==

FLOATING POINT
SYSTEMS, INC.

FPRS-100
Linker
(LNK100)
Reference
Manual
880=-7441-000

Publication No. 860-~7441-000
October, 1979

NOTICE

This edition applies to Release A of
FPS-100 software and all subsequent
releases until superseded by a new
edition.

The material in this manual is for
informational purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes no
responsibility for any errors which may
appear in this publication.

Copyright © 1979 by Floating Point Systems, Inc.

Beaverton, Oregon 97005

All rights reserved. ho part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

by FPS Technical Publications Staff

FPRPS-100
Linker
(LNK100)
Reference
Manual
S8680-7441=-000

Publication No. 860-=7441-000
October, 1979

NOTICE

This edition applies to Release A of
FPS=-100 software and all subsequent
releases until superseded by a new
edition.

The material in this manual is for
informational purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes no
responsibility for any errors which may
appear in this publication.

Copyright © 1979 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. ko part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

CHAPTER 1

ot et
L N
N

CHAPTER 2

. .
= OO~ WN -

L]
—
WMNN—O

DR NDON
.

[\
.

2.14

CHAPTER 3

. L]

LWLWLWLL WLWLWW

e o &
WoOoONAOTLEWN ~

WL W
* o L]
——
- O

3.12

FPS 860-7441-000

CONTENTS

OVERVIEW

INTRODUCTION
RELATED MANUALS

OPERATING PROCEDURE

SIMMARY

CONVENTIONS

LOAD (L)

SYMBOLS (S)

UNDEFINED (U)

NEXT BASE (B)

RESET (R)

FORCE (F)

MEMORY (M)

END (E)

END WITH ASSEMBLY CODE (A)
NUMBER RADIX (N)

EXIT (X)

AN EXAMPLE LOADING SESSION

OBJECT MODULES

INTRODUCTION

CODE BLOCK (0)

END BLOCK (1)

TITLE BLOCK (3)

ENTRY BLOCK (4)
EXTERNAL BILOCK (5)
LIBRARY START BLOCK (6)
LIBRARY END BLOCK (7)

DATA BLOCK DESCRIPTOR BLOCK (10)
DATA BLOCK INITIALIZATION BLOCK (11)

FORMAL PARAMETER BLOCK (12)
ALTERNATE ENTRY BLOCK (13)

iii

Page

2-1
2=2
2=-2
2-3
2=4
2-4
2=5
2=-5
2=5
2=-6
2=7
2-7
2-7
2-8

3-1
3=-2
3-3
3=4
3=4
3-5
3=5
3-5
3-5
3-6
3-6
3-6

CHAPTER 4

-L\«L\-:-\J-\J—\
Ui WD -

CHAPTER 5

wvin
c o
N -

APPENDIX A

INDEX

Figure No.

4-1
4=2
4=3
4=t

Table No.
1-1

A-1
A-2

FPS 860-7441-000

LNK100 OUTPUT
INTRODUCTION
SOURCE PROGRAM AND OBJECT MODULE
LOAD SESSION

OUTPUT FROM THE E COMMAND
OUTPUT FROM THE A COMMAND

ERROR MESSAGES

GENERAL INFORMATION
MESSAGES

SUMMARY OF LNK100 COMMANDS

ILLUSTRATIONS

Title
ASM100 Source
Object Module

E Command Load Module
A Command Load Module

TABLES

Title

Related Msznuals
Abbreviations

Command Summary

iv

4-1
b=l
4=2
4=3
4=3

Page

5=1
5=2

41l
4=2
4-3
bety

A-l
A=-2

CHAPTER - 1

OVERVIEW

1.1 INTRODUCTION

LNK100 links together separate object modules produced by ASM100 into a
single load module for execution by the FPS-100 hardware or the
simulator.

The user can separately code and assemble a main line program and the

associated subroutines and later link them together for execution.
LNK100 serves this purpose by performing the following tasks:

e relocating each object module and assigning absolute addresses

e linking the modules together by correlating global entry symbols
defined in one module with external symbols referenced in
another module

e selectively loading modules from program library

e optionally producing a load map showing the layout of the load
module

FPS 860-7441-000 1 - 1

1.2 RELATED MANUALS

The manuals in Table l-1 may also be of interest to the user.

Table l=1 Related Manuals

MANUAL ' PUBLICATION NO.

FPS=100 Math Library Manual FPS 860;7429-000
ASM100 Reference Manual FPS 860-7428-000
SIM100/DBG100 Reference Manual FPS "860-7424-000
FPS=100 Programmer’s Reference Manual FPS 860~7427-000
Volumes One and Two

VFC100 Manual FPS 860~7447-000
APX100 Manual FPS 860~7426~000

FPS 860-7441-000 1 - 2

2.1 SUMMARY

CHAPTER 2

OPERATING PROCEDURE

Program modules are linked interactively via a dialogue between the
user and LNK100. The user enters a series of commands which direct the
linking process.

When execution begins, LNK100 displays:

LNK100 version date

*

The version is the version number of LNK100, and date is the release

date of LNK100. The asterisk (*) indicates that the program is ready
to accept commands. - After each user command, an * is displayed when

that command has been executed and ASM100 1s ready for a new command.
An illegal command causes a ? to be displayed.

To load relocatable programs and prepare them for execution, the user
would normally use the following procedure.

1.

2.

3.

Using the L (load) command, load the file or files
containing the desired main program, required subroutines,
and library subprograms, if any. If a fatal error occurs
during this step, reinitialize using the R command and
repeat this step.

Using the U (undefined) command, check to see if any global
gsymbols are still undefined. If nothing is listed from
this command, continue to step 3. If any symbols are
listed, it usually means that there was an error in one or
more of the programs loaded or that the loading sequence
was wrong. In these cases, correct the error and restart
the loading operation from step l.

Obtain the memory limits of the loaded program or a loader
map by using the M (memory) or S (symbols) command.

FPS 860-7441-000 2 - 1

4. Complete and generate the load module by using the E (end)
command or the A command. Note the values of HIGH and
START as well as the possible presence of any remaining
undefined symbols.

5. Return to the operating system with an X (exit) command.

The individual LNK100 commands are described in the following sectionms,
and a complete example loading session is given in section 2.14.

2.2 CONVENTIONS

The following abbreviations are used in the remainder of this manual:

Abbreviations Meaning

(filename) A user-specified input or output file. The
(filename) follows whatever naming conventions
exist for the particular host computer
operating systems.

* This is the terminal prompt indicating that
the terminal is ready for input.

----- Indicates characters entered by the user. All

user input is terminated with a carriage
returne.

The examples given are illustrative only, as file and 1/0 device names
vary from system to system.

2.3 LOAD (L)
To load a program module, or a program library, enter:

L
(£ilename)

where (filename) is the name of the file containing the desired program
or library.

FPS 860-7441-000 2 - 2

Example:

*

L
FFT .RB

This example loads the program contained on file FFT.RB.

In loading routines, the first entry point defined becomes the name of
the host source output. An entry point can be made the first entry
point by entering a force (F) command without having loaded an object
module previously.

2.4 SYMBOLS (3)

To list the global (external and entry) symbols, enter:

S
(filename)

where (filename) is the name of the file (or I/0 device) to receive the
symbol listing. The output of the loader map is as follows.

HIGH = aaaaaa

SYMBOL TABLE

SYMBOL VALUE

88s5s88Ss nannnn

where:

aaaaaa Highest program address so far loaded. Normally,
the next program is loaded starting at locatiom
HIGH+1.

sgssss Symbol name.

nnnnnn Symbol value. If undefined, this is the last

location loaded which referenced this symbol. If

defined as a constant (with the S$GLOBAL pseudo=-op),
this is the value of the constant. If defined as an

entry symbol, this is the program source address of
the entry symbol.

U If present, this indicates that the symbol is as yet
undefined.

FPS 860-7441-000 2 - 3

Example:
*
s
oy
This example lists the loader symbol table at the terminal. (Some

systems, however, may require a different parameter to indicate the
user terminal.)

2.5 UNDEFINED (U)

To list at the terminal any presently undefined global symbols, enter:

U
(filename)

where (filename) is the file to receive the list of undefined symbols.
The list format is:

SsSssss noannnn

where ssssss is the symbol name, and nnnnnn is the location of the last
program instruction which referenced the symbol.

Example:
i)
T

TY

This example lists the names of any undefined symbols at the terminal.

2.6 NEXT BASE (B)

To specify a base address at which to load the next program, enter:

B
(loc)

where (loc) is the location specified.

Example:

*
B
200

This example sets the next location loaded to location 200.

FPS 860-7441-000 2 - 4

2.7 RESET (R)

To reset LNK100, enter:

R
This reinitializes the program to its initial state. The symbol table
is cleared, any previously loaded programs are disregarded, and the

next location is set to zero. This command must be given following a
fatal error.

2.8 FORCE (F)

To force loading of a program module from a library, enter:

F
(ngme)

where (name) is the name of the symbol to be forced. This command

enters (name) into the symbol table as an external symbol. This causes
the loading of a library program which has (name) as an entry symbol.

Example:

*
4
DOTPRD

This example forces the loading, from any subsequently loaded library
file, of any program that defines the symbol DOTPRD as an entry symbol.

2.9 MEMORY (M)

To get the address of the highest program source memory location so far
loaded, enter:

M
The information is printed as follows:
HIGH = aaaaaa

where aaaaaa is the highest address so far loaded.

FPS 860-7441-000 2 - 5

2.10 END (E)

To end a load module and generate the completed load module for use
with DBG100 or SIM100, enter:

E
(filename)

where (filename) is the name of the file to receive the loader output.
The output is a core image which can be loaded by DBGl0O and executed
by either the simulator SIM100 or the hardware.

LNK100 lists the following information at the user terminal:

HIGH = aaaaaa

where aaaaaa is the highest program address loaded. If any symbols
were still undefined, LNK100 lists:

(num) UNDEFINED SYMBOLS

where (num) is the number still undefined. A value of 0 is used in
linking these undefined symbocls.

Example:

*

E
SAVE

This example stores the completed load module into file SAVE.

The E (or A) command causes links between global symbols in the
completed load module to be frozen. The load module can be generated
again (with another E or A ccmmand), but no further links can be added

(with an L command).

To work on another load module, a reset (R) command must be given to
clear the linker.

FPS 860-7441-000 2 - 6

2.11 END WITH ASSEMBLY CODE (A)

To end a load module and generate the completed load module as host
computer code (for use with APX100), enter:

A
(filename)

where (filename) is the name of the file to receive the loader output.
This output is a host FORTRAN (or possibly assembly) language
subroutine, which is the linkage between host computer FORTRAN calls
and the FPS-100 executive. The FPS~100 code in the load module follows

the host subroutine and is in the form of data statements.
Information concerning the highest address loaded into, and any

undefined symbols, are listed at the user terminal as described
previously for the E command.

2.12 NUMBER RADIX (N)

To set the radix for numeric input/output to and from the user
terminal, enter:

N
(radix)

where (radix) is either 8 (for octal), 10 (for decimal), or 16 (for

hexadecimal). The default radix for user 1/0 is set to one of these
choices at installation.

2.13 EXIT (X)
To exit to the operating system, enter:
X

Notice that the X command does not cause any output. The E or A
command must be used to generate a load module.

FPS 860-7441-000 2 - 7

2.14 AN EXAMPLE LOADING SESSION

This section contains an example loading session.

LNK100

(Call Linker

LNK100 REL. 1.00 , 9/01/79

*

L

PROG1.0BJ
*

L

TTY
DIV 000004 U
*

L

APLIB

LOAD COMPLETE
*

S
TTY
HIGH=000042

SIMBOL TABLE

SYMBOL VALUE

PROG1 000000
DIV 000007
*

E
PROG1 .SIML00

PROG1 HIGH=000042
*

A

PROG1 .SOURCE
PROGL HIGH=000042
*

X

END LNK100

FPS 860-7441-000

l.oad PROGl.0BJ

list any undefined symbols
at the terminal

DIV subroutine is undefined

l.oad DIV from subroutine
library

List global external and entry symbols

Create PROG1.SIM100 to run on the simulator

Create PROG1.SOURCE (host FORTRAN or assembler)
to run on host system

End (return to the operating system)

CHAPTER 3

OBJECT MODULES

3.1 INTRODUCTION

The relocatable object modules produced by the ASM100 assembler, which
are used as input to LNK100, consist of numbers written as octal
Unlike most relocatable binary code, this code can be
displayed at a terminal and edited with an ordinary text editor.

characters.

The relocatable object code is divided into a series of blocks.

order in which the blocks appear, if each type is present, is generally

as follows (the octal block type number is in parentheses):

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

library start block (6)

title block (3)

data block descriptor blocks (10)
parameter block (12)

data block initialization blocks (11)
alternate entry block (13)

entry block (4)

code blocks (0)

external block (5)

end block (1)

library end block (7)

NOTE

The data block description, parameter, data block
initialization, and relocatable entry blocks are
not processed by LNK100. If encountered, LNK100
ignores these blocks.

FPS 860-7441-000 3 - 1

An object module must contain a title block and an end block. The
presence and ordering of other types of blocks depend on the particular
program.

The first 1line of each block is a block header, which describes the
remainder of the block. The block header is easily identified Dbecause
it contains the characters "***" followed by the name of the block.
The remainder of the block ccntains data records.

Blocks are described in the following paragraphs, in order of their
block type numbers (again, inm octal).

3.2 CODE BLOCK (0)

Header:
0 count location *%%CODE

count This specifies the number of data records
that follow.

location This specifies the address relative to the
gtart of the routine where the code is loaded.

Data record:

* code1 code2 code3 code4 flddes type arg ...flddes type arg
* The asterisk at the beginning of the line
is optional, but it is present if any field of
the instruction is to be relocated or contains
an external reference.

code, - These are four 16-bit unsigned octal numbers.

code They make up the code for ome FPS-100
instruction word.

FPS 860-7441-000 3 - 2

The optional triples at the end of the data record are used to define

the fields in the instruction word that are to be relocated.

flddes

type

arg

3.3 END BLOCK (1)

Header:

1 %% *END

Data record:
title

title

FPS 860-7441-000

This is the field designator, specifying
which field to relocate. . Possible values
are:

0 value field

This specifies the type of relocatiom.
Possible values are:

program source relocatable
external reference (absolute)
DB reference)
relocation via the .LOCAL block
of a subroutine

S5 external reference (relative)

WS -

Type 5 is the only type processed by LNK100.

The value of arg depends on the type
specification. If type is 2, 4, or 5, arg
specifies an external. If type is 3, arg
specifies a data block. If type is 1, arg
is ignored. Type 5 is the only

type processed by LNKI10O.

This specifies the title of the routine
(the same as appears in the title block).

3.4 TITLE BLOCK (3)

Header:

3 ***TITLE

Data record:
title

title This specifies the title of the routine.

3.5 ENTRY BLOCK (4)

Header:
4 count ***ENTRY
count This specifies the number of data
records that follow.
Data record:
symbol value type paramnum
symbol This 1s a six=character entry symbol.
value This specifies the value of the symbol. If the
symbol is relocatable, this value is relative

to the start of this routine.

type This indicates the type of symbol. Possible
values are:

0 absolute
1 relocatable (ignored by LNK100)

paramnum This indicates the number of parameters

associated with the entry point. It is not
present if type is O.

FPS 860-7441-000 3 - 4

3.6 EXTERNAL BLOCK (5)

Header:
5 count ***EXT
count This specifies the number of data records
that follow.
Data record:
symbol

symbol This is a six-character external symbol name.

3.7 LIBRARY START BLOCK (6)

Header:

6 *%*LSB

3.8 LIBRARY END BLOCK (7)

Header:

7 *%%],EB

3.9 DATA BLOCK DESCRIPTOR BLOCK (10)

Header:

10 count symbol dest ***DBDB

Data record:

type number

FPS 860-7441-000 3 - 5

3.10 DATA BLOCK INITIALIZATION BLOCK (11)

Header:

11 count ***DBIB

Data record:

id location type

re value

3.11 FORMAL PARAMETER BLOCK (l12)

Header:

12 count *%*FPB

Data record:

type dest size

3.12 ALTERNATE ENTRY BLOCK (13)

Header:

13 count ***AENTRY

count

Data record:

This specifies the number of
data records that follow.

symbol value type paramnum

symbol

value

type

paramnum

FPS 860-7441-000

This is a six-character entry symbol.

This gpecifies the value of the symbol. If the
symbol is relocatable, this value is relative
to the start of this routine.

This indicates the type of symbol. Possible
values are:

0 absolute
1 relocatable

This indicates the number of parameters
associated with the entry point. It is not
present if type is O.

CHAPTER 4

GENERATING LNK100 OUTPUT

4.1 INTRODUCTION

LNK100 generates two types of output. The E command genmerates a load
module for use with SIM100 and DBG100; the A command generates a load
module for use with APX100. This chapter shows how to produce each.

4.2 SOURCE PROGRAM AND OBJECT MODULE

Figure 4=-1 contains an ASM100 subroutine for which both A and E output
is to be generated. This subroutine is used as input to the ASM100
assembler. ASM100 generates the object module contained in Figure 4-2.
The object module is used as input to LNK100.

$TITLE VCADD
$ENTRY VCADD, 4

""VECTOR ADD
"ADDS VECTOR A TO VECTOR B AND PUTS THE RESULT INTO VECTOR C
"C(M) = B(M) + A(M) FOR M = 0 TO N-1

""'S=PAD PARAMETERS

A S$EQ 0 "BASE ADDRESS OF VECTOR A
B SEQU 1 ""BASE ADDRESS OF VECTOR B
c SEQU 2 ""BASE ADDRESS OF C
N SEQU 3 "NUMBER OF ELEMENTS IN C
VCADD: MOV A,A; SETMA "FETCH A(0)
MOV B,B; SETMA "FEICH B(0)
DEC C; DPX(0)<MD "SAVE A(0)
LOOP: INC A; SETMA "FETCH A (M+1)
INC B; SETMA; "FETCH B(M+l)
FADD DPX(0),MD "B(M) + A(M)
DPX(0)<MD; "SAVE A(M+1)
DEC N; FADD " SEE IF DONE?????
MI<FA; INC C; SETMA; "STORE C(M)
BNE LOOP "BRANCH IF NOT DONE
RETURN
$END

Figure 4-1 ASM100 Source

FPS 860~-7441-000 4 - 1

3 ***TITLE

VCADD
13 1 *% % AENTRY
VCADD 0 2 4
0 10 0 *%*%*CODE
40000 0 0 60
40104 0 0 60
1210 0 45004 0
1100 0 0 60
1105 124000 400 60
1215 100000 45004 0
1110 655 0 160
0 340 0 0
1 *%**END
VCADD

Figure 4-2 Object Module

4.3 LOAD SESSION

The following procedure is used to load the object module shown in
Figure 4-2. (The procedure to call LNK100 varies according to the host
operating system but normally consists of entering the name LNK100.)

LNK100 Call LNK100

LNK100 Version Date
*

L Load the object module which
VCADD .0 resides on file VCADD.O.

LOAD COMPLETE
*

E Generate a load module for
SIMMOD use with SIM100/DBG100.

VCADD HIGH=000007
*

A Generate a load module
LMOD for use with APX100.

VCADD HIGH=000007
*

X Exit to the host operating

system.
END LNK100

FPS 860-7441-000 4 - 2

4«4 QUTPUT FROM THE E COMMAND

The load session shown in section 4.3 generated a file SIMMOD with the
E command. This file is a load module which can be used with a
simulated FPS-100 (SIM100) or with the actual hardware for debugging
(DBGL0O0). Figure 4-3 contains this load module. The first line
indicates that the program contains eight program words.

8.
16384. 00000. 00000. 00048.
16452. 00000. 00000. 00048.
00648. 00000. 18948. 00000.
00576. 00000. 00000. 00048.
00581. 43008. 00256. 00048.
00653. 32768. 18948. 00000.
00584. 00429. 00000. 00112,
00000. 00224. 00000. 00000.

Figure 4-3 E Command Load Module

4.5 OUTPUT FROM THE A COMMAND

The load session shown in section 4.3 generated a file LMOD with the A
command. This file is a load module which can be transferred to the
FPS-100 with APX100 routines for execution there. This load module,
which was produced on a Prime computer system, is shown in Figure 4-4.
However, output is different for different host operating systems. For
some systems, assembly code output is produced.

FPS 860~7441-000 4 - 3

C* VCADD

X
X

FCRE~ R~ T R < R S

tel

The source code generated by LNK100 consists of four basic parts:
SUBROUTINE statement, SLIST array, CODE array, and the APX100 call.

SUBROUTINE VCADD (I

1,1 2,1 3,I

4)
INTEGER CODE(33)
INTEGER I 1,J 1
INTEGER I 2,J 2
INTEGER I 3,J 3
INTEGER I 4,J 4
INTEGER SLIST(16)
COMMON /SPARY/SLIST
EQUIVALENCE (J 1,SLIST(1))
EQUIVALENCE (J 2,SLIST(2))
EQUIVALENCE (J 3,SLIST(3))
EQUIVALENCE (J 4,SLIST(4))
DATA CODE(1) / 8/
DATA CODE(2),CODE(3),CODE(
: 0460000, : 000000, : 000000, : 000060/
DATA CODE(6),CODE(7),CODE(
1040104, : 000000, : 000000, : 000060/
DATA CODE(10),CODE(11),CODE(
:001210, : 000000, : 045004, 000000/
DATA CODE(14),CODE(15),CODE(
: 001100, :000000, : 000000, :000060/
DATA CODE(18),CODE(19),CODE(
1001105, :124000, :000400, : 000060/
DATA CODE(22),CODE(23),CODE(
:001215, : 100000, : 045004, :000000/
DATA CODE(26),CODE(27),CODE(
:001110, :000655, :000000, :000160/
DATA CODE(30),CODE(31),CODE(
: 000000, :000340, :000000, :000000/

J 1=I 1
J 2=I 2

J 3= 3

J 4=l 4
CALL APEX(CODE, 0,SLIST, 4)
RETURN
END

4) ,CODE (
8) ,CODE (
12),CODE (
16),CODE(
20),CODE (
24),CODE(
28),CODE(

32),CODE(

Figure 4=4 A Command Load Module

FPS 860-7441-000 & = 4

5)/

9)/
13)/
17)/
21)/
25)/
29)/
33)/

the

The subroutine statement contains the routine’s arguments, the number
of which corresponds to the s-pad parameter on the first SENTRY
psendo-op in the corresponding ASM100 code. The subroutine name is the
same as the symbol on the $ENTRY pseudo-op in the corresponding ASM100
source code. When the user calls VCADD, control is passed to this host
source routine. The arguments are transferred to the SLIST array.
These are addresses of data already transferred to the FPS-100 via
APPUT calls in the user-written host FORTRAN program. The code array
contains the load module created by the user, in this case, VCADD. The
first element of the array is the number of FPS-100 program source
words; the following values correspond to the actual microcode.

The APX100 calls cause the microcode to be loaded into FPS-100 program
source memory unless it still resides there from a previous call. The
argument values are placed in their respective s-pad registers (16 is
maximum), and control is transferred to the routine entry point in the
FPS-100.

FPS 860-7441-000 4 - 5

CHAPTER 5

ERROR MESSAGES

5.1 GENERAL INFORMATION

Any deviation from the prescribed command syntax causes LNK100 to
display a ? at the user terminal. The illegal command is ignored, and
LNK100 displays a * to indicate its readiness to accept a new command.
If a specified file cannot be found or is otherwise unavailable for
use, the message:

FILE NOT FOUND!!!

is displayed and the command is ignored.
The specific error messages displayed by LNK100 are the result of

loading errors detected during execution of an L (load) command. There
are two classes of loading errors:

F - Fatal Reinitialization of the loader (the R command)
is required before loading can continue.

W - Warning An advisory message indicating a possible
errore.

Any fatal error detected during loading causes immediate termination of
the L (load) command following the error message. If the user attempts
to execute another L command, the program displays the message:

RESET!!!

and ignores the command. After reinitializing the loader (R command),
the user must reload any programs loaded up to that point.

FPS 860-7441-000 5 - 1

5.2 MESSAGES

Following are the error messages, along with notes of explanation for
each:

F SYMBOL TABLE OVERFLOW

The loader symbol table is full. The only recourse 1is to
recompile LNK100 with a longer symbol table.

F PROGRAM MEMORY OVERFLOW nnnnnn
An attempt was made to load the upper limit of program source

memory. The load module is too large to fit in program source
memory. nnonon is the memory location involved.

F OVERWRITE nnnnnn
An attempt was made to overwrite a previously loaded program
memory location. The loader does not permit any given program

memory location to be loaded more than once. nnnnnn is the
program memory location involved.

F ILLEGAL BLOCK TYPE nnnunn
An illegal relocatable object code block type was encountered.

The file specified does not contain legal object code. nnnnnn is
the illegal block type, as read from the block header in question.

F TOO MANY EXTERNALS

The loader table of links is full. The only recourse is
to recompile LNK10O with a longer LINKS array.

FPS 860-7441-000 5 = 2

W MULTIPLE ENTRY
An $ENTRY symbol having the same name as one already defined was
encountered during a load. The name and value of the symbol is
listed at the terminal as follows:
ssssss nnnnnn
where ssssss is the symbol name and nnnnnn the symbol value (refer

to section 2.4). The loader proceeds by ignoring the latest
definition.

W MISSING OR IMPROPER ENTRY
The user attempted to produce host assembly code (an A command)

from a load module and the load module did not have any entry
points (defined entry global symbols) .

W $DBIB(S) IGNORED IN BINARY

The user attempted to load an FIN100 binary or a binary loaded
from a library containing FIN100 entry points.

W $DBDB(S) IGNORED IN BINARY

The user attempted to load an FIN10C binary or a binary loaded
from a library containing FIN10O entry points.

FPS 860-7441-000 5 - 3

APPENDIX A

SUMMARY OF LNK100 COMMANDS

This appendix contains a summary of LNK100 coumands. The abbreviations
used in this section are listed in Table A~l. The commands are listed
in Table A-2. .

Table A-1 Abbreviations

Abbreviation Meaning
(filename) Name of a file, as appropriate for the host

operating system being used.
(loc) A location, octal or hexadecimal, as appropriate.

(name) A symbol name, six characters or less.

FPS 860-7441-000 A - 1

Command

L
(filename)

S
(filename)

U
(f1ilename)

B
(loc)

(filename)
A
(£filename)
N

(number)

X

FPS 860-~7441-000

Table A=-2 Command Summary

Effect

Load the program in file (filemame); link with
previously loaded programs.

Copy the loader symbol table to file
(filename) .

Copy any undefined symbols to file
(filename).

Set LNK100 to load the next program at
location (loc).

Reset the loader.,

Force loading of a program defining symbol (name)
from any subsequent program libraries loaded.

list the highest program memory location used.

End the loading session; store the resultant load
module into file (filename).

End the loading session; generate host computer
assembly code for use with APX100 into file
(filename) .

Set the radix for numeric user console 1I/0 to
either 8, 10, or 16.

Exit to the operating system.

A command 2-2,7
A command output 4-3
Assembly code generation 2-7

B command 2-4
Base address 2-4
Blocks 3-1

Code block 3-2
Command summary A-l
Conventions 2=2

E command 2-2,6

E command output 4=3

End block 3-3

End command 2-2,6

End with assembly code 2-7
Entry block 3-4

Error messages 5-1

Example loading session 2-8
Exit command 2-7

External block 3-5

F command 2-3,5
Force command 2-3,5

Generating LNK10O output 4-1
Generating load modules 2-6

L command 2-1,2

Library end block 3=5
Library start block 3-5
Load command 2-1,2

Load module generation 2-6

EPS 860~7441-000

INDEX

Load session 2-8; 4-2

M command 2-1,5
Memory command 2-1,5
Messages 5-1

N conmand 2-7
Next base command 2-4
Number Radix 2-7

Object blocks 3-1

Object Module 3-1; 4-1
Operating procedures 2-1
OQutput 4-1

Output from the A command 4-3
Output from the E command 4-3
Procedure summary 2-1

R command 2-5,6
Relocatable object modules 3-1
Reset command 2-5,6

S command 2-1,3

Sample loading session 2-8
Summary of commands A-l
Symbols command 2-1,3
Title block 3-4

U command 2-1,4
Undefined command 2-1,4

X command 2-2,7

READERS COMMENT FORM

Your comments will help us improve the quality and usefulness of our
publications. To mail: fold the form in three parts so that
Floating Point Systems mailing address is visible, then seal.

Title of document

Name/Title Date

Firm Department

Address

Telephone

I used this manual... I found this material...

Y

[J as an introduction to the subject es No
[as an aid for advanced training accurate/complete J O
[0 to instruct a class written clearly d O
[to learn operating procedures well illustrated 0 (]
[0 as a reference manual well indexed dJ U
[other

Please indicate below, listing the pages, any errors you found in the
manual. Also indicate if you would have liked more information on a
certain subject.

First Class
Permit No.A-737

Portland,
Oregon

_

BUSINESS REPLY

No postage stamp necessary if mailed in the United States —

Postage will be paid by: =

FLOATING POINT SYSTEMS, INC. prr——
P.O. Box 23489

Portiand, Oregon 97223

Attn: Technical Publications

FLOATING POINT
F = E SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX: 360470 FLOATPOINT PTL

	0001
	0002
	001
	002
	003
	004
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	A-1
	A-2
	index-1
	replyA
	replyB
	xBack

