F F E Vector Function

FLOATING POINT Chainer (VFC100)
SYSTEMS, INC. Reference Manual
S60-7447-000

by FPS Technical Publications Staff

Vector Function

Chainer (VFC100)
Reference Manual
860~7447-000

Publication No. 860-7447-000
October, 1979

NOTICE

This edition applies to Release A of
FPS-100 software and all subsequent
releases until superseded by a new
edition.

The material in this manual is for
informational purposes only and is
subject to change without notice.

Floating Point Systems, Inc. assumes no
responsibility for any errors which may
appear in this publication.

Copyright © 1979 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in USA

* e
* o o o o

NV e W

RPN
e o o o

WP DN -

CHAPTER 3

APPENDIX A

A.l
A.2

FPS 860-7447-000

CONTENTS

INTRODUCTION

OVERVIEW

PURPOSE

CONVENTIONS

RELATED MANUALS
GENERAL DESCRIPTION

LANGUAGE SUMMARY

INTRODUCTION
VFC STATEMENTS
DEFINE Statement
LOCAL Statement
CALL Statement
ASSIGNMENT (=) Statement
IF Statement
GOTO Statement
END Statement
USE OF INTEGER REGISTERS

USING THE VFC

INTRODUCTION

EXAMPLES

INTRODUCTION
Example One
Example Two
Example Three

TIME AND SPACE REQUIREMENTS

GENERAL INFORMATION
STATEMENT PARAMETERS

DEFINE Statement Parameters
LOCAL Statement Parameters

CALL Statement Parameters

ASSIGNMENT (=) Statement Parameters
CONDITIONAL (IF) Statement Parameters

GOTO Statement Parameters
END Statement Parameters
INTEGER REGISTER PARAMETERS

iii

Page

2-1
2-3
2-3
2-4
2-4
2-5
2=7
2-9
2-9
2-10

4-1
4-1
4=2
4-3

A-1
A-4
A=4
A=4
A=-5
A=5
A=5
A-6
A-6
A-§

ILLUSTRATIONS

Figure No. Title Page
3=-1 VFC System Flow 3=3
TABLES
Table No. Title Page
1=1 Related Mznuals 1-2
2-1 Unary Operators 2-6
2-2 Binary Operators 2-6
2=-3 Conditions 2-8
A-l Time and Space Usage ' A=-2

FPS 860-7447-000 iv

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The VFC1l00 vector function chainer is a translator used to convert
VFC100 syntax to FPS-100 assembly language (ASM100). Its purpose is to
consolidate multiple CALLs to the FPS-100 from the host computer into
one CALL whenever possible. -

1.2 PURPOSE

This manual documents the vector function chainer. Because it is
intended for use by an experienced programmer, it describes only VFC100
and defines the statements and parameters used with it. It also
presents sample VFC100 programs.

1.3 CONVENTIONS
Throughout this manual, the following conventions are used:
o In examples of dialogue at a terminal, user input is

underlined to distinguish it from program or system
output.

o All user input at a terminal is assumed to be
terminated with a carriage return.

FPS 860-7447-000 ’ 1 - 1

1.4 RELATED MANUALS

The following documents as outlined in Table 1-1 may also be helpful:

Table l-1 Related Manuals

MANUAL PUBLICATION NO.
FPS~-100 Programmer’s Reference Manual FPS 860-7427-000
Volumes One and Two
SIM100/DBG100 Reference Manual FPS 860-7424-000
ASM100 Reference Manual FPS 860-7428-000
FPS-100 Math Library : FPS 860-7429~000
Volumes One, Two, and Three
APX100 Manual FPS 860-7426=-000
LOD100 Reference Manual FPS 860-7423-000
LNK100 Reference Manual FPS 860-7420-000

1.5 GENERAL DESCRIPTION

A CALL to the FPS=-100 to perform a function is associated with a fixed
nonproductive overhead for the host. This overhead is independent of
the FPS-100 function execution time. Therefore, to minimize the
overhead of a process involving multiple CALLs to the FPS-100, many of
these CALLS can be chained into one CALL. Furthermore, certain
constants (array index increments and array bounds) and multiple uses
of variables are known prior to tramslation by VFC100. Transfer of
these constant values each time constitutes further nonproductive host
and FPS-100 use.

VFC100 allows the user to chain CALLs to FPS-100 Math Library
subroutines (or user-coded ASM100 or VFC100 subroutines) together into
an FPS-100 subroutine. The new routine may in turn be CALLed by other
ASM100 or VFCl00 subroutines or by the host computer FORTRAN program.
The VFC100 allows the user to write complete FPS-100 programs with
looping and pointer arithmetic without resorting to FPS-100 assembly
coding.

A VFC100 program is written in a pseudo higher-level language form.
The output of VFCl00 is ASM100 source code which is treated as any
other FPS-100 assembly code; that is, it is assembled with ASM100, and

a load module is produced with LOD100 or LNK100.

FPS 860-7447-000 1 - 2

The following example demonstrates how VFCl00 chaining works and how it
saves processing steps.

Example:

To add two vectors, multiply by a third, and place the
result in a fourth, the user must perform the following
steps using basic Math Library routines:

CALL VADD (A,1,B,1,D,1,1024)
CALL WL (D,!1,C,1,D,1,1024)
CALL APWR

A, B, C, and D are the four vectors; each is 1024 elements
long, and each element is located at a memory increment of
one. This requires three CALLs and the passing of 14
parameters. However, the user can simplify this process by
using the VFCl00 in the following manner:

DEFINE VADWML (W,X,Y,2)
CALL VvADD (W,1,X,1,Z,1,1024)
CALL wuL (z,1,Y,1,Z,1,1024)

END

When VFC100 is used to translate this code into ASM100

source and the FPS-100 assembler object code is linked with
the needed routines (from the Math Library, VADD, VMUL,
SAVESP, and SETSP) and placed in the load module, the host is
able to execute the following statements:

CALL VADVML (A,B,C,D)
CALL APWR

This achieves the same results, but requires only two CALLs
and the passing of four parameters.

NOTE

Before the routine VADVML is CALLed, vectors A,
B, and C must be loaded into FPS=100 main data
memory with APPUT calls. The result, vector D,
can be returned to the host by using an APGET
call.

FPS 860~-7447-000 1 - 3

CHAPTER 2

LANGUAGE SUMMARY

2.1 INTRODUCTION

VFC100 programs consist of up to 80 column lines containing one
statement per line. Each statement contains the statement name and the
necessary parameters. The following are the VFC1l00 statement names:

DEFINE
LOCAL
CALL
IF
GOTO
END

These statements and their parameters are defined in sections 2.2.1°
through 2.2.7.

The following rules apply to general program and statement structure:

e Only one statement can be entered on a line.
e Blank lines are permitted; they are ignored.

e Lines cannot be continued; a statement must be complete
on a line.

e Statement names and parameter names are delimited by
spaces; otherwise, spaces are ignored.

¢ Parameter names can be any length.

o The first six characters of a parameter name must be
unique.

e The first character of a parameter name must be alphabetic
(A-Z); all other characters must be alphabetic (A=Z) or
numeric (0-9). For example, the following are acceptable:

HELP

TEMP3
T3CAN

FPS 860-7447-000 2 - 1

e Statement names cannot be used as parameter names. For
example, the statement DEFINE A (IE, IF, ID) is illegal

since the parameter IF is a legitimate VFC1l00 statement
name.

e The names SP0O0O, SPOl, SPO2, . . ., SPL5 are reserved for
integer registers.

e Table memory addresses must be passed by use of their
normal symbolic names; therefore, names beginning with an
exclamation point are considered literals. For example,
the following are table memory addresses (literals):

{ONE
!2ZERO

e Note that references to table memory constants constitute
implicit external references. Therefore, these constants
must conform to the same rules as externals found in
expressions. Descriptions of these expressions and
further information can be found in the ASM100 Reference
Manual.

e Constants used in CALLs, assignment statements, and IF
statements must be within the range =32768 to 32767.

e Comments must be preceded by a double quotation mark (");
anything following a " is ignored. For example, the
following are proper comment statements:

"THIS IS A COMMENT LINE
CALL RFFT (C,N,F) "THIS IS AN INLINE COMMENT

® A label must appear first on a line and is identified by
a name followed by a colon (:). Only executable
statements can be labeled with the exception of DEFINE and
LOCAL. For example, labels appear as follows:

A: CALL RFFT (C,N,F)
LOOP: CALL CWMUL (A,2,B,2,C,2,N,1)

FPS 860-7447-000 2 - 2

2.2 VFC100 STATEMENTS

This section presents a detailed description of each of the VFC100
statements. It defines the use of each statement and all of its
parameters.

1

2.2.1 DEFINE STATEMENT

The DEFINE statement defines the name of a VFCl00 subroutine. It
establishes the subroutine name and its parameters.

The format of the DEFINE statement is:
DEFINE name (p=a,p=b,es«s,p-n)

name Subroutine name.

P=&,p=bsese,p=-n Parameter names.

A subroutine can have 0 to 12 parameters. The parameters are l6-bit
integer variables whose values are set on entry to the subroutine.
Parameter values can be subsequently modified by assignment statements,
but unlike FORTRAN, changing the value of a dummy variable in a
subroutine does not affect the value of the actual variable in the
CALLing routine. That is, a CALL by value is done. VFCl00 parameters
are typically main data addresses or array sizes.

VFC100 parameters are similar in purpose and intent to those of the
exigsting FPS-100 Math Library routines. They are s-pad register values
that are set upon entry to a subroutine.

The following are examples of DEFINE statements:

DEFINE ACORF (A,C,N,M)

DEFINE TEST

FPS 860-7447-000 2 = 3

2.2.2 LOCAL STATEMENT

The LOCAL statement declares LOCAL integer variables for the internal
use of a subroutine. LOCAL variables can be modified by assignment
statements. They can be used as parameters for CALLs in scalar
arithmetic assignments and for testing in conditional branches.

The format of the LOCAL statement is:

LOCAL name-a,name=b,.».,name-=n

name-a,name=b, «..,name=n Names of LOCAL variables
being declared.

The following is an example of a LOCAL statement:

LOCAL A,B,C,COUNT

2.2.3 CALL STATEMENT

The CALL statement is used to CALL other subroutines. These can be
FPS-100 Math library routines, user hand-coded routines, or other
VFC100 subroutines. To be callable, a routine must be driven by
integer parameters which are typically addresses and loop counts.

The format of the CALL statement is:
CALL name (p=a,p=b,e««.,p=n)

name Subroutine name.

p-a,p=b,ee.,p-n Parameter values for the call.

A CALL can have 0 to 12 parameters. The parameters can be DEFINEd
parameters of the CALLing program, LOCAL variables, or integer
constants.

FPS 860-7447-000 2 - 4

The following are examples of CALL statements:

CALL VADD(A,1,B,1,C,1,N)
CALL RFFT (ARRAY,SIZE,-1)

CALL HELP

2.2.4 ASSIGNMENT (=) STATEMENT

The assignment statement allows performance of replacement and integer
arithmetic on parameters and LOCAL variables.

The formats of the assigment statement are:

A =3

A = uop B

A =B bop C
A . Parameter or LOCAL variable.
B Parameter, LOCAL variable, or integer constant.
C Parameter, LOCAL variable, or integer constant.

uop Unary operation. The unary operators are
defined in Table 2-1.

bop Binary operation. The binary operators are
defined in Table 2-2.

FPS 860-7447-000 2 - 5

Table 2-1

Unary Operators

OPERATOR DEFINITION - EXAMPLE DESCRIPTION OF EXAMPLE
- negative of -A negative of A
NOT logical complement of NOT A logical complement of A
Table 2-2 Binary Operators
OPERATOR DEFINITION EXAMPLE DESCRIPTION OF EXAMPLE
+ add A+B add A to B
- subtract A-B subtfact B from A
* multiply A*3B multiply A by B
/ divide A/ B divide A by B
(ignore remainders)
RS logical shift right ARS B logically shift A right
B places
LS logical shift left A LS B logically shift A left
B places
AND logical and A AND B logical and of A to B
OR logical or A ORB logical or of A to B
FPS 860~7447-000 - 6

In assignment statements, l6-bit 2°s complement arithmetic is done.
Any overflow above 32767 or below ~32768 simply wraps around the range
of -32768 to 32767. That is, 32767 + 1 is equal to =32768.

The following are examples of assignment statements:

g it g
L2 BN BN B B |
s
*
—
o

2.2.5 IF STATEMENT

The IF statement allows conditional branching based upon an integer
condition. :

The format of the IF statement is:

IF A cond B GOTO label

A Parameter, LOCAL variable, or integer constant.

B Parameter, LOCAL variable, or integer constant.

cond Condiltion. The possible conditions, defined
in Table 2-3, are signed tests operating on

integers in the range of =32768 to +32767.

GOTO A GOTO statement, defined in section 2.2.6,
used here on conditinal branching.

label Label of the statement that is executed
next if the specified condition is met.

FPS 860-7447-000 2 - 7

Table 2-3 Conditions

CONDITION DEFINITION
> greéter than
>= greater than or equal to
< less than
<= less than or equal to
= equal to
<> not equal to

The following are examples of IF statements:

IF A > B GOTO HELP

IF A < 0 GOTO LOOP

FPS 860-7447-000 2 - 8

2.2.6 GOTO STATEMENT
The GOTO statement allows unconditional branching.

The format of the GOTO statement is:
GOTO label

label Label of the next statement to execute.

'The following are examples of the GOTO statement:

GOTO LOOP

GOTO A

2.2.7 END STATEMENT

The END statement indicates the termination of the source VFC100
program and also the RETURN to the routine that called the VFC100
subroutine. END statements can be labeled to permit returning from any
portion of the program. '

The format of the END statement is:

END

‘The following are examples of the END statement:

DONE: END

END

FPS 860-7447-000 2 - 9

2.3 USE OF INTEGER REGISTERS

The integer registers (s-pads) are referred to by the names SP0O0, Spol,
sp02, spr03, SP04, SPO5, SP06, SPO7, SPO8, SP09, SPl0, SP1l, SPl2, SP13,
SPl4, and SP15. The code produced by a VFC100 program using integer
registers executes faster than that produced by a VFCl00 program using
DEFINEd parameters, LOCAL variables, and constants. Registers SPOO,
SPOl, SP12, SP13, SPl4, and SP1l5 are used by the VFCl00 run~time
environment. Also, one register (starting at SP00) is used for each
parameter of a CALL statement. Hence, CALL VADD (A,1,B,1,C,l,N) uses
registers SP0Q, SPOl, SP0O2, SPO3, SP04, SPO5, and SPO6.

The 16 integer registers can be used explicitly as operands in all
conditional statements. The integer registers can also be used as any
operand of an assignment statement, with the exception of integer
registers SPO0 and SPOl which cannot be used in the following
statements: x=SP0l-SP00, x=SPQl/SP00, x=SPOl RS SPO0, and x=SPOl LS
SPO0 (where x is any operand). These are illegal statements.

Integer statements always leave their results in register SP0O.

Therefore, as an example, the calculation:
A=B+4CD
can be efficiently written:

SPO0=B+C

A=SP00+D

NOTE

In general, it should not be assumed that CALLs
leave the integer registers (s-pads) unchanged.

FPS 860-7447-000 2 - 10

CHAPTER 3

USING VFC100

3.1 INTRODUCTION

VFC100 is a language translator that converts its own source language
to ASM100.

The following terminal dialogue takes place during a typical VFC100
program session (this varies depending on the host operating system):
VFC100
VFCl00 version date

SOURCE FILE =
user source filename

OBJECT FILE =
user object filename

-LINE nn O ERRORS

This is the dialogue when the program runs successfully. However, if
any errors are encountered, the following message is displayed:

" XEXAXXXXKXXXX XXX
"***,INE nn message

AXEXXXXXXKXKXKKXK Entire program line containing
the error.

nn Program line number.

message Descriptive text which defines the
. error type.

FPS 860-7447-000 3 - 1

A message appears for each erroneous line; at the end of the program
run, a final message is displayed which presents the total number of
errors. This message appears in the following format:

"LINE nn X errors

nn Final line number.

X Total number of errors.

After VFCL00 is successfully run, the object program must be assembled
using ASM100. The assembled program must be linked and loaded (using
1LOD100) with all external programs. The external programs used by

VFC100 at run-time are obtained in library BASLIB. Figure 3-1
illustrates this process.

FPS 860-7447-000 3 - 2

VFC1l00 SOURCE
VEC100

~~

ASM100 SCURCE CODE

<= |
FPS-100 OBJECT FPS-100 LIBRARY
LoDloo

\) (HAST OUTPUT) ;oo pocm

HOST FORTRAN SOQURCE FORTRAN PROGRAM
< b

HOST FORTRAN COMPILER
HOST OBJECT

HOST LINKER/LOADER

<_~

EXECUTABLE HOST PROGRAM

-1382-

Figure 3-1 VFCl00 System Flow

FPS 860-7447-000 3 - 3

CHAPTER 4

EXAMPLES

4.1 INTRODUCTION

As an aid to the programmer, three examples of VFCl00 programs are
presented in this chapter. These examples are: setting increments in
an existing routine to one, using local variables offset from input
parameters, and using an input variable as a loop counter. The output
from the VFC100 is also shown for the third example.

4.1.1 EXAMPLE ONE

This program sets the increments in an existing routine to one.

"VADD! - VECTOR ADD WITH ALL INCREMENTS SET TO ONE

"

DEFINE VADD1(A,B,C,N)
CALL VADD(A,1,B,1,C,1,N)
END

FPS 860-7447-000 ' 4 - 1

4.1.2 EXAMPLE TWO

This program uses LOCAL variables which are offset from inmput
parameterse.

Mhikkkkk*% ACORF = AUTO-CORRELATION (FREQUENCY-DOMAIN)

"

DEFINE ACORF(A,C,N,M)

PERFORMS AUTOCORRELATION FUNCTION ON A VECTOR
USING FFT TECHNIQUES. GENERALLY RUNS FASTER THAN ACORT
BUT REQUIRES 2M STORAGE LOCATIONS INSTEAD OF M.

PARAMETERS: A = SOURCE VECTOR BASE ADDRESS

=
C = DESTINATION VECTOR BASE ADDRESS
N = ELEMENT COUNT FOR C (NUMBER OF LAGS)
M = ELEMENT COUNT FOR A (POWER OF 2)
FORMULA: C(PK)=SUM FROM Q=0 TO M-P-1 (A(P+Q)*A(Q))

FOR P=0 TO N-l
LOCAL APM, AP2, AP3, MM1, MPM

COMPUTE ADDRESS POINTERS

APM = A + M

AP2 = A + 2

AP3 = A + 3

MM1 = M-l

MPM =M + 1

CALL VCLR (APM,1,M) "INSERT M ZEROS IN A

CALL RFFT(A,MPM, 1) "DO A 2M FFT

PERFORM AN AUTO-SPECTRUM RETAINING THE ZEROS FOR IMAG PARTS
CALL WMUL (A,1,A,1,A,1,2) ""FIRST THE IMBEDDED COMPLEX PAIR

THEN THE REMAINING M-1 COMPLEX PAIRS
CALL CVMAGS (AP2,2,AP2,2,MM1) "OPERATE ON THE REALS

CALL VCLR (AP3,2,MM1) "ZERO THE IMAGS

CALL RFFTSC(A,MPM,-1,-1) "DIVIDE BY 4M TO SCALE PROPERLY
CALL RFFT(A,MPM,~-1) "DO A 2M IFFT

CALL WVMOV(A,1,C,1,N)} "OVE FIRST N VALUES TO RESULT
END .

FPS 860-7447-000 4 - 2

4.1.3 EXAMPLE THREE

This program uses an input variable as a loop counter to perform a
matrix vector add. This example also includes a listing of the VFC100
output which results when this program is executed. This listing
begins with the second header.

AN

MWhik*r*x*MUADD = MATRIX/VECTOR ADD %oesedesshesesek k ook ook doededook & dok o desk % deok e Jek e e

DEFINE MVADD(A,I,B,J,C,K,NRC,NCC)

" ADD VECTOR B TO EVERY ROW OF MATRIX A, PUTTING THE RESULT IN C
"

" A - ADDRESS OF MATRIX A

" I - INCREMENT BETWEEN ELEMENTS OF A

" B - ADDRESS OF VECTOR B

" J - INCREMENT BETWEEN ELEMENTS OF B

" C - ADDRESS OF DESTINATION MATRIX C

" K - INCREMENT BETWEEN ELEMENTS OF C
" NRC - NUMBER OF ROWS IN C (AND A)
" NCC - NUMBER OF COLUMNS IN C (AND A)

"THE MATRICES ARE STORED IN COLUMN ORDER. THUS I AND K ARE INCREMENTS
"BETWEEN ELEMENTS IN A COLUMN. THE INCREMENT BETWEEN ELEMENTS IN A
"ROW MUST BE COMPUTED.

"

LOCAL AR,CR

1" :
AR = I * NRC "COMPUTE ‘A° ROW INCREMENT
CR = K * NRC "COMPUTE ‘C‘ ROW INCREMENT

n

LOOP: CALL VADD (A, AR,B,J,C,CR,NCC) "ADD TO A ROW
A=A+1 _ "ADVANCE ‘A’ POINTER
C=C+K "ADVANCE ‘C’ POINTER
NRC = NRC = 1 "DECREMENT ROW COUNTER
IF NRC > 0 GOTO LOOP , "GO BACK IF NOT DONE
END

FPS 860-7447-000 4 - 3

Mlgkkk kXX XMUADD = MATRIX/VECTOR ADD *ksk ok deok e doskok e dedk sk dedede e dede ok sk ke de e e
un

"DEFINE MVADD (A,I,B,J,C,K,NRC,NCC)
$TITLE MVADD
$EXT SPMUL
$EXT VADD
SEXT SPADD
$EXT SPSUB
$EXT SAVESP, SETSP,SAVSPO,SET2SP
SENTRY MVADD, 10

L $EQU O
R SEQU 2000
V $EQU O
C $EQU 4000

"t

P: $VAL 0,0,0,0 "A I
$VAL 0,0,0,0 "B J
$VAL 0,0,0,0 "C K
$VAL 0,0,0,0 "NRC NCC
$VAL 0,0,0,0 "AR CR

"

MVADD: JSR SAVESP
$VAL 0,10,0,P-.

"

mnn

""ADD VECTOR B TO EVERY ROW OF MATRIX A, PUTTING THE RESULT IN C
1mt °

""A - ADDRESS OF MARIX A

"I - INCREMENT BETWEEN ELEMENTS OF A

"UB - ADDRESS OF VECTOR B

""J - INCREMENT BETWEEN ELEMENTS OF B

""C - ADDRESS OF DESTINATION MATRIX C

"R - INCREMENT BETWEEN ELEMENTS OF C

"'NRC - NUMBER OF ROWS IN C (AND A)

"'NCC - NUMBER OF COLUMNS IN C (AND A)

e

"THE MATRICES ARE STORED IN COLUMN ORDER. THUS I AND K ARE INCREMENTS
"NBETWEEN ELEMENTS IN A COLUMN. COMPUTE THE INCREMENT BETWEEN
""ELEMENTS IN A ROW.

"

"LOCAL AR,CR
nn
"AR = I * NRC"COMPUTE ‘A’ ROW INCREMENT
JSR SET2SP
$VAL V4R,P=.+0,V+L,P-.+3
JSR SPMUL
JSR SAVSPO
SVAL V4L,P-.+4,0,0

FPS 860-7447-000 4 - 4

"CR = K * NRC"COMPUTE ‘C’ ROW INCREMENT
i JSR SET2SP
$VAL V4R,P=.+2,V+L,P=.+3
JSR SPMUL
JSR SAVSPO
SVAL V+R,P=.+4,0,0
ne
"LOOP:CALL VADD (A, AR,B,J,C,CR,NCC)"ADD TO A ROW
LOOP: JSR SETSP
SVAL 0,7,V+L,P=.40
$VAL V4L,P=.+4,V4L,P=.+1
$VAL V4R,P=e+l,VH.,P=.+2
$VAL V4R,P=.+4,V4R,P=.+3
JSR FLUSH
JSR VADD
"A = A + I"ADVANCE ‘A‘ POINTER
JSR SET2SP
$VAL V+L,P=.+0,V+R,P=.+0
JSR SPADD
JSR SAVSPO
$VAL V+L,P-.+0,0,0
"C = C + K"ADVANCE ‘C* POINTER
JSR SET2SP
SVAL V+L,P=e+2,V4R,P=.+2
JSR SPADD
JSR SAVSPO
$VAL V+L,P-.+2,0,0
"NRC = NRC - 1"DECREMENT ROW COUNTER
JSR SET2SP
SVAL V4L,P-.+3,C, 1.
JSR SPSUB
JSR SAVSPO
SVAL V+L,P=.+3,0,0
"IF NRC > 0 GOTO LOOP" GO BACK IF NOT DONE
JSR SET2SP
$VAL V+L,P-.+3,C,0.
JSR SPSUB
BEQ «.+2 ; BLT .+2
JMP LOOP
"END
NOP
RETURN
$END

"
"

FPS 860-7447-000 4 -« 5

APPENDIX A

TIME AND SPACE REQUIREMENTS

A.1 GENERAL INFORMATION

Table A-l provides information which can be used to assess time and
space consumed by the VFC100 program for various statements. The table
is not intended to be all-inclusive. Exact time and space requirements
can be computed by using the table in conjunction with section A.2.

Also, the Math Library Manual presents time and space requirements for
called routines. ’

FPS 860-7447-000 A - 1

Table A-1 Time and Space Usage

STATEMENT TIME (usec) SPACE ROUTINE USED
DEFINE (3.75+1.25P) (24P /2) (SAVESP)
(see note 1) (see note 1) (see note 1)
LOCAL 0. P/2 none
CALL (3.5+2.25C+3.5V)+3.0 (2+(P/2))+1 (SETSP)
+CALLed routine +CALLed routine | +CALLed routine
(see notes 1 and 2) (see notes (see notes
1 and 2) 1 and 2)
ASSIGMMENT (3.542.25C+3.5V)+2.75 (L+(P/2)+2) (SETSP)+ (SAVSPO)
(=) (see notes (see notes (see notes
1, 2, and 3) 1, 2, and 3) 1, 2, and 3)
UNARY 0OP:
- »25+SPNEG 1+SPNEG SPNEG
NOT «25+SPNOT 1+SPNOT SPNOT
BINARY OP:
+ «25+5PADD 1+SPADD SPADD
- «25+SPSUB 1+5SPSUB SPSUB
* «25+SPMUL 1+SPMUL SPMUL
/ «25+SPDIV 148PDIV SPDIV
RS «254+8PRS 1+SPRS SPRS
LS «25+SPLS 1+5PLS SPLS
AND «25+SPAND 1+SPAND SPAND
OR «254+SPOR 1+SPOR SPOR
CONDITIONAL (34254+2.25C+3.5V)+1.0 (2)+5 (SETSP)+SPSUB
(see notes 1 and 2) (see notes (see notes
1 and 2) 1 and 2)
GOTO 25 1 none
END) 2 none

FPS 860-7447-000 A -

The variables in Table A=l are defined as follows:

e P is the total number of parameters (C+V).
e C is the number of constant parameters.

e V is the number of variable parameters, not
including integer registers.

o { } indicates rounding down to an integer value.

NOTES

l. If P>0 (P=C+V), the expression in parentheses
is used as 1is; if P=0, the parenthetical
expression- is replaced by Q.

2. If C+V>2 (excluding integer registers SPOO
through SP15), the parenthetical expression is
used as is; if C+V=2 (excluding integer registers
SPOO through SP1l5), the time is decreased by
2.0us. and the space is decreased by one space.
If integer registers are used, the time is
increased by .25us. per register.

3. If the destination of an assignment is an
integer register (SPOO through SP15), SAVSPO is
not used, space is decreased by one, and time is
decreased by 2.0us.

Complete descriptions of the utility routines used by the VFCl00 can be
found in the Math Library Manual; these descriptions include program
size and execution time. Note that routines used are loaded only once.
Therefore, SETSP can be used multiple times but occupies 33 program

source locations on the first call and one PS location on all
subsequent calls.

FPS 860-7447-000 A - '3

A.2 STATEMENT PARAMETERS

This section provides detailed informatiom about the parameters for
each of the statements introduced in section 2.1 and listed in Table

A-l. This information is necessary for computation of time and space
requirements.

A.2.1 DEFINE STATEMENT PARAMETERS

The DEFINE statement produces code only if it contains parameters. The
executable code is a call (JSR) to SAVESP. A call (or any executable
statement) requires one program source (PS) location (one line) and
executes in .25us. The paramaters to SAVESP are contained in one
program source word (immediately following the call). The parameters
are the defined parameter count and the address to which input values
for defined parameters are to be stored.

I1f used, SAVESP adds two lines of ASM100 object code, an l8~location
(line) routine, and one-half word of PS space for each defined
parameter to the program source required to run the chained FPS-100
programs separately. The (once only) execution of SAVESP requires
3.5us setup plus 1l.25us per defined parameter.

A.2.2 LOCAL STATEMENT PARAMETERS

The LOCAL statement produces no executable code but requires one-half
word of PS space per LOCAL variable.

A.2.3 CALL STATEMENT PARAIMETERS

The CALL statement produces one line of code if it has no calling
parameters (e.g., 2 JSR to the called routine). A CALL statement with
calling parameters produces two lines of executable code, a call (JSR)
to the routine SETSP or SET2SP and a call (JSR) to the called routine.
Routine SET2SP is used only for calls with two calling parameters. If
used, routine SET2SP has two parameters, each of which is either the
location of a variable or value of a constant; each requires a total
of one PS word for parameters. If used, routine SETSP has n+l
parameters (where n is the number of calling parameters) which are a
parameter count followed by locations or values. Parameters are packed
two to a PS word. If used, SETSP or SET2SP requires the same 33-line
routine. Setup for SETSP requires 3.25us.; setup for SET2SP requires
1.5us. Execution takes 2.25%C+3.5*V (where C and V are the number of
constants and variable parameters, respectively) for both routines.

FPS 860~7447-000 A - 4

A.2.4 ASSIGNMENT (=) STATEMENT PARAMETERS

An assignment statement which does not use an operator generates two
executable lines of code: a call to SETSP and a call to SAVSPO. The
parameters for SETSP (and the associated space and time used) are
explained in section A.2.3. There is one parameter for SAVSPO which
occupies one PS line (ome location). (Routine SAVSPO is 11 lines long
and executes in 3.0us,)

An assignment statement which uses an operator generates three
executable lines: a call to SETSP or SET2SP, a call to the operatiom
routine, and a call to SAVSPO. A call to SETSP is used for uop’s while
a call to SET2SP is used for bop’s. (Each requires one line of
parameters.) The operation routines required (and their time and space
usage) for assignment statements are defined in Table A-1l.

A.2.5 CONDITIONAL (IF) STATEMENT PARAMETERS

A conditional statement generates four executable lines of code: a
call (JSR) to SET2SP, a call to SPSUB, a conditional branch, and a
relative jump. The parameters for SET2SP occupy one PS location. Time
and space requirements are explained in Table A-l. The routine SPSUB
is one instruction long and executes in .25us. Note that this routine
is the same as used for assignment statement. Both the condition
branch and unconditional jump occupy one line and execute in .25us.

A.2.6 GOTO STATEMENT PARAMETERS

A GOTO statement generateé one executable statement, a JUMP. This
requires no parameters and executes in .25us.

A.2.7 END STATEMENT PARAMETERS
The END statement generates two executable statements, a NO-OPERATION

(NOP) (to prevent two RETURNs in a row) and a RETURN. These execute in
«5us. '

FPS 860-7447-000 A - 5

A.3 INTEGER REGISTER PARAMETERS

Use of integer registers generates no more than one executable
instruction (a MOVE) per integer register used. Use of integer
registers decreases the number of parameters and in some cases also
eliminates the call to the routine SETSP. This call to routine SET2SP
is replaced by a call to SETSP?P (with one parameter) and a MOVE when a
binary operation or a condition is used with one integer register. Any
statement with only integer registers as sources does not generate a
call to SETSP. Any statement with an integer register as a destination
does not generate a call to SAVSPO. No move is generated if an integer
register value is already in the required integer register. Therefore,
the statement

SPOQ=x+y

produces code to set up and add x and y but does not move the results.

FPS 860-7447-000 A - 6

INDEX

Assignment statement 2=5; A=5 Integer registers 2-10

Branching 2-7,9 Language summary 2=l

LOCAL statement 2=4; A=~4
CALL statement 2-4; A=5
Conditional branching 2-7 Related Manuals 1-3
Conventions 1=2

Sample programs &4-1
DEFINE statement 2-3; A-4
Time and space
END statement 2-9; A=6 requirements A-l
Example 4-~1

Unconditional branching 2-9
GOTO statement 2-9; A-6 Using VFC100 3-1

IF statement 2-7; A-6 VFC100 statements 2-3
Integer register parameters A-7

860-7447-000 I - 1

Notice to the Reagder

e Help us improve the quality and usefulness
of this manual.

e Your comments and answers to the following
READERS COMMENT form would be appreciated.

To mail: fold the form in three parts so
that Floating Point Systems'
mailing address is visible; seal.

Thank you

READERS COMMENT FORM

Document Title

Your comments and answers will help Did vou find this material . . .
us improve the guality and usefulness

of our publications. If your answers

require qualification or additional YES NO
explanation, please comment in the '
space provided below. e USEFUL? () ()
e COMPLETE? () ()
o ACCURATE? () ()
How did you use this manuql? ¢ WELL ORGANIZED? () ()
() AS AN INTRODUCTION TO THE SUBJECT ¢ MWELL ILLUSTRATED? ())
?
() AS AN AID FOR ADVANCED TRAINING o WELL INDEXED?)y)
() TO LEARN OF OPERATING PROCEDURES o EASY TO READ? ())
() TO INSTRUCT A CLASS | e EASY TO UNDERSTAND? () ()
() AS A STUDENT IN A CLASS Please indicate below whether your
commnent pertains to an addition,
() AS A REFERENCE MANUAL deletion, change or error; and, where
() OTHER applicable, please refer to specific
page numbers.
Page Description of error or deficiency
From:
Name , Title
Firm Department
Address . , City, State

Telephone _ Date

Firat Claas
Permit No. A-737 @

Portland, :
QOragon

BUSINESS REPLY

No postage stamp necessary if meiled in the United States

Postaje will be paid by:

FLOATING POINT SYSTEMS, INC.

P.0O. Box 23489
Portiand, Cregon 97223

Attention: Technical Publications

FLOATING POINT
F : E SYSTEMS, INC.

CALL TOLL FREE 800-547-1445
PO. Box 23489, Portland, OR 97223
(603) 641-3151, TLX: 360470 FLOATPOINT PTL

	000
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	I-1
	replyA
	replyB
	replyC
	xBack

