory.
If clear, HMA-is incremented.

Bits 13&14 FMT

Bit 15

Value
Bits

Format Register Control.

Note that the format register mode of
operation is controlled entirely by hits
9, 10, and 13 and 14 of the control register.
Thus even though the Host and the AP-120R
can load and read the Format Register via
program control I/O transfers at any

time, the programmer must be sure that the
type of transfer he performs is consistent
with these bits of CTL for the transfer

to be meaningful.

in

13-14 Format Type

0] 32=bit integer. No format conversion.

' Used to transfer 1ntegers or program
half-words.

1 l6-bit integer. 16-bit integers from Host
are converted to unnormalized 38-bit AP-120B
FPN's. Low l6-bits of AP-120B FPN are sent
to Host. 4

2 Conversion of "Sign-magnitude mantissa with

' binary exponent" format to/from AP-120B
Floating Point format. Includes logic to
handle "Phantom bit" formats.

3 Conversion of IBM 32-bit format to/from
AP-120B format.. IBM format can be specified
to have either 51gn—macnltude or 2's comple-
ment mantlssa.

Note: For format types 2 and 3, the format register

HDMA Start /
Busy

has the necessary logic to detect overflow
and underflow on conversion from AP-120B
format and to force a signed maximum quantlty
on overflow or floating-point zero on
underflow.

Host DMA Start. Initiate DMA transfers to/
frcm Host memory. When read the state of
this bit reflects the status of the Host DMA
activity ('1* if active, '@' if inactive).
Transfers continue until YWC=0,

4.4 FORMAT CONVERSION REGISTER

This 38-bit double-buffered register is used for all
transfers of floating-point numbers (FPN's) between the Host
and the AP-120B. It also provides the most efficient path for
transfer of micro-code half-words (32-bits). It performs bi-
directional format conversions under the direction of Bits 9,
10, 13 and 14 of the CTL Register. The programmer must be aware .
of the fact that the Format Conversion is a slave to these CTL .
Bits. Transfers to and from the formatter must be consistent
with these bits or nonsense will result. The Host and AP-120B
can read the output of the formatter at any time without re-
striction, however, the input to the formatter is controlled
by CTL bits 9 and 10.

CTLO9 CTL10 Input Path to Formatters

0,1 o Host Data Bus
0 1 AP-120B I/0 Bus
1 ‘l AP-120B Main Data Output

The formatter has a ready indicator that can be sampled by the
AP-120B. This indicator tells the AP-120B when to load new

data into the formatter (CTL10=1) and when to read data from it
(CTL10=9) after the Host has finished reading or loading the last
16-bit word of an FPN.

Note that in 16- blt Host Computers, the interface expects
to receive words in different order depending on CTL Bit 12
(DECHMA). If Bit 12 is clear i.e., the Host DMA interface is
going through memory in forward order from low to high addresses,
then the interface expects to receive the high word of an
FPN followed by the low word. If bit 12 is set, the interface
expects to receive the low word followed by the high word. This
is done so that arrays of FPN's are always stored in forward
order in Host memory. ‘

If the Format Bits of CTL (Bits 13,14) specify a 16-bit
transfer (FMT=1) then the integer is loaded and read from the
low word of the formatter. And that word is considered to be
the last word transferred. _

, There is no corresponding indicator to the Host since the
AP-120B can transfer data to and from the formatter faster than
most HOST processors. The DLATE bit in the CTL Register (CTL
Bit 7) does indicate when an error of this type occurs, i.e.,
when the Host transfers data faster than the AP-120B.

4.5 AP-120B INTERNAL INTERFACE TO HOST INTERFACE

"~ The Registers in the Host 1nterface are accessible to
the AP-120B via its Input/Outpuf (I/0) instructions (FADD=7).

AP 120B Device Addresses for Host
Interface Registers

Register ‘DA

we)
HMA 1
CTL 2
APMA 3
FORMAT 4

An IN, OUT or SNSA instruction at DA=4 (FORMAT) will
generate an IODRDY Response if the FORMAT Register is ready
to accept data from the AP-120B (CTL Bit 1¢9='1') or if ‘it
has formatted data readv for the AP-120B (CTL Bit 19='Q').

If CTL Bit 9 is a 'l', the AP-120B cannot load the formatter
via I/0 instructions since the input multiplexer to the
FORMAT Register will be set to select MAIN DATA instead of
the AP-120B I/O Bus. Note that the AP-120B cannot change the
state of CTL Bit 5. If it attempts to set this bit when the
bit has been previously set by the Host, an interrupt of the
Host will be generated. The AP-120B can read the CTL at any
time without interfering with the HOST interface. If both
the Host and the AP try to write CTL or access HMA, WC or
APMA at the same time, the Host selection and data has prior-
ity over that of the AP 120B.

© Access to the Format Conver51on Register is controlled
by CTL Bits 9, 10, 13 and 14. See Section 4.3, Format Con-
version Register, for a description of the function of these
bits. '

4.6 AN EXAMPLE, LOADING PROC AMS INTO THE AP-120B

Loading and runniﬁg a program in the AP-120B from a '"cold
start'" is a five step process which nicely illustrates
use of the front panel:

1. Through the AP front panel from the host computer
- we "finger switch" in a three instruction
bootstrap programvinto Program Memory.

2. We start the bootstrap running.

3. Set the'address where we want the loaded program
to go in the AP-120B. :

4, We start with a DMA transfer of program words
from host computer memory to the AP-120B. The boot-
strap program running in the AP-120B stores these
words into Program Memory.

5. When the DMA transfer is done, we stop the boot-
Strap program in the AP- 120B; and then restart
the AP-120B executing our newly loaded program.

These five steps are detailed below. DMA control and front
panel interrogation is done from the host computer by

setting various interface registers. The actual host

computer I/0 instructions to accomplish this, of course,

depend upon the particular host computer. Sectlon) descrlbes
the proper I/O instructions for a number of host computers.

For the purposes of this explanation, we merely indicate

what numbers get loaded into which interface register in

order to accomplish the desired goals

Step 1°

For the purposes of this example, we are going to put
the bootstrap program into Program Source Memory locations
@, 1 and 2.

1. Set TMA to @ (TMA is the pointer used by the
panel functions for examlnlng or dep051t1ng into
Program Memory):

@ - SWR ' Put § into the switches.
1003 =+ FN Put 1003 into the Function register
: : (causing a deposit into TMA)

2. Put bits 0-63 of bootstrap program program word
#1 into Program Memory location 9@ using four de-
posits of SWR -+ PStMa. v

(bits 0-15) = SWR Put bits 0-15 into the switches.
1010 = FN Put 1010 into the function register
(causes a deposit into bits
0-15 of PSpya)-

4-14

(bits 16-31) -+ SWR Puts bits 16-31 into bits

1030 »EN 16-31 of PSpy,

(bits 32-47) > SWR Puts bits 32-47 into 32-47
1050 + FN 0f PSpyp-

(bits 48-63) - SWR Puts bits 48-63 into bits
1370 - FN : 48-63 of PSpya and increment

TMA to point to location 1.

3. Repeat number 2 above bootstrap program words
#2 and #3.

The above sounds worse than it really is, “and besides, we
only have to do it once (unless we clobber the bootstrap
turn off power)

Step 2

Set the éddress in the AP-120B Program Memory where we
want our program to get loaded by the bootstrap into TMA.
For this example, tth address shall be 200:

200 - SWR o Put 200 in the switches.
1003 -~ FN Put 1003 into the function
' register (cause a deposit
into TMA).

Step 3
Start the bootstrap program running in the AP-120B.

1. Set the switches to 9 and do a start.

@ - SWR
40000 - FN - Start the AP-120B at location 9

The bootstrap program (as we shall see below) will sit
and "spin'', waiting for words to come across the DMA from
the host computer. :

Step 4

~Start the DMA transfer g01nv from host memory into the AP-120B.
For this example, we will assume that the program we wish to
load is sitting in host memory at locatiod 20000. We will
further say that the program to be loaded is 200 AP program
words (or 800 16-bit host words) long. The actual host memory
location and length, could, of course, be any particular value.

- 20000 - HMA Set host DMA address to 20000.
800 - WC o Set word count to 800 host
o ' words (assuming a 16-bit host
_ word width).
201 -~ CTL _ Start the DMA going.

4-15

Note in particular, the "CTL" bits. Bit 15 starts things
going and bit 8 requests consecutive memory - cycles from

the host. By not setting bits 10 or 1l we set the transfer
to go fo the AP- 1208 but not into Main Data Memory.
Instead, the data goes only as far as the formatter which
our bootstrap will read. If we had set bit 4, the host
computer would be interrupted when the DMA is done. As
things are, we will keep thlngs simple and not use the

host 1nterrupt

Step 4.5

And now, finally, we get to our three word bootstrap
program running in the AP-120B:

@. LDDA; DB=4 | "S&t DEVICE ADDRESS to 4

This instruction sets the Device Address register, so that
future I/0 instructions will refer to device #4, which is
the DMA formatter (where the data from the host computer
ends up).

1. LOOP SPININ; "Wait for some data
: DB=INBS; 'Get the data
LPSLT - "Put it into the left half of P.S.

The "SPININ" causes the processor to hang until the current
I/0 device address (in our case, the DMA formatter) has some
new data; and then to read that data the "DB=INBS'" puts the
input data onto the Data Pad Bus. The "LPSLT" puts what is
cn the Data Pad Bus into the left half (bits 0-31) of the
Program Memory location pointed at by the TMA register.

Two points here: 1) The formatter is 32-bits wide on

the AP-120B end. Every time the interface has gotten
32-bits of data from the host computer the "SPIN" stops
waiting and we have another 32-bits of data. Since the
program words we are loading are 64-bits wide we get them
in halves (left, right, left, right, etc.) and store them
accordingly into Prog*am wemory 2) We used TMA as a
pointer to where our bootstrap would put the program it
is loading, so the "LPSLT'. puts the procram words into
the proper. place.

2. SPININ; | "Wait for data a

DB=INBS; : "Get the data - .

LPSRT; ' "Put it into the right half
INCTMA; "Increment our pointer

"BR LOOPR: : "Go back for more

This does basically the same as 71 above, except that here
we have the right half (bits 32-63) of a 64-bit program
word. The "INCTMA" in¢rements our ''storing' pointer

so imstruction #1 will store its data into the next word.
The branch keeps usxn” loop,. 1nsatiab1y waiting for more
program half-words. o ;

4-16

Step 5

Back in the host, we wait for the DMA trahsfer to be done
by:

1. 'Read the CTL register
2. Test for bit 15 (the LSB) equal to 1
3 If so, go back to 1.

We could, of course,. have enabled a host interrupt on DMA
completion.

When DONE, we stop .the bootstrap program (which otherwise
would run forever) with a panel RESET function; and

then start our newly loaded program, (our example starts at
location 200): :

40000+ FN RESET the AP-120B

200 - SWR : .- Qur new program address
1000 »~ FN , Set 200 into PSA

20000~ FN , Continue (from 200), i.e., startv
o at A.P. location 200

Had we wished to set a program breakpoint, we would have
set the breakpoint address into the SWR and used 20400
(continue * break on PSA) for our final panel function.

Postscript

The simplest way for the AP-120B program that we have now
set running to indicate to the host computer that it is

done with its task is to HALT. When this happens bit @ in
the Panel Function Register will come on, which the host

can test for; or a host interrupt can be enabled (CTL bit 3).

SECTION 5
. PARTICULAR HOST INTERFACES

This section descrlbes the partlculars of several

host computer / AP-120B interfaces. In general,

the inter-

face consists of eight registers which are accessable to
either the host computer or the AP-120B., Three of these
registers comprise the AP-120B '"front panel', while the

other five control the DMA (Direct Memroy Access) connection

between the two processors.

HOST:COMPUTER Interface:

AP-120B

FUNCTION

CPU| ~ FN

MEMORY

SWITCHES
(SWR)

4

LIGHTS
(LITES)|

1___;_________ SN S

snd O/I dv¥

HOST MEMORY
ADDR. (HMA)

ssaippy AIouel 3IsO[

\

AP-120B MEM.

CPU

MD MEMORY

ADDR. (APMA)

0/1I psuueiboxg 3Isof

WORD .
COUNT (WC)

1

DMA CONTROL
(CTL)

» FORMATTER

SS9IPPVY ATowal 3D3ITA JV

(FMT)

DMA Control

N A A R I I N

Figure 5.1 General AP-120B/Host Computer Interfaces

Ths host computer control=s the AP-120B by loading and
reading these eight registers Thus, the AP-120B may
“be likened to a "smart'" disc or tape unit, responding
to programmed I/0O instructions from the host to initiate
desired tasks. S

The exact effects and significance of these eight
registers are described in detail in Section 4 of this
manual, which explores the AP-120B side of the inter-
face. This section details how particular host computers
access the interface registers, and hence control the
"AP-120B. ’

5.2 DEC PDP-11.INTERFACE
53.2.1 Interface Register Address:

Unibus Address. Interface Register
AP+100 _ Word Count (WC)
AP+102 Host Memory Address (HMA)
AP+104 , DMA Control (CTL)
AP+106 AP Memory Address (APMA)
AP+110 Panel Switches (SWR)
AP+112 Panel Function (FN)
AP+114 Panel Lites (LITES)
AP+116 ' " Reset (Same as Panel Reset Function)
AP - - Formatter :

The base address "AP" is strappable between 174000 and
177600

5.2.2 Comments HMA is an 18 bit,even byte address that
* increments or. decrements by 2. WC counts 16-bit PDP-11
word transfers. '

Jord format (CTL bits 13-14) type 2 refers to PDP-11 Fortran
format (8-bit biased binary exponent, sign-magnitude mantissa
with "hidden” ”SB) Format type 3 refers to IBM 360 32-bit
format. '

In consecutive cycle mode (CTL bit 08 set) the PDP- li
DMA interface will steal a hardware selectable number (1 to 15)
of consecutive memory cycles and then release the Bus.

This is done so that otber time- crltlcal DMA devices can
get access to the bus.

5;2.3 Reading/Writing of Host Memory Address. The two high
order bits of the Host Memory Address (HMA) register bits
~are set via an output to the Panel Lights (LITES) address, and
read with an input from the Reset Address: '

MOV HIGHBITS, AP+l14 (Move to LITES) MOV LOWBITS, AP+lO2 (Move to HMA) ading
: S— oadin
T | | i
15{14{13; 12|11 1012/ 87 6| 5 4] 31 2| 1| O 18114:13{12} 11|10} 9) 8| 7] 615141312|L;0 from
B . : _ . . .) the
x‘ \\\ d—.—/‘" é~ '
e] o2
17116415 14| 1312 11| 10| 9{ 8l 716l 5] 4 3| 2}l O} - Host Memory Address
' 1o I ' , (HMA)
_cif/’i:" Set tg ones T~ | \\\\\\gés
b ™ o~ : P
— — » , Reading
14 120 11{10{ 9 8|7 5|5 4] 3| 2{1]{0 | | 15 14} 13} 12| 11} 10} © 8[1 65l 4l 3210 MR
‘ , ' : inte
. - e - : - the
Mov AP+116, HIGHBITS (Move from RESET) MOV AP+102, LCWBITS (Move Zrom HMA) PDP-11

5-3

NOTE: The move to the LITES a-dress (AP+114) dées not affect
~the LITES register. Similarly, a move from the RESET address
(AP+116) does not cause a Reset of the AP-120B.

An example} we wish to set HMA to 532706:

MOV #132706, AP+102 ; SET 12706 into HMA
MOV #100000, AP+114 : ADD 400000 into HMA

and to read out of HMA this value we have set:

MOV AP+102, LOWBITS ; would get 12706
MOV AP+116, HIGHBITS ; would get 137777

5.2.4 Program Access of the Format Register. The AP-120B
Formatter is 32-bits wide, and hence is accessed by the
PDP-11 . into 15 -bit halves. The Formatter may be read/written
at any even address between "AP'" and AP+76. If DMA control

- (CTL) register bit 12 is clear (host address increments).

successive high, low, high, low,... halves of the Formatter
are accessed. If CTL bit 12 is set (host address decrements)
the sequence is low, high, low, high... In both cases, high

refers to the first 16 bits of the floating-point number
of 32 bit integer, and low .refers to the last 16 bits.

When 1l6-bit integers are involved (CTL bits 13-14 set to
"01") only 16-bit entities are involved on the PDP-11 end.
The access then is simply by words: word #1, word #2, word #3...
5.2.5 Examples.

1) Stop the AP-120B and examine PSA (Program Address);

MOV #100000, AP+112 ; (STOP the AP-120B) to FN
MOV #2000, AP+112 ; (EXAM PSA) to FN
MOV AP+114, APSA - ; Get the answer (from the LITES)

2) Start the AP-120B at program location 20, setting
a breakpoint at PSA=200:

MOV #20, AP+110 ; Put 20 into SWR

MOV #1000, AP+112 : (SWR - DPSA) to FN

'MOV #200, AP+110 ; 200 to SWR

MOV #20400, AP+112 . (CONTINUE + BREAK on PSA) to FN

3) Initiate a DMA transfer of 100 PDP-11 format
floatlng point numbers from location 20000 in the
PDP-11 to 1ocatlon 2000 in the AP-120B Main Data
Memory:

MOV #2200, AP+100 ; Set WC to 200 PDP-11 words
MOV #20000, AP+102 Set HMA to 20000

MOV #2000, AP+104 ‘Set APMA to 2000

MOV #305, AP+106 Start the DMA

s es e

5-4

5.3 DATA GENERAL NOVA/ECLIPS! INTERFACE

5.3.1 I/OkInstrdction Assignments:

I/0 Instruction Interface Register

DOA/DIA APl - Word Count (WC)
DOB/DIB APl Host Memory Address (HMA)
DOB/DIB AP1 DMA Control (CTL)
DOA/DIA AP2 AP-120B Memory Address (APMA)
DOB/DIB AP2 Formatter high word (FMTO00-15)

- DOC/DIC AP2 ' Formatter low word (FMT16-31)
DOA/DIA APQ - Panel Switches (SWR)
DOB/DIB AP9 Panel Function (FN)

/DIC APQ Panel Lights (LITES)

Other I/0 Instructions Effect C
NIOC AP9 Clear AP Interrupt Request :
NIOS APQ ~ Reset (Same as RESET panel function)
MSKO _ Set interrupt mask (bits normal)
SKPBZ AP9D ‘ Skip if AP halted
SKPDN AP® ‘ Skip if interrupt request pending

Responds with Device Code "APQ'" to INTA from the Nova.

Device codes AP¢, AP1l, and AP2 must lie within a single
octade of device codes.

5.3.2 Comments. HMA increments and decrements and WC
decrements, for each 16-bit Nova word and transfer.

Word Format (CTL bits 13-14) type 3 is Nova single-
precision floating-point format (32-bit IBM sign- :
magnitude mantissa, 7-bit hex exponent). Format type
2 is not used.

5.3.3 Examplesf
1) Stop the AP-120B and examine PSA (Program Address):

LDA ¢, =100000
DOB ¢, AP9 ; (STOP the AP-120B) to FN

LDA @, =200 |

DOB @, APQ ; (EXAM PSA) to FN

DIC 1, AP9 " ; get the answer (in LITES), into ACl

2) Start the AP-120B at program location 20, setting
a breakpoint at PSA=200:

LOA §, =20
DOA @, AP9 ; Put 20 into SWR

LDA @, =1000 ,

DOB @, AP9Q : (SWR -~ PSA) to FN

LDA @, =200

DOA @, APQD - : Put 200 into SWR

LDA @, =20400 ' - ,

DOB @, AP® : (CONTINUE + BREAK on PSA) to FN

5-5

Initiate a DMA transfer of 100 Nova floating-point
numbers from location 20000 in the Nova to location
2000 in AP-120B Main Data Memory:

LDA
DOA
LDA
DOB

- LDA

DOA
LDA
DOB

LR

RS RSR SR SR SR SR S]

D . T

Set WC to 200 Nova words
Set HMA to 20000
Set APMA to 2000

Start the DMA

5.4 RAYTHEON R704 IRDS-500 INTERFACE

The AP-120B RDS 500 interface acts as a controller
for the data transfers between the AP-120B interface registers
and the RDS 500 data busses, as described in Section 4 of
the AP-120B's Processor Handbook. The interface consists
of three units: the Direct I/O controller, the DMA interface,
and the data transfer receiver.

The DIO control recognlzes the follow1ng DOT/DIN .
commands : _ _

DOT/DIN Function
Assignment Field Access Register

1 B ' Panel Switch Register (SWR)
2 - Panel Function Register (FN)

3 o ‘ - Panel Lights Register (LITES)
: : (Read Only)

4 - DMA Word4Count»Register (WC)
5 Host Memory Address Register (HMA)
6 Control Register (CTL)
7 ' AP Memory Address Register (APMA)
8, A,C,E ' _ Formaf High
9, B,D,F - Format Low
DINQ | | | Read»simple Status Word
DOTY Reset
the that the Panel Display Register (PDR or LITES) can only
be read by the host. Attempting to load this register results
in ‘a no-op in the DIO control.
Executing a DIN instruction with the function assignment field
equal to zero reads a status word on to the DIN bus, true status

is indicated by a one in the aporoprlate position. The status
bit assignment is as follows:

DIN Bit ' Assigned Status
? o AP running
1 B AP DHA'request'present
15 : 'Error (Data late or Format

Conversion Error)

2-14 . Unused

Bit 15 is the result of an inclusive OR of control
register (see Section 4.2) bits 6 (format error) and 7 (data
late). Bits 2-14 are not used and are always zero when the
status word is read. '

_ Dot ® is used as a reset command. . Executing this
instruction clears DMA timing and pending requests.

The device address that the AP-120B DIO control will
respond to is selectable by a hexadecimal DIP switch mounted
on the interface card. Any address from @ - 15 present on
DAD lines 8 - 11 can be selected. '

DMA Operation is a slave to the state of the control
register. Loading the control register with bit 15 set
(HDMA start) initiates DMA transfers with mode and direction
determined by CTRL bits 8 - 14. Bit 8 (consecutive cycle)
selects the burst mode. When set, DMA transfers occur
in blocks of up to 16 consecutive cycles, after which the
DMA request line is released for one cycle to allow other
devices access to the DMA channels. The actual number of

- cycles, (executecd before the request line is freed) is selectable

by a hexadecimal switch located on the interface-card. When

the consecutive cycle bit is clear, the request line is released
for one cycle after executing one transfer. DMA transfers continue
until the word count register reads zero. The word count is

loaded with the actual number of 16-bit words to be transferred.

If loaded with zero, however, one 1l6-bit transfer will occur.

Jumpers for the memory request (MRQ1 - MRQ8), memory
acknowledge (MAKl - MAK8), memory write (MTW1l - MTW8), and inter-
rupt request (IRPT @@ - IRPT 15) lines are located on the
AP connector panel. Selection of the desired priority is made
by placing jumper plugs in the appropriate positions. The
connector panel is clearly labeled and is visible from the
rear of the unit. ' '

The interface is equippéd‘with a transceiver capable
of accepting data in four different formats (outlined in
Section 4.2 Direct Memory Access). Since the control register

 bits 13 and 14 specify the format to be used when loading the

formatter under both DMA control and DIO functions 8 and 9,
data transfers must be consistant with the state of these
bits or nonsense will be output from the formatter. Data
transfers that do not use the formatter will not be affected
by the state of the control register (DIO funations @ to 7).

Caution must be exercised when inputting floating-point
numbers (FPN). In IBM 32-bit format, the high part of the
formatter (DIO function = 8) refers to the sign, exponent,
and high mantissa of the FPN, while the low part (DIO function = 9)
refers to the low mantissa (see figure below). As an example,

a DOT with a function assignment field of 8 would load the sign,
exponent and high mantissa of the formatter. On the other hand,
when in Raytheon real two-word floating-point number format,

5-8

high format refers to the mar!issa least significant bits
and the exponent, while the . .v word of the format is
taken to mean the sign and mantissa MSB's. In this case
then, a DOT with function assignment of 8 would load the
format mantissa LSB's and exponent.

FMT HIGH - Mantissa LSBs Exponent
. : ' Raytheon Real
: ' : Two-Word
FMT LOW ‘ ___Mantissa MSBs
- FMT HIGH Exponent Mantissa MSBs
| ' IBM 32 bit floating
FMT LOW Mantissa LSBs ’ ‘ point

32-bit integer format is a straightforward load of the high
significant bits into FMT HIGH and low significant bits into FMT
LOW. 16-bit integers are loaded into the FMT LOW.

5.5 TEXAS INSTRUMENTS TI980 INTERFACE

The AP-120B to TI980 interface acts as a controller for the
data transfers between the AP-120B interface registers and the
TI980 as described in Section 4 of the AP-120B Processor Hand-
book. The interface consists of three units: the Auxiliary
Processor Port Controller (APP Controller), the Direct Memory
Access Channel Interface (DMAC Interface), and the Data Trans-
ceiver, v

5.1.1 APP Controller. The TI980 Auxiliary Processor Initiate
Instruction (API Instruction) format is:

0 | 78 , 15
APT~1 DD16 DEV FIELDS

0 15
API-2 | DEV FIELD

The first eight-bits of the API-1 word are decoded by the
TI980 as the first word of an API Instruction. This causes the
TI980 to send this instruction word, and the next sequential
‘word in the TI980's central memory to the AP-120B through the
" APP, .

After API-1 has been sent through the APP its other eight
bits will be looked upon as having two separate fields. Bits 8,9,
and 10 are labeled DC in the diagram below and used as a device
code, Bits 11 through 15 are labeled IC and used as the AP-120B
APP Controller's instruction code. The APP Controller will com-
pare the device code contained in API-1 to .the device code it
has been wired to accept. The IC field will be taken as an
instruction for execution by the APP Controller only if the DC
field matches the AP-120B's APP Controller device code.

: API-2 is labeled DATA ADDRESS in the diagram below and is
used for this purpose if the DC field in API-1 matches the device
code of the AP-120B's APP Controller. DATA ADDRESS is program
relative when the TI980 is operating in User Mode and absolute
when the TIZ80 is operatlng in Operator Mode.

5-10

The AP- 120B's APP Controller may be w1red to accept any
device code of 0 through 7. ,

'8 10 11 15

API-1 DD16 DC IC

API-2 DATA ADDRESS

DC-APP Controller Device Code. The AP-120B's APP Controller
can be strapped to user-specified codes of O through 7.

IC-AAP Controller Instruction Code.

5.5.2 APP Controller Instructions. Each of the AP-120B's
" Controller Instructions is described below. A summary 1is
given after the description of the last instruction. IC
numbers are given in radix 16 notation.

Load Switch Register

LSWR (IC=1)
DATA. ADDRESS

The AP-120B's Switch Register (see AP-120B Processor
Handbook 4.,1.1) is loaded from the TI980 central memory at loca-
tion DATA ADDRESS .

Load Function Register

LFN (IC=2)
- DATA ADDRESS

The AP-120B's Function Register (see AP-120B Processor

Handbook 4.,1.3) is loaded from the TI980 central memory at
location DATA ADDRESS.

Load Word Count Register

WC (IC=4)
DATA ADDRESS

The AP-120B's Word Count Register (see AP-120B Processor

Handbook 4.2.2) is loaded from the TI980 central memory at
location DATA ADDRESS. 5-11 ‘ .

Load Host Memory Address “rgister

LHMA (IC=5)
DATA ADDRESS

The AP-120B's Host Memory Address Register (see AP-120B
Processor Handbook 4.2.1) is loaded from the TI980 central
memory at location DATA ADDRESS. When using this instruction
TI980 central memory location DATA ADDRESS should contain the
absolute address in the TI980's central memory from which DMA
"transfers are to be made.

Load Control Register

LCTL (IC=6)
DATA ADDRESS .

- The AP-120B's Control Registerb(see AP-120B Processor
Handbook 4.2.4) is loaded from the TI980 central memory at
location DATA ADDRESS.

Load AP Direct Memory Address Register

LAPMA (IC=T7)
DATA ADDRESS

The AP-120B's Direct Memory Address Register (see AP-120B
Processor Handbook 4.2.3) is loaded from the TI980 central memory
at location paTa ADDRESS. '

Load Format Conversion Register High

LFMTH (IC=8)
DATA ADDRESS

The most significant 16-bit TI980 computer word of the
AP-120B's Format Conversion Register (see AP-120B Processor
Handbook 4.3) is loaded from the TI980 central memory at
location DATA ADDRESS. This path is intended for diagnostic
use only, it is the programmer's responsibility to see that
APP Controller and DMAC Interface data transfers do not
conflict. :

Load ‘Format €onversion Register Low

LFMTL (IC=9)
DATA ADDRESS

The least 51gnlflcant 16-bit TI9S8O computer word of the
AP-120B's Format Conversion Register (see AP-120B Processor
Handbook 4.3) is loaded from the TI980 central memory at
location DATA ADDRESS., This path is intended for diagnostic
use only, it is the programmer's responsibility to see that
APP Controller and DMAC Interface data transfers do not
conflict.

Load Host Memory Address Register Biased

LEMAD (IC=D)
DATA ADDRESS

The AP-120B's Host Memory Address Register (see AP-120B
Processor Handbook 4.2.1) is loaded from the TI980 central
memory at location DATA ADDRESS. When using this instruction
TI980 central memory location DATA ADDRESS should contain
the program relative address in the TI980's central memory from
which DMA transfers are to be made.

Reset

RESET (IC=10)
DATA ADDRESS

The AP-120B's DMA Timing and Memory Timing are Reset.
The AP-120B's S-~Pad Register 0 and Status Register are cleared.
The RUN BIT in the AP--120B's Function Register is Reset. Ones
are loaded into the TI980 central memory location DATA ADDRESS.
This instruction performs the functlon of an AP 120B machine
reset.

(9]
i

-t

(o]

Read Switeh Rocister

RSWR (TC=11)
DATA ADDRESS

The contents of the AP-120B's Switch Regcister (see AP-120B

Processor Handbook 4.,1,1) is stored into the TIO9SO central
memory at location DATA ADDRESS. :

nead Punction Regcister

CREN (IC-12)
DATA ADDRESS

The contents of the AP-120B's Funcrtion Register (see
AP=-120B Processor Handbook. 4.1.3) is stored into the TIO9SO

nooo

central memory-at location DATA ADDRESS,

Read Panel Display Reecister (LITES)

The contents of the AP-120B's Panel Display Becister

(sec AP-120B Processor Handbool 4,1,2) is stored into the
TIOSO central memory at location DATA ADDRESS. Thoere is no
instruction for loading the Panel Display Register from the
TIVED : :

O'< central memory.

v

Read Word Count Register:

RWC (IC=14).
DATA ADDRESS

The contents of the AP-120B's Word Count Register (see

AP-1Z0B Processor Handbook 1.2.2) is stored into the TI9SO
central memory at location DATA ADDRLSS, -

Roead Host "\Z(-Ymm‘_\' Address Revister

RIMA (IC=15)
DATA ADDRESS

The contents of the AP-120B's Host Memory Address Register
(sce ADP-120B Processor Handbook 1.2.1) is stored into the

TIO8O contral memory at location DATA ADDRESS.

6-1.1

Read Control Register

- RCTL (IC=16)
DATA ADDRESS

' The contents of the AP-120B's Control Register (see
AP-120B Processor Handbook 4.2.1) is stored into the TI980
centralkmemory at location DATA ADDRESS.

‘Read AP Direct Memory Address Register

RAPMA (IC=17)
DATA ADDRESS

The contents of the AP-120B's Direct Memory Address
Register (see. AP-120B Processor Handbook 4.2.3) is loaded from
the TI980 central memory at location DATA ADDRESS.

Read Format Conversion Register High

RFMTH (IC=18)
DATA ADDRESS

The contents of the most significant 16-bit TI980 computer
word of the AP-120B's Format Conversion Register (see AP-120B
Processor Handbook 4.3) is stored into the TI980 central memory
at location DATA ADDRESS. This path is intended for diagnostic
use only, it is the programmer's responsibility to see that
APP Controller and DMAC Interface data transfers do not conflict.

Read Format Conversion Register Low

RFMTL
DATA ADDRESS

The contents of the least significant 16-bit TI980 computer
word of the AP-120B's Format Conversion Register (see AP-120B
Processor Handbook 4.3) is stored into the TI980 central memory
at location DATA ADDRESS. This path is intended for diagnostic
use only, it is the programmer's responsibility to see the
APP Controller and DMAC Interface data transfers do not conflict.

5.5.3 Summary of APP Instruction

Instruction

Mnemonic

LSWR
LFN
LWC
LHMA
LCTL
LAPMA
LFMTH

- LFMTL
LHMAB
RESET
RSWR
RFN
RPDR
RWD
RHMA
RCTL
RAPMA
RFMTH

RFMTL
NOTES:

(1)

(2)

(3)

Da

(

).

Instruction

‘Instruction
Code (ICig) Function
1 (DA) - SWR
2 (DA) + FN
4 (DA) ~ WC
5 (DA) - HMA
6 (DA) + CTL
7 (DA) + APMA
8 (DA) ~ FMTH
9 (DA) + FMTL
D (DA) + HMA
10 'FFFF - DA
11 (SWR)~ DA
12 (FN) - DA
13 ‘(PDR)~+ DA
14 (WC) - DA
15 (HMA)+ DA
16 (CTL)~+ DA
17 . (APMA)~ DA
18 ' (FMTH)- DA
19 (FMTL)~+ DA

Notes

Absolute Memory Address

Diagnostic Path
Diagnostic Path
Program Relative Address

AP-120B Machine Reset

Diagnostic Path

Diagnostic Path

A location in TI980's central memory whose
address is the 2nd word of an API Instruction.

-The contents of

Stored into

5-16

5.5.4 DMA Interface. DMA transfers to and from the AP-120B
are controlled by the contents of the four DMA registers in the
AP-120B interface (see the Array Processor Handbook, Section
4.2). The initialization procedure for a DMA transfer calls for

loading these registers via Auxiliary Processor Initiate
Instructions. B

- DMA operation is a slave to the state of the Control Register
(CTL). Mode and direction of the transfer is determined by
Control bits 8-14. Bit 8 selects the consecutive cycle mode.
‘When set, DMA transfers occur on consecutive host memory cycles,
locking out the host CPU for the length of the transfer. When
clear, the access request is dropped for one cycle after each
word is transferred to -allow the CPU access to memory. DMA
transfers occur until the Word Count (WC) Register reaches
zero. The WC Register is loaded with the number of 16-bit
words to be passed. Setting bit-15 of the CTL Register
(HDMA start) starts the transfer. Because of this, the CTL
register is always loaded last. _

Jumpers -for access request (ARDEV,0-7), access granted (AG,0-7),
- interrupt request (INTDEV,0-7), and interrupt acknowledge (IRECDfG,
0-7), are located on the AP-120B DMA buffer cards. Selection
of the desired priority is made by placing jumper plugs in the
appropriate positions.

"AP-120B generated interrupts are controlled by CTL register
bits 3-5. When the interrupt condition arises an interrupt
request is generated by the interface. A status word is
stored via a normal DMA transfer after the interface receives
interrupt recognition from the host. The Status Word Format
is shown below. The conditions are true when the respective
"bits are set to one, .

bit 0 (MSB) - Word Count équals 0. Indicates
v DMA transfer completed.

bit 14 - DMA transfer error

bit 15 (LSE)- AP-120B is halted. Micro-code execution
: _ - 1s terminated
bits 1-13 ~ always zero

The address where the status word will be stored in the host

memory 1is selectable by strap options on the AP-120B interface
card. _ _ '

5.5.5 Data Transceiver. The Data Transceiver is capable of
accapting data in four differen: formats. Format selection
as accomplished by bit 13 and 14 of the AP-120B's Control
Register (See AP-120B Processor Handbook 4.2. 4). When loading
the Format Conversion Register of the Data Transceiver from
the DMAC or APP data transfers must be consistent with the
state of bits 13 and 14 of the AP-120B's Control Register or
NONSENSE will be output from the Data Transcelver '

In 32-Bit Integer Format (CRT Bits 13 and 15=0) the high
parts of the Format Conversion Register (APP Controller
Instruction is IC=8/18) refers to the TIS80 data word of high
significance. The low part of the Format Conversion Register
(APP Controller Instruction IC=9/19) refers to the TIQSO data
word of ‘low significance. :

- In 16-Bit Integer Format (CRT Bits 13 and 15=1) TI980
data words are loaded into or read from the low part of the
Forward Conversion Rewlster (APP Controller Instruction is IC=9/19),

In TI 2-Word Format (CTR Bits 13 and 15=2) the hlgh part
of the Format Conversion Register (APP Controller Instruction is
IC=8/18) refers to the sign, and the high mantissa bits of the
floating-point number., The low part of the Format Conversion
Register (APP Controller Instruction is IC=9/19) refers to the
low mantissa bits, the exponent bias bit, and the exponent of
the floating-point number. ’

Example: '
TI 2—Word‘Floating-PQint Number
01 - 15
FMTH %S MANTISSA MSB %
| : '
o 7.8 9 15_
FMTL MANTISSA LSB EB¥ - EXPONENT E

In IBM 32-Bit Format (CTR Bits 13 and 15=3) the high part
of the Format Conversion Register (APP Controller Instructlon is
IC=8/18) refers to the sign, exponent in biased hexadecimal,
and high mantissa bits of the floating-point number, The low
part of the Format Conversion Register (APP Controller Instruc-

tion is IC=9/19) refers to the low mantissa bits of the floatlnv—
point number. - !

5-13

Example:

IBM 32-Bit Floating~Point Number

0 1 7 8 15

b : ; .

FMTH | S |HEX EXPONENT , MANTISSA MSB
3 M.

FMTL | " MANTISSA LSB's

5.6 VARIAN 620 INTERFACE

The AP-120B to Varian 620 interface acts as a controller
for data transfers between the \P-120B interface registers
(Section 4 of the AP-120B Processor Handbook) and the Varian
620 "E'" Bus. The standard interface is capable of transferring
data under program control and also under control of the Buffer
Interface Controller (BIC)

a.6.l Input/Output Commands. Program Control access to the
AP-120B required 9 device addresses. These addresses can be
altered via hardware straps in the interface. They must how-
ever, all be included within two octades (not necessarily con-
tiguous) of device addresses. The standard device addresses are
listed in the table below. - ' '

Device Register
Address Accessed
X7 Switch Register (SR)
- X6 : Functional Register (FN)
X5 Panel Display Register (LITES) Read only
X4 . Word Count
X3 A Host Memory Address (HMA)
- X2 ‘ Control (CTL)
- X1 AP-120B Memory Address (APMA)
X0 Format Register Low (FMTL)
Y7 : Format Register High (FMTH)

Where X and Y indicate the flrst octal dlglt of the Device
Address.

Note that the HMA Register is not functional when using the BIC.
The BIC Initial Register provides the V620 memory address for
BIC transfers.

5.6.2 SEC Commands. Two SENSE instructions are provided to
allow the V620 program to test the state of the AP-120B.

Function _
Field Result
0 ‘ Branch if AP-120B runnlng
1 -Branch if AP-120B to BIC interface is

~active

These sense instructions use the same dev1ce address as does
the AP-120B Switch Register (SR).

Thus, the following instruction:

- LOOP, SEN, 0100+SR,LOOP-
will wait for the AP-120B to complete a BIC transfer.
’5.6.3 EXC Commands. Five external control commands are pro-
vided for initialization and control of the interrupts and the
BIC. The Switch Register (SR) device address is used for these
EXC instructions.

Function Control

Field Function
0 Reset AP-120B. Clears interface and

memory timing. Stops AP-120B processor.

1 Enable the AP-120B BIC interface in the
- Word Count Stop Mode. In this mode the
interface will stop the BIC transfer when
the AP-120B WC Register reaches zero.

2 ' Enable the AP-120B BIC interface. Fol-
lowing this command the BIC transfer
will terminate in the normal fashion,

"i.e., when the initial and final regis-
ters are equal.

.3 ' Unconditional stop of the BIC transfer.

4 Clear the AP-120B interrupt. Used to
' clear the interrupting condition after
the software has responded to an AP-120B
interrupt.

5.6.4 BIC Operation. To use the BIC with the AP-120B, the

program must first initialize the BIC in the usual way by loading
‘its initial and final registers and by issuing the activate BIC
EXC instruction. The final register can be set to 0 if the trans-
fer is to take place in the Word Count Stop Mode. The program then
selects the interface mode with an-

EXC ,100 + SR ,Word Count Stop
or an EXC ,200 + SR ,Normal BIC Stop

Finally, the program starts the AP-120B interface transferring

by loading the CTL register with the appropriate command for the .
type of transfer desired. Note that the consecutive cycle bit in
the Control Register has no effect on the transfer. All transfers
proceed at BIC speed.

5.6.5 Floating Point Formats. The AP-120B to V620 interface

can transfer floating-point arguments to and from the V620 in
two floating-point formats. Th~ format desired is specified

by the format select field of the CTL Register. ‘

FMT , Format :
SEL Description -
2 High word 15 14 7 6 0
o S EXP MANT
Low word 15
0 MANTISSA

This is the V620 format, the exponent is
biased, and the first word is one's
complemented if the mantissa is negative.

3 High word 15 14 8 7 0

S | EXP MANT

Low word

MANTISSA

This is the IBM-360 short form format.
The exponent is biased and is a power of
16. The mantissa is in sign-magnitude
form.

5.6.6 Interrupts. A jumpef is provided in the interface to
allow strapping any interrupt level from O to 7.

5.6.7 Physical. The interface consists of a signal DM135 type
card which mounts in the V620 mainframe or expansion chassis,
and which is connected to the AP-120B via a cable of up to 10
feet in length. '

APPENDTCES

APPENDIX A: AP-120B REGISTERS/DATA PATH NAMES

Mnemonic Width Name

SPp 16 bits Scratch Pad Registers (16)

SPD 4 S-Pad Destination Address Register
SPFN 16 'Scratch Pad ALU/shlfter function output
PNBLS 16 Panel Bus
- SWR 16 Panel Switch Register:

LITES 16 - Panel Display Register
- APSTATUS 16 - AP Status Register

Ps 64 Program Source Memory

CB 64 Command Buffer

bPSA - 16 Program Source Address Reglster

SRS .16 4 Subroutine Return Stack

SRA 16 Subroutine Return Stack.Pointer

DPX 38 ' Data Pad X Registers (32)

DPY 38 Data Pad Y Registers (32)

DPBS 38 Data Pad Bus

DPA 16 ’ Data Pad Address Reclster

™ , 38 Table Memory Output Register

™A 16 - Table Memory Address Register

MD - 38 : Data Memory Output Register

MI - 38 Data Memory Input Register

MA - 16 : Memory Address Register

Al . 38 Floating Adder Input Register #1

A2 - 38 ' Floating Adder Input Register #2

FA - 38 ' Floating Adder Output Register

M1 38 Floating Multiplier Input Register #1
S M2 38 Floating Multiplier Input Register #2
M : 38 - Floating Multiplier Output Register
IODEVICE ‘ I/0 Device

DA 16 I1/0 Device Address

INBS . 38 I/0 Input Bus .

IODRDY 1 I1/0 Data Ready Flag

A 1 I/0 Device Condition "A'" Flag

B 1 I/0 Device Condition "B" Flag

Subscripts'indicate addressing within memozry element, i.e.
means the location in Program Source Memory pointed to
by tée Program Source Address Register.

Supérscripts indicate portiocns of word, i.e. 42E means the
exponent portion of the A2 Register.

Parenthe81s around a symbol 1ndlcaues ""the contents of” a register,
i.e. (Al) means the contents of the Al Register.

A-1

AP-120B INTERNAL STATUS REGISTER

!

]
0 i 1
‘ OVFl UNF

DIVZ FZ

FN

6 7 8| 9| 10|11 |12 |13 14 15

N C|PERR |PENB| SRAO| IFFT| FFT Bit Reverse

Bits

Mnemonic

OVF

DIVZ

FZ

Meaning

Set when the current adder or multlpller
(FA or FM) has overflowed. Overflow

occurs when an exponent value is increased
above 511. The offending result is set to
the signed maximum of value of (1-2-27) x
211 which is roughly 6.7 * 10153. This bit

- remains on until cleared by the mlcroprocram

or host computer.

Set wiaen the current adder or multiplier
result (FA or FM) has underflowed. Under-
flow occurs when an exponent value is
decreased below -512. The minimum legal
magnitude which numbers can take without
underflowing is roughly 3.7 * 10-1535. The
offending value is set to zero. This bit
remains on until cleared by the microprogram
or host computer

A divide by zero has occurred. The result

was set to the value of the dividend. This
bit remains on until cleared by the micro-

program or host computer.

Set when the current adder result (FA)
is zero.

Set when the current adder result (FA)
is negative.

Set when the current S-pad function (SPFY)
is zero.

- Set when the current S-pad function (SPFY)
. 1s negative.

S-Pad carry bit. If no S-Pad shift is
specified, carry is the carry hit from the
S-Pad ALU. If a shift is specified, carry
is the last bit shifted off the end of the
S-Pad result by the shift.

8 PERR

9 PENB
10 SRAO
11 IFFT
12° FFT

13-15 Bit Reverse

~(Optional). &~t when a Main Data Memory parity

error has occi'red. Three parity bits are

used, one each to check the exponent, high

mantissa, and low mantissa portions of the memory
word. If "PEND'" is set, the processor will
halt on this error.

(Optional). Enables halt on memory parity error.
If set, the processor will halt when a memory
parity error is detected. ' :

Subroutine return stack overflow. Set if
more than 16 levels of nested subroutine
calls have occurred.

Inverse FFT flag. When set in conjunction
with the FFT flag, bit 12, causes roots of
unity table references to be interpreted
as positive angles. - '

FFT Flag. When set causes Table Memory
addresses to be interpreted as negative
angles referencing the roots of unity

'~ table contained in Table Memory.

15-Log,N Where N is the length of a complex
data a%ray to which the S-Pad address bit-
reverse operator is being applied.

AP-120B FUNCTIONAL UNITS,

e —_— - e =
BUS INPUTS: i IOST COMPUTER r—I 0 DEVICE B FUNCTIOMATL, UNIT QUTPUTS:
| |
DPBS - Data Pad Bus (38) /e | paA \ _: DPX - Data Pad X Output
DEX. BS VALUE = ; b — = = DPY - Data Pad ¥ Output
SPFN zERro —— - j— = —|— ———]—=-—[——-— MD - mta Memory Output
INBS SWR : k - 4 ™ - Table Memory Ontput
MD ™ INTERFACE }[<—OPT. ANC. PORT FA - ¥F.P. Adder Output
INBS - Input Bus (38) Formatter’ - Fon- - M - F.P. Maltipller Output
PNLBS - Pancl Bus (16) v PANEL MATTER S DA SPFN - S-Pad ALU Output
Dll;l\ g‘ﬁl\ PSA v , _ DMA - Direct Memory Access
M ! - i vs - Vrogram Source Output
) PNLB3S YINBS NPBS INBS - Inpgt Bus
DPBS] PNLBS _
. FA TA ‘ nrns
PROGRAM : _) .
'SOURCE . I;,,"} ' s \ ll‘)::BS : 'rs*r,;fgs
MEMORY . ‘ . : B
- DPBS :
pPs Write Vrite .
f'—_—_T Index Y . : : Index ‘ 4
ITABLE l—’—J DATA Data v-'q‘—-l M1 | S-pad S-PAD ALU FUNCTIONS
' MEMORY | TMA Read | Pad . Pad ‘ _ woin
i ' Index] X DPA Y MA 1 Data Rees S+D
v]) l ' Read Hemory < e S:D
' e “ > , Index DMA S41+D. <t
™ - L . MD §-1-D B
. * I,’S.’D e]
D-S+D
Y™ . ' - DPX : YDPX MD Bit Rev. D AND S»D
~ i b on S-b
, . D E
M FA P ¥A BQV S+D
™ MD . ™ MD :
DPX, DPY DPX,DPY DPX, DPY npY,nry _ ' n L g S-PAD SHIFTER FUNCTION
] ! 4 VALUE ' .2
: : - Inteper :
Floating M1 M2 Floating » 12
Point I , Point Al A2 _ aur AR
Multiplier: { Stage 1 Adder: , : Shifter N o
MI*N2) AT+AD Stage 1 : C
{ A1-A2 Tnteger Condition Bits
Stage 2 A2-A1 Stage 2 7 Floating _
. ABS(A2) > Point SPEH
TFloat, .) FN s :
Cond ko [<{ Stage 3 Al AND A2 ¥O Bits *
Bits ' Al OR A2 PEs - foata Pad Address SDPA
) ' FIX A2 : SPEN
. Lo | ‘
’ - pens_ [Memory Address }—) MA
Y FM 1 FA | SpiE :
. .t
 §;:13> Table Memory Address [QTMA
it

/jl’rng. Saurce Address)pﬁ[t

PN LES

AP-120B Instruction Summary

Unconditional Fields

Each of the following fields may be used in any given instruction word.

'

Octal Octal

Code Field Name _ S Code -
B .SOp Soprl SH SPS . SPD FADD FADD1 Al A2
0] NOP SOP1 . NOP NOP (S-Pad (8-Pad FADD1 NOP NC NC 3
1 & SPEC WRTEXP L Source Dest. - FSUBR FIX P FA 1
2 ADD WRTHMN RR Reg.) Reg.) FSUB FIXT DPX DPX 2
3 SUB WRTLMN R : FADD =~ FEFSCLT’ DPY DPY 3
4 : MOV NOP S (0-17) (0-17) FEQV FSu2C T MD 4
5 AND Nop : FAND F2Csi ZERO "ZERO . 5
6 OR Nop _ FOR FSCALE ZzERO MDPX 6
7 EQV NOP . 10 " FABS ZERO EDPX 7
10 . : CLR - 10
11 o i INC 11
12 DEC 12
13 COM v 13
14 LDSPNL ’ : 14
15 LDSPE ' : 15
16 . LDSPI . 16
17 - LDSPT - ‘ 17
Octal ') Octal
Code ~ Field Name . ' . Code
COND - DISP DPX DPY DPRBS XR YR . Xw Yw FM
aq NOP (Branch NOP NOP ZTRO (PPX (DPY (DPX . (DPY NOP g
1 # Displa- DB D3 INBS Read - Read . Write Write FuubL iN
2 BR cement) FA FA VAT.UR % Index) Index) Index) Tndex) 2.
3 BINTR:) (0-37) Fu - DDPX) 3
4 BION Doy (0-7) (0-7). (0-7) (0-=7) 4
S5 BIOZ o MD : ‘ 5
6 BFPE SPFY 3
7 RETURN ™ - 7
10 BFEQ ' 19
11 BFNE S ' 11
12 BFGE , _ 12
13 BFGT :) 13
14 BEQ B : ‘ . _ 14
15 BNE : ' 15
16 BGE 186:
17 . BGT . 16
Qctal . _ Octal
Code Field Name Code
M1 M2 ‘MI MA DPA TMA
g M FA - NOP NOP NOP NOP 3
1 DPX DPX FA INCMA INCDPA TNCTMA 1
2 DPY DPY ™ DECMA DECDPA DECTMA 2
3 ™ MD DB SETMA- SETDPA SETTMA 3

A

* This instruction uses a 16-bit immediate VALUE as a constant or address (in bits
48-63 of this instruction). The YW, FM, M1, M2, MI, TMA and DPA fields
are then disabledvfor this instruction word.

SPEC Fields

One of the‘SPEC Fields may be used per ° struction word. The S-PAD Fields (D, SOP,
SOP1, SH, SPS; and SPD) are then disablecd for this instruction. '

Octal

: ~ Oc¢tal
Code Field Name Code
_SPEC STEST HOSTPNL SETPSA ~ PSEVEN DPSODD PS . SETEXIT
g STEST BFLT PNLLIT JMpA* RPSOA* RPS14% RPSLA* NOP g
1 HOSTPNL BLT DBELIT = - JSRA* ~ RPS2A* RPS3A* RPSFA* SCTEXA* 1
2 SPYDA ‘BNC DBHLIT JMP* RPSG * RPS1* RDSL* = NOP 2
3 NoP BZC DBLLIT - JSR* RPS2* RPS3* RPSF* SETEX* 3
4 NOP BDBYN NOP' © JMPT RPSQT RPS1T RPSLT NOP 4
5 Nop BDBZ Nop JSRT RPS2T RPS3T RPSFT SETEXT 5
6 NOPp BIFN NoP L JMpp - NOP Nop RPSLP YOP 6
7 Nop BIFZ NOP JSRP Nop yoP RPSFP SETEXP 7
10 SETPSA Nop SWDB NOP WPS@PAx WDPS1a* LPSLA* NOCP - 10
11 _ PSEVEN NOP SWDBE - NOP WDPS2A% WPS3a* LPSRA* NOD : 11
12 ' PSODD - NOP SWDBH Nop- WPSG * . WDPS1 * LPSL* NCP 12
13 PS NOP SWDBL NOP WPS2 * WpPS3 * LPSR* YOP 13
14 SETEXIT BFLD Nop NOP WPSGT WPS1T LPSLT NCP 14
15 ~ NOP BFL1 " NOP NoP ¥PS2T WPS3T LPSRT NOP 15
16 NopP BFL2 NOP NOP NoP Nop LPSLP NOD 16
17 NOP BFL3 " NOP Nop NOP NOP LPSRP NOP 17

' I/0 Fields

One of the I/O fields may be used per instruction word. The_floatinq'Adder Fields
(FADD, TADD1l, Al, and A2) are then disabled for this instruction word.

Octal :) . Octal
Code Field Names ' : Code
I0 LDREG RDREG INOUT SENSE FLAG CONTROL
g LDREG NOoP RPSA QuT - SNSA SFL3 HALT g
1 RDREG LDSPD RSPD SPNOUT SPININ STLl IORST 1
2 SPMDAV LDMA A OUTDA SNSADA SFL2 INTEN 2
3 NOP LDTMA THWA SPOTDA SPNaDA SIL3 INTA 3
4 INOUT LDDPA RDPA IN SNSB CFL3 REFR 4
5 SENSE LDSP RSPTN SPININ. © SPINB CrL1 WRTEX 5
6 FLAG LDAPS RAPS QUTDA . SNSBDaA CFL2 WRTMAN 6
7 CONTPROL LopAa = RDA SPINDA SPNBDA CFL3 NOP - 7

* Tnis instruction uses a 16- bit integer VALCE (in tits 48-%3 of the instruction word).
The YW, I, M1, M3, MI MA, TMA, and DPA Fields are then disabled for this instrucction
-word.

AP=-1208 Instruciion Field Layout
| . [

! .
! = - P
{.: 10z 3 45 & 7 3 9 16ll.zlilsisis VTL3 L I 2l 2:! 23 25 23 26 27 8 1% 18 3
| ! | i) i | I i -
P Blsew i3m | sne L Porazs | ae | a2 - ooczm | si3p |
- T ;
3-2ad Sooup . ‘ Addar Sroup - . Arzanch Group J

TAC2L '

|) R 1

A-6

AP-120B Instruction Field Layout

)

{

i]

01 2 3 4 5 6 7 8 9 1011 12 13

14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31

SPS

FADD

B | soP SHi SPD Al A2 COND ~ DISP
S-Pad Group » Adder Group Branch Group
SOP1 l FADDL
SPEC OPER I/0 |

i

|

[}

_1

g XIANIdAY

32 33

34 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55

56 57 58 59 60 61 62 63

DPX

DPY

DPBS

XR

YR

XW

YW FM

M1 M2

MI

MA

DPA

TMA

Data Pad Group

Multiply Group

Memory Group

-«

VALUR

AYVIIKAS NOILONYLSNI

INTENTIONALLY BLANK

S-DAi GROUP
ol 1 314 516 9 |10 13

B S0P SE | SPS SPD
SOPT
Octal ‘ _
Field . Code Mnemonic Effect
B -9 - No-Op
1 & - . Use SPgpg (bit=reversed)
SOP) - See SOP1 field
1 - - See Special Operations Group
2 ADD ' (SPgpp)+(SPgpg)+SPFN
3 | SUB (SPgpp)-(SPgpg)~SPFN
4 MOV (SPgpg) >SPFN
5 AND = (SPgpp)AND(SPgpg)~+SPFN
6 OR (SPgpp)OR(SPgpg) *SPFN
7 EQV (SPgpp JXOR(SPgpg)~SPFN
* SH 9 - o Ho-0p
1 L SPFN*2+SPFN (left shift)
2 RR . SPFN:4-SPFN (double rigzht shift)
3 R SPFN:2+SPFN (right shift)
SPS 0-17g 0—178 S-Pad Source Operand Address:'
SPD 0-17g 0-17g S-Pad Destination Address, SPFN>°igpp
: unless inhibited by No Load (COND=1)
kiwote: hese are’logical shifts:
' Right shift 0 [H-13 — +[c]
Left shift |Cl«[_ _0-15] <0

Octal

Field _Code ~ Mnemonic Effect
SOP1 1) - | No-0Op
1 WRTEXP Restricts DPX, DPY & MI fields to Write
Exponent €@nly
2 WRTHMN Restricts DPX, DPY & MI fields to Write
High Mantissa Only (Bits 00-11)
3 | WRTLMN Restricts DPX, DPY & MI fields to Write
' Low Mantissa Only (Bits 12-27)
4 i, -
5 - -
6 - -
7 - } -
10 CLR @+~SPFN
11 INC | (SPgpp)+1+SPFN
12 DEC (SPgpp)-1+SPFN
13 coM (SPgpp)~SPEN
14 LDSPNL SPgpp + SPEN;~PNLBS + 8Pgpp
15 .~ LDSPE SPgpp + SPFN, DPBSE - 512 - SPgpp
16 ~ LDSPI -SPgpp 5 SPFN, DpBSML sp -
17 LDSPT SPg,p, * SPEN, DPBS'!TSPgn,

MH=Mantissa High=Mantissa bits 00-11

ML=Mantissa Low=Mantissa bits 12-27

MT=Mantissa bits for table lookups=Mantissa bits 02-08
E=Exponent .

B-4

SPECIAL OPERATIONS GROUP

1 3 6____ 9110 13
3 0 1 SPEC ~ STEST

HOSTONT

SETDSA

“PSEVEN

PSODD

ps_

" SETEXIT

. Qctal :
Field . Code - Mnemonic Effect
SPEC 9 - - See STEST Field (B-6)
1 - See HOSTPNL Field (B-7)
2 STMDA ~ Spin until MD available
'3 - -
4 - -
5 - -
6 - -
7 - | v - - . . .
10 - See SETPSA Field, inhibit TEST
. except No Load (B-8)

11 : - See PSEVEN Field (B-9)
12 - See PSODD Field (B-10)
13 - See PS Field (B-11)
14 - See SETEXIT Field (E-12)
15 - - |
16 - -
17 - -

: ‘ Octal
Field Code

Mnemonic Effect _

STEST ? BFLT Branch if FA<d.9

1 BLT Branch if SPFN<¢

2 BNC - Branch if S-Pad carry bit=1l

3 - BZC Branch if S-Pad carry bit=9

4 BDBN Branch if DPBS?¢.¢

5 BDBZ Branch if DPBS positive and unnormalized.

6 BIFN Branch if Inverse FFT flag=i |

7 BIFZ Branch if Inverse FFT flag=0

10 - _

11 -- --

12 — -

13 - -

14 BFLQ Branch if Flag ¢=1

15 BFL1 Branch if Flag 1=1

16 BFL2 Branch if Flag 2=1

E7 BFLé Branch if Flag 3=1
If'the.aboVe specified condition is true OR the condition specified

in the COND field is true,

a. branch occurs to (PSA)+DISP-20

Octal

Field Code Mnemonj - Effect
HOSTPNL @ PNLLIT " PNLBS +LITES
1 DBELIT DPBSE-PNLBS+LITES
-2 DBHLIT . DPBSMELPNIBS+LITES
3 DBLLIT DPBSML+PNLBS+LITES
4 o .' _
5 - -
6 - -
7 - -
10 " SWDB (SWR) -PNLBS-DPBS
11 ~ SWDBE (SWR)'+PNLBS+DPBSE and WRTEXP*
12 SWDBH (SWR) ~PNLBS-DPBSMH and WRTHMAN*:
13 ; SWDBL (SWR) -PNLBS-DPBSML. and WRTLMAN*:
) | o o
15 | o : / -
16 - -
17 - - -

*Restrict DPS, DPY and MI to:

WRTEXP: Write Exponent only
WRTHMAN: Write High Mantissa
. only (bits 00-11)
WRTLMAN: Write Low Mantissa

only (bits 12-27)

MH=Mantissa High=Mantissa bits 00-11
ML=Mantissa Low =Mantissa bits 12-27
E=Exponent :

Octal

Field Code Mnemonic Effect
SETPSA ¢ - JMPA ~ VALUE-PSA
1 ' JSRA (SRA)+1~SRA, (PSA)+1+SRSggs, VALUE-PSA
2 JMP . VALUE+(PSA)+PSA
3 ? JSR | (SRA)+1+SRA,(PSA)+1+SRSSRA;'VALUE
| | +(PSA)~PSA
4 JMPT (TMA)+PSA
5 JSRT ~ (SRA)+1+SRA, (PSA)+1+SRSgp,, (TMA)-~PSA
6 JMPP (SWR)>PNLES-PSA '
7 JSRP ~ (SRA)+1-SRA, (PSA)+1+SRSgp,,
(SWR)~PNLBS-PSA

VALUE=Bits 48-63 of this instruction (CB48-CB63)

Field Code Mnemonic Effect
PSEVEN ¢ RPS@A (Ps®?)-PNLBS+ LITES
_ VALUE , » ’
1 RPS2A (PSQ2)>PNLBS+ LITES
ngUE
2 RPS(, (PSVALUE+PSA)+PNLBS LITES
Q2
3 RPS2 (PS2 ipcs) “PNLBS> LITES
4 RPSQ@T (PS%&A)>PNLBS* LITES
5 ~ RPS2T (psg;A)+~PNLBS+ LITES.
.)) .
7 - -
: ’ D o)
10 WPSQPA ~ (SWR) -PNLBS-PSZ
: . 4 Q2
vll WPS2A (SWR) . »~PNLBS—>PSVALUE
| | | o
12 WPSQ (SWR) ~PNLBS-PSZ
| Q2
13 | wps2 (SWR) ~PNLBS-PSEL o oca
14 WPSQT (SWR) +pNLBs->Ps§ﬁA
SW - Q2
5 WpS2T (SWR) PNLBSsPSZ
16 - -
17 - -

This field requires 2 cycles to execute

VALUE = Bits 48-63 of this instruction (CB48-CB63)
QP = Quarter zero of Program Source Word (PS@@-PS15)
Q2 = Quarter two of Program Source Word (PS31-PS47)

Octal

Field Code Mnemonic Effect
PSODD) RPS1A (ps @l o “PNLBS+ LITES
v . VAL
1 RPS34 (PSQ3)+PNLBS+ LITES
' VALUE . o
Q1 | __
2 RPS1 (PSVALUE+PSA)+PNLBS+ LITES
Q3 ' :
3 RPS3 (PS VALUE+PSA)+PNLBS+ LITES
4 RPS1T (PS?&A)-*PNLBS—» LITES
5 RPS3T (PS23),pPNILBS+ LITES
-TMA)
6 - -
7 - B
. , Q1
10 WPS1A (SWR) ~PNLBS»PSE -
, 03
11 WPS3A (Swrp) ~PNLBS~PS YALUE
19 , LpqQl
12 WPS1 (SwR) ~PNLBS-PSZ .
paQ3
13 WPs3 (SWR) ~PNLBS+PSC -.psa
. o1
14 WPS1T (SWR) ~PNLBS+PS-
15 WPS3T (SWR) ~PNLBS-PS o
16 - -
17 - -

e

This field requires 2 cycles to execute.

VALUE=Bits 48-63 of this instruction (CB48-CB63)
Ql=Quarter one of Program Source Word (PS16-PS31)
Q3=Quarter three of Program Source Word (PS48-PS63)

Octal

field Code ‘Mnemonic Effect
PS o RPSLA . (PS 3§LUE)-DPBS
1 ~ RPSFA (PS{ayys)DPBS
2 'RPSL - (PS \I;il.us +psa)7DPBS
3 RPSF (PSI ipss)*DPBS
4 RPSLT (PS.)-+DPBS
5 RPSFT (PS gﬁA)+DPBS
6 RPSLP (PS o 5 DPBS
7 RPSFP (PS.§§LB J~DPBS
10 LPSLA DPBS-PS f}iL e
11 ~ LPSRA DPBS+PS -
12 LPSL ~ DPBS-PS_T .
13 "~ LPSR DPBS-PS f]‘gmeA
14 . LPSLT DPBS+PS
15 LPSRT DPBS+PS o
16 | LPSLP DPBS+PS§§LBS
17 LDPSRP - DPBS=PS

This field requires 2 cycles to execute.

- VALUE=Bits 48-63 of this instruction (CB48-CB63)

LH=Left half of Program Source Word (Bits 00-31)

RH=Right half of Program Source Word (Bits 32-63)

FP=Program Source bits 26-63, used for floating-point literals

Octal

Field Code Mnemonic Effect
SETEXIT @ | - -
1 ~ SETEXA VALUE+SRSgpy

2 - -
3 SETEX VALUE+(PSA)+SRSgpa
R) i | -
5 SETEXT . TMA~SRSgp, -

6 i -

7 SETEXP PSA+1 ~SRSgp,

Sets the current subroutine return address as indicated above,
SRA does not change.
VALUE=Bits 48-63 of this instruction.

FLOATING ADDER GROUP

22

Pg___ 16]17 1920
FADD AL A2
. FADDL
Octal
Field Code: Mnemonic Effect
FADD) - ' See FADD1 field
1 FSUBR Subtract: (A2) - (Al)
2 FSUB Subtract: (Al) - (A2)
3 FADD add: (Al) + (A2)
4 ‘ FEQV - Logical Equivalence: (Al) Xon (A2)
5 FAND Logical and: (A1) AdD (A2)
6 FOR Logical or: (Al) OR (A2)
7 - See I/0 Group
Al ? NC (A1)~Al
1 FM FM~AL
2 DPX(1DX) (DPXppa+IDX)>Al Where XR=1DX+4
3 DPY(1DX) (DPYppa+1DX)*Al Where YR=1DX+4
4 T™ (TM)+Al
5 ZERO @.¢~ Al
6 - -
- - -
Note: floating adder op-codes:

Align exponents

Perform the specified arithmetic, logical, or shift
operation .

3. Normalize

Convergently round

Octal

Effect

Field Code Mnemonic
A2 0 NC (A2)+A2
1 FA FA-A2
2 DPX (1DX) (DPXppyy 1px)+A2, Where XR=1DX+4
3 PPY.(1DX) (DP¥ppsy 1px)»A2, Where YR=1DX+4
4 MD (MD)~A2
5 ZERO ¢.g>A2
M
6 MDPX (1DX) sprN+512-42% (DPXppy ipx yoa0¥
: ,’ 3 ' oS ¥
7 EDPX (1DX) (DPXppas 1px)42 7 sprv-a2¥(9g-91),
. .
g -a2l(g2-27)
FADD1 2 - lTo-Op
1 FIX Convert (A2) to an integer
2 FIXT Convert (A2) to an integer (result
truncated) ‘
3 FSCLT Shift (A%) right and increment A2E
until A2~ =(SPFN+511) (result trun-
cated).
4 FSu2C Convert (A2), from signed Magnitude
to 2's complement.
3 F2C8M Con&ert (A2) from 2's complement
to signed magnituyde.
. . o
5 FSCALE Shift @2)right and increment A2°
' until A2==SPFN+311.
7 "FABS

Take the absolute value of (A2).

I/0 GRUGUP

14 16117 19120 29
1_ 1 1] 1/0 LDREG
ROREG
INOUT
SENSE
FLAG
CONTROL
Octal
Field _Code' Mnemonic Effect
I/0) - See LDREG field
1 - See RDREG field
2 ‘SPMDAV Spin until MD available
3 - - |
4 - See INOUT field
5 - - See SENSE field
6 - See FLAG field
7 - ~ See CONTROL field
LDREG‘ Q - . No- Op
| 1 LDSPD DPBS-+SPD
2 LDMA - DPBS+MA
3 LDTMA - DPBS+TMA
4 LDDPA DPBS+DPA -
5 EDSP SPgpp*SPEN, DPBS>SP
6 LDADPS DPBS~+APSTATUS,
7 "LDDA - - DPBS-DA

- Octal

Field Code Mnemonic Ef fect
RDREG @ RPSA (PSA)»PNLBS
1 RSPD (SPD)-DPNLBS
2 RMA (MA)>PNLBS
3 RTMA (TMA)+PNLBS
4 RDPA (DPA)+PNLBS
5 RSPFN SPFN+DPNLBS
6 RAPS (APSTATUS)+PNLBS
7 RDA (DA)+PNLES
INOUT 9 ouT DPBS>IODEVICEp,
1 SPNOUT SPIN if IODRDYp,=9
| DPBS~IODEVICE
DA
2 OUTDA DPBS+IODEVICE,,, SPFN-DA
3 SPOTDA SPIN if IODRDYDA=¢, SPFN-DA
- 4 DPBS+IODEVICE py |
4 CIN (IODEVICE,)~INBS
5 SPININ SPIN if IODRDYpa=0
: (IODEVICE.,)~INBS
| DA
6 INDA (IODEVICE,,)~INBS, SPFN-DA
7 SPINDA SPIN if IODRDYpa=P, SPFN=DA

(IODEVICEDA)fINBS

B-16

Octal

Field Code Mnemonic Effect
SENSE ? ~ SNsA ApA~+IODRDY Flag '
1 SPINA ADAfIODRDY; SPIN if IODRDY=(
2 SNSADA Apa~IODRDY, SPFN-DA
3 - SPNADA Apa~IODRDY, SPIN if IODRDY=p, SPFN+DA
4 SNSB Bp,+IODRDY Flag
5 SPINB Bpa~IODEDY, SPIN if IODRDY=p
6 SNSBDA Bpa-~IODRDY, SPFN+LA
7 SPNBDA Bpa~IODRDY, SPIN if IODRDY=§, SPFN-DA

A and B are I/O device‘dependent condtions,éither 1 or @

FLAG

) | SFLY
1 SFL1
2 SFL2
3 SFL3
4. CFLQ
5 CFL1
6 CFL2
7

CFL3

1+FLAGg
1-FLAG]

1+FLAG3,

9~FLAG

P~FLAG,

p~FLAGg

Octal

Field Code Mnemonic Effect
CONTROL] HALT Halt
1 IORST I/0 reset
) . ___‘
3 INTA Interrupt acknowledge. Device
Address of interrupting device
put onto DPBS.
4 RETFR Memory refresh sync
5 WRTEX Restricts DPX, DPY & MI to
Write exponent only
WRTMAN Restricts DPX, DPY & MI to

Write Mantissa Only (Bits 0-27)

BRANCH GROUP

23 26 |27 31

COND DISP
‘ o Octél.
Field Code ‘ Mnemonic Effect
COND ? - No-Op
1 # . Inhibit load of SPFN+SPSPD
2 - BR Branch~always
3 BINTRQ Branch if INTRQ (Interrupt Request)
‘ flag=1
4 BION » Branch if IODRDY,, flag=1
5 - BIOZ Branch if IODRDY,, flag=0
6 | BFPE Branch on floating-point arith-
. metic error (overflow, underflow, -
- or divide by =zero) -
7 RETURN (SRSSRA)+PSA, (SRA)-1+SRA (Sub-
' . routine‘return Jjump.
NOTE: '"RETURNS" miy not be made in two successive instructions.
10 BFEQ Branch if FA=Q.Q
11 | BFNE Branch if FA#p.p
12 BFGE Branch if FA>0.0
13 BFGT .~ Branch if FA>(.0
14 BEQ ~ Branch if SPFN=¢
15 BNE | Branch if sPFN%¢
16 BGE Bréngh*if SPFN> ¢
17 BGT Branch if SPFN>p
Note: FA and SPFN are tested as to thelr state” for the prev1ous
instruction. .
DISP @ to 37 o ‘ If branch dondition is true,(PSA),

+DISP-20~+PSA

- Thus the effective Branch Range is -20 to +17 relative to the
current instruction.

B-19

-DATA PALI* GROUP

32 3334 35|36 38139 41142 = 44145 47 (48 50

DPX___|DPY _|DPBS XR YR XW YW
Octal)
Field Code Mnemonic Effect
DPX) - | . No-Op
1 DPX(1DX)<DB | DPBS>*DPXppA+1DX, Where XW=1DX+4
2 DPX(1DX)<FA FA~*DPXppA+1DX, Where XW=1DX+d
3 DPX(1DX) <FM - FM~*DPXppx+1DX, . Where XW=1DX+4
DPY ? - ‘ No—dp ,
1 DPY (1DX) <DB ' DPBS>*DPYpps+1DX Where YW=1DX+4
2 DPY(1DX)<FA FA¥*DPYDPA+1DX Where YW=1DX+4
3 DPY (1DX) <FM FM~*DPYDpa+1DX Where YW=1DX+4

*All bits written unless WRTEXP, WRTHMAN or WRTLMAN set. See SOP1
and HOSTPNL field.

DPBS) DB=ZERO @ .(p-DPBS
1 . DB=INBS = INBS-~DPBS
2 DB=VALUE VALUE-DPBSE, VALUE-DPBSML

sign extended into DPBSMH

3 - DB=DPX(1DX) (DPX

! = X+
DPA + 1px) DFPBS, Where XR=1DX+4
=3 YR= +
4 DB DPY(lDX)‘ | - (DPYpp, 4 1py) DPBS, Where 1DX+4
5 DB=MD B (MD) DPBS
6 DB=SPFN SPFN + 512-DPBSE, SPFN-+DPBSML,

sign extended into DPBSMH

7 DB=TM (TM)~DPBS

DPBS forced to @ if HOSTPNL field=10 to 13

ML=Mantissa Low (Mantissa Bits 12-27)

MH=Mantissa High (Mantissa Bits 00-11)

E=Exponent ‘ A

VALUE is a 16-bit 2's complement number, contained in bits 48-63 of
the instruction word. : '

‘Octal

Field Code __Mnemonic Effecf

XR P to 7 DPX Read EFA is (DPA)+XR-4
YR . P to7 DPY Read EFA is (DPA)+YR-4
XW P to 7 | DPX Write EFA is (DPA)+XW-4
W 9 to 7 DPY Write EFA is (DPA)+YW-4,

YW=XW if VALUE is used in
another field

B-21

- FLOATING MULTIPLIER GROUP

51152 53]54 55
FM| ML M2

vOctal |

Field Code Mnemonic Effect

FM ¢ - No-Op
1 . FMUL Multiply: (M1)*(M2)

i 9 FM FM-M1
1 DPX (1DX) (DPXppa+ 1DX)*M1l, Where XR=1DX+4
2 DPY (1DX) (DPYppa+ 1px)*Ml, Where YR=1DX+4
3 ™ (TM)-M1 |

M2) | FA FA-M2)
1 DPX (1DX) (DPXppa+ 1px)~M2, Where XR=1DX-+4
2 DPY (1DX) (DPY¥ppp+ 1px)+M2, Where YR=1DX+4
3 . MD » (MD)+M2

Note: These fields are not in effect if VALUE is used 1n
another field.

Arguments that are unnormallzed by more than one position will
produce incorrect results.

MEMORY GROUP

56 57|58 59|60 61|62 63
MI MA DPA TMA

Octal :
Field ~Code Mnemonic Effect
MI 9 - No-Op
1 MI<FA FA>MI, write MI into Data Memory**
-2 MI<FM FM+MI, write MI into Data Memory**
3 MI<DB DPBS+MI; write MI into Data Memory*x

**Al1l bits written unless WRTEXP, WRTHMAN or WRTLMAN is set.
See SOP1l and HOSTPNL fields.

MA 9 - No-Op

1 INCMA (MA)+1*MA, intitate a Data Memory
_ cycle : ‘ : Lo
2 DECMA (MA)-1°MA, initiate a Data Memory .
' : cycle o
: ' 3 SETMA - *SPFN-MA, initiate a Data Memory cyele
*DPBS is used in place of SPFN if LDREG fleld is used.
DPA) - No-0Op
1 INCDPA (DPA)+1+DPA
2 DECDPA (DPA)-1+DPA
3 SETDPA *SPFN-+DPA

*DPBS 1s used in pldce of SPFN if LDREG field is used.

Note: These fields are not in effect if a value is used by
another field. Changes made in MA, TMA, or DP4 do not
affect the values of these redlsters used by other
fields durlng the current instruction.

B-23

Octal

Field Code ~ Mnemonic Effect
TMA 0 - No-Op
1 INCTMA (TMA)+1-TMA, initiate a read from

Table Memory

o

DECTMA (TMA)+1-+TMA, initiate a read from
Table Memory :

3 SETTMA '_ *SPFN+~TMA, initiate a read from
Table Memory '

*DPBS is used in place of SPFN if LDREG field is used.

Note:

These fields are not in effect if a VALUE is used by
another field. Changes made in MA, TMA, or DPA do not
affect the values of these registers used by other fields
during the current instruction.

AP-120B Instruction Field Layout

0 : 1 2 .3‘J 4 5 6 l7 8 9 : 10 11 12 l13 14 15 16 17 18 19»120 21 22|23 24 25 ,26 27 28 '29 36 31
B | sop SH SPS SPD FADD Al A2 ‘COND DISP

‘S—Pad Group Adder Group Braﬁch Group |

| sor1 FADD1
SPEC OPER 1/0

! { . i ! Jl | | I 1. |
32 33 34 35 36 37 38|39 40 41 42 43 44 45 46 47 48 49 50|51 52 53 54 55 56 57 58 59 60 6L 62 &3
DPX DPY DPBS _ xR ‘ YR XW YW IFM M1 M2 MI MA DPA TMA

Memory Group

__Data Pad Group

Multiply Group

VALUE

FLOATING POINT SYSTEMS, INC: -
PO, BOX 23489 PORTLAND, OR97223 11000 SW. 11TH STREET, BEAVERTON, OR97005 (503) 6413151 TLX: 360470 FLOATPOINT PTH

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	xBack

