
1151 
PROGRAMMABLE 

CALCULATOR 
PROGRAMMING INSTRUCTIONS 



TABLE OF CONTENTS 

INTRODUCTION. • . • . . • • . . . • . • . • . . • • . . • • . • • • . . . . . • . • . . . • 1 

GENERAL.. • . . • . • • • • • • . . . • . • . . . • . • • • . . . • • • • • • • . . • • • • . • 1 
Interchange Key . . • • • . • . • . • . . • • . • • • . . • • . . . • • • . . . • . . • • . 1 
Learn Key . • • • . • . • • • . • • • . • . • . • . . • . . . . • . . . . . • . • . • . . • • 1 
Auto Key . . • • • • • • • . . • • . . . • . • • • • • . . . • . • . . . • . • • . • . • . • . 2 
Progr am Reset Key. . • . • • . . . . . . • . . . • . . • • . • . • . • • • • • . • . • . 2 
Looping. • . . . . . • • • • • . . • • . • . • . • . . . . . . • • • . • . • • • • . • . . . • 3 
Decimalization and Overcapacity. • . . • • • . . • • • . . . • . . . . . • • • . • • 4 
Program Steps • • • • • . . . . . . . . . . • . . . . • • • . • . • . . . . • • . • • • • . 4 

BASIC PROGRM1MING. . . . . • • . • • • . • . • . . . • . . . . . • • • . • . • . • . • 5 
Simple Programming. . • . . • . • . • . • • • • . . • • . . . . • . • . • • • . • . • . 5 
Stack Constant • . • . • . • . . • • . • . . • . • . . . . . . • . . • .. . . . . • . . • . • 5 
Payroll Application. • . • . . • . • . . . . • . . . . • . . . . . • . . • . . . . • . • . 6 
Two Totals in the Stack • . • . • . • • • . . . • . • . • . . • . . • • • . • . . • • . • 7 
Cost/Sell Quotations . • . . • • • • . • . • • • . . . . . . . • • • • • . . . • • • • . • 8 

MULTIPLE AND ITERATIVE PROGRAMS. . . • . . . . • . . . . . • • • . • . . • 9 
Looping at a Stop Command. • • . • . • • • • • • . . . . • . . . • • . . . . • . • • • 9 
Invoicing. • . . . • . • . • • . . . . • . • . • . • . . • • . • . . . • . • • • • . . . • .. 11 
Iterati ve Programs. . • • . . . • . • • . . • . . . . . . . • • . . • . . • • . . . • .• 12 
Compound Interest. . . . . • • • . • . • • • . • . • . . . • . • • • . • . • . • . • . •. 13 
Square Root. . . . . • • . • • • . • . . • • . • • . . . • • . • . . . • • . • . • • . . .. 14 
Iterative Programs - General. . . . • . • • . • . . . • . • . • . • • • . . . • . •. 16 

SPECIAL TECHNIQUES. . • • . . . • • . . . • . • • . . • . . • . . . • . . . . . . . •• 17 
General. • . • • • . . • • . • • • . . . . . • . • . • . • . . • • • . . . . . . . . • . . .. 17 
Number Generation. . . . • • . . • . . • • . • • • • . • • • • • . . • • • . • • • . .. 17 
Round-off in Division. • • . . . . . . . • • . . . • • • . • . • • • • . • • • . • . . .. 17 
Comparison Tests. . . • . . . • . • . . . • • • • . . . . . . • . . • . . . . . . . . •. 18 
Sequence Skipping. . . • . . • . • . . . • . • . . . • . . . • . • . • . • . • . • • • •• 19 

Published by Friden Sales Promotion Department, Rochester, New York 



INTRODUCTION 

Welcome to the world of "customized cal­
culators·. The Friden* 1151 Programmable 
Calculator can be customized to your indi­
vidual calculating requirements. The 1151 
benefit that makes this possible is Program 
Learning. 

1\1 anual operation of the 1151 is covered 
in detail in SP 9474, 1151 Operating In­
structions. That manual also contains basic 
information about the Program Learning 
capabilities of the 1151. In addition to the 

1151 Operating Instructions, three applica­
tion manuals are available: SP 9495, Statis­
tics, SP 9496, Finance, and SP 9497, Sci ­
ence and Engineering. These booklets des­
cribe solutions to many problems for which 
the 1151 is particularly suited. 

In this manual, 1151 Programming In­
structions, a working knowledge of the 
manual operation of the 1151 is assumed. 
Let's start by discussing the 1151 keys that 
are particularly important to Program 
Learning. 

GENERAL 
THE INTERCHANGE KEY 

The INTEHC HANGE key interchanges the 
contents of the bottom two registers in the 
stack. Some calculations require that the 
divisor in a division problem be calculated 
before the dividend. This often results in 
the divisor being contained in R2 with the 
dividend in HI. The I:\TEHCHANGE key 
allows us to eXChange the contents of Rl 
and R2, thus placing the divisor in HI so 
that we may properly divide. Added benefits 
of this powerful key are that a constant can 
be retained in the stack, or that two totals 
can be carried in the stack. Examples 
given in this manual are Payroll and 
Cost/Sell Quotations. 

THE LEAHN KEY 

DepreSSion of the LEAH)\; key places the 
1151 into a learning condition. Until the 
LEARN key is restored to its original 
pOSition by depressing the PHOGHAIII HE­
SET key, the 1151 will learn in sequence 
the functions required to perform the de­
sired calculation. 

The following commands are programmable: 

Plus 
Minus 
Times Equals 

*A Trademark of THE SINGER COMPANY 

Divide Equals 
Interchange 
Duplicate 
To Memory 
From Memory 
Print 
Stop 

The manual functions, Clear, Clear Stack, 
and Stack Read-Out cannot be programmed. 

These commands are self-explanatory, ex­
cept, perhaps, for two: Print and Stop. You 
must instruct the 1151 as to which answers 
are to be printed on the tape during auto­
matic operation by de pre s sin g F LHST 
Nl\IBH/PHINT when they occur in HI. When 
programming an application, ask yourself at 
each step if you want the contents of Rl to 
print on the tape during automatic operation. 

A Stop Command in a program sequence 
automatically stops automatic operation. It 
is placed in a program whenever a manual 
keyboard entry is made while the 1151 is 
learning an application. Stop Comm ands are 
used for three reasons: 

1. To allow for manual entries of variable 
numbers into the program. 

2. To allow for manual calculations, the 
answer, or answers, to which to be 
used in the program. 

1 



3. To separate a portion of a program 
from the remainder of the program 
instructions. 

The first reason for using a Stop Command 
is most important. What use would there 
be for programming if you could not use 
the learned program with a different set of 
variables? 

The second reason for using a Stop Com­
mand is important particularly when an 
application requires more than 30 program 
steps. Normally, the Stop Command would 
be the first step in the program so that the 
first part of the application could be done 
manually and the program entered to com­
plete the problem. Though it takes a little 
more programming finesse, we could design 
our program so that we have a Stop Com­
mand somewhere in the middle of a sequence 
of instructions for such manual calculations. 

The third function of a Stop Command 
points up the greatest advantage that the 
1151 has over any other programmable 
calculator to date: the capability of storing 
several programs at one time, to be used 
indi vidually or in combination, at the option 
of the operator! An example of such a 
program is SP 9541, Coefficient of Linear 
Correlation. Three programs in one are 
used. The operator uses the first ana 
second programs to obtain the sum of x, 
the sum of x2, and the xy values. Then the 
operator uses only the first program to 
compute the sum of y and the sum of y2. 
Finally, the operator uses only the third 
program to calculate the square root of the 
value obtained by a manual calculation done 
at the Stop Command between the second 
and third programs! Let's face it. Multiple­
part programs can be very complicated to 
devise. But they do not have to be compli­
cated to use! 

As stated on page 1, there are three man­
ual 1151 functions that cannot be program­
med. 

2 

Clear 
Clear Stack 
Stack Read-Out 

The functions Clear and Clear Stack can be 
accomplished through special program­
ming. For example: 

To Clear HI: 

1. DUP 
2. - (0 in RI) 

To Clear Stack: 

1. DUP 
2. 
3. x= 
4. x= (0 in RI, R2, R3, R4) 

The function Stack Read-Out can be accom­
plished only by destroying the contents of 
2 of the 5 registers in the calculator. 

THE AUTO KEY 

At any point where a manual entry must be 
made in an established program, the num­
ber is indexed on the keyboard and entered 
into the calculator by depressing the A UTa 
key. The 1151 will then continue with the 
automatic program using the new number. 
When the AUTO key is depressed, the num­
ber indexed on the keyboard is printed on 
the tape and identified by the symbol "F". 

THE PROGRAl\] RESET KEY 

Depression of the PROGRAM RESET key 
cycles the 1151 program memory back to 
the first step in the calculating procedure. 
If the first step in the learned program was 
a manual keyboard entry (Stop Command), 
the 1151 will stop, ready to accept a new 
manual entry. If the first step in the pro­
gram is not a manual entry, the 1151 will 
automatically carry out all the steps up to 
the first point where a manual entry is to 
be made and then stop. 



LOOPING 

A sequence of instructions learned by the 
1151 forms what may be referred to as a 
"loop". The diagram, below, illustrates 
this: 

DUP 

X= 

+ 

FHO~l 
~lEMORY 

..,-= 

FRO~l 

ME110RY 

TO 
MEMORY 

PHiKT 

-'- = 

= 

FHOM 
~lE~10RY 

+ 

DUP 

FHOM 
~lnl0HY 

+ 

Notice that in the hypothetical sequence 
shown, we have two Stop Commands. He­
member what was stated preViously about 
the uses for a Stop Command : 

1. To allow for manual calculations. 
2. To allow for manual entries. 
3. To separate a portion of a program 

from the remainder of the program. 

The third reason for a Stop Command brings 
up the topic of "manual looping". A manual 
loop may be accomplished at any Stop Com­
mand in a program by depressing the 
PROGRAM RESET key. This will return, 
or "loop", the 1151 to the first step in the 
program sequence. The diagram below, 
illustrates this operation. 

DUP 

X= 

+ 

This ability to perform a manual loop allows 
us to re-use, indefinitely, the first portion 
of a program, avoiding the remaining in­
structions. The 1151 is the only desk-top 
programmable calculator that offers this 
program flexibility. 

3 



DECIMALIZATION AND OVERCAPACITY 

The position of the Answer Decimal is 
immaterial when programming the 1151. 

If the operator is using a learned program 
and inadvertently has set the Answer Dec­
imal in the wrong position or incorrectly 
enters a variable, it is possible that an 
answer will exceed register capacity. If 
this happens, the automatic operation will 
stop, and the symbol "En will print on the 
tape. The 1151 is now at the instruction 
in the program where overcapacity oc­
curred. 

The operator should depress PROGRAM 
RESET to return to the first step in the 
program , then check the decimal setting 
and the numbers entered for errors. 

4 

PROGRAMMING STEPS 

The 1151 will learn any sequence of up to 
30 steps of programmable instructions. 
Each programmable command counts as 
one step. Remember that if while the 1151 
is learning a sequence: 

1. A number is indexed and the FIRST 
NMBR/ PRINT key depressed, a Stop 
Command (1 step) is recorded. 

2. A number is indexed and a function 
key (X=, +, DUP, INTERCHANGE, 
etc.) depressed, a Stop Command (1 
step) and the key function (1 step) are 
recorded. 

Most common applications require less 
than 30 program steps. Therefore, it is 
not normally necessary to count the num­
ber of steps in a program. 



BASIC PROGRAMMING 

SIMPLE PROGRA;\IMING 

Let's start with a simple program. The 
problem is this: 

Formul-t. A2 + B2 = C 

Data: .f..ll.. 
1 2 
3 4 
5 6 

Problem: For each of the 3 sets of values 
for A & B, find the corresponding value 
of C. 

Index Touch 

LEARN 
1 DUP 

X = 
2 DUP 

X= 
+ 
PRINT (First C value prints) 
PROGRAlII RESET 

We have now programmed the 1151 for this 
application. In this case (it is not always 
true, as you will see later on!) we were able 
to calculate our first answer while the 1151 
was learning the formuLt. Let's look at the 
actual commands learned by the 1151: 

Step Command 

1. Stop (for entry of A value) 
2. Duplicate 
3. X = 
4. Stop (for entry of B value) 
5. Duplicate 
6. X = 
7. + 
8. Print (to print C value) 

The 1151 is now at Step I, waiting for the 
next A value. Let's get Our second answer: 

Index 

3 (A) 
4 (B) 

Touch 

AUTO 
AUTO (Second C value prints) 

The 1151 has accepted the new values for 
A and B, and printed the answer , C. The 
machine has automatically reset to Step 1 
in the program sequence and stopped, wait­
ing for the next value of A: 

Index 

5 (A) 
6 (B) 

Touch 

AUTO 
AUTO (Third C value prints) 

Programming for such problems as this is 
obviously simple. We merely have to de­
press LEARN, calculate the problem once 
(just as you would manually, except that you 
must touch PRINT when an answer is in 
Rl), and depress PROGRAlIl RESET. For a 
second set of values, merely enter each, 
in the proper sequence, with the AUTO key. 
The answer - or answers - automatically 
print, and the 1151 automatically resets, 
ready to accept another set of values. 

STACK CONSTA"T 

The easiest way to hold a constant number 
would be to place the constant in the Mem­
ory Register, recalling it for use. In some 
applications , however, it is not practical to 
use the Memory Register for a constant 
number. For such occasions, let's describe 
a simple calculation where one term is a 
constant and we retain the constant in the 
stack. 

Formula: A2 + B2 = C 

Data: A 
1 
2 
3 

5 



Problem : With B2 = 4 a constant for the 
three problems, find the values for C cor­
responding to the given values of A. 

Index 

4 (B2) 

1 

Touch 

Dt.:P 
LEARl' 
DUP 
X = 
+ 
PRINT (First C value prints) 
INTERCHANGE 
DUP (B2 = 4 is duplicated) 
PROGRAlI! RESET 

The 1151 is now at Step 1 (Stop Command) 
in the program , waiting for a new value of 
A. The constant, B2 = 4, is in Rl and R2. 
The last two program steps automatically 
regenerate our constant. Why did we use 
the Il'TERCHANGE key to place the con­
stant number into Rl for duplication? 

Manually , this could be done with the CLEAR 
key , to c lear the value of C in Rl, thus 
dropping the constant into R1. However, the 
CLEAR key is not a programmable function 
key! 

Let's calculate the second C value: 

Index I Touch 

2 A UTO (Second C value prmts) 

Our program sequence has duplicated the 
constant and the 1151 is ready to accept 
the A value for the third calculation: 

Index I Touch 

3 AUTO (Third C value prints) 

Now, let's look at a common application 
where this ability to hold a constant in the 
stack is important. 

PAYROLL APPLICATION 

To illustrate the use of the INTERCHANGE 
key to keep a constant in the stack, let' s 

6 

consider a payroll application. (Payroll 
calculations may be programmed in many 
ways , depending on the deSires and re­
quirements of the user. This is only one 
of many possible solutions.) 

Data: 

Regular hours - 40 
Overtime hours - 6 
Pay rate - $2.30/hr. 

For this example, we assume that the over­
time pay rate is 1.5 times the normal rate. 

This is what our problem looks like: 

40 
9 (6 x 1.5) 

x $2.30 = $ 92.00 
x $2.30 = 20.70 
Total = $112.70 

We are looking for dollars and cents an­
swers, so we set the Answer Decimal on 2. 

Index 

40 

2. 30 

9 

Touch 

TO MEMORY 
LEARN 
DUP 
DUP 
FROM MEMORY 
X = 
PRINT (Regular pay prints) 
INTERCHANGE (Pay rate , 2.30, is 

now in R 1) 
X = 
PRINT (Overtime pay prints) 
+ 
PRINT (Total pay prints) 
INTERCHANGE (Pay rate, 2. 30,is 

now in R 1) 
PROGRAM RESET 

Our application is now programmed; we 
are at Step 1 in the program , the Stop 
Command for entry of the pay rate for the 
next employee. 

Let's take a c lose look at our program. 
First, we have a constant, 40 , which is kept 
in memory. Second, we are retainingacon­
stant in the stack using the INTERCHANGE 
key. This second constant is the pay rate of 
$2.30. 

, 



There is a yery big difference between the 
stack constant shown in the preceding sec­
tion, and the stack constant in this applica­
tion. The constants are retained in the same 
manner using the IKTERCHANGE and DUP 
keys. The difference lies in the fact that in 
this payroll program, the operator has the 
option of using the constant (the pay rate) 
or using a new pay rate. 

Let's say that the next employee is to be 
paid at the same pay rate. 

Data: 
Regular hours - 40 
Overtime hours - 10 
Pay rate - $2.30/hr. 

We are at Step 1 in the program, the Stop 
Command at which the pay rate is to be 
entered. However, our program has re­
tained the pay rate of $2.30 as a constant, 
now in Rl: 

Though a Stop Command allows for a man­
ual entry, an entry need not be made to 
continue the program. If the AUTO key is 

depressed with no entry being made, the 
1151 accepts the contents of R1 as the 
entry. and proceeds with the program. 

Let's solve the second problem. 

Index Touch 

AUTO (Regular pay prints) 
15 (10 x 1.5) AUTO (Overtime, then total 

pay prints) 

Again, the pay rate of $2.30 has been re­
tained and is in Rl, ready to be used again. 

Let' s say that our pay rate changes: 

Data: 

Index 

3.60 
6 

Regular hours - 40 
Overtime hours - 4 
Pay rate - $3.60/hr. 

Touch 

AUTO (Regular pay prints) 
AUTO (Overtime, than total 

prints) 
pay 

Note that the stack constant is now 3.601 
If the next employee's pay rate is $3.60/hr. 
we merely depress AUTO. If the next 
employee's rate is different, index the 
rate, then touch ACTO. 

TWO TOTALS 11\ THE STACK 

Quite frequently, we are faced with the prob­
lem of accumulating two (2) totals at the 
same time. Generally speaking, the easiest 
way to do this is to carry one total in the 
stack, the other in memory. Often, however, 
it is advantageous to be able to carry both 
totals in the stack, leaving the I\Iemory 
Register available for accumulation of an 
additional total, or perhaps using it to re­
tain a constant num ber. 

Let's take a simple example of accumulat­
ing two totals in the stack: 

Data: x x.. 
1 5 
2 6 
3 7 
4 8 

Totals 10 26 

Problem: We are to add both columns si­
multaneously. 

Index 

1 (First x 
value) 

5 (First y 
value) 

Touch 

CLEAR STACK 
LEARN 
+ 

INTERCHANGE 
+ 

INTERCHANGE 
PROGRAM RESET 

Let's look at the program. Note that the 
last step places the number"I"(really , the 
subtotal to this point of the x values) into 
Rl , and the number "5" (the subtotal to this 
point of the y values) in R2. There are no 
Print Commands in the program because 
we are not interested in seeing subtotals -
only the final totals. 

7 



Let's enter our remaining x and y values: 

Index Touch 

2 (x) AUTO 
6 (y) AUTO 
3 (x) AUTO 
7 (y) AUTO 
4 (x) AUTO 
8 (y) AUTO 

As you can see, each x value is added to the 
x subtotal. The contents of RI and R2 are 
interchanged, placing the y subtotal in RI. 
Then, the corresponding y value is entered 
and added to the y subtotal. Finally, the 
contents of RI and R2 are interchanged 
again, placing the x subtotal in HI, the y 
subtotal in R2. 

After all x and y values have been entered, 
we need only touch the PRINT key. The 
resulting Stack Read- out shows the total of 
the x values (10) in RI and the total of the 
y values (26) in R2. 

Now, l et's take a look at a practical appli­
cation where this capability is put to use. 

COST/SELL QUOTATIONS 

In this application we are going to compute 
individual cost and sell, and the total cost 
and sell , figures for a quotation. --

Data: 

Quantity Cost/Unit Price/Unit 

Line (1) 10 
Line (2) 12 
Line (3) 23 

$3.95 
8.91 
1.26 

$4.85 
9.95 
2.49 

To find the cost and sell figures for each 
line we must make two calculations: 

Cost = Quantity x Cost/Unit 
Sell = Quantity x Price/Unit 

The quantity for each line is a constant for 
these two calculations. Therefore, we will 
use the "'I emory Hegister to hold it as a 
constant. When each of our two answers 
occurs in HI we will cause it to print. 

Additionally, we will sum the cost and sell 
figures in the stack, by the method shown 

8 

in the preceding section. Set the Answer 
Decimal on 2. 

Index 

10 (Quantity) 
3.95 (Cost/Unit) 

Touch 

CLEAH STACK 
LEARN 
TO MEMORY 
FROM MEMORY 
X= 
PHINT (Cost. $39.50, Line 

(1) prints) 
+ 
INTERCHANGE 

4.85 (Price/Unit) FROM MEMORY 
X= 
PRINT (Sell, $48. 50. Line 

(1) prints ) 
+ 
INTERCHANGE 
PHOGRAM RESET 

This application differs from the example 
shown in the previous section. We are 
using the Memory Register to hold a con­
stant used in the two multiplications in the 
program, and we are printing the products of 
these two multiplications. 

Let's enter the figures for Line 2 of our 
quotation: 

Index 

12 
8.91 

9.95 

Touch 

AUTO 
A UTO (Cost, $106.92, Line 

(2) prints) 
AUTO (Sell, $119.40. Line 

(2) prints) 

The 1151 has accumulated the cost and sell 
figures from Lines 1 and 2. Let's complete 
the problem: 

Index 

23 
1.26 

2.49 

Touch 

AUTO 
AUTO (Cost. $28.98. Line 

(3) prints) 
A UTO (Sell, $57.27, Line 

(3) prints) 
PHINT (Stack Head-out: 

total cost. $175.40 in 
Rl, and total sell, 
$225.17, in H2, print) 



MULTIPLE AND ITERATIVE PROGRAMS 

LOOPING AT A STOP COMMAND 

The 1151 has been designed so that two or 
more separate programs in one may be 
learned and used separately or in com­
bination. Let's look at a fairly simple prob­
lem where this capability can be used. 

Problem: A = (1/2) (B2 + C2 + D2 +E2)3 

BCD E 

.2 .3 .4 .5 

.6 . 7 .8 .9 

1.0 1.1 1.2 1.3 

There are two separate problems here: 

(1) Sum the squares of the corresponding 
values of, B, C, D, and E. 

(2) Raise that answer to the third power 
and divide by the number 2. 

Let's see what the separate programs for 
these two problems would look like. 

Problem (1) 

Index 

B 

Touch 

CLEAR STACK 
LEARN 
DUP 
x = 
+ 
PROGRAM HESET 

Problem (2) (Assume B2 + C2 + D2 + E2 
is in R1) 

Index 

2 

Touch 

TO 1I1EMOHY 
LEARN 
DUP 
DUP 
x = 
x = 
FHOllI MEMORY 

PIUNT 
PROGRAlIl RESET 

To find the first value of A, we would have 
to use the first program four (4) times -
for B=.2, C=.3, D=.4, and E=.5. We would then 
use the second program once to produce 
the value of A. How do we combine these 
two programs into one? 

We have a constant, 2: let's put this in 
memory before we begin programming: 

Index 

2 

o 

o 

Touch 

TO :\lEMORY 
LEARN 
DUP 
x = 
+ 
DUP 
DUP 
x = 

x = 
FnOl\1 l\IEMORY 
+ = 
PRINT 
PHOGRAM HESET 

Let's l ook at the commands that the 1151 
has learned: 

Step Command 

1. Stop 
2. Duplicate 
3. x = 
4. + 
5. Stop 
6. Duplicate 
7. Duplicate 
8. x = 
9. x = 

10. From l\lemory 
11. -:- = 
12. Print 

There are two (2) Stop Commands in the 
program: Step 1, for entry of variable 
numbers, and Step 5, to separate the first 
and second portions of the program. As 
mentioned previously , at any Stop Com­
mand, we may manually loop to the first 
step in the program. 

9 



It was stated earlier that we cannot always 
calculate the anSwer to the first problem 
as the 1151 is learning the application. This 
is an example of such an application. 

In general, usable answers are not generated 
while the 1151 is learning if one or more 
Stop Commands are used in a program for 
the purpose of manually looping. 

Therefore, it is immaterial what numbers 
are used to create Stop Commands. We 
have chosen to use the number zero (0) 
in this case. 

The 1151 is now at Step 1 of the program 
waiting for the first variable. Set the An­
swer Decimal on 2. 

Index I Touch 

.2(B) AUTO 

The 1151 is now at Step 5 of the program. 
There are three more variables to pro­
cess (C=.3, D=.4, and E=. 5) using the first 
portion of the program. Manual looping 
makes it possible: 

Index 

.3 

.5 

Touch 

PflOGRAi\! RESET (Manual 
loop) 

AUTO 
PROGRA:\I RESET 
AUTO 
PROGRMI RESET 
AUTO 

We are again at Step 5, and we have pro­
cessed the four variables for the first value 
of A. We are now ready to use the second 
portion of the program: all that is required 
is to depress the AUTO key: 

Index 

10 

Touch 

A UTO (Contents of Rl at 
Step 5, then, first 
A value, .07873 , 
print. ) 

The answer to the first problem has print­
ed , and the 1151 is again at Step 1, waiting 
for the next variable. The constant, 2, is 
still in memory, and the answer to the last 
problem is in H.1. The first step is to clear 
HI; otherwise its contents will be added into 
the next calculation. Let's perform the sec­
ond calculation. 

Index 

.6 

. ( 

.8 

.9 

Touch 

CLEAR 
ACTO 
PHOGHA:lJ RESET 
AUTO 
PHOGHA;\l RESET 
AUTO 
PHOGRAi\1 HESET 
AUTO 
AUTO (R 1 at Step 5, then, 
second A value, 6.08350, 
print. ) 

And for the third set of values: 

Index 

1.0 

1.1 

1.2 

1.3 

Touch 

CLEAR 
AUTO 
PHOGRA:\! RESET 
AUTO 
PROGHAM RESET 
AUTO 
PROGRAM RESET 
AUTO 
AUTO (R 1 at Step 5, then, 
third A value, 76.13665, 
print. ) 

We have only used four variables (B, C, D, 
and E) in the first portion of the program. 
Obviously , we are not limited to that num­
ber: any number of variables may be pro­
cessed, providing register capacity is not 
exceeded. 

Let's take a look at a very practical ex­
ample of manual looping, an invoicing 
application. 



INVOICING 

The common involClng problem is a good 
illustration of manual looping to re-use a 
portion of program several times before 
using the remainder of the program. 

Normally, an invoice is made up of a vary­
ing number of line extensions, discounts and 
taxes. The program fo r the problem must 
allow for any number of extensions. What 
answers should print depends on the needs 
of the user. If invoices are being checked, 
perhaps only the net amount should print. In 
this example we are assuming that invoices 
are being pre par e d. Therefore, we will 
cause the following answers to print: 

1. Each extension 
2. Invoice gross 
3. Amount of discount 
4. Subtotal after discount 
5. Amount of tax 
6. Invoice net 

Problem: 

Quantity 

10 
13 
26 

Price 

$1.25 ; $12.50 
. 98 ; 12.74 

2.46; 63.96 
Gross ; 89.20 

7% Discount; 6.24 
Subtotal; 82.96 
3% Tax ; 2.49 

Net; $85.45 

We need dollars and cents answers with 
automatic round off, so the Answer Dec­
imal is placed on 2. 

Here's the program: 

Index Touch 

LEARN 
0 FIRST NUl\lBEH 
0 x; 

PRINT 
+ 

0 DUP 
0 x ; 

Index 

o 

Touch 

PRINT 

PRINT 
DUP 
x ; 
PRINT 
+ 
PRINT 
PROGRAM RESET 

Let's look at the actual commands learned: 

Stop 

1. 
2. 
3. 
4. 
5. 
6. 

7. 
8. 
9. 

10. 
11. 
12. 
13. 
14 . 
15. 
16. 
17. 
18. 

Command 

Stop (Quantity) 
Stop (Price) 
x ; 
Print (Extension prints) 
+ 
Stop (To separate portions 
of program) 
Duplicate 
Stop (Discount %) 
x ; 
Print (Discount prints) 

Print (Subtotal prints) 
Duplicate 
Stop (Tax %) 
x ; 
Print (Tax prints) 
+ 
Print (Net prints) 

Look carefully at these program steps. 
Will this program automatically print all 
the answers that we require of it? There 
is no Print Command for the invoice gross -
do we need a command for this? 

When we have completed the last extenSion, 
the 1151 will be at Step 6 (Stop Command) 
of the program. At this point we want the 
invoice gross to print, and we want to con­
tinue with the program. The invoice total 
is in Rl. IT we depress AUTO to continue 
the program, the contents of R1 will auto ­
matically print. Having a separate com­
mand to print the invoice gross is there ­
fore not required. 

The 1151 is now at Step 1 in the program. 

11 



Let's clear the stack before we proceed -
anything in R1 will be added to the first 
extension. 

Index 

10 
1.25 

13 
.98 

26 
2.46 

.07 

.03 

Touch 

CLEAR STACK 
AUTO 
AUTO (Extension, $12.50 
prints) 
PROGRAM RESET (Man­
ual loop) 
AUTO 
AUTO (Extension, $12.74, 
prints) 
PROGRMl RESET 
AUTO 
AUTO (Extension, $63.96, 
prints) 
AUTO (Gross, $89.24, 
prints) 
A UTO (Discount amount, 
$6.24, then subtotal, $82.96 
print) 
AUTO (Tax amount, $2.49, 
then, net, $85.45, print) 

The 1151 is at Step 1 in the program, ready 
for the next invoice. Let's explore some 
options available to us. 

It's obvious that our program will handle 
any number of line extensions. What if the 
next invoice involved no discount off the 
gross and no taxes? The answer is simple: 
when you come to the Stop Command for 
entry of either of these values, enter a 
zero! 

But what if there is, for example, a line 
discount, freight charges and credits? If 
these items were standard, we would prob­
ably write a different program. Let's con­
sider that they are the exception to the rule, 
and see how they can be handled by the 
present program. 

Remember that whenever the 1151 is at a 
Stop Command, we may perform manual 
calculations, then, continue with the pro­
gram. This is exactly what we can do to 
handle the line discount, freight and credits. 

12 

Problem: 

Quantity 

12 
8 

Index 

12 
11.12 
.1 

8 
5.03 

.08 

.05 

25.05 
10.95 

@ 
@ 

Price 

$11.12 less 10% = $120.12 
5.03 = 40.24 

Gross = 160.36 
8% Discount = 12.83 

Subtotal = 147.53 
5% Tax = 7.38 

Subtotal = 154.91 
Freight = 25.05 
Credits = 10.95 

Net = $169.01 

Touch 

CLEAR STACK 
AUTO 
DUP 
x = 
- (Discounted price in H1) 
AUTO (Extension, $120.12, 
prints) 
PROGHAl\l HESET 
AUTO 
AUTO (Extension, $40.24, 
prints) 
AUTO (Gross prints) 
AUTO (DiScount amount, 
$12.83, then, subtotal, 
$147.53, print) 
AUTO (Tax, $7.38, then, 
subtotal, $154.91 print) 
+ 

P R I N T (Net, $169.01, 
prints) 

After the 1151 printed the subtotal after 
tax, it reset to Step 1 in the program. 
Since this is a Stop Command and the sub­
total was in R1, all we had to do was man­
ually add in the freight charge, subtract the 
credi ts, and touc h PRINT to obtain the in­
voice net. The 1151 is now ready for the 
next invoice! 

ITERATIVE PROGRAMS 

Essentially, an iterative program is one 
which must be repeated several times to 



produce the answer or answers to one 
problem. Up to this point we have consid­
ered repetitive problems. The calculating 
steps were identical but the starting data 
(variables) changed from one problem to the 
next. In this section, we will consider 
repetitive use of a program sequence where 
each pass through the sequence generates 
the variables for the next pass. 

Let's take a simple example. 

COMPOUND INTEREST 

To find the value at the end of one year of 
the principal (P) compound quarterly at an 
annual interest rate (i) we would use the 
following formula: 

S=P(1+,t)4 

The interest rate is constant, therefore, so 
is the value: 

(1 +~) 

Let's assume: 

P = $1,000 
i = 5% per annum, compounded quar­

terly 
or S = (1,000) (1 .!?f)4 

Here is what the program looks like to 
solve for the compounded value (S) of 
$1,000 at the end of one year. Move the 
Answer Decimal to 5. 

Index 

.05 
4 
1 

1000 

Touch 

FIRST NUl\IBEl~ 
= 

+ (1 +;p 
TO l\IE~IOHY 
FIRST :\Ul\IBER 
LEAH:-;-
FRO:'>I l\IE;\lOHY 
x = (P) (1 +il 
FHD;\! MEl\lOHY 
x = (P) (1 +t)2 

lndex Touch 

FROl\! MEMORY 
x = (P) (1 +t)3 

FROM MEMOHY 
x = (P) (1 +~4 

P RI N T (S, 
prints) 

$1,050.94, 

PROGRAM RESET 

We have only indicated, above, that one 
answer printed - $1,050.94. However, when 
PHOGRAM RESET was depressed, another 
number, $1,104.48, was calculated and 
printed .. What is it? 

Notice: There are no Stop Commands in the 
program. In the first chapter we stated 
that when the first step in the program is 
not a Stop Command for a manual entry, 
upon depression of the PROGRAM RESET 
key, the 1151 will proceed to the first Stop 
Command. 

When no manual entries are made while 

the 1151 is learning a calculation, the 1151 

will automatically place a Stop Command 
after the last step in the program. This 

automatic Stop Command does not count 

toward the total of 30 steps of programming 
instruction. 

This means that when we depressed PRO­
GHAl\1 RESET an automatic Stop Command 
was inserted as the last step in the pro­
gram. The 1151 cycled to Step 1 in the 
program: since this is not a Stop Command, 
it proceeded through the sequence to the 
automatic Stop Command. 

U we were to use this program to calculate 
the compounded value at the end of one 
year of some other principal at the same 
interest rate, we could place the principal 
in HI and depress PHOGHAi\1 RESET. This 
in fact, is what occurred. A new principal, 
$1,050.94, was in IU; when PHOGHAl\1 
HESET was depressed, the 1151 accepted 
the new principal, then, calculated and 

13 



printed the compounded value, $1,104.48, 
for the second year! 

The principal (P) for each successive year 
is a variable generated by the program. 
The starting prinCipal for the third year 
is in R1. If we depress PHOGHAM RESET, 
the 1151 will use this value to calculate 
and print the compounded value at the end 
of the third year. 

You could proceed likewise for the fourth, 
fifth, years, etc. The process can be speed­
ed up, however. 

If no manual entries are made while the 

1151 is learning, and the PROGRAM RE­

SET key is held down, the 1151 will con­

tinuously cycle through the program se­

quence until the PROGRAM RESET key 

is released. 

Let's see how this process applies for this 
application. The compounded value after 
two years of the starting principal, $1,000, 
has printed. Depress and hold down the 
PROGRAM RESET key. The values for each 
succeeding year will be automatically cal­
culated and printed: 

Year 

3 
4 
5 

Ending Balance 

$1,160.75 
1,219.88 
1,282.03 

Since there are no Stop Commands in the 
program, it may not be obvious how it is 
used to determine compounded values for a 
second problem. Actually, it is quite simple: 
using the new principal and interest rate, 
perform the manual calculations preceding 
depression of the LEAHN key. Then, depress 
and hold down the PROGRAi\! RESET key. 

Let's say that: 

P = $2,500 
i = 8% per annum, compounded quarterly 

14 

Index Touch 

.08 FIHST NUMBEH 
4 += 
1 + 

TO :\lE1\10RY 
2500 FIRST NUMBEH 

PROGRAM HESET (De-
press and hold down) 

As long as the PROGRA:o.] RESET key is 
depressed, the 1151 will repeatedly cycle 
through the program sequence, printing 
the ending balance for each succeeding 
year: 

Year 

1 
2 
3 
4 
5 

Ending Balance 

$2,706.08 
2,929.14 
3,170.60 
3,431. 96 
3,714.86 

Let's look at another common iterative 
program. 

SQUARE HOOT 

The simplest programmed method for find­
ing the square root of a number is known 
as Newton's Method of Approximations: 

The symbol "=:<" is read, "is approximately 
equal to." 

The number we are taking the square root 
of is "N": "a" is an approximation for the 
square root. When the values for "N" and 
"a" are substituted into the formula, we 
obtain a new, more accurate approximation. 
Inserting the new approximation into the 
formula, we obtain a still more accurate 
approximation for the square root of "N". 

There are two constants in the formula: 
"N" and 2. The value of "a" is a variable 
generated by the formula. 

Before we write the program for square 
root, let's touch briefly on a topic covered 



later in more detail - number generation. 

Here is an equation that always has the same 
answer: 

x + x 2x 
-- = - =2 x x 

Regardless what value we assign "x" the 
answer is always the number 2. Of what 
importance is this? What if we have the 
need for a constant, 2, in a program, but, 
because of the nature of the problem, 
have no way to carry that constant in the 
machine. We can very often solve that 
problem by using the above equation. Let's 
show that it does work using an arbitrary 
value for x: 

lndex 

37 (x) 

Touch 

TO l\1E:\10RY 
FROM l\lEMOHY 
DUP 
+ (x + x) 
FRO)'1 l\1EMORY 
;..::;: 

The answer that printed was 2. Now let's 
use this ability to generate the number 
2 in the program for square root. The 
program is similar to the one for com­
pound interest in that we will make no 
manual entries while the 1151 is learning 
the calculation. 

Problem: 

vT55 = 12.44989 

Set the Answer Decimal on 5. 

lndex 

155(N) 
12(a) 

Touch 

FIRST KUlIlBER 
FlHST ~UMBER 
LEAHN 
TO MEMORY 
DUP 
FROM MEMORY 
+= 
FHOlll ~IEl\IORY 
+ 

lr.dex 

[ 
Touch 

FROM MEMORY ] 
DUP 

~~Ol\1 l\1El\10RY 

PRINT (Second approxima­
tion, 12.45833 , prints) 
PROGRAM RESET (Third 
approximation, 12.44990, 
prints) 

Our program automatically retains 155 (N) 
as a constant. The constant number 2 is 
generated by the bracketed steps. Each 
new approximation calculated becomes the 
new variable, "a", for the next pass through 
the program. The last approximation cal­
culated is in Rl. Depress and hold down 
PHOGRAM RESET: 

Fourth Approximation = 12.44989 
Fifth Approximation = 12.44989 

The fourth and fifth approximations are 
identical. When this occurs, we have the 
answer. Regardless of the initial approx­
imation we choose, the anSwers obtained 
through the program will eventually repeat 
to give us the square root. Let' s see what 
happens when a bad approximation is used. 

Problem : 

"'99.65 = 9.98248 

Just as in the compound interest program , 
for a new calculation, we must perform the 
manual calculations preceding depression 
of the LEAHN key. This means we must 
p lace 99.65 in R2 and our first approx­
imation in Rl. 

We will use an approximation just about as 
bad as possible. Let' s use the number 
itself, as its own approximation. 

lndex 

99.65 

Touch 

DUP 
PHOGHAlI1 RESET (De­
press and hold down) 

15 



Approximations 
#2 - 50.32500 
#3 - 26.15256 
'14 - 14.98144 
#5 - 10.81650 
#6 - 10.01463 
#7 - 9.98253 
#8 - 9.98248 
'19 - 9.98248 

It took longer for the answer to repeat, but 
the end result is the same regardless of 
what is chosen as the first approximation. 

ITERATIVE PROGRAMS - GENERAL 

Here are some more examples of iterative 
calculations : 

SP 9496 - F INANCE 

Page 5 - Amortization Schedule 

SP 9497 - SCIENCE AND ENGINEERING 

P . 4 - Cube Root 
P. 5 - Sine of x 

16 

P. 6 - Cosine of x 
P. 7 - Hyperbolic Sine of x 
P. 8 - Hyperbolic Cosine of x 
P. 9 - Exponential x 
P. 10 - Natural Logaritluns 
P. 12 - Quadratic Equation 
P. 15 - Conversion of Decimals to 

Common Fractions 
P. 19 - Analysis of a Free Falling Body 

The same basic principles as discussed in 
the preceding section apply to these pro­
grams. In each case, there is at least one 
variable generated by the program which is 
used for the next pass through the program 
sequence. Some of these programs (Sine , 
Cosine, etc.) do, however , have stop com ­
mands for manual entries. Thesestopcom ­
mands are required due to the complex 
nature of the problems. 

There is one, very critical, point regarding 
iterative programs that we have not touched 
upon: 

In any iterative program, the register lo­
cations of the constants and variables at the 

first and last steps in the program MUST 

BE IDENTICAL. 

Look closely at the programs for compound 
interest and square root. The above state­
ment is true for these two programs, is it 
not? 

The reason for this should be obvious. If 
the constants and variables for an applica­
tion are not in the correct register . they 
will not be operated on properly by the 
programmed instructions. The result would 
be incorrect answers . The effect is the same 
as what would occur in an invoicing appli ­
cation if the percent discount were entered 
at the Stop Command for the price! 



SPECIAL TECHNIQUES 

GENERAL 

There are many special techniques that can 
be used to advantage when writingprograms 
for the 1151. We will not attempt to discuss 
all of them here. The ones shown can often 
be incorporated into standard programs to 
make them more efficient , or simply to 
tailor them to the specific needs of the user. 

NUMBER GENERATIO:-1 

We have already shown one example of num­
ber generation: the generation of the con­
stant, 2, for our square r oot program. The 
same principle can be used to develop any 
whole number, within, of course, the pro­
gram step capacity of the calculator: 

nx - ;n 
X 

Where "n" is the whole number to be gen­
erated, and "x· is any arbitrary number. 

Let's restate the above formula: 

To develop any whole number, n, a constant 
for each pass through a program, add an 
arbitrary number. x, to itself n-times: 
then, divide the answer, (n) (x), by x. 

There may be several ways to accomplish 
this , depending on the number to be gener­
ated, and the application in which it is used. 
Generally , it is best when x is in memory 
and, thus , may be recalled appropriately to 
satisfy the formula. There is only one re­
quirement for x: 

The number of decimal places in x should 

never exceed the Answer Decimal setting. 

This could occur, for instance, if our prob­
lem requires the use of two (2) constants, 

one in memory, the other generated by the 
program using the memory constant. Our 
answers are to be printed at two decimal 
places, but the constant in the memory has 
five decimal places. 

Let's wr i te the sequence to develop the num­
ber 7; set the Answer Decimal on 5. 

Index 

2.13741(x) 

Touch 

TO MEMORY 
LEARN 
FRO:\l MEMORY 
DUP 
+ (2)(x) 
DUP 
DUP 
+ (4)(x) 
+ (6) (x) 
FROM MEMORY 
+ (7)(x) 
FROM JIlEMORY 
+ = 
PRINT (7 prints) 
PROGRAM RESET 

This sequence takes any number that hap­
pens to be in memory and develops the num ­
ber 7! To use this sequence in the program 
for an application, you would simply insert 
this list of instructions immediately pre­
ceding the point in the program where the 
number 7 is to be used. (You don' t need the 
command PRINT, of course!) Isn't this ex­
actly what we did in the case of the program 
for square root? 

ROUND-OFF IN DIVISION 

Round-off is automatic on the 1151 at any 
decimal setting (0-9) in addition, subtrac ­
tion, and multiplication. Round -off in divi ­
sion can be provided by programming. The 
method shown here requires the use of the 
constant .1. The steps involved are identical, 
and the constant the same regardless of the 
Answer Decimal setting. 

17 



Let's .say that we have the problems: 

149 -7 12 = 
13.76 -;- 1. 2 = 

1.27 -;- .08 = 

Our answers must be rounded-off at two (2) 
decimal places. Set the Answer Decimal 
on 2. 

Index 

.1 

149 

12 

Touch 

TO :\IElI10RY (lI1emory 
constant) 

LEARN 
FROll1 l\lEl\IOHY 
+= 

FROll1 l\IElI10HY 
x = 
PRINT 
PHOGRA:\1 HESET 

Division of the dividend, 149, by.1 moves the 
decimal place one position to the right so 
that when we divide by the divisor, 12, we 
obtain an extra significant digit (124.1~). 
The answer obtained at this point is identi­
cal to the answer we would obtain if we 
divide 149 by 12 at decimal position 3, ex­
cept that the decimal point is one position 
off. 

To restore the decimal to its correct posi­
tion, we then multiply 124.16 by .1. But we 
not only shift the decimal by this multiplica­
tion - we also get a rounded -off answer. 

Let's complete the application: 

Index 

13.76 
1.2 
1.27 
.08 

Touch 

AUTO 
AUTO (11.47 prints) 
AUTO 
AUTO (15.88 prints) 

Let's insert this sequence of instructions 
into an application: 

Problem: 

22 + 32 + 42 + 52 
36.536 = 1.480 

18 

Our answer is to be rounded-off at three 
decimal places: move the Answer Decimal 
to 3. 

Index Touch 

.1 TO MEMORY 
LEARN 

1 DUP 
x = 
+ 

1 FROM MElI10RY 
7= 

1 -;-:; 

FHO:'.I lI1El\IOHY 
x = 
PHlNT 
PHOGHAM RESET 

As you can see, the sequence within the 
brackets is the program for division round­
off. Let's calculate the answer to the prob­
lem. 

Index 

2 

3 

4 

5 

36.536 

Touch 

CLEAH STACK 
AUTO 
PROGRAM HESET 
AUTO 
PHOGHAl\1 HESET 
AUTO 
PHOGHAl\1 HESET 
AUTO 
A UTO (Dividend, 54. ODD, 

prints) 
AUTO (1.478 prints) 

The quotient, 1.478 is rounded-off at 3 dec­
imal places as desired. And remember, once 
programmed, with .1 in memory, we can 
obtain rounded-off answers in division at any 
decimal setting. If the next problem requires 
a five (5) decimal place rounded-off answer, 
simply move the Answer Decimal to 5 and 
proceed! 

COMPAHISON TESTS 

In iterative programs, such as square root, 
cube root, etc., each pass through the pro­
gram produces an answer more accurate 



than that obtained by the previous pass. When 
the last two answers are identical, we know 
that we have calculated the most accurate 
answer. This procedure requires that the 
operator compare the last two answers. Why 
not make the 1151 do this automatically! 

Look back at the program for square r oot. 
The last step is PRINT. At this point, N is in 
R2, the latest approximation is in Rl, and the 
previous approximation is in memory. Let's 
rewrite the program so that we subtract 
these two approximations, and print the dif­
ference. When the difference is zero, (0), we 
know that the last two approximations are 
identical. ~Iove the Answer Decimal to 5. 

Problem: 

Index 

183 
14 

Vf83 = 13.52774 

Touch 

FIRST NUMBER 
FIRST NUMBER 
LEARN 
TO III EMORY 
DUP 
FROM MEMORY 
-. = 
FROM MEMORY 
+ 
FROM MEMORY 
DUP 
+ 
FROIl! MEMORY 
+= 
-7= 

DUP 
FROM MEMORY 

(PRINT (-.46429 prints) 
TO MEMORY 
PROGRAM RESET (De­
press and hold down) 

Second comparison: - .00796 
Third comparison: - .00001 
Fourth comparison: .00000 

The difference between the last two approx­
imations is zero, (0). Therefore we have 
the answer: it is in Rl. 

Index I Touch 

PRINT (13.52774 prints) 

With this comparison technique, the opera­
tor does not have to compare the last two 
answers - the 1151 does that! All the 
operator has to do is watch the tape until a 
zero difference prints, then touch the PRINT 
key to print the final answer. 

SEQUENCE SKIPPING 

Applications arise that require a multi - part 
program which allows the operator the 
option of using or not using selected por ­
tions of a program. Up to this time, we have 
only considered the more frequent case 
where the operator repeatedly uses the first 
portion of a program, bypassing the remain­
ing steps. What if the application requires 
that the operator repeatedly use the first 
portion, then repeatedly use a following 
portion? 

Here is an example of such a problem: 

Problem: 

v' 22 + 32 + 42 = 5.38516 

Two problems are expressed here: 

(1) Calculate the sum of the squares of 
2, 3, 4. 

(2) Calculate the square root of the 
answer. 

Both of these problems require repeated use 
of their respective programs. We must be 
able to use the first portion (by manual 
looping) until we have accumulated the 
squares of 2, 3 and 4 . We must then be able 
to enter an approximation for the square 
root of this value , enter, then repeatedly 
use the second portion of the program until 
we obtain the square root. 

19 



Here is the program: 

Index Touch 

1 

1 

LEARN 
DUP 
x ; 
+ 
DUP 
FROM I\lEMORY 
+= 
FROM I\lEMORY 
+ 
FROI\l MEMOHY 
DUP 
+ 
FROM MEMORY 

+= 
PRINT 
TO MEMORY 
PROGRAM RESET 

The first portion of the program is self­
expanatory: each number to be squared is 
entered - we manually loop for the next 
number . 

The second portion is a slightly modified 
program for square root. The second Stop 
Command has three functions: 

1) Separate the fir st and second portions 
of the program. 

2) After all values are processed by the 
first portion, allow us to print the 
answer. 

3) Allow us to place the first approxi­
mation for the square root in memory. 

At the second Stop Command, we will touch 
PRINT: the radicand in the formula will 
print. We will then place the first approx­
imation in memory and depress A UTO to 
enter the second portion of the program. 

20 

Let's perform these steps: 

Index 

2 

3 

4 

Touch 

CLEAR STACK 
AUTO 
PROGRAM RESET 
AUTO 
PROGRAM RESET 
AUTO 
PRINT (29 prints) 

Our approximation for the square root of 
29 is 5. 

Index 

5 

Touch 

TO MEMORY 
AUTO (Contents of Rl, 29, 
then second approxima­
tion, 5.4, print) 

We have calculated the second approxima­
tion. The radicand, 29, is in Rl, 5.4 is in 
memory. We are at Step 1 in the program. 
How can we skip the first portion of the 
program and use the second to give uS the 
next approximation for the square root? 

Index Touch 

o AUTO 

The 1151 has squared 0 (which is, of course, 
0, again!) and added this to 29. We still 
have 29 in HI and 5.4 in memory. This is 
exactly where these two values should be 
located at the first step in our square root 
program. All we need do is: 

Index Touch 

AUTO (29, then, third ap ­
proximation, 5.38518, 
prints) 



We must re-use the square root portion of 
the program until the approximations re­
peat. 

Index 

o 

o 

Touch 

AUTO 
A UTa (29, then, fourth 
approximation, 5.38516, 
prints) 
AUTO 
A UTa (29, then, fifth ap­
proximation, 5.38516 
prints) 

The approximations for the square root 
have repeated - we have our answer! 

The procedure to skip a set of instructions 
is different for each application. As you can 
see, the instructions must be carefully 
planned. The numbers to be operated on by 
a portion of the program must be in the 
proper register locations at the first step of 
that portion. 

Sequence skipping is not always possible. 
When it is, it allows us to get the most out 
of the 30 step 1151 program capacityl 

21 



SINGER 
FRIDEN DIVISION 

SP- 9598 Printed in U.S.A. 


