- FPS-100

Loader
FLOATING POINT (LODT100)
SYSTEMS, INC. Reference

Manual

860-74223~-000

by FPS Technical Publications Staff

FPRPS-100
Loadenr

(LOD100)

Reference
Manual

860-742323-000

Publication No. 860-7423-000
September, 1979

NOTICE

This edition applies to Release A of
FPS-100 software and all subsequent
releases until superseded by a new
edition.

The material in this manual is for
informational purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes no
responsibility for any errors which may
appear in this publication.

Copyright © 1979 by Floating Point Systems, Inc.

Beaverton, Oregon 97005

All rights reserved. No part of this publicatiom
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

CHAPTER 1

e ¢ & s o
(=3 W= WV R R PV R S B

s bt b et et et et e
L]
[

e o
*

L]
SN -

.

Pt bt i ek et et et et s
.

00 00 00 00 N N~ NN
.

» o & »
* o =
W =

CHAPTER 2

s o o * & e 8 o .
L[] . L . . o . L[]

e & @
L] L] . L]

wwwuuwwuwwwguuwwwwwuumr—
PO I = = bt b b e O 00NN DWW

NNRDRRRDRRNRDRNNNNNR DN NN
L] .
OV NOULEWN O

FPS 860~7423-000

CONTENTS

INTRODUCTION

OVERVIEW

PURPOSE

SCOPE

CONVENTIONS

RELATED MANUALS

LOADER FUNCTIONS
FPS~100 Load Module
Host-FPS-100 Software Interface Mechanism

(HASI)

FPS-100 JOBS
Overlay Segments
Single-~Level Jobs
Multi-Level Jobs
Multiple Load Module Jobs

SUPERVISOR ENVIRONMENT
Tasks
Interrupt Service Routines
Task Mode

1LOD100 INPUT

INTRODUCTION

CALLING LOD100

COMMANDS
INPUT
OUTPUT
RADIX
IMID
MODE
PRI
TASK
TREE
OVERLAY
CALL
LOAD
LIB
FORCE
NOLOAD
MDOFF
PSOFF
MMAX
PMAX
PPA
MARK

iii

1-8
1-9
1-9
1-9
1-10
1-10

2-1
2-1
2=2
2-2
2=2
2=4
2-5
2-5
2-6
2-6
2-8
2-9
2-10
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-14
2=15
2-15

b . .
—~O oOoONYNYNOTUMBPLWLWL W

o

L]
NN
VWP -

*

s e
.
N

(SN OIS I G B U S (S O S I S S S S I S U]
.

CHAPTER 3

L] L] L L]

L]
= 0o~ W -

L]
L e
HfPLWUBN~O

WLLLWLWLLLVWWLWLLLLWLWWW
.

3.15

CHAPTER 4

L] * .

L I
LWWWLWWLWWLNDNPOPPRPRNNDNDND -
s o L[]
[V, R P R

e
T & »
£ WM -

PEFEPPEEEES S

»

FPS 860-7423-000

PURGE

MAP

LINK

INIT

EXIT
CREATING A SINGLE-LEVEL JOB
CREATING A MULTI-LEVEL JOB
CREATING A MULTIFLE LOAD MODULES
LOADING TASKS

Loading ASM100 Tasks

Loading FTN100 Tasks
OVERLAY TABLE AND PS PARTITION TABLE
TASK COMMUNICATION BLOCK (TCB)
READY QUEUE

OBJECT MODULES

INTRODUCTION

CODE BLOCK (0)

END BLOCK (1)

TITLE BLOCK (3)

ENTRY BLOCK (4)

EXTERNAL BLOCK (5)

LIBRARY START BLOCK (6)

LIBRARY END BLOCK (7)

DATA BLOCK DESCRIPTOR BLOCK (10)
DATA BLOCK INITIALIZATION BLOCK (l1)
FORMAL PARAMETER BLOCK (12)
ALTERNATE ENTRY BLOCK (13)

TASK BLOCK (15)

ISR BLOCK (l16)

SAMPLE OBJECT MODULE

OUTPUT FROM LOD10O

INTRODUCTION
LOAD MODULE

Code/Overlay/32-Bit MD Data Block (0)

Data Block (1)
Information Block (2)
End Block (3)
Sample Load Module
HASI
FPS=-100 Executive Routines
ADC HASI
UDC HASI
Common Blocks in HASI Routines

iv

2-15
2-16
2=22
2=23
2-23
2=24
2=26
2-29
2-30
2-31
2-32
2=34
2-36
2-39

3-1
3=2
3-3
3=4
3=4
3=5
3=5
3=5
3-6
3=-7
3-8
3-9
3-10
3-10
3-11

4=1
4=1
4=2
4=3
bty
4=5
4=5
4=7
4=7
4=12
414
4=16

CHAPTER 5

wwn
*
™

Figure No.
1-1
1-2
2-1
2=2
2=3
2-4
2=5
2-6

3-1
4=1
4=2
4=3

4=4
4=5

Table No.
1-1

2-1
2=2

5-1

FPS 860-7423-000

ERROR MESSAGES

GENERAL INFORMATION
MESSAGES

ILLUSTRATIONS

Title

Overlay Branch Structure
Overlay Memory Allocation

Overlays

Load Map

Binary Tree Structure

Load Map with Tasks

Overlay Structure Including Overlay Numbers
Overlay Segments

Sample Object Module
Sample Load Module
ADC Subroutine

ADC HASI

UDC Subroutine
UDC HASI

TABLES

Title
Related Manuals

Overlay Table Entry Format
TCB Format

Error Messages

Page

1-6
1-7

2-8

2-17
2-19
2-21
2=27
2-34

3-11

4=6
4=12
4-13
4=14
4=15

Page

2-35
2-37

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The Floating Point Systems, Inc., FPS~100 is a peripheral device that
operates independently but under the direction of a host processor. It
contains its own internal memories and 38-bit floating-point arithmetic
units which are interconnected with multiple data paths to allow
parallel internal data transfers. Its arithmetic units, the floating
adder and floating multiplier, are designed as pipelines (operatioms
are performed in independent stages permitting new operations to begin
before old operations are complete). This parallel processing
capability and pipeline arithmetic permit the FPS-100 to perform high
speed array processing.

Since the FPS-100 is under the direction of a host computer, programs
are normally produced on the host computer and transferred over to the
FPS~100 for execution. The FPS-100 loader (LOD100) uses the object
modules produced by the ASM100 cross assembler and the FIN100 cross
compiler and produces the load modules which can be transferred to the
FPS~100 and executed. LOD100 also produces the routines which transfer
the load modules to the FPS-100 and initiate FPS-100 operation.

1.2 PURPOSE

This manual documents the LOD100 loader. It is intended for
programmers experienced in FORTRAN or assembly language programming.
It assumes that the user can create the object modules necessary for
input to LODIOO and can execute the load modules produced by LOD100.
It does not contain detailed programming information.

1.3 SCOPE

This manual completely documents the commands available with LOD10O.
It also describes the format of the object module input and the HASI
and load module output. Overlay structures are also discussed.
Finally the error messages produced by LOD100 are described.

FPS 860-7423-000 1 - 1

1.4 CONVENTIONS

Throughout this manual, the following conventions are used:

e In examples of dialogue at a terminal, user input is
underlined to distinguish it from program or system

output.

® All user input at a terminal is assumed to be

terminated with a carriage return.

e In examples of statements or commands, uppercase
characters must be entered exactly as shown;
lowercase characters indicate that a value or name
must be substituted for the characters.
parameters are surrounded by brackets (< >). A
list of parameters surrounded by brackets (< >)
indicates that the entire list is optional, but
only one of the parameters can be entered. A list
of parameters surrounded by braces ([]) indicates
that one of the list must be entered, bu: no more

than one can be entered.

1.5 RELATED MANUALS

The documents in Table l-l1 may also be useful:

Table l=1 Related Manuals

Optional

MANUAL

—_—

FIN100O Reference Manual

FPS5-100 Math Library Manual

ASM100 Reference Manual

SIM100/DBG100 Reference Manual
FPS-~100 Programmer’s Reference Manual
VFC100 Reference Manual

APX100 Manual

FPS-100 Supervisor Reference Manual

PUBLICATION NO.

FPS

FPS

FPS

FPS

FPS

FPS

FPS

FPS

860-7422-000

860-7429-000
360~-7428-000
860~7424-000
8360-7427-000
860-7447-000
360-7426-000

360=7445-~000

FPS 860-7423-000 1 - 2

1.6 LOADER FUNCTIONS

LOD100 1is a host resident FPS-100 loader which uses the object modules
generated by the FIN10O compiler and the ASM100 assembler and performs
the following functions:

e allocates memory space In the FPS-100 for programs and data

. resolves symbolic references between object modules (links
programs and subprograms together)

. adjusts address-dependent locations to correspond to the
allocated space (relocates code)

e places machine instructions in a load module which is
structured so that it can easily be placed in the FPS5-100

e provides a mechanism for placing load modules in the FPS-100
and initiating FPS~100 processing

° provides a mechanism for sharing data between the host machine
and the FPS5-100

. initializes data structures for use by the FPS~-100 supervisor

LOD100 performs these functions by producing two types of output: the
FPS-100 load module and the host-FPS=100 software interface mechanism
(HASI). ,

1.6.1 FPS=-100 LOAD MODULE

The FPS=-100 load module contains the machine code and the data that are
actually transferred to the FPS-100. In addition to this code and
data, the load module contains instructions for their correct placement
in the FPS=-100 at run time. These instructions ensure that the
appropriate machine code is placed in program source memory and the
data and any overlays in main data memory. The user controls the
overlay structure and the machine code destination with LOD100O
commands. An FPS-100 program may be large enough to require several
load modules; however, only one load module can be resident in the
FP5S-100 at a given time.

LOD100 can produce two types of load modules, host resident load
modules and disk resident binary formatted load modules. Host resident
load modules are created as host FORTRAN subroutines. The information
which is transferred to the FPS-100 is contained in DATA statements.

If the size of the host resident load module exceeds available host
memory size, disk resident binary formatted load modules can be used.

FPS 860-7423-000 1 - 3

1.6.2 HOST=-FPS-100 SOFTWARE INTERFACE MECHANISM (HAST)

The HASI consists of host FORTRAN subroutines which correspond by name
and by formal parameters to host callable FPS-100 subroutines. Each
subroutine of the HASI acts as the link between a host FORTRAN CALL
statement and the execution of the FPS-100 subroutine on the FPS-100.
The user can direct LOD100 to create two types of HASI subroutines;
one type contains auto-directed calls (ADC), and the other contains
user~directed calls (UDC).

The UDC type of subroutine is available for compatibility with LNK100.
Programs which were previously loaded with LNKI00 can be loaded with
LOD100 and run with no modificatioms. With UDC subroutines, the user
must separately transfer data from host to FPS-100 and back. The user
must also use the actual main data memory address values as arguments
of the subroutines. This is the same as LNK100. However, new programs
can include common blocks which are transferred by the UDC subroutines.
If a routine does include common blocks, simultaneous processing of the
host program and the FPS-100 routine does not occur as it would without
the presence of the common block.

The ADC type of HASI subroutine is designed for calling FIN100
routines, though ADC subroutines can be created for ASM100 routines.
With ADC routines, all argument values and common blocks are passed
automatically. The user merely calls the FIN10O routine in the
standard call-by-reference manner. Simultaneous processing of host and
FPS-100 routines is not possible with ADC subroutines. The type of
HASI subroutine created is determined by the entry point of the FPS-100
routine. If the entry point is designated with an FTN100 SUBROUTINE
statement or an ASM100 $SUBR pseudo-op, an ADC routine is created. If
the entry point is determined by an ASM100 $ENTRY pseudo-op, a UDC
routine 1is created.

In either case, when a host FORTRAN call is made to an FPS-100
subroutine, control is passed to the subroutine of the same name in the
HASI. This routine transfers the load module containing the FPS-100
routine to the FPS=100 (if it is not already present there), passes the
common block values, passes the formal parameter values (if it is an
ADC subroutine), and transfers control to the FPS-100. Upon return,
the HASI subroutine retrieves the common block values and, if it 1is an
ADC subroutine, formal parameter values, which it in turn passes to the
calling programe.

Routines in the HASI must be compiled with the host FORTRAN compiler
and linked to the calling program using the host loader.

FPS 860~-7423-000 1 - 4

1.7 FPS-100 JOBS

An FPS-100 job is that portion of a user’s program that runs on the
FPS-100. A job may be contained on one or more load modules. It may
reside entirely in program source memory or contain overlays which may
also reside in main data memory. It may contain host callable routines
or an entire FPS5-100 supervisor environment. The following sections
discuss overlays, the three types of jobs (single level jobs,
multi-level jobs, and multiple load module jobs), and the supervisor
environment.

1.7.1 OVERLAY SEGMENTS

All FPS-100 jobs execute from FPS-100 program source memory. The size
of program source is then a limiting factor on the size of jobs. To
permit execution of jobs larger than program source memory or to permit
the FPS-100 supervisor to function, overlay segments can be used. An
overlay segment is a segment of code that must reside in program source
memory only when it is actually executing. Otherwise, it can be stored
in main data memory. This allows program source memory to be shared,
permitting larger jobs to exist or permitting the supervisor to
interrupt and restore tasks.

Before a routine contained in an overlay segment can be called, that
overlay must be transferred from main data memory to program source
memory. If there is not enough room in program source memory, a
logically independent overlay segment (one not on the same branch) is
transferred from program source memory to main data memory in order to
make room for the first overlay.

An overlay structure i1s similar to a tree with branches. An overlay
segment can be dependent on and call overlay segments in the same
branch. It must be logically independent of and cannot call overlay
segments on a different branch. Since separate branches are logically
independent, they can at different times occupy the same portion of
program source memory. This permits a large program, if it contains
logically independent segments, to be broken up into an overlay
structure and executed in a smaller amount of program source memory.

Figure 1-1 illustrates an overlay branch structure. The job in this
figure contains the root portion (ROOT) which always resides in program
source memory when the remaining overlay segments execute. The first
level overlays, A , and C 1’ each require ROOT to be present but are
independent of each o&her. In the next level, A, . and A are
dependent on A, but independent of each other. %ﬁe same %s true for

1 2 and é In the third level, A and A112 are independent

% eac& other, &ut each requires All whicﬁ in turn requires Al and

which in turn requires ROOT.

FPS 860-7423-000 1 - 5

In other words, in order for a routine in an overlay to be executed,
all overlays in the branch from that point to the root (in this case
ROOT) must be present in program source memory.

ROQT

-1366-

1l 12 11 12

111 112

Figure 1-1 Overlay Branch Structure

FPS 860-7423-000 1 - 6

Figure 1-2 illustrates the same overlay structure in terms of memory
allocation. In this figure, overlay segments separated by vertical
lines can occupy the same portion of program source memory. Overlay
segments separated by horizontal lines are dependent on each other.
The lower overlay segment requires the upper overlay segment to be

present in program source memory in order for routines in the lower
overlay segment to execute.

RCOT

1l 12 11 12

1117112

-1367-

Figure 1-2 Overlay Memory Allocation

A job overlay structure 1is set up by the user with LOD100 commands
described in Chapter 2. Each overlay segment resides in main data
memory until it is copied into program source for execution. The
number of main data memory words required for overlay storage is twice
the number of program source memory words required for its execution.

FPS 860-7423-000 1 - 7

1.7.2 SINGLE-LEVEL JOBS

The term single-level job implies a program without an overlay
structure. A single-level job has no overlays and, therefore, must be
small enough to fit in FPS-100 program source memory- Also, it is
contained in a single load module. Due to this structure, any
subroutine in a single-level job is capable of calling any other
subroutine. In addition, all subroutines can be set up to be host
callable.

Single level jobs cannot be used with the FPS-100 supervisor.

le7.3 MULTI-LEVEL JOBS

A multi-level job is one in which an overlay structure is defined.
This structure is defined by the user with LOD100 commands .

Any FPS-100 job that contains logically independent parts can be
overlaid. Moreover, any job that is larger than program source memory
must be structured into overlay segments (or multiple load modules,
deseribed in section 1.7.4). If the FPS-100 supervisor is used, all
tasks must be structured into overlay segments. Only program code can
be overlaid. Data areas (common blocks) always reside in main data
memory and are accessible to all routines.

When the FPS-100 supervisor is not used, no restrictions exist on
calling routines that reside in the same overlay segment. When calling
a routine in a different overlay segment, the user must ensure that the
overlay segment has been loaded into program source memory. An overlay
segment can be loaded into program source memory by calling APOVLD, the
overlay loader. APOVLD 1is described in section 4.3.1.5. If the
overlay segment already resides in program source memory, APOVLD need
not be called. When the FPS-100 supervisor is used, the previous
discussion applies as long as all routines are in the same task.
Routines in separate tasks cannot call each other.

When the FPS-100 supervisor is not used, all FPS-100 routines with one
exception can be made host-callable. If multiple copies of a routine
exist on the FPS-100, only ome copy can be made host:=callable. When
the FPS-~100 supervisor is used, only routines in the APX100 task can be
made host-callable. Subroutines are declared host-callable with the
1L0D100 command CALL, which is described in section 2.3.1l. With an
option on the CALL command, the user can ensure that the overlay
containing a host-callable subroutine is always loaded when the
subroutine is called. This option causes the HASI routine for that
subroutine to contain APOVLD calls. However, if the host-callable
subroutine calls other routines not in the same overlay segment, it or
the host calling program must contain APOVLD calls to load the
additional overlay segment.

FPS 860-~7423-000 1 - 8

le7.4 MULTIPLE LOAD MODULE JOBS

A multi-level job makes use of overlay segments to comserve program
source memory. The savings in program source memory is counteracted by
the increased use of main data memory and the overhead involved in
maintaining the overlay segments at runtime. In certain large
programs, there may not be enough space in main data memory to contain
both data and overlay segments. If this is the case, a job that
contains logically independent parts can be restructured into a
multiple load module job, one that consists of two or more load
modules. Each load module is then considered to be a logical job.
Since only one load module can reside in the FPS~100 at a given time,
this results in a possible savings of both program source memory and
main data memory. However, if the FPS-100 supervisor is used, multiple
load module jobs cannot be used.

When an FPS=100 subroutine is called from the host, the HASI associated
with the subroutine makes certain that the load module containing the
subroutine is loaded into the FPS-100. 1If an FPS-100 job includes
multiple load modules, the user should try to avoid making calls to
routines on alternate load modules since this results in the additional
overhead of transferring load module data from host to FPS-100.

1.8 SUPERVISOR ENVIRONMENT

If an FPS-100 supervisor (MIS100 or RTS100) is used with the FPS-100,
LOD100 not only loads host callable subroutines (and routines directly
or indirectly called by them) but also loads the supervisor, its
associlated routines and common areas, and supervisor supplied and user
created tasks and ISRs. When the supervisor is used, only single lcad
module jobs are supported, since the load module consists not only of
user routines but the supervisor as well. Also, all user routines must
be loaded as part of a task or an ISR.

1.8.1 TASKS

Tasks, whether FPS—supplied or user written, are ASM100 or FIN100
routines which are not called or controlled by the host computer.
Tasks are assigned priorities and execute on the basis of these
priorities, under the direction of the supervisor. Task processing
occurs in response to interrupts generated by peripheral devices, the
host, or other tasks or ISRs.

FPS 860-7423-000 1 - 9

Although some communication between the host and tasks 1s permitted
(refer to the FPS-100 Supervisor Reference Manual for further
information), all host callable routines must be loaded as a part of
the FPS supplied APX100 task. The APX100 task is provided to allow
user routines which run in an unsupervised FPS-100 to run under the
supervisor without change. So, although the host does not call or
control the APX100 task itself, it does control routines running as a
part of it.

An overlay structure must be specified for each task, even if the task
contains only one segment. In additionm, the overlay structure for each
task must be such that one and only one root (or top level overlay
segment) can be specified.

1.8.2 INTERRUPT SERVICE ROUTINES

An ISR (interrupt service routine) services interrupts generated by
external devices. This includes functions such as reading from or
writing to the externmal device. A separate ISR must be provided for
each external device comnected to the FPS-100. ISRs are written in
assembly code and must contain the $ISR pseudo-o0p.

1.8.3 TASK MODE

LOD100 is provided with a MODE command to facilitate the loading of
FPS100 tasks and ISRs. The loader is placed in task mode by entering
the command MODE TASK. In task mode, certain LOD100 commands also
execute task building code whenever necessary. Although this task
building is transparent to the user, the loader must be in task mode
before tasks or ISRs can be loaded.

FPS 860-~7423-000 1 - 10

CHAPTER 2

LOD100 INPUT

2.1 INTRODUCTION

This chapter discusses communication with LOD100, describes the
individual LODI10O commands, and outlines the procedure for creating
single level, multi-level, and multiple load module jobs.

2.2 CALLING LOD100

To begin the load process, the user must call LOD100. This varies
depending on the operating system, but usually involves entering:

LOD100

LOD100 responds by displaying:

LOD100 version date
*

In this case, version and date indicate the version of the loader and
the date it was created. Additional information may also be displayed
at this time. The asterisk (*) indicates that LOD100 is ready to
accept user input; loader commands can now be entered. After LODI10O
processes each command, it displays the asterisk to indicate that
another command can be entered.

FPS 860-7423-000 2 - 1

2.3 COMMANDS

The following sections describe the commands that are available with
LOD100.

2.3.1 INPUT
This command indicates that a file, not input from the terminal, is
used to specify LOD100 commands. LOD10O then processes the commands on

that file. An end-of-file causes commands to be read from the terminal
again. The format of this command is as follows:

INPUT filename

or

INP filename

filename This parameter specifies the file which
contains LOD100 commands to be processed.

If an input file contains another INPUT command, commands are processed
from the second input file. Subsequent input files can also be
specified. However, when an end-of-file is encountered in any input
file, control is transfered back to the terminal, not to any previously
specified input file.

2.3.2 OUTPUT

This command specifies the LOD10O output files. The format of this
command is as follows:

/D
OUTPUT </size> hasifile lmfile-a lmfile-b/;:>

or

/D
0 </size> hasifile lmfile-a lmfile-b/;:>

FPS 860-7423-000 2 - 2

/size

hasifile

lmfile-1

/D

This optional parameter declares the size of
the buffer used to transfer the load module
at run time. This parameter should be a
multiple of eight. If not, LOD100 uses the
largest multiple of eight less than the
specified number.

This parameter specifies the file in which
1LOD100 writes the HASIs. A host FORTRAN HASI
routine is created for each routine declared
host-callable. Refer to sections l.6.2 and
4.3 for a description of the HASI.

This parameter specifies the file in which
LOD100 writes the load module. A host
resident load module, a binary formatted disk
resident load module, or one of each can be
specified. If one of each is specified, only
the host resident load module can execute.
The binary load module can only be used for
debugging purposes. Refer to sectioms 1l.6.1
and 4.2 for a description of the load

module.

If present, this parameter specifies that the
associated load module is created as a disk
resident binary load module. This is the
only type of load module that can be used
with SIM100/DBG100. If not specified, a host
resident load module is created.

Unless an input file is being used, this command must be the first
command entered in a session (except for the EXIT, HELP, INIT, MAP,
MMAX, PMAX, MDOFF, PSOFF, and RADIX commands which can be entered at
any time). If this command is entered more than once without
reinitializing the loader, subsequent entries redefine hasifile only;
1mfile-i and size cannot be redefined.

On certain

NOTE

operating systems it is very difficult

to use programmed file I/0. On these systems the

user 1is

LOoD100.
output

required to assign files prior to calling
Then, after calling LOD100, all input and

must be specified with logical unit

numbers (in base 10) instead of file names.

FPS 860-7423-000

Examples:

OUTPUT HAST LMOD!L

In this example, a host resident load module LMOD1l is generated.

OUTPUT HASI LMOD2/D

In this example, a disk resident load module IMOD2 is generated.

OUTPUT HASI LMOD3 LMOD4/D

In this example, both a host resident load module LMOD3 and disk
resident load module LMOD4 are generated. Normally, the HASI is set up
to use either a host resident or a disk resident load module. However,
when both types of load modules are generated with the same OUTPUT
command, the HASI by default 1is set up to process the host resident
load module. In this example then, load module LMOD3 executes when the
HAST is called. IMOD4 can be used for debugging purposes.

2.3.3 RADIX
This command sets the radix for future user input. It can be entered

-at any point in the load sequence. The format of this command is as
follows:

RADIX rad
or
R rad
rad This parameter specifies the radix for future
input to LOD100. The following are acceptable
values:
8 octal
10 decimal

16 hexadecimal

FPS 860-7423-000 2 - 4

2.3+.4 LMID
This command specifies the load module identificaticn number of the
current task. The format of this command is as follows:
IMID idnum
or

IM idum

idnum This parameter specifies the load module
identification number.

If specified, this command must be entered immediately after the OUTPUT
command and not entered again unless the INIT command is specified. If
this command is not specified, a load module identification number of

one is implied.
2.3.5 MODE
This command notifies LOD100 that FPS-100 supervisor tasks are to be
loaded during the session. LOD100 adjusts its internal flags so that
the commands which follow execute task building code whenever
necessary. The format of this command is as follows:

MODE TASK

or

MO TASK

This command should be issued before loading any tasks.

FPS 860-7423-000 2 - 5

2.3.6 PRI

This command changes the priority parameters of an ASM100 task. It
overrides the parameters specified with the $TASK pseudo=-op in the
ASM100 task. The format of this command is as follows:

PRI <priority> </I> </S>

priority This parameter specifies the initial run priority
and default priority of a task. Values between
1 and 255 can be specified with 255 the highest
priority. If this parameter is not specified, a
value of 100 is assumed.

/1 For the purpose of initializing the supervisor
ready queue, this parameter indicates that the
previously specified or default priority should
be ignored and this task placed at the front of
the ready queue. This optional parameter should
normally be used only for I/0 controller tasks,
since it actually results in performing part of
the system bootstrapping function (it causes the
I1/0 controller tasks to be waiting for action
before any user tasks start).

/s This parameter, if entered, indicates that the
priority of the task is slaved. Thus, when the
task is activated, it acquires the priority of the
activating task.

2.3.7 TASK

This command designates the next object module and the object modules
which follow it to be loaded as a supervisor task. It provides the
capacity to create FIN10O tasks and can only be used with FIN100
routines. If the next routine is an ASM100 object module which
includes the $TASK pseudo-op, an error message is issued. The format
of this command is as follows:

TASK idn </M> <priority> </I> </S>

idn This is a l=- to 3-digit task identification number
which LOD100 uses to create the task communication
block (TCB) identifier. The TCB identifier is a
common block with name TCBidn. So, for example,
if a task is designated with an identification
number of 5, the user can locate its TCB address by
referencing the common block TCBOOS5.

FPS 860-7423-000 2 - 6

/™

priority

/1

/8

FPS 860-7423-000

If specified, the task uses minimal machine
resources (only those saved in the minimum state
save). If not specified, this task uses the full
machine resources. This parameter is normally used
for system tasks, such as I/0 controller tasks, and
should not be used for FIN10O tasks. This option
can be used if the following registers are not
needed:

s-pad registers 8-15

DPY write buffer

all DPX and DPY registers except DPX(0)-DPX(3)
DPA

floating adder

floating multiplier

flags

This parameter specifies the initial run priority
and default priority of a task. Values between

1 and 255 can be specified with 255 the highest
priority. If this parameter is not specified value
of 100 is assumed.

For the purpose of initializing the supervisor
ready queue, this parameter indicates that the
previously specified or default priority should
be ignored and this task placed at the front of
the ready queue. This optional parameter should
normally be used only for I/0 controller tasks,
since it actually results in performing part of
the system bootstrapping function (it causes the
1/0 controller tasks to be waiting for action
before any user tasks start).

This parameter, if entered, indicates that the

priority of the task is slaved. Thus, when the
task is activated, it acquires the priority of

the activating task.

2.3.8 TREE

This command is used to set up the overlay structure of the subsequent
load module. This command must be entered before any of the OVERLAY

commands are entered.

TREE structure-spec
or

T structure-spec

structure=-spec

Example:

The format of the TREE command is as follows:

This parameter specifies the complete overlay
structure of the load module. Left
parentheses, right parentheses, and overlay
numbers can be entered. A left parenthesis
indicates the start of a new overlay level; a
right parenthesis rescinds a level. Overlay
numbers between paretheses indicate the
overlay segments that are contained in a
particular overlay level. If structure-spec
is too long to fit on one line, it may be
continued on the next line.

A multi-level job consists of three overlay segments, one of which also
contains two overlay segments. This is graphically described in Figure

2-10

OVERLAY A

QVERLAY D OVERLAY E

-1368-

OVERLAY B OVERLAY C

FPS 860-7423-000

Figure 2-1 Overlays

A TREE command for this structure is as follows:

TREE ((1 (2) (3)) (4) (5))

In order to create the load module with this overlay structure, the
overlay segments have to be identified correctly (overlay segment A
must be given an overlay number of l, overlay segments B and C numbers
2 and 3, and so forth), and the overlay segments must be specified and
loaded in the order indicated in the TREE command.

NOTE

The overlay structure shown in Figure 2-1 is
illegal for tasks. Each task must have only one
top level overlay segment.

2.3.9 OVERLAY

This command indicates that subsequently loaded code is part of an
overlay segment. The format of this command is as follows:

OVERLAY ovnum
or

OV ovnum

ovnum This parameter specifies a number uniquely
identifying the particular overlay segment.

OVERLAY commands are used to specify and load overlay segments in the
order indicated in the TREE command. If the user attempts to load
overlay segments in any other order, an error message is issued.

When the OVERLAY command is given and the overlay segment specified is
not subordinate to the previous overlay segment specified (that is, it
is on a different branch of the overlay tree), the user may notice a
delay in the processing of the OVERLAY command. The delay occurs
because, at this point, LOD100 links together the previous overlay
branch up to the level of the new overlay segment. Also, any
unsatisfied externals and NOLOAD designations that were entered with
the previous overlay branch, up to the level of the new overlay
segment, are cleared from the loader tables.

FPS 860~7423-000 2 - 9

2.3.10 CALL

This command specifies routines as host-callable. It identifies the
entry points of the routines which can be called from the host. (Entry
points are declared in FINIOC routines with the SUBROUTINE statement
and in ASM100 routines with the $ENTRY or $SUBR pseudo-ops.) LOD10O
creates a HASI routine for each routine declared with this command.

The format of this command is as follows:

CALL entry-a </> entry-b </> ... entry-n </>
or

C entry=-a </> entry-b </> ... entry-n </>

entry-1i This parameter specifies the entry point
of a routine which is to be host-callable.
In order to be host-callable, this entry
point must be specified in the CALL command
before being loaded with the LOAD command
(refer to section 2.3.11). LODIOO creates
host FORTRAN code for each routine declared
in a CALL command and places it in the HASI.

/ If present, this indicates that the HASI
subroutine created for the previous routine
should contain an APOVLD call. (APOVLD
calls are described in section 4.3.) This
is done only if overlays are actually used
in the load process.

If a routine contains multiple entry points and more than one is
declared host-callable, an error message is issued.

~ If the FPS100 supervisor is used, only routines in the APX100 task can
be specified as host-callable.

FPS 860-7423-000 2 - 10

2.3.11 LOAD

This command identifies the object modules to be loaded. The format of
this command is as follows:

LOAD filename
or

L filename

filename This parameter specifies the file containing
the object module or modules. Libraries or
files containing embedded libraries can also be
specified with this command. Routines in
libraries are loaded only if they satisfy
external references. Files containing embedded
libraries can be loaded only if the routines
that reference the embedded library occur in
the file before the embedded library. Files
containing embedded libraries must be
structured in this manner because the LOAD
command causes a one-pass load to be initiated.

-~ Also, since only one pass occurs, a library may

have to be loaded more than once to ensure that
all the proper externals are satisfied.

2.3.12 LIB

This command identifies libraries to be loaded. The LIB command causes
as many load passes to occur on the library as are necessary to satisfy
all externals that reference the library. Routines are loaded only if
they satisfy external references. The format of this command is as
follows:

LIB filename

filename This parameter specifies the file containing
a library of object modules. The file must
start with a library start block and end with a
library end block. Files containing embedded
libraries cannot be loaded with the LIB
command .

To minimize the number of passes needed to load a library, the library

should be formatted so that routines which reference other library
routines occur in the library before the referenced routines.

FPS 860-7423-000 2 - 11

2+3.13 FORCE
This command forces certain routines to be loaded from a library if and
when they are encountered during LOAD or LIB command execution, even if

they are not needed to satisfy externals. This command does not affect
libraries loaded previously. The format of this command is as follows:

FORCE routine-a routine~=b ... routine-n

or

F routine-a routine-b ... routine-n

routine-i This parameter specifies the routine which must
be loaded when encountered in an object module.

2. 3. 14 NOLOAD

This command inhibits the loading of a routine when encountered in the
load of a library. The specified routine is not loaded, even though it
may satisfy an external reference. NOLOAD has no effect on routines
loaded prior to the entry of this command. The NOLOAD function can be
reversed later by entering the FORCE command. The format of this
command 1is as follows:

NOLOAD routine-a _ routine=-b ... routine-n

or

NL routine-a routine=b <.+ routine-n

routine~-1i This parameter specifies a routine which is not
loaded even if encountered in a library.

NOTE

If a library routine has more than one entry point,
each must be declared with the NOLOAD command or
the routine may still be loaded. In this case, the
routine 1s loaded, but loader tables do not reflect
those entry points declared with NOLOAD.

FPS 860=7423-000 2 - 12

2.3.15 MDOFF

This command specifies the main data memory address at which LOoD100
begins allocating memory space. This is reflected by a change in the
value of DBBRK in the load map. It can be entered at any point during
a load sequence. LOD10O issues a warning message if an overlay or data
area extends across the specified address. The format of this command

is as follows:

MDOFF address
or

MD address

This parameter specifies the main data memory

address
address at which LOD10O begins allocation.

2.3.16 PSOFF

This command specifies the program source memory address at which
LOD100 begins allocating memory space. This is reflected in a change
in the value of PSBRK in the load map. It can be entered at any point
during a load sequence. LOD100 issues a warning message if a program
area extends across the specified address. The format of this command

is as follows:
PSOFF address

or

PS address

This parameter specifies the program source
memory address at which LOD100 begins

allocation.

address

FPS 860~7423-000 2 - 13

2.3.17 MMAX

This command defines the size of a main data memory page. It can be
entered at any point during the load sequence. The format of this

command is as follows:

MMAX address
or
MM address
address This parameter specifies the highest main
data memory address at which to load. A
value from O through 65534 can be entered.
2.3.18 PMAX

This command defines the size of program source memory. It can be
entered at any point in the load sequence. The format of this command

is as follows:
PMAX address
or

P address

This parameter specifies the highest program

address
source memory address at which to load.

FPS 860-7423-000 2 - 14

2.3.19 PPA

This command defines the size of the parameter passing area. The
parameter passing area is used by the HASI for passing subroutine
parameter values to the FPS~100. If this command is not specified, all
main data memory which remains after the LINK command is specified is
set aside for this use. The format of this command is as follows:

PPA size
or
P size
size This parameter specifies the size of the
parameter passing area.
2.3.20 MARK

This command causes LOD100 to permanently define all presently defined
common symbols and entry point symbols. Permanent symbols can be
referenced by any user routine or task loaded during the session. If
this command is not used, the definition of a new supervisor task
causes these symbols to be lost. The format of this command is as

follows:

MARK

2.3.21 PURGE

This command causes LOD100 to delete all common symbols and entry point
symbols from the point of the last MARK command (or the beginning of
the load session if no MARK command was issued). This command can be
used to conserve space in the loader tables. The format of this

command is as follows:

PURGE

FPS 860-7423-000 2 - 15

2.3.22 MAP
This command causes LOD100 to genmerate a load map. It can be entered
at any point in the load sequence. The format of this command is as
follows:

MAP <option> <filename>

or

M <option> <filename>

option This parameter indicates the type of map
to be generated. One of the following can

be specified for option.

option description
0 complete load map
1 addresses of data blocks in

main data memory

2 overlay addresses

3 undefined symbols

4 addresses of entry points in
program source memory

5 current task map

If not specified, 0 (the complete map) is
assumed.

filename This parameter specifies the file on which
LOD100 writes the load map. If this parameter
is omitted, the map is displayed at the user

terminal.

FPS 860-7423-000 2 - 16

Figure 2-2 contains an example of a load map generated when MAP O is

specified and tasks are not being loaded.
be obtained by specifying options with the MAP command.

Parts of this map can also
The section

entitled OVERLAY MAP is obtained by specifying option 2, DB MAP with
option 1, PS ENTRIES with option 4, and UNDEFINED SYMBOLS with option

3.

OVERLAY MAP

DB MAP O

PS TITLES

PSLOW

PSBRK

PS ENTRIES

PSLOW
PSBRK

MDADDR
531
1162
4331

Q

000012
000531
002246
004753

000144
000541

000144
000541

NO LOAD SYMBOLS

DEF

000000

UNDEFINED SYMBOLS

ABC

000000

FPS 860-7423-000

LEN
400
1064
422
350

LBLCOM
DIST
IVECT
sz

TEST

*TEST

JANSWR

PSADDR
144
144
144
355

000062
001131
004216
006723

000144

000144

000144

OO oOomM™
O—I-\OOE'E
oocwNWw

. SHOW
« SMOOTH
.TEST
DBBRK

ZER

ZER

Figure 2-2 Load Map

17

000463
001133
004312
006731

000355

000355

«EXTRNL
o2
.3

SPMUL

SPMUL

000526
00l162
004331

000523

000523

The section of Figure 2-2 entitled OVERLAY MAP Lists and describes each
overlay segment generated. The columns listed in the overlay map

indicate the following:

ID

MDADDR

LEN

PSADDR

LEV

This indicates the identification number of the
overlay segment. This numbering scheme was set
up with the TREE command and assigned with the
OVERLAY command.

This indicates the page of main data memory on
which the overlay segment is stored. Either
the OUTPUT or OVERLAY command can be used to
specify the page number.

This indicates the beginning address in main
data memory where the overlay segment is
stored.

This indicates the length of the overlay
segment in main data memory words. This is
twice the amount of program source words
needed.

This is the beginning address in program source
memory where the overlay segment is stored when
transferred over from main data memory.

This indicates the overlay level. A O
indicates that the overlay segment is not
subordinate to any other overlays. A 1l
indicates that it 1s on the second level of the
overlay tree or subordinate to only one other
overlay segment. Other numbers indicate levels
in the same manner.

The BRL and BRR columns are used to indicate the overlay structure.
This is done by providing a binary tree representation of the overlay
structure. A binary tree is a unique representation of a tree
structure in which each node (in this case, overlay segment) has at
most two subordinate nodes. Since there is a unique binary tree for
each tree structure, it is possible to determine the actual tree
structure from the binary tree representation.

FPS 860-7423-000

BRL This indicates the ID number of the given
overlay segment’s left subroutine branch in the
binary tree structure. When translating this
into the actual overlay structure, the overlay
segment indicated in the BRL column is
immediately subordinate to the given overlay
segment and is the leftmost subordinate
overlay segment.

BRR This indicates the ID number of the given
overlay segment’s right subordinate branch in
the binary tree structure. When translating
into the actual overlay structure, the overlay
segment indicated in the BRR column is
subordinate to the same overlay segment as the
given overlay segment (is on the same level)
and is positioned immediately to the right of
the given overlay segment.

Figure 2-3 shows the binary tree structure of the overlays whose actual
structure is shown in Figure l-l.

ROOT

11 1

11l 12 11 1

112 12

-1389-

Figure 2-3 Binary Tree Structure

FPS 860-7423-000 2 - 19

The section of the load map entitled DB MAP contains the names and the
starting addresses in main data memory of the data blocks. Names
beginning with a period have special meaning. For example, in Figure
2-2, the blocks .TEST, .ZERO, and .SMOOTH refer to three local data
blocks in routines TEST, ZERO, and SMOOTH, respectively, each
internally named .LOCAL. The block .BLANK. refers to a blank common
area. The block .PPA. refers to the parameter passing area. The
block .OWMAP. refers to the overlay map. Blocks such as .2 refer to
overlays stored in main data memory. The number corresponds to the
overlay number. The name DBBRK is always present in the data block map
and indicates the next available location in main data memory.

The PS TITLES section of the load map is generated only when optionm O
is specified. This section lists all routines loaded and their
starting locations in program source memory. The names PSLOW and PSBRK
are always present in the PS TITLES section. PSLOW indicates the first
location in program source loaded, and PSBRK indicates the next
available location.

The PS ENIRIES section of the load map lists the entry points of all
routines loaded and their locations in program source memory. A
routine’s entry point may be the same as its starting location;
however, for routines with multiple entry points, each entry point is
listed in this section. Entry points preceded by an asterisk indicate
host-callable routines. In Figure 2-2 entry point TEST is
host=-callable.

The NO LOAD section of the load map lists all symbols that were
declared with the NOLOAD command.

The UNDEFINED SYMBOLS section of the load map lists all symbols which
were referenced but not defined. The address associated with each
symbol refers to the PS TITLES section and corresponds to the starting
location of the routine which referenced the symbol. In Figure 2-2,
the address associated with symbol JANSWR is the starting location of
routine TEST as shown in the PS TITLES section. Routine TEST
referenced JANSWR, but JANSWR is not defined.

If the user requires a final load map after loading all necessary
routines, it should be generated after the LINK command has been
entered. The final map then contains the address of the parameter
passing area (.PPA.), the overlay map (.OWAP.), and any necessary
local data blocks which were not created by the routines themselves.

Figure 2-4 contains an example of a load map generated when MAP O is
specified and tasks have been loaded. This map contains an additional
section entitled TASK MAP. The task map can also be obtained by
specifying option 5 of the MAP command.

FPS 860-7423-000 2 - 20

OVERLAY MAP

ID PG MDADDR

1 0 536

2 0 541

3 0 551
TASK MAP

ID PRI PSADDR

6 255 21
7 l44 22
DB MAP O
READYQ 000001
TCBOO7 000312
.3 000551
PS TITLES
PSLOW 000020
PS ENTRIES
PSLOW 000020

LEN PSADDR LEV BRL BRR

2 22
10 23
2 23
LEN
1 M 7
5 1000
ISRMAP 000003
.1 000536
.MP007 000553
syscoM 000020
PSBRK 000027

0
1
1

2 0
0 3
0 O

OPT RLINK LLINK

1000
6

VAL 000173

A 000540

.PPA. 000603

PSBRK 000027

Figure 2-4 Load Map with Tasks

TCBOO6
o2
DBBRK

000201
000541
000603

The section of Figure 2-4 entitled TASK MAP lists and describes each

task.

ID

PRI

PSADDR

LEN

FPS 860~7423-000

The columns listed in the task map indicate the following:

This indicates the identification number of

the task.

This number was assigned with the

TASK command or the ASM100 pseudo-op $TASK.

_ This indicates the priority of the task.

This priority was established with the TASK
or PRI command or with the $TASK pseudo-op.

This indicates the beginning address of the

task in program source memory.

This indicates the length of the task in

program source words.

1

OPT This indicates the option associated with the
task. Possible values are M, I, and S which
correspond to the /M, /I, and /S options of
the TASK command (refer to section 2.3.7). If
no value is listed, no option applies for the
task.

RLINK This indicates the right link pointer for the
ready queue. This value 1s the task identifer
of the next lower priority task. A value of
1000 indicates that this task is the highest
priority task and points to the ready queue
header (READYQ).

LLINK This indicates the left link pointer for the
ready queue. This value is the task identifier
of the next higher priority task. A value of
1000 indicates that this task is the highest
priority task and points to the ready queue
header (READYQ).

The section of Figure 2-4 entitled DB MAP contains the same information
described previously, except that only those symbols associated with
the current task appear in the map unless a MARK command was issued
earlier. Also, the block READYQ in Figure 2-4 indicates the ready
queue header, and ISRMAP indicates the interrupt service routine map.
Names such as TCBOO6 indicate task communication blocks of the
corresponding tasks.

2.3.23 LINK

This command causes object code to be linked, relocated, and written to
the load module. Space 1is also allocated for the TCB (if tasks are
loaded), the overlay map, and any local data blocks that are needed by
subroutines which did not declare them. The format of this command is
as follows:

LINK
or

LI

Object modules cannot be loaded after thils command 1is entered unless
task mode has been specified.

FPS 860-7423-000 2 - 22

243424 INIT

When not in task mode, this command re-initializes the loader.

However, it does not affect the values set with the PMAX, MMAX, and
RADIX commands. INIT can be entered at any point in the load sequence.
In task mode this command performs the same functions as an EXIT and a
call to LOD100. The format of this command is as follows:

INIT
or

I

2.3.25 EXIT

This command closes all files and returns control to the operating

system. It also initializes the remaining entries in the task overlay
table, the partition table, and the ready queue and allocates space for
the parameter passing area. It can be entered at any point in the load

sequence. The format of this command is as follows:

EXIT
or

EX

FPS 860-7423-000 2 - 23

2.4 CREATING A SINGLE-LEVEL .JOB

The following is the minimum se
single-level job (the FPS-100 s

OUTPUT filel file2

CALL routinel...

LOAD object~module

LIB library

LINK

EXIT

FPS 860-7423-000

quence of commands needed to create a
upervisor cannot be used in this job):

This defines the loader output files.

CALL commands indicate the routines that
are to be host-callable. FORTRAN source
code is written to the HASI for any
routine specified on a CALL command.

This causes the user’s object modules to
be loaded.

This loads necessary routines from
libraries.

This causes LOD100 to link and relocate
any object modules specified with LOAD
commands and generate the resulting load
module.

This transfers control back to the
operating system.

Example:

Assume that a load module is to be created containing routines CNIRL,
Al, Bl, and Cl and that only CNTRL is to be host-callable. The object
modules of the routines reside on files of the same names. A library,
APLIB, contains routines necessary to satisfy externals. The following
command sequence can be used:

OUTPUT HSTFIN LM
*

CALL CNTIRL
*

LOAD Al
*

LOAD Bl
*

LOAD CONTRL
*

LOAD C1
—

LIB _APLIB
**%L,C
*

LINK
*

EXIT

The characters **LC displayed by LOD100 indicate that the load is
complete and no more outstanding external references remain. The file
HSTFTN now contains the host FORTRAN routine that is the HASI for
CNTRL. The file LM contains the linked and relocated load module.

FPS 860-7423-000 2 - 25

2.5 CREATING A MULTI-LEVEL JOB

The following is the general sequence of commands used to create a
multi-level job without the FPS~100 supervisor:

OUTPUT filel file2 This defines the loader output files.
TREE overlay-spec This defines the overlay structure.

OVERLAY num This indicates that the following
routines are loaded as part of overlay
segment num. Overlay segments must be
loaded in the same sequence as specified
on the TREE command.

CALL routinel...
LOAD object-module
FORCE entryl... This forces the subsequent loading of

any library routines that are needed by
any of the lower level overlay segments.

LIB libraryl... This loads any libraries needed.
LINK
EXIT This transfers control back to the

operating system.

Example:

In this example, assume that a load module 138 to be created with an
overlay structure similar to the one described in section 1l.7.1 and
shown in Figure 1=-l. The routines to be included in the load module
are ROOT, the first level overlays (Al, Bl, and Cl), the second level
overlays dependent on Al (All and Al2), the second level overlay
dependent on Bl (Bll and Bl2), and the third level overlays dependent
on All (Alll and All2). Each routine is an object module on a file of
the same name. Only ROOT is host-callable. The Library APLIB contains
routines necessary to satisfy externals. Figure 2-5 again shows the
overlay structure and includes the overlay numbers which are assigned
with the LOD100 commands.

FPS 860--7423-000 2 - 26

ROOT (1)

A, (10) B, (11) c, (12)
-1370-
A1 Ayo By B,
(20) (21) (22) (23)
Bri1 |12
(30) || 31

Figure 2-5 Overlay Structure Including Overlay Numbers

The following commands can be used to create the load module:

OUTPUT HASTI LM
*

TREE ((1_(10 (20 (30) (31)) (21)) (11 (22) (23)) (12)))
*

OVERLAY 1
*

CALL ROOT
%

LOAD RQOT
*

FORCE DIV SAVE
= .

FPS 860-7423-000 2 - 27

LIB APLIB
*

OVERLAY 10
%

LOAD Al
*

OVERLAY 20
*

LOAD All
*

OVERLAY 30
*

LOAD Alll
*

OVERLAY 31
*

LOAD Al12
*

OVERLAY 21
*

LOAD Al12
*

OVERLAY 11
*

LOAD Bl
*

OVERLAY 22
*

LOAD Bll
*

OVERLAY 23
*

LOAD Bl2
*

OVERLAY 12
*

LoAD Cl
*%1,0
*

LINK
*

EXIT

At run time, either the HASI subroutine, the FPS-100 code, or the host
FORTRAN calling program can load an overlay into program source memory
by calling the overlay load routine (APOVLD) with an argument value
corresponding to the overlay number. Refer to section 4.3.1.5 for a
further description of APOVLD.

FPS 860-7423-000 2 - 28

2.6 CREATING MULTIPLE LOAD MODULES

The following is the general sequence of commands used to create

multiple load modules (multiple load modules cannot be used with the
FPS-100 supervisor):

OUTPUT HASI1 LMl

IMID 1

load sequence

LINK

INIT

OUTPUT HASI2 LM2

LMID 2

load sequence

LINK

EXIT

Any number of load modules can be defined.
two are shown explicitly and assigned ID numbers 1 and 2.

This defines the loader output files
for the first load module.

This identifies the load module.

This defines a single-level or

‘mul ti-level job.

This links the job.
This re-initializes the loader.

This defines the loader output files
for the second load module.

This identifies the second load
module.

HASI2, and LM2 contain their host FORTRAN source and load modules.

HASIs use these ID numbers to ensure that the load module associated
with a given routine is loaded into the FPS~100.

modules should be assigned unique ID numbers.

FPS 860-7423-000

In the previous sequence,
HASI1, LM1,

The

Therefore, the load

2.7 LOADING TASKS

Tasks run in an FPS-100 supervisor environment continuously and without
user or host direction. They respond to messages (interrupts generated
by the host computer or exteranal devices) by performing services. Due

to the differences between tasks and other user routines, special load

procedures are required for jobs containing tasks.

e Before tasks can be loaded, the FPS5-100 supervisor and its
associlated system common areas and routines must be loaded.
The MARK and PURGE commands can be used to ensure proper symbol
definitions across task boundaries.

° Immediately before tasks are loaded during a session, the MODE
TASK command should be entered to activate the special task
building code in LOD10O0.

® A task can be a single routine or an entire overlay tree.
However, even if the task is only a single routine, it must be
loaded as an overlay segment. Also, tree structures with
multiple top level overlay segments, such as one declared with
the command TREE ((l) (2)), are illegal for tasks. A task must
contain at least one overlay segment, but it can contain only
one top level overlay segment.

° If any of the routines loaded are host callable, they must be
loaded as part of the APX100 task. The root segment of this
task is provided with the FPS-100 supervisor and permits
routines which run on the unsupervised FPS-100 to run without
change on the supervised FPS-100. The APX100 task should be
set up with the supervisor-provided portion as the root segment
of the overlay tree and the user routines as subordinate
segments.

° Tasks may or may not share the same program source memory
space. This is determined at load time with the PSOFF command.
If two tasks are to share the same memory space, a PSOFF
command should be given before loading each task with the same
address specified.

Tasks can be writtem in ASM1C0 or in FIN100. Each type requires a
slightly different loading sequence. These are described in the
following sections.

FPs 860-7423~000 2 - 30

2.7.1 LOADING ASM100 TASKS

Tasks written in ASM100 must be declared so with the $TASK pseudo-op.
Therefore, the LOD100 command TASK cannot be specified when loading
ASM100 tasks. However, the PRI command can be given to change the run
priorities of the task. A typical sequence of commands to load a task

is as follows:

OUTPUT filed f£file2

PSOFF 0O

LOAD system commons

LOAD sve routines

MARK

LOAD remaining supervisor
LINK

MODE TASK

PSOFF nnn

TREE (overlay structure)

OVn

LOAD taskfile

PRI priority

oV m

LOAD file2

LINK

PSOFF nnn

TREE (overlay structure)
0Van

FPS 860-7423-000

Define the loader output files.
Specify load location for supervisor.
Begin system definition. Refer to
the FPS-100 Supervisor Reference
Manual for further information about

loading supervisor routines.

Inform loader that tasks are to be
loaded.

Specify load location for the task.
Specify the overlay structure of the
task (at least one overlay must be

specified).

Indicate the first overlay segment to
be loaded.

Load the first overlay segment of the
task.

Specify new task priorities, if
required.

Load additional overlay segments,
if necessary.

Load APX100 task.

LOAD APX100 code Load the supervisor-provided APX100
root segment. Refer to the FPS-100
Supervisor Reference Manual for
further information.

PRI priority

OV m
LOAD host=callable routines load host-callable routines (and
. others, if necessary) in the user
. specified overlay structure.
LINK
. Load additional tasks, if necessary.
EXIT

2.7.2 LOADING FTIN100 TASKS

Unlike ASM100, there is no provision in the FIN10O language for
declaring routines to be tasks. If tasks are written in FIN10O, they
can be declared as tasks in one of two ways.

® The user can write a one-line ASM100 program consisting of the
pseudo-op $TASK, assemble it, and load it immediately before
loading the file containing the FIN100 object code.

° The user can enter the LOD100 command, TASK, at load time to
declare the task id and priority.

A typical sequence of commands to load an FIN1OO task is as follows:

OUTPUT filel file2 Define the loader output files.

PSOFF 0 Specify load location for supervisor.

LOAD system commons Begin system definition. Refer to the

LOAD svc routines FPS-100 Supervisor Reference Manual

MARK for further information about loading

LOAD remaining supervisor supervisor routines.

LINK

MODE TASK Inform loader that tasks are to be
loaded.

FPS 860-7423-000 2 - 32

PSOFF nnn

TREE (overlay structure)

0V n

TASK id options

LOAD taskfile

OV m

LOAD file2

LINK

PSOFF nnn

TREE (overlay structure)
OV n

TASK id options

LOAD file

LINK

TREE (overlay structure)
OV n
LOAD APX100 code

LOAD host-callable routines

FPS 860-7423-000

Specify load location for the task.

Specify the overlay structure of the
task (at least one overlay segment
must be specified).

Indicate the first overlay segment to
be loaded.

Specify the task id and priority
information. (This command is not
necessary if the assembled one-line
ASM100 program has been appended to
the beginning of the FIN100 object
module.

Load the first overlay segment of the
task.

Specify additional overlay segments
if necessary.

Load additional tasks, if necessary.

Load APX100 task.

Load the supervisor-provided APX100
root segment. Refer to the FPS-100
Supervisor Reference Manual for
further information.

Load host=-callable routines (and
others, if necessary) in the user
specified overlay structure.

2.8 OVERLAY TABLE AND PS PARTITION TABLE

LOD100 creates overlay tables and a partition table which the FPS=-100
supervisor uses to manage task usage of program source memory. Tasks
consist of overlay segments which are transferred from main data memory
to program source memory for execution. When the overlay segments are
transferred to program source memory, the beginning address of each
segment defines a new program source partition. A partition represents
the smallest possible division of program source memory. An overlay
segment may overlap several partitioms, but there can be no more than
one segment in a partition at any given time. TFigure 2-6 illustrates
this concept.

100
OVERLAY
SEGMENT
A
150
OVERLAY
SEGMENT
B
175
QVERLAY
SEGMENT
Q
200

-1371-

Figure 2-6 Overlay Segments

FPS 860~7423-000 2 - 34

Overlay segment A in Figure 2-5 fits into PS locations 100-200.
Segment B f£its into locations 150-200, and segment C fits into
locations 175~200. Therefore, PS partition 1l includes locations
100-150, partition 2 includes locations 150-175, and partitiom 3
includes locations 175-200. 1In terms of partitions of program source
memory, overlay segment A starts at location 100 and contains 3
partitions. Overlay segment B starts at location 150 and contains 2
partitions. Overlay segment C starts at location 175 and contains 1
partition.

LOD100 creates an overlay table for each task in the system (.MPnnn
where nnn is the task identifier) and one for the interrupt service
routines (ISRMAP). An entry in the overlay table represents one
overlay segment or ISR. Each entry consists of eight main data memory
words. The format of an entry in the overlay table is shown in Table
2-1.

Table 2-1 Overlay Table Entry Format

PORTION
WORD (see NOTE) CONTENTS

1 M overlay segment number

2 EM, 1M MD address

3 M PS address

4 M length (number of PS words)

5 M task id, name, or TCB address

6 EXP, IM currently-resident bit (EXP) and
should~be-resident-bit (LM)

7 LM pointer to an entry in the PS
partition table indicating the
first partition this segment is
loaded into

8 M Number of consecutive PS partitions
this segment requires

NOTE

In this table, EXP refers to the exponent portion,
HM the high mantissa portion, and LM the low

mantissa portion of the main data word.

FPS 860-7423-000 2 - 35

The PS partition table contains one entry for each PS partition. Each
entry is one MD word long and contains either a zero (indicating that
nothing currently resides in the partition) or a pointer to the entry
in the overlay table representing the segment currently resident in the
partition. (The pointer is actually the address of the residency word
(word 6) in that segment’s entry in the overlay table.)

LOD100 initializes the PS partition table to zeros. It initializes

each word of the overlay table to the appropriate address, count, or
id.

2.9 TASK COMMUNICATION BLOCK (TCB)

For each task the user defines, LOD100 creates a task communication
block, a common block named TCBnnn (where nnn is the task identifier).
A TCB contains status information and the execution context of the task
which the FPS-100 supervisor updates and uses to interrupt and restore
tasks during execution. Refer to the FPS-100 Supervisor Reference
Manual for more information concerning the use of the TCB.

The TCB consists of a standard header, task relevant data, a minimum

save area, and a maximum save area. Table 2-2 shows the format of a
TCB. Each entry in the TCB consists of one MD word.

FPS 860-7423-000 2 - 36

Table 2-2 TCB Format

WORD CONTENTS
HEADER
1 right link (RLINK)
2 left link (LLINK)
3 run priority (RPRI)
4 TYPE (unused for tasks)
5 TCB length (LENGTH)
6 answer exchange address (ANSKEY)
TASK DATA
7 task identifier (ID, number, or name)
8 address in the overlay table of the entry of
the first segment of this task (OVLPTR)
9 number of overlay segments in this task (OVLCNT)
10 default priority (DPRI)
11 task status bits (STATUS)
12 address of the last message received (LSTIMSG)
13 right clock link (RCLOCK)
14 left clock link (LCLOCK)
15 delta time interval (ICLOCK)
16 this task’s beginning MD address (TADDR)
17-20 reserved for future expansion
MINIMUM SAVE AREA
21-23 MD FIFO
24 data pad bus (DPBS)
25 DPX write buffer
26 status register (APSTAT)
27-31 DPX(0) - DPX(3)
32 device address (DA)
33 s=pad destination (SPD)
34 s-pad 0
35 g-pad function (SPFN)
36-42 s-pad(l) - s-pad(7)
43 status register 2 (APSTAT2)
44 table memory address (TMA)
45 table memory register (TMREG)
46 FFT status bits
47 user memory address
48 status register 3 (APSTAT3)
49-64 subroutine return stack (SRS)

FPS 860~7423-000 2 - 37

Table 2-2 TCB Format (cont.)

WORD CONTENTS

MAXIMUM SAVE AREA

65=73 s-pad(8) - s-pad (15)
74 DPY write buffer
75-78 DPY(0) - DPY(3)
79-134 remaining data pads
135 data pad address (DPA)
136-140 floating adder
141-146 floating multiplier
147-150 flags

Upon exit, LOD100 initializes each TCB as follows:

° RLINK and LLink are initialized as described in section 2.10
to set up the ready cqueue.

. RPRI and DPRI are set to the priority specified in the PRI
command. If the PRI command was not specified, they are
initialized to the value specified in the $TASK pseudo-op. If
that was not specified, the values are obtained from the TASK
command .

. OVLPTR is set to the address of the entry in the overlay table
representing the first segment of this task.

. OVLCNT is set to the number of overlay segments in this task.
. TCBID is set to the task identification number obtained from

the $TASK pseudo-op. If the S$TASK pseudo=-op was not specified,
the value 1is obtained from the TASK command.

FPS 860-7423-000 2 - 38

™ STATUS 1is set as follows:

004000 This bit is set unless the /M option was
specified on the $TASK pseudo-op.

010000 This bit is set 1if the /S option was specified
in the PRI command. If the PRI command was not
given, the $TASK pseudo-op is checked. If $TASK
was not specified, the TASK command is checked.

001000 This bit is set if the ready queue is
implemented as described in sectiom 2.10.

® RCLOCK and LCLOCK are set to the address of RCLOCK.

e APSTAT2 is set to disable floating=-point exception interrupt.
e APSTAT3 1s set to 55260 octal.

) SRS (0) is set to the address of the termination routine.

] SRS (1) is set to the program source address of the task.

e LENGTH is set to the number of main data words in the TCB.

. TADDR is set to the main data address of the task’s first
segment.

® All other items are initialized to zero.

2.10 READY QUEUE

In order for the ready queue to function, a system common area named
READYQ must be defined as the header of this queue. In this case,
RLINK of the ready queue header is set by LOD100 to point to the TCB
address of the task with the highest priority, and LLINK of the ready
queue header is set to point to the TCB address of the task with the
lowest priority. RLINK and LLINK of the highest priority task are set
to the point to the second highest task’s TCB and the ready queue,
respectively. RLINK and LLINK of the second highest priority task are
set to point to the TCB of the third highest priority task and the TCB
of the highest priority task, respectively. This pattern continues for
all TICBs.

When READYQ is defined, LOD100 sets the ready queue bit in each TCB
STATUS word as noted in section 2.9.

Tasks which have the /I option specified are placed at the froant of the

ready queue, ahead of the highest priority task, regardless of their
own priorities.

FPS 860-7423-000 2 - 39

CHAPTER 3

OBJECT MODULES

3.1 INTRODUCTION

The relocatable object modules produced by both the ASM100 assembler
and the FIN10O compiler, which are used as input to LOD100O, comnsist of
numbers written as octal characters. Unlike most relocatable binary
code, this code can be displayed at a terminal and edited with an
ordinary text editor.
The relocatable object code is divided into a series of blocks. The
order in which the blocks appear, if each type is present, is generally
as follows (the octal block type number is in parentheses):

l. 1library start block (6)

2. task block (15)

3. ISR block (16)

4 title block (3)

5. data block descriptor blocks (10)

6. parameter block (12)

7. data block initialization blocks (l1)

8. alternmate entry block (13)

9. entry block (4)

10. code blocks (0)

11. external block (5)

12, end block (1)

13. 1library end block (7)

An object module must contain a title block and an end block. The
presence and ordering of other types of blocks depends on the
particular program.

FPS 860-7423-000 3 - 1

The first line of each block is a block header, which describes the
remainder of the block. The block header is easily identified because
it contains the characters "***" followed by the name of the block.
The remainder of the block contains data records.

Blocks are described in the following paragraphs, in order of their
block type numbers (again, in octal).

3.2 CODE BLOCKR (0)

Header:
0 count location *%*CODE

count This specifies the number of data records
that follow.

locations This specifies the address relative to the
start of the routine where the code is loaded.

Data record:

* code-a code=-b code-c code-d flddes-1i type-i arg-i ...flddes-n type-n
arg=-n

* The asterisk at the beginning of the line is
optional, but is present if any field of the
instruction is to be relocated or contains an
external reference.

code=-a These are four 16-bit unsigned octal numbers.
through They make up the code for one FPS-100
code-b instruction word.

FPS 860-7423-000 3 - 2

The optional triples at the end of the data record are used to define
the fields in the instruction word that are to be relocated.

flddes-1i This is the field designator, specifying
which field to relocate. Possible values
are:

0 wvalue field

type-~i This specifies the type of relocation.
Pogsible values are:

program source relocatable
external reference (absolute)
DB reference

relocation via the .LOCAL block
of a subroutine

5 external reference (relative)

SWLWN -

arg-i The value of arg depends on the type
specification. If type is 2, 4, or 5, arg-i
specifies an external. If type is 3, arg-i
specifies a data block. If type is 1, arg-i
is ignored.

3.3 END BLOCK (1)

Header:

1 #*k%END

Data record:

title

title This specifies the title of the routine
(the same as appears in the title block).

FPS 860~7423=-000 3 - 3

3.4 TITLE BLOCK (3)

Header:
3 *%**%*TITLE

Data record:

title

title This specifies the title of the routine.

3.5 ENTRY BLOCK (4)

Header:
4 count *%**ENTRY

count This specifies the number of data
records that follow.

Data record:

symbol value type paramnum

symbol This is a six-character entry symbol.

value This specifies the value of the symbol. If the
symbol is relocatable, this value is relative
to the start of this routine.

type This indicates the type of symbol. Possible
values are:

0 absolute (produced by the $GLOBAL
pseudo-op in ASM100)

1 relocatable (produced by FIN10O or
the $SUBR pseudo-op in ASM100)

paramnum This indicates the number of parameters

associated with the entry point. It is not
present if type is O.

FPS 860--7423-000 3 - 4

3.6 EXTERNAL BLOCK (5)

Header:

5 count *%*E XT

count This specifies the number of data records
that follow.

Data record:

symbol

symbol This is a six-character external symbol name.

3.7 LIBRARY START BLOCK (6)

Header:

6 ***LSB

3.8 LIBRARY END BLOCK (7)

Header:

7 ***LEB

FPS 860-7423-000 3 - 5

3.9 DATA BLOCK DESCRIPTOR BLCCK (10)

Header:

10 count symbol dest *%*DB DB

count This specifies the number of data records that
follow.
symbol This specifies the data block name, which

corresponds to a labeled common block or
+.LOCAL for the local data block.

dest If the subroutine is declared host callable,
this defines how the data is transferred to
and from the FPS-100. Possible values are:

1 data is transferred to the FPS~100

only

2 data is transferred from the FPS-100
only

3 data is transferred both to and from
FPS-100

Data record:
type number
type This indicates the type of item contained

in the data block. Possible values are:

1 integer
2 real
number This specifies the number of elements in the

item. For scalars, this value is 1, for arrays
it i3 the number of elements in the array.

NOTE

If two or more consecutive items of the same type
occur in a data block, they are combined in one
data record.

FPS 860-7423-000 3 - 6

3.10 DATA BLOCK INITIALIZATION BLOCK (l1)

Header:

11 count *%*DRIB

count

Data record:

id location type rc

id

location

type

rc

value-a

value-b

value=-c

FPS 860~7423-000

This specifies the number of data records
that follow.

value-a value-b value-c flddes type arg

This specifies the number of the corresponding
data block descriptor block where items are to
be initialized.

This specifies.the location (relative to the
start of the data block) to be initialized.

This indicates the type of data to be
initialized. Possible values are:

1 integer (if the data item referenced a
relocatable symbol, 20 octal is
added)

2 real

4 double precision integer (if the data
item referenced a relocatable symbol,
20 octal is added)

This is a repetition count. If greater than
1, it indicates that a number of locations are
to be initialized to the same value.

This specifies the value to be initialized
for data items of types 1 and 2. For type 4,
this specifies bits O through 5 of the value
to be initialized.

This appears only for type 4 and specifies the
bits 6 through 21 of the value to be
initialized.

This appears only for type 4 and specifies the
bits 22 through 37 of the value to be
initialized.

The parameters flddes, type, and arg are the same optional triple that
was described in section 3.2. This optional triple appears when the
data item references a relocatable symbol.

3.11 FORMAL PARAMETER BLOCK (12)

Header:

12 count

count

Data record:

type dest

type

dest

size

FPS 860-7423-000

*%*FPB

size

This specifes the number of data records that
follow.

This indicates the type of the parameter.
Possible values are:

1 integer
2 real

If the subroutine is declared host-callable,
this defines how the data is transferred to
and from the FPS-~100. Possible values are:

1 data is transferred to the FPS-100
only

2 data is transferred from the FPS-100
only

3 data is transferred both to and from
the FPS-100

This specifies the dimensionality of the
paraneter (0 indicates a scalar, 3 indicates a
three-dimensional array, and so omn).

Data sub-record:

p-a p-b
p-a This indicates a static or dynamic dimension.
Posgsible values are:
0 dimension is static
1 dimension is dynamic
p~b If p-a is 0, this parameter indicates the

static range. Otherwise, it specifies a formal
parameter whose value dynamically defines the
dimension at run time.

There is one data sub-record for each dimension.

3.12 ALTERNATE ENTRY BLOCK (13)

Header:

13 count ***AENTRY

count This specifies the number of data records that
follow. (This block is produced by the SAENTRY
pseudo-op in ASM100).

Data record:

symbol value type spad

symbol This is a six-character entry symbol.
value This specifies the value of the symbol.
type This indicates the type of symbol. Possible

values are:

0 absolute
1 relocatable

spad This specifies the number of s-pad
parameters.

FPS 860-7423-000 3 - 9

3.13 TASK BLOCK (15)

Header:

15 ***TASK

Datas record:

id priority m-opt i-opt s=-opt

id This indicates the task identification number.

priority This indicates the initial run priority or the
default priority of the task.

m-opt This indicates the amount of machine resources
used. Possible values are:

0 full machine resources
1 minimum machine resources

i-opt This indicates the initial priority option.
Possible values are:

0 same as default priority
1 insert at front of ready queue

s=opt This indicates the slave option. Possible
values are:

0 task is not slaved
1 task is slaved

3.14 ISR BLOCK (16)

Header:

16 index ***ISR

index This indicates the number of the I/0 device
which the ISR services.

FPS 860~7423-000 3 - 10

3.15 SAMPLE OBJECT MODULE

Figure 3-1 contains an object module which was generated by compiling
an ASM100 subroutine.

3 **ATITLE
ADCSFT
12 1 *%*PB
1 1 0
10 1 .LOCAL 7 *%*DBDB
1 1
10 1 COMA 1 #**DBDB
2 1
4 1 ***ENTRY
ADCSFT 0 1 1
0 17 0 *%*CODE
* 3 102000 2000 0 0 3 1
0 0 0 0
0 0 0 0
3 102000 5000 0
0 0 0 0
0 0 0 0
1604 0 5000 0
1670 0 2000 33
40104 0 46004 0
41671 156000 400 0
1 100000 0 0
* 1664 0 2000 0 0 3 2
0 0 100005 0
41564 0 3500 360
0 340 0 0
1 %% *END
ADCSFT

Figure 3~1 Sample Object Module

FPS 860-7423-000 3 - 11

CHAPTER 4

OUTPUT FROM LOD10O

4.1 INTRODUCTION

LOD100 generates two different output files: the load module and the
HASI. The load module consists of the machine code and data that are
actually loaded into the FPS-100, as well as some placement
instructions. Depending on the OUTPUT command, the load module is
stored Iin one of two forms, either as a host resident load module or as
a disk resident, binary formatted load module. The HASI consists of
host FORTRAN subroutines that correspond in name and in formal
parameters to the FTIN100 or ASM100 subroutines that were declared
host-callable with LOD100. These subroutines control the placement of

the load modules on the FPS~100 and the start of FPS-100 execution.
This chapter describes the load module and the HASI.

4.2 LOAD MODULE
The load module is divided into a series of blocks. The following
types of blocks can be present (block type numbers are in parentheses):
o code block or integer data (0)
e data block (1)
e information block (2)

e end block (3)

Each block consists of an eight-word header record followed by data
records which can be of any size. Each word contains a decimal number
evaluated as a 16-bit 2’s complement integer or 32-bit 2°s complement
integer, depending on the host computer.

FPS 860-7423-000 4 - 1

4.2.1 CODE/OVERLAY/32-BIT MD DATA BLOCK (0)
Header:
0 count addr pg dest 0 0 O

count This specifies the number of integers in the
data record.

addr This specifies the address in the FPS-100 where
code should be loaded.

Pg If main data memory is loaded, this parameter
specifies the page of main data to load.

dest This indicates the memory destination.
Possible values are:

0 program source memory
1 main data memory

Data record:

This record contains a block of integers (representing microcode
to be placed in program source memory or main data memory)
specified by count. If the host machine’s word size is 32 bits or
greater, each integer represents a 32-bit integer (1 PS word = 2
host words). Otherwise it represents a l6-bit integer (1 PS word
= 4 host words).

FPS 860-7423-000 4 - 2

4.2.2 DATA BLOCK (1)

Header:

1 count 0 pg

count

Pe

Data record:

This specifies the number of data records that
follow.

This specifies the page of main data to contain
the data values.

type rc addr 0 value-a value-b value-c value-d

type

rc

addr

value=-a
through
value-d

FPS 860-7423-000

This indicates the type of number. Possible
values are:

1 16=bit integer

2 single precision host real
4 double precision integer (38-bit)

This specifies the number of repetitions of the
data item (from the DATA statement in FIN10Q).

This specifies the main data address where the
value of the data item is to be placed.

This specifies the data value, which varies
according to the type.
For type = 1:

value-a contains 16=bit integer value
For type = 2:

value-a contains 16-~bit host real

For type = 4:

value-a contains bits 0=5 of double
precision integer

value-b contains bits 6~21

value-c contains bits 22-37

4.2.3 INFORMATION BLOCK (2)

Header:

2 ppaad ppasz lmid ovlen ovaddr O 0

ppaad This specifies the address cof the parameter
passing area for this load module.

ppasz - This specifies the length of the parameter
passilng areas.

lmid This specifies the identification number of
this load module.

ovlen This specifies the length of the overlay map
in main data memory.

ovaddr This specifies the starting location in main
data memory of the overlay map.

NOTE

Values appear for ovlen and ovaddr only if LOD10O
is not operating in task mode. Also, there may be
multiple occurrences of the information block
header. Only the last one is meaningful.

FPS 860-7423-000 & - 4

4.2.4 END BLOCK (3)

Two types of end blocks are generated by LOD100, a logical end block
and a terminating end block. The format of the logical end block is as
follows:

Header:

This block indicates the logical end of the load module.

The format of terminating end block is as follows:

Header:

This block appears as the last record in the module.

4.2.5 SAMPLE LOAD MODULE

LOD100 can generate two types of load modules, a host resident load
module and a binary formatted disk resident load module. The host
resident load module is produced by default. Specifying the /D option
on the OUTPUT command generates a binary load module.

A host resident load module is stored in the form of a FORTRAN
subroutine consisting primarily of data statements. Figure 4-1
contains a sample. However, the exact format of the load module varies
according to the host FORTRAN compiler. For example, some compliers
put restrictions on the number of data statements. In this case,
1OD100 creates more than one subroutine in the load module.

A binary formatted load module contains the informatiom described
previously in this chapter but is stored in binary format. An example
of a binary formatted load module, because of its very nature, cannot
be shown.

FPS 860-7423-000 4 = 5

*

*

*

*

DATA CODE (
0, 60,
DATA CODE (
0, 0,
DATA CODE (
3,=31744,
DATA CODE (
0, o,
DATA CODE (
0, 0,
DATA CODE(
3,=31744,
DATA CODE (
0, 0,
DATA CODE (
0, o,
DATA CODE (
900, o,
DATA CODE (
952, o,
DATA CODE (
16452, 0,
DATA CODE (
17337, =9216,
DATA CODE (
1,-32768,
DATA CODE (
948, 0,
DATA CODE (
0’ O’
DATA CODE (
17268, 0,
DATA CODE (
0, 224,
DATA CODE (
2, 3,
DATA CODE (
0, 0,
DATA CODE (
3, 0,
DATA CODE (
0, 0,

CALL FSLMLD (

RETURN

SUBROUTINE L 101
INTEGER CODE (

200)
1),COLE (
16,
5),COLE (
0,
9),COLE(

1024,
13),COLE (
0,
17),CODE (
0,
21),COLE(

2560,
25),CODE (
0,
29),COLE (
o,
33),CODE (
2560,
37),COLE (
1024,
41) ,COLE (
19460,
45) ,CODE (
256,
49),CODE (
0,
53),CODE (
1024,
57),CODE (
-32763,
61),CODE (
1856,
65),CODE (
0,
69),COLE (
-5,
73),CODE (
0,
77) ,CODE (
0,
81),CODE (
0,
1,CODE)

END

FPS 860-7423-000

Figure 4-1

2),CODE (
0/
6) ,CODE (
0/
10), CODE (
1/
14),CODE (
0/
18),CODE (
0/
22),CODE (
0/
26) ,CODE (
0/
30), CODE (
0/
34),CODE (
0/
38),CODE (
27/
427 , CODE (
0/
46) ,CODE (
0/
50) , CODE (
0/
54) ,CODE (
2/
58),CODE (
0/
62) ,CODE (
240/
66) , CODE (
0/
70),CODE (
1/
74) ,CODE (
0/
78) ,CODE (
o/
82),CODE (
0/

3),CODE(

7) , CODE (
11),CODE(
15),CODE (
19),CODE(
23),CODE(
27),CODE (
31),CODE (
35),CODE (
39),CODE(
43),CODE (
47),CODE (
51),CODE(
55),CODE (
59),CODE (
63),CODE (
67),CCDE (
71),CODE (
75) ,CCDE (
79),CODE (

83),CUDE (

Sample Load Module

4)/

8)/
12)/
16)/
20)/
24)/
28)/
32)/
36)/
40)/
44)/
48)/
52)/
56)/
60)/
64)/
68)/
72)/
76)/
80)/

84)/

4.3 HASI

Two types of HASTI routines can be generated by LOD100. The ADC (auto
directed calls) type of HASI routine is designed for calling FIN100
routines. All passing of parameter values and common blocks is handled
automatically in this routime. The user merely calls the subroutine
like any other FORTRAN subroutine.

The second type of routine, the UDC (user directed calls) routine, is
designed to be compatible with previous programs. The basic difference
between this and the ADC routine is that the sections controlling the
passing of parameters are missing in the UDC routine. This method
results in faster execution, but the user must place data in the
FPS~100 and pass the actual main data address values as the subroutine
arguments.

4+.3.1 FPS-100 EXECUTIVE ROUTINES

HASI subroutines are written in host FORTRAN but contain calls to
FPS-100 executive routines. These routines are described in the APX100
Manual; however, certain of these routines are especially important to
the HASI subroutines. They are described in the following paragraphs.

4.3.1.1 APLMLD

This routine is called to load a given binary formatted load module
into the FPS-100. This must be done prior to calling a routine in that
load module. APLMLD is normally called automatically by the HASI
subroutine; however, the user can also call this routine. The format
of the call is as follows:

CALL APLMLD (id, array, size)

id This parameter specifies the identification
number of the load module to be moved.
This identification number was originally
established with the LOD100 LMID command.

FPS 860-7423-000 4 - 7

array

size

443+.1.2 FSIMLD

This parameter specifies the name of an array
which contains the binary formatted load
module, read from disk.

This specifies the size of the load module
array.

This routine is called to load a given host resident load module into
the FPS-100. This must be done prior to calling a routine in that load
module. FSIMID is normally czalled automatically by the host resident
load module; however, the user can also call this routine. The format
of the call i1s as follows:

CALIL FSLMILD (id, array)

id

array

FPS 860-7423-000

This parameter specifies the identification
number of the load module to be moved. This
number was originally established with the
LOD100 LMID command.

This parameter specifies an array name. This
array contains the load module to load into
the FPS-100.

4.3.1.3 APRUN

This routine is called by the HASI subroutine to transfer control to a
subroutine in the FPS-100. The format of the call is as follows:

CALL APRUN (psaddr,locadr,option,ovflg,brkloc)

psaddr

locadr

option

ovflg

brkloc

FPS 860-7423-000

This parameter specifies the program source
memory address of the subroutine’s entry point.

This parameter specifies the main data memory
address of the subroutine’s local data block.
(This parameter is used for ADC-type calls
only.)

This parameter indicates the type of HASI
routine. Possible values are:

1 ADC
2 UDC

This parameter specifies whether or not
overlays are used. Possible values are:

0 overlays are not used
1 overlays are used

This parameter specifies the program source
memory address at which a breakpoint should
be set.

4.3.1.4 APLLI

This routine is called by the user to specify the file containing the
binary formatted load modules. APLMLD uses this information when
loading the load modules. The format of this call is as follows:

CALL APLLI(’lmfile’,n,logunit,l,lmid,dummy,dummy)

Imfile

logunit

1mid

dummy

FPS 860--7423-000

This parameter specifies the name of the file
that contains the load module and is specified
in FORTRAN hollerith format.

This parameter specifies the number of
characters in the file name lmfile.

This parameter specifies the host operating
system logical unit number which may be used to
assign the file lmfile. If multiple load
modules are being used, and a logical unit
appears more than once, the first logical unit
is closed. That is, no subroutine in the first
load module can be accessed until APLLI is
called again for that load module.

This parameter specifies the load module
identifier. This identifier was specified with
the LOD100 command LMID. If not specified with
the IMID command, LOD100 assigns a default
value of l. In this case, a 1 should be
specified for lmid.

This is a dummy parameter which is not used
but must be supplied.

4.3.1.5 APOVLD

This routine is called by the user’s host FORTRAN program, the FIN10O
or ASM100 subroutine, or the HASI to load an overlay into program
source memory. The format of the FORTRAN call is as follows.

CALL APOVLD (id)

id This parameter specifies the overlay number of
the desired overlay. This number has been
specified with the LOD100 OVERLAY command.

When this routine is called from an ASM100 subroutine, it is done with
the following procedure.

l. set s~pad 10 to the value of the overlay number

2. perform the following: JSR OVLD

If the overlay with the indicated overlay number cannot be located, the
overlay loader halts.

FPS 860-7423=000 4 - 11

4.3.2 ADC HASIT

Figure 4-2 shows an ASM100 subroutine for which an ADC HASI routine is
created. An ADC HASI is created because the entry point is specified
with a $SUBR pseudo-op.

$TITLE ADCSFT

$SUBR ADCSFT, 1

SPARAM 1, I/I/IP

SCOMMON /.LOCAL/ 1/I

$COMIO COMA 1

SCOMMON /COMA/ A/R

MM $EQU 1

C27 SEQU 16

ADDR SEQU 15

NN SEQU 1
" THIS IS AN ADC ROUTINE. IT FLOATS THE VALUE OF ITS SINGLE
" FORMAL PARAMETER AND PLACES IT IN LOCATION A IN THE COMMON
" BLOCK CALLED /COMA/. NOTE: THE PARAMETER IS AN "INPUT
" PARAMETER", AND THE COMMON BLOCK IS ONLY TRANSFERRED FROM
- FPS-100 TO HOST AND NOT VICE-VERSA.

ADCSFT: LDMA; DB=I ‘ "GET ADDRESS OF ARGUMENT
NOP
NOP
LDMA; DB=MD "GET ACTUAL ARGUMENT
NOP
NOP
LDSPTI NM; DB=MD "SAVE I
LDSPI C27; DB=27. "THE NEXT FIVE LINES FLOAT SP(NM)

MOV NM,NM; DPX<SPFN

FADD ZERO,MDPX; MOV (27,C27

FADD

LDSPI ADDR; DB=A "PREPARE TO WRITE FLOATED VALUE TO A
DPX(NN)<FA

MOV ADDR,ADDR; SETMA; MI<DPX(NN) "WRITE THE VALUE
RETURN

$END

Figure 4~2 ADC Subroutine

FPS 860-7423-000 4 - 12

Figure 4-3 shows a HASI subroutine generated for the routine in Figure
4=2. This HASI routine provides all parameter and common block passing
from host to FPS-100. Since the HASI contains host FORTRAN, the HASI
routine generated may vary from system to system.

When the user calls aun ADC HASI routine, control does not return to the
host program until the FPS~100 halts. No simultaneous processing on
the host and the FPS-100 is permitted.

SUBROUTINE ADCSFT
* (P
* 1)
INTEGER P 1
COMMON /APLDCM/ IPAV(33),NU2, IDLM,NUl, IPPAAD,IPPAND, IOVS(33),
* LMT(10,3),IMTE
COMMON /COMA / C 2001¢ 1)

IF (IDLM.NE. 1)CALL L 101
IPAV(1)= 1

IPA=IPPAAD

IPAV(2)=IPA

IPA=IPA+ 1= 1

IPAV(3)=IPA
CALL APPUT (P 1, TPAV(2),IPAV(3)-IPAV(2),1l)
CALL APRUN (16, 1, 1, 0,13)
CALL APGET(C 2001, 2, 1, 2)
CALL AFWD
CALL APEXC
RETURN
END
BLOCK DATA
COMMON /APLDCM/ IPAV(33),NU2, IDLM,NUl, IPPAAD, IPPAND, IOVS (33),
* LMT(10, 3),LMIE
DATA NU2, IDIM,NUl, IPPAAD,IOVS (2),LMTE
* /0,0,0,0,0,0/
END

Figure 4-3 ADC HASI

FPS 860-7423-000 4 - 13

443.3 UDC HASI

Figure 4-4 contains an ASMI10C subroutine for which a UDC HASI is
generated. This program is the same as that shown in Figure 4-2,
except that the entry point is declared with a $ENIRY pseudo-op.

$TITLE SPFLT
$ENTRY SPFLT, 1
NM $SEQU O

€27 SEQU 16
ADDR $EQU 15
A $SEQU 20

NN $EQU 1

" THIS IS AN EXAMPLE OF A UDC ROUTINE. IT RECEIVES AS A
" PARAMETER AN INTEGER, FLOATS 1T, AND RETURNS THE FLOATED
" VALUE IN MD LOCATION 20 (OCTAL). THE PARAMETER IS S-PAD O.

SPFLT: 1DSPI C27; DB=27. "THE NEXT FIVE LINES FLOAT SP(NM)
MOV NM,NM; DPX<SPFN
FADD ZERO,MDPX; MOV C27,C27
FADD
LDSPI ADDR; DB=A "PREPARE TO WRITE FLOATED VALUE TO MD

DPX(NN)<FA

MOV ADDR,ADDR; SETIMA; MI<DPX(NN) "WRITE THE VALUE
RETURN

SEND

Figure 4=-4 UDC Subroutine

Figure 4-5 shows a HASI subroutine generated for the routine in Figure
4=4. This routine does not contain as many APPUT and APGET calls as
the HASI subroutine in Figure 4-3. This routine does not contain the
parameter passing mechanism. The user must specify actual main data
addresses as arguments.

When the user calls a UDC HASI, control returns to the host program
immediately. If common blocks are not used, simultaneous processing on
the host and the FPS-100 can occur.

FPS 860-7423-000 4 - 14

SUBROUTINE SPFLT
* (P
* 1)
INTEGER P 1
COMMON /APLDCM/ IPAV(33),NU2,IDLM,NU1, IPPAAD, IPPAND, IOVS(33),
* LMT(10,3),LMIE
IF (IDLM.NE. 1)CALL L 101
IPAV(1)= 1
IPAV(2)=P 1
CALL APRUN (16, 0, 2, 0,13)
CALL APEXC
RETURN
END
BLOCK DATA
COMMON /APLDCM/ IPAV(33),NU2, IDLM,NU1, IPPAAD, IPPAND, IOVS (33),
* 1LMT(10,3),LMTE
DATA NU2, IDLM,NUl, IPPAAD,IOVS(2),LMTE
* /0,0,0,0,0,0/
END

Figure 4~5 UDC HASI

FPS 860-7423-000 4 = 15

4e344 COMMON BLOCKS IN HAST ROUTINES

Each HASI subroutine contains a labeled common block, APLDCM (refer to
Figure 4=-3 and Figure 4=5). This common block is used to communicate
run time information between the HASI routine and the FPS-100 support
modules. Important elements of this block include the following:

IPAV(33)

IDLM

IPPAAD

IPPAND

I0VS (33)

LMT(10,3)

FPS 860-7423-000

This is the parameter address vector. The
first element of this arrary contains the
number of parameters. The remaining elements
contain the actual addresses of parameters
passed from host to FPS-100 (a maximum of 32
parameters can be passed). These addresses
lie in the parameter passing area, if an ADC
HAST is created.

This is the load module identifier of module
currently loaded in the FPS=100. If no module

18 currently loaded, this element has a value
Of 0-

This is the starting address of the PPA
(parameter passing area).

This is the ending address +1 of the PPA.

Each time the user calls routine APOVLD from
the host, the overlay numbers are placed in
this array. The first element of this array
contains the number of overlays specified and
is 0 if overlays are not used.

This array contains information concerning the
load modules specified in APLLI calls. Each
first element contains the load module ID;
each second element contains the APLLI option
which is always 1 for this release; each third
element contains the number of the logical
unit assigned to the load module.

This variable contains the number of load
modules which are identified in array IMT.

CHAPTER 5

ERROR MESSAGES

5.1 GENERAL INFORMATION

When the user makes an error in an LOD100 command, LOD100 displays an
error message at the user terminal. The messages are displayed in the
following format:

message (number severity)

message message describing the error
number “error number
severity error severity; possibilities

for this include:

F A fatal error has occured.
The user should restart
the load.

W This is a warning message.

Loading may continue;
however, the user may
wish to restart the load.

I The command is ignored.

The following is an example of an LOD100 error message:

COMMAND OUT OF ORDER (22 I)

NOTE
Some operating systems may have implemented LOD100

in such a way that only the number and severity
fields are displayed. :

FPS 860~7423-000 5 - 1

5.2 MESSAGES

Table 5-1 contains a list of LOD100 error messages.

descriptions are

also included.

Table &=l

Error numbers and

Error Messages

NUMBER | SEVERITY
1 F
2 F
3 F
4 F
5 F
6 F
7 F
8 W
9 F

10 I
11 I
12 I

MESSAGE

READ ERROR

BAD RECORD

CODE OVERLA?

UNEXPECTED
EOF

LOADER BLOCKS
OUT OF ORDER

TOO MANY
ROUTINES

TOO MANY
ENTRIES

WARNING -

DUPLICATE
ENTRY:

TOO MANY
EXTERNALS

CAN NOT
ASSIGN FILE

WHAT

BAD OR MISSING
PARAMETER

1 DESCRIPTION

An unrecoverable read error occurrede.
Start over.

A record did not correspond to the
expectation of LOD100; usually a bad
object module is the cause. This
message is followed by the erroneous
line.

Microcode must be placed in ascending
PS locations. This message indicates
an illegal usage of the ASM100 $LOC
pseudo=-op.

This is similar to error number 2. A
bad object module was encountered.

The ordering of blocks within the
object module was not conformed to.

Too many subroutines encountered.
Table overflow occurred.

Too many entries were encountered.
Table overflow occurred.

A subroutine was loaded with an
entry point identical to omne
encountered earlier. The new entry
point is ignored.

Too many externals were declared.
Table overflow occurred.

The requested file does not exist or
cannot be assigned.

An unrecognizable command was
encountered.

A bad command line was encountered.
It was ignored.

FPS 860-7423-000

Table 5-1

Error Messages (cont.)

NUMBER | SEVERITY | MESSAGE DESCRIPTION
13 F DOUBLE TITLE A subroutine’s title was encountered
BLOCK twice.
14 F MISSING END A bad object module was encountered.
BLOCK
15 F UNMATCHED Common blocks of the same name must
COMMON BLOCK correspond to each other with respect
to size and item types.
16 F TOO MANY DATA | A table overflow has occurred.
BLOCKS
17 F TOO MANY A table overflow has occurred.
OVERLAYS
18 F ENTRY POINT An entry point declared callable with
DECLARED the CALL command is not relocatable,
CALLABLE as required (it is an absolute
IS NOT symbol).
RELOCATABLE
19 F TOO MANY A table overflow has occurred.
PARAMETERS
IN CALLED
ROUTINES
20 W ARGUMENT The indicated argument has already
ALREADY been specified.
SPECIFIED
22 I COMMAND OUT The required ordering of LOD10O
OF ORDER commands has not been followed.
23 I OUTPUT FILE(S)| A LOAD or LIB command was entered
NOT ASSIGNED without specifying a file to be
loaded.
25 I NOT A LIBRARY | The file specified with the LIB
command did not contain a library.
26 W MD MEMORY Data has been loaded in main data
OVERFLOW memory beyond the point specified

with the MMAX command.

FPS 860-7423-000

Table 5-1 Error Messages (cont.)
NUMBER | SEVERITY | MESSAGE DESCRIPTION

27 W PS MEMORY Data has been loaded in program

OVERFLOW source memory beyond the point
specified with the PMAX command.

28 W MULTIPLE HOST | Only one entry point of a subroutine
CALLABLES may be host callable.

29 I COMMAND NOT This command is unknown to the
IMPLEMENTED loader.

30 F RELOCATION This item has been illegally
ERROR relocated.

31 F IMPROPER USE A double precision integer camnot be
OF TRIPLE used at this point.

32 F PSDATA TABLE A partition table overflow has
OVERFLOW occurred indicating that too many PS

partitions exist.

33 F IMPROPER TREE | The overlay tree must have a top
STRUCTURE node.

34 F TASK SEGMENT This task does not have an address in
ADDR MISSING the partition table.
FROM TABLE

35 F RDYQUE NOT The user must define a common block
DEFINED called RDYQUE.

36 F ISRMAP The user must define a common block
MISSING called ISRMAP.

37 F ISRMAP WRONG The ISRMAP common block must be 120
SIZE words long.

38 F MULTIPLY This task name is already in use.
DEFINED TASK
NAME

39 F TSKDTER TABLE | Too many tasks were specified.

OVERFLOW

FPS 860-7423-000

Table 5-1 Error Messages (cont.)

NUMBER

40

41

42

43

44

SEVERITY | MESSAGE DESCRIPTION

F MULTIPLE ISR Only one ISR block is allowed at one
BLOCKS time.

F OVPDTA TABLE Too many overlays were defined.
OVERFLOW

F BOTH TASK AND ISRs and tasks cannot be loaded in
ISR NOT the same session.
ALLOWED

F TASK ALREADY This task is already defined.
SPECIFIED

F WRONG TCB A previously defined TCB does not
SIZE have the size specified with the

corresponding TASK command.

FPS 860-7423-000

INDEX

ADC 4-7
ADC HAST 1=5; 4-12 F command 2~12
Allocation of memory 2-13 FORCE command 2-12
Alternate entry block 3-9 . Formal parameter block 3-8
APLDCM 4-16 FPS-100 jobs 1=6
APLLI 4~-10 FSLMLD 4-8
APLMLD 4-7 FIN100 tasks 2-33
APOVLD 1-10; 2-10,29; 4-11 Functions of the loader l-4
APRUN 4-9
APX100 task 1-12; 2-31 HASI 1=5; 4-7
ASM100 tasks 2=32 HASI file 2-3
Auto-directed calls 1-5; 4~7 HASI, ADC 4~12

HASI, UDC 4-~14
Binary formatted load module 4-~5 Host - FPS-100 interface 1-5
Binary tree representation 2-18 Host callable routines 2-10
Block header 3«2 Host resident load module 1-5;
Block types 3=l 2-3; 4=5

Blocks, load module 4-1
I command 2-24

C command 2-10 IDLM 4-16
CALL command 2-10 Information block 4-4
Callable routines 2-10 INIT command 2-24
Calling LOD100 2-1 Initial priority 2-6,7
Code block 3=2 INP command 2-2
Code/overlay/32 bit MD data block INPUT command 2-2

4=2 Input file 2-2
Commands 2-2 Input, LOD100Q 2-1
Common blocks 4=16 Interface mechanism 1-5
Conventions 1-2 Interrupt Service routines 1-12
Creating a multi-level job 2-27 I0VS 4-16
Creating a single level task 2-25 IPAV 4-16

IPPAAD 4-16

Data block 4-3 IPPAND 4~16
Data block description block 3-6 ISR 1-12
Data block initialization block ISR block 3-10

3-7
DB map 2-21 Job, multi-level 1-10; 2-27
DBBRK 2-21 Job, single level 2-25
Diagnoties 5-1 Jobs 1-6
Disk resident load modules l-5; Jobs, multiple load module 1-11

2-3 Jobs, single level 1-10
End block 3-3; 4=5 L command 2-11
Entry block 3=4 LI command 2-23
Entry points 2-10 LIB command 2-11
Error messages 5-1 Library end block 3-3
EX command 2-24 Library loading 2-11
Executive routines 4-7 Library start block 3-5'
EXIT command 2=24 LINK command 2-23
External block 3=3 IM command 2-5

FPS 860-7423-000 I - 1

LMID command 2-5

IMT 4-16

IMTE 4-16

LOAD command 2-11

Load complete message 2-26
Load map 2-16

Load module 1-5; 2-3; 4-1

Load module identification number

2-5
Load module identifier 4-~16
Load module loading 4-7
Load modules, multiple 2-3Q
Loader functiomns l=4
Loading ASM100 tasks 2-32
Loading FTN100 tasks 2-33
Loading overlays 4-~11
Loading tasks 2-31
LOD100 input 2-1
LOD100 output 4-1

M command 2-16

Machine resources 2-7

MAP command 2-16

MARK command 2-15, 31

MD command 2-13

MDOFF command 2-13

Memory allocation 1-9; 2-13
MM command 2-14

MMAX command 2-~14

MO command 2-5

MODE command 1-12; 2-5,31
Module, load 1-=5

MTS100 1=11

Multi-level jobs 1=10; 2-27
Multiple load module jobs 1-11
Multiple load modules 2-30

NL command 2-12
No load map 2-21
NOLOAD command 2-12

0 command 2-2

Object module 3-11

Object modules 3-1

OUTPUT command 2-2

Output files 2=-2

Output from LOD100 4~-1

0V command 2-9

OVERLAY command 2-9
Overlay loading 1-10; 4-11

FPS 860-7423-000

INDEX

Overlay map 2-18

Overlay numbers 2-9

Overlay segments l=7

Overlay structure 1-7; 2-8,31
Overlay table 2-35

P command 2-15
Page size 2-14
Parameter address vector 4-16

Parameter passing area 2-15; 4-16

Partition table 2-35

™ command 2-14

PMAX command 2~14

PPA command 2-15

PRI command 2-6,32
Priority 2-6,7,40
Programmed file I/0 2-3
PS command 2-13, 31

PS entries 2-21

PS partition table 2-35
PS titles map 2-21
PSBRK 2-21

PSOFF command 2-13,31
PURGE command 2-15, 31

R command 2-4
RADIX command 2-4
Re-initializing the loader 2-24
Ready queue 2-23,41
Related manuals 1=3
Routines, executive 4<7
RTS100 l=-11

Run Priority 2-7

Sample load module 4-5
Simultaneous processing 1-5
Single level jobs 1-10; 2-25
Slaved task 2-6,7

Structure, overlay l-7
Supervisor environment 1-11

T command 2-8

Task block 3-10

TASK command 2-6, 32,33
Task communication block 2-6,37
Task identification number 2-6
Task loading 2=31

Task map 2-22

Task mode 1-12

Task priority 2-6

INDEX

S$TASK pseudo-op 2-32,33 UDC 4-7
Tasks 1-12 UDC HASI 1-5; 4-14

TCB 2-6, 37 Underfined symbols map 2-21
Title block 3-4 User directed calls 1-5; 4=7

TREE command 2-8

FPS 860-7423-000 I - 3

READERS COMMENT FORM

Your comments will help us improve the quality and usefulness of our
publications. To mail: fold the form in three parts so that
Floating Point Systems mailing address is visible, then seal.

Title of document

Name/Title Date

Firm Department

Address

Telephone

I used this manual... I found this material...

Y

[(J as an introduction to the subject es No
0 as an aid for advanced training accurate/complete [l (]
[0 to instruct a class written clearly] O
[0 to learn operating procedures well illustrated] O
(J as a reference manual well indexed O O
[l other

Please indicate below, listing the pages, any errors you found in the
manual. Also indicate if you would have liked more information on a
certain subject.

First Class
Permit No.A-737
Portland,

Oregon

BUSINESS REPLY

No postage stamp necessary if mailed in the United States

Postage will be paid by:

FLOATING POINT SYSTEMS, INC.

P.O. Box 23489
Portiand, Oregon 97223

Attn: Technical Publications

FLOATING POINT
F F E SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX: 360470 FLOATPOINT PTL

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	index-1
	index-2
	index-3
	replyA
	replyB
	xBack

