
FLOATING POINT
SYSTEMS, INC.

Program
Cevelopment

Software
lVIanual

860-7292-002

by FPS Technical Publications Staff

Program
Development

SoftVJare
Manual

B60-7292-002

NOTICE

Publication No. 860-7292-002
September, 1978

The material in this manual is for
information purposes only and is
subject to change without notice.

Floating Point SystemsJ Inc. assumes
no responsibility for any errors
which may appear in this publication.

Copyright © 1978 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication
may be reproduced in any form or by any means
without permission in writing from the publis.ner.

Printed in USA

CONTENTS

CHAPTER 1 APAL

1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2. 5
1.2.6
1.3
1.3.1
1.3.2
1 .. 3.3
1~3.4
1.3.5
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8
1.6.9
1.6. 10
1.6. 11
1.6.12

FPS 860-7292-002

INTRODUCTION
BASIC SYNTAX

Character Set
File Names
Symbol Names
Table Memory Symbols
Integers
Expressions

SOURCE PROGRAM STATEMENTS
Comment Statements
Instruction Statements
Pseudo Operation Statem=nts
Order of Program Statements
Sample APAL Program

OPERATING PROCEDURE
Using APAL
Execution
Listing File Format
Sample APAL Listing

ERROR MESSAGES
AP SYMBOLIC CODES

S-Pad Op-code Group
Memory Address Op-code Group
Table Memory Address Op-code Group
Data Pad Address Op-code Group
Branch Op-code Group
Floating Added Op-code Group
Floating Point Multiply Op-code Group
Data Pad X Op-code Group
Data Pad Y Op-code Group
Memory Input Op-code Group
Data Pad Bus Op-code Group
Special Operation Op-code Group

iii

Page

1-1
1-1
1-1
1-3
1-3
1-4
1-4
1-5
1-7
1-7
1-8
1-11
1-17
1-17
1-18
1-18
1-20
1-20
1-22
1-24
1-28
1-30
1-32
1-32
1-32
1-33
1-34
1-36
1-37
1-38
1-39
1-40
1-41

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2 .. 2.10
2.2.11
2.2.12
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
2.5. 7
2.5.8
2.5.9
2.5.10

CHAPTER 3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9
3.3
3.3.1
3.3.2
3.3.3
3.,3.4
3.3.5

FPS 860-7292

APLINK

INTRODUCTION
OPERATING PROCEDURE

Load L
Symbols S
Undefined U
Next Base B
Reset R
Force F
Memory M
END E
END with Assembly Code A
Number Radix N
Exit X
An Example Loading Session

ERROR MESSAGES
SUMMARY OF APLINK COMMANDS
RELOCATABLE OBJECT CODE BLOCK TYPES

Code Block (0)
End Block (1)
Title Block (3)
Entry Symbol Block (4)
External Symbol Block (5)
Library Start Block (6)
Library End Block (7)
Example Relocatable Object Program
Example of E Output
Example of APLINK output

APSIM AND APDBUG

INTRODUCTION
OPERATING PROCEDURE

Monitoring Registers and Memory Locati~ns
Open and Examine (E)
Examine/Next, Last, and Re-examine (+,-,.)
Change (C)
Set Program Source Offset (0)
Changing Input/Output Formats
Set Radix (N)
Set/Reset Floating Point I/O (F)
Set/Reset Program Word Field I/O (V)

MEMORY LOADING AND DUMPING
Yank From a File (Y)
Write to a File (W)
Zero the AP (Z)
Preparing Data Files for Yanking
Executing Programs

iv

2-1
2-2
2-3
2-4
2-5
2-5
2-6
2-6
2-6
2-7
2-8
2-8
2-8
2-9
2-10
2-12
2-14
2-15
2-15

. 2-15
2-16
2-16
2-16
2-16
2-17
2-18
2-20

3-1
3-2
3-2
3-3
3-4
3-6
3-8
3-10
3-11
3-13
3-16
3-19
3-20
3-21
3-23
2-23
3-25

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.5
3.5.1
3.5.2
3.5.3
3.5.4

Figure No.

1-1
1-2

Table No.

1-1
1-2
1-3

FPS 860-7292-002

SUMMARY OF APDBUG COMMANDS
Abbreviations
Program Execution Commands
Register Examination/Modification Commands
Hemory Load/Dump Commands'
Accessible Functional Units
Program Word Fields

AN Ex&~PLE DEBUGGING SESSION
APAL Source Program
Assembling the Program Using APAL
Linking the Program Using APLINK
Debugging the Program Using APSIM

ILLUSTRATIONS

Title

Sample APAL Program
Sample APAL Listing

TABLES

Title

Special Characters
Error Messages
Op-code Abbreviations

v

3-35
3-35
3-36
3-37
3-39
3-40
3-42
3-43
3-43
3-44
3-46
3-47

Page

1-17
1-22

Page

1-2
1-25
1-29

CHAPTER 1

APAL

1.1 INTRODUCTION

Array Processor Assembly Language (APAL) is an unconventional assembly
language and poses certain difficulties to programmers. In particular,
the capability of the AP to process several instructions simultaneously
needs attention.

APAL code is compiled on the host system for execution on the array
processor. APAL requires about 24K of memory on typical 16-bit
mini-computers.

1.2 BASIC SYNTAX

This section presents the grammar of APAL.

1.2.1 CHARACTER SET

APAL recognizes the following characters:

alphabetic A through Z
numeric 0 through 9

APAL recognizes also the special characters in Table 1-1.

FPS 860-7292-002 1 1

SPECIAL FUNCTION

+ Integer addition operator; unary addition operator

integer subtractIon operator; unary subtr'actlon operator

• integer multiplication operator

/ Integ~r. division operator

decimol point; current location

$ first character of pseudo-ap names

space symbol terminator

tab symbol terminator

$EQU pseudo-co; DB = oo-code; arltrmetic identity

Dreceeds a data pad index expression

terminates a data pad index expression

< used with DPXI DPYI and MI oD-codes; aritt-mletic less than

ap-code terminator

operand separator

label terminator

" comment start indicator (carriage return terminates)

s-pad no-locd indicator

& s-pad bit-reverse indicator

first character of predefined symbols

logical OR operator

logical complement

> ar1thmetic greater than

? no system function

~ no system function

0493

Table 1-1 Special Characters

FPS 860-7292-002 1 2

1.2.2 FILE NAMES

File names may contain 30 characters, including special characters and
numbers. On systems where programmed file assignment is not allowed or
is very difficult, the user must enter the number of the logical unit
of a file he assigned prior to calling APAL.

A special symbol (which is different for each host system) exists for
referencing the user terminal (for example: TT: for the PDP11).

Examples:

RUNNER
RUNNER.OBJ
P38
CHANNEL

1.2.3 SYMBOL NAMES

Symbol names may be of any length; however, only the first six
characters of a name are significant. The first character of a name
must be alphabetic. The subsequent characters may be either alphabetic
or numeric.

Examples:

LOOP
A6
STARTHERE

A symbol can be created and given a value by:

• 'defining it with the $EQU pseudo-op
• using as a label
• declaring it an external with the $EXT pseudo-op

FPS 860-7292-002 1 3

1.2.4 TABLE MEMORY SYMBOLS

A symbol with a value preset to the address of each of the constants in
table memory ROM 1s predefined in APAL. These symbols all start with
the character! to avoid conflict with any user'-defined symbol. They
may be used in expressions in the same manner as ordinary symbols.

A complete list of these symbols can be found in section 6.14. For
example, the following fetches PI from table memory and adds it to a
number in DPX(2).

LDTMAj DB=!PI
NOP
FADD TM, DPX(2)

1.2.5 INTEGERS

"Fetch PI from TM
''Wait
"Add PI to DPX(2)

Integers can be written in four radixes: octal, binary, decimal, or
hexadecimal. In each radix, an integer can be either signed or
unsigned. The radix of a number is established by a radix identifying
character which is written immediately after the number. Octal
integers are denoted by a K, decimal by a ., hexadecimal by an X, and
binary by a T. The first digit of a hexadecimal integer must be a
decimal digit. The default radix, if a radix identifier is not user,
is octal unless otherwise specified by a $RADIX pseudo-ope

Integers are stores as 16-bit two's complement numbers. Integers
larger than 16 bits are truncated to 16 bits. Negative integers larger
than 16 bits are truncated before they are negated.

Examples:

octal integers: 177777
-40727K
-10

decimal integers: 32767.
-1000.
+10.

hexadecimal integers: OABCDX
123FX
OCX

binary integers: 101101T
-1101T

FPS 860-7292-002 1 4

1.2.6 EXPRESSIONS

Expressions are symbolic representations of numbers. They are made of
operands and operators.

1.2.6.1 Operands

Operands are symbol names, numbers or the location counter (denoted by .) .

Examples:

TBLADR
598X

33K

FPS 860-7292-002 1 5

1.2.6.2 Operators

Operators are of two types: unary and binary.

Unary Operators

,
logical complement

+ positive reminder (+3K,+10.)
gives negative of a number (-15X,-777)

Binary Operators

Standard

+

*
/

Arithmetic operators

addition
subtraction
multiplication
division

standard arithmetic relations, which return a value of one if the
relation is true, and zero if the relation is false. For example, B
$EQU 6<10 sets B to 1

< less than
= equals
> greater than

Some expressions are:

TBLADR+3F
• + 9.
LOOP + 6 * A
(34 - lOX) * 2

Expressions are evaluated left to right in 16-bit two's complement
arithmetic according to FORTRAN precedence standards and parenthesis
may be used liberally.

NOTE

Only the low order 16 bits are used if an
expression results in a value larger than 65535.

FPS 860-7292-002 1 6

1.3 SOURCE PROGRAM STATEMENTS

APAL source statements may be divided into three categories:

• comment statements
• instruction statements
• pseudo-op statements

Comment statements allow program documentation. Instruction statements
make up the actual symbolic machine code. Pseudo-ops provide
directives to APAL during the assembly process.

APAL statements are free format; spaces and tabs may be used as
desired to improve legibility.

1.3.1 COMMENT STATEMENTS

Everything on a line following a quote mark (n). is treated as a comment
by APAL. A line which contains only comments, or a line that is
completely blank, is a comment statement and is ignored during the
assembly process. A carriage return terminates a comment.

FPS 860-7292-002 1 7

1.3.2 INSTRUCTION STATEMENTS

An APAL assembly language instruction statement has the format:

label: Op-code fields "Comments

The label and comments are optional. The assembler processes the
op-code fields and generates one 64-bit instruction word for each
instruction statement.

1.3.2.1 Label Field

A label is a user-defined symbol which is assigned the value of the
current location counter and entered into the user symbol table. A
label is a symbolic means of referring to a specific location within a
program. If present, a label always occurs first in an instruction
statement and must be terminated by a colon. For example, assume the
following instruction statement is entered.

LOOP: FADD DPX, DPY "LOOP HERE

If the current location is 76, value of 76 is assigned to symbol LOOP.

FPS 860-7292-002 1 8

1.3.2.2 Op-code Field (Operation Code Field)

The op-code field follows the label field in an instruction statement
and contains one or more AP op-code mnemonics. Individual op-codes in
an instruction are separated by a semi-colon. For example, the
following two groups of op-codes are equivalent. The absence of a
semi-colon following an op-code terminates the instruction.

LOOP:
or

LOOP:

FADD DPX, DPY; FMUL TM, MD; BFGT DONE

FADD DPX, DPY;
FMUL TM, MD;
BFGT DONE

Each is one instruction statement, which assembles into one 64-bit
instruction word. Thus, one instruction statement may be continued
over as many lines as desired to achieve a readable program document.
The absence of semi-colon after the last op-code signals the assembler
that the instruction is ended.

Op-codes may be written in any order within an instruction. The
assembler flags any conflicting op-codes with an error message.

Some op-codes require operands as arguments. The operand is separated
from the op-code by a space or tab and from another operand by a comma.
Some example op-codes are:

no operands:
one operand:
two operands:

HALT; RETURN
FABS MD; BFGT LOOP
FADD DPX, DPY; EMUL TM, MD

If an operand is missing or improper, the assembler generates an
appropriate error message.

A list of all AP op-codes is contained in Section 1.6.

FPS 860-7292-002 1 9

1.3.2.3 Comment Field

The remainder of any line following a quote mark (") is treated as a
comment by the assembler and is ignored. The comment field is
terminated by a carriage return. Thus, the previous example can be
written:

LOOP: FADD DPS, DPY;
FMUL TM, MD;
BFG! DONE

"DO AN ADD
"AJ.~ A MUL TIPL Y
"AND A BRANCH
"ALL IN ONE INSTRUCTION

An instruction is ended by the absence of a semi-colon following the
last op-code.

FPS 860-7292-002 1 10

1.3.3 PSEUDO-oPERATION STATEMENTS

Pseudo-operations are directives to the assembler which control certain
aspects of the assembly translation process. Each pseudo-op must
appear on a separate line in the source text. All pseudo-op names
start with a "$". As with instruction statements, pseudo-op statements
may be labeled and have comments.

This operator equates a symbol with an expression. If user defined
symbols are used in the expression, they must have been previously
defined in the program.

Examples:

A $EQU 321
LOOP $EQU LOC + 3
HERE $EQU • - 3
MASK $EQU 132 *3+6

Alternatively, the character n:a n may be used in place of "$EQU":

Examples:

A :II 6
X = A*3

FPS 860-7292-002 1 11

$LOC sets the current location counter to the value of an expression.
If symbols are used in the expression they must.have been previously
defined in the program.

Examples:

$LOC 3-00
$LOC • + 6 ''LEA VE NEXT S IX UNUSED
$LOC LOOP + 10

NOTE

$LOC should not be set to an absolute
address, as in the first example, if the
assembly output is to be linked re10catably
with other programs.

$END causes APAL to terminate the assembly.

This operator defines 64 bits of data to fill one program word. The
data must consist of four 16-bit integers or integer expressions which
represent the four 16-bit quarters of a program word. The four
expressions are separated by commas.

Examples:

$VAL -377, 104763, 10., LOOP + 6
$VAL 0, 0, 2000, 33

FPS 860-7292-002 1 12

This operator fills the right-most 38 bits of a program word with a
specified floating point number. The left-most 26 bits of the word are
cleared.

Examples:

$FP 6.0023E23
$FP 2
$FP E-17
PI: $FP 3.141592653 "PI

A floating point number (for example, a constant for an algorithm) can
be read out of program source memory and onto the data pad bus using a
RPSF op-code. As an example, to load the contents of location PI into
data pad X:

RPSF PI; DPX<DB "GET PI INTO DPX

1.3.3.6 $TITLE

This pseudo-op names a program. The name need not be unique among the
other symbols in the program. The $TITLE pseudo-op must occur as the
first statement in a program.

Examples:

$TITLE FFT
$TITLE DIVIDE

FPS 860-7292-002 1 13

1.3.3.7 $ENTRY

This pseudo-op declares a symbol to be global, that is, a symbol which
is defined in this program and may be referenced by other separately
assembled programs.. The identified symbols mus't be defined in this
program either by an $EQU pseudo-op or by their use as a label. $ENTRY
pseudo-ops must occur before any instruction statements in the program.

If a symbol is to be an entry point for host computer FORTRAN calls, it
must be the first entry symbol defined. Following the symbol name must
be the number of s-pad parameters expected in the call. This may be a
number from 0-178, and is separated from the symbol name by a comma.

Examples:

$ENTRY A
$ENTRY B,6
$ENTRY e,o

'~xpect 6 s-pad parameters
"Expect 0 s-pad parameters

This pseudo-op declares global symbols which are referenced by this
program, but are defined by another separately assembled program. $EX!
pseudo-ops must occur in the program before any instruction statements.
Symbol names are separated by commas.

Examples:

$EXT FLOAT, SCALE, FFT
$EXT DIVIDE

FPS 860-7292-002 1 14

1.3.3.9 $INSERT

This pseudo-op causes source to be read from the designated file. The
line number is reset. When end-of-file is encountered source is again
read from the file originally specified in the APAL call. The line
count is set to its original value when the end of the $INSERT file is
reached. Also, when the $INSERT file is reached during Pass 1 of
assembly the line containing the $INSERT is written to the terminal.
When its end is reached, the message "END $INSERT" is written in the
listing. (This happens during Pass 2, also.)

Example:

$INSERT FILEA

1.3.3.10 $RADIX

$RADIX changes the default number radix to the value of the expression.
It is entered and evaluated in base 10. It must be either 8, 10, or
16.

Example:

$RADIX 10
$RADIX 16

1.3.3.11 $IF ••• $ENDIF

This allows conditional assembly. If the expression which follows $IF
evaluates to zero, any subsequent source lines up to $ENDIF are not
assembled. They do, however, appear on the listing.

Examples:

$IF PROG
PROG $EQU 0
$ENDIF

FPS 860-7292-002 1 15

1.3.3.12 $PAGE

$PAGE begins a new page on the listing.

1.3.3.13 $BOX ••• $ENDBOX

All source lines found between $BOX and $ENDBOX statements are
considered comments and are surrounded by a box of asterisks when a
listing is produced. They may be used to improve readability of the
listing.

1.3.3.14 $LIST and$NOLIST

Source occurring after a $NOLIST does not appear on the listing file.
The presence of a $LIST terminates this condition. Source occurring
after a $LIST does appear on the listing file. If no listing was
specified in the call to APAL, neither of these has any effect.

1.3.3.15 $LIB ••• $ENDLIB

These two pseudo-ops cause loader library blocks and end library blocks
to be written to the object file. APLINK treats an object module
preceded by a library block as a library, and loads only those routines
that satisfy unsatisfied externals.

1.3.3.16 Dummy FMUL and rAnD Pushers

When programming pipelines as desribed in.Part One of the Programmer's
Reference Manual, it is convenient for readability to include in the
code all the FMULs and FADDs that are used as pushers in any of the
columns of the handwritten pipelines. These are coded without
parentheses. Any FMUL or FADD without arguments does not conflict with
other arithmetic arguments of like type and is completely ignored
unless it is the only op-code of its type.

Example:

FADD DPXl, DPYl; FMUL FM,FA; FADD

In this example the last FADD is ignored.

FPS 860-7292-002 1 16

1.3.4 ORDER OF PROGRAM STATEMENTS

There is a definite ordering of statement types within a program which
must be followed. $TITLE pseudo-op must appea~ first. Any $ENTRY and
$EX! pseudo-ops must follow. Then the program body, that is, the code,
occurs. Finally the $END pseudo-op occurs. Statement order is as
follows:

$TITLE
$ENTRY
$EXT

pseudo-op
pseudo-op(s)
pseudo-op(s)

"program, etc"

$END pseudo-op

1.3. 5 SAMPLE AP AL PROGRAM

Figure 1-1 illustrates a sample APAL program.

$TJTLE PROGI
SENTRY PROGl,3
$EXT DIV

"PROGI DIVIDES T'40 SCAL4RS IN MAIN DATA
"AND RETURNS THE ANSt~ER TO MAIN DATA
"MEMORY. C=A/B.
"
"S-PAD PA~1ETER DEFINITIONS:
"

"
PROGl:

FPS 860-7292-002

A $EQU 0
B $EQU 1
C $EQU 2

MOV A,A: SETMA
MOV B,B: SETMA
NOP
DPY< rID
DPX< rID:

JSR DIV
MOV CIC,: SETMA;

RETURN
$END

"ADDRESS OF A IN MIN DATA MEMORY
"ADDRESS OF B IN MAIN DATA MEMORY
"ADDRESS OF C IN MAIN DATA M8~ORY

"FETCH A
"FETCH B
"~/AIT

"STORE A IN DPY
"STORE B IN DPX
"AND DIVIDE A BY B

MI<DPX; "STORE ANSWER IN C
"AND RETURN

Figure 1-1 Sample APAL Program

1 17

1.4 OPERATING PROCEDURES

This section describes the operation of APAL.

1.4.1 USING APAL

APAL assembles a file of source code into a relocatable object file.
Optionally an assembly listing is produced.

APAL first requests the names of the three files to be used for source,
oject, and listing and errors respectively. The program requests the
name of the source file by outputting to the user console:

SOURCE FILE=

The user responds by entering the desired program file name. APAL then
requests the name of the file to receive the relocatable object module
by outputting:

OBJECT FILE=

The user responds by entering the desired object file name. APAL then
requests the name of the file to receive the assembly listing by
outputting:

LISTING AND ERROR FILE=

The user replies by entering the name of the desired listing file. If
ApAL cannot find or assign the requested file it outputs the message
"FILE NOT FOUND OR. UNAVAILABLE" and repeats its request.

APAL then outputs:

LISTING? (Y IN)

FPS 860-7292-002 1 18

A response of Y(cr) yields a full assembly listing, symbol table, and
any error messages. An N(cr) suppresses the assembly and symbol table
listings and writes any error messages to the listing file.

Finally, if a listing was requested, APAL outputs:

LISTING RADIX? (8,10,16)

A response of "8" causes the assembly listing to be done in octal; a
"10" specifies decimal; and a "16", hexadecimal.

APAL responds to invalid input with ??? and repeats the request.

The following is an example of a dialogue with APAL. The user desires
to assemble an AP program on file FFT.AP and write the object output
into file FFT.RB. The listing is placed on file FFT.LS. Of course,
the precise details of how files and devices are named depends on the
particular operating system being used. The messages printed by the
computer are underlined for clarity; the (cr) indicates a carriage
return.

FPS 860-7292-002

APAL
SOURCE FILE =
FFT.AP(cr)
OBJECT FILE =
FFT.RB(cr)
LISTING FILE =
FFT.LS
LISTING?
Y(cr)
LISTING RADIX?
8(cr)

1 19

1.4.2 EXECUTION

If a fatal error occurs, the message "RUN ABORTED" is displayed at the
terminal and control is returned to the operating system.

1.4.3 LISTING FILE FORMAT

APAL is a two-pass assembler. When APAL is called, it outputs:

APAL
(version)

(version) is the version number of the assembler being used. Any
errors detected during pass 1 are output next. The assembly listing
(if requested) follows and is interspersed with pass 2 error messages.
The listing contains the following information for each program
statement:

first column

source
code
line number

FPS 860-7292-002

second column

program
source
address
(location
counter)

1

third column

assembled
program

20

fourth column

source
statement

For program instruction statements, the assembled data is presented as
four numbers representing bits 0-15, 16-31, 32-47 and 48-63 of each
program source word.

At the end of pass two, APAL outputs

(num) ERROR(S) FOR (title)

(num) is the number of errors detected and (title) is specified by the
$TITLE pseudo-op in the last routine assembled. Finally, APAL outputs:

SYMBOL NAME

Followed by the symbol table:

first column

symbol
name

second column

symbol
value

third column

symbol
type

blank - local symbol
EXT - external symbol
ENT - entry symbol

In all of the above occurrences where a number (location, data value,
etc.) is printed on the listing, the radix is either octal, decimal or
hexadecimal, as specified by the user during the initial dialogue.

FPS 860-7292-002 1 21

1.4.4 SAMPLE APAL LISTING

Figure 1-2 contains a sample APAL listing.

APAL REV 2.1 PROG1 03/13178 11:49
PAGE 0001

PASS1
PASS2
00001 $TITLE PROG1
00002 $ENTRY PROGl,,3
00003 $EXT DIV
00004
00005 "PROGl DIVIDES TWO SCALARS I~ MAIN DATA
00006 "AND RETURNS THE MIS~~ER TO MAIN DATA
00007 "MEMORY. C=A/B.
00008 "
00009 ItS-PAD PARAMETER DEFINITIONS:
00010 II

00011 000000 A $EQU a "ADDRESS OF A IN MAIN DATA MEMORY

00012 000001 B $EQU 1 "ADDRESS OF B IN MAIN DATA MEMORY

00013 000002 C $EQU 2 "ADDRESS OF C IN ~~IN DATA MEMORY

00014 "
00015 000000 040000 "PROGl: MOV AlA; SETMA "FETCH A

000000
000000
000060

00016 000001 040104 MOV BIB; SETMA "FETCH B
000000
000000
000060

00017 000002 000000 NOP "WAIT
000000
000000
000000

·00018 000003 000000 DPY<MD "STORE A IN DPY
000000
015000
1000000

Figure 1-2 Sample APAL Listing

FPS 860-7292-002 1 - 22

00019 000004 011014
00020 000000

045004
177777

00021 000005 040210
000000
003400
003600

00022 000006 000000
000340
000000
000000

00023
0000 ERROR (S) FOR PROGl,.

SYMBOL VALUE

DIV 000000 EXT
A 000000
B 000001
C 000002
PROGI 000000 E~T

DPX<MD;
JSR DIV

"STORE B IN DPX
"AND DIVIDE A BY B

MOV CIC; SETMA; MI<DPX "STORE ANSWER IN C

RETURt4 "AND RETURN

$END

Figure 1-2 Sample APAL Listing (cont.)

FPS 860-7292-002 1 - 23

1.5 ERROR MESSAGES

APAL error messages are printed in the listing following the illegal
statement.

There are five basic error classes, which are listed in the following
along with the action taken by the assembler:

a - Out of range: an illegal numeric value was truncated to
the proper range

C - Conflicting definitions: the first definition was used

M - Missing (or improper) argument: a value of zero was used

B - Bad syntax: the bad op-code field or pseudo-op was ignored

W - Warning of improper usage

The actual diagnostic takes the following form:

*** c msg nn ON LINE nnnnn

where c is the error class, msg is the error message, nn is the error
number, and nnnnn is the number of the erroneous line. The assembler
error messages, along with an explanation as to the possible causes
and/or cures, are given in Table 1-2.

FPS 860-7292-002 1 24

Table 1-2 ErTor Messages

Error
~o.

1

2

3

4

5

5

8

9

10

11

13

15

16

17

20

Cate-
gory Message

W L!NE BUFFER OVERFLOW

C MULTIPLY DEFINED SYMBOL

c CONFLICTING OP-CODES

S-PAD ADDRESS TRUrICATE!)

o BRANCH ll.DDRESS OUT OF R.I\~IGE

C CONFLICTING BRANCH ADDRESSES

C CONFLICTING DATA PAD INDEXES

BAD OR MISSING EXPRESSION

BAD OR MISSING FADD ARGUMENT

A WRONG FMUL ARGUMENT

C VALUE FIELD CONFLICT

B UNDEFINED OP-CODE

M EXTERNAL SYMBOL IN EXPRESSION

M UNDEFINED USER SYMBOL

B UNRECOGNIZED STATEMENT

FPS 860-7292-002 1 25

Exolaration

An instruct10n statement was too long
(600 characters maximum) for the I1st1ng
buffer.

~ Symbol may be def1ned only once in a
orogram.

Two oo-codes were used 1n an 1nstruction
statement \'4hlch used the same instruction
word bit fields.

An s-pad address was outside the legal
range of 0-15 and was truncated to 4 bits.

A branch address was more than 16 loca
tions lower or 15 locations higher than
the current location.

Only one branch address may be used in
any given instruction statement.

Only one value may be given to each data
pad Index (XR~ XW~ YRI YW) per instruc
t i on statement.

The assembler could not orocess an ex
pressIon.

A floatIng adder op-code had an Invalid
Al or A2 operand.

A FMUL oD-code had an invalid Ml or ~2
operand.

Only one oo-code which uses a I6-bit
VALUE field operand may be used per
instruction statement.

An op-code name was not a legal AP
instruction.

An external symbol may not be used to
form an expression.

A user Symbol was referenced which was
not defined.

A statement lIne was neither a comment.
instruction. or pseudo-oo statement.

0494

Table 1-2 Error Messages (cont.)

Error Cate-
Na. qory Messo1e

22 M EXTERNAL SYMBOL NOT ALLQ\~ED

23 W f1ISSING $ENO

24 0 DATA PAD INDEX OUT OF RA~GE

31 M BAD FLOATING POINT CONSTANT

32 W ILLEGAL PSEUDO-OP POSITION

34 W UNREFERENCED SEXT SYMBOL

36 C DATA PAD BUS CONFLICT

37 M MISSING S-PAD ARGUMENT

39 C XW/YW CONFLICT

FPS 860-7292-002 1 26

Explanat10n

An external symbol may not be used as
an argument for this op-code.

A program must terminate with a $END
pseudo-ap.

A data pad Index must be between -4
and +3 inclusive.

A floating-potnt nlrnber was unaccePt
able to the assembler.

If used" A $TITLE pseudo-op must appear
first 1n a program} followed by any
$EXT or $ENTRY pseudo-oDS.

A declared external symbol was never
used In the program. T:,e symbol appears
in the symbol table labeled EXT with
the value of 177777 (octal).

Only one data source may be enabled
onto the data pad bus per instruction
statement.

An s-pad aD-code was missing its s-pad
register address.

If the volue field is used In on
instruction" an op-cede which writes
into dato pad Y (such as DPY(2)<F~)
may be used also only if
• no write into data pad X 1s done" or
• the indexes are the same for the

writes into both DPX and DPY.

examoles:
legal: JSR SORT; uses the value

DPY(2)<FM fIeld and a store
Into DPY.

legal: JSR SQRT; Uses the value
DPX(2)<FA field and both
DPY(2)<FM data pad 'flri te

indexes are the
some.

Illegal: .!SR SORT; Uses the value
DPX(-l)<FA; field and the two
DPY(2)<FM data pad write

indexes are dtf-
ferent.

0495

Table 1-2 Error Messages (cont.)

Error Cate-
No. ~ory :1essage Explanation

43 READ ERROR There was a fIle 1/0 error.

44 0 SY~lBOL TABLE OVERFLOri Too many user symbols.

45 B BAD OR MISSING SYMBOL STRING A symbol was mIssIng or Illegal.

46 a EXPRESSION STACK O'lE:\FLOW Too many parenthesis in an expression.

47 B BAD SENTRY Incorrect $entry statement or the Sentry
symbol was also found 1n a SEXT.

48 B BAD SVAL Incorrect $VAL statement.

49 W BAD sTITLE Incorrect cyntax In a STITLE state~ent.

50 \~ EXTRANEOUS BROUHAHA Extraneous characters were found \'Ii th
an opcode.

51 W BAD OR MISSING DELI~ITER ~PX' (3) Incorrect punctuation.

52 M BAD OR MISSING DATA PAD (BUS) ARG A data Dad argument 1s missing or
incorrect.

53 B UNRECOGNIZED PSEUDO-OP An illegal pseudo-aD was encountered.

54 FILE NOT FOUND OR NJT AV.~IL~LE The specified file was not found or
1s not available

55 B NESTED PSUEDO-OP NOT ALLm/ED The specIfied pseudo"oD cannot be nested.

56 W $ENDBOX WITHOUT $BOX A $BOX must occur before an $PlDBOX.

57 \~ DIV!SIC~ BY ZERO Result 1s 651535.

59 W MULTIPLE LABELS Attempt to put more than one label
on a line.

0496

FPS 860-7292-002 1 27

1.6 AP SYMBOLIC CODES

The various AP op-codes may be divided into 13 groups. One op-code
from each group may be used in any given instruction statement, unless
otherwise stated.

The following conventions are used throughout this chapter:

{} Indicates optional operands or mnemonics. The item enclosed in
the brackets (for example, {H}) mayor may not be entered,
depending upon whether or not the associated option is
desired.

Under the headings "Function" and ''Meaning,'' upper case characters are
used to indicate the origin of the mnemonic code names.

The list of abbreviations contained in Table 1-3 are used to facilitate
the op-code descriptions. They are explained later when the op-code
group first appears.

FPS 860-7292-002 1 28

Table 1-3 Op-code Abbreviations

SectIon In
AbbrevIation Meaning whIch. descrIbed

sh s-oad shift B-1

s-pad no-load B-1

SPS s-paj source register B-1

spd s-pad destination register B-1

& bit reverse B-1

dlsp branch displacement B-5

01 floating adder argument #1 B-6

02 floating adder argument #2 B-6

idx data pad index B-6

ml floating mult1~lier argument #1 B-7

m2 float1ng multiolier argument #2 B-7

dbe data pad bus enable B-8

odr address or value B-8

0497

FPS 860-7292-002 1 29

1.6.1 S-PAD OP-CODE GROUP

Purpose: s-pad integer arithmetic

Double Operand Op-codes

ADD{sh}{U}{&}sps,spd
SUB{sh}{U}{&}sps,spd
MOV{sh}{U}{&}sps,spd
AND{sh}{ /I}{ & }sps, spd
OR{sh}{#}{&}sps,spd
EQV{sh}{#}{&}sps,spd

Single Operand Op-codes

CLR{sh}{II} spd
INC{sh}{/I} spd
DEC {sh}{ II} spd
COM{sh}{/I} spd

Function

ADD sps to spd
SUBtract sps from spd
MOVe sps tp spd
AND sps tp spd
OR sps to spd
EQuiValence sps to spd

Function

Clear spd
INCrement spd
DECrement spd
COMplement spd

The result of the above op-codes is SPFN (s-pad function).

Miscellaneous Op-Codes Function

LDSPNL LoaD Spd from PaNeL bus
LDSPE LoaD SPd from data pad bus Exponent
LDSPI LoaD SPd from data pad bus Integer

(low 16-bit)
LDSPT LoaD SPd from data pad bus Table

look-up bits
WRTEXP enable WRiTe of EXPonent only into

DPX, DPY or MI
WRTHMN 'enable WRiTe of High MaNtissa only

into DPX, DPY or MI
WRTLMN enable WRiTe of Low MaNtissa only

into DPX, DPY or MI

FPS 860-7292-002 1 - 30

Abbreviations:

sh

Meaning

s-pad shift:

Choices

(omitted)
L
R
RR

Meaning

no shift
shift SPFN left once
shift SPFN right once
shift SPFN right twice

H s-pad no-load: if present, do not load SPFN into spd (s-pad
destination register)- If specified, a branch group op-code
may not be used in the same instruction statement-

sps s-pad source register: a name, number, or expression
specifying a register number between 0 and 178-

spd s-pad destination register: a name, number, or expression
specifying a register number between 0 and 178-
SPFN is loaded into the s-pad destination register unless
s-pad no-load (#) is specified-

& Bit reverse: if present, bit reverse the contents of sps
before using- The bit reverse is done as specified by
bits 13-15 of the internal status register-

Examples:

MOV 3,6
SUBL 1,15
ADDLH &PTR, BASE
DEC CTR
CLR 9.
LDSPI 6

FPS 860-7292-002 1 31

1.6.2 MEMORY ADDRESS OP-CODE GROUP

Purpose:

Op-codes

INCMA
DECMA
SETMA

initiate main data memory cycles

Function

INCrement Memory Address
DECrement Memory Address
SET Memory Address from SPFN

1.6.3 TABLE MEMORY ADDRESS OP-CODE GROUP

Purpose:

Op-codes

INCTMA
DECTMA
SETTMA

initiate table memory fetches

Function

INCrement Table Memory Address
DECrement Table Memory Address
SET Table Memory Address from SPFN

1. 6. 4 DATA PAD ADDRESS OP-CODE GROUP

Purpose: change the DPA (data pad address) register

Op-codes

INCDPA
DECDPA
SETDPA

FPS 860-7292-002

Function

INCrement data pad Address
DECrement data pad Address
SET data pad Address from SPFN

1 32

1.6.5 BRANCH OP-CODE GROUP

Purpose: conditional branches

Op-code Function

BR disp Branch unconditionally
BINTRQ disp Branch on INTerrupt ReQuest flag non-zero
BION disp Branch if I/O data ready flag Non-zero
BIOZ disp Branch if I/O data ready flag Zero
BFPE disp Branch on Floating Point Error
BFEQ disp Branch on Floating adder EQual to zero
BFNE disp Branch on Floating adder Not Equal to zero
BFGE disp Branch on Floating adder Greater or Equal to
BFGT disp Branch on Floating adder Greater than zero
BEQ disp Branch on s-pad function EQual to zero
BNE disp Branch on s-pad function Not Equal to zero
BGE disp Branch on s-pad function Greater or Equal to
BGT disp Branch on s-pad function Greater than zero

RETURN RETURN from subroutine

Abbreviation:

disp branch displacement: The branch target address, an
address between 16 locations behind and 15 locations
ahead of the current location.

Examples:

BR LOOP
BGT .+3
BFNE A-4

FPS 860-7292-002 1 33

zero

zero

1.6.6 FLOATING ADDER OP-CODE GROUP

Purpose: floating-point adds

Double Operand Op-codes

Op-codes

FADD
FSUB
FSUBR
FAND
FOR
FEQV

Function

a1,a2 Floating ADD (al+a2)
al,a2 Floating SUBtract (al-a2)
a1,a2 Floating SUBtract Reverse (a2-al)
al,a2 Floating AND (al and a2)
al,a2 Floating OR (al or a2)
al,a2 Floating EquiValence (al eqv a2)

Single Operand Op-codes

Op-codes

FIX
FIXT
FSCALE
FSCLT
FSM2C
F2CSM
FABS

a2
a2
a2
a2
a2
a2
a2

Adder OperandS:

operand Meaning

Function

FIX a2 to an integer
FIX a2 to an integer (Truncated)
Floating SCALE of a2
Floating SCALE of a2, (Truncated) .
Format conversion, Signed Magnitude to 2's complement
Format conversion, 2's complement to signed magnitude
Floating ABSolute value

al floating adder argument no. l:

Choices

NC
FM
DPX {(idx)}
DPY {(idx)}
TM
ZERO

FPS 860-7292-002

Meaning

No Change (use previous al)
Floating Multiplier output
Data Pad X
Data Pad Y
Table Memory data
floating-point ZERO

1 34

Operand Meaning

a2 adder argument no. 2:

Choices Meaning

NC No Change (use previous a2)
FA Floating Adder output
DPX {(idx) } Data Pad X
DPY {(idx)} Data Pad Y
TM Table Memory data
ZERO floating ZERO
MDPX { (idx) } use Mantissa from data pad X,

and exponent from SPFN
EDPX {(idx)} use Exponent data pad X, and

mantissa from SPFN

Abbreviation:

idx

Examples:

Meaning

data pad index: a name, expression, or number which
lies in a range of -4 to +3.

FADD TM,MD
FSUB DPX(3), DPY(-4)
FEQV DPX, DPY(C)
FAND ZERO, MDPX(2)
FSUBR NC,FA
FADD

NOTE

Up to four unique data pad indices may be
specified in one instruction statement. In
particular, only one indexing each may be
used for reading from data pad X and Y, re
gardless of how many op-codes use the data
read from data pad.

FPS 860-7292-002 1 35

1.6.7 FLOATING POINT MULTIPLY OP-CODE GROUP

Purpose: floating point mUltiplies

Op-code Function

FMUL m1,m2 Floating MULtiply m1 times m2

Multiplier Operands:

Operand Meaning

m1 Multiplier-operand no. 1

Choices

FM
DPX{(idx)}
DPY{(idx)}
TM

Meaning

Floating Multiplier output
data pad X
data pad Y
Table Memory

m2 Multiplier-operand no. 2

Examples:

Choices

FA
DPX{(idx)}
DPY{ (idx)}
MD

FMUL TM, MD
FMUL DPX (AR),DPY (BI)
FMUL

FPS 860-7292-002

Meaning

Floating Adder output
data pad X
data pad Y
Memory Data

1 36

1.6.8 DATA PAD X OP-CODE GROUP

Purpose: storing into data pad X

OF-code Function

DPX{(idx)}<opt

FPS 860-7292-002

Store opt into Data Pad
X. One of the following must be
used for opt.

Opt Meaning

FA Floating Adder Output
FM Floating Multiplier outut
DB Data pad Bus
dbe Data Pad bus Enable

This has the same effect
as an explicit data pad bus
op-code. One choice of
data pad bus enable may
be made per instruction
statement.

Choices Meaning

ZERO floating ZERO

adr An address or
numeric value.
any 16-bit integer
expression is
legal. A floating
multiplier, memory
input, memory
address or data
pad address
op-code can not
be used in an
instruction
statement where
an "adr" is
used.

DPX{(idx)} Data Pad X
DPY{ (idx)} Data Pad Y
MD Memory Data
DPFN s-pad Function
TM Table Memory data

1 37

Examples:

DPX(3)<EM
DPX(-2)<SPFN
DPX MD
DPX(1)<DPY (-2)
DPX(-2)< -123

1.6.9 DATA PAD Y OP-CODE GROUP

Purpose: storing into data pad Y

OF-code Function

DPY{ (idx) }<opt

Examples:

DPY(-2)<FA
DPY<MD
DPY(2)<TM
DPY (1)<39

FPS 860-7292-002

Store opt into data pad
Y. The possibilities for opt are
the same as those described in Section
1.6.8.

1 - 38

1.6.10 MEMORY INPUT OP-CODE GROUP

Purpose: writing into main data memory

OF-codes Function

MI<FA

MI<FM

MI<DB
MI<dbe

Move Floating Adder output to the Memory Input
register

Move Floating Multiplier output to the Memory Input
register

Move data pad Bus to the Memory Input Register
Move dbe to the Memory Input Register

To effect a memory write, an op-code from the memory address group or
an LDMA op-code must be included in the instruction statement to supply
the memory address.

Examples:

MI<FA; INCMA
MI <DPX (3); DECMA
MI<MD; SETMA; ADD 3,6

FPS 860-7292-002 1 39

1.6.11 DATA PAD BUS OP-CODE GROUP

Purpose: explicitly enable data onto the data pad bus

OF-codes Function

DB=ZERO
DB=adr
DB=DPX{ (idx) }
DB=DPY { (idx) }
DB=MD
DB=SPFN
DB=TM

enable ZERO onto the data pad bus
enable adr onto the data pad bus
enable Data Pad X onto the data pad bus
enable Data Pad Y onto the data pad bus
enable Memory Data onto the data pad bus
enable S-Pad Function onto the data pad bus
enable Table Memory data onto the data pad bus

As mentioned earlier, only one data source may be enabled onto the data
pad bus per instruction statement.

Examples:

DB = 37
DB = DPX(-2)
DB = MD
DB = SPFN

FPS 860-7292~02 1 40

1.6.12 SPECIAL OPERATION OP-CODE GROUP

If an op-code from this group is chosen t an s-pad group op-code can not
be used in the same instruction statement.

1.6.12.1 Special Tests

Purpose: additional conditional branches

Op-codes Function

BFLT disp Branch on Floating adder Less Than zero
BLT disp Branch on s-pad function Less Than zero
BNC disp Branch on Non-zero Carry bit
BZC disp Branch on Zero Carry bit
BDBN disp Branch if Data pad Bus Negative
BDBZ disp Branch if Data pad Bus Zero
BIFN disp Branch if Inverse FFT flag Non zero
BIFZ disp Branch if Inverse FFT flag Zero
BFLO disp Branch if FLag 0 is 1
BFL1 disp Branch if FLag 1 is 1
BFL2 disp Branch if FLag 2 is 1
BFL3 disp Branch if FLag 3 is 1

If one of these tests is used along with a test from the branch groupt
the conditions are OR'd. In this case, only one of the branch op-codes
need have the target address as an operand.

Examples:

BNC ODD
BFEQ LOOP; BFLT LOOP "LESS THAN OR EQUAL TO

FPS 860-7292-002 1 41

1.6.12.2 SETPSA

Purpose: jumps and subroutine jumps

Op-codes

JMP{A} adr
JMPr
JMPP
JSR{A} adr
JSRT
JSRP

Examples:

JMP LOOP + 3
JSR FFT
JMPS 300

1.6.12.3 SETEXIT

Function

JuMP to
JuMP to
JuMP to
JumP to
JumP to
JumP to

location adr
location whose
location whose
SubRoutine at
SubRoutine at
SubRoutine at

Purpose: alter a subroutine return

Op-codes Function

SETEX{A} adr SET subroutine EXit to
SETEXT SET subroutine EXit to
SETEXP SET subroutine EXit to

Example:

SETEX BAD

FPS 860-7292-002 1 42

address is in TMA
address is on the Panel bus

location adr
address in Tma
address on Panel bus

adr
contents of Tma
contents of Panel bus

1.6.12.4 Program Source

Purpose: read/write program source memory

Op-codes Function

RPSL{A} adr
RPSF{A} adr

RPSLT
RPSFT

RPSLP
RPSFP

Read Program Source Left half of location adr
Read Program Source Floating-point number

from location adr
Read Program Source Left half at address in Tma
Read program Source Floating point number

at address in Tma
Read Program Source Left half at address on Panel bus
Read Program Source Floating-point number at address

on Panel bus

These op-codes read onto the data pad bus

Op-codes Function

LPSL{A} adr Load Program Source Left half of location adr
LPSR{A} adr Load Program Source Right half of location adr
LPSLT Load Program Source Left half pointed at by Tma
LPSRT Load Program Source Right half pointed at by Tma
LPSLP Load Program Source Left half pointed at by Panel bus
LPSRP Load Program Source Right half pointed at by Panel bus

These op-codes load from the data pad bus.

Example:

RPSF PI

FPS 860-7292-002 1 43

1.6.12.5 PS Odd and Even

Purpose: reading the host panel sWitches into program source memory,
writing program source to the panel lites.

Op-codes Function

RPSO{A} adr Read Program Source quarter 0 from location adr
RPSl{A} adr Read Program Source quarter 1 from location adr
RPS2{A} adr Read Program Source quarter -2 from location adr
RPS3{A} adr Read Program Source quarter 3 from location adr
RPSOT Read Program Source quarter 0 from address in Tma
RPS1T Read Program Source quarter 1 from address in Tma
RPS2T Read Program Source quarter 2 from address in Tma
RPS3T Read Program Source quarter 3 from address in Tma
WRSO{A} adr Write Program Source quarter 0 into location adr
WPS1{A} adr Write Program Source quarter 1 into location adr
WPS2{A} adr Write Program Source quarter 2 into location adr
WPS3{A} adr Write Program Source quarter 3 into location adr
WPSOT Write Program Source quarter 0 into address in Tma
WPS1T Write Program Source quarter 1 into address in Tma
WPS2T Write Program Source quarter 2 into address in Tma
WPS3T Write Program Source quarter 3 into address in Tma

1.6.12.6 Hostpanel

Purpose: reading the host panel SWitches, writing to the host

panel lites

Op-codes

PNLLIT
DBELIT
DBHLIT
DBLLIT
SwnB
SWDBE
SwnBH
SWDBL

FPS 860-7292-002

Function

PaNel bus to LITes
Data pad Bus Exponent to LITes
Data pad Bus High mantissa to LITes
Data pad Bus Low mantissa to LITes
SWitches to Data pad Bus
SWitches to Data pad Bus Exponent
SWitches to Data pad Bus High mantissa
SWitches to Data pad Bus Low mantissa

1 44

1.6.12.7 Miscellaneous

Op-codes Function

SPNDAV Spin until MD available

1.6.13 I/O OP-CODE GROUP

If an op-code is used from this group, a Floating Adder op-code can not
be used in the same instruction statement.

1.6.13.1 Load REG, Read REG

Purpose: reading/writing various internal registers

Op-codes

LDSPD
LDMA
LDTMA
LDDPA
LDSP
LDAPS
LDDA

Function

LoaD s-pad Destination address register
LoaD Memory Address register
LoaD Table Memory Address register
LoaD Data Pad Address register
LoaD s-pad register pointed at by spd
LoaD AP Status register
LoaD I/O Device Address

The above op-codes load from the data pad bus.

Op-codes

RPSA
RSPD
RMA
RTMA
RDPA
RSPFN
RAPS
RDA

Function

Read Program Source Address
Read s-pad Destination register
Read Memory Address register
Read Table Memory Address register
Read Data Pad Address register
Read s-pad Function
Read AP Status
Read I/O Device Address

These op-codes read onto the panel bus.

FPS 860-7292-002 1 45

1.6.13.2 INOUT

Purpose: program contol/input output of data

Op-codes

OUT
SPNOUT
OUTDA
SPOTDA

Function

OUTput data
SPiN until device ready, then OUTput data
OUTput data, then set DA to spfn
SPin until device ready, OuTput data, then

set DA to spfn

The above write to the I/O device specified by the device address
register (DA) whatever data is enabled onto the data pad bus.

Op-codes

IN
SPININ
INDA
SPINDA

Function

INput data
SPIN until device ready, then INput data
INput data, then set DA to spfn
SPin until device ready, the INput data, then

set DA to spfn

These instructions put data onto the input bus from the I/O device
specified by the device address register (DA). To be used the data
must be put onto the data pad bus, and from there moved to a register
or memory.

Example:

IN; DPX(2)<INBS "READ I/O DATA INTO DPX

FPS 860-7292-002 1 46

1.6.13.3 SENSE

Purpose: sensing an I/O device condition

Op-codes

SNSA
SPINA
SNSADA
SPNADA
SNSB
SPINB
SNSBDA
SPNBDA

1.6.13.4 FLAG

Function

SeNSe condition A
SPIN on condition A
SeNSe condition A, then set DA to spfn
SPIN on condition A, then set DA to spfn
SeNSe condition B
SPIN on condition B
SeNSe condition B, then set DA to spfn
SPIN on condition B, then set DA to spfn

Purpose: set/reset of program flags

Op-codes Function

SFLO Set Flag 0
SFLl Set Flag 1
SFL2 Set Flag 2
SFL3 Set Flag 3
CFLO Clear Flag 0
CFLl Clear Flag 1
CFL2 Clear Flag 2
CFL3 Clear Flag 3

FPS 860-7292-002 1 47

1.6.13.5 CONTROL

Purpose: miscellaneous control functions

Op-code

HALT
lORST
lNTEN
lNTA
REFR
WRTEX
WRTMN
SPMDAV

Functions

HALT processor
I/O ReSeT
INTerrupt ENable
INTerrupt Acknowledge
memory REFResh synch
enable WRiTe of Exponent only into DPX, DPY or MI
enable WRiTe of MaNtissa only into DPX, DPY or MI
SPin until a Main Data memory cycle AVailable

1.6.13.6 Miscellaneous

Purpose: miscellaneous control functions

Op-codes Functions

REnT read subroutine exit into panel bus

1.6.14 TABLE MEMORY

This section lists the constants and functions available in table
memory.

FPS 860-7292-002 1 48

1.6.14.1 Constants

CONSTANT VALUE IN 2K TABLE MEUOR Y
SYMBOL REPRESENTED TABLE MEMORY ROM ADDRESS (OCTAL)

!ZERO ZERO 0.0 4371
lONE ONE 1.0 4001
!TWO TWO 2.0 4002
!THREE THREE 3.0 4441
I FOUR FOUR 4.0 4442
!FlVE FIVE 5.0 4443
!SIX SIX 6.0 4444
!SEVEN SEVEN 7.0 4445
!EIGHT EIGHT 8.0 4446
!NINE NINE 9.0 4447
I TEN TEN 10.0 4450
!SIXTN SIXTEEN 16.0 4451
!HALF HALF 0.5 4427
!THIRD ONE THIRD .333333333 4430
!FOURTH ONE FOURTH 0.254431
!FIFTH ONE FIFTH 0.2 4432
!SIXTH ONE SIxrH 0.166666667 4433
!SVNTH ONE SEVENTH 0.142857143 4434
!EGHTH ONE EIGHTH 0.125 4435
!NINTH ONE NINTH 0.111111111 4436
!TENTH ONE TENTH 0.1 4437
!SXNTH ONE SIXTEENTH 0.0625 4440
!SQRT2 SQRT (2) 1.414213562 4203
SQRT3 SQRT (3) 1.732050808 4422
SQRTS SQRT (5) 2.236067977 4423
SQTI0 SQRT (10) 3. 162277660 4424
ISQT2 1.0/SQRT(2) 0.707106781 4206
ISQT3 1.0/SQRT(3) 0.577350269 4452
ISQT5 I.0/SQRT(5) 0.447213596 4453
ISQIO I.0/SQRT(10) 0.316227766 4454

.CBT2 CBRT (2) 1.259921050 4417
!CBT3 CBRT (3) 1.442249570 4420
!QDRT2 (2.0)**1/4 1.189207115 4421
!LOG2E LOG2(E) 1.442695041 4317
lLOG2 LOG10(2) 0.301029996 4411
!LOGE LOG10(E) 0.434294482 4337
1LN2 LN (2) 0.693147181 4336
!LN3 LN(3) 1.098612289 4407
!LN10 LN(10) 2.302585093 4410
!E E 2.718281828 4403
!INVE 1.0/E 0.367879441 4404
!ESQ E**2 7.389056096 4405
!PI PI 3.141592654 4402
!TWOPI 2*PI 6.283185308 4415
! INVPI I.O/PI 0.318309886 4412
IP 12 Pl/2 1.570796327 4312

FPS 860-7292-002 1 - 49

!PI4 PI 14 O. 785398164 4373
!PII80 PI/180 0.017453293 4413
!PISQ PI **2 9.869604404 4414
!SQTPI SQRT (PI) 1.772453851 4416
!LNPI LN (PI) 1. 144729886 4406
!GAMMA GAMMA 0.577215663 4425
!PHI PHI 1.618033989 4426

1.6.14.2 Elementary Function Tables

ELEMENTARY TABLE MEMORY
SYMBOL FUNCTION ADDRESS (OCTAL)

!DIV DIVIDE 4000
!SQRT SQUARE ROOT 4202
1SNes SIN Icos 14306
!LOG LOGARITHM 4333
IEXP EXPONENTIAL 4317
!ATAN ARC TANGENT 4365

1.6.14.3 Size of Installed FFT Cosine Table

SYMBOL SIZE (TYPICAL)

!FFTSZ 2048 - 4000 (octal)

FPS 860-7292-002 1 - 50

CHAPTER 2

APLINK

2.1 INTRODUCTION

APLINK links together separate object modules produced by APAL into a
single load module for execution by the AP hardware or the simulator.

The user can separately code and assemble a main line program and the
associated subroutines and later link them together for execution.
APLINK serves this purpose by performing the following tasks:

• relocating each object module and assigning absolute addresses

• linking the modules together by correlating global entry symbols
defined in one module with external symbols referenced in
another module

• selectively loading modules from program library

• optionally producing a load map showing the layout of the load
module

APLINK is written in FORTRAN IV and requires approximately 10K of
memory.

FPS 860-7292-002 2 1

2.2 OPERATING PROCEDURE

Program modules are linked interactively via a dialogue between the
user and APLINK. The user enters a series of commands which direct the
linking process.

When execution begias, APLINK outputs:

APLINK
version

*

The version is the version number of APLINK. The asterisk (*)
indicates that the program is ready to accept commands. After each
user command, an * is output when that command has been executed and
APAL is ready for a new command. An illegal command causes a "?" to
be output.

To load relocatable programs and prepare them for execution, the user
would normally follow the procedure outlined below.

1. Using ~he L (load) command, load the file or files containing
the desired main program, required subroutines, and library
subprograms, if any. If a fatal error occurs during this step,
reinitialize using the R command and repeat this step.

2. Using the U (undefined) command, check to see if any global
symbols are still undefined. If nothing is output from this
command, continue to step 3. If any symbols are output, it
usually means that there was an error in one or more of the
programs loaded or that the loading sequence was wrong. In
these cases, correct the er.ror and restart the loading operation
from step 1.

3. Obtain the memory limits of the loaded program or a loader map
by using the M (memory) or S (symbols) command.

4. Complete and output the load module by using the E (end) or
by A command. Note the values of HIGH and START as well as the
possible presence of any remaining undefined symbols.

5. Return to the operating system-with an X (exit) command.

FPS 860-7292-002 2 2

The individual APLINK commands are described in the following
sub-sections, and a complete example loading session is given in
section 2.2.12.

The following abbreviations are used in the following sub-sections:

Abbreviations

(filename)

(cr)

*

Meaning

A user-specified input or output file. The
(filename) follows whatever naming conventions
exist for the particular host computer
operating systems.

carriage return

This is the terminal prompt indicating
that the terminal is ready for input.

Indicates characters output by
the program.

The examples given are illustrative only, as file and I/O device names
vary from system to system.

2.2.1 LOAD L

To load a program module, or a program library, enter:

L (cr)
(filename) (cr)

where (filename) is the name of the file containing the desired program
or library.

Example:

*
L (cr)
FFT.RB (cr)

This example loads the program contained on file FFT.RB.

In loading routines, the first entry point defined becomes the name of
the host source output. An entry point may be defined by doing a force
(F) without having loaded an object module previously.

FPS 860-7292-002 2 3

2.2.2 SYMBOLS S

To output the global (external and entry) symbols enter:

5 (cr)
(filename) (cr)

where (filename) is the name of the file (or I/O device) to receive the
symbol listing. The output of the loader map is as follows.

HIGH = aaaaaa
SYMBOL TABLE
SYMBOL VALUE

ssssss

where:

aaaaaa

ssssss

nnnnnn

u

Example:

*
S (cr)
TP: (cr)

nnnnnn

highest program address so far loaded. Normally,
the next program is loaded starting at location HIGH+l.

symbol name

symbol value; if undefined, the last location
loaded which referenced this symbol.

if present indicates the symbol is as
yet undefined.

This example lists the loader symbol table at the terminal.

FPS 860-7292-002 2 4

2.2.3 UNDEFINED U

To output to the console any presently undefined global symbols, enter:

U (cr)
(filename) (cr)

where (filename) is the file to receive the list of undefined symbols.
The list format is:

ssssss nnnnnn

where ssssss is the symbol name and nnnnnn is the location of the last
program instruction which referenced the symbol.

Example:

*
T (cr)
TP: (cr)

This example lists the names of any undefined symbols at the terminal.

2.2.4 NEXT BASE B

To specify a base address at which to load the next program, enter:

B (cr)
(lac) (cr)

where (loc) is the location specified.

Example:

*
B (cr)
200 (cr)

This example sets the next location loaded to location 200.

FPS 860-7292-002 2 5

2.2.5 RESET R

To reset APLINK, enter:

R(cr)

This reinitializes the program to its initial state. The symbol table
is cleared, any previously loaded programs are disregarded, and the
next location is set to zero. This command must be given following a
fatal error.

2.2.6 FORCE F

To force loading of a program module from a library, enter:

F (cr)
(name) (cr)

where (name) is the name of the symbol to be forced. This command
enters (name) into the symbol table as an external symbol. This causes
the loading of a library program which has (name) as an entry symbol.

Example:

*
F(cr)
DOTPRD(cr)

forces the loading of any program defining symbol DOTPRD from any
subsequently loaded library file.

2.2.7 MEMORY M

To get the address of the highest program source memory location so far
loaded, enter:

M (cr)

The information is printed as follows:

HIGH = aaaaaa

where aaaaaa is the highest address so far loaded, and bbbbbb, if
present, is the load module starting address.

FPS 860-7292-002 2 6

2.2.8 END E

To end a load module and output the completed load module for use with
APDBUG or APSIM, enter:

E (cr)
(filename) (cr)

where (filename) is the name of the file to receive the loader output.
The output is a core image which can be loaded by APDBUG and executed
by either the simulator APSIM or the hardware.

APLINK outputs the following information to the user console:

HIGH = aaaaaa

where aaaaaa is the highest program address loaded. If any symbols
were still undefined, APLINK outputs:

(num) UNDEFINED SYMBOLS

where (num) is the number still undefined. A value of 0 was used in
linking these undefined symbols.

Example:

*
/I (cr)
SAVE

stores the completed load module into file SAVE.

The E (or A) command causes links between global symbols in the
completed load module to be frozen. The load module can be output
again (with another E or A) but no further links can be added (with an
L) •

To work on another load module a reset (R) command must be given to
clear the linker.

FPS 860-7292-002 2 7

2.2.9 END WITH ASS&~LY CODE A

To end a load module and output the completed load module as host
computer assembly code (for use with APEX), enter:

A (cr)
(filename) (cr)

where (filename) is the name of the file to receive the loader output.
This output is a short host assembly (or possibly FORTRAN) language
subroutine, which is the linkage between host computer FORTRAN calls
and the AP executive. The AP code from the load module follows the
host subroutine as assembly language data statements.

Information concerning the highest address loaded into, and any
undefined symbols, are output to the user console as described above
for the E command.

2.2.10 NUMBER RADIX N

To set the radix for numeric input/output to and from the user console,
enter:

N (cr)
(radix) (cr)

where (radix) is either 8 (for octal), 10 (for decimal), or 16 (for
hexadecimal). The default radix for user I/O is set to either of these
choices at installation.

To exit to the operating system, enter:

X(cr)

Notice that the X command does not cause any output. The E or A
command must be used to output a load module.

FPS 860-7292-002 2 8

2.2.12 AN EXAMPLE LOADING SESSION

OK, APLINK
GO

APLINK
REV 2

*
L
PROGl.OBJ

*
U
TTY

DIV

*
L
APLIB

000004 U

LOAD COMPLETE

*
S
TTY
HIGH=000042

E

SYMBOL TABLE

SYMBOL VALUE
PROGI 000000
DIV 000007

*
PROG 1. SOURCE

PROGl HIGH=000042

*
A
PROGl.APSIM

PROGI HIGH=000042

*

FPS 860-7292-002

Call LINKER

Load PROGl.OBJ

Output any undefined symbols
to the terminal

DIV subroutine is undefined
Load DIV
from subroutine library

Output global External and Entry symbols

Create PROGl.APSIM to run on the simulator

Create PROG1.SOURCE (host FORTRAN or assembler)
to run on host system

End (Return to the operating system)

2 9

2.3 ERROR MESSAGES

Any deviation from the prescribed command syntax causes APLINK to
output a "?" to the user console. The illegal command is ignored, and
APLINK outputs a n*" to indicate its readiness to accept a new command.

If a specified filename cannot be found or is otherwise unavailable for
use, the message:

FILE NOT FOUND!!!

is output and the command is ignored.

The specific error messages output by APLINK are the result of loading
errors detected during execution of an L (load) command. There are two
classes of loading errors:

F - fatal. Reinitialization of the loader (the R
command) is required before loading can
continue.

W - warning. An advisory message indicating a
non-error.

Any fatal error detected during loading causes immediate termination of
the L (load) command following the error message. If the user attempts
to execute another L command, the program outputs the message:

RESET!! !

and ignores the command. After the user reinitializes the loader (R
command)" he must reload any programs loaded up to that point.

FPS 860-7292-002 2 10

Following are the error messages, along with notes of explanation for
each:

F SYMBOL TABLE OVERFLOW

The loader symbol table is full. The only recourse is to
recompile APLINK with a longer symbol table size.

F PROGRAM MEMORY OVERFLOW nnnnnn

An attempt was made to load the upper limit of program source
memory. The load module is too large to fit in program source
memory. nnnnnn is the memory location involved.

F OVERWRITE nnnnnn

An attempt was made to overwrite a previously loaded program
memory location. The loader does not permit any given program
memory location to be loaded more than once. nnnnnn is the
program memory location involved.

F ILLEGAL BLOCK TYPE nnnnnn

An illegal relocatable obje~t code block type was encountered.
The file specified does not contain legal object code. nnnnnn is
the illegal block type, as read from the block header in question.

FPS 860-7292-002 2 11

W MULTIPLE ENTRY

An $ENTRY symbol having the same name as one already defined was
encountered during a load. The name and value of the symbol is
output to the terminal as follows:

ssssss nnnnnn

where ssssss is the symbol name and nnnnnn the symbol value. The
loader proceeds by ignoring the latest definition.

W MISSING OR IMPROPER ENTRY

The user attempted to produce host assembly code (an A command)
from a load module and one of the following was true:

• The load module did not have any entry points (defined
entry global symbols) •

• The first entry point loaded did not have an s-pad
parameter count.

2.4 SUMMARY OF APLINK COMMANDS

This section contains a summary of APLINK commands. The following
abbreviations are used in this section.

Abbreviation

(cr)

(filename)

(loc)

(name)

FPS 860-7292-002

Meaning

carriage return

name of a file, as appropriate for the host
operating system being used

a location, octal or hex decimal as
appropriate

a symbol name, six characters or less

2 12

Command

L (cr)
(filename) (cr)

S (cr)
(filename) (cr)

U(cr)
(filename) (cr)

B(cr)
(loc) (cr)

R(cr)

F(cr)
(name) (cr)

M(cr)

E (cr)
(filename) (cr)

A(cr)
(filename) (cr)

N(cr)
(number) (cr)

(X) (cr)

FPS 860-7292-002

Effect

load the program in file (filename), link
with previously loaded programs.

output the loader symbol table to file
(filename)

output any undefined symbols to file
(filename)

set APLINK to load the next program at
location (loc).

reset the loader.

force the loading of a program defining symbol;
name from any subsequent program libraries loaded.

output the highest program memory location used.

end the loading session; store the resulting
load module into file (filename).

end the loading session; output host computer
assembly code for use with APEX into file
(filename) •

set the radix for numeric user consol I/O
to either 8, 10, or 16.

exit to the operating system.

2 13

2.5 RELOCATABLE OBJECT CODE BLOCK TYPES

Unlike most relocatable binary, the relocatable object code produced by
APAL consists of numbers written as decimal integer characters. Those
were output (and readable) by FORTRAN formatted I/O statements.

An advantage of this type of code is that relocatable library files can
be edited with an ordinary text editor. This makes unnecessary the
need for a special-purpose library of library file editor.

The relocatable object code is divided into a series of blocks. The
order in which blocks appear, if each type is present, is as follows
(the block type number is in parenthesis):

1. title blocks (3)
2. entry blocks (4)
3. code blocks (0)
4. external blocks (5)
5. end block (1)

An object module contains at least a title block and an end block. The
presence of one or more of the other block types depends upon the
particular program.

The first line of each block is a block header, which contains four
seven-digit numbers:

1. block type numbers
2. number of items in the block
3. initial address, if relevant
4. unused

In addition, the block header is flagged with n***,. to aid in
identification of blocks.

Each block type is described on the following page, in numeric order by
block type numbers.

FPS 860-7292-002 2 14

2.5.1 CODE BLOCK (0)

a
1
2

count

o
Bits 0-15

"

"

Contents:

count address
Bits 16-31/Bits 48-63

" "

If "

Each code line contains a 64-bit program source word.

2.5.2 END BLOCK (1)

o

2.5.3 TITLE BLOCK (3)

o
1

FPS 860-7292-002

1

2

Contents

o

Contents

1
o

15

o

o

0***

"

..

0***

O***TITLE

2.5.4 ENTRY SYMBOL BLOCK (4)

~ Contents

0 4 count 0 0***
1 name value liS-Pad

parameters
2 " " "

•
• •

count " " "

2. 5.5 EXTERNAL SYMBOL BLOCK (5)

~ Contents

0 5 count 0 0***
1 name link
2 " "
3 " "

•
•

count II "

2.5.6 LIBRARY START BLOCK(6)

Contents

o 6 o o 0***

2.5.7 LIBRARY END BLOCK (7)

Contents

o 7 o o 0***

FPS 860-7292-002 2 - 16

2.5.8 EXk~PLE RELOCATABLE OBJECT PROGRAM

The object module is an ASC11 file and therefore can be modified with
the text editor.

3. 1. o. O. ***TITLE } 1. Title
PROG1 o.

4. 1. o. 0.*** } 2. Entry Block
PROG1 o. 3.

o. 7. o. 0.***
16384. o. o. 48.
16452. o. o. 48.

o. o. o. o.
o. o. 6656. 32768. 3. Code Block

4620. o. 18948. 65535.
16520. o. 1792. 240.

O. 224. o. o.

5. 1. O. 0.*** 4. External Block
DIV 4.

1. o. o. o. *** 5. End Block

*** indicates a new block

1. The title block contains the title of the program, PROG1.

2. The entry block has the name of the entry point, PROG1;
its relative adress, 0; and the number of expected
s-pad parameters, 3.

3. The code block contains the seven AP program words in
PROG1, each as four 16-bit quarters of a 64-bit
program word.

4. The external block contains the external symbol DIV.

5. The end block tells APLINK that it has reached the end
of the program.

FPS 860-7292-002 2 17

2.5.9 EXAMPLE OF E OUTPUT

Example output from APLINK produced by an E (end) command from a
program, PROG1, follows. APDBUG can load this 'output into either the
simulated AP (APSIM), or the actual hardware for debugging.

The first line says that the program con~a1ns 35 program words.

35.

16384. 00000. 00000. 00048.

16452. 00000. 00000. 00048.

00000. 00000. 00000. 00000.

00000. 00000. 06656. 32768.

04620. 00000. 18948. 00003.

16520. 00000. 01792. 00240.

00000. 00224. 00000. 00000.

00956. 21504. 01280. 02050.

00001. 32768. 06176. 32768.

00951. 34304. 33796. 02048.

01016. 00286. 01792. 00000.

09148. 00000. 00000. 00003.

00574. 52224. 00256. 00000.

00001. 32768. 00032. 07680.

00628. 00000. 00000. 07171.

00888. 00000. 01792. 04096.

04112. 00018. 12288. 36864.

00761. 54866. 49188. 00000.

00761. 22016. 49188. 00000.

00637. 17408. 00256. 05376.

FPS 860-7292-002 2 - 18

00632. 00000. 27653. 36864.

00637. 24064. 00320. 04096.

00001. 37376. 00256. 04352.

00001. 32853. 00032. 06144.

00831. 39936. 17412. 01023.

00064. 00000. 05888. 32768.

00952. 00000. 01024. 08192.

25535. 35925. 03360 •. 05632.

00000. 00000. 00000. 04096.

00000. 37376. 00000. 04096.

00001. 32768. 00000. 00000.

00000. 00000. 00000. 04096.

00000. 00000. 00000. 04096.

00000. 00000. 00000. 04096.

00000. 00224. 49156. 00000.

FPS 860-7292-002 2 - 19

2.5.10 EXAMPLE OF APLINK SOURCE OUTPUT

SUBROUTINE PROGI (I
X 1,1 2,1
X 3)

INTEGER CODE (141)
INTEGER I I,J 1
INTEGER I 2, J 2
INTEGER I 3,J 3
INTEGER SLIST(16)
COMMON /SPARY/SLIST
EQUIVALENCE (J I,SLIST(1»
EQUIVALENCE (J 2,SLIST(2»
EQUIVALENCE (J 3,SLIST(3»
DATA CODE(I) / 35/
DATA CODE(2) ,CODE (3) ,CODE (4) ,CODE(5)/

X :040000,:000000,:000000,:000060/
DATA CODE (6) ,CODE (7) ,CODE (8), CODE (9)/

X :040104,:000000,:000000,:000060/
DATA CODE (10) ,CODE (11) ,CODE (12) ,CODE (13)/

X :000000,:000000,:000000,:000000/
DATA CODE(14) ,CODE (15) ,CODE (16) ,CODE (17) /

X :000000,:000000,:015000,:100000/
DATA CODE(18) ,CODE (19) ,CODE (20) ,CODE (21)/

X :011014,:000000,:045004,:000003/
DATA CODE(22) ,CODE (23) ,CODE (24) ,CODE (25)/

X :040210,:000000,:003400,:000360/
DATA CODE(26) ,CODE (27) ,CODE (28) ,CODE (29)/

X :000000,:000340,:000000,:000000/
DATA CODE(30) ,CODE (31) ,CODE (32) ,CODE (33)/

X : 001674, :052000,: 002400, :004002/
DATA CODE(34) ,CODE (35) ,CODE (36) ,CODE (37)/

X :000001,:100000,:014040,:100000/
DATA CODE(38) ,CODE (39) ,CODE (40) ,CODE (41)/

X :001667,:103000,:102004,:004000/
DATA CODE(42) ,CODE (43) ,CODE (44) ,CODE (45) /

X :001770,:000436,:003400,:000000/
DATA CODE(46) ,CODE (47),CODE(48) ,CODE (49)/

X : 021674, :000000,: 000000, :000003/
DATA CODE(50) ,CODE (51) ,CODE (52) ,CODE (53)/

X :001076,:146000,:000400,:000000/
DATA CODE(54) ,CODE (55) ,CODE (56) ,CODE (57)/

X :000001,:100000,:000040,:017000/
DATA CODE(58) ,CODE (59) ,CODE (60) ,CODE (61)/

X :001164,:000000,:000000,:016003/
DATA CODE(62) ,CODE (63) ,CODE (64) ,CODE (65)/

X :001570,:000000,:003400,:010000/
DATA CODE(66) ,CODE (67) ,CODE (68) ,CODE (69)/

X :010020,:000022,:030000,:110000/
DATA CODE(70) ,CODE (71) ,CODE (72) ,CODE (73)/

X :001371,:153122,:140044,:000000/
DATA CODE(74) ,CODE (7S) ,CODE (76) ,CODE (77)/

FPS 860-7292-002 2 - 20

X :001371,:053000,:140044,:000000/
DATA CODE (78) ,CODE (79) ,CODE (80) ,CODE (81)/

X :001175,:042900,:000400,:012400/
DATA CODE(82) ,CODE (83) ,CODE (84) ,CODE (85)/

X :001170,:000000,:066005,:110000/
DATA CODE (86) ,CODE (87),CODE(88) ,CODE (89)/

X :001175,:057000,:000500,:010000/
DATA CODE (90) ,CODE (91) ,CODE (92) ,CODE (93)/

X :000001,:111000,:000400,:010400/
DATA CODE(94) ,CODE (95),CODE(96) ,CODE (97)/

X :000001,:100125,:000040,:014000/
DATA CODE(98) ,CODE (99) ,CODE (100) ,CODE (101)/

X :001477,:116000,:042004,:001777/
DATA CODE(102) ,CODE (103) ,CODE (104) ,CODE (105)/

X :000100,:000000,:013400,:100000/
DATA CODE(106),CODE(107) ,CODE (108) ,CODE (109)/

X :001670,:000000,:002000,:020000/
DATA CODE(110) ,CODE (111) ,CODE (112),CODE(113)/

X :061677,:106125,:006440,:013000/
DATA CODE(114) ,CODE (115) ,CODE (116) ,CODE (117)/

X :000000,:000000,:000000,:010000/
DATA CODE(118) ,CODE (119) ,CODE (120) ,CODE (121)/

X :000000,:111000,:000000,:010000/
DATA CODE (122) ,CODE (123) ,CODE (124) ,CODE (125)/

X :000001,:100000,:000000,:000000/
DATA CODE (126) ,CODE (127) ,CODE (128),CODE(129)/

X :000000,:000000,:000000,:010000/
DATA CODE(130) ,CODE (131) ,CODE (132) ,CODE (133)/

X :000000,:000000,:000000,:010000/
DATA CODE(134) ,CODE (135) ,CODE (136) ,CODE (137)/

X :000000,:000000,:000000,:010000/
DATA CODE(138) ,CODE (139), CODE (140) ,CODE (141)/

X :000000,:000340,:140004,:000000/
J 1=1 1
J 2=1 2
J 3=1 3
CALL APEX(CODE, 0, SL1ST, 3)
RETURN
END

FPS 860-7292-002 2 - 21

The APLINK source consists of four basic parts: the SUBROUTINE start,
SLIST array, CODE array, and the APEX call.

The subroutine start contains this routine's arguments, the number of
which corresponds to the s-pad parameter with the first $ENTRY start in
the !PAL code. The subroutine name is the $ENTRY symbol so that when
the user calls PROGl, control is passed through this host source
routine which then causes the execution of the previously loaded APAL
code of the same name. At run time the arguments are transferred to
the SLIST array. These are usually addresses of data already in the AP
via APPUT calls in other routines. The code array contains the load
module created by the user, in this case - PROGI and the DIV routines.
The first element of the array is the number of AP program source
w.ords; the following values correspond to the actual micro-code.

The APEX calls cause the micro-code to be loaded into AP program source
memory unless it still resides there from previous calls. The
arguments values are placed in their respective s-pad registers (16 is
maximum), and control is finally passed to the routine entry. point.

FPS 860-7292-002 2 22

CHAPTER 3

APSIM AND APDBUG

3.1 INTRODUCTION

APSIM and APDBUG provide an interactive facility for checking out AP
programs. The user can run portions of his AP program, stop and
examine the results, make program patches, and then continue with
program execution. The process of interactive debugging greatly
facilitates preparation of correctly operating AP programs.

APSIM and APDBUG have commands to:

• examine or change memory locations and registers
inside the AP

• type out memory contents and integers, floating point
numbers or program word fields

• set, clear and examine breakpoints

• run programs, or execute them one step at a time

APSIM and APDBUG are actually independent debugging systems. However,
the virtually identical input commands justify combining their
descriptions.

APSIM is useful for initial program development and has the advantage
that it allows debugging off-line from the AP hardware. It allows
access to more internal AP registers than with the hardware.
Simulation is limited, however, to program execution inside the AP.
Input/output interaction with the host computer is not simulated.
Depending on the speed of the host computer, the simulator runs about
one million times slower than real time or about six instruction cycles
per second.

APDBUG is useful for debugging AP programs which require long execution
times and/or real-time interaction with the host computer.

This chapter describes Release 2.1 of APSIM-APDBUG. As usual (cr)
means carriage return or end of line, as appropriate to the particular
host computer system. In the examples listed, the responses output by
the computer are underlined.

FPS 860-7292-002 3 1

3. 2 OPERATING PROCEDURE

Debugging is the process of detecting, locating, and removing mistakes
from a program. When the programmer wishes to 'debug an AP program, he
loads the program into APDBUG (or APSIM). He may then control program
execution, causing the program to breakpoint at selected program
locations so that the contents of registers or memory locations can be
examined. Contents may be examined as program words, integers, or
floating-point numbers.

APDBUG (or APSIM) types an asterisk (*) when ready for user input. A
question mark (?) is typed when an error is detected.

3.2.1 MONITORING REGISTERS AND MEMORY LOCATIONS

Registers and memory locations in the AP may be opened, examined and
modified using one of the following commands:

Command Function

E open and examine locations in the AP

+ examine the next higher location in an AP memory

examine the next lower location in an AP memory

C change the open location

re-examine the currently open location

Z zero out all AP registers and memories

o set program source memory offset

A register in the AP is opened with an E (exam), + (next), or - (last)
command. APDBUG (or APSIH) gets the value of the desired location in
the AP and outputs the value at the terminal. If desired, the contents
of the location may be changed with a C (change) command. A.
(re-exam) lists the contents of the open register.

FPS 860-7292-002 3 2

3.2.2 OPEN AND EXAMINE (E)

To open and examine a register in the AP enter: -

E (cr)
(name) (cr)

where (name) is the name of the desired register.

To open and examine a memory location in the AP enter:

E (cr)
(name) (cr)
(location) (cr)

where (name) is the memory name and (location) is the desired memory
location.

A list of the examinable registers and memories and their description
is given in Section 3.4.5. For the purposes of APDBUG, all functional
units of the AP which have addresses are considered memories. This
includes the three obvious memories (main data memory, table memory and
program memory) plus data pad X, data pad Y and s-pad.

Examples:

• Examine main data memory location 23.

*
E (cr)
MD (cr)
23 (cr)
-234.0000000

*
MD location 23 contains -234.0.

• Examine the memory address register.

*
E (cr)
MA (cr)

1.ill.
*

MA contains 1376.

FPS 860-7292-002 3 3

3.2.3 EXAMINE NEXT, LAST AND RE-EXAMINE (+, -, .)

To open and examine the next higher sequential memory location above a
currently open memory location enter:

+ (cr)

To open and examine the next lower sequential memory location below a
currently open memory location enter:

- (cr)

To re-examine the currently open memory location enter:

• (cr)

FPS 860-7292-002 3 4

Examples:

• Examine main data memory locations 23 and 24.

*
E (cr-)
MD (cr)
23 (cr)
-234.0000000

*

MD location 23 contains -234.0; now examine MD location 24.

*
+ (cr)
MD 000024
789.0000000

*

MD location contains 789.0.

• Examine s-pad registers 7 and 6.

*
E (cr)
SP (cr)
7 (cr)
000027

*

S-pad register 7 contains 27. Now examine register 6.

* -- (cr)
SP 000006
.:Jli
*

S-pad register 6 contains -136.

FPS 860-7292-002 3 5

3.2.4 CHANGE (C)

To change the contents of a currently open register or memory location
to a specified value enter:

C (cr)
(value) (cr)

where (value) is an integer or floating-point number (depending upon
what register or memory is open). (See Section 3.2.2.)

To change a register or memory location the user must first open it by
doing an E, + or - command.

Examples:

• Examine main data memory location 20 and then change its value
to -97.5.

*
E (cr)
MD (cr)
20 (cr)
76.00000000

*
C (cr)
-97.5 (cr)

*

Main data memory location 20 contained 76.0. The user
changed it to contain -97.5.

FPS 860-7292-002 3 6

• Now change main data memory location 21 to -63.4.

*
+ (cr)
MD 000020
- 3.000000000

*
C (cr)
-63.4 (cr)

*

MD location 21 contained -3.0 and was changed to
contain -63.4.

• Examine s-pad register 3 and change its value to 17.

*
E (cr)
SP (cr)
3 (cr)
56

*
C (cr)
17 (cr)

*
S-pad register 3 contained 56 and was changed to contain 17.

FPS 860-7292-002 3 7

3.2.5 SET PROGRAM SOURCE OFFSET (0)

To set the program source memory addressing offset enter:

o (cr)
(value) (cr)

where (value) is an integer in the current radix specifying the offset
to be used when accessing program memory. The default setting is O.

The offset is used when debugging a load module containing several
separately assembled programs. For example~ assume that programs A, B,
and C have been loaded together with APLINK and the following load map
obtained from APLINK with the S command.

SYMBOL

A
B
C

VALUE

000000
000153
000247

This means that program A was loaded at PS location 0, B at location
153, and C at location 247.

To examine locations 3 and 4 of program B, type:

* E (cr)
PS (cr)
156 (cr)
000000 000000 000000 000000

* + (cr)
PS 000157
000000 000000 000000 000000

*

FPS860-7292-002 3 8

This may become confusing because locations 156 and 157, printed by
APDBUG (or APSIM) don't agree with the APAL listings which always start
at zero. The offset simplifies matters by adjusting the base- address
for all PS related I/O. Thus, for convenience~sake, the offset should
be set to the base address of the program currently being examined.

* a (cr)
153 (cr)

*
E (cr)
PS (cr)
3 (cr)
000000 000000 000000 000000

*
+ (cr)
PS 000004
000000 000000 000000 000000

*

The offset applies to examining or changing PS and PSA and also to
breakpoints. and running programs. It should be remembered, when
setting the offset, that it is not relative to itself, but is an
absolute address. Thus, the offset can always be reset to the default
value of zero by typing the following:

a (cr)
a (cr)

FPS 860-7292-002 3 9

3.2.6 CHANGING INPUT/OUTPUT FORMATS

The input and output format used when examJ.n~ng and changing registers
and memory locations may be selected using the-following commands:

Command

N

F

v

Function

sets the radix for integers

sets the format for input/output of 38-bit wide
registers and memory words

sets the format for input/output of 64-bit wide
program memory words

APDBUG,selects the proper format for input/output depending on the word
size of the particular register or memory location that is open and the
setting of the previous three commands as follows.

• 16-bit words

• 38-bit words

• 64-bit words

FPS 860-7292-002

MA, !MA, DPA, a-pad, etc. These locations
are examined or changed as integers
in the radix as selected by N.

DPX, DPY, main data memory, table memory,
etc. These locations are examined
or changed as either floating-point
numbers or as three integers, depending
upon the F command.

program memory. These locations are
examined or changed as either op-code
fields or as four 16-bit integers
depending upon the V command.

3 10

The listing of accessible AP register and memories in Section 3.4.5
specifies the width of each as one of the following:

16-bit (integer word)
38-bit (floating point word)
64-bit (program word)

NOTE

Integer output is always unsigned on the range
0-177777 (octal), or 0-65536 (decimal), or
O-FFFF (hexadecimal). Thus, negative two's
complement numbers are typed out as their
16-bit unsigned equivalents. For example (in
octal) -1 would be output as 177777, and -2 as
177776, and so forth.

3.2.7 SET RADIX (N)

To set the radix for all integers input/output to APDBUG enter:

N (cr)
(radix) (cr)

where "(radix) is either 8, 10 or 16 for octal, decimal or hexadecimal
radixes respectively. (radix) is always entered as a decimal value.

The contents of 16-bit wide registers (s-pad, MA, PSA, etc.) are
examined and changed using the integer radix as set by the N command.
In addition, memory addresses are also entered using the current radix.

On listings, octal numbers may be recognized as having six digits,
decimal numbers as having five digits and hexadecimal numbers as having
four digits.

The default radix is either octal or hexadecimal depending upon the
conventions of the host computer.

FPS 860-7292-002 3 11

Examples:

• Examine s-pad register 10 (decimal) in all three radixes
(starting in decimal).

*
E (cr)
SP (cr)
10 (cr)

32768

*
N (cr)
8 (cr)

* - (cr)
SP 000012
100000

*
N (cr)
16 (cr)

*
•
SP

* -

(cr)
aOOA

8000 -

The value of s-pad register 10 is 32768 (decimal)
or 100000 (octal) or 8000 (hexadecimal).

FPS860-7292-D02 3 - 12

3.2.8 SET/RESET FLOATING POINT I/O (F)

To select floating-point input/output of 38-bit registers and memory
words enter:

F (cr)
1 (cr)

To select integer input/output (in the current integer radix) of 38-bit
wide registers and memory locations enter:

F (cr)
o (cr)

38-bit wide registers are split into three pieces: 10-bit exponent,
12-bit high mantissa (bits 0-11) and 16-bit low exponent (bits 12-27)
for integer I/O.

Data pad, main data memory, table memory and data pad bus are among the
registers and memories whose I/O is governed by the F command.

Both examining and changing of 38-bit registers are effected by F. The
default setting of the F command is one (for floating-point I/O).

• Examine command output formats.

F=l: (floating-point number)

F=O: (exponent) (high mantissa) (low mantissa)

• Change command input formats •

F=l: C (cr)
(floating point number) (cr)

F=O: C (cr)
(exponent) (cr)
(high mantissa) (cr)
(low mantissa) (cr)

FPS 860-7292-002 3 13

legal floating point numbers are of the form

where:

xx is the integer part
YY is the fraction part
ZZ is the exponent

Any of the three parts may be omitted, except in the case when an
exponent is used. In this case, either an integer part or a fraction
part must also be included. The signs may be omitted if + is used.
The decimal point may be omitted if not needed. No spaces are allowed
inside floating-point numbers. The following are all legal
floating-point inputs.

Examples:

-2.3E6
.7E-3

-2
3.65
.7

• Examine data pad register six in both floating point
and integer. (Assume the integer radix is 16.)

* E (cr)
DPX (cr)
6 (cr)
-1.000000000

*
F (cr)
o (cr)

* (cr)
DPX 0006

0200 0400 0000

*

FPS 860-7292-002 3 14

DPX register six contains -1.0. Its exponent is 200 (hexadecimal)
which has an exponent value of zero (0). The fraction part is 4000000
(hexadecimal) which is a fraction of -1.0.

• Now change the exponent to 204 and the fraction to
2000000 and set F to 1.

*
C (cr)
204 (cr)
200 (cr)
o (cr)

*
F (cr)
1 (cr)

*
(cr)

DPX 0006
8.000000000

*
DPX register now contains 8.0 which is 0.5*2**4.

FPS 860-7292-002 3 15

3.2.9 SET/RESET PROGRAM WORD FIELD I/O (V)

To select input/output of 64-bit wide programs words by op-code fields
enter:

V (cr)
1 (cr)

To select input/output of program words as four 16-bit numbers enter:

v (cr)
a (cr)

The four 16-bit integers represent bits 0-15, 16-31, 32-47 and 48-63 of
a program word.

Both examining and changing of program words are effected by V.

The default for the V command is a for integer I/O of program words.

• Examine command output formats.

V=l: (24 op code field values)
V=O: (bits 0-15) (bits 16-31) (bits 32-47) (bits 48-63)

• Change command input formats.

V=l: C (cr)
(desired op-code field to change) (cr)
(new value) (cr)

V=O: C (cr)
(bits 0-15) (cr)
(bits 16-31) (cr)
(bits 32-47) (cr)
(bits 48-63) (cr)

The program word op-code fields are listed in Section 3.4.6. When V=l,
on examine, the 64-bits of a program word are divided into 24 fields,
whose values are printed out. On change, the user enters the name of
the field he wants to change along with the new value (hence the
mnemonic V) for that field. The legal values for each field are listed
in the AP Processor Handbook.

FPS 860-7292-002 3 16

Examples:

• Program location 20 contains the instruction

LDSPI 14; DB=200

which sets s-pad register 14 to 200. This example changes
the instruction s~ that s-pad 14 is set to 300 instead.

*
E (cr)
PS (cr)
20 (cr)
001660 000000 000000 000200

*
C (cr)
1660 (cr)
o (cr)
o (cr)
300 (cr)

*

Note that to change the value field (which is the fourth
quarter) (bits 48-63) of the program word, all four quarters
had to be entered.

• Now change the instruction so that s-pad register
11 (instead of 14) is loaded with 300.

*
V (cr)
1 (cr)

*
C (cr)
SPD (cr)
11 (cr)

*

The SPO (s-pad destination) field (program word bits 10-13)
was changed to 11.

FPS 860-7292-002 3 17

• Examine program memory location 20 in both formats.

* • (cr)
PS 000020
001644 000000 000000 000300

* v (cr)
1 (cr)

*
:- (cr)
PS 000020

B 00 SOP 00 SH 00 SPS 16 SPD 11 FADD 00
A1 00 A2 00 COND 00 DISP 00 DPX 00 DPY 00
DPBS 00 XR 00 YR 00 xw 00 YW 00 FM 00
M1 01 H2 02 MI 00 MA 00 DPA 00 TMA 00

SPS-16 indicates the LDSPI instruction, SPD=11 indicates the
s-pad destination register is 11. The YW, FM, M1, M2, MA,
DPA and TMA fields are meaningless since the value of 300
occupied these fields.

• Program location 30 contains the instruction.

FADD FM, MD; FMUL TM, MD

Change the second argument for the FADD CA2) from MD to FA.

*
E (cr)
PS (cr)
30 (cr)
000001 114000 000000 160000

*
V (cr)
1 (cr)

*
C (cr)
A2 (cr)
1 (cr)

*

FPS 860-7292-002 3 - 18

3.3 MEMORY LOADING AND DUMPING

Blocks of AP memory locations may be loaded and dumped to and from
files with the following commands:

Y yank (load) into a memory from a file
W write out the contents of a memory to a file
Z zero all the memories (and registers) (APSIM only)

The list of memories on which the above commands can operate is
different for APDBUG and for APSIM. In APSIM, only main data memory
(MD), table memory (TM), and program source memory (PS) may be yanked
into or written from. In APDBUG, the list of memories is extended to
include s-pad (SP) and data pad X and Y (DPX, DPY).

A further difference lies in the area of I/O data formats. In APSIM,
yanking and writing to/from 38-bit memories are always performed in the
floating-point format (F=1). Program source memory I/O is always in
integer mode (V=O). In APDBUG, I/O to/from 38-bit memories is governed
by the F command. Hence, it is either in floating-point or integer
mode, as set by the user. Program source memory input is always in
integer mode, whereas output can be in either integer or op-code field
format, as governed by the current setting of the V command.

The user should be aware that the procedure for entering filenames
varies greatly according to the respective system. In some systems the
notion of user files is nonexistent. In these cases, a logical unit
number referring to an I/O device, which was opened previously by JCL
control statements must be entered in place of a filename. Other
systems allow access to disk files, line printers and terminals by
symbolic names. Thus, what must be entered for a filename depends on
the convention of each respective system. The examples given in the
following are only meant to be representative and may not be legal on a
given system.

FPS 860-7292-002 3 19

3.3.1 YANK FROM A FILE (Y)

To load a memory from a file enter:

Y (cr)
(memory name) (cr)
(starting location) (cr)
(filename) (cr)

(memory name) is an AP memory. The beginning memory address is loaded
at (starting location). The name of the file from which the data is to
be read is called (filename). (filename) must, of course, be in the
proper form as determined by the particular host operating system.

Yank is used typically to load programs into program memory and data
into main data memory.

Examples:

• Load a program into PS location O. The program is assumed
to be in a file named PROGl which was created using the E
command output from APLINK.

*
Y (cr)
PS (cr)
o (cr)
PROG1 (cr)

*

• Load data into MD starting at location 20 from a file
called DATA. Section 3.3.4 explains how to create data files.

* y (cr)
MD (cr)
20 (cr)
DATA (cr)

* (cr)

FPS 860-7292-002 3 20

3.3.2 WRITE TO A FILE (W)

To write the contents of a memory into a file enter:

W (cr)
(memory name) (cr)
(starting location) (cr)
(ending location) (cr)
(filename) (cr)

(memory name) is an AP memory, (starting location) is the initial
address to be written, (ending address) is the last address to be
written and (filename) is the name of the file into which the data is
to be written.

Examples:

• Write main data memory locations 20 through 40 into a
file called DUMP.

*
W (cr)
MD (cr)
20 (cr)
40 (cr)
DUMP (cr)

*

FPS 860-7292-002 3 21

• Write data pad X, locations 3 through 6, to the line printer
first, in floating-point format and second, in integer format.
(In this example, the line printer is called LP:.) Note
that a data pad may be dumped only from APDBUG.

*
F (cr)
1 (cr)

*
W (cr)
DPX (cr)
3 (cr)
6 (cr)
LP: (cr)

*
F (cr)
0 (cr)

*
W (cr)
DPY (cr)
3 (cr)
6 (cr)
LP: (cr)

*

If the user mistypes a W command, he has several options to abort the
command. If the wrong memory name or starting address was typed, the
command may be canceled by entering an ending address (which is lower
than the starting address). In APDBUG, an unwanted dump already
underway (for example, when a location 1000 was .typed whereas location
100 was wanted) can be aborted by a USER BREAK. How this is
accomplished varies from system to system. Typically, on single-user
mini-computer systems, it is accomplished by raising the most
significant bit of the host switch register.

FPS 860-7292-002 3 22

3.3.3 ZERO THE AP (Z)

The Z command is legal only in APSIM. It zeros out all the registers
and memories in APSIM. It should be the first c~mmand given to APSIM.
It is accomplished by entering:

Z (cr)

3.3.4 PREPARING DATA FILES FOR YANKING

Data files may be prepared by the user for loading into MD and TM by
using APSIM (typically prepared by using the host system editor). The
files may be prepared for loading into MD, SP, DPX, and DPY by using
APDBUG. The format of the data file is as follows:

data count
data item III
data item 112
data item liN

All entries must be left justified, one entry per line.

The data count is the number of memory locations to be filled and
written as a real number (with a decimal point). Thus, if there were
three data items, the count would be 3.

The format of data items depends on which'debugger is used. In APSIM,
only floating point numbers may be loaded. These must appear one per
line in the data file. In APDBUG, the format is determined by the F
command setting for 38-bit memories. For integer formats, the radix is
determined by the N (radix) command. When floating point numbers are
used they appear one per line. Also, integers must appear one per line
in the file. Thus, for 38-bit memories written in integer format
(F=O) , three integers (exponent, high mantissa, low mantissa) written
on three separate lines must be included for each memory location.

FPS 860-7292-002 3 23

Examples:

• A four element floating point data file is entered.

4.
1.2
.3

-6E7
2.3E-S

• This example illustrates three element integer data for a 38-bit
wide memory. Three integers are loaded into the low
mantissa. (This applies to APDBUG only.)

3.
o
o
1
o
o
2
o
o
3

FPS 860-7292-002 3 24

3.3.5 EXECUTING PROGRAMS

AP program execution may be controlled with the following commands:

B set breakpoint

D delete breakpoint

L list breakpoint

Q set breakpoint counter

S set step mode

I initialize the AP

R run an AP program

P proceed (continue) with an AP program

T print elapsed execution time

M set memory speed

X exit to the host operating system

The typical strategy when debugging a program is to set a breakpoint at
a strategic location in the program. Run the program. When it stops
at the breakpoint, examine various data locations to see what has been
changed correctly or incorrectly. This strategy typically results in
alternately running a program and examining the results.

FPS 860-7292-002 3 25

3.3.5.1 Set Breakpoint (B)

To set a breakpoint enter:

B (cr)
(memory name) (cr)
(location) (cr)

(memory name) is the memory on which to break execution (must
be MD, TM or PS) and (location) is the memory address on which to
stop. The AP allows breakpointing on two conditions:

• read or write of a given Main Data memory or
Table memory location

• execution of a given program instruction

Contrary to typical debuggers, the program halts after
executing the breakpointed instruction. Only one breakpoint can be
set at a time. Setting a new breakpoint clears any previously set
breakpoint. Users of APDBUG should consult of the
AP Processor Handbook for possible interaction
between the breakpoint and the program.

Examples:

• Set a breakpoint so that the program stops after
executing the instruction at location 20.

* B (cr)
PS (cr)
20 (cr)

*

• Set a breakpoint so that the program stops after
reading or writing Main Data location 100.

* B (cr)
MD (cr)
100 (cr)

*

FPS 860-7292-002 3 26

3.3.5.2 Delete Breakpoint (D)

To delete a breakpoint enter:

D (cr)

This command clears any previously set breakpoints.

3.3.5.3 List Breakpoint (L)

To list at the terminal which breakpoint is currently set enter:

L (cr)

APDBUG types the memory name in which the breakpoint is set, followed
by the location of the breakpoint. If no breakpoint is set, only an
asterisk (*) is typed.

Example:

• If a breakpoint is set at PS location 20, entering
the L command results in the following:

*
L (c~)
PS 000020

*

FPS 860-7292-002 3 27

3.3.5.4 Set Breakpoint Counter (Q)

To set the breakpoint counter enter:

Q (cr)
(count) (cr)

(count) is the desired counter setting. The breakpoint counter is the
number of times a breakpoint must be encountered before the AP program
halts. It is also used by the step command. (Refer to Section
3.3.5.5.) For example, it is useful when a bug occurs every ten times
around a loop. The count is reset to one every time a new breakpoint
is set or the step flag i~ set or reset.

Example:

• Set a breakpoint at location 20 so that the program
program halts only after encountering the breakpoint
10 times.

*
B (cr)
PS (cr)
20 (cr)

*
Q (cr)
10 (cr)

*

FPS 860-7292-002 3 28

3.3.5.5 Set/Reset Step Mode (5)

To set step mode enter:

S (cr)
1 (cr)

To clear step mode enter:

S (cr)
a (cr)

In step mode, the program executes only a single instruction after
being started and then halts. This is useful when sequencing
step-by-step through a piece of code while watching for a data location
to be destroyed or for the program to go awry. Step mode also uses the
breakpoint counter which, in step mode, counts instructions to execute
before stopping.

Examples:

• Set step mode so that when next started, the program
executes one instruction and then stops.

*
S (cr)
1 (cr)

*

• Set step mode so that when next started, the program
executes 100 instructions and then stops.

* -S (cr)
1 (cr)

* -Q (cr)
100 (cr)

*

FPS 860-7292-002 3 29

3.3.5.6 Initialize the AP (I)

To initialize (reset) the AP enter:

I (cr)

In APSIM, the initialize command clears the memory, timing and
arithmetic pipelines. In APDBUG, an interface reset is done to the AP.
This is necessary to stop a program which is trapped in an infinite
loop.

3.3.5.7 Run An AP Program (R)

To run an AP program enter:

R (cr)
(location) (cr)

(location) is the program location where execution starts. APDBUG
starts the program at the specified location and then waits until the
program encounters a breakpoint. If the program loops uncontrollably
in APSIM, the user typically has no recourse. In APDBUG, control can
be regained by causing a USER BREAK. (See Section 3.3.2.)

When the AP program finally halts, APSIM responds by printing out the
current program address (PSA), the total elapsed program execution time
after the last R command, and the contents of the currently open
register or memory location. APDBUG merely responds with an asterisk
(*) •

FPS 860-7292-002 3 30

Examples:

• Under APSIM, examine MA, set a breakpoint at program
location 16, and then start program execution at location 10.

*
E (cr)
MA (cr)
123

*
B (cr)
PS (cr)
16 (cr)

*
R (cr)
10 (cr)
PSA=-000017 1.17 us.

The program has executed four 1.17 us and has stopped with
location 17 as the next instruction to be executed. MA has
not changed. Note that the listing of the last examined
location is useful for monitoring registers to see when
they change.

• Under APDBUG, set a breakpoint at program location 16,
then start execution at location 10.

*
B (cr)
PS (cr)
16 (cr)
* -R (cr)
10 (cr)
*

APDBUG signals program return by outputting the'*.

FPS 860-7292-002 3 31

3.3.5.8 Proceed With AP Program Execution (P)

To proceed with AP program execution enter:

P (cr)

This command is used to resume AP program execution after encountering
breakpoint or when using step mode. The program continues execution at
the address currently in the Program Source Address register (PSA).
When the program next encounters a breakpoint, output is the same as
that which follows a return from a run.

Examples:

• Set a breakpoint at location 16, run at location 10,
examine S-Pad 3, and then continue execution.

*
B (cr)
PS (cr)
16 (cr)

*
R (cr)
10 (cr)
PSA=000007

*
E (cr)
SP fcr)
3 (cr)
000123

*
P (cr)

FPS 860-7292-002

1.17 us.

3 32

• Examine MA. Then watch it change as the program is
stepped starting at location 10.

*
S (cr)
1 (cr)

*
E (cr)
MA (cr)
000103

*
R (cr)
10 (cr)
PSA=OOOOll
MA
00'0104

*
P (cr)
PSA=000012
MA
000105

* P (cr)
PSA=000013
MA
00'0106

*

FPS 860-7292-002

0.17 us.

0.33 us.

0.50 us.

3 - 33

3.3.5.9 Execution Time (T)

To print elapsed AP program execution time up to the last run (R)
command (APSIM only) enter:

T (cr)

3.3.5.10 Set Memory Speed (M)

To set Main Data Memory speed (APSIM only) enter:

M (cr)
(speed) (cr)

where (speed) is 1 for fast memory timing and 2 for standard memory
timing. The default is 2 for standard memory timing.

3.3.5.11 Exit To The Host System (X)

To complete a debugging session and exit to the host operating system
enter:

x (cr)

FPS 860-7292-002 3 34

3.4 SUMMARY OF APDBUG COMMANDS

This section summarizes the APDBUG commands.

3.4.1 ABBREVIATIONS

Abbreviations used in the following appendixes:

symbol meaning

(cr) carriage return
(loc) an integer location number
(count) an integer count
(val) an integer value
(fpn) a floating point number in form acceptable

to FORTRAN
(mem) the name of an AP internal memory
(reg) the name of an AP internal register

APDBUG outputs an asterisk (*) when ready for further action. A
question mark (1) is output when a command is not understood.

FPS 860-7292-002 3 35

3.4.2 PROGRAM EXECUTION COMMANDS

B
(mem)
(loc)

D

L

Q
(count)

S
(val)

I

R
(loc)

P

T

x

M

(val)

(cr)
(cr)
(cr)

(cr)

(cr)

(cr)
(cr)

(cr)
(cr)

(cr)

(cr)
(cr)

(cr)

(cr)

(cr)

(cr)

(cr)

FPS 860-7292-002

Breakpoint. Delete the last breakpoint
and set a new breakpoint at location (loc)
of memory (mem). (mem) must be PS, ~1D, or TM.

Delete. Delete the current breakpoint.

List. List the current breakpoint.

Set the continue counter to (count).

Step. If (val) is not zero, place the
AP in step mode.

Initialize. Reset the AP
before program execution is resumed next.

Run. Begin program execution at
Program Source location (loc).

Proceed. Begin instruction execution
at the Program Source location pointed to by
the AP PSA (Program Source Address)
register.

Print out elapsed execution time (APSIM only).

Exit to the operating system.

Set memory speed. val is 1 for one cycle
(fast) memory and 2 for the two cycle
(standard) memory (APSIM only).

3 36

3.4.3 REGISTER EXAMINATION !MODIFICATION COMMANDS

E
(reg)

E
(mem)
(loc)

+

F
(val)

v
(val)

(cr)
(cr)

(cr)
(cr)
(cr)

Examine register. Print out the contents of
AP register (reg).

Examine memory. Print out the contents of
AP memory (mem), location (loc).

(cr) Re-examine the currently open register or
memory location (the last location examined).

(cr) Examine the next higher sequential memory location
of the memory that is currently open.

(cr) Examine the next lower sequential memory location
of the memory that is currently open.

(cr)
(cr)

(cr)
(cr)

Floating point flag, affects the input/output of
38-bit wide registers and memory locations.
(val)=O: 3 integers (exponent, high mantissa, low
mantissa): (val)=l: floating point.

Program source field value flag, affects
input/output of program source memory location.
(val)=O: 4 integers (the four 16-bit quarters of
~)

(val)=l: Decode into the 24 instruction word
field values.

FPS 860-7292-002 3 37

c
(val)

N
(val)

a
(val)

z

(cr)
(cr)

(cr)
(cr)

(cr)
(cr)

(cr)

FPS 860-7292-002

Change. Change the contents of the currently open
register or memory location to (val). The format
of (val) depends on the width of the current open
locations as follows:

16-bit wide registers: an integer of the current
radix.

38-bit wide registers:
F=O; (val) (cr) three integers in the curre1\t

(val) (c.r) radix whic.h represent
(val) (cr) the exponent, high mantissa,

and low mantissa

F-1: (fpn) (cr) a floating point number legal
to FORTRAN

64-bit wide
V=O: (val)

(val)
(val)
(val)

registers:
(cr) four integers in the current
(cr) radix which are the four
(cr) quarters of an AP program word
(cr)

V-1: (field)(cr) (field) is the name of the
instruction field to be changes

(val) (cr) (val) is the new integer value

Number radix. Set the radix for integer user
I/O to (val), which must be 8 (for octal), 10 (for
decimal), or 16 (for hexadecimal).

Offset. Sets the base address to which program
source memory addresses are relative
(for user I/O).

Zero. Zero out all AP memories and registers.
(APSIM only)

3 38

3.4.4 MEMORY LOAD/DUMP COMMANDS

Y (cr)
(memory) (cr)
(loc) (cr)
(filename) (cr)

W (cr)
(mem) (cr)
(start) (cr)
(stop) (cr)
(filename) (cr)

FPS 860-7292-002

Yank: Load memory starting at (loc).
from an external file.

Write: Dump memory starting at location
(start) and ending at location (stop) to
external data (fi!ename).
(mem) can be PS, MD or TM.

3 - 39

ACCESSIBLE FUNCTIONAL UNITS

This section lists the AP functional units that can be examined or
changed with APDBUG.

3.4. 5.1 Memories

Accessible from Can 'Y'or'W'

Mnemonic Name Width APSIM APDBUG APSIM APDBUG

PS Program Source memory 64
MD Main Data memory 38
TM Table Memory 38
DPX Data Pad X 38
DPY Data Pad Y 38
IO I/O devices 38'
SP S-Pad 16
SRS Subroutine Return

Stack 16

\.

FPS 860-7292-002 3 - 40

yes yes
yes yes
yes (read only)
yes yes
yes yes
yes no
yes yes

yes no

""""*
I\"

readable
and
writeable
from
terminal

yes yes
yes yes
yes yes
no yes
no yes
no no
no no

no no

"""
readable
and
writeable
from files
using ny"
and ''Wit

/

3.4.5.2 Registers

Accessible from:

Mnemonic Name Width APSIM APDBUG

MA Main Data Address 16 yes yes
TMA Table Memory Address 16 yes yes
DPA ,Data Pad Address 6 yes yes
PSA Program Source Address 12 yes yes
SPO S-Pad Destination Addr. 4 yes yes
STAT AP Status Register 16 yes yes
DA I/O Device Address 6 yes yes
SPFN S-Pad Function 16 yes yes

SWR Switch register 16 no yes
FN Function register 16 no yes
LITE Lites register 16 no yes
APMA AP DMA Memory Address 16 no yes
liMA Host DMA Memory Address 16 no yes
WC DMA Word Count 16 no yes
CTL DMA Control register 16 no yes
FMTH Formatter high 16 no yes
FMTL Formatter low 16 no yes
IFRS Interface reset 16 no yes
IFSTAT Interface status 16 no yes (when

present)
MDR Main Data Read Buffer 38 yes no
TMR Table Memory Read Buff. 38 yes no
MI Main Data Input Buff. 38 yes no
DPBS Data Pad Bus 38 yes no
INBS I /0 Input Bus 38 yes no
PNBS Panel Bus 16 yes no
FLAG Program flags 4 yes no
SRA Subroutine Stack Addr. 4 yes no
Al Floating Adder HI input 38 yes no
A2 Floating Adder H2 input 38 yes no
Ml Multiplier HI input 38 yes no
M2 Multiplier H2 input 38 yes no
FA Floating Adder output 38 yes no
FM Floating MUltiplier out.38 yes no

FPS 860-7292-002 3 41

3.4.6 PROGRAM WORD FIELDS

The following are fields within an instruction word that may be
examined or changed by name.

Name Program Word Bits

D 0
SOP 1-3
SH 4-5
SPS 6-9
SPD 10-13
FADD 14-16
Al 17-19
A2 20-22
COND 23-26
DISP 27-31
DPX 32-33
DPY 34-35
DPBS 36-38
XR 39-41
YR 42-44
XW 45-47
YW 48-50
FM 51
M1 52-53
M2 54-55
MI 56-57
MA 58-59
DPA 60-61
TMA 62-63

SOP1 6-9
SPEC 6-9
STST 10-13
HPNL 10-13
SPSA 10-13
PSEV 10-13
PSOD 10-13
PS 10-13
SEXT 10-13
FAD 1 17-19
10 17-19
LREG 20-22
RREG 20-22
lOUT 20-22
SNSE 20-22
FLAG 20-22
CONT 20-22

FPS 860-7292-002 3 - 42

3.5 AN EXAMPLE DEBUGGING SESSION

In this example an AP program called PROGI is being debugged. PROGI
uses the FPS supplied divide routine to divide two numbers in Main Data
memory.

3.5.1 APAL SOURCE PROGRAM

$TITLE PROG 1
$ENTRY PROGI,3
$EX! DIV

"PROG1 DOES A SCALAR DIVIDE OF TWO NUMBERS IN MAIN DATA
"MEMORY AND RETURNS THE ANSWER BACK INTO MAIN DATA MEMORY
ftC <- A I B

"
ItS-PAD PARAMETER DEFINITIONS':
"

"

A $EQU 0
B $EQU I
C $EQU 2

"ADDRESS OF 'A' IN MAIN DATA MEMORY
"ADDRESS OF 'B' IN MAIN DATA MEMORY
"ADDRESS OF 'e' IN MAIN DATA MEMORY

PROGI: MOV A,A; SETMA "FETCH A
MOV B,B; SETMA "FETCH B
NOP ''WAIT
DPY <MD "SAVE A IN DPY
DPX<MD; "SAVE B IN D'PX

JSR DIV "AND DIVIDE AlB
MOV C,C; SETMA; "STORE ANSWER IN C

MI<DPY; RETURN "AND RETURN
$END

The input parameters are the addresses of scalars A, B, and C. A and B
are fetched from Main Data memory, A is divided by B, and the result
stored into C. The $ENTRY declaration tells APAL that the routine's
name is PROG1. The ",3" tells APAL that the routine is FORTRAN
callable through APEX and has three S-Pad parameters (the addresses of
A, B, and C). The $EX! tells APAL that the routine uses the DIV
routine.

FPS 860-7292-002 3 - 43

3.5.2 ASSEMBLING THE PROGRAM USING APAL

RUN APAL (cr)
SOURCE FILE=

PROG1.AP (cr)
OBJECT FILE=

PROG1.0BJ (cr)
LISTING AND ERROR FILE=

PROG1.LST (cr)
LISTING? l=YES, O=NO:

1 (cr)
LISTING RADIX: l=HEX, O=OCTAL:

o (cr)
o ERRORS: PROG1 APAL-REV 2

File PROG1.AP is assembled with the object code placed on file
PROG1.0BJ, and the listing (reproduced below) placed on file PROGl.LST.

APAL,REV2
PASS 1
PASS 2

$TITLE PROG1
$ENTRY PROG 1, 3
$EXT DIV

"PROG1 DOES A SCALAR DIVIDE OF TWO NUMBERS IN MAIN DATA
''MEMORY AND RETURNS THE ANSWER BACK INTO MAIN DATA MEMORY
ftC <=A / B

"
tIS-PAD PARAMETER DEFINITIONS:
"

000000 A $EQU a "ADDRESS OF
000001 B $EQU 1 "ADDRESS OF
000002 C $EQU 2 "ADDRES S OF
000000 A $EQU 0 "ADDRESS OF
000001 B $EQU 1 "ADDRESS OF
000002 C $EQU 2 "ADDRESS OF

"
000000 040000 PROG1: MOV A,A; SETMA ''FETCH A

000000
000000
000060

'A'
'B'
'c'
'A'
'B'
'c'

000001 040104
000000
OOOPOO
000060

MOV B,B; SETMA "FETCH B

000002 000000 NOP "WAIT

FPS 860-7292-002 3 - 44

IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY

000000
000000
000000

000003 000000 DPY<MD "SAVE ~ IN DPY
000000
015000
100000

000004 011014 DPX<MD; "SA VE B IN DPX
000000 JSR DIV " AND DIVIDE AlB
045004
177777

000005 040210 MOV C, C; S ETMA; "STORE ANSWER IN C
000340 MI<DPY; RETURN "AND RETURN
004040
000360

$END

**** a ERRORS ****

SYMBOL
DIV
A
B
C
PROG!

VALUE
000004 EXT
000000
000001
000002

000000 ENT

FPS 860-7292-002 3 - 45

3.5.3 LINKING THE PROGRAM USING APLINK

RUN APLINK (cr)

APLINK

REV 2

* L (cr) PROGl.OBJ (cr)

* L (cr) APLIB (cr)

LOAD COMPLETE

~ S (cr) TTY (cr)

HIGH=000041

SYMBOL TABLE

SYMBOL VALUE

PROGI 000000

DIV 000006

* E (cr) PROGl.ABS (cr)

PROGI HIGH-000041

* X (cr)

First PROGl.OBJ is loaded. Then the FPS supplied object library
(called APLI!) is loaded in. APLINK picks out DIV from the library.
When the loading is done, a symbol table (load map) is printed at the
terminal. It shows that PROG1 is loaded at location 0, and DIV at
location 7. The high location loaded was 41 (octal), which means that
the total size of the load module is 34 (decimal) program words. The E
command is used to output the load module for APSIM (or APDBUG). It is
placed on file PROGl.OBJ.

FPS 860-7292-002 3 - 46

3.5.4 DEBUGGING THE PROGRAM USING APSIM

RUN APSIM (cr)
APSIM
REV 2.0

*
Z (cr)

*
Y (cr)
PS (cr)
o (cr)
PROG1.ABS (cr)

*
Zero the simulator and yank in the load module.

E (cr)
SP (cr)
0 (cr)

000000
....... ~~

*
C (cr)
2 (cr)

* -+ (cr)
SP 000001
000000

*
C (cr)
3 (cr)

*
+ (cr)

SP 000002
000000

*
C (cr)
4 (cr)

*

FPS 860-7292-002 3 - 47

Set up S-Pads 0, 1, and 2 with the addresses of A, B, and C. These are
chosen here to be 2, 3, and 4, respectively.

E (cr)
MD (cr)
2 (cr)

0.0000000000
'Ie

C (cr)
10.0 (cr)

'Ie

+ (cr)
MD 000003

0.0000000000
'Ie

C (cr)
2.0 (cr)

'Ie

Set A (in MD 2) to 10.0, and B (in MD 3) to 2.0. The result should be
5. o.

E (cr)
PS (cr)
5 (cr)
040210 000340 004040 000360
'Ie

B (cr)
PS (cr)
6 (cr)

'Ie

Examine PS location 5. It appears to be the last instruction of PROG1,
so set the breakpoint there.

R (cr)
o (cr)

PSA=OOOOOO 5.00 us.
PS 000005
040210 000340 004040 000360
'Ie

Run the program. It took 5.0 us to reach the breakpoint. PSA is set
to 0 since the program stopped on a RETURN, which returns to location 0
since the Subroutine Return Stack was zeroed by the Z command. PS
location 5 is listed because it is the last location examined.

E (cr)
MD (cr)
4 (cr)

20.00000000
'Ie

FPS 860-7292-002 3 - 48

However, the answer is wrong. 10.0, not 20.0 should be the value
of C (MD location 4).

E (cr)
DPY (cr)
o (cr)

20.00000000

*
DPY (where it appeared that DIV returned the answer) also contains
20.0, not 10.0. Now examine DPX, since this might be the data pad in
which DIV returns the answer.

E (cr)
DPX (cr)
o (cr)

5.000000000

*
Yes, the answer is in DPX instead of DPY. A quick check of the AP Math
Library Manual confirms that DIV returns the result in DPX, and that,
DPY is used as a scratch location. Now correct the program so that in
PS location 5, MI<DPX appears instead of MI<DPY.

E (cr)
PS (cr)
5 (cr)

040210 000340 004040 000360

* v (cr)
1 (cr)

*
PS 000005

D 00
Ai 00
DPBS 04
Mi 00

*
C (cr)
DPBS (cr)
3 (cr)

*
C (cr)
XR. (cr)
4 (cr)

*
PS 000005

D 00
A1 00
DPBS 03
Hi 00

* -

SOP
A2
XR.
M2

SOP
A2
XR
M2

FPS 860-7292-002

04 SH 00 SPS 02
00 COND 07 DISP 00
00 YR 04 XW 00
00 MI 03 MA 03

04 SH 00 SPS 02
00 COND 07 DISP 00
04 YR 04 XW 00
00 MI 03 MA 03

3 - 49

SPD 02 FADD 00
DPX 00 DPY 00
YW 00 FM 00
DPA 00 TMA 00

SPD 02 FADD 00
DPX 00 DPY 00
YW 00 FM 00
DPA 00 TMA 00

Examine PS location 5 and switch the PS output mode (V) to 1 for PS
opcode field mode. It shows that now the MI field (memory input) is
set to 3 for data pad bus, and that the DPBS field is set to 4 for DPY.
Change the DPBS field to 3 for DPX, and the DPXread address (XR) to 4,
which biased by 4 gives the proper DPX address of O. Determine that
the proper corrections. were made, reinitialize APSIM, and run again.

I (cr)

*
R (cr)
0 (cr)

PSA-OOOOOO
PS 000005

D
Al
DPBS
M1

*
E (cr)
MD (cr)
4 (cr)

00
00
03
00

5.000000000

*

5.00 us.

SOP 04 SH 00 SPS
A2 00 COND 07 DISP
XR. 04 YR 04 XW
M2 00 MI 03 MA

The correct answer is now contained in C.

(cr)
MD 000003

2.000000000

*
C (cr)
-3.4 (cr)

*
(cr)

MD 000002
10.00000000

*
C- (cr)
12.5 (cr)

*

FPS 860-7292-002 3 - 50

02 SPD 02 FADD 00
00 DPX 00 DPY 00
00 YW 00 FM 00
03 DPA 00 TMA 00

Now try a different case where B a -3.4, and A = 12.5. The expected
answer is approximately -3.68.

I (cr)

*
R (cr)
o (cr)

PSA=OOOOOO
UD 000002

12.50000000

*
E (cr)
MD (cr)
4 (cr)

-3.676470578

*

5.00 us.

Reinitialize and rerun, to make sure the correct answer is obtained.

x (cr)

Now exit APSIM, edit the change into the source, and reassemble, link,
and simulate to make sure the program is correct.

FPS 860-7292-002 3 51

Notice to the Reader

• Help us improve the quality and usefulness
of this manual •

• Your comments and answers to the following
READERS COMMENT form would be appreciated.

To mail: fold the form in three parts so
that Floating Point Systems'
mailing address is visible; seal.

Thank you

First Class
Permit No. A-737

Ponland.
Oregon

; • - - • • ... - ~ • • ' .. •• '"" . ' - j ..'

BUSINESS REPLY
No postage stamp necessary if mailed in the United States

.. ' ~ • • •• r. '....' ~ '- 'I - '.. .~. " .. -. ~. ~, ..-

Postage will be paid by:

FLOATING POINT SYSTEMS, INC.

P.O. Box 23489

Portland, Oregon 97223

Attention: Technical Publications

---. , .' , '. .'

. ~,..."

---------------- --------------------

READERS COMMENT FORM

Document Title ------------------------------
Your comments and answers will help
us improve the quality and usefulness
of our publications. If gour answers
require qualification or additional
explanation, please comment in the
space provided below.

How did YOU use this manual?

() AS AN INTRODUCTION TO THE SUBJECT
() AS AN AID FOR ADVANCED TRAINING
() TO LEARN OF OPERATING PROCEDURES
() TO INSTRUCT A CLASS
() AS A STUDENT IN A CLASS
() AS A REFERENCE MANUAL
() OTHER ________ _

Did YOU find this ~aterial . • •

YES NO

• USEFUL? () ()

• COMPLETE? () ()
• ACCURATE? () ()

• WELL ORGANIZED? () ()

• WELL ILLUSTRATED? () ()

• WELL INDEXED? () ()
'0 EASY TO READ? () () , EASY TO UNDERSTAND? () ()

Please indicate below whether your
comment pertains to an addition,
deletion, change or error; and, where
applicable, please refer to specific
page numbers.

Page Description of error or deficiency

From:
Name ________________ __
Flrm __________________ _

Address
Telephone

Ti tIe _________ _
Department _______ _
City" State ______ _
Date __________ _

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland. OR 97223
(503) 641 -3151 , TLX: 360470 FLOATPOINT PTL

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	replyA
	replyB
	replyC
	xBack

