F F E Supervisor

FLOATING POINT nsi;er-enf:e
anua
SYSTEMS, INC. (MTS100)

860-7445-0Q00

by FPS Technical Publications Staff

Supervisor
Reference
Manual
(MTS100)

860-7445~-0Q00

Publication No. 860-7445-000
February, 1980

NOTICE

The material in this manual is for
informational purposes only and is
subject to change without notice.

Floating Point Systems, Inc., assumes no
responsibility for any errors which may
appear in this publication.

Copyright © 1980 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

CHAPTER 1

L . .
N~NN OO oo oMU P W N

N -

« o o
wN -

bt et s ek et et et fed i fed ot et ek e e s

CHAPTER 2

*® e 9 =
e ®
W N =

¢« o o
w N =

MNP NNDNDNDNDN
L]
WLLWLWNNDDD N -
L]

CHAPTER 3

e & o o o o o o o
NNNNyOTUVMPLN

WLLLWLLLLLWLWW

FPS 860-7445-000

CONTENTS

INTRODUCTION

PURPOSE -
SCOPE
RELATED MANUALS
GENERAL DESCRIPTION
SOFTWARE COMPONENTS
Tasks
Host=callable Subroutines
Device Handlers
Differences Between Tasks and Subroutines
COMMUNICATIONS
Host /FPS-100 Communication
Task/Task Communication
Task/External Device Communication
INTERRUPTS
Asynchronous Interrupts
Synchronous Interrupts

SUPERVISOR FUNCTIONS

INTRODUCTION
EXECUTING TASKS
Selecting Tasks to Run
Saving and Restoring States
Loading Tasks
HANDLING INTERRUPTS
I/0 Interrupts
TRAP Interrupts
Fatal and Floating=-point Exception
Interrupts

SUPERVISOR CALLS

INTRODUCTION
AFFECTED REGISTERS
ERROR CHECKING
TASK HANDLING SVCS
MESSAGE FACILITY SVCS
MISCELLANEOUS SVCS
FIN100 SVCS

ZWAIT

ZSEND

ZANSR

ZRUNPR

iii

Page

Pt = o bt b e e e ped e e e e
]
HFOSNNO UM UME PV~ -~

1
o

=
11
—
[N]

3=-2
3-2
3-3
3-8
3-19
3-21
3=-21
3-22
3-22
3-22

L w
e
~N
.

oy n

CHAPTER 4

SO N T N S N U U U S N
& @& & & 8 o 0

W RNNNNNPE PP -
L]

* L] *]

CHAPTER 5

o o
.
N -

(S NG NV RV R]
L]

e WWwLN -~
L]

CHAPTER 6

s &
W N -

® o o s e
WLLLPDODNDNDN -
.

RO ONONONONON OM
WK -

L] L
L] L]

FPS 860-7445-000

ZSETPR
ZSETFX

COMMUNICATIONS

COMMUNICATION BETWEEN TASKS
Messages
Message Exchanges
Clock Queue
Types of Tasks

COMMUNICATION BETWEEN THE HOST AND THE FPS-100
Interrupting the FPS=100
Virtual Front Panel Operations
Host-callable Subroutines
Communication Ports

COMMUNICATION BETWEEN TASKS AND I/0 DEVICES

DEVICE HANDLERS

INTRODUCTION

DEVICE HANDLER FUNCTIONS

DEVICE HANDLER STRUCTURE
Device Controller
Device Servicer

IOP BANDLER

GPIOP HANDLER

USING MTS-100

CONCEPTS
MECHANICS
Writing a Task
Making a Load Module with LOD10O
The Host FORTRAN Mainline
ADVANCED TECHNIQUES
Faster Execution of SVCs
How to Write and Add SVC Routines
How to Write and Add ISRs to the
Supervisor
Modifying the Supervisor
AP-FORTRAN TASKS
VFC AND HSR MODES
Vector Function Chainer
HSR Mode
PROCEDURE FOR A COMPLETE JOB

iv

Page

3=23
3-23

4=1
4=1
4-3
4=5
4=7
4-9
4=12
4-13
4-15
4=16
4=-23

5-1
5-1
5=2
5=-2
5-3
5=5
3=7

6-1
6-1
6-2
6-6
6-16
6-17
6-17
6-18

6-18
6-20
6=-22
6=-22
6-23
6=-23
6-24

APPENDIX A
APPENDIX B

APPENDIX C

Figure No.

1-1
1-2

6~1
6=2
6-3
6-4
6-5

FPS 860-7445-000

SYSTEM STANDARD DEFINITIONS
I1/0 DEVICE CONFIGURATION TABLE

ALPHABETICAL INDEX OF SUPERVISOR CALLS (SVCs)
AND HOST/FPS-100 COMMUNICATION ROUTINES

ILLUSTRATIONS

Title

APX100 - MTS100 Relationship
Sending Messages and Answers

Ready Queue
Overlay Segments in PS Memory

Message~-producing and Message-consuming Tasks
Supervisor Mode Software Layers

Device Controller Structure

Possible PS Allocations

Overlay Tree Structures

PS Allocation

PS Allocation

PS Allocation and Tree Structure

6-11
6-11
6-12

Table No.

1-
1=

N -

FPS 860~7445-000

TABLES

Title

Related Manuals
Sending Messages and Answers

TCB Format
Overlay Table Entry Format
Configuration Table Entry Format

Message Header
ICLOCK Values

IOP Handler Message Format
GPIOP Execute IOC Message Format
Start New Buffer GPIOP Message Format

Setting 1/0 Interrupt Priority Masks

vi

Page

1-2
1-9

2=5
2-11
2-13

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This manual documents the FPS-100 Multi-Tasking Supervisor (MTS100).
It describes the supervisor operations to a programmer familiar with
the FPS-100 assembly language and the LOD100 loader. It describes the
formats of tasks and interrupt service routines used with the
supervisor, explains how to send messages, and provides the
instructions for installing the system. It does not attempt to teach
assembly language programming to the user nor to describe the internal
operation of the supervisor.

1.2 SCOPE

This manual documents the supervisor calls. It describes the software

components in a supervisor environment and explains the message passing
and task execution mechanisms. It also contains procedures for system

installation. This manual is organized as follows:

Chapter 1 Introduction

Chapter 2 Supervisor Functions
Chapter 3 Supervisor Calls
Chapter 4 Communications
Chapter 5 Dewvice Handlers
Chapter 6 MTS100 User’s Guide

Appendix A System Standard Definitions

Appendix B I/0 Device Configuration Table

Appendix C Alphabetical Index of Supervisor Calls (SVCs)
and Host/FPS-100 Communication Routines

1.3 RELATED MANUALS

The documents in Table l~l1 also contains information useful to the
MIS100 programmer.

FPS 860~7445-000 1 - 1

Table 1~1 Related Manuals

MANUAL PUBLICATION NO.
._ZEDIOO_Reference Manual i FPS 860-7423-000
ASM100 Reference Manual FPS 860-7428-001
FIN100 Reference Manual FPS 860-7422-000
APX100 Manual FPS 860~7426-000
SIM100/DBG100 Reference Manual FPS 860-7424-000
FPS-100 Maintenance Manual FPS 860-7417-000

GPIOP Software Reference Manual FPS 860-7430-000

IOP-16/38 User’s Manual FPS 860~-7310-003

1.4 GENERAL DESCRIPTION

The MTS100 multi-tasking supervisor is a collection of FPS-100 resident
programs that coordinate software activities within the FPS-100.
Although no FPS=100 resident supervision is required when running
single-activity programs in the FPS-~100, some implementation systems
require the additional speed achieved by processing multiple software
activities concurrently. MTS100 provides this capability. It
coordinates the multiple activities (called tasks) and provides the
mechanism to pass control and data among them.

The supervisor coordinates activities in the FPS-100 by responding to
interrupts. Interrupts can be generated by external devices, the host
computer, or by tasks running in the FPS-100. The FPS-100 is
interrupted to request a service (such as sending a message or reading
from a disk). The supervisor responds to the interrupt by performing
the service or transferring control from the currently executing task
to the task which can perform the service. When the service has been
performed, the supervisor returns control to the appropriate task, as
determined by a priority ordered list of ready tasks that the
supervisor maintains.

FPS 860-7445-000 1 - 2

MTS100 is a passive/reactive supervisor rather than an active monitor.
It remains inactive (using no processor time) until an interrupt
occurs. When an interrupt occurs, the FPS-100 switches from user mode
(the normal mode of operation) to supervisor mode (a mode in which the
entire machine state can be saved and restored at a later time). The
supervisor becomes active, performs the requested service, switches the
FPS-100 back to user mode, and becomes inactive again.

MIS100 should not be confused with the other FPS-100 executive service,
APX100. APX100 is a host resident executive which oversees the
transfer of programs and data between the host computer and the
FPS-100. The user can maintain direct control over this process by
calling APX100 routines from the host. MTS100 manages the programs and
data after they have been transferred to the FPS-100. MTS100 services
are largely transparent to the host user program. Figure 1-1
illustrates the relationship between APX100 and MTS100. For a further
description of APX100, refer to the APX100 Manual.

HOST

User
Program FPS-100

Device
Controller Task

Davice Interrupt
Service Routine

/” Host Interrupt
APX100 _Service Routine

-1407~

Figure 1-1 APX100 - MTS100 Relationship

1.5 SOFTWARE COMPONENTS

In a supervisor-controlled environment, there are three basic types of
software routines: the task, the host=callable subroutine, and the
device handler.

FPS 860-7445-000 1 - 3

1.5.1 Tasks

The task is the fundamental unit of work performed in a
supervisor-controlled FPS=100. Tasks consist of one or more ASM100 or
FIN10O routines which perform a logically independent activity in the
FPS-100. The task is a subprogram which is visible to the supervisor
rather than to the host. Associated with each task is:

e A priority. This priority allows the supervisor to
choose the highest priority task for execution when
more than one are waiting.

® A task control block (TCB). The TCB contains status
information and the execution context of the task.
The status information includes such things as the
run priority of the task, whether or not the task’s
priority is dependent on another task, and whether
or not the task uses the floating=-point unit. The
execution context is a complete copy of all hardware
registers and data paths used by the task when it
executes. Each time an executing task is
interrupted, the supervisor systematically copies
the execution context into the TCB. When the task
is resumed, it reloads the execution context into
the registers. Thus, the task can resume at the
exact point of interruption.

When the FPS-~100 starts running, tasks begin execution immediately
without being called from the host. The task with the highest priority
executes first and executes continuously until the FPS=100 is
interrupted. After the supervisor services the interrupt, it resumes
execution of the highest priority ready task. So, for example, while
one task 1s waiting for a message, another task can be executing.

1.5.2 Host=callable Subroutines

Subroutines are basic software elements of the FPS-100. The user may
declare certain subroutines as host-callable. A host=-callable
subroutine is closely linked to the host. The host program provides
parameters and data, initiates the subroutine exescution, and receives
the results.

Normal subroutines (not host-callable) are initiated by tasks or by the

supervisor within the FPS-100. Communication between normal
subroutines and the host user program 1s limited.

FPS 860-7445-000 1 = 4

A special task, called the APX100 task, provides the mechanism for
host-callable subroutines to run on the FPS-100 in the same manner as
they run on an unsupervised FPS~100. Host-callable subroutines are
processed sequentially and are under the control of a main program
running on the host computer. They do not start running until called
by the host and upon completion return control to the host. Data can
be passed between the host program and a host-callable subroutine as
parameters or in common blocks.

All host-callable subroutines and routines ultimately called by them

must be part of the APX100 task. They cannot function as part of any
other task.

1.5.3 Device Handlers

Device handlers are routines which control the I/0 transfer between
external devices and the FPS-100. A device handler consists of two
parts, the device controller and the device servicer (also called the
interrupt service routine or ISR).

The device controller handles control requests from other tasks. It
performs control functions on the device such as rewind and skip file
(1f programmed for these functions). It also stages the buffers for
the ISR. The device controller is a task itself and is the only
communication between other tasks and the external device.

ISRs handle the interrupts generated by external devices (external
devices interrupt the FPS~100 to indicate that the desired function or
transfer is complete). The ISR provides notification that the
requested function has been performed, returns buffers of data, and, if
necessary, causes the external device to start transferring the next
buffer. The ISR, though it may be created by the user, is considered
part of the supervisor. There is no direct communication between tasks
and ISRs except through the device controller. Chapter 5 contains
further information concerning device handlers.

le5.4 Differences Between Tasks and Subroutines

Although tasks consist of subroutines and all host-callable subroutines
are part of a task (the APX100 task), it is legitimate to consider the
differences between tasks and host-callable subroutines. Tasks and
host-callable subroutines are alternative methods of processing on the
FPS-100.

FPS 860-7445-000 1 - 5

Tasks:

e start executing as soon as the FPS-100 begins
operation, without being called from the host

e execute continuously except when waiting for some
event, such as the arrival of a message

e are processed concurrently; when one task is
waiting, another can be executing

e are not under the control of any host user program

e are limited in their communication with host user
programs

Host-callable subroutines:

o do not start executing until explicitly called by a
host user program

e either execute to completion and then return control
to the host user program or execute concurrently
with the host and send notification to the host upon
completion. '

e are processed sequentially; a second routine cannot
start executing until the first has completed

® are under explicit control of a host user program

e can communicate with the host user program by means
of parameters, common blocks, and APX100 routines
such as ‘APGET and APPUT.

Tasks are used when repetitive processing is required at unpredictable
times (such as processing data read in from a disk). Host=-callable
subroutines are used for one-time or limited-time calculations which
occur at known times. Host-callable subroutines can be used when more
extensive communication between the host computer and the FPS-100
routine is desired.

1.6 COMMUNICATIONS

In a supervisor environment, several device handlers and tasks can be
running (including the APX100 task which contains host-callable
subroutines). Communications in this system can be broken into three
types, host-FPS-100 communication, task-task communication, and
task-external device communication.

FPS 860~7445-000 1 - 6

l.6.1 Host /FPS=100 Communication

Three types of host=-FPS=100 communications are possible:

¢ Communication with the FPS-100 using virtual front
panel operations. From the user’s point of view,
this type of communication is similar to that on an
unsupervised FPS-100; however, the actual method of
accomplishment is quite different within the FPS=-100
(refer to section 4.2).

e Communication with host-callable subroutines. The
procedure for this type of communication is exactly
the same as on an unsupervised FPS=-100. APX100
routines are used to pass data and control
subroutines.

o Communication with tasks using communication ports.
The communication ports allow a host program to
communicate with any task. A limited (13-bit) value
can be sent or received from one of seven message
exchanges.

Section 4.2 contains information on other types of host/FPS-100
communications.

1.6.2 Task/Task Communication

Messages are used when tasks communicate with each other in order to
send data, perform control functions, or synchronize execution. Tasks
use supervisor calls to send, receive, and answer messages. These
messages are sent, received, and answered using message exchanges.

l.6.2.1 Messages

The message is the basic unit of communication in the supervisor
environment. A message is actually an area of main data memory which
is written or read by tasks. Messages consist of two parts, the
message header and the text of the message. The message header
contains such things as the length of the message, its type, and its
priority. Messages are passed from one task to another not by
transferring the message data from one task area to amother but by
transmitting the address of the message from one task to another.

FPS 860-7445-000 1 - 7

1.6.2.2 Message Exchanges

A message exchange is a synchronizing mechanism between tasks that send
messages and tasks that receive them. These processes seldom occur at
the same time. Thus, either there are messages available and no tasks
to receive them or there are tasks waiting and no messages. The
message exchange is a place for either tasks or messages to wait until
the other arrives; it is a meeting place.

A message exchange is actually a queue, either of tasks waiting for
messages or messages waiting for tasks to receive them. The queue is
implemented not as a table in the supervisor memory but as pointers in
the TCBs of the tasks themselves (or in the case of messages, pointers
in the message headers). This allows an unlimited number of tasks or
messages to be waiting.

When both a task and a message are availlable at the same exchange, the
supervisor gives the address of the message to the task, disassociates
both the task and the message from the exchange, and reschedules the
task.

l.6.2.3 Supervisor Calls

Supervisor calls (SVCs) are instructions that tasks give to the
supervisor, directing it, for example, to adjust priorities, or to
send, receive, or answer messages.

SVCs are made using the TRAP instruction. This instruction causes an
internal interrupt of the FPS-100. When the FPS-100 is interrupted,

the supervisor saves the state of the executing task, determines the

cause of the interrupt, processes the SVC (which could mean sending a
message to a message exchange, for example), and resumes execution of
the highest priority ready task after restoring its state. Chapter 3
contains more specific information concerning SVCs.

For example, two tasks wish to communicate in a supervised FPS-100.
Task 1 sends a message by issuing the SEND SVC via a TRAP instruction,
which interrupts the FPS-100. The supervisor saves the state of task 1l
and links the message in the message queue of the appropriate exchange
if no task is waiting to receive the message. The supervisor then
resumes the execution of the highest priority ready task.

In order to receive the message, task 2 issues the WAIT SVC via a TRAP
instruction, which interrupts the FPS-100. The supervisor saves the
state of task 2, and links the message to task 2 if a message exists.
If no message is available in the message exchange, the supervisor
removes task 2 from the ready state and places it in the wait state,
links the TCB of task 2 to the waiting task queue of the message
erchange, and resumes execution of the highest priority ready task.

FPS 860-7445-000 1 - 8

A typical example of task communication consists of two tasks, a
producer task and a consumer task. The function of the producer task
is to take data (obtained perhaps from a device handler), process or
reduce this data, and send it to the consumer task. The producer task
is continually sending messages. The function of the consumer task is
to receive messages consisting of reduced data and further process that
data (perhaps sending it to another device handler for eventual output
at a terminal). The consumer task is continually receiving messages.

These two tasks normally use two message exchanges to facilitate their
communications. At initialization, the consumer task waits at the
first exchange. The producer task uses the first exchange to send the
message and uses the second exchange for the answer. When the producer
task sends a message to the first exchange, the message contains the
address of the second exchange to which the answer will be sent. The
consumer task receives the message and sends an answer to the second
exchange to confirm the receipt of the message. Figure 1-2 illustrates
this communication.

- ,4 Exchange

«ﬁgﬁa
g \
Message

Age
Task 1 Nait g, an Task 2

Rac, ¥ Exchange
QI

™~ Answer

Figure l-2 Sending Messages and Answers

1.6.3 Task/External Device Communication

Tasks communicate with external devices through each device’s
associated device handler. The controller portion of the device
handler 1s itself a task, so this communication is basically the same
as task-task communication. One difference is that when reading or
writing to an external device, the ISR portion of the device handler
and not the controller portion returns an answer to the original task.

FPS 860-7445-000 1 - 9

1.7 INTERRUPTS

The MTS100 supervisor is able to function due to the ability of the
FPS-100 to be interrupted. An FPS-100 interrupt is interpreted by the
supervisor as a request for service. When an interrupt occurs, the
FPS=-100 switches from user mode to supervisor mode. The supervisor
then becomes active and saves the state of the currently executing
task. It determines the type of interrupt and performs the required
service. The supervisor then restores the state and resumes execution
of the highest priority ready task. (This may not be the same as the
task just interrupted; a higher priority task may now have a message
that it had been walting for, or the currently executing task may be
waiting for a message).

Two types of interrupts can occur, asynchronous and synchronous.

1.7.1 Asynchronous Interrupts

Asynchronous interrupts are caused by external devices which request
FPS~100 service. Asynchronous interrupts can occur at any time, not
just at instruction cycle intervals. When an external device
interrupts the FPS-100, the supervisor determines which device it is,
masks out interrupts from lower priority devices, and runs the
appropriate interrupt service routine. It then restores the state of
the highest priority ready task and resumes its execution.

1.7.2 Synchronous Interrupts

Synchronous interrupts are generated as a part of, or as a result of
FPS-100 execution. Three types of synchronous interrupts can occur:

e fatal
e floating=-point exception
o TRAP

Fatal interrupts are caused by the overflow of the subroutine return
stack (SRS). The SRS can contain 15 entries. When an overflow (and
thus a fatal interrupt) occurs, the task in which it occurs is
terminated. If desired, a user-written routine can be inserted into
the supervisor to handle the interrupt differently.

A floating=-point exception interrupt is caused by an arithmetic
overflow, underflow, or divide by zero. The supervisor terminates any
task in which it occurs. However, in its initialized state, this
interrupt is normally disabled. A user-written routine can be provided
to perform error processing when this interrupt occurs. The interrupt
itself can be enabled or disabled with the SETFPE SVC (described in
section 2.3).

FPS 860-7445-000 1 - 10

A TRAP interrupt occurs when a task requests supervisor service. It is
caused by a task executing a TRAP instruction. When this type of
interrupt occurs, the supervisor performs the requested service (refer
to Chapter 3 for a description of all SVCs) and resumes the execution
of the highest priority ready task.

FPS 860-7445-000 1 - 11

CHAPTER 2

SUPERVISOR FUNCTIONS

2.1 INTRODUCTION

The supervisor consists of two components: the kernel, which is
permanently resident in program source memory, and the interrupt
gervice routines (ISRs), which can be overlaid from main data memory.
The kernel performs the following basic supervisor funtions:

® executing tasks

o dispatching device interrupts

e saving and restoring task states

e handling supervisor service requests

ISRs service interrupts generated by external devices. Since ISRs are
parts of device handlers, they are also discussed in Chapter 5.

2.2 EXECUTING TASKS

The Execute Task portion of the supervisor performs the following:

e selects a task to run
e ensures that the task is resident in program source memory
e restores the state of the chosen task

e starts the task running

2.2.1 Selecting Tasks to Run

The supervisor selects a task to run on the basis of its priority and
its state. The supervisor uses the ready queue to make this selectionm.

FPS 860-7445-000 2 - 1

2.2.1.1 Setting Task Priorities

A task priority 1s an octal number between 1l and 377 (255 decimal),
with 1 being the lowest priority and 377 the highest. The user can set
default task priorities either at assembly time or at load time.
Priorities for ASM100 tasks can be set at assembly time with the S$TASK
pseudo-op and changed at load time with the PRI command. Priorities
for FIN10O tasks can be set at load time with the TASK command. If the
user does not set a task’s priority, it is automatically set to 144
octal (100 decimal).

The user can also specify a task to be run first upon start-up of the
supervisor, regardless of its priority, and thereafter retain its
default priority. This is done with the /I option on the $TASK
pseudo-op, TASK command, or PRI command. This option causes the
supervisor initially to place the task at the top of the ready queue.
This option is normally used only for device handler controller tasks.
These tasks initially perform their startup functions and wait for
requests before user tasks start processing. The controller tasks then
assume their default priorities.

Another task priority option available to the user at assembly or load
time is the /S option on the $TASK pseudo-op, the TASK command, and the
PRI command. This option specifies that the task priority is slaved.

A task whose priority is slaved acquires the priority of any other task
that sends it a message (refer to the SEND SVC in section 3.5). This
feature is useful for a task which performs a service for both high
priority and low priority tasks. A high priority task then receives
high priority service and a low priority tasks receives low priority
service.

Additional information concerning the $TASK pseudo--op can be found in
the ASM100 Reference Manual. Information concerning the TASK and PRI
conmands can be found in the LOD100 Reference Manual.

Tasks can also change their priorities during execution. The RUNPRI
SVC can be used to change the priority of the currently executing task
and SETPRI can be used to change the priority of other tasks. These
SVCs are described in section 3.4.

2.1.1.2 Task States

A task in the FPS-100 can be in one of the following states:

e It can be ready. In this state a task has all the resources
it needs in order to execute but is not executing because
a task with a higher priority is currently executing. A
ready task is actually waiting in the ready queue. It
executes when it reaches the top of the queue. Section
2.1.1¢3 describes the ready queue in more detail.

FPS 860-7445-000 2 - 2

e It can be waiting. A task in this state is waiting at an
exchange for a message from another task or device handler. The
task cannot continue execution until it receives this message
(or, in the case of timed waits, a certain time interval
elapses). An exchange 1s a queue similar to the ready queue,
except that tasks wait for messages instead of processor time
and they are serviced on a first in, first out basis instead of
of on a priority basis. Exchanges are further described in
section 4.1.2.

e It can be running. Only one task in the system can actually be
running at any one time.

2.1.1.3 Ready Queue

The ready queue is a priority orderding of ready tasks which is
continually maintained by the supervisor. At the head of this queue is
a system common area named READYQ. READYQ contains pointers RLINK and
LLINK. RLINK points to the TCB of the highest priority ready task.
LLINK points to the TCB of the lowest priority ready task. The TCB of
each task also contains pointers RLINK and LLINK. These pointers
continue the queue. In the TCB of the highest priority ready task,
RLINK points to the TCB of the second highest priority ready task, and
LLINK points to READYQ. 1In the TCB of the second highest priority
ready task, RLINK points to the TCB of the third highest priority ready
task and LLINK points to the TCB of the highest priority ready task.
This linkage continues until finally in the TCB of the lowest priority
task, RLINK points to READYQ, and LLINK points to the TCB of the second
lowest priority task. Figure 2-1 illustrates this linkage.

Ready Highest - 2nd 3rd
Queue Priority Highest Highest Lowast
Header Task (TCB) Task (TCB) Task (TCB) Task (TCB)
e e e e e
R R R R R
\ .\\ \ \
L L L L - L

-1409-

Figure 2-1 Ready Queue

FPS 860-7445-000 2 - 3

At load time, LOD100 initializes the ready queue header and the TCBs of
all tasks so that the ready queue contains all tasks in priority order
(including tasks with the /I option specified, which are placed at the
beginning of the queue regardless of their priorities). Thus, when
FPS-100 execution begins, all tasks in the system are on the ready
queue.

The supervisor uses this ready queue to select the appropriate task to
run. It continually updates the queue to reflect the status of tasks
in the FPS-100. Task execution begins with the highest priority task.
This task continues .execution until the FPS-100 is interrupted. 1If the
interrupt is generated by the task itself and is a wait for a message
which is not yet available, the supervisor places the task in a wait
state by removing it from the ready queue and placing it in the waiting
task queue of a message exchange (exchanges are described in section
4.1.2). The supervisor does this by adjusting the pointers of the task
TCBs and READYQ.

The supervisor adjusts the pointers of the TCBs and READYQ whenever the
state of a task changes. When a task waits for a message, it is
removed from the queue; when a task becomes ready it is inserted into
the queue according to its priority. When a task’s priority changes,
the supervisor changes its position in the queue.

2.2.2 Saving and Restoring States

Each time a running task is interrupted, the supervisor saves the
condition (or state) of the task. The supervisor then processes the
interrupt and restores the state, allowing the interrupted task to
continue processing at the exact point of interruption. Whenever the
supervisor selects a task to run, it restores the state of the task.
Saving and restoring the state of a task is done by copying various
values and registers into or from the task control block.

2.2.2.1 Task Control Block

Associated with each task running in the FPS-100 is a task control
block (TCB). A TCB:is an area in main data memory in which the
supervisor stores the task’s status information and execution context
whenever the task is interrupted. Thus, whenever the task is restored
to an executing state, the supervisor can copy the information in the
TCB back into the actual machine registers, and the task can proceed at
the point of interruption. The format of the TCB is shown in Table
2-1.

FPS 860-7445-000 2 - 4

Table 2-1 TCB Format

WORD

CONTENTS

[« NV, R e VURN R

[o N

10
i1
12
13
14
15
16
17-20

21-23
24
25
26
27-31
32
33
34
35
36-42
43
44
45
46
47
48
49-64

HEADER

Right 1link (RLINK)

Left link (LLINK)

Run priority (RPRI)

TYPE (unused for tasks)

TCB length (LENGTH)

Answer exchange address (ANSKEY)

TASK DATA

Task identifier (ID, number, or name)

Address in the overlay table of the entry of
the first segment of this task (OVLPTR)
Number of overlay segments in this task (OVLCNT)
Default priority (DPRI)

Task status bits (STATUS)

Address of the last message received (LSTMSG)
Right clock queue link (RCLOCK)

Left clock queue link (LCLOCK)

Delta time interval (ICLOCK)

This task’s beginning MD address (TADDR)
Reserved for future expansion

MINIMUM SAVE AREA

MD FIFO

Data pad bus (DPBS)

DPX write buffer

Status register (APSTAT)
DPX(0) - DPX(3)

Device address (DA)

S~pad destination (SPD)

S-pad 0

S-pad function (SPFN)
S-pad(l) -~ s=-pad(7)

Status register 2 (APSTAT2)
Table memory address (TMA)
Table memory register (TMREG)
FFT status bits

User memory address (MA)
Status register 3 (APSTAT3)
Subroutine return stack (SRS)

FPS 860-7445-000

Table 2-1 TCB Format (cont.)

WORD

CONTENTS

65-73

74

75-78
79-134
135

MAXIMUM SAVE ARFA

S-pad 8 = s=-pad 15
DPY write buffer
DPY(0) - DPY(3)
Remaining data pads
Data pad address (DPA)

136-140 Floating adder
141-146 Floating multiplier
147-150 Flags

As shown in Table 2-1, the TCB consists of four parts: a header area,
the task data area, the minimum save area, and the maximum save area.

The header 1s a standard data item header, used for tasks, exchanges,
and messages. The entries in the TCB header include:

RLINK
and
LLIMK
RPRI

TYPE

LENGTH

ANSKEY

Pointers that the supervisor updates to maintain the ready
queue and the message exchanges. The ready queue is
described in section 2.l.l1l.3. Message exchanges are
described in section 4.1.2.

Current run priority of the task.

Type field which is unused for tasks but is used for
messages or exchanges. Refer to section 4.l.1.

Length of the entire TCB in main data words (68 or 148).

Answer exchange. Whenever a task sends a message, the
address of the message’s answer exchange is saved in
this field so that the task can wait at that exchange
for an answer.

FPS 860-7445-000 2 - 6

The task data area contains additional information that the supervisor
needs in order to load or restore tasks. The entries in this area

include:

ID

OVLPTR

OVLCNT

DPRI

STATUS

Task identifier which the user specified in the $TASK
pseudo=-op or the LOD100 TASK command.

Pointer to this task’s first entry in the overlay table.
The overlay table includes entries for all the overlay
segments of this task in MD memory. The overlay table
and overlay segments are described in section 2.2.3.

Number of overlay segments in this task.

Default priority of the task. This was set by the user
with the $TASK pseudo-op or the LOD100 TASK or PRI
commands.

Task status bits. Any combination of the following can
be set to indicate task status:

010000 SLVBIT. This bit set indicates that the task
priority is slaved. Slaved tasks are described
in section 2.2.1.1.

004000 CXTBIT. This bit set indicates that the task
uses the full context of the machine. Maximum
and minimum state saves are described in
section 2.2.2.2.

001000 RDYBIT. This bit set indicates that the task
is ready to execute.

000400 CLKBIT. This bit set indicates that the task
is performing some sort of timed wait (TWAIT
or TWAITA; refer to section 3.5) and is using
the real-time clock queue for this timing.

FPS 860-7445-000 2 - 7

LSTMSG Address of the last message received. The supervisor
uses this address when answering a message of unspecified
address.

RCLOCK Right pointer for this task in the clock queue. If this
task is waiting at the clock queue, RCLOCK points to the
next task in the queue. If this task is not waiting at
the clock queue, RCLOCK points to itself. Refer to
section 4.1.3 for more information concerning the clock
queue.

LCLOCK Left pointer for this task in the clock queue. If this
task is walting at the clock queue, LCLOCK points to the
previous task in the queue. 1If this task is not waiting
at the clock queue, LCLOCK points to RCLOCK. Refer to
section 4.1.3 for more information concerning the clock
queue.

ICLOCK Increment of time that this task can wait in the clock
queue which is greater than the amount of time all the
previous tasks can wait in the clock queue. Refer to
section 4.1.3 for more information concerning the clock
queue.

TADDR This task’s beginning address in main data memory.

The minimum save area contains copies of those registers used by the
supervisor during the servicing of an interrupt. When a task 1is
interrupted, the supervisor copies these registers into the minimum
save area of the TCB before processing the interrupt.

The maximum save area contains copiles of all other registers and flags
not saved in the minimum save area.

20222 Mininum and Maximum State Saves

As shown in Table 2-1, each TCB is set up with a minimum and maximum
save area. An option exists at assembly or load time to declare that a
task uses only the minimum machine resources. If this option is
specified (the /M option on the $TASK pseudo-op or the LOD100 TASK
command), the supervisor does not copy the maximum save area registers
into the old task’s TCB when a new task using full context is chosen to
run. This results in a savings of processor time for those tasks which
do not use the following registers:

FPS 860-7445-000 2 - 8

® s-pad registers 8-15

e all DPX and DPY registers except DPX(0)=-DPX(3)

e DPA

e floating adder

o floating multiplier

e flags
Processor time 1is saved because these registers are not saved or
restored if the task uses only minimum machine resources.
Device handler controller tasks are normally the only tasks which use

only the minumum machine resources. Most other tasks use at least the
floating adder or floating multiplier.

2.2.3 Loading Tasks

Once the supervisor selects the proper task to execute, using the ready
queue, it may need to load the task into program source memory from
main data memory if the task has been overlaid by another task or was
never resident in PS. The supervisor uses the overlay table and the PS
partition table to load the proper routines. When the task is resident
in program source memory, the supervisor copies the TCB of the task
into the actual machine registers and starts the task executing.

2¢2.3.1 PS Partitions

When overlay segments are allocated space in PS memory (at load time),
the beginning address of each segment defines a new program source
partition. A partition represents the smallest possible division of
program source memory. An overlay segment may overlap several
partitions, but there can be no more than one segment in a partition at
any given time. Figure 2-2 illustrates this concept.

Overlay Segment A in Figure 2-2 fits in PS locations 100-200. Overlay
Segment B fits into locations 150-200, and Overlay Segment C fits into
locations 175-200. Therefore, PS Partition 1 includes locations
100-150, Partition 2 includes locations 150-175, and Partition 3
includes locations 175-200. 1In terms of partitions of program source
memory, Overlay Segment A starts at location 100 and covers three
partitions. Overlay Segment B starts at location 150 and covers two
partitions. Overlay Segment C starts at location 175 and covers one
partition.

FPS 860-7445-000 2 - 9

Program Source Memory

100
4

Partition 1

Overlay

v
150 Segx:eut

f

Partition 2
+

175 Qverlay
T Segment

Qverlay 8

Partition 3 Segment
ol

|

200

-1410-

Figure 2-2 Overlay Segments in PS Memory

2.2.3.2 Overlay Table

An overlay table exists in main data memory for each task in the
FPS-100 (identified as .MPnnn, where nnn is the task identifier). An
additional overlay table (ISRMAP) exists for the I3Rs. The supervisor
uses this table when loading tasks into program surce memory from main
data memory. An entry in the overlay table represents one overlay
segment or ISR. Each entry consists of eight main data words. The
format of an entry in the overlay table is shown in Table 2-2.

FPS 860-7445-000 2 - 10

Table 2-2 Overlay Table Entry Format

PORTION
ﬂORD (see note) CONTENTS
1 M Overlay segment number
2 m, LM MD address
3 M PS address
4 M Length (number of PS words)
5 M Task id, name, or TCB address
6 EXP, LM Currently-resident bit (EXP) and

should-be-resident-bit (LM)

7 M Pointer to an entry in the PS
partition table indicating the
first partition this segment is
loaded into

8 M Number of comsecutive PS partitions
this segment requires

NOTE

In this table, EXP refers to the exponent portion,
HM refers to the high mantissa portion, and LM
refers to the low mantissa portion of the main data
word.

2:2.3.3 PS Partition Table

Although an overlay table exists for each task, only one PS partition
table exists for the entire supervisor environment. The partition
table contains one entry for each PS partition. Each entry is one MD
word long and contains either a zero (indicating that nothing currently
resides in the partition) or a pointer to the entry in the overlay
table representing the segment currently resident in the partitionm.
(The pointer is actually the address of the residency word (word 6) in
that segment’s entry in the overlay table).

FPS 860-7445-000 2 - 11

2.2.3.4 Loading Overlay Segments

When the supervisor loads a task from main data memory into program
source memory, it first gets the address of the overlay table and the
number of overlay segments in the task from the TCB. It then checks
word 6 of each entry in the overlay table. Word 6 contains the
should-be-resident bit and the currently-resident bit for that segment.
If those bits agree (that 1is, a should-be-resident segment is actually
resident or a should-not-be-resident segment is not) the supervisor
does nothing. If however, a should-be~resident segment is not resident
in program source memory, the supervisor does the following: it £finds
the PS partition(s) the segment will go into and determines 1if it
(they) already contain other segments. If so, the other segments are
marked non-resident. The new segment is marked resident, the partition
table entries are updated to point to it, and it is overlaid into PS
memory. Thus the overlay table and the partition table are used not
only to load the correct routines from main data memory but also to
maintain a record of the overlay segments resident in program source
memory at any given time.

2.3 HANDLING INTERRUPTS

There are four types of interrupts which occur on the FPS-100:

e I/0 interrupts
e TRAP interrupts
e fatal interrupts (subroutine stack overflow)
e floating-point exception interrupts
After an interrupt occurs, the supervisor performs a minimum state save

and determines the type of the interrupt. It then processes the
interrupt according to its type.

2.3.1 I/0 Interrupts

When an 1/0 interrupt is received the supervisor executes an interrupt
acknowledge instruction to determine which device caused the interrupt.
The configuration table contains a five-word entry for each external
device connected to the FPS-~100. Table 2-3 shows the format of an
entry in the configuration table.

FPS 860-~7445-000 2 - 12

Table 2-3 Configuration Table Entry Format

PORTION

WORD (see note) CONTENTS

1 M Priority mask. This value is used to mask out
lower priority devices and prevent them from
interrupting.

2 M Bit mask. Identifies this device’s bit in IMASK.

3 LM Pointer to this device’s ISRs entry in the overlay
map .

4 EXp, LM Device order number (EXP) and physical device
address (LM).

5 LM Save area for old IMASK value.

NOTE

EXP refers to the exponent portion, HM refers to
the high mantissa portion, and LM refers to the low
mantissa portion of the main data word.

After determining which device interrupted the FPS-100, the supervisor
then uses the information in the configuration table to mask out
interrupts from lower priority devices and find the ISRs entry in the
overlay map, which is used to load the ISR into PS memory if it is not
already there. After the ISR is resident, control is transferred to
it. Refer to Chapter 5 for more information concerning ISRs.

FPS 860-7445-000 2 - 13

2.3.2 TRAP Interrupts

A TRAP interrupt occurs when a task executes the following code:
TRAP; DB=@svcname; LDTMA

In the previous statement, svcname is the name of a supervisor call
(SVC). 8SVCs are described in detail in Chapter 3.

When a TRAP interrupt occurs, the supervisor saves the state of the
executing task, gets DPX(0) through DPX(3) from the task’s TCB, and
Jumps to the appropriate SVC. Upon completion of the SVC, it stores
DPX(0) through DPX(3) and s-pad 0 back into the task’s TCB, loads the
highest priority ready task, and starts it running.

2.3.3 Fatal and Floating-point Exception Interrupts

Fatal and floating=-point interrupts result in the offending task being
terminated. The task is removed from the ready queue and then linked
to the MNMORGUE exchange. Refer to section 1.7.2 for other details.

FPS 860-7445-000 2 - 14

CHAPTER 3

SUPERVISOR CALLS

3.1 INTRODUCTION

Tasks running in the FPS-100 communicate with the supervisor and other
tasks via supervisor calls (SVCs). An SVC can be thought of as an
extended machine instruction. SVCs in conjunction with the hardware
instructions provide the virtual instruction set of the FPS-100
supervisor environment.

As an example, consider the following less than optimal assembly code
which adds three and two:

DPX(0)<DB; DB=2.0 "FETCH FIRST ARGUMENT
DPY(0)<DB; DB=3.0 "FETCH SECOND ARGUMENT
FADD DPX(0),DPY(0) "COMPUTE 2.0 + 3.0

FADD "PUSH THROUGH ADDER
DPX(0)<FA ""SAVE THE RESULT :
BFPE ERROR ""IF ERROR OCCURS, PROCESS

The parameters (or operands) of the function FADD are prepared and
stored in argument registers (DPX and DPY registers). The computation
is initiated with the FADD instruction and the result is available some
time later. The result is then saved in a register for future
reference.

An SVC functions similarly. The operands are loaded into argument
registers (DPX registers). The SVC is then invoked and the result is
available some time later. The SVC is invoked by executing the
following instruction:

TRAP; DB=@svcname; LTDMA

For example, consider the following code which changes the priority of
the executing task:

DPX(X0)<DB; DB=100 "FETCH NEW PRIORITY (ARGUMENT)
TRAP; DB=@RUNPRI; LDTMA "ESTABLISH NEW PRIORITY

In this code, the parameter for the SVC is loaded into DPX(X0) in the
same manner as the parameters for the FADD instruction were loaded into
DPX(0) and DPY(0). The SVC (RUNPRI) is then executed.

FPS 860-7445-000 3 - 1

3.2 AFFECTED REGISTERS

Tasks which make supervisor calls should expect values in the registers
DPX(0) through DPX(3), s-pad 0, and SPFN to change because they are
used to pass parameters and status information between the supervisor
and the tasks. These registers are also referred to as DPX(X0)-DPX(X3)
and RO.

3.3 ERROR CHECKRING

Some SVCs can fail to perform their intended functions under certain
circumstances. Errors can be caused by invalid operands, for instance.
When an SVC fails, it indicates this falure by returning an error code
to the RO register and SPFN. A negative number in RO and SPFN
indicates an error condition. Since all successful SVCs leave RO zero
or positive, a general error condition can be tested for by using the
BLT instruction. For example:

TRAP; DB=@SEND; LDTMA "ATTEMPT TO SEND A MESSAGE
MOV RO,RO
BLT ERROR ""BRANCH IF ERROR OCCURRED

Although the type of error is generally clear from the context of the
SVC, an error handler can be written to determine the exact error by
comparing the error code against possible error codes. This can be
done in a manner similar to the following:

ERROR: LDSPI R1l; DB=ERRBSY "LOAD MESSAGE BUSY ERROR CODE
SUB# R1,RO ""IS IT A MESSAGE BUSY ERROR?
BNE NXTMSG "IF NOT, TRY ANOTHER ERROR CODE
. "IF SO, IT IS A MESSAGE BUSY ERROR

*

FPS 860~-7445-000 3 - 2

Specific error codes that can result from invoking particular SVCs are

described in sections 3.4, 3.5, and 3.6. Currently there are two SVC
error codes:

ERRBSY (177777 octal): message busy.

The user is trying to send a message or answer which is still
linked to an exchange queue because it has not been received yet.

ERRMSG (177776 octal): invalid message.
The user is trying to answer the last message received, but

there was no last message.

3.4 TASK HANDLING SVCS

Task handling SVCs are used to change the priority and run status of
tasks in a supervisor environment. Task handling SVCs include:

RUNPRI
SETPRI
RESUME

FPS 860-7445-000 3 - 3

khkhkhhhhkk
* *

* RUNPRI #*
* *

Ko de ok ek ke ke ok

PURPOSE:

ASM100 CALLING
SEQUENCE:

PARAMETERS :

DESCRIPTION:

FIN100 CALL:

FPS 860-7445-000

% ok do ok de ke Rk K
* *
* RUNPRI *
* *
%k Je %k kk ok k&

==-== CHANGE RUN PRIORITY ~=——

This SVC changes the run priority of the currently
executing task. It can also reset the priority of the
executing task to its default value without the
calling task knowing this value.

Upon completion of this SVC, task rescheduling occurs
1f the changed priority of the calling task is less
than the priority of another ready task.

This SVC is invoked by loading the priority into
DPX(0) and executing a TRAP instruction. For example:

DPX(X0)<DB; DB=priority
TRAP; DB=@RUNPRI; LDTMA

Register Contents
DPX(0) New run priority of the currently executing

task. This priority can be a value from 1
to 377 octal, with 377 being the highest
priority (most important). If the priority
is specified as ZERO, the default priority
for this task is substituted.

Although data pad registers contain 38
bits, only an eight-bit priority is
guaranteed to be compatible with future
versions of MTS-100.

This SVC loads X1 with the TCB address of the
currently executing task and executes the
SETPRI SVC.

This SVC is invoked from an FIN1OO task with the
following call:

CALL ZRUNPR (prty)

New priority for the task. This priority
can be a value from 1 to 377 octal. If
prty is specified as zewo or a negative,
the default priority for this task is used.

prty

hkhkhhhkkkh khhkkkkhhhkx

* * * *
* SETPRI * ==== SET TASK PRIORITY =~~-- * SETPRI *
* * % *
dok ek ek kK Kkkkkkkkhk
PURPOSE: This SVC sets or changes the run priority of a

specified task within the system. It can also reset
the specified task’s priority to its default value
without the calling task knowing this value.

Upon completion of the SVC, task rescheduling occurs
if the specified task is in a ready state.

ASM100 CALLING This SVC is invoked by loading the priority into XO,

SEQUENCE: the task control block (TCB) address of the specified
task in X1, and executing a TRAP instruction. For
example:’

DPX(X0)<DB; DB=priority
DPX(X1)<DB; DB=tcb address
TRAP; DB=@SETPRI; LDTMA

PARAMETERS : Register Contents

DPX(X0) New run priority of the specified task.
This priority can be a value from 1 to 377
octal, with 377 being the highest priority.
If the priority is specified as ZERO, the
default priority for the task is
substituted.

Although data pad registers contain 38
bits, only an eight-bit priority is
guaranteed to be compatible with future
versions of MTS-100.

DPX(X1) TCB address of the task whose priority is
to be set. The address is typically
expressed as the name of a labeled common;
e.g., /TCBOOLl/ for task 1.

DESCRIPTION: If the priority specified in X0 is less than or equal
to zero, the default priority is placed in the rumn
priority word of the TCB; otherwise the specified
priority is placed there. 1If the specified task was
ir the ready state, it is replaced in the ready queue
at its new priority.

FPS 860-7445-000 3 - 5

FTIN100O CALL:

FPS 860-7445-000

This SVC is invoked from an FIN100 task with the
following call:

CALL ZSETPR (prty, taddr)

prty

taddr

New priority for the task. This priority
can be a value from 1 to 377 octal. If
prty is specified as zexo or a negative,
the default priority for this task is
used.

The TCB address of the task to be
changed.

ge e e de ke hk hook kkkkkhikkkhi

* * * *

* RESUME * ~=—= RESUME TASK ==—- * RESUME *

% * * %

de ek dedk ke ek Kk dekkkdkkkhk

PURPOSE: This SVC causes a suspended (waiting) task to be
resumed. The TCB of the task is linked to the ready
queue.

Upon completion of the SVC, task scheduling occurs.

ASM100 CALLIMG This SVC is invoked by loading the TCB address into
SEQUENCE: X1 and executing a TRAP instruction. For example:

DPX(X1)<DB; DB=tcb address
TRAP; DB=@RESUME; LDTMA

PARAMETERS: Register Contents

DPX(X1) TCB address of the task to be resumed.

DESCRIPTION: The task is placed in the ready queue, in priority
order.

FPS 860-7445-000 3 - 7

3.5 MESSAGE FACILITY SVCS

Message facility SVCs are used by tasks to send, receive, and answer
messages. Message facility SVCs include:

SEND
WAIT
TWAIT
ANSWER
MSGANS
WAITA
TWAITA

FPS 860-7445-000 3 - 8

Rkkkdihkkii khkkhhikkdk

* % * *
* SEND * ==== SEND MESSAGE -—-- * SEND *
* * * *
dedek ke dkkk dokddeokdokkdk
PURPOSE: This SVC attempts to exchange a message with another

task. If no other task is waiting to receive it,
the message is queued.

ASM100 CALLING This SVC is invoked by loading the message address
SEQUENCE: into X0, the exchange address into X1, and executing
a TRAP instruction. For example:

DPX(X0)<DB; DB=message address
DPX(X1)<DB; DB=exchange address
TRAP; DB=@SEND; LDTMA

PARAMETERS: Register Contents

DPX(X0) Address in main data memory of the message
to be sent.

DPX(X1) Address in main data memory of the exchange
where message is to be sent.

DESCRIPTION: The run priority of the current task is placed in the
priority flield of the message. The message’s answer
exchange is saved in the current task’s TCB. An
attempt is made to pass the message to a waiting
task. If unsuccessful, the message is queued at the

exchange.
ERROR If the message specified in X0 is currently linked
CONDITIONS: elsewhere in the system, a MESSAGE BUSY ERROR (ERRBSY)

is returned to RO and SPFN.

FTIN100 CALL: This SVC is invoked from an FTIN100 task with the
following call:

CALL ZSEND (xaddr, maddr)

xaddr Location of the message exchange to which
the message is sent.

maddr Name of an array containing the message to
send.

FPS 860-7445-000 3 - 9

kkkdhkhiik kfekdhhkk kd

* * * *
* WAIT * ~=== WAIT FOR MESSAGE —-——- * WAIT *
* * * *
e ko e ek ok K dedk ek kkkkkk
PURPOSE: This SVC causes the current task tc attempt to

receive a message. If no message is waiting, the
task 1s suspended until a message is available.

ASM100 CALLING This SVC is invoked by loading the exchange key into
SEQUENCE: X1 and executing a TRAP instruction. For example:

DPX(X1)<DB; DB=exchange address
TRAP; DB=@WAIT; LDTMA

PARAMETERS: Register Contents

DPX(X1) Address of the exchange at which to
wait for the message.

VALUES Register Contents
RETURNED:

DPX(X0) Address in main data memory of the message
received.

RO Type of message received. The following
values are possible:

020000 Answer message (ANSBIT is set)

000000 Normal message

010000 Time-out message (for timed
waits)

If the Sign bit is set (RO is negative),
RO contains an error code.

DESCRIPTION: An attempt is made to dequeue the message. If
successful, the task receives the message. If
unsuccessful, the task is placed in the exchange’s
queue.

FPS 860-7445=-000 ' 3 - 10

ERROR Error codes and message types returned in RO are set
CONDITIONS: to facilitate fast return dispatch. An example of
this follows:

DPX(X1)<DB; DB=exchange "LOAD EXCHANGE

TRAP; DB=@WAIT; LDTMA "WAIT FOR MESSAGE

MOV RO,RO

BLT ERROR "RO, SPFN<O INDICATES ERROR
MOVL RO,RO

MOVL RO,RO "MOVE ANSWER TO SIGN BIT
BLT ANSMSG ""BRANCH IF ANSWER MESSAGE

"PROCESS NORMAL MESSAGE

A normal message can be processed immediately by
executing a BEQ instruction after the initial

MOV RO,RO .

FIN100 CALL: This SVC is invoked from an FIN10O task with the
following call:

CALL ZWAIT (l, dummy, xaddr, maddr, type)

xaddr

maddr

FPS 860-7445-000

dummy

type.

Dummy variable which is not used but must
be present.

Location of the message exchange at which
to wait.

Location of the returned message.

Type of message returned (refer to section
3.7.1)

khkkhkkkkihkk
* *

* TWAIT *
* *

khkkhkihihk

PURPOSE:

ASM100 CALLING
SEQUENCE:

PARAMETERS:

VALUES
RETURNED:

FPS 860-7445-000

% de % %k ke Kk ek
* *
* TWAIT *
* *
kkkhkkkhkkik

--=-= TIMED WAIT FOR MESSAGE -=--

This SVC causes the current task to attempt to receive
a message. If no message is waiting, the task is
suspended. The task can specify the maximum number

of clock ticks to be suspended. It that time expires,
a TIMEOUT message is sent.

This SVC is invoked by loading the time limit into XO
and the exchange address into X1 and executing a TRAP
instruction. For example:

DPX(X0)<DB; DB=time limit
DPX(X1)<DB; DB=exchange address
TRAP; DB=@TWAIT; LDTMA

Register Contents
DPX(X0) Maximum number of clock ticks to wait
before a TIMEOUT message is sent. This
value must be specified as a lé6-bit
unsigned integer (from 1 to 65535 decimal)
in the low mantissa pcrtion of the word.
If 0 is specified, TWAIT is used as a poll
for a message. An attempt is made to
receive a message, but 1f none is available
a TIMEOUT is returned immediately.
DPX(X1) Address of the exchange at which to wait
for the message.
Register Contents
DPX(X0) Address in main data memory of the message
received.
RO Type of message received. The following

values are possible.

020000 Answer message (ANSBIT is set)
010000 Timeout message (TIMBIT is set)
000000 Normal message

If the sign bit is set (RO is negative),

RO contains an error code.

DESCRIPTION:

ERROR
CONDITIONS:

An attempt is made to dequeue the message. If
successful, the task receives the message. If not,
the time limit is checked, and a timeout message is
returned if the time limit is 0. If the time limit
was not 0, the task is placed on the exchange queue,
and the timed request into the clock queue.

Error codes and message types returned in RO are set
to facilitate fast return dispatch. An example of
this follows:

DPX(X0)<DB; DB=time limit "LOAD MAXIMUM WAIT TIME
DPX(X1)<DB; DB=exchange "LOAD EXCHANGE ADDRESS
TRAP; DB=@TWAIT; LDTMA "WAIT FOR MESSAGE OR LIMIT
MOV RO,RO

BLT ERROR RO, SPFN<O INDICATES ERROR
MOVL RO,RO

MOVL RO,RO "MOVE ANSWER TO SIGN BIT
BLT ANSMSG ""BRANCH IF ANSWER MESSAGE
MOVL RO,RO ""MOVE TIMEOUT TO SIGN BIT
BLT TIMMSG "BRANCH IF TIMEOUT MESSAGE
eessecns "PROCESS NORMAL MESSAGE

FIN100 CALL:

FPS 860-7445-000

A normal message can be processed immediately by
executing a BEQ instruction after the initial
MOV RO,RO .

This SVC is invoked from an FTN10O task with the
following call:

CALL ZWAIT (2, tlim, xaddr, maddr, type)
tlim Maximum number of clock cycles to wait.

xaddr Location of the message exchange at which
to wait.

maddr Location of the returned message.

type Type of message returned.

Rhkkhkhkhkk
* *

* ANSWER *
* *

kkkkkkhkhk

PURPOSE:

ASM100 CALLING

SEQUENCE:

PARAMETERS:

DESCRIPTION:

ERROR
CONDITIONS:

FTN100O CALL:

FPS 860-7445-000

khkhkhhkikkk
* *
* ANSWER *
%* *
o s g kv keok ok Rk

~——- SEND ANSWER =-—=-

This SVC returns the last message received to its
original sender as an acknowledgement and frees it.
This is used to simplify task synchronization and
sharing of physical messages. It further removes the
bookkeeping associated with busy and free messages
from the user.

This SVC is invoked by executing the TRAP instruction.
For example:

TRAP; LDTMA; DB=@ANSWER
No parameters are required for this SVC.

The address of the last message received is
obtained from the current task’s TCB. The answer
exchange is obtained from the message, the
message type 1s set to ANSWER, and a SEND SVC is
executed.

If no previous message has been received, an INVALID
MESSAGE ERROR (ERRMSG) 1is returned to SPFN and RO.

If the message is currently linked elsewhere, a
MESSAGE BUSY ERROR (ERRBSY) is returned to SPFN and
RO.

This SVC is invoked from an FTN100 task with the
following call:

CALL ZANSR (1,0)

Je e Je Jo ke e ek ke e kkk ek hkkkkk

* * * *
* MSGANS =* —=—= SEND MESSAGE ANSWER —=== * MSGANS *
* % * *
o dede e e ek ek e ook e e e e o
PURPOSE: This SVC returns a message to its original sender as

an acknowledgement and frees it to continue
execution. This is used to simplify task
synchronization and sharing of physical messages.
It further removes the bookkeeping associated
with busy and free messages from the user.

ASM100 CALLING This SVC is invoked by loading the message address
SEQUENCE: into X0 and executing a TRAP instruction.
For example:

DPX(X0)<DB; DB=message address
TRAP; DB=@MSGANS; LDTMA

PARAMETERS: Registers Contents
X0 Address in main data memory of the message

to be returned.

DESCRIPTION: The answer exchange is obtained from the message,
the message type is set to ANSWER, and a SEND SVC is
executed.

ERROR If the message is currently linked elsewhere, a

CONDITIONS: MESSAGE BUSY ERROR (ERRBSY) is returned to SPFN and
ROC '

FIN100 CALL: This SVC is invoked from an FTN100 task with the
following call:

CALL ZANSR (2, maddr)

maddr Name of an array containing the answer
message.

FPS 860~7445-000 3 - 15

e de ok kkdekkk Je ke ke e ok fe ek

% * * *
* WAITA * === WAIT FOR ANSWER ==w=- * WAITA *
* * * *
e o e ek e ke ok ok ke e s ok e e ke e ek ok
PURPOSE: This SVC permits a task to wait for a response to the

previously sent message.
ASM100 CALLING This SVC is invoked by executing a TRAP instruction.
SEQUENCE: For example:

TRAP; DB=@WAITA; LDTMA

PARAMETERS: No parameters are required for this SVC.

DESCRIPTION: The answer exchange contained in the last message sent
is loaded from the current task’s TCB and is used as
the parameter to the WAIT SVC.

FTN100 CALL: This SVC is invoked from an FTN100 task with the
following call:

CALL ZWAIT (3, dummy, dummy, maddr, type)

dummy Dummy variables which are not used but
must be present.

maddr Location of the returned message.

type Type of message returned.

FPS 860-7445-000 3 - 16

% e ek ek ke ke ok kkkhkkhihkhkk

* * * *
* TWAITA * =——= TIMED WAIT FOR ANSWER ===—- * TWAITA *
* * * *
Kok ok kkk e ek e e ok s o ek
PURPOSE: This SVC permits a task to wait for a specified
amount of time for a response to the previously sent
message. ‘

ASM100 CALLING This SVC is invoked by loading the maximum wait time
SEQUENCE: into X0 and executing a TRAP instruction. For
example:

DPX(X0)<DB; DB=wait time (in ticks)
TRAP; DB=@TWATA; LDTMA

PARAMETERS: Register Contents

DPX(X0) Maximum number of clock cycles to wait
before a TIMEOUT message is sent. This
value must be specified as a 16-bit
unsigned integer in the low mantissa
portion of the word. If O is specified,
either the pending message or a TIMEOUT
is returned immediately.

VALUES Reglster Contents
RETURNED:

DPX(X0) Address of the message received.
DESCRIPTION: The answer exchange contained in the last message

sent is loaded from the current task’s TCB and is
used as the parameter to the TWAIT SVC.

ERROR If the time limit expires before a message is
CONDITIONS: received, the TIMEOUT message is returned to RO and
SPFN.

FPS 860-7445-000 3 - 17

FIN100 CALL:

FPS 860-7445-000

This SVC is invoked from an FTN100 task with the
following call:

CALL ZWAIT (4, tlim, dummy, maddr, type)

tlim

dummy

maddr

type

Maximum number of clock cycles to wait.

Dummy variable which is not used, but
must be present.

Location of the returned message.

Type of message returned.

3.6 MISCELLANEOUS SVCS

The only miscellaneous SVC currently provided is SETFPE.

FPS 860-7445-000 3 - 19

Jede vt ok e detke ke
* *

* SETFPE *
* *
Fe ek e ek

PURPOSE:

ASM100 CALLING
SEQUENCE:

PARAMETERS:

DESCRIPTION:

FTN100 CALL:

FPS 860-7445-000

hkkkhhkikk

*

——= SET FLOATING=POINT EXCEPTION =—ww-—
*

*

* SETFPE *

*

fokkhkkkikk

This SVC enables and disables the floating-point
exception interrupt under task control. Although
this function can be performed directly by writing
the APSTAT2 register, user tasks should not
manipulate that register directly. This interrupt
is normally disabled under MTS100.

This SVC is invoked by loading the logical enable/
disable value into X0 and executing a TRAP
instruction. For example:

DPX(X0)<DB; DB=logical enable/disable value
TRAP; DB=@SETFPE; LDTMA

Register Contents
DPX(X0) Logical enable/disable value. A value of

ZERO disables floating=-point exception
interrupts. Any non-ZERO value enables
floating-point exception interrupts.

The logical value of RO (0 if ZERO, 1 1if non-ZERO)
is set in the INTE bit of APSTAT2 and in the saved
APSTAT2 of the current taske.

This SVC is invoked from an FTN100 task with the
following call:

CALL ZSETFX(opt)

Logical enable/disable value. Possible

values are:

opt
0 Disable floating-point exception
interrupts

1 Enable floating=-point exception
interrupts

3.7 FIN10OO SVCS
Sections 3.4, 3.5, and 3.6 provided a description of each SVC and its

calling sequences in ASM100 and FIN10O. This section provides a
complete description of the call to each of FIN10O-callable routines.

3.7.1 ZWAIT

This subroutine is called in order to wait for a message or an answer.
The format of the call is as follows:

CALL ZWAIT (opt, tlim, xaddr, maddr, mtype)

opt Type of wait. One of the following can be specified:
] Wait until a message arrives.
2 Timed wait for a message.
3 Wait until an answer arrives.
4 Timed wait for an answer.

tlim Maximum number of clock ticks to wait when opt is
specified as 2 or 4.

xaddr Location of the message exchange at which to wait,
when opt 1is specified as 1 or 2. When opt is
specified as 3 or 4, the exchange location is obtained
from the last message sent by this task.

maddr Location of the returned message.

mtype Type of message returned. The following
are the message types:

1 Normal message

2 Answer message
3 Timeout message

FPS 860-7445-000 3 - 21

3.7.2 ZSEND

This subroutine is called in order to send a message. The format of
the call is as follows:

CALL ZSEND (xaddr, maddr)

xaddr Location of the message exchange to which the message
is sent.

maddr Name of an array containing the message to send.

3.7.3 ZANSR

This subroutine 1is called to send an answer. The format of the call is
as follows:

CALL ZANSR (opt, maddr)
opt Type of answer to send. One of the following can be
specified.
1 Send an answer using the last message received.
2 Send an answer using the message at location

maddr.

The message exchange location is obtained from the
message itself.

maddr Name of an array containing the answer
message.
3.7.4 ZRUNPR
This subroutine is called to change the run priority of the calling
task. The format of the call is as follows:
CALL ZRUNPR (prty)
prty New priority for this task. This priority can be a
value from 1 to 377 octal. If prty is specified as

zero or a negative number, the default priority for
this task is used.

FPS 860-7445-000 3 - 22

3.7.5 ZSETPR

This subroutine is called to change the run priority of another task.
The format of the call is as follows:

CALL ZSETPR (prty, taddr)

prty New priority for the task. This priority can be a
value from 1 to 377 octal. If prty is specified as

zero or a negative number, the default priority for
this task is used.

taddr The TCB address of the task to be changed.

3.7.6 ZSETFX

This subroutine is called to control floating-point exception
interrupts. The format of the call is as follows:

CALL ZSETFX (opt)

opt Logical enable/disable value. One of the following
can be specified:

0 Disable floating-point exception interrupts.
1 Enable floating-point exception interrupts.

FPS 860-7445-000 3 - 23

CHAPTER 4

COMMUNICATIONS

4.1 COMMUNICATION BETWEEN TASKS

In order to communicate, tasks transfer messages using SVCs. Message
exchanges are the mechanisms used for the actual exchange of
information. This section describes messages, message exchanges, and
types of tasks which send or receive messages. SVCs were described in
Chapter 3.

4.1.1 Messages

The message is the basic unit of data with which tasks communicate.

The message is an area of main data memory which is written and read by
tasks. It is not actually transferred from one area of memory to
another when sent, but its address is passed from one task to another
by means of SVCs and message exchanges.

A message consists of a standard header and the message body. The
header is in the same format as the header of the TCB, which is
described in section 2.2.2.1. The format of the message header is
shown in Table 4-1.

Table 4-1 Message Header

WORD CONTENTS

~ |

Right link (RLINK)

2 Left link (LLINK)

3 Run priority (RPRI)

4 Type of message (TYPE)

5 Message length (LENGTH)

6 Answer exchange address (ANSKEY)

FPS 860-7445-000 4 - 1

The entries in the message header are used as follows:

RLINK
and
LLINK

RPRI

TYPE

LENGTH

ANSKEY

Pointers that the supervisor uses to update and maintain
exchanges. If multiple messages are available at an
exchange, they are queued by the supervisor using these
pointers. Refer to section 4.1.2 for a description of
message exchanges.

Run priority of the task which sends the message. This
priority is used if the task which receives the message is
a slaved task. Upon receipt of the message, the priority
of a slaved task is changed to the priority specified in
the RPRI field. The slaved task then executes at that new
priority.

Type of the message. The low mantissa portion of this
word is set as follows to indicate the type:

000000 Normal user message
020000 Answer message
010000 Timeout message

Additional status information (for exchange headers) is
also stored in the low mantissa portion, as follows:

002000 1Indicates that the message portion of the
message exchange is currently in use. Refer to
section 4.1.2 for a further description.

001000 1Indicates that the task queue portion of the
message exchange is currently in use. Refer
to section 4.1.2 for a further description.

The exponent portion of this word also contains status
information, as follows:

000001 1Indicates that the message is currently busy
(L.e., has been sent as a normal message but not
returned as an answer).

Length of the entire message in main data words (at least
six).

Answer exchange. When a task sends a message, it may
specify the exchange where the message may be returned
as an answer. Thus, the sending task knows where to
WAIT, and the receiving task need not know where to
send the answer.

FPS 860~7445-000 4 - 2

The body of the message consists of whatever data the sending task
wishes to transmit to the receiving task. The message may consist of a
buffer of data to be processed by the receilving task, an empty buffer
to be filled by the receiving task, an indicator to transfer control to
the receiving task, or any other information. The message body can be
of any length.

In order to send a message to another task, the message must be in the
proper format. The user normally defines messages and supplies all
header information by assembly time. Once the message is created, it
can be used any number of times.

4.1.2 Message Exchanges

Message exchanges are the mechanisms through which tasks send and
receive messages. Conceptually, the message exchange is a pair of
queues, the waiting task queue and the message queue. When a task
sends a message (with the SEND, ANSWER, or MSGANS SVCs) it designates
an exchange on which to send the message. If no task is waiting at the
exchange when the message is sent, the message is placed on the message
queue.

When a task wants to receive a message, it issues a WAIT, TWAIT, WAITA,
or TWAITA SVC and includes an exchange from which to get the message
(or one is obtained automatically as a part of the SVC.) If there are
no messages available at the exchange when the receiving task issues
one of the wait commands, this task is placed on the waiting task
queue.

Actually, a message exchange consists of one queue which can be either
a message queue or a waiting task queue. Only one queue is needed
since either there are more messages available than waiting tasks, in
which case the messages are queued, or there are more tasks waiting
than messages, in which case the tasks are queued. At the head of this
queue is a common data area which is similar to the header of the ready
queue. This header contains pointers RLINK, LLINK, and a flag which
indicates whether the queue is a message queue or a waiting task queue.

FPS 860-7445-000 4 - 3

4.1.2.1 Message Queue

If more messages are available than tasks waiting to receive them, the
message exchange 1s a message queue. In this case, RLINK of the header
points to the message that has been waiting longest at the exchange
(the first message sent which had no task waiting to receive it).
LLINK of the header points to the message that has been waiting the
least (the last message sent). Since each message has a standard
header with pointers RLINK and LLINK (refer to section 4.l1.1), these
values are set in the messages waiting at the exchange to continue the
queue. In the header of the first message sent, RLINK points to the
second message sent, and LLINK points to the queue header. This
continues throughout the queued messages until in the last message
sent, RLINK points to the queue header, and LLINK points to the second
to the last message sent. This 1s similar to the ready queue header
and tasks.

Thus, whenever a task issues a WAIT, TWAIT, WAITA, or TWAITA SVC in
order to receive a message, the supervisor supplies it with the address
of the first message sent. The supervisor then removes the message
from the message queue by adjusting the RLINK and LLINK values of both
the header and the second message sent.

4.1.2.2 Waiting Task Queue

If there is an excess of tasks waiting for messages, the message
exchange is a waiting task queue. In this case, RLINK of the header
points to the TCB of the task which has been waiting the longest (first
waiting task). LLINK of the header points to the task which has been
waiting the least amount of time (last waiting task). In the TCB of
the first waiting task, RLINK points to the TCB of the second waiting
task and LLINK points to the header. This continues until in the TCB
of the last waiting task, RLINK points to the header, and LLINK points
to the TCB of the second to the last waiting task.

Thus, whenever a message is sent to the exchange, the supervisor
supplies the address of that message to the first waiting task. The
supervisor also removes the first waiting task from the waiting task
queue by adjusting the RLINK and LLINK values of both the header and
the second waiting task.

From the information in this section and the previous one, it can be
seen that there is no limit to the number of messages or tasks that can
be queued. No list or table 1s maintained, other than the pointers in
the messages and TCBs themselves. Thus, if there is enough memory
available for the message (which should be known at load time), it can
be sent.

FPS 860-7445-000 46 - 4

441.2.3 Relationship Between the Ready Queue and Message Exchanges

As described in section 2.1.1.3, tasks which wait for messages or
answers (by issuing WAIT, TWAIT, WAITA, or TWAITA SVCs) are removed
from the ready queue. The supervisor attempts to supply that task with
the address of a message from the exchange. If a message is available,
the supervisor then places the task back into the ready queue at its
correct priority.

However, if, no message is available, the supervisor removes the task
from the ready queue and places it in the waiting task queue of the
appropriate exchange. This is done by adjusting the links in the ready
and exchange queues (i.e., the links in the task’s TCB and in the TCBs
of the tasks it was linked to in the ready queue and the tasks it
becomes linked to in the exchange queue). The task is now no longer in
a ready state but in a wating state. When the task reaches the top of
the queue and is supplied with a message, the supervisor again adjusts
the links and places the task back into the ready queue at the proper
priority.

4.1.3 Clock Queue

A task which performs timed waits for messages or answers (TWAIT or
TWAITA) conceptually waits at two exchanges: the message exchange
where it waits for the message to become available, and the clock
exchange where it waits for the allotted time to expire.

The clock queue is similar to the ready queue and message exchanges.
It is comnected to the real time clock, and all tasks on this queue are
performing timed waits and so are also waiting at message exchanges.
Like the headers of the ready queue and the message exchanges, the
header of the clock queue contains pointers to the TCBs of the first
and last tasks on the queue. The tasks waiting at this exchange,
however, are ordered by the length of their waits. Those waiting the
least amount of time are placed at the beginning of the queue, and
those waiting the longest are placed at the end. The pointers in the
header of the clock exchange are RCLOCK and LCLOCK. RCLOCK points to
the TCB of the task waiting for the least amount of time, and LCLOCK
points to the TCB of the task waiting the longest.

FPS 860-7445-000 4 - 5

The TCB of each task also contains pointers RCLOCK and LCLOCK (refer to
Table 2-1). These pointers are used to link the clock queue in the
same manner that the RLINK and LLINK pointers link the ready queue and
message exchanges. In the TCB of the task waiting the shortest amount
of time, RCLOCK points to the TCB of the task waiting the second
shortest amount of time and LCLOCK points to the header. This
continues throughout the queue until in the task that waits for the
longest amount of time, RCLOCK points to the header, and LCLOCK points
to the TCB of the task that waits for the second longest amount of
time.

The TCB of each task also contains a field called ICLOCK, which, for
tasks waiting in the clock queue, specifies an interval of time to
wait. TICLOCK contains the difference between the number of clock ticks
this task can wait and the number of clock ticks the task just ahead of
it in the queue can wait. Thus for a task waiting in the clock queue,
the sum of its ICLOCK value and the ICLOCK values of all the tasks
ahead of it in the queue 1is equal to the amount of time that the task
can wait.

For example, assume that four tasks are on the clock queue, each
performing timed waits for messages. Task 1l waits 10 ticks, task 2
waits 40 ticks, task 3 waits 35 ticks, and task 4 waits 100 ticks.
Table 4=-2 shows the order of the queue and the relationship between the
ICLOCK values and the timed wait values.

Table 4-2 ICLOCK Values

ORDER OF ICLOCK MAXIMUM NUMBER OF

QUEUE VALUE CYCLES TO WAIT

Task 1 10 10

Task 3 25 10 + 25 = 35

Task 2 5 10 + 25 + 5 = 40

Task 4 60 - 10 + 25 +5 + 60 = 100

If a number of clock ticks pass equal to the value of ICLOCK for the
first task in the queue and that task has not received a message, that
task times out. The supervisor removes it from the clock queue by
adjusting RCLOCK and LCLOCK values, sends it a timeout message, removes
it from the message exchange where it was waiting, and places it back
in the ready queue. No adjustment is made to ICLOCK values of other
tasks.

FPS 860-7445-000 4 - 6

If, however, the first task in the message exchange receives the
message it was waiting for before timing out, the supervisor removes
that task from the clock queue and updates the ICLOCK value of the next
task in the clock queue to reflect the difference in time. The
supervisor also removes the task from the message exchange and places
it back on the ready queue.

4eleb Types of Tasks

In general, tasks can be classified into two types, message-~producing
tasks and message-consuming tasks. The processing flow of each of
these types is normally cyclic. The message~producing task performs a
function, requests the services of another task by sending it a
message, waits for an answer, and continues the whole procedure over.
The message-consuming task waits until a message is available, performs
a function, sends an answer indicating that the function was performed,
and waits for the next message. Figure 4-1 illustrates the processing
flow for each of these types.

FPS 860-7445-000 4 - 7

Message
Producing Task

Initialize
Message
Consuming Task
Compute Initialize
X
Request the Wait for
services of request
another task. :
: Send Wait for | TRAP;
TRAP; Message Wessage | CB=QWAIT;
DB=QSEND; LDTMA
LDTMA .
<
Perform
Compute the service
Walt for the Return the
results results
TRAP; Halt for Send | TRAP;
DB=@QWAITA; Answer Answer | DB=BANSWER;
LDTMA LDTMA

-1411-

Figure 4-1 Message-producing and Message-consuming Tasks

FPS 860-7445-000 4 - 8

A typical application of a message-producing and a message-consuming
task is a real-time data-acquisition task and a data-reduction task.
The data acquisition task must be at a high priority in order to
operate on a real-time basis. This task collects the data, for
example, from a device handler, and sends it in a message to the
data-reduction task. Thus the data-acquisition task is the
message~producing task. The data-reduction task waits until it
receives a buffer full of data sent as a message and returns the empty
buffer to the data-acquisition task in the form of an answer. The
empty buffer can be filled again and sent back. The data-reduction
task 1s the message-consuming task and can operate at a lower priority
since the data-reduction operation is not as time critical as the data
acquisition.

Notice that the distinction between message-producing tasks and
message-consuming tasks is relative since both tasks produce and
consume messages. The producing/consuming concept can, however,
clarify the general structure of tasks. 1In general, a producer task
executes the following steps:

1. performs a function

2. sends a message

3. waits for an answer

4. loops back to begin again

A consumer task executes the following steps:
l. waits for a message
2. performs a function

3. sends an answer
4. loops back to begin again

4.2 COMMUNICATION BETWEEN THE HOST AND THE FPS-100

Communication between a program running on the host computer and the
FPS=-100 is facilitated through the interaction of the host resident
executive (APX100) and the FPS-100 resident supervisor (MTS100).
APX100 transfers data and instructions from the host to the FPS-100.
The supervisor interprets the instructions and causes the FPS-100 to
perform the requested functioms.

FPS 860-7445-000 4 - 9

The FPS-100 can, however, be used with or without the supervisor.
Therefore, like the FPS-100, APX100 has two modes of operationm,
supervisor mode and non-supervisor mode. The default mode for APX100
is non-supervisor mode. When APX100 and the FPS-100 are in
non-supervisor mode, APX100 functions exactly like APEX funtions with
an AP-120B/AP-190L array processor. All requests by APX100 routines to
manipulate the FPS-100 are executed directly through the hardware
registers. Non-supervisor mode is used to initialize the FPS-100 and
load the supervisor into place. Non-supervisor mode can also be used
to run the FPS-100 without the supervisor. The FPS-100 diagnostics and
the hardware debugger can be used in this mode.

The other mode of operation for APX100 and the FPS-100 is supervisor
mode. In supervisor mode APX100 assumes that the supervisor is running
in the FPS-100. 1In this mode both APX100 and the supervisor add
additional layers of software between the APX100 requests and the
FPS-100 interface hardware. Instead of directly manipulating the
FPS-100 front panel registers (SWR, LITES, and FN registers), APX100
routines communicate with software SWR, LITES, and FN registers on the
host. Actual communication with the FPS-100 1is initiated by
interrupting the FPS-100. When this happens the interrupt from the
host is serviced by a special ISR on the FPS-100, the host interrupt
processor (HIRP), which obtains the data and processes the request.
Thus in supervisor mode, the APX100 routines never actually manipulate
FPS-100 registers; they only send messages to the supervisor, which
does the manipulation.

The additional software layers present in supervisor mode are shown in

Figure 4-2. The APX100 task, the function interpreter task, and the
HIRP shown in this figure are discussed in the sections which follow.

FPS 860~-7445-000 4 - 10

Host
Program

APX100

|

Supervisor
APX100 mode
Device
Driver Softwars
front panel
registers
Non-superviser
mode
Physical Physical HOST
! front panel front panel
registers registers FPS-100
FPS-100 Host
Executing Interrupt
without Processor
Interrupts (HIRP)
Function
APX100
Task M e cmmew s w— Intgl;f;p:;‘etgr
l -1412-
FPS-100
Executing
with enabled
Interrupts

Figure 4=2 Supervisor Mode Software Layers

FPS 860-7445-000 4 - 11

4.2.1 Interrupting the FPS-100

The host interrupts the FP5-100 for one of three reasons:
e to perform a virtual front panel operation
e to run a host-callable subroutine

o to communicate with a task using the communication ports

Each of these types of operations requires that the host and the
FPS-100 become synchronized and pass data. This is dome with the SWR
register, the LITES register, and two hardware status bits (one
associated with each register), SWRACK and LITACK.

The host can read the LITES register and, in so doing, automatically
clears the LITACK bit. The host can write the SWR register. When it
does this, SWRACK is automatically cleared. Conversely, the FPS-100
can write the LITES register. In doing this, it automatically sets
LITACK. It can also read the SWR register and doing so automatically
sets SWRACK.

Because of automatic setting of the status bits, host communication
with the FPS-100 is performed in the following steps.

1. The host tests the FPS-~100 to determine whether the SWR
register is available. When it 1s, the host writes the
first 16 bits of the message to the SWR register, thereby
clearing SWRACK. It then Interrupts the FPS-100 and waits
until SWRACK is set by the FPS-100.

2. TUpon receiving the interrupt from the host, the host
interrupt processor (HIRP) is called. This FPS-supplied
ISR, whose sole purpose 1s to process interrupts sent by
the host, reads the SWR register (thereby setting SWRACK),
saves the SWR value in a message buffer, and waits until
the host clears SWRACK.

3. When the host determines that SWRACK has been set, it
writes the second 16 bits of data into SWR (thereby
clearing SWRACK) and waits again.

4. When the FPS-100 determines that SWRACK has been cleared,
it reads SWR (thereby setting SWRACK), saves the second 16
bits of the message in the message buffer, and waits
again.

FPS 860-7445-000 4 - 12

5. Steps 3 and 4 are repeated until the entire message 1is
transferred to the FPS-100. Both the host and the FPS-100
are aware of the number of transfers needed because this
information is transmitted in the message.

6. Upon receipt of the entire message, HIRP sends the
message to an exchange. For a virtual front panel
operation, the message goes to the function interpreter
task. For a host-callable subroutine, the message goes
to the APX100 task. For a communication port, the
message 1s placed on a port exchange. These procedures
are described in the remainder of this section (4.2).

When the function interpreter task or APX100 task is finished, the
FPS-100 sends a three-word message to the host acknowledging this fact.
This message contains a status flag and the updated contents of the
LITES register. This three-word message is sent by the FPS-100 in a
manner analogous to the one previously described, with the FPS-~100
writing the LITES register and the host reading it.

4.2.2 Virtual Front Panel Operations

Three registers in the virtual front panel are treated in a special
manner when the FPS-100 and APX100 are in supervisor mode. These
registers are the LITES register, the SWR register, and the FN
register. APX100 routines do not communicate directly with the virtual
front panel in supervisor mode; they communicate with simulated
registers on the host.

4¢2.2.1 LITES Register

An APX100 routine can read the LITES register. When this happens in
supervisor mode, it actually reads the simulated LITES register in the
host. The simulated LITES register contains the wvalue of the LITES
register which was sent in the last message from the FPS-100 (refer to
section 4.2.1).

462.2.2 SWR Register
An APX100 routine can write the SWR register. When this happens in
supervisor mode, it actually writes the simulated SWR register in the

host. The simulated SWR register is sent to the FPS~100 with the next
message (refer to section 4.2.1).

FPS 860-7445-000 4 - 13

4.2.2.3 FN Register

APX100 routines can both read and write the FN register. Reading the
FN register in supervisor mode involves nothing unusual. When a
routine writes the FN register, however, it intends to perform a
function in the FPS-100. Therefore, a message is sent from the host to
the FPS-100 to indicate the function to be performed.

When an APX100 routine writes the function register, the APX100 driver
interrupts the FPS-100 and sends the contents of the SWR register and
the FN register to the FPS-100 using the method described in section
4.2.1. The HIRP in the FPS-100 processes the interrupt and sends the
contents of the FN register and SWR register in a message to the
FPS-gupplied function interpreter task. The function interpreter task
examines the contents of the FN and SWR registers and performs the
requested function, not using the values in the actual machine
registers but using the register values in the APX100 task’s TCB.
After the function has been performed, the function interpreter task
sends a message back to the host. This message contains a status
message and the updated LITES register.

4e2.2.4 Supervisor Mode Front Panel Differences

When the FPS=-100 and APX100 are operating in supervisor mode, some
front panel functions are not performed in the same manner as in
non-supervisor mode. Some front panel functions do not operate at all.
The differences between supervisor mode and non-supervisor mode are
outlined in the following paragraphs, along with the affected APX100
routines. The APX100 routines are described in detail in the APX100
Manual.

hardware breakpoint - SETBRK/CLRBRK

Although the hardware breakpoint mechanism functions in non-supervisor
mode, it is not supported in supervisor mode. In supervisor mode the

SWR register 1is used for message transfers. The SWR register is also

required to contain the breakpoint address when performing a SETBRK or
a CLRBRK. This conflict necessitates the non-support.

read s-pad register - APGSP

In non-supervisor mode this function operates on a halted FPS-100. 1In
supervisor mode this function is not supported.

examine and deposit - APEXAM/APDEP
In supervisor mode not all registers in the FPS-100 are accessible.

The accessible registers are associated with the APX100 task and
include:

FPS 860-7445-000 4 - 14

SFD

™A DPA
SPFN APSTAT
DA

MA SWR
FN LITES
APMA HMA
we CTRL
FMTH FMTL
MASK APMAE
MAE

The inaccessible registers include all 38-bit registers and memory,
program source memory, real time clock registers, IMASK, APSTAT2,
APSTAT3, and SMA. 1If an inaccessible register access 1is attempted, an
error routine is called.

PS functions of save, run, and restore - PSFUNC
In supervisor mode the use of PSFUNC is not supported. 1In
non-supervisor mode this routine permits the execution of a small

program in the FPS~100 while preserving the previous code located in
those PS memory words.

4.2.3 Host=callable Subroutines

In order to run host-callable subroutines in a supervisor controlled
FPS-100, these subroutines must be loaded as a part of the APX100 task.
The root overlay segment of the APX100 task is supplied by FPS and
permits host=callable subroutines to operate in the same manner as they
do in a non-supervisor environment. All host-callable subroutines must
be loaded by the user as additional parts of that task.

During FPS-100 execution, the APX100 task runs like any other task in
the system. It runs at an assigned priority and waits at exchanges for
messages. It normally waits at an exchange until it receives a message
to start running a routine. This happens when the host HASI routine is
called. This LOD100-generated subroutine contains a call to the APX100
routine APRUN, which in turn calls the SPLDGO routine. The SPLDGO
routine interrupts the FPS-100 and initiates a message transfer
described in section 4.2.1. When HIRP receives the message from the
host and interprets it as a SPLDGO message, it puts the parameters into
a common block in memory and sends the APX100 task a message which
shifts it from the wait state to the ready state. The APX100 task
resumes execution when it is the highest priority ready task, moves the
parameters into the physical s-pads, and jumps to the entry point
passed down from the HASI. This is actually the entry to the routine
which ensures that all the overlays requested by the host are resident
in PS memory and then jumps to the real user subroutine.

FPS 860-7445-000 4 - 15

Both UDC (user-~directed calls) routines and ADC (auto-directed calls)
routines can be called in the supervisor environment. However, care
must be taken when using UDC routines. With UDC routines, the user
places data into the FPS5-100 main data memory with APPUT calls. The
user must not place data in any main data locations that are used by
the supervisor. The user should study the load map produced by LOD1QO
to determine which main data locations are available or should use the
BUFFER command at load time. Refer to the LOD100 Reference Manual for
further information concerning UDC and ADC routines and the load map.

4e2¢4 Communication Ports

In the supervisor environment, seven full-duplex communication ports
are provided to allow limited communication between the host program
and tasks running on the FPS-100. (Normally, the host program can
communicate directly with only those routines running as part of the
APX100 task). Using routines provided as part of APX100, the host
program can send a small (13-bit) message to any one of seven
communication ports in the FPS-100. The host can also receive a 13-bit
message from any communication port in the FPS-~100. Likewise, any task
in the FPS-100 can send a 13~bit value to any one of the communication
ports and receive a 13-bit value from any one of the communication
ports.

On the host side, APX100 includes the routines necessary for sending
and receiving messages through communication ports. On the FPS-100

side, the supervisor includes the routines necessary for tasks to send
and receive the communication port messages.

4.2.4.1 Host Routines

Three APX100 routines, HPUT, HGET, and HTST, are provided to allow the
host program to send and receive 13-bit data values.

The HPUT routine is used by the host program to send a message to the
FPS=100. The format of the call to HPUT is as follows:

CALL HPUT (dest,value)
dest Integer which identifies the communication port to
which the message is sent. Values from 1 through 7 can

be specified.

value Value which is sent to the FPS-=100. This value must
not exceed 13 bits.

FPS 860~7445-000 4 - 16

The HGET routine is used by the host program to get a message from the
FPS-100. If a message is not available, this routine waits until a
message becomes available. The format of the call to HGET {is as
follows:

CALL HGET (sors,flag,value)

sors Integer which identifies the communication port from
which to get the message. Possible values include:

1-7 The message is obtained from the communication
port of the same number. If no message is
avallable at that port, HGET waits until ome
becomes available.

0 HGET gets a message from the lowest numbered
communication port at which a message is
available. If no message is avallable, HGET
waits until one becomes available at some
message port. When the message is received,
sors is updated by HGET to indicate the number
of the message port from which the message
was recelved.

flag Status flag. HGET sets the value of this location,
as follows:

0 A message was received and the FPS-100
continues processing. :

1 The FPS-100 halted, and no message is
available.

2 A message is available, but the FPS=100 has
halted.

value Location in which HGET returns the message value. A
value is returned when flag equals 0 or 2.

The HTST routine is used by the host program to get a message from the

FPS-100, if one is available. HTST is similar to HGET except that HTST
does not wait if a message is not available. The format of the call to
HTST is as follows:

CALL HTST(sors,flag,value)

sors Integer which identifles the communication port from
which to get the message. Possible values include:

1-7 The message 1s obtained from the communication

port of the same number. If no message is
available at that port, no message is returned.

FPS 860-7445-000 4 - 17

HTST gets a message from the lowest numbered
communication port at which a message is

‘available. If no message is available none is

returned. When a message 1ls available, sors is
updated by HTST to indicate the number of the
message port from which the message was
received.

flag Status flag. HTST sets the value of this location,
as follows:

-1

No message 1s available and the FPS-100 is
running.

A message was received and the FPS-100 is
running.

No message 1s available and the FPS-100 is
halted.

A message is available and the FPS-100 is
halted.

value Location in which HTST returns the message value. A
value is returned when flag equals 0 or 2.

be2s 4.2 FPS-100 Routines

Three supervisor routines, FPUT, FGET, and FTST, are provided to allow
tasks to send and receive 13-bit data values. These routines are not
called with the TRAP instruction like SVCs are, but are jumped to
directly with the JSR instructiom. '

FPS 860-7445-000

khkhhhhhikh
* *

* FPUT *
* *

* hk kkikk ik

PURPOSE:

ASM100 CALLING
SEQUENCE:

PARAMETERS :

REGISTERS USED:

FPS 860-7445-000

kkkkkkkkkk
* *
-——— SEND DATA VALUE TO HOST ———- * FPUT *
% *
khkkkkikhkkhk

This routine permits a task to send a 13-bit value to
the host.

This routine is invoked by loading the destinatiomn
value into s-pad 1, the data value into s=-pad 2,
and executing a JSR instruction. For example:

LDSPI Rl; DB=dest
LDSPI R2; DB=value

woR FPUT
Register Contents
s-pad 1 Integer which identifies the communication
port to which the message is sent. Values
from 1 through 7 can be specified.
s=-pad 2 Value which is sent to the host. This
value must not exceed 13 bits. Any extra

bits are lost from the upper three bits.

RO, R1, R2, DPX(0)

19

dkkkkkk kkk Rk dek ke k ke

* * * %*
* FGET * == GET DATA VALUE FROM HOST «==—=- * FGET *
* * * *
%k ek kk Kk T LTI
PURPOSE: This routine permits a task to get a 13-bit value from

any one of seven communication ports on the host. If
no value is available, this routine waits until one is
available. The availability of a value is indicated
by a message on the associated exchange.

ASM100 CALLING This routine is invoked by loading the source value
SEQUENCE: into s-pad 1 and executing a JSR instruction. For
example:

LDSPI Rl; DB=sors
JSR FGET

PARAMETERS: Register Contents
s-pad 1 Integer which identifies the communication

port from which to get the message. Values
from 1 through 7 can be specified.

VALUES Register Contents
RETURNED:

s=pad 2 Status flag. This register is set as
follows:

-1 A 0 was specified for the source
value in s-pad [. Only values from
l to 7 are allowed.

0 A 13-bit value is available in s-pad
3.

1 A value greater than 7 or less than
0 was specified for the source
value in s-pad I.

s-pad 3 The 13-bit data value received from the
host.

REGISTERS USED: RO through R3, DPX(0) through DPX(3)

FPS 860-7445-000 4 - 20

Kk kkdekkkkk Kk dkFokkkkk
* * * *
* FTST * ———= TEST IF DATA VALUE IS AVAILABLE ==-- * FIST *
%* * * *
Je dook de ok k ek K o desk Kok K dk
PURPOSE: This routine permits a task to get a 13-bit value from

ASM100 CALLING
SEQUENCE:

PARAMETERS:

VALUES
RETURNED:

FPS 860-7445-000

any one of seven communication ports on the host, if

one is available. FTST is similar to FGET except that
FIST never waits for a message. The availability of a
message is indicated by the value returned in s-pad 2.

This routine is invoked by loading the source value
into s-pad 1 and executing a JSR instruction. For
example:

LDSPI R1l; DB=sors

JSR FTST
Register Contents

s-pad 1 Integer which identifies the communication
port from which to get the message.
Possible values include:

1-7 The message is obtained from the
communication port of the same
number. If no message is available
at that port, no message 1is
returned.

0 FTST gets a message from the lowest
numbered communicatiom port at which
a message is available. If no
message is available, none is
returned.

Register Contents

s=pad 1 1f s-pad 1 was specified as 0 and a message
was returned, the number of the
communication port from which the message
was received is returned in s-pad l.

s=-pad 2 Status flag. This register is set as
follows:

-1 No data value is available.

0 A 13-bit data value is available in

1 A value greater than 7 or less than
0 was specified for the scurce
value in s=pad 1.
s-pad 3 The 13-bit data value received from the

host. This value is available when s-pad 2
is set to 0.

REGISTERS USED: RO through R3, DPX(0) through DPX(3)

FPS 860-7445-000 4 - 22

>4.2.4.3 Comnmunication Port Mechanism

Seven locations on the host are provided to store the 13-bit wvalues
received from the FPS-100, one for each communication port.
Corresponding locations are available on the FPS-100 to receive the
data values sent from the host. Also, on the FPS-100, for each
communication port there exists a dedicated message exchange. Whenever
a 13-bit value arrives in the FPS-100, the supervisor sends a message
to the corresponding dedicated message exchange. This message notifies
a task that a value is available.

The mechanism used to actually pass the 13-bit data values between the
host and the FPS-100 is the same mechanism described in section 4.2.1.
When the host program sends a 13-bit value to a communication port
(using HPUT), the host actually writes into the SWR register the 13
bits of message (plus a 3-bit communication port identification
number). The host then interrupts the FPS-100. In the FPS-100, the
HIRP reads the SWR register, determines that the value is a message to
a communication port, saves the 13-bit value in one of seven locations
depending on the value of the 3-bit port number, and sends a message to
the corresponding dedicated message exchange.

In order to receive the message, a task must call FGET or FTST and
specify the same port number as the host routine specified in the HPUT
call. The FGET or FTST call causes the task to retreive a message, 1if
available, from the message exchange dedicated to the specified
communication port. If no message is available, FGET causes the task
to wait until a message arrives.

Going the other direction, a task sends a 13-bit value to the host
using FPUT. This value is sent by the supervisor, along with the 3-bit
port number, to the host using the LITES register (this method is
described in section 4.2.1). In the host, the 13-bit value is placed
in one of seven locations, depending on the port number. In order to
receive this message, the host routine must call HGET or HTST with the
proper port number specified. If a value is not available, HGET waits
until a value arrives.

4.3 COMMUNICATION BETWEEN TASKS AND I/0 DEVICES

Tasks communicate with I/O devices through device handlers. For the
FPS interface products IOP and GPIOP, general purpose device handlers
are provided with the supervisor. For other user devices attached to
FPS-supplied interfaces, the user must create specific device handlers.
Chapter 5 contains information that the user needs to create device
handlers.

Communication between tasks and device handlers consists of a task
sending a message to the device handler requesting a data transfer.

The device handler performs the transfer and passes the message back to
the requesting task.

FPS 860-7445-000 4 - 23

In order for a task to obtain a buffer of data from an I/0 device (a
read operation), the requesting task sends to the handler a message
containing the buffer to be filled. The task can then continue
processing asynchronously from the data transfer, which is done using
the DMA mechanism. At some later time, the task waits for an answer
from the handler. The answer message is sent when the I/0 device
completes the requested operation. Upon completion, the device
interrupts the FPS-100, causing the ISR portion of the device handler
to be called, which in turn sends an answer message to the requesting
task. This answer consists of the original message with the buffer now
full of data.

If the requesting task sends more than one request at a time (with more
than one empty buffer), the messages are queued, and the handler
automatically performs multiple buffering. The number of requests
originally sent determines the level of multiple buffering.

In order for a task to transmit a buffer of data to an I/0 device
(write operation), the task sends the buffer as a message to the
handler. The handler performs the output operatioa. Upon completion
the device interrupts the FPS=100, causing the ISR portion of the
device handler to send an answer to the requesting task. The answer
includes the original buffer which indicates to the task that the
operation is complete and the buffer can be reused.

FPS 860-7445-000 4 - 24

CHAPTER 5

DEVICE HANDLERS

5.1 INTRODUCTION

Device handlers are routines which control the I/0 transfer between
external devices and the FPS-100. A device handler must be provided
for each I/0 device connected to the FPS-100. Device handlers are
structured into two parts, a device controller task which handles
requests from the user and a device servicer ISR which handles
interrupts from the device.

Since a great variety of 1/0 devices are available to the user, FPS
cannot supply a full function device handler for each of these devices.
Instead, FPS provides the software tools which allow the user to create
special purpose device handlers. This chapter contains the information
necessary for the user to create individual device handlers. FPS does,
however, provide two complete special purpose device handlers, an IOP
handler and a GPIOP handler. Instructions for their use are contained
in this chapter.

5.2 DEVICE HANDLER FUNCTIONS

The user must provide three functions when creating device handlers.
These include:

e initializing the I/0 device
e controlling the I/0 device
e transferring a buffer of data to (or from) the device

These functions are initiated by other tasks which send service
requests to the device handlers. The service requests are in the form
of messages, the standard communication mechanism in a supervisor
environment. The messages specify the type of request (if the handler
performs more than ome type of request), the device (if the handler can
support multiple devices), any parameters needed by the handler to
perform the request, and the buffer of data (if needed).

With device handlers controlling the entire I/0 software interface, the
user does not have to worry about how individual I1/0 devices work. The
user works with device handlers which perform the mechanics of the I/0
transfers.

FPS 860-7445-000 5 = 1

5.3 DEVICE HANDLER STRUCTURE

A device handler contains two main parts, the device servicer and the
device controller. The device servicer is an interrupt service routine
(ISR) and 1is called as a result of an interrupt by an I/0 device. Its
primary function is to respond to the immediate demands of the
interrupting device. The device controller is itself a task. It is
called by tasks which send messages to it in order to request service.
The controller performs functions such as initializing the device,
providing successive buffer information to the device driver, providing
device status to the calling task, and shutting down the device.

When a task calls a device handler to perform a function on an I/0
device, it sends a message to the device controller. The controller
determines the type of function to be performed and performs the
function on the I/0 device. If the function is an 1/0 transfer
function, the controller queues the request on an internal queue and
executes it as soon as the device is available. The device performs
the I/0 transfer; when the transfer is complete, it interrupts the
FPS-100. When the device interrupts the FPS-100, the device servicer
sends an answer back to the requesting task, indicating the completion
of the function.

5.3.1 Device Controller

The device controller processes tasks I/0 requests. It is a task
itself and is scheduled to run according to its priority, just as any
other task in the system. When a device controller is started, the
first thing it does is wait for a message. When a message is received,
it processes the request and waits for another message. The basic
functions performed by each device controller are:

® Device initialization. The controller initializes the
device table and, if necessary, initializes the device in
some manner. A GPIOP device is loaded with the required
PPAL code at this time.

o Data transfer. The controller must queue requests to
read or write buffers of data. The I/0 device performs
the operations as soon as possible. The notification of
the completion of the transfer comes from the device
servicer, not from the controller.

e Other functions. If there are any other control functioms

required for the user I/0 device, they must be included in
the controller portion of the device handler.

FPS 860-7445-000 S - 2

The processing flow for a device controller is contained in the
following steps.

l. Initialize the device and the handler tables.
2. Wait for a message request.
3. Determine the type of request. If it is a control
request, go to step 4; if it is an I/0 transfer request,
go to step 5.
4. For a control request:
(a) Perform the requested function.
(b) Send an answer back to the user.
Go directly to step 6.
5. TFor 1/0 transfer requests:
(a) Select the proper device execute queue.
(b) Place the buffer address in the queue.
(¢) 1If it is the first buffer in the queue:
e start the I/0 transfer

¢ enable the device interrupt

6. Go to step 2 and wait for the next message.

Figure 5-1 illustrates the logic flow.

5+3.2 Device Servicer

The device servicer responds to interrupts generated by I/0 devices.
It is an interrupt service routine (ISR) and is treated as an
overlayable subroutine of the supervisor.

When the I/0 device interrupts the FPS-100 to indicate the completion
of a data transfer, the appropriate device servicer is called. The
device servicer sends the just-transferred buffer back to the
requesting task as an answer. If another I/0 request has been queued
by the controller, the servicer starts the I/0 device processing the
next request.

FPS 860~7445-000 5 - 3

The user can make the device servicer as intelligent or as simple as
desired. The trade-off is in interrupt latency. The smaller the
servicer, the faster the response time. ‘

Since the servicer is an ISR (a subroutine called by the supervisor
itself), only the minimum state can be used (minus s-pad 7).

The following is the typical flow logic of the device servicer:

1. Select the proper device execute queue. This is done via
the device order number.

2. Get the first buffer from the queue and send it to the
requesting task as an answer. (When the servicer is
called because of an interrupt, the first address out of
the device execute queue is the address of the completed
buffer.)

If the execute queue is not empty, perform steps 3, 4, and 5.

3. Get the next address in the queue (but do not send it to a
task).

4o Restart the I/0 device with the next transfer, using that
‘address as the buffer address.

5. Zero the mask bit parameter, signifying that the
associated interrupt is to be re-enabled.

6. Return to the supervisor.

FPS 860~7445-000 5 - 4

Figure 5-1

5.4 IOP HANDLER

The IOP handler provided by FPS can perform only I/0 transfer requests.
To initiate I/O transfers using the IOP handler, a requesting task must
send a message to the IOP controller task.

Start and
Initialize

Decode
Message
and Branch

l

l

Perform
Control
Request and
Return Answer

Queuae
I/0
Request

is shown in Table 5-1.

FPS 860-7445-000

Device Controller Structure

The format of this message

Table 5-1

IOP Handler Message Format

DESCRIPTION WORD CONTENTS
Standard message 1 RLINK
header data 2 LLINK
3 RPRI
4 TYPE
5 LENGTH
6 ANSKEY
Continuation of 7 STATUS (transfer status)
header for IOP 8 IOP address
message 9 Buffer word count
10 External device address (part 1)
11 External device address (part 2)
12 Command function
Data buffer 13 Buffer data

In Table 5-1, the standard message header is the same as described in
section 4.1.1. The status returned by the IOP handler is 0 if no error
occurred in the transfer and -1 if a transfer error occurred. The rest
of the IOP header information is described in the IOP Manual.

FPS 860-7445-000

5.5 GPIOP HANDLER

The GPIOP handler provided by FPS can perform several types of
requests. Two types of message formats can be used when sending
messages to the GPIOP handler.

Table 5-2 contains the format of the execute IOC message. This message
causes the handler to start the GPIOP and perform a functiom.

Table 5-2 GPIOP Execute I0C Message Format

DESCRIPTION WORD CONTENTS
Standard message 1 RLINK
header data 2 LLINK

3 RPRI

4 TYPE

5 LENGTH

6 ANSKEY

7 1
Continuation of 8 GPIOP number
header for GPIOP 9 Function value ,
message 10 Control packet address

In Table 5-2, the standard message header is the same as described in
section 4.1.1. The rest of the GPIOP header information is similar to
the parameters of GPEXEC, which are described in the GPIQOP Software
Reference Manual.

FPS 860-7445-000 5 = 7

Table 5-3 contains the format of the start new buffer GPIOP message.

This message is used to initiate new buffer transfers if the GPIOP is
already running.

Table 5-3 Start New Buffer GPIOP Message Format

DESCRIPTION WORD CONTENTS
Standard ﬁessage 1 RLINK
header data 2 LLINK

3 RPRI

4 TYPE

5 LENGTH

6 ANSKEY

7 2
Continuation of 8 GPIOP number
header for GPIOP 9 Remaining bufifer count
message 10 Return status
Data buffer 11 Buffer data

In Table 5-3, the standard message header is the same as described in
section 4.l.1. The status returned by the GPIOP handler is 0 if no
errors occurred and -1 if an error occurred in the GPIOP. The rest of
the GPIOP header information is similar to GPSYNC parameters, which are
described in the GPIOP Software Reference Manual.

FPS 860-7445-000 5 - 8

CHAPTER 6

USING MTS=-100

6.1 CONCEPTS

The FPS-100 running under the MIS-100 supervisor has two basic units of
work: the task and the host-callable subroutine (HCS). The HCS, as
its name implies, is called directly from the host. That is, if the
statement "CALL SUBR" (where SUBR is an FPS-100 subroutine) appears in
the host FORTRAN mainline, then SUBR runs on the FPS-100 and comes to a
virtual halt. At the same time, the multi-tasking supervisor
coordinates the running of the user’s tasks, which are typically
self-contained routines running semi-independently of each other and of
the host. The term "semi-independently" is used because although the
tasks can be independent, they can also communicate for such purposes
as control and data transfer.

Tasks communicate with each other by calling various supervisor
services to send or wait for messages. Messages are sent to a
predefined exchange, where a waiting task may pick them up. If no task
is waiting, the message remains at the exchange until a task asks the
exchange for a message. The routines which manage this communication
system are referred to as supervisor calls (SVCs). A complete
description of these and other types of SVCs are found in Chapter 3.

Tasks may communicate with the host in two ways. One way is via the
HCSs, which are under host control but can send and receive messages to
and from tasks. The advantage of this method is its flexibility, since
an HCS can have a number of parameters which can also be arrays. The
other way is via direct host/FPS-100 communication routines which
provide limited bi-directional access. The advantages of this method
are lower overhead and a greater measure of control for the FPS-100
than an HCS master/slave relationship normally allows. These methods
can also be used to control the timing and placement of data transfers
to and from the host.

6.2 MECHANICS
This section sets forth the basics of writing tasks, making load

modules, and writing the host FORTRAN mainline to communicate with the
FPS-100.

FPS 860-7445-000 6 - 1

6¢2.1 Writing a Task

At its simplest, a task is merely a routine which executes after other
tasks of higher priority have suspended execution. It is defined as a
task via the $TASK pseudo-op, which includes the task ID number and,
optionally, a priority level (refer to the ASM100 Reference Manual for
format and parameters). A task should terminate or suspend via the
WAIT SVC. In other words, it should either wait for a message to start
it up again, or it should wait at an exchange where no messages are
received, such as the supervisor’s NEVER exchange. For example, a task
which executes once and terminates follows:

3TASK 1 (task ID=1, default priority=100)
$TITLE PROC
$ENTRY PROC
SINSERT COMSYS (defines system commons, including the
NEVER exchange)
PROC: . (process data in MD)
DPX (1) <NEVER (parameter for WAIT: exchange name)
TRAP; DB=@WAIT; LDTMA (exit via the wait SVC)
$END
WARNING

A task should never terminate by executing a HALT
instruction or simple RETURN, because this will
cause the system to go down.

FPS 860-7445-000 6 - 2

Exchanges and messages are data structures in main data (MD) memory
that are expressed in the form of labeled commons. The user who wishes
to send messages between tasks must define exchanges and messages in
the following manner: for each message or exchange, create a common to
be referenced by the tasks and define the contents of the common in a
"block data" with the following format (refer to the ASM100 Reference
Manual for $COMMON and $DATA).

For an exchange:

$COMMON /exchname/ dummy(6) /I

SDATA dummy (l) exchname
SDATA dummy (2) exchname
SDATA dummy (3) 0
SDATA dummy (4) 0
$DATA dummy (5) 6
$DATA dummy (6) 0

For a message of length “len”:

SCOMMON /msgname/ dummy(len) /I

SDATA dummy (1) msgname
$DATA dummy (2) msgname
$SDATA dummy (3) 0
$DATA dummy (4) 0
$DATA dummy (5) len
$DATA dummy (6) O
$DATA dummy (7) value
SDATA dummy (len) value

FPS 860-7445-000 6 - 3

For example, the following task processes data, sends a message to
another task telling it to start working on the result, and suspends
itself until more data is available to process.

$TASK 1
STITLE PROC
SENTRY PROC

SCOMMON /EXCHA/ A(6)
$COMMON - /EXCHB/ B(6)
SCOMMON /MSGA/ MA(6) /I

PROC:

DPX(0)<MSGA
DPX(1)<EXCHA

TRAP; DB=@SEND; LDTMA

DPX(1)<EXCHB

TRAP; DB=@WAIT; LDTMA

JMP PROC

$END

$TITLE STRUCT

$COMMON /EXCHA/ A(6) /I
$COMMON /EXCHB/ B(6) /I
$COMMON /MSGA/ MA(6) /I

$DATA
SDATA
$DATA
$DATA
$DATA
$DATA

$DATA
$DATA
$DATA
$DATA
SDATA
SDATA

$DATA
$DATA
$DATA
$DATA
SDATA
$DATA

$END

FPS 860-7445-000

A(L)
A(2)
A(3)
A(4)
A(5)
A(6)

B(L)
B(2)
B(3)
B(4)
B(5)
B(6)

MA(L)
MA(2)
MA(3)
MA(4)
MA(S)
MA(6)

EXCHA
EXCHA

OO O

EXCHB
EXCHB

OO O

MSGA
MSGA
0
0
6
0

/1
/1

(set up parameters

for the SEND SVC)

(send MSGA to EXCHA)

(exchange at which to wait for more
data)

(wait there until a msg is received)
(start over)

A task can also start with a WAIT for data from an 1/0 device, process
it, send the result elsewhere, and then loop back to the start (which
is the call to WAIT).

6.2.1.1 SVC Return Codes

Some SVCs return error codes in s-pad 0 for optional checking on return
to the user program. Specific error codes are listed elsewhere, but
any negative value indicates an error; zero indicates a normal return.
The SVCs currently returning error codes are SEND, ANSWER, and MSGANS.

For other SVCs (in particular, the various WAITs), s-pad O returns a
different sort of value (in this case, the type of message received by
the waiting task).

6.2.1.2 Overlays within Tasks

Some tasks (particularly AP-FORTRAN tasks) may be too large to fit
conveniently into PS memory and therefore may have to be split into
separate overlays. The loader employs a tree-structure method for
defining overlays at load time, in which each overlay is given an
overlay segment number when it is loaded. The user uses this number
when calling one overlay segment from another. The user writing tasks
in FPS-100 assembly language (ASM100) loads in a new segment by
executing the following:

LDSPI 10; DB=n

JSR OVLD
where "n" is the new overlay segment’s number, and OVLD is declared an
external symbol.

The call to OVLD places the new overlay in PS memory and then returns

to the point of call. Subroutines in the new overlay are executed by
calling with a JSR in the normal manner.

NOTE
The segment numbers assigned at load time are

interpreted as octal, which is also the default at
assembly time.

FPS 860-7445-000 6 - 5

The AP-FORTRAN user places the new overlay in PS memory by:
CALL APOVLD (n) |

A subroutine in the new overlay can then be called as usual:
CALL NEWSUB (args)

Refer to the LOD100 Reference Manual for more details on overlays.

6.2.2 Making a Load Module with LOD100

This section discusses the techniques, restrictions, and potential
pitfalls involved in making load modules using LOD100.

6.2.2.1 Space Allocation

When the user creates a load module for the FPS~100, all tasks and ISRs
are allocated space in MD, where they will permanently reside as
back-up storage, and in PS, into which they are overlaid from MD. This
implies two things:

e The user’s entire job must fit into MD.

o The system is static in the sense that task X always runs
in the same area of PS.

The job which must f£it into MD includes all tasks, host-callable
subroutines, and ISRs (at two MD words per PS word), plus system data
space (TCBs, maps, system commons) and user data space (exchanges,
messages, data). It does not include the permanently PS~resident
supervisor.

FPS 860-7445-000 6 - 6

Since the PS space is pre-allocated, the user must decide at LOD100
time which routines should share PS space, if necessary. To obtain the
fastest execution time, the amount of overlaying from MD to PS should
be kept to a minimum. The best way to achieve this is by having each
area of PS dedicated to only one task, with each overlay segment within
each task in a dedicated sub-area. Thus, once made resident in PS, it
remains permanently resident. Unfortunately, there may not be enough
PS space for all tasks to reside permanently, in which case the user
must decide where two or more overlay segments or even whole tasks
overlaying each other within the same area of PS would cause the least
overhead.

For example, given 4K of PS minus 1K for the supervisor (leaving 3K of
available space), the problem is to allocate space for three tasks:
task 1 = 2K, task 2 = 1/2K, and task 3 = 1K. Figure 6-1 presents three
possible allocations.

Ps Ps PS
2 2 2
Supervisor Supervisor Supervisor
Task 3
rask 1 Task 1
Task 2
Task la (root)
Task 2 Tagk 2
Task 3 Task 3=z (poot) Task lb| Task ic
ax 4x | Task 38| Task 3c. 4K
(no overlays (overlays within (overlays within
within tasks) task 3) task 1)

®

-1423-

Figure 6-1 Possible PS Allocations

The appropriate choice for the application is based upon relative
desired response times for each task.

Unless directed otherwise, the loader allocates PS space for tasks on a
non-sharing basis. That is, if one task is allocated locations n
through m, then the next task loaded is allocated space starting at
location mt+l. If PS sharing is necessary between tasks (as in Figure
6=1A), then the user must reset the base PS address used by the loader
(via the PS offset command) before loading the next task. However, the
sharing of space within a task is automatically taken care of by the
form of the TREE command (refer to the LOD100 Reference Manual).

Thus, the loading sequence for Figure 6-1B (assuming task 3 is split
into overlays 30, 31, and 32) includes the following commands:

FPS 860-7445-000 6 - 7

TREE ((1))

ov 1

LOAD task 1 object
LINK

MAP 0 task 1 mapfile
TREE ((2))

ov 2

LOAD task 2 object
LINK

MAP O task 2 mapfile

TREE ((30 (31) (32)))

oV 30

LOAD task 3 root object

ov 31

LOAD overlay segment 31 object
ov 32

LOAD overlay segment 32 object
LINK

MAP 0 task 3 mapfile

This produces a PS space allocation such as that depicted in Figure
6-1B. Figure 6-1C has the same load sequence, with the exception that
task 3 takes the place of task 1l and vice versa. For Figure 6-~1A, the
sequence is:

TREE ((1))

ov 1l

LOAD task 1l object
LINK

MAP O task 1 mapfile
TREE ((2))

ov 2

LOAD task 2 object
LINK

MAP O task 2 mapfile
MAP

(Here the user must check the map (entering "MAP" displays the map on
the terminal) for task 2 to find out its PS starting location, which
should be the same for task 3. Assuming location n, the command
sequence proceeds as follows:)

PS n

TREE ((3))

ov 3

LOAD task 3 object
LINK

MAP 0 task 3 mapfile

FPS 860-7445-000 6 - 8

Note that the use of "TREE ((k))" and "OV k" for task k is not
necessary; it merely makes reading the maps easier. "TREE ((1))" and
"0V 1" are acceptable for any one-segment task. These commands must be
present for even the simplest task, so that the supervisor tables can
be properly initialized by the loader.

Note that, within a task, overlay segments which are conceptually on
the same level of the tree structure may be put below one another on
the tree without unnecessary overlaying resulting. That is, the higher
nodes do not always have to be made resident in PS when lower nodes are
needed.

Figure 6-2A illustrates an overlay tree structure which can, if
desired, be expressed in the form of Figure 6-2B. The advantage of B,
if space is available, 1s that segment 4 does not have to share PS

space with segments 2 and 3. At the same time, it is not necessary for
segment 3 to become resident for segment 1l to call segment 4.

root root

ho o fRe

TREE ((1 (2) (3) ()))

TREE ((1 (2) (3(4))))

~1424-

Figure 6-2 Overlay Tree Structures

FPS 860~7445-000 6 - 9

6.2.2.2 Host-callable Subroutines

Host-callable subroutines are identified at LODLOO time by the CALL
command. This causes the loader to create FORTRAN subroutines
(referred to as HASIs) for the host FORTRAN program to call. When the
host calls such a routine, control goes to the HASI on the host, then
to the APX100 task on the FPS-100, and finally to the subroutine
itself. Thus all host-callable subroutines are considered part of the
APX100 task under MIS100. They can be loaded as separate overlay
segments of the task or in any combination, with the FPS-supplied
APX100 task as the root. If only one host-callable subroutine exists,
it should be loaded in the same overlay as the APX100 task.

For example, consider two host=-callable subroutines that are called
repeatedly. If there is enough PS space for them to remain permanently
resident, it is most efficient for them to be loaded into PS as only
one overlay, with no sharing of PS space either within the APX100 task
itself or between it and other tasks. The command sequence for this is
as follows:

TREE ((1))

ov 1

LOAD UPEX.B (load APX100 task root)

CALL SUBR1l / (create HASI for following subroutine)
LOAD SUBR1.B (load first subroutines object)

CALL SUBR2 / (create HASI for second subroutine)
LOAD SUBR2.B (load second subroutines object)

LINK

MAP O mapfile

Note the slash in the CALL command. This is necessary to ensure that
the subroutine is resident in PS before jumping to it.

Now consider another example, in which three host-callable subroutines
must be put into such limited PS space that they must all use the same
area. This case is equivalent to the tree structure shown in Figure
6=-2A. The command sequence is:

TREE ((1 (2) (3) (4))

ov 1

LOAD UPEX.B (APX100 task root)
ov 2 (define next overlay segment)
CALL SUBRA / (make HASI for SUBRA)
LOAD SUBRA.B (load its object)

ov 3

CALL SUBRB /

LOAD SUBRB.B

ov 4

CALL SUBRC /

LOAD SUBRC.B

LINK

MAP O mapfile

FPS 860-7445-000 6 - 10

The resulting PS space allocation is shown in Figure 6-3.

PS Memory
?
n
(Overlay 1) APX100 Task
r— T -
| |
(Overlay 2) f (Ovexrlay 3) ; (overlay 4)
! |
SUBRA ; SUBRB } SUBRC
[|
.]]
4K
-1425-

Figure 6-3 PS Allocation

On the other hand, the tree structure shown in Figure 6=2B has the same
load sequence as that for Figure 6-2A (except for the TREE command),
yet produces the PS space allocation shown in Figure 6-4.

4K

FPS 860-7445-000

(Overlay 1) APX100 Task

B T
|
(Overlay 2) | (Qverlay 3)
SUBRA } SUBRB
TR
|' (Ovexlay 4)
i SUBRC
i

-1426-

Figure 6~4 PS Allocation

Still another way of defining the structure is useful when, for
example, SUBRB and SUBRC are often called in pairs. They then can be
put into the same overlay, as Figure 6-5 shows:

root

(Overlay 1) APX100 Task

(Overlay 2) (Overlay 3)
SUBRA SUBRB SUBRA SUBRB
and art
SUBRC SUBRC

~1427-

Figure 6=5 PS Allocation and Tree Structure

The above allocation can be achieved by using this command sequence:

TREE ((1 (2) (3)))
ov 1

LOAD UPEX.B
ov 2

CALL SUBRA /
LOAD SUBRA.B
ov 3

CALL SUBRB /
LOAD SUBRB.B
CALL SUBRC /
LOAD SUBRC.B
LINK

MAP 0 mapfile

NOTE
The CALL command, which tells the loader to create

a HASI for the next routine loaded, must come after
the OV command.

FPS 860-7445-000 6 - 12

For information on the various types of HASIs (UDC and ADC), refer to
the APX100 and LOD100 manuals (Table 1-1).

6.2+2.3 User Exchanges and Messages

If the tasks being loaded reference exchanges and messages, these data
structures should be loaded beforehand, followed by the MARK command to
ensure that the common block names will remain global symbols (i.e.,
accessible by all following tasks). They can also be loaded as part of
a task, but they still must be MARKed.

6+42.2.4 Loading Device Handlers

For each I/0 device to be supported, the user must load an interrupt
service routine (ISR) and usually an I/0 controller task. The
controller task is loaded in the same way as any other task. An ISR,
however, does not require the TREE or OV commands, since it always
consists of one segment only. Normally, ISRs should not share PS space
unless size restrictions absolutely require it; otherwise, interrupt
response time suffers.

The most familiar ISR is the one for the host, call HIRP. This is
loaded as follows:

LOAD HIRP.B
LINK
MAP 0 mapfile

Other ISRs are loaded in the same manner.

6.2.2.5 Loading the Supervisor

The supervisor kermel itself, the system exchanges and tables, the host
communication routines, and the real-time clock queue support are all
loaded via an FPS-supplied command file called LODSYS. When the
command file terminates, it leaves the loader ready to load ISRs,
tasks, etc., at the user’s direction.

FPS 860-7445-000 6 - 13

6.2.2.6 A Sample LOD100 Session

In the following example, two tasks and two host-callable subroutines
are each one segment long, with no I/0 devices other than the host. PS

space need not be shared.

(run LOD100)

OUT hasifile 1lmfile

INPUT LODSYS

L HIRP.B

LINK

MAP O mapfilel
TREE ((1))

ov 1

LOAD TASK1.B
LINK

MAP O mapfile2
TREE ((2))

ov 2

LOAD TASK2.B
LINK

MAP O mapfile3
TREE ((3))

oV 3

LOAD UPEX.B
CALL SUBRL /
LOAD SUBRL.B
CALL SUBR2 /
LOAD SUBR2.B
LINK

MAP 0 mapfileé
EXIT

FPS 860-7445-000

(open files for HASIs and load module)
(load supervisor)

(load host ISR)

(1ink)

(output map)

(form structure for l-segment task)

(load it)

(second task)

(APX100 task)

(everything in 1 overlay segment)
(load APX100 root)

(make HASI for SUBRI1)

(load its object)

(make HASI for SUBR2)

(load its object)

(1ink)

(terminate loader)

On the other hand, if it is essential to conserve PS space, everything
can be loaded starting at the same location, although in the following
load sequence the ISR is still loaded in its own space.

(run LOD100) 3

OUT hasifile lmfile /D

INPUT LODSYS

L HIRP.B

LINK

MAP 0 mapfilel > (same sequence as previous example)
TREE ((1))

ov 1

LOAD TASK1.B

LINK

MAP O mapfile2 /

MAP (display map on terminal)
(read map to find TASK1’s PS starting location n)
PS n (reset base PS address)
TREE ((2))

ov 2

LOAD TASK2.B (make TASK2 as before)
LINK

MAP O mapfile3 .

PS n (reset base PS address again)
TREE ((3 (4) (5))) (structure subroutines to share space)
ov 3

LOAD UPEX.B (load APX100 root)

oV 4 . (next overlay segment)
CALL SUBR1l / (make HASI for SUBRI)
LOAD SUBRL.B (load its object)

oV 5 (next overlay segment)
CALL SUBR2 / (make HASI for SUBR2)
LOAD SUBR2.B (load its object)

LINK (link)

MAP O mapfileé (generate map)

EXIT (terminate)

Note that the LINK command is always used after loading an ISR and
after loading all the overlays in a task. It is wise to generate a map
at each of those points, since some information disappears when the
next item is loaded. The mapfile must be different in each case, or
maps can be sent directly to the line printer. Alternatively, if the
host can record terminal I/0 in a file, the user should record the
entire load session with all "MAP O mapfile" commands changed to 'MAP".
The maps will thus appear both on the terminal and, therefore, also in
the record, eliminating the need for numerous separate map files.

FPS 860-7445-000 6 = 15

6.2.2.7 Potential Problems

The user should experiment with the loader, storing or displaying maps
after each command to get a feel for the kinds of symbols which appear,
disappear, change, and remain permanently. One item which never
appears is a table which the loader genmerates and initializes after the
EXIT command is given. This table currently occupies 50 words of MD,
starting at the next available location (DBBRK on the last map before
EXITing). Following this table is the parameter passing area, used by
ADC HASIs to pass host=callable subroutine parameters (possibly arrays)
to the FPS-100. The symbol .PPA. which appears on the maps refers to
this area inaccurately and should be ignored. The length of this area
depends on the parameters sent by the host at run time and so is not
known at load time, except that ostensibly it is allocated the
remainder of MD. This may also be an area in which users with UDC
HASIs can explicitly pass parameters via APPUT and APGET calls. Users
who use both types of HASIs must take care not o transfer UDC
parameters in the true parameter passing area used by ADC HASIs. Also,
sufficient room for data must be allowed. Use of the BUFFER command is
usually helpful for this problem.

Other symbols appearing on the maps include items of the form ".MPnnn'".
These are tables for the supervisor and can be ignored by the user.
Other map-reading information may be found in the LOD100 Reference
Manual (Table 1l-1).

TCBs appear on the map because users calling the SETPRI SVC need to
reference TCBs by name. If a user loads a task which references
another task not yet loaded, the user should do a MARK after loading
the first task; otherwise, the TCB for the second task is defined
twice, and the reference to it will be incorrect.

6.2.3 The Host FORTRAN Mainline

The FORTRAN mainline, making calls to affect the FPS-100, is on the
host’s side of the job. While the user should read the APX100
Reference Manual (Table 1-1) to understand the format and purpose of
the appropriate routines, they are mentioned here for the sake of
completeness.

First, the user should call APINIT to assign and initialize the
FPS~100. Then, APLLI should be called to establish which file contains
the desired LOD100 load module to be downloaded into the FPS=100.

Next, MIS1 should be called to download and start the supervisor
running (assuming that the load module ID is 1, the default; £for load
module n, the call should be made to MISn).

FPS 860-7445-000 6 - 16

Next, the user can call any host=callable subroutines on the FPS-100
(user-written or FPS Math Library routines) or can transfer data in
either direction. (See descriptions of APPUT, APGET, APWD, and APWR in

the APX100 Reference Manual.) The user can also communicate with the
FPS-100 via HPUT, HGET, and HTST.

When the job is done, the user releases the FPS-100 by calling APRLSE.

6.3 ADVANCED TECHNIQUES

This section explains techniques for faster SVC execution and for
adding SVCs and ISRs to the system.

6.3.1 Faster Execution of SVCs

Normally, the user executes a TRAP instruction to call a system
service. The overhead involved in this method includes at least a
minimum state save and restore, which usually takes longer than the SVC
itself. One way of bypassing this overhead is to execute a JSR
directly to the SVC routine (e.g., JSR SEND). The advantage is speed.
The disadvantage is that many of the user’s registers may be lost. In
general, the user loses s=-pads 0-7, DPX(0)-(3), DA, TMA, and any
pending memory fetches. If the user saves and restores any of those
registers which may be in use, the tradeoff may be worthwhile.

Assuming that the user is running in user mode, with user MA, and
interrupts on, the sequence to JSR to an SVC should include the
following instructions:

IOFF

SETMOD

JSR svcname
CLRMOD

ION

The user must not switch to SMA to do a JSR to an SVC.

NOTE

The only SVC types to which the user cannot JSR are
the WAITs (WAIT, TWAIT, WAITA, TWAITA). The
exception 1is that one can JSR to TWAIT or TWAITA
with a time limit of zero.

FPS 860-7445-000 6 - 17

6.3.2 How to Write and Add SVC Routines

The user’s own supervisor services can be added to the system easily.
There are no jump tables to change and no limit on the number of SVCs
allowed. The user has only to load them at LOD100 time with the rest
of the SVCs. This can be accomplished automatically by changing the
system loading command file, LODSYS, as follows: after the line 'LOAD
SYSSVC.B", insert the line "LOAD mysvc.B", where "mysvc.B" is the
object of the user’s SVC routine(s), assembled by ASM100.

The rules for writing an SVC routine are:

e An SVC routine can have up to four parameters, which
are passed in DPX(0)-DPX(3).

e An SVC routine is entered in supervisor mode, with
interrupts off; it must exit in the same state. In
supervisor mode, memory fetches must be 'pushed"
via the STATMA instruction or any other
memory-referencing instructiom.

e An SVC routine can use only minimum-state registers

except s-pad 7 (i.e., it can use s-pad 0-6,
DPX(0)-DPX(3), DA, TMA, and MD references).

User SVC routines can be accessed either by jumping directly to them
via a JSR instruction, or by executing the following instruction:

TRAP; DB=Gmysvc; LDTMA

6.3.3 How to Write and Add ISRs to the Superviscr

Interrupt service routines (ISRs) are identified by the assembly code
$ISR pseudo-op. Although they run in user mode, they must explicitly
enable interrupts with the ION instruction upon entry and disable them
(with IOFF) upon exit. The available register set is minimum-state
registers minus s-pad 7, the same as for SVCs.

These are the three parameters passed to an ISR:
S-PAD 0 = bit mask

S-PAD 1 = device order number
S-PAD 2 = physical device address

FPS 860-7445-000 6 - 18

When the ISR finishes execution, it must determine whether the
interrupt for the device it serviced should be re-enabled or left
disabled. It passes this decision to the supervisor by the contents of
s=pad 0 upon exit: O for enable or the bit mask originally passed to
it for disable.

1/0 devices are identified by their bit number(s) in the IMASK
register. The logical word formed by bit N on with all other bits off
is referred to as the bit mask for device N. Device N also has a
priority mask assoclated with it, which is a logical word in which bits
that are on represent devices whose interrupts will be disabled during
device N’s interrupt processing. For example, if the priority mask for
device N contains bits J and K on, then devices J and K will not be
able to interrupt while ISR N is running. It is the user’s prerogative
to establish device priorities by setting the priority mask for each
device. If left untouched, the priority mask for device N has only bit
N on. The bit mask and priority mask for each device is found in the
configuration table (a labeled common called CONFIG in the file
TABLES). See Appendix B (I/0 Device Configuration Table) for a
complete listing.

Each I/0 interrupt corresponds to a five-word entry in this table. The

user sets the relative priority of each device by setting the priority
mask (first word) of each entry. Table 6-1 shows how this is done.

Table 6-1 Setting I/0 Interrupt Priority Masks

PRIORITY BIT SETTING

Highest Set all bits (i.e., priority mask = 177777 (octal)). This
masks out interrupts from all other devices while this
device is being serviced.

Lowest Set only the device’s own bit (e.g., the device
corresponding to IMASK bit 1 should have a priority mask of
040000 (octal)). (Bit O is the left-most bit.)

Relative Using the devices corresponding to IMASK bits 1 and 2 as
examples, if the bit 1 device is supposed to have higher
priority than only the device corresponding to bit 2, then
its priority mask = 060000 (octal), and the bit 2 device’s
mask = 020000 (octal).

The system is delivered with the minimum mask for each device (i.e.,
only its own bit set). If the user wishes to change it, the CONFIG
portion of the TABLES file must be reassembled.

FPS 860-7445-000 6 - 19

The table also contains a physical device address and device order
number (where appropriate) for each device. The device order number
(1,2,3, etc.) 1is for those cases where several devices of the same
type (e.g., IOPs) are serviced by the same ISR. The configuration
table also contains a pointer to the appropriate ISR for each device,
via the ISR’s overlay map (ISRMAP). Normally, device N points to ISR
N; the third word of device N’s entry in the table usually contains:

ISRMAPHV*(N=-1)
If devices I, J, and K are all serviced by one ISR (say ISR K), then
all three devices should point to ISR K. That is, the third word of
device 1I°s entry, device J’s entry, and device K’s entry should

contain:
ISRMAP+W*(K~1)
NOTE
When adding new ISRs to the system, remember to

load them with the other ISRs at LOD100 time.

6+3.4 Modifving the Supervisor

This section explains how to make such supervisor modifications as
changing the stacked save area size, changing I/0 device priorities,
and changing LODSYS.

6.3.4.1 Changing the Size of the System’s Stacked Save Area

The file COMSYS contains a system common called SYSCOM, which contains
supervisor pointers, exchanges, counters, and save areas. The save
area is equivalent to a stack of TCBs for the system. The number of
TCB-equivalents in the stack should be equal to or greater than the
number of possible interrupt sources. These include:

3 internal synchronous
1 spurious
2 host

1 real-time clock

1 spurious I/0

8

plus 1-2 for each I/0 device (e.g., 1 for GPIOP, 2 for IOP)

FPS 860~7445-000 6 - 20

The system is delivered with a default of 10. If this is not large
enough, then the file COMSYS should be modified as follows:

(for “n’ possible interrupt sources)

change the line

SYSIZE = MNSIZE * 10.
to

SYSIZE = MNSIZE * n.

Then reassemble all files using COMSYS as a $INSERT file. While these

files may include user files, they more particularly include the files

whose objects are loaded in the LODSYS command file, which is described
in section 6.3.4.3.

6.3.4.2 Changing Device Priofities

I/0 devices are assigned relative priorities via their priority masks
in the configuration table. The supervisor is delivered with all
devices set to lowest priority. The user can easily change this by
editing and re-assembling the CONFIG portion of the TABLES file. For
an explanation of the configuration table and examples of setting
priority masks, refer to section 6.3.3.

6.3.4.3 Changing LODSYS

LODSYS is the LOD100 command f£ile to load the supervisor and related
system routines and data structures. The system is '"generated" with
each new load module. The command file ends with the loader ready to

receive ISRs and taskse.

The contents and explanations of LODSYS are:

PS 7740 (set initial PS address near top of 4K PS memory)
LOAD BOOTSP.B (load system initializer)

PS O (set base PS address to 0)

MD O (set base MD address to 0)

LOAD TABLES.B (load SYSCOM and CONFIG)
LOAD SYSSVC.B (load system services)

LOAD HSVC.B (load host communication routines)

LOAD ENABLE.B (load 1/0 device interrupt enable routine)
MARK (make all of the above stay in loader’s tables)
LOAD KERNEL.B (load supervisor kernel)

LOAD RTC.B (load real-time clock routines)

LINK (link all of the above)

MAP O SYSMAP (output load map to file "SYSMAP")

MODE TASK (change loader mode to accept ISRs and tasks)

FPS 860-7445-000 6 - 21

The user should INPUT this file immediately following the OUT command
(which should be the first command given to the loader in a LOD100
session). After LODSYS terminates, the appropriate ISRs and tasks may
be loaded. The user may want to make another command file for that
purpose.

For users who need maximum PS space and do not require software support
of the real-time clock as a system service (i.e., they do not use the
timed-wait SVCs), the LODSYS command file may be altered as follows:

change LOAD RTC.B
to LOAD NORTC.B

This loads null routines to satisfy entry points and reduce the amount
of PS space the system uses by about 190 words.

Another way to decrease the amount of space the supervisor uses is to
delete those SVCs which the user never uses from the SYSSVC source file
and reassemble it.

If the user always loads certain ISRs (such as HIRP.B, for the host),
the command sequences to do so can be appended to the LODSYS file.

6.4 AP-FORTRAN TASKS

Tasks may be written in AP-FORTRAN as well as ASM100. However,
AP-FORTRAN offers no way to define a routine as a task. Therefore,
this designation is made at load time via the TASK command in LOD10O.
This command is basically the same in format as the $TASK pseudo-op of
ASM100. . Unfortunately, it defines the task ID at load time instead of
at assembly time, and the user has to remember which object modules to
use it on.

Alternatively, the user can assemble a file consisting of nothing but
the $TASK pseudo-op and concatenate its object to the beginning of the
AP-FORTRAN object. This prevents the user from having to treat it
differently at load time and ties the ID to the task.

In all other respects, AP-FORTRAN tasks are the same as other tasks.
They can call SVCs via the regular FORTRAN CALL statement, and thus can
communicate with other tasks. However, they teand to bée larger in size
and, therefore, are more likely to be split into several overlays.

6.5 VFC_AND HSR MODES

This section discusses the use of the VFC in conjunction with the
supervisor, and alternatives to the HSR mode of operatiom.

FPS 860-7445-000 6 - 22

6.5.1 Vector Function Chainer

The Vector Function Chainer (VFC) output can be considered equivalent
to any other host-callable subroutine; therefore, its object should be
loaded as an overlay within the APX100 task. However, since VFC
programs modify their own PS space, they must not share that space with
any other overlays within the APX100 task, nor with any other tasks.
This is because tasks are not swapped out when overlaid by other tasks;
that 1s, code is copied from MD to PS, but not from PS to MD.
Therefore, self-modifying code which has been interrupted, overlaid by
something else, and then loaded into PS again, is incorrect.

6.5.2 HSR Mode

Running the FPS-100 in HSR mode is incompatible with running the
supervisor. The FPS-100 can be run in HSR mode without the supervisor.
Supervisor users wishing to access the FPS-supplied Math Library
routines must reference them at load time so that LOD10O can create UDC
or ADC HASTIs for them. :

For example, the following LOD100 command sequence loads the Vector Add
routine as part of the APX100 task and creates a UDC HASI (SUBROUTINE
VADD) for the user to call:

TREE ((1))

ov 1

LOAD UPEX.B (load APX100 root)

CALL VADD / (create HASI)

FORCE VADD } (get VADD from library and load it)
LIB APLIB .

MAP O mapfilel (to see symbols which will disappear)

LINK
MAP O mapfile2

FPS 860-7445-000 6 - 23

6.6 PROCEDURE FOR A COMPLETE JOB

The procedure for getting a complete job through MTS100 is as follows:

1.

2.

3.

Se

6.

Write the FORTRAN routines to run on the host. Write any
tasks or host-callable subroutines in ASM100 or AP~FORTRAN.

Assemble FPS~100 assembly language with ASM100 and compile
AP-FORTRAN routines with the AP-FORTRAN compiler to create
object modules.

Load the object modules of the supervisor, tasks,
host-callable subroutines, ISRs, exchanges, messages, etc.,
with LOD10Q.

Compile the host FORTRAN mainline, its subroutines, and the
HASIs created by LOD10OO in step 3.

Use the host loader to load the items in step 4.

Run the result. This causes the load module created by
step 3 to run on the FPS-100,

FPS 860-7445-000 6 - 24

APPENDIX A
SYSTEM STANDARD DEFINITIONS

The following listing is the contents of the SYSDEF file, used by the
supervisor in accessing various data structures such as TCBs, messages,
etc. The user may find this file helpful, if any of the symbols (such
as RO-R7) are used in a user program. This file may be put into an
ASM100 subroutine by means of the following pseudo-ops:

$NOLIST
$INSERT SYSDEF
$LIST

Mikkkkkk SYSDEF = SYSTEM STANDARD DEFINITIONS = *kkkkkkkkkkkkkkikkikhikk

"

" SYSTEM STANDARD DEFINITIONS

" THIS $INSERT FILE INCLUDES ALL REGISTER DEFINITIONS AND DATA AREA
" OFFSETS USED WITHIN THE FPS-100 SUPERVISOR. 1IT IS INCLUDED WITH
" THE ASM100 PSEUDO-OP: $INSERT SYSDEF.

" PHYSICAL DEVICE ADDRESSES

IMASK = 373

APST2 = 377
APST3 = 376
RTCCTL = 372
RTCCST = 371
RTCCTR = 370
1"

11]

" SPAD REGISTER DEFINITIONS:
7"
RO
Rl
R2
R3
R4
RS
R6

NP WLWNDN~O

" DATA PAD (ARGUMENT) REGLSTER DEFINITIONS:

X0 = 0
X1 = 1

FPS 860-7445-000 A - 1

X2 =

N

" STANDARD DATA OBJECT HEADER OFFSETS:

HEADER = O " DATA OBJECT HEADER

RLINK = HEADER " RIGHT (SUCCESSOR) LINK

LLINK = RLINK+1 " LEFT (PREDECESSOR) LINK

RPRI = LLINK+1 " PRIORITY OF DATA OBJECT

TYPE = RPRI+1 " TYPE OF DATA OBJECT
INTBIT = 040000 " INTERRUPT MESSAGE DATA OBJECT BIT
ANSBIT = 020000 " ANSWER MESSAGE DATA OBJECT BIT
TIMBIT = 010000 " TIMEOUT MESSAGE DATA OBJECT BIT
MSGBIT = 002000 " EXCHANGE MESSAGE QUEUE IN USE BIT
TSKBIT = 001000 " EXCHANGE TASK QUEUE IN USE BIT
BSYBIT = 000001 " MESSAGE BUSY BIT (IN EXPONENT)

LENGTH = TYPE+l " LENGTH OF DATA OBJECT (IN MD WORDS)

ANSKEY = LENGTH+1 " ANSWER EXCHANGE ADDRESS
"

HDREND = ANSKEY

"

" FIELD FOR MESSAGES ONLY

"
MISC = HDREND+1
n
"

" TASK CONTROL BLOCK (TCB) OFFSETS:

TASKID = HDREND+l " TASK IDENTIFIER
OVLPTR = TASKID+1 " POINTER TO FIRST ENTRY IN OVERLAY TABLE
OVLCNT = OVLPTR+l " NUMBER OF ENTRIES (OVERLAY SEGMENTS)
DPRI = OVLCNT+1 " DEFAULT TASK PRIORITY
STATUS = DPRI+] " CURRENT TASK STATUS FLAGS
SLVBIT = 010000 " TASK PRIORITY IS SLAVED
CXTBIT = 004000 " TASK HAS FULL CONTEXT
RDYBIT = 001000 " TASK IS READY TO EXECUTE
RDYOFF = 176777 " COMPLEMENT OF RDYBIT
CLKBIT = 000400 " CLOCK QUEUE BIT
LSTMSG = STATUS+1 " ADDRESS OF LAST MESSAGE RECEIVED (FOR ANSWER)
RCLOCK = LSTMSG+1 " CLOCK QUEUE THREAD RIGHT LINK
LCLOCK = RCLOCK+l " CLOCK QUEUE THREAD LEFT LINK
ICLOCK = LCLOCK+l " CLOCK QUEUE INCREMENT
TADDR = ICLOCK+l " TASK’S BEGINNING ADDRESS (IN MD)

"

" TCB STATE SAVE AREA

FIFO = TADDR+5 " MD FIFO (3 WORDS)

DPBS = FIFO+3 " DATA PAD BUS

DPXW = DPBS+l " DPX WRITE BUFFER

STAT! = DPXW+l " CURRENT FLAGS AND EXCEPTION STATUS
DPXO0 = STAT1+1 " X0 REGISTER FOR ARGUMENTS

DPX1 = DPXO0+1 " X1 REGISTER FOR ARGUMENTS

FPS 860-7445-000 A - 2

DPX2
DPX3
DA
SPD
SPADO
SPFUNC
SPAD1
SPAD2
SPAD3
SPAD4
SPADS
SPAD6
SPAD7
STAT2
TMAREG
TMREG
FFT
MAREG
STAT3
SRS

A

MINTCB
"

" TASK
"
SPADS
DPYW
DPY0
DPAD
DPA
FLADD
FLMUL
FLAGS
MAXTCB
"

"

"' SUPERVISOR ERROR CODES:

"

ERRBSY
ERRMSG

"
”"

" OTHER USEFUL CONSTANTS

FPEON

onou

CONTEXT AREA

DPX1+1
DPX2+1
DPX3+1
DA+]
SPD+1
SPADO+1
SPFUNC+1
SPAD1+1
SPAD2+1
SPAD3+1
SPAD4+]
SPAD5+1
SPAD6+]
SPAD7+1
STAT2+]
TMAREG+1
TMREG+1
FFT+1
MAREG+]1
STAT 3+]

SRS+15.

MINTCB+1
SPAD8+8.
DPYW+1
DPYO+4
DPAD+56 .
DPA+1
FLADD+5
ELMUL+6
FLAGS+3

-1
ERRBSY-1

000100

FPEOFF = 177677
"

"

FPS 860-7445-000

"
"
1"
1"
n
"
"
"
"
"
1"
"
L1
"
"
"
"
"
"
1"t

1"
"
1"
1"t
"
1"
"
"
1

X2 REGISTER FOR ARGUMENTS

X3 REGISTER FOR ARGUMENTS

CURRENT DEVICE ADDRESS

SPAD DESTINATION

RO REGISTER

SPFN RETURNED (ERROR CODE ON SVC’S)
R1 REGISTER

R2 REGISTER

R3 REGISTER

R4 REGISTER

R5 REGISTER

R6 REGISTER

R7 REGISTER

APSTAT2 (SUPERVISOR/INTERRUPT STATUS)
TABLE MEMORY ADDRESS

CURRENT TM VALUE

FFT STATUS BITS

MAIN DATA ADDRESS

SUBROUTINE RETURN STACK ADDRESS (APSTAT3)
SRS (15)=-(0)

LAST LOCATION IN MIN SAVE AREA

SPAD 8 - 15

DPY WRITE BUFFER

DPY (0)=(3)

REMAINING DPX AND DPY
DPA

FLOATING ADDER STATE
FLOATING MULTIPLIER STATE
AP FLAGS (4 WORDS)

LAST WORD IN TCB

MESSAGE BUSY ERROR
INVALID MESSAGE ERROR

APPENDIX B

1/0 DEVICE CONFIGURATION TABLE

The following listing is the CONFIG portion of the TABLES file. The
configuration table contains data pertinent to each I/0 device on the
FPS-100.

"x%%%k%%* CONFIG = I/0 DEVICE CONFIGURATION TABLE *%¥%*%*

1" *

$TITLE CONFIG

$COMMON /CONFIG/ DEV1(5) /T, DEV2(5) /T, DEV3(5) /T, DEV4(5) /T,
DEV5(5) /T, DEV6(5) /T, DEV7(5) /T, DEV8(5) /T,
DEV9(5) /T, DEV10(5) /T, DEV11(5) /T, DEV12(5) /T,
DEV13(5) /T, DEV14(5) /T, DEV15(5) /T

$COMMON /ISRMAP/ DUMMY (120.) /I

" THIS IS A CONFIGURATION TABLE FOR THE I/0 DEVICES ON THE FPS=-100.
" THEIR ORDER IS THE SAME AS THAT OF THEIR BITS IN THE IMASK REGISTER.
" THE FORMAT OF EACH ENTRY IN THIS TABLE IS:

" WORD 1l: PRIORITY MASK (TO MASK OUT LOWER PRIORITY DEVICES)
" WORD 2: BIT MASK (THIS DEVICE’S BIT ON)

" WORD 3: POINTER TO SERVICE ROUTINE’S ENTRY IN OVERLAY MAP
" WORD 4: DEVICE ORDER NUMBER (EXP)

" PHYSICAL DEVICE ADDRESS (LMAN)

" WORD 5: SAVE AREA FOR OLD IMASK

W = 8., "WIDTH OF OVERLAY TABLE ENTRY

$DATA DEV1(1) 0,0, 040000
SDATA DEV1(2) 0,0, 040000
SDATA DEV1(3) 0,0, ISRMAP+0
$DATA DEVL(4) 0,0, O

$DATA DEVLI(5) 0,0, O

"

$DATA DEV2(1) 0,0, 020000
$DATA DEV2(2) 0,0, 020000

$DATA DEV2(3) 0,0, ISRMAP-+(W*l)
SDATA DEV2(4) 0,0, 0

$DATA DEV2(5) 0,0, O

11}

$DATA DEV3(l) 0,0, 010000
$DATA DEV3(2) 0,0, 010000
SDATA DEV3(3) 0,0, ISRMAP+(W¥2)

FPS 860-7445-000 B - 1

SDATA DEV3(4) 0
$SDATA DEV3(5) 0
$DATA DEV4 (1) 0,0
$DATA DEV4(2) 0,0
$DATA DEV4(3) 0,0,
$DATA DEV4 (4) 0,0
$DATA DEV4(5) 0,0,
1"

" REAL TIME CLOCK
A\

$DATA DEV5(1) 0
$DATA DEV5(2) 0
$DATA DEV5(3) 0
$DATA DEV5(4) 0
$DATA DEVS5(5) 0
"

" HOST (DMA)

"

$DATA DEV6(1) 0,0
$DATA DEV6(2) 0,0

$DATA DEV6(3) 0,0,
$DATA DEV6(4) 0,0

$DATA DEV6(5) 0,0

11

0

0

004000
004000
ISRMAP+(W*3)

0
0

002000
002000
ISRMAP+(W*4)
372 ‘

0

001000
001000
ISRMAP+(W*5)
0

0

" HOST (NON-DMA INTERRUPT)

$DATA DEV7(1) 0,0
$DATA DEV7(2) 0,0
$DATA DEV7(3) 0,0,
SDATA DEV7(4) 0,0
$DATA DEV7(5) 0,0
"

" IOP16 (DMA)
"

$DATA DEV8(1) 0,0
$DATA DEV8(2) 0,0
$DATA DEV8(3) 0,0,
$DATA DEV8(4) 1,0
$DATA DEV8(5) 0,0
1"

000400
000400
ISRMAP+(W*6)
0

0

000200
000200
ISRMAP+(W*8.)
10

" I0P16 (NON-DMA INTERRUPT)

$DATA DEV9(1) 0,0
$DATA DEV9(2) 0,0
$DATA DEV9(3) 0,0,
$DATA DEV9(4) 1,0
$DATA DEVI(5) 0,0

"

" IOP38 (DMA)

$DATA DEV10(1) 0
SDATA DEV10(2) 0

FPS 860-7445-000

000100
000100
ISRMAP+(W*8.)
10

0

000040
000040

$DATA DEV10(3)
$DATA DEV10(4)
$DATA DEV10(5)

1"

0

»0,
1,0,
0,0

ISRMAP+(W*8.)
20
0

" IOP38 (NON-DMA INTERRUPT)

"

$DATA DEV11(l)
$SDATA DEV11(2)
$DATA DEV11(3)
$DATA DEVIL1 (4)
$DATA DEV11(5)

"

" TOP38 (DMA)
"

$DATA DEV12(1)
$DATA DEV12(2)
$DATA DEV12(3)
SDATA DEV12 (4)
SDATA DEV12(5)

000020
000020
ISRMAP+(W*8.)
20

0

000010
000010
ISRMAP+(W*8.)
40

0

" I0P38 (NON-DMA INTERRUPT)

"

$DATA DEVI13(1l)
SDATA DEV13(2)
$DATA DEV13(3)
SDATA DEV13(4)
$DATA DEVL3(5)
1"

" GPIOP

1"

SDATA DEV14 (1)
SDATA DEV14(2)
$DATA DEV14(3)
SDATA DEV14(4)
$DATA DEV14(5)
"

" GPIOP

"

$DATA DEV15(1l)
$DATA DEV15(2)
$DATA DEV15(3)
$SDATA DEV15(4)
$DATA DEV15(3)
"

$END

FPS 860~7445-000

000004
000004
ISRMAP+(W*8.)
40

0

000002

000002
ISRMAP+(W*13.)
100

0

000001

000001
ISRMAP+(W*13.)
200

0

APPENDIX C

ALPHABETICAL INDEX OF SUPERVISOR CALLS (SVCs)
AND HOST/FPS-100 COMMUNICATION ROUTINES

Name Operation , Page

ANSWER SEND ANSWER 3-14
FGET GET DATA VALUE FROM HOST 4-20
FPUT SEND DATA VALUE TO HOST 4-19
FIST TEST IF DATA VALUE IS AVAILABLE 4=21
MSGANS SEND MESSAGE ANSWER 3-15
RESUME RESUME TASK 3-7

RUNPRI _ CHANGE RUN PRIORITY 3-4

SETFPE SET FLOATING-POINT EXCEPTION 3-20
SETPRI SET TASK PRIORITY 3-5

TWAIT TIMED WAIT FOR MESSAGE 3-12
TWAITA TIMED WAIT FOR ANSWER 3-17
WAIT WAIT FOR MESSAGE 3-10
WAITA WAIT FOR ANSWER 3-16

FPS 860-7445-000 c - 1

READERS COMMENT FORM

Your comments will help us improve the quality and usefulness of our
publications. To mail: fold the form in three parts so that
Floating Point Systems mailing address is visible, then seal.

Title of document

Name/Title Date

Firm Department

Address

Telephone

I used this manual... I found this material...

Y N

[0 as an introduction to the subject es °
[0 as an aid for advanced training accurate/complete O d
[1 to instruct a class written clearly a O
[J to learn operating procedures well illustrated O]
[J as a reference manual well indexed O d
[other

Please indicate below, listing the pages, any errors you found in the
manual. Also indicate if you would have liked more information on a
certain subject.

———-—-—_———————-—_—_-——————————-——_-———-——-——————_—--

First Class
Permit No.A-737
. Portland,
Oregon

BUSINESS REPLY

No postage stamp necessary if mailed in the United States

Postage will be paid by:

FLOATING POINT SYSTEMS, INC.
P.O. Box 23489
Portland, Oregon 97223

Attn: Technical Publications

FLOATING POINT
F F E SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(503) 641-3151, TLX: 360470 FLOATPOINT PTL

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	B-3
	B-4
	C-1
	replyA
	replyB
	xBack

