FLOATING POINT
SYSTEMS, INC.

AP-12OB

| ARRAY TRANSFORM PROCESSOR

SOFTWARE

DEVELOPMENT
PACKAGE
MANUALS

FLOATING POINT
~ SYSTEMS, INC.

SOFTWARE
DEVELOPMENT

PACKAGE

MANUALS

© Floating Point Systems 1976
All Rights Reserved 4
Printed in the United States of America

© PO.BOX 23487 PORTLAND OR97223 1HOOO SW NTH STREET. BEAVERTON,ORQ7005 (503) 6413151 TLX: 360470 FLOATPOINT PTL

SOFTWARE DEVELOPMENT PACKAGE MANUALS

FPS-7292

This document contains four (4) manuals:

1.

HOW TO PROGRAM THE AP-120B
Manual - |

FPS-7303

‘March 1976

AP-120B APAL - Array»Processor Assembly Languaée
Manual - |
FPS-7275-01

Revised February 26, 1976

AP-120B APLINK -‘Array Processor Linking Loader
Manual -

FPS-7276-01

Revised Feburary 26, 1976

AP-120B DEBUG - Array Processor Debugger

Manual -

FPS-7277-01

Revised February 26, 1976

TABLE OF CONTENTS

HOW TO PROGRAM THE AP-120B

Section 1 - Meet the AP ... again 1-1
- Section 2 - Loops 2-1
3 - Caveat Programmer 3-1

Section

AP-120B APAL ARRAY PROCESSOR ASSEMBLY LANGUAGE MANUAL

Section 1 - Introduction’ APAL 1-1
Section 2 - Basic Syntax , APAL 2-1
Section 3 -~ Source Program Statements APAL 3-1
Section 4 - Operating Procedures APAL 4-1
Section 5 - Error Messages . ' ADPAL 5-1
Appendix A _ APAL A-1
Appendix B , APAL B-1
Appendix C . APAL C-1

AP-120B APLINK - ARRAY PROCESSOR LINKING LOADER MANUAL

Section 1 - Introduction APLINK 1-1
- Section 2 - (Presently Omitted)

‘Section 3 - Operating Procedure APLINK 3-1
Section 4 - Error Messages APLINK 4-1
Appendix A : : : APLINK A-1
Appendix B , APLINK B-1

AP-120B APDEBUG ARRAY PROCESSOR DEBUGGER MANUAL

Appendix A ’ APDEBUG A-1

‘Abstract:

Manuals Affected:

‘Documentation Updaté

These pages reflect program changes
in Software Update #1 and replace
corresponding pages in the Software
Development Package Manuals. Changed
or newly added material is identified
by a bar along the outside margin of
the page.
APAL #7275-01 February 26, 1976
Pages: 4-1

4-1a

4-2

APLINK #7276-01 February 26, 1976

Pages: -

o

1
o

1
H N0 GO e

LW WwwWwwwww
|

APDEBUG #7277-01 February 26, 1976

Pages: A-1

HOW TO
PROGRAM THE AP-120B
FPS-7303

FPS-7303
©FLoATING POINT SYSTEMS, INnc., 1976
ALL RIGHTS RESERVED -

PUBLISHED IN THE UNITED STATEs OF AMERICA
MARCH 1376

SECTION 1

SECTION 2

SECTION 3

TABLE OF CONTENTS

MEET THE AP.....AGAIN

1.1 Introduction.

1.2 Basic Overview

1.3 Referencing Memory

1.4 S-Pad Mnemonics

1.5 Other Pseudo-0Ops

LOOPS

2.1 A Poor Loop

2.2 Determining Length of Loop
2.3 Writing a Real Memory-Limited Loop
2.4 Writing Intros -

2.5 A Dot Product Progra

2.6 Notation
- 2.7 Dropping Out Onre Early

2.8 Interaction Between Columns
2.9 Changing DPA ,

2.10 Non-Memory-Limited Loops
2.11 A 1-Cycle Loop.

CAVEAT PROGRAMMER (Let the Programmer
‘ Beware) '

3.1 Calling Another Sub-routine
3.2 Other Things to Watch Out For

SESESECESESERECRES
I
e O N R

SECTION 1
MEET THE AP...... AGAIN

1.1 INTRODUCTION

The purpose of this manual is to illustrate the way to use the
AP most efficiently, i.e., to write good loops. It assumes that
the reader has already read the Processor Handbook (especially
Section 3) and the Software Development Package Manual (APAL,
Sections 2 and 3), and has at least a passing acquaintance with
the AP instruction set.

- The first section presents a short review of the basic elements
of the Array Processor from the programmer's point of view.

The second sectionh covers methods and techniques of writing loops.
The third section consists of a set of common pitfalls to avoid.

The review in this section of the basic AP instructions is not
meant to be all-inclusive. It is intended to briefly cover

the most-often-used things. Further details can be found in
the other manuals.

This manual assumes the use of the AP's 333ns interleaved mémory.

1,2 BASIC OVERVIEW

1.2.1 Arithmetic. Both the Floating Adder and Floating Multiplier
need explicit instructions (e.g., FADD and FMUL, respectively) to
push their respective answers out of the plpellnes Given these
"pushers'", the Floating Adder result (FA) will be available 2 ,
cycles after the original instruction, and the Floating Multiplier
result (FM) will be available 3 cycles after the original instruction:

FMUL DPX,DPY '"multiply

0. FADD DPX,DPY '"add- 0.
1. TFADD "push 1. FMUL ""push
2. DPX(1)<FA ""store answer 2. FMUL "push
‘ 3. DPY(1l)<FM "store answer

The empty'FADD and FMUL "pushers'" can also be real Adder or
Multiplier operations, thus producing new answers each cycle.

If the '"pushers'" do not directly follow the original instructions,

. FA will come out 1 cycle after the first FADD pusher, and FM will
come out 1 cycle after the second FMUL pusher. Both FA and FM will
~remain available for succeedlng cycles until a new FA or FM is
pushed out.

The arguments for Adder and Multlpller instructions con81st of one
- from column A and one from column B, {in that order):

COLUMN A (Al or M1) COLUMN B (A2 or M2)
M ‘ _ " FA
T™ ‘ MD
DPX DPX

DPY _ DPY

The Adder has additional arguments of ZERO and NC (no change) which
can be used in either or both columns. '

1.2.2 Main Data Memory. Reading from memory requires one of the
following instructions: SETMA, INCMA, DECMA, or LDMA. 1In practice,
it is usually done by the SETMA instruction. The result, MD, comes
out three cycles later and is also available for succeeding cycles
until a new MD comes out. No '"pushers'" are needed. Writing into
memory requires one of the above instructions plus MI<source where
source is FA, FM, or DB. This goes on the same line as SETMA and
gets done in that cycle. Memory can be referenced every 2 cycles,
for either a read or write. ‘

1.2.3 Table Memory. Table memory is usually referenced by the
SETTMA or LDTMA instruction. Two cycles later, TM is available
and remains so until 2 cycles after the next instruction affecting
TMA. Such instructions can occur in every cycle, producing a new
TM every cycle. _

1.2.4 Data Pad. DPX and DPY each contain 32 registers, 8 of which
are accessible from any given DPA. That is, one can reference DPX
from DPX(DPA-4) to DPX(DPA+3), and s1m11arly for DPY.

The Data Pad Bus is usually used to store data from memory or from
one Data Pad register into another, or to utilize a value, e.g.,
in conjunction with a load operation: .

DPX(1)<DB; DB=DPY(-2) - (This can be shortened to
| | DPX(1)<DPY(-2).)

DPX<D3; DB=MD | (Or DPX<MD)

LDDPA: DB=3 - (This sets DPA=3)

Storing into Data Pad from FA or FM does not use the Data Pad Bus.
This is important, as it leaves DB free for other uses.

1.2.5 &5-Pad. S-Pad registers are usually used as address pointers
or counters, and thus to pass parameters to a program. An S-Pad
operation must accompany a SETMA (or SETDPA, SETTMA, etc.)
instruction. An S-Pad operation must also precede a conditional
branch (BGT, BNE, etc.) by one cycle. That is, conditional
branches are based on the S-Pad Function (SPFN) of the S-~Pad
operation in . the previous cycle.

The fastest way to get an integer into S-Pad is to use the LDSPI
instruction: LDSPI COUNT; DB=5

This puts 5 into an S-Pad register called COUNT. The value is
‘assumed to be octal unless a decimal point is added.

DB=15. (note point) is equivalent to DB=17 (octal), or to

DB=QFX (hex). Hexadecimal numbers must start w1th a numeric digit
and end with "X'".

Although the Floating Adder operation FSUB Al1,A2 will do Al1-AZ2, the
.S-Pad operation SUB subtracts in the opposite direction, i.e.,
SUB PIECE,TOTAL will do:

(contents of S-Pad TOTAL) minus' (contents of S-Pad PIECE).
1-2

1.3 REFERENCING MEMORY

In order to read something out of memory, or write into it, the
location in memory where this will occur must be provided. The

- SETMA instruction gets this necessary information from the S-Pad
Tunction (SPFN) of the same cycle. Therefore, one needs to
construct an S-Pad operation which will result in a pointer

to the appropriate memory location. Generally this takes the
form of adding increments to pointers. For example, if there
was a 4-element vector in memory locations 100, 102, 104, 106,
one would need an S-Pad register (say, APTR) containing the .
base address (100), and another S-Pad register (AINC) containing
the increment between elements (2) Then, if one wanted to read
the element in location 102, the appropriate instruction would be
ADD AINC,APTR; SETMA. Now APTR would contain 102. 1If one wrote
another ADD AINC APTR; SETMA the contents of memory location 104
would be read. : ‘

Consider the following instruction: MOV APTR,APTR. This doesn't
seem to accomplish much, but in the light of the above discussion,
it can be seen that its SPFN could be useful for a SETMA. This
is how one would get the first element of a vector.

All of the above is correspondlngly trus for wrltlng into memory.

1.4 S-PAD MNEMONICS

S-Pad names such as APTR, AINC, N are really only temporary names
for the 16 S-Pad registers. A statement such as DEC N will not
mean anything to the assembler unless the program has equated

the mnemonic '"'N" with a specific S-Pad register, such as S-Pad

0. This 'is done by the following assembler pseudo-op: N $ENU O.
All S-Pad names used in a program must be declared in this

manner before using them in an Lnstructlon Thus, programs
generally begin w1th lists llke '

APTR $EQU 0
AINC $EQU
'BPTR $EQU
- BINC S$EQU
N 3EQU

B W+

-These S-Pad numbers should not be confused‘with the contents of the
S-Pads. ADD BINC,BPTR would not add 3 to 2 (using the above list),
but would add3the contents of S-Pad 3 to the contents of 3-pad 2.

There can be more than one name for an S-Pad register. If you
had 2 different vectors, A and B, and wished to use the mnemonics
AINC and BINIIC for their increments, you could use the 'same S-Pad
register if the 1ncrement for both is the same in all cases, “by
declaring: :

AINC'%EQU 1

BINC $EQU 1
1-3

1.5 OTHER PSEUDO-OPS

~ Besides the $EQU pseudo-op, the typical program includes $TITLE and
- $ENTRY pseudo-ops at the very beginning, and an $END at the very
end. A basic program with one loop would have the following form:

$TITLE name
; $ENTRY name
S-Pad mnemonic S$EQU @

' ; . . 1

2

name: (code)
1" .

o - {}”intro” to louop and any initializations
J and pointer adjustments)

$END

See the software manual for explanations of these pseudo-ops.

 SECTION 2
LOOPS

2.1 A POOR LOOP

The loop is where the potentiél of the AP comes into full bloom.
For example, one way (lengthy but workable) to write a dot
product program is as follows:

Given: Vectors A and B in Main Data memory, with elements of
' each vector in equally spaced locatlons in memory (e.g.
‘even-numbered locations).

Produce: N
c= 2 Ap-Bn
m=1

Parameters passed in S-Pad:

S-Pad Name . Contains:

APTR : base address of vector A -

BPTR base address of vector B

XINC increment (number of locations from one
element to the next) (same for both vectors)

N , number of elements in each vector

CPTR : .address of answer

DOTPROD: SUB XINC, APTR (*see below)
. SUB XINC,BPTR (*see below)

" FADD ZERO ZERO "initialize FA=0

FADD

- LOOP: ADD XINC, APTR SETMA 'get mth element of vector A

"NOP , " from memory
NOP

DPX<MD "MD=Ap, ‘store into DPX

ADD XINC,BPTR; SETMA ''get mth element of vector B
NOP ‘ :

NOP : :

FMUL DPX,MD "MD=Bpn, do Ap.Bnp

FMUL '

FMUL . _ _

FADD FM, FA "add product to sum of products
FADD- ‘ _ _

DEC N "decrement counter

BGT LOOP "branch back if not done yet
_ "(i.e. if N>0) S
DONE: MOV CPTR,CPTR; SETMA; MI<FA
"otherwise, store answer

*This is so that the first time through the loop, ADD XINC,APTR and
ADD XINC,BPTR will not move the pointer to the second element

passing up the first altogether.

-~ To begin with, this program can certainly be shortened by combining
instructions and overlapping memory fetches. Thus:

DOTPROD: FADD ZERO,ZERO; SUB XINC,APTR
‘ FADD; SUB XINC,BPTR

"LOOP: ADD XINC,APTR; SETMA "get Ap

NOP

ADD XINC,BPTR; SETMA "get Bp

DPX<MD "store A, in DPX

NOP

FMUL DPX,MD ~ "do Ap.Bp

FMUL ‘

FMUL :

FADD FM,FA; DEC N "add prod to sum of products
" and decrement counter

FADD; BGT LOOP ~ '""test if done. If not, branch
" _ ' to LOOP

DONE : - MOV CPTR,CPTR; SETMA; MI<FA
_ . "if so, store answer

Note the extra FMUL's and FADD's, described as ''pushers.'" These
‘push the answers through the pipelines, so that FM and FA will
contain what they are intended to contain. This is pointed out
because the beginning AP programmer is likely to forget to put
"pushers'" in his code. -

Now the loop of the evolving dot product program is 10 cycles lecng.
This means that each new pair of elements costs 10 more cycles.
Although better than the initial example, which had a 14-cycle
loop, this can actually be cut down to a mere 4 cycles!

2-2

2.2 DETERMINING LENGTH OF LOOP

One might suppose that the length of a program loop depends on
what one is trying to do. This is true, but not. . in the way one
would think. The AP programmer decides ahead of time how many
cycles his loop should contain, and then fits everything into

that framework. How does he pick the magic number? Most
commonly, loops are memory-limited. Recall that one can reference
memory (to read or to store) every 2 cycles. If one has 2 memory
references to do (e.g., '"get A" and ''get B!"), then the loop will
be at least 4 cycles long (2 per memory reference). And, unless
one has more than 4 different FMUL's, 4 different FADD's, or 4
different S-Pad operations to do, the loop should be, at most, 4
cycles. A lot can be done in 4 cycles when one cah do a l[loating
Multiplier operation, a Floating Adder operation, an S-Pad
operation, a branch, a memory reference, a Data Pad Bus transfer, etc.,
in each cycle. :

2.3 JRITING A REAL MEMORY-LIMITED LOOP

Before continuing with the transformation of the dot product
program, another example will be utilized.

Given: Vectors A and B in Main Data memory, length=N elements
Produce: Vector C (in memory), where 5 ' ~
' Cm=Am+Bm for m=1 to N

Pafameters: S-Pad Name Contains

APTR base address of A

BPTR base address of B

CPTR base address of C

XINC increment (same for all vectors in this

example) ‘

N ‘ number of elements
Note that there should be 3 memory references in the loop: '"get A",
"get B, and "store C'". (Unlike the dot product which accumulated

a running sum in the Adder, this program needs to store an answer
after each set of computations. For the dot product, storing was
not a repeated process, and hence not included in its loop). Three
memory references, one every other cycle, means the loop would be
-6 cycles long. It would start like this:

1) ---(nothing here, but count a cycle)

2) ADD XINC,APTR; SETMA "get A

3) --- o

4) ADD XINC,BPTR; SETMA ""get B

5) DPX<MD - "store A in DPX
6) FMUL DPX,MD - "do A*A

(The reason for starting on the second line will be explained later .)

2-3

Now it has run out of cycles, but there is still more to do, so it
starts back up at the first cycle. which is where the end will
branch to, when it gets around to. testing if it's done.

el

AT
LOOP: 1) ——— "] FMUL - "B is available here,
, ' : ! . "not needed yet
2) ADD XINC,APTR; SETHMA ; FMUL
3) —on - T |FADD FM,MD "add B to AZ

!

4) ADD XINC,BPTR; SETMA / |FADD .

5) DPX<MD // DEC N "answer is available here
p _ "but can't reference mem.
. "'yet to store it
6) FMUL DPX,MD P ;ADD XINC CPTR; SETMA; MI<FA;
: \ . ¢ BGT LOOP "store answer and
- - i _ "test if done

This is the entire loop. In 1ts proper form taking out lines and
adding semicolons, it looks like this: :

LOOP: FMUL

ADD XINC,APTR; SETMA; FMUL
FADD FM, MD

ADD XINC BPTR; SETMA; FADD
DPX<MD; DEC N
FMUL DPX MD; ADD XINC CPTR; SETMA,; MI<FA BGT LOOP

2.4 WRITING INTROS

Notice, however, that if the program goes .right into this loop,
after 1n1t1al overhead such as SUB XINC,APTR

SUB XINC,BPTR
: SUB XINC,CPTR
it picks up the first element of A and B as it's supposed to,
but it also stores something into C before it's ready to, -and
decrements the counter too early. It goes through both columns
at the same time. What is desired, however, is that computations
in the second column continue from the first column. The only
way it can do this is to continue from what the first column did
in the previous time through the loop. And the first time, there
‘was no previous time. Hence the need for additional microcode
before getting into the loop.

Exactly what needs to go before the loop? In order for the second
column of the loop to be doing what it's supposed to when the

program gets to it, the first column must precede it. vEssentially,
one rewrites the first column as an "intro" to the loop. Thus:

PROGRAM: MOV APTR,APTR; SETMA 'get first element
~ SUB XINC,CPTR vzi éffset ADD in loop
MOV BPTR,BPTR; SETMA "get first element u
DPX<MD | ’ ”gioge A(1l) in DPX
FMUL DPX, MD | "de A(1)2
'LOOP: FMUL |
ADD XINC,APTR; SETMA; FMUL "get A(m+1)
FADD FM,MD | "do A(m)?+B(m)
ADD XINC,BPTR; SETMA;'_ FADD | | "get B(m+1l)
DPX<MD; DEC N S "store A(m+1)
FMUL DPX,MD; ADD XINC,CPTR; SETMA; MI<FA: BGT.LOOP
' ’ "do A(m+1)°, store

"C(m), test if done

DONE: RETURN

To clear up a loose end regarding the structure of memory-limited
loops, one might notice that since the branch must be in the last
cycle, the DEC N instruction must be in the second-to-last cycle.

DEC is an S-Pad operation and cannot be in the same cycle as another
S-Pad operation, such as ADD XINC,XPTR. A memory-limited loop has
SETMA's (requiring S-Pad operations) on every other line. Since the
DEC N operation will go on an odd-numbered line of the loop, the
SETMA's must go on even-numbered lines. This is why the first

thing to do, ADD XINC,APTR; SETMA (see section 2.3), was put on line 2.

A _DOT_PRODUCT

2.5 PROGRAM
It is now possible to write the’4—cycle‘dot product. Using the
technique outlined above, the loop should be constructed as follows:
Il) ———
2) ADD XINC,APTR; SETMA ‘"get A
3) --- »
4) ADD XINC,BPTR, SETMA ''get B
fhen
~ 4

?) - .' DPX <MD "store A
%)' ADD XINC,ADPTR, SETMA | |---
3) -—--- : FMUL DPX,MD '"do A-B

. {
d) ADD XINC,BPTR; SETMA : FMUL
_ . ’

: fhén
-7 N ;g
) - I T DPX <MD " FMUL
. | i
2) ADD XINC,APTR; SETMA . | —-- : FADD FM,6FA "add A-B to sum of
‘ Vo - ‘ "products -
3) —-—-- ' 1 ;FMUL DPX,MD, {FADD; DEC N ' "decrement counter
v ;o !
4) ADD XINC,BPTR; SETMA iFMUL IBGT LOOP "test if done
N \ N i v \

- e had

The intro to this 3-column loop will consist of the first column

alone,

then the first and second column together.

‘Other overhead,

such as initializing FA to O, can be mixed in with the intro.

To generalize, an N-column loop would require an intro consisting

of column 1 followed by columns 1 and 2 together,
followed by columns 1,

1,

2, and 3 together....

followed by columns
2,..,N-1 together.

$TITLE DOTPROD
$ENTRY DOTPROD

APTR $EQU 0

- BPTR $EQU 1
CPTR $EQU 2
XINC $EQU 3
N $EQU 4
DOTPROD: MOV APTR,APTR; SETMA; FADD ZERO,ZERO "get A(l) and,
- ‘ , --"initialize FA=0
MOV BPTR,BPTR; SETMA; FADD "get B(1l)
DPX<MD ’ - "store A(1l)
ADD XINC,APTR: SETMA - "get A(2)
FMUL DPX,MD | "do A(1)*B(1)
ADD XINC,BPTR;. SETMA; FMUL "get B(2)
LOOP: DPX<MD; FMUL - _ ' "store A(m+1)
ADD XINC,APTR; SETMA; FADD FM, FA .' "get A(m+2), add
v . "A(m)B(m) to sum
FMUL DPX,MD; FADD; DEC N "do A(m+1)B(m+1)
_ , _ ' ""decrement counter
ADD XINC,BPTR; SETMA; FMUL; BGT LOOP "get B(m+2), test if
‘ : o "done
DONE: OV CPTR,CPTR; SETMA; MI<FA; RETURN ‘ "if so, store answer

".END

Now each new pair of elements will only cost 4 more cycles, because
every « cycles a new pair are being fetched; every 4 cycles another
product is added to the sum. The longer overhead is no disadvantage
as it is only done once, and even if the program was called with N
containing 1, making the streamlined loop unnecessary, it takes no
longer than the unstreamlined program.

Note that there are 2 SETMA's in a row at the beginning and again
at the end of the program. This will not cause any problems except
to.make memory spin, which is the memory's way of putting

"in the NOP's the programmer leaves out. The timing is still the
same, and this way there are 2 less locations of Program Source
used up.. ' ' :

It might be mentioned that if one were getting Vectors A and B out
of Data Pad instead of memory, the dot product could be written
with a 1l-cycle loop! This will be demonstrated later.

2-7

2.6 NOTATION

A few words about notation are in order. The "---'"" used when
writing loops in column form simply denotes a blank spot,
indicating a cycle goes by while awaiting the results of a
memory fetch or while looking for a more propltlous spot to use
the results of the Adder or Multiplier, etc. Normally, something
else will eventually go on the same line, in a different column.

Example: This takes vector A, multiplies it by a constant in
DPX, and stores it in vector B. ‘

1y —-= ' T TFMUL DPX,MD

2) ADD XINC,APTR; SETMA /1t FMUL
3) === ‘ ! FMUL; DEC N
4) --- . | ADD XINC,BPTR; SETMA; MI<FM; BGT LOOP

Since the length of the loop was already dec1ded by the number of
SETMA's, these blank spots cause no harm to the speed. It is

the number of cycles in the loop, not the number of columns, which
determines speed. Extra columns simply mean longer intros, which
the program only goes through once anyway unless it's part of a
nested loop.

In loops with several Adder or Multiplier operations, it often
happens that one such Jnstructlon will be a ”pusher” for another
in another column. :

1) (code) ' FMUL DPY,MD (code)
2) " FMUL DPX DPY FMUL .

3) " FMUL : FMUL S
3) " FMUL ’ - DRY<FM "
5) " DPX(l)<FM - : "

6) " . ‘ ’ ’ o

In column 2, lines 2 and 3 are illegal,; as those lines already
contain FMUL's (which will do the pushing for column 2 as well

as column 1). However it may be advantageous to the

programmer. to note to himself somehow that FMUL's do belong there,
in case things in the first column get moved around for some
reason. This is the purpose of such notatlon as (fmul) or (fadd).

1) (code) . FMUL DPY,MD (code)
2) -~ " FMUL DPX,DPY - (fmul) - "
3) " FMUL. ' (fmul) o
4) " FMUL ‘ DPY<FM "
8) " DPX(1)<FM : "
6) 1 S 1"

Now, 1if pieces of the first column were moved down a couple
of llnes for some reason,

1) (code) ‘ ~ FMUL DPY, WD (code) DPX(I)<FM
2) " ' (fmul) .
- 3)) (fmul) "
4) " FMUL DPX,DPY DPY <FM o
5) " FMUL : - -
6) " FMUL | v

the programmer would be reminded to th real FMUL's back on
those lines.

When writing loops with a small number of cycles, these reminders
can also help one keep track of the‘columns, as in:

TC . DDPY<MD T FNUL FADD FM,FA: DEC N

ADD XINC,APTR; SETMA ---_. FMUL DPY, MD (fmul) | FADD; BGT LOOP

This gets a vector from memory, squares each element and adds the
squares together (sort of a dot product between vector A and itself).
The se¢emingly empty columns, which disappear when the 1oop is
written in proper form (see below), are necessary in order to write
the intro properly. If one left out the second column, for example,
his intro would start with:

MOV ADPTR,APTR: SETMA
DPY <MD
ADD XINC,APTR; SETMA; FMUL DPY,MD

Clearly, the first MD will not be the first element fetched. By
the time it gets down to FADD FM,FA in the loop, something which
doesn't belong will be added in.

This is what the intro and loop should look like:

MOV APTR,APTR; SETMA

FADD ZERO, ZERO © '"initialize FA=0
ADD XINC,APTR; SETMA,; FADD :
DPY<MD

ADD XINC,APTR; SETMA; FMUL DPY,MD
DPY<MD; FMUL , :
ADD XINC,APTR; SETMA; FMUL DPY,MD

LOOP: DPY%MD; FMUL; FADD FM,FA; DEC N
ADD XINC,APTR; SETMYA; FMUL DPY,MD; FADD; BGT LOOP

(answer)<FA

2.7 DROPPING OUT ONE EARLY

1) R (code) ~ (code)

2) ADD XINC,APTR; SETMA "
3) (code) B : ' "
4) ADD XINC,BPTR; SETMA " "
5) (code) _ ! "
6) " . ADD XINC,CPTR; SETMA " ,
7y S (code) " DEC N ,
8) " RN ADD XINC,DPTR; SETMA;

MI<DPX, BGT LOOP

Here, there are 2 memory reads in the first column, one read in the
second column, and a store in the last column. When writing the
intro, the pointers should be taken care of as follows:

"MOV' APTR, APTR; SETMA
SUB XINC,DPTR; (code)
MOV BPTR,BPTR; SETMA
(code)

"ADD XINC,APTR; SETMA: (code)
(code) ‘ "
ADD XINC,BPTR; SETMA; "
(code) "
" j ‘ MOV CPTR,CPTR; SETMA
" - (code)

"

If the memory reference in the second column of the loop was a
store instead of a read, the problem would become more complicated.
By the time the counter went down to zero and the last result was
stored at DPTR, an extra C would have been stored, possibly over

a valuable piece of data, such as the beginning of vector D. Or
if instead of ADD XINC,CPTR; SETMA; MI<DPY in the second column,

we had TPY<FA (where FA .is cumulative, as in the dot product) and
later stored DPY into CPTR after getting out of the loop, an extra
FA would have been computed and DPY would contain an incorrect
answer. In this case, it would be wise to drop out of the loop
one time early. One would put an extra DEC N somewhere in the
intro, so that the loop would be done N-1 times. Then, after the
loop, write just the last column (not including DEC and the branch,
of course), which is all that remains to be done from the loop
anyway. '

Example: This does a dot product of vectors A and B, and also.
outputs the square of each updated sum into vector D.

R
-

o -+ FMUL DPX,MD f——— '
ADD XINC,APTR; SETMA © (fmul) * FMUL DPY,DPY

- FMUL - (fmul)

ADD XINC,BPTR; SETMA : FADD FM,FA . FMUL

DPX<MD v y FADD . , DEC N

- , , .- DPY<FA , ADD XINC,DPTR; SETMA; MI<FM;

K - : BGT LOOP

~

- -

When it is going through the loop for the last time and storing

" the very last thing in D (column 3), it is also simultaneously
doing extra executions of columns 1 and 2. Normally, that doesn't
matter, but in this case, something extra is being added to the
cumulative sum of the dot product (column 2), which was completed
the previous time through the loop. By dropping out of the loop
before its last time around, this error is avoided:

MOV APTR,APTR; SETMA

DEC N : "to cause dropping out early
MOV BPTR,BPTR; SETMA
DPX<MD - ‘
SUB XINC,DPTR "to nullify the first ADD XINC,DPTR
o FMUL DPX,MD '
ADD XINC,APTR; SETMA; FMUL :
' ’ FMUL
ADD XINC,BPTR; SETMA; FADD FM, FA
DPX<MD; FADD :
: " DPY<FA
LOOP: ' FMUL DPX,MD '
ADD XINC,APTR; SETMA . FMUL DPY,DPY
_ FMUL
ADD XINC,BPTR; SETMA; FADD FM,FA; FMUL
DPX<MD; FADD; DEC N , :
DPY<FA; ADD XINC,DPTR; SETMA; MI<FM;
' BGT LOOP '
ouT: v S FMUL DPY,DPY
MOV CPTR,CPTR; SETMA; MI<DPY,; FMUL
' ' FMUL
ADD XINC,DPTR; SETMA; MI<FM;
RETURN

Notice that the (fmul) ih‘column 2 became a real FMUL in the intro.

OUT starts just the last column. The next line stores the
completed dot product.

One might wish to come out one early even if one doesn't strictly
need to, if the loop is long and there are only a couple of lines

~in the last column:

1) (code) (code)
2) " SETMA "
3) 1t .H .
4) " " SETMA; MI<DPX
5) . 1" . ‘ .
6) " SETMA
7) "
8) " SETMA
) 9) "
-10) " SETMA
11) "o DEC N
12) "' SETMA BGT LOOP

In this case, coming out of the loop one time early and adding on
the last 4 lines afterward would save going through 8 cycles for
nothing. :

2.8 INTERACTION BETWEEN COLUMNS

In order to fit things into complicated loops without creating
op-code conflicts, the AP programmer takes advantage of results
(e.g. MD, FA) which are the same for one or more cycles after it
is first available. Sometimes he will purposely delay the

pushing of an answer through a pipeline by leaving out '"pushers'.

But he must be careful of the way the columns interact with each
other within the loop. '

1) FMUL DPX,DPY

2) . - FMUL DPY(3),DPX(2)
- 3)) FMUL

4) FMUL | .

5) FMUL DPY (1)< FM

6) DPX(1)<FM

The FMUL's in column 2 will act as '"pushers'" for the FMUL DPX,DPY
in column 1, whose answer will come out on line 4 instead of line
6 as desired and will disappear forever when replaced by a new.
FM on line 5. Notice the FMUL on line 4 in column 1 acts as a
pusher for column 2, which was planned for.

8]
|
&

Another example:

1) (code) DPX<MD | . (code)

2) ADD XINC,APTR; SETMA . (code) " DPX<FA
3) (code) - | FADD Fi,DPX ~ (code)
4) " ' ~ (code) _ o

The DPX of column 2 line 3 will not be the same as what was stored
into it in column 2, line 1. It will be FA from column 3, linc 2.

2.9 CHANGING DPA

- Because one can access things in Data Pad much faster than
things in memory, it makes sense to store things from memory
into Data Pad if they will be used again. For example, if one
is going to use an N-element vector for several different
computations, one could store it in DPX(9), DPX(1l),....,DPX(N-1).
Because the Data Pad indices can only be accessed from -4 to +3
with a static DPA, it becomes useful to leave the index alone
and change DPA, ‘

Storing vector A in DPX is basically the repeated operation of

* DPX<MD; INCDPA. TIf DPA is initially set to zero, then the first
element will be stored into DPX(0). INCDPA will increase DPA

~for the next instruction. .Thus: DPX<MD; INCDPA "refers to DPX(0)
DPX <MD "refers to DPX(1l)

The ways to set'DPA to zero:

CLR# (S-Pad name); SETDPA '"uses up S-Pad field
or
.DB=ZERO; LDDPA "uses up Adder field

This loop will read a vector ‘from memory into Data Pad X:

. 4 -
-—— V] - DPX<MD; INCDPA,;, DEC N
ADD XINC,APTR; SETMA -—- BGT LOOP

With intro:

MOV APTR,APTR; SETMA
CLR# APTR; SETDPA
ADD XINC, APTR; SETMA
LOOP: DPX<MD; INCDPA; DEC N
ADD XINC,APTR; SETMA; BGT LOOP

2-14

2.10 NON-MEMORY-LIMITED LOOPS

A non-memory-limited loop is a lonp in which 2 times the number

of memory references is less than the number of same-op-code-field
operations required. For example, if there are 5 Floating Adder
operations to be done (FADD, FSUB, FSUBR, etc.) Dbut only

2 memory references (a fetch and a store) the 5 Adder operations
cannot fit into 4 cycles.

Incidentally, '"pushers'" don't count in figuring out how many cycles
are needed. In a 5-cycle loop with 5 different Adder operations,
the Adder instructions become each other's pushers.)

Recall that in memory-limited loops, the first instruction in

" column 1 usually starts on line 2, to avoid S-Pad conflicts on the
next-to-last line. (See last paragraph of Section 2.4). This is
not necessary in- non-memory-limited loops.

The following loop will test whether each element of a vector in

DPY is within the range between a maximum limit and minimum

limit. If so, the element is added to a cumulative sum. The maximum
limit is conveniently located in MD, and the minimum limit in FM,

by the grace of whatever program uses this loop. Neither FM nor

MD change during this loop's execution. o ‘

FSUB DPY,MD BTGT BIGGER {(fadd)
FSUB FM,DPY BI'GT SIMALL -~ - DPX<FA; DEC N
(fadd) INCDPA .FADD DPY(-1),DPX , BGT LOOP

Note that the BFGT instruction tests FA of the previous cycle.

2.11 A 1-CYCLE LOOP

For the l-cycle dot product, it is assumed that the vectors are
already in Data Pad, starting at DPX(0) and DPY(0) (where DPA=0).
Obviously, vectors longer than 32 elements' cannot be handled this
way (or can only be handled in segments of 32 or less).

This is what the loop reéllyrlooks like:

FUL DPX,DPY; INCDPA | (fmul) (fmul) FADD FM,FA; DEC N | (fadd) B3T LOOP

The FLUL and FADD instructions become'their own "pushers'.

$TITLE DOTPROD
$ENTRY DOTPROD

N 3EQU O

CPTR SEQU 1

DOTPROD:

LOOP: .

OUT:

$END

" "number of elements in each vector

"where to

CLR# N; SETDPA
FMUL DPX,DPY;
INCDPA;
DEC N
FiUL DPX,DPY;
INCDPA
FMUL DPX,DPY;
INCDPA :
FADD ZERO,ZERO
FMUL DPX,DPY;
INCDPA ; |
~ FADD FM, ZERO;
DEC N
FMUL DPX,DPY;
INCDPA ;
FADD FM,FA:
DEC N;
BGT LOOP

DPX<FA:; TADD

" FADD DPX, FA

FADD

store answer

"DPA=0
"do A(1)*B(1l)

"DPA to 1

"set drop out early
"do A(2)*B(2)

"DPA to 2

"do A(3)*B(3)

"DPA to 3

"init. FA=0

"do A(4)*B(4)

~"DPA to 4.

"A(1)B(1l) in Adder
"decrement counter

""do A(m)*B(m)

"DPA to DPA+1

"add A(m-3)B(m-3) to sum
""decrement counter

""test if done

"store cumulative FA
"add it to other cumulative FA

MOV CPTR,CPTR; SETMA; MI<FA; '"store answer

RETURN

This particular sort of loop has a problem with the Floating Adder,
‘in that a cumulative FA needs at least 2 cycles to accumulate

each new addition.

Hence,

the l-cycle loop is actually operating

with 2 mutually exclusive cumulative FA's, interwoven with each

other:

FADD Fi, FA-
FADD F,FA)
FADD FM, FA<
FADD FM,FA

FADD FM, FA

At the end of all this; they (the two strings of sums) need to be

added to each other.

(See OUT, the label after LOOP).

This also illustrates the practice of dropping out of the loop
one time early. If it didn't drop out early, the last (unneeded)
FADD FM,FA of the loop would push out one of the 2 cumulative
FA's. By the next cycle it would be gone forever. By dropping
out early, DPX<FA can be done before it's too late. '

This line of reasoning can eventually lead one to the idea that
~the last column of the loop (see beginning of Section 2.11) is
unnecessary, since there is no way. for the Adder result to come

out in time for the next FADD FM,FA. The FADD FM,FA of each of the
two strings of cumulative FA's w1ll push out the other string. So
the 1oop need only be of the form:

FMUL DPX,DPY; INCDPA |(fmul) i(fmul) DEC N |FADD TM,FA; BGT LOOP

This is one cclumn less than before, which means that there will be
one column's worth (in this case, one line) less to put in the
intro. t will also not be necessary to come out of the loon one
time early, as there is no extra FADD IM,FA to push away something
needed. It is still necessary to add the 2 cumulative FA's
together at the end.

$TITLE DOTPROD
SENTRY DOTPROD

N $EQU 0

CPTR $EQU 1
DOTPROD: CLR# N,; SETDPA - "DPA=0
' FMUL DPX,DPY; ‘ "A(1)*B(1)
' INCDPA; . " DPA to 1
FADD ZERO, ZERO " initialize cum. FA=0
FMUL DPX,DPY;. "A(2)*B(2)
INCDPA; " DPA to Z
FADD ZERO,ZERO " initialize other cum. FA=0
FMUL DPX,DPY; "A(3)*B(3)
INCDPA; ‘ " DPA to 3
DEC N ‘ :
LOOP: FMUL DPX,DPY; "A(m)*B(m)
INCDPA; : " DPA to DPA+1
DEC N; o " decrement counter
FADD FM,FA; " add A(m-3)B(m-3) to cum. FA
BGT LOOP " test if done
OuT: DPX<FA; FADD ' "store first cumulative FA
FADD DPX,FA , ”add,it to other cumulative FA
FADD
MOV CPTR,CPTR; SETMA; MI<FA; '"store answer
RETURN ‘ :
$END

. SECTION 3 ‘
CAVEAT PROGRAMMER (Let the Programmer Beware)

3.1 CALLING ANOTHER SUB-ROUTINE

The JSR instruction allows one program to utilize another program,

for example the divide sub-routine (DIV). In order to do this, one
must declare DIV external ($EXT DIV) so that the assembler and’

linker will know what to do with the otherwise undefined symbol.

One must also save everything he will need when program execution
gets back to his main program. Depending upon what was used in

the called sub-routine, some things may remain untouched. Commonly
one should not count on being able to leave things in the Adder or
Multiplier. Parts of Data Pad may also be changed, or DPA may
change. S-Pad will probably not remain inviolate. (Remember, it's
the S-Pad register number, not name, which is important.) These
things need to be checked before doing a JSR.

3.2 OTHER THINGS TO WATCH OUT FOR

The rest of this section consists of various short examples,
cautions, and reminders.

DPX<MD; DPY<DPX(1)
Illegal. Data 3Bus is assigned tw1ce (The above is really
DPX<DB; DB=MD; DPY<DB; DB=DPX(1l).)

DPX<MD; DPY<MD is legal. (DB=MD; DPX<DB; DPY<DB)

DPX<FA; DPY<FM
Legal. FA and FM don't use the Data Bus.

DPX<FA; DPY<FM; DPX(1)<MD
Illegal. Data Pad X is being written into twice (different
indices). Within each cycle, there should be no more than one
of each of the following:

write into DPX

write into DPY

read from DPX

read from DPY
The exception is when reading out of a Data Pad more than once
but using the same index:

FADD DPX, FA; FMUL DPX,FA; DPY(1)<DPX is 1ega1

FADD DPY,DPY; TMUL DPY DPY is legal.

FADD DPX,FA; FMUL DPX(l) FA is not legal.

FADD DPX ,DPY; DPY<MD
The old value of DPY before MD replaces it, is used in the sum.

DB=4; LDSPI XINC; LDDPA; DPX(2)<FM

Both DPA and the contents of XINC will become 4, but the prev1ous
DPA is used in referencing DPX(2).

SUB# XINC,APTR; BGT OUT
Illegal. The # uses the condition field (branch).

THE $END

AP-120B APAL
ARRAYFPROCESSOR ASSEMBLY LANGUAGE MANUAL
/275-01

FPS-7275-01 .

‘C FLoaTing PoinT SysTeEms, Inc. 1976

ALL RIGHTS XESERVED v ~
PRINTED IN THE UNITED STATES OF AMERICA
ReEvision 01, FeBruary 26, 1976

TABLE OF CONTENTS

Section 1 - INTRODUCTION

Sectlon 2 - BASIC SYNTAX
Character Set

. Symbol Names
Numeric Constants
Expressions

L\')l\J"l\'JN
»hww»—:

Section 3 - SOURCE PROGRAM STATEMENTS
Comment Statements
Instruction Statements
Pseudo Operations Statements
Order of Program Statements
A Sample Program

WwWwwww
[9BSR o

Section 4 - OPERATING PROCEDURES
Using APAL

4 2 Listing Format

4.3 A Sample Assembly listing

|—J

Section 5 - ERROR MESSAGES
Appendix A

Appendix B :
’ S~-Pad Op-code Group

Memory Address Op-code Group

Table Memory Address Op-code Group
Data Pad Address Op-code Group

Branch Op-code Group

Floating Adder Op-code Group

Floating Point Multiply Op-code Group
Data Pad X Op-code Group _
Data Pad Y Op-code Group

“Memory Input Op-code Group

Data Pad Bus Op-code Group

Special Operation Op-code Group .

I/0 Op-code Group

QOO U W -

oo wowoow
el
WO

Appendlx o}
- C.1 Table Memory Symbols
C.2 Elementary Function Tables

Appvendix D
D.1 Example Output form APAL

APAL i

W o o »@»f 00 LI LW W

—
|
[

mno$tom
D

| 1 N Y N T |
BN OUWH

1 1 1
-

I
HOOINOM b WWwwdH

-

UJUJUJU?UJUU?JUJUUWUJUJUJ

P o
XV

SECTION 1
INTRODUCTION

APAL (Array Processor Assembly Language) is a cross-
assembler written in Fortran IV which provides a two-pass
assembly of symboliec coding for the AP-120B,

APAL is a conventional assembly language, and as such,
should pose no difficulties to programmers familiar with
using assembly language on other computers.

On typical 16-bit mini-computers, APAL requires approxi-
mately 24K of available memory to operate as supplied.

APAL 1-1

INTENTIONALLY BLANK

CAPAL 1-2.

SECTION 2
BASIC SYNTAX

2.1 CHARACTER SET

- APAL recognizes the following characters:

- Alphabetic A thru 2Z
Numeric ' @ thru 9 _
Special + - * /., $ space tab = <
)5, TR &

2.2 SYMBOL NAMES

Symbol names may be of any length, however only the
first six characters of a name are significant. The first
character of a name must be an alphabetic character, the
‘subsequent characters may be either letters of numbers.

Examples: LOOP
A6
STARTHERE
Symbols are given a'value in any of three ways:
1. Being defihed by a $EQU pseudo-op.

2. Being used as a label.
3. Being declared $EXTernal.

3.3 TABLE MEMORY SYMBOLS

A symbol with a value preset to the address of each of
the constants in Table Memory ROM is predefined in APAL.
These symbols all start with a "!" to avoid conflict with
any user defined symbol. They may be used in expressions
in the same manner as ordinary symbols.

A compléte list of these symbols is in Appendix C.
For example, to fetch PI from Table Memory, and add it to
a number in DPX(2)

LDTMA; DB='PI "fetch PI from TM

NOP _ "Wait (or do something else)
FADD TM, DPX(2) '"Add PI to DPX(2)

APAL 2-1

‘2.4 NUMBERIC CONSTANTS

; Numbers may be written in four radices: octal, decimal,
binary, or hex. In each radix, a number may be either signed
or unsigned. Unsigned numbers may range from @ to 65535. Signed
numbers may range from -32768 to +32767. The radix of a number
is established by a radix identifying character which is written
immediately after the number. Octal numbers are denoted by a "K"
immediately following the number. Decimal is denoted by a ".",
binary by a "B" and Hex by an "X". The first digit of a hex
number must be a numeric character. The default radix, if a
radix identifier is not used, is octal,

- Examples: Octal integers: 177777
: ‘ -49727K
. -10 .
Decimal integers: 32767,
' - =1000.
+10. f
Binary integers: 101911910B
" =191B
Hex integers: @ABCDX
123FX
- PCX

2.5 EXPRESSIONS

Expressions mgy be used whenever a numeric value is required.
Expressions are made up of operands and operators. -

2.5.1 Operands. Operands may be symbol names, numeric con-
-stants, or the location counter, denoted by ".'".

Examples: TBLADR
598X

- 2.5.2 Operators. Operators denote operations of addition ("+),

subtraction ("-"), multiplication ('"*"), or division ('/") upon
a pair of operands. '

Some sample expressions:
TBLADR + 37
o + 90
LOOP + 6 * A

Expressions aré evaluated from left to right, modulo 216.

APAL 2-2

SECTION 3
SOURCE PROGRAM STATEMENTS

APAL source statements may be divided intbjxhree categories:

1. Commeht'statements
2. Instruction statements
3. Pseudo-op statements

Comment statements allow program documentation, instruction
‘Sstatements contain the actual symbolic machine code, and pseudo-
op's provide directives to APAL during the assembly process.

. APAL statements have a basically free format: spaces and
tabs may be used as desired to improve legibility.

3.1 COMMENT STATEMENTS

" Everything on a line after a quote mark (") is treated as a

comment by APAL. A line which contains only comments or a line
that is completely blank is a comment statement, and is ignored

during the assembly process, Carriage return termlnates a comment.

3.2 INSTRUCTION STATEMENTS

An APAL assembly language instruction statement has the
general format of: v

Label: Op-code fields "Comments

The label and comments are optional. The assembler processes the
~op-code fields and generates one 64-bit program word for each

1nstruct10n statement.

3.2.1 Label Field. A label is a user-defined symbol which is
assigned the value of the current location counter and entered
into the user symbol table. A label is a symbolic means of
referlng . to a specific location within a program. If present,
a label always occurs first in an instruction statement and must
be terminated by a colon. For example, if the current location
is 76 the instruction statement:

LOOP: FADD DPX, DPY . ‘ "LOOP HERE
Assigns the value of 76 to the symbol 'LOOP'",

APAL 3-1

3.2.2 Op-code field(s), The Op-code field follows the label field
in an instruction statement and contains one or more AP-120B
op-code mnemonic. Individual op-codes in an instruction

are separated from each other by a semicolon '";'", The last

op-code in an instruction is not terminated by a semlcolon

This tells the assembler when it has reached the end of a

complete AP-120B instruction statement. For example, both of

the following instruction statements are equivalent:

LOOP: FADD DPX, DPY; FMUL TM, MD; BFGT DONE'
or

LOOP: FADD DPX, DPY;
FMUL TM, MD;
- BFGT DONE

Each is one instruction statement, which assembles into one
~64-bit instruction word. Thus, one instruction statement may be
continued over as many llnes as desired to achieve a readable
program document. Instruction statements are terminated by an
op-code field which is not followed by a semicolon: not by the

end of a line.

Op-codes may be written in any order preferred within any
given instruction statement. The assembler will flag with an
error message any conflicts between op-codes.

Some op-codes require operands as arguments. The operand(s)
are separated from the op-code by a space or tab, and from each
other by a comma., Some example op-codes:

No operands: HALT; RETURN
One operand: FABS MD; BFGT LOOP
Two operands: FADD DPX DPY; FMUL TM, MD

If an opérand is missing or improper, the assembler will give
an appropriate error message.
A listing of the various AP-120B op-codes is contained in

Appendix A.

3.2.3 Comment Field. The remainder of any line following a quote
mark (") is treated as a comment by the assembler and ignored.

The comment field is terminated by a carrlage return. Thus, in the
previous example, we could write:

APAL 3-2

LOOP: FADD DPX, DPY; "DO AN ADD
FMUL TM, MD; ""AND A MULTIPLY
- BFGT DONE ""AND A BRANCH
"ALL IN ONE INSTRUCTION

As before, an instruction statement is ended by the absence
of a semicolon following the last op-code in that instruction.

3.3 PSEUDO OPERATIONS STATEMENTS

Psuedo-operations are directives to the assembler which
control certain aspects of the assembly translation process.
Each psuedo-op must appear on a separate line in the source
text. All psuedo-op names start with .a "3". As with instruction
statements, psuedo-op statements may be labeled and have comments.

3.3.1 B$EQU. This operator equates a symbol to an expression.
If user defined symbols are used in the expression they must
have been previously defined in the program,

Examples: A $EQU 321
LOOP $EQU LOC + 3
HERE $EQU . - 3
MASK $EQU 132*3+6

. Alternatively, the characters " = " may be used in place
of ”$EQU": :
A =26
X = A*3
When so used, the "=" must be both .preceeded and followed

by a least one space or tab‘character.

1 3.3.2° $LOC, $LOC sets the current location counter to the
value of an expression. If symbols are used in the expression
they must have been previously defined earlier in the program.

Examples: $LOC 300
" 8L.OC . + 6 - "LEAVE NEXT SIX UNUSED
SLOC LOOP + 10
‘Caution: $LOC should not be set to an absolute address, as in
the first example, if the assembly output is to be linked re-
locatably with other programs.

3.3.3 $END. SEND causes APAL to terminate the assembly.

APAL 3-3

3.3.4 $VAL. This operator defines ¢ bits worth of data to fill
one program word. The data is specified as four 16-bit integers,
which represent the four 16-bit quarters of a program word. The
four expressions are separated by commas.

Examples: $VAL -377, 104763, 10., LOOP + 6
$VAL 0, 0, 2000, 33

3.3.5 $FP. This operator fills the right—mostASS—bitsAof a
program word with a specified floating-point number. The left-
"hand 26-bits of the word are cleared. : -

Examples: $FP 6.0023E23

$FP 2
' $FP E-17
PI: $FP 3.141592654 "PI IS HERE

Note: a floating-point number (say a constant for an algorithm)
can be read out of Program Source memory and onto the Data Pad
Bus using a "RPSF" op-code. As an example, to load the contents
of location "PI" into Data Pad X: _

RPSF PI; DPX«DB . '"GET PI INTO DPX

3.3.6 $TITLE. This pseudo-op names a program. The name need
not be unique from other symbols in the program. The $TITLE
pseudo-op must occur first in the program, before any other
pseudo-ops or instruction statements. v

Examples: $TITLE FFT
S$TITLE DIVIDE

3.3.7 $ENTRY. This pseudo-op declares a symbol to be global; i.e.

a symbol which is defined in this program and may be referencéd by ’
othgr separately assembled programs. The identified symbols must be
defined in this program either by an "$EQU" pseudo-op or by being
used as a label. $ENTRY pseudo-ops must occur before any instruction
statements in the program.

If the symbql is to be an entry point for Host Computer Fortran Calls
then follqw1ng the symbol name must be ‘the number of S-Pad parameters’
expected in the CALL. This may be a number from 0-1745, and is separated
from the symbol name by a comma.

Examples: $ENTRY A
$ENTRY B,6 "Expect 6 S-Pad parameters
$ENTRY C,0 ~ "Expect O S-Pad parameters

APAL 3-4

3.3.8 $EXT. This pseudo-op declares global symbols which are
referenced by this program, but are defined by another separately
assembled program. 3$EXT pseudo-ops must occur in the program
before any instruction statements. Symbol names are separated by
commas.,

Examples: $EXT FLOAT, SCALE, FFT
$EXT DIVIDE

3.4 ORDER OF PROGRAM STATEMENTS

There is definite ordering of statement types with a program.
The $TITLE Pseudo-op comes first. Nexty if present,any $ENTRY and
$EXT pseudo-ops. The the program body, i.e. the code, then occurs.
Finally comes the $END pseudo-op. Statement order:

STITLE pseudo-op
$ENTRY pseudo-op(s)*
SEXT pseudo-op(s)*
"code, etc.'¥ _

$END pseudo—op'

*Need not be present.

APAL 3-5

3.9

A SAMPLE PROGRAM

STITLE DJTPR
SENTRY DATPRs 6

“VECTAR D@T PRODUCT

"DBES CC0) = SUM ¢ A(MI) * B(MJ))

“"AUTH@R:
“REVISIGN 1.3
9« LJICATIANS

"“SIZE:

- “SPZED:

FGR M = 0 T N-1

--- STATISTICS ---

A+Ees CHARLESWARTH.

FEB 76

JULY 75
CHANGED S3ENTRY

2 MEMJRY REFERENCES PER PGINT
"SCRATCH: SP: 0.4.53 DPXs 0 (RELATIVE TG DPA)

S = PAD PARAMETERS:

D3TPR:

LooP:

DONE:

SEQU
SEQU
$SEQU
SEQU
SEQU
SEQU
M3V ALA3
M3V B.B;
DPX<MD3
INC N
ADD 1,A3 SETMA;
FADD ZERQ.,ZER®
FMUL DPX.MD3
FADD:
DEC N
BEQ D@NE:
FMULS
ADD J.Bs
DPX<MD3
FMUL
FADD FM,FA3
ADD 1,A; SETMA3
BR LOGP ~
MI<FA? M@V C.G; SETMA;
RETURN '
$END

ZOQG WD
1 AN S,)

SETMA
SETMA

SETMA

"BASE ADDRESS 4F A
"“INCREMENT F3R A
“BASE ADDRESS @F B
"“INCREMENT FGR B
"“ADDRESS QF ¢

“"UVECTJIR LENGTH
“FETCH A(0)
"FETCH B(0)
“SAVE A(Q)
" KEEP COUNT RIGHT
“FETCH A(l])
* CLEAR SuM
“DF AC(MI®B(M)
* PUSH ADDER
** SEE IF D@NE
“BRANCH IF D@NE
* PUSHE MULTIPLIER
* FETCH B(M+1)
“SAVE A(M+1)
* PUSH MULTIPLIER
“ADD (AC(MI*B(M)) T3 SUM
" FETCH A(M+2)
* BRANCH BACXK
“"STARE ANSWER IN C(0)
* RETURN

APAL 3-6

SECTION 4
OPERATING PROCEDURES

4.1 USING APAL

APAL assembles a file of source text containing an AP-120B -
program into a relocatable object flle Optionally an assembly
listing is produced.

APAL first requests whether another assembly is to be done:

DONE? 1=YES, @=NO:

A response of "1" will cause APAL to exit to the system
monitor. A "@" will signal APAL that another assembly is to
be done.

APAL then requests the names of the three files to be used
for source, object, and listing and errors respectively. The
program requests the name of the source file by outputting to the
- user console: '

SOURCE FILE=

The user responds by entering the desired program file
"name. APAL then requests the name of the file to recelve the
relocatable object output by outputting:

OBJECT FILE=

The user responds by entering the desired object file name.
APAL then requests the name of the file to receive the assembly
listing by outputting:

LISTING AND ERROR FILE=

The user replies by entering the name of the desired listing
file. ' :
Finally, APAL outputs:

LISTING? 1=YES, @=NO:

A response of "1" will yield a full assembly listing, symbol
table, and any error messages. A "@" will suppress the assembly
and symbol table listings and put out only any error messages
into the listing file.

Finally, if a listing was requested, APAL outputs:

LISTIVG RADIX? 1=HEX, Q =0CTAL:

A response of "1" will cause the assembly listing to be
done in Hexadecimal (base 16). A"@" will make the assembly
llstlng in Octal (base 8). '

In each of the above cases, if the sought after file cannot
be found or is otherwise unavallable, APAL types "??", and waits

APAL 4-1

for another user response.
An example dialogue is given below. The user desires to

assemble an AP-120B program in f(ile "FFT.AP" and put the object
output into file "FFT.RB'". The listing will be put out on the
line printer. Of course, the precise details of how files and
devices are named will depend on the particular operating system
being used. The messages printed by the computer are underlined
for clarity; a "+'" means carriage return: -

APAL 4-1la

4.2

- SOURCE FILE

RUN APAL+
DONE? 1=YES, @¢=NO: 14
FFT.ADY
FFT.RB+

OBJECT FILE

- LISTING FILE = LP:+

LISTING? 1=YES, @=NO:
LISTING RADIX? 1=HEX,
DONE? 1=YES, @=NO: @+

LISTING FORMAT

presented as four numbers,

47,

14 |
@=OCTAL: @+

Upon commencement of the assembly, APAL outputs:

APAL
ddd

- PASS 1

"###" is the version number of the assembler being used.
Any errors detected during pass one are output next. At the
start of pass two APAL outputs:

PASS 2

The assembly listing follows. The listing contains the
following information for each program statement:

The location counter, if relevant.

Columns Contents

1-6

7-8 Blank , :
9-14 The assembled data, if relevant.
15-16 Blank -

17-132 The source statement

For program instruction statements the assembled data is

representing bits 0-15, 16-31, 32-

and 48-63 of each program source word.

At the end of pass two, APAL outputs

% % % Xk

. Where "###"
APAL outputs:

#ii ERRORS * kK

SYMBOL - NAME

is the number of errors detected. Finally,

APAL 4-2

Followed by the symbol table:

Columns Contents

1-6 Symbol Name
7-8 , Blank

9-14 Symbol value
15 ' Blank

16-18 Symbol type::
_ : Blank - local symbol

EXT - external symbol

ENT - entry symbol

In all of the above occurance where a number (location, data
value, etc.) is printed on the listing, the radix is either
octal or hex, as specified by the user during the initial
dialogue. . ' ’

“APAL 4-3

(INTENTIONALLY BLANK)

‘APAL 4-3a

»>R APAL , _

S@URCE FILE=/CDR 4.3 A SAMPLE ASSEMBLY LISTING
@BJECT FILE=TEMP

LISTING AND ERROR FILE=/TTZ
LISTING? 1aYES., 0=N@: 1

LISTING RADIX: !=HEX., 0=d4CTAL: O

APAL
V2.l
PASS 1
PASS 2
STITLE DdTPR
_ $ENTRY D3TPR., 6
“YECTOR D@T PRIDUCT
“DBES C(O) = SUM ¢ ACMI) % B(MJ)) FOR M = 0 T@ N-1
" ‘ -== STATISTICS ===
MAUTHBR: A«E. CHARLESWIRTH.» JULY 75
"REVISION 1.3 FEB 76 CHANGED SENTRY
"%S1ZE: 9. LACATIONS
“SPEED: 2 MEM@RY REFERENCES PER POINT
"SCRATCH: SP: 044,55 DPX: O (RELATIVE T@ DPA)
’ *S - PAD PARAMETERS: :
000000 A SEQU O “BASE ADDRESS @F A
000001 1 sSEQU 1 “INCREMENT F@R A
000002 B SEQU 2 "BASE ADDRESS @F B
000003 J SEQU 3 . "INCREMENT F@R B
' 000004 C SEQU 4 “ADDRESS @F C
000005 N SEQU 5 S “VECT2R LENGTH
000000 040000 DATPR: M@V A,A; SETMA . “FETCH ACQ)
e 000000 :
000000
000060
000001 040210 M@V B,B; SETMA “FETCH B(0)
' 000000 : :
000000
000060
000002 001124 DPX<MD; ‘ "SAVE ACQ)
E 000000 - INC N ' ‘ " KEEP COUNT RIGHT
045004 :
000000
000003 020101 ADD 1,A; SETMA; "FETCH A(1)
155000 - FADD ZERd,ZER3 * CLEAR SUM
000000

NN AN APAL 4-4

DUU. 04

0000405

000006

000007

000010

QCl1cdis
100000
000400
013400

020310
000623

Q00000

LIQGPs

010060

000000
000000
045004

010000

Q20101

1111158

000000

000060

040420
000340
000000
CCo160

O ERRORS

VALUE

000000
00000!
000002
000003
000004
000005S
00000G0
000004
000010

DANE:

FruULl Dr..
FADD3
DEC N

BEQ DGNE;
FMULS

.ADD Js,B; SETMA

DPX<MD;
FMUL

FADD FM.FA3
ADD I,A2 SETMAS
BR LA@P

MI<FA; MOV CLC;
RETURN

SETMAZ

3END

t 3t]

APAL 4-5

“D6 s =B (MY
» PUSH ADDER
™ SEE IF DONE

“*BRANCH IF DONE
" PUSH MULTIPLIER
" FETCH B(M*l)

"SAVE A(M+1)
** PUSH MULTIPLIER

"ADD (A(MI*B(M)) TO SU
" FETCH A(M+2)
'* BRANCH BACK

“STIRE ANSWER IN C(0)
* RETURN

INTENTIONALLY BLANK

APAL 4-6

SECTION 5
ERROR MESSAGES

APAL error messages are printed in the listing following
the offending statement. There are five basic érror classes,
which are listed below along with the actlon taken by the
assembler:

O - Out of range: the offending numeric value was
truncated to the proper range.

C - Conflicting definitions: the first definition
was used,. - '

M - Missing (or improper) argument: a value of zero
was used. o

B - Bad syntax: the bad op-code field or pseudé—op
was ignored.

W - Warning of improper useage.

Error diagnostics issued by APAL consist of two lines.
‘The first line consists of the error number. The second
line contains the error class and error message. Following
are the assembler error messages, along with an explanation
as to the possible causes and/or cures.

l. W "LINE BUFFER OVERFLOW
An instruction statement was too long (600 characters
maximum) for the llstlng buffer.

2. C MULTIPLY DEFINED SYMBOL
A symbol may be defined only once in a program.

3. C CONFLICTING OP-CODES
Two op-codes were used in an instruction statement which
used the same instruction word bit fields. .

4, O S-PAD ADDRESS OUT OF RANGE
An S-Pad address was outside the legal range of 0-15.

5. O BRANCH ADDRESS OUT OF RANGE

A branch address was more than 16 locations lower or
15 locations higher than the current location.,

APAL 5-1

6. C CONFLICTING BRANCH ADDRESSES
Only one branch address may be used in any given instruc-
tion statement.

7. M MISSING BRANCH ADDRESS
No target address was given for a branch op-code.

8. C CONFLICTING DATA PAD INDEXES
Only one value may be given to each Data Pad Index
(XR, XW, YR, YW) per instruction statement.

9. 'M BAD OR MISSING EXPRESSION o
The assembler could not process an expression.

10. M WRONG FADD ARGUMENT
A floating adder op-code had an invalid Al or A2 operand.

11, M WRONG FMUL AGREEMENT
A FMUL op-code had an invalid M1 or M2 operand,

12. M MISSING FADD OR FMUL ARGUMENT
An operand was missing following a FADD or FMUL op-code.

13, C VALUE FIELD CONFLICT
Only one op-code which uses a 16-bit VALUE field operand
may be used per instruction statement.

14, M MISSING DATA PAD INDEX
A Data Pad Index was missing from an op- code where it
was needed.

15, M UNDEFINED OP-CODE
An op-code name was not a legal AP-120B instruction.

16. M $EXT SYMBOL IN EXPRESSION
An external symbol may not be used to form an expression.

17. M UNDEFINED USER SYMBOL
A user symbol was referenced which was not defined.

18. M MISSING ARITHMETIC OPERATOR
An arithmetic operator (+ - * /) was missing from
an expression.

19. O INTEGER OVERFLOW | |
An integer constant was too large to fit in 16 bits.

APAL 5-2

20,
21,
22,
23,
24.
25.
26.
27.
28,

29.

30.

" 31.

B UNRECOGNIZED STATEMENT
A statement line was neither a comment, instruction,
or pseudo-op statement. :

M IMPROPER $LOC OR $EQU VALUE
The value of a $LOC or $EQU pseudo-op was either
an undefined symbol or an improper expression,

M $EXT SYMBOL NOT ALLOWED
An external symbol may not be used as an argument
for this op-code.

W MISSING $END
A program must terminate with a 3END pseudo-op.

O DATA PAD INDEX OUT OI RANGE
A Data Pad Index must be between -4 and +3 inclusive

B MISSING PARENTHESES
The right parenthesis follow1ng a Data Pad
Index was missing.

M BAD DATA PAD INDEX EXPR -
A Data Pad Index expression could not be resolved

~into a numeric value,

B COMMA MISSING
Only a comma may be used to separate pseudo-op
arguments.

B SYMBOL MISSING IN $EXT PSEUDO-OP :
No symbol names were found as arguments for an
3EXT pseudo-op. :

B MISSING SEP AFTER D.P, INDEX
An illegal character was found following a Data
Pad Index.

B MULTIPLE PSEUDO-OPS
Only one pseudo-op statement may appear on a line.

M BAD FLOATiNG POINT NUMBER

A floating-point number was unacceptable to the
assembler. :

APAL 5-3 .

32.

33.
34.
35,

36.

37.

38.

39.

W ILLEGAL PSEUDO-OP POSITION
If used, a $TITLE pseudo-op must appear first in
a program, followed by any $EXT or $ENTRY pseudo-ops.

W $ENTRY SYMBOL NOT LOCAL -
An $ENTRY Symbol must not be $EXTernal also.

W UNREFERENCED $EXT SYMBOL
A declared external symbol was never used in the program.

W UNDEFINED $ENTRY SYMBOL
An $Entry symbol was not defined.

C DATA PAD BUS CONFLICT
Only one data source may be enabled onto the Data Pad
Bus per’ 1nstructlon statement.

M MISSING S-PAD ADDRESS ‘
An S-Pad op-code was missing its S-Pad Register Address.

M MISSING PROGRAM SOURCE ADDRESS »
An op-code requiring a program address, such as a JMP or -
JSR, was missing its address.

XW/YW CONFLICT

If the value field is used in an instruction, an on-code
which writes into Data Pad Y (such as DPY(2)<FM)) may be
used also only if 1) no write into Data Pad X is done, or
2) the indexes are the same for the wrltes into both

DPX and DPY. Ekamples

Legal: JSR SQRT; "Uses the value field
- DPY(2)<FM ""A store into DPY

Legal: JSR SQRT; - '"Uses the value field
- DPX(2)<FA; "Both Data Pad write indexes
DPY(2)<FM " are the same

Illegal: JSR SQRT: "Uses the value field.

DPX(-1)<FA; "the two Data Pad write
DPY(2)<FM "indexes are different

APAL 5-4

APPENDIX A
SPECIAL CHARACTER USAGE

Character Function

integer addition operator
integer subtraction operator
integer multiplication operator
integer division operator
decimal point, current location
first character of pseudo-op names
pace symbol terminator
ab o symbol terminator
= $EQU pseudo-op, DB=op-code
preceeds a Data Pad index expression
terminates a Data Pad index expression
used in DPX, DPY, and MI op-codes
op-code terminator =
operand separator
~ label terminator
" comment start indicator (carriage return terminates)
S-Pad no-load indicator
& S-Pad bit-reverse indicator
! first character of predefined symbols

GNP ~ %1 +

s e we A AN

APAL A-1

(INTENTIONALLY BLANK)

APPENDIX B
AP-120B SYMBOLIC OP-CODES

‘The various AP-120B op-codes may be divided into 13 groups.
One op-code from each group may be used in any glven instruc-

tion statement, unless otherw1se stated.

The following two symbbls are used throughout this appendix:

<> Indicated optional operands or mnemonics.
The item enclosed in the brackets(e.g., <#>)
may or may not be coded, depending upon whether
or not the associated option is desired.

Indicates a specific substitution is required.

T - Substitute the desired address,

name, number

cr mnemonic for the abbrev1at10n underlined.

The following list of abbreviations are used to facilitate the
op-code descriptions. They are explained in the section of the

op-code group where they first occur:

Section in

Abbreviation Meaning which described
- sh S-Pad Shift B.1
© S8-Pad no-load B.1
sSpsS S-Pad Source register B.1
spd S-Pad Destination reglster ' B.1
& Bit reverse - B.1
disp Branch displacement B.5
al. Floating Adder argument #1 B.6
a2 Floating Adder argument #2 "B.6
idx Data Pad index B.6
ml Floating Mulitplier argument #1 B.7
m2 Floating Multiplier argument #2 B.7
‘dbe Data Pad Bus enable B.8
adr address or .value B.8

APAL B-1

B.1 S-PAD OP-CODE GROUP

Purpose S—Pad_lnteger arithmetic

Double Operand Op-codes

ADD<§£> <H#>
SUB<sh><#>

MOV<sh><#>

AND<sh><#>
OR <sh»><#>
EQV<sh><#>

<&>sps, spd
<&>sps, spd
<&>sps, spd
<&>sps, spd
<&>sps, spd

<&>sps,spd

- Function

ADD sps to spd
SUBtract 'sps from spd
MOVe sps to spd o
AND sps to spd

OR sps to spd .
EQuiValence sps to spd

Tae result

Single Operand Qp—cddes ‘ Function
CLR<sh><#> spd Clear spd

INC<sh><#> spd
DEC<sh><#> spd
COM<sh><#> spd

INCrement spd
DECrement spd
COMplement spd

The result of the above op-codes is SPFN (S-Pad Function).

Miscellaneous Function

LDSPNL spd
LDSPE spd
LDSPI-= spd

LoaD Spd from PaNeL bus
. LoaD SPd from data pad bus Exponent
LoaD SPd from data pad bus Integer
(low 16-bits)
LoaD SPd from data pad bus Table
look-up bits

d

WRTEXP : - enable WRiTe of EXPonent only into
- ‘ - DPX, DPY or MI
WRTHMN ‘ ‘ enable WRiTe of High Malltissa only
‘ , ' into DPX, DPY or MI -
WRTLMN enable WRiTe of Low MaNtissa only into
: : DPX, DPY or MI
ABBREVIATIONS: :
Name Meaning
sh : - S-Pad shift: '
‘ : - Choices : Meaning
(omitted) no shift
L : shift SPFN left once
R shift SPFN right once
" RR . ~ shift SPFN right twice
- S-Pad no-load: = If present, do not load SPFN into spd
‘ (S-Pad destination register). If specified, a branch
group op- code may not be used in the same 1nstructlon
statement
sps S-Pad source register: a name, number or expression

specifying a register number between @ and 17g.

APAL B-2

spd ' S-Pad destination register: a name, number, or expression
specifying a register number between 0 and 17g.
SPFN is loaded into the S-Pad destination register
unless S-Pad no-load (#) is specified.

& Bit reverse: if present, bit revarse the contents of
sps before using. The bit reverse is done as specified
by. bits 13-15 of the Internal Status Register.

Op-code Examples: MOV 3,6
SUBL 1,15
ADDL# &PTR, BASE
DEC CTR :
CLR 9.
LDSPI 6

B.2 MEMORY ADDRESS OP-CODE _GROUP

Purpose: to initiate Main Data Memory cycles

Op-codes Function

INCMA INCrement Memory Address
DECMA DECrement Memory Addresss
SETMA SET Memory Address from SPFN

B.3 TABLE MEMORY ADDRESS OP-CODE GROUP
Purpose: to initiate Table Memory fetches

Op-codes Function

INCTMA INCrement Table Memory Address
DECTMA DECrement Table Memory Address
SETTMA SET Table Memory Address from SPFN

B.4 DATA PAD ADDRESS OP-CODE GROUP

Purpbse: to change the DPA (Data Pad Address) register

Op-codes. Function

INCDPA INCrement Data Pad Address
DECDPA DECrement Data Pad Address
SETDPA SET Data Pad Address from SPFN

APAL B-3

B.5 BRANCH OP-CODE GROUP

Purpose: Conditional branches

Op-code | " Function
BR disp BRanch unconditionally

BINTRQ disp Branch on INTerrupt ReQuest flag non-zero

"BION disp Branch if I/O data ready flag Non-zero

BIOZ disp Branch if I/O data ready flag Zero

BFPE disp Branch on Floating Point Error '

BFEQ disp Branch on Floating adder EGQual to zero

- BFNE disp Branch on Floating adder Not Equal to zero

BFGE disp Branch on Floating adder Greater or Equal to zero
' BFGT disp Branch on Floating adder Greater than zero

. BEQ disp Branch on s-pad function EQual to zero

BNE disp Branch on s-pad function :lot Equal to zero

BGE disp Branch on s-pad function Greater or Equal to zero
BGT disp Branch on s-pad function Greater than zero

RETURN RETURN from subroutine

ABBREVIATION:

disp Branch displacement: the branch target address an

address between 16 locations behind and 15 1ocat10ns
ahead of the current. location.

Examples: BR LOOP

BGT .+3
BFNE A-4

B.6 FLOATING ADDER OP-COLDE GROUP

Purpose: Floating-point adds

Double Operand

‘Op-codes Function

FADD <al,a2-> Floating ADD (al+a2)

FSUB al,a2 Floating SUBtract (al-a2)

FSUBR al,a2 Floating SUBtract Reverse (a2- al)

FAND al,a2 Floating AND (al and aZ2)

FOR al,a2 Floating OR (al or a2)

FEQV al,a2 Floating EQuiValence (al eqv a2)

Single Operand _

Op-codes - Function
"FIX a2 , FIX a2 to an integer

FIXT a2 ‘ FIX a2 to an integer, (Truncated)

FSCALE a2 » ' " Floating SCALE of a2

FSCLT a2 Floating SCALE of.a2, (Truncated)

FSMzC a2 o Format conversion, -Signed ’lagnitude to 2's complement
F2C3M ag .. Format conversion, 2's complement to signed maznitude
_FABS = a9 . Floating ABSolute value

APAL B-4

ADDER OPERANDS:

al Floating adder argument #1:

Choices = - Meaning
NC . ' No Change (use previous al)
M _ Floating Multiplier output
DPX<(idx)>) Data Pad X :
DPY<(idx)> Data Pad Y ‘
T™ Table Memory data
ZERO floating-point ZERO
a2 Floating adder argument #2:
Choices Meaning
NC No Change (use previous a2)
FA . Floating Adder output
DPX<{idx)> Data Pad X
DPY<(idx)> : . Data Pad Y
™ Table Memory data
ZERO floating ZERO :
MDPX< (idx)> use Mantissa from Data Pad X, and
exponent from SPFN
EDPX (idx) - use Exponent Data Pad X, and mantissa
: : from SPFN ’ : '
ADBBREVIATION :
idx Data Pad index: A name, expression, or number which

lies in a range of -4 to +3.

. Op-code examples: TFADD TM, MD

FSUB DPX(3), DPY(-4)
FEQV DPX, DPY(C)
FAND ZERO, MDPX(2)
FSUBR NC,FA

FADD .
Note: Up to four unique Data Pad indices may be specified in one
instruction statement. In particular, only one indexing each may
be used for reading from Data Pad X and Y, regardless of how

many op-codes use the data read from Data Pad. ‘

APAL B-5

B.7 FLOATING POINT MULTIPLY OP-CODE GROUP

Purpose: Floating Point multiplies

Op-code : Function

FMUL ml,m2 Floating MULtiply ml times m2

MULTIPLIER OPERANDS:

ml ’Multiplier—operand #1
Choices Meaning
“FM Floating Multiplier output
DPX< (idx)> Data Pad X
DPY< (idx)> Data Pad Y
- T™M Table Memory
m2 Multiplier-operand #2
Choices ' Meaning
FA : Floating -Adder output
DPX (idx) Data Pad X »
DPY (idx) . Data Pad Y
MD o Memory Data

‘Examples: FMUL TM, MD v
FMUL DPX (AR), DPY (BI)
FMUL

B.8 DATA PAD X OP-CODE GROUP -

Pﬁrpose: Storing into Data Pad X

Op-code Function

DPX<(idx)>v<FA _ Store Floating Adder output into Data Pad X
DPX<(idx)> <FM Store Floating Multiplier output into Data Pad X
DPX<(idx)> <DB Store Data Pad Bus into Data Pad X

DPX<(idx)> <dbe Store dbe into Data Pad X

ABBREVIAT IONS : |

dbe Data: Pad Bus enable: has the same effect as an explicit

Data Pad Bus op-code. (see B.1l)

Choices : - Meaning

ZERO - Floating zero
adr | adr |

-DPX (idx} > Data Pad X
DP¥% (idx) > Data Pad Y

MD " Memory Data
SPFN S-Pad Function

™ Table Memory data

APAL B-6

Note: only one ch01ce of Data Pad Bus enable may be made per
instruction statement.

adr An address or numeric value. Any 16-bit integer
expression is legal. A Floating Multiplier, Memory
Input, Memory Address, Table Memory Address, or Data
Pad Address op-code may not be used in an- 1nstruct10n
statement where an "adr" is used.

Examples: DPX(3)<FM
: DPX(-2)<SPFN
DPX«MD
DPX(1)<DPY (-2)
DPX(-2)< =123

B.2 DATA PAD Y OP-CODE _GROUP

Purpose: Storing into Data Pad Y

Cp-Code - Function

DPY (idx)..FA Store Floating Adder output into Data Pad Y
DPY<(1dx)><FM Store Floating Multiplier output into Data Pad Y
DPY<(ldY)><DB Store Data Pad Bus into Data Pad Y.

DPY<f1dx)><dbe Store dbe into Data Pad Y

Examples: DPY(-2)<FA
DPY< MD
DPY(2) <TM
DPY(1)<39

B.10 MEMORY INPUT OP CODE GROUP

Purpose: Writing into Main Data Memory

Op-codes Function

MI <FA o Move Floating Adder output to the Memory Input reg.

MI <FM _ Move Floating Multiplier output to the Mem. Input reg.
MI<DB ' Move Data Pad Bus to the Memory Input Register

MI .dbe Move dbe to the Memory Input Register

Note: to effect a memory write, an op-code from the memory address
group, or an "LDMA" op--code must also be included in the instruction
statement to supply the memory address.

Examples: MI<FA; INCMA

MI<DPX(3); DECMA
MI<MD; SETMA; ADD 3,6

APAL B-7

E.11 DATA PAD BUS OP-CODE GROUP

Purpose: to explicitly enable data onto the Data Pad Bus.

Op-codes Function

DB=ZERO - enable ZERO onto the Data Pad Bus

DB=adr enable adr onto the Data Pad Bus

DB=DPX<(idx)> = enable Data Pad X onto .the Data pad Bus

DB= DPY<(1dx)>, - enable Data Pad Y onto the Data Pad Bus

DB=MD enable Memory Data onto the Data Pad Bus
DB=SPFN - enable S-Pad Function onto the Data Pad Bus
DB=TM enable Table Memory data onto the Data Pad Bus

Notei as mentioned earlier, only one data source may be enabled
onto the Data Pad bus per Jnstructlon statement. »

Examples: DB = 37
DB = DPX(- 2)
DB = MD
DB = SPFN

B.12 SPECIAL OPERATION OP-CODE GROUP

Note: if an op-code from this group is chosen, an S-Pad Group
op-—-code may not be used in the same instruction statement.

B.12.1 SPECIAL TESTS

Purposé: additional conditional branches

Op—codes - Function

BFLT disp Branch on Floating adder Less Than zero
BLT disp Branch on s-pad function Less Than zero
BNC disp - Branch on Non-zero Carry bit

BZC disp : Branch on Zero Carry bit

BDBN disp Branch if Data pad Bus Negatlve

BDBZ disp Branch if Data pad Bus Zero

BIFN disp Branch if Inverse FFT flag Non zero
BIFZ disp Branch if Inverse FIT flag Zero

BFLQ disp Branch if FLag 9 is 1
- BFL1 disp Branch if FLag 1 is 1

BFYL2 disp Branch if FlLag 2 is 1

disp 1

BFL3 Branch if FLag 3 is

.Note: if one of these tests is used along with a test from the Branch
Group, the conditions are "or'd." 1In this case, only one of the
branch op-codes need have the target address as an operand.

Examples: BNC ODD _
BFEQ LOOP; BFLT LOOP "LESS THAN OR EQUAL TO

B.12.2 SETPSA

Purpose: jumps and subroutine Jjumps

OE—codes Function
JMP<A > adr JuMP to location adr
JMPT JuMP to location whose address is in TMA
JMPP JuMP to location whose address is on the Panel bus
JSR< A > adr JumP to SubRoutine at location adr
JSRT - JumP to SubRoutine at address in Tma
JSRP JumP to SubRoutine at address on Panel bus
Examples: JMP ©LOOP + 3
JSR FFT
JMPA 300

B.12.3 SETEXIT

Purpose: to alter a subroutine return

Op-codes Function
SETEX <A> adr SET subroutine EXit to adr
SETEXT ' SET subroutine EXit to contents of Tma

SETEXP . SET subroutine EXit to contents of Panel bus
Example: SETEX BAD
B.12.4 P.S.

Purpose: read/write of Program Source Memory

Op-codes ~Function
"RPSL 4> adr Read Program Source Left half of location adr
RPSF A> adr Read Program Source Floatlng -point number Zfrom
: location adr

RPSLT Read Program Source Left half at address in Tma
RPSFT Read Program Source Floatlng point number at

A address in Tma
RPSLP ’ Read Prog. Source Left half at address on Panel bus

RPSFP Read Prog. Source Floating-point number at address
- - on Panel bus

Note: these op-codes read onto the Data Pad Bus

Op-coaes Function

LPSL<A> adr ' Load Program Source Left half of locatiqn adr
LPSR<A> adr. . Load Program Source Right half of(locatlon adr
LPSLT T " Load Program Source Left half pointed at by Tma
LPSRT ' , Load Program Source Right half pointed at by Tma
LPSLP ' Load Prog. Src Left half pointed at by Panel bus
LPSRP - Load Prog. Src Right half pointed at by Panel bus

‘Note: these op-codes load from the Data Pad Bus

Example: RPSF PI
APAL B-9 .

B.12.5

3 ODD AND EVEN

Purpose: reading the host panel switches into Program Source
memory; writing Program Source to the panel lites.
Op-codes Function
RPSg<A > adr Read Program Source quarter @ from location adr
RPS1<A > adr Read Program Source quarter 1 from location adr
RPS2<A > adr ‘Read Program Source quarter 2 from location adr
RPS3<A > adr Read Program Source quarter 3 from location adr
RPS@T Read Program Source quarter @ from address in Tma
RPS1T Read Program Source quarter 1 from address in Tma
RPS2T Read Program Source quarter 2 from address in Tma
RPS3T Read Program Source quarter 3 from address in Tma
WPSg<A > adr Write Program Source quarter @ into location adr
WPS1<A> = adr Write Program Source quarter 1 into location adr
WPS2<A> adr Write Program Source quarter 2 into location adr
WPS3<A > adr Write Program Source quarter 3 into location adr
WPSQT ' Write Program Source quarter @ into address in Tma
WPS1T Write Program Source quarter 1 into address in Tma
wpS2T Write Program Source quarter 2 into address in Tma
WPS3T Write Program Source quarter 3 into address in Tma

B.12.6 HOSTPANEL

Purpose: Reading the host panel switches; writing to the host panel

B.12.7 Miscellaneous_

SPMDA

lites
Op-code Function
PNLLIT PaNeL bus to LITes
DRELIT Data pad Bus Exponent to LITes
DBHLIT Data pad Bus High mantissa to LITes
.DBLLIT Data pad Bus Low mantissa to LITes
SWDB. SWitches to Data pad Bus
SYDBE SWitches to Data pad Bus Exponent
SWDBH SWitches to Data pad Bus High mantissa
SWDBL SWitches to Data pad Bus Low mantissa

SPin until a Main Data memory cycle Available

APAL B-10

B.13 I/0 OP-CODE GROUP

Note: 1if an op-code is used from this group, a Flpating Adder
op-code may not be used in the same instruction statement.

B.13.1 Load Reg, Read Reg

- Purpose: reading/writing of various internal registers

Op-codes - Function

LDSPD LoaD S-Pad Destination address register
LDMA LoaD Memory Address register

- LDTMA LoaD Table Memory Address register
LDDPA - LoaD Data Pad Address register

LDSP LoaD S-Pad register poiated at by spd
LDAPS LoaD AP Status register

LDDA , LoaD i/o Device Address

Note: the above op-codes load from the Data Pad Bus

Op-codes - Function

RPSA _ .Read Program Source Address

RSPD Read S-Pad Destination register
RMA ‘Read Memory Address register

RTMA Read Table Memory Address register
RDPA Read Data Pad Address register
RSPFN Read S-Pad FunctiolN

RAPS ‘Read AP Status :

RDA Read i/o Device Address

Note: the above read onto the Panel bus

APAL B-11

B.13.2 INOUT

Purpose: Program contrel/input output of data

Op-codes

OUT
SPNOUT
OUTDA
SPOTDA

Function

OUTput data

SPiN until device ready, then OUTput data
OUTput data, then set DA to spfn ‘

SPin until dev1ce ready, then OuTput data, then
set DA to spfn ' :

Note: the above write to the I/0 device specified by the Device Address
Register (DA) Whatever data is enabled onto the Data Pad Bus.

Og—codes

IN
SPININ
INDA
SPINDA

Function

INput data

SPIN until device ready, then INput data

INput data, then set DA to spfn

SPin until device: ready, then INput data, then
set DA to spfn _

Note: the above enable data onto the Input Bus from the I/0 device

specified by the Device Address Register (DA). To be used the
data must be enabled onto the Data Pad Bus, and from there to a

register or memory. An example:

IN; DPX(2)<INBS "READ I/O DATA’INTO DPX
B.13.3 SENSE
Purpose: . Sensing an I/O'deVice'condition
Op-codes “ Function
SNSA SeNSe condition A
SPINA SPIN on condition A _
SNSADA SeNSe condition A, then set DA to spfn
SPNADA - SPIN on condition A, then set DA to spfn
SNSB SeNSe. condition B ‘
SPINB SPIN on condition B
SNSELCA SeNSe condition B, then set DA to spfn
SPNEDA

SPIN on condition B, then set DA to spfn

APAL B-12

B.13.4 FLAG

Purpose: set/reset of program flags

Op-codes "Function
SFLY - Set Flag @
SFL1 , Set Flag 1
SFL2 _ : Set Flag 2
SFL3 Set Flag 3
CFLQ Clear Flag @
CFL1 Clear Flag 1
. CFL2 S Clear Flag 2
CFL3 ' Clear Flag -3

B.13.5 CONTROL

Purpose: miscellaneous control functions

Op-code A Functions

HALT ‘ HALT processor

IORST I/0 ReSeT

INTEN ‘ INTerrupt ENable

INTA ‘ INTerrupt Acknowledge

REFR memory REFResh synch A

WRTEX enable WRiTe of Exponent only into DPX, DPY or MI
WRTMN , enable WRiTe of MaNtissa only into DPX, DPY or MI

SPMDAV - _ SPin until a Main Data memory cycle AVailable

APAL B-13 .

INTENTIONALLY BLANK

APAL B-14

APPENDIX C

TABLE MEMORY SYMB@LS:

.1.

SYMBOL

 1ZER®
IONE

1 TWO

I THREE
1 FEUR
IFIVE
151X

1 SEVEN
{EIGHT
ININE
I TEN
1STXTN
THALF
! THIRD
I FBRTH
IFIFTH
1SIXTH
1SUNTH
VEGHTH
ININTH
! TENTH

I SXNTH

1SQRT2
1SQRT3
1SQRTS
15QT10
115aT2
11573
115QTS
115Q10
1CBT2
1CBT3
1QDRT2
1L3 G2E
1L3G2
1L GE
ILN2
ILN3
ILN10
IE

1INVE

1ESQ .
I{PI

1 TVOP!
1 INVPI
Ip12
IPIA4
1P1180
1PIsQ
1SQTPIL
ILNPI
! GAMMA
1PHI

TABLE MEMORY CONSTANTS:

CONSTANT
REPRESENTED

ZERS

BNE

™G |

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE

TEN

SIXTEEN
HALF ‘

GNE THIRD
@NE FJURTH
GNE FIFTH
GNE SIXTH
@NE SEVENTH
GNE EIGHTH
GNE NINETH
ONE TENTH
@NE SIXTEENTH
SQART(2) ‘

“SQRT(3)

SQRT(S)
SQRT(10)
1.0/SQRT(2)
1+0/SQRT(3)
1+0/SQART(S)
1+s0/SQRTC10)
CBRT(2)
CBRT(3)
(2.0)%%1/4

LBG2(ED

LaGgioc2l
LAGIOCE)
LN(2)
LNC3)
LNC10)

E

E*x*x2

PI

2%P1
1.0/P1
P1/2
Pl/4
P1/180
Plxx2

‘SQRTC(PL)

LNC(PDD
GAMMA
PH1

VALUE IN
TABLE MEMARY

—— . .
COoOO0OOoOVANOCUMPLWN~O

. o,ho;oAuo:o;ﬁ&:o;n-;o

LUOO0OOO0OOOOO0O0OOO

33333333

)
AV
u

. 0%2 .
04166666667

0-142857143
g.125 '

B EERERRRRR R

0«1
'0+0625
17414213562
1732050808
2¢2360679177
3¢162277660
0+707106781
0+577350269
0+447213596
0+316227766
1+259921050
1+.442249570
12189207115
14442695041
04301029996
0-434294482
0693147181
15098612289
24302585093
2.718281828
0+36787%44l
7389056096
3.141592654
6+283185308
0+318309886
1570796327
0+785398164
0+017453293"
9869604404
15772453851
1144729886
0+577215663
1618033989

TABLE MEMARY
ADDRESS (QCTAL)

4371
4001
4002
444l
2442
2443

a4a4
4445

K446
4447

- 4450

4451
44217
4430
4431
4432
4433
3434
4435
4436
4437

4440

4203
4422
3423
4424
4206

. 4452

4453
4454
4417
4420
4421
42317
4411
4337
4336
4407
4410
3403
4404

4405 -

a402

a415 -

a412
4312
4373
4413
aala
aale
4406
4425
2426

APAL C-1

Qe ELEMENTARY FUNCT1AN TABLES:

ELEMENTARY TASLE MEMORY

SYMBOL FUNCTIGN ADDRESS (B3CTAL)
1DIV DIVIDE © 2000

1SQRT ' SQUARE RGGT 4202

1SNCS . SIN/CBS 4306

1L3G L3 GARITHM 4333

1 EXP EXPONENTIAL = 4317

1ATAN ARC TANGENT 4365

‘3. - SIZE OF INSTALLED FFT C@SINE TABLE
SYMBOL . SIZE (TYPICAL)

IFFTSZ . 2048

APAL (-2

EXAMPLE ouTPUT
from

APAL

APAL
V2.l
PASS 1

PASS 2

$TITLE SINCAS

SENTRY SIN
SENTRY C8S
“SINE. CGSINE FUNCTION

"

-=- ABSTRACT =-=--

"COMPUTES THE FUNCTIGZN SINCX) @R CGS(X): WHERE X IS 1IN

" DPXX(DPA)

" === STATISTICS =~--
"“"LANGUAGE: AP-120B ASSEMBLER

"EQUIPMENT: - AP~120B

"STIRAGE: PS = 31! LBCATIONS

b ' MD -~ N@T AFFECTED

" ™ -9

" DPX = 2

" DPY = 2

"

La)
w
"
"
"
"
"
"

SP = N@T USED

“SPEEDs SIN = 442 USe AVERAGE (400 = 4.83)
v : C@S = 4375 US+ AVERAGE (433 = 5.17)°
“AUTHOR: A+.E. CHARLESVORTH

“DATE: NGVs 1975 ‘
“REVISION: 2.2 FEB 76 CHANGED SENTRY

" . b .

» === USEAGE ===

‘"SAMPLE CALL: JSR SINs» JSR C@S

“ARGUEMENT: X 1S IN DPX(DPA)

"ANSWER ¢ - SINC(X) GR C@S(X) IS LEFT IN DPX(DPA)
“SCRATCH: DPX(0=2), DPY(0=3)

" . -

w «== ERROR CONDITIBNS ===

"NGNE o o :

" ' ww= ALGARITHM ===

1. IF CB8SC(X) IS DESIRED, . CAS(X)> = SIN(X+PI/2)

b - Py x 1S MULTIPLIED BY 2/PI, AND SPLIT INTO (! + F
o WHERE I 1S AN INTEGER AND F A P@SITIVE
v BETWEEN 0 AND +9999999999«¢

" 1F 1 IS 9DDs, F<= (l.0 = F) 77

-1 " SINCF) = A + BF*%3 ¥ CF%%5 + DF*%7 + EF*%9

ot -7 THE POLYNSMIAL 1S FRIM

e HART & CHANEY #3341 (PRECISION 8.27=5%
» ' , RANGE 0 T8 PIl/2

"Se IF I/2 1S DD, SINCF) IS NEGATED

“NOTE: THE POLYNOMIAL IS FACTIRED AS:

CAF + F*%3(B + CF*%2)) + F*%7(D + EF*=%2)

“THE TABLE IN TABLE MEMBRY 1S AS FOLLOVS:
"SINTBLs

0+63661 97724 2/P1

0+79689% 67894 6 £ =1 c

04999999925 ' FRACTION MASK <(1000.37
1?0 DD BIT MASK

0+15707 96318 44 E 1 A (P1/2)

0¢15148 5129 E=3 E

-+64596 37105 99 B

=946737 6661 E-2 D

2-0 ; APAL p-2 NEXT 20D BIT MASK

000000

000001 |

000002

000003

000004

000005

000006

000007

0ggoio

004306

000000

000001

000000
000000
000001
000001

000001

000003

103000
002000
Q04312

000003
103000
002000

004306 .

olelelolod
142000
000400
000000

000001
100000
000000
000001

000000
000124
000000
016001

000003
103000

002000

004306

000000
C00000
000000
000001

000000

000000
000400
016401

000000
ggooco

017000

110001

"TABLa LACATIIN Its
- SINTBL SEQU !SNCS

“DATA PAD X:
X SEQU O

TEMPX $EQU i

"DATA PAD Y:

C SEQU O
AF SEQU 0
F SEQU 1
F2 SEQU 1
F3 $EQU 1
"caME HERE FGR CGSINE<X>....H.'..‘......’ . .
C8S: LDTMA; DB=SINTBL¥4 "~~~ "“FETUH PI/2 (A)
DB=SINTBL; LDTMA -~ "FETCH 2/PI
FADD TM»DPX(X) . "D@ X*2/PI
FADD; INCTMA "FETGH C
FMUL TM,FA3 "D@ X*2/PI
INCTMA; * FETCH FRACTI@N MASK

BR C3MMON ™ G@ . Dd SINCX+P1/2)

“COME HERE FOR SINE(X)eeeseccccscccoscs

SINs LDTMA; DB=SINTBL ™~ " "“FETCH 2/Pl
INCTMA S “FETCH C
FMUL TM,DPX(X)J “Dd X*2/P1
INCTMA " FETCH FRACTIBN MASK
COMMBN: FMULS INCTMA; ~ "FETCH @DD BIT MASK
DPY(CI<TH " SAVE C
APAL D-3.

0Q0c¢1l

000012

000013

00001 4

1000015

00001

- 000017

000029

000021

00G0UV00
Q00000
047005
010001

000002
112000

047505

000000

000002
112000
140504
000000

000001
021000
020540
134000

000001
155000
000050
013000

000000

0004Sé6
000050
017000

000000
000000
000050
011000

000000
000000
030050

131001

000000
000000
030050

115001

FHMULS Dy CEMPXRI<TMS "“SAVE FRACTI4. #ASK
INCTMA : " FETCH A ‘

"gH, THE GLORIES OF A FLOATING PGINT ANDe oo

" WE CAN GET THE FRACTIGNAL PART @F A NUMBER.
. "” gR
" WE CAN TEST TO SEE IF THE INTEGER PART OF
" A NUMBER IS @DDess ’
FAND FM,DPX(TEMPX); “GET F = FRAC(2X/PI)
 DPX(TEMPX)><TM * SAVE ODD BIT MASK ¢
FAND FM,DPX(TEMPX): "SEE IF I IS @DD
DPX(X)<FM . ® SAVE 2X/PI

“HERE WE PLUNGE AHEAD AND START THE POLYNGMIAL.,

' H3PING THAT WE AREN'T IN THE
" SECOND OR FOURTH QUADRENTS
8DDt FMUL DPY(C),FAZ “D@ Cx*F
DPY(F)<FA3 " SAVE F
FSUB DPX(TEMPX)sFA - ™ DJ 1.0-F
FMUL DPY(F),DPY(F)? D@ F*x*x2

FADD ZERG.,ZERZ " PUSH 1-F QUT

“IF 1 IS 8DD, THE FAND WILL PRODUCE 1.0 AS A RESULT.

" WHICH WE NBW TEST FORese.
“THIS 1S N@T AN INFINITE L@@P »
"o IF I 1S 9DD» AND WE CBME THIS WAY AGAIN,
. THE SECZND TIME WE WILL BE TESTING THE RESULT
v BF ADDING 040 + 040, WHICH WILL
v ALVAYS BE ZER@

' FMUL TM,DPY(F); "D3 A*F

BFNE DD ~ * BRANCH BACK IF 1 1S

“NOW WVE ARE INTQvTHE PALYNIMIAL FER-GGGD--....t::

FMUL FM, DPY(F) ’ “D@ CF * F """
FMUL FMLDPY(FJJ *“DG Fx%x3
DPY(F2)<FM3; ~ * SAVE F#%2

FMUL DPY(F2),DPY(F2); “D@ Fxx4
DPY(AF)<FM2 ’ * SAVE AF

: n
INCTMA 4nu1 poy ™ FETCH B

000022

000023

000024

000025

000026

000027

000030

000431

000032

000033

000034

000035

- 000000

000000
140055
017001

000001
142000
030500
130000

000001

100000
047055

~Qlilo000

000001
112000
000550
014001

000001

100000

000000

‘010000

000002
142000
000400
010000

000001

113000

000040
olQo00

000001

100000
000000
010000

000001
111463
000000
000000

000001
100000
000000
000000

000000
000340
100004
000000

QC0g0ot1t
100000

000000

000000

D@NE:

NEG:

FMUL T
DPX(
INCT

FADD T

MLDET(F2)3
TEMPX)<FM3
TR

M, DPX(TEMPX) 3

FMUL:

DPY(

F3J)<FM

FMUL FM,DPY(F3);

‘DPX(
FADD

FADD
INCT

FMULS

' "HERE WE SEE IF M@DC(1/2,2) 15 1

FMUL F
FAND

TEMPX) < TM;

' FMUL DPY(F3),FA3

FM,DPX(TEMPX)3
MA

FADD

M.FAZ -
TMsDPXC(X)D

FADD FM,DPY(AF)3 FMUL

FMULZ

FADD

FADD FM.FAS

BFNE

FADD

‘DPX(X)

FADD

NEG

<FA3; RETURN

"C@ME HERE IF WE NEED TS NEGATE

APAL D=5

D@ E * F**2

" SAVE CF2
“ FETCH D
"“D3 B+CF2

" SAVE F**3

“Dd Fxx7
" SAVE D

"D@ Fx%3 % (B+CF2)
" Dg D+ EF2 '
* FETCH NEXT &DD BIT

“VAIT

GR 0........0

"D@ F¥¥7 ¥ (D+EF2)

" SEE IF 1/2 1S @DD
"D@ AF + (BF3+CF5)
“WAIT

“DJ (AF+BF3+CF5)+(DF7+
" SEE IF WE NEED TG N
"VAIT

"STSRE ANSWER AND RETU

THE ANSWEResseo
"VAIT

000036

T

SYMB@L

SINTBL
X .
TEMPX
c
AF
F
F2
Fa.
Ccgs
SIN
COMMIN
gDD
DANE
NEG

000001
051115
000000
000000

0 ERRORS

VALUE

004306
000000
000001
¢00Q00
000000

000001
00CQ0! .

000001
000000

00000s"-

000010
000C0! 4
000033
000035

ENT
ENT

FSUB
BR

3END

ZERK + FA2
DANE

APAL D-6

"0+0 = ANSVER
" GO FINISH

(INTENTIONALLY BLANK)

APAL D-7

AP-120B APLINK
ARRAY PROCESSOR LINKING LQADER MaNuAL
7276-02 -

FPS-7276-01

C FLoaTing PcINT SysTEMs, INc. 1976

ALL RIGHTS RESERVED |
PRINTED IN THE UNITED STATES OF AMERICA

REvisioN 02, MarcH 30, 1976

Section 1
1.1 I

"Section 2

Section 3

© 0010 Lk WM =

WWWWWWWWWWww
=
o

H
D

Section 4
Appendix A

Appendix B

TABLE OF CONTENTS

-~ INTRODUCTION
ntroduction

- (PRESENTLY OMITTED)

- OPERATING PROCEDURE
Load, "L"

Symbols, "S"
Undefined, "U"

‘Next Base, '"'B"

Reset, "R"
Force, "F"
Memory, "M"
End, nEn :

End with Assembly Code, ”A”v

Set Number Radix, "N"
Exit, "X" ‘ _
An Example Loading Session

- ERROR MESSAGES .

APLINK i

S

1
| = ook b bhwwWNOND PR

tlﬂ > S CDCOCOCD({JOJOJWCDL\JOJQJCO
Y

SECTION 1L
INTRODUCT ION

1.1 INTRODUCTION

APLINK links separate object modules produced by APAL
together into a single load module for execution by the AP 120B
hardware or the simulator,

The user can separately code and assemble a main line
program and the associated subroutines, and later link them
together for execution, APLINK serves this purpose be per-
forming the follow1ng tasks:

1. Relocating each ObJeCt module and a881gn1ng absolute
- addresses,

"2. Linking the mddules together by correllating global
entry symbols defined in one module with external symbols
referenced in another module. ‘ '

3. Selectively loadiﬁg modules from program library,
4. Optionally produ01ng a load map showing the layout
of the load module.

APLINK is written in Fortran IV and requires roughly
10K of available memory in which to operate. :

APLINK 1-1

- INTENTIONALLY BLANK

APLINK 1-2

SECTION 3
OPERATING PROCEDURE

Program modules are linked interactively via a dialogue
between the user and APLINK. The user enters a series of com-
mands which direct the linking process.

When execution begins, APLINK outputs:

APLINK
#EH
* .

The "###'" is the version number of APLINK. The asterisk
("*") indicates that the program is ready to accept commands.
After each user command, an "*" is typed when that command
has been completed, and APAL is ready for a new command. An
1llegal command will cause a "?" to be output.

To load his relocatable programs and prepare them for
execution, the user would normally follow the procedure out-
lined below:

. 1. Using the "L'" (load) command, load the file or files
containing the desired main program, required subroutines, and
library subprograms, if any. If a fatal error occurs during
this step, the user must reinitialize u81ng the "R" command,
and repeat this step.

2. Using the "U" (undefined) command, check to see if
~any global symbols are still undefined. If nothing is out-
put from this command, continue to step 3. If any symbols
are output, it usually means that there was an error in one or
more of the programs loaded or that the loading sequence was
wrong In these cases, the user should correct the error and

start the loading operatlon from step 1.

3. Obtain the memory 1limits of the loaded program and/or
a loader map, by using the "M" (memory) or "S" (symbols) com-
mand.

4. Complete and output the load module by using the "E"
(end) or "A" command. Note the values of HIGH and START as
well as the possible presence of any remaining undefined sym-
bols. : B
5. Return to the operating system with an "X" (exit)
command. ' ‘

The individual APLINK commands are described in the fol-
lowing sub-sections, and a complete example loading session
is given in section 3. 12.

The three following abbreviations are used in the fol-
lowing sub-sections:

" APLINK 3-1

Abbreviations Meaning

filename - A user specified input or out-
put file. The "Filename" fol-
lows whatever naming conventions
exist for the particular host
computer operating systems.

¥ ' Carriage Return

APLINK 3-1la

—_— | - Indicates characters output>by
the program,

. The examples given are illustrative only, as file and
I/0 device names will 'vary from system to system.

3.1 LOAD,"L"

To load a program module, or a program library enter:

L .
filename+

where '"filename' is the name of the flle contalnlng the
desired program or library. Example:

* Lo+
FFT. RB +
Loads a program from file
FFT. RB.

3.2 SYMBOLS, '"S"

To output the global (external and entry) symbols enter:

S ¢
filename +

where "filename' is the name of the file (or I/O device) to

receive the symbol listing. The output of the loader map is
as follows: ‘ :

HIGH = aaaaaa
SYMBOL TABLE

SYMBOL VALUE .

SSSSsSs nnnnnn U

where:

aaaaaa ' ‘ Highest program address so far loaded.
Normally, the next-program will be loaded
starting at location HIGH+L1.

38ssss ‘ . symbol name

APLINK 3-2

nnonnn B symbol value; if undeflned. the last
location loaded which referenced this
symbol,

u - _ _ - If present 1nd1cates the symbol is as yet
undefined.

An example command:

*Sv
LP:+v

Dumps the loader symbol table onte the line printer.

3.3 UNDEFINED, "U"

To output to the console any presently undeflned global
symbols enter:

U+
filenameyv

where "filename" is the file to receive the list of un-
defined symbols. The list format is:

SSSSSS nnnnnn
where ''ssssss'" is the symbol name and '"nnnnnn'" is the’
location of the last program instruction which referenced
the symbol. An example command:

XU+
TP+

Prints the names of any undefined symbols on the teletype{

3.4 NEXT BASE, "B

To specify a. base address at which to load the next program,
enter:

B¢
loc +

where '"loc'" is the location specified. An example:

) *B +
200 +

' Sets the next location loaded to location 200,

APLINK 3-3

3.5 RESET, "R"

To reset APLINK, enter:
RY

This reinitializes the program to its initial state.

- The symbol table is cleared, any previously loaded programs
are disregarded, and the next location is set to zero. This
command must be given following a fatal error.

3.6 FORCE, "F"

To force loading of a program ‘module from a library,
enter: :

Fi
name+

where '"name" is the name of the symbol to be forced. This
command enters ''mame" into the symbol table as an external
symbol. ' This will cause the loading of a library program
which has ""name'" as an entry symbol. An example:

*F¥
DOTPRD*

Forces the loading of any prdgram defining symbol "DOTPRD"
from any subsequently loaded library file.

3.7. MEMORY, '""M"

To get the address of the highest program source memory
location so far loaded, enter:

M+
The information is printed as follows{
HIGH = aaaaaa

where ''aaaaaa' is the highest address so far loaded, and
"bbbbbb'" if present, is the load module starting address.

3.8 END, "E"

To end a load module and output the completed load
module for use with APDEBUG, enter:

EvY
filename¥

where "filename" is the name of the file to receive the
loader output. The output is a ''core image' which can be
loaded by APDEBUG and executed by either the simulator APSIM,
or the hardware.

"APLINK 3-4

APLINK outputs the follow1ng information to the user
console:

HIGH = aaaaaa

where "aaaaaa'" is the highest program addréss loaded. 1If
any symbols were still undefined, APLINK outputs:

ididid UNDEFINED SYMBOLS

where "H#EF'" 1s the numbef still undefined. A value of 0
"was used in linking these undefined symbols.

*E ¢
SAVE

Stores the completed load module into file "SAVE".

The "E" (or "A") command causes links between global
symbols in the completed load module to be frozen. The load
module can be output again (with another "E'" or '"A") but no
further links can be added (with an "L'").

To work on another load mode, a reset ("R'") command must
be given to clear the linker.

3.9 END with ASSEMBLY CODE, '"A"

To end a load module and output the completed load module
as host computer assembly code (for use with APEX), enter:

AV
filename+

where "filename" is the name of the file to receive the loader
output. This output is a short host assembly language sub-
routine, which is the llnkage between host computer -Fortran
"CALL's" and the AP-120B executive. The AP-120B code from the
load module follows the host subroutine as assembly language
data statements.

Information concerning the highest address loaded into, and
any undefined symbols, are output to. the user console as des—
cribed above for the "E'" command.

3.10 NUMBER RADIX, N

To set the radix for numeric input/outputito and from the
user console, enter:

N+
radix+

where the radix is either 8'(for octal), 10 (for decimal), or

16 (for hexadecimal). The default radix for user I/O is set
to either of these choices at installation.

APLINK 3-5

3.11 EXIT, "X"

To exit to the operating system, enter:
Xy

Note: X does not cause any output. An "E" or "A" must
be used to output a load module. '

APLINK 3-5a

3.12 AN EXAMPLE LOADING SESSION

>>RUN APLINK
APLINK

REV 1

KL

BENCH : RB
APLIB

xg -

/TTQ
HIGH=000116

SYMBOL TABLE'

SYMBOL VALUE
BENCH 000000
DIV 000063

*E

TEMP
HIGH=000116
*X

STOP

>>

- The user runs APLINK. He then loads his program, in file
BENCH:RB. Since Bench uses the scalar divide subroutine, he
links in the library of AP-120B subroutines, APLIB. APLINK
extracts from the library any subroutines needed by BENCH, in
this case DIV. The user prints out the loader map, and then
ends with an "End" command, putting the linked-up code into
file TEMP. _ ‘

To debug the program, the user would run APSIM, where he
could execute the cocde put into TEMP.

APLINK 3-6

Another example loading session.

RUN APLINK
APLINK
REV 1

*F

- POLAR

*L
APLIB

*S

/TTD
HIGH=000166

SYMBOL TABLE'

SYMBOL VALUE -
POLAR ©00000
SQRT 000133
ATN2 000023
ATAN 000035
DIV 000077

*A

TEMP
HIGH=000166
*X

STOP

>>

_ The user runs APLINK. He wants to install subroutine
POLAR into his computer operating system, so that he can

CALL POLAR from Fortran. The "F" (force) command sets up
APLINK so that it will load in POLAR from the library APLIB.
The loader map shows that POLAR used subroutines SQRT (square
root), ATN2 and ATAN (arc-tangent), and DIV (divide). The

"A'" command stores the linked-up code as host assembly language

- in file TEMP.

The host assembly code in TEMP is assembled by the host
computer assembler and the resulting relocatable binary saved
where it can be linked with Fortran programs.

APLINK 3-7

INTENTIONALLY BLANK

APLINK 3-8

SECTION 4
ERROR MESSAGES

Any deviation from the prescribed command syntax will
cause = APLINK to output a "?'" to the user console. The
illegal command is ignored, and APLINK outputs a '"*" to indi-
cate its readiness to accept a new command.

If a specified "FILENAME" cannot be found or is other-
wise unavailable for use the message:

FILE NOT FOUND!!!

is outputted and the command is ignored.

The specific error messages outputted by APLINK are the result
of loading errors detected during execution of an "L" (load)
command. There are two classes of loading errors: '

F - Fatal. Reinitialization of the loader (the "R"
- command) is required before loading can continue.

W - Warning. An advisory message indicating a non-
error. ‘ : :

Any fatal error detected during loadlng will cause immediate
termination of the "L" (load) command following the error message.
If the user attempts to executetanother "L" command, the program
will output the message:

RESET! ! !

and ignore the command. After the user reinitializes the loader
("R" command) he must reload any programs loaded up to that point.

Following are the error messages, along with notes of
explanation for each :

F SYMBOL TABLE OVERFLOW‘
The loader symbol table is full. The only recourse is to

recompile APLINK with a longer symbol table size.

F PROGRAM MEMORY OVERFLOW nnnnnn
An attempt was made to load past the upper limit of Program
Source Memory. The load module is too large to fit in pro-
gram memory. ''nnnnnn" is the memory location involved.

F OVERWRITE nnnnnn
‘An attempt was made to overwrite a previously loaded
program memory Jlocation. The loader does not permit any
given program memory location to be loaded more than once.
""nnnnnn" is the program memory_location involved.

F ILLEGAL BLOCK TYPE nnnnnn
An illegal relocatable obJect code block type was encountered.
The File specified does not contain legal object code. ''nnnnnn' .
'is the illegal block type, as read from the block header in

question.

APLINK 4-1

MULTIPLE ENTRY

An $ENTRY symbol having the same name as one already _
defined was encountered during a load. The name and value
- of the offending symbol is output to the console:

ssssss nnnnnn

where ''ssssss'' is the symbol name and "nnnnnn' the symbol
value. The loader proceeds by ignoring the latest definition.

' MISSING OR IMPROPER ENTRY

'~ The user attempted to put out host assembly code (an "A" command)
‘from a load module which either 1) did not have any entry points
(defined entry global symbols), or 2) the first entry point loaded
did not have an S-Pad parameter count.

APLINK 4-2

APPENDIX ‘A

SUMMARY OF APLINK COMMANDS

These abbreviations are used:

Symbol
4 o
filename

loc
name
Command

L
filename+

- S¥

filenamev

U¢
filename+v

B¢
loc+.

R+

Fv

name ¥

M

E¢
filenamev
Av. v
filename+
Nv
number+

X¥

Meaning

Carriage Return

Name of a file, as appropriate for the

host operating system being used.

A location, in octal or hex as appropriate
A symbol name, 6 characters or less. '

Effect

Load the program in file FILENAME, link
with previously loaded programs. '

Output the loader symbol table to file
FILENAME.

Output any undefined symbols to file
FILENAME.

Set APLINK to ‘load the next program at
locatlon LOC.

Reset the loader.

Force the loading of a program defining symbol.

Name from any subsequent program libraries

loaded.

: Output the highest program memory location
used. _

End the loading session. Store the resulting
load module into file FILENAME.

End the loading session. Output host computer
assembly code for use with APEX into file
FILENAME.

Set the Radix for numeric user console I/O
to either 8, 19, or 16.

Exit to the operating system.

APLINK A-1

INTENT IONALLY BLANK

APLINK A-2

. APPENDIX B .
RELOCATABLE OBJECT CODE BLOCK TYPES

Unlike most relocatable binary, the relocatable object
code produced by APAL consists of numbers written as decimal
integer characters. Those were output (and readable) by For-
tran formatted I/0 statements.

An advantage is that relocatable’ library files may be
-edited with an ordinary text editor. This makes -unneccessary
the need for a special-purpose lerarlan or’ lerary File
Editor.

The relocatable object code is d1v1ded into a series of
blocks. -The order in which blocks appear, if each type is

 present, is as follow : (the block type number is in paren-
thesis)°
1. Title Blocks (3)
2. Entry Blocks (4)
3. Code Blocks (@)
4, External Blocks (5)
5. End Block (1)

An object module contains at least a Title Block and a
Start/End Block. The presence of one or more of the other block
types will depend upon the particular program,

The first line of each block is a block header, which
contains four seven-digit numbers: .

1. Block type numbers ‘

2. Number of items in the block
3. Initial address, if relevant
4, Unused :

In addition, the block header is flagged with "®%%'" to
aid in ldentlflcatlon of blocks.

Each block type is uescribed below in numeric order
by block type numbers

B.1 CODE BLOCK (@)
LINE CONTENTS :

o . 3 count address ’ @ **x
1 Bits O 15 Bits 16-31 Bits 32-47 . Bits 48-63
2 . . 11 1A 1"
: - : X D :
Cuunt 1" 1" . " » 2]

Each code line contains a 64-bit piogram source word,

APLINK B-1

B.2 END BLOCK (1)

LINE CONTENTS
0 1 0

B.3 TITLE BLOCK (3)

LINE , CONTENTS
0 1
1 » , - 0

B.4 ENTRY SYMBOL BLOCK (4)

LINE v CONTENTS

o 4 count
1 name value
2 " ‘ 121 C.
count o il

B.5 EXTERNAL SYMBOL BLOCK (5)

LINE CONTENTS

0 ' 5 count
1 name : link
2 1Y . 124

3 1" Tt
count " e

B.6 LiBRARY START BLOCK (8)

. LINE CONTENTS
0 8 | 0

B.7 LIBRARY END BLOCK (7)

LINE ~ CONTENTS
0 7 , 0

APLINX B-2

Q%% %

O***TITLE

Ok* *
S-Pad parameters

1"

Q%%

QX% %k

Q&

An example relocatable object module, from the Dot Product program.

3¢ | O o.***reré} R
DATPR 0. Title block
4 1.) Oe Oedexx } E ’
D3TPR 0e 6 - ntry block
0. " Se Qe Qe xkX
16384, 0. 0. 48.
16520, 0. 0. 48.
596. C. 18948. 0 _
8257. 55808« 0. 48« 1 :
661+ 32768 256+ 5888. Code block
8392 403, O« 4l44.
0. O+ 18948, 4096 .
8257. 37453, Qe 48
16656. 224 s IS 112
L. 0. 0. Qo }L End block

The Title block contains the title of the program, DOTPR

The Entry block has the name of the entry point, DOTPR; its
relative address, @; and the number of expected S-Pad parameters 6.

The Code block contains the 9 AP-120B program words in DOTPR each

as four 16-bit quarters of a 64-bit program word.

The End block tells APL]VK that it has reached the end of the
program.

APLINK B-3

Example output from APLINK produced by an "E" (End) command from
the Dot Product program. APDBUG would load this output into either
the simulated AP-120B (APSIM),or the actual hardware, for debugging.

9

16384
.9
- a8)

16520

0

0

48

596

0
18948

Q

8257

~9728

0
48

661
32768
256
5888
8392
403
0 ¢
ala4
0
0
1894f41
4096
8257)
-28083
o\
a8/
16656
224

0
112

number of AP-120B program words

word #1
word #2
word #3
word #4

word #5

- word #6

word #7
word #8

word #9 \

APLINK B-4

Example host éssembly code produced by APLINK from the Dot
Product program.

: fTITL D@TPR This is the appropriate host computer.
«ENT D@TPR assembly code for use with Data
~ «EXTD ZAPEX General Corporation Fortran IV
DITPR ¢ ;éRi <APEX on Nova or Eclipse computers.
' gf A CALL DOTPR in Fortran ends up
‘. at location "DOTPR'" in the Nova,
16382: which does a subroutine jump to
o« APEX, the AP-120B executive.
Q- If this is the first CALL of DOTPR,
L6 28‘. then APEX will load the AP-120B
_s gf program words for DOTPR from Nova
O: -memory into AP-120B Program Memory.
5‘9‘2‘ The "6" following the JSR@ .APEX
0: is the number of arguements expected
189485 in the Fortran CALL. "9" is the
' 0. number of AP-120B program words in
. gos7e DOTPR. "Q" is the re;ative starting
-9728 . . address of DOTPR.
Of Following these three parameters
62?: is the nine AP-120B program words
-32768 . in DOTPR,‘16 bits at a time.
256«
58880" ’
8392,
403+«
O« »
41441 For each particular host computer,
0. the exact form of the host computer
0. assembly language is different, but
18948, the content is the same.
4096
8257.
=-28083.
- 0.'
a8.
16656
224.
O«

112
«END

APLINK B-5

INTENTIONALLY BLANK

APLINK B-3

AP-120B APDEBUG
DEBUGGER MANUAL
- 7277- 02

FPS-7277-01 |
‘Q)FLOATING PornT SysTems, Inc. 1976
ALL RIGHTS RESERVED

PRINTED IN THE UNITED STATES OF AMERICA
REVISION 02, MarcH 31, 1976

TABLE OF CONTENTS

Appendix A

A.

p=J =~ p=g
g w N

1

Program Execution Commands
Register Examination/Modificatio
Commands : o
Memory Load/Dump Commands
Accessable Functional Units
Program Word Fields

APDEBUG i

APPENDIX A

AP-120B SUMMARY OF DEBUG COMMANDS

Abbreviations used below:

" Symbol

+

loc
count
val
fpn

mem
reg.

Meaning

Carriage Return

An integer location number

An integer count

An integer value

A floating-point number in form accept-
able to FORTRAN

The name of an AP-120B internal memory
The name of an AP-120B internal register

Debug types a "*" when ready for further action.
A "?" is typed when a command is not understood.

A1l Program Execution Commands

B¢V
memi-
10o+
D+
L+

Q+
count

S
val+

IV
valy
R+

loc+

b+

Xy

Breakp01nt Delete the last breakpoint
and set a new breakpoint at location LOC
of memory MEM. MEM must be PS, MD, or TM.

‘Delete.. Delete the current breakpoint

~List. List the current breakpoint

Set the continﬁe counter to (COUNT).

Step. If (VAL) is not zero place the
AP-120B in step mode.

Initialize. If VAL is not‘zero >reset the

"AP-120B before program execution is

resumed next

. Run. Begin program execution at Program

Source location LOC

Proceed. Begin instruction execution at
the Program Source location pointed to by
the AP-120B (PSA) (Program Source Address)
Reglster

Exit to the operating system

APDEBUG A-1

A.2 Register Examination/Modification Commands

Ev Examine register. Print out the contents of
- regt AP-120B register REG
Ev - Examine memory. Pring out the contents‘of
mem ¥ AP-120B memory MEM, location LOC '
loc + :
¥ - Re-examine the currently open register or

memory location (the last location examined)

+ ¥ Examine the next higher sequestial memory location
of the memory that is currently open

- ¥ Examine the next lower sequential memory location
of the memory that is currently open

F 4+ Floating Point Flag, affects the input/output of
val ¥ 38-bit wide registers and memory locations. : .
© VAL=0: 3 integers (Exponent, High Mantissa, Low Mantissa)
VAL#0: floating-point : '

vV ¢ Program Source field value flag, affects input/output
val + of program source memory location. '
: VAL=0: 4 integers (the four 16-bit quarters
of PS)

VAL#0: Decode into the 24 instruction word field

’ ' values.
C + Change. Change the contents of the currently open
val ¢ register or memory location to VAL. The format

of VAL depends on the width of the current open
locations as follows:

16-bit wide registers: an integer of the current radix.

38-bit wide registers:

F=0; Val¥ three integers in the current radix
VALY thich represent the exponent, high
VALY mantissa, and low mantissa

~F#Q: FPN+ a floating point number legal to Fortran

64-bit wide registers:

V=0 VALY four integers in the current radix

: VALY which are the four quarters of an AP-120B
VALY program word '
VALY

V#£0: FIELDY FIELD is the name of the instruction

VAL + field to be changes, VAL is the new
‘ integer value.

APDEBUG A-2

N+
VAL +

o+
VAL +

A.3 Memory

Number radix. Set the radix for integer user
I/0 to VAL, which must be 8 (for octal), 10 (for
decimal), or 16 (for hexadecimal). '

Offset. . Sets the base address to which Program
Source Memory addresses are relative'(for user I/0).

Zero. Zero out all AP-120B memories and registérs.

Load/Dump Commands

Y¢

MEM ¥

LOC+Y
filename+

W+

"MEMY
START+
STOP+

. file name+

Yank. @ Load memory MEM starting at locatlon
LOC from an external data FILENAME. '
MEM can be PS, MD, OR TM.

Write. Dump memory MEM starting at location

(START) and ending at location (STOP) to
external data FILENAME.
MEM can be PS, MD, or TM.

APDEBUG A-2

A.4. Accessable Functional Units

AP 120B Functional Units that may be ‘examined or changed
using DEBUG:

Memories: ’ , Contents:

PSS Program Source Memory 64-bit instruction word
MD Main Data Memory 38-bit floating-point
™ Table Memory o " :

DPX Data Pad X " "

DPY Data Pad Y " "

IODEV I/0 Devices . " "

SP - S-Pad Registers ' l6-bit integer

SRS Subroutine Return Stack* o "

Registers ' : o ' Contents

MA Memory Address ’ 16-bit integer

TMA ~ Table Memory Address "

DPA Data Pad Address ' o

PSA Program Source Address _ "

SPD S-Pad Destination Address "

STAT. AP-120B Internal Status Register = "

DA I/0 Divice Address S

SWCH Panel Switch Register "
LGTS Panel Lights Registerr "

MDR . Memory Read Data Buffer* 38-bit floating point
TMR Table Memory Data Buffer* "
MI Memory Input Register* _ "
DPBS = Data Pad Bus* v : "
INBS Input Bus* "

PNBS Panel Bus* - 16-bit integer
SPFN S-Pad Function | . " .
FLAG. Program flags* "

SRA Subroutine Return Stack Address* "
Al Floating Adder Input Reg. #1%* 38-bit floating point
A2 Floating Adder Input Reg. #2% : "
FA Floating Adder Output* "
M1 ‘Floating Multiplier Input Reg. #1%* "
M2 Floating Multiplier Input Reg. #2%* "
M Floating Multiplier Output* "

*Accesable only when using the AP-120B Simulator

APDEBUG A-4 .

A.5 'Program Word Fields

Fields within an instruction word that may be examined or
changed by name: -

Name , _ Program Word Bits

D | 0
sop | 1-3
SH | 4-5
SPS . 6-9
SPD 10-13
FADD | 14-16
Al o 17-19
A2 - 20-22
COND 123-26
DISP ©27-31
DPX 32-33
DPY 34-35
DPBS 36-38
XR 39-41.
YR . 42-44
XW 45-47
W 48-50
M 51
M1 52-53
M2 o 54-55 .
M . 56-57
Ma 58-59
DPA 60-61
TMA 62-63
soP1 6-9
SPEC 6--9.
STST | 10-13
HPNL . 10-13
SPSA | 10-13
PSEV | 10-13
PSOD | 10-13
PS ~ 10-13

~ SEXT 10-13
FAD1 17-19
10 17-19
LREG 20-22
RREG 20-22
IOUT - 20-22
SNSE < 20-22
FLAG 20-22

CONT o 20-22

APDEBUG A—5

| ~ FLOATING POINT SYSTEMS, INC.. S
PO.BOX 23489 PORTLAND, OR97223 11000 SW. 11TH STREET, BEAVERTON, OR 97005 (503) 6413151 TLX:360470 FLOATPOINT PTL

	001
	002
	003
	004
	005
	1_001_HowToPgm
	1_002
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	1_2-15
	1_2-16
	1_2-17
	1_3-01
	1_3-02
	2_001_APAL
	2_002
	2_1-01
	2_1-02
	2_2-01
	2_2-02
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_4-01
	2_4-01a
	2_4-02
	2_4-03
	2_4-03a
	2_4-04
	2_4-05
	2_4-06
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_A-1
	2_A-2
	2_B-01
	2_B-02
	2_B-03
	2_B-04
	2_B-05
	2_B-06
	2_B-07
	2_B-08
	2_B-09
	2_B-10
	2_B-11
	2_B-12
	2_B-13
	2_B-14
	2_C-1
	2_C-2
	2_D-1
	2_D-2
	2_D-3
	2_D-4
	2_D-5
	2_D-6
	2_D-7
	3_001_APLINK
	3_002
	3_1-01
	3_1-02
	3_3-01
	3_3-01a
	3_3-02
	3_3-03
	3_3-04
	3_3-05
	3_3-05a
	3_3-06
	3_3-07
	3_3-08
	3_4-01
	3_4-02
	3_A-1
	3_A-2
	3_B-1
	3_B-2
	3_B-3
	3_B-4
	3_B-5
	3_B-6
	4_001_APDEBUG
	4_002
	4_A-1
	4_A-2
	4_A-3
	4_A-4
	4_A-5
	xBack

