
Futuredata

Advanced Microprocessor

Development System

Reference Manual

GenRad
future@@JC~@)

5

MICROCOMPUTER
SYSTEMS

Futuredata

Advanced Microprocessor

Development. System

Reference Manual 5

Futuredata Advanced Microprocessor Development System

Reference Manual

copyright 1980

Genrad Futuredata Computer Corporation

All rights reserved.

Preliminary-edition

Genrad

5730 Buckingham Park Way Culver City CA 90230

TABLE OF CONTENTS

1 How to Use this Manual

2 Introduction to Microprocessor Development

3 Beginning Operation

4 Conventions

5 Command Files

6 File Manager

7 Editor

8 Assembler

9 Assembler Macros & Conditional Statements

10 Program Segment Linker

11 Debugger

12 Emulator

13 EPROM Programming

Section 1

How to Use This Manual

This manual is designed to allow easy access to information needed by

the user of the Futuredata Advanced Microprocesser Development System.

Sections Sections are placed in the order of use. The beginning of

each section may be found by fanning the manual pages slightly and matching

the appropriate black block on the edge of the Table of Contents page with

that of the section. Sections of more than three pages are indexed.

Pages Each page has one or two lines across the top. If the page

holds information about a command or other input to the AMDS system, there

is one line. If the page holds purely explanatory information, there are

two lines.

Conventions An explanation of the conventions used to describe

commands is given in Section 4.

QUICK INTRODUCTION TO AMDS

For a quick introduction to AMDS features and capabilities, read

only the page headings, the information shown under the subheading PURPOSE

if that subheading is given, and look at the photographs of the keyboard

and the various displays.

PRELIMINARY EDITION

This is a preliminary edition of this manual. The next edition will

be automatically mailed to each AMDS user.

Futuredata AMDS Reference Manual 12/07/78 1-1

Section 2

Introduction to Microprocessor Development

SOFTWARE DEVELOPMENT

The Futuredata Advanced Microprocessor Development System provides

all of the software tools necessary for the rapid development of large

microcomputer programs. Four major functions of the AMDS are used for soft­

ware development. These are the Editor, Assembler, Linker, Debugger, and

File Manager.

Software development typically proceeds in the following manner.

First a program in assembly language (or Basic) is typed into the Editor.

The Editor provides a large number of features for easy entry and editing

of text. The finished program is then stored on diskette.

Then the Assembler translates the assembly language program on the

diskette to binary microprocessor instructions. The Assembler is capable

of detecting a number of syntax errors. If there are errors, the program

is edited using the Editor and assembled again. The executable binary

program is stored on disk.

Often the program is written in modules which may be located any­

place in memory, and which must be linked together. Relocation and linking

is performed by the Linker. The linked program is stored on a diskette

file.

The program is then executed by the Debugger which prov~des powerful

features for testing. The Debugger displays the contents of memory and the

microprocessor registers. Changes can be made where necessary.

Normally there are execution errors in a program when it is first

written. After the errors are found using the Debugger, changes are made

in the assembly language program using the Editor. The program is assem­

bled, linked and tested again. THis process is repeated if necessary until

the program is perfect.

Futuredata AMOS Reference Manual 12/07/78 2-1

Hardware Development Microproces,sor Development

HARDWARE DEVELOPMENT

A hardware prototype is developed using the Emulator, which is pro­

vided with a plug which fits directly into a microprocessor socket.

To the prototype, the Emulator appears almost ,exactly as though a

microprocessor were plugged into the socket. However, the keyboard, dis­

play, and all of the other features of the AMOS are available to the user

during emulation. This makes testing of the prototype extremely efficient.

The prototype clock, interrupts, control lines, direct memory access,

I/O, and memory may be tested separately.

Futuredata AMOS Reference Manual 12/07/78 2-2

TURNING ON POWER

Section 3

Beginning Operation

To begin operation:

1) Plug diskette drive cable into connector on AMOS back panel.

2) Plug in AMOS power line cord.

3) Turn on switch on back panel.

4) Turn on diskette drive unit.

5) Insert system diskette in drive O. For proper method of insertion see

USING DISKETTES on page 3-3.

6) Wait 5 seconds for drive speed to stabilize.

7) Type J{system-character} to begin operation of one of the Futuredata

system programs. system-character is one of the following:

M File Manager
E Editor
A Assembler
L Linker
D Debugger
U Utility
B Basic Interpreter
C Basic Compiler

TURNING OFF POWER

To turn off power:

1) Remove all diskettes. If a diskette is in the drive when power is

turned off, it is possible that the magnetic information stored on

the diskette will be changed.

2) Turn off diskette drive unit.

3) Turn off switch on AMOS back panel.

Futuredata AMOS Reference Manual 12/07/78 3-1

qsinq Diskettes Beginning Operation

HANDLING DISKETTES

A diskette is a flexible disk coated with magnetic material and en­

closed in a plastic jacket. A paper envelope is supplied for storage.

Observing the following rules will insure diskette reliability:

1) Never touch the magnetic recording surfaces of the diskette. These

surfaces can be seen through the holes punched in the jacket.

2) When a diskette is not loaded in a diskette drive, it should at all

times be kept in the envelope provided.

3) Never bend a diskette.

4) Never subject a diskette to magnets or magnetic influence. Diskettes

should not be stored near power transformers or motors.

5) Diskettes must be used and stored at a temperature within 50oF. This is

equivalent to 100e to 520 C.

6) Always insert a diskette into the diskette drive carefully.

7) Do not write on the plastic jacket with a lead pencil or ball-point

pen. Use a felt tip pen.

8) Heat and contamination from a carelessly dropped ash can damage a

diskette.

9) Do not expose a diskette to sunlight.

10) Do not attempt to clean the magnetic surface. Abrasions may cause loss

of stored data.

Futuredata AMOS Reference Manual 12/07/78 3-2

Using Diskettes Beginning" Operation

INSERTION INTO DRIVE

The proper position of insertion is shown in the drawing below. To

insert a diskette, depress the drive door latch. Insert the diskette with

the label to the right until a click is heard. Close the drive door.

Once the click is heard on insertion, it is not possible to remove

the diskette until the door is closed and opened again.

PHYSICAL WRITE PROTECTION

A diskette drive will not write on a diskette which has an open write

protection hole or notch. To write magnetic information on a diskette it is

necessary to cover the hole or notch with a tab or label. Tabs or labels are

supplied with the diskette. The magnetic information on a diskette may be

read regardless of write protection. System write protection is also avail­

able, see page 6-11.

UNPROTeCTED

Write
ProtC
TaO

Futuredata AMOS Reference Manual 12/07/78

O
V= o© c QCl

o
WRITe "'OTecTeo

3-3

LV
I
~

Futuredata AMDS keyboard The special keys on the

left are used in text editing. The arrow keys on the right scroll or

space through text (Editor) or memory (Debugger).

the far right are hardware control function keys.

The keys on

It is important to note that the bracket and brace keys to the right

of the Pare never used for entering commands. They are only used when

they are part of text. Brackets and braces in this manual show only the

syntax of commands or required input.

COMMANDS

Section 4

Conventions

All commands and command parameters are printed in Large type.

In Sections 8, 9, and 10, Assembler and Linker input is also shown in

large type.

Command Letters Command letters, which must be typed exactly as

shown, are printed in upper case.

Command Parameters Parameters, which require a choice by the user,

are shown in lower case. If a parameter is optional, it is shown in

brackets: [parameter] If a parameter is required, it is shown in braces:

{required-parameter} Do nvt type the brackets or D£a~es. They only show

syntax and are not part of any command or required input.

Dots in Syntax ..• A series of dots in a command syntax shows that

the parameter previous to the dots may be repeated indefinitely. Vertical

dots have the same meaning.

Blank Spaces No blanks are allowed within system commands, and none

are shoWn. Blanks shown for Assembler and Linker input are required.

Special Keys are Shown with Rectangles A rectangle drawn around a

letter, series of letters, or a word indicates that a special key must be

depressed on the keyboard. The letters shown inside the rectangle are the

same as the letters printed on the key top. Here is an example:

IRETURNI (depress the return key)

Command Entry After each keyboard input the return key must be

depressed to indicate to the system that what was typed is ready to be

entered.

Futuredata AMDS Reference Manual 12/07/78 4-1

File Name Conventions Conventions

FILE NAME CONVENTIONS·

Drive Number Prefix In any case where a file name is required as a

command parameter or an input, d:, where d is the diskette drive number,

must be prefixed to the file name unless the diskette is loaded in drive o.
If the prefix is not given, drive 0 is assumed.

Create File Prefix In any case where the file name of an output file

is required as a command parameter or an input, N: (new) may be prefixed to

the file name to create the file before writing to it. The create command

described on page 6-5 may also be used to create a file, but this command

can only be used during File Manager operation, whereas N: may always be

used.

Use of Both Prefixes When both prefixes are used, the sequence

is:

[N:] [d:]file-name

Futuredata AMOS Reference Manual 12/07/78 4-2

INTRODUCTION

Section 5

Command Files

The AMOS allows the user to save frequently used sequences of

commands on a diskette file and later to use this file for command input.

Provision is made for accepting input from the keyboard, prompting for

input, and for passing parameters to commands when initiating command

file operation.

IMPORTANT NOTE

The Assembler and Linker wait for I RETURN I before accepting input

again after operation. A command file must contain a blank line at this

point to ensure that these system programs terminate properly.

Futuredata AMOS Reference Manual 12/07/78 5-1

writing a Command File

Return to Keyboard for Input Command Files

RETURN FOR ONE LINE

[prompt]"L

prompt will be displayed when Command File processing

reaches this line on the diskette file.

Typing I RETURN I causes the AMDS to continue reading commands from the file.

ADDENDUM

prompt must be part of a command. No messages or characters

which are not part of a command are allowed in a

command file. Characters entered at the keyboard must,

when substituted into the line in which the carat L

occurred, become part of a legal command. The command

may continue after the carat L, and other carat L

instructions may be placed in the same line.

RETURN UNTIL A IS INPUT

[prompt]"K

prompt will be displayed.

No characters are allowed after the K.

PURPOSE

This command allows input from the keyboard until " is typed. The

AMOS then continues reading commands from the command file.

ADDENDUM

prompt must be part of a conmand. It may be absent. No char-

acters which are not part of a command are allowed

in a command file.

Futuredata AMOS Reference Manual 12/07/78 5-2

Writing a Command File

Accepting Parameters Command Files

COMMAND

A{n}

n may be any integer from 1 to 9.

PURPOSE

This sequence within a command in a command file will be replaced by

the nth parameter entered at initiation of command file processing.

EXPLANATION

Parameters will replace this sequence by direct substitution. The

command in which the sequence occurs will be expanded or contracted to fit

the parameter.

Futuredata Reference Manual 12/07/78 5-3

Initiating Reading of Command File

Aborting Operation

INITIATING READING

JA{file-name}[,parameter].

Command Files

file-name is the name of the file on which commands have been stored.

parameter is a string of characters which will be directly substituted

into commands on the file.

PURPOSE

This command causes the AMDS to accept further command input from

the file file-name.

EXPLANATION

Reading of this file for command input is terminated when the end-of

the file is reached, or if command file processing is aborted. Up to 9

parameters may be entered.

ABORTING OPERATION

SHIFT: r BREAK I

Command file processing may be aborted by holding the shift key down while

depressing the break key.

Futuredata AMOS Reference Manual 12/07/79

Messages Command Files

NOT A COMMAND FILE

The file specified in a JA file-name command does not have the "C"

attribute.

FIRST CHARACTER OF FILE NOT "J"

The first line of a command file must start with a J command.

Futuredata AMDS Reference Manual 12/07/78 5-5

INTRODUCTION

Section 6

File Manager

The File Manager is a computer program which allows the user to

create, delete, and copy diskette files.

A file is any collection of information such as a program, data, or

binary computer instructions. Each collection of information is

referenced by a file name. A file is first created by executing a command

which writes the file name into the diskette file directory and allocates

to this file at least one track of the 76 available on the diskette. As

information is written to the file, the system automatically allocates

additional tracks as needed. One track at a time is added, unless a

greater number is specified when the file is created.

BEGINNING FILE MANAGER OPERATION

Enter JMIRETURNI to begin operation.

Futuredata AMOS Reference Manual 12/07/78 6-1

Initialize Diskette (I) File Manager

COMMAND

I [drive-number]

drive-number may be 0 or 1.

drive-number may be omitted; the system will specify drive 1.

PURPOSE

Initialization A diskette must be initialized before it can be used

for the first time.

Erasure Initialization erases any information previously stored on

a diskette.

EXPLANATION

As supplied by the manufacturer, diskettes have no magnetic infor­

mation written on them. Initialization causes the boundaries of the tracks

which later will hold file information to be defined and formats a file

directory. Before initialization begins, the File Manager displays the

message: INITIALIZE DISKETTE ON UNIT n? Typing Y (yes) starts

initialization. Pressing the jRETURNI key bypasses initialization.

Futuredata AMOS Reference Manual 12/07/78 6-2

Display Diskette Directory (D)

COMMAND

D[drive-number][P]

drive-number may be the integer 0 or 1.

If drive-number is not specified, the value assumed is o.
If P is appended, the directory will be printed.

PURPOSE

File Manager

This command displays the file directory information which is on

the diskette loaded in the specified diskette drive. Included in the

directory display are: 1) the drive number in which the diskette is loaded,

2) file names, 3) file attributes, 4) the number of tracks allocated to each

file, 5) the number of tracks on the diskette which have not yet been

allocated.

Futuredata AMDS Reference Manual 12/07/78 6-3

File Name Conventions

Command Conventions File Manager

NAME CONVENTIONS

Each collection of information stored on diskette is called a file

and is referenced by a file name. The File Manager will accept only names

which follow these conventions:

EXAMPLES

1) File names must be one to ten characters in length.

2) The first character must be a letter or a number. After the

first, any other ASCII character which results in a displayed

symbol may be used, such as slash, period, or hypehn.

3) No blanks, commas, or colons are allowed within the name.

These are legal file names:

A

COUNTERS23

COUNT.R

2

Q-B//3

DATA

COMMAND CONVENTIONS

[N:] [drive-number:] {file-name}

N: specifies that the file is to be created.

drive-number: specifies the drive number in which the diskette is loaded.

It may be 0 or 1. If this parameter is not included, 0 is assumed.

EXPLANATION

N: and/or drive-number: may be prefixed to a file-name in any

command in which a file name is one of the parameters. The usage of N:
must be appropriate; the file name it prefices must be one that will be

written.

Futuredata AMOS Reference Manual 12/07/78 6-4

Create a File (C or N:) File Manager

CREATE COMMAND

C{file-name}[,tracks[,extension-size]]

tracks is an integer which specifies the initial number of tracks to be

allocated to the newly created file. If omitted, the value used

is 1.

extension-size is an integer which specifies the number of tracks which will

be added to the total allocation of t~acks each time information

written to the file overflows the former allocation. If omitted,

the val~e used is 1.

PREFIX CREATE COMMAND

N: prefixed to any new file name specifies that the system will create the

file before writing to it. See Command Conventions on the previous

page.

Futuredata AMDS Reference Manual 12/07/78 6-5

Scratch a File (S)

Free Unused Space in File (F) File -Manager

SCRATCH FILE COMMAND

S{file-name}

The system will request verification: SCRATCH THIS FILE? Type Y (yes).

Pressing the IRETURij key causes the command to be ignored.

PURPOSE

This command deletes the file name from the directory and releases

the diskette tracks which had been allocated to that file.

The scratch command requires writing to the directory. If the file

has the P attribute (permanent) or if the d{skette is physically write

protected, deletion cannot take place. (See Specify File Attributes

Command in this section for information on the P attribute. See Section 3

for further information on physical write protection.)

FREE UNUSED SPACE IN FILE

F{file-name}

PURPOSE

This command releases unused diskette tracks from a file.

EXPLANATION

If new file information is written over the information on an

existing file, and the new file information does not require as much space

as the overwritten file, the unneeded diskette tracks may be returned to

system availability.

Futuredata AMOS Reference Manual 12/07/78 6-6

Rename File CR)

Exchange File Names (E) File Manager

RENAME FILE COMMAND

R{current-file-name},{new-file-name}

PURPOSE

This command renames a file, leaving all other information

unchanged.

EXCHANGE FILE NAMES COMMAND

E{file-name-one},{file-name-two}

PURPOSE

This command exchanges the names of two files, leaving all other

information unchanged.

Futuredata AMDS Reference Manual 12/07/78 6-7

Copy File File Manager

COMMAND

M{from-file-name},{to-file-name}

M{[d:]from-file-name},{[N:](d: to-file-name} (creates new file)

d is the drive number. It may be 0 or 1.

PURPOSE

Copies (moves) all information stored under from-file-name to the

file to-file-name. to-file-name may be prefixed by N: to indicate that it

is a new file which must be created. In this case, the new file will be

given the same attributes as the "from-file."

d: may be prefixed to any file name to indicate the diskette· drive

number.

EXAMPLE

MFILE-A,N:l:FILE-B

This example creates the file FILE-B and copies the information on

FILE-A to FILE-B. FILE-B is on diskette drive 1.

MFILE-A,N:FILE-B

FILE-B is on diskette drive O.

Futuredata AMOS R~f~r~n("A M;:lnll..-:11 1?/n7/7A

Copy Diskette (X) File Manager

COMMAND

X{from-dr;ve-number},{to-dr;ve-number}[,type]

drive-number may be 0 or 1.

type may be anyone of the following characters:

A copy all files

S copy only files with a Z attribute (system files)

If type is omitted, only files without a Z attribute will be copied.

PURPOSE

This command allows easy bulk copying. It is recommended that at

least one copy be made of an important diskette to insure against loss in

case the original is damaged or lost.

EXPLANATION

The name of each file is displayed as it is being copied. If a

file to be copied already exists on the "to-drive" and has the sa~e name

as a file on the "from-drive," the name of the file and the message WRITE

INTO EXISTING FILE? will be displayed. Typing Y (yes) authorizes writing

over the existing file. Pressing the RETURN key will bypass the copying

of that one file.

Futuredata AMOS Reference Manual 12/07/78 6-9

Specify File Attributes (A) File-Manager

COMMAND

A{file-name}[,attribute[attribute) ...]

attribute may be any combination of the following characters:

PURPOSE

Data Type Attributes

S source file (text)

C command file (text)

R relocatable object file (binary)

o absolute object file (binary)

Z system file

File Protection Attributes

P permanent file (cannot be deleted)

W write-protected file (cannot be overwritten)

B blind file (not listed in the file directory)

File attributes help prevent the misuse or accidental destruction of

files. Except for a blind file, file attributes are listed in the file

directory display; they are a useful bookkeeping aid.

EXPLANATION

Data Type Attributes Data Type Attributes specify the kind of

information contained in the file. These are helpful in preventing file

misuse. For example, the Assembler will not attempt to assemble a file

with attribute R (relocatable object file). Instead, the system will

display the message:~NOT A SOURCE FILE.

Futuredata AMDS Reference Manual 12/07/78 6-10

specify File Attributes (A) File Manager

Programs supplied by Futuredata will use only files with the correct

attributes, as shown:

Program

Editor

Assembler

Linker

Debugger

Basic Compiler

Basic Interpreter

Utility

System

Command File

Jump Command

Input File
Attributes

S

S

R

0

S

S

0 or S

C

Z

Output File
Attributes

S

R

o

s

any

Files may be given multiple data type attributes. For example, if it

is necessary to edit a command file it must have the attribute S. To exe­

cute a command file it must have the attribute C. If it is given both at­

tributes, the file may be used in both ways without executing a new attrib­

ute command. The system does not prevent assigning an inappropriate attrib­

ute, such as an S to a binary object file.

File Protection Attributes These attributes prevent the destruction

of a file. Also, the blind file attribute helps prevent use by unauthor­

ized persons.

Notice that to prevent deletion of a file and destruction of the in­

formation in a file by writing new information over it, it is necessary to

use both file attributes P and W.

Blind files are not listed in the File Directory~ thus they cannot

be used by persons who do not know the name of the file because it is

necessary to specify the file name to access a file. The existence of

blind files on a diskette can be determined without knowing the name, how­

ever. If the number of tracks allocated to files in the directory is less

than the number of tracks in use, the difference is the number of tracks

allocated to blind files.

Futuredata AMDS Reference Manual 12/07/78 6-11

Messages File Manager

FILE NOT FOUND

The requested file was not found on the specified di.skette. Ei ther

the file does not exist, or an erroneous drive number was specified, or the

file name was type incorrectly.

DUPLICATE NAME

The new file name specified for creating or renaming already exists

on the specified diskette. Choose another name.

DRIVE NOT READY

The disk drive specified for use is not ready. This message is

generated when the referenced drive is unloaded. It will also be generated

if a recently loaded drive is referenced before it has come up to speed.

This takes appro~imately 5 to 10 seconds. Wait a few seconds, and try

again.

There are several conditions that will prevent a drive from becoming

ready for use. Probably the most likely is that the diskette is inserted

incorrectly or is defective. If this message is generated even when a new

diskette is used, it is possible that there is a hardware fault.

PERM FILE

The file referenced for deletion has the permanent liP" attribute and

cannot be deleted. If the attribute is changed, it can then be deleted.

WRITE PROTECT

A file has been selected for output that has the write protect "W"

attribute. The file may be read from, but not written into. If rewriting

is necessary, change the file attributes.

DISK FULL

This message is generated when space is requested

Messages File Manager

and none is available on the diskette. The message may occur when a new

file is being created, or when more space is required while writing into

an existing file. The space should be obtained on another diskette or by

deleting superfluous files on the full diskette.

NOT SOURCE FILE

This message is generated when a file without the source "s"

attribute is specified as a file to be read by one of the system functions

that require source file input.

NOT OBJECT FILE

This message is generated when a file without the object "0"

attribute is specified as a file to be ready by one of the system functions

that require object file input.

PARM ERR

When displayed after a "J" command, this message indicates that the

requested function could not be found on the system diskette. This message

usually occurs when there was an invalid parameter character.

PERM I/O ERR

A permanent error has been detected. During a seek or read, the

system retries the operation 10 times before the message is generated.

During a write, the system rereads the data to see that it was written

successfully. If this read is unsuccessful, the write followed by read

check is also retried 10 times.

The message is most likely caused by a worn or defective diskette.

If it persists after trying several ndw diskettes, it may be a hardware

problem.

Futuredata AMDS Reference Manual 12/07/78 6-13

Messages File Manager

END-FILE

A read operation has attempted to read beyond the end-of-file.

The following messages may be generated only when the user program call the

Disk I/O routines directly:

PARM ERR

A specification error was detected in the parameter list passed to

the Disk I/O routine.

FILE NOT OPEN

A function was attempted on a file that is not open.

Futuredata AMOS Reference Manual 12/01/;8 6-14

INTRODUCTION

Section 7

Text Editor

The text Editor is a computer program which allows easy creation and

correction of files of text. Examples of text include command files and

computer instructions in Assembly language or Basic.

BEGINNING EDITOR OPERATION

Enter JE IRETURNI to begin editor operation. The display will then

show two dashed lines across the center.

~uturedata AMOS Reference Manual 12/07/78 7-1

Edi tor·· Display Editor

DISPLAY EXAMPLE

This is an example of an Editor display which has been filled with

text, in this case part of an assembly language program:

Notice that the cursor is on the command line. This indicates

that the Editor is ready to accept commands.

Futuredata AMDS Reference Manual 12/07/78 7-2

Editor Definitions Editor

There are always two dashed lines across the display during Editor

operation. These are a visual guide to the line used for text entry and

editing (edit line).

Tab Line The dashed line just above the center of the display is

called the tab line. Vertical lines (+'s) on the tab line show the

position of tab stops. Tabs are set at positions 10, 18 and 42 automati-

cally upon entering the Editor.

of assembly language mnemonics.

commands.)

These positions are convenient for entry

(Tabs may be set or cleared using the T

Edit Line The center line of the. display, which is between the

two dashed lines, is the edit line. All text entry and editing is done

on this line.

Entry Cursor The entry cursor is a blinking rectangle. This cursor

is present at the command line during entry of commands and at the edit

line during entry of text. The cursor is positioned at the bottom of the

display when the Editor expects a command as the next entry at the key­

board. The cursor is positioned on the edit line when the Editor expects

text as .the next entry at the keyboard.

Command Line The command line is at the extreme bottom of the

display. When the entry cursor (the blinking rectangle) is positioned on

this line, commands to the Editor may be entered ..

Message Line This line is the second from the bottom of the display

and is just above the command line. When an error is made in the entry of

a command, an error message appears here. Some Editor commands request

verification on this line. If there is no message, this line will be blank

or contain text.

Workspace The workspace is a part of computer memory which holds

more than a thousand lines of text (with 48K memory). The text may have

been read from a diskette file or entered at the keyboard.

Display There is a special definition of the display during Editor

operation: The display is that part of the workspace which is visible.

Futuredata AMOS Reference Manual 12/07/78 7-3

Editor Definitions Editor

The display is 24 lines high and 80 characters wide. Twenty-one

lines of text are visible, and 3 lines are used for tab, dashed visual

guide lines, and commands. Messages to th.e user temporarily overwrite

the bottom text line.

Input File, Output File The Editor retains file names so that once

they have been specified in commands, they need not be included again.

Futuredata AMOS Reference Manual 12/07/78 7-4

Editor File Management

Load Workspace from Fi~e (L) Editor

COMMAND

L [file-name]

If file-name is omitted, text will be loaded from the input file previously

specified in an L command.

PURPOSE

This command causes the workspace area of computer memory to be

loaded with text from the input file.

If a file name is specified, that file then becomes the new Input

file. When an L command without file name is executed, the Editor uses

the last specified Input file.

EXPLANATION

The first 11 lines of the loaded text will be ~ediately visible

on the display. Other area of the workspace can be viewed using commands

described later.

Information stored on the Input file is not altered.

The first time an L command is executed, text is loaded starting at

the beginning of the file and continuing until the workspace is full or

the end of the file is reached.

Second and subsequent executions of the L command load the workspace

starting at the line after the last line loaded during the previous

execution.

If an attempt is made to load into the workspace after the end of

the file has been reached, the message END FILE is displayed.

Futuredata AMOS Reference Manual 12/07/78 7-5

Editor File Management

Write Workspace to File {W) Editor

COMMAND

W[$][*][file-name]

If file-~ame is not specified, text will be written to .the output file

previously specified in a W command.

If the file file-name has not yet been created, it is necessary to create

it by prefixing the file name with the characters N:

If $ is specified, only that part of the workspace from the beginning up

to but not including the text entry line will be written to the

output file.

If * is specified, the text which was written to the output file will not

be removed from the workspace.

Both $ and * may be used in the same command, only in the order shown.

PURPOSE

This command writes the workspace to the output file.

EXPLANATION

If a file name is specified, that file then becomes the new output

file used when an output command is executed withOut specifying a file

name. The command can also cause an output file to be created.

When a new output file is specified, the system displays the

message: END OUTPUT FILE? The user must type Y (yes) to end the old

output file and begin with the new file as the output file.

Futuredata AMOS Reference Manual 12/07/78 7-6

Editor File Management

Write Workspace Then Load (N) Editor

COMMAND

N

Both input and output filenames must have been previously specified.

PURPOSE

This command is the equivalent of a W command followed by an L
command.

The entire workspace is written to the previously specified output

file and completely removed from the workspace. Then the workspace is

filled from the previously specified input file.

Futuredata AMOS Reference Manual 12/07/78 7-7

Editor File Management

End Output File (E) Editor

COMMAND

E

PURPOSE

This command terminates use of the present output file.

Futuredata AMOS Reference Manual 12/07/78 7-8

Enter Commands

DISPLAY

Keyboard Modes

(Command Mode) Editor

The Editor is in the command mode when the blinking cursor is on the

command line (at the bottom of the display).

If a command is entered in error, a message is written on the error

line above the command line.

EXPLANATION

See the Keyboard Editing Operations table on Page 7-13 for an

explanation of command mode editing features.

Futuredata AMOS Reference Manual 12/07/78 7-9

Insert Text Lines

Keyboard Modes

(Line Insert Mode) (I) Editor

COMMAND

I IRETURNI Enter Line Insert Mode

[RETURNI IRETURN' Leave Line Insert Mode

PURPOSE
I

This command allows entry of text to the workspace.

EXPLANATION

Execution of this command allows entry of a new line of text between

the edit line present before execution and the line above the edit line.

At execution, the edit line present before execution and all the

lines below it in the workspace are pushed down one line; the edit line is

then blank. Characters may then be entered to the edit line at the

keyboard.

At the end of entry of the new line, the IRETUR@ key is depressed

and the entire process described above is repeated.

Two successive depressions of the IRETU~ key, with no keystrokes

in between, cause the Editor to leave the text entry mode; the Editor is

then ready to accept a new command.

The character insert sub-mode may be entered from this mode by

depressing the IINSRTI key.

See the Keyboard Editing Operations table on Page 7-13 for an

explanation of editing features.

Futuredata AMOS Reference Manual 12/07/78 7-10

Keyboard Modes

Edit Text (Line Editing Mode) (X)

COMMAND

x IRETURN)

(RETURN)

PURPOSE

Enter line editing mode

Leave line editing mode

Text may be edited efficiently in this' mode.

EXPLANATION

Editor

This command moves the blinking cursor to the edit line to enable

editing that line. The character insert sub-mode may be entered from the

mode by depressing the [INSRT I key. The scrolling keys rn and [I] may be

used in line editing mode to move other lines to the edit line. The cursor

does not move during scrolling.

See the Keyboard Editing Operations table on Page 7-13 for an

explanation of editing features.

Futuredata AMOS Reference Manual 12/07/78 7-11

Insert Characters

Keyboard Modes

(Character Insert Sub-Mode) Editor

COMMAND

IINSRT\ Depressing this key turns this mode on or off.

PURPOSE

Characters may be inserted or deleted using this sub-mode without

re-typing the rest of the line.

EXPLANATION

The Editor is in Character Insert Sub-mode when there is an

asterisk on the dashed line below the edit line.

This sub-mode may be used in either the Line Insert Mode (I)

or the Line Editing Mode (X).

See the Keyboard Editing Operations table on Page 7-13 for an

explanation of editing features.

Futuredata AMOS Reference Manual 12/07/78 7-12

Special Keyboard Editing Operations
Mode:

@i~!J
(delete)

~
(cancel)

IRETURNI

ElG

I SPACE I

other

Conunand

Removes character
under cursor and
all of line to
right of cursor.

Removes entire
line.

Scrolls text,
blanks command line.

Enters command.

Spaces cursor right
or left, does not
affect text.

Enters a blank
under blinking
cursor, moves cursor
right one space.

Line Insert (I)

Removes character
above cursor and moves
all of line to right of
cursor one space left.

same

Returns Editor
to conunand mode.

Depressing IRETURij
key twice causes Editor
to leave line insert
mode and returns to
conunand mode.

same

same

Moves cursor left one same
space, removes character
under cursor.

Enters character
corresponding to key.

same

Line Edit (X)

same as
Line Insert.

same

Scrolls text,
cursor remains
on edit line.

Editor leaves
line editing
mode, returns to
conunand mode.

same

same

same

same

7-13

Editor

Character Insert
(a submode, works with line
insert and line edit modes)

same as
Line Insert.

same

Leave character insert
mode, scroll text.

Editor leaves character
insert mode. Continues
in line insert or line
edit mode.

. same

Moves cursor, character under
cursor, and all of line to
right of cursor one space right.
Inserts blank at former cursor
position.

Removes character to left of
cursor. Cursor and all of line
to right of cursor move one
space left. Adds blank in right
end of line.

Moves cursor, character under
cursor, and all of line to right.
Inserts character corresponding
to key at former cursor position.

Advance Displayed Text

Back Up Displayed Text Editor

ADVANCE TEXT KEY

Each depression of this key advances the text one line.

ADVANCED TEXT COMMAND

An

n is the number of lines to advance. The number must be less than 256.

A$ advances the text to the end of the workspace.

BACK UP TEXT K:::Y

Each depression pf this key backs up the text one line.

BACKUP TEXT COMMAND

Bn

n is the number of lines to backup. The number must be less than 256.

B$ backs up the text to the beginning of the workspace.

Futuredata AMOS Reference Manual 12/07/78 7-14

Advance Displayed Text

Back Up Displayed Text Editor

EXPLANATION

The following comparison explains the use of the words "advance"

and "back up." Compare the workspace to a very long sheet of paper with

the text typed on it. Compare the display to a small window which is in

front of one area of the paper.

As the text is advanced, the paper is moved upward, and the section

which can be seen through the window is closer to the end of the text.

As the text is backed up, the paper is moved downward and the

section which can be seen is closer to the beginning of the text.

Futuredata AMDS Reference Manual 12/07/78 7-15

Find (and Replace) a String in Workspace (F) Editor

COMMAND

F[{delim}{string}{delim}l{rstring}{delim}[A] [V]]]

delim is any character occuring in neither string nor r.string

string is any series of display characters, including blanks.

If string is not specified, the previously specified string is used.

A (all) specifies that all matches of string from the current edit line to

the end of workspace be replaced.

V (verify) specifies that the system ask for verification before replacing

a string. Type Y to replace, RETURN! to continue without replacing,

and N to terminate the F command.

PURPOSE

This command searches for a match between string and a character or

series of characters in the workspace. The command may display the first

line found containing a match. Also, it may replace the characters string
with rstring in the first line or all lines containing a match.

EXPLANATION

Finding a String When this command is used to find a string of

characters in workspace, searching begins on, the first line following the

current edit line. The first line in which a match occurs is displayed.

Since the parameters of the previous F command are saved, subsequent

searches may be initiated merely by executing the command F \RETVRNt.
After a line is displayed, it is possible to enter the line edit mode

(X command) and change the text on the edit line or any of the surrounding

lines.

Finding and Replacing a String When this command is used to replace

a string of characters, searching begins on the current edit line. If A
(all) is specified, searching and replacing continues to the end of

workspace.

Futuredata AMOS Reference Manual 12/07/78 7-16

Find (and Replace) a S.tring in Workspace (F) Editor

It is possible to use this command to delete characters from lines

in workspace. This is done by specifying a null replacement string by

typing the second and third delimiters with no intervening characters

or spaces. This causes the characters in string to be deleted. The

characters after string.

EXAMPLES

These are legal F commands:

Notice that th~ command

F

F/OLDSTRING TO BE DISPLAYED/

F*BAD*GOOD*AV

F.TEST.

would find two matches in the line:

THIS IS A TEST OF THE FITTEST.

Not only would the command find the word TEST, it would also match the last

syllable of FITTEST. This can be prevented by specifying a string with

blanks on both sides:

R. TEST •

This command would match only occurrences of the word TEST.

Futuredata AMOS Reference Manual 12/07/78 7-17

Get {and Replace) a Strinq in File (G) Editor

COMMAND

G{{delim}{string}{del im} [{rstri ng}{del im} [Al [V]]]

delim is any character occurrinq in neither string nor -rstring
string is any series of display characters, includinq blanks.

If string is not specified, the previouslyspecifiedstrinq is used.

A (all) specified that all matches of string from the current edit-line to

the end of the Input file be replaced.

V (verify) specifies that the system ask for verification before replacing

a string. Type Yto replace, IRETURNI to continue without replacing,

and N to terminate execution of the G command.

PURPOSE

This command searches for a match between string and a character or

series of characters in the workspace and Input file. The command may

display the first line found containing a match. Also, it may replace the

characters string with rstring in the first line or in all lines containing

a match.

EXPLANATION

'!'he G (Get) command is identical to the F command except that it

searches both the workspace and the Input file. Searching· begins as in

the F command. If the end of the workspace is reached during a search, all

the text in the workspace is written to the OUtput file, the workspace is

filled again with text from the Input file, and the search continues until

a match between the text and the string is found or the end of the Input

file is re.ched.

Except for the field of search, the explanation of the F command

applies to the G command.

Futuredata AMOS Reference Manual 12/07/78 7-18

Delete Lines (DEL)

Clear Workspace (CLR) Editor

DELETE LINES COMMAND

DEL n

If n is not specified, only the edit line is deleted. n must be less

than 256.

PURPOSE

This command deletes the edit line and n-l lines beneath the edit

line toward the end of the workspace.

CLEAR WORKSPACE COMMAND

CLR

PURPOSE

This command clears the display and all of the computer memory

devoted to workspace.

Futuredata AMDS Reference Manual 12/07/78 7-19

set Tabs lTcolumn-number)

Clear Tabs (T)

SET TABS COMMAND

T{column-number}[,column-number].

Editor

Column-number is an integer between I and 80 inclusive. If column-number

is not specified, all tabs are cleared.

PURPOSE

This command sets tabs to which the cursor will be advanced when the

tab key is depressed.

EXPLANATION

Each tab stop appears as a + symbol on the tab line. If the Tab key

is depressed when the cursor is at or past the last tab stop, the cursor

will appear at the first ch~racter on the line.

CLEAR TABS COMMAND

T

PURPOSE

The T command without parameters clears all tabs.

EXPLANATION

It is not possible to clear fewer than all the tabs.

Futuredata AMOS Reference Manual 12/07/78 7-20

Display Upper/Lower Case (SU,SL) Editor

COMMANDS

SU

SL

PURPOSE

The SU command causes all keyboard 'alphabetic entries to be entered

as upper case only, even though the shift key is not used.

The SL command allows entry of both upper and lower case characters,

as on a typewriter.

EXPLANATION

The SU command is useful for entry of assembly language mnemonics,

which must all be upper case. The SL command is useful for typing long

comments or text because of the greater clarity of upper and lower case

text.

Futuredata AMOS Reference Manual 12/07/78 7-21

Messages Editor

SYNTAX

There is a syntax error in the command.

OVERFLOW

While inserting lines into the Editor workspace, the workspace has

become full. Allor part of the workspace should be written to the output

file. Use the W command on page 7-6.

NOT FOUND

In an F (find) or G (get) command, a character string match was not

found in the field of search.

NOT SOURCE FILE

The file which was designated in a L (load) command does not have

as S attribute. See File Manager, page 6-10, for a discussion of file

attributes.

FILE NOT SPECIFIED

An L (load) or W (write) or N command was entered without

specifying a file name and without having previously specified either an

Input or Output file.

END PREVIOUS FILE?

An attempt was made to write to a new Output file without ending use

of the old file (E command). Typing Y (yes) ends the previous file.

Typing Nor IRETURNI cancels the write command.

END-FILE

The Editor has reached the end of the Input file.

Futuredata AMDS Reference Manual 12/07/78 i-22

Messages Editor

SAVE DATA'?

An attempt was made to execute another Futuredata system program

without writing the workspace to an Output file.

REPLACE THIS LINE

This message is a request for verification before replacing a string

in the line displayed on the edit line (F or G command). Type Y (yes) to

replace, IRETU~ to continue without replacement, or N to cancel

execution of the command.

Futuredata AMDS Reference Manual 12/07/78 7-"

INTRODUCTION

Section 8

Assembler

An assembler is a computer program which converts mnemon~cs, chosen

for the ease with which they remind the programmer-of the function of an

instruction, to binary instructions, chosen according to the architecture

and ease of design of the computer.

The input to the Assembler is assembly source code in ASCII charac­

ters. The Assembler evaluates the input on a line-by-line oasis. Each line

is either an assembler statement, which results in a binary computer in­

struction, or an assembler directive, which directs the Assembler to perform

some other operation that mayor may not result in the generation of binary.

There are two categories of assembler directives. There are direc­

tives which do not result in the generation of binary. These are sometimes

called pseudo-instructions, pseudo operations, or pseudo-ops; in this manual

they will be referred to simply as assembler directives.

There are two kinds of assembler directives which do result in the

generation of binary. There are Macros, which allow the programmer to de­

fine an assembler statement that produces many computer instructions, and

there are Conditional Assembly Directives, which generate different se­

quences of binary depending on simple ,specifications at the beginning of the

program. Macros and Conditional Assembly are described in the next section,

Section 9. Instruction mnemonics and assembler directives are collectively

called assembly language.

The Futuredata Assembler provides a single standard set of rules of

use, options, and assembler directives for several microprocessors. This is

an important advantage, since the programmer need only learn one assembler.

In all cases the assembler mnemonics are identical to those specified

by the microprocessor manufacturer.

Futuredata AMOS Reference Manual 12/07/78 8-1

Beginning Assembler Operation Assembler .

BEGINNING ASSEMBLER OPERATION

Type JA @ETUR@ to begin Assembler operation. A list of Assembler

options will appear on the screen.

Futuredata AMOS Reference Manual 12/07/78 8-2

Assembler Options Assembler

ASSEMBLER OPTIONS

L Display a program listing on the screen. This option is affected by the

T and E options.

M This option selects the use of a macro library. If the assembler does

not find a macro definition on the input file, it will search the

macro library file. The definitions of commonly used macros may be

kept on the file, making it unnecessary to write them into programs.

A macro file is originated using the Editor. The library file is

read until it reaches the end of the file or encounters a statement

which is not part of a macro definition. The only statements which

may appear between macro definitions are printer control directives.

(See page 8-18). Comments may not appear between macro definitions.

Any legal statement may appear inside a definition. This feature

allows the use of a source program file which has macros defined at

the beginning as a macro library.

o Write a binary object file to diskette. When this option is selected, an

object file is always written, even if there are errors in the

assembly.

T Truncate lines of the display to 80 characters.

truncated.)

(Printer lines are never

The T option limits listings of the DC directive to a one line. If this

option is not specified, all lines generated by the directive are

output, one byte per line. This feature of the T option operates

identically for printer or display.

E Only lines containing errors flagged by the assembler are displayed if

L or T is specified, or printed if P, B or L is specified.

S Include a table of symbolic labeLS at the end of the binary

object file. (During debugging, memory locations can be referenced

by their label names if a symbol table is written by the

assembler, selected as a Linker option, and loaded by the Debugger.)

Z This option for the Z-80 assembler only will flag all lines which contain

Futuredata AMOS Reference Manual 12/07/78 8-3

Assembler Options Assembler

assembler mnemonics specific to the Z-80. Since the 8080 and 8085

instructions are a subset of the Z-80 instructions, this option is

useful when rewriting a Z-80 program to run on the 8080. Lines are

flagged with a "P".

P Print a program listing. This option is affected by. the T and E options.

B[s][d] Output the listing to the serial port. If this option is selected,

it must be the last entered. The listing is output on port 2 which

is RS-232C compatible. The transmission rate can be selected by

specifying the parameter s according to the following table:

0 50 Baud 6 600 Baud c ~"()

1 75 7 '00 l) 72.G>o
2 110 8 1200 E 9'(J()
3 134.5 9 1800 1= /9~~O

4 150 A 2400
5 300 B ~o

The delay during carriage return is selected by specifying the parameter

d. d is the number of idle characters sent after a carriage return

is output to provide time to complete this mechanical operation. d

may be 0 to-9.·- If the parameter n is not specified, it is given the

value 1 when the transmission rate is 150 Baud or less and the 7alue

4 when the rate is 300 or greater.

ENTRY OF OPTIONS

.Type the appropriate letter or letters in any order without intervening

blanks to select Assembler options. Then depress the (RETURNI
key. Assembler options must be the first entry after· beginning

Assembler operation.

Futuredata AMDS Reference Manual 12/07/78 8-4

Specifying Assembler Files

Assembly Begins.

SPECIFYING ASSEMBLER FILES

Assembler

After the assembler options are entered, the assembler will display

the message SPECIFY INPUT FILE. Type the file name (which must have an "s"

attribute) and depress the ~TURNI key.

M option If the M option was selected, the message SPECIFY MACRO

LIBRARY will be displayed. Enter the name of the file on which the library

resides. (The file must have an "s" attribute.)

o option If the 0 option was selected, the message SPECIFY OBJECT

FILE i3 displayed. Enter the file name. The file may be created upon entry

to the assembler by prefixing the name with N: (See page 6-4). An object

file must have an "0" attribute. If the file is created on entry to the

assembler, it will be given this attribute.

ASSEMBLY BEGINS

Pass 1 After the last file name is entered, assembly begins. State­

ments are processed in 2 passes. On the first pass, the asser.~ler assigns

values to symbolic labels and stores a symbol table. The message PASS 1 is

displayed.

Pass 2 During pass 2 the assembler analyzes each statement on the

input file and generates binary. If the assembler recognizes errors, they

are flagged and no binary is generated for that statement.

Stopping Assembly During assembly, pressing the IRETURN key causes

the assembler to pause and display the message RESTART? To abort the

assembly, type Y. To continue the assembly, depress the IRETURij key.

Futuredata AMOS Reference Manual 12/07/78 8-5

Assembler statement Syntax

Statement Fields Assembler

Assembly language programs are composed of three types of statements:

instruction mnemonics, assembler directives, and comment statements. Each

statement is one line of a maximum of 80 characters.

Statements are made up of four components or fields, as shown below.

Each field is separated from the next on the line by a blank space or series

of blanks.

Label Field The label field of a statement may contain a symbolic

name which is used to reference the statement from other statements, or

which will be assigned a value by an EQU directive. This field is optional.

If included, it must begin in the first character position on the line.

Operation Code Field The operation code (also called opcode) field

contains either a microprocessor instruction mnemonic or an assembler

directive. This field must always be present unless the entire line is a

comment. See Assembler Comments, page 8-14. Operation code fields must

begin in the second character position on the line or later, and must be

six characters or shorter.

Operand Field This field contains additional parameters called

operands associated with the mnemonic or directive in the operation code

field. Operands are not always required.

Comment Field The comment field is the last field. It is not

processed by the assembler but is printed or displayed in the program

listing. This field allows the programmer to document the action or purpose

of the statement. (Note that there is also a comment statement, which

occupies an entire line~ See Comment Statement, page 8-1~) If the operand

field is absent, and the operation code field allows optional operands, the

first character of a comment field should bea semicolon, to avoid ambigu­

ity. A semicolon terminates assembler processing on the line in which it

appears.

Statement Diagram Assembler statement fields are represented on

later pages by the following diagram. The field being described is in bold.

label opcode operand comment

Futurerlata AMOS Reference Manual 12/07/78 8-6

Assembler Statement Syntax

Label Field Assembler

label opcode operand comment

A label may be invented and included on statements which must be

referenced by other statements in the program. Labels are optional and

should be used only where needed.

The EQU directive assigns a value to a label.

Label Name Conventions Labels must be 1 to 8 characters long and

begin with a letter. Characters in a label after the first must be letters

or numbers.

Labels may not be the same as the mnemonics used for microprocessor

instructions, registers, or condition codes. See the appropriate Futuredata

microprocessor reference manual for reserved names. Labels may also not be

the same as assembler directives.

Assembler Processing During assembly, a value is assigned to each

symbol.

In absolute program segments, the value assigned is the absolute

address of the memory location in which the instruction will be stored.

In relocatable program segments, the value assigned to a label is the

local address within the segment. (When the segment becomes part of a

program, the absolute memory address of the first word of the segment is

added to the local address of the label.)

When the assembler directive EQU is used, the label is assigned the

value of the operand field. This directive is described on page 8-16.

Symbol Table The assembler writes each label name, the address of

the label, and other information in a symbol table. Label names are

represented in ASCII. Each character of a label name requires one byte of

memory; short labels conserve memory space.

Futuredata AMDS Reference Manual 12/07/78 8-7

Assembler Statement Syntax

Operation Code Field

label opcode operand comment

Assembler

The opcode is a 3 or 4 character microprocessor instruction mnemonic

or an assembler directive of up to six characters. All instruction

mnemonics are those assigned by the microprocessor manufacturer. Each

mnemonic causes the assembler to generate one to three bytes of binary.

Refer to this manual for all information on assembler directives.

Futuredata AMOS Reference Manual 12/07/78 8-8

Assembler Statement Syntax

Operand Field Assembler

label opcode operand comment

The operand field contains operands which may be required in

instructions or assembler directives. Each operand is separated by a comma.

~. blank space terminates the operand field. If a blank is inad­

vertently included in the field, the rest of the line after the blank will

be treated as a comment.

OPERAND TYPES

Five types of operands are used in the operand field: decimal

constants, hexadecimal constants, ASCII character constants, symbolic

labels, an asterisk used as a symbol for the address of the first byte of

the statement in which it appears, and expressions combining the previous

types.

Hexadecimal Constants Hexadecimal constants are made up of the

hexadecimal digits 0 to 9 and A to F. The digits must be enclosed in single

quotes. An X must prefix the first quote.

Single byte constants may be 1 or 2 digits. Two byte (address)

constants may be 1 to 4 digits in length. When less than the maximum

number of digits are used, the constant is treated as if leading zeroes

were supplied.

Examples of single byte hexadecimal constants are:

X'l' (same as X'Ol')

X'A3'

Examples of two byte (address) constants are:

X'103'

X'BF2A'

(same as X'Ol03')

Decimal Constants Decimal constants are numbers made up of the

digits 0 to 9. Single byte decimal constants may range from 0 to 255. Two

byte decimal constants may range from 0 to 65,535.

Futuredata &~S Reference Manual 12/07/78 8-9

Assembler Statement Syntax

Operand Field Assembler

ASCII Character Constants Each character of a character constant is

given an eight bit value defined by the American Standard Code for Informa­

tion Interchange (ASCII). The high order bit is always zero. Examples are:

'ABC'
f f ~

is equal to X'4l4243'

(blank) is equal to X'20'

Symbolic Address Labels Values assigned to address labels are listed

in a symbol table by the assembler during Pass 1, as is discussed under

Label Field, Page 8-16.

Symbolic Address Labels During assembly, each statement is scanned

and all address labels are listed in the symbol table with their assigned

values. (See page 8-16 for a discussion of labels. This is accomplished

during pass 2 of the assembler. During pass 2 the value assigned to a label

is substituted wherever it occurs as an operand.

Asterisk Parameter (*) An asterisk used as an operand causes the

assembler to substitute the value of the location counter at the first byte

of the statement in which the asterisk occurs.

Futuredata AMOS Reference Manual 12/07/78 8-10

Assembler Statement Syntax

Expressions in Operands Assembler

label opcode operand comment

RULES FOR FORMATION OF EXPRESSIONS

An operand may be an expression. Any number of terms are allowed

which will fit on one line. Terms may be grouped with up to 8 levels of

parentheses. commas which are not in quotes delimit the operands.

Expressions are evaluated left to right. The result of an expres­

sion is always a 16 bit quantity, although fewer bits may be required for

some operands.

The terms of an expression may be of five types: decimal constants,

hexadecimal constants, ASCII character constants or strings, symbolic

labels, and an asterisk used to denote the address of the first byte of the

statement in which it appears. These terms are described on the previous

page, except for the following difference:

CHARACTER STRING OPERANDS

'1m' ASCII character constant. One or two characters in quote is evalu­

ated as a 16 bit constant.

'string' ASCII character string of three or more characters. Each ASCII

character occupies one byte. A string may be used as an operand only with

relational operators (see below). If one operan~ of a relational operator

is a string and one is another type of operand, the string is always

greater. If both operands of a relational operator are character strings,

comparison is done on a byte-by-byte basis.

Terms are connected with operators. The result of an operation is

always a 16 bit quantity. The following operators may be used:

ARITHMETIC OPERATORS

+,­

*
Indicate addition or subtraction.

Multiplication.

/ Integer division. Remainder is truncated.

n.MOD.m Remainder on dividing n by m. nand m may be expressions.

Futuredata AMDS Reference Manual 12/07/78 8-11

Assembler Statement Syntax

Expressions in Operands Assembler

LOGICAL OPERATORS

.AND. Bit by bit logical AND

.OR. Bit by bit logical OR

.NOT. Complements each bit of the following one byte operand •

. XOR. Performs bit by bit exclusive or operation (a or b but not both)

REGISTER SHIFT OPERATORS

.SHL.n Shifts the previous one-byte operand or the lower byte of a two-byte

operand or expression n bits to the left. The leftmost n bits are

lost. n may be an expression. "

.SHR.n Shifts the previous one-byte operand or expression right n bits.

This is an arithmetic right shift. The highest order bit is

considered the sign bit and is not shifted or changed. If the

highest order bit is a one, ones are shifted into the bit positions

vacated by the right shift. If the highest order bit is a 0, zeroes

are shifted into the vacated bit positions. The rightmost n bits are

lost.

RELATIONAL OPERATORS

n=m Compare operator. If n is equal to m, 16 bit result is set to an

integer one. If not equal, the result is zero.

n>m If n is greater than m, the result is set to an integer one. If not

greater, the result is zero.

n<m
n>=m
n<=m

Less than operator. True is integer one. False is zero.

More than or equal to. The > and = may be interposed.

Less than or equal to.

BYTE EXTRACTION OPERATORS

The high or low order 8 bits of an expression may be extracted for

use as a parameter by enclosing the expression in parentheses and prefixing

wi th H (high) or L (los). These ope'rators are used when an expression,

Futuredata AMDS Reference Manual 12/07/78 8-12

Assembler Statement Syntax

Expressions in Operands Assembler

which always has a 16 bit value,

value. For example:

. must be trancated to an 8 bit

H(X'2E3S'+2)

H(X'2E35'+2)

evaluates to X'2E'

evaluates to X'37'

H{ALPHA) evaluates to the high order 8 bits of the value assigned to

the symbolic label ALPHA.

Byte extraction is not allowed as a term of an expression.

OPERATOR PRECEDENCE

Operators with the highest precedence are evaluated first, from left

to right. Then operators of the next higher precedence are evaluated also

from left to right, and do on. The precedence is, in decreasing order:

ILLEGAL OPERATIONS

Parenthesized expressions
*,/,.MOD.,.SHL.,.SHR.
+,-,unary-
=,>,<,>=,<=,><
.NOT .
• AND •
. OR. , .XOR.

All expressions must reduce to one of the following forms: an

absolute value, a relocatable value ± an absolute value, or an external

value ± an absolute value.

There is one exception. An absolute expression may contain relo­

catable terms if the terms are in the same segment, and they are sub­

tracted, and the result is greater than zero. Relocatable terms cannot be

added.

All other operations are illegal.

Futuredata AMOS Reference Manual 8-13

Assembler Comments Assembler

COMMENT FIELDS

label opcode operand comment

The comment field starts after at least one blank space after the

operand field. This field is not processed by the assembler, but is printed

or displayed in the program source listing. Comments fields are used to

document the action or purpose of the statement in which they appear.

A semicolon anywhere on a line, but not within quotes, also

terminates assembler processing and should be used wherever there could be

ambiguity. For example, if the operand field is absent, and the operation

code field allows optional operands, a semicolon should be used before a

comment so that the comment is not processed as an operand.

COMMENT STATEMENTS

If there is an asterisk in the first character position on a line,

the entire line will be treated as a comment. Comment statements are useful

for documentation which requires more space than is available in a comment

field.

A line which has a semicolon as the first character (but in any

character position) is also processed as a comment statement.

Comment statements which are not inside macro definitions will

terminate reading of a macro library.

Futuredata AMDS Reference Manual 12/07/78 8-14

Assembler Directives

Segment Control Directives

ORG {expression}

Assembler

The ORG (origin) directive specifies the location in memory at which

subsequent statement are assembled. The expression must be absolute if it

is an absolute program segment and relocatable if it is in a relocatable

segment.

ASEG

The ASEG directive defines the beginning of an absolute program

segment. The assembler begins an absolute program segment at location zero

or at a location defined in an ORG directive. After intervening relocatable

segments (RSEG's), the ASEG directive will reset the location counter to one

plus the address of the end of the previous absolute segment.

RSEG trs.eg-name}

The RSEG directive defines a relocatable program segment. Up to 8

segments are allowed in an assembly, each identified by a unique name in the

operand field. A previous RSEG may be started again where it was left off

by another RSEG directive with the previous name

GLBL {label}[,label] ...

The GLBL directive is used to list all the external references and

entry points in an assembly. There may be a maximum of 255 external

references.

Futuredata AMDS Reference Manual 12/07/78 8-15

Assembler Directives
END Directive lrequiredl

EQU Directive Assembler

END [expression]

The END directive terminates assembler operation. It must always be

the last statement in a program.

The expression specifies a program entry point -at which execution

will begin.

{label} EQU {expression}

The EQU directive assigns a value to a symbolic name. The symbol in

the label field is assigned the value of the exp~ession in the operand

field. The expression is evaluated during pass 1 of the assembler. The

symbol name may be referenced in the operand fields of statements occurring

before and after the EQU directive. However, -symbols in the expression

in the operand field must have been previously defined.

Futuredata AMOS Reference Manual 12/07/78 8-16

Assembler Directives

Data Block Directives Assembler

[1 abe 1] DC {operand}[,operand] ...

The DC directive is used to place data in memory, beginning at the

value in the location counter. Multiple operands are stored in successive

memory locations.

There are three ways that operands can be evaluated: 1) The value

of an expression is truncated to the lower eight bits and is stored in one

byte of memory. 2) An ASCII character string is stored one byte per

character. The string is enclosed in single quotes. A single quote within

the string is represented by two single successive quotes. 3) The 16 bit

value of an expression is stored in two succeeding bytes. If the expression

is enclosed in parentheses and preceded by an A, the high order byte will

be stored before the low order byte. If an expression is enclosed in

parentheses and preceded by a B, the low order byte will be stored ahead of

the high order byte. Two-byte operands can be intermixed with single-byte

operands in the same DC statement.

LOC DC H(BETA),A(ALPHA+X'23')

DC 'ABC' 'D'

[label] DS {expression}

This directive reserves memory space. The number of memory locations

reserved is determined by the value of the expression.

It cannot be assumed that the contents of the memory locations

reserved is zero.

If a symbol name is used as the expression or a term of the expres­

sion, it must have been previously defined.

Futuredata AMDS Reference Manual 12/07/78 8-17

Assembler Directives

Printer Control Directives Assembler

SPACE

EJE

This directive is replaced by a blank line in the listing. It is

used to improve readability. No operands are processed.

The eject directive causes the assembler to skip to the top of the

next page. It is used to improve readability. No operands are processed.

PRINT OFF
This directive suppresses printing of all following source lines.

The directive itself is not printed.

PRINT ON
All source lines are listed except 1) lines in a macro, 2) lines

skipped due to conditional assembly directives, 3) the conditional

directives themselves. Lines are printed after set substitution takes

place.

PRINT GEN
This directive operates the same as PRINT ON except that it also

causes lines in a macro to be printed. Lines in a macro are printed after

para~eter substitution takes place. Lines are printed after set symbol

substitution takes place.

PRIUT ALL
This directive causes prin~ing of all source lines including those

skipped due to conditional assembly directives. Conditional assembly

directives themselves are printed. Lines skipped will have no location

counter value or object code printed. Lines are printed after set symbol

and macro parameter substitution takes place.

Futuredata AMOS Reference Manual 12/07/78 8-18

Messages

INVALID LABEL

INVALID OPCODE

INVALID OPERAND

IMMEDIATE VALUE >127 OR <-128

RELATIVE JUMP OUT OF RANGE (Z-80 only)

RELATIVE JUMP TO EXTERNAL SYMBOL <Z-80 only)

RELATIVE JUMP TO DIFFERENT RSEG (Z-80 only)

DUPLICATE SYMBOL

INVALID FORWARD REFERENCE

UNDEFINED SYMBOL

EXPRESSION HAS MORE THAN 1 RELOCATABLE FACTOR

SYMBOL TABLE OVERFLOW

MORE UNPRINTABLE ERRORS

SOURCE LINE TOO LARGE - TRUNCATED

UNDEFINED SET SYMBOL

INVALID MACRO PARAMETER NAME

MISSING ENDM

MACRO DEFINITION OUT OF PLACE

MISSING ENDIF

MISSING ENDDO

EXITM OUT OF PLACE

ENDM OUT OF PLACE

OPERAND LONGER THAN 32 CHARS

OVER 255 EXTERNALS

ERROR WHILE WRITING OBJECT FILE

MACRO NESTING EXCEEDS 127

MISSING END-

ENDDO OUT OF PLACE

ENDIF OUT OF PLACE

ELSE OUT OF PLACE

Futuredata AMOS Reference Manual 12/07/78

Assembler

8-20

Section 9

Macros & Conditional Assembly

MACROS

The macro facility allows a user to define an opcode which causes a

series of instructions to be assembled. For example, using the 8080, the

following series of instructions will add 10 to the Hand L registers,

using only the A register.

MOV A,L
ADI 10
MOV L,A
MOV A,H
ACI a
MOV H,A

If there are many such sequences in a program, it will be more

efficient (in time and disk space) and less error prone to define a macro

that will cause the sequence of instructions to be assembled whenever its

name appears in the opcode field:

ADDla MACRO A,L
MOV A,L
ADI 10
MOV L,A
MOV A,H
ACI a
MOV H,A
ENDM

The macro definition is begun by the MACRO pseudo-ope The label

field of the MACRO pseudo-op defines the name of the macro, in example 1,

ADDla. Statements following the MACRO pseudo-op represent the body of the

macro definition. These statements will be processed by the assembler

when the macro name occurs in the opcode field (when the macro is "called").

The ENDM pseudo-op ends the macro definition. The macro definition must be

placed at the beginning of the assembler source file, only the EJE, SPC,

and PRNT pseudo-ops may occur before the macro definitions.

Futuredata AMOS Reference Manual 12~a7-78 9-1

Macros Macros & Conditional Assembly

Macro Library All macro definitions must be placed at the beginning

of the source input file. However, by specifying tile M option, a second

source file of macro definitions may be included in the assembly. As in

the main input file, the first statement other than EJE, SPC. and print

which is not in a ma~ro definition will terminate reading of macro
/

definitions.

Duplicate Macro Definitions If two macros with the same name are

defined, the last macro definition read will be the one used. Thus macro

definitions in the main source file take precedence over macro definitions

in the macro library.

Macro Calls Within Macros A macro definition may include a state­

ment which calls another (or the same) macro. These calls may be nested to

any level (depending on the symbol table space available). A macro defini­

tion may not have another macro defined in its body.

EXITM Statement When processed. the EXITM statement causes

immediate termination of the current or named macro. The next statement

processed will be the first one following the macro call. The syntax is:

EXITM [macro-name]

Note that no label is allowed.

Macro Parameters Obviously, a macro definition like ADDlO is of

limited use. How many times would you add the number 10 to the H and L

registers? It is much more likely that similar rather than identical

sequences of instructions occur in a program. Allowing a macro definition

to have variables that may have various values when the macro is called is

one way of doing this. For example, if we make the actual value added to

the H and L registers a macro parameter, the user can define a macro that,

when call.ed, will generate statements that will add any number from 0 to 255

to the H and L registers:

Futuredata AMOS Reference Manual 12-07-78 9-2

Macros Macros & Conditional Assembly

ADDX MACRO NUM
MOV A,L
ADI &NUM

MOV L,A
MOV A,H
ADI 0
MOV H,A
ENDM

If the macro is called in the following way:

"LHLD

ADDX
SHLD

VALADR"
5
VALADR

The following statements will be generated:

LHLD VALADR
MOV' A,L
ADI 5
MOV L,A
ACI 0
MOV H,A
SHLD VAIADR

What happens is that in the macro definition, the names of all the

macro parameters are listed (separated by commas) in the operand field of

the MACRO pseudo-op. When the macro is called, the actual values to be

used are listed in the operand field of the calling statement (separated by

commas). Then, wherever a macro parameter name a~pears in the body of the

macro definition, preceeded by an ampersand, the actual value of the para­

meter is substituted in place of the ampersand and name. Note that this

substitution is done character for character (up to 32 characters per

parameter). The macro parameters need not be numeric. Also, the substi­

tution may occur in the label, opcode, operand, comment, or any combination

of fields. For example, for the macro definition:

SAVEA MACRO
& TYPE
ENDM

Futuredata AMOS Reference Manual 12-07/78

TYPE,LOC
&LOC

9-3

!v!acros Macros & Conditional Assembly

The call:

SAVEA STA,VAL

will result in:

STA VAL

while the call:

SAVEA STAX,D

will result in:

STAX D

Macro Parameter Delimiters As stated, when a macro is called, the

actual values of the parameters are listed in the operand field of the

calling statement, separated by commas. However, commas and blanks may

exist in a parameter if they occur between quotes. Also, there must be

an even number of quotes in any parameter. The following are examples of

valid parameters:

20
X' 40 I

I A,B "+' B ,C'
AIIC

ABC

Concatenating Parameters In the previous example, the value of

parameter INDX, was ap~ended in the right of the characters AB simply by

wri ting the parameter name, preceeded by an ampersand, to the immediate

right of the characters AS: AB&INDX. If, also, the user wished to append

an A to the right of the value of parameter INDX, a problem would have

arisen:

JP AB&INDXA

The macro processor would have interpreted this to mean: Substitute

the value for parameter INDXA. To solve this problem, the macro processor

recognizes a parameter name delimiter: ! whose only function is to indicate

the end of a parameter name. The correct way to append an A to the right

of the value of parameter INDX is:

Futuredata AMOS Reference Manual 9-4

Macros Macros & Conditional Assembly

JP AB&INDX!A

JP ABOOOOlA

Note that is appears anywhere other than after a macro parameter

(or a set symbol), it will be treated as a normal character.

Literal Ampersand Since the ampersand signals the macro processor

to substitute a parameter value, a special set of characters is needed to

tell the macro processor that rather than substituting, an actual ampersand

character is wanted. For example, if the user wants to put an ampersand

into the A register, he might think to write:

MVI A,'&'

However, for reasons explained under Advanced Considerations, when­

ever a single ampersand is wanted in the generated statement, four

ampersands must be written in the actual source:

MVI A,' &&&& '

Generating Unique Labels A macro call may generate statements with
/

labels. For example, the following definition: (to makeD,E=absolute value
/

of 0, E)

ABSD MACRO
MOV A,D
ORA A

JP ENDABSD
CMA

MOV D,A
MOV E,A
CMA

MOV E,A
INX 0

ENDABSD EQU *
ENDM

The first time ASsn is called, label ENDABSD will be defined.

Unfortunately, the second time ABSD is called, ENDABSD will also be defined

and a duplicate definition error will result. What is needed is a way to

generate a unique label each time the .macro is called. The Futuredata

Futuredata AMOS Reference Manual 12-07/78 9-5

Macros Macros & Conditional Assembly

Macro Assembler provides this capability by pre-defining a special

parameter - lNDX - which will always have a unique 5 digit numeric value

each time a macro is called. The macro ABSD may now be defined in the

following way:

ABSD MACRO
MOV A,D
ORA A
JP AB&lNDX
w'1A
MOV O,A
MOV A,E
CMA
MOV E,A
lNX 0

AB&lNDX EQU *
ENDM

Assuming that this is the only macro defined and that there are

exactly two calls made, the first call defines the label ABOOOOI and the

second call defines the label AB00002. Note that a label on the actual

macro call statement takes on the current location counter value at the

beginning of the call.

Futuredata AMDS Reference·Manual 12/07/78 9-6

Conditional Assembly Macros & Conditional Assembly

CONDITIONAL ASSEMBLY

These statements allow a programmer to selectively assemble state­

ments in a source file. For example, if a programmer did not know whether

the program was going to be used with a tape or disk, both the calls to the

tape subroutine and disk subroutine could be included in the source file,

and conditional statements used to actually assemble the one needed:

DEVICE DEFG

IF
LHLD
CALL
ELSEIF
LHLD
CALL
ENDIF

'TAPE'

• &DEVICE'=' TAPE'
TAPEFCB
TAPEIO
, &DEVICE' =' DISK'
DISKFCB
DISKIO

More often, conditional statements will be used to implement more

complex macros. For example, the ADDX macro defined earlier could be ex­

panded to add a number between 0 and 255 to the BO, DE, or HL registers:

ADDXY MACRO REG,NUM
IF ' ®' =' BC'

REGH DEFL ' ~'
REGL DEFL 'c'

ELSEIF ' ®' =' DE'
REGH DEFL I D'
REGL DEFL 'E'

ELSE
REGH DEFL 'H I

REGL DEFL I L I

ENDIF
MOV A,®L
ADI &NUM
MOV ®L,A
MOV A,®H
ACI 0
MOV ®H,A
ENDM

Futuredata AMOS Reference Manual 12/07/78 9-7

Conditional Assembly Macros & Conditional Assembly

ADDXY could be expanded further to add a number between 0 and 65537

to the BC, DE, or HL registers:

ADDXY MACRO REG,NUM
IF '® '=' BC'

REGH DEFL '""S • ""

REGL DEFL 'e"
ELSEIF '®'='DE'

REGH OEFL '0'
REGL DEFL '"E'

ELSE
REGH DEFL 'H'
REGL DEFL '"L'

ENDIF
NUMH DEFL &NUM/256
NUML DEFL &NUM.MOD.256

MOV A,®L
ADI &NtJML
MOV ®L,A
MOV A,®H
ACI &NUMH
MOV ®H,A
ENDM

One of the more common uses of conditional statements is to generate

tables that would be long, tedious, and error prone to enter by hand. The

following example generates a table that could be used to check whether a

character is numeric:

TABLE
CHAR

CHAR

EQU
DEFG
DO
IF
DC
ELSE
DC
ENDIF
DEFG
ENDDO

*
0
256
&CHAR< '0' .OR.&CHAR>' 9'
0

X' FF I

&CHAR+l

Set Symbols Set symbols (and macro parameters) are the variables used

by the conditional statements. Their value may be either numeric (0 to

65537) or a character string (0 to 32 characters long). The values are set

by using the DEFG (define global) and DEFL (define local) statements.

Futuredata AMOS Reference Manual 12/07/78 9-8

Conditional Assembly Macros & Conditional Assembly

DEFL Statement This statement is used to define (and redefine) a

local set symbol." A local set symbol is only known in the macro in which

it is defined. A set symbol of the same name defined in a different macro

is actually a different set symbol. The syntax is:

{set-symbol-name} DEFL {expression}

or:

{set-symbol-name} DEFL { 'string' }

If quotes are placed around the operand, it is treated as a

character string and may be a maximum of 32 characters long. Quotes

embedded in the string must be doubled. They are, however, stored as

double, not single, quotes. If quotes are not placed around the operand,

it is treated as an integer expression. Labels may appear in the

expression only if they have been previously defined.

Note that when defining a set symbol, an ampersand must not preceed

the name in the label field. When using the set symbol, an ampersand must

preceed the name.

DEFG Statement This statement is used to define (and redefine) a

global set symbol. A global set symbol is known in all macros unless a

local set symbol of the same name is defined in a'particular macro. In

this case, the global set symbol will become unknown, in that particular

macro only, as soon as the like named local set symbol is defined. The

syntax is:

{set-symbol-name} DEFG {expression}

or:

{set-symbol-name} DEFG {"stringl}

Futuredata AMDS Reference Manual 12/07/78 9-9

Conditional Assembly Macros & Conditional Assembly

If quotes are placed around the operand, it is treated as a

character string and may be a maximum of 32 characters long. Quotes

embedded in the string mus·t be doubled. If quotes are not placed around

the operand, it is treated as an integer expression. Labels may appear in

the expression only if they have been previously defined.

Note that when defining a set symbol, an ampersand must not preceed

the name in the label field. When using the set symbol, an ampersand must

preceed the name.

IF Block An IF block begins with an IF statement and ends with an

ENDIF statement. IF blocks may be nested within IF blocks or DO blocks to

any level.

IF Statement The IF statement begins an IF block. It may have an

optional name in the label field which may be referred to in the EXITIF

statement. If the expression in the operand field of the IF statement is

non-zero, the statements following the IF statement up to the first

ELSE, or EXITIF statement at the same nesting level will be processed. If

the expression is zero, the statements following the IF up to the first

ELSEIF, ELSE, or ENDIF statement at the same nesting level will be ignored.

The syntax is:

[if-black-name] IF {exp~ess;on}

ELSEIF Statement The ELSEIF statement is used in conjunction with

an I~ :tatement to test an alternate condition without going to a deeper

nesting level. If the expression in the IF statement was ° and the

expressions in all previous ELSEIF statements at this nesting level were 0,

and the expression in this ELSEIF statement is non-zero, statements up to

the next ELSEIF, ELSE, or END IF statement at this nesting level will be

processed. The syntax is:

ELSEIF {expression}

Note that no label is allowed.

Futuredata AMOS Reference Manual 12/07/78 9-10

Conditional Assembly Macros & Conditional Assembly

ELSE Statement The ELSE statement is used in conjunction with an IF

statement to indicate the last alternative. It is identical to:

ELSEIF 1

That is, if the expressions in the IF statement and all subsequent

ELSEIF statements at this nesting level are 0, the statements after the

ELSE statement up to the closing ENDIF statement are processed. The

syntax is:

ELSE

Note that no label or operand is allowed:

EXITIF Statement The EXITIF statement when processed will cause all

statements up to the closing ENDIF statement in the named or current IF

block to be ignored. The syntax is:

EXITIF' [if-black-name]

Note that no label is allowed.

ENDIF Statement The ENDIF statement terminates an IF block. The

syntax is:

ENDIF

Note that no label or operand is allowed.

DO Block A DO block begins with a DO statement and ends with an

ENDDO statement. It causes repetitive assemb~y of the statements within

the block. DO blocks may be nexted within IF blocks or DO blocks to any

level.

DO Statement The DO statement begins a DO block. It may have an

optional name in the label field which may be referred to 'in the EXITDO and

NEXTDO statements. The expression in the operand field is evaluated ONCE

at the entry to the DO block and is stored as the DO COUNT - the number of

Futuredata AMOS Reference Manual 12/07/78 9-11

Conditional Assembly Macros & Conditional Assembly

times the statements within the block are processed. The syntax is:

[do-black-name] DO [expression]

If the expression is omitted, the block will be processed 65538

times (essentially indefinitely).

EXITDO Statement The EXITDO statements, when processed, causes the

assembler to immediately terminate processing statements in the current or

named 00 block and begin at the first statement after the closing ENDDO

statement. The syntax is:

EXITDO [do-block-name]

Note that no label is allowed.

NEXTOO Statement The NEXTDO statement, when processed, causes the

assembler to immediately begin processing the next iteration of the current

or named DO block. That is, if this is not the last iteration, the next

statement processed will be the first statement after the DO statement.

The syntax is:

NEXTDO [do-black-name]

Note that no label is allowed.

ENnDO Statement The ENDDO statement terminates a 00 block. The

syntax is:

ENODO

Note that no label or operand is allowed.

Futuredata AMOS Reference ~anual 12/07/78 9-12

Conditional Assembly Macros & Conditional Assembly

SUBSTR Statement The SUBSTR (substring)statement assigns a part of

a string to a set· symbol. If the set-symbol has not been previously

defined, a new local set-symbol will be defined. The syntax is:

{set-symbol-name} SUBSTR {expression-a},{expression-b},{"string l
}

express;on-a defines the beginning character position of the sub­

string. The first character is position 1. expression-b defines the

length of the substring. If expression-b is 0, the substring will begin

with the character defined by expression-a and continue to the end of the

string.

LENGTH Statement The LENGTH statement assigns the length of a

string to a set symbol. If the set-symbol has not been previously defined,

a new local set-symbol will be defined. The syntax is:

{set-symbol-name} LENGTH 'string l

Futuredata AMOS Reference Manual 12/07/78 9-13

Advanced Considerations Macros & Conditional Assembly

ADVANCED CONSIDERATIONS

Each source line is scanned twice before processing for ampersands

which signal set symbol or macro parameter substitution. During each scan

any set symbol names preceeded by ampersands have their values substituted

for the ampersand and name. Any doubled ampersands are replaced by a single

ampersand. This allows the following capabilities:

Subscripted Set Symbols The following statement will define a set

symbol whose name is based on the value of another set symbol:

A&l DEFL 'A'O

If &1 has the integer value 4, the set symbol A00004 will be defined

to have the value A. The following statement uses the set symbol:

MVI B, '&&A&I"

On the first scan, the && is replaced by & and &1 is replaced by

00004 leaving:

MVI B, '&A00004'

On the second scan, &A00004 is replaced by A leaving:

MVI B, 'A'

By varying the value of the set symbol I, set symbols may be defined

and referenced which are indexed using I as a subscript.

Indirect Set Symbols The following statements will define a set

symbol whose value is the name of another set symbol:

A

B
DEFG
OEFG

'ABC'
'A'

The following statement will use the set symbol B as an indirect

reference to the value of set symbol A:

IF O'&&&B'o= 'ABC'

On the first scan, the first two ampersands will be replaced by a

single ampersand and &B will be replaged by A leaving:

IF '&A= 'ABC'

Futuredata AMOS Reference Manual 12/07/78 9-14

Advanced Considerations Macros & Conditional Assembly

On the second scan, &A will be replaced by ABC leaving:

IF . 'ABC' =tABC'·

Futuredata AMOS Reference Manual 12/07/78 9-15

Section 10

program Segment Linker

The Linker is a computer program which links relocatable program

segments (RSEG's).

Diskette files containing assembled RSEG's are input to the Linker.

Memory locations are assigned to each RSEG and to each address label in an

RSEG which has been declared global by a GLBL assembler instruction. Since

one or more RSEG's may reference each global address label,. assigning a

common memory location to global address labels of the same name causes

the RSEG's to be linked together.

The primary output of the Linker is diskette file which contains

absolute binary computer instructions and data which may be loaded into

memory and executed as a single program.

The Linker may also display or print a reference list, a memory

map, and error diagnostics.

The Linker responds to two kinds of commands: control options and

input commands.

COMMAND FILES REDUCE KEYBOARD TIME

Commands to the Linker may be made from the keyboard or a command

file. If complex Linker operations are to be performed, it is suggested

that a command file be generated using the editor. A command file allows

easy modification and re-execution of commands without entering commands

again at the keyboard. See Command Files, section 5.

BEGINNING LI~lCER OPERATION

Type JL!RETURN! to begin Linker operation. A list of Linker

Control Commands will appear on the display.

Futuredata AMOS Reference Manual 12/07/78 10-1

Linker Control Options Linker

CONTROL OPTIONS

Option Letter

o

D

S

Action Taken by Linker

Write an absolute binary object file to diskette. This

option must be selected if the linked RSEG's are to be

executed. This option may be omitted if the Linker is

being run only to get display, printer, or serial port

output.

Only RSEG's which are specifically named in the command

file or by keyboard entry are input to the Linker;

others are deleted. If D is selected, unspecified RSEG's

are deleted from both the binary and display output.

The symbol tables (which may be placed at the end of

each RSEG by the assembler) are written at the end of

the absolute binary object file. These tables are

required for symbolic debugging. The 0 option must

also be selected when S is specified.

L Display the memory map and reference list.

P Print the memory map and reference list.

B[speed] [delay] Output the memory map and reference list to the serial

port. Speed is a number designating baud rate and

delay is a number designating the number of idle char­

acters transmitted after each line. See Utilities,

Section 14. This must be the last entry.

PURPOSE

Linker control options specify combinations of input and output

available to the user.

EXPLANATION

Control options may be entered only immediately after the beginning

Linker operation. Each option is selected by typing the appropriate

letter. Multiple options may be selected by typing the corresponding

letters in any order without intervening blanks.

Futuredata AMOS Reference Manual 12/07/78 10-2

Linker Input Commands

COMMANDS

input-file-name
[input-file-name]

[object-file-name]

#ORG {absolute-address}

{rseg-name-a} [,rseg-b]
[rseg-name-c]

IIORS {absolute-addres~}
rseg-name-d

lEND [global-name]

Notes:

Linker

Explanation

As many input files as needed may be

specified, one per depression of the

fRETURNI key.

One object file must be entered if the 0

control option was selected.

Specify the absolute address of the start

of the first RSEG which will be entered.

Then specify a list of RSEG's, as many as

desired, which will be loaded in the order

given starting at the address in the #ORG

statement.

More starting addresses, each with a list

of RSEG's, may be specified.

global-name is used as the entry point of

the program. If none is specified, the

first byte of the first RSEG will be the

entry point. Only one #END command can be

used.

1) If Linker control option D is not selected, all RSEG's which were not

specified in #ORG commands are included after the last named RSEG in

both the binary and display output.

2) If there is more than one RSEG of the same name in the input files

the first one encountered by the Linker will be used.

3) It is possible using #ORG commands to define the origin of an RSEG

at the location of a previous RSEG. If this is done, the overlaid

RSEG will be flagged by an "0" in the length column of the memory

map.

Futuredata AMDS Reference Manual 12/07/78 10-3

Linker Input Commands Linker

PURPOSE

Linker input commands specify the diskette files on which

relocatable program segments (RSEG's) have been stored, the names of the

RSEG's which are to be linked, the address at which the RSEG's are to be

loaded into memory, and the entry point at which execution of the linked

segments will begin after loading.

EXPLANATION

Input After the Linker Control Options are entered, the Linker will

prompt: SPECIFY INPUT FILE. Enter the file name and depress the IRETURNI
key.

The Linker will display the names of the RSEG's on the file and

their lengths.

Once a file is entered, the diskette

containing it may not be removed during Linker operation.

The Linker will again prompt SPECIFY INPUT FILE. If another file

is to be included, proceed as before, if not, depress the IRETURN] key.

If the "0" option was selected, the Linker r,olill prompt SPECIFY

OBJECT FILE.. Type the file name and depress the iRETURN! key. The Linker

will. then prompt LINKER INPUT.

Output After the #END command is entered, the Linker links all the

program segments, outputs selected information, displays the entry point,

and displays the message: FUNCTION COMPLETED.

Futuredata AMDS Reference Manual 12/07/78 10-4

Memory Map Output

This is an. example of a Linker memory map:

FUTUREDATA LINKAGE EDITOR

":'CDF\ i~!3EO

(:,400 KE'y'E;
040B CIJU'· ... T
0414 INC
l\)OO TEr'lF'

FILE

KE'{B. R
COUNT.
INC. R
COUNT.

R

R

LENGTH

0001::
O(iG9
OOO~5

0001

Linker

1) Memory locations of the RSEG's are listed in the order in which they

were input to the Linker. If the operands' of the #ORG commands were

input in ascending order then the listed memory locations will also

be in ascending order.

2) The RSEG name, the name of the file from which the RSEG was taken,

and the RSEG memory length in hexadecimal are also listed.

3) If an RSEG was deleted (control option D was specified) the name of

the RSEG will appear in the memory map but the address will be

flagged with a "D".

4) If an RSEG is overwritten by another RSEG, the overwritten RSEG will

be flagged with an "0" in the memory map.. (See Linker Input

Commands.)

Futuredata AMOS Reference Manual 12-07-78 10-5

Reference List Output Linker

This is an actual example of a Linker reference list:

::: ~. It:':
I J. _I ••

KE·YE:. f~:.

FIL.E
CiJUN T. f,~

i:"~ L.E
~~i~·Ji='i F\:

F;~!:;EO

:<EYE:

OLOE:AL~:;
KE"{ 1::

R:3EG
COUNT
TEt1P

OLCtE:AL~:;

COUNr

R:::;EO
INC

I3LOI:;~L~=;

INC

ENfRY POINT 0000

ADOR LEi\~GTI·f

U400 0001::

t=iDDR. LENGTH
i)40E: 0009
1.000 OOOi

0401:: COUNT 1

AD[lf~ L.Ei-iGTH
~:;4 i. 4 O(il)5

04i4 INCR

L I r'l I T

1) The Linker reference list shows each disk file from which RSEG's

were input,

2) the name of each RSEG,

3) the hexadecimal memory address of ~~e beginning of each RSEG,

4) the hexadecimal length of the RSEG.

5) The list also shows global address labels with the absolute memory

address which was assigned to each label.

6) The last line of the reference list is the entry point address at

which program execution will begin.

Futuredata .~~S Reference Manual 12-07-78 lO~6

Linker Error Messages Linker

NOT A RELOCATABLE FILE - The Linker input file was not created by

the Futuredata Relocating Assembler or the "Rn attribute has beer. changed

using the File Manager

PARM ERR ••• RESPECIFY - Syntax error in tbe Linker input.

(label) **DUPLICATE GLOBAL IN (filename) - The first occurrence of

a global label is used for address references. All additional definitions

are flagged as an error.

(label) **UNRESOLVED REFERENCE IN (filename) - The external

reference was not found in the global symbol table.

**DELETED RSEG REFERENCED IN (filename) - An RSEG which was not in­

cluded is needed to resolve address references.

**RELOCATION ERROR IN (filename) - Input file was not correctly

assembled with the Futuredata Relocating dssembler.

**TABLE OVERFLOW - The Linker needs more memory.

**SYMBOL TABLE NOT FOUND IN (filename) - The symbol table was not

included when the program was assembled.

**SEQUENCE ERROR IN (RELOCATABLE FILE NAME) - records in (relocat­

able file name) are not in proper order. Reassemble.

Futuredata AMOS Reference Manual 12-07-78 10-7

INTRODUCTION

Section 11

Symbolic Debugger

The Futuredata Debugger is called symbolic because memory locations

may be referenced by the symbolic address labels used in the program

being debugged.

The Debugger is an extremely powerful tool for finding and

correcting errors in a program. The Debugger allows the user to see and

change the contents of memory and registers. A program may be executed

beginning at any point at processor speed or may be executed one instruction

per keystroke. The user may set breakpoints which stop execution and return

control to the keyboard. Trace execution allows the user to view the state

of the program counter, registers, and status bits for the 20 instructions

executed prior to a breakpoint. Memory addresses may be referenced by the

address labels used in assembly language source programs. Sections of

memory may be write-protected.

Debugger Information Specific to a Microprocessor Information on

debugging which is microproce-sor dependent may be found in the micropro­

cessor reference manual. For example, for the 8080 further information is

in the Debugger section of the Futuredata 8080 Reference Manual.

BEGINNING DEBUGGER OPERATION

Type JOIRETURN! to begin debugger operation.

Futuredata AMOS Reference Manual 12/07/78 11-1

Debugger Display Debugger

This is an ex~ple of the debugger display for the 8080:

Register Display The first line of the display shows the letters

assigned by the manufacturer of the microprocessor to the 8080 internal

registers.

The second line displays the contents in hexadecimal of the registers

and program status byte. These first two lines vary depending on the

microprocessor since the registers and letter designations vary.

The rest of the display is split into two halves which are separately

controlled by debugger commands.

Disassembly Display, left side. The left half shows 10 micropro­

cessor instructions ..

The first column on the left shows the hexadecimal memory address of

the instruction. If a mu1tibyte instruction is used, ~~e address of the

Futuredata ~~s Reference ~anual 12/07/78 11-2

Debugger Display Debugger

first byte is displayed. The address is suffixed with an * if it is write

protected, or a + if it is in the user system during emulation.

The second and third columns show the assembly mnemonic assigned by

the microprocessor manufacturer to that instruction.

Disassembly is performed as though memory contained program. Since

disassembly may start at any byte in memory, and the memory locations may

contain data rather than program, the disassembly display may ~e meaning­

less. It is up to the user to position the left half of the display so

that disassebmly starts at the first byte·o·f an instruction.

Memory Map, right side. The first column of the right side of the

display lists the hexadecimal address of the first of eight memory locations

on each line. If a location in memory is write protected it is suffixed

with an asterisk. If, during emulation, a location in memory is placed in

the user system, it is suffixed with a plus.

The next eight columns are the contents of memory in hexadecimal.

The first column is the contents of the addresses shown. The addresses of

the others may be obtained by counting.

The last column is the ASCII representation of 'the contents of each

of the locations in the memory map. This feature is useful if the contents

of the memory displayed is alphabetic data. If a byte does not contain a

printing ASCII character a dot is displayed.

Memory Pointers. These are tw~ pointers, one on each side of the

display, which point to the displayed contents of memory. These memory

pointers indicate the byte at which execution would begin after an execute

or single step command. The cursor address is also used as input by 3

other commands.

Command Entry Cursor There are two more pointers on the command

line. The blinking rectangle command entry cursor may be positioned in

front of either by depressing the tab key. When the blinking cursor is on

the left side, commands may be entered which affect only the left half of

the display. When the blinking cursor is on the right side, commands affect

that side. The side on which the cursor is located is called the active

side of the display.

Futuredata AMDS Reference Manual 12/07/78 11-3

Load Program (L) Debugger

COMMAND

L{file-name}[,[offset] [,symbol-table-address]]

file-name is the name of the absolute object file.

offset is a constant or expression which specifies the number of memory

locations to be added to the load address given in the object file.

If not specified, the offset value is zero. This parameter is used

in programming EPROM's. (See Section 14, EPROM programming.)

symbol-table-address is a constant or an expression which specifies the

beginning address at which the program symbol table is to be loaded.

Notice that if this parameter is specified, but the offset parameter

is not, the table parameter must be separated from file-name by two

commas. If symbol-table-address is not specified, the table will

not be loaded.

Note: This command will set the program counter to the entry point of the

loaded program.

PURPOSE

This command loads absolute binary object programs so that they may

be examined, changed, and executed using the Debugger.

EXPLANAT!ON

See page 11-20 for rules for formation of expressions. Symbols from

a previously loaded symbol table may be used as terms of an expression in

this command.

EXAMPLES

The following are legal forms of the Load command:

LPF!LE,lOB+F8,lOB+F8+3000
LCOUNTER"BOB8-AOF (no offset param)
LCALC,lOOO (no symbol table)

Futuredata AMDS Reference Manual 12/07/78 11-4

Loading for Symbolic Debugging Debugger

Symbolic d~bugging requires that a symbol table which was generated

by the Assembler (S option), and output to a diskette file by the Linker (S

option), be loaded into memory by the Debugger (symbol-table-address

parameter) .

On completion of loading, the Debugger displays the hexadecimal

length of the symbol table. If there is insufficient memory for the symbol

table, or if the memory into which it would be loaded is write-protected,

the message PARTLY LOADED is displayed. Symbols which were loaded can be

referenced. In order to load the complete symbol table, it is necessary to

add more memory or specify a lower symbol table address.

To determine which symbols were loaded, position the display at an

address near the end of the symbol table. The names of the symbols are

shown on the. ri~ht side of the display as ASCII characters. Each entry in

the symbol table occupies 4 bytes past the last character of the symbol

name. (See the Assembler, Section 8, for a complete description of the

symbol table.)

Futuredata AMOS Reference Manual 12/07/78 11-5

Swap Command Cursor Debugger

COMMAND

ITABlsuccessive keystrokes swap the command cursor left and right.

PURPOSE

This command selects which half of the display the next command

will affect.

EXPLANATION

The Debugger display is formatted into two halves. Commands operate

on each half independently. The left half displays assembler mnemonics

obtained by disassembling the program in memory. The right half displays

memory addresses and the contents of each address.

Futuredata AMDS Reference Manual 12/07/78 11-6

Display Memory (D) Debugger

COMMAND

D{expression}

expression may be a constant, an arithmetic expression, an indirect address,

a relative address, a symbolic reference or a combination or the

above.

D($]

This form of the command returns the previous display to the screen.

PURPOSE

This command displays the contents of memory both in hexadecimal

(right side of display) and in microprocessor mnemonics obtained by

disassembly (left side).

EXPLANATION

For rules for formation of expressions, see page 11-20.

Futuredata AMOS Reference Manual 12/07/78 11-7

position Memory Pointer Debugger

COMMANDS

m advance 1 line

W back up 1 line

G advance 1 byte

G back up 1 byte

PURPOSE

These keys change the position of the memory pointer by one byte or

one line (eight bytes) .

EXPLANATION

The side of the display which is affected is indicated by the

position of the command cursor.

Futuredata AL~S Reference Manual 12/07/78 11-8

Store Data In Memory (S) Debugger

COMMAND

S{constant}[,constant].

The constants are stored beginning at the memory pointer address, one per

location.

con-stant is a one or two digit hexadecimal number or a single ASCII

character surrounded by single quotes. If a single digit is used, the

high order four bits stored will be zeroes'.

PURPOSE

This command stores data entered at the keyboard directly into

memory.

EXPLANATION

The side of the display at which data is stored in memory is

indicated by the rosition of the command cursor.

EXAMPLE

. SlE, 'A' , 'B'

This example stores the hexadecimal constant lE in the address

indicated by the memory pointer. The eight bit ASCII representation of

the letters A and B are stored one in each of the two succeeding memory

locations.

Futuredata AMOS Reference Manual 12/07/78 11-9

Store Data in Register (Z) Debugger

COMMAND

Z{reg=constant}[,reg=constant].

reg may be any register shown at the top of the display, except the program

counter.

If reg is an 8 bit register, constant may be a one or two digit hexadecimal

number or a single ASCII character surrounded by single quotes.

If a single hexadecimal digit is specified, the high order four bits

stored will be zeroes.

If reg is a 16 bit register, constant may be a one to four digit hexadecimal

number or one or two ASCII characters surrounded by single quotes.

If less than four hexadecimal digits or only one ASCII character is

specified, the high order bits stored will be zeroes.

PURPOSE

This command stores data entered at the keyboard directly into a

register.

EXPLANATION

If an attempt is made to set the program counter, the message SYNTAX

is displayed and no action is taken.

EXAMPLE (8080 microprocessor)

The command

ZSP=AIOO,B='H' ,e=3

stores the hexadecimal number AIDa in the stack pointer, a 16 bit register.

It also stores the hexadecimal number 48, which is the hexadecimal represen­

tation of the character H in ASCII, in the B register. It stores hexa­

decimal 03 in the C register.

Futuredata AMOS Reference Manual 12/07/78

Find Data in Memory (F) Debugger

COMMAND

F[constant] [,constant].

constant is a one or two digit hexadecimal number or a single ASCII

character surrounded by single quotes. If a single digit is used,

the high order four bits will be zeroes.

If no parameters are specified, the previous constant or constants specified

in an F command is used.

PURPOSE

The F command searches through memory, starting at the address of the memory

pointer on the active side of the display, for a match between the constants

specified and a byte or series of bytes in memory.

EXPLANATION

Each constant occupies one byte. A match occurs when ~~e bytes

specified in the F command are identical to a series of bytes in memory.

When a match is found, the F command positions the memory pointer at the

first byte of the match.

The F command begins searching for a matc~ at the memory pointer

address of the active side of the display.

Unless a match is found, the command searches to the end of memory

(FFF), begins searching again at the beginning of memory (000), and

continues to the memory pointer address, where is stops.

Futuredata AMOS Reference Manual 12/07/78 11-11

Set Breakpoint (BS)

Display Breakpoint (BD) Debugger

SET BREAKPOINT COMMAND

BS{n}

n is an integer between ° and 4.

If n = 0, the hardware breakpoint will be used.

PURPOSE

This command sets a breakpoint at the cursor address.

DISPLAY BREAKPOINT COMMAND

BD{n}

n is an integer between ° and 4.

PURPOSE

This command positions the memory cursor at the address of the

nth breakpoint.

EXPLANATION

See page 11-14 for an explanation of breakpoints.

Futuredata AMDS Reference Manual 12/07/78 11-12

Reset Breakpoint (BR)

Clear All Breakpoints

RESET BREAKPOINT COMMAND

BR

PURPOSE

(BC) Debugger

This command removes the breakpoint at the address indicated by the

memory pointer and restores the former instruction. If there is no break­

point at this address, the message NOT ACTIVE is displayed and no action

is taken.

CLEAR ALL BREAKPOINTS

Be

PURPOSE

All breakpoints are removed and for.mer instructions restored.

EXPLANATION

See page 11-14 for an explanation of breakpoints.

Futuredata AMOS Reference Manual 12/07/78 11-13

Explanation of Breakpoint Commands Debugger

A breakpoint is a location is a program being debugged at which
execution is stopped and control is returned to the Debugger. Breakpoints
are useful for splitt~ng a program into pieces which may then be executed
separately. This makes debugging a complex program a much more manageable
job.

If n=O in the breakpoint set command, a hardware interrupt is used
to return control to the Debugger. This is a hardware breakpoint.

If n is 1 to 4, a microprocessor interrupt instruction is used to
return control to the Debugger. This is a software breakpoint. The
numbering serves to uniquely identify each breakpoint.

When a software breakpoint is set,. a microprocessor interrupt in­
struction (hexadecimal F7 for the 8080, 3F for the 6800) is stored at the
memory location of the breakpoint. This instruction replaces one of the
instructions in the program, but since the last instruction of the piece of
the program being debugged is just before the breakpoint, the change does
not affect execution.

The instruction which was in the memory location occupied by a soft­
ware breakpoint is automatically restored when the breakpoint is cleared.

When a breakpoint returns control to the Debugger after execution,
the "memory pointer is positioned one byte after the breakpoint.

To resume execution at the last instruction in the program which was
not executed, it is necessary to back up the memory pointer one byte, clear
the breakpoint, and enter an E (execute) command.

EXAMPLE

If a breakpoint is set at the first byte of a subroutine call in­
struction, program execution will stop and control will be returned to the
debugger instead of calling the subroutine. It is then possible to check
the parameters that are to be passed to the subroutine and verify that they
are correct.

Then a breakpoint may be set at the subroutine's instruction,
the call instruction restored by clearing the former breakpoint, and execu­
tion begun at the call instruction. Execution will stop at the new break­
point, at which time the output of the subroutine may be verified. De­
bugging continues throughout the entire program in this manner.

Futuredata AMOS Reference Manual 12/07/78 11-14

Execute Program eE)
Execute Single Instruction

EXECUTE PROGRAM COMMAND

EIexpression]

Debugger

Execution starts at the address specified by the value of the expression.

If the expression is omitted, execution is begun at the memory pointer

address of the active side of the display. (See explanation below.)

E$

Execution starts at the address specified in the program counter.

EXECUTE SINGLE INSTRUCTION (SINGLE STEP)

'STEPI

A single instruction at the cursor address is executed.

EXPLANATION

See page 11-20, for rules for formation of expressions.

The memory pointer is moved to the next address indicated by the

program counter, which is the address· of the next instruction to be

executed.

If the executed instruction was a branch, jump or call, the dis­

play may show a totally different area of memory than before execution.

Type 0$ to return to the former display.

For a discussion of starting execution when the cursor is positioned

at a breakpoint, see Page 11-14.

The display goes blank during execution. This is not noticeable

if execution requires a short period of time.

Futuredata AMOS Reference Manual 12/07/78 11-15

Write Program to File (W) Debugger

COMMAND

W{file-name}{,start-addr,end-addr}[,start-addr,end-addr] ... [,entry-addr]

All addresses are expressions or hexadecimal constants.

The specified memory addresses will be written to the file filename in

absolute .object format.

If entry-addr is omitted, the first start-addr will be used as the entry

point address.

PURPOSE

Any series of memory locations may be written to a diskette file as

absolute binary using this command.

EXPLANATION

See page 11-20 for rules for formation of expressions.

The contents of memory is not affected by this command.

If N: is prefixed to the file na~e, the file will first be created.

Futuredata AMOS Reference ~anual 12/07/78 11-16

Trace Execution Debugger

COMMAND

T[express;on]

Trace execution starts at the address specified by the value of the

expression.

If the expression is omitted, trace execution is begun at the memory

pointer address of the active side of the display.

T$

Trace execution starts at the address specified in the program counter.

PURPOSE

This command allows the user to save the contents of the program

counter, registers, and status byte after the execution of each of 20

instructions prior to a breakpoint. (See example of trace display on

page 11-18.)

EXPLANATION

For rules for formation of expressions, see page 11-20.

This command interrupts execution after every instruction to save

the contents of all registers. Twenty of these "traces" are saved, with

new traces added at the bottom of a stack in memory, and old ones removed

from the top. When a breakpoint is reached, and execution is returned to

the Debugger, the traces may be displayed.

Futuredata AMDS Reference Manaul 12/07/78 11-17

Display Trace Data Debugger

COMMAND

TR

PURPOSE

This command displays the data saved in a T (Trace Execution)

command.

EXAMPLE (Z-80)

Each line of this photograph shows the contents of the registers of

a Z-80 after the execution of one of twenty instructions prior to a break­

point. The letter register designations at the top are those of the manu­

facturer. The last set of data or "trace" taken is at the bottom.

Futuredata AMOS Reference Manual 12/07/78 11-18

Write Protect Memory Debugger

COMMAND

x

Switches protection on or off for the 1024 (decimal) block of memory

locations in which the memory pointer of the active side of the

display is located.

PURPOSE

This command prevents writing to memory. Write protection assures

that a faulty program will not write into memory locations which contain

program or data meant only to be read.

Futuredata AMOS Reference Manual 12/07/78 11-19

Rules for Formation of Expressions Debugger

Many debugger commands allow the use of expressions as parameters.

The foliowing elements may be combined to make an expression:

{digit}[digit][digit][digit] hexadecimal constant, 1-4 digits

'character' ASCII constant (8 bits per character)

+ or - indicates binary addition or subtraction

#(file-name:] [symbol] symbolic address

Suffixes

* causes the Debugger to treat the previous term of the expression as an

indirect address.

% causes the Debugger to treat the previous term of the expression as a

relative address.

EXPLANATION

Terms may be written in any order. Each expression must evaluate to

a 16 bit memory address.

ASCII Constants ASCII constants must be enclosed in single quotes.

Svrnbolic Addresses Memory locations may be referenced by the address

labels which were used when the program was written. To use this feature,

the symbol table must have been loaded into memory. (see Loading for

Symbolic Debugging, page 11-5.)

file-name may be specified to distinguish between identical address

labels in different program segments which are in different files.

If a symbol is referenced which is not in the symbol table, the De­

bugger displays the message: UNDEFINED SYMBOL.

Suffixes An * suffixed to a term evaluates to the contents of the

memory location specified by the term.

A % suffixed to a term evaluates to the contents of the memory

location specified by the term plus the contents of the first memory

location after the one specified by the term. This suffix is meant to be

used with the Z-80 relative branch i~struction. However, it always operates

as described.

Futuredata AMOS Reference Manual 12/07/78 11-20

Messages Debugger

SYNTAX

There is a syntax error in the command.

NOT FOUND

The F (find command) did not find a match after searching all of

memory.

NOT IN USE

1) An attempt was made to display a numbered software breakpoint

which is not in use.

2} An attempt was made to reset the hardware breakpoint. It is not

in use.

3) An attempt was made to reset a software breakpoint. The memory

pointer of the active side of the display was not positioned at a break­

point.

SP NOT IN RAM

A p.rogram will not be executed unless the stack pointer is located

in RAM.

NOT OBJECT FILE

The file being read by a L (load) command, or the file bring written

by a W (write) command does not have the "0" attribute designating it as a

binary object file. See File Manager, page 6-10 for a discussion of file

attributes.

Futuredata AMDS Reference Manual 12/07/78 11-21

Messages Debugger

UNDEFINED SYMBOL

An expression used as a parameter of a command contains a symbol

which is not in the symbol table.

SYMTABLENGTH = xxxx PARTLY LOADED

There is insufficient room in memory for the symbol table.

NAME ERR

A file name was entered with incorrect syntax.

Futuredata AMOS Reference Manual 12/07/78 11-22

INTRODUCTION

Section 12

Emulator

The Emulator is a hardware feature with which the AMOS can emulate

a microprocessor. A connector on the end of a cable-attached to the AMOS

is plugged directly into a microprocessor socket. The powerful capabilities

of the AMOS can then be used to aid hardware development.

Initially the AMOS is used to debug the software. Then, with the

software in the AMOS, the user may command the AMOS to switch timing control

to the clock in the hardware prototype. After proper operation of the

prototype clock is verified, control lines and I/O can be switched from

the AMOS to the prototype for debugging and verification of operation.

The level of emulation is decreased bit by bit until a~l functions

are in the prototype. Then the AMDS plug is removed from the microprocessor

socket and a microprocessor is substituted. This step-by-step hardware

debugging is extremely effective and efficient.

EMULATOR REFERENCE MANUAL

For a complete discussion of the Emulator and emulation techniques,

see the Futuredata Emulator Reference Manual.

BEGINNING EMULATOR OPERATION

Emulator commands are available during Debugger operation. The AMDS

must have emulator hardware installed to use this function.

IMPORTANT NOTE

The AMOS automatically sets the stack pointer to point to a suitable

location in memory. The user must set the stack pointer in a stand-alone

prototype so that it points to an available area in RAM.

Futuredata AMDS Reference Manual 12/07/78 12-1

Select Level of Emulation (M) Emulator

COMMAND

M [mode] [mode] •

mode may be any combination of the following:

C Enables the prototype clock. This mode causes the AMOS to 3witch from

the AMOS internal clock to the prototype clock.

o Enables direct memory access. This 'mode causes the AMDS to suspend

processing in response to prototype direct memory access requests so

that the prototype can gain access to the AMOS system bus.

8080, 8085 Switches HOLD and HLDA lines.

Z-80 Switches BUSRQ and BUSAK lines.

6800, 6802 Switches TSC, HALT and BA lines.

I Enables prototype control lines.

Z-8·J Allows the prototype to control INT-, NMI-, RESET-, WAIT-, and to

respond to I/O reads and writes. (In this mode the Z-80 will not

generate any internal I/O requests.)

6800, 6802 Allows the prototype to control INTR-, NMI-, and RESET-.

M Z-80 Enables prototype memory map.

p 6800, 6802 Disables AMOS I/O when running prototype. This mode is

especially useful in disabling the memory protect registers so that

the prototype program cannot clear the protect registers and then

clear memory. (Not required in 8080 and Z-80 because of separate

I/O lines.)

E Full Emulation mode.

8080, 8085 Enables clocks, RESET, READY, and INTERUPT lines and direct

memory access.

6800, 6802. Enables clocks , NMI-, INTR-, RESET-, TSC-, HALT-, DMA, and

memory map.

Z-80 Enablesclocks NMI-, INT-, RESET-, WAIT-, DMA, I/O requests, and

memory map.

Futuredata AMDS Reference Manual 12-2

Select Level of Emulation (M) Emulator

Unless otherwise specified in an M command, the AMOS clock will be used,

the system will not respond to external reset or control lines.

PURPOSE

The M (mode) command controls the mode or level of emulation of the

AMOS Emulator.

EXPLANATION

Se.e the Fururedata Emulator Reference Manual.

ADDENDUM TO PREVIOUS PAGE, MODE COMMAND

mode may also be one of the following:

U 8080,8085· Enables the prototype RESET, READY, and INTERRUPT
lines.

6800, 6802 Enables the prototype clock and the memory map
command. The memory map is under the control, of the U c011llland
(See page l2-4).

R Disables AMOS display refresh for use with protoype systems
which make DMA requests. This mode can only be used when the
AMOS is e~pped with a high speed static RAM.

Futuredata AMOS Reference Manual 12/07/78 12-3

Map User Memory Emulator

COMMAND

U{addr} [,mask]

addr is an expression which defines the beginning of a 2048 byte region.

mask is a hexadec~al constant. Each bit represents a 256 byte block of

the 2048 byte region to be mapped.

PURPOSE

This command specifies which 256 byte blocks of memory will be in

the prototype and which will be in the AMDS.

EXPLANATION

If addr is not on a 2048 byte boundary the message NOT ON 2K boundary

will be displayed.

Futuredata AMDS Reference Manual 12/07/78 12-4

INTRODUCTION

Section 13

EPROM PROGRAMMING

~he Futuredata AMOS EPROM programmer programs four different

UV-erasable memories, the 2704, 2708, 2758, and 2716. Commands are provided

to check that an EPROM is fully erased, to program an EPROM, to input EPROM

data into the AMDS memory, and to verify that data in the AMOS memory is

the same as data in an EPROM.

BEGINNING EPROM PROGRAMMING

EPROM Programming commands are available during Debugger operation.

EPROM Programming requires that Emulator hardware be installed in the AMOS.

Futuredata AMOS Reference Manual 12/07/78 13-1

Check for EPROM Empty

Program EPROM EPROM Programming

CHECK FOR EPROM EMPTY

C [type] [,length]

type is the EPROM type. It may be 2704, 2708, 2758, or 2716. If type is

omitted, 2708 is assumed.

length i$ the number of bytes beginning at byte zero which will be checked.

If omitted, the entire EPROM is checked.

EXPLANATION

If an EPROM being checked is empty, the message EPROM IS EMPTY is

displayed. Otherwise the message NOT EMPTY AT XXXX appears, where XXXX is

the four digit hexadecimal address of the first location not empty. An

EPROM is empty if all bits are high.

PROGRAM EPROM

P [type] [,length]

type is as defined above.

length is the number of bytes, beginning at,byte zero, which will be

programmed. If omitted, the entire EPROM is programmed.

Data from the AMDS memory will: be transferred beginning at the memory

pointer address of the_" "actiye side of the display.

EXPLANATION

The EPROM is cfiecked after it has been programmed. If there is an

error, the message MISMATCH AT XXXX is displayed, where XXXX is the hexa­

decimal EPROM address of the first byte which does not match.

Futuredata AMDS Reference Manual 12/07/78 13-2

Input Data from EPROM

Verify Data in EPROM EPROM programming

INPUT DATA COMMAND

I [type] [,length]

type is the EPROM type. It may be" 2704 , 2708, 2758, or 2716. If type
is omitted, 2708 is assumed.

length is the number of bytes beginning at byte zero of the EPROM· which

will be input to the AMDS.

Input data is stored in AMOS memory beginning at the memory pointer address

of the active side of the display.

VERIFY DATA

v [type] [,length]

type is as defined above.

length is the number of bytes in the EPROM to verify. If omitted, the

entire EPROM is verified.

Data in the EPROM is verified against data in the AMOS memory beginning at

the memory pointer address of the active side of the display.

EXPLANATION

If there is a mismatch, the message MISMATCH AT XXXX is displayed,

where XXXX is the four digit hexadecimal EPROM address of the first byte

which does not verify.

Futuredata AMOS Reference Manual 12/07/78 13-3

Index Command Files

.- Introduction 5-1

= Important Note 5-1

Return to Keyboard for Input 5-2 .

Return for One Line 5-2

Return Until Carat is Input 5-2

Accepting Parameters 5-3

Initiating Reading of Command File 5-4

~orting Command File Operation 5-4

= Messages 5-5

Futuredata AMOS Reference Manual 12/07/78

Index File Manager

= Introduction 6-1

Beginning Operation 6-1

initialize Diskette Command (I) 6-2

Display Diskette Directory (D) 6-3

= Photograph of Directory Display 6-3

= File N~e Conventions 6-4

= Command Conventions 6-4

Create a File Command (C)
,

6-5

Prefix Create File Command (N:) 6-5

Scratch a File (S) 6-6

Free Unused Space in File (F) 6-6

Rename a File (R) 6-7

Exchange File Names (E) 6-7

Copy File (M) 6-8

Copy Diskette (X) 6-9

Specify File Attributes (A) 6-10,6-11

Data Type Attributes 6-10

File Protection Attributes 6-11

= File Manager Messages 6-12 to 6-14

Futuredata AMOS Reference Manual 12/07/78

Index Editor

= Introduction

Beginning Operation

= Editor Display Example

= Editor Definitions

Editor File Management Commands

Load Workspace from file (L)

Write Workspace to file (W)

Write Workspace Then Load (N)

End Output File (E)

Keyboard Modes

Enter Conunands

Insert Text Lines (Line Insert Mode) (I)

Edit Text (Line Editing Mode) (X)

Insert Characters (Character Insert Sub-mode)

S~ecial Keyboard Operations Table

- Advance Displayed Text

Back Up Displayed Text

Find (and Replace) a String in Workspace (F)

Get (and Replace) a String in File (G)

Delete Lines (DEL)

Clear Workspace (CLR)

Set Tabs (Tcolumn-number)

Clear Tabs (T)

Display Upper!Lower Case (SU,SL)

= Editor Messages

Futuredata ~~S Reference Manual 12/07/78

7-1

7-1

7-2

7-3,7-4

7-5 to

7-5

7-6

7-7

7-8

7-9 to

7-9

7-10

7-11

7-12

7-13

7-8

7-13

7-14,7-15

7-14,7-15

7-16,7-17

7-18

7-19

7-19

7-20

7-20

7-21

7-22,7-23

Index

= Introduction

Beginning Assembler Operation

Assembler Options

Entry of Options

Specifying Assembler Files

Assembly Begins

Statement Fields

Label Field

Operation Code Field

Operand Field

Expressions in Operands

Assembler Comments

Assembler Directives

Segment Control Directives

END Directive

EQU Directive

Data Block Directives

Printer Control Directives

= Error Flags

= Messages

Futuredata AMOS Reference Manual 12/07/78

8-1

8-2

8-3,8-4

8-4

8-5

8-5

8-6 to 8-14

8-7

8-8

8-9,8-10

8-11 to 8-13

8-14

8-15 to 8-18

8-15

8-16

8-16

8-17

8-18

8-19

8-20

Assembler

Index

Macros Introduction

Macro Library

Duplicate Macro Definitions

Macro Calls Within Macros

EXI'lM Statement

Macro Parameters

Macro Parameter Delimiters

Concatenating Parameters

Literal Ampersand

Generating Unique Labels

Conditional Assembly

Set Symbols

DEFL Statement

OEFG Statement

IF Block

IF Statement

ELSEIF Statement

ELSE Statement

EXITIF Statement

ENDIF Statement

DO Block

DO Statement

EXITDO Statement

NEXTDO Statement

ENDDO Statement

SUBSTR Statement

LENGTH Statement

Advanced Considerations

Subscripted Set Symbols

Indirect Set Symbols

Futuredata AMOS Reference Manual 12/07/78

Macros & Conditional Assembly

9-1

9-2

9-2 .

9-2

9-:-2

9-2,9-3

9-4

9-4

9-5

9-5,9-6

9-7,9-8

9-8

9-9

9-9

9-10

9-10

9-10

9-11

9-11

9-11

9-11

9-11,9-12

9-12

9-12

9-12

9-13 .

9-13

9-14

9-14

9-14,9-15

INDEX

Introduction

Command Files Reduc.e Keyboard Time

Beginning Linker Operation

Linker Control Options

Linker Input Commands

Memory Map Output

Reference List Output

Linker Messac:.Jes

Futuredata AMDS Reference Manual 12/07/78

10-1

10-1

10-1

10-2

10-3,10-4

10-5

10-6

10-7

Linker

Index

= Introduction

Beginninq Debuqqer Operation

= Debuqger Display

- Load Proqram (L)

= Loadinq for Symbolic Debuqqinq

Swap Command Cursor

Display Memory (D)

Position Memory Cursor

Store Data in Memory (5)

Store Data in Register (Z)

Find Data in Memory (F)

Breakpoints

Set (BS)

Display (BD)

Reset (BR)

Clear (Be)

Explanation of Breakpoint Commands

Execute Program (E)

- Execute Sinqle Instruction (Single Step)

- Write Proqram to File (W)

- Trace· Execution (T)

Display Trace Data (TR)

• Trace Display Example

- Write Protect Memory (X)

a Rules for Formation of Expressions

- Messaqes

Futuredata AMOS Reference Manual 12/07/78

11-1

11-1

11-2,11-3

11-4

11-5

11-6

11-7

11-8

11-9

11-10

11-11

11-12

11-12

11-13

11-13

11-14

11-15

11-15

11-16

11-17

11-18

11-18

11-19

11-20

11-21,11-22

Debugger

(future@@~®)

11205 SOUTH LA CIENEGA BOULEVARD LOS ANGELES CA 90045

	000
	001
	002
	003
	004
	01-01
	01-02
	02-01
	02-02
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-20
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-01
	12-02
	12-03
	12-04
	13-01
	13-02
	13-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	xBack

