F F E Processornr

FLOATING POINT ~ Handbook
SYSTEMS, INC. 860-7259-003

by FPS?Techhicol Publications Staff

Processonr
Handbook

860-7259-003

~Publication No.
February 1979

NOTICE

The material in this manual is for
information purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes
no responsibility for any errors
which may appear in this publication.

Copyright © 1979 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

A11 rights reserved. No part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

FPS-860-7259-003

CONTENTS

Page
PREFACE P-1
CHAPTER 1 GENERAL INFORMATION
1.1 INTRODUCTION 1-1
1.2 SYSTEM OVERVIEW 1-3
1.3 EXAMPLE AP APPLICATION 1-5
1.4 . PHYSICAL DESCRIPTION 1-6
l.4.1 General = 1-6
1.4.2 Forward Unit 1-6
1.4.3 Rear Unit 1-6
l.b4.4 Power, Controls, and Indicators 1-7
1.4.5 ' Serial Numbers 1-7
1.5 SOFTWARE - , 1-9
1.5.1 APEX (AP Executive) 1-9
1.5.2 APMATH (AP Math Library) 1-9
1.5.3 Program Development Package 1-10
1.5.4 APTEST (AP Test Programs) 1-11
CHAPTER 2 FUNCTIONAL DESCRIPTION
2.1 INTRODUCTION 2-1
2.2 CONTROL UNIT 2-2
2.3 S-PAD UNIT 2=3
2.4 FLOATING-POINT ADDER UNIT 2-6
2.5 FLOATING-POINT MULTIPLIER UNIT 2-9
2.6 DATA PAD UNIT ‘ 2-11
2.7 DATA MEMORY UNIT 2-13
2.8 TABLE MEMORY UNIT . 2-15
2.9 2-17

INTERNAL FLOATING~POINT FORMAT

FPS 860-7259-003 iii

CHAPTER 3

s ® e s
o o

.
. .
(6, S ROV R)

L]
E R VST (S ol

.
W N -

.
.

L]
~Noumbwe

e« o o
o
w o -

. e
¢ o o
SN -

WWWLWLWLWLLWWWWLWLLLWLLWWLWLWLWLLLWWLDLWLWWLDLLL WL
.
NN~V ULMUBTULLULLESE R PLWLLLDDDDNDPNDND D

FPS 860-7259-003

PROGRAMMING CONSIDERATIONS

INTRODUCTION
FLOATING-POINT ADDER

Floating Adder Operatiomns
Adder Pipeline

An Example

Floating Adder Tests

Floating=Point Logical Operations

FLOATING-POINT MULTIPLIER

DATA

DATA

Multiply Instruction
Multiplier Pipeline
An Example
Multiply-Adds

PAD

Data Pad Addressing
Writing Into Data Pad
Data Pad Bus

MEMORY

Memory Addressing
Data Memory Reads

An Example

Data Memory Writes
An Example

Memory Interleave
Memory Lockout

TABLE MEMORY

S-PAD

Table Memory Addressing
An Example
A Complex Multiply

Single Operand Instructions
Double Operand Instructions
S-Pad Test
An Example

iv

Page

[|
o

== O 00 000U N
[y*]

CHAPTER 4

o SR R SR
L]
WNNNDDN -
.
W N -

&~ &~
* o
w w
.

[T ol

. ° .
~Nou s PP
e o &
S W

APEEAEPEBSEPPPBE
.

APPENDIX A

APPENDIX B

FPS 860-7259-003

INTERFACE

INTRODUCTION
FRONT PANEL
Switch Register
Lights Register
Function Register
NOTES ON THE USE OF THE FRONT PANEL
AND BREAKPOINT

Where Does The AP Stop on a Breakp01nt

Does the Instruction on Which the
AP -Stops Execute?

What About MD Timing and Lockout on a
Breakpoint in the Middle of an
MD Memory Cycle?

Summary of the Rule for Proceeding
from Breakpoint

What About Stepping the AP?

What Other Pitfalls Are
There in the Use of the
Virtual Front Panel?

DIRECT MEMORY ACCESS

Host Memory Address Register
Word Count Register
AP Direct Memory Address Register
Control Register
FORMAT CONVERSION REGISTER
AP INTERNAL INTERFACE TO HOST INTERFACE
AN EXAMPLE OF LOADING PROGRAMS INTO THE AP

AP REGISTERS /DATA PATH NAMES

INSTRUCTION SUMMARY

4-9

4=11
4=11
4-11
4=12
4=12
4=15
4-16
4-18

Figure No.

[NS ol

1=
1=

FPS 860-7259-003

ILLUSTRATIONS

Title

General AP Block Diagram
AP Physical Configuration

Control Unit

S=Pad Unit

Floating-Point Adder Unit
Floating Multiplier

Data Pad

Data Memory Unit

Table Memory

Data Pad Address
AP Panel and Host Interface
Panel Function Register Format

DMA Control Register Format

AP Functional Units

vi .

Page

[
[} 1 11 1 1
- s = 00 Ul W o &~

NNNI}JNI\JN

TABLES

Table No. Title

Floating=Point Arithmetic Times

Basic Scalar Functiomns

Summary of AP FORTRAN Callable Routines
Convolution (Correlation)

Fast Fourier Transforms

l—'l—'l-l-‘l—‘l—'
[IS U o el

3-1 Floating Adder Tests

3-2 Memory Interleave Sequence
3-3 Single Operand Instructions
3-4 Double Operand Instructions

Function Register Bits

Bits 8-9

Bits 10-11

Octal Values

DMA Control Register Description

Bits 13-14 : ’

CTL Register Bits 9-10

AP Device Address for Host
Interface Registers

P~P~D-TJ>£~$~D
o~V WN

A-1 Registers and Data Paths
A-2 AP Internal Status Register
A=3 AP Instruction Summary

A=4 SPEC Fields

A-5 1/0 Fields

AP Instruction Field Layout
S=-pad Group

- Special Operations Group
Floating Adder Group
I1/0 Group
Branch Group
Data Pad Group
Floating Multiplier Group
Memory Group

U‘mew?’wwmtﬂ
WOoONOVE W -

FPS 860-7259-003 ' vii

PREFACE

Historically, array transform processors have been
largely integer—arithmetic devices, since the
slower processing rate of floating-point arithmetic
was undesirable when working with large arrays of
data. However, integer methods have problems which
make programming awkward due to the limited dynamic
range of integer arithmetic. Array scaling and
block floating-point techniques either allowed
human and other errors to creep into the results or
were costly and time consuming. Further, as
processing became more sophisticated, even 1é6-bit
integer data words were insufficiently precise for
preserving the accuracy of simple 8-bit
analog=to-digital converted input data. This is
because the many multiplications and additioms 1in
typical cascaded array processing can cause the
propagation of truncation errors.

NOTE

A 16-bit integer multiplied by
a 16-bit 1integer results in a
32-bit product. TIf the result
is truncated to the 16 most
significant bits, then half the
time the resultant’s least
significant bit (LSB) is wrong
since it should have been
rounded up. Now the product of
two of these potentially wrong
LSB numbers results in the next
LSB being wrong part of the
time; thus cascaded operations
.propagate the errors leftward
toward the most significant
bits.

FPS 860-7259-003 P - 1

With the advent of faster digital logic, many users
realized that floating=-point processing makes
programming easier, virtually eliminates dynamic
range problems, greatly alleviates the precision
problem, and is potentially as fast as the last
generation of integer processors. Floating Point
Systems, Inc., recognized this trend in 1970 and
was formed to specialize in floating=-point
processors.

The rush to floating-point processing was not a
smooth one. Many floating-point formats sprang up
and Floating Point Systems became expert in format
converting on-the-fly so processing time would not
be lost during a format conversion. Why convert
formats? Simple. Not all formats are
mathematically clean. For example, it is unwise to
use a hexadecimal-exponent format for serious
number crunching because a hexadecimal
normalization can cause as many as three leading
zeros between the binary point of the mantissa and
the first significant bit. This means that as many
as three least-significant bits may be lost, due to
right-shifting the mantissa past the available word
length (truncation) when an extreme hexadecimal
normalization occurs (about 25 percent of the
time), and, of course, 2, 1, or no bits may be lost
(with equal probability) for other possible
hexadecimal cases. Cascaded calculations can
quickly cause the low-resolution three-leading-zero
data words to contaminate a data base.

The FPS solution is to use a true 10-bit binary
exponent, which has more dynamic range than the
standard 7-bit hexadecimal or 8-bit binary
exponent. FPS then wuses a 28-bit mantissa, plus
three guard bits in the adder and a double mantissa
at the multiplier oqutput, which provides enough
bits to not only allow for hexadecimal in/out
formats, but also to carry enough information to
permit post-normalization and convergent-rounding
after each arithmetic operation. Thus, FPS can
receive any reasonable floating-point format that
is desired as the input format, convert it
on-the-fly to the FPS format, process it in FPS
format with minimal truncation error propagation,
and then convert it on-the-fly to the desired
output format. This procedure allows transparent
no penalty operation on the data, thus preserving
the integrity of the input data.

FPS 860-7259-003 P - 2

In addition to the well chosen floating=-point
format, the AP has a general-purpose, multi-bus
oriented architecture for the arithmetic units.
This allows great flexibility in that operands and
resultants can be moved simultaneously from almost
any register in the AP to any other. This rather
generalized structure of the AP allows it to
execute specialized algorithms, such as the FFT, in
times comparable to those achieved by hardwired
special-purpose processors and also makes the AP
well suited to less highly organized computations.

In the matter of software, note that this machine
is a synchronous monolithic multiprocessor, - as
opposed to an asynchronous multiprocessor. The
practical significance of this is that programming
by the user and/or FPS (Standard Algorithms, System
and Test Software) is tremendously simplified due
to the predictability of data flow and timing
considerations. There is no need for internal
hand-shaking between arithmetic wunits, memories,
and microprocessor; data and results are available
at precisely determined times. The synchronous
approach not only allows a non-stochastic simulator
to be written for easy program debugging, but in
addition, programs may be single-stepped in the
real processor, with execution identical to
free-running programs. A further bonus of the
synchronous design 1is the easy producibility,
maintainability, interchangeability and reliability
(there is no need to explore an infinite number of
possible timing conditions as one clock phases by
another, as happens in an asynchronous machine).
Convenient and rapid data-dependent branching,
simple overlapping of data input, arithmetic
processing, and data output are further examples of
the care taken to assure a fast, = accurate,
convenient, and reliable array processor.

FPS 860-7259-003 P - 3

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

The AP is a‘high—speed (167ns cycle time) peripheral floating-point
arithmetic array processor (AP), which is intended to work in parallel
with a host computer.

The AP’s internal organization is particularly well suited to
performing the large numbers of reiterative multiplications and
additions required in digital signal processing, matrix arithmetic,
statistical analysis, and numerical simulation.

The highly-parallel structure of the AP allows the overhead of array
indexing, loop counting, and data fetching from memory to be performed
simultaneously with arithmetic operations on the data. This allows
much faster execution than on a typical general-purpose computer where
each of the above operations must occur sequentially.

The AP achieves its high speed throdgh the use of fast commercial
integrated circuit elements and an architecture that permits each
logical unit of the machine to operate independently and at maximum
speed.

FPS 860-7259-003 ' 1 - 1

Specifically:

® Programs, constants, and data each reside in separate,
independent memories to eliminate memory accessing
conflicts.

e Independent floating-point multiply and adder units allow
both arithmetic operations to be initiated every l67ns.

e Two large (32 locations each) blocks of floating=point
accumulators are available for temporary storage
of intermediate results from the multiplier, adder,
Or Memory.

® Address indexing and counting functions are performed by an
independent integer arithmetic unit that includes
l6-integer accumulators.

In a typicalvapplication, such as a fast fourier transform (FFT), the
above features allow nearly the entire computation to be overlapped
with data memory access timee

Effective processing precision is enhanced by 38-bit internal data

words, an internal floating-point format with optimum numerical
properties, and a convergent rounding algorithm.

FPS 860-7259-003 1 - 2

1.2 SYSTEM OVERVIEW

A general block diagram of AP arithmetic paths appears in Figure 1-l.

Connection is made to the host in a manner that permits data transfers
to occur under control of either the host computer or the AP. TFor most
host computers, this means that the AP is interfaced to both the
programmed I/0 and DMA channels.

The system elements are interconnected with multiple parallel paths so
that transfers can occur in parallel. All internal floating-point data
paths are 38 bits wide (l0-bit biased binary exponent and 28-bit 2°s
complement mantissa). :

Main data memory (MD) is organized in 8K-word modules of 38-bit words
expandable up to 64K words in the main chassis. The effective memory
cycle time (interleaved) is 333ns.

Table memory (TM) is used for storage of constants (FFT constants) and
is tied to a separate data path so as not to interfere with data
memory. It is bi-polar 167ns read-only memory and is organized in
512-word, 38-bit increments. ' '

Data pad X (DPX) and data péd Y (DPY) are two blocks of 32 floating
accumulators. Each is a two-part register block, wherein one register
may be read and another written from each block in one instruction
cycle.

The floating adder (FA) consists of two input registers (Al and A2) and
a two-stage pipeline which performs the operations and convergently
rounds the normalized result.

The floating multiplier (FM) consists of input registers (Ml and M2)
and a three-stage pipeline which performs the multiply operatiom.
Products are normalized and convergently rounded 38-bit numbers.

The s-pad consists of 16 integer registers and an integer arithmetic
unit which is used to form operand addresses and to perform integer
arithmetic.

Chapter 2 contains a more detailed description of each of the
functional elements. Chapter 3 describes programming consideratiomns.

Chapter 4 describes in detail the host computer interface, which

Floating Point Systems, Inc., supplies. A number of off-the-shelf
interfaces are available.

FPS 860-7259-003 . 1 - 3

H0ST TPU

[/0 OMA

b

INTERFACE

1- N

FPS 860-7259-003

Figure 1l-1

General AP Block Diagram

YULTIPLE 38-BIT DATA PATHS 16 3175 |
\ 4 \ 4
S-PAD
TABLE DATA DATA HAIN DATA HEMORY
MEMORY PAD X PAD ¥ “EMORY
5-PAD
ALY
!
< — Y —F
?- MULTIPLE 38-BIT 16 BITS
OATA PATHS
M1 w2 Al a2
STAGE 1 STAGE i
FLOATIHG FLOATL.G
STAGE 2 | MULTIPLIER STAGE ¢ ADDER
STAGE 3
WLTIPLE PATHS
7331

1.3 EXAMPLE AP APPLICATION

A simple F¥T processing sequence goes as follows:

Initial conditions are that the FFT program is resident in program
source memory intermal to the AP, the array to be transformed is
resident in host memory, and the host CPU has initiated the AP
processor with an I/0 instruction.

1. The AP requests host DMA cycles to transfer the array
from host memory to internal data memory. Data is
converted from host floating~point format to internal
AP floating-point format on-the-fly.

2. The FFT algorithm is performed with data remaining in
internal AP format. This yields the benefit of 38-bit
precision and convergent rounding during the critical
phases of processing.

3. The frequency domain array is transferred back to host
memory by requesting host DMA cycles. Data is converted
from internal format to host format cn-the-fly.

4. The AP proceeds to another process or stops executing,
depending on previously established conditions.
An interrupt to the host can be issued.

The AP is most efficiently used when a sequence of operations is
performed on one or more sets of data which reside in internal data
memory. This reduces data transfer overhead and retains maximum
numerical precision. For example, a reasonable sequence would be to
transfer a trace and a filter, FFT both, array multiply, inverse FFT,
and transfer the result back to host memory.

The AP data memory has DMA capability. That is to say, MD cycles can
be stolen from the AP microprocessor by the interface. This capability
allows host computer DMA to AP DMA data transfers to occur, thereby
minimizing both host CPU and AP overhead.

The AP is designed with enough flexibility built in so that its power

can be harnessed in a variety of ways. Subsequent sections describe
its use in detail.

FPS 860-7259-003 1 - 5

1.4 PHYSICAL DESCRIPTION

The following sections describe the AP hardware.

l.4.1 GENERAL

The AP is available in rack configuration. Mounting is as a standard
19-inch EIA rack-mounted unit requiring 24~1/2 inches of vertical
space. The unit is equipped with rack slides permitting easy access to
the etched and/or wire-wrapped circuitry with the chassis mounted on
the forward portion of the unit. The power panel is mounted at the
rear. One and three—quarter inches of space should be available above
and below the 24-1/2 inches of the processor. This is for proper
intake and exhaust of air through the processor. The control panel
(refer to section l.4.4) and/or blank panels may be used for proper
spacing if the customer’s equipment mounted above and below the
processor does not have the proper free-air space built into it.
Intake air should be between 10 and 40 degress centigrade.

l.4.2 FORWARD UNIT

The forward unit contains all AP circuitry except the power supply.
There is provision for up to 31 15-by-10-inch etched-circuit boards
(ECB). The ECBs plug into a mother board. The ECBs are arranged in a
vertical plane (chimney style) with push/pull fans to assure adequate
upwards air circulation even in the event of a fan failure. The 1/0
cable exits at the bottom rear (the exact configuration is computer
dependent). This unit is called the processor.

1.4.3 REAR UNIT

The power supply consists of three assemblies. The first is the main
+5 volt supply and is capable of 100 amperes output. The other smaller
supplies are -5 and +12 volts. The power supplies have forced
convection cooling. All supplies are rear-mounted, along with the line
box (containing line filters and contactor), on the power panel.

FPS 860-7259-003 1 - 6

l.4.4 POWER, CONTROLS, AND INDICATORS

The AP is expected to be normally powered up and down with the rest of
the system. The AP switch and indicators are on a control panel.

There is a single power cord (US standard three-wire with ground) which
must be connected to 105 to 125 volts, 50 to 60 hertz. The service
should be rated for 20 amperes (10 amperes in the case of the higher
ranges) in order to provide a low-impedance source (power required is
approximately 1200 volt-amps). The control panel may be mounted above
or below either the processor or the power panel. Availability of line
power is indicated by a neon LINE VOLTAGE indicator. If the ON/OFF
switch is on, then power supplies should come on. There are two
operation indicators: one shows array processor action and the other
shows DMA transfers. The three individual power supplies have separate
indicators (electroluminescent diodes). There are no external
adjustments. The internal adjustments are the three power supply
setting potentiometers on the power panel.

l.4.5 SERIAL NUMBERS:

The processor has a serial number tag on its starboard side near the
top and forward ending in A. The power panel tag, ending in B, is
located inside and near the top. The control panel has its tag ending
in C, also inside.

FPS 860~7259-003 _ 1 -7

T] - — — — — —— — — ——— —
POWER PANEL i
e e e o —— = —— — —— I
}
' | I !
Tap | : | |
| | !
13RAY | | | |
2R0CESSOR | |
| !
| l : I !
< 19" >
| < 20" MIN | ﬂ
| 25" MAX ——"'"I |
|4 —> | T
I I | > LN e
| | [I 7max M]
_ | -A- -z — — o
— Z30NT L SIDE R e
l | |
[
l l } POMER
] |) PANEL
I] «a, . :
| ARRAY | RACK 223 ARRAY =]
5ROCESSOR ! SPACE PROCESSOR
fa o P
:) L
r a4
v v T
A S s -4 D SR TS M entynd
CONTRQL PANE! e I
Q 5' POWER CORD
COMPUTER INTERFACE
REQUIREMENTS CABLE
1) ENVIRONMENT: 9 - 40°C 8 § - 9@% RELATIVE HUMIDITY.
(DERATE 1°C PER 25@@ FT. (762 M) ABOVE SEA LEVEL, 5°C FOR 5@ HERTZ OPERATION.)
2) POWER CONSUMPTION = 19@@ W; SERVICE:
A. 195 - 125 VOLTS, 5@ - 6@ HERTZ 3 2@ AMPS. (VOLTAGE OPTION "A" HAS A WHITE WIRE IN THE FAN POWER CABLE.)
B. 188 - 223 VOLTS, 50 - 60 HERTZ @ 19 AMPS. (VOLTAGE OPTION "B" HAS A BLUE WIRE IN THE FAN POWER CABLE.)
C. 219 - 289 YOLTS, 50 - 6 HERTZ @ 19 AMPS. (VOLTAGE OPTION 'C" HAS A RED WIRE [N THE FAN POWER CABLE.)
D. LOW IIPEDANCE SERVICE ADVISED.
3) SPACE: .
*HEIGHT: AITH CONTROL PANEL AT THE FRONT; 243" (62.23 CM).
AITH CONTROL PANEL AT THE REAR; 223" (57.79 CM).
WIDTH: 29" (48.26 CM).
DEPTH: 20 - 25" (59.3@ - 63.5@ CM).
CAUTION: ALLOW AT LEAST 1.75" OF FREE AIR SPACE ABOVE THE AP IF USED AS SHOWN. IF THE CONTROL PANEL S "OVED,
T ALLGW 1.75" OF FREE AIR SPACE BELOW THE 4P.
NOTE: THE SOWER PANEL TO AP POWER CABLE IS LOCATED O THE LOWER RIGHT SIDE (NOT SHOWN).
7982
Figure 1-2 AP Physical Configuration
FPS 860-7259-003 1 - 8

1.5 SOFTWARE

Four software packages can be supplied with the AP which assist the
user toward the solution of the particular processing task.

1.5.1 APEX (AP EXECUTIVE)

APEX is a mechanism for communicating with the AP via a series of
FORTRAN or machine language subroutine calls. The executive driver
routine interprets the particular user call and directs the AP to
perform the specified action. For example, in FORTRAN, to load an
array A containing N real data points into the AP and perform a real
fast fourier transform upon that data:

TA=0
CALL APPUT (A,IA,N,2)

CALL RFFT (IA,N,1)

.

Both the standard applications subroutines described below and
user-developed AP programs may be called from the host computer using
APEX.

1.5.2 APMATH (AP MATH LIBRARY)
There are 239 subroutines written in AP assembly language. They are

callable from the host computer FORTRAN or machine language using APEX.
They are listed in Table 1-3.

FPS 860-7259-003 : ‘ 1 - 9

1.5.3 PROGRAM DEVELOPMENT PACKAGE

Six FORTRAN IV programs, which are compiled on the host computer during
installation, aid user program development.

These are:

APAL AP assembly language. Cross-—assembler
which provides a two-pass assembly of
symbolic coding into an object module.
APAL generates detailed error diagnostics.

APLOAD AP loader. Links and relocates
separate APAL and AP-FORTRAN object
modules together. It produces a load
module and a host FORTRAN subroutine
which transfers the load module to the
AP.

APDBUG AP debugger. Interactive debugging
' program. The user may selectively set
breakpoints, examine and change memory,
and register contents and run program
segments.

APSIM AP simulator. Called by APDBUG, APSIM
provides a programmed simulation of the
various hardware elements of the AP.
All timing characteristics of the AP
are emulated and the floating-point
arithmetic is simulated (including
rounding) to the least significant bit.
APSIM is a convenient tool in bringing
up new AP programs off-line without
interferring with production runs.

VFC Vector Function Chainer. A translator
to convert VFC syntax to AP assembly
language (APAL). It consolidates
multiple CALLS to the AP from the host
computer into one CALL whenever possible.

FPS 860-7259-003 1 - 10

AP-FORTRAN

Array processor FORTRAN. A compiler
which allows FORTRAN subprograms to
execute on the AP. The compiler produces
object modules which are used as input to
the AP loader (APLOAD).

1.5.4 APTEST (AP TEST PROGRAMS)

APTEST is a collection of interactive diagnostic tests and verify
programs which aid in isolation of hardware faults.

These are:

APTEST

APPATH

APARTH

FIFFT

FPS 860-7259-003

AP tester. Exercises the panel, DMA
interface, and various internal registers
and memories. Tests main data memory with
simple patterns and then with random
numbers. Board-level diagnostic indicators
are provided.

AP path tester. Tests the various
internal data paths and gives board
level diagnostics.

AP arithmetic test. Tests the
floating-point adder, multiplier, and
s=-pad arithmetic unit with pseudorandom
number and operation sequences.

Forward/inverse FFT test. Verifies

the correct operation of the AP

as a complete unit by doing
forward/inverse FFT transforms on both
spikes and random number sequences.

Table 1-1 Floating-Point Arithmetic Times

OPERATION TRAVEL TIME PIPELINE INTERVAL
Add/Subtract 9.333 us P.167 us
Multiply P.500 us 9.167 us
Multiply-Add 2.833 us P.167 us
Compiex Add/Subtract 0.500 us §.333 us
Complex Multiply 1.333 us . 9.667 us
Complex Multiply-Add © 1.667 us 9.667 us

0983

Travel time is the total time required to get from the data source to
the destination including the full transport through the arithmetic
units. Pipeline interval is the time between successively available
resultants. The former is important when the successive arguments of a
computation depend on previous calculations. The latter is indicative
of the maximum throughput rate available for successively independent
calculatorse. :

FPS 860-7259-003 1 - 12

Table 1=2 Basic Scalar Functions

TYPICAL EXECUTION PROGRAM SIZE
OPERATION TIME/LOOP (us) (AP PS WORDS)
167 as 333 ns 167 ns 333 ns

Divide 3.8 3.8 28 28
Square Root 3.8 3.8 28 28
Exponential 4.2 4.2 28 28
Natural Logarithm 4.0 4.9 37 37
Base 1P Logarithm 4.7 4.7 37 37
Sine 4.9 4.9 35 35
Cosine 5.4 5.4 35 35
Arctangent 2.7 8.7 74 74
Arctangent of (Y/X) 13.3 13.8 74 74

0984

These functions take arguments from data pad and return full-word
accuracy results to data pad. Full-precision polynomial coefficients
for these functions are contained on the standard 512 words of table
Memory .

FPS 860-7259-003 1 - 13

Table

1-3 Summary of AP FORTRAN Callable Routines

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
DATA TRANSFER AND CONTROL OPERATIONS (APEX)
APPUT PUT DATA INTO THE AP #e# #. 0 0
APGET GET DATA FROM THE AP #e # #. 0 0
APCLR INITIALIZE THE AP e #o 0 0
APWD WAIT FOR AP DATA TRANSFER it # #.# 0 0
APWR WAIT FOR AP PROGRAM EXECUTION #e tt #o 0 0
APWAIT WAIT FOR AP #ot Ho# 0 0
APGSP READ AN AP S-PAD REGISTER it # e it 0 0
APCHK CHECK AP PROGRAM ERROR CONDITION #o #o 0 0
APSTAT GET AP HARDWARE STATUS #a# et 0 0
BASIC VECTOR ARITHMETIC

VCLR VECTOR CLEAR 0.2 0.3 16 4
VMOV VECTOR MOVE 0.5 0.8 16 6
VSWAP VECTOR SWAP 1.2 1.5 21 12
VFILL VECTOR FILL 0.3 0.3 5 5
VRAMP VECTOR RAMP 0.3 0.3 12 12
VNEG VECTOR NEGATE 0.5 0.8 18 7
VADD VECTOR ADD 0.8 1.3 20 8
VSUB VECTOR SUBTRACT 0.8 1.3 20 8
VMUL VECTOR MULTIPLY 0.8 1.3 20 11
VDIV VECTOR DIVIDE 1.7 1.7 75 75
VSADD VECTOR SCALAR ADD 0.5 0.8 i9 8
VSMUL VECTOR SCALAR MULTIPLY 0.5 0.8 20 9
VITSADD VECTOR TABLE SCALAR ADD 0.5 0.8 8 8
VISMUL VECTOR TABLE SCALAR MULTIPLY 0.5 0.8 8 8
vsQ VECTOR SQUARE 0.5 0.8 9 9
VSSQ VECTOR SIGNED SQUARE 0.5 0.8 21 9
VABS VECTOR ABSOLUTE VALUE 0.5 0.8 17 7
VSQRT VECTOR SQUARE ROOT 1.8 1.8 79 79
VLOG VECTOR LOGARITHM (BASE 10) 2.7 2.7 54 58
VLN VECTOR NATURAL LOGARITHM 2.7 2.7 42 42

FPS 860-7259-003

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)

Typical Program

Execution Size

Name Operation Time/Loop (AP
(us) PS words)

167 | 333 167 | 333

VALOG VECTOR ANTILOGARITHM (BASE 10) 2.3 2.3 58 58
VEXP VECTOR EXPONENTIAL 2.3 2.3 55 55
VSIN VECTOR SINE 1.3 1.3 34 34
VCOS VECTOR COSINE 1.3 1.3 34 34
VATAN VECTOR ARCTANGENT o 9.7 9.8 87 87
VATN2 VECTOR ARCTANGENT OF Y/X 1l4.2 14.2 88 88
VRAND VECTOR RANDOM NUMBERS 1.2 1.2 16 16
VMSA VECTOR MULTIPLY AND SCALAR ADD 0.8 1.3 23 14
VSMA VECTOR SCALAR MULTIPLY AND ADD 0.8 1.3 21 14
VSMSB VECTOR SCALAR MULTIPLY AND SUBTRACT 0.8 1.3 21 14
VMA VECTOR MULTIPLY AND ADD 1.2 1.8 23 15
VMSB VECTOR MULTIPLY AND SUBTRACT . 1.2 1.8 23 15
VAM VECTOR ADD AND MULTIPLY 1.2 1.8 23 14
VSBM VECTOR SUBTRACT AND MULTIPLY ‘ 1.2 1.8 23 14
VSMSA VECTOR SCALAR MULTIPLY AND SCALAR ADD 0.5 0.8 23 15
VMMA VECTOR MULTIPLY, MULTIPLY, AND ADD 1.5 2.3 27 19
VMMSB VECTOR MULTIPLY MULTIPLY AND SUBTRACT 1.5 2.3 27 19
VAAM VECTOR ADD, ADD, AND MULTIPLY 1.5 2.3 13 20
VSBSBM VECTOR SUBTRACT SUBTRACT AND MULTIPLY 1.5 2.3 13 20
VAND VECTOR LOGICAL AND ' 0.8 1.3 20 8
VEQV VECTOR LOGICAL EQUIVALENCE 0.8 1.3 20 8
VOR VECTOR LOGICAL OR 0.8 1.3 20 8
VFRAC VECTOR TRUNCATE TO FRACTION 0.7 0.8 13 13
VINT VECTOR TRUNCATE TO INTEGER 0.5 0.8 9 9
VINDEX VECTOR INDEX 0.8 1.3 28 26
VECTOR-TO-SCALAR OPERATIONS
SVE SUM OF VECTOR ELEMENTS 0.3 0.3 7 7
SVEMG SUM OF VECTOR ELEMENT MAGNITUDES 0.3 0.3 10 10
SVESQ SUM OF VECTOR ELEMENT SQUARES 0.3 0.3 10 10
SVS SUM OF VECTOR SIGNED SQUARES 0.3 0.3 11 11
DOTPR DOT PRODUCT 0.5 0.8 21 9
MAXV MAXIMUM ELEMENT IN VECTOR 0.3 0.3 19 19
MINV MINIMUM ELEMENT IN VECTOR 0.3 0.3 i9 19
MAXMGV MAXIMUM MAGNITUDE ELEMENT IN VECTOR 0.3 0.3 19 19
MINMGV MINIMUM MAGNITUDE ELEMENT IN VECTOR 0.3 0.3 19 19

FPS 860-7259-003 ' 1 - 15

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)

Typical Program

Execution Size

Name Operation Time/Loop (AP
(us) PS words)

167 | 333 167 | 333

MEANV ~ MEAN VALUE OF VECTOR ELEMENTS 0.3 0.3 49 49
MEAMGV MEAN OF VECTOR ELEMENT MAGNITUDES 0.3 0.3 52 52
MEASQV MEAN OF VECTOR ELEMENT SQUARES 0.3 0.3 52 52
RMSQV ROOT-MEAN-SQUARE OF VECTOR ELEMENTS 0.3 0.3 81 81
VECTOR COMPARISON OPERATIONS
VMAX VECTOR MAXIMUM 0.8 1.3 22 13
VMIN VECTOR MINIMUM 0.8 1.3 22 13
VMAXMG VECTOR MAXIMUM MAGNITUDE 0.8 1.3 14 14
VMINMG VECTOR MINIMUM MAGNITUDE 0.8 1.3 14 14
VCLIP VECTOR CLIP 0.5 0.8 16 16
VICLIP VECTOR INVERTED CLIP 0.7 0.8 19 19
VLIM VECTOR LIMIT 0.5 0.8 14 14
LVGT LOGICAL VECTOR GREATER THAN 0.8 1.3 23 13
LVGE LOGICAL VECTOR GREATER THAN OR EQUAL 0.8 1.3 23 13
LVEQ LOGICAL VECTOR EQUAL 0.8 1.3 23 13
LVNE LOGICAL VECTOR NOT EQUAL 0.8 1.3 23 13
LVNOT LOGICAL VECTOR NOT 0.5 0.8 21 12
VLMERG VECTOR LOGICAL MERGE 0.8 1.5 23 16
COMPLEX VECTOR ARITHMETIC
cvMov COMPLEX VECTOR MOVE 0.8 1.3 9 9
CVFILL COMPLEX VECTOR FILL 0.5 0.7 8 8
CVCOMB COMPLEX VECTOR COMBINE 1.1 1.7 10 10
CVREAL FORM COMPLEX VECTOR OF REALS 6.8 1.2 9 9
VREAL EXTRACT REALS OF COMPLEX VECTOR 0.5 0.8 17 7
VIMAG EXTRACT IMAGINARIES OF COMPLEX VECTOR 0.5 0.8 18 8
CVNEG COMPLEX VECTOR NEGATE 0.8 1.3 11 11
CVCONJ COMPLEX VECTOR CONJUGATE 0.7 1.3 10 12
CVADD COMPLEX VECTOR ADD 1.0 2.0 13 12
CVSUB COMPLEX VECTOR SUBTRACT 1.0 2.0 13 12

FPS 860-7259-003 1 - 16

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
CVMUL COMPLEX VECTOR MULTIPLY 1.0 2.0 25 26
CVSMUL COMPLEX VECTOR SCALAR MULTIPLY 0.8 1.3 12 12
CVRCIP COMPLEX VECTOR RECIPROCAL 5.2 5.2 50 50
CRVADD COMPLEX AND REAL VECTOR ADD 1.3 1.8 14 14
CRVSUB COMPLEX AND REAL VECTOR SUBTRACT 1.3 1.8 14 14
CRVMUL COMPLEX AND REAL VECTOR MULTIPLY 1.3 1.8 14 14
CRVDIV COMPLEX AND REAL VECTOR DIVIDE 3.3 3.3 92 92
CVMA COMPLEX VECTOR MULTIPLY AND ADD 1.3 2.7 29 30
CVMAGS COMPLEX VECTOR MAGNITUDE SQUARED 0.7 1.2 13 18
SCJIMA SELF~CONJUGATE' MULTIPLY AND ADD 0.8 1.5 14 15
POLAR RECTANGULAR TO POLAR CONVERSION 19.5 19.5 120 120
RECT POLAR TO RECTANGULAR CONVERSION 2.3 2.3 49 49
CVEXP COMPLEX VECTOR EXPONENTIAL 2.0 2.0 43 43
CVMEXP VECTOR MULTIPLY COMPLEX EXPONENTIAL 2.3 2.3 48 48
CDOTPR COMPLEX DOT PRODUCT 0.7 1.3 15 16
DATA FORMATTING OPERATIONS
VFLT VECTOR INTEGER FLOAT 0.5 0.8 13 11
VFIX VECTOR INTEGER FIX 0.7 0.8 18 7
VSMAFX VECTOR SCALAR MULTIPLY, ADD, AND FIX 0.7 0.8 14 13
VSCALE VECTOR SCALE (POWER 2) AND FIX 0.7 0.8 12 12
VSCSCL VECTOR SCAN, SCALE (POWER 2) AND FIX 1.5 1.7 19 19
VSHFX VECTOR SHIFT AND FIX 0.7 0.8 9 9
VUuP8 VECTOR 8-BIT BYTE UNPACK 0.5 0.5 71 71
VUPS8 VECTOR 8-BIT SIGNED BYTE UNPACK 0.9 0.9 107 107
VPKS8 VECTOR 8-BIT BYTE PACK 0.9 0.9 65 65
VUPL6 VECTOR 16=-BIT BYTE UNPACK 0.8 0.8 61 61
VUPS16 VECTOR 16-BIT SIGNED BYTE UNPACK 1.3 1.3 58 58
VPK16 VECTOR 16-BIT BYTE PACK ' 0.8 0.8 46 46
VFLT32 VECTOR 32-BIT INTEGER FLOAT 1.7 1.7 65 65
VFIX32 VECTOR 32-BIT INTEGER FIX 1.2 1.2 33 33
VSEFLT 0.8 0.8 15 15

VECTOR SIGN EXTEND AND FLOAT

FPS 860-7259-003 1 - 17

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)

Typical Program
Execution Size
Name Operation Time/Loop (AP
- (us) PS words)
167 | 333 167 | 333
MATRIX OPERATIONS
MTRANS MATRIX TRANSPOSE 0.5 0.9 18 22
MMUL MATRIX MULTIPLY 0.62% .83 59 59
MMUL32 MATRIX MULTIPLY (DIMENSION <=32) 0.50*% 0.73 27 27
MATINV MATRIX INVERSE 1.6 * 2.1 160 160
SOLVEQ LINEAR EQUATION SOLVER 0.7 * 0.9 216 222
MVML3 MATRIX VECTOR MULTIPLY (3X3) 2.0 % 2,2 30 30
MVML4 MATRIX VECTOR MULTIPLY (4X4) 3.3 * 3.8 39 39
CTRN3 3-DIMENSION COORDINATE TRANSFORMATION 2.3 * 2.5 37 37
nem FAST MEMORY MATRIX MULTIPLY 0.43% 61
FMMM32 FAST MEMORY MATRIX MULTIPLY (<=32) 0.41% 33
FFT OPERATIONS
CFFT COMPLEX TO COMPLEX FFT (IN PLACE) 0.28*% 0.40 186 184
CFFTB COMPLEX TO COMPLEX FFT (NOT IN PLACE) 0.20* 0.28 189 189
RFFT REAL TO COMPLEX FFT (IN PLACE) 0.18% 0.27 253 251
RFFTB REAL TO COMPLEX FFT (NOT IN PLACE) 0.14% 0.20 252 252
CFFTISC COMPLEX FFT SCALE 0.8 1.3 42 42
RFFTSC REAL FFT SCALE AND FORMAT 0.7 0.8 59 59
CFFT2D COMPLEX TO COMPLEX 2-~-DIMENSIONAL FFT 0.5 * 0.5 274 274
RFFT2D REAL TO COMPLEX 2-DIMENSIONAL FFT 0.4 * 0.4 585 585
AUXILIARY OPERATIONS
CONV CONVOLUTION (CORRELATION) 0.28*% 0.28 106 106
DEQ22 DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 0.8 0.8 25 25
VPOLY VECTOR POLYNOMIAL EVALUATION 1.0 * 1.2 41 41
VSUM " VECTOR SUM OF ELEMENTS INTEGRATION 0.7 0.8 13 13

FPS 860-7259-003 1

18

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)

Typical Program
Execution Size
Name Operation Time/Loop (AP
: (us) PS words)
167 | 333 167 | 333
VTRAPZ VECTOR TRAPEZOIDAL RULE INTEGRATION 0.7 0.8 16 16
VSIMPS VECTOR SIMPSONS 1/3 RULE INTEGRATION 0.7 0.8 25 25
WIENER WIENER LEVINSON ALGORITHM 0.50*% 0.65 100 100
- SIGNAL PROCESSING OPERATIONS (optional)

HIST HISTOGRAM 1.3 1.4 71 71
HANN HANNING WINDOW MULTIPLY 0.7 0.8 41 41
ASPEC ACCUMULATING AUTO-SPECTRUM 0.8 1.5 21 22
CSPEC ACCUMULATING CROSS-SPECTRUM 1.3 2.7 39 40
VAVLIN VECTOR LINEAR AVERAGING 0.8 1.3 54 46
VAVEXP VECTOR EXPONENTIAL AVERAGING 0.8 1.3 55 46
VDBPWR VECTOR CONVERSION TO DB (POWER) 1.2 1.3 75 75
TRANS TRANSFER FUNCTION 3.3 3.3 100 100
COHER COHERENCE FUNCTION 4.0 445 109 114
ACORT AUTO-CORRELATION (TIME-DOMAIN) 0.29% 0.29 121 121
ACORF AUTO-CORRELATION (FREQUENCY-DOMAIN) 1.80% 2.70 501 489
CCORT CROSS-CORRELATION (TIME-DOMAIN) 0.29*% 0.29 121 121
CCORF CROSS~CORRELATION (FREQUENCY-DOMAIN) 2.58% 3.93 526 510
TCONV POSTTAPERED CONVOLUTION (CORRELATION) 0.30*% 0.30 112 112

FPS 860-7259-003 o 1 -

19

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
TABLE MEMORY OPERATIONS (optional)

MTMOV. VECTOR MOVE (MD TO TM) 0.2 0.3 6. 7
T™MMOV VECTOR MOVE (TM TO MD) 0.2 0.3 5 5
MTIMOV VECTOR MOVE WITH INCREMENT (MD TO TM) 0.5 0.5 7 7
TMIMOV VECTOR MOVE WITH INCREMENT (TM TO MD) 0.3 0.3 15 15
TTIMOV VECTOR MOVE WITH INCREMENT (TM TO TM) 0.5 0.5 7 7
MMTADD VECTOR ADD (MD+MD TO TM) 0.7 0.8 20 13
MMTSUB VECTOR SUBTRACT (MD-MD TO TM) 0.7 0.8 20 13
MMTMUL VECTOR MULTIPLY (MD*MD TO TM) 0.7 0.8 20 13
MTMADD VECTOR ADD (MD+TM TO MD) 0.5 0.8 20 9
MTMSUB VECTOR SUBTRACT (MD-TM TO MD) - 0.5 0.8 20 9
TMMSUB VECTOR -SUBTRACT (TM=-MD TO MD) 0.5 0.8 20 9
MTMMUL VECTOR MULTIPLY (MD*TM TO MD) 0.5 0.8 20 9
MTITADD VECTOR ADD (MD+TM TO TM) 0.5 0.5 20 20
MITSUB VECTOR SUBTRACT (MD-TM TO TM) 0.5 0.5 20 20
TMTSUB VECTOR SUBTRACT (TM-MD TO TM) 0.5 0.5 20 20
MTTMUL VECTOR MULTIPLY (MD*TM TO TM) 0.5 0.5 20 20
TTMADD VECTOR ADD (TM+TM TO MD) 0.5 0.5 20 20
TTMSUB VECTOR SUBTRACT (TM-TM TO MD) 0.5 0.5 20 20
TTMMUL VECTOR MULTIPLY (TM*TM TO MD) 0.5 0.5 20 20
TTTADD VECTOR ADD (TM+TM TO TM) 0.7 0.7 9 9
TTTSUB VECTOR SUBTRACT (TM-TM TO TM) 0.7 0.7 9 9
TTTMUL VECTOR MULTIPLY (TM*TM TO TM) 0.7 0.7 10 10

FPS 860-7259-003

20

Table 1-3 Summary of AP FORTRAN Callable Routines (cecnt.)

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
APAL-CALLABLE UTILITY OPERATIONS
DIV SCALAR DIVIDE 3.8 @ 3.8 28 28
SQRT SCALAR SQUARE ROOT 3.8 @ 3.8 28 28
LOG SCALAR LOGARITHM (BASE 10) 4.7 @ 4.7 37 37
LN SCALAR NATURAL LOGARITHM 4,0 @ 4.0 37 37
EXP SCALAR EXPONENTIAL 4.2 @ 4.2 28 28
SIN SCALAR SINE 4.9 @ 4.9 35 35
COsS SCALAR COSINE 5.4 @ 5.4 35 35
ATAN SCALAR ARCTANGENT 8.7 @ 8.7 74 74
ATN2 SCALAR ARCTANGENT OF Y/X 3.8 @13.8 74 74
SPFLT FLOAT S-PAD INTEGER 0.8 @ 0.8 5 3
SPUFLT S-PAD UNSIGNED FLOAT 0.8 @ 0.8 8 8
SPNEG S—~PAD NEGATE 0.3 @ 0.3 2 2
SPADD S=PAD ADD 0.2 @ 0.2 1 1
SPSUB S-PAD SUBTRACT 0.2 @ 0.2 1 1
SPMUL S~PAD MULTIPLY 2.3 @ 2.3 14 14
SPDIV S-PAD DIVIDE 6.2 @ 6.2 43 43
SPRS S=PAD RIGHT SHIFT 0.3 * 0.3 5 5
SPLS S-PAD LEFT SHIFT 0.3 * 0.3 5 5
SPAND S-PAD AND 0.2 @ 0.2 1 1
SPOR S-PAD OR 0.2 @ 0.2 1 1
SPNOT S=PAD NOT 0.2 @ 0.2 1 1
SAVESP SAVE S-PAD INTO PROGRAM MEMORY 0.8 * 0.8 18 18
SAVSPO SAVE S-PAD 0 INTO PROGRAM MEMORY 2.0 * 2.0 H 11
SETSP LOAD S-PADS FROM PROGRAM MEMORY 2.3 % 2.3 33 33
SET2SP LOAD 2 S-~PADS FROM PROGRAM MEMORY 5.7 @ 5.7 33 33
MDCOM MAIN DATA COMPARE AND SET S-PAD 1.8 @ 2.0 11 11
ZMD CLEAR ALL PAGES OF MAIN DATA MEMORY 0.2 0.3 29 29
RDCS ~ READ CONTROL BIT 5 INTERRUPT 1.5 @ 1.5 9 9
SETC5 SET CONTROL BIT 5 INTERRUPT 0.2 @ 0.2 1 1
DAREAD READ DEVICE ADDRESS REGISTER 0.3 @ 0.3 2 2
DAWRIT WRITE DEVICE ADDRESS REGISTER 0.3 @ 0.3 2 2
VFCL1 VECTOR FUNCTION CALLER (1 ARGUMENT) 0.8 1.0 10 10
VFCL2 VECTOR FUNCTION CALLER (2 ARGUMENT) 1.0 1.0 11 11
BITREV - COMPLEX VECTOR BIT REVERSE ORDERING 0.9 1.4 45 43
REALTR REAL FFT UNRAVEL AND FINAL PASS 0.4 0.7 68 68
FFT2 RADIX 2 FFT FIRST PASS 1.3 2.7 16 16

- FPS 860-7259-003 ' 1 - 21

Table 1-3 Summary of AP FORTRAN Callable Routines (cont.)
Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
FFT4 RADIX 4 FFT PASS 3.7 5.3 79 79
FFT2B RADIX 2 FFT FIRST PASS + BIT REVERSE 1.3 2.7 25 25
FFT4B RADIX 4 FFT FIRST PASS + BIT REVERSE 2.7 5.3 43 43
STSTAT SET FFT MODE STATUS BITS 5.0 @ 5.0 19 19
CLSTAT CLEAR FFT MODE STATUS BITS 0.5 @ 0.5 19 19
ILOG2 LOGARITHM (BASE 2) 4.0 @ 4.0 19 19
ADV2 ADVANCE POINTERS AFTER RADIX 2 FFT 0.7 @ 0.7 7 7
ADV4 ADVANCE POINTERS AFTER RADIX 4 FFT 0.7 @ 0.7 7 7
SET24B SETUP FOR FFT2B AND FFT4B 1.2 @ 1.2 8 8
XCFFT EXPANDED COMPLEX FFT 0.32*% 0.42 187 187
ZRFFT EXPANDED REAL FFT 0.19% 0.28 256 256
XBITRE -EXPANDED BIT REVERSE 3.7 3.7 44 44
XREALT EXPANDED REAL FFT FINAL PASS 0.4 0.7 71 71
PCFFT PARTIAL COMPLEX FFT 1.05% 1.50 117 117
XFFT4 EXPANDED RADIX 4 FFT PASS 3.7 5.3 79 79
CTOR COMPLEX TO REAL FFT -UNSCRAMBLE 0.13* 0.13 80 80
RTOC REAL TO COMPLEX FFT SCRAMBLE 0.19*% 0.09 143 143
SSDA SINGLE + SINGLE TO DOUBLE ADD 1.5 @ 1.5 10 10
SSDM SINGLE * SINGLE TO DOUBLE MULTIPLY 11.5 @11.5 81 81
SDDA SINGLE + DOUBLE TO DOUBLE ADD 4e5 @ 4.5 28 28
DDDA DOUBLE + DOUBLE TO DOUBLE ADD 7.5 @ 7.5 48 48
DDDM DOUBLE * DOUBLE TO DOUBLE MULTIPLY 18.5 @18.5 117 117
NOTE
#.# Timing host system dependent
* Refer to description of routine for explanation of timing
@ Total execution time

FPS 860-7259-003 1 - 22

Table 1-4 Convolution (Correlation)

TYPICAL EXECUTION
ELEMENT COUNTS TIME/LOOP (us)
" N ‘ 167ns 333ns
3 128 0.28 .28
32 128 0.83 0.83
128 128 10 3.0
8 1024 ' 2.3 _ 2.3
32 1024 1 6 6.6
128 ' 1024 . B 24.0
1026 e | 1862 o 186.2
| 0985
Table 1—5. Faét Fourier Transforms
RFFT RFFTB CFFT CFFTB
POINTS 167ns 333ns _ 1_67ns 333ns 167ns 333ns 1€7ns 333ns
64 0.18 0.27 0.14 0.20 0.28 0,40 0.20 0.28
128 0.35 0.50 0.27 . 0.38 0.62 0.95 0.47 0.72
256 0.74 1.13 0.58 0.90 1.28 1.86 0.97 1.41
512 1.50 .22 1.20 176 | é;és | 4.38 2.26 3.48
1024 3.30 - 5.08 | 270 318 5.95 8.73 4.75 5.33
2048 6.81 10.12 5,61 1 8.32 '13.32 20.1Q 19.33 16.60
1096 14.95 22.96 | 12.56 19.37 27.44 40.33 22.56 33.16
3192 30.88 45.86 (26,09 | 38.69 60.33 91.66 50.76 77.31
16384 67.19 102.70 157.63 98.36 '124.79 183.27 105.58 154.39
w6 | 138.42 205.35 119.30 176.68 - - : - -
986

FPS 860-7259-003 | 1= 23

CHAPTER 2

FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION

The hardware of the AP is composed of the following three types of
functional elements:
e logical and control elements
control unit
s-pad unit
o floating-point arithmetic elements
floating=-point adder
floating-point multiplier
° memory elements
data pad unit

- main data memory unit
table memory unit

Each of these functional units is independent and thus can
independently perform the programmed operations for which it was
designed in parallel with the other functional units.

FPS 860-7259-003 2 - 1

2.2 CONTROL UNIT

The control unit, as illustrated by Figure 2-1, consists of:

e program source memory {(PS)
e program source address (PSA) register
e control buffer (CB) with decoding logic

® subroutine return stack (SRS)

The operation of the AP is controlled by the execution of 64-bit
instruction words which reside in program source (PS) memory. The
program word for the next instruction to be performed is selected by
the address in the program source address (PSA) register. At the
initiation of the next machine cycle, this program word is transferred
to the control buffer (CB) where it is decoded and executed. The PSA
is incremented by one unless a branch in the current instruction causes
the PSA to move to another location in program source memory. Access
to program source memory and instruction decoding is overlapped so that
the AP can operate at a 6-MHz rate (167ns).

Branching is accomplished in two ways. A short-range branch is
provided by adding the 5-bit branch displacement field to the current
PSA. This gives a branch range of from -20g to +17g. A long-range
jump to any location in PS is accomplished by loading the desired
target address into PSA.

Subroutine jumps are made by a JSR instruction which saves the current
PSA in the subroutine return stack and sets PSA to the subroutine
address. Return is via a return, which loads the PSA with the last
entered return address on the SRS.

Subroutine return address (SRA) is the subroutine return stack pointer,

which is automatically incremented or decremented as subroutines are
called and returns are made from the subroutine.

FPS 860-7259-003 2 - 2

S3A

v

SUBROUT INE

DETURN STACK

P 4 4

PROGRAM SOURCE ADDRESS (PSA)

PROGRAM SOURCE
MEMORY {PS)

b 4

CONTROL 3UFFER (CB)

y

‘Figure 2-1 Control Unit

1987

2.3 S=-PAD UNIT

This unit, illustrated by Figure 2-2, performs the integer address
indexing, loop counting, and control functions necessary to direct
completion of a given algorithm. In form, it is similar to familiar
minicomputers such as the PDP-11 and Nova.

The s-pad contains sixteen 16-bit directly-addressable registers. The
contents of these registers pass through a special integer ALU
associated with this unit. :

The output of the ALU may be directed back to the specified s-pad
destination register and also may be directed to any of the following
address memory registers: memory address (MA), table memory address
(TMA), or data pad address (DPA). '

FPS 860-7259-003 . ' 2 - 3

The s~-pad integer ALU functions include the following:

function effect

move §—»D S-=source register
logical complement S—»D D-destination register
clear ' 0—»D

increment S+1 —»D

decrement S=-1—»D

add D+S —» D

subtract ' D-S —» D

logical AND | D AND S —»D

logical OR D OR S—»D

logical equivalence . D EQV S—»D

The output of the s-pad ALU (called S~PAD FUNCTION or SPFN) may be used
unmodified, shifted left once, shifted right once, or shifted right
twice.

A hardware bit-reverse function included in the s-pad accomplishes the
bit swapping necessary to access data in scrambled order after an FFT.

The s-pad ALU also sets three condition bits in the AP status register
depending upon the output of the ALU/shifter:

N: set 1if result <0; cleared otherwise

Z: set if result =0; cleared otherwise

C: set if a carry occurred; cleared otherwise

These bits may be tested by the next AP instruction, and a branch made,
depending upon whether the specified condition is true.

FPS 860-7259-003 2 - 4

JATA 2AD 3US (D8)

S-PAD
REGISTER FILE

v

8IT
REVERSE

S-PAD
ALU
SHIFTER

O—-Dl JATA PAD ADDRESS {DPA) REGISTER ¢— -

"
—

.—-bl MEMORY ADDRESS (MA) REGISTER l‘—

0-—)! TABLE MEMORY. ADDRESS (TMA) REGISTER Iﬂ— =1
v _

Figure 2-2 S=-Pad Unit

FPS 860-7259-003 ' 2 - 5

2.4 FLOATING-POINT ADDER UNIT

The floating-point adder, shown in Figure 2-3, performs addition or
subtraction operations on the contents of the adder input registers (Al
and A2). The operation is performed in two stages, each of which takes
one machine cycle.

In the first stage, the exponents of the two numbers are compared and
the fractions are aligned by shifting the fraction of the smaller
number right. The fractions are then added or subtracted. In the
second stage, the resultant fraction is normalized and convergently
rounded.

Since the two stages are independent of each other, a new pair of
numbers can be entered into Al and A2 every AP cycle (167ns). The
result is available for use two cycles later (333ms).

In effect, the floating adder (FA) is a pipeline where new inputs can
be entered into the pipeline stream every cycle. Initiation of an add
operation loads the two numbers to be added into the Al and A2 input
registers. The previous adder input is pushed down the pipeline to the
‘adder buffer register. One cycle later, the completed result (called
FA) from the buffer is available for storage or use by another unit.
Thus, a new add can be started every 167ns, and the result is ready
333ns later.

Al may be loaded from data pad (DP), from the output of the floating
multiplier (FM), or from table memory (TM). A2 may be loaded from data
pad (DP), from the output of the floating adder (FA), or from main data
memory (MD).

The output of the floating adder (FA) may be directed to the multiplier
(M2), to the adder (A2), to data pad (DP), or to memory input (MI).

FPS 860-7259-003 _ 2 - 6

The operations performed by the floating adder are:

o Al+A2
e Al-A2
o A2-Al

e Al EQV A2

. Al‘AND A2

e Al OR A2

.' conve;t A2 from signed magnitude to 2°s complement format
e convert A2 from 2°s compiemenﬁ,tovsigned magnitude format
e scale A2

e absolute value of AZ{

e fix A2
Four condition bits in the AP status register are set or cleared by the
floating adder depending upon the current result:

FZ ~ Set to one if result is zero, else
cleared to zero.

FN Set to one if result is negative, else
cleared to zero.

FO Set to one if exponent overflow occurred. The
result is forced to the signed maximum value.

FU Set to one if exponent underflow occurred.
The result is forced to zero.

FPS 860-7259-003 2 - 7

The overflow and underflow bits remain set until cleared by the

program.

These bits may be tested by the instruction after the

floating adder result is completed (i.e., three cyc¢les after the
floating adder operation is initiated).

ZERO OPX Py ™ FM FA JPX Py MD ZERQ
N s \ 7
Yy Y
h 4 h 4

‘\\\‘ Al

AN yd

.

N

ALIGN FRACTIONS AND ADD

/

STAGE 1

BUFFER

NORMALIZE AND ROUND

STAGE 2

2

v v

A2 MI SPX

0989

Figure 2«3 Floating-Point Adder Unit

FPS 860-7259-003

2.5 FLOATING-POINT MULTIPLIER UNIT

The floating multiplier, as illustrated in Figure 2-4, forms the
product of the two multiplier input registers (Ml and M2). The product
is formed in three stages, each of which takes one machine cycle.

In the first stage, the 56-bit product of the two 28-bit fractions are
partially completed. The second stage completes the product of the
fractions. In the third and final stage, the exponents are added, and
the mantissa product is normalized and convergently rounded.

The floating multiplier, like the floating adder, is organized like a
pipeline. Initiation of a multiply loads the two numbers to be
multiplied into the M1 and M2 input registers. The two previous
multiplier inputs are pushed down the pipeline to buffer 2 and buffer
3, respectively. One cycle later, the result from buffer 3 is
available for storage or use by another unit.

Thus, a new produét can be started every 167ns, and the result is ready
500ns later.

Ml can be loaded from data pad (DPX or DPY), from the output of the
floating multiplier (FM), or from table memory (TM). M2 is loaded from
data pad (DPX or DPY), from the adder (Al), from the multiplier (M1),
or from the main data memory (MD).

Two error bits in the AP status register are affected by the floating
multiplier: :

FO Set if exponent overflow occurred. The result
' is forced to the signed maximum value.

FU Set if exponent underflow occurred. The result
is forced to zero.

FPS 860-7259-003 , 2 - 9

N N L =)

.ADD EXPONENTS START PRODUCT OF FRACTIOWS STAGE 1
BUFFER 2
COMPLETE PRODUCT OF FRACTIONS STAGE 2
BUFFER 3
NORMALIZE AND ROUND STAGE 3
(F™)
M1 Al MI OPX oPY

2990

Figure 2-4 Floating Multiplier

FPS 860-7259-003 2 - 10

2.6 DATA PAD UNIT

Data pad, illustrated in Figure 2-5, comsists of two fast accumulator
blocks (each with 32 floating-point locations) called data pad X (DPX)
and data pad Y (DPY). In a single-machine cycle, the contents of one
location from each data pad can be read out and used. In addition,
data can also be stored into one location in each data pad in the same
cycle. For example, in a single instruction (167ns), a multiply can be
initiated specifying one argument from DPX and another from DPY; an
adder result (FA) can be stored into a DPX location, and a data element
in main data stored into a DPY location. On the very next instruction,
similar multiple data pad accessing could be accomplished again.

The two memories are addressed via a combination of the data pad
address (DPA) register and four index field values contained in a given
instruction word. DPA can be thought of as a base address register or
stack pointer. It can be loaded from the s-pad (SPFN) or its contents
can be incremented or decremented by omne.

For a given read or write operation (i.e., reading from data pad X) an
index value contained in the instruction is added to the current
contents of DPA to give the effective address for that particular
operation. The four index fields (one each for read DPX, read DPY,
write DPX, and write DPY) are each three bits wide and have a range
from =4 to +3 relative to DPA. '

Data from either data pad can be used by the multiplier (M1, M2), adder
(Al, A2), or memory input (MI). Data can be stored into data pad from
the adder (FA), multiplier (FM), s-pad function output (SPFN), command
buffer value (VALUE), or from data pad (DP).

FPS 860-7259-003 2 - 11

THBS JALCE oPX Py D SPEN i
{DATA PAD 3US = DB) ,
N
FA FM FA M
&
ARITE INDEX @— WRITE INDEX
opx [l=—— ppp =P gpy
READ [NDEX ——READ INDEX
(DPX) {PY)
M1 €2 a1 a2 M2 Al A2 08

Figure 2-5 Data Pad

FPS 860-7259-003

12

2.7 DATA MEMORY UNIT

The data memory unit, as illustrated in Figure 2-6, is the primary data
store for the AP. It is available in 38-bit wide 8K modules which have
an interleaved cycle time of 333ms (for the standard memory) and 167ns
(for the fast memory).

The memory unit contains a main data memory (MD) buffer and a memory
input (MI) buffer. Data read from memory is placed by the controller
into MD, while data is written into memory from the MI. The memory
address (MA) register points to the desired memory location.

In referencing memory for read or write operatioms, the selected
operation is initiated by making a change to the memory address (MA)
register. The MA register can be loaded from the s-pad (SPFN) or its
contents incremented or decremented by omne.

A write operation is specified by loading MI with the data to be
written during the same instruction in which MA is changed. This data
is then written into memory from MI during the next two AP cycles.
Data can be loaded into MI from the floating adder (FA), floating
multiplier (FM), data pad (DP), main data memory (MD), table memory
(TM), the input bus (INBS), s-pad function (SPFN), or the command
buffer value (VALUE). A memory operation can be initiated every other
cycle. The intervening cycle can be used for any other AP function
except another memory initiate. :

When a memory read is initiated, the requested memory data is placed by
the memory controller into the main data memory (MD) register three
cycles after the reqest is made. Two instructions after the read
request, another memory operation can be initiated. Again, the
intervening cycle can be used for any non-memory function. Data in MD
can be used by the floating adder (A2), floating multiplier (M2), or
data pad (DP).

To optimize the operation of the AP, it is necessary for the programmer
to look ahead and initiate memory reads prior to the actual time that
arguments from data memory are used in a calculation.

The system provides a memory lock-out which serves to ensure that
erroneous reads and writes of memory do not occur. If a memory
initiate occurs while memory is busy, further program execution is
halted until the previous memory cycle is completed.

FPS 860-7259-003 2 - 13

INBS YALUE 0PX JPY MD SPFN ™

(DATA PAD BUS = 0B)
4

€A M

L

MI

N < MAIN DATA MEMORY

MD

0B A2 M2
2992

Figure 2-6 Data Memory Unit

FPS 860-7259-003 2 - 14

2.8 TABLE MEMORY UNIT

The repeated use of standard constants (such as complex roots of unity
and transcendental values) in signal processing routines dictates their
ready availability to the programmer. A separate table memory, as
illustrated in Figure 2-7, eliminates memory accessing conflicts by
allowing data values (constants) to be placed in separate memory banks.

Values read from table memory are placed by the controller into the
table memory buffer register. The table memory address (TMA) register
serves as a pointer to the desired location.

A table memory read is initiated by changing the contents of TMA either
by loading a value from the s-pad (SPFN) or by incrementing or
decrementing the contents of TMA.

A new table value may be requested every machine cycle. This value is
available for use two cycles later. The value can be used by the
floating adder (Al), floating multiplier (M1), or data pad (DP).

In FFT mode (i.e., when FFT is being computed), the address in TMA is
interpreted by the hardware to be an angle which points to the
appropriate root of unity for a particular step in the algorithm. This
allows the full table of roots of unity to be compressed into a single
quadrant of cosines.

Refer to Programmer’s Reference Manual Part One (FPS 860-7319-000) for
information on TMRAM.

FPS 860-7259-003 2 - 15

10BS

T™MI

TABLE MEMORY %0M |efm=— TMA —mm—JPd TABLE MEMORY RAM

Al M1 DB

0993

Figure 2-7 Table Memory

FPS 860-7259-003 2 - 16

2.9 INTERNAL FLOATING-POINT FORMAT

Floating-point data internal to the AP is represented as follows:

EXPONENT MANTISSA
? 3 1p , o
2 £9 P : 27
9994
where:
mantissa 28-bit 2’s complement fraction
exponent 10-bit binary exponent, biased by 512

The value of a floating-point number in this format is defined as:

mantissa * 2 (exponent =512)

The dynamic ran%gsof this fogggt is from 0.5 * 2—512 to (1-2—28)*2511;
or from 3.7%107 to 6.7*%10 .

The 28-bit fraction, combined with the convergent rounding algorithm
used in the floating adder and multiplier, gives a maximum relative
error of 7.5%10-9 per arithmetic operation. This is a precision of 8.1
decimal digits. As a comparison, unrounded IBM 360 format gives only
6.0 decimal digits of arithmetic accuracy.

The convergent rounding hardware rounds up when the magnitude of the
remainder is greater than one-half of the least significant bit of the
mantissa. This serves to minimize truncation errors in long series of
arithmetic calculations.

Format conversion between host format and AP format occurs in the
interface and in the floating adder unit. The dynamic range of the
internal format is large enough to accommodate IBM 360 format and other
host formats. The extended precision of the AP internal format ensures
that accuracy is maintained during critical stages of data analysis.

FPS 860-7259-003 2 - 17

CHAPTER 3

PROGRAMMING CONSIDERATIONS

3.1 INTRODUCTION

This chapter provides an introduction to programming the AP. The
principal operations which control each of the six functional units are
described below. A complete listing of the AP instruction word fields
can be found in Appendix B.

In the coding examples, a semi-colon (;) is used to separate
operations within a complete instruction word. A comma (,) separates
operands. A quote mark (") is used to denote a comment. A less than
sign (<) is used to mean "<4— " (replaced by) where the operation
involved is a data transfer.

3.2 FLOATING-POINT ADDER

The following sections describe the floating-point adder.

FPS 860-7259-003 " 3 - 1

3.2.1 FLOATING ADDER OPERATIONS

Floating adder operations are initiated by the following instructions:

instruction operands
FADD Al,A2
FSUB Al,A2
FSUBR Al,A2
FAND Al,A2
FOR Al,A2
FEQV Al,A2
FABS A2
FIX A2
FSM2C A2
F2CSM A2
FSCALE A2

where Al and A2 are any

Al:

A2:

M
DPX
DPY

ZERO
FA
DPX
DPY

ZERO

FPS 860-7259-003

operations initiated

Al+A2
Al-A2
A2-Al

Al AND A2
Al OR A2
Al EQV A2
ABS (A2)

Convert A2, floating-point
number to fixed integer.

Convert A2, signed magnitude
to 2°s complement.

Convert A2, 2°s complement to
signed magnitude.

Scale A2.

of the following data sources:

floating multiplier result

data pad X accumulator

data pad Y accumulator

last data read from table memory
floating-point zero

floating adder result

last data read from data memory

Any data source listed under Al may be combined with any data source
listed under A2. For example, to add a number from data pad X to
another from data pad Y:

FADD DPX, DPY "DPX+DPY
To subtract a number read out of data memory from a constant in table
memory:

FSUB TM,MD "TM-MD

A reverse subtract changes the order of the subtraction; 1i.e.,

FSUBR TM,MD "MD-TM

subtracts a constant from table memory from a number in data memory.

To negate a number from DPX:

FSUB ZERO, DPX "0.0 - DPX = -DPX

To take the absolute value of a number from data memory:

FABS MD "ABS (MD)

To fix (convert from floating-point to integer format) a number from
DPY:

FIX DPY ' "FIX (DPY)

FPS 860-7259-003 3 - 3

3.2.2 ADDER PIPELINE

The floating adder is a two-stage pipeline. A FADD instruction loads
the designated operands into the Al and A2 registers. The previous
contents of Al and A2 are pushed down the pipeline to the buffer
register. One AP cycle later, the new contents of the buffer have been
normalized and rounded and are then available for use or storage
elsewhere.

Example 1 illustrates how the adder pipeline works, where A,B,...,G,H
are floating-point numbers to be added.

Example 1
ADDER PIPELINE
ADDER

TINME CYCLE INSTRUCTTON Al,A2 BUFFER | RESULT (FA)

—t = —]
0 1. FADD A,B A,B - -
167ns 2. FADD C,D c,D A,B -
333ns 3. FADD E,F E,F c,D A+B
500ns 4. FADD G.H G,H E,F C+D
667ns 5. FADD - G,H E+F
833ns 6. -- - G,H G+H

0995

FPS 860-7259-003 3 - 4

The FADD without arguments in cycle 5 is used only to push the last
computation Iinto the buffer register and hence to the end of the
pipeline. Thus, it is a dummy add because the results are unimportant
and are never used. In Example 1, the floating-point adds are
completed in one microsecond. During cycles 2 through 4, when the
pipeline 1is full, adds are done every 167ns, the maximum rate. The
completed results as they come out of the adder pipeline are referred
to by the mnemonic FA. FA is dynamic in the sense that it must be used
or stored elsewhere before being changed by the next floating adder
instruction. The programmer, however, has complete control over the
pipeline. Arguments advance only when pushed through the pipeline by
floating adder instructiomns.

3.2.3 AN EXAMPLE
A complete computational sequence to do the vector sum Aj=Aq+Bj,

i=0,1,2,3, is shown in Example 2. A4y is stored in data pad X locations
0-3, and Bj is stored in data pad Y location O through 3.

Example 2

1. FADD DPX(0),0PY(0) "Do Ag+By
2. FADD DPX(1),0PY(1) “Do Ayt By
3. FADD DPX(2),DPY(2); DPX(0)<FA “Do AgtBo, AgtBy is now

done, save it in Ag

4, FADD DPX(3),DPY(3); DPX(1)<FA "Do A3+By, Ay+B; is now
done, save it in Ay

5. FADD; OPX(2)<FA "Push Adder; save A;+B; in A,

6. DPX(3)<FA “Save A3+ By in Ay

FPS 860-7259-003 3 - 5

Example 3 is a chart of this computation showing the state of the adder
pipeline and data pad after each instruction is executed. -

Example 3
ADDER PINPELINE OATA PAJ X
CYCLE [a1,82 BUFFER | ﬁg[s)EET [1 9 1 2 3 (
1. 84,84 -- -- A, A, A, A,
2. A.,B, Aq,B - A, A A, A,
3. As.Ba Ay,B, Ag+By Ag+B, A, A, A,
4 As,B4 Az,B2 Aq+By Ag+B, Ay+B, As A,
5. -- Aj,8; A*8, Aq*Bg Ap+B, Ay+B, A,
6. -- A5,B3 Ay+By Ag*Bg A+By Aa+By As+B,

3.2.4 FLOATING ADDER TESTS

Table 3-1 lists the conditionmal branches that test

result (FA):

FPS 860-7259-003

Table 3-1 Floating Adder Tests

3R LOOP

BFEQ LOOP
BFNE LOOP
3FGE LOOP
8FGT LOOP

the

“8Branch unconditionally to program

"location "LOOP"

“Bpanch if FA=Q.0
“Branch if FA%0.0
"Branch if FA>Q.0
"8ranch if FA>0.0

1059

0997

floating adder

The branches test FA one instruction cycle after it is ready for use.
That is, an adder result may be tested omne cycle after it comes out of
the adder pipeline. This is shown in Example 4.

Example 4
1. FSUB DPX,DPY "Do a computation
2. FADD "Pysh the result out
3. DPX<FA "Save the result
4. BFEQ LOOP “Test the result here (branch to

" location "LOOP" if result was
" zero)

0998

Compound tests may also be made. Test MD to see if it is between a
lower limit contained in DPX (1) and an upper limit in DPX (2) (i.e.,
see if DPX(1)<MD<DPX(2)). This is shown in Example 5.

Example 5
1. FSUBR DPX(2).MD “Do MD-DPX(2)
2. FSuUB DPX(1),MD "o DPX(1)-MD
3. FADD "Push first test result out
4. B8FGT BIG "Was too big
5. BFGT SMALL "Was too small
6. . .. 0K

2999

The branches are made relative to the current program source address
(PSA) with a 5-bit displacement value. This means that the conditiomnal
branch target address must be within -20g to +17g locations of the
current instruction.

FPS 860-7259-003 - 3 - 7

3.2.5 FLOATING~POINT LOGICAL OPERATIONS

Instructions FAND, FOR, and FEQV perform logical operations on
floating-point numbers. Exponent alignment occurs as for a normal
floating-point add. The two mantissas are then combined using the
specified logical operation. The result is then normalized and
rounded.

3.3 FLOATING-POINT MULTIPLIER

The following sections describe the floating-point multiplier.

3.3.1 MULTIPLY INSTRUCTION
Floating-point multiplies are initiated by the following instruction:
FMUL M1,M2

which initiates a multiply between M1 and M2, where Ml and M2 are any
of the following data sources:

M1 FM floating multiplier result

DPX data pad X accumulator

DPY data pad Y accumulator

™ last data read from table memory
M2 FA floating adder result

DPX

DPY

. MD last data read from data memory

Thus, any of the data sources listed under Ml can be multiplied by any
of the data sources in M2. For example, to multiply a number read from
data memory by a constant from table memory:

FMUL TM,MD "M * MD

or, to multiply a number in data pad X by another number in data pad Y:

FMUL DPX,DPY "DPX * DPY

FPS 860-7259-003 3 - 8

3.3.2 MULTIPLIER PIPELINE

The floating multiplier is a three-stage pipeline. An FMUL instruction
loads the specified operands into the M1l and M2 registers. The two
previous partially-completed products are pushed down the pipeline to
buffer 2 and buffer 3, respectively. One AP cycle later, the new
contents of buffer 3 have been normalized and rounded and are then
available for use or storage elsewhere.

The instruction sequence shown in Example 6 illustrates how the
multiplier pipeline works where A,B,...,G,H are floating-point numbers
to be multiplied together.

Example 6
MULTIPLIER PIPELINE
TIME CYCLE INSTRUCTION M1,M2 BUFFER 2 BUFFER 3] EEESE$L%E§)
a 1. FMUL A,B A,B -- - -
167ns 2. FMUL C,0 c,D A,B -- --
333ns 3. FMUL E,F E,F C,D A,8 .-
500ns 4. FMUL G,H G,H E,F ¢,0 A*8
667ns 5. FMUL -- G,H E,F C*D
833ns 6. FMUL -- - G,H ExE
1.0us 7. -- : .- .- G,H G*H

1000

The FMUL in cycles 5 and 6 are dummy multiplies used to push the last
two computations to the end of the pipeline. In Example 6, four
floating=point multiplies in 1.0us are completed. During cycles 3 and
4, while the pipeline is full, products are done every l167ns, the
maximum rate. -

The completed products as they come out of the multiplier pipeline are

referred to by the mmnemonic FM. FM is dynamic in that it must be used
or stored before being changed by the next FMUL instruction.

FPS 860~7259-003 3 - 9

3.3.3 AN EXAMPLE

A computation example to square the elements in a vector is shown in
Example 7.

Example 7

Ai = Ai*Ai, i=0,1,2,3. Ai is stored in Data Pad X.

2
1. FMUL DPX(0),DPSX(Q) "Do Ag
2. FMUL DPX(1),DPX(1) "Do Ay
2
3. FMUL DPX(2).DPX(2) “Do Az
2 2
4. FMUL DPX(3),DPX(3); DPX(0)<FM “Do A3, save Ag
5. FMUL: OPX(1)<FM ‘ “Save Ay
2
6. FMUL: DPX(2)<FM “Save A,
2
7. DPX(3)<FM "Save A;

1001

FPS 860-7259-003 3 - 10

Example 8 illustrates this computation showing the state of the

multiplier pipeline and data pad X after each instruction is executed.

Example 8
MULTIPLIER PIPELINE DATA PAD X
r MULTIPLIER
CYCLE }MI,MZ BUFFER 2 BUFFER 3 RESULT (FM) 0 1 2 24
1. Ag,Ag == - -- Aq Ay Aa As
2. ALA AgAg -- -- Ag Ay A, A
3. Az LAp Ay A Ag ,Aqg -- Ag Ay A, A,
4. A3 ,As Az Az A1 LA Af Ai A A2 A3
2 2 2
5. - Ag Az A2 Az Ay Ay A A As
6. -- -- A3 A Az Ay Ay As Ag
2 2 2 2 2
7. .- - Aq,As3 Az A, Ay A, Ay
1002
FPS 860-7259-003 3 11

3.3.4 MULTIPLY-ADDS

The full floating-point computational power of the AP is utilized when
a process involving both multiplies and adds is considered. The dot
product of two eight-element vectors A, e B, = ZABy, 1 = =4, =3,...,1,
2, 3, where Ai is in Data Pad X and Bi is in Data Pad Y, is formed in

Example 9.
Fi11 the 1. FMUL OPX(-4),DPY(-4) "Do A--B-.
Multiplier 2. FMUL DPX(-3),DPY(-3) “Do A-3B-:
Example 9 Pipeline 3. FMUL DPX(-2),0PY(-2) Do A-2B-»
4. FMUL OPX(-1),DPY(-1); "Do A-yB-:. A-uB-. is
FADD FM,ZERQ " now done, save it in
Fi11 the " adder.
Adder 5. FMUL DPX(0),DPY(0); "Do AgBg. A-3B-5 is now
Pipeiine FACD FM,ZERO " done, save it in the
p " adder.
6. FMUL OPX(1),DPY(1); "Do A1B;. A-,B-, is now
FADD FM,FA " coming out of the multiplier,
" and A- B-.from the adder, add
Both " them together.
Pipelines © 7. FMUL DPX(2),DPY(2),DPY(2); "Do AzB;. A-1B-y is now coming
full FADD FM,FA " out of the multiplier, and
" A-3B-3 from the adder, add
" them together.
8. FMUL DPX(3),DPY(3); "Do A3B3. AgBg is now coming
FADD FM,FA " out of the multiplier, and
" (A=yB=y + A-»B-») from the
" adder, add them together.
9. FMUL; FADD FM,FA " A1B; is coming out of the
" multipiier, and (A-3B-q
' +A-1B-{) from the adder,
Empty the " add them together.
Multiplier 4 10. FMUL; FADD FM,FA "AB; is coming out of the
Pipeline " multiplier, and (A-,B-.
" +A-2B-2+AgB,) from the
" adder, add them together.
11. FADD FM,FA “A3By is coming out of the
" multiplier, and
" (A-3B-3+A~1 B~ +A; By)
v * from the adder, add
" them together.
12. FADD: DPX(3)<FA " (Any Boy +A=g B +Aq By +Ay B)
" is coming out of the
Empty " adder, save it in DPX(3).
the Adder 4 13. FADD DPX(3),FA “(A=3B=q+A-) B~y +A) B, +A,B;)
Pipeline " is coming out of the
" adder, add it to
* (A Bey #A=nB-s +Ag By +Ay B,)
" which was saved in DPX(3).
14, FADD "Push result out of Adder
15. DPX(3)<FA "The result: (A-,B-,+
" A-3B-3+A-3B-,+A- B+

FPS 860-7259-003

12

* AgBgtAyBy+A,B,+A3B4),
" Saved in DPX(3).

1003

In accumulating the sum-of-products, the even term sum is kept in
one-half of the adder pipeline and the odd term sum in the other half.
During cycles 5 through 7 when both pipelines are full, floating-point
multiply adds are computed every 167ns. This is 12 million
floating-point computations per second. A longer sum of products
calculation involving more terms would maintain this maximum
computation rate, because nearly all of the time was spent filling and
emptying pipelines. Even so, the seven adds and eight multiplies take
15 cycles (2.5us) to complete (an overall rate of 333mns per
floating-point multiply add).

Example 10 summarizes the computation as a further aid in understanding

the multiply add interaction in the sum-of-products computation of
Example 9.

FPS 860-7259~003 3 - 13

Example 10

FPS 860-7259-003

MULTIPLIER ADDER:
/ 3 ; i OATA PAD:

CYCLE fu1, M2 Ml | a1, a2 FA i 3
1. Aoy ,Buay -—- -—- --- ---

2. AL3.B.; --- --- --- .-

3. Az .8, --- -—- --- -

4. ALy ,.B; A, *B., A8 .0.0 --- ---

5. AoBg AL 3*B_ 4 A8, .8.9 —-- -

6. AnBl A-zﬂ‘”-z A-za‘z’A'uB'u A'-.B‘u o

7. A,.B, Al AL A, B. l,A__ B_3 A 35_3 ---

3. A3,B4 Ay*A, AgBg, ESy €S, ---

9. --- Ay *Ay A8y, 0S. 35, .-

10. --- As*As AsBo, ES3 ESy .-

11, --- Ag*A, AqB,, 0S5 0S4 ---

12. --- --- --- ES, ESy

13. ——- -—- 0S,, ES, 0S, ESu

14. .- .- -—- —-- ESy

15. --- -—- --- 0S,+ES, 0S,+ESy

NOTE
ES is n terms of the even term Sum: A;Byni = -4, -2, 0,2
0S is n terms of the odd term Sum: Aiai’i =-3 -1, 1, 3
1004

14

3.4 DATA PAD

The following sections describe the data pad.

3.4.1 DATA PAD ADDRESSING

Data -pad is a block of 64 high-speed accumulators used to store
intermediate results during a computation. In any given AP
instruction, the programmer has 16 of the data pad accumulators to work
with; eight in data pad X and eight in data pad Y. They are addressed
relative to the current value of the data pad address register which
functions as a base register for data pad. For example, if DPA has a
value of 24g, locations 208 through 278 would be available for use.
This is illustrated in Figure 3-1.

DPX oPY

17

29 4 \
I a] P
-4 22//// //
oPA _l_. zz ? LLL AVAILABLE FOR USE
T 2517 f: WHEN OPA = 24,
=3 % V 7
e 4 7
30)

37

1005
Figure 3-1 Data Pad Address

A displacement value from -4 to +3 may be specified when using DPX and

DPX(3) means DPX location 24+3=27
DPY (=4) means DPY location 24-4=20
DPX(0) means DPX location 24+0=24
DPY means DPY location 24+0=24

FPS 860-7259-003 3 =-"15

Four separate displacements are provided, one each for reading and
writing DPX and DPY. Thus, four separate locations in data pad may be
used in a given instruction. With DPA=24g, the following instructiom
occurs in one cycle: ’

FADD DPX(3),MD; FMUL T™,DPY(-2); DPX(=3)<FA; DPY (1)<FM
(read DPX) (read DPY) (write DPX) (write DPY)

This would add DPX location 27 to the last data read from data memory,
multiply the last data read from table memory by the contents of DPY
location 22, store the results of a previous add into DPX location 21,
and store the results of a previous multiply into DPY location 25.

All 64 locations of data pad are accessed by changing the DPA pointer:

INCDPA "Increments DPA by 1
DECDPA "Decrements DPA by 1
SETDPA "Loads DPA with the current S-PAD

"function (SPFN, refer to section 3.7)

Changes in DPA take effect the next instruction after they occur (i.e.,
if DPA=24):

FADD DPX(0),DPY(0); INCDPA "DPA is still 24 so

"DPX94 is added to
"DPY24

FADD DPX(0),DPY(0); INCDPA "Now DPA=25, so
"DPX25 is added to DPYjg

FADD DPX(0),DPY(0) "Now DPA=26, so
"DPX9¢ is added to
"DPY ¢

Thus, by successively incrementing DPA, the data pad can be used as a
queue; or by properly incrementing and decrementing DPA, the data pad
can be used as a stack. Data pad address is circular. That is, with
successive increments of DPA the next location after 37g is 0; with
successive decrements of DPA the next location after 0 is 37g.

FPS 860-7259-003 3 - 16

3.4.2 WRITING INTO DATA PAD

Data may be stored into DPX and DPY from FA, FM, or DB (the data pad
bus) . :

DPX<FA "Store adder result into DPX
DPX<FM "Store multiplier result into DPX
DPX<DB "Store data pad bus into DPX

and
DPY<FA "Store into DPY
DPY<FM
DPY<DB

The following may be selected onto the data pad bus (DB):

DB=ZERO '"Floating=-point zero
DB=INBS "Input Bus
DB=VALUE "A 16-bit immediate value

DB=DPX "DPX

DB=DPY "DPY

DB=MD "Last data read from data memory

DB=SPFN "S-pad function (16-bit integer)

DB=TM "Last data read from table memory

Thus, if DPA=24g, the following instruction is possible:
DPX(3)<FA; DPY(~2)<DB; DB=MD

'This stores the current adder result into DPX location 27 and stores
the last data read from the main data memory into DPY location 22 via
the data pad bus.

FPS. 860-7259-003 3 - 17

3.4.3 DATA PAD BUS

Data to be stored into DPX and DPY can be moved through three pathways:
™, FA, and DB. While FM and FA are fixed in meaning (output from the
floating multiplier and adder, respectively), the data pad bus (DB)
pathway can be connected to any one of eight possibilities depending
upon the programmer’s choice.

Examples:

e MD is put into both DPX and DPY:

DPX<DB; DPY<DB; DB=MD

MD is put onto the data pad bus, and
the data pad bus is stored into DPX and DPY.

e MD is put into DPX and TM into DPY:

DPX<DB; DB=MD; DPY<DB; DB=TM

This is an error. Only one choice at a time
can be made for the data pad bus. This
double transfer would take two separate
instructions to accomplish.

e FA is stored into DPX and MD into DPY:

DPX<FA; DPY<DB; DB=MD

MD is put onto the data pad bus in order to get
it into DPY. FA goes directly into DPX.

FPS 860-7259-003 3 - 18

To simplify notation, data transfers invloving data pad bus can be
written in a shorthand manner.

shorthand longhand
DPX<MD; DPYMD DPX<DB; DPY<DB; DB=MD
DPX<MD; DPY<TM DPX,DB; DB=MD; DPY,DB; DB=IM

(still an error no matter how it is written)

DPX<FA; DPY<MD DPX<FA; DPY<DB; DB=MD

In the shorthand notation, choices for the data pad bus are not
explicitly indicated. Transfers are written as if there were a direct
connection between the source and destination while in fact it is the
data pad bus which does the connecting. Remember, however, that the
programmer is still making a data pad bus choice and only one choice is
allowed per instruction. Errors like the one shown above (where two
data pad bus choices are attempted) are detected and flagged by the
assembler.

FPS 860-7259-003 3 - 19

3.5 DATA MEMORY

The following sections describe data memory.

3.5.1 MEMORY ADDRESSING

Main data memory cycles are initiated by changing the memory address
register which points the memory location to be read from or written
into:

INCMA "Increment MA by 1
DECMA "Decrement MA by 1
SETMA "function (SPFN, refer to section 3.7)

All of the above initiate a memory cycle at the address pointed at by
the new contents of MA. If a memory input (MI) field is also included
in the instruction, then the memory cycle is a write cycle. Otherwise,
a read cycle is initiated. When sequential memory locations are
accessed, a new memory cycle may be initiated by every other AP
instruction.

FPS 860-7259-003 3 - 20

3.5.2 DATA MEMORY READS

Data read from memory is available for use three instruction cycles
after the read is initiated. The instruction sequence shown in Example
11 illustrates how memory data is accessed: A, B, and C are
floating-point numbers in memory locatioms 101, 102, and 103,
respectively. It is assumed that MA is set to 100 before starting.

Example 11
AP MEMORY MEMORY DATA
TIME CYCLE INSTRUCTION ADDRESS {MA) RESULT (MD)
— —]
0 1. INCMA . 101 ---
167ns 2. - 101 —
333ns 3. INCMA 102 ———-
500ns 4. --- ‘ 102 A
667ns 5. INCMA 103 A
833ns 6. -—- 103 8
1.0us 7. .- 103 B8
1.17us 8. - 103 cC
1006

FPS 860-7259-003 3 - 21

Three AP cycles after a given memory location is read, data from that
location is ready in the memory data register and available for use.
MD may be used by the adder or the multiplier as follows:

FADD DPX(3),MD; FMUL DPY(~2),MD "Do MD+DPX and MD * DPY

It can also be placed on the data pad bus and stored in data pad or
back into memory as follows:

DPX (2)<MD "store MD into DPX.

3.5.3 AN EXAMPLE

Example 12 loads a vector Aj, i=0,1,2 stored in memory locatioms 101,
102, and 103 into DPX locations 10, 11, and 12. It is assumed that MA
is set to 100 and DPA is set to 10 before starting. ’

Example 12

1. INCMA "Fetch Ay from memory

2. -=

3. INCMA "Fetch Ay from memory

4. DPX<MD; INCDPA "Store Aq into DPX location 10

and bump DPA pointer to 11

U

INCMA; "Fetch A, from memory

6. DPX<MD; INCDPA “Store A, into DPX ‘ocation 1l
" and bump DPA pointer to 12

8. DPX<MD "Store A, into DPX location 12

1007

FPS 860-7259-003 3 - 22

Example 13 illustrates the transfer of Example 12 showing the state of
each component after each instructiom.

Example 13
, MEMORY DATA PAD
CYCLE MA ™ | opa OPXy OPXy, oPXy,
1. 101 .- 10 -—- - —--
2. 101 - 10 --- - -
3. 102 --- 10 ane - -
a. 102 Aq 10 Ag --- —--
5. 103 Ay 11 Ag - —-
6. 103 A, 11 Ao Ay ---
7. 103 Ay 12 Aq Ay -
8. 03 | A, 12 Ao Ay '
1008
3.5.4 DATA MEMORY WRITES
Data memory write cycles are indicated by the following:
MI<FA "write the adder result into memory
MI<FM : "write the multiplier result into memory
MI<DB "write data pad bus into memory

These instructions load data into the memory input buffer register from
where it is written into memory. Data may be written into sequential
memory locations by every other AP instruction.

FPS 860-7259-003 3 - 23

3.5.5 AN EXAMPLE

Example 14 squares the elements of a vector Ay, i=0,1,2, in DPX
locations 10, 11, and 12 and stores the results into data memory
locations 101, 102, and 103. It is assumed that MA is set to 100 and
DPA is set to 10 before starting.

1. FM PX,DPX: INCDPA "Square An, bump DPA pointer
Exa le 14 1 UL DPX,D } q n P P
=Xafp-e oo "oto 1l
2. FMUL "Push down the multiplier
" pipeline
3. FMUL OPX,DPX: INCDPA "Square A;, bump DPA pointer
‘' to 12
4. FMUL: MI<FM: INCMA "Write A; into memory location
‘101
5. FMUL OPX,DPX "Square A,
2
6. FMUL: MI<FM: INCMA "Write A; into memory location 102
7. FMUL “"Dummy FMUL to empty pipeline
3. MI<FM; INCMA "Write A, into memory location 103

1009

Example 15 illustrates the sequential data memory write computation.

Example 15 MULTIPLIER MEMORY
CYCLE 0PA [m1,m2 i || a ui |
L. 10 AgrAy - - -
2. 1 - -- - -
3. 11 AyuAy - - -
; 2 2
4 12 —— Al 101 A
' 2
5, 12 ALt - 101 As

2
6. 12 Al 102 Al
7. 12 - -- 102 '
2 2
8. 12 - A 103 AS

1010
FPS 860-7259-003 3 - 24

3.5.6 MEMORY INTERLEAVE

Data memory is divided into 16 banks of 4K words each using MAOO-MAO2
and MA15 as a memory bank select. (These are the three highest-order
bits and the least-significant bit of MA.) Memory references to
different banks may be made every two AP cycles, while references to
the same bank may be made every three AP cycles. For some possible
memory addressing sequences refer to Table 3-2.

Table 3-2 Memory Interleave Sequence

MEMORY

ADDRESS SEQUENCE (OCTAL)

MEMORY BANK SEQUENCE

MEMORY REFERENCE TIMING

—
—

191, 192, 183, 194, ... 1, 9,1, 98, ... every 2 AP cycles
166, 165, 164, 163, ... 8, 1,8, 1, ... avery 2 AP cycles
109, 192, 194, 106, ... 2, 0,8, 0, ... every 3 AP cycles
233, 1p374, 234, 19376, ... 1, 2,0, 2, ... every 2 AP cycles

1011

Thus, references to successive sequential memory locations can be made
every other AP cycle, but references to successive-odd or
successive-even locations must be three cycles apart.

FPS 860-7259-003 3 - 25

3.5.7 MEMORY LOCROUT
If memory references are made too rapidly for memory to handle, the CPU
suspends program execution and spins until the memory is no longer
busy. Thus, suppose the following were coded:

1. INCMA "referencing memory every cycle

2. INCMA

3. INCMA

The following execution 1s the result:

Ons 1. INCMA
167ns 2. INCMA
333ns "SPIN"
500ns 3. INCMA
667ns "SPIN"

The processor waits an extra cycle after instructions 2 and 3 because
memory is still busy from the previous memory references. This
arrangement is fine if there is no useful computing to do during the
spin cycles. Otherwise, it is better to space out the INCMAs and to do
something useful during the cycle between memory references.

FPS 860-7259-003 3 - 26

3.6 TABLE MEMORY

The following sections describe table memory.

3.6.1 TABLE MEMORY ADDRESSING

Constants stored in table memory are read by setting the table memory
address (TMA) register to the address of the desired table memory
location. This is done with the following instructions:

INCTMA "increments TMA by 1
DECTMA "decrements TMA by 1

SETTMA "set TMA to the current s-pad
"function (SPFN) :

Each of the above initiates a fetch from the table memory location
pointed at by the new contents of TMA. Two AP cycles later, the
contents of the desired locations are available for use. A new
location can be fetched every AP cycle. The sequence in Example 16
illustrates how table memory is accessed. KO, Kl, and K2 are constants
stored in table memory location 235, 236, and 237. It is assumed that
TMA is set to 234 before starting.

Example 16
AP TABLE MEMORY TABLE MEMORY
TIME CYCLE INSTRUCTION ADDRESS (TMA) RESULT (T™)
3 1. INCTMA 235 —_—
167ns 2. INCTMA o 236 -
333ns 3. INCTMA _ 237 K0
500ns 4. --- 237 K1
667ns 5. --- 237 K2

1012

FPS 860-7259-003 3 - 27

Two cycles after a given table memory location is fetched, the data is
ready in the table memory data register and is available for use. TM
can be used by the adder or the multiplier:

FADD TM,DPX(2);FMUL TM,DPY(-3) "do TM+DPX and TM*DPY
or put on the data pad bus and stored into data pad:

DPX(-1)<TM "store TM into DPX

3.6.2 AN EXAMPLE

Example 17 forms the vector sum Aj = Bi+Ki, i=0,1,2, where Ay is in DPX
locations 10-12, By is in DPY 10-12, and Ki is a series of constants
stored in table memory locatiom 235-237. Ay is stored back into DPX.
It is assumed that DPA is set to 10 and TMA is set to 234 before
starting. :

FPS 860-7259-003 3 - 28

Example 17

INCTMA

e

~nN

INCTMA
3. INCTMA; FADD TM,DPY; INCDPA
4. FADD TM,DPY; INCOPA

5. FADD TM,DPX (0}; DPX(-2)<FA
6. FADD: DPS(-1)<FA

7. OPX(0)<FA

"Fatch K¢

"Fetch X;

"Do Ko + Bq, bump DPA to 11
“Do &, + By, bump DPA to 12
"Do Ky + By, store A in DPXyy

"Store A; in OPXy;

"Store A, in DPXi,

1013
Example 18 illustrates the computations of Example 17.
Example 18
TABLE MEMORY ADDER DATA PAD X
CYCLE [T™A ™I | a1,A2 FAl | DPA 10 11 121
1. 235 -- - -- 10 -- - -
2. 236 -- -a -- 10 -- -- --
3. 237 Kq Kg.8 -- 10 -- - -
4. 237 Ky Ky ,B1 -- 11 -- -- -
5. 237 Ky Kz,B, Ko+Bq 12 Aq -- --
6 237 K2 -- C Ky*tBy 12 Ag Ay -
7 237 Ky -- Ky+B 12 Ag Ay A,
1014
FPS 860-7259-003 ' 3 - 29

3.6.3 A COMPLEX MULTIPLY

An example using both memories, a complex multiply from the FFT (fast
fourier transform) algorithm, is shown in Example 19. The multiply is
between a complex signal point held in data memory and a complex
exponential value (a root of unity, el0) fetched from table memory.
The computation is:

Xg=CR * W - C1 * WI
Xr=Cr * Wi + CIWg
Where C is the data point and W is the complex exponential, R and I

denote real and imaginary parts, respectively. C 1is in main data
memory, and W is in table memory. ‘

Example 19

Fetch the 1. INCMA ‘Fetch CR from data memory

“aur arguments 2. INCTMA "Fetch NR from table memory
3. INCMA: INCTMA "Fetch CI fetch wI
4. FMUL TM,MD "Do CR * WR

Jo the 5. FMUL TM,MD: DECTMA "Do Cp * Wy fetch W;

multiplies 6. FMUL TM,MD "Do CI * NI
7. FMUL TM,MD: OPX{(0Q)<FM "Do CI * NR, save CRWR’ in DPX
8. FMUL: DPX{1)<FM "Save CRNI in DPX

Jo the two - 9. FMUL: FSUBR FM,DPX(0) "00 Xp + Colp-CiWy

adds 10. FADD FM,DPX(1) "Do XI = chI + CIwR
11. OPX(O)<FA; FADD kg is ready, save in DPX
12. DPX(1)<FA X[is ready, save in DPX

1015

FPS 860-7259-003 3 - 30

The total elapsed time is 12 cycles or 2us.

but cycles four through seven with the preceding and following
computations can overlap. The complex multiply then takes only 667ns
when mixed in with other computations.

Example 20 summarizes the complex multiply.

In practice, however, all

Example 20
HEMORIES MULTIPLIER ADDER DATA PAD
CYCLE ™ MD | M1.M2 FM | a1,a2 FAl fo 1]
2 -- -- - -- - -- - --
3 - . - - . - - -
4 W S Hp:Cp -- - - - -
5 dr ¢ 4 Co -- - - - -
6 vy ¢, WG - - - - -
7 g ¢, oGy Hg*Cq - - gCa -
g - - -- TR - - 4al it
3 - -- - W W (CoHCo - HeCq TEN
10. - - -- He*C Wl 41Ca % 4o diCq
1. - -- -- - - X g Wi
12. -- -- -- -- -- -- *q Xy
1016
31

FPS 860-7259-003 3 -

3.7 S=PAD

The s-pad is a l6~bit wide integer unit used primarily to compute
memory address pointers and to test loop counters. It is similar in
capability to a minicomputer and is programmed like the
register-to-register instructions of the Nova and PDP-1l computers.
There are 16 registers in the s-pad unit.

3.7.1 SINGLE OPERAND INSTRUCTIONS

Table 3-3 lists the single operand instructions. One item can be
chosen from each column.

Table 3-3 Single Operand Imstructions

NO DESTINATION
OPERATION SHIFT LOAD REGISTER
INC --- - dst;
DEC R #
coM L
CLR RR

1017

The operation is performed upon the contents of the destination
register (DST), and that result is shifted. The shifted result is
stored in the destination register unless a no load (#) is specified.
The shifted result is the s-pad function (SPFN), which may be stored
into an address register (MA, TMA, or DPA) or placed onto the data pad
bus (DB=SPFN). Some examples where SP, refers to the contents of s-pad
register "n" are illustrated in Example 21l.

FPS 860-7259-003 3 - 32

Example 21

ZOM 3; DPX<SPFN

CLR#¥ 2; SETDPA

" (SPg+1)~SPg
"(SP;-1)/2+5Py
"TP,~SP 1-OPX

"0+DPA; because of z (no load)
SP, remains unchanged

3.7.2 DOUBLE OPERAND INSTRUCTIONS

Table 3=4 lists the double operand instructions.

chosen from each column.

Table 3-4

One item can be

Double Operand Instructions

NO SOURCE DESTINATION
OPERATION SHIFT LOAD DECIMATE REGISTER REGISTER
MoV - - -~ sre, dst,
ADD R ¢ &
suB L
AND RR
OR
EQV

1018

FPS 860-7259-003

The operation is performed between the source (SRC) and destination
(DST) registers. If bit reverse (X) is specified, the contents of
source are bit-reversed before being used. The shift is performed on
the result which is then stored into the destination register unless no
load (#) is specified. The shifted result is the s-pad function
(SPFN), which may be stored into TMA, MA, or DPA or placed onto the
data pad bus.

Example 22

MOV 3,15 5P 5P <

ADDL 6,10; SETMA ' "({SPyq) *+ (SP5)) * 25 SPy,+MA
SuB 7,13 "(SP,3-5P7) SPy3

AND#5,11; SETDPA “(SP,, AND SPg)-DPA

OR# %6,7; SETTMA "(SPy OR SP¢ (Bit-reversed))--TMA
MOVRR 2,2 "(SP;)/4+3P,

1020

For purposes of program clarity, the assembler allows names to be given
to the s-pad registers. If register PTR is a pointer to an array in
data memory, and register STEP contains the increment value used to
step through the array, then the following instruction word advances
the array pointer by the proper increment and fetches the next array
element from memory:

ADD STEP,PTR; SETMA

FPS 860-7259-003 -3 - 34

3.7.3 S=PAD TEST

The following conditional branches test the s-pad function:

BR LOOP

BEQ LOOP
BNE LOOP
BGE LOOP
BGT LOOP

"branch unconditionally to program
"location "LOOP"
"branch if SPFN=0
"branch if SPFN#0
"branch if SPFN>0
"branch if SPFN>0

The above branches test the s-pad result from the immediately preceding

AP instructiomn.

Thus, an s-pad operation must be done one instruction

cycle before it is desired to test the result.

An example of loop counting is shown in Example 23.

Example 23

DEC 2
BNE LOOP

"decrement SPj
"branch to "LOOP if SP; has not
"'yet reached zero

Example 24 tests the contents of SP3 to see if it is between a lower
limit contained in SP7 and an upper limit in SP4 (i.e., if SPp<SP3<SP,.

FPS 860-7259-003

Example 24

SUB# 3,2
SUB 4,3; BGT SMALL "Too small, SP3<SP)
BGT BIG "Too big, SP3>SPy

The branches are made relative to the current program source address
with a 5-bit displacement value. This means that the branch target

address must be within -20g to +17 locations of the current
instruction.

3.7+.4 AN EXAMPLE

Example 25 loads data pad X with an array A, with N elements starting

at main data memory location 3721g, (TR is in s-pad register which is
used as a counter.

Example 25
L. CLRz CTR: SETDPA "Set DPA to ©
2. LDMA: DB=3721 “Fetch the first element
z. LDSPT CTR: DB=N “Initialize "CTR" to N
4. LOOP: [IICMA; DEC CTR “Fetch next element, A+l
5. DPX<MD; "Store Ai into DPXi, advance

INCDPA: BNE LOOP "DPA and test counter

FPS 860-7259-003 3 - 36

Example 26 shows the loop in Example 25 for the N=3 elements.

Example 26

MEMORY DATA PAD
INSTRUCTION 1] S-PAD
NUMBER MA M1 | FDPA 0 1 21 "CTR" TEST
1. -- - 0 - - - -
2. 3721 - 9 - - - -
3. - - 0 - - -- 3
a. 3722 - 0 - - - 3
5. - A 0 Ag -- -- 2 true
4. 3723 - 1 Ao -- - 2
5. -- A 1 Ag Ay -- 1 true
4. -- -- 2 Ao A - 1
5. -- A, 2 Ag Ay Ay 0 false
1022
FPS 860-7259-003 3 - 37

A generalization on the previous example to fetch array A from every

Kth memory location 1is shown in Example 27.

s-pad register STEP, and the array pointer is stored in PTR.

Example 27

2.
3.
4.
5. LOOP:
5.
7. DONE:

FPS 860-7259-003

LDSPI STEP: DB=K

CLR# CTR; SET DPA

LOMA; DB=BASE

LOSPI CTR: DB=N

ADD STEP,PTR: SETMA
BEQ DONE

DPX<MD; INCDPA
DEC CTR: BR LOOP

38

“Initialize "STEP" to K

"Set DPA to 0

"Fetch the first element, A,
“Initialize "CTR" to N

"Advance memory pointer. Fetch
" next element, A4+l. Test

* counter and jump out if
* done.

"Store Ai into DPXi, advance DPA
" Decrement "CTR" and jump

" back to LOOP.

1923

The increment is stored in

CHAPTER 4

INTERFACE

4.1 INTRODUCTION

This chapter describes the interface between the host computer and the
AP. The interface is composed of two basic parts: a simulated front
panel and direct memory access control. The front panel allows the
host computer to examine or modify the internal AP registers, as well
as provides for block transfer of data from the host computer to the
AP, and vice versa. '

4.2 FRONT PANEL

The AP panel is used for bootstrap operations (loading and starting
programs) and for debugging user software (inserting hardware
breakpoints and examining and modifying AP registers and memory). The
panel consists of three 16-bit registers which are under the control of
the host via the host interface. The functioning of these registers
closely parallels that of the switches and lights on the console of a
stand-alone computer. The host can examine and/or set these registers
at any time, regardless of the state of the AP. The front panel and
host interface is shown in Figure 4-1.

FPS 860~7259-003 : 4 - 1

HOST DATA BUS HOST OMA ADDRESS 8US

A
y 3
FUNCTION SWITCHES LIGHTS HMA WC cTL FORMAT
|
HIGH , LOW
. 1
? 7 . A A
@
AP 1/0 BUS
BREAK-
P poInT [4 APMA
COMPARE
4 \ 4
IRECT TO MAIN JATA IN
MEMORY
ADDRESS
A 4 A 4 k. J A 4 MAIN
I oess |1 DATA
- i
AP CPU AP REGISTERS y MAIN DATA)
Fl
AP DEVICE ADDRESSES 1325
REGISTER DA
We)
HMA 1
cTL 2
APMA 3
FORMAT :

Figure 4~1 AP Panel and Host Interface

FPS 860-7259-003 4 - 2

4.2.1 SWITCH REGISTER

The switch register (SWR) is used to enter data and addresses into the
AP. The SWR can be read and written by the host computer. An
executing AP program can also read the switches.

4.2.2 LIGHTS REGISTER

The lights register (LITES) simulates front-panel lights and is used to
display the contents of internal AP registers. This register can only
be read by the host. The executing AP program can set the lights
register.

4.2.3 FUNCTION REGISTER
The function register (FN) provides front-panel control operations

(start, stop, continue, etc.). It can be read or written by the host.
The format of the function register is shown in Figure 4-2.

2 1 2 Iy ¢ 5 5.y 7 8 3 4 12 11 iz, 13 14 i5

1 I | R
STOP | START | CONT | STEP | ReSET| exaM| Dep [BREAK INC WORD REGISTER SELECT

| | | I]

1 1 ! | {
1024

Figure 4-2 Panel Function Register Format

When the AP is running, onlybthe STOP and RESET panel functions are
valid. The other panel functions can only be exercised after the AP
has halted. The panel functions are described in Table 4-1.

FPS 860-7259-003 4 - 3

Table 4=1 Function Register Bits

BIT MNEMONIC EFFECT

2 STOP/HALTED Stop AP orogram execution upon completion of the current instruction.
“hen the host reads the FN register, this bit reflects the current
state of the processor. This bit is set if the AP is halted.

(See note.)

1 START Start program execution at the address specified in SWR.

2 CONT Continue program execution at the instruction pointed at by PSA (program
source address).

3 STEP Execute the instruction pointed at by PSA and then halt. Advance PSA
to point to the next instruction.

4 RESET Stop the AP immediately. Clear s-pad register f. Set SPFN to SPSPD'
Clear the AP status register. Stop the host DMA (CTL bit 15
set to P) and clear main data memory timing.

3 EXAM Examine the register or memory selected by the register select field.
Display the portion selected by the WORD field in the panel display
register.

6 DEP Deposit the contents of the switch register into the register or
memory selected by the register select field. Deposit into the
portion selected by the WORD field.

7 BREAK Enables hardware breakpointing if PSA, MA, or ™A is specified in the
register select field. The breakpoint causes the AP to halt one instruc-
tion after any instruction where the contents of the selected reaister
was equal to the contents of the switch register. Thus, if a breakpoint is
specified with PSA selected the AP halts after executing the instruction
at the program location set in the switch register. PSA points to the
next micro-instruction in sequence. If a breakpoint is called for on
MA or TMA, the AP halts after executing the instruction following the
one that referenced the trapped memory location. PSA points to the
second sequential instruction after the one that caused
the breakpoint. Memory breakpoints aid in debugging those elusive
errors that modify memory unexpectedly.

34&9 INC Increment MA, TMA, or DPA following completion of the other specified
panel functions. This allows sequential memory locations to be examined
or deposited into. (Refer to Table 4-2.)

19 & 11 WORD Specifies which portion of a register is being examined or deposited
into. (Refer to Table 4-3.)

12 - 15 REG.SELECT Specifies which AP internal register or memory location to examine or
deposit into. (Refer to Table 4-4.)

NOTE

If the current instruction performs a SPIN while waiting for I/0 or
memory, the STOP does not take effect until the spin condition is
satisfied and the instruction completed.

FPS 860-7259-003

1026

Table 4-2

Bits 8-9

VALUE IN BITS 8 & 9

ADDRESS REGISTER
TO BE INCREMENTED

None

VA (Memory Address)

DOPA (Data Pad Address)

TMA (Table Memory Address)

1058
Table 4-3 Bits 10-11
VALUE SET IN BITS 18 & 11 <16-BIT REGISTER 38-8IT REGISTER 64-BIT REGISTER
] ALL N/A Bits 2-15
1 N/A Exponent Bits pP-99; Bits 16-31
- rignt-justified in
16-Bit field.
2 N/A High mantissa Bits 32-47
Bits A@-11;
right-justified
3 N/A Low mantissa : Bits 48-63
1027
FPS 860-7259-003 4 - 5

Table 4-4 Octal Values

CCTAL VALUE SET REGISTER QR
IN BITS 12-15 MEMORY SELECTED DESCRIPTION
2 PSA Program Source Address
1 SPD S-Pad Destination Address
2 MA Main Data Address
3 ™A Table Memory Address
4 . DPA Data Pad Address
5 SPFN - S-Pad Function (EXAM)
SPspy S-Pad address by SPD (DEPOSIT)
6 AP STATUS AP Internal Status Reg.
7 DA Device Address Register
19 PSTMA Program Source Memory addressed by TMA
11 108S Examine I/0 device output register
addressed by DA
12 c8 Control Buffer, Bits 48-63 (EXAM only)
13 DPXDPA~4 Data Pad X addressed by (DPA-4)
14 PYopp-4 Data Pad Y addressed by (DPA-4)
15 MOy Main Data Memory addressed by MA
16 SPFN S-Pad Function (EXAM) only
17 TMrua Table Memory Addressed by TMA (EXAM only)

1923

FPS 860-7259-003 4 - 6

4«3 NOTES ON THE USE OF THE FRONT PANEL AND BREAKPOINT

4«3.1 WHERE DOES THE AP STOP ON A BREAKPOINT?

e With the breakpoint set on PSA, the AP stops
with PSA pointing to the next instruction to be
executed.

Thus, breaking on a branch instruction and then
examining PSA shows whether the branch
condition is true or false.

e With the breakpoint set on TMA, the AP stops
with PSA pointing to the second instruction following
the one that set TMA to the break address.

e With the breakpoint set on MA, the AP stops on
either the next instruction or the second instruction
after the one that set MA to the break address, depending
on the state of the memory lockout hardware (next
instruction 1f memory lockout, second instruction if no
memory lockout).

Thus, the stopping point following an MA breakpoint
has a one-instruction uncertainty.

4+3.2 DOES THE INSTRUCTION ON WHICH THE AP STOPS EXECUTE?

Since SPFN is current, it is set to the operation specified in the
instruction that PSA is pointing to. Otherwise, the instruction that
PSA 1is pointing to remains unexecuted. It executes correctly when the
user steps or proceeds from the breakpoint.

FPS 860-7259-003 4 - 7

4.3.3 WHAT ABOUT MD TIMING AND LOCKOUT ON A BREAKPOINT IN THE
MIDDLE OF AN MD MEMORY CYCLE?

o The hardware is designed so that the AP can be
stopped in the middle of a memory cycle. The hardware
remembers where the memory timing is when the AP
stops so that the processor can continue correctly
from a breakpoint that occurs during a memory cycle.

e However, the user must not examine MD nor should
there be any DMA transfers going to or from MD
while the AP is stopped if the user wishes to
proceed from the breakpoint.

Thus, for example, it is possible to break in the
tight-to-memory portions of the FFT and examine

data pad or the address registers (PSA, SPA, etc.)
and then proceed. It 1is not possible to proceed

if the user or the host interface disturbs the memory
timing by reading or writing MD or TM.

4.3.4 SUMMARY OF THE RULE FOR PROCEEDING FROM BREAKPOINT

If the breakpoint causes the AP to stop in the middle of the memory

cycle (PSA pointing to first or second instruction following SETMA,

INCMA, DECMA, or LDMA), the user should not try to examine or modify
m.

4.3.5 WHAT ABOUT STEPPING THE AP?
The same rules for proceeding from a breakpoint apply to stepping the

AP throwgh a program. The user can examine and modify any register of
memory within the constraints mentioned in section 4.3.4.

FPS 860-7259~-003 4 - 8

4.3.6 WHAT OTHER PITFALLS ARE THERE IN THE USE OF THE VIRTUAL
FRONT PANEL?

e Note that the panel always examines SPFN, not SP
Thus, the user must force SPFN = SPSPD to see
SPgpp. This can most easily be done via the
panel reset function which has the side effect of also
clearing SP(0).

SPD*

e To examine TM, the user should first set TMA and
then do a dummy panel operation (deposit TMA again,
for example) in order to enter the output of table
memory into the table memory buffer register. The
user can then proceed to examine the addressed
location using the appropriate panel functions.

e MD: setting MA from the panel initiates an MD memory
read cycle. -Depositing into MD from the panel
initiates an MD memory write cycle.

Thus, to write MD and then examine what was just
written, the user must perform a deposit into MA
operation (with the same address) to initiate a
read cycle before examining MD.

e Using the increment field in the FN register:
DPA and TMA always increment after the EXAM or DEP
operation is complete (remember that TMA is used
to address program source memory for panel operations).

MA post-increments and initiates a new memory read
cycle on an EXAM operation.

MA pre-increments on a DEP operation.

FPS 860-7259-~003 4 - 9

e The recommended procedure for starting the AP is as
follows:

1. Set the SWR to the starting address and do a
deposit into PSA.

2. Set the SWR to the desired breakpoint and do a
continue to start the AP.

This procedure has the significant advantage of placing
the necessary breakpoint code into the user’s program
should the AP program need debugging.

The panel START function can be used, but the user should
observe the following restrictions on the first
instructions executed by the AP. The first instruction
should not branch, jump, or modify PSA in any way other
than to advance to the next instruction. The first
instruction should not use the SPEC and I/0 fields. 1In
fact, the preferred first instruction is a NOP (all
ZEeros) .

FPS 860-7259-003 4 - 10

4.4 DIRECT MEMORY ACCESS

In addition to the panel function, the AP contains four 16-bit
registers that are used for direct memory access (DMA) to both host and
AP data memory, plus a 38-bit format conversion register that acts as a
buffer between the two memories. These registers may be read and/or
loaded from either the host computer or the AP.

4.4.1 HOST MEMORY ADDRESS REGISTER

The host memory register (HMA) points to comsecutive locations in the
memory of the host computer. It operates in either auto-increment or
auto-decrement mode during DMA transfers to and from host memory. HMA
is device address 1 for AP internal 1/0 transfers.

4e4.2 WORD COUNT REGISTER

The word count register (WC) counts the number of host memory words
transferred in a DMA operation. It is preset to the desired number of
words to be transferred and counts down as the transfer proceeds,
stopping the DMA transfer when it reaches zero. Hardware logic
prevents this register from being counted past zero. WC has AP device
address 0.

FPS 860-7259-003 4 - 11

4.4.3 AP DIRECT MEMORY ADDRESS REGISTER

The AP direct memory address register (APDMA) points to consecutive

locations in AP main data memory during DMA transfers to and from MD.
This register can operate in either auto-increment or auto-decrement
mode. APDMA has AP device address 3.

4.4.4 CONTROL REGISTER

The control register (CTL) acts as a control over the DMA and interrupt

functions of the host interface.

This register controls the direction

and mode of transfer (DMA or program control) and the type of data

format and provides certain bits of status information pertaining to
CTL has AP device address 2.

the transfer.

register is shown in Figure 4-3.

The format of the control

The bit descriptions are contained in

Table 4-2-

P 41 2 3 2 5 5 7 3 3 4 19 112,13 1 15
T

, wr | e | oo | o | o ap |kt | oEc | oec HOMA

qC=2 1 “ap w lwacr | uc | ens | FERR | DLATEL CC } oua frosT | apA | wA FMT START
1

Figure

FPS 860-7259-003

4-3 DMA Control Register Format

12

1323

Table 4-5 DMA Control Register Description

81T MNEMONIC

EFFECT

2 WC =@

Indicates that the word count register is zero. Note that WC is
decremented only during OMA transfers to/from host memory (read
only bit). Should not be used to monitor CMA activity.

1 INTR AP

Sets the INTRQ (interrupt request) flag in the AP.

2 [APWC

Sets INTRQ (interrupt request) flag in the AP when the DMA transfer
is done.

3 IHALT

Enables a host interrupt when the AP halts.

4 THWC

Enables a host interrupt when the DMA transfer is done.

5 THENB

Interrupt Host Enable. Interrupt Host if AP attempts to set this Bit.
This bit can actually be written only by the Host. (This is not
supported on al] host svstems.)

6 FERR

Format error. Indicates that exponent underflow or overflow occurred
in conversion from AP format to host floating-point format.

7 DLATE

Data late. Indicates that the AP did not empty the format buffer
before the host attempted to reload it. On some hosts this bit also
indicates an attempt to access non-existent host memory. In either
case the DMA transfer is terminated.

Consecutive cycle. Block OMA transfers to/from host memory occur
without interruption. On typical hosts, the host CPU is locked out
but other higher priority DMA devices still have access to host
memory.

9 APDMA

Allows the interface to perform DMA transfers to/from AP memory.
Depending on the direction of transfer, a main data memory cycle is
initiated every time the host finishes reading or loading the format
register, whether via OMA or program control. On the AP side, the
format register is loaded from the main data bus instead of the data
pad bus.

10 WRTHOST

Write to host. This bit controls the direction of transter. If set,
data is read from the AP, passed through the format register, and
written to the host. If clear, the direction of transfer is reversed.

11 DECAPMA

Decrement APMA. [f set, APMA is decremented during DMA transfers
to/from AP Main Data memory. If clear, APMA is incremented. (This
capabili is n nt on all h systems.)

12 DECHMA

Decrement HMA. If set, HMA is decremented during OMA transfers to/
from host memory. [f clear, HMA is incremented.

13 &4 14 FMT

Format Register Control. (See note.)

15 HDMA
start/busy

Host DMA start. Initiate DMA transfers to/from host memory. When read,
the state of this bit reflects the status of the host OMA activity
('1' if active, '@' if inactive). Transfers continue until WC = @.

NOTE

The format register mode of operation is controlled entirely by
bits 9, 19, 13 and 14 of the control register. Thus, even the host
and the AP can load and read the format register via program
control 1/0 transfers at any time. The programmer must be sure
that the type of transfer “e performs is consistent with these

bits of CTL for the transfer to be meaningful. (Refer to Table 4-6.)

FPS 860-7259-003

1030

Table 4-6 Bits 13-14

VALUE IN BITS 13 & 14 FORMAT TYPE

) 32-Bit Integer. No format conversion. Used to
transfer integers or program half-words.

1 16-8it Integer. 16-bit integers from host are
converted to unnormalized 38-bit AP FPNs. Low
16-bits of AP FPN are sent to host.

2 Conversion of "signed-magnitude mantissa with
binary exponent" format to/from AP floating
point format. Includes logic to handle
"phantom bit" formats.

3 Conversion of IBM 32-bit format to/from AP
format. IBM format can be specified to have
either sign-magnitude or two's complement
mantissa.

NOTE

For format types 2 and 3, the format register has the necessary logic
to detect overflow and underflow on conversion from AP format and to
force a signed maximum quantity on overflow or floating point zero on
underfiow.

1031

FPS 860-7259-003 4 - 14

4.5 FORMAT CONVERSION REGISTER

This 38=-bit double-buffered register is used for all transfers of
floating~point numbers (FPNs) between the host and the AP. It also
provides the most efficient path for transfer of microcode half-words
(32 bits). It performs bi-directional format conversions under the
direction of bits 9, 10, 13, and 14 of the CTL register. The
programmer must be aware of the fact that the format conversion is a
slave to these CTL bits. Nonsence results if transfers to and from the
formatter are not consistent with these CTL bits. The host and AP can
read the output of the formatter at any time without restriction;
however, the input to the formatter is controlled by CTL bits 9 and 10.

Table 4-7 CTL Register Bits 9-10

CTLP9 cTLe INPUT 'PATH TO FORMATTERS
2,1 ? Host Data Bus

2 i 1 AP I/0 Bus

1 1 AP Main Data Output

132

The formatter has a ready indicator that can be sampled by the AP.
This indicator tells the AP when to load new data into the formatter
(CTL10=1) and when to read data from it (CTL10=0) after the host has
finished reading or loading the last 16-bit word of a FPN.

Note that in 16-bit host computers, the interface expects to receive
words in different order depending on CTL bit 12 (DECHMA). 1If bit 12
is clear (i.e., the host DMA interface is going through memory in
forward order from low to high addresses), then the interface expects
to receive the high word of an FPN followed by the low word. If bit 12
is set, the interface expects to receive the low word followed by the
high word. This is done so that arrays of FPNs are always stored in
forward order in host memory.

If the format CTL bits (bits 13 and 14) specify a 16-bit transfer
(FMT=1) then the integer is loaded and read from the low word of the
formatter. That word is considered to be the last word transferred.

There is no corresponding indicator to the host since the AP can
transfer data to and from the formatter faster than most host
processors. The DLATE bit in the CTL register (CTL bit 7) does
indicate when an error of this type occurs (i.e., when the host
transfers data faster than the AP).

FPS 860-7259-003 ' 4 - 15

4.6 AP INTERNAL INTERFACE TO HOST INTERFACE

The registers in the host interface are accessible to the AP via its
input/output (I1/0) instructions (FADD=7).

Table 4-8 AP Device Address for Host Interface Registers

1/0 CEVICE DEVICE ADDRESS
—_— e

HOST INTERFACE

DMA REGISTERS:

WORD COUNT REGISTER (WC) 0

HOST MEMORY ADDRESS REGISTER (HMA) 1

CONTROL REGISTER (CTL)

~n

AP MEMORY ADDRESS REGISTER (APMA) s 3
FORMATTER (FMT) 4
WRITABLE TABLE MEMORY (TMRAM) 5

PAGE SELECT SELECT OPTION

MEMORY ADDRESS EXTENSION (MAE) 30
APMA EXTENSION (APMAE) 31
MASK (including MODE and I/0) 32

ADDITIONAL DEVICE ADDRESSES:

First [OP16 10-14
Second I0P16 20-24
Parity Option : 33-37
First PIOP 100, 101, 110-117

1033

FPS 860-7259-003 4 - 16

An IN, OUT, or SNSA instruction at DA=4 (FORMAT) generates an IODRDY
response if the format register is ready to accept data from the AP
(CTL bit 10=1) or if it has formatted data ready for the AP (CTL bit
10=0). If CTL bit 9 is 1, the AP cannot load the formatter via I1I/0
instructions since the input multiplexer to the format register is set
to select main data instead of the AP 1/0 bus. Note that the AP cannot
change the state of CTL bit 5. An interrupt of the host is generated
if it attempts to set this bit when the bit has already been set by the
host. The AP can read the CTL at any time without interferring with
the host interface. If both the host and the AP try to write CTL or
access HMA, WC, or APMA at the same time, the host selection and data
has priority over that of the AP.

Access to the format conversion register is controlled by CTL bits 9,

10, 13, and l4. Refer to section 4.4 for a description of the function
of these bits.

FPS 860-7259-003 4 - 17

4.7 AN EXAMPLE OF LOADING PROGRAMS INTO THE AP

Loading and running a program in the AP from a cold start is a
five-step process which illustrates use of the front panel.

Using the AP front panel from the host computer,
finger switch in a three-instruction bootstrap
program into program memory.

Start the bootstrap running.

Set the address in the AP where the loaded
program is to go.

Start a DMA transfer of program words from
host computer memory to the AP. The bootstrap
program running in the AP stores these words
into program memory. :

When the DMA transfer is domne, stop the bootétrap
program in the AP and then restart the AP
executing the newly=-loaded program.

These five steps are detailed in the remainder of Chapter 4. DMA
control and front panel interrogation is done from the host computer by
setting various interface registers. The actual host computer 1/0
instructions to accomplish this, of course, depend upon the particular
host computer. For the purposes of this explanation, the indicated
numbers are loaded into a designated interface register in order to
accomplish the desired goals.

FPS 860-7259-003 4 - 18

Step 1:

For the purpose of this example, the bootstrap program is put into
program source memory locatiomns O, 1, and 2.

l. Set TMA to O (TMA is the pointer used by the panel
functions for examining or depositing into program

memory) :
0 —» SWR Put O into the switches.
1003 —» FN Put 1003 into the function register

(causing a deposit into TMA).

2. Put bits 0-63 of bootstrap program program word no. 1
into program memory location 0 using four deposits
of SWR —»PSTMa -

(bits 0-15) —»SWR Put bits 0-15 into the switches.
1010 —>»FN Put 1010 into the function register
(causes a deposit into bits
0-15 of PSqma).

(bits 16-31) —» SWR Put bits 16-31 into bits
1030 —»FN 16=31 of PStma-.

(bits 32-47) —PSWR Put bits 32-47 into 32-47
1050 —»FN of PSTMA-

(bits 48-63) —» SWR Put bits 48=63 into bits

1370 —»FN 48-63 of PSTma and
increments TMA to point to
location 1.

3. Repeat the second and third bootstrap program
words in no. 2 above.

It is necessary to perform these steps only once.

FPS 860-7259-003 ' 4 - 19

Step 2:

Set the address in the AP program memory where the program is to be
loaded by the bootstrap into TMA. For this example, this address is
200:

200 —» SWR Put 200 in the switches.
1003 —» FN Put 1003 into the function register
(causes a deposit into TMA).

Step 3:
Start the bootstrap program running in the AP.
Set the switches to 0 and do a start.

0 —» SWR
- 40000 —»FN Start the AP at location O.

The bootstrap program (as demonstrated in step 4) spins while waiting
for words to come across the DMA from the host computer. '

Step 4:

Start the DMA transfer from host memory into the AP. For this example,
it is assumed that the program is in host memory at location 20000.

The program to be loaded is 200 AP program words (or 800 16-bit host
words) long. The actual host memory location and length could be any
particular value.

20000 —» HMA Set host DMA address to 20000.

800 —» WC Set word count to 800 host words
(assuming a 16-bit host word width).

201 —» CTL Start the DMA.

Note in particular the CTL bits. Bit 15 initiates the DMA and bit 8
requests consecutive memory cycles from the host. By not setting bits
10 or 11, the transfer is set to go to the AP, but not into main data
memory. Instead, the data goes only as far as the formatter which the
bootstrap reads. If bit 4 is set, the host computer is interrupted
when the DMA is done.

FPS 860-7259-003 4 - 20

Step 5:

Finally, the three-word bootstrap program is ready to run in the AP.

1. LDDA; DB=4 "set DEVICE ADDRESS to 4

This instruction sets the device address register so that future I/0
instructions refer to device no. 4, which is the DMA formatter (where
the data from the host computer ends up).

2. LOOP:SPININ; "wait for some data
DB=INBS; "get the data o
LPSLT "put it into the left half of P.S.

The SPININ causes the processor to hang until the current I/0 device
address (in this case, the DMA formatter) has some new data. Then, to
read that data, the DB=INBS puts the input data onto the data pad bus.
The LPSLT puts what is on the data pad bus into the left half (bits 0
through 31) of the program memory location pointed at by the TMA
register.

Two points should be considered:

e The formatter is 32 bits wide on the AP end; every time
the interface receives 32 bits of data from the host
computer, the SPIN stops waiting, and another 32 bits of
data are processed. Since the program words loaded are
64 bits wide, they are halved (left, right, left, right,
etc.) and stored accordingly into program memory.

e TMA is used as a pointer indicating where the bootstrap
should place the program it is loading; thus, the LPSLT
puts the program words into the proper place.

3. SPININ; "wait for data
DB=INBS; "get the data
LPSRT; "put it into the right half
INCTMA; "increment pointer
BR LOOP. "go back for more

This does basically the same as no. 2 above except that this processes
the right half (bits 32-63) of a 64-bit program word. The INCTMA
increments the storing pointer so instruction no. 2 stores its data
into the next word. The branch uses loop waiting for more program
half-words.

FPS 860-7259-003 ' 4 - 21

Step 6:

Back in host, waiting for the DMA transfer is accomplished by:

e reading the CTL register
e testing for bit 15 (the LSB) equal to 1

e if so, going back to step 1

Enabling a host interrupt on DMA completion is also possible.

When DONE, the bootstrap program is stopped (which otherwise would run
forever) with a panel RESET function, and the newly-loaded program is
started (example starts at location 200):

4000 —» FN "reset the AP

200 —» SWR '"'mew program address

1000 —» FN "set 200 into PSA

20000 —» FN "eontinue (from 200) (i.e., start

at AP location 200)

To set a program breakpoint, the user can set the breakpoint address
into the SWR and use 20400 (continue + break on PSA) for the final
panel function.

NOTE

The simplest way for the running AP
program to indicate to the host computer
that it is done with its task is to HALT.
When this happens, bit O in the panel
function register is set (which the host
can test for) or a host interrupt can be
enabled (CTL bit 3).

‘FPS 860-7259-003 4 = 22

APPENDIX A

AP REGISTERS/DATA PATH NAMES

Table A~1 Registers and Data Paths

mnemonic width name

SP 16 bits scratch pad registers (16)

SPD 4 s-pad destination address register
SPFN 16 scratch pad ALU/shifter function output
PNBLS 16 panel bus

SWR 16 panel switch register

LITES 16 panel display register

APSTATUS 16 AP status register

PS 64 program source memory -

CB 64 command buffer

PSA 16 program source address register

SRS 16 subroutine return stack

SRA 16 subroutine return stack pointer
DPX 38 data pad X registers (32)

DPY 38 data pad Y registers (32)

DB 38 data pad bus

DPA 16 data pad address register

™ 38 table memory output register

™A 16 table memory address register

MD 38 data memory output register

MI 38 data memory input register

MA 16 memory address register

Al 38 floating adder input register no. 1
A2 ‘ 38 floating adder input register no. 2
FA 38 floating adder output register

M1 38 floating multiplier input register no. 1
M2 38 floating multiplier input register no. 2
™M 38 floating multiplier output register
IODEVICE 1/0 device

DA 16 1/0 device address

INBS 38 1/0 input bus

IODRDY 1 1/0 data ready flag

A 1 1/0 device condition A flag

B 1 I/0 device condition B flag

FPS 860-7259-003 A - 1

Subscripts indicate addressing within memory element (i.e., PSpgp means
the location in program source memory pointed to by the program source

address register).

Superscripts indicate portions of word (i.e., A2E means the exponent
portion of the A2 register).

Parentheses around a symbol indicates the contents of a register (i.e.,
(Al) means the contents of the Al register).

Table A-2 AP Internal Status Register

5 5§ 7 8 3 ¢ 1o 11l 12 4 13 14 i5

e | unF fovz | Fz | AN

! |
z N c PERR PENB | SRAQ [FFT | FFT BIT REVERSE

bits mnemonic

0 OVF

FPS 860~7259-003

1034

meaning

Set when the current adder or multiplier

(FA or FM) has overflowed. Overflow

occurs when an exponent value is increased
above 511. The offending result is set to
the signed maximum of value of (1-2-=27) *
2511, which is roughly 6.7 * 10153, This bit
remains set until cleared by the microprogram
or host computer.

Set when the current adder or multiplier
result (FA or FM) has underflowed. Underflow
occurs when an exponent value is

decreased below =512. The minimum legal
magnitude which numbers can take without
underflowing is roughly 3.7 * 10-155,

The offending value is set to zero. This bit
remains set until cleared by the microprogram
or host computer.

Table A-2 Internal Status Register (cont.)

A divide by zero has occurred. The result
was set to the value of the dividend. This
bit remains set until cleared by the
microprogram or host computer.

Set when the current adder result (FA)
Set when the current adder result (FA)
Set ﬁhen the current s-pad function (SPFN)
Set when the current s-pad function (SPFN)

S-pad carry bit. If no s-pad shift is
specified, carry is the carry bit from the
s=pad ALU. If a shift is specified, carry
is the last bit shifted off the end of the
s-pad result by the shift.

(Optional). Set when a main data memory parity
error has occurred. Three parity bits are

used, one each to check the exponent, high
mantissa, and low mantissa portiomns of the memory
word. If PENB is set, the processor

halts on this error. (See Page Select/

Parity Option Manual (FPS 860-7365-000)

for more information.)

(Optional). Enables halt on memory parity error.
If set, the processor halts when a memory
parity error is detected.

bits mnemonic meaning
2 DIVZ
3 FZ
is zero.
4 FN
is negative.
5 YA
is zero.
6 N
is negative.
7 C
8 PERR
9 PENB
10 SRAO

FPS 860-7259-003

Subroutine return stack overflow. Set if
more than 16 levels of nested subroutine
calls occur.

Table A-2 Internal Status Register (cont.)

bits mnemonic meaning
11 IFFT Inverse FFT flag. When set in conjunction

with the FFT flag, bit 12, roots of
unity table references are interpreted
as positive angles.

12 FFT FFT flag. When set, table memory
addresses are interpreted as negative
angles referencing the roots of unity
table contained in table memory.

13-15 bit 15-LogoN where N is the length of a

reverse complex data array to which the s-pad address bit
reverse operator is being applied.

FPS 860-7259-003 A - 4

FPS 860-7259-003

r -_——
3ys INPUTS: HOST - FUNCTICONAL UNIT QUTPUTS:
COMPUTER |z/0 JEVICE |
. 0PBS - Data Pad Bus (38) I I JPX - Data Pad X Outout
: I/O! MA J JPY - Data Pad Y Jutout
JPX PS VALUE — MD - Data Memory OJutput
DPY SPFN ZERO M - Table Memory Output
— —— — FA - F.P. Adder Qutput
INBS SWR FM - £.P. Multiplier QJutput
M0 ™ SPFN - S-Pad ALy Output
OPT. ANC. OMA - Direct Memory Address
INBS - Input 3us {38) Formattter INTERFACE d=9y PORT PS - Program Source Jutdutl
INBS - Input Bus
PNLBS- Panel Bus (16) oaneL] o
DPA PS PSA OMA
MA TR PNLBS ings |oPss
h 4
oP8S IPNLBS A ¢
FA FA FA 0P8BS
M M FM SPFN
PROGRAM : np PN
SOURCE QP8BS DPBS DPBS OMA L3S
MEMORY
WRITE OPA WRITE
‘ﬁ__J INDEX ¢ # INDEX
A 4 \ 4
A §-PAD ALU FINCTIONS
TABLE DATA DATA DATA S-PAD
MEMORY paD X [P pap v wa | MeMORY @ | REGISTERS %*g
™) S+l -9
r S-1 -0
: . D+sS -0
TMA ™ READ 0OPX DPY READ MD 0.5 =0
INDEX INDEX J AND S ~D
- DOR S-+D
2 vV S -
FM FA FM FA EQV S~
™ MD ™ MD n
OPX, DPY DPX, DPY DPX, DPY DPX, "
DPY
VALUE
INTEGER S-PAD SHIFTER FUNCTION
ALU/
FLOATING M1 M2 FLOATING Al] a2 SHIFTER * 2
POINT POINT . 2
MULTIPLIER: - ADDER: + 4
W1AM2 STAGE 1 AL+A2 STAGE 1 l ‘
AL-A2 SPFN
Aaeth (21 iwreser conotTion s
ABS(A2) !] NOITION 8
STAGE 2 Al EQV A2 STAGE 2 c
Al AND A2
Al OR A2 +
STAGE 3 FIX A2
pPBS DATA PAD ADDRESS f=—p DPA
| e
+
L DPBS MEMORY ADDRESS gy MA
FLOATING | ¢ FLOATING | F2
POINT POINT N TABLE “EMORY ADDRESS g TMA
COND. o CONDITION U
317S BITS 0
iFM FA PROGRAM SOLRCE ADDRESS PSA
h 4
1035
Figure A-1 AP Functional Units

UNCONDITIONAL FIELDS

Table A-3 AP Instruction Summary

Each of the following fields may be used in any given instruction word.

OCTAL OCTAL
CODE FIELD NAME CODE
8 SOP S0P1 SH SPS SPD FADD FADD1 Al A2
0 NOP SOP1 NOP NOP (S-PAD (S-FAD FADD1 NQP NC NC 0
1 & SPEC WRTEXP L Source Dest. FSUBR FIX FM FA 1
2 ADD WRTHMN RR Reg.) Reg.) FSUB FIXT DPX 0PX 2
3 sus WRTLMN R FADD FSCLT DPY DPY 3
4 MoV NOP (0-17) (0-17) FEQV FSM2C ™ MD 4
5 AND NOP FAND F2CSM ZERO 2ERO 5
6 OR NOP FOR FSCALE ZERO MOPX 6
7 EQV NOP 10 FABS ZERO EDPX 7
10 CLR 10
11 INC 11
12 DEC 12
13 COM 13
14 L.DSPNL 14
15 LOSPE 15
16 LOSPT 16
17 LOSPT 17
OCTAL OCTAL
CODE FIELD NAME CODE
— COND DISP DPX DPY DPBS XR YR XW YW M
0 NOP (Branch NOP NOP ZERO (DPX (oPY (DPX (DPY NCP 0
1 # Displace- DB DB INBS Read Read Write Write FMUY 1
2 BR ment) FA FA VALUE* Index) Index) Index) Index) 2
3 BINTRQ (0-37) FM ™M DPX 3
4 BION . DPY (0-7) (0-7) (0-7) (0-7) 4
5 BIOZ MD 5
6 BFPE SPFN 6
7 RETURN ™ 7
10 BFEQ - 10
11 BFNE 11
12 BFGE 12
13 BFGT 13
14 BEQ 14
15 BNE 15
16 BGE 16
17 BGT 17
OCTAL 0CTAL
COOE FIELD NAME CODE
M1 M2 MI MA OPA T™A
0 FM FA NOP NOP NOP NOP 0]
1 DPX DPX FA INCMA INCOPA INCTMA 1
2 OPY DPY FM DECMA CECDPA DECTMA 2
3 ™ MD bl:} SETMA SETOPA SETTMA 3
* This instruction uses a 16-bit immediate VALUE as a constant or address (in bits 48-63
of this instruction). The YW, FM, M1, M2, MI, TMA and DOPA fields are then disabled for
this instruction word.
0627

FPS 860-7259-003

Table A-4 SPEC Fields

SPEC FIELDS Qne of the SPEC Fields may be used per instruction word. The S
SOP, SOPL, SH, SPS, and SPD) are then disabled for this instruction.

-pad Fields (D,

JCTAL OCTAL
CODE FIELD NAME CODE
SPEC STEST HOSTPNL SETPSA PSEVEN PSODD PS SETEXIT
2 STEST BFLT PNLLIT JMPA* RPSPA* RPS1A* RPSLA* NOP]
1 HOSTPNL BLT DBELIT JSRA* RPS2A* RPS3A* RPSFA* SETEXA* 1
2 SPMDA BNC DBHLIT JMp* RPSP* RPS1* RPSL* NOP 2
3 NOP 8ZC DBLLIT JSR* RPS2* RPS3* RPSF* SETEX* 3
4 NOP BDBN NOP JMPT RPSAT RPS1T RPSLT NOP 4
5 NOP 8082 NOP JSRT RPS2T RPS3T RPSFT SETEXT 5
6 NOP BIFN NOP JMPP NOP NOP RPSLP NOP 6
NOP BIFZ NOP JSRP NOP NOP RPSFP SETEXP 7
19 SETPSA NOP SWOB NOP WPSPA* WPSIA* LPSLA* NOP 19
11 PSEVEN NOP SWDBE NOP WPS2A* WPS3A* LPSRA* NOP 11
12 PSQDD NOP SWDBH NOP WPSP* WPS1* LPSL* NOP 12
13 PS NQP SWDBL NOP WPS2* WPS3* LPSR* NOP 13
14 SETEXIT BFLD NOP NOP WeSpT WPS1T LPSLT NOP H
15 NOP BFL1 NOP NOP WPS2T WPS3T LPSRT NOP 15
16 NOP BFL2 NOP NOP NQP NOP LPSLP NOP 16
17 NOP BFL3 NOP NOP NOP NOP LPSRP NOP 17
* This instruction uses a 16-bit integer VALUE (in bits 48-63 of the instruction word). The

YW, FM, M1, M3, MI, MA, TMA, and PDA Fields are then disabled for this instruction word.

Table A-5 1/0 Fields

1/0 FIELDS One of the /0 fields may be used per instruciton word. The floating adder fields

FADD, D1, Al, and A2) are then disabled for this instruction word.
OCTAL OCTAL
CODE FIELD NAME CODE
10 LDREG RDREG INQUT SENSE FLAG CONTROL
[} LDREG NOP RPSA out SNSA SFLP HALT 2
1 RDREG LDSPD RSPD SPNOUT SPININ SFL1 IORST 1
2 SPMDAV LOMA RMA OUTDA SNSADA SFL2 INTEN 2
-3 NOP LDTMA RTMA SPOTDA SPNADA SFL3 INTA 3
4 INOUT LODPA ROPA IN SNSB CFLD REFR 4
5 SENSE LDSP RSPFN SPININ SPINB CFL1 WRTEX 5
6 FLAG LDAPS RAPS QUTDA SNSBDA CFL2 WRTMAN 6
7 CONTROL LDDA RDA SPINDA SPNDBA CFL3 NOP 7
1036
FPS 860~7259-003 A - 7

APPENDIX B

INSTRUCTION SUMMARY

FPS 860-7259-003 B - 1

6230

INTYA

dNOYIS AYOWIH dNoYY AdiL TNk dnoyo avd viva

VWl Ydid VW I b4} H Wi MA RX A yX 584dd Adg

€9 29 19 09 65 85 (S 95 S5 ¥5 €5 25 1605 6 8y (v O S¥ ¥b € 2v b O 6E}J8E [g 9t SE €

0/1 4340 13dS
toavs o 1d0s
dNOY9 HONvHd dnoY9 ¥3aay dnoys Qvd-S
ds1a aNad 2y iv ogvd ads SdS HS d0s
e o0t 62 RZ 2 w2 S 2 €2}l 2 02 61 8t (1 31 &1 ¥l |Et) ¢t 11 o1 6 8 9 S ¥t € 2

InofeT pToTd UOTIONIISUT 4V -9 2T9elL

FPS 860-7259-003

Table B-2 S-pad Group

2 1 4 5 5 9 19 13
3 SOP SH SPS SPD
SOP1
0CTAL
FIELD CODE MNEMONIC EFFECT
— — ——— — —_—
3 i - No-op
1) Use SPepe (bit-reversed)
SoP 2 - See SOP1 field
1 - See Special Oﬁerations Group
2 ADD (SPSPD) + (SPSPS)-—*SPFN
3 SuB (SPSPD) - (SPSPS) —» SPFN
¢ MOV (SPSPS) — SPFN
5 AND (SPSPD) AND (SPSPS)--—bsPFN
6 OR (SPSPD) IR (SPSPS)_—bSPFN
7 EQv (SPgpp) KOR (SPgpg)—* SPFN
SH] - No-op
(see NCTE)
1 L SPEN*2 —»SPFN (left shift)
2 RR SPFN+4 —» SPFN (double right shift)
3 R SPFN:2 —» SPFN (right shift)
SPS P-174 {B-l?b8 S-Pad Source Operand Address
SPD p-174 KD-l78 S-Pad Destination Address, SPFN —»
spSPD unless inhibited by No Load
(COND = 1)

NOTE
These are logical shifts:
Right shift 0 o5] c]
Left shift ,_r-('f_j 2

FPS 860-7259-003

Table B-2 S-pad Group (cont.)

FPS

FIELD OCTAL MNEMONIC EFFECT (see NOTE)
CODE
SOP1 2 - No-op
1 WRTEXP Restricts DPX, DPY & MI fields to
Write Exponent Only
2 'ARTHMN Restricts DPX, DPY & MI fields to
Write High Mantissa Only (Bits 29-11)
3 WRTLMN Restricts OPX, DPY & MI fields to
Write Low Mantissa Only (Bits 12-27)
4 - -
5 - -
6 - -
7 - -
19 CLR p—» SPFN
11 INC (SPgpp) *+ 1—>SPFN
12 DEC (SPgpp) - L—>SPFN
13 COM (SPgpp 1 —>SPFN logical complement
14 LOSPNL SPspp —>SPFN, PNLBS —SPepp
) E
15 LDSPE SPSPD——'SPFN, DB= - SlZ-—PSPSPD
16 LDSP1 SPegn —>SPRN, 0B —ssp
SPD ' SPD
17 LDSPT P, —>SPFN, 08MT —»sp
SPD ’ SPD
NOTE
MH = Mantissa High = Mantissa bits 9@-l1
ML = Mantissa Low = Mantissa bits 12-27
MT = Mantissa bits for table lookups = Mantissa bits p2-¢8
E = Exponent
1038
860-7259-003 B -

Table B-3 Special Operations Group

1 3 6 3{ip 13
] 5} 1 SPEC STEST
HOSTPNL
SETPSA
PSEVEN
PS0DD
PS
SETEXIT
: OCTAL £
FIELD CODE MNEMONIC EFFECT
SPEC 2 - See STEST Field (B-6)
1 - See HOSTPNL Field (B-7) -
2 SPMDA .) Spin until MD available
3 . -
:3 - -
5 - -
6 - -
7 - -

19 - _ ~See SETPSA Field, inhibit TEST except
: No Load (B8-8)

11 - : See PSEVEN Field (B-9)
12 - See PSODD Field (B-1p)
13 - : SeevPS Field (B-11)

14 - . ~ See SETEXIT Field (8-12)
15 - -

16 ' - ‘ -

17 - : ‘ -

1039

FPS 860-7259-003 B - 5

Table B~3 Special Operations Group (cont.)

FPS

FIELD piey MNEMON IC EFFECT (see NOTE)
STEST 2 3FLT Branch if FA<@.2
1 BLT 8ranch if SPFN<@
2 BNC Branch if S-Pad carry bit = 1
3 8ZC Branch if S-Pad carry bit = @
4 BOBN. Branch if 0B <9.d
5 BDBZ 8ranch if DB positive and unnormalized
5 BIFN Branch if Inverse FFT flag = 1
7 BIFZ Branch if Inverse FFT flag = @
12 - - -
11 - -
12 - -
13 - -
14 | BFLO Branch if Flag § =1
18 BFL1 Branch if Flag 1l = |
16 3FL2 Branch if Flag 2 = 1
17 BFLL3 Branch if Flag 3 = 1
If the above specified condition is true OR
the condition specified in the COND field is
true, a branch occurs to (PSA) + 0ISP-20.
1040
860-7259-003 B

Table B-3 Special Operations Group (cont.)

OCTAL

FIELD oot MNEMONIC EFFECT (see NOTE 1)
W
HOSTONL 9 PNLLIT PNLBS —» LITES
1 DBELIT 08F —» PNLBS —» LITES
2 DBHLIT 08" —» PNLBS —> LITES
3 DBLLIT 08" —» PNLBS —> LITES
4 - -
5 - -
6 - .
7 - .
10 SWDB ' (SWR) — PNLBS —» DB
11 SWDBE (SWR) —> PNLBS —» DB® and WRTEXP

{see NOTE 2)

12 SWDBH (SWR)—» PNLBS —= 08" and WRTHMAN
(see NOTE 2)

13 SWDBL (SWR)—»PNLBS — DB'" and WRTLWAN
(see NOTE 2)

14 - -

15 - -

16 - -

17 - -

NOTE

1) MH = Mantissa High = Mantissa bits §@-11
ML = Mantissa Low = Mantissa bits 12-27
E = Exponent

2) Restrict DPS, DPY and MI to:
WRTEXP: Write Exponent only
WRTHMAN: Write High Mantissa only (bits @@-11)
WRTLMAN: Write Low Mantissa only (bits 12-27)

1041

FPS 860-7259-003 B - 7

Table B-3 Special Operations Group (cont.)

FIELD JCTAL
: CODE MNEMONIC EFFECT (see NOTE)
m:ﬁ — w
SETPSA 2 JMPA VALUE —»PSA
1 JSRA (SRA) + L—»SRA, (PSA) + 1 —>SRScps,
VALUE —» PSA
2 JMP VALUE + (PSA) —»PSA
3 JSR (SRA) + L —»SRA, (PSA) + 1 —>SRSpns
VALUE + (PSA) —» PSA
4 JMPT (TMA) —» PSA
5 JSRT (SRA) + L —>SRA, (PSA) + 1—>SRScps,
(TMA) —> PSA
6 JMPP (SWR) —# PNLBS —>PSA
7 JSRP (SRA) + 1 —»SRA, (PSA) + 1 —>=SRScp,,
(SWR) —» PNLBS —» PSA
NOTE
VALUE = 3its 48-63 of this instruction (CB48-CB63)
1042

FPS 860-7259-003 B - 8

Table B-3 Special Operations Group (cont.)

FIELD e MNEMONIC EFFECT (see NOTE 2)
PSEVEN 2 Rpso (PSYP) —> PNLES —» LITES
1 RPS2A (PSYZ 1) —> PNLES—s LITES
2 RPSP | (PSaP yg+psa) —> PNLBS —»LITES
3 RPS2 (PS3ALug+psa) —*PNLBS —>LITES
4 RPSOT (ps3B,) —»PNLES —>LITES
5 RosaT (P32) — PNLBS — LITES
6 ")
7 -)
19 WPSPA - (SWR)—s PNLBS —>PsI2 o
1 WPS2A (SWR) —>PNLBS —>PSI2 o
12 WPSP (SWR)—» PNLBS —>PSI2 - ocs
13 WPS2 (SHR) —» PNLBS—>PSIE - 0ch
14 WPSPT ' (SWR)—» PNLBS —>Ps3D,
15 wsaT (SWR)—>PNLBS —>pS32,
16 ;)
17 R)

NOTE

1) This field requires 2 cycles to execute.

2) VALUE = Bits 48-63 of this instruction (CB48-CB63)
Q@ Quarter zerc of Program Source Word (PS@P-PS15)
Q2 - = Quarter two of Program Source Word (PS31-PS47)

1043

FPS 860-7259-003 : B ~ 9

Table B-3 Special Operations Group (cont.)

FIELD s MNEMONIC EFFECT (see NOTE 2)
200D ? RPS1A (Psdk) — PNLBS — LITES
(see NOTE 1)
1 RPS3IA (PSJa g) — PNLBS —>LITES
2 RPS1 (P eupsp) —>PNLBS —®LITES
3 RPS3 (PSU3 gapsp) —>PNLBS —> LITES
1 RPS1T (ps3h,) —»PNLBS —> LITES
5 RPS3T (ps33,) —» PNLBS —» LITES
6 . .
7 - -
19 WPSIA (SWR) —> PNLBS —>PSDE o
11 WPS3A (SWR)——> PNLES — PSJa
12 WPS1 (SWR) ——>PNLBS —>PSIE o ocr
13 WPS3 (SWR)—> PNLBS —> PST3 o oc
14 WPS1T (SWR) —>PNLBS —>PSaL,
15 WPS3T (SWR) —>PNLBS — PsTy
16 - .
17 . .
NOTE

1Y This field requires 2 cycles to execute.

2} VALUE = Bits 48-63 of this instruction (CB48-CB&3)
J1 = Quartar one of Program Source Word (PS16-PS31)
Q3 Quarter three of Program Source Word (PS48-PS63)

FPS 860-7259-003

1044

Table B-3 Special Operations Group (cont.)

FIELD OCTAL MNEMONTC EFFECT (see NOTE 2)
CODE
LH
PS 2 RPSLA (PSVALUE) — 0B
(see NOTE 1) o
1 RPSFA (PSia g) —>08
LH
2 RPSL (PSyaLug+psa) —>08
FP
3 RPSF (PSyaLyg-psa) —>0B
LH)
4 RPSLT (pstHty) —» 08
FP
5 RPSFT (PsFh) —> 08
LH
6 RPSLP (Pbft gg) —> 08
FP -
7 RPSFP (PSER 5s) —» 0B
19 LPSLA o —spstd
L VALUE
11 LPSRA 0g —spstHl
YALUE
12 LPSL 0B —sps-t
JALUE+PSA
13 LPSR 08 —spshH
VALUE+ PSA
14 LPSLT o —spsth
™A
15 LPSRT 08— psRll
™A
16 LPSLP DB ——spstf
PNLBS
17 LPSRP 08— psRH
PNLBS

NOTE

1) This field requires 2 cycles to execute.

2) VALUE = Bits 48-63 of this instruction (CB48-CB63)
LH = Left half of Program Source Word (Bits 9@-31}
RH = Right half of Program Source Word (Bits 32-63)

FP = Program Source bits 26-63, used for floating-point lTiterals

FPS 860-7259-003

1045

Table B-3 Spzcial Operations Group {(cont.)

FIELD OCTAL MNEMONIC EFFECT (see NOTE)
CODE
W

SETEXIT ? - -

1 SETEXA VALUE — SRSz

2 - -

3 SETEX VALUE + (PSA) —»SRScp,

4 - -

s SETEXT TMA—» SRSy

6 - -

7 SETEXP PSA + 1 —» SRSpq

NOTE

Sets the current subroutine return address as indicated above.
SRA does not change.
VALUE = Bits 48-63 of this instruction.

1046

FPS 860-7259-003 B - 12

Table B-4 Floating Adder Group

14 16 | 17 19 | 29 22
FADD AL A2_-
FADDI
FIELD prtlaly MNEMONIC) EFFECT
Y — e ——
FADD ? - o See FADDY field
1 FSUBR Subtract: (A2) - (AL}
; FSUB Subtract: (A1) - (A2)
3 FAboi ‘ Add: (A1) + (A2)
4 FEQV Logicalequivalence: (A1) YOR (A2)
5 | FAND ' : Logical and: (A1) AND (A2)
6 FOR Logical or: (AL} OR (A2)
7 - See I/0 Group
Al) NC (A1) —»Al
1 FM M —— Al
2 OPX(1DX) (OPXppariox! AL ynere xR = 10x+4
3 OPY (10X) (%PYppas10x) —>AL inere YR = 1DX+4
4 , ™ ' (TM) —» AL
s ZERO 9.0 — AL
6 - -
7 - .
NOTE

A1l floating adder op=-codes:
1) Align exponents

2) Perform the specified arithmetic,
logical, or shift operation

) Normalize
) Convergently round

S W

1047

FPS 860-7259-003 B - 13

Table B=4 Floating

Adder Group (cont.)

OCTAL
FIELD CODE MNEMONIC EFFECT
A2 2 NC (A2) —=» A2
1 FA FA -—» A2
2 DPX(1DX) (DPX5pas1px) —p A2, here XR = 10X+4
3 DPY(1DX) (DPYDPA+lDX) . A2, where YR = 1DX+4
4 MD (MD) —» A2
5 ZERO 2.0 — A2
£ (opxM) A2
6 MDPX{1DX) SPFN+512 —» A2", DPA+1DX | — AZ
E -
7 EDPX(1DX) (DPXppa+10x L —» A28, sPEN —» A2"(pg-91),
p —s aM(2-27)
FADDL 2 - No-op
1 FIX Convert (A2) to an integer
2 FIXT Convert (A2) to an integer (result truncated)
3 FSCLT Shift (A2) right and increment A?_E until
a2E = (SPFN+511) (result truncated).
4 FsM2c Convert (A2), from signed Magnitude to 2's
complement.
5 F2CSM Convert (A2) from 2's complement to signed
magnitude.
6 FSCALE Shift (A2) right and increment AZE until
A2k = SPEN+S11.
7 FABS Take the absolute value of (A2). '
1048
FPS 860-7259-003 B - 14

Table B=5 1/0 Group

14 16} 17 19 | 20 22
1 1 1 1/0 LDREG
RDREG
INOUT
SENSE
FLAG
CONTROL
FIELD it MNEMONIC EFFECT
— s
1/0 /) - See LDREG field
1 - See RDREG field
2 SPMDAV Spin until MD available
3 ' REXIT SRS (gpa) —> PNLBS
4 - See INQUT field
5 - See SENSE field
5 - See FLAG field
7 - See CONTROL field
LDREG 2 - No-op
1 LDSPD 0PBS — SPD
2 LOMA DPBS — MA
3 LDTMA DPBS —> TMA
4 LDOPA DPBS —» DPA
5 LDSP SPgpp —> SPFN, OPBS — SP.,p
6 . LDAPS DPBS —» APSTATUS
7 LDDA ' OPBS —» DA
1049

FPS 860-7259-003 B - 15

Table B=5 I/0 Group (cont.)

FiEL0 OC%TD’}E'- ﬁ MNEMONIC EFFECT
e — —— e —————
RDRES) RPSA (PSA) ——» PNLBS
1 RSPD {SPD) — PNLBS
2 RMA (MA) — PNLBS
3 RTMA (TMA) —» PNLBS
4 RDPA (DPA) —» PNLBS
5 RSPFN SPFN —» PNLBS
6 RAPS ‘ (APSTATUS) —» PNLBS
7 RDA (DA} —> PNLBS
INOUT 8 ouT DP8S — IO0DEVICE,
1 SPNOUT SPIN if I0DRDY,, = @
OPBS —» I0DEVICEy,
2 OUTDA DPBS —» IODEVICE,, SPFN —» DA
3 SPOTDA SPIN if IODRDY = @, SPFN —»DA
OPBS —» I0DEVICEp,
4 IN (I0DEVICE,) —» INBS
5 SPININ SPIN if I0DRDYp, = 2
(10DEVICEp,) —» INBS
6 INDA (I0DEVICE,,) —> INBS, SPFN —» DA
7 SPINDA SPIN {f IODROYp, = @, SPFN —+ DA
(I0DEVICE,) —> INBS

1050

FPS 860-7259-003 B - 16

Table B=5 1/0 Group (cont.)

FIELD e MNEMONIC EFFECT (see NOTE)
SENSE) SNSA Apa —* [ODRDY Flag
1 SPINA Aga —>10DRDY, SPIN if IODRDY = @
2 SNSADA Apa —*I0DRDY , SPFN ——>0A
3 SPNADA Aps —>10DRDY, SPIN if IODROY = 9,
SPFN —> DA
4 SNSB By —> IORDY Flag
5 SPINS | BDA——>;00RDY, SPIN if IODRDY = 9
6 SNSBOA 84 —* 10DRDY, SPFN -—=DA
7 SPNBDA By —* [ODRDY, SPIN if IO0DRDY = 4,
SPIN — DA
FLAG 9 SFL® 1 —» FLAG
| 1 SFL1 1 —>FLAG,
2 SFL2 1 —+ FLAG,
3 SFL3 L —> FLAG,
4 CFLD P —*FLAG,
5 CFLL # —> FLAG,
6 CFL2 p —> FLAG,
7 CFL3 § —* FLAG,
NOTE
A and B are [/0 device dependent conditions, either 1 or 9.
1051

FPS 860-7259-003 B - 17

Table B=5 I/0 Group (cont.)

- OCTAL =
FIELD CODE MNEMONIC EFFECT
CONTROL] HALT Halt

1 IORST 1/0 reset
If CTL25 is set see Programmer's

2 INTEN
Reference Manual Part II, page E9.

3 INTA Interrupt acknowledge. Device Address of
interrupting device put onto DPBS.

4 REFR Memory refresh sync

5 WRTEX Restricts OPX, DPY & MI to Write
exponent only

6 WRTMAN Restricts DPX, DPY & MI to Write Mantissa
only (Bits p-27)

1052
FPS 860-7259-003 B 18

Table B-6 Branch Group

23 26 27 31
COND ISP
FIELD ot MNEMONIC EFFECT (see NOTE 2)
- — ==
COND 2 - No-opn
1 # Inhibit load of SPFN—» SPepp
2 3R Branch always
3 3INTRQ Branch if INTRQ (Interrupt Request
flag = 1)
4 BION Branch if IODRDYDA flag = 1
5 ‘ 810z Branch if I0DRDYy, flag = ¢
6 BFPE 8ranch on floating-point arithmetic
error (overflow, underflow, or divide
by zero).
7 ‘ RETURN (SRSSRA)-——D PSA, (SRA) - 1 —»SRA
(see NOTE 1) (subroutine return jump).
9 BFEQ 8ranch if FA = 9.0
i1 BFNE Branch if FA # 9.9
12 BFGE Branch if FA 2 2.9
i3 BFGT Branch if FA > 9.8
14 BEQ Branch if SPFN = @
15 BNE Branch if SPFN # @
16 BGE Branch if SPFN > @
17 BGT Branch if SPFN > @
DISP 9 to 37 If branch condition is true,
(see NOTE 3) (PSA) + DISP - 20 —» PSA
NOTE

1) "RETURNS" may not be made in two successive instructions.

2) FA and SPFN are tested as to their state for the previous
instruction.

3) Thus the effective Branch Range is -2@ to +17 relative to
the current instruction.

1053
FPS 860-7259-003 B - 19

Table B=7 Data Pad Group

32 3 | o3 35 | 36 38 | 39 a1 | as | 35 a7]« 50
DPX JPY : 0P8s XR YR XW YW
N OCTAL [,
FIELD CODE MNEMONIC EFFECT
— e e e——
0PX 2 - No-ap
(see NOTE 1)
1 DPX(1DX)<DB OPBS —» aPXDPA+lDX, Where KW = 1DX+4
2 OPX (1DX)<FA FA == DPXppa+1DX, Where XW = 10X+4
3 DPX(1DX)<FM M = DPXppy+10X, Where XW = 10X+4
DPY 2 - No-op
(see NOTE 1)
: OPY(10X) <08 OPBS —* OP¥ppa+inX, Where 1w = 10x+4
2 OPY(10X}<FA - FA —> DPYppas1DX, Where YW = 10X+4
3 DPY (10X)<FM P — OPYpav1DX, Where YW = 10X+4
DPBS i DB=ZERO g.p—> 08
1 0B=INBS INBS —» DB
2 DB=VALUE vaLE — o8F, vALLE — 28 ™,
sign extended into 2B MH
3 DB=DPX (1DX) (DPXDPA"'IDX) —»0B , Where XR = 1DX+4
4 DB=0PY(1DX) (DPYDPA+IDX)—-’DB , Where YR = 1DX+4
5 0B=MD (MD) —> DB
6 0B=SPFN SPFN '+ 512 —» DB T, SPFN —» 33 -,
sign extended into 0B MH
7 DB=TM (TM) —> 0B
NOTE
1) A1l bits written uniess WRTEXP, WRTHMAN or WRTLMAN set.
See SOP1 and HOSTPNL field.
2) OPBS forced to @ if HOSTPNL field = 19 to 13
ML = Mantissa Low (Mantissa Bits 12-27)
MH = Mantissa High (Mantissa Bits 9@-11)
E = Exponent
VALUE is a 16-bit 2's complement number, contained in
bits 48-63 of the instruction word.
1054
FPS 860-7259-003 B - 20

Table B-7 Data Pad Group (cont.)

FIELD pite MNEMONIC EFFECT
AR g to7 DPX Read EFA is (DPA) + XR - 4
YR g to7 DPY Read EFA is (DPA) + YR - 4
XW P to7 ' : DPX Write EFA is (DPA) + XW - ¢4
YW g to7 DPY Write EFA {s (DPA) + YW - 4,
YW=XW if VALUE is used in another
field.

1085

FPS 860-7259-003 B - 21

Table B-8 Floating Multiplier Group

51 52 53 54 55
¥ M1 w2
FIELD ot MNEMON IC EFFECT
W
™M 2 - No-op
1 FMUL Multiply: (M1)*(M2)
"1) M M — M1
1 DPX (1DX) (DPXpppsypx) — M1+ Where XR=1DX+4
2 DPY(1DX) (DPYppe px) —> Mi» Where YR=1DX+s
3 ™ (TM) —> M1
M2 ? FA FA —> M2
1 DPX (1DX) (DPX‘DPAHDX)——-MZ, Where XR=10X+d
2 DPY(1DX) (0PY gy px) — M2, Where YR=10X+4
3 MD (MD) —» M2
NOTE

These fields are not in effect if VALUE is used in another field.
Arquments that are unnormalized by more than one position will

protuce incorrect results.

FPS 860-7259-003

22

1056

Table B-9 Memory Group

56 57 58 59 60 61 62 63
R MA DPA ™A
FIELD %%TDAEL MNEMONIC EFFECT (see NOTE 3)

(see NOTE 1)

MI [} - No-op
1 MI<FA FA — MI, Write MI into Data Memory
(see NOTE 2)
2 MI<FM FM — MI, Write MI into Data Memory
(see NOTE 2)
3 MI<DB DB — MI, Write MI into Data Memory
(see NOTE 2)
MA [} - No-op
1 INCMA (MA)+1 —»>MA, initiate a Data Memory
cycle
2 DECMA (MA)-1— MA, initiate a Data Memory
cycle
3 SETMA SPFN —» MA, initiate a Data Memory
cycle
DPA] - No-op
1 INCDPA (DPA)+1 — DPA
2 DECOPA {DPA)-1 —» DPA
3 SETDPA SPFN — DPA
T™A 9 - No-op
1 INCTMA (TMA)+1 —> TMA, initiate a read from
Table Memory
2 DECTMA (TMA)+1 —> TMA, initiate a read from
Table Memory
3 SETTMA SPFN — TMA, initiate a read from
Table Memory

1) These fields are not in effect if a value is used by another field. Changes made in MA, TMA,
or DPA do not affect the values of these registers used by other fields during the current

instruction.

2) A1l bits written unless WRTEXP, WRTHMAN or WRTLMAN is set. See SOP1 and HOSTPNL fields.

3) o8B

is used in place of SPFN if LDREG field is used.

FPS 860-7259-003

B

23

1057

Notice to the Reader

e Help us improve the quality and usefulness
of this manual.

e Your comments and answers to the following
READERS COMMENT form would be appreciated.

To mail: fold the form in three parts so
that Floating Point Systems'
mailing address is visible; seal.

Thank you

READERS COMMENT FORM

Document Title

Your comments and answers will help Did vou find this material . . .

us improve the gquality and usefulness
of our publications. If your answers

require qualification or additional ' | YES NO
explanation, please comment in the
space provided below. e USEFUL? () ()
e COMPLETE? () ()
e ACCURATE? () ()
How did you use this manual? e WELL ORGANIZED? () ()
(') AS AN INTRODUCTION TO THE SUBJECT o MWELL ILLUSTRATED? ¢y)
(') AS AN AID FOR ADVANCED TRAINING o (WELL INDEXED? ¢y)
() TO LEARN OF OPERATING PROCEDURES o EASY 10 READ? () 0)
() TO INSTRUCT A CLASS e EASY TO UNDERSTAND? () ()
() AS A STUDENT IN A CLASS ' Please indicate below whether your
‘ comment pertains to an addition,
() AS A REFERENCE MANUAL deletion, change or error; and, where
() OTHER applicable, please refer to specific

page numbers.

Page : Description of error or deficiency
From: | |
Name Title
Firm Department
Address City, State

Telephone Date

First Class
Permit No. A-737

Portliand,
Oregon

BUSINESS REPLY

No postage stamp necessary if mailed in the United States

Postage will be paid by: .

FLOATING POINT SYSTEMS, INC.

P.0. Box 23489
Portland, Oregon 97223

Attention: Technical Publications

e e —— —— — —— — W — — — — —— —— — e — e we e dmm emm emm ses mme S S emm S == ==

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX: 360470 FLOATPOINT PTL

	000
	001
	002
	003
	004
	005
	006
	007
	0_1
	0_2
	0_3
	0_4
	1_01
	1_02
	1_03
	1_04
	1_05
	1_06
	1_07
	1_08
	1_09
	1_10
	1_11
	1_12
	1_13
	1_14
	1_15
	1_16
	1_17
	1_18
	1_19
	1_20
	1_21
	1_22
	1_23
	1_24
	2_01
	2_02
	2_03
	2_04
	2_05
	2_06
	2_07
	2_08
	2_09
	2_10
	2_11
	2_12
	2_13
	2_14
	2_15
	2_16
	2_17
	2_18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	reply0
	replyA
	replyB
	xBack

