
2300 ADS SOFTWARE
REFERENCE MANUAL

Manual No. 2300-5000-01

5730 Buckingham Parkway
Culver City. CA 90230

Copyright 1980

FOREWORD

The 2300-ADS Software Reference Manual is divided into six sections as
listed below.

Section 1 coptains a summary of each ADS system program, a description
of command and filename conventions, precautions and start-up informa­
tion.

Sections 2 through 6 explain the purpose, operation and available com­
mands for the ADS system programs: Manager, Editor, Assembler, Linker
and Command File Processor.

Since operating procedures and commands vary between processors, the
Debugger program is not described here. Refer to the appropriate personal­
ity manual for detailed debugging instructions.

Information regarding the Pro~og PROM Programmer 920 and 900B units and
the DATAIO PROM Programming unit is provided in Appendices A and B. Appen­
dix C provides information on baud rates, parity values, character length
and stop bits used with the serial ports. Appendix D defines ASCII charac­
ter code conversion.

v

SECTION 1 - INTRODUCTION

1. 1
1.2
1.3
1,4

1.5

1.6
1.7
1.8

1.9
1.10
1.11

Software Development ••••••••••••••
Hardware Development ••••••••••••••
Keyboard ••••••••••••••••••••••••••

.............
Command Conventions •••••••••••••••••••••••
Commands ••••••••••••••••••••••••••••••••••
Parameters •••••••••••••••••••••••••••••••••••••
Special Key~ •••••••••••••••••••••••••••••••••••
User Verification ••••••••••••••••••••••••••••••
Command Completion •••••••••••••••••••••••••••••
Filename Conventions ••••••••••••••••
E xc e p t ion s. . . • .
Filename Prefixes ••••••••••••••••••••••••••••••
Filename Parameters.· •••••••••••••••••••••••••••
Diskettes
Insertion Into Drive •••••••••••••••••••••••••••
Physical Write Protection ••••••••••••••••••••••
Starting Procedure •••••••••••••••••••••••••••••
Invoke Programs ••••••••••••••••••••••••••••••••
Power Down •••••••••••••••••••••••••••••••••••••

SECTI ON 2 - MANAGER

2.1
2.2
2.3
2.4
2.5
2.6

2.7

List
List

Introduction •••••••••••••••••••••••••••••••••••
File Attributes ••••••••••••••••••••••••••••••••
Diskette Initialization ••••••••••••••••••••••••
Diskette Directory ••••••••••••••••••••••••• ~ •••
Command Line Editing •••••••••••••••••••••••••••
Wild Card Operations •••••••••••••••••••••••••••
Single Character Wi~d Card Symbol ••••••••••••••
Previous Specification Wild Card Symbol ••••••••
Single, Multiple or No Character Wild Card
Symbol•••.•.......•.......................
Wild Carding by Attribute ••••••••••••••••••••••
Manager Queries During Wild Card Operations ••••
Option Switches ••••••••••••••••••••••••••••••••
fA Switch •••••••••••••••••••••• ~ •••••••••••••••
/ C Switch ••••.•.•..•..••••••..•••.•.•••••..••••
/ Q Swi tc h ..•................•...•...•....•...•.
Ip Switch ...•..........•.......••...•.......•..
Iv Switch•............•...•..•..••.••.•

of Connna I).d s !'~ ••••••••••••••••••••••••
of Messages ••••••••••••• : ••••••••••••••••••••••••

vii

TABLE OF CONTENTS

Page

1-1
1-2
1-2
1-2
1-2
1-2
1-4
1-4
1-5
1-5
1-6
1-6
1-8
1-9
1-9
1-10
1-11
1-11
1-11

2-1
2-1
2-2
2-2
2-3
2-3
2-4
2-4

a-5
2-5
2-6
2-6
2-6
2-6
2-6
2-6
2-7
2-9
2-19

SECTION 3 - EDITOR

3.1
3.2
3.3
3.4
List
List

SECTION 4

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11

Introduction •••••••••••••••••••••••••••••••••••
Editor Display •••••••••••••••••••••••••••••••••
Editing Modes ••••••••••••••••••••••••••••••••••
Input and Output •••••••••••••••••••••••••••••••

of Command s ••••••••••••••••••••••••••••••••••••••
of Messages •••••••••••••••••

ASSEMBLER

Introduction •••••••••••••••••••••••••••••••••••
Assembler Input ••••••••••••••••••••••••••••••••
Assembler Output •••••••••••••••••••••••••••••••
Program Segments •••••••••••••••••••••••••••••••
Location Counters •••••••••••••••••
Assembler Options ••••••••••••••••••••••••••••••
Specifying Assembler Files •••••••••••••••••••••
Assembler Processing •••••••••• '.-••••••••••••••••
Halt Assembly ••••••••••••••••••••••••••••••••••
Assembler Statement Syntax •••••••••••••••••••••
Label Field ••••••••••••••••••••••••••••••••••••
Operation Code Field •••••••••••••••••••••••••••
Operand Field ••••••••••••••••••••••••••••••••••
Connnent Field •..•....• ·••..•... ~ •.........
Connnent Statement ••••••••••••••••••••••••••••••
Assembler Directives •••••••••••••••••••••••••••
Segment Directives •••••••••••••••••••••••••••••
Segment Origin Directive ••••••••••••••••••• ~ •••
Global Directive •••••••••••••••••••••••••••••••
END Directive ••••••••••••••••••••••••••••••••••
EQU Directive ••••••••••••••••••••••••••••••••••
Define Constants Directive •••••••••••••••••••••
Define Memory Space Directive ••••••••••••••••••
Printer Control Directives •••••••••••••••••••••
Macr as •••
Syntax •••
Substitution •••••••••••••••••••••••••••••••••••
Liberal Ampersand ••••••••••••••••••••••••••••••
Placement of Macro Definitions •••••••••••••••••
Duplicate Macro Definitions ••••••••••••••••••••
Generating Unique Labels •••••••••••••••••••••••
Concatenating Parameters •••••••••••••••••••••••
Macro Calls Within Macros ••••••••••••••••••••••
EXITM Statement ••••••••••••••••••••••••••••••••
Conditional Assembly •••••••••••••••••••••••••• .)
DEFL Statement •••••••••••••••••••••••••••••••••
DEFG Statement •••••••••••••••••••••••••••••••••
SUBSTR Statement •••••••••••••••••••••••••••••••
LENGTH Statement •••••••••••••••••••••••••••••••

viii

TABLE OF CONTENTS

3-1
3-1
3-2
3-2
3-3
3-19

4-1
4-1
4-2
4-4
4-4
4-4
4-5
4-6
4-6
4-6
4-6
4-7
4-7
4-12
4-12
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-17
4-18
4-18
4-18
4-19
4-19
4-20
4-20
4-20
4-21
4-21
4-21
4-22
4-22

4.12

List
List

IF Block •••• • • • •••••••••••••••••••••••••• ft •••••

DO Block ••••
Advanced Features •••••••••••••••••
Subscripted Set Symbols ••••••••••••••••••••••••
Indirect Set Symbols •••••••••••••••••••••••••••

of Assembler Messages ••••••••••••••••••••••••••••
of Macro and Conditional Assembly Messages •••••••

SECTION 5 - LINKER

5.1
5."2
5.3
5.4
5.5
5.6
5.7
List

SECTION 6

6.1
6.2
6.3
6.4

6.5
6.6
6.7
List

APPENDIX A

Introduction •• ~ •••••••••••••••••••••••••
Linker Input •••••••••••
Linker Output ••••••••••
Options
Co~mand s •••••••••••••••••••••••••••••••••••••••
Memory Map Output ••••••••••••••••••
Reference List Output ••••••••••••••

of Messages •••••••••••••••••••

COMMAND FILE PROCESSOR

Introductipn •••• ~ ••••••••••••••••••••••••••••••
Command File Creation •••• , •••••••••••••••••••••
Initiate Command File Processing •••••••••••••••
Cpmmand File Processor Features~ •••••••••••••••
AL Feature •••••••••••••••••••••••••••••••••••••
AK Feature •••••••••••••••••••••••••••••••••••••
An Feature ••••••• , •••••••••• ~ ••••••••••••••••••
A" F ea t u r e •••••••••••••• ~ •••••••••••••••••• -••••
Keyboard-Only Input ••••••••••••••••••••••••••••
Err or s ..•.•....••.•••....•...•..••••...•.•..•.•
Abort Processing •••••••••••••••••••••••••••••••

of Messages ••••••••••••••••••••••••••••••••••••••

PROLOG PROM PROGRAMMER INTERFACES

APPENDIX B - DATAiO PROM PROGRAMMER INTERFACE

APPENDIX C - SERIAL PORT VALUES

TABLE OF CONTENTS

4-22
4-24
4 25
4-25
4-26
4-27
4-29

5-1
5-1
5-1
5-1
5-2
5-5
5-6
5-7

6-1
6-1
6-1
6-2
6-2
6-3
6-5
6-5
6-6
6-6
6-6
6-7

APPENDIX D - AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII)

ix

Figure

1-1
1-2
1-3
3-1
4-1
4-2
4-3
4-4
4-5
5-1
5-2
5-3

Table

2-A
3-A
4-A
5-A
A-I
A-2
A-3
A-4
A-5
A-6
B-1
B-2
B-3
B-4
D-l

LIST OF ILLUSTRATION

2300 ADS Keyboard ••• ~ •••••••••••••••••••••••••••••••••••••
Insertion Into Drive ••••• ~ ••••••••••••••••••••••••••••••••
Physical Write Protection ••••••••••••• ~ •••••••••••••••••••
Editor Display ••
Example Assembler Input •••••••••••••••••••••••••••••••
Example Assembler Output ••••••••••••••••••••••••••••••••••
Example Assembler Reference List ••••••••••••••••••••••••••
Example Assembler Display •••••••••••••••••••••••••••••••••
MACRO Definition e._ ••••••••••••••••••••••••••••••

Example Linker Display
Example Memory Map Output •••••••••••••••••••••••••••••••••
Example Linker Reference List Display •••••••••••••••••••••

LIST OF TABLES

File Attributes •••
Keyboard Editing Operations •••••••••••••••••••••••••••••••
Assembler Options •••
Linker Options ••
920 8080/8085 Interface Diskette ••••••••••••••••••••••••••
920 Z80 Interface Diskette ••••••••••••••••••••••••••••••••
900B 8080/8085 Interface Diskette •.••••••••••••••••••••••••
900B Z80 Interface Diskette •••••••••••••••••••••••••••••••
Pin Connections ••••••••••••••••••• ~ •••• ~ ••••••••••••••••••
Jumper Connections ••
DATAlO 8080/8085 Interface Diskette •••••••••••••••••••••••
DATAIO Z80 Interface Diskette •••••••• -•••••••••••••••••••••
Pin Connections •••
Jumper Connections ••
ASCII Character Code Conversion •••••••••••••••••••••••••••

x

Page

1-3
1-10
1-10.
3-2
4-2
4-3
4-3
4-5
4-17
5-3
5-5
5-6

Page

2-1
3-17
4-4
5-2
-A-l
A-2
A-3
A-4
A-5
A-6
B-1
B-2
B-3 '
B-3
D-1

SECTION 1

INTRODUCTI ON

1.1 SOFTWARE DEVELOPMENT

The 2300-ADS provides five major programs for generating and perfecting
user software.

1) Manager. The Manager provides an organization system for storing
information .on diskette. Data are grouped into "files", and the
name, type and length of each file are recorded in a diskette di­
rectory which may be displayed or printed. As files are added,
modified or deleted, the Manager automatically updates the direc­
tory.

2) Editor. Programs or text may be entered from the keyboard or load­
ed from a diskette file into the Editor for modification. Any size
file may be edited, and more than 40 thousand characters of text
may be loaded into the Editor's work space at one time. The scrol­
ling (arrow) keys are used to position work space information for·
viewing o~ the display screen.

3) Assembler. The Assembler translates assembly language programs in­
to relocatable object code and stores it in diskette files. During
translation, the Assembler detects syntax errors and displays or
prints the incorrect lines.

4) Linker. The Linker selects relocatable program segments (RSEGs)
from relocatable object files, links and locates them at absolute
addresses. The result is then written to produce one executable
absolute object file.

5) Debugger. The Debugger allows a program to be executed and exam­
ined for errors. Debugging is performed either with the 2302 Slave
Emulator or with plug~in system modules. Since features included
in the Debugger facility vary from processor to processor ,. the De­
bugger is not described here. Refer ··to the appropriate personality
manual for specif~c operating instructions.

A Command File Processor feature is also provided. This processor
reads command lines from a diskette file and passes them to ADS programs,
thus providing a convenient alterative to the time-consuming method of key­
board command entry. The Command File Processor is particularly helpful
when long sequences of commands must be entered repeatedly.

1-1

INTRODUCTION

1.2 HARDWARE DEVELOPMENT

Two separate hardware facilities are available for hardware develop­
ment: the 2300-ADS Emulator far several 8-bit processors and the 2302 Slave
Emulator for the newest 8-bit processors and for 16-bit processors. Refer
to the 2300-ADS Emulator Manual or the 2302 Slave Emulator Manual for hard­
ware development instructions.

1 • 3 KEYBOARD

Refer to Figure 1-1. The special keys on the left side of the keyboard
are used for text editing or Command Line editing. The arrow or "scrolling"
keys on the right side are used to position memory on the display screen.
The I BREAK! and ISTEPl keys, located on the far right, control hardware and
,ebugfer functions as well as wild card operations in the Manager. The

LOAD key enters the bootstrap loader. The IRESET\ key re-initializes ADS
system programs. All other keyboard characters are used for entering pro­
grams, commands and text. The functions of all special keys are described
in Section 2.5 and the List of Commands in Section 3.

1.4 COMMAND CONVENTIONS

The conventions described here apply to all 2300-ADS system programs,
unless otherwise specified.

Commands.

In this manual commands are shown in upper case, although they may be
entered in either upper or lower case. The syntax descriptions show only
the letters to be entered on the keyboard. For example, to initiate the
Manager's Display command, the user enters:

D

Parameter s.

For clarification purposes, parameters are shown in lower case, al­
though they may be entered in either upper or lower case.

Optional parameters are enclosed in brackets:

[parameter]

Required parameters are enclosed in braces:

{parameter t

1-2

Figure 1-1. 2300 ADS Keyboard

I NTRODU CTI ON

Brackets and braces are shown for clarification purposes only; they should
not be entered with the parameters.

A series of horizontal or vertical dots in command syntax indicates
that the parameter may continue to be entered indefinitely. For example,
after the required expression is entered with the Editor's Find command, op­
tional expressions may be entered:

F{expr}[,expr] •••

When one of several parameters may be selected, the available selec­
tions are listed vertically. In the example below, the user may enter the
Editor's A command without parameters, with a decimal number (n) or with a
dollar sign.

Special Keys.

A letter, series of letters or symbol enclosed in a rectangle indicates
that a special key should be used. For example:

indicates the tab key.

indicates the delete key.

User Verification.

Commands that prompt for verification (other than wild card operations)
are executed upon entry of:

y

for yes, or

N or I RETURN I

for no.

'1-4

INTRODUCTION

Commands that prompt for user verification during wild card operations
are executed upon entry of

y

for yes or

N, I RETURN I, I TAB I, or I STEP I

for no. I BREAK I aborts the operation.

Command Completion.

Unless otherwise specified, the I RETURN I key must be pressed at the
end of a command line in order for the command to be executed.

1.5 FILENAME CONVENTIONS

In the syntax descriptions that follow, the word "filename" refers to
a filename without prefixes or parameters. The word "file-spec" refers to
a filename including any optional prefixes or parameters (see Sections 1.6
and 1.7 for information on prefixes and parameters).

ADS system programs accept only filenames conforming to the following
conventions.

1) A filename must be from one to ten characters in length.

2) The first character must be a letter. Subsequent characters may
be letters, digits or periods (see Exceptions on page 1-6).

3) Spaces are not allowed.

Several example filenames are listed below:

TESTPROG

FILE29

DRIVER 3.R

BIG. PROGRAM

- Valid

- Valid

- Valid

- Invalid; longer than ten
characters

1-5

INTRODUCTI ON

9900PROG

MY-FILE

Exceptions.

- Invalid; first character is not a
letter

- Invalid; hyphen is an illegal
character

Characters other than letters, numbers and periods may appear in a
filename if the filename is enclosed in quotation marks. Also, if enclosed
in quotes, a filename may begin with. a non-alphabetic character. For exam­
pIe, the" two invalid names, 9900PROG and MY-FILE can be validly specified
as:

"9900PROG"
"MY-FILE"

A filename may legally contain a quotation mark if it is followed by a
second quotation mark and if the entire filename is enclosed in quotes. For
example:

.. ABC DEF ..

specifies file ABC"DEF.

1.6 FILENAME PREFIXES

Three types of prefixes may optionally precede a f~lename. Any two
types or all three types may be used in the same filename specification,
provided they are entered in the following order:

[new/old-spec:] [device-spec:] [(attribute-spec)]

1) New/Old Prefix. The ADS assumes that when an output filename is
called for, the existing file should be overwritten or, if it does
not exist, a new file should be created. In some instances the
user may wish to override this default. . Two prefixes are available
for this purpose.

a) N: Prefix. The N: prefix instructs the ADS to create a new
file, but not to write over the file if it exists. Examples:

N:OUTFILE

N:1:DEVTABLE

- specifies a new file named OUTFILE;

- specifies a new file on drive 1 named
DEVTABLE.

1-6

INTRODUCTION

b) 0: Prefix. The 0: prefix instructs the ADS to write over an
existing file and insures that an error will result if the
file does not exist. Examples:

O:'OUTFILE

O:1:(S)TEXT2

- specifies an existing file on drive 0
named OUTFILEj

- specifies an existing source file on
drive 1 named TEXT2.

2) . Device Prefix. A device prefix specifies the physical device to or
from which a file will be transferred. The various disk drives,
the printer and the serial output ports are treated as file­
oriented devices by the ADS. Thus, the user may select any avail­
able device by entering a device prefix with a filename. If a de­
vice prefix is not entered, the ADS defaults to disk drive O.

a) Disk Drive. A disk drive is specified by prefixing the file­
name with the desired drive number followed by a colon. For
exani"ple:

1 :CMDPROG
O:TABLE.ZSO

b) Parallel Port Printer. Any output file may be transferred
directly to the printer by entering:

P:

P: is the entire filename specification. For example:

M PROG,P:

transfers the file PROG to the printer. Refer to the List of
Commands at the end of Section 2 for more information on the M
command.

c) Serial Port. A serial port is specified as:

S [nl :

where n is the optional port number. The default port number,
as well as the baud rate and parity options may be preset using
the Manager's I command (see List of Commands at the end of
Section 2). Presettings may be overridden by including par-

,~

ameters in the filename specification (see Section 1.7).

1-7

INTRODUCTI ON

3) Attribute Prefix. The Manager program permits the user to specify
the attribut~s associated with a file. (These specifications are
one-letter codes which identify the file type. Refer to Section
2.2 for additional information on file attributes.) When it is
necessary to specify an attribute(s) with a filename, enclose the
attribute(~) .in parentheses~ For example:

(S)NEWFILE

(PO)MASTER

1: (R)SUBR2

1.7 FILENAME PARAMETERS

- indicates a source file named NEWFILE;

- indicates a permanent object file named
MASTER;

- indicates a relocatable file named
SUBR2.

In some instances, additional information (other than the filename it­
self and optional prefixes) is required for a filename specification. For
example, when a serial port file is specified, parameters may be appended to
specify the baud rate and parity options. A filename parameter is of the
form:

{file-spec}[/parameter ~ame=parameter value]

Two types of parameter values may be used.

1) Integer Parameter Value. An integer parameter value is used when a
decimal number must be specified. For example, when a serial out­
put port is specified, the baud rate may be specified as well:

I S2: /BAUD=1200

In the example above, serial port 2 is initialized to 1200 baud.
Refer to Appendix C for additional information on baud rates.

2) String Parameter Values. String parameter values are similar to
integer parameter values except that the value following the equal
sign may be any string of characters. If characters other than
letters, numbers or periods are included, the string must be en­
closed in quotation marks. A quotation mark may appear in a string
parameter if it is followed by a second quot~tion mark.

String parameters are necessary when specifying serial port parity.
For example:

/PARI TY=ODD

1-8

INTRODUCTION

Refer to Appendix C for additional information on parity.

When multiple filename parameters are specified, each parameter is
~elimited by the slash that begins the parameter. Blanks may be
entered between parameters as shown in the example below.

lSI: /LENGTH=7 /BAUD=600 /PARITY=EVEN

This command initializes serial port 1 to a character length of 7,
a baud rate of 600, and even parity.

1. 8 DI SKETTES

Diskettes are coated with a magnetic material which is essential for
storing information. A plastic jacket covers and protects most of the mag­
netic surface, but for additional protection and to insure diskette relia­
bility, the following rules should be observed.

1) Never touch the magnetic surface.

2) When a diskette is not in use, it should be stored in the paper en­
velope provided.

3) Never bend a diskette.

4) Never subject a diskette to magnetic influences. Do not store near
power transformers or motors.

5) Do not subject a diskette to temperatures below 50°F (10°C) or
above 125°F (50°C).

6) Use only felt tip pen (~ever ball point pen or lead. pencil) to
write on a diskette label.

7) Do not expose a diskette to sunlight.

8) Do not attempt to clean the magnetic surface; abrasions may cause
damage.

Insertion Into Drive.

Refer to Figure 1-2. To open the drive door, depress the drive door
latch. Insert the diskette with the label to the right. When the diskette
has been inserted completely, slide the drive door ·closed.

1-9

INTRODUCTION

Physical Write Protection.

Refer to Figure 1-3. A diskette with an uncovered write protection
hole or notch can be accessed for reading, but not for writing. S~ick-on
tabs supplied with each package of diskettes may be used to "unprotect" the
diskette and allow writing. If stick-on tabs are not available, opaque tape
may be used to cover the write protection notch.

Figure 1-2. I nser tion I nto Drive.

UNPROTECTED

Figure 1:-3.

Write
Protect
Tab

WRITE PROTECTED

Physical Write Protection.

1-10

INTRODUCTION

1.9 STARTING PROCEDURE

Follow the steps below to begin ADS operation.

1) Plug the disk drive unit into the AC connector on the ADS back
panel.

2) Turn on the power switch on the ADS back panel.

3) Turn on the disk drive unit.

4) Insert the ADS system diskette into drive O.

1.10 INVOKE PROGRAMS

According to the following list, type J{character} to load the desired
ADS system program.

M Manager
E Editor
A Assembler
L Linker
D Debugger

1.11 POWER DOWN

Diskette-stored information may be altered or erased ~f left in the disk
drive unit(s) during power down. Remove all diskettes from all disk drives
before turning off power.

1-11

SECTION 2

MANAGER

2.1 INTRODUCTION

The Manager provides a convenient organization system for storing
source files, relocatable object files, executable object files, text files,
etc., on diskette. Groups of information (files) are given names by the
~ser and stored on one or more of the 76 available tracks on each diskette.
Files may be expanded, copied, deleted, etc., by entering the appropriate
keyboard commands.

2.2 FILE ATTRIBUTES

File attributes help identify files and protect them against acciden­
tal overwriting or deletion. The available attributes are defined below:

o executable absolute object file

P permanent file

R relocatable object file

S source file

W write-protected file

Z permanent write-protected system file

ADS system programs require input file attributes and assign output­
file attributes as listed in Table 2-A.

Table 2-A. File Attributes

Program Input File Attributes Output Fi1.e Attr ibutes

Editor S S

Assembler S Rand S

l,.inker R o and S

Debugger o o

Command File Processor S

2-1

MANAGER

ADS system programs accept only files with the correct attribute. For
example, a relocatable object file (R attribute) cannot be assembled because
the Assembler accepts only source (S attribute) files. File attributes may
be removed and/or changed to accommodate ADS system program requirements by
use of the Manager's Attribute or Rename command (see List of Commands at
the end of Section 2).

2.3 DISKETTE INITIALIZATION

ADS system diskettes have been configured in a 77-track format. All
new or non-ADS system diskettes must be initialized for use in an ADS devel­
opment system. Initialization defines the diskette boundaries for stored
information and erases any previously stored data.

To perform the initialization process, type:

I{drive number} [/S=sector spacing][/C][/p]

A drive number must be specified. If the sector spacing parameter is
omitted, the Manager defaults to 8 (6800/02 defaults to 12). For 4MHz
CPUs, faster access will result in most situations if 4 is specified in
the sector spacing parameter. As a safety precaution, the I command re­
quests confirmation before beginning the initialization process. For infor­
mation on the /C and /p option switches, refer to Section 2.7.

2.4 DISKETTE DIRECTORY

Upon initialization, the Manager creates a one-traCK diskette directory
file (named DIR) which contains space for the filenames, file attributes and
the number of tracks allocated to each file. The filenames in the directory
may be displayed in alphabetical order by typing:

D[drive number]

If the drive number is omitted, the Manager defaults to drive O. To print
the directory, type:

D[drive number]/P

The Manager automatically updates tbe directory as files are added, modified
or deleted. Refer to the List of Commands at the end of Section 2 for wild
card operations with the D command.

2-2

MANAGER

NOTE 1

In the List of Commands at the end of
Section 2, wild card parameters are
designated by the words "wild-spec".

NOTE 2

Wild card specifications may be used
only with Manager commands. The
Editor, Assembler, Linker, Command
File Processor and Debugger do not
support wild card operations.

Single Character Wild Card Symbol.

The question mark (?) character within a filename implies any single
legal filename character occurring in the same position in the name. For
example:

M PROG?, 1 :PROG?

moves the files PROG1, PROG2 and PROGX from drive 0 to drive 1, but not the
files PROG10, PROGRAM or PROG.

Previous Specification Wild Card Symbol.

The dollar sign ($) may be used to specify a previous entry. For ex­
ample, the command:

M PROG?, 1 :PROG?

can be simplified by using the $ symbol:

M PROG?,l:$

Both commands perform the same function.

2-4

MANAGER

Single, Multiple or No Character Wild Card Symbol.

The asterisk (*) character within a filename implies any group of zero
or more characters. For example, using the Move command:

M*,I:*

moves all files (excep~ those whose filenames are enclosed in quotes) from
drive 0 to drive 1. The command:

M*,I:"*"

moves all files (including those whose filenames are enclosed in quotes)
from dr i v e 0 to dr i ve 1.

To scratch (delete) a collection of files from drive 0 whose filenames
begin with the characters SOURCE, the command:

S SOURCE*

is used. The files SOURCE. 0, SOURCE.N and SOURCE123 are deleted, but the
files RESOURCE and ASOURCEI are not affected.

To assign attributes to a collection of files on drive 0 containing the
string GO, the command:

R*GO*,(S)$

is used. Every file whose name contains the string GO -(such as AGONY, GOSH
or AGO) is assigned the S attribute.

Wild Carding by Attribute.

Files may be wild carded by attribute, as well as by nape, or by a com­
bination of the two. The attribute specification, shown in parentheses,
must follow the drive number and colon, if present. For example:

M (S)*,I:*

moves all source files from drive 0 to drive 1.

I f multiple a.t.tributes are coded, only those files having all of the
specified attributes are processed. For example:

S (OW)*

scratches only those files with both the 0 and W attributes. Files with
only one of these attributes are not scratched.

2-5

MANAGER

Manager Queries During Wild Card Operations.

When the Manager prompts for verification before executing a command,
the user may respond with Y (the file is processed) or N, I STEP I, InBl or
!RETURNI (the file is skipped). After receiving verification from the user,
the Manager will continue to prompt for subsequent files. To abort the
entire operation, the !BREAKI key is pressed.

When the Manager prompts for information such as attributes during an A
command, the ! TAB I key or ffiflli key may be used to skip the file' and leave
its attributes unchanged. Entering a I RETURN I clears all attributes from
the file. '

2.7 OPTION SWITCHES

Many Manager commands may be appended with an option switch. Five
switches are available. Each switch must begin with a slash. Refer to the
List of Commands at the end of Section 2 for specific uses of the option
switches as they apply to individual commands.

IA Switch.

Some commands ask for user verification before executing the commanded
function. The IA option switch may be used to override this verification.
When the IA switch is specified, all files are processed as if Y were typed
in response to each query.

Ic Switch.

If the number of files processed exceeds the space available on the
display screen, the Manager will pause and the message "PRESS ANY KEY TO
CONTINUE" will appear. The Ic option switch suppresses this message as well
as all queries and prompts (the Manager assumes Y). The IC switch is par­
ticular ly helpful when using, command files and the length of displayed in­
formation is unknown.

IQ Switch.

The IQ switch requests verification for every case. Thus, the user may
select a subset of the wild carded files by typing Y for yes, N, ISTEPI,
ITABI or IRETURNl to skip to the next case, or I BREAK I to abort the opera­
tion.

Ip Switch.

The Ip switch.routes all data on the display screen to the Centronix
compatible printer~

2-6

MANAGER

Iv Switch.

The Iv switch may be used with a Move (M) command to compare the moved
files to the original files.

2-7

MANAGER

LI ST OF COMMANDS

ASSIGN ATTRIBUTES

A{file-spec} {/A=attribute} [/p]

Alwild- s pec} [/ A=attribute) [/p) ug]

PURPOSE

Attributes help identify files and protect them against accidental
destruction.

PARAMETERS

NOTES

/A assigns new attributes and overwrites any existing attributes.
Any of the following attributes may be specified:

o executable absolute object file
P permanent file
R relocatable object file
S source file
W write-protected file
Z permanent, write-protected file

A file may be assigned any combination of attributes. Attributes
may be added and removed to accommodate ADS system program re­
quirements (see Section 2.2, Table 2-A).

The wild card feature may be used to change the attributes of a
group of files. If the attributes parameter is omitted, the Man­
ager will prompt for the attributes for each file individually.
The I TAB I key may be used to leave the at tr ibutes of any file un­
changed and skip to the next file.

See Section 2.7 for option switch definitions.

2-9

MANAGER

LIST OF COMMANDS

CREATE FILE

C{filename}[/I=initial-alloc[/E=extension-alloc]][/P][IC]

PURPOSE

The C command creates a new file and allocates for that file the
number of tracks specified in the II parameter.

PARAMETERS

NOTES

II specifies the initial size of the file. When data are written
into the file and the file exceeds its initial allocation, addi­
tional space is automatically allocated until the disk becomes
full.

IE specifie's the number of additional tracks to be allocated when
the file expands beyond its allocated size. If this parameter is
omitted, the defatilt is one track at a time (each time the file
expands beyond its allocated size).

As stated in Section 1.6, new files are created automatically.
The C command provides the additional feature of allowing a track
allocation to be specified.

The C command does not support the wild card feature; only one
file may be created at a time.

See Section 2.7 for option switch definitions.

2-10

MANAGER

LIST OF COMMANDS

DISPLAY

D{wild-spec} [/C][/p]

D[drive number] [/C][/p]

PURPOSE

NOTES

The D command displays the diskette directory (DIR) which shows
the filenames (alphabetically sorted), file attributes) the number
of tracks allocated to each file, and the number of remaining free
tracks on the diskette.

If a wild card filename or attribute specification is given, only
the files matching the specification will be listed.

See Section 2.7 for option switch definitions.

EXCHANGE FILENAMES

E{filename one},{filename two}

Elwild-speC}['Wild-speCl[;~][/rl

PURPOSE

NOTES

The E comma~d exchanges the specified filenames (this does not ex­
change filename prefixes).

Only the names are exchanged; all other information remains the
same.

See Section 2.7 for option switch definitions.

2-11

MANAGER

LI ST OF COMMANDS

FREE UNUSED SPACE

F~filename}

Flwild-specl[~~][/Pl
PURPOSE

The F command releases unused diskette tracks from the specified
files.

NqTES

See Section 2.7 for option switch definitions.

2-12

MANAGER

LIST OF COMMANDS

IN! TIALIZE

The I command performs two functions: initializing a diskette and initial­
iz~ng a serial pori. Each function is described here separately.

IN! TIALIZE DISKETTE

I{drive number} [/S=sector spacing][/p]

PURPOSE
The I command defines the diskette boundaries needed to
access diskette-stored information, erases any previously
stored data and creates a one-track directory file named DIR.

PARAMETERS

NOTES

A drive number parameter must be specified.

IS may be an integer between 4 and 12, inclusive. If this
para~eter is o~itted, the Manager defaults to 8 (6800/02
defaults to \2). For 4MHz CPUs, faster access will result
in most situation,. if 4 is specified in the sector spacing
parameter~

As a safety precaution, the I command requests confirmation
before beginning the initialization process. When initial­
ization is complete, the diskette directory will be dis­
played.

See Section 2.7 for option switch definitions.

2-13

MANAGER

LIST OF COMMANDS

INI TI ALI ZE SERIAL PORT

I{S[n]:}[/BAUD=n][/PARITY=letter][/LENGTH=n] [/STOPS=n]

PURPOSE

The I command initializes and presets the serial port par­
ameters. The ports must be initialized before they can be
used.

PARAMETERS

NOTES

If a port number (n) is not specified, serial port 1 is auto­
matically set to the values specified in the /BAUD, /PARITY,
/LENGTH and /STOPS parameters. The defaults for these par­
ameter s are:

/BAUD=300
/p ARI TY=none
/LENGTH=7
/STOPS=1 bit

Once a serial port parameter value is set, it remains until
it is reset or until the \1QA[] key is pressed.

Refer to Appendix C for the available values.

2-14

MANAGER

LI S T OF COMMANDS

MOVE FILES

M{from filename},{[N:]to filename} [/V]

M{input wild-spec}l,output Wild-speC][;~l/P]l/V]

M{input wild-spec},{lN:]to filename}l!i]l/P]l/V]

PURPOSE

The M command moves (copies) the specified file into an existing
file or a newly created file. The copied file remains unchanged
in the "from" location.

PARAMETERS

NOTES

The to filename parameter may contain any of the valid prefixes
discussed in Section 1.6.

If the output wild-spec parameter is omitted, the Manager will
prompt for each output name.

See Section 2.7 for option switch definitions.

2-15

MANAGER

LIST OF COMMANDS

RENAME FILE

R{current fiLe specification},{new file specification}

Rlinput wild-spec! [,output wild-speCI~~][/PI

PURPOSE

The R command renames an existing file.

PARAMETERS

NOTES

If the output wild-spec parameter is omitted, the Manager will
prompt for each output name.

See Section 2.7 for option switch definitions.

2-16

MANAGER

LIST OF COMMANDS

SCRATCH· FILE

S{filename}

S {wild-spec t[~g} /p]

PURPOSE

The S command scratches (deletes) the specified file(s) from the
diskette and frees the occupied track(s).

NOTES

As a safety precaution, the S command requests confirmation before
beginning deletion.

See Section 2.7 for option switch definitions.

2-17

MANAGER

LI ST OF COMMANDS

VERIFY

V{filename},{filename}

V{wild-spec},{wild-spec}

PURPOSE

The Verify command compares two files or groups of files for
equality.

The following command compares file ABC on drive 2 to file XYZ on
drive 2:

V2:ABC,2:XYZ

In the next example, the diskette in drive a is compared with the
diskette in drive 1:

V*,l:"*"

2-18

MANAGER

LI ST OF MESSAGES

BAD VERIFY

The V option was specified with an M command, and the moved information
was not transferred correctly. Retry with another diskette.

DISK FULL

Diskette track space has been requested, but none is available. Use
the F command to free unused space or use another diskette.

DRI VE NOT READY

The drive door is open', the drive has not yet attained operating speed,
the diskette was inserted incorrectly, or the diskette is defective.

DUPLI CATE NAME

The name specified for creating or renaming a file already exists on
the specified diskette. Respecify the filename.

FILE NOT FOUND

The requested file does not exist, an erroneous drive number was spec­
ified, or the filename was typed incorrectly. Respecify the filename.

INVALID' ATTRIBUTE

The Manager accepts only filenames with any of the following attri­
butes: 0, P, R, S, W or Z. Use the R command to change or remove the
attributes.

INVALID NAME

The filename conventions were not followed or the filename prefixes
and/or parameters were entered out of sequence. Respecify.

PARM ERR

The requested ADS system program (J command) cannot be found on the
diskette in drive 0 or an invalid command letter or parameter was en­
tered in an ADS system command. Respecify.

PERM FILE

The file referenced for deletion has the permanent (p) or permanent
write-protected (Z) attribute and cannot be deleted until the P or Z
attribute has been removed. Use the R command.

2-19

MANAGER

LIST OF MESSAGES

PERM I/O ERR

A permanent diskette input or output error was detected. The cause may
be one of the following: a worn or defective diskette, an attempt to
write into or initialize a physically write-protected diskette, or an
attempt to read or write to an uninitialized diskette.

PRESS ANY KEY TO CONTINUE

The amount of information to be displayed exceeds the length of the
display screen. Press any key except [BREAK I , IRESETI or I~ to
display the remaining information.

SYNTAX

A command containing a syntax error was entered. Respecify.

WRITE PROTECT

A file having the Write protect (W) attribute was selected for output,
or the write-protect notch is uncovered. Remove the W attribute with
the R command, or cover the write-protect notch.

2-20

SECTION 3

EDITOR

3.1 INTRODUCTION

The Editor allows text to be created, corr ected or' expanded thr ough use
of several simple keyboard commands. Text is entered from the keyboard or
loaded from a diskette file into the Editor's "work space", which can hold
more than 40 thousand text characters. Large files can be read into the
work space, edited and written out a portion at a time. Text in the work
space may be viewed on the display screen up to 21 lines at a time.

The Editor's Text Block commands provide a time-saving alternative to
the conventional line-by-line method of editing. An entire block of text
can be moved, copied or deleted within the Editor's work space. When ex­
tensive editing is necessary, text blocks can be copied to an external file
or merged into the work space at the desired location.

3.2 EDITOR DISPLAY

The Editor display is made up of four elements as described below (see
Figure 3-1).

1) Edit Line. Most modifications to text must be entered on the Edit
Line, which is located in the center of the display, surrounded by
two horizontal dashed lines. The cursor maybe moved to the Edit
Line from the Command Line with the I RETURN I key. Text may be po­
sit ioned for editing by use of the arrow keys or the Advance and
Back-up commands.

2) Tab Line. The Tab Line is the horizontal dashed line located just
above the Edit Line. Tab stops are indicated on the Tab Line by
single vertical lines. The Editor automatically sets tab stops at
character positions 11, 19 and 42, which is convenient for assembly
language programs. Tab stop positions may be cleared and/or
changed as desired.

3) Command Line. Upon entry to the Editor, the cursor appears on the
Command Line, located at the bottom of the display. When the cur­
sor is in this position, the Editor is ready to accept keyboard
commands.

4) Message Line. The Editor displays error messages, queries and
prompts on the line located just above the Command Line. The Hes­
sage Line temporarily replaces the bottom line of displayed text.

3-1

EDITOR

Figure 3-1. Editor Display.

3.3 EDITING MODES

The Editor provides three main modes as described below.

1) Command Mode. Any command (except special keys) may be entered to
the Editor when in Command Mode. The Editor is in Command Mode
when the cursor is located on the Command Line.

2) Line Edit Mode. The Editor enters Line Edit Mode when the I RETURN I
key is pressed; I RETURN I moves the cursor to the Edit Line. Text
on the Edit Line may then be modified as desired.

3) Line Insert Mode. The I command invokes Line Insert Mode which al­
lows new text lines to entered. Two successive depressions of
I RETURN I cause the Editor to leave Line Insert Mode and the cursor
to be moved to the Command Line.

3.4 INPUT AND OUTPUT

Diskette files loaded into the Editor must possess an S attribute (re­
fer to the Manager's A command to assign or remove attributes).

To store edited or newly entered text, the information contained in the
work space must be written to a disket~e file using the W or N commands (see
List of Commands starting on the following page).

3-2

EDI TOR

LIST OF COMMANDS

ADVANCE TEXT

PURPOSE

The A command advances text in the work space.

PARAMETERS

NOTES

n may be a decimal number between 1 and 255, inclusive. If n ex­
ceeds the number of lines between the present position of the dis­
play and the end of the work space, the display is advanced to the
end of the work space.

$ advances the display to the end of the work space.

Entering an A command without parameters advances the text one
line. Al terna ti vely, the m key may be used to advance tex tone
line at a time.

3-3

EDI TOR

LIST OF COMMANDS

BACK UP TEXT

CLEAR

CLR

PURPOSE

The B command backs up text in the work space.

PARAMETERS

NOTES

n may be a decimal number between 1 and 255, inclusive. If n ex­
ceeds the number of lines between the present posi tion of the dis­
play and the beginning of the work space, the display is posi­
tioned at the beginning of the work space.

$ backs up the display to the beginning of the work space.

Entering a B command, without parameters backs up the text one
line. Alternatively, the OJ key may be used to back up text one
line at a time.

PURPOSE

The CLR command clears the work space and, consequently, the dis­
play. The informat~on in the work space is lost.

3-4

EDI TOR

LIST OF COMMANDS

DELETE

DEL[n]

PURPOSE

The DEL command deletes the Edit Line and n-l lines following the
Edit Line.

PARAMETERS

n may be a decimal number between 1 and 255, inclusive. If n is
not specified, only the Edit Line is deleted.

END OUTPUT FILE

E

PURPOSE

The E command terminates use of the output file previously speci­
fied in the last W command. The E command is convenient for writ­
ing to multiple output files.

3-5

EDITOR

LIST OF COMMANDS

FIND AND REPLACE

F[{d}{string}{d}]

F[{d} ~string} {d} [{rstring} {dl [A] [V]]]

PURPOSE

The F command instructs the Editor to search from the Edit Line
to the end of the work space for a match between string and a
character or series of characters in the work space.

PARAMETERS

NOTES

d (delimiter) is any character other than a space that does not
occur in string or rstring.

string is any series of display characters (characters which are
visible on the display screen), including spaces.

rstring (replacement string) is a series of display characters
that will replace string. A null replacement string (the second
and third delimiters are typed with no intervening spaces) may be
used to delete characters from the work space.

A (all) specifies that all matches of string from the Edit Line
to the end of the work space be replaced.

V (verify) specifies that the Editor ask for verification before
replacing a strlng.

If F is entered without parameters, the previously specified
string is used. In this case, the replace option is not acti­
vated.

The F command does not differentiate between upper and lower case
characters.

3-6

EDITOR

LIST OF COMMANDS

FIND AND REPLACE (continued)

EXAMPLES

The following three commands are legal F commands:

F I RETURN I Finds the string specified in a previous
F (with string) command.

F,OLDSTRING TO BE DISPLAYED,

F/BAD/GOOD/AV

The command:

F.TEST.

- Finds the next occurrence of OLDSTRING
TO BE DI S PLAYED

- Finds all occurrences of BAD and replaces
them with GOOD. The F command asks for
verification for each case.

finds two matches in the string:

THI SIS A TEST OF THE FI TTEST. ~

Not only does the Editor find the word TEST; it also matches the
last syllable of FITTEST. Matches of this kind can be prevented
by entering spaces on either side of the string:

F. TEST.

3-7

EDITOR

LIST OF COMMANDS

GET AND REPLACE

G[{d}{string}{d}]

G[{d}tstring}tdl[{rstring}{d}[A][V]]]

PURPOSE

The G command searches the workspace beginning at the Edit Line
and the remainder of the previously specified input file for the
specified string.

PARAMETERS

NOTES

d (delimiter) is any character other than a space that does not
occur in string or rstring.

string is any series of display characters, including spaces.

rstring (replacement string) is a series of display characters
that will replace string. A null replacement string (the second
and third delimiters are typed with no intervening spaces) may be
used to delete characters from the work space.

A (all) specifies that all matches of string from the Edit Line
to the end of the work space be replaced.

v (verify) specifies that the Editor ask for verification before
replacing a string.

If G is entered without parameters, the previously specified
string is used. In this case, the replace option is not acti­
vated.

The G command does not differentiate between upper and lower case
characters.

If the end of the work space is reached during a Get command, the
entire contents of the work space are written (appended) to the
current output file (specified in the last W with filename com­
mand). The work space is then filled with more text from the
current input file (specified in the last L with filename com­
mand), and the search continues until a match" is found or until
the end of the input file is reached.

3-8

EDITOR

LIST OF COMMANDS

INSERT liNE

I

PURPOSE

NOTES

The I command invokes Line Insert Mode, which allows the Editor to
accept new text lines. The cursor is moved to the Edit Line.

Two successive depressions of I RETURN I instruct the Editor to
leave Line I nsert Mode and move the cursor to the Command Line.

INSERT CHARACTER

IINSI

PURPOSE

NOTES

The lINS] key invokes Character Insert Submode (a submode of line
Insert Mode) which allows characters to be inserted or deleted
within a line without retyping the rest of the line,

To enter Character Insert Submode, press the IINSI key once; to
exit, ·press IINS I again. When in this submode, an asteris.k is
displayed on the dashed line below the Edit Line at the point
where new characters will be inserted.

3-9

EDITOR

LIST OF COMMANDS

LOAD

L[filename]

NEXT

N

PURPOSE

The L command loads the work space with text from the input file
(specified in the last L with filename command) until the work
space is full or until the end of file is reached.

NOTES.

If the work space contains text, the L command appends the file to
the end of that text. If the L command terminates due to a full
work space, a message is generated. After a portion or all of the
text has been written out, an L (without filename) command may be
entered to load the remainder of the file. If an L command is
executed when the work space is full, the command is ignored, an
error message is generated, and the work space remains unaltered.

PURPOSE

NOTES

The N command writes the data contained in the work space to the
previously specified output file (W with filename command) and
loads the work space from the previously specified input file (L
with filename command).

This command is useful for editing lengthy files which exceed the
capacity of the work space. Successive N commands may be entered
until the end of file is reached.

3-10

EDI TOR

LIST OF COMMANDS

SET LOWER CASE

SL

PURPOSE

The SL command allows entry of both upper and lower case char­
acters.

SET UPPER CASE

SU

PURPOSE

The SU command displays all keyboard entered alphabetic characters
in upper case whether or not the shift key is used.

TAB CLEAR AND SET

T[column number] [,column number] •••

PURPOSE

The T command is used to clear or set tab stops.

PARAMETERS

NOTES

Tab stops may be set by entering the desired number in the column
number parameter (s). column number may be an integer between 2
and 80, inclusive.

Entering a T command without parameters clears all tab stops.

Tab stops must be set in numerical order. Tab stops are shown by
single vertical lines on the Tab Line of the display_

3-11

ED1 TOR

L1 ST OF COMMANDS

TEXT BLOCK COMMANDS

Six text block commands are available. Each is defined here in the
order of use.

PLACE MARKER

P

PURPOSE

NOTES

The P command temporarily places a marker in the work space
which defines a text block boundary for subs~quent copying,
moving or deletion.

The marker is placed above the Edit Line. Two markers delin­
eate a text block. Markers may be redefined, but no more
than two markers may exist at a time; setting a third marker
automatically clears the first. The block is displayed in
reverse video. Either the top or bottom marker may be set
first.

Most commands that modify text within the workspace automat­
ically clear both markers. Commands which do not modify the
text, such as cursor movement commands, do not affect the
markers.

3-12

EDITOR

LIST OF COMMANDS

TEXT BLOCK COMMANDS (continued)

COpy

C

PURPOSE

NOTES

The C command copies a text block (previously set by the P
command) immediately above the current Edit Line.

The C command does not delete the original block, nor does it
clear the markers.

A text block may be copied repeatedly in any location (except
within the text block) by entering a sequence of C commands.
If the work space becomes full, the message "OVERFLOW" is
displayed. The user m~st then create free space (via a W$ or
CT command) before the Copy can be executed.

COpy FROM

CF[filename]

PURPOSE

NOTES

The CF command allows text from a specified file t~ be merged
into the work space immediately before the current Edit Line.

The first time a CF command is entered, a filename must be
specified.

If the entire file will not fit into the work space, the mes-
. sage "OVERFLOW" will appear on the display screen. The work

space contents may then be written out (W$ or CT command) and
the remaind~r of the file may be loaded by entering CF (with­
out filename). This process may be repeated as necessary.

3-13

EDITOR

LIST OF COMMANDS

TEXT BLOCK COMMANDS (continued)

COpy TO

CT[filename]

KILL

K

PURPOSE

NOTES

The CT command copies a text block (previously set by the P
command) to the specified file. If a filename is specified,
any previous file contents are overwritten.

The first time a CT command is entered, a filename must be
specified. Subsequent CT (without filename) commands will
append te~t block data to the file.

The CT command does not delete the text block(s) from the
work space, nor does it clear the markers •.

The CT command does not affect other write or load operations
(W, L or N command s).

It is illegal to enter a CT (without filename) command after
a CF (without filename) command or vice versa.

PURPOSE

NOTES

The K command deletes a text block from the work space anq
clear s the mar ker s.

If the current Edit Line lies within the deleted text block,
the first line after the block will become the new Edit Line.

3-14

EDITOR

LIST OF COMMANDS

TEXT BLOCK COMMANDS (continued)

ti°VE

M

PURPOSE

NOTES

The M command removes a text block from any location in the
work space, inserts it above the Edit Line, and clears the
markers.

The M command does not duplicate text; instead it uses an
algorithm which rotates the text in the work space. Thus, it
is possible to execute a Move even when the work space is
full.

3-15

EDITOR

LIST OF COMMANDS

WRITE

W[$][*][filename]

PURPOSE

The W command writes the work space con'tents to the output file.

PARAMETERS

NOTES

If $ is specified, text from the beginning of the work space to
(but not including) the Edit Line is written to the output file.

If * is specified, text written to the output file will also re­
main in the work space.

If a filename is specified, the W command writes to the beginning
of the file and overwrites any previous contents. If a filename
is not specified, the W command appends the contents of the work
space to the output file specified in the most recent W (with
filename) command.

The specified filename becomes the new output filename used when
subsequent N, G or W (without filename) commands are executed.

W
I

""-J

KEYBOARD
COMMAND

I RETURN I

Space Bar

I BACKSPACE I

d~ iJ!

tfj
l1Ml

l1lli1J

,"CAN'!

I
I
I

!
i

I

COMMAND LI NE

After a command,
I RETURN I enters
the command.
I RETURN I without
a command moves
cursor to Edit
Line.
Enters a blank
under blinking
cursor and moves
cursor right one
space.
Moves cursor left
one space and re-
moves character
under cursor.
Moves cursor left
or right. Does not
affect text. Wraps
around from column
80 to column 1.
Scrolls text
through Com-
mand Line.
No function.

No function.

Deletes characters
on Command Line and
moves cursor to
beginning of line.

TABLE 3~A.

KEY~OARD EDITING OPERATIONS

LINE INSERT MODE LINE EDIT MODE
(Indicated by row of = (Indicated by
characters under Edit cursor on
Line) Edit Line)

Enters characters typed Editor leaves
on Edit Line. Depressing Line Edit
I RETURN I key twice causes Mode and re-
Editor to leave Line I n- turns to
sert Mode and return to Command Mode.
Command Mode.

Same Same

Same Same

Same Same

Editor returns to Scrolls text.
Command Mode. Cursor remains

on Edit Line.
Positions cursor at Same as Line
next tab stop. Insert.
Removes character under Same as Line
cursor and moves all of Insert.
line to right of cursor !
left one space. . i

Same as Line Insert. . :Same as Line
IInsert.
I
I
I

I

Character Insert Submode rnlliJ.
(Indicated by * under
cursor position on Edit
Line)

Editor leaves Character Insert
Submode. Continues in Line
Insert or Line Edit Mode.

Moves cursor, char ac t er under
cursor, and all of line to
right of cursor right one
space. Inserts blank at
former cursor _Qosition.
Removes character to left
of cursor. Cursor and all of
line to right of cursor move
left one space.
Same.

Editor leaves Character Insert
Submode and text is scrolled.

Same as Line Insert.

Same as Line Insert.

Removes line and moves cursor

I
to beginning of line.

EDITOR

LIST OF MESSAGES

END PREVIOUS FILE?

An attempt was made to write to a new output file without ending use
of the current output file (E command). To end the previous file, type
Y; to cancel the write command, type N or !RETURN!.

END FILE

The Editor has reached the end of the input file.

FILE ~Or SPECIFIED

An L, W, N, G, CT or CF command was entered without specifying a file­
name, and input or output files were not previously specified. Retype
the L or W command and include the desired filename, or execute a W
command with a filename before retyping the N or G command.

NOT FOUND

During an F or G command operation, a character string match was not
found in the range of search.

NOT A SOURCE FILE

The file designated in an L, W, CT or CF command does not have an S
attribute. Use the Manager's A command to change the file's attri­
bute(s).

OVERFLOW

The work space is full. Allor part of the work space should be writ­
ten to the output file using an N or W command.

REPLACE THIS LINE?

The F or G command requires verification before replacing a string in
the line displayed. Type Y to reylace, N, I RETURN I !TABI or !STEPI to
continue without replacement, or _BREAK I to cancel execution of the
command.

SAVE DATA?

An attempt was made to jump to another ADS system program without writ­
ing the work space contents to an output file. Type N to erase the
text in the work space and allow the program jump. To cancel the jump
command and preserve the work space text, press any key other than N.

SYNTAX

There was a syntax error in the last command entered. Retype the com­
mand.

3-19

SECTION 4

ASSEMBLER

4.1 INTRODUCTION

The Assembler translates mnemonics (program instructions in a form
easily understood by the programmer) to the machine language instructions
necessary for program execution. The Assembler inplemen~s a standard set
of ~ules for use, options, and Assembler directives which are applicable to
several microprocessor,s. In most cases, the microprocessor instruction
mnemonics and operand formats are identical to those specified by the micro­
processor manufacturer.

Assembler Input.

The Assembler accepts assembly language source code from a diskette
file and, optionally, macro definitions from a macro library file. The As­
sembler reads and evaluates the input file one line at a time. Each line
input to the Assembler must fall in one of the following categories.

1) An assembly language instruction is of the form:

[label]{op-code} [operand][,operand] ••• [;comment]

An optional label may be provided by the programmer. The instruc­
tion mnemonic is specified by the microprocessor manufacturer. An
operand field usually designates either a microprocessor register,
a memory address or both. An optional comment usually contains
explanatory information. Each instruction causes the Assembler to
output one or more bytes of object code. For further information,
see Section 4.8.

2) An Assembler directive. There are two types of Assembler direc­
tives:

a) those which cause the Assembler to perform the clerical tasks
of assembly;

b) macro directives and conditional assembly directives. For fur­
ther information, refer to Sections 4.9 and 4.10.

3) A comment line. The Assembler treats all characters to the right
of a semicolon or any line with an asterisk in column 1 as a
comment statement.

An example Assembler input sequence is shown in Figure 4-1 on the fol­
lowing page.

4-1

ASSEMBLER

Label
Field

*

Op-Code Operand Comments

* Routine to copy a message

*

COpy

LOOP

SPC
RSEG
SPC
LXI
LXI
MVI
SPC
MOV
STAX
INX
INX
DCR
JNZ
SPC

COPYM

H,MSGF
D,MSGT
C,16

A,M
D
H
D
C
LOOP

;Start RSEG COPYM

; Entry point, load "from" address
;Load D,E with "destination" address
;Load C register with count

;Load A from MSGF
; Store A to MSGT
;Increment MSGF pointer
;Increment MSGT pointer
;Decrement count
;If count not 0, jump to LOOP

RET ;Return to main program
SPC
END ;End of this assembly

Figure 4-1. Example Assembler Input

Assembler Output.

The Assembler generates an output file of relocatable object code which
may be processed by the Linker. The Linker combines the file with other re­
locatable files and assigns absolute memory addresses. A symbol table may
be appended to 'the output file if the user wishes to reference memory ad­
dresses via label names during execution.

The Assembler may also print and display a program listing containing
each input line, the hexadecimal representation of the object code generated
by that line, and other information.

The example input shown in Figure 4-1 produces the listing output shown
in Figure 4-2. The first column contains the hexadecimal addresses within
the program segment. The second column contains the object·output in hexa­
decimal.

4-2

Loc. Assembler Label Op-Code Operand
Counter Hex.Code Field

*
*Routine to copy a message

0000

0000
0003
0006

0008
0009
OOOA
OOOB
OOOC
OOOD

0010

0011

210000
110000
OE10

7E
12
23
13
OD
C20BOO

C9

*

COpy

LOOP

RSEG

LXI
LXI
MVI

MOV
STAX
lNX
INX
DCR
JNZ

RET

END

COPYM

H,MSGF
D,MSGT
C,16

A,M
D
H
D
C
LOOP

ASSEMBLER

Comments

;Start RSEG COPYM

;Entry point, load "from" addr
;Load D,E with "destination" addr
;Load C register wi th length
count

;Load A from MSGF
;Store A to MSGT
;Increment MSGF pointer
;Increment MSGT pointer
;Decrement count
;If count not 0, jump to LOOP

;Return to main program

;End of this assembly

Figure 4-2. Example Assembler Output

For each assembly, a reference list is output showing the memory ad­
dress of each global (G) and local symbolic label name and each external ref­
erence (X) (see Figure 4-3).

COpy
MSGF

0000
XOOOO

COPYM
MSGT

GOOOO
XOOOO

LOOP
ZERO

OOOB MAl NPRG
XOOOO

Figure 4-3. Example Assembler Reference List.

For more information, see Section 4.8.

4-3

GOOOO

ASSEMBLER

4.2 PROGRAM SEGMENTS

Assembly language programs may be divided into program segments. Each
relocatable segment (RSEG) may be named by the ·user for easy identification.
A maximum of eight RSEGs and one absolute segment (the ASEG) are allowed in
each assembly. RSEGs may be loaded at any location in memory. ASEG object
is loaded at the location(s) specified in the Assembler source program.

4.3 LOCATION COUNTERS

The location counter points to the next available memory location in
the current program segment. The counter is incremented by one as each byte
of object code is output. Each assembly contains a separate counter for
each RSEG and for the ASEG.

4.4 ASSEMBLER OPTIONS

Upon entry to the Assembler, a list of options will appear on the dis­
play screen. Options may be selected in any order by typing the appropriate
letter(s) as listed in Table 4-A.

TABLE 4-A. ASSEMBLER OPTIONS

Option Description

L

T

E

S

z

Display a program listing.

Truncate lines of the display to 80 characters and limit
printer or display listing of the DC directive to one line.
If this option is not specified, all lines generated by the
DC directive will be output one byte per line.

Display only lines containing errors flagged by the Assem­
bIer for display or pr inting.

Append the table of symbolic address labels to the end of
the relocatable object file.

Flag all lines containing non-8080 instructions (this op­
tion is used with the Z80 Assembler only). Non-8080 lines
are flagged with the message: INVALID OPCODE. The Z option
is useful for verifying Z80 and 8080 p~ogram compatibility.

4-4

ASSEMBLER

4.5 SPECIFYING ASSEMBLER FILES

Refer to Figure 4-4. After the desired options have been selected and
entered, the Assembler will generate a series oJ prompts, as listed below.
The user may respond to each with any legal file specification as shown in
Figure 4-4 (see Sections 1.5, 1.6 and 1.7 for allowable filenames, prefixes
and parameters).

1) SOURCE FI LE

2) MACRO FILE

3) OUTPUT FI LE

4) LISTING FILE

- Any filename entered must have the S at­
tribute.

This input is optional (enter I RETURN I to
bypass). See Section 4.10 for additional
information on MACRO files.

- This input is optional (enter IRETURN] to
bypass). Any filename entered must have
the R attribute (a new file created by
the Assembler will automatically be as­
signed the R attribute).

- This input is optional (enter I RETURN I to
bypass). Any filename entered must have
the S attribute or none at all.

Figure 4-4. Example Assembler Display-

4-5

ASSEMBLER

4.6 ASSEMBLER PROCESSING

After the last filename has been entered and the .I RETURN I key has been
pressed, assembly begins. Statements are processed in two passes. On the
first pass the Assembler assigns values to symbolic labels and stores them
in a symbol table. During pass 2 the Assembler analyzes each statement from
the input file and generates relocatable object output. If the Assembler
recognizes an error, the statement is flagged and zero-bytes are generated
for that statement.

4.7 HALT ASSEMBLY

To halt the assembly process at any point, press the L~.t'!l!lliJ key.
This is useful for viewing the Assembler output as it scrolls on the
display. The Assembler will pause and prompt:

CONTINUE?

To continue, type:

Y

To abort assembly, type:

N or I BREAK I

4.8 ASSEMBLER STATEMENT SYNTAX

Statements are composed of four components'-- or f~elds. Fields are sep­
arated by a space or a series of spaces. Statements are entered one per
line with a maximum of 80 ·characters.

Label Field.

The optional label field may contain a symbolic name which is used to
reference the statement or which will be assigned a value by an EQU direc­
tive. Labels must begin in the first character position in the line.
Labels may be from one to eight characters in length. The first character
must be a letter (A-Z) or a dollar sign ($). Subsequent characters must be
letters, dollar signs or numbers (0-9).

During assembly a value is assigned to each label, as des~ribed below.

1) ASEGs. In ASEGs, the value assigned to a label is the absolute
address at which the assembled statement will be stored. This
value is identical to the value in the absolute segment location
counter, which appears on the left side of the assembly listing.

4-6

ASSEMBLER

2) RSEGs. In RSEGs, the value assigned to a label is the local
address within the segment. This value is identical to the value
in the location counter of that segment, which appears on the left
side of the assembly listing. When the segment becomes part of an
executable program during Linker processing, the Linker adds the
absolute address of the first byte in the segment to the local
address of the label. The result is the absolute address assigned
to the label.

3) When the EQU Assembler directive is encountered, the label is as­
signed the value of the operand field. Further information on As­
sembler directives is given in Section 4.9.

The Assembler writes each label name, the local address of the label,
and other information into a symbol table. Label names are represented in
ASCII, with each character requiring one byte of memory.

Ope~ation Code Field.

The operation code (or op-code) field contains an instruction mnemonic
(assigned by the microprocessor manufacturer), an Assembler directive or a
macro name. This field must begin in the second character position on the
line or thereafter and may be no more than six characters in length. Each
instruction causes the Assembler to generate zero or more bytes of relocat­
abl~ object code. An opcode must be present in all assembly input lines,
except comment lines.

Operand Field.

The operand field contains additional parameters (if any) associated
with the instruction or directive in the opcode field. Operands ar~ sepa­
rated by commas. The operand field begins after the opcode"·field, but the
two fields must be separated by at least one space. A space terminates the
operand field. If a space is inadvertently included in the field, the por­
tion to the right of the space will be read as a,comment.

Five types of operands are used in the operand field. An operand ex­
pression may contain zero, one, several or all of these types.

1)

2)

Decimal Constants. Decimal constants are numbers containing digits
ranging from 0 to 9. Single-byte decimal constants may range in
value from 0 to 255; 2-byte decimal constants may range in value
from 0 to 65,535 •

.,>;

Hexadecimal Constants. Hexadecimal constants consist of the digits
o to 9 and the letters A to F. The digits must be enclosed in sin­
gle q~otes, and an X must prefix the first quote. Single-byte con­
stants may be one or two hexadecimal digits. Two-byte (memory ad­
dress) constants may be from one to four hexadecimal digits in

4-7

ASSEMBLER

length. When less than the maximum number of digits is used, the
constant is treated as if leading zeros were supplied.

Examples of single-byte hexadecimal constants are shown below:

X'l' (same as X'OI')
X'A3'

Examples of 2-byte (address) hexadecimal constants are shown
below:

X'I03' (same as X'OI03')
X'BF2A'

3) ASCII Character Constants. A character constant consists of one or
two characters enclosed in single quotes. Each character is given
an 8-bit (I-byte) value. A string of three or more ASCII charac­
ters may be used as an operand only with relational operators. If
one operand of a relational operator is a string and one is an9~her
type of operand, the string is always greater. If both operands of
a relational operator are character strings, comparison is done on
a byte-by-byte basis using the ASCII collating sequence for deter­
mining the comparison results.

Examples:

'AB·' is assembled to X' 4142'
, , (space) is assembled to X'20'

4) Symbolic Labels. During Assembler pass 1 each statement label is
stored in the symbol table along with the location counter value.
During pass 2 the value assigned to a label is substituted wher­
ever it occur,s as an operand.

5) Asterisks. An asterisk used as an operand causes the Assembler to
use the location counter value of the first byte of the statement
in which the asterisk occurs.

Expressions are evaluated from left to right, resulting in a 16-bit (2-
byte) quantity. However, the Assembler directive or microprocessor instruc­
tion (in which the .. expression appears as an operand) may truncate the ex­
pression to eight bits or may reverse the order of the bytes.

All expressions must reduce to one of the following forms:

a) an absolute value;

b) a relocatable value + an absolute value;

c) an external value + an absolute value.

4-8

ASSEMBLER

There is one exception. An absolute value expression may contain a
pair of relocatable terms if the terms are in the same segment and if, when
subtracted, the result is greater than zero. Relocatable terms cannot be
added.

The individual operands (terms) in an expression are connected by any
of the following types of operators: arithmetic, logical, register shift,
relational, byte extraction or byte order.

1) Arithmetic Operators.

+

*
/

n.MOD.m

2) Logical Operators.

• AND.

• OR.

.NOT.

.XOR.

3) Register Shift Operators.

• SHL. n

Addition.

Subtraction or unary minus sign.

Multiplication.

Integer division. Remainder is trun­
cated.

Remainder When dividing n by m. nand m
must be integers; nand m may be expres­
sions.

Performs bit-by-bit logical AND •

Performs bit-by-bit logical OR •

Complements each bit of the following 1-
byte operand or the low order byte of a
2-byte operand.

Performs bit-by-bit exclusive-OR opera­
tion (a or b, but not both).

Shifts the previous I-byte operand or the
lower byte of a 2-byte operand or expres­
sion n bits to the left. The left-most n
bits are lost. n~may be an expression.

4-9

ASSEMBLER

• SHR. n.

4) Relational Operators.

n=m

n>m

n(m

n>=m

n(=m

n>(m

Shifts the previous I-byte operand or ex­
pression n bits to the right. This is an
arithmetic right shift. The highest or­
der bit is considered the sign bit and is
not shifted or changed. If the highest
order bit is a one, ones are shifted into
the bit positions vacated by the right
shift. If the highest order bit is a
zero, zeros are shifted into the vacated
bit positions. The rightmost n bits are
discarded.

Equality operator. True if n is equal to
m. If the relation is true, the 16-bit
result is set to one. If false, the re­
sult is zero.

Greater than operator. True if n is
greater than m.

Less than operator. True if n is less
than m.

Greater than or equal to. The > and
signs may be in any order.

Less than or equal to. The (and
may be in any order.

signs

Not equal to. True if n does not equal
m. The > and (signs may be in any or-
der.

4-10

ASSEMBLER

5) Byte Extraction Operators.

H(expression) Extracts the high order byte.

L(expression) Extracts the low order byte.

The high or low order eight bits of an expression may be extracted
by enclosing the operand in parentheses and prefixing it with H
(high) or L (low). These operators ·are used ·when an expression
having a 16-bit value must be truncated to an 8-bit value. For ex­
ample:

H(X'2E35'-2) Evaluates to X'2E'.

L(X'2E35'+2) Evaluates to X'37'.

H(ALPHA) evaluates to the high order eight. bi ts of the value as­
signed to the symbolic label ALPHA. Byte extraction is not allowed
as a term of an expression.

6) Byte Order Operators.

A(expression) High order byte is stored first.

B(expression) Low order byte is stored first.

The byte order of the 16-bit result of an expression evaluation may
be specified by enclosing the expression in parentheses and prefix­
ing it with the letter A or B. If a byte order operand is not
used, the high order byte is stored first.

A byte order operator in the operand field of a define constant
(DC) directive, (see Section 4.9) causes that directive to store
both bytes of the expression it encloses. A byte order operator
may not be used as a term of an expression.

Operators with the highest precedence are evaluated first. All op­
erators are evaluated from left to right. The precedence is shown
below in decreasing order:

*, /, . MOD., • SHL., • SHR.

+, - unary-

>, <, >=, <=, ><

• NOT.

• AND.

• OR., • XOR.
4-11

ASSEMBLER

Comment Field.

The comment field allows the programmer to document the action or pur­
pose of a statement. This field is not processed by the Assembler, but is
printed or displayed in the program listing. The first character of a" com­
ment field must be a semicolon. The semicolon terminates Assembler proces­
sing of the line in which it appears. The semicol6n and those characters to
the right of the semicolon are treated as a comment. The comment field may
begin after the operand field if the two fiel'as are separated by at least
one space.

Comment Statement.

If an asterisk is in the first character position on a line, the entire
line will be treated as a comment. Comment statements are useful for docu­
mentation requiring more space than is available in a comment field and for
lengthy descriptions such as a program function overview. A line containing
a semicolon as the first non-space character is processed as a comment
statement. In a macro library file, comment statements which are not inside
macro definitions terminate Assembler processing of the file.

4.9 ASSEMBLER DIRECTIVES

Eight types of Assembler directives are available.

Segment Directives.

Either an ASEG or an RSEG directive may appear in an assembly, pre­
ceding statements which generate object output. If segment directives do
not appear, statements will be assembled into the ASEG.

The ASEG directive defines the beginning of the absolute program seg­
ment. Neither a label nor operands are allowed in the directive. The
Assembler begins the ASEG at 19cation zero or at a location defined in an
immediately following ORG directive. By writing another ASEG directive, it
is possible to assemble into the ASEG after intervening segments. An ASEG
ends at the beginning of another segment or at the end of an assembly.

The RSEG directive defines a relocatable program segment.
of eight RSEGs are allowed in an assembly, each identified by
supplied name in the operand field. A label is not allowed.
tive is entered as:

RSEG!rseg-name}

A maximum
a user-
An RSEG direc-

An RSEG ends at the beginning of another segment or at the end of an assem­
bly. rseg-name is automatically made a global symbol. It is possible to
assemble into a segment after intervening segments by writing an ASEG
directive or an RSEG directive with the appropriate rseg-name.

4-12

ASSEMBLER

Segment Origin Directive.

A segment origin directive is entered as:

ORG t express ion J.

The origin directive specifies the segment location at which subsequent
statements are assembled and sets or resets the location counter of the
program segment in which it occurs. The expression must be absolute if in
an ASEG, or relocatable if in an RSEG. The ORG directive may appear any­
where in a program segment. If the.ORG directive is not used, the segment
begins·with the location counter set to zero. The location counter is in­
cremented by one as each byte of object code is generated. Symbols appear­
ing in the operand field expression must have been previously defined.

Global Directive.

A global directive is entered as:

GLBL tsymboll[,symbol] •••

A global symbolic reference refers to a common memory location for other
assemblies as well as the current assembly. The assembly in which a global
symbol is defined and each assembly referencing the global symbol must de-
clare that symbol to be global, using a GLBL directive. In the Assembler
symbol table listing, global symbols appearing in the label field of the
current assembly are flagged with the letter G. Global symbols used in op­
erand fields are known as external symbols. They are gefined outside the
current assembly and are flagged with the letter X. All other listed sym­
bols are local.

A maximum of 255 global labels are allowed in one assembly. Relocat­
able segment names and the entry points specified in the END directive are
automatically made global an4 may not appear in a GLBL directive.

END Directive.

An END directive is entered as:

END [expression]

The END directive terminates Assembler operation and, optionally, specifies
an entry point at which program execution may begin. If a symbolic label
name appears in the expression, it automatically becomes global. The END
directive is the last statement processed in an assembly input file. If the
END directive is missing, an error is flagged.

4-13

ASSEMBLER

EQU Direct ive.

An EQU directive is entered as:

{label} E'QU {expression}

The EQU directive assigns the value of the expression in the operand field
to a symbolic name in the label field. The expression is evaluated during
Assembler pass 1. The symbol name may be referenced in the operand fields
of statements occurring before and after the EQU directive. However, sym­
bols in the operand field expression must have been previously defined. If
a symbol in the operand field has not been previously defined, the line will
be flagged with the message INVALID FORWARD REFERENCE.

Define Constants Directive.

A Define Constants (DC) directive is entered as:

[label]DC{expression}[,expression]

The DC directive places data in memory beginning at the current value of the
location counter. Multiple operands are stored in successive memory loca­
tions. The DC directive is the only directive that generates object out­
put.

Data are stored in five ways which may be combined in one DC statement:

1) The 16-bit value of an expression is truncated to the low
eight bits and stored in one byte of memory.

2) The 16-bit value of an expression is truncated to either the
low order or high order eight bits by a byte extraction
operator and stored in one byte of memory.

3) The 16-bit value of an expression prefixed with a byte order
operator is stored in two succeeding bytes. Byte order is de­
termined by the operator.

4) An ASCII character string is stored one byte per character.
The string is enclosed in single quotes. A single quote with­
in the string is represented by two successive single quotes.

5) Decimal integers from 0 to 255 (hexadecimal 0 to FF) are
stored in one byte. Decimal integers from 256 to 65,535 (hex­
adecimal 100 to FFFF) are truncated to the lower order eight
bits.

4-14

ASSEMBLER

The following example demonstrates each type of data storage:

LOC DC JUMP,L(R+8),B(LOOP), 'ABC',12,A(X'A030')

Ten data bytes are stored in memory beginning at location LOC. The first
byte stored is the low order byte of the 16-bit memory address JUMP. The
next byte stored is the low order byte of the 16-bit result obtained when
eight is added to memory address R. Then, both bytes of the 16-bit memory
address LOOP are stored. Byte order operator B causes the low order byte to
be stored first. The ASCII representation of the letters ABC is stored in
the next three bytes. The decimal integer 12 is stored in the next byte.
Then, the hexadecimal number A030 is stored in two successive bytes. Byte
order operator A causes the high order byte to be stored first.

Define Memory Space Directive.

A Define Memory Space (DS) directive is entered as:

[label]DS{expression}

The DS directive reserves memory space by advancing the segment location
counter. The amount of space desired (in bytes) is entered in the operand
expression. If a symbol name is used as the expression or a term
of the expression, it must have been previously defined; if not defined, the
line will be flagged with the message: INVALID FORWARD REFERENCE.

Printer Control Directives.

1) SPC. This directive places a blank line in the listing for im­
proved readability. No operands are processed.

2) EJE. The eject directive causes the Assembler to skip to the top
of the next page of the listing for improved readability. No op­
erands are processed.

3) PRINT OFF. PRINT OFF suppresses printing of all following source
lines. The directive itself is not printed.

4) PRINT ON. PRINT ON lists al~ source lines except:

a) lines generated in a macro expansion;
b) lines skipped due to conditional assembly directives;
c) conditional directives themselves.

Lines are printed after set-symbol substitution has taken place.

4-15

ASSEMBLER

5) PRINT GEN. PRINT GEN lists macro expansion lines as well as the
lines listed by PRINT ON. Macro expansion lines are printed after
parameter substitution and set symbol substitution have taken
place. This directive affects printing and the display listing'
identically.

6) PRINT ALL. PRINT ALL prints all source lines including lines
skipped due to conditional assembly directives and the conditional
assembly directives themselves. Location counter values and object
data for skipped lines are not printed. Lines are printed after
set symbol and macro parameter substitutions have taken place.
This directive affects printing and the display listing identi­
cally.

4.10 MACROS

The macro facility enhances Assembler capability by allowing a single
calling statement to generate groups of instructions. As shown in Figure
4-5, a macro definition begins with a "MACRO" pseudo-op and ends with an
"ENDM" pseudo-oPe

Since it is more common to generate a group of similar rather than
identical instructions, the macro statements may contain parameter names
which are referenced and replaced by actual values. These parameter names
are listed (separated by commas) in the operand field of the MACRO
pseudO-OPe Each macro parameter name may be referenced within the body of a
macro definition by a statement containing the macro par~meter name preceded
by an ampersand. When a calling statement is encountered, the instructions
contained in the macro definition are assembled and the parameter values
specified in the calling statement are substituted for each ampersand and
name.

4-16

ASSEMBLER

Macro name MACRO parameter1,parameter2 MACRO pseudo-op)
statement
statement & parameter1 (macro body)

ENDM (ENDM pseudo-op)

Macro-name (calling statement)

Figure 4-5. MACRO Definition.

An example of macro operation is shown below.

Macro
Definition

TEST

Macro +
Expansion

Syntax.

MACRO
LXI
ENDM

TEST
LXI

ABC
H,&ABC

'AB'
H, 'AB'

(MACRO pseudo-op)
(macro parameter reference)
(ENDM pseudo-op)

(Calling statement)
(Statement generated when macro
is assembled)

A macro name must begin in the first character position of the MACRO
pseudo-oPe . Macro names and macro parameter names (in MACRO pseudo-ops) must
begin with a letter (A-Z) or a dollar sign ($). Subsequent characters must
be letters (A-Z) , numbers (0-9) or dollar signs. Macro names and ~cro
parameter names may be from one to eight characters in length. Commas' and
blanks may exist in a parameter if placed between single quotes (there must
be an even number of quotes in any parameter). Examples of valid parameters
are listed below:

20
X'40'
'A,B'+'B,C'

Macro parameters may be from 0 to 32 characters in length, and may contain
any character.

4-17

ASSEMBLER

Substitution.

Substitution may occur in the label field, opcode field, operand field,
comment field or any combination of these fields. For the example macro
definition:

SAVEA MACRO TYPE,LOC
&TYPE &LOC
ENDM

the call:

SAVEA STA, VAL

results in:

STA VAL

The call:

SAVEA STAX,D

results in:

STAX D

Literal Ampersand.

As previously stated, the ampersand signals the macro processor to sub­
stitute a parameter value. At times, however, a literal ampersand character
is needed. Four consecutive ampersands are used to tell the macro processor
that rather than substituting, an ampersand character is desired. In the
example below a single ampersand is stored in a constant.

DC 'ABC&&&&XYZ'

Placement of Macro Definitions.

Macros must be defined at the beginning of the input source file or
macro library file. The Assembler reads macros until it reaches a statement
outside a macro definition other than PRINT, SPACE or EJE printer control
directives. By specifying a macro file to the Assembler, a second source
file of macro definitions (a macro library) may be included in the assembly.
Macros may be defined in either the input source file or a macro library
file or both.

4-18

ASSEMBLER

Duplicate Macro Definitions.

If a macro library is specified, the Assembler reads macro definitions
from the library before reading the main source input file. Macros in the
main source file take precedence over macros in the macro library. If two
macros with the same name are defined, the Assembler uses the last one read.

Generating Unique Labels.

A macro call may generate statements containing labels. For example,
the following definition is used to set the DE registers to the absolute
value of the DE registers' contents (8080 microprocessor):

ABSD MACRO
MOV A,D
ORA A
JP ENDABSD
CMA
MOV D,A
MOV E,A
CMA
MOV E,A
INX D

ENDABSD EQU *
ENDM

The first time ABSD is called, label ENDABSD is defined. Since ENDABSD has
been previously defined, a duplicate label definition error occurs the sec­
ond time ABSD is called. To avoid duplication, a unique label must be
generated each time the macro is called. The Assembler provides a special
predefined macro parameter (INDX) which is set to a unique 5-digit numeric
value each time a macro is called. The macro ABSD may now be defined using
INDX as shown below:

ABSD MACRO
MOV A,D
ORA A
JP AB&INDX
CMA
MOV D,A
MOV A,E
CMA
MOV E,A
INX D

AB&INDX EQU *
ENDM

4-19

ASSEMBLER

Assuming that this is the only macro defined and that there are exactly
two calls made, the first call defines the label ABOOOOl, and the second
call defines the label AB00002.

Concatenating Parameters.

In the previous macro example, the value of parameter INDX was append­
ed to the right of the characters AB by writing the parameter name (preceded
by an ampersand) to the immediate right of the characters AB: AB&INDX. If
the user wishes also to append the letter A to the right of the INDX param­
eter value, a problem will arise:

JP AB&INDXA

The macro processor interprets this to mean: substitute the value for par­
ameter INDXA. To solve this problem, the macro processor recognizes the
exclamation mark (!) as the parameter name delimiter indicating the end of
a parameter name. The letter A may be appended to the right of parameter
INDX as shown below:

JP AB&INDX!A

On the first call this statement becomes:

JP ABOOOOIA

Note that if appears anywhere other than after a macro parameter (or a set
symbol), it will be processed as a normal character.

Macro Calls Within Macros.

A macro definition may include a statement which calls another (or the
same) macro. These calls may be nested to a level of 127 (depending on the
Assembler symbol table space available). A macro definition may not have
another macro defined in its body.

EXITM Statement.

When encountered during a macro expansion, the EXITM statement imme­
diately terminates assembly of the current or named macro. The next state­
ment processed will be the first one following the macro call. The correct
syntax is shown below. Note that a label is not allowed.

EXITM{macro-name}

4-20

ASSEMBLER

4.11 CONDITIONAL ASSEMBLY

Conditional assembly statements allow the programmer to selectively as­
semble statements in a source file. The variables used in conditional
statements are known as set symbols. A set symbol value may be a number
from 0 to 65,535 or a character string containing from 0 to 32 characters.
Values are set by use of the DEFL (define local) and DEFG -(define global)
statements.

DEFL Statement.

This statement is used to define (and redefine) local set symbols. Lo­
cal set symbols are known only in the macro in which they are defined. A
set symbol of the same name defined in another macro is considered to be a
different set symbol. The proper syntax for a DEFL statement is shown be­
low:

{set symbol name} DEFL {expression}

or

{set symbol name} DEFL {'string'l

If apostrophes are placed around the operand, it is processed as a
character string. If apostrophes are not placed around the operand, it is
processed as an integer expression. Single apostrophes within strings must
be doubled.

Labels may appear in the expression only if they have been previously
defined. When defining a set symbol, an ampersand must not precede the name
in the label field. However, each set symbol reference must be preceded by
an ampersand.

DEFG Statement.

This statement is used to define (and redefine) global set symbols. A
global set symbol is known in the entire assembly, including all macros, un­
less a local set symbol of the same name is defined in a particular macro.
In this case, after the local set symbol is defined, the global set symbol
is unknown in that macro call. The appropriate syntax for a DEFG statement
is shown below:

or
{set symbol name! DEFG {expressionJ

{set '~ymbol name J DEFG t, str ing' f

4-21

ASSEMBLER

If apostrophes are placed around the operand, it is processed as
a character string. If quotes are not placed ar'ound the operand, it is
processed as an integer expression. Quotes embedded in the string must be
doubled. A label may appear in the expression only if it has been
previously defined.

When defining a set symbol, an ampersand must not precede the name in
the label field. However, each set symbol reference must be preceded by an
ampersand.

SUBSTR Statement.

The SUBSTR (substring) statement assigns part of a string to a set sym­
bol. If the set symbol has not been previously defined, a new local set
symbol will be defined. The proper syntax is shown below:

t set symbol name l SUBSTR t expression A l, texpression B L l' string' l

expression A defines the beginning character position of the substring; the
first character is position 1. expression B defines the length of the sub­
string. If expression B is zero, the substring will begin with the
character defined by expression A and continue to the end of the string.

LENGTH Statement.

The LENGTH statement assigns the length of a string to a set symbol.
If the set symbol has not been previously defined, a new local set symbol
will be defined. The proper syntax is shown below:

lset symbol namel LENGTH1'string'}

IF Block.

During Assembler operation, an IF block selects specific sections of
code for processing. IF blocks may be nested within IF blocks or DO blocks
(see page 4-25) to any level. An IF block must begin with an IF statement
and must end with an ENDIF statement. These two statements and the optional
ELSEIF, ELSE and EXITIF statements are described below.

1) IF Statement. The IF statement begins an IF block. An optional IF
statement name may be entered in the label field for referencing
by the EXITIF statement. If the expression contained in the IF
statement operand field is non-zero, the statements following the
IF stateme~t and preceding the first ELSE or EXITIF statement (at
the same nesting level) will be processed. If the expression is
zero, the statements following the IF and preceding the first
ELSEIF, ELSE or ENDIF statement (at the same nesting level) will
be ignored. The proper syntax is shown below:

[if block name] IFtexpression}

4-22

ASSEMBLER

2) ELSEIF Statement. The ELSEIF statement is used in conjunction with
an IF statement to test an alternate condition without going to a
deeper nesting level. If the expression in the IF statement is
zero, the expressions in all previous ELSEIF statements at this
nesting level are zero, and the expression in this ELSEIF state~
ment is non-zero, statements preceding the next ELSEIF, ELSE or
ENDIF ,statements (at this nesting level) will be processed. The
proper syntax is shown below. Note that a label is not allowed.

ELSEIF{expressionJ

3)' ELSE Statement. The ELSE statement is used in conjunction with an
IF statement to indicate the last alternative. The statement is
identical to:

ELSEIF 1

That is, if the expressions in the IF statement and all subsequent
ELSEIF statements at this nesting level are zero, the statements
after the ELSE statement and preceding the closing ENDIF state"ment
are processed. The correct syntax is shown below. Note that a
label and operands are not allowed.

ELSE

4) EXITIF Statement. The EXITIF statement causes all statements pre­
ceding the closing ENDIF statement in the named or current IF block
to be ignored. The correct syntax is shown below. Note that a
label is not allowed.

EXITIF [if block name]

5) ENDIF Statement. TheENDIF statement terminates an IF block. The
correct syntax is shown below. Note that a label qnd operands are
not allowed.

ENDIF

Example. The ADDX macro defined earlier can be expanded to add a
number between 0 and 255 to the Be, DE or HL registers as shown on
the following page.

4-23

ASSEMBLER

ADDXY MACRO REG, NUM
IF '®'='BC'

REGH DEFL 'B'
REGL DEFL 'c'

ELSEIF '®'='DE'
REGH DEFL 'D'
REGL DEFL ' E'

ELSE
.REGH DEFL ' H'
REGL DEFL 'L'

ENDIF
MOV A,®L
ADI &NUM
MOV ®L,A
MOV A,®H
ACI 0
MOV ®H,A
ENDM

DO Block.

During Assembler operation, the statements contained in a DO block are
repeatedly assembled. DO blocks may be nested within IF blocks or DO blocks
to any level. A DO block must begin with a DO statement and end with an
ENDDO statement. These two statements and the optional EXITDO and NEXTDO
statements are described below.

1) DO Statement. The DO statement begins a DO b1?ck. An optional
name may be contained in the label field' for referencing by the
EXITDO and NEXtoO statements. The expression in the operand field
is evaluated once at the entry to the DO block and is stored as the
DO count (the number of times the statements within the block are
processed) ~ The proper 'syntax is shown below:

[do block name] DO [expression]

If expression is omitted, the block will be processed 65,536 times
(esseniia11y indefinitely).

2) EXITDO Statement. The EXITDO statement causes the Assembler to im­
mediately terminate processing statements in the current or named
DO block and begin at the first statement after the closing ENDDO
statement. The correct syntax is shown below. Note that a label
is not allowed.

EXITDO [do blocK name]

4-24

ASSEMBLER

3) NEXTDO Statement. The NEXTDO statement causes the Assembler to im­
mediately begin processing the next iteration of the current or
named DO block. If this is not the last iteration, the next state­
ment processed will be the first statement after the DO statement.
The correct syntax is shown below. Note that a label is not
allowed.

NEXTDO [do block name]

4) ENDO Statement. The ENDDO statement terminates a DO block. The
correct syntax is as follows. Note that a label and operands are
not allowed.

ENDDO

Example. One use of conditional statements is that of generating
tables that would otherwise be tediously entered from the keyboard.
The example below generates a table to check for a numeric charac­
ter.

4.12 ADVANCED FEATURES

TABLE
CHAR

CHAR

EQU
DEFG
DO
IF
DC
ELSE
DC
ENDIF
DEFG
ENDDO

*
o
256
&CHAR)='O'.OR.&CHAR(='9'

.0

X'FF'

&CHAR+1

During assembly, each source line is scanned twice for ampersands which
signal set symbol or macro parameter substitution. During each scan the
values of the set symbol names (preceded by ampersands) are substituted for
the ampersand and name. Double ampersands are replaced by a single amper­
sand. Two special types of set symbol specifications are allowed.

Subscripted Set Symbols.

The following statement will define a set symbol whose name is based
on the value of another set symbol:

A&I DEFL 'A'

If the value of &1 is the integer 4, the set symbol A00004 will be defined
to have the value A.

4-25

ASSEMBLER

The following statement uses the generated set symbol:

MVI B,'&&A&I'

On the first scan, && is replaced by &, and &1 is replaced by 00004, result­
ing in:

MVI B,'&A00004'

On the second scan, &A00004 is replaced by A, resulting in:

MVI B,'A'

By varying the value of set symbol I, set symbols may be defined, referenced
and indexed (using I as a subscript).

Indirect Set Symbols.

The following statements define a set symbol whose value is the name of
another set symbol:

A
B

DEFG
DEFG

'ABC'
'A'

The following statement uses set symbol B as an indirect reference to
the value of set symbol A:

IF '&&&B'='ABC'

On the first scan, the first two ampersands are replaced by a single amper­
sand, and &B is repl~~ed by A, resulting in:

IF '&A='ABC'

On the second scan, &A is replaced by ABC, resulting in:

IF 'ABC'='ABC'

4-26

LIST OF ASSEMBLER

MESSAGES

DUPLICATE SYMBOL

Respecify.

ERROR WHI LE WRI TI NG OBJECT FI LE

Terminates Assembler processing.

EXPRESSION HAS MORE THAN 1 RELOCATABLE FACTOR

Expressions with relocatable or absolute terms.

IMMEDIATE VALUE> -128 or < 127

The instruction allows only a signed 8-bit value. The high-order bit
is used as the sign. Respecify.

INVALID FORWARD REFERENCE

Example: A EQU B
where B is not yet defined.

INVALID LABEL

Respecify.

INVALID OPCODE

Respecify.

INVALID OPERAND

Respecify.

MISSING END

An END statement must be the last statement in an assembly.

MORE UNPRINTABLE ERRORS

Occurs if there are more than 10 errors in one line.

OVER 255 EXTERNALS

Terminates Assembler processing.

RELATIVE JUMP OUT OF RANGE

Appropriate ~rocessors only.

4-27

LIST OF ASSEMBLER

MESSAGES

RELATIVE JUMP TO DIFFERENT RSEG

Appropriate processors only.

RELATIVE JUMP TO EXTERNAL SYMBOL

Appropriate processors only.

SYMBOL TABLE OVERFLOW

Terminates Assembler processing.

UNDEFINED SYMBOL.

Respecify.

4-28

ELSE OUT OF PLACE

ENDDO OUT OF PLACE

ENDIF OUT OF PLACE

ENDM OUT OF PLACE

EXI TM OUT OF PLACE

INVALID MACRO PARAMETER NAME

MACRO DEFINITION OUT OF PLACE

MACRO NESTING EXCEEDS 127

MISSING ENDDO

MI SSING ENDIF

MISSING ENDM

OPERAND LONGER THAN 32 CHARS

UNDEFINED SET SYMBOL

4-29

LIST OF MACRO
AND CONDITIONAL

ASSEMBLY MESSAGES

SECTION 5

LINKER

5.1 INTRODUCTION

The Linker combines relocatable program segments (RSEGs) from
Assembler- or Compiler-generated relocatable file(s) (R attribute) to form a
single executable ~bsolute object file. Address references between RSEGs
that were unresolved at assembly or compile time are resolved, and RSEGs are
relocated for loading at absolute addresses. In addition to RSEGs, the
Linker also supports the ASEG, the special program segment for which no
relocation is necessary.

5.2 LINKER INPUT

Assembler- or Compiler-generated relocatable object files may be used
as input to the Linker. Each relocatable object file may contain a maximum
of eight RSEGs and one ASEG. If two or more RSEGs having the same name
appear in different input files, the Linker will use the first one encoun­
tered. If two or mqre input files contain the ASEG directive, memory
allocations may overlap. If RSEG directives are not used in an assembly,
object code will be placed in the ASEG.

In order to link symbolic name references in object files, the name
must be declared "global" (using the GLBL directive) during the assembly or
compilation of each file. For further information on global symbols, refer
to Sections 4.9 and 4.10.

5.3 LINKER OUTPUT

The executable absolute object file generated by the Linker may be
loaded into memory and executed by the Debugger. In addition, a memory
map and reference list may be displayed or printed.

5.4 OPTIONS

Three Linker options are available to choose the desired type of
input/output operation. Upon initial entry to the Linker, these options
are displayed on the display screen. To select the desired options, type
the appropriate letters as listed in Table 5-A. Options may be selected in
any order either from the keyboard or from a command file.

5-1

LINKER

TABLE 5-A. LINKER OPTIONS

OPTION FUNCTION

D Links only those RSEGs which are speci­
fically named in the Linker commands and
deletes all other RSEGs. If D is not
selected, all RSEGs from all input files
will be linked, and the name and length
of each RSEG in each input file will be
displayed. Segments named in input com­
mands are positioned in memory as re­
quested. All unnamed segments are po­
sitioned after the last named segment.

S Writes symbol tables from all input
files to the output file. These tables,
which relate global symbols to memory
locations, are necessary for symbolic
debugging. A symbol table may be placed
in each relocatable object file by the
Assembler or Compiler.

L Displays the memory map and reference
list.

5.5 COMMANDS

The Linker commands are entered to specify the following information:

1) the input file(s);

2) the output file;

3) the listing file (if any);

4) RSEG placement in memory;

5) lists of RSEG names in the order desired;

6) program execution entry point.

RSEG memory placement (HORG) commands may cause an RSEG to overlap a
previously specified RSEG or the ASEG. An overlap condition i1 flagged by
an "0" in the length column of the memory map.

5-2-

LINKER

An example Linker display is shown in Figure 5-1. Option D was not
selected. The dashed line marks the end of the display. The next I RETURN I
will cause Linker processing to begin.

Figure 5-1. Example Linker Display

5-3

LINKER

Each Linker command is defined below in the order of use.

COMMAND

linput file-specl
[input file-spec]

!RETURNI

[output file-spec]

[listing file-spec]

UORG~absolute address}

lrseg-aJ[,rseg-b]
[rseg-c][,rseg-d] •••

UORG labsolute addressl
[rseg-e]

UEND [entry point name]

EXPLANATION

After the Linker options have been entered,
the Linker will prompt: INPUT FILE.
Type the desired filename(s), one file­
name and I RETURN I per line.

Press the IRETURN! key after the last in­
put file-spec has been entered.

The Linker will prompt: OUTPUT FILE.
Type the output file specification and
press I RETURN I.

The Linker will prompt: LISTING FILE.
Type the listing file specification and
press I RETURN I.

The Linker will prompt: LINKER INPUT.
Specify the absolute address of the first
relocatable program segment in the list
following the UORG statement.

Enter a list of RSEG names. The RSEGs
are positioned in memory in the order
named, starting at the address in the
preceding UORG statement.

Additional starting addresses, each with
a list of RSEGs, may be specified.

Enter a UEND statement to begin Linker
processing. entry point name is a glo­
bal symbol specifying the program entry
point. (RSEG names are automatically
global.) If not specified, the program
entry point is set to the address of the
first RSEG. After processing begins,
press the !RETURNI key to halt Linker
processing and view display output.
Press I RETURN I again to continue. When
processing is complete, the Linker dis­
plays the message: FUNCTION COMPLETED.
Press the I RETURN I key. To begin Linker
oper~:ttion again enter an input file-spec.
To Jump to another ADS system program,
enter a J command.

5-4

LINKER

5.6 MEMORY MAP OUTPUT

An example memory map displa.y is shown in Figure 5-2. The memory map
lists:

1) RSEG memor y locations in the or der input to the ~in ker (if- the IIORG
commands were input with their operands in ascending or.der, the
listed memory locations will also be in ascending order);

2) RSEG names;

3) names of the file(s) from which the RSEGs were taken;

4) lengths of the RSEGs in hexadecimal.

Figure 5-2. Example Memory Map Output

If an RSEG was '~eleted (option D), its name will appear in the memory
map and the address will be flagged with a "D". If an RSEG is overwritten
by another RSEG, the overwritten RSEG will be flagged with an "0" in the
memory map.

5-5

LINKER

5.7 REFERENCE LIST OUTPUT

An example Linker reference list display is shown in Figure 5-3. The
display lists:

1) each disk file from which the RSEGs were input;

2) the name of each RSEG;

3) the beginning hexadecimal address of each RSEG;

4) the hexadecimal length of each RSEG;

5) the global symbols with the absolute memory address assigned to
each symbol;

6) the entry point address at which program execution will begin.

Figure 5-3. Example Linker Reference List Display

5-6

LINKER

LIST OF MESSAGES

**DELETED RSEG REFERENCE IN (filename)

An RSEG which is present in an input file, but is not included in the
output file, is needed to resolve address references.

(label) **DUPLICATE GLOBAL IN (filename)

The first occurrence of a global symbol is used for address references.
All additional definitions are flagged as errors.

NOT A RELOCATABLE FILE

The Linker input file was not created by the Assembler or Compiler or
the file's "R n attribute was changed with the Manager. Assign the "R"
attribute to the file.

PARM ERR ••• RESPECIFY

There is a syntax error in the Linker input or the specified RSEG name
was not found.

**RELOCATION ERROR IN (filename)

The input file was not correctly assembled.· Reassemble or recompile.

**SEQUENCE ERROR IN (filename)

The records in the named file are not in proper or-der. Reassemble or
recompile.

**SYMBOL TABLE NOT FOUND IN (filename)

The symbol table was not included when the program was. assembled or
compiled. Reassemble or recompile.

**TABLE OVERFLOW

The Linker needs more memory space.

(label) **UNRESOLVED REFERENCE IN (filename)

The external reference was not found in the global symbol. table.

5-7

SECTION 6

COMMAND FI LE PROCE S SOR

6.1 INTRODUCTION

The Command File Processor reads command lines from a diskette file and
passes them to ADS programs, thus providing a convenient alternative to the
time~consuming method of keyboard command entry. The Command File Processor
~s particularly helpful when long sequences of commands must be entered
repeatedly.

6.2 COMMAND FILE CREATION

A command file consists of a number of legal ADS commands (one command
per line). Command files may be created with the Editor program. The Edi­
tor automatically assigns the S attribute to newly created files (the Editor
will work only with S-attributed files).

6.3 INI TIATE COMMAND FILE PROCESSING

To transfer control from the keyboard to the Command File Processor,
type the following sequence:

JAlfilenameJ[,parameter-l] [,parameter-2] ••• [parameter-9]

filename is the name of the source (S attribute) file in which commands have
been stored; the Command File Processor reads commands from this file. par­
ameter-I is a string of characters which directly replaces the Al sequence
in the command file; parameter-2 replaces A2, etc. (a maximum of 9 parame­
ters may be entered). The number of parameters entered at the initiation of
command file processing must be equal to or greater than the highest num­
bered substitution sequence An in the command file (see Section 6.4).

Two successive commas (,,) in the initiation command denote a null par­
ameter and cause every occurrence of the corresponding substitution sequence
An to be deleted and the part of the line to the right of An to be ~oved left
two character positions. If the last parameter in an initiation command is
null, an extra comma must be entered at the end of the .. command.

In the following example, four parameters have been entered. The first
. and last parameters are null. The substitution sequence in the command file

(FILEA) must be no higher than A 4.

JAFILEA"FILEX,P"

In some ADS system.programs an S option invokes symbol table generation.
~or instance, if the command file contains:

(start Assembler operation)
(Assembler options)

6-1

COMMAND FILE PROCESSOR

the third parameter of the initiation command JAFILEA"FILEX,S" causes the
options TOS to be entered. If the third parameter is null, the options TO
are entered. Thus, the user may choose to assemble with symbol table output
at the initiation of command file processing rather than at the time the
command file is written.

NOTE

If the Assembler or.Linker is used in a command file, a blank line
required at the end of the input sequence to continue command file
processing.

6.4 COMMAND FILE PROCESSOR FEATURES

Four features are provided by the Command File Processor, as described
below.

AL Feature.

The AL keyboard escape feature is entered as:

[••• part of command line]AL[part of command line •••]

This feature allows characters to be entered from the keyboard until the
lRETURNI key is pressed.

Parts of the command file line are combined with characters entered at
the keyboard to form a complete command line. The first part of the command
line is read from the command file. Input is then taken from the keyboard.
When the IRETURNl key is pressed, the Processor reads the next part of the
command from the command file. The keyboard-entered characters are inserted
in the command at the AL position. The IRETURNI, which ends keyboard in­
put, is not inserted.

If AL appears by itself in a command file line, the Processor reads
only keyboard-entered characters for that line.

In the example below, the Editor's Find command is constructed from
parts of a command file line. The characters AL are replaced with the
keyboard-entered characters S20 during execution.

line in command file:

keyboard entry for AL:

S20 I RETURN I

effective command input to the Editor:

L F:R2,S20,AVIRETURNI
•

COMMAND FILE PROCESSOR

In the next example, the AL feature allows the user to specify file
prefix characteristics (drive numbers and N:, which indicates that a new
file must be created).

line in command file:

MAL:FILEA,AL:FILEB

keyboard entry at first AL:

1 I RETURN I

keyboard entry at second AL:

N:oIRETURNI

effective command input to ADS:

Ml:FILEA,N:O:FILEBIRETURNI

AK Feature.

The AK keyboard escape feature is entered as:

[... part of command line]I\K

This feature allows part of a command and whole command lines to be entered
at the keyboard until a caret (1\) is entered. The Command File Processor
then continues reading from the command file.

The optional part of the command line contains character(s) read from
the command file. When these characters are combined with character(s)
entered at the keyboard, a complete command line is formed. The user may
enter as many commands (terminated by IRETURNI) from the keyboard as neces­
sary.

6-3

COMMAND FILE PROCESSOR

An example entry sequence, using the AK feature is shown below.

Line in
Command
File

JE

LTEXT."K

WTEXTA

Entry at
Keyboard

61 RETURN 1

A30lRETURNI

1 RETURN I

DEL2 nlliTURNI

Explanation

Begin Editor Operation.

Display beginning of
Load command.

Take further input from
keyboard. User enters
the rest of the filename
to be loaded.

User edits text.

Other editing commands.

User finishes editing text
and returns to the command
file for further command
input.

The next line from the
command file is used.

6-4

Effective Command
Input to ADS

JE I RETURN I

LTEXT. 61 RETURN I

A30 I RETURN I

DEL2 fKETllgNJ

WTEXTAIRETURNI

COMMAND F1LE PROCESSOR

"n Feature.

n may be integer from 1 to 9, inclusive. This sequence of characters
in a command file is replaced by the nth parameter entered at the
initiation of command file processing.

A parameter entered at the initiation of command file processing
replaces this sequence by direct substitution (i.e., "I is replaced by the
fir s t par ameter, "2 by the second, etc.). The line .in which the seq u~nce
occurs is expanded or contracted to fit the parameter.

For example, the following command file resides on drive 1 and is
named TEST.CF.

JE
L"l. X

W"2. X

This command file can be initiated by the command:

J"l:TEST.CF,OLD,NEW\RETURN\

which is equivalent to entering

JE
L OLD.X
W NEW.X

at the keyboard.

" "Fea ture.

The double caret passes one caret to the currently active ADS system
program. Normally, a single caret invokes a Command File Processor
function. A double caret allows a single caret to be passed from a command
file to an ADS system program.

To jump to a command file from within a command file, the following
command line is used:

J""lfilenamel[,parameterl-] [,parameter-2] ••• [parameter-9]

NOTE

filename may be the name of
the current command file.

6-5

COMMAND FILE PROCESSOR

6.5 KEYBOARD-ONLY INPUT

Special function keys (I CAN I, I DEL I, [RESET I, ~, etc.) which do
not result in the display of a character must be entered from the keyboard.
For example, the I STEP I key, which is used during Debugger operation to ex­
ecute a single microprocessor instruction, cannot be entered from a command
file.

6.6 ERRORS

There are two classes of errors which affect command file processing:

1) syntax errors;

2) errors recognized by ADS system programs which cause command file
processing to stop.

Termination of command file processing can be recognized by the following
conditions: the display does not change, and the blinking cursor returns
to the display.

6.7 ABORT PROCESSING

Command file processing may be aborted by depressing the ~TJ and
I-B-R-E-A-K~I keys simultaneously.

6-6

FI ~S T CHARACTER OF FILE NOT It J It

COMMAND FILE PROCESSOR

LIST OF MESSAGES

The firat.character of a command file must be a J command.

6-7 ..

1\..1 INTRODUCTION

APPENDIX A

PROLOG PROM
PROGRAMMER INTERFACES

Interfaces for two Prolog PROM Programmer models are available for use
with the 2300-ADS Debugger: the 920 and the 900B. Commands andinstruc~
tions for hardware connections are identical for both models, as described
herein.

The files contained on the 920 8080/8085 interface diskette are shown
in Table A-I.

TABLE ~-1. 920 8080/8085 INTERFACE DISKETTE

Filename Function

PR92080.N Prolog interface source file

PR92080.0 Prolog interface source file

PR92080.C Command file used to edit, exchange,
assemble and link PR92080.N

PR92080.R Prolog interface relocatable file

EIA80.N Source file of ErA port I/O routines

EIA80. R Relocatable file of ErA port I/O rou­
tines

KI080. R

KEYIN80. R

MACLIB80.N

PR92080

Relocatable file of CRT routines

Relocatable file of keyboard routines

Macro library (used to generate l~go mes­
sage)

Executable object file containing
PR92080.R, EIA80.R, KEYIN80.R and
KI080. R

A-I

PROLOG PROM
PROGRAMMER INTERFACES

Table A-2 lists the files contained on the 920 ZSO interface diskette.

TABLE A-2. 920 ZSO INTERFACE DISKETTE

Filename Function

PR920ZS.N Prolog interface_source file

PR920ZS.0 Prolog interface source file

PR920ZS.C Command file used to edit, exchange,
assemble and link PR920ZS.N

PR920S0.R Prolog interface relocatable file

EIAZSO.N Source file of EIA port I/O routines

EIASO.R Relocatable file of EIA port I/O
routines

KIOSO. R

KEYINSO.R

MACLIBSO. N

PR920S0

Relocatable file of CRT routines

Relocatable file of keyboard routines

Macro library (used to generate logo
message)

Executable object file containing
PR920S0.R, EIASO.R, KEYINSO.R and
KlOSO. R

A-2-

PROLOG PROM
PROGRAMMER INTERFACES

The files contained on the 900B 8080/85 interface diskette are shown in
Table A-3.

TABLE A-3. 900B 8080/8085 INTERFACE DISKETTE

Filename Function

PR900B80.N Prolog interface source file

PR900B80.0 Prolog interface source file

PR900B80.C Command file used to edit, exchange,
assemble and link PR900B80.N

PR900B80.R Prolog interface relocatable file

EIA80.N Source file of EIA port I/O routines

EIA80.R Relocatable file of CRT routines

KEYIN80.R Relocatable file of keyboard routines

MACLIB80.N Macro library (used to gen~rate logo
message)

PR0900B80 Executable object file containing
PR900B80.R, EIA80.R, KEYIN80.R and
KI080.R

A-3

PROLOG PROM
PROGRAMMER INTERFACE

Table A-4 lists the files contained on the 900B Z80 interface diskette.

lABLE A-4. 900B Z80 INTERFACE DISKETTE

Filename Function

PR900BZ8.N Prolog interface source file

PR900BZ8.0

PR900BZ8.C

PR900B80.R

EIAZ80. N

EIA80. R

KI080. R

KEYIN80.R

MACLIB80. N

PR900B80

Prolog interface source file

Command file used to edit, exchange, as­
semble and link PR900BZ8.N

Prolog interface relocatable file

Source file of EIA port I/O routines

Relocatable file of EIA port I/O
routines

Relocatable file of CRT routines

Relocatable file of keyboard routines

Macro library (used to generate logo
message)

Executable object file containing
PR900B80.R, EIA80.R, KEYIN80.R and
KI080. R

A-4

A.2 PROGRAMMING METHOD

PROLOG PROM
PROGRAMMER INTERFACES

The user may modify PR920S0.N (920 SOSO/SOS5), PR920ZS.N (920 ZSO),
PR900BSO.N (900B SOSO/SOS5) or PR900BZS.N (900B ZSO) to allow interfacing
with other PROM programming units. Each program transmits six bytes of
address data (start address/end address), which is suitable for PROMs
longer than 256 bytes. The beginning address is 0000 and the ending
address is one less than the specified length. Data are sent to the PROM
Programmer in hexadecimal ASCII, one nibble at a time. Therefore, the
program must be modified for 4-bit PROMs.

After each byte is sent, the program pauses for approximately six mil­
liseconds. After this pause, the program waits for the Clear To Send (CTS)
line to go true.

The user should be thoroughly familiar with the operation of both the
PROM Programmer unit and the personality module in use. (The 900B
interface supports the optional 9115 module.) Refer to the appropriate
Prolog manuals supplied with the PROM Programmer unit for detailed
operating instructions.

A.3 CABLE CONNECTIONS

Each PROM Programming unit requires an RS-232/C cable with the pin
connections shown in Table A-5.

TABLE A-5. PIN CONNECTIONS

Pin Number Function

1 Chassis ground
2 Transmitted data (from ADS to Prolog)
3 Received data (from Prolog to ADS)
4 Request To Send (from ADS to Prolog)
5 Clear To Send (from Prolog to ADS)
7 Signal ground

20 Data Terminal Ready (from ADS to Prolog)

A-5

PROLOG PROM
PROGRAMMER INTERFACES

A.4 JUMPER CONNECTIONS

The jumper connections shown in Table A-6 are required on the ADS MPIO
card (part #10155).

10.

TABLE A-6. JUMPER CONNECTIONS

Jumper Function

2
3
4

6
7
9

Connects transmitted data to pin 2
Connects Request To Send to pin 4
Connects Data Terminal Ready to Carrier
Detect (internal to ADS)
Connects received data to pin 3
Connects Clear to Send to pin 5
Connects Data Terminal Ready to pin 20

The following jumpers must be removed from the MPIO card: 1, 5, 8 and

A.5 LOAD INTERFACE PROGRAM

To load the interface program into the ADS, from the Debugger (JD)
type:

L PR92080
L PR900B80

(for 8080/8085 or Z80 920)
(for 8080/8085 or Z80 900B)

The interface program begins at location 4000 hexadecimal.

A-6

INPUT DATA

PROLOG INTERFACE
LI S T OF COMMANDS

I fxxxx J, t nnnn J

PURPOSE

The I command inputs data from the PROM in the PROM Programmer
socket.

PARAMETERS

xxxx specifies the beginning address at which data will be stored.

nnnn specifies the number of bytes (hexadecimal) that will be
transferred.

PROGRAM PROM

P txxxx J, {nnnn}

PURPOSE

The P command programs the PROM with stored data.

PARAMETERS

xxxx specifies the beginning address from which data will be
stored.

nnnn specifies the number of bytes (hexadecimal) that will be
programmed.

A-7

PROLOG INTERFACE
LIST OF COMMANDS

RETURN CONTROL

R

PURPOSE

NOTES

The R command returns control to the ADS Debugger (920) or to the
900B keyboard (900B).

To resume execution of the PROLOG program, execute again beginning
at location 4000. To resume transfers to and from the ADS, press
the lRETURNl key.

A-8

B.l INTRODUCTION-

APPENDIX B
DATAIO PROM

PROGRAMMER INTERFACE

Four DATAIO PROM Programmer units are available for use with the ADS:
System 7, System 9, System 17 and System 19.

NOTE

For Systems 7 and 17, ASCII HEX SPACE firmware is required.

The files contained on the DATAIO 8080/8085 interface diskette are
shown in Table B-1.

TABLE B-1. DATAIO SOSO/SO~5 INTERFACE DISKETTE

Filename Function

DATAIOSO.N

DATAIOSO.O

DATAIOSO. C

DATAIOSO.R

EIASO. N

EIOSO. R

KIosb. R

KEYINSO. R

MACLIBSO.N

DATAl 080

DATAIO interface source file

DATAIO interface source file

Command file used to edit, exchange, as­
semble and link DATAIO.N

DATAIO interface relocatable file

Source file of EIA port I/O routines

Relocatable file of EIA port I/O
routines

Relocatable file of CRT routines

Relocatable file of keyboard routines

Macro library (used to generate logo mes­
sage)

Executable object file containing
DATAIOSO.R, EiASO.R, KEYINSO.R and
KIOSO. R

The files contained on the DATAIO ZSO interface diskette are shown
in Table B-2.·

B-1

DATAIO PROM
PRqGRAMMER INTERFACE

TABLE B-2. DATAIO Z80 INTERFACE DISKETTE

Filename Function

DATIOZSO.N DATAIO interface source file

DATIOZ80.0 DATAIO interface source file

DATIOZ80.C

DATAI080.R

EIA80.N

EIA80.R

Kr080.R

KEYIN80.R

MACLIB80.N

DATAl 080

B.2 PROGRAMMING METHOD

Command file used to edit, exchange, as­
semble and link DATIOZ80.N

Relocatable DATAIO interface file

Source file of ErA port I/O routines

Relocatable file of ErA port I/O
routines

Relocatable file of CRT routines

Relocatable file of k~yboard routines

Macro library (used to generate lQgo mes­
sage)

E~~cutable object file containing
DATAI080.R, ErASO.R, KEYINSO.R and
KIOSO.R

The user may ~od~fy DATI080.r (8080/8085) or DATIOZSO.N (ZSO) to accom­
modate other versions of the DATAIO PROM Programmer or to allow int~rfacing
with other PROM programming units. The program transmits 50 ~ulls followed
by an STX instruction and a $AOOOO instruct-ion. Finally, the PROM qata in
ASCII hexadecimal are transmitted (separated by spaces). Transmission is
terminated with an ETX instruction, followed by 50 nulls. ReGeive Data
(from the DATA~O uni~) is in the same format.

Checksum characters are not transmitted to the DATAlO unit. A~l char­
acters other than the actual P~OM data are strippeq from the data stream
prior to storage in RAM.

Since data transmission to and from the DATAIO unit involves command~
to the DATAIO unit as well as ADS commands, the user should be thoroughly
familiar with DATAIO operation. In general, a command set up on the
s~nding device will not be e~ecuted until the corresponding command has
b~en entered on th~ receiving device.

~2

DATAIO PROM
PROGRAMMER INTERFACE

B.3 CABLE CONNECTIONS

The DATAIO unit requires an RS-232/C cable with the pin connections
shown in Table B-3.

TABLE B-3. PIN CONNECTIONS

Pin Function

2
3
7

Received data (from· DATAIO to ADS)
Transmitted data. (fr'om ADS to DATAIO)
Signal ground

B.4 JUMPER CONNECTIONS

Table B-4 shows the jumper connections required on the MPIO card (part
1110155).

TABLE B-4. JUMPER CONNECTIONS

Jumper Function

1
5
9

10
11

Connects received data (from·DATAIO) to pin 2
Connects transmitted data (from ADS) to pin 3
Connects DTR to DCD internally (permits receive)
Connects RTS to CTS internally (permits transmit)
Connects USART port 2 to EIA interface

The following jumpers must be removed from the MP!O card: 2, 3, 4, 6, 7
and 8.

B.5 LOAD INTERFACE PROGRAM

To load the interface program into the ADS, from the Debugger (JD)
type:

L DATAI080

The interface program begins at location 7000 hexadecimal.

B-3

INPUT DATA

DATAIO INTERFACE
LI S T OF COMMANDS

I { XXX X l, 1 nnnn l
PURPOSE

The I command inputs data from the PROM in the PROM Programme~
socket.

PARAMETERS

XXXX specifies the beginning address at which data will be stored.

nnnn specifies the number of bytes (hexadecimal) that will be
transferred.

PROGRAM PROM

p 1 xxxx l ' 1 nnnn I

PURPOSE

The P command programs the PROM with stored data.

PARAMETERS

xxxx specifies the beginning address from which data will be
stored.

nnnn specifies the number of bytes (hexadecimal)-that will be
pr ogr ammed.

B-5

DATAIO PROM
PROGRAMMER INTERFACE

RETURN CONTROL

R

PURPOSE

The R command returns control to the ADS Debugger.

NOTE

For additional information, refer to Applicatiop. Note /t020-l003 pub­
lished by:

/'

DATAl 0
P. O. Box 308
I s$aquah t WA' 98027·
(206) 455-3990
Telex 320290

APPENDIX C

SERIAL I/O PORT VALUES

Appendix C is currently being printed and wili be shipped as soon as
possible.

C-l

APPENDIX D
AMERICAN STANDARD CODE FOR

INFORMATION INTERCHANGE (ASCII)

TABLE D-1. ASCII CHARACTER CODE OONVERSION.

Dec Octal Hex Function Dec Octal Hex Function Dec Octal Hex Function

0 000 00 NUL 43 053 2B + 86 126 56 V
1 001 01 SOH 44 054 2C 87 127 57 W
2 002 02 STX 45 055 2D - 88 130 58 X
3 003 . 03 ETX 46 056 2E . 89 131 59 y
4 004 04 EPT 47 057 2F / 90 132 SA Z
5 005 05 ENG 48 060 30 0 91 ·133 5B [
6 006 06 ACK 49' 061 31 1 92 134 5C " 7 007 07 BEL 50 062 32 2 93 135 5D]
8 010 08 BS 51 063 33 3 94 136 5E /\

9 011 09 HT 52 064 34 4 95 137 SF
10 012 OA LF 53 065 35 5 96 140 60 ,
11 013 OB VT 54 066 36 6 97 141 61 a
12 014 OC FF 55 067 37 7 98 142 62 b
13 015 OD CR 56 070 38 8 99 143 63 c
14 016 OE SO 57 071 39 9 100 144 64 d
15 107 OF SI 58 072 3A 101 145 65 e
16 020 10 DLE 59 073 3B ; 102 146 66 f
17 021 11 DC1 60 074 3C < 103 147 67 g
18 022 12 DC2 61 075 3D 104 150 68 h
19 023 13 DC3 62 076 3E > 105 151 69 i
20 024 14 DC4 63 077 3F ? 106 152 6A j
21 025 15 NAK 64 100 40 @ 107 153 6B k
22 026 17 SYN 65 101 41 A 108 154 6C 1
23 027 17 ETB 66 102 42 B 109 155 6D m
24 030 18 CAN 67 103 43 C 110 156 6E n
25 031 19 EM 68 104 44 D 111 157 6F 0

26 032 1A SUB 69 105 45 E 112 160 70 p
27 033 1B ESC 70 106 46 F 113 161 71 q
28 034 1C FS 71 107 47 G 114 162 72 r
29 035 1D GS 72 110 48 H 115 163 73 s~ .
30 036 IE RS 73 111 49 I 116 164 74 t
31 037 IF US 74 112 4A J 117 165 75 u
32 040 20 SP 75 113 4B K 118 166 76 v
33 041 21 76 114 4C L 119 167 77 w
34 942 22 tt 77 115 4D M 120 170 78 x
35 043 23 II 78 116 4E N 121 171 79 y
36 044. 24 $ 79 117 4F 0 122 172 7A z
37 045 25 % 80 120 50 P 123 173 7B

1 38 046 26 & 81 121 51 Q 124 174 7C
39 047 27 82 122 52 R 125 175 7D l
40 050 28 (83 123 53 S 126 176 7E
41 051 29) 84 \24 54 T 127 177 7F DEL
42 052 2A * 85 125 55 U

D-l

<d~' . ~ GenRad
future(g1~J~@J

Hay 27, 1980

Dear Customer:

UPDATE NOTICE #052980C

5730 Buckingham Parkway
Culver City, CA 90230
(213) 641 -7700/64 1 -7200
TWX: 910-328- 7202

Enclosed is an update package for your 2300-ADS Software Reference
Hanual, manual #2300-5000-01. Vertical lines in the left and right margins
mark the areas where changes have been made. The replacement pages should
entirely replace the pages in your manual as listed below.

Replace Page With Page(s)

1-5 and 1-6 1-5 and 1-6
1-7 and 1-8 1-7, 1-7A and 1-8

2-5 and 2-6 2-5 and 2-6
2-9 tlnci 2-10 2-9 and 2-10

3-19 and 3-20 3-19, 3-19A and 3-20

4-5 and 4-6 4-5 and 4-6

6-1 and 6-2 6-1 and 6-2

Please call us with any questions or comments.

Thank you,

C::m~
l-iarketing Services Manager

JRA/ss

INTRODUCTION

Commands that prompt for user verification during wild card operations
are executed upon entry of

y

for yes or

N, I RETURN I, I TAB I, or I STEP I

for no. 1 BREAK I aborts the operation.

Command Completion.

Unless otherwise specified, the I RETURN I key must be pressed at the
end of a command line in order for the command to be executed.

1. 5 FILENAME CONVENTI ONS

In the syntax descriptions that follow, the word "filename" refers to
a filename without prefixes or parameters. The word "file-spec" refers to
a filename including any optional prefixes or parameters (see Sections 1.6
and 1.7 for information on prefixes and parameters).

ADS system programs accept only filenames conforming to the following
conventions.

1) A filename must be from one to ten characters in length.

2) The first character must be a letter. Subsequent characters may
be letters, digits or periods (see Exceptions on page 1-6).

3) Spaces are not allowed as filename characters; if inserted, they
are ignored.

Several example filenames are listed below:

TESTPROG

FILE29

DRIVER3.R

BIG. PROGRAM

- Valid

- Valid

- Valid

- Invalid; longer than ten
characters

1-5

INTRODUCTION

9900PROG

tty-FILE

Exceptions.

Invalid; first character is not a
letter

- Invalid; hyphen is an illegal
character

Characters other than letters, numbers and periods l~ay appear in a
filename if the filename is enclosed in quotation Marks. Also, if enclosed
in quotes, a filename may begin with a non-alphabetic character. For exan­
pIe, the two invalid nanes, 9900PROG and HY-FILF: can be validly specified
as:

"9CJOOPROG"
"HY-FIl..E"

A filenaMe may legally contain a quotation nark if it is followed by a
second quotation mark and if the entire filena~e is enclosed in quotes. for
example:

"ARC""DEF"

specifies file ABC"DEF.

1.6 FILENAME PREFIXES

Three types of prefixes ~ay optionally precede a filename. Any two
types or all three types ~ay be used in the same filenane specification,
provided they are entered in the following order:

[new/old-spec:] [dcvice-spec:][(attribllte-spec)]

1) New/Old Prefix. The ADS assunes that when an output filename is
called for, the~ existing file should be overwri t ten or, if it does
not exist, a new file should be created (Hanager only). In some
instances the user may wish to override this default. Two prefixes
are available for this purpose.

a) N: Prefix. The N: prefix instructs the ADS to create a new
file, but not to write over the file if it exists. Examples:

N:OUTFILE

N:l:T)EVTARLE

- specifies a new file on drive a named
OUTFILE;

- specifies a new file on drive 1 named
DEVTABLE;

1-6

INTRODUCTION

b) 0: Prefix. The 0: prefix instructs the ADS to write over an
existing file and insures that an error will result if the
file does not exist. Examples:

O:OUTFILE

O:1:(S)TEXT2

- specifies an existing file on drive 0
named OUTFILE;

- specifies an existing source file on
drive-1 named TEXT2.

NOTE
New filenames specified to ADS system
programs other than the Manager must
contain the N: prefix. 0: is the de­
fault and is not necessary when spec­
ifying existing filenames.

2) Device Prefix. A device prefix specifies the physical device to or
from \-lhich a file will be transferred. The various disk drives,
the printer and the serial output ports are treated as file­
oriented devices by the ADS. Thus ,the user may select any avail­
able device by entering a device prefix with a filename. If a de­
vice prefix is not entered, the ADS defaults to disk drive O.

a) Disk Drive. A disk drive is specified by prefixing the file­
name with the desired drive nunber followed by a colon. For
example:

l:CHDPROG
O:TABLE.Z80

b) Parallel Port Printer. Any output file may be transferred
directly to the printer by entering:

P:

P: is the entire filename specification. For example:

M PROG,P:

transfers the file PROG to the printer. Refer to the List of
Comn.ands at the end of Section 2 for more information on the 1-1
comnand.

1-7

INTRODUCTION

c) Serial Port. A serial port is specified as:

S[n]:

where n is the optional port nunber. The default port nuober,
as '-lell as the baud rate and parity options may be preset using
the :--1anap,er's I cOT:lI'land (see l.ist of Commands at the end of
Section 2). Presettings may be overridden by including
parameters in the filenaoe specification (see Section 1.7).

1-7A

INTRODUCTION

3) Attribute Prefix. The Hanager program permits the user to specify
the attributes associated with a file. (These specifications are
one-letter codes Which identify the file type. Refer to Section
2.2 for additional information on file attribut.es.) When it is
necessary to specify an attribute(s) with a filename, enclose the
attribute(s) in parentheses. For example:

(S)NEWFILE

(PO)l1ASTER

1: (R)SUBR2

1.7 FILENAME PARAMETERS

- indicates a source file named NEWFILE;

- indicates a permanent object file named
MASTER;

- indicates a relocatable file named
SUBR2.

In some instances, additional information (other than the filename it­
self and optional prefixes) is required for a filename specification. For
example, when a serial port file is specified, parameters may be appended to
specify the baud,rate and parity options. A filename parameter is of the
form:

~file-spec~[/parameter name=parameter value]

Two types of parameter values may be used.

1) Integer Parameter Value. An integer parameter value is used when a
decimal number must be specified. For example, When a serial out­
put port is specified, the baud rate may be specified as well:

I S2:/BAUD=1200

In the example above, serial port 2 is initialized to 1200 baud.
Refer to Appendix C for additional information on baud rates.

2) String Parameter Values. String parameter values are similar to
integer parameter values except that the value following the equal
sign may be any string of characters. If characters other than
letters, numbers or periods are included, the string must be en­
closed in quotation marks. A quotation mark may appear in a string
paraneter if it is followed by a second quotation mark.

String parameters are necessary when specifying serial port parity.
For example:

/PARITY=ODD

1-8

MANAGER

Single, Multiple or No Character Wild Card Symbol.

The asterisk (*) character within a filename implies any group of zero
or more characters. For example, using the Move command:

M*,l:*

moves all files (except those whose filenames are enclosed in quotes) from
drive 0 to drive 1. The command:

M*,l:"*"

moves all files (including those whose filenames are enclosed in quotes)
from drive 0 to drive 1.

To scratch (delete) a collection of files from drive 0 whose filenames
begin with the characters SOURCE, the command:

S SOURCE*

is used. The files SOURCE. 0, SOURCE.N and SOURCE123 are deleted, but the
files RESOURCE and ASOURCE1 are not affected.

To assign attributes to a collection of files on drive 0 containing the
string GO, the command:

A*GO*/A=S

is used. Every file whose name contains the string GO (such as AGONY, GOSH
or AGO) is assigned the S attribute.

Wild Carding by Attribute.

Files may be wild carded by attribute, as well as by name, or by a com­
bination of the two. The attribute specification, shown in parentheses,
must follow the drive number and colon, if present. For example:

M (S)*,l:*

moves all source files from drive 0 to drive 1.

If mUltiple attributes are coded, only those files having all of the
specified attributes are processed. For example:

S (OW)*

scratches only those files witQ both the 0 and W attributes. Files with
only one of these attributes are not scratched.

2-5

liANAGER

Hanager Queries During Wild Card Operations.

When the Hanager prompts for verification before executing a command,
the user may respond with Y (the file is processed) or N, I SlEP I, fTI!!] or
LRETURNJ (the file is skipped). After receiving verification from the user,
the Manager will continue to prompt for subsequent files. To abort the
entire operation, the I BREAK I key is pressed.

When the }~nager prompts for information such as attributes during an A
command, the I TAB I key or 1""STEPi key may be used to skip the file and leave
its attributes unchanged. Entering a I RETURN I clears all attributes from
the file.

2.7 OPTION SWITCHES

Many Manager commands may be appended with an option switch. Five
switches are available. Each switch must begin with a slash. Refer to the
List of Commands at the end of Section 2 for specific uses of the option
switches as they apply to individual commands.

IA Switch.

Some commands ask for user verification before executing the commanded
function. The IA option switch may be used to override this verification.
When the IA switch is specified, all files are processed as if Y were typed
in response to each query.

Ic Switch.

If the number of files processed exceeds the space available on the
display screen, the Manager will pause and the message "PRESS ANY KEY TO
CONTINUE" will appear. The IC option switch suppresses this message as well
as all queries and prompts (the Manager assumes Y). The IC switch is par­
ticularly helpful when using command files and the length of displayed in­
formation is unknown.

QI Switch.

The IQ switch requests verification for every case. Thus, the user may
select a subset of the wild carded·· files by typing Y for yes, N, I STEP I ,
\TABI or I RETURN I to skip to the next case, or /BREAK\ to abort the opera­
tion.

Ip Switch.

The Ip switch routes all data on the display screen to the Centronix
co~patible printer.

2-6

MANAGER

LIST OF COMMANDS

ASSIGN ATTRIBUTES

A{ file-spec l [/p] 1 IA=attribute }

AfWild-Specl[/Pl[!~][/A=attributel

PURPOSE

Attributes help identify files and protect them against accidental
destruction.

PARAMETERS

NOTES

IA assigns new attributes and overwrites any existing attributes.
Any of the following attributes may be specified:

o executable absolute object file
P permanent file _
R relocatable object file
S sour ce file
W write-protected file
Z permanent, write-protected file

A file may be assigned any combination of attributes. Attributes
may be added and removed to accommodate ADS system program re­
quirements (see Section 2.2, Table 2-A).

The wild card feature may be used to change the attributes of a
group of files. If the attributes parameter is omitted, the Man­
ager will prompt for the attributes for each file individually.
The I TAB I key may be used to leave the attributes of any file un­
changed and skip to the next file.

See Section 2.7 for option switch definitions. All desired op­
tion switches must be specified before the /A=attribute parameter
is entered.

2-9

HANAGER

LIST OF COUMANDS

CREATE FILE

C{filename}[/I=initial-alloc[/E=extension-alloc]][/P][IC]

PURPOSE

The C command creates a new file and allocates for that file the
number of tracks specified in the II parameter.

PARAHETERS

NOTES

II specifies the initial size of the file. When data are written
into the file and the file exceeds its initial allocation, addi­
tional space is automatically allocated until the disk becomes
full.

IE specifies the number of additional tracks to be allocated when
the file expands beyond its allocated size. If this parameter is
omitted, the default is one track at a time (each time the file
expands beyond its allocated size).

As stated in Section 1.6, new files are created automatically.
The C command provides the additional feature of allowing a track
allocation to be specified.

)

The C command does not support the wild card feature; only one
file may be created at a time.

See Section 2.7 for option switch definitions.

2-10

\

EDITOR

LIST OF HESSAGES

END PREVIOUS FILE?

An attempt was made to write to a new output file without ending use
of the current output file (E command). To end the previous file, type
Y; to cancel the write command, type N or \RETURN\.

END FILE

The Editor has reached the end of the input file.

FILE NOT SPECIFIED

An L, W, N, G, CT or CF command was entered without specifying a file­
name, and input or output files were not previously specified. Retype
the L or W command and include the desired filename, or execute a W
command with a filename before retyping the N or G command.

FULL - HORE DATA IN FILE

The work space was filled with data from a Load operation. Before the
remaining data can be loaded, a portion or all of the work space data
must be written out.

NOT FOUND

During an F or G command operation, a character string match was not
found in the range of search.

NOT A SOURCE FILE

The file designated in an L, W, CT or CF command does not have an S
attribute. Use the }~nager's A command to change the file's attri­
bute(s).

OVERFLOW

The work space is full. Allor part of the work space should be writ­
ten to the output file using an N or W command.

REPLACE THIS LINE?

The F or G command requires verification before replacing a string in
the line displayed. Type Y to replace, N, LRETURNI, ITABI or (STEPI to
continue without replacement, or I BREAK I to cancel execution of the
command.

3-19

EDITOR

LIST OF MESSAGES

SAVE DATA?

An attempt was made to jump to another ADS system program without writ­
ing the work space contents to an output file. Type N to erase the
text in the work space and allow the program jump. To cancel the jump
command and preserve the work space text, press any key other than N.

SYNTAX

There was a syntax error in the last command entered. Retype the com­
mand.

3-19A

ASSEHBLER

4.5 SPECIFYING ASSEMBLER FILES

Refer to Figure 4-4. After the desired options have been selected and
entered, the Assembler will generate a series of prompts, as listed below.
The user may respond to each with any legal file specification as shown in
Figure 4-4 (see Sections 1.5, 1.6 and 1.7 for allowable filenames, prefixes
and parameters).

1) SOURCE FILE

2) MACRO FILE

3) OUTPUT FILE

4) LISTING FILE

- Any filename entered must have the S at­
tribute.

- This input is optional (enter I RETURN I to
bypass). See Section 4.10 for additional
information on MACRO files.

- This input is optional (enter I RETURN I to
bypass). Any filename entered must have
the R attribute (a new file created by
the Assembler will automatically be as­
signed the R attribute).

- This input is optional (enter IRETU~ to
bypass). Any filename entered must have
the S attribute or none at all.

Figure 4-4. Example Assembler Display.

4-5

ASSEMBLER

4.6 ASSEMBLER PROCESSING

After the last filename has been entered and the \ RETURN \ key has been
pressed, assembly begins. Statements are processed in two passes. On the
first pass the Assembler assigns values to symbolic labels and stores them
in a symbol table. During pass 2 the Assembler analyzes each statement from
the input file and generates re~ocatable object output. If the Assembler
recognizes an error, the statement is flagged and zero-bytes are generated
for that statement.

4.7 HALT ASSEMBLY

To halt the assembly process at any point, press the \ RETURN \ key.
This is useful for viewing the Assembler output as it scrolls on the
display. The Assembler will pause and prompt:

CONTINUE?

To continue, type:

Y or (RETURN I

To abort assembly, type:

N or (BREAKI

4.8 ASSEMBLER STATEMENT SYNTAX

Statements are composed of four components or fields. Fields are sep­
arated by a space or a series of spaces. Statements are entered one per
line with a maximum of 80 characters.

Label Field.

The optional label field may contain a symbolic name Which is used to
reference the statement or Which will be assigned a value by an EQU direc­
tive. Labels must begin in the first character position in the line.
Labels may be from one to eight characters in length. The first character
must be a letter (A-Z). Subsequent characters must be letters, dollar signs
or numbers (0-9).

During assembly a value is assigned to each label, as described below.

1) ASEGs. In ASEGs, the value assigned to a 1abei is the absolute
address at Which the assembled statement will be stored. This
value is identical to the value in the absolute segment location
counter, Which appears on the left side of the assembly listing.

4-6

SECTION 6

COMMAND FILE PROCESSOR

6.1 INTRODUCTION

The Command File Processor reads command lines from a diskette file and
passes them to ADS programs, thus providing a convenient alternative to the
time-consuming method of keyboard command entry. The Command File Processor
is particularly helpful when long sequences of commands must be entered
repeatedly. Command files may reside on a diskette in any disk drive.

6.2 COMMAND FILE CREATION

A command file consists of a number of legal ADS commands (one command
per line). Command files may be created with the Editor program. The Edi­
tor automatically assigns the S attribute to newly created files (the Editor
will work only with S-attributed files).

6.3 INITIATE COMMAND FILE PROCESSING

To transfer control from the keyboard to the Command File Processor,
type the following sequence:

J A {filename}[,parameter-I][,parameter-2] ••• [parameter-9]

filename is the name of the source (S attribute) file in Which commands have
been stored; the Command File Processor reads commands from this file. par­
ameter-I isa string of characters which directly replaces the Al sequence
in the command file; parameter-2 replaces A2, etc. (a maximum of 9 parame­
ters may be entered). The number of parameters entered at the initiation of
command file processing must be equal to or greater than the highest num­
bered substitution sequence An in the command file (see Section 6.4).

Two successive commas (,,) in the initiation command denote a null par­
ameter and cause every occurrence of the corresponding substitution sequence
An to be deleted and the part of the line to the right of An to be moved
left two character positions. If the last parameter in an initiation
command is n~ll, an extra comma must be entered at the end of the command.

In the following example, four parameters have been entered. The first
and last parameters are null. The substitution sequence in the command file
(FILEA) must be no higher than A4.

JAFILEA"FILEX,P"

In some ADS system programs an S option invokes symbol table generation.
For instance, if the command file contains:

(start Assembler operation)
(Assembler options)

6-1

COMMAND FILE PROCESSOR

the third parameter of the initiation command JAFILEAttFILEXtStt causes the
options TLS to be entered. If the third parameter is null, the options TL
are entered. Thus t the user may choose to assemble with symbol table output
at the initiation of command file processing rather than at the time the
command file is written.

NOTE

If the Assembler or Linker is used in a command filet a blank line is
required at the end of the input sequence to continue command file
processing.

6.4 C01MAND FILE PROCESSOR FEATURES

Four features are provided by the Command File Processor, as described
below.

AL Feature.

The AL keyboard escape feature is entered as:

[••• part of command line]AL[part of command line •••]

This feature allows characters to be entered from the keyboard until the
I RETURN I key is pressed.

Parts of the command file line are combined with characters entered at
the keyboard to form a complete command line. The first part of the command
line is read from the command file. Input is then taken from the keyboard.
When the I RETURN \ key is pressed, the Processor reads the next part of the
command from the command file. The keyboard-entered characters are inserted
in the command at the AL position. The IRETURNI, Which ends keyboard in­
put, is not inserted.

If AL appears by itself in a command file line, the Processor reads
only keyboard-entered characters for that line.

In the example below, the Editor's Find command is constructed from
parts of a command file line. The characters AL are replaced with the
keyboard-entered characters S20 during execution.

line in command file:

keyboard entry for AL:

S20lRETURNI

effective command input to the Editor:

F,R2,S20,AVlRETURNI

6-2

