
-

GenRad 
future~ 

GenRad/Futuredata 
Advanced Microprocessor 

Development System 
Emulator 

Reference Manual 

MICROCOMPUTER, 
SYSTEMS 



GenRad/Futuredata 
Advanced Microprocessor 

Development System 
Emulator 

Reference Manual 



Copyright 1979, GenRad Corp. 

GenRad/futuredata Corp. 
11205 S. La Cienega Blvd. 

Los Angeles, CA 90045 



TABLE OF CONTENTS 

Introduction • 
2 Emulator Features • 
3 Prior to Using the ICE • 
4 Step by Step Debugging • 
5 Emulator Commands • 
6 Debugger Commands • 
7 Installation • 



Introduction 

The In-Circuit Emulator (ICE) is a hardware feature that enables 
the microprocessor in the AMDS to emulate the microprocessor in 
the user system. A connector on the end of the ICE cable is 
plugged directly into the socket on the user prototype for the 
microprocessor. The purpose of an ICE is threefold. First the 
ICE can used to substitute RAM for the PROM/ROM in the user 
system. The RAM can be much more easily modified than the 
ROt1/PROl:4 thus facilitating changes in user programs during the 
development phase. ICE also provides debugging facilities in the 
user enviornment. Features such as single-step, trace, 
breakpoints are all included in the ICE package. Lastly, the ICE 
package allows the user to gradually bring up the target system. I 
The clocks, DMA facilities, interrupts and I/O and memory mapping 
can all be separately enabled. 

When combined with the Universal Logic Analyzer, the ICE -­
analyzer combination provides 3 complex breakpoint registers with 
up to 24 address, 16 data and 8 control lines. The analyzer also 
allows real time tracing of 256 bus transactions. 

The ICE package consists of the following elements 

(1) An In-Circuit Emulator interface card, 
(2) Cable(s) to connect the interface card to the processor 

card, 
(3) An In-Circuit Emulator Probe assembly. 

Initially the AMDS is used to debug and develop the user software. 
Then the ICE is used to verify the proper operation of the user 
hardware. The designer may switch clocks', control lines, memory 
from the AMDS to the user (target) system. As various elements of 
the user system are verified, more and more of these elements are 
utilized until, finally, the ICE connector is removed. This, step 
by step, procedure is extremely effective, since only one element, 
at a time, is being tested. 

All of the A~IDS debugger commands are available to the user during 
emulator operation. Thus the user is able to examine and alter 
memory and registers, start a program, set breakpoints, 
single-step, trace, and load and dump object programs. 

1 . 1 



8080 Emulator Features 

The 8080 ICE has the following salient features: 

(1) Real-time emulation and debugging at 2Mhz clock cycles 
using high-speed static RAM. 

(2) Separate control over clock source, DMA, Interrupt and 
I/O, and refresh enable. 

(3) Memory mapping in 8K blocks by jumper removal. 

(4) Hardware breakpoint, single step, trace, and 4 software 
breakpoints. 

(5) Logic analyzer adds: 
- 3 complex breakpoints 

16 address, 8 data, Memory/la, R/W, Instruction fetch, 
DMA cycle and 4 external conditions. 

- trace qualifier 
- 256 deep trace memory. 

(6) The hardware breakpoint, software breakpoint, logic ana­
lyzer breakpoint, single-step, and trace all use the 
interrupt vector at X '30' (RESTART 6). The BREAK key 
uses the interrupt vector at X'20' (RESTART 4). 

(7) A system with 48 kilobytes of RAM provides 28 kilobytes 
of ROM/PROM simulator memory from X'OOOO' to X'6FFF'. 

(8) The user memory space is from X'OOOO' to X'5FFF'. 

(9) All I/O ports are available to the user with the follow­
ing exceptions: 

X'IF', X'3F', X'5F', X'7F', X'9F', X'BF', X'CO-CE', 
X'D8-D9', X'DF', X'FO-F6', and X'FS-FF'. 

2. 1 



8080-1 Emulator Features 

The upgraded 8080-1 ICE has the following salient features: 

(1) Real-time emulation and debugging at 2Mhz clock cycles 
using high-speed static RAM. 

(2) Separate control over clock source, DMA, Interrupt and 
I/O, memory map and refresh enable. 

(3) Memory mapping in 256 byte blocks under software control. 

(4) Hardware breakpoint, single step, trace, and 4 software 
breakpoints. 

(5) Logic analyzer adds: 
- 3 complex breakpoints 

16 address, 8 data, Memory/la, R/W, Instruction fetch, 
DMA cycle and 4 external conditions. 

- trace qualifier 
- 256 deep trace memory. 

(6) The hardware breakpoint, software breakpoint, logic ana-
lyzer breakpoint, single-step, BREAK key and trace all use the 
inter rupt vector at X I 30 r (RESTART 6). 

(7) A system with 48 kilobytes of RAM provides 28 kilobytes 
of ROl-1/PROM simulator memory from X I 0000 I to X' 6FFF' • 
A system with 64 kilobytes of RAM provides 44 kilobytes 
of ROM/PROM simulator memory X'OOOO' to X' 8FFF' and 
X'EOOO' to X'FFFF'. 

(8) The user memory space is from X'OOOO' to X'FFFF', with 
256 bytes for the pesident debugger communication block 
at X'D400' to X'D4FF'. 

(9) All I/O ports are available to the user except output 
port X'F6 1

• 

2.2 



8085 Emulator Features 

The 8085 ICE has the following salient features: 

(1) Real-time emulation and debugging at 10Mhz clock cycles 
(5r~hz bus cycles) usinghish-speed static RAr1. 

(2) Separate control over clock source, DMA, Interrupt and 
I/O, memory map and refresh enable. 

(3) Memory mapping in 256 byte blocks under software control. 

(4) Hardware breakpoint, single step, trace, and 4 software 
breakpoints. 

(5) Logic analyzer adds: 
- 3 complex breakpoints 

16 address, 8 data, Memory/IO, R/W, Instruction fetch, 
DMA' cycle and 4 external conditions. 

- trace qualifier 
- 256 deep trace memory. 

(6) The hardware bre~kpo,int, BREAK key, logic analyzer 
breakpoint, single-step, and trace all use the 
interrupt vector at X'2C' (RESTART 5.5). The software 
breakpoints use the interrupt vector at X'30' (RESTART 
6) • 

(7) A system with 48 kilobytes of RAM provides 28 kilobytes 
of ROt1/PROt1 simulator memory from X' 0000' to X' 6FFF' . 
A system with 64 kilobytes of RAM provides 44 kilobytes 
of ROM/PROt-1 simulator memory from X'OOOO' to X'8FFF' 
and X'EOOO' to X'FFFF'. 

(8) The user memory space is from X'OOOO' to X'FFFF', except 
for a 256 byte resident debugger communication block from 
X'D40Q' to X'D4FF'. 

(9) All I/O ports are available to the user except output port 
X'F6'. 

2.3 



Z80 Emulator Features 

The Z80 ICE has the following salient features: 

(1) Real-time emulation and debugging at 4Mhz clock cycles 
using high-speed static RAM. 

(2) Separate control over clock source, DMA, Interrupt and 
I/O, memory map and refresh enable. 

(3) Memory mapping in 256 byte blocks under software control. 

(4) Hardware breakpoint, single step, trace, and 4 software 
breakpoints. 

(5) Logic analyzer adds: 
- 3 complex breakpoints 

16 address, 8 data, Memory/la, R/W, Instruction fetch, 
DMA cycle and 4 external conditions. 

- trace qualifier 
- 256 deep trace memory. 

(6) The ha.rdware breakpoint, BREAK key, logic analyzer, 
breakpoint, single-step, and trace all use the 
interrupt vector at X '66 I, (Non Ivlaskable Interrupt). 
The software breakpoint uses the interrupt vector at 
X' 30 ' (RESTART 6). 

(7) A system with 48 kilobytes of RAH provides 28 kilobytes 
of ROl4/PROl4 simulator 'memory from X' 0000' to X '6FFF I. 
A system with 64 kilobytes of RAM provides 44 kilobytes 
of ROr,1/PROr1 simulator memory from X'OOOO' to X' 8FFF ' 
and X'EOOO' to X'FFFF'. 

(8) lihe user memory space is from X'OOOO' to X'FFFF', except 
for a resident 256 byte debugger communication block at 
X'D400'to X'D4FF'. 

(9) All I/O ports are available to the user except for output 
port X'F6'. 

2.4 



6800 Emulator Features 

The 6800 ICE has the following salient features: 

(1) Real-time emulation and debugging at IMhz clock cycles 
using high-speed static RAM. 

(2) Separate control over clock source, OMA, Interrupt and 
I/O, memory map and refresh enable. 

(3) Memory mapping in 256 byte blocks under software control. 

(4) Hardware breakpoint, single step, trace, and 4 software 
breakpoints. 

(5) Logic analyzer adds: 
- 3 complex breakpoints 

16 address, 8 data, Memory/IO, R/W, Instruction fetch, 
OMA cycle and 4 external conditions. 

- trace qualifier 
- 256 deep trace memory. 

(6) The hardware breakpoint, BREAK key, logic analyzer, 
breakpoint, single-step,. and trace all use the 
interrupt vector at X'FFFC' (NMI). The software 
breakpoint uses the vector at X'FFFA' (SWI). 

(7) A system with 48 kilobytes of RAM provides 24 kilobytes 
of ROl.t/PROM simulator memory from X' 0000' to X' SFFF' . 
A system with 64 kilobytes of RAM provides 40 kilobytes 
of ROM/PROI1 simula tor memory from X' 0000' to X' 7FFF' , 
and X'COOO' to X'OFFF'. 

(8) The user memory space is from X'OOOO' to X'FFFF' with 
the exception of a resident debugger communication 
block at X' __ ' to X'_' and emulator control ports 
at X'FFF4' to X'FFF7'. 

2.5 



6802 Emulator Features 

The 6802 ICE has the following salient features: 

(1) Real-time emulation and debugging at 2Mhz clock cycles 
using high-speed static RAM. 

(2) Separate control over clock source, HALT, Interrupt and 
I/O, memory map and refresh enable. 

(3) Memory mapping in 256 byte blocks under software control. 

(4) Hardware breakpoint, single step, trace, and 4 software 
breakpoints. 

(5) Logic analyzer adds: 
- 3 complex breakpoints 

16 address, 8 data, Memory/la, R/W, Instruction fetch, 
DMA cycle and 4 external conditions. 

- trace qualifier 
- 256 deep trace memory. 

(6) The hardware breakpQint, BREAK key, logic analyzer 
breakpoint, single-step, and trace all use the 
interrupt vector at X, FFFC' (Nl1I). The software breakpoint 
uses the interrupt vector at X' FFFA' (SWI). 

(7) A system with 48 kilobytes of RAM provides 24 kilobytes 
of ROM/PROM simulator memory from X'OOOO' to X'SFFF'. 
A system with 64 kilobytes of RAH provides 40 kilobytes 
of ROl1/PR0r1 simulator memory from ,x '0000 f to X '7FFF' and 
X'COOO' to X'DFFF'. 

(8) The user memory space is from X'OOOO' to X'FFFF' except 
for a 256 byte resident debugger communication block from 
X, 'to X' ____ ' and emulator control ports from 
X'FFF4' to X'FFF7'. 

2.6 



Things to Consider Prior to Using the In-Circuit Emulator 

In order to provide an emulator that is a close approximation of 
the chip it is necessary to provide minimum isolation between the 
the user system and the ICE logic. Thus there are no terminations 
on the data lines, address lines, control lines and clock lines at 
the ICE probe connections. This means that the ICE will be 
sensitive to noise on the data and control lines of the user 
system, just as the microprocessor chip would be. Many of the 
problems associated with microprocessor based systems are 
associated with noisy data and control lines. In a system where 
TTL bus drivers are used to buffer the data bus, noise can be 
generated in the process where the data bus is turned around to 
switch from read to write. Schottky TTL chips, such as, 8T97, 
8T98, 8T26, 8216, 8226, 74LS240, 74LS244 and 74LS245 are capable 
of generating very narrow switching tranisients (less than 5 
nanoseconds). These can, of course, cause a significant amount of 
crosstalk between data and control lines when the data lines 
switch. In addition, control signals used to "turn around" 
bi-directional data buses may generate bus conflicts at the 
instants the directions are changed. This can also cause 
significant cross talk. .1 
One further caution concerns the connection of the grounds between 
the ArmS and ICE on one hand and the user system on the other. 
The ICE logic ground is conne,cted to the AMOS frame and to the 
third wire on the power cord at a single point in the Al·IDS on the 
system power supply. If the user system also has a third wire 
connection there will be a ground loop through the power line 
grounds that may generate considerable ground noise. Obviously 
this condition is to be avoided by disconnecting the user logic 
ground from the user chassis during the ICE debugging pha~e. 

The user also needs to be aware of the location of the stack. The 
debugger will set the stack pointer to an area in the AMOS memory 
space that is read/write memory. This stack will be used both by 
the user software and by the debugger (to save and restore the 
registers at exit from and entry to the user program). If this 
memory location is mapped into the user space, then it must still 
be read/write memory or else the user program must load the stack 
pointer with a suitable address. The debugger will not operate 
correctly without a stack in read/write memory. 

3. 1 



Step By Step Debugging With an In-Circuit· Emulator 

In order to develop hardware and software expeditiously, it is 
very desireable that the designer follow a step by step approach 
in validating the hardware and software at each step in the design 
process. The designer should keep in mind the basic goal of 
separating hardware and software problems. Thus, the designer 
will attempt to verify as much as possible of the hardware system 
by means of simple tests using unambiguous debugging programs. If 
this goal is kept in mind, then it should be possible to verify 
nearly all of the hardware system prior to executing the actual 
system program. 

There are seven distinct steps in the design verification of a 
microprocessor based system. These are: 

(1) Verify operation of the AMOS using clocks generated by 
the user system. 

(2) Verify operation of the microprocessor when the user 
control lines are active (DMA request, Interr~pt request(s), 
Wait, Reset, Ready, etc.). 

(3) Verify basic operation of the system using very simple 
programs. I 

(4) Verification of user. I/O and memory using diagnostic 
programs resident in the AMOS ROM/PROr-1 simulator 
memory. 

(5) Execution of the user program with all of the memory 
space in the AMOS and all of the I/O space in the 
user system. 

(6) Execution of the user program with all of the memory 
space and all of the I/O space mapped into the user 
system. 

(7) Execution of the user program with all memory, I/O 
and the microprocessor installed in the user system. 

4. 1 



Clock Test 

The user should first verify that the clock timing, rise and fall 
times, and levels meet the requirements of the microprocessor 
manufacturer. They should be measured using a good oscilloscope 
and compared to the specification of the chip manufacturer. Then 
it should be possible to plug in the emulator probe and switch the 
clock line input(s) to the user system. Note, it will be 
immediately apparent if the clocks are not suitable since 
operation of the AMDS will halt. 

If the system will not run using the user clocks, check (1) clock 
signals with the ICE probe plugged in, (2) possibility of ground 
loops. 

Operation of the System With User Inputs on the Control Lines 

In general, microprocessor input control lines fall into three 
catagories: (1) Interrupt and Reset inputs, (2) DMA (Direct Memory 
Access) requests, and (3) asynchronous wait inputs. The ICE 
debuggers allow the user to separate control of the DMA requests 
from the Interrupt, Reset and.Wait inputs, since debugging of DMA 
operation is so different from Interrupt and Reset functions. The 
user will have to refer to the command parameters as described in 
the M (Mode) command to determine the proper command to verify 
operation with the control inputs. Some of the considerations 
that user should be aware of, when he is verifying the control 
inputs are: 

(1) The use of the Reset input by the debugger to clear the 
microprocessor registers. This is modifiable by the user 
to cause his reset sequence, however the user must 
remember to modify the reset vector or instruction to 
cause his sequence. 

(2) The use of one or more of the microprocessor interrupt 
vectors, pins etc. by the debugger for hardware breakpoint, 
software breakpoint, trace, single step and break key. 
Again the user may modify this action, but he must be 
aware of the debugging features that may be lost. 

(3) The user system cannot have an interrupt pending at 
the onset of user program execution, or that interrupt 
will be acknowledged immediately before any code is 

4.2 



executed, including any code to mask interrupts, set 
up interrupt vectors, set up interrupt prioritys etc. 
The "N" (NOINTERRUPT) command is very useful in this 
instance since it allows the the user to begin execution 
of his program with interrupts disabled. Then the 
initialization routines may be executed prior to 
unmasking the interrupt system. Of course, any use of 
Non-maskable interrupts cannot be blocked by using the 
"N" command. 

(4) The AMOS uses DMA requests to refresh the CRT display and 
dynamic RAt-I. This will show up as gaps in the operation 
of the microprocessor while these requests are serviced. 
If the user is concerned about absolute system timing, it 
will be necessary to use static RAH and the "R" parameter 
with the mode command to inhibit DMA requests during user 
program execution. 

Verify Basic Operation of the Microprocessor in the User System 

The user should no\v execute a simple program to verify opertion of 
the ICE in his system. Of course, the clocks and control lines 
should be switched to get their inputs from the user system. Very 
simple programs that can be easily analyzed for proper operation 
are: (1) one instruction programs that jump back to themselves, 
(2) simple I/O exercisers that read or write to a single port 
continously (these are two instruction programs that read or vir ite 
to an I/O port and then jump back to themselves). (3) simple 
memory exercisers that read or write a single memory location and 
allow the user to scope a "chip select" line.- The use of an I/O 
or Memory write is particularly convenient, since the 
microprocessor write strobe may be used as a scope sync to verify 
other signal lines. 

If the user is unable to execute simple programs of this form, he 
should check: (1) for noisy input control lines (see section 
"Things to be Aware of Prior to using an In-Circuit Emulator"), 
(2) for ground loops (see section "Things to be Aware of Prior to 
Using an In-Circuit Emulator"), (3) for proper clock signals (see 
section "Clock Test"), (4) for proper operation of the input 
control lines (see section "Operation of the System With User 
Inputs on the Control Lines). 

4.3 



Diagnostic Program Execution 

It is recommended that at this point the designer run very simple 
diagnostic programs. These programs may be as simple as sending 
repetitive input/output commands using a two instruction loop, 
where the first instruction is the I/O command and the second 
instruction is a jump to the first instruction. This will allow 
the designer to probe various points in the system and verify the 
occurance of decoded I/O commands. As a next step the programs 
can be altered so that all combinations of data are sent to output 
ports. The programs can be further modified to read an input port 
and write the results to an output port. These programs should be 
done one at a time for single input and output ports so that the 
results may be may be easily verified by interrupting the process 
and examining the AMDS register display. 

The extent of these diagnostics will, of course, depend on the 
complexity of the user I/O system. Simple parallel input and 
output registers can be easily tested by loading bit patterns in 
to the accumulator and transferring them into the output registers 
and by reading various bit patterns form the input registers. 
Obviously, as more complex I/O functions are done, more complex 
diagnostic programs will have to be written. Thus it would not be 
uncommon for a complicated peripheral device, such as a floppy 
disk , to require ten to twenty pages of diagnostice program. 

It is a good idea to verify the correct operation of RAM on the 
user prototype at this point. Simple programs that wr ite the 10\11 
order 8 address bits into the memory can be used to test the data 
lines and low order address lines. Of course, more sophisticated 
memory diagnostics are needed for full verification of the user 
memory. 

User Program Execution Using ROr.1/PROH Simulator Hemory 

The designer is now able to finally try to execute the system 
program, or at least parts of it, in ROM/PROM simulator memory. 
The system should behave as though it were operating in its final 
form. 

Th~re are some precautions that need to be observed. These are: 

(1) Leave the debugging vectors alone, as long as possible. 
The vector locations are listed in the sections on 

4.4 



"Emulator Features" for the various processors. 

(2) Be aware of the use of the memory space by the debugger. 
Again, the space available to the user is shown in the 
sections on "Emulator Features" for the various proc­
essors. Note: that the user can have his own memory in 
the same address space as the debugger. This memory must 
be installed in the user system and cannot be ROr··1/PROH 
simulator memory. 

(3) The relocatble assembler and linker can be used to 
put the user program at any arbitrary location. This 
is convenient while the program is in ROf-1/PROf1 simulator 
memory. 

User Program Execution Using Target System Memory 

Assuming that the user memory system has been tested, the next 
step is to load the full program into the users memory_ If the 
program is to be in ROM or PROM then the PROM's should be 
programmed and installed in the user prototype. If the program is 
in RAM it can be loaded into the user system RAM from the disk. 

The U (USERMAP) command (or in the case of the 8080 ICE the memory 
card straps) can be used to direct the required memory cycles to 
the user system rather than to the A~IDS thus allowing access to 
user memory. For the 8080 it will be necessay to remove memory 
board jumpers in order to allow the system to direct memory 
accesses to the users memory. 

The hardware breakpoint will be especially helpful during this 
phase because of the abilty to set a breakpoint without altering 
the contents of the program. Again it is very convenient if the 
user can incorporate the Ar.ms debu.gging vectors into his program, 
as this will facilitate use of the debugging tools provided. 

System Operation With Microprocessor Installed 

The final step in the process is, of course, to remove the ICE 
plug from the prototype board and replace it with the 
microprocessor. If the previous steps have been done carefully, 
then this a trivial step and the system will run immediately, just 
as it did with ICE plugged in place of the Microprocessor 

4.5 



Emulator [·lode Command (M) 8080 ICE 

COMMAND 

M[mode] [mode] 

mode may be any combination of the following: 

C Enables the user system clock line input(s). This mode 
causes the ICE to switch from the AMDS internal clock 
to the target system clock. 

D Allows the target system to generate DMA requests to 
cause suspension of microprocessor operation. This 
allows user DMA logic to gain control of the bus 
and generate transactions to target system memory. 
(Note: the user DMA logic cannot access ROM/PROM 
simulator memory). For the 8080 processor the DMA 
request is caused by a high level (>2.4 VDC) on the 
HOLD line and the DMA grant signal is indicated by 
a high level on the HLDA line. 

U Allows the target system to contol the following 
input lines: RESET, INTR, and READY. The normal 
(inactive) conditions for these lines are: 

RESET = low «.4 VDC) 
INTR = low 
READY = high 

Note especially: that a low on the READY line will 
completely halt the microprocessor. 

The U mode parameter also enables the emulator to 
direct I/O requests to the target system. For the 
8080 emulator the user must be aware of the I/O ports 
that the system uses. (see the section on 8080 ICE 
features) • 

E The E mode is a combination of C, U, and D. 

R The R mode will disable the CRT and Memory refresh 
during user program execution. Of course it is not 
possible to use this mode parameter without the static 
RAM option, since disrupting the refresh will cause both 
the user program and the debugger to be lost if they are 
stored in dynamic RAM. 

If the M command is entered without any mode parameters, then 
the system will return to full host mode and all inputs, clocks, 
Memory and I/O requests will be directed to the host system. 

5. 1 

I 



The user should be aware of the exact timing of the various 
mode switches. The C, 0, and D, mode parameters will cause an 
immediate switch of the affected control lines as soon as the 
Carriage Return is typed following MC, MCU, MCD etc. The R mode 
parameter does not switch off the refresh function until the 
the user program is executed. Then the refresh function is 
switched back on as soon as control is returned to the debugger 
after a break from the user program. 

5.2 



Emulator Mode Command (M) 8080-1 ICE 

COMMAND 

l-1[mode] [mode] 

mode may be any combination of the following: 

C Enables the user system clock line input(s). This mode 
causes the ICE to switch from the A~IDS internal clock 
to the target system clock. 

o Allows the target system to generate DMA requests to 
cause suspension of microprocessor operation. This 
allows user DMA logic to gain control of the bus 
and generate transactions to target system memory. 
(Note: the user DMA logic cannot access ROM/PROM 
simulator memory). For the 8080 processor the DMA 
request is caused by a high level (>2.4 VDC) on the 
HOLD line and the DMA grant signal is indicated by 
a high level on the HLDA line. 

M Enables the memory mapping function. (see the 
USEru1AP command) • 

I Allows the target system to contol the following 
input lines: RESET, INTR, and READY. The normal 
(inactive) conditions for these lines are: 

RESET = low «.4 VDC) 
INTR = low 
READY = high 

Note especially: that a low on the READY line will 
completely halt the microprocessor. 

The I mode parameter also enables the emulator to. 
direct I/O requests to the target system. For the 
8080-1 emulator the user must be aware of the emulator 
control port (output X'F6'). 

E The E mode is a combination of C, I, M, and D. 

R The R mode will disable the CRT and Memory refresh 
during user program execution. Of course it is not 
possible to use this mode parameter without the static 
RAM option, since disrupting the refresh will cause both 
the user program and the debugger to be lost if they are 
stored in dynamic RAM. 

If the M command is entered without any mode parameters, then 

- 5.3 



the system will return to full host mode and all inputs, clocks, 
Memory and I/O requests will be directed to the host system. 

The user should be aware o~ the exact timing of the various 
mode switches. The C, and D mode parameters will cause an 
immediate switch of the affected control lines as soon as the 
Carriage Return is typed following MC, MD, Mcn etc. The R mode 
parameter does not switch off the refresh function until the 
the user program is executed. Then the refresh function is 
switched back on as soon as control is returned to the debugger 
after a break from the user program. The I mode parameter will 
enable the interrupt, reset, ready control lines and I/O requests 
when the user program is executed and disable them when the 
control is returned to the debugger. The M mode parameter will 
enable the memory mapping function whenever a memory access is 
made (for example to display memory, alter memory, execute a 
user program etc.). 

5.4 



Emulator Mode Command (M) 8085 ICE 

COr,U-1.AND 

r'1[mode] [mode] 

mode may be any combination of the following: 

C Enables the user system clock line input(s). This mode 
causes the ICE to switch from the AMOS internal clock 
to the target system clock. 

D Allows the target system to generate DMA requests to 
cause suspension of microprocessor operation. This 
allows user DMA logic to gain control of the bus 
and generate transactions to target system memory. 
(Note: the user DMA logic cannot access ROM/PROH 
simulator memory). For the 8085 processor the DMA 
request is caused by a high level (>2.4 VDC) on the 
HOLD line and the DMA grant signal is indicated by 
a high level on the HLDA line. 

M Enables the memory mapping function. (see the 
USEID1AP command). 

I Allows the target system to contol the following 
input lines: RESET-, INTR, TRAP, RST 6.5, RST 7.5 
and READY. The normal (inactive) conditions for 
these lines are: 

RESET- = high (>2.4 VDC) 
INTR = low «0.4 VDC) 
READY = high 
TRAP = low 
RST6.5 = low 
RST7.5 = low 

Note especially: that a low on the READY line will 
completely halt the microprocessor. 

The I mode parameter also enables the emulator to 
direct I/O requests to the target system. For the 
8085 emulator the user must be aware of the emulator 
control port (output X'F6'). 

E The E mode is a combination of C, I, M, and D. 

R The R mode will disable the CRT and Memory refresh 
during user program execution. Of course it is not 
possible to use this mode parameter without the static 
RAM option, since disrupting· the refresh will cause both 

5.5 



the user program and the debugger to be lost if they are 
stored in dynamic RAM. 

If the M command is entered without any mode parameters, then 
the system will return to full host mode and all inputs, clocks, 
Memory and I/O requests will be directed to the host system. 

The user should be aware of the exact timing of the various 
mode switches. The C, and D mode parameters will cause an 
immediate switch of the affected control lines as soon as the 
Carriage Return is typed following Me, MD, MCD etc. The R mode 
parameter does not switch off the refresh function until the 
the user program is executed. Then the refresh function is 
switched back on as soon as control is returned to the debugger 
after a break from the user program. The I mode parameter will 
enable the interrupt, reset, ready control lines and I/O requests 
when the user program is executed and disable them when the 
control is returned to the debugger. The M mode parameter will 
enable the memory mapping function whenever a memory access is 
made (for example to display memory, alter memory, execute a 
user program etc.). 

5.6 



Emulator Mode Command (M) Z8D ICE 

cor·1MAND 

r·1[mode] [mode] 

mode may be any combination of the following: 

C Enables the user system clock line input(s). This mode 
causes the ICE to switch from the AMOS internal clock 
to the target system clock. 

D Allows the target system to generate DMA requests to 
cause suspension of microprocessor operation. This 
allows user DMA logic to gain control of the bus 
and generate transactions to target system memory. 
(Note: the user DMA logic cannot access ROM/PROM 
simulator memory). For the Z8D processor the DMA 
request is caused by a low level «0.4 VDC) on the 
BUSRQ- line and the DMA grant signal is indicated by 
a low level on the BUSAK- line. 

M Enables the memory mapping function. (see the 
USERMAP command) • 

I Allows the target system to contol the following 
input lines: RESET-, INT-, WAIT-, and NMI-. The normal 
(inactive) conditions for these lines are: 

J 
RESET- = high ()2. 4 VDe) ,j 
INT- = high 
WAIT- = high 
NMI- = high 

Note especially: that a low on the WAIT- line will 
completely halt the microprocessor. 

The I mode parameter also enables the emulator to 
direct I/O requests to the target system. For the 
Z8D emulator the user must be aware of the emulator 
control port (output X'F6'). 

E The E mode is a combination of C, I, M, and D. 

R The R mode will disable the CRT and Memory refresh 
during user program execution. Of course it is not 
possible to use this mode parameter without the static 
RAM option, since disrupting the refresh will cause both 
the user program and the debugger to be lost if they are 
stored in dynamic RAM. 

5.7 



If the M command is entered without any mode parameters, then 
the system will return to full host mode and all inputs, clocks, 
Memory and I/O requests will be directed to the host system. 

The user should be aware of the exact timing of the various 
mode switches. The C, and 0 mode parameters will cause an 
immediate swi tch of the affected control lines as, soon as the 
Carriage Return is typed following MC, MD, MCD etc. The R mode 
parameter does not switch off the refresh function until the 
the user program is executed. Then the refresh function is 
switched back on as soon as control is returned to the debugger 
after a break from the user program. The I mode parameter will 
enable the interrupt, reset, ready control lines and I/O requests 
when the user program is executed and disable them when the 
control is returned to the debugger. The M mode parameter will 
enable the memory mapping function whenever a memory access is 
made (for example to display memory, alter memory, execute a 
user program etc.). 

5.8 



Emulator Mode Command (M) 6800 ICE 

cor:lr.1AND 

t4 [mode] [mode] 

mode may be any combination of the following: 

C Enables the user system clock line input(s). This mode 
causes the ICE to switch from the AMOS internal clock 
to the target system clock. 

D Allows the target system to generate DMA requests to 
cause suspension of microprocessor operation. This 
allows user DMA logic to gain control of the bus 
and generate transactions to target system memory. 
(Note: the user DMA logic cannot access ROM/PROM 
simulator memory). For the 6800 processor the DMA 
request is caused b¥ a low level «084 VDe) on the 
HALT line and the DMA grant signal is indicated by 
a high level (>2.4 VDC) on the BA line. The D mode 
parameter also enables the TSC and DBE control lines. 

U Enables the memory mapping function~ (see the 
USERMAP command). 

I Allows the target system to contol the following 
input lines: IRQ-, NMI-, and RESET-. The normal 
(inactive) conditions for theJe lines are: 

IRQ­
NMI­
RESET-

:: high 
= high 
= high 

E The E mode is a combination of C, I, U, and D. 

R The R mode will disable the CRT and Memory refresh 
during user program execution. Of course it is not 
possible to use this mode parameter without the static 
RAM option, since disrupting the refresh will cause both 
the user program and the debugger to be lost if they are 
stored in dynamic RAM. 

P The P mode will not allow the user program to access 
system I/O. 

If the M command is entered without any mode parameters, then 
the system will return to full host mode and all inputs, clocks, 
Memory and I/O requests will be directed to the host system. 

The user should be aware of the exact timing of the various 

5.9 



mode switches. The C, and D mode parameters will cause an 
immediate switch of the affected control lines as soon as the 
Carriage Return is typed following Me, MD, Men etc. The R mode 
parameter does not switch off the refresh function until the 
the user program is executed. Then the refresh function is 
switched back on as soon as control is returned to the d€bugger 
after a break fro~ the user program. The I mode parameter 
will enable the.interrupt, and reset control lines only 
when the user program is executed and disable them when the 
control is returned to the debugger. The U mode parameter will 
enable the memory mapping function whenever a memory access is 
made (for example to display memory, alter memory, execute a 
user program etc.). 

5.10 



Emulator Mode Command (M) 6802 ICE 

COMMAND 

M[mode] [mode] 

mode may be any combination of the following: 

C Enables the user system clock line input(s). This mode 
causes the ICE to switch from the AMOS internal clock 
to the target system clock. 

D Allows the target system to generate HALT requests to 
cause suspension of microprocessor operation. This 
allows user DMA logic to gain conttol of the bus 
and generate transactions to target system memory. 
The 6802 does not tri-state its buses, so the user must 
implement the tri-state buses in the target system. 
(Note: the user DMA logic cannot access ROM/PROM 
simulator memory). For the 6802 processor the HALT 
request is caused by a low level «0.4 VDC) on the 
HALT- line and the DMA grant signal is indicated by 
a high level (>2.4 VDC) on the BA line. 

U Enables the memory mapping function. (see the 
USERMAP command) • 

I Allows the target system to contol the following 
input lines: IRQ-, NMI-, MR and RESET-. The normal 
(inactive) conditions for these lines are: 

IRQ­
NMI­
MR 
RESET-

= high 
= high 
= high 
= high 

E The E mode is a combination of C, I, U, and D. 

R The R mode will disable the CRT and Memory refresh 
during user program execution. Of course it is not 
possible to use this mode parameter without the static 
RAM option, since disrupting the refresh will cause both 
the user program and the debugger to be lost if they are 
stored in dynamic RAM. 

P The P mode will not allow the user program to access 
system I/O. 

If the M command is entered without any mode parameters, then 
the system will return to full host mode and all inputs, clocks, 
Memory and I/O requests will be directed to the host system. 

5.11 



The user should be aware of the exact timing of the various 
mode switches. The C, and D mode parameters will cause an 
immediate switch of the affected control lines as soon as the 
Carriage Return is typed following MC, MD, MCD etc. The R mode 
parameter does not switch off the refresh function until the 
the user program is executed. Then the refresh function is 
switched back on as soon as control is returned to the debugger 
after a break from the user program. The I mode parameter 
will enable the interrupt, and reset control lines only 
when the user program is executed and disable them when the 
control is returned to the debugger. The U mode parameter will 
enable the memory mapping function whenever a memory access is 
made (for example to display memory, alter memory, execute a 
user program etc.). 

5.12 



User Memory Map Command (U) B080-l, 80B5, ZBO, 6800, 6802 

COMr·1AND 

M[addr],{mask} 

Transfers the memory space specified by "mask" starting at 
"addr" into the user system. Whenever a memory location is 
accessed that has been mapped into the user system, the 
memory request and read or write will be directed to the 
user system instead of the host ROM/PROM simulator. All 
addresses may be mapped into the user system except those 
priviledged locations reserved by the debugger communication 
block and in some cases the emulator control ports. See the 
section "Emulator Features". 

Each user map begins on a 2K boundary. Each bit in the mask 
will switch 256 bytes into the user system. The bits are 
individually "or'ed" to form the mask. Thus UlBOO,OF would 
switch the memory space from X'IBOO' to X'lBFF' into the 
user system. If "addr" is not on a 2K boundary then the 
message "NOT ON 2K BOUNDARY" will be displayed. If the "addr" 
parameter is omitted then the map will begin at the present 
cursor location. 

2K Boundaries 

0000 4000 BOOO COOO 
0800 4BOO 8BOO CBOO 
1000 5000 9000 0000 
1800 5BOO 9800 DBOO 
2000 6000 AOOO EOOO 
2800 6800 ABOO EBOO 
3000 7000 BOOO FOOO 
3BOO 7BOO BBOO FBOO 

5. 13 



NO-Interrupt Execution Command (N) 8080, 8085, Z80, 6800, 6802 

COMMAND 

N[expression] 

Execution starts at the address specified by the value of the 
expression. If the expression is omitted, execution starts at 
the memory pointer address of the active side of the display. 
When execution starts, all maskable interrupts are disabled~ 
Unless the user enables interrupts, the BREAK key, and hardware 
breakpoint will have no effect on the 8080 and 8085 processor. 
This form of the execute command is very useful when debugging 
interrupt systems and software. 

N$ 

Execution starts at the address specified in the program 
counter (register display). 

5.14 



Debugger Command Summary 8080, 8085, Z80, 6800, 6802 

COMMAND Object Program Load 

L{file-name}[,[offset] [,symbol-table-address]] 

COM~mND 

TAB 

COMMAND . 

Loads "file-name" into the address space specified in the 
object code records, modified by the optional "offset". 
If a symbol table is appended to the object file and 
the "symbol-table-address" parameter is given, then the 
symbol table will also be loaded. 

Display Control 

The TAB command will split the screen into to separately 
addressable halves, and then select which side of the 
screen is to respond to the next command. 

Display Memory 

D{expression} 

D$ 

COMMAND 

Display the contents of memory around the address obtain­
ed by evaluating "expression". 

Return the previous display to the screen. 

Cursor Control 

~ Advance the display 1 line. 
t Backup the display 1 line. 

-+ Advance the display 1 byte. 
-+ Backup the display 1 byte. 

COMMAND Store Data 

S{constant} [,constant] ••• 

The "constants" are stored, one byte at a time, starting 
at the display cursor address. 

6.1 

I 



Alter Registers 

Z{reg=constant} [,reg=constant] 

Alter the contents of the microprocessor registers. 

COMlvlAND Find Data String 

F[constant] [,constant] .•. 

COHMAND 

BS{n} 

BD{n} 

BR 

BC 

C0r.1t1AND 

Search memory for the constant string specified. If no 
constant is specified, the last value for the string 
comparison will be reused. 

Breakpoint 

Set breakpoint "n" at :the present display cursor location. 

Display the memory location corresponding "nne 

Clear the breakpoint (if any) at the cursor location. 

Clear the breakpoint data save area. Used when the 
the object program is re-Ioaded to remove all the 
debugger data about the previous breakpoints. 

Execute Program 

E[expression] 

E$ 

Begin user program execution at the location computed 
from "expression". 

Begin user program execution at the location stored in 
the "PC" in the register display. 

6.2 



STEP 

COl-IlMAND 

The STEP will execute a single instruction every time 
it is used. Note: a program that disables interrupts 
will render the STEP key non-functional. When the "R" 
parameter is used in conjunction with the "M" (Mode) 
command, the STEP key cannot be used. 

Write Object Data to File 

W{file-name}{,st-addr,end-addr}(,st-addr,end-addr] ••• [ent-addr] 

COr-U.1AND 

write absolute object data to "file-name" starting at the 
first "st-addr" and "end-addr" and ending with the last 
"st-addr" and "end-addr". The last entry, "ent-addr" 
provides an entry address for the file. 

Trace Execution 

T[expression] 

T$ 

TR 

COMMAND 

x 

Trace execution of the program starting at "expression". 
When the user program is halted, the last 20 processor 
cycles will be displayed, including all registers, stack 
pointer, flags and program counter. If "expression" is 
omitted, then execution will be at the display cursor 
location. 

Start trace execution at the location specified by the 
program counter in the register display. 

Recall the last trace display. 

Alter Protection 

The "X" command switches write protection on or off. 
It will effect the 1024 (X'400') byte block pOinted 
to by the display cursor. 

6.3 



COr1r1AND EPROM Programming 

C [type] [, length] 

Tests an EPROM for the empty condition. The parameter 
"type" may be 2704, 2708, 2758, 2716 or 2732. The 
proper personality module must be installed, of course. 
The first "length" locations will be tested. 

P[type] [,length] 

Program an EPROM. The EPROM will be programmed with 
the data starting at the present display cursor location. 

I [type] [, length] 

Input the contents of an EPROM starting at the present 
display cursor location. 

V[type] ,[,length] 

Data in the EPROM will be compared (verified) to the 
data in memory, starting at the present cursor location. 

6.4 



Installation 8080 ICE 

Installation of the 8080 ICE package involves the following steps: 

(1) Two short jumper cables are included to connect the 
ICE interface card and the 8080 CPU card. 

(2) Two I.C.'s must be removed from the 8080 CPU card 
(U13 -- 8T97 and U21 74S161 or 93S16). 

(3) These two I.C. 's will be replaced by the short jumper 
cables, which will connect to the back side of the 
ICE interface card. 

(4) After connecting the ICE interface card and 8080 CPU 
card, lay the two cards face up on a table with the 
edge fingers to the left. The ICE interface card will 
be on top. Lay the 8080 interface probe assembly, face 
down, with the probe connector to the right. Face down 
implies that the component side of the probe card is 
on the bottom and the circuit side is facing up. 
The topmost cable connects to Jl (the further connector) 
on the ICE interface card. The lower cable connects to 
J2 (the closer cable) on the ICE interface card. 

(5) Now install the CPU card and ICE interface card in the 
AMOS. You will have to allow one empty slot between the 
two cards. 

(6) The cables between the ICE interface card and the probe 
assembly can now be folded and brought out through the 
back of the unit using one of the cable clamps. 

7.1 

I 



Installation 8080-1 ICE 

Installation of the 8080-1 ICE involves the following steps: 

(1) Remove jumper connectors __ , __ , and __ on the 8080-1 
CPU card. This will allow gating of memory requests 
and clock signals via the ICE interface card. 

(2) The short __ pin cable is used connect J_ on the 8080-1 
CPU card and J_ on the ICE interface card. 

(3) After connecting the 8080-1 CPU card and the ICE inter­
face card, lay the two cards on the table, face up with 
the edge finger connectors to the left. The ICE inter­
face card will be on top. Lay the ICE probe assembly 
on the table with the probe connector to the right. 
Connect the topmost cable from the probe assembly to 
J_ (the lower or leftmost of the two connectors) on the 
ICE interface card. Connect the lowermost cable from 
the probe assembly to J_ (the upper or rightmost of the 
two connectors) on the ICE interface card. 

(4) Now install the 8080-1 CPU card and ICE interface card 
in the AMOS mainframe in adjacent slots. 

(5) The two cables that connect the ICE probe assembly and 
the ICE interface card can be folded and brought out 
the rear of the A~IDS through on of the cable clamps at 
the bottom of the A~IDS case. 

7.2 



Installation 8085 ICE 

Installation of the 8085 ICE involves the following steps: 

(1) Remove jumper connectors C, 0, and E on the 8085 
CPU card. This will allow gating of memory requests 
and clock signals via the ICE interface card. 

(2) The short 40 pin cable is used to connect J3 on the 8085 
CPU card and J3 on the ICE interface card. The short 
20 pin cable is used to connect J4 on the 8085 CPU 
card and J4 on the ICE interface card. 

(3) After connecting the 8085 CPU card and the ICE inter­
face card, lay the two cards on the table, face up with 
the edge finger connectors to the left. The ICE inter­
face card will be on top. Lay the ICE probe assembly 
on the table with the probe connector to the right. 
Connect the topmost cable from the probe assembly to 
Jl (the lower or leftmost of the two connectors) on the 
ICE interface card. Connect the lowermost cable from 
the probe assembly to J2 (the upper or rightmost of the 
two connectors) on the ICE interface card. 

(4) Now install the 8085 CPU card and ICE interface card 
in the A~IDS mainframe in adjacent slots. 

(5) The two cables that connect the ICE probe assembly and 
the ICE interface card can be folded and brought out 
the rear of the AMOS through on of the cable clamps at 
the bottom of the A~IDS case. 

7.3 



Installation Z8D ICE 

Installation of the Z8D ICE involves the following steps: 

(1) Remove jumper connectors D, G, and J on the Z8D 
CPU card. This will allow gating of memory requests 
and clock signals via the ICE interface card. If the 
system is equipped with high-speed static RAM then 
the jumper at A should be installed. This will delete 
a one-cycle wait state on all Z8D Ml cycles that are 
mapped into the ROM/PROM simulator memory. This wait 
state is necessary when using dynamiC RAM at 4Mhz. 

(2) The short 4D pin cable is used to connect Jl on the Z8D 
CPU card and J3 on the ICE interface card. 

(3) After connecting the Z8D CPU card and the ICE inter­
face card, lay the two cards on the table, face up with 
the edge finger connectors to the left. The ICE inter­
face card will be on top. Lay the ICE probe assembly 
on the table with the probe connector to the right. 
Connect the topmost cable from the probe assembly to 
Jl (the lower or leftmost of the two connectors) on the 
ICE interface card. Connect the lowermost cable from 
the probe assembly to J2 (the upper or rightmost of the 
two connectors) on the ICE interface card. 

(4) Now install the Z8D CPU card and ICE interface card 
in the AlIDS mainframe in adjacent slots. 

(5) The two cables that connect the ICE probe assembly and 
the ICE interface card can be folded and brought out 
the rear of the AMOS through on of the cable clamps at 
the bottom of the AMOS case. 

7.4 



Installation 6800 ICE 

Installation of the 6800 ICE involves the following steps: 

(1) Cut the short traces at A, B, and C on the 6800 
CPU card. This will allow gating of memory requests 
and clock signals via the ICE interface card. 

(2) The short 20 pin cable is used to connect Jl on the 6800 
CPU card and J3 on the ICE interface card. 

(3) After connecting the 6800 CPU card and the ICE inter­
face card, lay the two cards on the table, face up with 
the edge finger connectors to the left. The ICE inter­
face card will be on top. Lay the ICE probe assembly 
on the table with the probe connector to the right. 
Connect the topmost cable from the probe assembly to 
Jl (the lower or leftmost of the two connectors) on the 
ICE interface card. Connect the lowermost cable from 
the probe assembly to J2 (the upper or rightmost of the 
two connectors) on the ICE interface card. 

(4) Now install the 6800 CPU card and ICE interface card 
in the AMOS mainframe in adjacent slots. 

(5) The two cables that connect the ICE probe assembly and 
the ICE interface card can be folded and brought out 
the rear of the AMOS through on of the cable clamps at 
the bottom of the AMOS case. 

7.5 



Installation 6802 ICE 

Installation of the 6802 ICE involves the following steps: 

(1) Remove the jumper connectors at C, and M on the 6802 
CPU card. This will allow gating of memory requests 
and clock signals via the ICE interface card. 

(2) The short 40 pin cable is used to connect J3 on the 6800 
CPU card and J3 on the ICE interface card. 

(3) After connecting the 6802 CPU card and the ICE inter­
face card, lay the two cards on the table, face up with 
the edge finger connectors to the left. The ICE inter­
face card will be on top. Lay the ICE probe assembly 
on the table with the probe connector to the right. 
Connect the topmost cable from the probe assembly to 
Jl (the lower or leftmost of the two connectors) on the 
ICE interface card. Connect the lowermost cable from 
the probe assembly to J2 (the upper or rightmost of the 
two connectors) on the ICE interface card. 

(4) Mow install the 6802 CPU card and ICE interface card 
in the At·IDS mainframe in adjacent slots. 

(5) The two cables that connect the ICE probe assembly and 
the ICE interface card can be folded and brought out 
the rear of the A~IDS through on of the cable clamps at 
the bo ttom of the Ar.IDS case. 

7.6 



GenRad 

11205 SOUTH LA CIENEGA BOULEVARD LOS ANGELES CALIFORNIA 90045 TWX 910-328-7202 TEL (213) 641-7700 -


	000
	001
	002
	003
	1-01
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	xBack

