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CHAPTER 1

INTRODUCTION

1.1 PURPOSE

The purpose of this manual is to provide the information necessary to
understand and use the Array Processor (AP) Math Library. The Math
Library contains a versatile set of FORTRAN callable routines for use
in high-speed array processing. Once these routines are installed in
the host system, they can be called by standard FORTRAN programs.

1.2 SCOPE

This manual is a user document designed to describe the Math Library
routines and acquaint the user with the unique features of the AP. The
manual is divided into two parts.

Part One consists of five chapters and four appendices. The five
chapters provide general information about the AP and the use of the
Math Library. Chapter 1 presents introductory material, including
basic concepts about AP processing and Math Library use. Chapter 2
provides general operating information necessary for the most efficient
use of the Math Library routines. It includes information about memory
organization, format conversion and speed considerations. It also
defines a general procedure for program development. Chapter 3 defines
the categories into which the Math Library routines are organized.
Chapter 4 presents a number of detailed examples of array processing
programs written with routines from the Math Library. Chapter 5
describes the FORTRAN Math Library Simulator (MATHSIM) and its use.

The four appendices are designed to provide quick and easy access to
more detailed information about any one of the more than 150 Math
Library routines. This information includes what each routine does,
how to use it, and how fast it runs. Appendix A lists the Math Library
routines alphabetically. Appendix B lists the routines by type and
page order. Appendix C gives an abbreviated summary of each routine
and defines its purpose and its calling parameters. Appendix D lists
the routines available for use in AP-FORTRAN program units and their
AP-FORTRAN calling names. '

Part Two consists of four appendices. Appendix E provides complete
reference material about each routine. Appendices F, G, and H are
actually identical to Appendices A, B, and D, respectively; they are
repeated in Part Two for easy reference.
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If more information is desired on the AP, the reader should refer to
the manuals listed in Table 1-1.

Table 1-1 Related Manuals

MANUAL PUBLICATION NO.
Processor ‘Handbook FPS 860-7259-003
Programmer's Reference Manual Parts One and Two FPS 860-7319-000
FORTRAN Reference Manual FPS 860-7408-000
APAL Reference Manual FPS 86Q-7412-000
APLOAD Reference Manual FPS 860-7410-000
APDBUG/APSIM Reference Manual FPS 860-7364-002
APEX Manual FPS 860-7371-001
AP Diagnostic Software Manual FPS 860-7284-002

0849

1.3 AP HARDWARE

This section is included to give the user a general overall picture of
the structure of the AP and some insights into why it can process
arrays at such high speeds. It is not, however, necessary to know this
information in order to write programs with the Math Library.

1.3.1 BASIC ARCHITECTURE

The AP uses a general-purpose, multi~bus oriented architecture. The
floating adder and floating multiplier are each connected directly to
each of the memory elements and registers in the AP through separate
parallel 38-bit data paths. This parallel structure allows the
overhead of array indexing, loop counting, and data fetching from
memory to be performed simultaneously with the arithmetic operations on
the data. Much faster program execution is possible as opposed to
using a typical general-purpose computer where each of the above
operations must occur sequentially.
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Specifically:

® Programs, constants and data each reside in separate,
independent memories to eliminate memory accessing
conflicts.

e Independent floating—point multiplier and adder
units allow both arithmetic operations to be
initiated every l67ns.

e Two large blocks (32 locations each) of floating-
point accumulators are available for temporary
storage of intermediate results from the multiplier,
adder or memory.

® Address indexing and counting functions are performed
by an independent integer arithmetic unit that includes
16 integer accumulators.

In a typical application, such as a Fast Fourier Transform (FFT), the
above features allow nearly the entire computation to be overlapped
with data memory access time.

Effective processing precision is enhanced by 38 bits of internal data
width, an internal floating-point format with optimum numerical
properties, and a convergent rounding algorithm.

1.3.2 SYSTEM OVERVIEW

The AP is connected to the host in a manner that permits data transfers
to occur under control of either the host computer or the AP (refer to
Figure 1-1). For most host computers, this means that the AP is
interfaced to both the programmed I/0 and DMA channels.
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The system elements are interconnected with multiple parallel paths so
that transfers can occur in parallel. All internal floating-point data
paths are 38 bits in width (10-bit biased binary exponent and 28-bit
2’s complement mantissa). The main data memory (MD) is organized in 8K
and 32K-word modules of 38=-bit words each, expandable up to 512K words
in the main chassis. Effective memory cycle times (interleaved) of
either 167ns or 333ns are available.

The table memory (TM) is used for storage of constants and is tied to a
separate data path so as not to interfere with data memory. It is
bipolar, 167ns read-only memory, and is organized in 512-word, 38-bit
increments. An optional random access memory (TMRAM) is also
available.

The program source memory (PS) can hold from 512 to 4096 64-bit
instruction words.

Data pad X (DPX) and data pad Y (DPY) are two blocks of 32 floating
accumulators each. Each is a two-port register block wherein ome
register may be read, and another written from each block in one
instruction cycle.’ :

The floating adder (FA) consists of two input registers, Al and A2, and
a two-stage pipeline which performs the operations and convergently
rounds the normalized result.

The floating multiplier (FM) consists of two input registers, M1l and
M2, and a three-stage pipeline which performs the multiply operation.
Products are normalized and convergently rounded 38-bit numbers.

The s-pad consists of sixteen 16-bit integer registers and an integer

arithmetic unit which is used to form operand addresses and to perform
integer arithmetic.
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1.3.3 EXAMPLE OF AP OPERATION

The following example shows the sequence the AP goes through to add two

vectorse.

The initial
two vectors
to be added

1.

3.

conditions for this sequence are that the program to add
resides in the AP program source memory and the two vectors
reside in the host memory.

The host calls the AP executive program (APEX) to request
host DMA cycles to transfer the two vectors from the host
memory to the AP main data memory. The two vectors are
converted from host floating-point format to the AP
floating-point format on the fly as they pass through the
formatting hardware of the interface.

The host calls APEX to start the AP vector add routine.
The routine is performed with the resultant vector
remaining in the AP format. This format yields the
benefit of 38-bit precision and convergent rounding during
the critical phases of processing.

The host calls APEX to request host DMA cycles to tramsfer
the resultant vector back to the host memory. The vector
is converted from AP format to host floating-point format,
again on the fly.

The AP proceeds to another process or stops executing,
depending on previously established conditioms. An
interrupt to the host can be issued.

A detailed discussion of this example is given in section 2.3. It is
given from a programming viewpoint and includes a commented FORTRAN

program.
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1.3.4 FURTHER HARDWARE CONSIDERATIONS

The AP is most efficient when a sequence of operations can be performed
on one Or more vectors, or on a whole array which resides in the main
data memory. This approach reduces data-transfer overhead and retains
maximum numerical precision. A reasonable sequence, for example, would
be to transfer a trace and a filter, FFT both, array multiply, inverse
FFT, and transfer the result back to the host memory.

The AP main data memory has DMA capability. This means that the
interface can steal main data memory cycles from the AP microprocessor.
This capability allows the host computer DMA~to—-AP DMA data transfers
to occur, thereby minimizing both host and AP overhead.

The AP has been designed with enough built-in flexibility to allow its
power to be harnessed in a variety of ways. Refer to the AP Processor
Handbook (FPS 860-7259-003) for detailed descriptions of the elements

of the AP presented in this discussion.

1.4 AP SOFTWARE

Four software packages are supplied with the AP to assist the user in
running programs, writing programs, and diagnosing hardware faults.

l.4.1 THE EXECUTIVE

The AP executive (APEX) allows the user to communicate with the AP via
FORTRAN or host assembly language calls. It is a subroutine linked
into FORTRAN programs which use the array processor. The APEX driver
subroutine interprets the particular user call and directs the AP to
perform the specified acticn. Both the AP Math Library routines and
user-developed AP programs may be called from the host computer using
APEX.
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l.4.2 THE AP MATH LIBRARY

The AP Math Library (APMATH) includes over 235 floating-point routines
which cover a wide range of array processing needs. These routines,
written in AP assembly language, can be called by programs written
either in host FORTRAN, host assembly language, or in AP assembly

language. The purpose of this manual is to describe these routines as
follows:

° data transfer and control operations
° basic vector arithmetic

. vector-to-scalar operations

) vector comparison operations

. complex vector arithmetic

° data formatting operations

. matrix operatioms

] FFT operations

° auxiliary operations

. APAL callable utility operations
] signal processing operations

] table memory operations
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1.4.3 PROGRAM DEVELOPMENT PACKAGE

This package provides four FORTRAN IV programs which are compiled on
the host computer during installation, and are for use in writing array
processing programs and subroutines in the AP assembly language. The
programs are as follows:

APAL AP assembler is a cross—assembler that provides
a two-pass assembly of AP symbolic assembly
language coding into an object module. APAL
generates detailed error diagnostics.

APLOAD APLOAD links and relocates séparate APAL and
AP-FORTRAN object modules together into a
a single load module.

APSTM AP simulator (APSIM) provides a programmed
simulation of the various hardware elements of
the AP. All timing characteristics of the AP
are emulated, and the floating-point arithmetic
is simulated (including rounding) to the least
significant bit. APSIM is a convenient tool
in bringing up new AP programs off-line without
interfacing with production runs.

APDBUG APDBUG is an interactive debugging program
with commands similar to APSIM. The user may
selectively set breakpoints, examine and
change memory and register contents, and run
program segmentse.

The AP Programmer’s Reference Manual (FPS 860-7319-000) is a
comprehensive instruction manual which describes developing programs
using the AP Program Development Package.

FPS 860-7288-004 1 - 9



l.4.4 DIAGNOSTIC PACKAGE

The AP test programs are a collection of interactive diagnostic test
and verify programs that aid in isolation of hardware faults. They
include:

APTEST AP test exercises the panel, DMA interface,
and various internal registers and memories.
It tests main data memory with simple patterns
and then with random numbers. Board level
diagostic indicators are provided.

APPATH AP path test tests the various internal
data paths and gives board-~level diagnostics.

APARTH AP arithmetic test tests the floating=-point
adder, multiplier, and s-—-pad arithmetic unit
with pseudo-random number and operation
sequencess

FIFFT Forward/Inverse FFT test verifies the correct
operation of the AP as a complete unit by doing
forward/inverse FFT transforms on both spikes
and random number sequences.
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CHAPTER 2

GENERAL OPERATION

2.1 INTRODUCTION

This section gives the basic information required to use the AP Math
Library routines with host FORTRAN programs in order to process data
with the AP. Miscellaneous information about the structure and
operation of the AP is also included to help the user get the most
efficient use of the AP.

2.2 ARRAYS, VECTORS AND SCALARS

The terms array and vector are used somewhat interchangeably when
discussing array processing. There is, however, a difference between
an array and a vector.

An array is a group of numbers that are related to each other in some
way. An array of numbers often has a multi-dimensional aspect to it.
A matrix, for example, is an array. Another kind of an array is a
table of numbers, such as a table of several parameters -- all related
to one system or measurement.

A vector in array processing terminology refers to a one-dimensional
sequence (string) of numbers. The columns of a matrix or table are
vectors. In this sense, a vector is essentially a subset of an array,
i.e., a string of numbers that are all values for the same parameter.
When organizing an array for processing, the user usually divides the
array into vectors and establishes one vector for each column of data.

Array processing often involves performing a relatively simple
operation or algorithm repetitively on long sequences of data
(vectors). The strength of the AP is that it is designed to perform
such operatiomns at much faster speeds than is possible with a general
purpose processor.
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The individual numbers in an array or vector are called elements. A
vector of only one element is a scalar. Thus, a scalar refers to a
single number. A vector operation may also involve a scalar (e.g., the
dot product of two vectors, or the product of each element of a vector
by a constant).

To summarize then:

® An array is a group of numbers.
® A vector is a sequence of numbers.

® A scalar is a single number.

2.3 PROGRAM FLOW

Writing a FORTRAN program that calls on the AP to process data is
basically the same as writing a FORTRAN program that runs exclusively
on the host processor. Exceptions to this are as follows:

o The AP and APEX must be initialized before any other
calls are made to the AP.

o Data must be transferred from the host memory to the
AP main data memory before the AP can operate on it.

e In order to synchronize the operation of the AP with
the host, wait calls must be inserted in the program
whenever the host and the AP interact.

e At the end of program execution, data must be transferred
from the AP main data memory back to the host menory.
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Figure 2-1 illustrates the necessary steps to follow when writing a
FORTRAN program to run on the AP. The following discussion addresses
each of these blocks separately. Figure 2~2 illustrates a FORTRAN
program that directs the AP to add two vectors together. The sequence
of hardware operations for this procedure is given in section 1.3.3.
The program in Figure 2-2 is referred to throughout the following
sections.

2.3.1 DIMENSION DATA IN HOST MEMORY

Before an array can be transferred to the AP, it must be dimensioned
and stored in the host memory. This is the first step in the example
in Figure 2-2:

DIMENSION A(1000), B(1000), C(1000)

At this point, the user can create vectors to be processed by the AP.
The DIMENSION command tells the host how many memory words to allocate
for each vector, and gives each vector a name. The user can then use
these names to call the data for transfer to the AP. Note that a
vector C is also created in this example to provide a location in the
host memory where the sum of the addition of the two vectors A and B
can be stored. If it 'is not necessary to preserve a copy of A or B in
the host, then the result can be stored back into A or B, thereby
avoiding the additional host memory requirement.

An alternate method of dimensioning the arrays is to combine both the A
and the B vector into one 2000-word vector: DIMENSION A(2000),
C(1000). This eliminates one of the data transfer calls required to
transfer the two vectors to the AP, and reduces the program run time.
However, it is a little more complicated for the user to keep track of
the various vectors in the array. Dimensioning of data is described
further in the following sections.

2.3.2 STORING THE ARRAY IN THE HOST MEMORY

With the array location established in the host memory, the user must
fill the memory locations with actual data. This means reading in the
data from a tape drive, an analog-to-digital converter, a disk drive,
etcetera. Figure 2-1 illustrates a general flowchart for writing a
FORTRAN calling program to perform an operation with the AP.

FPS 860-7288-004 2 - 3



DIMENSION DATA ARRAYS
IN HOST MEMORY

y

STORE DATA IN HOST MEMORY

¥

INITIALIZE AP
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18

TRANSFER DATA FROM AP TO HOST

0851

Figure 2-1 FORTRAN Calling Program Flowchart

FPS 860-7288-004 2 - 4



In the following example, the vectors are created with an arithmetic
expression in a DO loop:

Cmemm—— FORTRAN program to add 2 vectors in AP120B and return result to
c host
C
Cmmmm— Dimension vectors in host
C
DIMENSION A(1000),B(1000),C(1000)
C
Cmmmmmem Select size of vectors to be added
C
N=1000
C
Cmmmmmmm Somehow create vectors A and B in host
C
DO 10 I=1,N
A(I)='...l...
10 B(I)=o‘c'oooo
C
Cmmmmmm Initialize AP120B (must be done before any other
C calls to AP120B)
C
CALL APCLR
Cmmmm— Indicate we're transferring host floating-point numbers
IFMT=2
C
Commmm—m Allocate AP120B main data memory
c
IA=0
IB=N
IC=N+N
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Cm—mmme Transfer A and B from host to AP120B main data memory
Com———— A is transferred to locations 0 - 999, B to
C locations 1000 - 1999

CALL APPUT (A,IA,N,IFMT)
CALL APPUT (B,IB,N,IFMT)

Comm——e Wait until transfer is complete before doing computations
C “on data

CALL APWD
C

C----——=Perform vector addition in AP120B, storing results
c 2000 - 2999

C
CALL VADD(IA,!1,IB,1,IC,1,N)
c
C-—=—=-Wait until calculation is finished before getting results

CALL APWR

C-=-——-Now transfer result from locations 2000 - 2999 to host buffer C
CALL APGET(C,IC,N,IFMT)

C-~=—==Wait until transfer is complete before printing results, etc

C in host

CALL APWD
Cc
Cmmmmme Print results, etc. in host
C
|
|
|
END
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The routines in the AP Math Library operate on four different types of
vectors or arrays: real vectors, complex vectors, complex FFT vectors
and matrix arrays. In each of these cases, the routines assume that
the vector or array is organized in a particular sequence. For
example, each element of a complex vector requires two memory words:
one word for the real part of the element and one for the imaginary
part. The routines for operating on complex vectors assume that the
parts of each complex element are stored in two consecutive addresses
in the AP main data memory.

The initial organization of arrays and vectors should be done when
dimensioning the host memory and storing data in the host. Refer to
the discussion of vector organization (section 2.4) for more details on

the vector formats and variation allowed when organizing vectors for
processing with the AP Math Library routines.

2.3.3 INITIALIZING THE AP

Initially, the AP internal status register and DMA control register
must be cleared, and the AP executive (APEX) must be initialized. This
is done with:

CALL APCLR

APCLR must be called before any other calls are made to the AP.
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2.3.4 ALLOCATING THE AP MAIN DATA MEMORY

The main data memory in the AP is organized into 38-bit floating-point
words. The words are consecutively numbered from O to N-1, where N is
the maximum size of the memory: 8192, 16384, etcetera.

In complex programs where a number of transfers of data between the AP
and the host are required, and where the arrays being operated on are
large or numerous, it is recommended that the user take some care in
allocating the AP memory before proceeding with the program.

Dimensioning the AP is very simple. The user must establish where each
vector is to reside in memory and establish an integer constant,
variable name, or expression that specifies the base address (first
word) of each vector location.
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For the example in Figure 2-2, memory allocation is done with the
following FORTRAN statements:

TA
IB =
IC

(1
22 O

Vector A is defined as starting at word O and going to word 999
(N=1000); vector B goes from 1000 to 1999; and the result, vector C,
is stored from 2000 to 2999. The I that precedes each variable
indicates that the addresses specified are integer values (standard
FORTRAN convention).

Section 2.3.1 suggests arranging the array in the host memory into one
long vector as a means of reducing program run time. The dimensioning
of the array into vectors can then be done in the AP with the type of
memory allocation statements shown previously.

There is one other consideration in allocating space in the AP main
data memory. Many of the AP Math Library routines run at different
speeds depending on the location of the vectors to be operated on in
the AP main data memory. 'Program run time can occasionally be reduced
by specifying that certain vectors start on either even or odd memory
addresses. (Refer to section 2.7.2 for further information on memory
allocation.)

2.3.5 TRANSFERRING DATA FROM THE HOST TO THE AP

With these preliminary steps completed, the user can transfer the array
to be processed from the host memory to the AP main data memory with an
APPUT command. APPUT has four parameters:

CALL APPUT (HOST, AP, N, TYPE)
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HOST specifies the initial element of the data in the host that is to
be moved to the AP. HOST can be a constant, a variable, an array name
or an array element. Typically, the HOST parameter consists of the
name of the first array element to be transferred; for example: A,
SIGA(50), MATB (10l1). 1Illustrated in Figure 2-2, the HOST parameters
in the two APPUT calls are A and B:

CALL APPUT (A, _, _, _)

CALL APPUT (B, _, _, _)

The parameter AP specifies the base address in the AP main data memory
where the data from the host memory is to be stored. AP can be an
integer, constant, variable, or an expression that specifies an integer
number; for example: 101, IA, IA + 3*N. 1In the previous step, the AP
parameters are generally specified when allocating the AP memory. As
illustrated in the two APPUT commands in Figure 2-2, the variables IA
and IB are used for the AP parameters.

CALL APPUT (A, IA, _, )
CALL APPUT (B, IB, _, _)

It is possible to omit the AP memory dimensioning step and merely use
integer constants for AP. For example:

CALL APPUT (A, O, _, _)
CALL APPUT (B, 1000, _, _)

But specifically allocating the AP main data memory at the beginning of
a FORTRAN program 1s good programming practice, especially when the
program has many vector operations.

N specifies the number of host data elements to be moved from the host
to the AP. Note that a data element may consist of more than one host
word. For example, a host floating-point number usually requires two
host words, but occupies one word in the AP main data memory. Like the
AP parameter, N can be an integer constant, variable, or an expression
that specifies an integer number. Earlier in the example program, N
was specified as being 1000. So, in this example, the variable N is
used for the N parameter.

CALL APPUT (A, IA, N, )
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The number 1000 could also have been used for N.

CALL APPUT (A, IA, 1000, _)

TYPE specifies the host data format and the type of conversion to be
done between the host and AP during transfer. Format conversion of
floating-point numbers is done automatically, on the fly, as part of
the data transfer procedure. No conversion call is required for host
floating-point numbers other than to specify the format with the TYPE
parameter (2 or 3).

The AP performs arithmetic using a 38-bit floating-point format
(illustrated in Figure 2-3): one exponent sign bit, nine exponent
bits, one mantissa sign bit, and 27 mantissa bits. The binary point is
always located between the mantissa sign bit and the most significant
bit of the mantissa. (Bits O, 1 and 40 are parity bits.)

2 3 11 12 13 39

S EXPONENT S MANTISSA

0852

Figure 2-2 AP Floating-point Format

TYPE can specify four different kinds of formats and format
conversions, depending on whether TYPE = 0, 1, 2 or 3.

When TYPE is 0, 32-bit integers are transferred from the host to the AP
and stored without format conversion into the low 32 bits of the AP
memory words (8 through 39). Refer to Chapter 3, Data Formatting
Commands, for information on using the TYPE O and 1 formats.

When TYPE is 1, 16-bit integers are converted into unnormalized AP
floating-point numbers. These numbers must be normalized (floated)
before they can be processed using an AP Math Library routine. VFLT is
the normalizing command.

Normalization of a floating-point number means the number is adjusted
s0 that the most significant bit of the mantissa is located in bit 13
of the 38-bit word. There is a corresponding adjustment of the
exponent. ‘
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Typically, when TYPE is 2, host single-precision floating-point numbers
are transferred to the AP and converted into normalized AP
floating-point numbers. When the AP is installed in a system, it is
set to convert the type of floating-point format used by the specific
host.

Typically, when TYPE is 3, IBM 360 32-bit floating-point format numbers
are converted to normalized AP floating-point numbers.

Iilustrated in Figure 2-2, a variable is assigned immediately following
CALL APCIR to define the floating-point format being used: IFMT = 2.
This variable is then used for the TYPE parameter in the following
statement of the program:

CALL APPUT (A, IA, N, IFMT)

The number 2 could also have been used for TYPE:

CALL APPUT (A, IA, N, 2)

2.3.6 SYNCHRONIZATION

Two wait commands, APWR and APWD, are available to ensure that the AP
and the host are synchronized in their operation when required.

APWD (wait on data) causes the host program to wait until a data
transfer between the host and the AP (the result of a CALL APPUT or
CALL APGET) has been completed before the host resumes execution of the
program.

APWR (wait on running) causes the host to wait until the AP has
finished running before it resumes execution of the program. 1In
general, whenever a data transfer command is called following the
execution of a routine by the AP, an APWR should precede the data
transfer command.

The two data transfer routines (APPUT and APGET) both wait (in effect
CALL APWD) for any previous data transfer to be completed before
starting a new data transfer. Two APPUT calls can thus be made in
succession without calling a wait in between. Also, the arithmetic
operations in the AP Math Library all wait (in effect CALL APWR) for
any previous arithmetic operation to be completed before starting a new
operation.
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APWAIT is a third command that combines the operations of APWD and
APWR. It causes the host to wait until any data transfer and any
routine execution are both completed‘before it continues to execute the
program.

The AP host interface is capable of transferring data to and from the
host while it is processing data. This might be done as a method of
reducing program run time. The wait commands can be omitted in cases
where it is certain that the data being transferred and the data being
processed are not the same. This programming technique should be used
with caution because it can cause errors in computations. It is good
programming practice to include the wait calls. Refer to section 2.7.4
for more information on programming data transfers while the AP is
processing.

2.3.7 PROCESSING DATA

Once the array to be processed is stored in the AP main data memory,
the user can operate on it with the AP Math Library routines. In this
example, the corresponding consecutive elements of the two 1000-element
vectors beginning at addresses IA (=0) and IB (=1000) are added
together, and the 1000 sums are stored in the AP main data memory
starting at base address IC (=2000):

CALL VADD (IA, 1, IB, 1, IC, 1, N)
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2.3.8 TRANSFERRING DATA BACK TO THE HOST

When array processing has been completed, the user can transfer the
resultant array back to the host with an APGET command. The user
should remember to call the APWR command to be sure the AP is done
processing before transferring data. APGET uses the same four
parameters as APPUT. The APGET call is written as follows:

CALL APGET (C, IC, N, IFMT)

The resultant 1000-word vector is thus moved from AP main data memory
locations 2000 to 2999 to the the host memory array C, set up with the
original DIMENSION command. IFMT is again 2, which means that each
element of the vector is converted from AP floating-point format to
host single-precision format.

When TYPE is O in an APGET command, the low 32 bits of the AP memory
words are transferred without format conversion to the host memory.
When TYPE is 1, the low 16 bits of the AP memory words are transferred
to the host memory. VFIX (refer to Data Formatting Commands in Chapter
3) can be called prior to this command to convert 38-bit floating-point
numbers to l16-bit integers. When TYPE is 3, the AP floating-point
numbers are converted into IBM 360 single-precision floating-point
numbers and transferred to the host memory.

If overflow or underflow is detected on conversion from AP format when
TYPE 2 or 3 format is selected, a signed maximum-quantity is forced on
overflow and zero on underflow. This occurs because the dynamic range
of the AP (10*%~153 to 10**153) is greater than most host computers.
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2.4 VECTOR ORGANIZATION

This section discusses vector organizatiom.

2.4.1 REAL VECTORS

Three parameters are required to define a real vector: a starting (or
base) address, an address increment, and an element count. The base
vector address is the AP main data address of the first vector element
to be operated on. The address increment specifies the interval
(difference in addresses) between one element of the vector and the
next. The element count specifies the number of elements of the vector
to be operated on (e.g., the number of multiplications to be
performed). For example:

CALL VMUL(A,I,B,J,C,K,N)

Here A, B and C are base addresses for the three vectors involved in a
vector multiply operation. I, J and K are the address increments
associated with vectors A, B and C, respectively. N is the element
count for each of the vectors. A typical call is:

CALL VMUL(100,1,200,2,300,-1,5)
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For real vectors where elements are stored in consecutive locatioms,
the address increment is l. Most Math Library functions, however,

allow the additional flexibility of specifying arbitrary increments.
Table 2-1 shows the memory allocations made in the preceding example.

Table 2-1 CALL VMUL(100,1,200,2,300,-1,5) Memory Allocations

ADDRESS ELEMENT

199 a(l)

1 a(2)

1p2 a(3)

193 a{4)

1p4 a(s)

195 -

299 b(1)

201 -

202 b(2)

203 --

294 b(3)

295 --

206 b(4)

207 -~

298 b(5)

296 c(5) = a(5) * b(5)
297 c(4) = a(4) * b(4)
298 c(3) = a(3) * b(3)
299 c(2) = a(2) * b(2)
309 c(1) = a(l) * b(1}
391 --

0854
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2.4.2 COMPLEX VECTORS

For operations involving complex vectors, each complex element occupies
two consecutive addresses in main data memory. If the complex vector
is in rectangular form, then the imaginary component immediately
follows the real. In polar form, the phase (in radians) immediately
follows the magnitude.

The base address of a complex vector specifies the address of the first
real part of the first element. The address increment specifies the
address interval (difference in address) between one real part and the
next real part. For complex vectors, this interval must be at least 2.
The element count refers to the number of complex elements (i.e., reals
or imaginaries) to be operated on. For example:

CALL CVMUL(A,I,B,J,C,K,N,F)

Here A, B and C are complex vectors with address increments of I, J and
K, respectively. N is the number of complex elements to be operated on
for each vector. F is a flag that is set to 1 for a normal complex
multiply, and to -1 if the multiply is to use the complex conjugate of
vector A. The following call is an example of a normal complex
multiply involving four complex elements:

CALL CVMUL(100,2,200,3,300,2,4,1)

The memory allocations for this example are shown in Table 2-2.
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Table 2-2 CALL CVMUL(100,2,200,3,300,2,4,1) Memory Allocations

ADDRESS ELEMENT
199 ar(l)
19 ai (1)
1p2 ar(2)
193 ai(2)
194 ‘ ar(3)
195 ai(3)
196 ar(4)
1p7 ai(4)
108 --
209 br(1)
291 bi(1)
202 -
293 br(2)
2p4 bi(2)
205 -
206 br(3)
207 bi(3)
2p8 --
209 br(4)
21p ‘ bi(4)
3P er(l)
3p1 ci(1)
3p2 cr(2)
383 ci(2)
3p4 cr(3)
305 ci(3)
306 cr(4)
3p7 ci(4)
398 -

0855
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2.4.3 RFFT COMPLEX FORM

A special complex vector form exists for the result of a forward
real-to-complex FFT using routines RFFT or RFFTB. For example:

CALL RFFT(C,N,F)

Here, if F=1 a forward Fast Fourier Transform of a real vector of
length N is taken. The result is a complex vector with N/2 + 1 complex
elements; but since two of those complex elements (the first and last)
have zero imaginary parts, the result can be packed into N locatioms.
The following call is an example of an in-place 8-point forward
real-to-complex Fast Fourier Transform.

CALL RFFT(100,8,1)

The memory allocations before and after the transformation are shown in
Table 2-3. Note that FFT input data must be in consecutive locations.
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Table 2-3 Memory Allocations before and after CALL RFFT (100,8,1)

ADDRESS ELEMENT
BEFORE
109 t(9)
m t(1)
192 t(2)
193 t(3)
1p4 t(4)
185 t(5)
186 t(6)
1047 t(7)
198 -
AFTER

199 fr(p)
m fr(4)
182 v fr(l)
103 fi(1)
194 fr(2)
105 fi(2)
196 fr(3)
197 fi(3)
198 -~

0856

Before additional complex operations are performed on the FFT result,
the complex vector should be unpacked into proper form by moving the
element fr(4) to location 108 and zeroing locations 101 and 109.

The inverse complex—to-real FFT operation (RFFT or RFFTB with F=-1)

expects the complex vector to be in the packed form illustrated in
Table 2-3.
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2.4.4 MATRICES

Matrices are stored in column order in main data memory. A matrix is
defined by a base address, an address increment, a row count, and a
column count. The base address represents the element in the first row
and column to be operated on. The address increment specifies the
interval (difference in addresses) between one element of the matrix
and the next. The row count specifies the number of elements to be
operated on per column (i.e., the number of rows), while the colummn
count specifies the number of columns in the matrix. For example:

CALL MTRANS (4,I,C,K,M,N)

Here, M columns and N rows of the matrix with base address A are
transposed to a matrix whose M rows and N columns are stored starting
at address C. I and K are the address increments for A and C,
respectively. The following call transposes a 3-row by 2-column
matrix.

CALL MTRANS(100,1,200,2,2,3)

The memory allocation for the matrices are shown in Table 2-4.
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Table 2-4 CALL MTRANS(100,1,200,2,2,3) Memory Allocations

ADDRESS ELEMENT

190 a(1,1)

191 a(2,1)

182 a(3,1)

193 a(1,2)

104 a(2,2)

105 a(3,2)

196 --

2090 c(1,1) = a(1,1)
2p1 -

2092 c(2,1) = a(l,2)
293 --

204 c(1,2) = a(2,1)
205 -

206 c(2,2) = a(2,2)
207 --

208 c(1,3) = a(3,1)
289 --

219 c(2,3) = a(3,2)

0857
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2.4.5 DOUBLE-PRECISION ELEMENTS

Like complex elements, each double-precision element occupies two
consecutive addresses in main data memory. The most significant part
of the element comes first and the least significant part second. Both
words are stored in normal 38-bit floating-point format with the
exponent of the second word being 27 less than the exponent of the most
significant word.

MOST SIGNIFICANT PART EXPONENT MOST SIGNIFICANT 27 BITS OF THE MANTISSA
LEAST SIGNIFICANT PART EXPONENT-27 LEAST SIGNIFICANT 27 BITS OF THE MANTISSA
0853

Figure 2-3 Double-Precision Element

FPS 860-7288-004 2 - 23



2.5 PROGRAM RUN-~-TIME ENVIRONMENT

Two factors affect the total time it takes to execute an AP Math
Library routine called from a FORTRAN program: the AP execution time
of the individual routine, and the host system overhead. The AP has a
167ns cycle time during which several operations (add, multiply, fetch,
move, branch, etc.) can be performed. All of the AP Math Library
routines have been written to make the most efficient use of this
parallel structure of the AP and its 167ns basic machine cycle time.

Prior to the execution of a routine by the AP, the host system must
load the routine into the AP program source memory (if it has not been
previously loaded), and must load the parameters into the s-pad
registers. This time interval -- called the host overhead =-- adds to
the total program run time. Host overhead varies from system to system
depending on the complexity of the host operating system and the number
of other operations the host is expected to control along with the AP.
Host overhead is typically 100 to 1000 microseconds.

Some knowledge of the host/AP run time environment helps the user
understand the effect the host overhead has on total program run time.
This knowledge is also helpful in section 2.7 where techniques are
given which may permit some reduction of both the AP execution time and
host overhead.
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2.6 UNDERSTANDING HOST OVERHEAD

This section presents information about host overhead.

2.6.1 THE LOAD MODULE

Figure 2-5 shows the standard procedure for writing a FORTRAN program,
compiling it, and linking it with the AP Math Library and user-written
FORTRAN callable routines. The final load module (refer to Figure 2-6)
includes:

e the compiled user-written FORTRAN code

e the various array processor routines called in the
program and their AP 64-bit instruction words

e the AP executive subroutine (APEX), including a table

which APEX uses to keep track of the contents of the AP
program source memory
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Figure 2-4 AP/Host FORTRAN Software Connection
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2.6.2 RUNNING THE FORTRAN PROGRAM

At run time, the load module which contains the FORTRAN calling
program, AP Math Library routines, and APEX, is read into the host
memory, and the host begins executing the FORTRAN program. When a
routine is called, the host jumps to the routine and executes it. If
the routine is an AP Math Library routine, a jump to APEX is made.

APEX is a subroutine that controls the interaction of the host with the
AP. It handles the loading of the appropriate AP 64-bit instruction
words into the AP program source memory, the allocation of the program
source memory locations, the loading of the parameters for the
routines, and initiates the execution of the instructions by the AP.

The AP program source memory has a minimum size of 512 words. It can
be enlarged in 256 word increments to a maximum of 4096 words. Each
word in the program source memory is 64 bits long and contains the
instruction to be executed during ome 167ns clock cycle. Once the
instructions for a routine have been read into the program source
memory, APEX notes the name of the routine and its location in the
program source memory and calculates the remaining space available in
the program source memory. This information is stored in a table in
the host memory. 1If a routine is called a second time, APEX does not
reload the instructions, but merely loads the new parameters and
initiates execution. If a FORTRAN program uses more AP routines than
there is space for in the program source memory, APEX overwrites new
instructions in the program source memory on a last-in, first-out
basis.

Once the execution of the routine begins, APEX returns control to the
user-written FORTRAN calling program. This procedure is repeated each
time an AP Math Library routine is called. If a routine is called
before the AP has finished running a previously-called routine, APEX
waits until the AP has completed the routine before it loads the new
instructions and/or parameters, and then starts execution of the new
routine. When data transfers are called for, APEX tells the host when
to begin according to the wait commands -- APWD, APWR and APWAIT - in
the FORTRAN program.
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2.6.3 RUN TIME AT THE APEX LEVEL

Figure 2-6 illustrates the sequence of events which occur when a
FORTRAN program calls an AP routine which has not yet been loaded
(e.g., VADD). When the execution of the FORTRAN program gets to CALL
VADD, the program jumps to the VADD routine. VADD does nothing more
than call APEX. APEX identifies the calling routine by its return
address. This address is then entered in the table in the host memory,
and is used to determine whether or not the instructions for the
current call are already resident in the AP program source memory. If
the routine for the current call is not already resident in the AP,
APEX obtains the instructions from the calling routine and transfers
them to the AP making an appropriate entry in a table. This table
entry records the starting location in program source memory where the
instructions have been loaded. APEX also computes the amount of the
program source memory space that still remains unused and enters this
number in the table. It uses this number in future calls to determine
if newly-called instructions must be overlaid in the program source
MEemory.

APEX always tries to load the new instructions in a location that does
not destroy previously-loaded instructioms. If this is not possible,
previous entries in the table are progressively deleted until there is
room for the current instructions. The new instructions are then
overlaid in the newly-allocated location in the program source memory.

The actual loading of the AP instructions is accomplished via an 1/0
operation initiated by APEX, but is actually executed in a device
handler.

Once the instructions have been loaded in the AP program source memory,
APEX obtains the subroutine parameters, transfers them to the AP s-pad
registers, and triggers execution of the instructions. APEX then
returns control to the routine which called it; that routine
immediately returns control to the FORTRAN calling program.

The time used between the call in the FORTRAN program and the beginning
of execution of instructions in the AP constitutes the host overhead
for that call. This host overhead (typically 100 to 1000 microseconds)
is incurred each time an AP Math Library routine is called.
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Figure 2-5 Transferring AP Instructions from Host Memory
to AP Program Source Memory
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2.7 OPTIMIZING PROGRAM RUN TIME

A number of items affect the rate at which a FORTRAN program rums on
the AP. Significant factors are the cycle rate of the main data memory
and the placement of vectors in the main data memory. Host overhead
and the timing of data transfer between the host and the AP also have
an effect on program run time.

2.7.1 FACTORS AFFECTING AP EXECUTION TIME

Floating Point Systems, Inc., offers main data memory for the AP with a.
choice of two different cycle rates: 167ns or 333ns. This cycle rate
is the minimum time it takes to access a word of memory following a
previous access. This minimum time is achieved when consecutive memory
accesses alternate between even and odd addresses, or between 8K or 32K
memory banks (depending on the chip type). If consecutive accesses
specify only even (or only odd) addresses, then the access takes 167ns
longer for either memory. The machine cycle rate of the AP is 167ns,
so the choice of memory can have an effect on how fast the program
TUuns.

If a routine requires the memory to be accessed each machine cycle, the
routine runs twice as fast with the 167ns memory as it would with the
333ns memory providing the even-odd address interleaving is maintained.
If the routine calls for a memory access only every third or every
fourth machine cycle, the routine rums at the same rate with either
memory.

In actual operation, routines in the AP Math Library run anywhere from
the same rate to twice as fast on the 167ns memory depending on the
routine. The AP Math Library routines are written differently for the
two types of memory when necessary to obtain the optimum speed. The
calling sequence and numerical results are identical in each case.
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2.7.2 SPECIFYING VECTOR LOCATIONS IN MAIN DATA MEMORY

Because of the even-odd interleave of main data memory, subroutines run
at different rates depending on where the vectors are located (i-.e.,
base address), and also on the address increments associated with each
vector.

Three execution times (BEST, TYPICAL, and WORST) are given for each
memory type in each description of a Math Library routine in Appendix
E. When operating on real vectors, the TYPICAL time reflects the
typical situation where all vectors are compactly stored (the address
increments I, J and K equal 1 or any odd number: -1, 3, 5, etc.), and
the base addresses are either all even or all odd.

Sometimes it is possible to achieve faster execution by varying the
base addresses of vectors between even and odd locations. The
vector(s) whose base address(es) should be odd when the others are even
(or even when the others are odd) are indicated in parentheses next to
the BEST execution time. If no vectors are indicated, the best and
typical execution times are the same.

The worst case times involve other even-odd addressing and increment
combinations.

Table 2-3 shows the timing for the VADD routine.
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Table 2-5 VADD Execution Times

EXECUTION MEMORY TIME/LOOP (us)
MEMORY
BEST TYPICAL WORST SETUP (us)
167 ns 9.5 (B) 8.8 1.9 2.7
333 ns 1.9 (A) 1,3 1.5 1.2

0860

Note that the execution time is specified on a per-loop basis. Thus,
if VADD is called to add two 1000-element vectors, the typical
execution time with a 167ns memory is 1000 x 0.8 (really 0.833us) =
833us, plus an additional 2.7us of SETUP time needed to initially fill
the AP pipeline. Thus, the total execution time using 167ns memory is
836us when all base addresses are even (or all odd).

Three base address parameters are specified for VADD -~ one each for
the two vectors to be added together, A and B, and one -- C == for the
location where the result is to be stored. With the 167ns memory, the
best run time is obtained when B is an odd address and A and C are even
(or vice versa -- B is even and A and C are odd). For the example in
the preceding paragraph, an execution time of 1000x0.5+2.7=502.7us is
obtained. If, for example, A is 0, address B is 1001, and C is 2002.
With the 333ns memory, address A must be odd (even) when B and C are
even (odd) to obtain the fastest execution (e.g., A=0, B=1001, C=2001).

With complex vector operations, the typical time reflects the most
likely situation where the increment is even (for compactly stored
complex vectors the increment is two), and all base addresses are
either all even or all odd. (An increment of one with a complex vector
operation produces unpredictable results since each complex element
requires two#main data memory words.) When faster execution 1is
possible with even complex vector increments by adjusting the base
addresses between even and odd locations, the vector(s) whose base
address(es) should be odd when the others are even (or even when the
others are odd) are indicated next to the BEST execution time.

The times given for matrix operations are for cases where the matrices
are stored compactly (i.e., the memory increments are one so that the
matrix elements are stored 1in consecutive addresses). In some cases,
the run times are data-dependent, and in other cases they are dependent
on the sizes of the matrices being operated on.
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2.7.3 MINIMIZING THE EFFECT OF HOST OVERHEAD

There may be certain situations, especially when the host is operating
in a multi-user, multi-task environment where the host overhead time
represents a substantial fraction of the total run time involved in
processing with the AP. The purpose of this section is to suggest some
techniques for reducing the effect of this overhead if the application
is time critical.

e Combine FORTRAN calls to the AP. The most effective
method of minimizing the effects of host overhead is to
reduce the number of calls to the AP from the host.
Often this can be done by careful layout of the
program.

Some suggestions:

Concentrate several vectors in consecutive addresses
so that several vectors can be transferred with a
single APPUT call.

Use AP Math Library routines which replace multiple
library calls. For example, VMMA performs the same
operations as two VMUL calls, and a VADD with a
savings not only of two host calls, but 40 percent
in AP execution time.

Overlap the operations of the host and the AP whenever
possible.

Since all the AP Math Library routines can be called
as routines from other AP assembly language programs,
it is possible to write special FORTRAN callable array
processing routines which combine a series of calls

to the AP Math Library. One FORTRAN call to the
special routine then replaces the separate calls in
the host program. Take care that the special purpose
routine (including all the AP Math Library routines)
is small enough to fit in the available program
source memory Space.
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e Load the most used routines first. If the program
requires more space in the program source memory than
there is available, the user can minimize some of the
effects of host overhead by calling the most often used
routines in the program first. As was stated in the
discussion of the run~time environment, APEX uses the
last-in, first-out technique to allocate space for
routines in the program source memory. If there is no
room in the program source memory for a new routine, the
last program words read into the memory are over-written
for a new routine; the last program words read into the
memory are over-written until. there is enough space for
the new routine. Since it requires less host
overhead to load the parameters of a routine that
already exists in program source memory than to load
both the routines and the parameters, it is advantageous
to call the most often used routines early in the program
to make sure they are located well down in the program
source memory. It may even be useful to call a routine
before it is needed and give it only a dummy operationm
to do.

e Other suggestions:

In single-task host operating systems, APEX
generally talks directly to the AP; in multi-task
systems, APEX usually must ask the host system
for permission to talk to the AP. This may take
as long as 1 ms. In such a situation, consider
the possibility of switching to a simpler host
operating system.

Operating on large arrays is more efficient than
operating on small arrays.

Consider overlapping data transfer and processing.
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2.7.4 OVERLAPPING DATA TRANSFER AND PROCESSING

The AP‘s highly parallel operation allows the user to write programs
that process and transfer data simultaneously. This type of
programming involves leaving out some of the program synchronization
commands -- APWR, APWD and APWAIT. Leaving out wait commands, however,
presents the potential problem of asynchronous operation between the AP
and the host. Thus, there is a chance that results are processed
before they are actually present in their assigned location in main
data memory. The wait commands are provided to avoid such problems.

Programming involving simultaneous processing and data transfers is
available at the FORTRAN level as well as the AP machine language
level. The advantage is that it can speed up program run time when
used without loss of synchronization.

The success of this type of programming depends on host overhead, or in

other words, how dedicated the host is to servicing the needs of the
AP.

2.7.5 WRITING AP ASSEMBLY LANGUAGE PROGRAMS

An AP assembly language routine can be made FORTRAN callable by
including the following pseudo-operation in the routine:

SENTRY name,p

where "name" is the FORTRAN name for the routine, and "p" indicates the
number (maximum of 16) of parameters in the FORTRAN call. At run time,
APEX transfers these parameters to s-—pad registers 0 through p-1l.

FPS 860-7288-004 2 - 35



Thus, the pseudo-operation for the AP using FORTRAN command CALL
VUSER(A,I,B,J,C,K,N) is S$ENTRY VUSER,7. At run time, APEX transfers
the seven parameters as shown in Table 2-6.

Table 2-6 Parameter Transfer

S-PAD REGISTER CONTENTS
p A
1 I
2 B
3 J
4 c
5 K
6 N

0861

Figure 2-7 illustrates the procedure for creating a FORTRAN callable AP
assembly language routine.

All the AP Math Library routines have been written in AP assembly

language. The user can learn more about this language through the
manuals avaialble from Floating Point Systems, Inc.
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WRITE AP LANGUAGE SOURCE
CODE FOR ROUTINE

v

ASSEMBLE IT USING APAL

AP RELQCATABLE
OBJECT CODE

USE APLINK TO LINK OBJECT CODE WITH OBJECT CODE FOR
ANY AP SUBROUTINES NEEDED BY USER RQUTINE. IF ROUTINE
TO BE USED WITH AP SIMULATOR (APSIM) CONCLUDE APLINK
WITH /E COMMAND; [F TO BE USED ON AP CONCLUDE WITH
/A COMMAND.

AP LOAD MODULE
(FORTRAN CODE)

SIMULATOR AP

v v

COMPILE LOAD MODULE

RUN LOAD MODULE
WITH HOST FORTRAN
ON SIMULATOR APSIM COMPILER

HOST RELOCATABLE
0BJECT CODE

0BJECT CODE AVAILABLE
FOR USE BY HOST LINKER
(SEE FIGURE 2-3)

0862

Figure 2-6 Procedure for Creating User-Written FORTRAN Callable
AP Assembly Language Routines
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CHAPTER 3

DESCRIPTION OF AP MATH LIBRARY ROUTINES

3.1 INTRODUCTION

This chapter describes the categories of routines that are contained in
the AP Math Library.

3.2 GENERAL INFORMATION ABOUT ROUTINES

The AP Math Library is divided into 12 categories:

data transfer and control operations
basic vector arithmetic
vector~-to-scalar operations

vector comparison operations

complex vector arithmetic

data formatting operations

matrix operations

FFT operatioms

auxiliary operations

signal processing operations (optional)
table memory operations (optional)
APAlL,-callable utility operations

3.2.1 DATA TRANSFER AND CONTROL OPERATIONS

These commands control the data transfer and program synchronization
between the AP and the host. They are actually part of APEX, the AP
executive, and thus require no space in the AP program source memory.
The execution time for these routines depends on the speed of the host
system. Refer to sections 2.3.5 through 2.3.8 for more information
about these calls.
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3.2.2 BASIC VECTOR ARITHMETIC

This group includes routines to perform basic real vector arithmetic
operations such as vector add (VADD), subtract (VSUB), multiply (VMUL),
and divide (VDIV). Also included are trigonometric functioms,
logarithms, simple logical operations, and vector generation (e.g.,
constants, ramps, random numbers). The vectors operated on must
conform to the real vector format shown in section 2.4.1.

3.2.3 VECTOR-TO-SCALAR OPERATIONS

These real vector operations determine global characteristics of a
vector. They determine a single value that characterizes one facet of
the vector: sum of all the elements (SVE) or value of the largest
element (MAXV), etc.

3.2.4 VECTOR COMPARISON OPERATIONS

These real vector operations perform compare and replace operatiomns.
They create a third vector based on the comparison of two vectors.
VMAX, for example, sets the elements of a third vector equal to the
larger of each pair of corresponding elements in two vectors.

3.2.5 COMPLEX VECTOR ARITHMETIC

All the commands in this group operate on complex vectors or
combinations of real and complex vectors. The complex vectors must
conform to the complex vector format described in section 2.4.2. 1In
general, the increment parameter used in a complex vector operation
must always be two or greater when specifying a complex vector. A
complex element is made up of two parts —-- a real part and an imaginary
part stored in consecutive words in the AP main data memory. The
parameter N in a complex vector routine always refers to the number of
complex elements (pairs).

When the operation involves both real and complex vectors, the TYPICAL
execution times are obtained when the increments of the real vectors
are odd and the increments of the complex vectors are even, and the
base addresses of all the vectors are either all even or all odd.

Note that some complex vector operations can be done with real vector

routines. CALL VCLR (0, 1, 1000), for example, clears a complex vector
of 500 complex elements that begins at location O.
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3.2.6 DATA FORMATTING OPERATIONS

The 38-bit AP floating-point format is illustrated in Figure 3-1. Bits
0, 1, and 40 are memory parity bits.

11 12 13 39

~
w

S EXPONENT S MANTISSA

1865

Figure 3-1 AP Floating-Point Format

The data formatting operations provide a number of normalizing and
integer-to-floating-point conversion routines to operate omn data stored
in the AP main data memory.

VFLT normalizes a vector that has been transferred to the AP with an
APPUT command, using TYPE 1 format-conversion (16-bit integer converted
to unnormalized 38-bit floating-point format). Refer to the discussion
of APPUT beginning with section 2.3.5. Normalization means shifting
the most significant bit of the mantissa to bit 13 of the 38-bit word
with appropriate changes in the exponent.

VFIX converts a normalized 38-bit floating-point word into a 16-bit,
2’s complement integer residing in the lower 16 bits (bits 24 to 39) of
the 38-bit word. This operation is used prior to transferring data
with the APGET command when using TYPE 1 format conversion (see the
discussion of APGET beginning with section 2.3.8). VSCALE, VSCSCL and
VSHFX are variations of VFIX. :

For convenience, there are also a number of integer unpacking and
conversion operations for use with the TYPE 0 format-conversion in
APPUT and APGET. For example, VUP16 converts two 16-bit integers
packed in the lower 32 bits of a 38-bit word into two 38-bit,
normalized floating-point words. VUP8 converts four 8-bit integers
stored in the lower 32 bits of a 38-bit word into four 38-bit
normalized floating-point words. VPK16 and VPK8 perform the reverse
operation: two 38-bit floating-point words are converted into two
16-bit integers; four floating-point words are converted into four
8-bit integers in a single 38-bit word.
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3.2.7 MATRIX OPERATIONS

The matrix routines perform typical matrix operations such as
multiplication (MMUL), transposition (MTRANS), and inversion (MATINV).
A matrix is always stored in the AP main data memory as a sequence of
columns (see section 2.4.4 for a discussion of the AP matrix format).
The M and N notation used in the matrix operation parameters refers to
the number of rows (M) and the number of columns (N) in a matrix. For
example, an operation on a matrix starting at address C involves MC
rows and NC columns.

Timing information is given with each matrix routine for representative
matrix sizes. An address increment of one (i.e., a compactly stored
matrix) is assumed for all the times given.

3.2.8 FFT OPERATIONS

The FFT commands perform Fast Fourier Transforms on both real and
complex vectors. Each FFT routine performs both the forward transform
(time-to-frequency) and the inverse transform (frequency-to-time),
depending on the parameter F (+l for forward, -1 for inverse). There
are two categories of FFT routines: in-place and not-in-place. The
in-place routines (RFFT and CFFT) transform the time elements from N
locations in main data memory and store the resultant complex frequency
elements in the same locations in the main data memory. If the main
data memory is 8192 words, the user can perform an FFT on N = 8192 real
points, or N = 4096 complex points. The not-in-place FFT routines
(RFFTB and CFFTB) run somewhat faster than the in-place routines, but
require separate locations in main data memory for the time points and
the resultant frequency points.

When transforming real time elements into complex frequency elements, a
special method of packing the complex frequency elements is used. A
FFT of N real time points actually produces N/2 + 1 complex frequency
elements. Since a complex element consists of a real and an imaginary
part, N + 2 words are thus required to store N/2 + 1 complex elements.
It is known, however, that the I(0) and the I(N/2) frequency points are
always 0. Therefore, when performing a real-to-complex FFT with the
RFFT or RFFTB commands, the R(N/2) frequency point is stored in the
I1(0) memory location, and the I(N/2) frequency point (always 0) is
dropped. The results of a N-point real FFT can thus be stored in N
words. An 8-point real-to-complex FFT, for example, is packed as shown
in Table 3-1.
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The RFFTSC routine is provided to allow unpacking of the complex RFFT
vector and scaling of the data. Two types of unpacking are provided.
In Type I (refer to Table 3-1), the I(0) location in memory (which now
holds the R(N/2) data point) is cleared to zero and the R(N/2) value is
discarded. The value of R(N/2) is often considered unimportant since
it represents the frequency component at the Nyquist frequency. Type 1
unpacking would be used when performing in-place transforms where all
the available main data locations are being used. In Type II
unpacking, the R(N/2) value is moved from the I(0) location to its
proper R(N/2) location, and the I(0) and I(N/2) memory locations are
cleared to zero. Thus, in Type II unpacking, all the complex data
points are retained. The complex RFFT format is used for both the
in-place and not-in-place real-to-complex transforms. For
complex-to-real inverse FFTs, the complex elements must be repacked
into the complex RFFT format. RFFTSC also handles the repacking
procedure.

Table 3-1 Real-to-Complex FFT Vector Format

ADDRESS TIME POINTS COMPLEX RFFT PACKING TYPE I UNPACKING | TYPE II UNPACKING
109 t(2) R(D) R(9) R(R)
101 t(1) R(4) ) 2
1p2 t(2) R(1) R(1) R(1)
193 t(3) - (1) (1) I(1)
1p4 t(4) R(2) R(2) R(2)
1p5 t(5) 1{2) 1(2) 1(2)
1p6 t(6) R(3) R(3) R(3)
197 t(7) 1(3) 1(3) ) 1(3)
198 - - - R(4)
199 - - - p

0863
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The complex-to-complex FFT routines, CFFT and CFFTB, require no such
packing or umpacking since all operations are performed on properly
formatted complex vectors. A FFT of N complex time elements produces N
complex frequency elements.

The data obtained either from a forward RFFT or a forward CFFT requires
rescaling. Table 3-2 shows the multiplying factors for each transform
to get back to the original scale. The RFFTSC and CFFTSC routines,
respectively, provide parameters for scaling the results. Note that no
scaling is required for the inverse transforms.

Table 3-2 Multiplying Factors for Scaling FFT Results

ROUTINES FORWARD INVERSE
CFFT, CFFTB /N 1
RFFT, RFFTB 1/(2*N) 1

0864

3.2.9 AUXILIARY OPERATIONS

The commands in the auxiliary operations group perform miscellaneous
operations such as numerical integration, evaluation of polynomials,
and convolutions.

3.2.10 SIGNAL PROCESSING OPERATIONS (OPTIONAL)

The signal processing operations consist of a collection of real and
complex routines which are often used in conjunction with the FFT
routines. They perform many widely used time series analysis
calculations such as auto-spectrum (ASPEC), cross-spectrum (CSPEC),
coherence function (COHER) and histogram (HIST).
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3.2.11 TABLE MEMORY OPERATIONS (OPTIONAL)

These subroutines are for use with the optional writable table memory
(TMRAM). This table memory is used in conjunction with the standard
read only table memory in the AP.

The TMRAM allows the user to either create a table of his own special
purpose constants, or use the additional memory space as an adjunct to
the main data memory. The TMRAM has a 167ns memory access time. When
used in conjunction with the main data memory, it can speed up basic
vector arithmetic operations such as add, subtract, multiply and move.
For example, MTTADD adds one vector from the main data memory to a
vector from the TMRAM, and stores the resultant vector in the TMRAM.
Since the AP can access a word in the main data memory and a word in
the TMRAM in the same machine cycle, one machine cycle is saved in the
calculation.

The nomenclature used in these calls refers to the main data memory (M)
and the TMRAM (T). In the MMTADD(A, I, B, J, C, K, N) command, for
example, A and B are base addresses in main data memory (M), and C is a
base address in the TMRAM (T). The addresses in the table memory are
numbered consecutively from 0 as in the main data memory.

3.2.12 APAL-CALLABLE UTILITY OPERATIONS

These routines are called by many of the FORTRAN callable routines in
the AP Math Library (refer to the category EXTERNALS below the dotted
line in the routine descriptioms). They are callable from programs
written in APAL, but are not callable from FORTRAN programs. This
miscellaneous assortment of routines includes scalar functions such as
sine, cosine and square root, several routines called in the FFT
operations, and double-precision scalar functions. All pertinent
information is given for each routine except for the FORTRAN CALL,
PARAMETERS and EXAMPLE. The execution times given are generally the
total executing time since most of the routines are non-repetitive.
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CHAPTER 4

PROGRAMMING EXAMPLES

4.1 INTRODUCTION

This chapter contains four examples illustrating the use of the AP Math
Library routines in FORTRAN programs. The first two examples show the
replacement of FORTRAN arithmetic DO loops with FORTRAN code which
perform equivalent processing in the AP. The last two examples
illustrate programs which perform double-tapered convolution operations
in the AP -- one using time-domain techniques, the other using
frequency-domain techmniques.
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4.1.1 EXAMPLE 1: A BENCHMARK PROGRAM, INCLUDING AP MEMORY MAP

This section lists a benchmark program which includes an AP memory map.

Ck*kkkkk%x EXAMPLE 1 = BENCHMARK PROGRAM ***kkkkkikkkkkhkkkkkk

C

C === === === === = === amEzssss R
c ORIGINAL FORTRAN

C

C SUBROUTINE EX1 (SCLR,AM,V,VX,VY,X,X0,Y,Y0,Z,N)

C DIMENSION AM(N),V(N),VX(N),VY(N),X(N),X0(N),Y(N),YO(N),Z(N)
C DO 1 I=1,N

C VX(I)=SCLR * (X(I)=-X0(I1))

C VY (I)=SCLR * (Y(I)-YO(I))

C V(I)=SQRT (VX(I)**2 + VY (I)**2)

c 1 Z(I)=AM(I) * (X(I)*VY(I) =~ Y (I)*VX(I))

c RETURN

C END

C—.

C

SUBROUTINE EX1(SCLR,AM,V,VX,VY,X,X0,Y,Y0,Z,N)

DIMENSION AM(N),V(N),VX(N),VY(N),X(N),XO0(N),Y(N),YON),Z()
C----ALLOCATE AP MEMORY (SEE MEMORY MAP AT END OF PROGRAM)

ISCLR=0

IAM=ISCLR+1

IV=IAM+N

IVX=IV-+N

IVY=IVX+N

IX=IVY+N

IX0=IXHN

IY=TXO0+N

IYO=IY+N

IZ=IYOHN
C--—~INITIALIZE AP
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CALL APCLR

C----PUT OUT DATA TO AP
CALL APPUT (AM,IAM,N,2)
CALL APPUT (X,IX,N,2)
CALL APPUT (X0,IX0,N,2)
CALL APPUT (Y,IY,N,2)
CALL APPUT (Y0,IYO,N,2)
CALL APPUT (SCLR,ISCLR,1,2)
CALL APWD

C

C----DO THE COMPUTATION

(@}

c AP COMPUTATION TIME FOR N=1000 IS 8.2 MS FOR 167 NS MEMORY,
c 11.9 MS FOR 333 NS MEMORY, EXCLUSIVE OF HOST SYSTEM OVERHEAD
C

CALL VSUB(IX,1,IX0,1,IVX,1,N)
CALL VSUB(IY,1,IY0,1,IVY,1,N)
CALL VSMUL (IVX,1l,ISCLR,IVX,1,N)
CALL VSMUL (IVY,1,ISCLR,IVY,1,N)
CALL VMMA(IVX,1,IVX,1,IVY,1,IVY¥,1,IV,1,N)
CALL VSQRT(IV,1,IV,1,N)
CALL VMMSE(IX,l,IVY,1,IY,1,IVX,1,1Z,1,N)
CALL VMUL(IAM,1,1Z,1,IZ,1,N)
CALL APWR
C----GET RESULTS FROM AP
CALL APGET (VX,IVX,N,2)
CALL APGET (VY,IVY,N,2)
CALL APGET(V,IV,N,2)
CALL APGET(Z,1Z,N,2)
CALL APWD
RETURN
END
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4.1.2 EXAMPLE 2: A GEOPOTENTIAL CALCULATION PROGRAM

This section lists a geopotential calculation program.

Ck*k%k*** EXAMPLE 2 = GEOPOTENTIAL CALCULATION #*#*X&xkxkkkkxk%

]
]
It

ORIGINAL FORTRAN

SUBROUTINE EX2

COMMON /B/PHIB(100,10),HB(100,10),PKB(100),DS12

DO 1 J=1,9

DO 1 1I=1,100
PHIB(I,J+1)=PHIB(I,J)+DS12*PKB(I)* (HB (I,J+1)+HB(I,J))
RETURN -

END

Pt

o000 00n

SUBROUTINE EX2

COMMON /B/PHIB(100,10),HB(100,10),PKB(100),DS12
Cm———= AP MEMORY LAYOUT

IDS12=0

IPKB=1

IHB=IPKB+100

IPHIB=IHB+1000

Cr=——- INITIALIZE THE AP
CALL APCLR
C==---PUT OUT THE DATA TO AP
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CALL APPUT (PHIB,IPHIB,1000,2)
CALL APPUT (HB,IHB, 1000,2)
CALL APPUT (PKB,IPKB,100,2)
CALL APPUT(DS12,IDS12,1,2)

CALL APWD
C
C-----DO THE COMPUTATION
C
C AP COMPUTATION TIME IS 2.3 MS FOR 167 NS MEMORY, 3.7 MS FOR
C 333 NS MEMORY, EXCLUSIVE OF HOST SYSTEM OVERHEAD
C
CALL VSMUL (IPKB,1,IDS12,IPKB,1,100)
CALL VADD(IHB+100,1,IHB,1,IHB,1,900)
JHB=IHB
DO 1 J=1,9
CALL VMUL (IPKB,1,JHB,1,JHB,1,100)
1 JUB=JHB+100
CALL VADD (IPHIB,1,IHB,1,IPHIB+100,1,900)
CALL APWR
C-----GET THE RESULTS FROM AP
CALL APGET (PHIB(1,2),IPHIB+100,900,2)
CALL APWD
RETURN
END
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4.1.3 EXAMPLE 3: A TIME-DOMAIN CONVOLUTION PROGRAM

This section lists a time-domain convolution program.

Ckk*%%*%% EXAMPLE 3 = TIME DOMAIN CONVOLUTION ##*#**&kkkkkkkikk

c

a0

oOooOcoacoaooo000

SUBROUTINE TCONV(TRACE,FILTER,RESULT,NTRACE,NFILT,NRESLT)
INTEGER NTRACE,NFILT,NRESLT
REAL TRACE (NTRACE),FILTER(NFILT),RESULT (NRESLT)

DOES A TIME DOMAIN CONVOLUTION OF ‘TRACE” WITH “FILTER’,
PRODUCING “RESULT”.

A DOUBLE TAPERED CONVOLUTION IS DONE BY PADDING THE SUPPLIED
TRACE WITH BOTH LEADING AND TRAILING ZEROS IN THE AP-120B.

-—=-—=—=-PARAMETERS :
TRACE - INPUT DATA TRACE
FILTER - INPUT FILTER
RESULT - OUTPUT RESULT
NTRACE - NUMBER OF TRACE POINTS
NFILT - NUMBER OF FILTER POINTS
NRESLT -~ NUMBER OF RESULT POINTS, MUST EQUAL
NTRACEHNFILT~1 !11ti1Eid

NOTE: THE RESULT MAY BE STORED IN THE HOST ON TOP OF EITHER THE
DATA OR THE FILTER

ROUTINES USED: APPUT,APGET,APCLR,APWR,APWD,VCLR,CONV

LOCAL STORAGE
INTEGER IFMT,NPAD,ITRACE,IFILT

METHOD:

FOR EXAMPLE, NTRACE=5, NFILT=3:
THEN:

NRESLT=7

ITRACE=0

IRESLT=0

IFILT=9

NPAD=2
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C AP MEMORY LAYOUT:
C
C LOC
C 0 0 <—== ITRACE <-=- IRESLT
C 1 0 . ‘
C 2 TRACE PT #1 ’ ’
C 3 11} n 2 L4 L4
C 4 1] " 3 L4 ’
C 5 1] 1] 4 4 ’
C 6 " " 5 ’ ’
C 7 0 ‘ ‘
C 8 0 ’ ‘
C 9 FILTER PT #1 <-—— IFILT
C ].O 1" " 2 ’
C 1 1 ” 11} 3 ’
C
C
IFMT=2 /*FORMAT 2 FOR FLOATING POINT
C=====INITIALIZE AP
CALL APCLR
C-=-=—=ALLOCATE AP MEMORY
NPAD=NFILT-1 /*NUMBER OF ZERO PADS
ITRACE=0 /*TRACE LOCATION IN THE AP
IFILT=ITRACE+NTRACE+NPAD*2  /*FILTER LOCATION IN THE AP
C-----TRANSFER DATA TO AP
CALL APPUT (TRACE, ITRACE+NPAD,NTRACE,IFMT) /*PUT THE TRACE
CALL APPUT (FILTER,IFILT,NFILT,IFMT) /*PUT THE FILTER
CALL APWD
Cmmmmm DO THE COMPUTATION
CALL VCLR (ITRACE,1,NPAD) /*FRONT ZERO PAD
CALL VCLR (ITRACENRESLT,1,NPAD) /*BACK ZERO PAD
C=====D0 IT :
CALL CONV(ITRACE,l,IFILT+NFILT-1,-1,ITRACE,1,NRESLT,NFILT)
CALL APWR
C=--=~TRANSFER RESULTS FROM AP
CALL APGET (RESULT,ITRACE,NRESLT, IFMT) /*GET RESULTS
CALL APWD
RETURN
END
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4e1l.4 EXAMPLE 4: A FREQUENCY-DOMAIN CONVOLUTION PROGRAM

This section lists a frequency-domain convolution program.

Chkkxk*** EXAMPLE 4 = FREQUENCY DOMAIN CONVOLUTION *¥#kkkikkk*
SUBROUTINE FCONV(TRACE,FILTER,RESULT,NTRACE,NFILT,NRESLT)

INTEGER NTRACE,NFILT,NRESLT
REAL TRACE (NTRACE),FILTER (NFILT),RESULT (NRESLT)

C

c DOES A FREQUENCY DOMAIN CONVOLUTION OF ‘TRACE® WITH ‘FILTER’,
C PRODUCING ‘RESULT . A DOUBLE TAPERED CONVOLUTION IS DONE.

C

Cmmmmm— PARAMETERS:

TRACE
FILTER
RESULT

INPUT DATA TRACE

INPUT FILTER

OUTPUT RESULT

NTRACE - NUMBER OF TRACE POINTS (MUST BE A POWER OF 2)
NFILT NUMBER OF FILTER POINTS

(MUST BE A POWER OF 2 <= NTRACE)

NRESLT - NUMBER OF RESULT POINTS (MUST EQUAL NTRACE)

NOTE: THE RESULT MAY BE STORED IN THE HOST ON TOP OF EITHER THE
DATA OR THE FILTER

~=————-ROUTINES USED: APPUT,APGET,APCLR,APWR,APWD,VCLR,RFFT,VMUL,
CVMUL ,RFFTSC

[eNoNeNeReNo RN R R NeEsEs e N e

LOCAL STORAGE
INTEGER IFMT,NFFT,ITRACE,IFILT
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IFMT=2 /*FORMAT 2 FOR FLOATING POINT
Cmmm—m INITIALIZE AP
CALL APCLR
C---——ALLOCATE AP MEMORY
NFFT=NTRACE*2 /*FFT SIZE
ITRACE=0 /*LOCATION OF TRACE IN AP
IFILT=ITRACE+NFFT /*LOCATION OF FILTER IN AP
C---—-TRANSFER DATA TO AP
CALL APPUT (TRACE, ITRACE,NTRACE,IFMT) /*PUT TRACE
CALL APPUT (FILTER,IFILT,NFILT,IFMT) /*PUT FILTER
CALL APWD
C=-=----DO THE COMPUTATION
CALL VCLR (ITRACE+NTRACE,l,NFFT-NTRACE) /*PAD TRACE
CALL VCLR(IFILTHNFILT,l,NFFT-NFILT) /*PAD FILTER
CALL RFFT (ITRACE,NFFT,1) /*FORWARD FFT TRACE
CALL RFFT(IFILT,NFFT,1) /*FORWARD FFT FILTER
CALL VMUL (ITRACE,1,IFILT,l,ITRACE,1,2) /*CROSS MUL 1ST 2
Cmmmmm DO REST :
CALL CVMUL (ITRACE+2,2,IFILT+2,2,ITRACE+2,2,NTRACE-1,1)
CALL RFFTSC (ITRACE,NFFT,0,-1) /*SCALE RESULTS BY 1/(4*NFFT)
CALL RFFT (ITRACE,NFFT,-1) /*INVERSE FFT
CALL APWR
C---—-TRANSFER RESULTS FROM AP
CALL APGET (RESULT, ITRACE,NFFT, IFMT) /*GET RESULTS
CALL APWD
RETURN
END
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CHAPTER 5

FORTRAN MATH LIBRARY SIMULATOR (MATHSIM)

5.1 INTRODUCTION

The FORTRAN Math Library Simulator (MATHSM) is comprised of a series of
FORTRAN subroutines. These subroutines simulate the AP Math Library
routines and APEX routines which control data flow tc and from the AP
(DMA), process data in the AP, and synchronize host/AP operations.
MATHSIM allows the user to check FORTRAN programs which make numerous
calls to the Math Library and APEX without use of the AP. It estimates
various host/AP program execution times such as data flow time, AP
program execution time, and host overhead time. MATHSIM allows
detection of possible host/AP synchronization errors. Adjustment of a
few program parameters enables MATHSIM to closely simulate all of the
many host/AP systems, thus allowing the user to predict the effects of
possible system modifications upon execution.

MATHSIM provides the basic features outlined in the following sections.

5.1.1 MATH LIBRARY ROUTINES

MATHSIM provides an equivalent FORTRAN routine for each Math Library
routine simulated. Each routine has a calling sequence identical to
that used by the actual Math Library routine. No changes in the user’s
FORTRAN program are necessary. The user simply compiles the calling
program, links to the simulated Math Library, and runs the program as
if the AP were present.

5.1.2 DMA

MATHSIM simulates the flow of data in and out of the AP by calls to the
APEX routines APPUT and APGET. This is done just as if the AP were
present. The simulator also simulates program source loading and
management via the subroutine APEX.
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5.1.3 HOST/AP SYNCHRONIZATION

Since both loading and executing the AP are simulated, MATHSIM also
simulates the synchronization by calls to the APEX subroutines APWD,
APWR, and APWAIT. When these calls are omitted, a synchronization
warning is tallied, but execution continues.

5.1+4 TIMING ESTIMATES
MATHSIM estimates three of the system times: AP program execution

time, DMA time, and AP executive (host overhead) time. The simulator
does not account for any overlapping of these functions.

5.2 DETAILED DESCRIPTION

This section presents a detailed description of the various features of
MATHSIM.

5.2.1 MATHSIM ROUTINES

MATHSIM contains most of the FORTRAN callable routines in the basic AP
Math Library and the Signal Processing Library. The APEX routines
described in this manual are included in MATHSIM. The routines
supported by MATHSIM are listed in Table 5~1 and 5-2.
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Table 5-1 MATHSIM APEX Routines

NAME QPERATION
APASGN Assign AP
APCHK Check AP program error condition
APCLR Initialize the AP
APEX Program source executive
APGET Get data from the AP
APGSP Read an AP s-pad register
APINIT To assign an AP and initialize APEX
APPUT Put data‘into the AP
APRLSE Release AP
APSTAT Get AP hardware status
APSTOP Pause on AP fatal error
APWAIT Wait for AP
APWD Wait for DMA and error check
APWR Wait for AP run complete and error check
APXCLR Clear APEX tables
APXSET Initialize APEX and reset AP
1Loc Find address of variable

0866
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Table 5~2 MATHSIM Math Library Routines

NAMé OPERATION

ACORF Auto-correlation (frequency-domain)
ACORT Auto-correlation {time-domain)
ASPEC Accumulating auto-spectrum
CCORF Cross-correlation (frequency-domain}
CCORT Cross-correlation (time-domain)
CDOTPR Complex vector dot product
CFFT Complex to comple FFT (inplace)
CFFTB Complex to complex FFT (not in place)
CFFTSC Complex FFT scale
COHER Coherence function
CONV Convolution (correlation}
CRVADD Complex and real vector add
CRVDIV Complex and real vector divide
CRVMUL Complex and real vector multiply
CRvsuB Complex and real vector subtract
CSPEC : Accumulating cross-spectrum
CTRN3 3-Dimension coordinate transformation
CVADD Complex vector add
CVCOMB Complex vector combine
CVCONJ Complex vector conjugate
CVEXP Complex exponential

CVFILL Complex vector fill

CVMA Complex vector multiply and add
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Table 5-2 MATHSIM Math Library Routines (cont.)

NAME QPERATION

CVMAGS Complex vector magnitude squared
CVMEXP Vector multiply complex exponential
CVMOV Complex vector move

CYMUL Compiex vector multiply
CVNEG Complex vector negate
CVRCIP Complex vector reciprocal
CVREAL Form complex vector of reals
CVSMUL "~ Complex vector scalar multiply
Cvsus Complex vector subtract
DEQ22 Difference equation, 2 poles, 2 zeros
DOTPR Dot product

FMMM Fast memory matrix multiply

FMMM32 Fast memory matrix mult (dim 32 or less)
HANN Hanning window multiply

HIST Histogram
LVEG Logical vector equal
LVGE Logical vector greater or equal
LVGT Logical vector greater than
LVNE Logical vector not equal
LVNOT Logical vector not

MATINV Matrix inverse

MAXMGV Maximum magnitude element in vector
MAXV Maximum element in vector

0868
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Table 5-2 MATHSIM Math Library Routines (cont.)

NAME OPERATION
MEAMGY Mean of vector element magnitudes
MEANV Mean value of vector elements
MEASQV Mean of vector element squares
MINMGY Minimum magnitude element in vector
MINV Minimum element in vector
MMUL Matrix multibly
MMUL32 Matrix multiply (dim 32 or less)
MTHSIM FORTRAN simulation of APMATH
MTRANS Matrix transpose
MVML3 Matrix vector multiply (3x3)
MVML4 Matrix vector multiply (4x4)
POLAR Rectangular to polar conversion
RECT Polar to rectangular conversion
RFFT Real to complex FFT (in place)
RFFTB Real to complex FFT (not in place)
RFFTSC Read FFT scale and format
RMSQV Root-mean-square of vector elements
SCJMA Self-conjugate multiply and add
SOLVEQ Linear equation solver
SVE Sum of vector elements

SVEMG Sum of vector element magnitudes
SVESQ Sum cf vector element squares

SVS Sum of vector signed squares

0869
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Table 5-2 MATHSIM Math Library Routines (cont.)

NAME OPERATION
TCONV Posttapered conyolution (correlation)
TRANS Transfer function
VAAM Vector add, add, and multiply
VABS Vector absolute value
VADD Vector add
VALOG Vector antilogarithm (base 1@)
VAM Vector add and multiply
YATAN Vector arctangent
YATN2 Vector arctangent of y/x
VAVEXP Vector exponential averaging
VAVLIN Vector linear averaging
VCLIP Vector clip
VCLR Vector clear
VCos Vector cosine
VDBPWR Vector conversion to DB (power)
VDIV Vector divide
VEXP Vector exponential
VFILL © Vector fill
VFIX Vector integer fix
VFLT Vector integer float
VFRAC Vector truncate‘to fraction
VICLIP Vector inverted clip
VIMAG Extract imaginaries of complex vector

0870
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Table 5-2 MATHSIM Math Library Routines (cont.)
NAME OPERATION

VINDEX Vector index

VINT Vector truncate to integer

VLIM Vector 1i{mit

VLMERG Vector logical merge

VLN Vector natural logarithm

YLOG Vector logarithm (base 19)

VMA Vector multiply and add

VMAX Vector maximum

VMAXMG Vector maximum magnitude

VMIN Vector minimum

YMINMG Vector minimum magnitude

VMMA Vector multiply, multiply, and add

VMMSB Vector multiply, multiply, and subtract

VMoV Vectaor move

VYMSA Vector muitiply and scalar add

VMSB Vector multiply and subtract

VMUL Vector multiply

VNEG Vector negate

VPOLY Vector polynomial

VRAMP Vector ramp

VRAND Vector random numbers

VREAL Vector reals of complex vector

VSADD Vector scalar add
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Table 5-2 MATHSIM Math Library Routines (cont.)

MAME OPERATION

VSBM Vector subtract and multiply

VSBSBM Vector subtract, subtract, and muitioly
VSCALE Vector scale (power 2} and fix
VSCSCL Yector scan, scale (power 2) and fix
VSHFX Vector shift and fix

VSIMPS Vector Simpsons 1/3 rule integration
VSIN Vector sine

VSMA Vector scalar multiply and add

VSMSA Vector scalar multiply and scalar add
VSMSB “Vector scalar multiply and subtract
VSMUL Vector scalar multiply

vsQ Vector square
VSQRT Vector square root
VSSQ Vector signed square
VsuB Vector subtract

VSUM Vector sum of elements integration
VSWAP Vector swap

VTRAPZ Vector trapezoidal rule integration
WIENER Wiener Levinson algorithm

IMD Clear 211 main data memory
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MATHSIM does not include routines which relate to byte packing and
unpacking, vector logical operations, and support of table memory. The
routines in the basic AP Math Library and the Signal Processing Library
which are not included in MATHSIM are:

VAND
VEQV
VOR
VTSMUL
VUP8
VUPS8
VPK8
VUP16
VUPS16
VPK16
VFLT32
VFIX32

Neither does MATHSIM support APAL callable utility routines, such as
DIV and SAVESP.

The following libraries are not supported by MATHSIM:
TMRAM library
Page select/parity library

I0P library
PIOP library
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5.2.2 DMA

AP main data (MD) is simulated by the array variable APMD. APMD is
communicated to the MATHSIM routines by the COMMON block:

COMMON /COMMD/ APMD (1024)

APPUT transfers the data taken from an array defined in the user
program into APMD. APGET transfers data taken from APMD into an array
defined in the user program. Execution of the MATHSIM routines
requires a number of pointers in the APMD scratch space. These
pointers are based on the subroutine call parameters.

MATHSIM supports APPUT and APGET format types 1 (16-bit integer) and 2
(host floating-point). .

Via APEX, MATHSIM handles program source management exactly as it is
handled during actual AP use. Thus, it is possible to encounter
program souce overflow, which causes the run to halt. Note that PS
size is set in the subroutine APXSET, PSSIZ = 1024. This size can be
changed by the user.
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5.2.3 SYNCHRONIZATION

MATHSIM simulates synchronization by calls to the APEX subroutines
APWD, APWR and APWAIT. The variables involved in sensing a possible
synchronization error are communicated to the necessary subroutines via
the following:

INTEGER ERRFLG
LOGICAL DMAFLG, RUNFLG, INIFLG
COMMON /FLAGS/ DMAFLG,RUNFLG, INIFLG, ERRFLG

These statements appear in the following five subroutines:

APPUT
APGET
APEX
APTIME
APCLR

All flags are initialized by a call to APCLR. INIFLG is set to .FALSE.
at compile time (in APCLR). Whenever a call to subroutine APEX is made
before a call to APCLR or APINIT, the run halts and an error message is
issued.

Whenever the user omits an APWD or APWR in the program, a synchro-
nization warning is tallied (ERRFLG = ERRFLG +1) and the run continues.
Omission of an APWAIT for either case causes the same results. It is
important to note that some of this type of errors may escape
detection. Also, the detection of possible errors does not necessarily
mean that the program is invalid, as in cases where omission of calls
to the waiting routines actually produces a more efficient program.
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MATHSIM checks synchronization in the following ways:

e When a DMA is initiated, the DMAFLG is set; MATHSIM
checks the RUNFLG; when the RUNFLG is set, MATHSIM
tallies a synchronization warning.

e When an AP subroutine is executed, the RUNFLG is set;
MATHSIM checks the DMAFLG; when the DMAFLG is set,
MATHSIM tallies a synchronization warning.

® When a call is made to APWD, the DMAFLG is turned off;
when a call is made to APWR, the RUNFLG is turned off;
when a call is made to APWAIT, both the DMAFLG and the
RUNFLG are turned off.

e MATHSIM considers a call to APTIME as host execution.
When a call is issued to APTIME, the simulator checks
the DMAFLG and the RUNFLG. If either of these is
set, MATHSIM tallies a synchronization warning.

e When a host program is executing with either the
DMAFLG or the RUNFLG set, but no call is made to APTIME,
MATHSIM does not detect the possible error.

5.2.4 TIMING ESTIMATES

The timing accumulators are communicated to the various MATHSIM
routines via the following:

COMMON /TIMING/ MIYPE,CONAPX,CONDMA, TIMRUN, TIMAPX, TIMDMA

This statement is in all of the algorithm-simulating routines and in
four APEX subroutines: APEX, APPUT, APGET, and APCLR. The
accumulators are initialized in APCLR. The following sections define
and describe the accumulators. '
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5.2.4.1 TIMRUN

TIMRUN accumulates the AP program execution time estimates. MATHSIM
estimates loop times for routines represented by a single loop by using
the TYPICAL loop times given in Appendix D, plus the SETUP times. The
SETUP times depend upon memory type which is designated in MATHSIM by
the variable MTYPE in the preceding COMMON statement. These particular
programs contain the following statement:

DATA SETUP (1), «e..

Other routines with more complex algorithms contain timing formulas of
an empirical nature derived from the timing tables in Appendix E. The
formulas are established so that extrapolation out of the range of the
tables gives reasonably accurate timing estimates. Interpolations
within the range of the tables give an accuracy well within five
percent.

5.2.4.2 TIMAPX

TIMAPX accumulates the estimates for the AP executive (host overhead)
time. All algorithm-simulating routines contain an integer variable
SIZE, usually dependent upon MTYPE which contains the AP program source
word length. Each time a particular program is called, it executes the
following statement:

CALL APEX (SIZE) or CALL APEX (SIZE(MTYPE))

The subroutine APEX checks to see whether or not the subroutine is
loaded. 1If the program is designated as already AP-resident, MATHSIM
adds an estimate of the system overhead time onto TIMAPX. The value of
this estimate is a constant assigned to CONAPX in MATHSIM. When the
program is not resident in the AP, simulation is affected by estimating
the time needed to load a program of the specified SIZE. This estimate
is based on the constant CONDMA.

Because it is difficult to arrive at a precise value for CONAPX, TIMAPX
can be only an order of magnitude estimate when CONAPX is involved in
its calculation. However, program loading times are more accurate
because CONDMA can be established more precisely.
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Note that the times for some applications are dominated by TIMAPX.

This is true for many calls to simple vector manipulations. Using the
vector function chainer reduces multiple calls to Math Library routines
to a single call, and thus reduces. system overhead. MATHSIM, however,
does not simulate the vector function chainer software. Therefore, the
user must subtract the host overhead estimate (CONAPX) an appropriate
number of times from the total timing estimate to account for use of
vector function chaining.

5.3 SYSTEM DEPENDENCY

MATHSIM contains several installation-dependent features, as listed
below.

e The subroutine APEX calls the FORTRAN function
ILOC(X), which returns the location of the variable
X. This function is FPS-supplied.

e The subroutine APCLR assigns the following timing
parameters:

MYTPE = n
CONDMA = ss
CONAPX = tt

where:

n 1is the memory type;
1 = fast, 2 = standard
(default = 2)

ss is the time per 16-bit word
transfer (u sec)
(default = 2 u sec)

tt is the time per s-pad load
and go (u sec)
(default = 1000 u sec)
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o The subroutine APXSET assigns the program source
size with the statement:

PSSIZ = n
where:

n is the program source size
(default = 1024)

e The main data size is indicated in the following
statement:

COMMON /COMMD/ APMD (1024)
It can be changed by changing the entry in every ‘
occurrence of this statement; the statement appears

in all Math Library routines and in the two APEX
routines APPUT and APGET.

e The MATHSIM routines APSTOP and APEX write messages
to the unit specified in the following statement:

IOUNIT = n
where:

n is the logical unit number
(default = 1)
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5.4 EXAMPLES

This section contains a sample MATHSIM routine and two programming
examples applicable to MATHSIM.

5.4.1 EXAMPLE 1: SAMPLE ROUTINE

The following VADD routine shown 1is typical of the routines provided in
MATHSIM:

Ck*%%% VADD = VECTOR ADD = REL 1.0, MAY 78 #****
SUBROUTINE VADD(A,I,B,J,C,K,N)
INTEGER*2 A,I,B,J,C,K,N
INTEGER*2 M,IA,IB,IC
REAL SETUP(2), LOOP(2)
INTEGER SIZE(2)
COMMON /TIMING/ MTYPE,CONAPX,CONDMA, TIMRUN, TIMAPX,
X TIMDMA
COMMON /COMMD /APMD (1024)
DATA SETUP (1), SETUP(2), LOOP(1l), LOOP(2)
X /  2.67 , 1.17 , 0.84 , 1.33/
DATA SIZE(l), SIZE(2) / 17 , 8/
TA=A+1
IB=B+1
IC=C+l1
DO 100 M=1,N
APMD (IC)=APMD (IB)+APMD(TA)
TA=TA+I
IB=IB+J
100 IC=IC+K
C
¢ /* TIMING. */
CALL APEX (SIZE(MTYPE))
TIMRUN = TIMRUN + SETUP (MTYPE) + FLOAT (N) * LOOP (MIYPE)
RETURN
END

Note that the user has access to the timing information by including
the statement COMMON /TIMING/ «.. in the calling program. Also,
because MTYPE is assigned in the call to APCLR, the user may change the
memory type after that call. This allows the user to easily obtain
timing for either standard or fast memorye.
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5.4.2 EXAMPLE 2: ©PROGRAM FOR VECTOR ADDITION

The following is an example of a calling program to add two vectors;
this version can be used with either the AP or MATHSIM.

DIMENSION A(100),B(100),C(100)

’

c /* TIMING INFO WRITTEN ON LOGICAL UNIT “IOUNIT .. */
IOUNIT = 1

c /* APCLR INITIALIZES TIMING (AMONG OTHER THINGS). */
CALL APCLR

CALL APPUT(A,0,100,2)
CALL APPUT (B, 100,100,2)
CALL APWD
CALL VADD(0,1,100,1,200,1,100)
CALL APWR
CALL APGET(C,200,100,2)
C /* WRITE ACCUMULATED TIMES... */
CALL APTIME (IOUNIT)

’

END
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5.4.3 EXAMPLE 3: PROGRAM FOR VECTOR ADDITION WITH TIMING
ESTIMATES

The following is an example of a program to add two vectors and
determine timing estimates. This program is written for use with
MATHSIM only.

DIMENSION A(100),B(100),C(100)

’

C /% TIMING INFO WRITTEN ON LOGICAL UNIT ‘IOUNIT .. */
IOUNIT =1

C /* APCLR INITIALIZES TIMING (AMONG OTHER THINGS). */
CALL APCLR

CALL APPUT(A,0,100,2)

CALL APPUT (B,100,100,2)

CALL APWD

CALL VADD(0,1,100,1,200,1,100)
CALL APWR

CALL APGET(C,200,100,2)

o /* WRITE ACCUMULATED TIMES... */

CALL APTIME (IOUNIT)

”

END

When this program is run with the parameters set to the default values,
the subroutine APTIME displays the following message:

AP-1208 TIMING ESTIMATES (ACCUM).

RUN = 0.13417 (MSEC)
APEX = 1.06400
DMA = 1.20000

SYNCHRONIZATION WARNINGS = 1

To eliminate the synchronization warning, the user should insert a CALL
APWD after the CALL APGET statement.
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APPENDIX A ALPHABETICAL INDEX OF AP MATH LIBRARY ROUTINES

Typical Program

Execution Size

Page Name Operation Time/Loop (AP
(us) PS words)

167 | 333 167 | 333

E-195 ACORF AUTO-CORRELATION (FREQUENCY-DOMAIN) 1.80% 2.70 501 489
E-193 ACORT AUTO-CORRELATION (TIME-DOMAIN) 0.29% 0.29 121 121
E-270 ADV2 ADVANCE POINTERS AFTER RADIX 2 FFT 0.7 @ 0.7 7 7
E-271 ADV4 ADVANCE POINTERS AFTER RADIX 4 FFT 0.7 @ 0.7 7 7
E-13 APCHK  CHECK AP PROGRAM ERROR CONDITION #o #aoit 0 0
E-8 APCLR INITIALIZE THE AP et #ed 0 0
E-6 APGET GET DATA FROM THE AP #o #at 0 0
E-12 APGSP READ AN AP S-PAD REGISTER #.# #odt 0 0
E-4 APPUT PUT DATA INTO THE AP #.4 #Faoit 0 0
E-14 APSTAT GET AP HARDWARE STATUS ’ #oit #o it 0 0
E-11 APWAIT WAIT FOR AP #. 4 #o 0 0
E-9 APWD WAIT FOR AP DATA TRANSFER e it it it 0 0
E-10 APWR WAIT FOR AP PROGRAM EXECUTION #ed #oit 0 0
E-186 ASPEC ACCUMULATING AUTO-SPECTRUM 0.8 1.5 21 22
E-234 ATAN SCALAR ARCTANGENT 8.7 @ 8.7 74 74
E-235 ATN2 SCALAR ARCTANGENT OF Y/X 13.8 213.8 74 74
E-261 BITREV COMPLEX VECTOR BIT REVERSE ORDERING 0.9 1.4 45 43
E-199 CCORF CROSS-CORRELATION (FREQUENCY-DOMAIN) 2.58%* 3.93 526 510
E-197 CCORT CROSS—CORRELATION (TIME-DOMAIN) 0.29*% 0.29 121 121
E-115 CDOTPR COMPLEX DOT PRODUCT 0.7 1.3 15 16
E-156 CFFT COMPLEX TO COMPLEX FFT (IN PLACE) 0.28*% 0.40 186 184
E-167 CFFT2D COMPLEX TO COMPLEX 2~DIMENSIONAL FFT 0.5 * 0.5 274 274
E-158 CFFTB COMPLEX TO COMPLEX FFT (NOT IN PLACE) 0.20* 0.28 189 189
E-164 CFFTSC COMPLEX FFT SCALE 0.8 1.3 42 42
E-268 CLSTAT CLEAR FFT MODE STATUS BITS 0.5 @ 0.5 19 19
E~192 COHER COHERENCE FUNCTION 4.0 4.5 109 114
E-172 CONV CONVOLUTION (CORRELATION) 0.28* 0.28 106 106
E-233 COS SCALAR COSINE 5.4 @ 5.4 35 35
E-103 CRVADD COMPLEX AND REAL VECTOR ADD 1.3 1.8 14 14
E-106 CRVDIV COMPLEX AND REAL VECTOR DIVIDE 3.3 3.3 92 92
E-105 CRVMUL COMPLEX AND REAL VECTOR MULTIPLY 1.3 1.8 14 14
E-104 CRVSUB COMPLEX AND REAL VECTOR SUBTRACT 1.3 1.8 14 14
E-187 CSPEC  ACCUMULATING CROSS-SPECTRUM 1.3 2.7 39 40
E-281 CTOR COMPLEX TO REAL FFT UNSCRAMBLE 0.13*% 0.13 80 80
E-149 CTRN3 3-DIMENSION COORDINATE TRANSFORMATION 2.3 * 2.5 37 37
E-98 CVADD COMPLEX VECTOR ADD 1.0 2.0 13 12
E-92 CVCOMB COMPLEX VECTOR COMBINE 1.1 1.7 10 10
E-97 CVCONJ COMPLEX VECTOR CONJUGATE 0.7 1.3 10 12
E-113 CVEXP COMPLEX VECTOR EXPONENTIAL 2.0 2.0 43 43
E-91 CVFILL COMPLEX VECTOR FILL 0.5 0.7 8 8
E-107 CVMA COMPLEX VECTOR MULTIPLY AND ADD 1.3 2.7 29 30
E-109 CVMAGS COMPLEX VECTOR MAGNITUDE SQUARED 0.7 1.2 13 18
E-114 CVMEXP VECTOR MULTIPLY COMPLEX EXPONENTTIAL 2.3 2.3 48 48
E-90 CVMOV  COMPLEX VECTOR MOVE 0.8 1.3 9 9
E-100 CVMUL COMPLEX VECTOR MULTIPLY 1.0 2.0 25 26
E-96 CVNEG COMPLEX VECTOR NEGATE 0.8 1.3 11 11
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Typical Program

Execution Size
Page Name Operation Time/Loop (AP
(us) PS words)

167 | 333 167 | 333

E-102 CVRCIP COMPLEX VECTOR RECIPROCAL 5.2 5.2 50 50
E-93 CVREAL FORM COMPLEX VECTOR OF REALS 0.8 1.2 9 9
E-101 CVSMUL COMPLEX VECTOR SCALAR MULTIPLY 0.8 1.3 12 12
E-99 CVSUB COMPLEX VECTOR SUBTRACT 1.0 2.0 13 12
E-257 DAREAD READ DEVICE ADDRESS REGISTER 0.3 @ 0.3 2 2
E-258 DAWRIT WRITE DEVICE ADDRESS REGISTER 0.3 @ 0.3 2 2
E-287 DDDA DOUBLE + DOUBLE TO DOUBLE ADD 7.5 @ 7.5 48 48
E-288 DDDM DOUBLE * DOUBLE TO DOUBLE MULTIIPLY 18.5 @18.5 117 117
E-174 DEQ22 DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 0.8 0.8 .25 25
E-227 DIV SCALAR DIVIDE 3.8 @ 3.8 28 28
E-66 DOTPR  DOT PRODUCT 0.5 0.8 21 9
E-231 EXP SCALAR EXPONENTIAL 4.2 @ 4.2 28 28
E-263 FFT2 RADIX 2 FFT FIRST PASS 1.3 2.7 16 16
“E-265 FFTI2B RADIX 2 FFT FIRST PASS + BIT REVERSE 1.3 2.7 25 25
E-264 FFT4 RADIX 4 FFT PASS 3.7 5.3 79 79
E-266 FFT4B RADIX 4 FFT FIRST PASS + BIT REVERSE 2.7 5.3 43 43
E-151 FMMM FAST MEMORY MATRIX MULTIPLY 0.43% 61

E-153 FMMM32 FAST MEMORY MATRIX MULTIPLY (<=32) 0.41% 33

E-184 HANN HANNING WINDOW MULTIPLY 0.7 0.8 41 41
E-183 HIST HISTOGRAM 1.3 1.4 71 71
E-269 ILOG2 LOGARITHM (BASE 2) 4.0 @ 4.0 19 19
E-230 LN SCALAR NATURAL LOGARITHM 4.0 @ 4.0 37 37
E-229 LOG SCALAR LOGARITHM (BASE 10) 4.7 @ 4.7 37 37
E-85 LVEQ LOGICAL VECTOR EQUAL 0.8 1.3 23 13
E-84 LVGE LOGICAL VECTORGREATER THAN OR EQUAL 0.8 1.3 23 13
E-83 LVGT LOGICAL VECTOR GREATER THAN 0.8 1.3 23 13
E-86 LVNE LOGICAL VECTOR NOT EQUAL 0.8 1.3 23 13
E-87 LVNOT LOGICAL VECTOR NOT 0.5 0.8 21 12
E-141 MATINV MATRIX INVERSE 1.6 *# 2.1 160 160
E-69 MAXMGV MAXIMUM MAGNITUDE ELEMENT IN VECTOR 0.3 0.3 19 19
E-67 MAXV MAXIMUM ELEMENT IN VECTOR 0.3 0.3 19 19
E-253 MDCOM  MAIN DATA COMPARE AND SET S-PAD 1.8 @ 2.0 11 11
E-72 MEAMGV MEAN OF VECTOR ELEMENT MAGNITUDES 0.3 0.3 52 52
E-71 MEANV  MEAN VALUE OF VECTOR ELEMENTS 0.3 0.3 49 49
E-73 MEASQV MEAN OF VECTOR ELEMENT SQUARES 0.3 0.3 52 52
E-70 MINMGV MINIMUM MAGNITUDE ELEMENT IN VECTOR 0.3 0.3 19 19
E-68 MINV MINIMUM ELEMENT IN VECTOR 0.3 0.3 19 19
E-209 MMTADD VECTOR ADD (MDMD TO TM) 0.7 0.8 20 13
E-211 MMTMUL VECTOR MULTIPLY (MD*MD TO TM) 0.7 0.8 20 13
E-210 MMTSUB VECTOR SUBTRACT (MD-MD TO TM) 0.7 0.8 20 13
E-137 MMUL MATRIX MULTIPLY 0.62% 0.83 59 59
E-139 MMUL32 MATRIX MULTIPLY (DIMENSION <=32) 0.50% 0.73 27 27
E-206 MTIMOV VECTOR MOVE WITH INCREMENT (MD TO TM) 0.5 0.5 7 7
E-212 MTMADD VECTOR ADD (MD+TM TO MD) 0.5 0.8 20 9
E-215 MTMMUL VECTOR MULTIPLY (MD*TM TO MD) 0.5 0.8 20 9
E-204 MIMOV VECTOR MOVE (MD TO TM) 0.2 0.3 6 7
E-213 MTMSUB VECTOR SUBTRACT (MD-TM TO MD) 0.5 0.8 20 9
E-136 MTRANS MATRIX TRANSPOSE 0.5 0.9 18 22
E-216 MTTADD VECTOR ADD (MD+TM TO TM) 0.5 0.5 20 20
E-219 MTTMUL VECTOR MULTIPLY (MD*TM TO TM) 0.5 0.5 20 20
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Page

E-217
E-145
E-147
E-279
E-111
E=-255
E-262
E-112
E-160
E-169
E~162
E-165
E-74

E-282
E-248
E-249
E~-110
E-286
E-272
E-252
E-256
E-250
E-232
E-143
E-239
E-245
E-242
E-236
E-244
E-241
E-238
E-247
E-~246
E-243
E-240
E-237
E-228
E-284
E-285
E-267
E-62

E-63

E-64

E-65

E-201
E-207
E-205
E-214
E-218
E-191

FPS 860-7288-004
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MTTSUB
MVML3
MYML4
PCFFT
POLAR
RDCS
REALTR
RECT
RFFT
RFFT2D
RFFTB
RFFTSC
RMSQV
RTOC
SAVESP
SAVSPO
SCIMA
SDDA
SET24B
SET2SP
SETCS
SETSP
SIN
SOLVEQ
SPADD
SPAND
SPDIV
SPFLT
SPLS
SPMUL
SPNEG
SPNOT
SPOR
SPRS
SPSUB
SPUFLT
SQRT
SSDA
SSDM
STSTAT
SVE
SVEMG
SVESQ
3Vvs
TCONV
™IMOV
TMMOV
TMMSUB
TMTSUB
TRANS

Operation

VECTOR SUBTRACT (MD-TM TO ™)
MATRIX VECTOR MULTIPLY (3%3)
MATRIX VECTOR MULTIPLY (4%X4)
PARTTAL COMPLEX FFT

RECTANGULAR TO POLAR CONVERSION
READ CONTROL BIT 5 INTERRUPT

REAL FFT UNRAVEL AND FINAL PASS
POLAR TO RECTANGULAR CONVERSTION
REAL TO COMPLEX FFT (IN PLACE)
REAL, TO COMPLEX > DIMENSIONAL FFT
REAL TO COMPLEX FFT (NOT IN PLACE)
REAL FFT SCALE AND FORMAT
ROOT-MEAN-SQUARE OF VECTOR FLEMENTS
REAL TO COMPLEX FFT SCRAMBLE

SAVE S-PAD INTO PROGRAM MEMORY
SAVE S-PAD O INTO PROGRAM MEMORY
SELF-CONJUGATE MULTIPLY AND ADD
SINGLE + DOUBLE TO DOUBLE ADD
SETUP FOR FFT2B AND FFT4B

LOAD 2 S-PADS FROM PROGRAM MEMORY
SET CONTROL BIT 5 INTERRUPT

LOAD S-PADS FROM PROGRAM MEMOKY
SCALAR SINE

LINEAR EQUATION SOLVER

§-PAD ADD

S-PAD AND

g-PAD DIVIDE

FLOAT S-PAD INTEGER

g—PAD LEFT SHIFT

g-PAD MULTIPLY

g-PAD NEGATE

5-PAD NOT

S-PAD OR

§-PAD RIGHT SHIFT

'S-PAD SUBTRACT

5-pPAD UNSIGNED FLOAT

SCALAR SQUARE ROOT

SINGLE + SINGLE TO DOUBLE ADD
SINGLE * SINGLE TO DOUBLE MULTIPLY
SET FFT MODE STATUS BITS

SUM OF VECTOR ELEMENTS

SUM OF VECTOR ELEMENT MAGNITUDES
SUM OF VECTOR ELEMENT SQUARES

SUM OF VECTOR SIGNED SQUARES
POSTTAPERED CONVOLUTION (CORRELATION)
VECTOR MOVE WITH INCREMENT (TM TO MD)
VECTOR MOVE (TM TO MD)

VECTOR SUBTRACT (TM-MD TO MD)
VECTOR SUBTRACT (TM-MD TO ™)
TRANSFER FUNCTION

Typical
Execution
Time/Loop

(us)

.8 * 0.
.0 * 2.0
0.8 1.5
4e5 @ 4.5
1.2 @ 1.2
5.7 @ 5.7
0.2 @ 0.2
2.3 * 2.3
4.9 @ 4.9
007 * 0'9
0.2 @ 0.2
0.2 @ 0.2
6.2 @ 6.2
0.8 @ 0.8
0.3 * 0.3
2.3 @ 2.3
0.3 @ 0.3
0.2 @ 0.2
0.2 @ 0.2
0.3 * 0.3
0.2 @ 0.2
0.8 @ 0.8
3.8 @ 3.8
1.5 @ 1.5
1.5 @11.5
5.0 @ 5.0
Oﬁ3 0'3
0.3 0.3
0.3 0.3
0.3 0.3
0.30% 0.3
0.3 0.3
0.2 0.3
0.5 0.8
0.5 0.5
3.3 3.3

Program
Size
(AP

PS words)
167 | 333
20 20
30 30
39 39
117 117
120 120

9 9
68 68
49 49
253 251
585 585
252 252
59 59
gr 81
143 143
18 18
11 11
14 15
28 28
8 8
33 33
1 1
33 33
35 35
216 222
1 1
1 1
43 43
5 5
5 5
14 14
2 2
1 1
1 1
5 5
1 1
8 8
28 28
10 10
81 81
19 19
7 7
10 10
10 10
11 it
112 il2
15 15
5 5
20 9
20 20
100 100



Typical Program

Execution Size
Page Name Operation Time/Loop (AP
(us) PS words)

167 | 333 167 | 333

E-208 TTIMOV VECTOR MOVE WITH INCREMENT (TM TO T™) 0.5 0.5 7 7
E-220 TTMADD VECTOR ADD (TM+TM TO MD) 0.5 0.5 20 20
E-222 TTMMUL VECTOR MULTIPLY (TM*TM TO MD) 0.5 0.5 20 20
E-221 TTMSUB VECTOR SUBTRACT (TM-TM TO MD) 0.5 0.5 20 20
E-223 TTTADD VECTOR ADD (TM+TM TO TM) 0.7 0.7 9 9
E-225 TTTMUL VECTOR MULTIPLY (TM*TM TO TM) 0.7 0.7 10 10
E-224 TTTSUB VECTOR SUBTRACT (TM-TM TO M) 0.7 0.7 9 9
E-53 VAAM VECTOR ADD, ADD, AND MULTIPLY 1.5 2.3 13 20
E-32 VABS VECTOR ABSOLUTE VALUE 0.5 0.8 17 7
E-22 VADD VECTOR ADD 0.8 1.3 20 8
E-36 VALOG VECTOR ANTILOGARITHM (BASE 10) 2.3 2.3 58 58
E-48 VAM VECTOR ADD AND MULTIPLY 1.2 1.8 23 L4
E-55 VAND VECTOR LOGICAL AND 0.8 1.3 20 8
E-40 VATAN VECTOR ARCTANGENT 9.7 9.8 87 87
E-41 VATN2 VECTOR ARCTANGENT OF Y/X 14.2 14.2 88 88
E~189 VAVEXP VECTOR EXPONENTIAL AVERAGING 0.8 - 1.3 35 46
E-188 VAVLIN VECTOR LINEAR AVERAGING 0.8 1.3 54 46
E-80 VCLIP VECTOR CLIP 0.5 0.8 16 16
E-16 VCLR VECTOR CLEAR 0.2 0.3 16 4
E-39 VCos VECTOR COSINE 1.3 1.3 34 34
E-190 VDBPWR VECTOR CONVERSION TO DB (POWER) 1.2 1.3 75 75
E-25 VDIV VECTOR DIVIDE 1.7 1.7 75 75
E-56 VEQV VECTOR LOGICAL EQUIVALENCE 0.8 1.3 20 8
E-37 VEXP VECTOR EXPONENTIAL 2.3 2.3 55 55
E-259 VFCLI VECTOR FUNCTION CALLER (1 ARGUMENT) 0.8 1.0 10 10
E-260 VFCL2 VECTOR FUNCTION CALLER (2 ARGUMENT) 1.0 1.0 11 11
E-19 VFILL VECTOR FILL 0.3 0.3 5 5
E-118 VFIX VECTOR INTEGER FIX 0.7 0.8 18 7
E-133 VFIX32 VECTOR 32-BIT INTEGER FIX 1.2 1.2 33 33
E-117 VFLT VECTOR INTEGER FLOAT 0.5 0.8 13 11
E-~132 VFLT32 VECTOR 32-BIT INTEGER FLOAT 1.7 1.7 65 65
E-58 VFRAC VECTOR TRUNCATE TO FRACTION 0.7 0.8 13 13
E-81 VICLIP VECTOR INVERTED CLIP 0.7 0.8 19 19
E-95 VIMAG EXTRACT IMAGINARIES OF COMPLEX VECTOR 0.5 0.8 18 8
E-60 VINDEX VECTOR INDEX 0.8 1.3 28 26
E-59 VINT VECTOR TRUNCATE TO INTEGER 0.5 0.8 9 9
E-82 VLIM VECTOR LIMIT 0.5 0.8 14 14
E-38 VLMERG VECTOR LOGICAL MERGE 0.8 1.5 23 16
E-35 VLN VECTOR NATURAL LOGARITHM 2.7 2.7 42 42
E-34 VLOG VECTOR LOGARITHM (BASE 10) 2.7 2.7 54 58
E-46 VMA VECTOR MULTIPLY AND ADD 1.2 1.8 23 15
E-76 VMAX VECTOR MAXIMUM 0.8 1.3 22 13
E-78 VMAXMG VECTOR MAXIMUM MAGNITUDE 0.8 1.3 14 14
E-77 VMIN VECTOR MINIMUM 0.8 1.3 22 1

E~-79 VMINMG VECTOR MINIMUM MAGNITUDE 0.8 1.3 14 14
E-51 VMMA VECTOR MULTIPLY, MULTIPLY, AND ADD 1.5 2.3 27 19
E=52 VMMSB VECTOR MULTIPLY MULTIPLY AND SUBTRACT 1.5 2.3 27 19
E-17 VMOV VECTOR MOVE 0.5 0.8 16 6
E-43 VMSA VECTOR MULTIPLY AND SCALAR ADD 0.8 1.3 23 14
E-47 VMSB VECTOR MULTIPLY AND SUBTRACT 1.2 1.8 23 15
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E-24
E-21
E-57
E-131
E-128
E-175
E-20
E-42
E-94
E-26
E-49
E-54
E-121
E-123
E-134
E-125
E-179
E-38
E-44
E-120
E-50
E-45
E-27
E-30
E-~33
E-31
E-23
E-177
E-18
E-178
E-28
E-29
E-129
E-126
E-130
E-127
E-180
E=-277
E-273
E-280
E-278
E-275
E-254

Notes:

Name

VMUL
VNEG
VOR
VPK16
VPK8
VPOLY
VRAMP
VRAND
VREAL
VSADD
VSBM
VSBSBM
VSCALE
VSCSCL
VSEFLT
VSHFX
VSIMPS
VSIN
VSMA
VSMAFX
VSMSA
VSMSB
VSMUL
vsSQ
VSQRT
VSSQ
VSUB
vSUM
VSWAP
VTRAPZ
VTSADD
VTSMUL
VUP16
VUP8
VUPS16
VUPS8
WIENER
XBITRE
XCFFT
XFFT4
XREALT
XRFFT
ZMD

Operation

VECTOR MULTIPLY

VECTOR NEGATE

VECTOR LOGICAL OR

VECTOR 16-BIT BYTE PACK

VECTOR 8-BIT BYTE PACK

VECTOR POLYNOMIAL EVALUATION

VECTOR RAMP

VECTOR RANDOM NUMBERS

EXTRACT REALS OF COMPLEX VECTOR
VECTOR SCALAR ADD

VECTOR SUBTRACT AND MULTIPLY

VECTOR SUBTRACT SUBTRACT AND MULTIPLY
VECTOR SCALE (POWER 2) AND FIX
VECTOR SCAN, SCALE (POWER 2) AND FIX
VECTOR SIGN EXTEND AND FLOAT

VECTOR SHIFT AND FIX

VECTOR SIMPSONS 1/3 RULE INTEGRATION
VECTOR SINE

VECTOR SCALAR MULTIPLY AND ADD
VECTOR SCALAR MULTIPLY, ADD, AND FIX
VECTOR SCALAR MULTIPLY AND SCALAR ADD
VECTOR SCALAR MULTIPLY AND SUBTRACT
VECTOR SCALAR MULTIPLY

VECTOR SQUARE

VECTOR SQUARE ROOT

VECTOR SIGNED SQUARE

VECTOR SUBTRACT

VECTOR SUM OF ELEMENTS INTEGRATION
VECTOR SWAP

VECTOR TRAPEZOIDAL RULE INTEGRATION
VECTOR TABLE SCALAR ADD

VECTOR TABLE SCALAR MULTIPLY

VECTOR 16-BIT BYTE UNPACK

VECTOR 8-BIT BYTE UNPACK

VECTOR 16-BIT SIGNED BYTE UNPACK
VECTOR 8-BIT SIGNED BYTE UNPACK
WIENER LEVINSON ALGORITHM

EXPANDED BIT REVERSE

EXPANDED COMPLEX FFT

EXPANDED RADIX 4 FFT PASS

EXPANDED REAL FFT FINAL PASS
EXPANDED REAL FFT

CLEAR ALL PAGES OF MAIN DATA MEMORY

#.# Timing host system dependent

* Refer to description of routine for explanatiomn

@ Total execution time

FPS 860-7288-004 A - 5

Typical Program
Execution Size
Time/Loop (AP

(us) PS words)

167 | 333 167 | 333
0.8 1.3 20 11
0.5 0.8 18 7
0.8 1.3 20 8
0.8 0.8 46 46
0.9 0.9 65 65
1.0 * 1.2 41 41
0.3 0.3 12 12
1.2 1.2 16 16
0.5 0.8 17 7
0.5 0.8 19 8
1.2 1.8 23 14
1.5 2.3 13 20
0.7 0.8 12 12
1.5 1.7 19 19
0.8 0.8 15 15
0.7 0.8 9 9
0.7 0.8 25 25
1.3 1.3 34 34
0.3 1.3 21 14
0.7 0.8 14 13
0.5 0.8 23 15
0.8 1.3 21 14
0.5 0.8 20 9
0.5 0.8 9 9
1.8 1.8 79 79
0.5 0.8 21 9
0.8 1.3 20 8
0.7 0.8 13 13
1.2 1.5 21 12
0.7 0.8 16 16
0.5 0.8 8 8
0.5 0.8 8 8
0.8 0.8 61 61
0.5 0.5 71 71
1.3 1.3 58 58
0.9 0.9 107 107
0.50* 0.6 100 100
3.7 3.7 44 44
0.32* 0.4 187 187
3.7 5.3 79 79
0.4 0.7 71 71
0.19% 0.2 256 256
0.2 0.3 29 29

of timing






Page

E-16
E-17
E-18
E-19
E-20
E-21
E-22
E-23
E-24
E-25
E-26
E-27
E-28
E-29
E-30
E-31
E-32
E-33
E-34
E-35
E-36
E-37
E-38
E-39
E~40
E-41
E-42

APPENDIX B INDEX OF ROUTINES

IN PAGE ORDER

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
DATA TRANSFER AND CONTROL OPERATIONS (APEX)
APPUT PUT DATA INTO THE AP #et #oit 0 0
APGET GET DATA FROM THE AP #eit  H#oit 0 0
APCLR INITIALIZE THE AP #oit #aodt 0 0
APWD WAIT FOR AP DATA TRANSFER #o #o 0 0
APWR WAIT FOR AP PROGRAM EXECUTION #oi o i 0 0
APWAIT WAIT FOR AP #.# toit 0 0
APGSP  READ AN AP S-PAD REGISTER #oit #o 0 0
APCHK  CHECK AP PROGRAM ERROR CONDITION ittt #oi 0 0
APSTAT GET AP HARDWARE STATUS fta it #.# 0 0
BASIC VECTOR ARITHMETIC
VCLR VECTOR CLEAR 0.2 0.3 16 4
™oV VECTOR MOVE 0.5 0.8 16 6
VSWAP VECTOR SWAP 1.2 1.5 21 12
VFILL VECTOR FILL 0.3 0.3 5 5
VRAMP VECTOR RAMP 0.3 0.3 12 12
VNEG VECTOR NEGATE 0.5 0.8 18 7
VADD VECTOR ADD 0.8 1.3 20 8
VSUB VECTOR SUBTRACT 0.8 1.3 20 8
VMUL VECTOR MULTIPLY 0.8 1.3 20 11
VD1V VECTOR DIVIDE 1.7 1.7 75 75
VSADD VECTOR SCALAR ADD 0.5 0.8 19 8
VSMUL VECTOR SCALAR MULTIPLY 0.5 0.8 20 9
VISADD VECTOR TABLE SCALAR ADD 0.5 0.8 8 8
VISMUL VECTOR TABLE SCALAR MULTIPLY 0.5 0.8 8 8
vsQ VECTOR SQUARE 0.5 0.8 9 9
vsSsQ VECTOR SIGNED SQUARE 0.5 0.8 21 9
VABS VECTOR ABSOLUTE VALUE 0.5 0.8 17 7
VSQRT VECTOR SQUARE ROCT 1.8 1.8 79 79
VLOG VECTOR LOGARITHM (BASE 10) 2.7 2.7 54 58
VLN VECTOR NATURAL LOGARITHM 2.7 2.7 42 42
VALOG VECTOR ANTILOGARITHM (BASE 10) 2.3 2.3 5 58
VEXP VECTOR EXPONENTIAL 2.3 2.3 55 55
VSIN VECTOR SINE 1.3 1.3 34 34
vCOS VECTOR COSINE 1.3 1.3 34 34
VATAN VECTOR ARCTANGENT 9.7 9.8 87 87
VATN2  VECTOR ARCTANGENT OF Y/X 14.2 14.2 88 88
VRAND 1.2 l.2 16 16

VECTCR RANDOM NUMBERS
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Page

E-43
E=44
E-45
E-46
E=47
E-48
E-49
E-50
E-51
E=52
E-53
E-54
E=-55
E-56
E-57
E=58
E-5

E=-60

E-62
E-63
E-64
E-65
E-69
E-67
E-68
E-69
E-70
E-71
E-72
E-73
E-74

E-76
E-77
E-78
E-79
E-80
E-81
E-82
E-83
E-84

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
VMSA VECTOR MULTIPLY AND SCALAR ADD 0.8 1.3 23 14
VSMA VECTOR SCALAR MULTIPLY AND ADD 0.8 1.3 21 14
VSHSB VECTOR SCALAR MULTIPLY AND SUBTRACT 0.8 1.3 2L 14
VMA VECTOR MULTIPLY AND ADD 1.2 1.8 23 15
VMSB VECTOR MULTIPLY AND SUBTRACT 1.2 1.8 23 15
VAM VECTOR ADD AND MULTIPLY 1.2 1.8 23 14
VSBM VECTOR SUBTRACT AND MULTIPLY 1.2 1.8 23 14
VSMSA  VECTOR SCALAR MULTIPLY AND SCALAR ADD 0.5 0.8 23 15
MMA VECTOR MULTIPLY, MULTIPLY, AND ADD 1.5 2.3 27 19
VMMSB VECTOR MULTIPLY MULTIPLY AND SUBTRACT 1.5 2.3 27 19
VAAM VECTOR ADD, ADD, AND MULTIPLY 1.5 2.3 13 20
VSBSBM VECTOR SUBTRACT SUBTRACT AND MULTIPLY 1.5 2.3 13 20
VAND VECTOR LOGICAL AND 0.8 1.3 20 8
VEQV VECTOR. LOGICAL EQUIVALENCE 0.8 1.3 20 8
VOR VECTOR LOGICAL OR 0.8 1.3 20 8
VFRAC  VECTOR TRUNCATE TO FRACTION 0.7 0.8 13 13
VINT VECTOR TRUNCATE TO INTEGER 0.5 0.8 9 9
VINDEX VECTOR INDEX 0.8 1.3 28 26
VECTOR~-TO-SCALAR OPERATIONS
SVE SUM OF VECTOR ELEMENTS 0.3 0.3 7 7
SVEMG SUM OF VECTOR ELEMENT MAGNITUDES 0.3 0.3 10 10
SVESQ SUM OF VECTOR ELEMENT SQUARES 0.3 0.3 10 10
SVSs SUM. OF VECTOR SIGNED SQUARES 0.3 0.3 11 11
DOTPR  DOT PRODUCT 0.5 0.8 21 9
MAXV MAXIMUM ELEMENT IN VECTOR 0.3 0.3 19 19
MINV MINIMUM ELEMENT IN VECTOR 0.3 0.3 19 19
MAXMGV MAXIMUM MAGNITUDE ELEMENT IN VECTOR 0.3 0.3 19 19
MINMGV MINIMUM MAGNITUDE ELEMENT IN VECTOR 0.3 0.3 19 19
MEANV  MEAN VALUE OF VECTOR ELEMENTS 0.3 0.3 49 49
MEAMGV. MEAN OF VECTOR ELEMENT MAGNITUDES 0.3 0.3 52 52
MEASQV MEAN OF VECTOR ELEMENT SQUARES 0.3 0.3 52 52
RMSQV  ROOT-MEAN~SQUARE OF VECTOR ELEMENTS 0.3 0.3 81 81
VECTOR COMPARISON OPERATIONS
VMAX VECTOR MAXIMUM 0.8 1.3 22 13
VMIN VECTOR MINIMUM 0.8 1.3 22 13
MAXMG VECTOR MAXIMUM MAGNITUDE 0.8 1.3 14 14
YMINMG VECTOR MINIMUM MAGNITUDE 0.8 1.3 14 14
VCLIP VECTOR CLIP 0.5 0.8 16 16
VICLIP VECTOR INVERTED CLIP 0.7 0.8 19 19
VLIM VECTOR LIMIT 0.5 0.8 14 14
LVGT LOGICAL VECTOR GREATER THAN 0.8 1.3 23 13
LVGE LOGICAL VECTORGREATER THAN OR EQUAL 0.8 1.3 23 13
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E-85
E-86
E-87
E-88

E-117
E-118
E~-120
E-121
E-123
E-125
E-126
E-127
E-128
E-129
E-130

Typical Program
Execution Size
Name Operation Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
LVEQ LOGICAL VECTOR EQUAL 0.8 1.3 23 13
LVNE LOGICAL VECTOR NOT EQUAL 0.8 1.3 23 13
LVNOT  LOGICAL VECTOR NOT 0.5 0.8 21 12
VLMERG VECTOR LOGICAL MERGE 0.8 1.5 23 16
COMPLEX VECTOR ARITHMETIC
CVMOV  COMPLEX VECTOR MOVE 0.3 1.3 9 9
CVFILL COMPLEX VECTOR FILL 0.5 0.7 8 3
CVCOMB COMPLEX VECTOR COMBINE 1.1 1.7 10 10
CVREAL FORM COMPLEX VECTOR OF REALS 0.8 1.2 -9 9
VREAL  EXTRACT REALS OF COMPLEX VECTOR 0.5 0.8 17 7
VIMAG  EXTRACT IMAGINARIES OF COMPLEX VECTOR 0.5 0.8 18 8
CVNEG COMPLEX VECTOR NEGATE 0.8 1.3 11 11
CVCONJ COMPLEX VECTOR CONJUGATE 0.7 1.3 10 12
CVADD COMPLEX VECTOR ADD 1.0 2.0 13 12
CVSUB  COMPLEX VECTOR SUBTRACT 1.0 2.0 13 i2
CVMUL COMPLEX VECTOR MULTIFLY 1.0 2.0 25 26
CVSMUL COMPLEX VECTOR SCALAR MULTIPLY 0.8 1.3 12 12
CVRCIP COMPLEX VECTOR RECIPROCAL 5.2 5.2 50 50
CRVADD COMPLEX AND REAL VECTOR ADD 1.3 1.8 14 14
CRVSUB COMPLEX AND REAL VECTOR SUBTRACT 1.3 1.8 14 14
CRVMUL COMPLEX AND REAL VECTOR MULTIPLY 1.3 1.8 14 14
CRVDIV COMPLEX AND REAL VECTOR DIVIDE 3.3 3.3 92 92
CVMA - COMPLEX VECTOR MULTIPLY AND "ADD 1.3 2.7 29 30
CVMAGS COMPLEX VECTOR MAGNITUDE SQUARED 0.7 1.2 13 18
SCJMA  SELF~CONJUGATE MULTIPLY AND ADD 0.8 1.5 14 15
POLAR  RECTANGULAR TO POLAR CONVERSION 9.5 19.5 120 120
RECT POLAR TO RECTANGULAR CONVERSION 2.3 2.3 49 49
CVEXP COMPLEX VECTOR EXPONENTIAL 2.0 2.0 43 43
CVMEXP VECTOR MULTIPLY COMPLEX EXPONENTIAL 2.3 2.3 48 48
CDOTPR COMPLEX DOT PRODUCT 0.7 1.3 15 16
DATA FORMATING OPERATIONS
VFLT VECTOR INTEGER FLOAT 0.5 0.8 i3 11
VFIX VECTOR INTEGER FIX 0.7 0.8 18 7
VSMAFX VECTOR SCALAR MULTIPLY, ADD, AND FIX 0.7 0.8 14 13
VSCALE VECTOR SCALE (POWER 2) AND FIX 0.7 0.8 12 12
VSCSCL VECTOR SCAN, SCALE (POWER 2) AND FIX 1.5 1.7 19 19
VSHFX VECTOR SHIFT AND FIX 0.7 0.8 9 9
VUP8 VECTOR 8-BIT BYTE UNPACK 0.5 0.5 71 71
VUPS8 VECTOR 8-BIT SIGNED BYTE UNPACK 0.9 0.9 107 107
VPX38 VECTOR 8-BIT BYTE PACK 0.9 0.9 65 65
VUP16 VECTOR 16-BIT BYTE UNPACK 0.8 0.8 61 61
VUPS16 VECTOR 16-BIT SIGNED BYTE UNPACK 1.3 1.3 58 58
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Typical Program

Execution Size
Page Name Operation Time/Loop (AP
(us) PS words)

167 | 333 167 | 333

E-131 VPX16 VECTOR 16-BIT BYTE PACK 0.8 0.8 46 46
E-132 VFLT32 VECTOR 32-BIT INTEGER FLOAT 1.7 1.7 65 65
E-133 VFIX32 VECTOR 32-BIT INTEGER FIX 1.2 1.2 33 33
E-134 VSEFLT VECTOR SIGN EXTEND AND FLOAT 0.8 0.8 15 15
MATRIX OPERATIONS
E-136 MTRANS MATRIX TRANSPOSE 0.3 0.9 18 2
E-137 ™MMUL MATRIX MULTIPLY 0.62*% 0.83 59 59
E-139 MMUL32 MATRIX MULTIPLY (DIMENSION <=32) 0.50%* 0.73 27 27
E-141 MATINV MATRIX INVERSE 1.6 * 2.1 160 160
E-143 SOLVEQ LINEAR EQUATION SOLVER 0.7 * 0.9 216 222
E-145 MVML3  MATRIX VECTOR MULTIPLY (3X3) 2.0 * 2.2 30 30
E-147 MVML4  MATRIX VECTOR MULTIPLY (4X4) 3.3 * 3.8 39 39
E-149 CTRN3 3-DIMENSION COORDINATE TRANSFORMATION 2.3 * 2.5 37 37
E-151 ™ FAST MEMORY MATRIX MULTIPLY 0.43% 61
E-153 FMMM32 FAST MEMORY MATRIX MULTIPLY (<=32) 0.41% 33
FFT OPERATIONS
E-156 CFFT COMPLEX TO COMPLEX FFT (IN PLACE) 0.28% 0.40 186 184
E-158 CFFTB COMPLEX TO COMPLEX FFT (NOT IN PLACE) 0.20% 0.28 189 189
E-160 RFFT REAL TO COMPLEX FFT (IN PLACE) 0.18% 0.27 253 251
E-162 RFFTB REAL 70 COMPLEX FFT (NOT IN PLACE) 0.14% 0.20 252 252
E-164 CFFTSC COMPLEX FFT SCALE 0.8 1.3 42 42
E-165 RFFTSC REAL FFT SCALE AND FORMAT 0.7 0.8 59 59
E-167 CFFT2D COMPLEX TO COMPLEX 2-DIMENSIONAL FFT 0.5 * 0.5 274 274
E-169 RFFT2D REAL TO COMPLEX 2-DIMENSIONAL FFT 0.4 * 0.4 585 585
AUXILIARY OPERATIONS
E-172 CONV CONVOLUTION (CORRELATION) 0.28* 0.28 106 106
E-174 DEQ22 DIFFERENCE EQUATION, 2 POLES, 2 ZEROS 0.8 0.8 25 25
E-175 VPOLY VECTOR POLYNOMIAL EVALUATION 1.0 * 1.2 41 41
E-177 VSUM VECTOR SUM OF ELEMENTS INTEGRATION 0.7 0.8 13 13
E-178 VTRAPZ VECTOR TRAPEZOIDAL RULE INTEGRATION 0.7 0.8 16 16
E-179 VSIMPS VECTOR SIMPSONS 1/3 RULE INTEGRATION 0.7 0.8 25 25
E-180 WIENER WIENER LEVINSON ALGORITHM 0.50*% 0.65 100 100
SIGNAL PROCESSING OPERATIONS (optional)
E-183 HIST HISTOGRAM 1.3 l.4 71 71
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E-184 HANN
E-186 ASPEC
E-187 CS8SPEC
E-188 VAVLIN
E-189 VAVEXP
E-190 VDBPWR
E-191 TRANS
E-192 COHER
E-193 ACORT
E-195 ACORF
E-197 CCORT
E-199 CCORF
E-201 TCONV

Operation

HANNING WINDOW MULTIPLY

ACCUMULATING AUTO-SPECTRUM
ACCUMULATING CROSS-SPECTRUM

VECTOR LINEAR AVERAGING
VECTOR EXPONENTIAL AVERAGIL
VECTOR CONVERSION TO DB (P
TRANSFER FUNCTION
COHERENCE FUNCTION

AUTO-CORRELATION (TIME-DOMAIN)

AUTO-CORRELATION (FREQUENC
CROSS=CORRELATION (TIME-DO
CROSS—-CORRELATION (FREQUEN

POSTTAPERED CONVOLUTION (CORRELATION)

TABLE MEMORY OPERATION

E-204 MTMOV

E-205 TMMOV

E-206 MTIMOV
E-207 TMIMOV
E-208 TTIMOV
E-209 MMTADD
E-210 MMTSUB
E-211 MMTMUL
E-212 MTMADD
E-213 MTIMSUB
E-214 TMMSUB
E-215 MTMMUL
E-216 MTTADD
E-217 MTTSUB
E-218 TMISUB
E-219 WMITMUL
E-220 TTMADD
E-221 TTMSUB
E-222 TTMMUL
E-223 TTITADD
E-224 TTTISUB
E-225 TTTMUL

VECTOR MOVE (MD TO TM)
VECTOR MOVE (TM TO D)

VECTOR MOVE WITH INCREMENT (MD TO

VECTOR MOVE WITH INCREMENT

VECTOR MOVE WITH INCREMENT (TM TO

VECTOR ADD (MD+MD TO TM)

VECTOR SUBTRACT (MD-MD TO
VECTOR MULTIPLY (MD*MD TO
VECTOR ADD (MD+TM TO MD)

VECTOR SUBTRACT (MD-TM TO
VECTOR SUBTRACT (TM-MD TO
VECTOR MULTIPLY (MD*TM TO
VECTOR ADD (MD+TM TO TM)

VECTOR SUBTRACT (MD-TM TO
VECTOR SUBTRACT (TM-MD TO
VECTOR MULTIPLY (MD*TM TO
VECTOR ADD (TM+TM TO MD)

VECTOR SUBTRACT (TM-TM TO
VECTOR MULTIPLY (TM*TM TO
VECTOR ADD (TM+TM TO TM)

VECTOR SUBTRACT (TM~-TM TO
VECTOR MULTIPLY (TM*TM TO

APAL-CALLABLE UTILITY

E-227 DIV
E-228 SQRT
E-229 LOG
E-230 LN

' SCALAR DIVIDE

SCALAR SQUARE ROOT
SCALAR LOGARITHM (BASE 10)
SCALAR NATURAL LOGARITHM

Typical Program
Execution Size
Time/Loop (AP
(us) PS words)
167 | 333 167 | 333
0.7 0.8 41 41
0.8 1.5 21 22
1.3 2.7 39 490
0.8 1.3 54 46
NG 0.8 1.3 33 46
OWER) 1.2 1.3 75 75
3.3 3.3 100 100
4.0 4.5 109 114
0.29% 0.29 121 121
Y-DOMAIN) 1.80*% 2.70 501 489
MAIN) 0.29*% 0.29 121 121
CY-DOMAIN) 2.58*% 3.93 526 310
0.30*% 0.30 112 112
S (optional)
0.2 0.3 6 7
0.2 0.3 5 5
™) 0.5 0.5 7 7
(TM TO MD) 0.3 0.3 15 15
™) 0.5 0.5 7 7
0.7 0.8 20 13
™) 0.7 0.8 20 13
™) 0.7 0.3 20 13
0.5 0.8 20 9
MD) 0.5 0.8 2 9
MD) 0.5 0.8 20 3
MD) 0.5 0.8 20 9
0.5 0.5 20 20
™) 0.5 0.5 20 20
™) 0.5 0.5 20 20
™) 0.5 0.5 20 20
0.5 0.5 20 20
MD) 0.5 0.5 20 20
MD) 0.5 0.5 20 20
0.7 0.7 9 9
™) 0.7 0.7 9 9
™) 0.7 0.7 10 10
OPERATIONS
3.8 @ 3.8 28 28
3.8 @ 3.8 2 28
4a7 @ 4.7 37 37
4.0 @ 4.0 37 37
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E-231
E-232
E-233
E-234
E-235
E-236
E-237
E-238
E-239
E-240
E-241
E-242
E-243
E-244
E-245
E~246
E-247
E-248
E-249
E-250
E-252
E-253
E-254
E-255
E~256
E-257
E-258
E-259
E-260
E-261
E-262
E-263
E-264
E-265
E-266
E-267
E-268
E-269
E-270
E-271
E=-272
E-273
E-275
E-277
E-278
E-279
E-280
E-281
E-282
E-284

Name

EXP
SIN
Cos
ATAN
ATN2
SPFLT
SPUFLT
SPNEG
SPADD
SPSUB
SPMUL
SPDIV
SPRS
SPLS
SPAND
SPOR
SPNOT
SAVESP
SAVSPOQ
SETSP
SET2SP
MDCOM
ZMD
RDCS
SETCS
DAREAD
DAWRIT
VFCL1
VFCL2
BITREV
REALTR
FFT2
FFT4
FFT2B
FFT4B
STSTAT
CLSTAT
ILOG2
ADV2
ADV4
SET24B
XCFFT
XRFFT
XBITRE
XREALT
PCFFT
IFFT4
CTOR
RTOC
SSDA

Operation

SCALAR EXPONENTIAL

SCALAR SINE

SCALAR COSINE

SCALAR ARCTANGENT

SCALAR ARCTANGENT OF Y/X

FLOAT S~PAD INTEGER

S-PAD UNSIGNED FLOAT

S~-PAD NEGATE

S-PAD ADD

S-PAD SUBTRACT

S-PAD MULTIPLY

S§-PAD DIVIDE

S-PAD RIGHT SHIFT

S-PAD LEFT SHIFT

S-PAD AND

S-PAD OR

S-PAD NOT

SAVE S-PAD INTO PROGRAM MEMORY
SAVE S-PAD O INTO PROGRAM MEMORY
LOAD S-PADS FROM PROGRAM MEMORY
LOAD 2 S-PADS FROM PROGRAM MEMORY
MAIN DATA COMPARE AND SET S-PAD
CLEAR ALL PAGES OF MAIN DATA MEMORY
READ CONTROL BIT 5 INTERRUPT

SET CONTROL BIT 5 INTERRUPT

READ DEVICE ADDRESS REGISTER

WRITE DEVICE ADDRESS REGISTER
VECTOR FUNCTION CALLER (1 ARGUMENT)
VECTOR FUNCTION CALLER (2 ARGUMENT)
COMPLEX VECTOR BIT REVERSE ORDERING
REAL FFT UNRAVEL AND FINAL PASS
RADIX 2 FFT FIRST PASS

RADIX 4 FFT PASS

RADIX 2 FFT FIRST PASS + BIT REVERSE
RADIX 4 FFT FIRST PASS + BIT REVERSE
SET FFT MODE STATUS BITS

CLEAR FFT MODE STATUS BITS
LOGARITHM (BASE 2)

ADVANCE POINTERS AFTER RADIX 2 FFT
ADVANCE POINTERS AFTER RADIX 4 FFT
SETUP FOR FFT2B AND FFT4B

EXPANDED COMPLEX FFT

EXPANDED REAL FFT

EXPANDED BIT REVERSE

EXPANDED REAL FFT FINAL PASS
PARTIAL COMPLEX FFT

EXPANDED RADIX 4 FFT PASS

COMFLEX TO REAL FFT UNSCRAMBLE
REAL TO COMPLEX FFT SCRAMBLE

SINGLE + SINGLE TO DOUBLE ADD

FPS 860-7288-C04 B - 6

—

Typical Program
Execution Size
Time/Loop (AP

(us) PS words)
167 | 333 167 | 333
4.2 @ 4.2 28 28
4.9 @ 4.9 35 35
5.4 @ 5.4 35 35
8.7 @ 8.7 74 74
3.8 @13.8 4 74
0.8 @ 0.8 5 3
0.8 @ 0.8 8 8
0.3 @ 0.3 2 2
0.2 @ 0.2 1 1
0.2 @ 0.2 1 1
2.3 @ 2.3 14 14
6.2 @ 6.2 43 43
0.3 * 0.3 5 5
0.3 *# 0.3 5 5
0.2 @ 0.2 1 1
0.2 @ 0.2 1 1
0.2 @ 0.2 1 1
0.8 * 0.8 18 18
2.0 * 2,0 11 11
2.3 * 2.3 33 33
5.7 @ 5.7 33 33
1.8 @ 2.0 11 11
0.2 0.3 29 29
l.5 @ 1.5 9 9
0.2 @ 0.2 1 1
0.3 @ 0.3 2 2
0.3 @ 0.3 2 2
0.8 1.0 10 19

1.0 1.0 11 11
0.9 led 45 43
0.4 0.7 68 68
1.3 2.7 16 16
3.7 5.3 79 79
1.3 2.7 25 25
2.7 5.3 43 43
5.0 @ 5.0 19 19
0.5 @ 0.5 19 19
4.0 @ 4.0 19 19
0.7 @ 0.7 7 7
0.7 @ 0.7 7 7
l.2 @ 1.2 8 8
0.32% 0.42 187 187
0.19*% 0.28 256 256
3.7 3.7 44 44
0.4 0.7 71 71
1.05% 1.50 117 117
3.7 5.3 79 79
0.13*% 0.13 80 80
0.09*% 0.09 143 143
1.5 @ 1.5 10 10
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Name

SSDM
SDPA
DDDA
DDDM

#e i

@

Operation

SINGLE * SINGLE TO DOUBLE
SINGLE + DOUBLE TO DOUBLE
DOUBLE + DOUBLE TO DOUBLE
DOUBLE * DOUBLE TO DOUBLE

Timing host system dependent

MULTIPLY
ADD
ADD
MULTIPLY

Typical Program
Execution Size
Time/Loop (AP

(us) PS words)

167 | 333 167 | 332
11.5 @1l.5 81 81
4.5 @ 4.5 28 28
7.5 @ 7.5 48 48
18.5 @18.5 117 117

Refer to description of routine for explanation of timing

Total execution time

FPS 860-~7288-004 B
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APPENDIX C ABBREVIATED DESCRIPTIONS OF ROUTINES

Routine Purpose

DATA TRANSFER AND CONTROL OPERATIONS (APEX)

E-4

CALL APPUT (H0ST,AP,N,TYPE) PUT DATA INTO THE AP

HOST = An array name, array element, To transfer data from the host

TYPE

E-6

variable, or coumstant which computer memory into the AP
specifies the initial host data main data memorye.
element to be transferred.

An integer constant, variable, or

expression which specifies the base

address in AP main data memory

into which data is to be transferred.

Element count (AP data words)

An integer specifying the host data

type and format conversion during

data transfer to the AP.

0 32-bit integers. Stored without
format conversion into the low
32-bits (bits 8-=39) of AP
main data memory words.

1 16-bit integers. Converted into un=-
normalized AP floating-point
numbers. These numbers must be
normalized (using VFLT) before they
can be processed by the AP.

2 Host single-precision (real) floating-
point numbers. Converted "on the f£1y"
to normalized AP floating-point
numbers.

3 TIBM 360 32-bit format floating-point
numbers. Converted "on the £ly"
to normalized AP floating-point
numbers.

CALL APGET (HOST,AP,N,TYPE) GET DATA FROM THE AP

HOST = An array name, array element, To transfer data from the AP

AP

N

variable, or comstant which main data memory into the host
specifies the imitial host memory computer memory.

location to receive transferred data.

An integer comstant, variable, or

expression which specifies the base

address in AP main data memory

from which data is to be transferred.

= Flement count (AP data words)

FPS 860-7288-004 c - 1
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Routine

TYPE = An integer specifying the host data
type and format counversion during
data transfer from the AP.

E-8

E-11

G

"~

CALL

CALL

CALL

CALL

32-bit integers. The low 32 bits
(bits 8=39) of AP memory words
are transferred without format
conversion into the host memory.

16=~bit integers. The low 16 bits
(bits 24-39) of AP memory words
are stored into host integer
locations.

AP floating-point numbers are
converted "on the fly" into host
single-precision (real) floating-
point numbers. '

AP floating=-point numbers are
converted "on the fly" into IBM 3
32-bit format floating-point numb
in the host.

APCLR

APWD -~

APWR

APWAIT

E-12 CALL APGSP(I,NREG)
I = Value contained in S-Pad register
= S-Pad register anumber (1 to 15)

NREG

E-13 CALL APCHK(IERR)
IERR = Error information from AP
program.

FPS 860-7288-004
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Purpose

60
ers

INITIALIZE THE AP
To initialize the AP by
clearing the hardware status
and initializing APEX.

WAIT FOR AP DATA TRANSFER
To delay host program execution
until any previously initiated
data transfer between the host
and the AP has been completed.

WAIT FOR AP PROGRAM EXECUTION
To delay host program execution
until any previously initiated
AP program has been completed.

WALIT FOR AP
To delay host program execution
until the AP is done
transferring data and executing
a program.

READ AN AP S-PAD REGISTER
To read the contents of an AP
S-Pad register.

CHECK AP PROGRAM ERROR CONDITION
To check error information
returned by certain AP Math
Library programs.



Page Routine

Z-14 CALL APSTAT (IERR,ISTAT)
IZRR = Set to 1 if hardware error
detected, 0 otherwise

ISTAT = A 4-element array to delineate
the error conditions as follows:

ISTAT(l) = Arithmetic overflow
ISTAT(2) = Arithmetic underflow
ISTAT (3) = Divide by zero

ISTAT (4) = Format conversiomn

overflow/underflow

Purpose

GET AP HARDWARE STATUS
To read the AP status and DMA
control registers.

BASIC VECTOR ARITHMETIC

E-16 CALL VCLR(C,K,N)

Destination vector base address
C address increment

Element count

2RO
[/ |

lo3]
i
~4

ZR O H B
4 W onouu

CALL VMOV(A,I,LC,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

E-18 CALL VSWAP(A,I,C,K,N)
A = Vector base address
1 = A address increment
C = Vector base address
K = C address increment
N = Element count
E-19 CALL VFILL(A,C,K,N)
A = Address of constant value
C = Destination vector base address
K = C address increment
N = Element count

E-20 CALL VRAMP(A,B,C,K,N)

Address of initial ramp value
Address of ramp increment
Destination vector base address
C address increment

Element count

2RO W
Wow N

E-21 CALL VNEG(A,I,C,K,N)
A = Source vector base address
I = A address increment
C = Destination vector base address
K = C address increment

FPS 860-7288-004

VECTOR CLEAR
To clear elements of a vector.

VECTOR MOVE
To move elements of a vector
from one location to another.

VECTOR SWAP
To swap data between two
vectors.

VECTOR FILL
To f£fill elements of a vector
with a constant.

VECTOR RAMP
To f1ill elements of a vector
with a ramp function.

VECTOR NEGATE
To negate elements of a vector.
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Routine

Element count

CALL VADD(A,I,E,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL VSUB(A,I,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment

Destination vector base address
C address increment

Element count

CALL VMUL(A,I1,3,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL VDIV(A,I,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL VSADD(A,I,B,C,K,N)

= Source vector base address

A address increment

Scalar address

Destination vector base address
C address increment

Element count

CALL VSMUL(A,I,B,C,K,N)

Source vector base address

A address increment

Scalar address

Destination vector base address
C address increment

Element count

860-7288-004

Purpose

VECTOR ADD
To add the elements of two
vectors.

VECTOR SUBTRACT

To subtract the elements of two

vectors.

VECTOR MULTIPLY

To multiply the elements of two

vectors.

VECTOR DIVIDE
To divide the elements of two
vectors.

VECTOR SCALAR ADD

To add a scalar to the elements

of-a vector.

VECTOR SCALAR MULTIPLY
To multiply the elements of a
vector by a scalar.
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Routine

CALL VTSADD(A,I,B,C,K,N)

Source vector base address

A address increment

Scalar address (Table Memory)
Destination vector base address

= C address increment

Element count

CALL VTSMUL (A,I,B,C,K,N)

Source vector base address

A address increment

Scalar address (Table Memory)
Destination vector base address
C address increment

Element count

CALL VsSQ(a,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VSSQ(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VABS(A,I,C,K,N)

= Source vector base address
= A address increment

Destination vector base sddrass
C address increment
Element count

CALL VSQRT(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VLOG(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VLN(A,I,C,K,N)
Source vector base address
A address increment

FPS 860-7288-004

Purpose

VECTOR TABLE SCALAR ADD
Te add a table memory scalar to
the elements of a vector.

VECTOR TABLE SCALAR MULTIPLY
To multiply the elements of a
vector by a table memory
scalar.

VECTOR SQUARE
To square the elements of a
vector.

VECTOR SIGNED SQUARE
To multiply each element of a
vector by the absolute value of
that element.

VECTOR ABSOLUTE VALUE
To take the absolute value of
the elements of a vector.

VECTOR SQUARE ROOT
To take the square root of the
elements of a vector.

VECTOR LOGARITHM (BASE 10)
To take the logarithm (base 10)
of the elements of a vector.

VECTOR NATURAL LOGARITHM
To take the natural logarithm
of the elements of a vector.
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Routine

= Destination vector base address

C address increment
Element count

CALL VALOG(A,I,C,K,N)
Source vector base address
A address increment

= Destination vector base address
= C address increment

Element count

CALL VEXP(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VSIN(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VCOS(A,I,C,XK,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL VATAN(A,I,C,K,N)

Source vector base address

A address increment

Destination vector base address
C address increment

Element count

CALL VATN2(A,I,B,J,C,K,N)
Source vector base address

A address increment

Source vector base address

B address increment
Destinatiqn vector base address
C address increment

Element count

CALL VRAND (A,C,K,N)

Address of random number seed
Destination vector base address
C address increment

Element count
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Purpose

VECTOR ANTILOGARITHM (BASE 10)
To take the antilogarithm of
the elements of a vector.

VECTOR EXPONENTIAL
To take the exponential of the
elements of a vector.

VECTOR SINE
To compute the sine of the
elements of a vector.

VECTOR COSINE
To compute the cosine of the
elements of a vector.

VECTOR ARCTANGENT
To take the arctangent of the
elements of a vector.

VECTOR ARCTANGENT OF Y/X
To take the arctangent of the
ratio of the elements of two
vectorse.

VECTOR RANDOM NUMBERS
To £111 elements of a vector
with random numbers.
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Routine

CALL vMSA (A,I,B,J,C,D,L,N)

Purpose

VECTOR MULTIPLY AND SCALAR ADD

A = Source vector base address To multiply the elements of two
I = A address increment vectors and add a scalar to the
3 = Source vector base address products.
J = B address increment
C = Scalar address
D = Result vector base address
L =D address increment
N = Vector length
E- CALL VSMA(A,I,B,C,K,D,L,N) VECTOR - SCALAR MULTIPLY AND ADD
= Source vector base address To multiply the 2lements of a

A address increment

Scalar address

Source vector base address

C address increment
Destination vector base address
D address increment

Element count

CALL VSMSB(A,I,B,C,K,D,L,N)

= Source vector base address
= A address increment

Scalar address

vector by a scalar and add a
second vector to the products.

VECTOR SCALAR MULTIPLY AND SUBTRACT
To multiply the elements of a
vector by a scalar and subtract
a second vector from the

Source vector base address

C address increment
Destination vector base address
D address increment

Element count

products.

1
ZﬁU?ﬁOtﬁHD»g
[ ] 0o

[§2}
]
[e))

CALL VWMA(A,I,B,J,C,K,D,L,N)

= Source vector pase address

= A address increment

Source vector base address

B address increment

Source vector base address

C address increment
Destination vector base address
= D address increment

= Element count

VECTOR MULTIPLY AND ADD
To multiply the elements of two
vectors, and add the products
to a third vector, i.e.,
D={A*B)+C.

20 0RO GWHP &
(]

VECTOR MULTIPLY AND SUBTRACT
To multiply the elements of two
vectors, and subtract a third
vector from the products, i.e.,
D=(A*B)=C.

o
1

ZHEUOUKROGWwWH D S
[]

CALL VMSB(A,I1,B,J,C,K,D,L,N)

= Source vector base address

= A address increment

= Source vector base address

B address increment

Source vector base address

C address increment

= Destination vector base address
D address increment

Element count

[

[]

VECTOR ADD AND MULTIPLY
To add the elements of two

CALL vaM(A,I,B,J,C,K,D,L,N)
Source vector base address

i
it
[ee]
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Page Routine Purpose

= A address increment vectors, and multiply the sum
= Source vector base address by a third vector, i.e.,
= B address increment D=(A+B)*C.

Source vector base address

= C address increment

= Destination vector base address
= D address increment

= Element count

CALL VSBM(A,I,B,J,C,K,D,L,N) VECTOR SUBTRACT AND MULTIPLY
= Source vector base address To subtract the elements of two
= A address increment vectors, and multiply the
= Source vecter base address difference bv a third vector,
= 3 address increment i.e., D=(A=~B)*C.

= Source vector base address

= C address increment

= Destination vector base address
= D address increment

Element count

ta
1
ZH YR O w;g Y ON O LW

E-50 CALL VSMsaA(A,I1,3,C,D,L,N) : VECTOR SCALAR MULTIPLY AND SCALAR ADD
A = Source vector base address To multiply the elements of a
I = A address increment vector by a scalar and add a
B = Multiplying scalar address second scalar tc the products.
C = Adding scalar address
D = Destination vector base address
L =D address increment
N = Element count
E-51 CALL VMMA(A,I,B,J,C,K,D,L,E,M,N) , VECTOR MULTIPLY, MULTIPLY, AND ADD
A = Source vector base address To multiply the elements of two
I = A address increment vectors, multiply the elements
3 = Source vector base address of a second set of two vectors,
J = B address increment and add the two product
C = Source vector base address vectors, i.e. E=(A*B)+(C*D).
X = C address increment
D = Source vector base address
L = D address increment
E = Destination vector base address
M = E address increment
N = Element count
Z-52 CALL VMMSB{(A,I,B8,J,C,X,D,L,E,M,N) VECTOR MULTIPLY MULTIPLY AND SUBTRACT
= Source vector base address To multiply the elements of two
= A address increment vectors, multiply the elements
= Source vector base address of a second set of two vectors,
= B address increment and subtract the two product
= Source vector base address vectors, i.e. E=(A*B)=(C*D).

C address increment

= Source vector base address

D address increment

Destination vector base address
= E address increment

= Element count

ZREE O RO QW
0
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Routine

CALL VAAM(A,I,3,J,C,%X,D,L,E,M,N)
Source vector base address

= A address increment
= Source vector base address

B address increment

Source vector base address

C address increment

Source vector base address

D address increment _
Destination vector base address
E address increment

Element count

CALL VSBSBM(A,I,B,J,C,K,D,L,E,M,N)
Source vector base address

A address increment

Source vector base address

B address increment

Source vector base address

= C address increment
= Source vector base address
= D address increment

Destination vector base address
E address increment
Element count

CALL VAND(A,I1,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment )
Destination vector base address

= C address increment
= Element count

CALL VEQV(A,I,B,J,C,K,N)
Source vector base address
A address increment

= Source vector base address
= B address increment

Destination vector base address
C address increment
Element count

CALL VOR(A,I,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment

Destination vector base address
C address increment

Element count

FPS 860-7288-004 C

Purpose

VECTOR ADD, ADD, AND MULTIPLY
To add the elements of two
vectors, add the elements of a
second set of two vectors, and
multiply the two sum vectors,
i.e. E=(A+B)*(C+D).

VECTOR SUBTRACT SUBTRACT AND MULTI?LY

To subtract the elements of two
vectors, subtract the elements

of a second set of two vectors,
and multiply the two difference
vectors, i.e. E=(A-B)*(C-D).

VECTOR LOGICAL AND
To logically AND the elements
of two vectors.

VECTOR LOGICAL EQUIVALENCE
To logically EQUIVALENCE the
elements of two vectors.

VECTOR LOGICAL OR
To logically OR the elements of
two vectors.



Page Routine Purpose

£-38 CALL VFRAC(A,I,C,K,N) VECTOR TRUNCATE TO FRACTION
A = Source vector base address To truncate the elements of a
I = A address increment vector to their fractiomal
C = Destination vector base address parts.
XK = C address increment
N = Element count
£-59 CALL VINT(A,I,C,K,N) VECTOR TRUNCATE TO INTEGER
A = Source vector base address To truncate the slements of a
I = A address increment vector to integer floating
C = Destination vector base address point anumbers.
K = C address increment
N = Element count

£-60 CALL VINDEX(A,B,J,C,K,N) VECTOR INDEX
A = Source vector base address To form a vector by using the
B = Index vector base address elements of one vector as the
J = B address increment addresses by which to select
C = Destination vector base address the elements of a second
K = C address increment vector.
N = Element count
VECTOR-TO-SCALAR OPERATIONS
E-62 CALL SVE(4A,I,C,N) SUM OF VECTOR ELEMENTS
A = Source vector base address To sum the elements of a
T = A address increment vector.
C = Destination scalar address
N = Element count
E-63 CALL SVEMG(A,I,C,N) SUM OF VECTOR ELEMENT MAGNITUDES
A = Source vector base address To sum the absolute values of

1 = A address increment the elements of a vector.
C = Destination scalar address
= Element count

©-64 CALL SVESQ(A,I,C,N) SUM OF VECTOR ELEMENT SQUARES
A = Source vector base address To sum the squares of the
I = A address increment elements of a vector.
C = Destination scalar address
N = Element count

E-65 CALL SVS(A,I,C,N) SUM OF VECTOR SIGNED SQUARES
A = Source vector base address To sum the signed squares of
I = A address increment the elements of a vector.
C = Destination scalar address
N = Element count

E-66 CALL DOTPR(A,I,B,J,C,N) DOT PRODUCT
A = Source vector base address To compute the dot product of
I = A address increment the elements of two vectors.

FPS 860-7288-004 c - 10
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Routine

Source vector base address
B address increment
Destination scalar address
Element count

CALL MAXV(A,I,C,N)

Source vector base address

A address increment

Destination scalar address
(2 words required)

Element count

CALL MINV(A,I,C,N)

Source vector base address

A address increment

Destination scalar address
(2 words required)

Element count

CALL MAXMGV(A,I,C,N)
Source vector base address
A address increment
Destination scalar address

(2 words required)
Element count

CALL MINMGV(A,I,C,N)
Source vector base address
A address increment
Destination scalar address

2 words required)
Element count

CALL MEANV(A,I,C,N)

Source vector base address
A address increment
Destination scalar address
Element count

CALL MEAMGV(A,I,C,N)
Source vector base address
A address increment
Destination scalar address
Element count

CALL MEASQV(A,I,C,N)
Source vector base address
A address increment
Destination scalar address
Element count

CALL RMSQV(4A,IL,C,N)
Source vector base address
A address increment

FPS 860-7288-004

Purpose

MAXIMUM ELEMENT IN VECTOR
To scan a vector for its
maximum element.

MINIMUM ELEMENT IN VECTOR
To scan a vector for its
minimum element.

MAXIMUM MAGNITUDE ELEMENT IN VECTOR
To scan a vector for its
maximum magnitude (absolute
value) element.

MINIMUM MAGNITUDE ELEMENT IN VECTOR
To scan a vector for its
minimum magnitude (absolute
value) element.

MEAN VALUE OF VECTOR ELEMENTS
To compute the mean (average)
value of the elements of a
vector.

MEAN OF VECTOR ELEMENT MAGNITUDES
To compute the mean (average)
value of the absolute values of
the elements of a vector.

MEAN OF VECTOR ELEMENT SQUARES
To compute the mean (average)
value of the squares of the
elements of a vector.

ROOT-MEAN-SQUARE OF VECTOR ELEMENTS
To compute the square root of
the mean (average) value of the

11
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Element count

Purpose

squares of the elements of a
vector.

VECTOR COMPARISON OPERATIONS
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E-81

CALL VMAX(A,I1,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL VMIN(A,I,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL VMARMG(A,I1,B,J,C,K,N)
Source vector base address

= A address increment
= Source vector base address

B address increment

Destination vector base address
C address increment

Element count

CALL VMINMG(A,I1,B,J,C,K,N)
Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL VCLIP(A,I,B,C,D,L,N)
Source vector base address

A address increment

Address of smaller scalar
Address of larger scalar
Destination vector base address
D address increment

Element count

CALL VICLIP(A,I,B,C,D,L,N)

FPS 860-7288-004

VECTOR MAXIMIM
To form a vector from the
maximum value of each
corresponding pair of elements
of two vectors.

VECTOR MINIMUM
To form a vector from the
minimum value of each
corresponding pair of elements
of two vectors.

VECTOR MAXIMUM MAGNITUDE
To form a vector from the
maximum absolute value of each
corresponding pair of elements
of two vectors.

VECTOR MINIMUM MAGNITUDE
To form a vector from the
minimum absolute value of each
corresponding pair of elements
of two vectors.

VECTOR CLIP
To clip the values of a vector
to within a specified range.

VECTOR INVERTED CLIP

12
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Routine

Source vector base address
A address increment

= Address of smaller scalar
= Address of larger scalar

[]

Destination vector base address
D address increment
Element count

CALL VLIM4(A,I,B,C,D,L,N)

Source vector base address

A address increment

Address of scalar to compare
with source

Address of destination magnitude
scalar h

Destination vector base address
D address increment

Element count

CALL LVGT(A,I,B,J,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL LVGE (A, I,B8,J,C,K,N)
Source vector base address
A address increment

Source vector base address

= B address increment
= Destination vector base address

[ T I L I I I T 1

[ |

C address increment
Element count

CALL LVEQ(a,I,B,J,C,K,XN)

Source vector base address

A address increment '
Source vector base address

B address increment

Destination vector base address
C address increment

Element count

CALL LVNE (A,1,B8,J3,C,K,N)

Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

860~7288-004

Purpose

To exclude values of a vector
from within a specified range.

VECTOR LIMIT
To create a vector limited to a
single value in magnitude,
where the sizn of each element
depends on whether the
corresponding element of a
second vectcr exceeds a certain
value.

LOGICAL VECTOR GREATER THAN

To compare the elements of two
vectors A and B and output a
vector C such that:

C(mK)=1.0 1if A(mI)>B(mJ)
C(mK)=0.0 if A(mI)=<B(mJ)

LOGICAL VECTOR GREATER THAN OR EQUAL

To compare the elements of two
vectors A and B and output a
vector C such that:

C(mK)=1.0 if A(mI)>=B(mJ)
C(mK)=0.0 1if A(mI)<B(mJ)

LOGICAL VECTOR EQUAL

To compare the elements of two
vectors A and B and output a
vector C such that:

C(mK)=1.0 if A(mI)=B (mJ)
C(mK)=0.0 if A(mI)not=B(mJ)

LOGICAL VECTOR NOT EQUAL

To compare the elements of two
vectors A and B and output a
vector C such that:

C(mK)=1.0 if A(mI)not=B(mJ)
C(mK)=0.0 1if A(mI)=B(mJ)

13
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Routine

CALL LVNOT(A,I,C,K,N)

Source vector base address

A address increment

Destination vector base address
C address increment

Element count

CALL VLMERG(A,I,B,J,C,K,D,L,N)
Source vector base address

A address increment

Source vector base address

B address increment

Source vector base address

C address increment
Destination. vector base address
D address increment

= Element count

]

Purpose

LOGICAL VECTOR XNOT
To examine the elements of a
vector A and output a vector
such that:
C(mK)=1.0 if A(mI)=0.0
C(mK)=0.0 if A(mI)mnot=0.0

VECTOR LOGICAL MIRGE
To examine the elements of
three vectors,A,B,and C and
output a vector D such that:
D(mL)=A(mI) if C(mK)not=0.0
D(mL)=B(mJ) if C(mK)=0.0

COMPLEX VECTOR ARITHMETIC

CALL CVMOV(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL CVFILL (A,C,K,N)

= Complex constant base address
= Destination vector base address

C address increment
Complex element count

CALL CVCOMB(A,I,B,J,C,K,N)

= Real source vector base address
= A address increment

bou

Imaginary source vector base address
B address increment
Destination vector base
C address increment

Element count

address

CALL CVREAL(A,I,C,K,N)

Real source vector base address

= A address increment

Destination vector base address
C address increment

Element count

CALL VREAL(A,ILC,K,N)

FPS 860-7288-004 C

COMPLEX VECTOR MOVE
To move the elements of a
complex vector from omne
location to another.

COMPLEX VECTOR FILL
To £ill the elements of a
complex vector with a complex
constant.

COMPLEX VECTOR COMBINE
To form a complex vector by
combining two real vectors.

FORM COMPLEX VECTOR OF REALS
To form a complex vector by
combining a real vector and
zeroing the imaginaries.

EXTRACT REALS OF COMPLEX VECTOR

14
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Routine

Complex source vector base address
A address increment

= Real destination vector base address

C address increment
Element count

CALL VIMAG(A,I,C,K,N)

Complex source vector base address
A address increment

Real destination vector base address
C address increment

Element count

CALL CVNEG(A,I,C,X,N)
Source vector base address
A address increment

= Destination vector base address

C address increment
Element count

CALL CVCONJ(A,I,C,K,X)

Source vector base address

A address increment
Destination vector base address
C address increment

Complex element count

CALL CVADD(A,I,B3,J,C,K,N)
Source vector base address

A address increment

Source vactor base address

B address increment
Destination vector base address
C address increment

Element count

CALL CVSUB(A,I1,B,J,C,K,N)
Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

Element count

CALL CVMUL(A,I1,B,J,C,K,N,F)
Source vector base address

A address increment

Source vector base address

B address increment
Destination vector base address
C address increment

= Complex element count
= Conjugate flag,

860~7288-004 C

Purpose

To form a real vector by
extracting the real parts from
a complex vector.

EXTRACT IMAGINARIES OF COMPLEX VECTOR
To form a real vector by
extracting the imaginary parts
from a complex vector.

COMPLEX VECTOR XNEGATE
To negate the elements of a
complex vector.

COMPLEX VECTOR CONJUGATE
To conjugate the elements of a
complex vector.

COMPLEX VECTOR ADD
To add the elements of
complex vectors.

two

COMPLEX VECTOR SUBTRACT
To subtract the elements of two
complex vectorse.

COMPLEX VECTOR MULTIPLY
To multiply the elements of two
complex vectors.

15
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= Source vector base address
= B address increment

Routine

+1 = normal complex multiply
-1 = multiply with conjugate of A

CALL CVSMDL(A,I,B,C,%,N)
Source vector base address
A address increment

Scalar address

= Destination vector base address
= C address increment
= Element count

CALL CYRCIP(A,I,C,K,N)
Source vector base address
A address increment

= Destination vector base address

C address increment
Complex element count

CALL CRVADD(A,I,3,J,C,K,N)

Source vector base address (complex)
A address increment

Source vector base address (real)

B address increment

Destination vector base address

C address increment

= Element count

CALL CRVSUB(A,I1.3,J,C,K,N)

Source vector base address (complex)
A address increment

{real)

Destination vector base address
C address increment
Element count

CALL CRVMUL (A,I,3,J,C,X,N)

Source vector base address (complex)
A address increment

Source vector base address (real)

B address increment

Destination vector base address

C address increment

Element count

CALL CRVDIV(A,I,B,J,C,K,N)

Source vector base address (complex)
A address increment

Source vector base address (real)

B address increment

Destination vector base address

C address increment

Element count

860-7288-004 c

Purpose

COMPLEX VECTOR SCALAR MULTIPLY
To multiply the elements of a
complex vector by a real
scalar.

COMPLEX VECTOR RECIPROCAL
To obtain reciprocal of a
complex vector.

COMPLEX AND REAL VECTOR ADD
To add the elements of a
complex vector to the elements
0f a real vector.

COMPLEX AND REAL VECTOR SUBTRACT
To subtract the elements of a
real vector from the elements
of a complex vector.

COMPLEX AND REAL VECTOR MULTIPLY
To multiply the elements of a
complex vector by the elements
of a real vector.

COMPLEX AND REAL VECTOR DIVIDE
To divide the elements of a
complex vector by the elements
of a real vector.
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Routine

CALL CVMA(A,I,B,J,C,K,D,L,N,F)
Source vector base address

A address increment

Source vector base address

B address increment

Source vector base address

C address increment

Destination vector base address

D address increment

Complex element count

Conjugate £flag,

+1 = normal complex multiply
-1 = multiply with conjugate of A

CALL CVMAGS (A,I,C,XK,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Complex element count

CALL sC.MA(A,1,B,J,C,K,N)

Source complex vector base address
A address increment

Source real vector base address

B address increment

Destination real vector base address
C address increment

Complex element count

CALL POLAR(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Complex element count

CALL RECT(A,ILC,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Complex element count

CALL CVEXP(A,I,C,K,N)

Source vector base address

A address increment
Destination vector base address
C address increment

Element count

CALL CVMEXP(A,I1,B,J,C,K,N)
Source vector base address
A address increment

860~7288-004 ' c

Purpose

COMPLEX VECTOR MULTIPLY AND ADD
To multiply the elements of two
complex vectors, and add the
products to a third complex
vector.

COMPLEX VECTOR MAGNITUDE SQUARED
To compute the squared
magnitude of the elements of a
complex vector.

SELF-CONJUGATE MULTIPLY AND ADD
To multiply the elements of a
complex vector by the conjugate
of that vector (squared
magnitude), and add the real
products tc a real vector.

RECTANGULAR TO POLAR CONVERSION
To convert a complex vector
from rectangular to polar form.

POLAR TO RECTANGULAR CONVERSION
To convert a complex vector
from polar to rectangular form.

COMPLEX VECTOR EXPONENTIAL
To calculate the complex
exponential exp(iX)=
COS (X)+1iSIN(X) .

VECTOR MULTIPLY COMPLEX EXPONENTIAL
To multiply a real vector by a
complex exponential.

17



Page Routine Purpose
B = Source vector base address
J = B address increment
C = Destination vector base address
K = C address increment
N = Complex element count
E-115 CALL CDOTPR(A,I,B,J,C,N) COMPLEX DOT PRODUCT
A = Source vector base address To compute the complex dot
I = A address increment product of two complex vectors.
3 = Source vector base address
J = B address increment
C = Destination scalar address
N = Complex element count
DATA FORMATING OPERATIONS
E-117 CALL VFLT (4,I,C,K,N) VECTOR INTEGER FLOAT
A = Source vector base address To convert a vector of integers
I = A address increment to a vector of floating-point
C = Destination vector base address numbers.
K = C address increment
N = Element count
E-118 CALL VFIX(A,I,C,XK,N) VECTOR INTEGER FIX
A = Source vector base address To fix to integers the elements
I = A address increment of a floating=point vector.
C = Destination vector base address
K = C address increment
N = Element count
E-120 CALL VSMAFX(&,7,3,C,D,L,N) VECTOR SCALAR MULTIPLY, ADD, AND FIX
A = Source vector base address To multiply the elements of a
I = A address increment vector by a scalar, add a
B = Multiplying scalar address second scalar to the products,
C = Adding scalar address and fix the resulting sums to
D = Destination vector base address integers.
L =D address increment
N = Element count
E-121 CALL VSCALE(A,I,B,C,X,N,NB) VECTOR SCALE (POWER 2) AND FIX
A = Source vector base address To scale the elements of a
I = A address increment vector by a power of 2 such
B = Scalar base address that a selected scalar will
C = Destination vector base address just fit into a specified
K = C address increment integer bit width, and then fix
N = Element count the scaled elements to
NB = Desired width (2 to 28 bits) of integers.

integers, including sign bit

E-123 CALL VSCSCL(A,ILC,K,N,NB)

FP

A = Source vector base address

S 860-7288=-004

VECTOR SCAN, SCALE (POWER 2) AND FIX
To scale the elements of a

18
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= A address increment

= Destinaticn vector base address
= C address increment

= Zlement count

2N O

integers, including sign bi:

[}
i
(3%
B wm

1 CALL VSHFX(A,I,C,K,N,NS)

A Source vector base address

I = A address increment

C = Destination vector base address
K = C address increment

N = Element count

NS = Power of 2 (may be negative)

E-126 CALL vVUPS(A,I,C,K,N)
A = Source vector base address
I = A address increment
C = Destination vector base address
K = C address increment
N = Element count (source words)

1
A = Source vector base address

I = A address increment

C = Destination vector base address
K = C address increment

N = Element count (source words)

E-128 CALL VPK8(4,I,C,K,N)

A Source vector bhase address

I = A address increment

C = Destination vector base address
K = C address increment

N = Element count (destination words)

E-129 CALL VUP16(A,I,C,K,N)

= Source vector base address

= A address increment

= Destination vector base address
= C address increment

= Element count (source words)

2RO H

E-130 CALL VUPS16(A,I,C,K,N)
A = Source vector base address
I = A address increment
C = Destination vector base address
K = C address increment
N = Element count {(source words) N

E-131 CALL VPK16(A,I,C,K,N)
A = Source vector base address
I = A address increment
C = Destination vector base address

FPS 860-7288-004

NB = Desired width (2 to 28 bits) of

Purpose

vector by a power of 2 such
that the largest magnitude
element will just f£it into a
specified integer bit width,
and then fix the scaled
elements to integers.

VECTOR SHIFT AND FIX
To shift (multiply by a power
of 2) and then fix to integers
the elements of a
floating=-point vector.

VECTOR 8-BIT BYTE UNPACK
To unpack four 8-bit unsigned
bytes f£rom each source vector
word and store them in four
destination words as 38-bit
floating=-point numbers.

VECTOR 8-BIT SIGNED BYTE UNPACK
To unpack four 8-bit 2’s
complement signed bytes from
each source word and store then
in four destination words as
38-bit floating-point numbers.

VECTOR 8=-BIT BYTE PACK
To pack each four 38-bit
floating=point numbers into one
destination word as 8-bit
bytes.

VECTOR 16-BIT BYTE UNPACK
To unpack two l6=-bit unsigned
bytes from each source word and
store them in two destination
words as 38-bit floating- point
positive numbers.

VECTOR 16-BIT SIGNED BYTE UNPACK
To unpack two 16-bit signed 2°s
complement bytes from each
source word and store them in
two destination words as signed
38-bit floating-point numbers.

VECTOR 16-BIT BYTE PACK
To pack each two 38-bit
floating-point numbers into one
destination word as 16-bit

19
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Routine

K = C address increment
Element count (destination words)

4
i

CALL VFLT32(A,I,C,X,N)
Source vector base address
I = A address increment

C = Destination vector base address
K = C address increment

N = Element count

133 CALL VFIX32(A,I,C,K,N)

A = Source vector base address

1 = A address increment

C = Destination vector base address
K = C address increment

N = Element count

CALL VSEFLT(A,I,C,K,N)

= Source vector base address

A address increment
Destination vector base address
C address increment

Element count

LN O H D
W ouon

1]

Purpose

bvtes.

VECTOR 32-BIT INTEGER FLOAT
To float 32-bit signed 2°s
complement integers and store
them as 38-bit floating point
integers.

VECTOR 32-3IT INTEGER FIX
To fix floating-point numbers
from =-2147483648 to 2147483647
and store them in a destinaticn
vector as 32-bit signed 27s
complement integers.

VECTOR SIGN EXTEND AND FLOAT
To extend the sign of a vector
of 16=-bit integers and convert
them to floating=-point numbers.

MATRIX OPERATIONS

136 CALL MTRANS(A,I,C,K,MC,NC)
A = Source matrix base address

I = A address increment
Destination matrix base address
X C address increment
MC = Number of rows of C

(Columns of A)
= Number of columns of C

(rows of A)

NC

E-137 cALL MMUL(A,I,B,J,C,K,MC,NC,NA)

Source matrix base address
= A address increment
Source matrix base address
B address increment
Destination matrix base address
C address increment
= Number of rows in C

(Rows in A)
NC = Number of columns in C

(Columns in B)

NA = Number of columms in A
(Rows in B)

[}

]

1
J
X

A
I
B
C

uC

E-139 CALL MMUL32(A,I,B,J,C,X,MC,NC,NA)

FPS 860-7288-004 C

MATRIX TRANSPOSE
To transpose a matrix.

MATRIX MULTIPLY
To multiply twc matrices.

MATRIX MULTIPLY (DIMENSION <=32)

20



Page Routine Purpose

Source matrix base address To multiply two matrices with
A address increment dimensions <=32.
Source matrix base address
B address increment
Destination matrix base address
= C address increment
C = Number of rows in C

(Rows in A)
NC = Number of columns in C

(Columns in B)

NA = Number of colummns in A (<=32)
(Rows in B)

[]

A
I
B
J
C
K
o

E-141 CALL MATINV(A,N) MATRIX INVERSE
A = Source matrix base address To invert a matrix.
A + N*N = Destination matrix base address
N = Numbers of rows (and columns) in A
E-143 CALL SOLVEQ(A,N,B,M,ROWADD,X,IERR) LINEAR EQUATION SOLVER
A = Coefficient matrix base address To solve a system of
N = Number of rows (and columns) in A simultaneous linear equations.
B = Base address of matrix of M N=-element

right hand sides
M = Number of N-element solution vectors
ROWADD = RBase address of 2*N-element work
vector for row addresses
X = Base address for matrix of M N-element
solution vectors :
IERR = Address of singularity value

E-145 CALL MWML3(A,I,B3,J,JP,C,K,XP,N) MATRIX VECTOR MULTIPLY (3X3)
A = 3x3 matrix base address To multiply a 3x3 matrix by a
I = A address increment series of 3-element column
3 = First source vector base address vectors.
J = Increment between the three

elements in each vector of B
JP = Increment between the first
element of each vector of B
C = First destination vector base address
K = Increment between the three
elements in each vector in C
KP = Increment between the first
element of each vector in C
N = Number of 3-element vectors

E=-147 CALL MVML4(A,I1,B,J,JP,C,K,KP,N) MATRIX VECTOR MULTIPLY (4X4)
A = 4x4 matrix base address To multiply a 4x4 matrix by a
I = A address increment series of 4—element column
B = First source vector base address vectors.
J = Increment between the three

elements in each vector of B
JP = Increment between the first
element of each vector of B
¢ = First destination vector base address

FPS 860-7288-004 C - 21
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Routine

Increment between the three
elements in each vector in C
Increment between the first
element of each vector in C

Number of 4-element vectors

CALL CTRN3(A,B,J,JP,C,D,L,LP,N)
3x3 rotation matrix base address

= First source vector base address
= Increment between the three

JP

(@]

elements in each vector of B

= Increment between the first

elements (x-coordinates) of

each vector of B
Base address of 3-element translation
vector
First destination vector base address
Increment between the three

elements in each vector in D

LP = Increment between the first

N

E-1
B
C

-

MC = Number of rows in

51

NC

elements of each vector in D
Number of 3-element coordinate
vectors

CALL PMMM(A,B,C,MC,NC,NA)
Source matrix base address
Source matrix base address
Destination matrix base address
C

(Rows in A)
Number of columns

(Columns in B)

in C

NA = Number of columns in A

MC = Number of rows in

NC

NA

(Rows in B)

CALL FMMM32(A,B,C,MC,NC,NA)
Source matrix base address
Source matrix base address
Destination matrix base address
C

(Rows in A)
Number of columns

(Columns in B)
Number of columns in A (<=32)

(Rows in B)

in C

Purpose

3-DIMENSION COORDINATE TRANSFORMATION
To transform a series of
3=dimensional coordinates
(translation and rotaticn).

FAST MFMORY MATRIX MULTIPLY
To multiply two matrices.
(Available for 167 ns memory
only.)

FAST MEMORY MATRIX MULTIPLY (<=32)
To multiply two matrices with
dimensions <=32. (Available
for 167 ns wmemory only.)

FFT OPERATIONS

E-156 CALL CFFT(C,N,F)
C = Source and destination vector

FPS 860-7288-004

base address

COMPLEX TO COMPLEX FFT (IN PLACE)
To perform an in-place complex
forward or inverse fast Fourier
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E-160
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53
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E-164

FS

E-167
C =
N1
N2

FPS 8

Routine

Complex element count (power of 2)
Direction flag, +1 for forward
-1 for inverse

CALL CFFTB(A,C,N,F)
Source vector base address
Destination vector base address
Complex element count (power of 2)
Direction flag, +1 for forward

-1 for inverse

CALL RFFT(C,N,F)

Source and destination vector

base address

Real element count (power of 2)

Direction flag, +1 for forward
-1 for inverse

CALL RFFTB(A,C,N,F)

Source vector base address

Destination vector base address

Real element count (power of 2)

Direction flag, +l1 for forward
-1 for inverse

CALL CFFTSC(C,N)

Source and destination vector

base address

Complex element count (power of 2)

CALL RFFTSC(C,N,F,FS)

= Source and destination vector

base address
Real element count (power of 2)
Formatting flag
1,0,-1 = No format change
2 = Unpack RFFT result into N/2
complex elements

o]
]

3 = Unpack RFFT result into N/2 + 1
complex elements
-2 = Pack N/2 complex elements
into RFFT format
-3 = Pack N/2 + 1 complex elements

into RFFT format
= Scaling flag
0 = No scaling
1 = Multiply by 1/(2*N)
-1 = Multiply by 1/(4*N)

CALL CFFT2D(C,N1,N2,F)

source and destination array address
= Number of columns = length of rows
Number of rows = length of columns
(Note: N1*N2 <= 32768)

60-7288-004 ‘ C

Purpose

transform (FFT).

COMPLEX TO COMPLEX FFT (NOT IN PLACE)
To perform a not-in-place
complex forward or invarse fast
Fourier transform (FTT).

REAL TO COMPLEX FFT (IN PLACE)
To perform an in=-pnlace
real=-to=-complex forward
complex~to-real inverse
Fourier transform (FFT).

or a
fast

REAL TO COMPLEX FFT (NOT IN PLACE)
To perform a not-in-place
real-to~-complex forward or a
complex-to-real inverse fast
Fourier transform (FFT).

COMPLEX FFT SCALE
To scale complex-to-complex
forward FFT results.

REAL FFT SCALE AND FORMAT
To scale real-to complex FFT
results and/or change a complex
vector between the special RFFT
complex format and the normal
complex vector format.

COMPLEX TO COMPLEX 2-DIMENSIONAL FFT
Two perform an in place complex
two-dimensional FFT on
rectangular arrays which occupy
no more than 65536 main data

23



Page

Routine

Purpose

2 ZEROS

the vector.

F = Forward-Inverse flag memory locations (one page).
E-169 CALL RFFT2D(C,N1,N2,F) REAL TO COMPLEX 2~DIMENSIONAL FFT
C = Source and destination array address To perform an in place real
N1 = Number of columns = length of rows two-dimensional FFT on
N2 = Number of rows = length of columns rectangular arrays which occupy
(Note: N1*N2 <= 65536) no more than 63536 main data
F = Forward-inverse flag memory locations (one page).
AUXILIARY OPERATICNS
E-172 CALL CONV(a,I,3,J,C,K,N,M) CONVOLUTION (CORRELATION)
A = Operand vector base address To perform a convolution or
I = A address increment correlation operation on two
B = Operator vector base address vectors.
J = B address increment
C = Destination vector base address
R = C address increment
N = Element count for C (result)
M = Element count for B (operator)
(Element count for A (operand) must
be NHI-1)
E-174 CALL DEQ22(A,I,B,C,K,N) DIFFERENCE EQUATION, 2 POLES,
A = Source vector base address To perform a 2-pole, 2~zero
I = A address increment recursive digital filtering
B = Base address of 5 filter coefficients difference equation on a
C = Destination vector base address vector.
X = C address increment
N lement count
£E-175 CALL VPOLY(A,I,B,J,C,K,M,P VECTOR POLYNOMIAL EVALUATION
A = Coefficient vector base address To evaluate a vector
(dighest order coefficient is first) polynomial.
I = A address increment
B = Source vector base address
J = B address increment
C = Destination vector base address
K = C address increment
N = Element count (of B and C)
? = Order of polymomial (>1)
E-177 CALL VSUM(A,ILC,K,N,H) VECTOR SUM OF ELEMENTS INTEGRATION
A = Source vector base address To integrate a vector by
I = A address increment performing a running scaled sum
C = Destination vector base address of the elements of
K = C address increment
N = Element count
H = Address of integration step size
E-~178 CALL VIRAPZ(A,I,C,K,N,H) VECTOR TRAPEZOIDAL RULE INTEGRATION
FPS 860-7288-004 c - 24



Page Routine

A = Source vector base address

I = A address increment

C = Destination vector base address
K = C address increment

N = Element count

H = Address of integration step size
179 CALL VSIMPS(A,I,C,K,N,H)

A = Source vector base address

I = A address increment

C = Destination vector base address
K = C address increment

N = Element count

H = Address of integration step size

E-180 CALL WIENER(LR,R,G,F,A,ISW)

LR = Filter length
R = Source vector base address
(auto-correlation coefficients)
G = Source vector base address
(cross-correlation)
F = Destination vector base address
(filter weighting coefficients)
A = Destination vector base address
(prediction error operator)
ISW = Algorithm switch
0 for spike deconvolution
1 for general deconvolution

Purpose

To integrate a vector by using
the trapezoidal rule.

VECTOR SIMPSONS 1/3 RULE INTEGRATION
To integrate a vector Dy using
Simpson’s 1/3 rule.

WIENER LEVINSON ALGORITHM
To solve a system of single
channel normal equatiomns which
arise in least squares
filtering and prediction
problems.

SIGNAL PROCESSING OPERATIONS (optional)

E-183 CALL HIST(A,I,C,N,NB,AMAX,AMIN)

A = Source vector base address

I = A address increment

C = Histogram vector base address
N = Element count for A

¥B = Element count (bins) in C

HISTOGRAM
To perform a histogram on a
vector.

AMAX = Address of maximum histogram value
AMIN = Address of minimum histogram value

E-184 CALL HANN(A,I,C,X,N,F)

= Source vector base address

A address increment

Destination vector base address

C address increment

Element count (a power of 2)

Normalization £flag

F=0 means unnormalized Hanning window
(peak window value=1.0)

F=1 means normalized Hanning window
(peak window value=1.63)

HANNING WINDOW MULTIPLY
To multiply a vector by a
Hanning window.

mog R O H B
wouonou
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Z-186 CALL ASPEC(A,C,N)
A = Source complex vector base address
C = Destination real vector base address
N = Element count
(Note vector elements cccupy consecutive
addresses.)

CALL CSPEC(A,B,C,N)

Source vector base address

Source vector base address

C = Destination vector base address

N = Element count

(Note vector elements occupy consecutive
addresses.)

E-188 CALL VAVLIN(A,I,B3,C,K,N)
A = Source vector base address
I = A address increment
B = Address for number of vectors

included in current average

C = Averaged vector base address
X = C address increment
N = Element count

E-189 CALL VAVEXP(A,I,B,C,K,N)
A = Source vector base address
I = A address increment
B = Address for discount factor
C = Averaged vector base address
K = C address increment
Y = Element count

CALL VDBPWR(A,I,B,C,K,N)

A = Source vector base address

I = A address increment

B = Address of scalar reference (0 dB)
value

C = Destination vector base address

X = C address increment

N Element count

CALL TRANS (4,B,C,N)
Auto-spectrum base address (real)
Cross-spectrum base address (complex)

N~

E-19
A

N = Element count
Note vector elements occupy consecutive
addresses.)

£-192 CALL COHER(A,B,C,D,N)
A = Auto-spectrum base address (real)

B = Auto-spectrum base address (real)
C = Cross-spectrum base address (complex)
FPS 860-7288-004 o -

B
C = Complex transfer function base address
N
(

Purpose

ACCUMULATING AUTO~-SPECTRUM
To perform accumulating
auto-spectrum calculation on a
complex vector.

ACCUMULATING CROSS=-SPECTRUM
Te perform accumulating
cross—-spectrum calculation on
two complex vectors.

VECTOR LINEAR AVERAGING

To update the linear average of

a sequence of vectors to
include a new vector.

VECTOR EXPONENTIAL AVERAGING
To update the approximately
exponential average of a
sequence of vectors to include
a new vector.

VECTOR CONVERSION TO DB (POWER)
To compute the decibel (power)
equivalents of the elements of
a vector, relative to a
specified scalar value.

TRANSFER FUNCTION
To perform a complex transier
function calculation by
dividing the cross-spectrum by
the auto-spectrum.

COHERENCE FUNCTION
To compute the conerence
function, given the

auto-spectra of two signals and

26
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D = Coherence function base address (real)

Routine

N = Element count
(Note vector elements occupy consecutive
addresses.)

E-193 CALL ACORT (A,C,N,M)
A = Source vector base address
C = Destination vector base address
N = Element count for C (number of lags)
M = Element count for A
(Note vector elements occupy consecutive
addresses.)

]
i
oy

M

CALL ACORF (A, C,N,M)

Source vector base address
Destination vector base address
Element count for C (number of lags)
Element count for A (power of 2)

(Note vector elements occupy consecutive

addresses.

Requires 2M words storage

for A.)

E-197 CALL CCORT(A,B,C,N,M)

A
B
C
N
|

Source vector (operand) base address
Source vector (operator) base address
Destination vector base address
Element count for C (number of lags)
Element count for A and 3

(Note vector elements occupy comnsecutive
addresses.)

E-1
A
B
c
N
M

99

=

CALL CCORF(A,B,C,N,M)
Source vector (operand) base address

= Source vector (operator) base address

Destination vector base address

Element count for C (number of lags)
Element count for A and B (power of 2)

(Note vector elements occupy consecutive

addresses.

Requires 2M words storage for

A and 2M words storage for B.)

E-

N

HIR RO LW H

FPS

01
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A address increment

CALL TCONV(A,I,B,J,C,X,N,M,L)

Source (operand) vector base address
(>0)

Source (operator) vector base address

B address increment
Destination vector base address

C address increment

Element count for C (result)

Element count for B (operator)
Element count for A (operand)

Purpose

the cross-spectrum between
them.

AUTO-CORRELATION (TIME-DOMAIN)
To perform an auto-correlation
operation on a vector using
time-domain techniques.

AUTO-CORRELATION (FREQUENCY-DOMAIN)
To perform an auto~-correlation
operation on a vector using
frequency-domain (FFT)
techniques.

CROSS-CORRELATION (TIME-DOMAIN)
To perform a cross-correlation
operation on two vectors using
time-domain techniques.

CROSS-CCRRELATION (FREQUENCY-DOMAIN)
To perform an cross-correlation
operation on two vectors using
frequency-domain (FFT)
techniques.

POSTTAPERED CONVOLUTION (CORRELATION)
To perform a post-tapered
convolution or correlation
operation on two vectors.

27



Page Routine Purpose
TABLE MEMORY OPERATIONS (optional)
E=204 CALL MTMOV(A,C,MN) VECTOR MOVE (MD TO ™)
A = Source vector base address (D) To transfer elements of a
C = Destination vector base address (TM) vector from main data to table
N = Element count memory, where both vectors are
stored compactly.
E=-205 CALL TMMOV(A,C,M) VECTOR MOVE (TM TO MD)
A = Source vectcocr base address (TM) To transfer elements of a
C = Destination vector base address (MD) vector from table memory to
N = Element count main data memory, where both
vectors are stored compactly.
E-206 CALL MTIMOV(A,I,C,K,N) VECTOR MOVE WITH INCREMENT (D TO
A = Source vector base address (MD) To move elements of a vector
I = A address increment from main data memory to table
C = Destination vector base address (TM) memory, where the increments
K = C address increment between the slements are
N = Element count specified.
E-207 CALL TMIMOV(A,I,C,K,N) VECTOR MOVE WITH INCREMENT (TM TO
A = Source vector base address (TM) To move elements of a vector in
I = A address increment table memory to main data
C = Destination vector base address (MD) memory, where the increments
K = C address increment between elements are specified.
N = Element count
E-208 CALL TTIMOV(A,I,C,K,N) VECTOR MOVE WITH INCREMENT (TM TO
A = Source vector base address (TM) To move elements of a vector
I = A address increment within table memory.
C = Destination vector base address (TM)
K = C address increment
N = Element count
£-209 CALL MMTADD(A,I,B,J,C,K,N) VECTOR ADD (MD+MD TO TM)
A = Source vector base address (MD) To add the elements of two
I = A address increment vectors in main data memory and
B = Source vector base address (MD) store the results in a vector
J = B address increment in table memory.
C = Destination vector base address (TM)
K = C address increment
N = Element count
E-210 CALL MMTSUB(A,I1,B,J,C,K,N) VECTOR SUBTRACT (MD-MD TO TM)
A = Source vector base address (MD) To subtract the elements of two
I = A address inerement vectors in main data memory and
B = Source vector base address (MD) store the results in a vector
J = B address increment in table memory.
C = Destination vector base address (TM)
K = C address increment
N = Element count
FPS 860-7288-004 28
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Routine

CALL MMTMUL(A,I,B,J,C,K,N)
Source vector base address (MD)
A address increment

Source vector base address (MD)
B address increment
Destination vector base address
C address increment

Element count

CALL MTMADD(A,I1,B,J,C,K,N)
Source vector base address (D)
A address increment

Source vector base address (TM)
B address increment
Destination vector base address
C address increment

Element count

CALL MTMSUB(A,I,B,J,C,K,N)

Source vector base address (MD)

A address increment
Source vector base address (TM)
B address increment

= Destination vector base address

-
o

C address increment
Element count

CALL TMMSUB(A,I,B,J,C,K,N)
Source vector base address (TM)

= A address increment
= Source vector base address (MD)

B address increment
Destination vector base address
C address increment

= Element count

s
(V]

—
W uwuwnuw o (I I I |

CALL MTMMUL(A,I,B,J,C,K,N)
Source vector base address (MD)
A address increment

Source vector base address (TM)
B address increment
Destination vector base address
C address increment

Element count

CALL MTTADD(A,I1,B,J,C,K,N)
Source vector base address (MD)
A address increment

Source vector base address (TM)
B address increment
Destination vector base address
C address increment

Element count

860-7288~004

(T™)

MD)

(D)

(MD)

MD)

(TM)

VECTOR SUBTRACT

Purpose

VECTOR MULTIPLY (MD*MD TO TM)

To multiply the elements of two
vectors in main data memory and

store the results in table
Memory.
VECTOR ADD (MD+TM TO MD)

To add elements of a vector in
main data memory to elements of
a vector in table memory and
store the results in main data
memory.

VECTOR SUBTRACT (MD~TM TO MD)

To subtract the elements of a
vector in table memory from the
elements of a vector in main
data memory and store the
results in main data memory.

(TM=MD TO MD)

To subtract the elements of a
vector in main data memory from
a vector in table memory and
store the differences in main
data memory.

VECTOR MULTIPLY (MD*TM TO MD)

To multiply elements of a
vector in main data memory by
elements of a vector in table
memory and store the products
in main data memory.

VECTOR ADD (MD+TM TO ™)

To add the elements of a vector
in main data memory to elements
of a vector in table memory and
store the sums in a vector in
table memory.
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Routine

CALL MTTSUB(A,I,B,J,C,K,N)
Source vector base address (MD)
A address increment

Source vector base address (TM)
3 address increment

Destination vector base address
C address increment

Element count

CALL TMTSUB(A,I,B3,J,C,K,N)
Source vector base address (TM)
A address increment

Source vector base address (MD)
B address increment
Destination vector base address
C address increment

Element count

CALL MTTMUL (A,I1,B,J,C,K,N)
Source vector base address (MD)
A address increment

Source vector base address (TM)
B address increment
Destination vector base address
C address increment

Element count

CALL TTMADD(A,I,L,B,J,C,K,N)
Source vector base address (TM)
A address increment

Source vector base address (TM)
B address increment

Destination vector base address
C address increment

= Element count

r

WouwouHN o

[\
R

CALL TTMSUB(A,I,B,J,C,K,N)
Source vector base address (TM)
A address increment

Source vector base address (TM)
B address increment
Destination vector base address
C address increment

Element count

CALL TTMMUL (A,I,B,J,C,K,N)
Source vector base address (TM)
A address increment

Source vector base address (TM)
B address increment

{T™)

(™)

(T™)

(MD)

(MD)

Destination vector base address (MD)

C address increment
Element count

860-7288-004

Purpose

VECTOR SUBTRACT (MD-TM TO TM)
To subtract the elements of a
vector in table memorv from
elements of a vector in main
data memory and store the
differences in table memory.

VECTOR SUBTRACT (TM-MD TO TM)
To subtract the elements of a
vector in main data memory from
the elements of a vector in
table memory and store the
results in table memory.

VECTOR MULTIPLY (MD*TM TO T™)
To multiply the elements of a
vector in main data memory by
the elements of a vector in
table memory and store the
products in table memory.

VECTOR ADD (TM+TM TO MD)
To add the elements of two
vectors in table memory and
store the sums in main data
MemoTry.

VECTOR SUBTRACT (TM-TM TO MD)
To subtract the elements of two
vectcrs in table memory and
store the difference in main
data memory.

VECTOR MULTIPLY (TM*TM TO MD)
To multiply the elements of two
vectors in table memory and
store the products in main data
Memory.
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Routine

CALL TTTADD(A,I,B,J,C,K,N)
Source vector base address (TM)
A address increment

Source vector base address (TM)

= B address increment
= Destination vector base address

[ 3] [}
i 0 0w (U I I B o

C address increment
Element count

CALL TTTSUB(A,I,3,J,C,K,N)
Source vector base address (TM)
A address increment '
Source vector base address (TM)
B address increment
Destination vector base address
C address increment

Element count

CALL TTTMUL (A,I,B,J,C,XK,N)
Source vector base address (TM)
A address increment

Source vector base address (TM)
B address increment
Destination vector base address

= C address increment

Element count

FPS 860-7288-~004
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Purpose

VECTOR ADD (TM+TM TO TM)

VE

VE

31

To add the alements of two
vectors in-table memory and
store the sums in a thizd
vector in table memory.

CTOR SUBTRACT (TM=TM TO TM)

To subtract the elements of two
vectors in table memory and
store the differences in a
vector in table memory.

CTOR MULTIPLY (TM*TM TO TM)

To multiply the elements of two
vectors in table memory and
store the products in a vecter
in table memory.






APPENDIX D

AP-FORTRAN ROUTINES

Many of the routines in the AP Math Library are available for use in
AP-FORTRAN program units. These routines contain alternate entry
points permitting AP-FORTRAN program units to call them. Because of
these alternate entry points, the routines are called by diffecent
names under AP-FORTRAN. A list cf the routines’ names and their
corresponding AP-FORTRAN calling names is contained in Table D-1. This
table lists all routines callable from AP-FORTRAN program units. The
parameters associated with the routines are described in Appendices C

and E. Regarding the associated parameters, the AP-FORTRAN user should
be aware of the following:

° The data transfer and control operations and the
APAL-callable utility operations are not available under
AP-FORTRAN. The data transfer and control operations are
not needed by the AP-FORTRAN user. The AP-FORTRAN program
unit executes in the AP, and thus transferring data and
controlling operations are already provided for. The
AP-FORTRAN programmer does not need to place data into the
AP using APPUT or retrieve it using APGET; the data can be
made available to the routines by passing common blocks or
defining values in the AP-FORTRAN program unit.

® In Appendices C and E, when parameters are Jdescribed as
base addresses, the AP-FORTRAN user should subscitute che
term "name". For example, the term "source vector base
address" translates into "source vector (or array) name'.
The name specified should be the name of a properly
dimensioned array.

. Parameters which are described as values in Appendices C
and E can be specified as variable names under AP-FORTRAN.
All routines are called by reference under AP-FORTRAN.

wpae RAN=T?2RR-NN4L D - 1



Table D-1

AP-FORTRAN Callable Math Library Routines

ROUTINE JESCRIPTION AP-FORTRAN CALLABLE NAME
ACORF Auto-correlation (frequency-domain) FFACOR(a,c,n,m)

ACORT Auto-corvelation (time-domainj FTACOR(a,c,n,m)

ASPEC Accumulating auto-spectrum FASPEC(a,c,n)

CCORF Cross-correlation (freauency-domain) FFCCIR(a,b,c,n,m)

CCORT Cross-correlation (time-domain) FTCCOR(a,b,c,n,m)
CDOTPR Complex dot product FCDQTP(a,i.b,d.0)

CFFT Complex to complex FFT (in place) FCFFT(c,n,f)

CFFT8 Complex to complex FFT (not in place) FBCFFT(a,c,n,T)

CFFTSC Complex FFTiscale FCCFFT (c,n)

COHER Coherence function FCOHER(a,b,c,d,n)

CONV Convolution! (correlation) FCONV(a,i,b,j,C,k,n,m)
CRVADD Complex and real vector add FCRVAD(a,i,b,5,C,oK,n)
CRVDIV Complex and real vector divide FCRVDI(a,i,b,d.C,Kan)
CRYMUL Complex and real vector multiply FCRVMU(a,1,b,J,C5k,n)
CRVSUB Complex and real vector subtract FCRVSU(a,1,b53,2:Ke0)
CSPEC Accumu1atiﬁg cross-spectrum FCSPEC(a,b,c,n)

CTRN3 3-dimensional coordinate transformation FCTRN3(a,b,d,ipsc.d.T,1p,n)
CYADD Complex vedtor add FCVADD(a,1,b.3,K.0)
CUCIOMB Complex vegtor combine FCVCMB(a,i,b,j,Csk,n)
CVCONJ Complex vector conjugate FCVCNJ (a,1,c,k,n)
CVFILL Complex vector fill FCYFIL(a,c,k,n)

CYMA Complex sector multiply and add FCYMCA(a,1,b,j,c.k.d,1,0,f)
CVMAGS Complex vector magnitude squared FCYMGS(a,i,CsK4n)

cymMov Complex vector move FCYMOV{a,i,c,k,n}

ZYMUL Complex vector multiply FCVMUL(a,1.b,d.cok,n.7)
CVNEG Complex vector negate FCYNEG(a,i,¢,k,n)
CYRCIP Complex ve;tor reciprocal FCYRCI(a,i,c,kyn}
CVREAL From complex vector of reals FCVREAL{a,i,c,K,n)
CVSMUL Complex vector scalar multiply FCVSMU{a,i.D,Csk,n)
CYSuUB Compiex vector subtract FCYSUB(a,1,b,3,Csksn)
DAREAD Read device address register FDARED(da)

DAWRIT Write devfce address register FDAWRT (da,val)

DEQ22 Difference equation, 2 poles. 2 zeros FDEQ22(a,i,0,C.K,0)
DOTPR Dot product FDOTPR(a,1,b,d,C,n}
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Table D-1

AP-FORTRAN Callable Math Library Routines (cont.)

ROUTINE DESCRIPTICN AP-FORTRAN CALLABLE NAME

CVMUL Zxtaended complex vector multiply FECVMU (ah,al,1,bh,51,3,ch,c1,k,nh,nT,f)
EDOTPR Extended dot croduct FEDTPR(ah,al,1,bh,b1,3,ch,cl,nh,nl)
EMMUL Zxtended matrix multiply FEMMUL (ah,al,bh,d1,ch,cl,mc,nc,na)
ZMTRAN Zxtended matrix transpose FEMTRN(ah,al,ch,cl.x,mc,nc)

EVADD Extended vector add FEVADD(ah,al,i,bh,bt,j,cn,cl,k,nh,n1)
ZYCLR txtended vector clear FEVCLR(ch,c1,k,nn,n1)

EVDIV Extended vector divide FEVDIV(ah,al,i,bh,bl,J,ch,cl,k,nh,ni)
EYMOV Extended vector move FEVMOV (ah,al,i,ch,cl,k,nh,nl)

EVMUL Extended vector multiply FEVMUL(ah,al,1,bh,b1,j,ch,c1,%,nh,n1)
EVSUB Extended vector subtract FEVSUB(ah,al,i,bh,bl,j,ch,cl,k,nh,nt)
EVSWAP Extended vector swap FEVSWP(ah,al,1,ch,cl,k,nh,nl)

FMMM Fast memory matrix multiply FFMMM(a,b,c,mc,nc,na)

FMMM32 Fast memory matrix multiply (<=32) FFMM32(a,b,c,mc,nc,na)

HANN Hanning window multiply FHANN(a,1,c.k,n,f)

HIST Histogram FHIST(a,i,c,n,nb,hmax,nmin)

T0PGET Get data from AP MD out through IOP FIOPGT (exma,acma,n)

I0PPUT Put data into AP MD from IOP FIOPPU (exma,apma,n)

I0PWOD Wait for IOP data transfer FTQPWD

MATINY Matrix inverse FMATIN(a,n)

MAXMGY Maximum magnitude .element in vector FMXMGV (a,1,¢,n)

MAXV Maximum element in vector FMAXV(a,1,c,n)

MDCOM Main data compare and set S-pad FMDCOM(a,b)

MEAMGV Mean of vector element magnitudes FMEMGY (a,1,c,n)

MEANV Mean value of vector elements FMEANV (a,1,c,n)

MEASQV Mean of vector element squares FMESQV (a,1,c,n)

MINMGY Minimum magnitude element in vector FMNGV(a,i,c,n)

MINV Minimum element in vector FMINV(a,i,c,n)

MMTADD Vector add (MD+MD to TM) FAMMT (a,1,b,J,c.k,n)

MMTMUL Jector multiply (MD*MD to TM) FMMMT (a,1,5,3,C,k,n)

MMTSUB Vector subtract (MD-MD to ™) FSMMT (a,1,5.4.¢,k,n)

MMUL Matrix multiply FMMUL (a,1,b,J,c,k,mc,nc,na)

MMUL32 Matrix multiply (dimension<=32) FMMU32(a,i,b,d,c.k.mc,nc,na)

MT IMOV Vector move with increment (MD to TM) FMTIMO(a,i,c,k.n)

MTMADD Vector add (MD+TM to MD) FAMTMD(a,1,b,J.C,K,n)
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Table D-1

AP-FORTRAN Callable Math Library Routines (cont.)

ROUTINE DESCRIPTION AP-FORTRAN CALLABLE NAME
e e —— —
MTMMUL Vector multioly (MD*T™ <o WD) FMMTMD (a,1,b,3,c,k,n)
MTMOV Yector move MD to TM) FMTMQY (a,c,n)

MTMSUR Yector subtract (MD-TM to MD) FSMTMD(a,1,b,d,c,k.n)
MTRANS Matrix transpose FMTRNS (a,1,¢,k,me,nc)
MTTADD Vector add (MD+TM to TM) FAMTT (a,1,b,d,C,k,n)
MTTMUL Vector multiply (MD*T™M to TM) FMMTT (a,1,b,J,c,k,n)
MTTSUB Vector subtract (MD-TM to TM) FSMTT(a,i,b,3,c,k,n)

MYML3 Matrix vector multiply (3x3) FMVMU3(a,1,b.d,dp.c,k.kp,n)
MVML 4 Matrix vector mulitiply (4x4) FMVML4(a,i,b,J,ip,c.Kk,kp,n)
POLAR Rectangular to polar conversion FPOLAR(a,i,c,k,n)

RDC5 Read control bit 5 interrunt FROCS(c)

ROPAR Read parity registers FRDPAR(c)

R0PG Read memory -page from AP FRDPG(c)

RECT Polar to rectangular conversion FRECT (a,1,c,k,n)

REFT Real to compiex FFT (in place) FRFFT (¢,n.f)

RFFTB Real to complex FFT (not in place) FBRFFT(a,z,n,f)

RFETSC Real FFT scale and format FCRFFT (¢,n,f,fs)

RMSQV Roo0t-mean-square of vector elements FRMSQY (a,i,c,n)

SCIMA Self-conjugate multiply and add FSCIMA(a,1.b,j,C,k,n)

SETCS Set control bit 5 interrupt FSETC5 '

SETPG Set memory page for AP FSETPG (mask,apmae,mae)
SCLVED Linear equation solver FSOVEQ(a,n,b.m,rowadd,x,ierr)
SVE Sum of vector elements FSVE{a,i,c,n)

SVEMG Sum of vector element magnitudes FSYEMG(a,i,c,n)

SVESQ Sum of vector element squares FSVESQ(a,i,c,n)

SVS Sum of vector signed sguares FSVS(a,i,c,n)

TCINV Post -tapered convoluticn (correlation) FTCONV(a,i,b,j,c,k,n,m,1)
TMIMOV Yector move with increment (TM zo MD) FTMIMO(a,i,c,k,n)

TMMOV Vector move (TM to MD) FTMMOV (a,c,n}

TMMSUB Jector subtract (TM-MD to MD) FSTMMD (a,1,b,J.c,kan)
TMTSUB Yector subtract (TM-MD to TM) FSTMT(a,i,b,J.c,k,n)

TRANS Transfer function FTRANS (a,b,c,n)

TTIMOV Vector move with increment (TM to ™) FTTIMO(a,1,c,k,n)

TTMADD Vector add (TM+TM to MD) FATTMD(a,1,b,J,¢,k.n)
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Table D-1

AP-FORTRAN Callable Math Library Routines (cont.)

A0UTINE OESCRIPTION AP-FORTRAN CALLABLE NAME
TTMMUL Vector multiply (TM*TM to MD) FMTTMD(a,1,b.d,C,K,n)
TTMSUS Yector subtract (TM-TM to MD) FSTTMD(a,1,b,J,c.k.n)
TTTADD Vector add (TM+TM to TM) FATTT(a,1,b,J,C.K,n)
TTTMUL Vector multiply (TM*TM to TM) FMTTT(a,1,b,J,C k,n!
TTTSUB Yector subtract (TM-TM to TM) FSTTT(a,1,0,§.¢,k.n)
VAAM Vector add, add, and multiply FVAAM(a,i,b,j.c,&.d,1,e,m,n)
ABS Vector absolute value FVABS(a,1,c,k,n)
YADD Vector add FVADD(a,1,b,j.c,k,n)
VALOG Vector antilogarithm (base 10)° FVALOG(a,i,c,k,n)
VAM Vector add and multiply FVAM(a,1,b,j,c,k,d,1,n)
VAND Vector logical and FYAND(2,i,b,3,C.k,n)
VATAN Vector arctangent FVATAN(a,i,c,k,n)
YATN2 Vector arctangent of y/x FVATNZ (a,1,b,d,C,k,n)
VAVEXP Vector exponential averaging FVAVEX(a,i,b,c,k,n)
VAVLIN Vector linear averaging FYAVLN(a,i,b,c,k,n)
YCLIP Vector c¢lip FVCLIP(a,i,b,c,d,1,n)
VCLR Vector clear FYCLR(c,k,n)
JC0S Vector cosine FVC0S(a,i,c,k,n)
YDBPWR Vector conversion to OB (power) FVDBPR(a,1,b,C,k,n)
VDIV Vector divide FYDIV(a,i,b,j,c,k,n)
VEQV Vector logical equivalence FYEQV(a,i,b,J,c,k,n)
- VEXP Vector exponential FVEXP(a,i,c,k,n)
VFILL Vector fill FVFILL{a,c,k,n)
VFIX Vector integer fix FVFIX(a,1.c,k,n)
VFIX32 Vector 32 bit integer fix FYFX32(a,i,c,k,n)
VFLT Vector integer float FVFLT (a,i,¢,k,n)
VFLT32 Vector 32 bit integer float FVFL32(a,i,c,k,n)
VFRAC Vector truncate -to fraction FVFRAC(a,i,c,k,n)
VICLIP Vector inverted clip FVICLP(a,i,b,c,d,1,n)
VIMAG Extract imaginaries of complex vector FYIMAG(a,1,c,k,n)
VINDEX Vector index FVINDX(a,b,J,c,k,n)
VINT Vector truncate to integer FVINT (a,i,c,k,n)
VLIM Vector limit FVLIM(a,i,b,c,d,1,n)
VLN Vector natural logarithm FVLN(a,i,c,k,n)
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Table D-1

AP-FORTRAN Callable Math Library Routines (cont.)

RQUTINE CESCRIPTION AP-FORTRAN CALLABLE WNAME
VLG {ector logarithm (base 10} FYLOG{(a,i,c,k,n)

MA Vector muitiply ana add FYMVA(a,i.b,§,c,k,d,1,n)
TMAX Vector maximum FYMAX{a,i,b,J,C,k,n)

IMAXMG Yector maximum magnitude FYMGAX (a,1,b,J,c.k,n)

YMIN Vectar miminum FYMIN(a,i,b,3,c.k,n)

VMINMG Vector minimum magnitude FYMGIN(a,i,9,j,¢,k,n)

VMMA Vector multiply, multiply and add FYMMA(a,i,b,j,c,.k,d,1,e,m,n)
YMMSB Vector multiply, muitiply and subtract FYMMSB(a,i,b,j,c.k,d,1,e,m,n}
MOV Jector move FYMOV (a,i,c,k,n)

YMSB Yector multiply and subtract FYMSB(a,i,b,J,c,k,d,1,n)
‘IMUL Vector multiply FYMUL (a,1,b,d,C,k,n)

YNEG Vector negate FVNEG(a,i,c,k,n)

YOR Vector logical or FVOR(a,1,h,J,¢,k,n)

VPKi6 Vector 16 bit byte pack FYPK15(a,i,c,k,n)

VP43 Yector 8 bit byte pack FVPKE(a,1,¢c,k,n)

YPOLY Vector polynomial evaluation FYPOLY(a,i,b,J,¢,k,n,p)
VRAMP Yector ramp FYRAMP (a,b,c,k,n)

4RAND Vector random numbers FYRAND(a,c,k,n)

YREAL Extract reals of complex vector FVREAL(a,i,c,k,n)

SADD Yector scalar add FVSADD(a,i,b,c,k,n)

YSBM Yector subtract and multiply FVSBM(a,1,b,J,c,k,d,1,n)
{SBSBM Vector subtract, subtract and multiply FVSB2M(a,i,b,j,c,k,d,1,e,m,n)
VSCALE Vector scale (power 2) and fix FVSCLE(a,i,c,k,n,nb)

JSCSCL Vector scan, scale (power 2) and fix FYSNSL{a,i,c,k,n,wath)
VSEFLT Vector sign extend and float FVSEFL(a,i,c,k,n)

YSHFX Vector shift and fix FYSHFX(a,i,c,k,n,ns)

YSIMPS Vector Simpson's 1/3 rule integration FVSIMP(a,i,c,k,n,n)

ISIN Vector sine FYSIN(a,i,c,k,n)

VSMSA Vector scalar multiply and scalar add FVSMSA(a,i,b,c,d,1,n)

VSMUL Vector scalar multiply FVSMUL (a,1,b,c,k,n)

ysQ Vector square FysQ(a,i,c,k,n)

YSQRT Jector square root FYSQRT (a,1,c,k,n)

YSSQ ector signed square FVssSQ(a,i,c,k,n)

YSuB Vector subtract FYSUB(a,i,b,J,c,k,n)
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Table D-1

AP-FORTRAN Callable Math Library Routines (cont.)

ROUTINE DESCRIPTION AP-FORTRAN CALLABLE MNAME
— —— — —— —

Y SUM Vector sum of elements integration F‘iSUM(a,i,c;k,n,h)

iSWAP Vector swap FVSWAP{a,i,c,k,n)

VTRAPZ Vector trapezoidal rule integration FVTRAP(a,i,c,k,n,n)

VTSMUL Vector table scalar multiply FVTSMU(a,i.b,c,k,n)

VuPl6 Vector 16 bit byte unpack FYulé(a,i,c,k,n)

JUP8 Jector 3 bit hyte unpack FVUPS(a,i,c,k,n)

vUP16 Vector 16 bit signed byte unpack FVUS16(a,i,c,k,n)

VUPSS Yector 8 bit signed byte unpack FVUPS8(a,i,c,k,n)

AIENER Wiener Levinson algorithm FWIENR(Ir,r,3,%,a,i5w)

MD Clear all pages of main data memory FZMD
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