FUTUREDATA RDQS V1.2
Addendum

FUTUREDATA COMPUTER CORP.
11205 S. La Cienega Blvd.
Los Angeles, CA 90045

Copyright 1978, FUTUREDATA COMPUTERiCORP.

RDOS . VERSION 1.2 REVISION NOTICE

RDOS Version 1.2 includes the following enhancements:

A. Macro facility
B. Assembler displays English 1anguage'error
messages

RDOS Version 1.2 contains the following corrections:

A. - Z-80 Assembler properly assembles indexed
instructions.

B. Linkage Editor runs properly with a command
file. ‘ '

RDOS Version 1.2 is the generic name for a set of
programs. Each individual program may have a dif-
ferent version number. -

PLEASE DESTROY ALL PREVIOUS COPIES OF RDOS

INCLUDING ANY PRELIMINARY COPIES OF V1.2.

08/28/78

11205 SOUTH LA CIENEGA BOULEVARD LOS ANGELES CALIFORNIA 90045 TWX 910-328-7202 TEL (213) 641-7700

FUTUREDATA RDOS

The Futuredata RDOS consists of three new programs. ASMR, a
reloecating macre 3ssembler, LINK, a8 linkage editor, and DERUGR, a
debugger which supports In Circuil Emulation and Symbolic
Debugging. :

i. RDOS MACRD ASSEMELER

Rurn the Assembler by typing JA. The available options will be
displayed on the screen . :

i. 0 ASSEMBLER OPTIONS

L - _ List the Assembler outpul on Lhe CRT.

M~ lse a macro library file

0 - Write 2 relacatable ?ile an disk.

T - Froduce a Lruncated listing on The CRT. Lines will be
lTimited ta 40 characlers and I statemenis will print anly
one line :

E - List and/or print only the lines which have an error tlang.

2 - Include the symhmi,table at the= end of Lhe relocatable object.
file. ' :

Z - This option will flag all lines with non—S020 or 2035
opeodes. ’

F''— Print the listing on Lhe Microprinter.

E - Send the listing to the Serial Part.

FUTUREDATA RDOS

1.1 MACROS

The macro facility allows a user to define an opcode which
actually causes & series of instructions to be assembled For
example, wusing the B030, the following series of instrucltions will
add 10 %o the H and L registers, wusing only the A register.

MV A, L
AT 10
MY L. A
MOV A H
ACl]

T MOV H: A

I¥ the user ¥inds many such sequences in his progerams, he will
find it more efficient (of his Time and disk space) and less error
prone to define 2 macro Lhat will cause Lhe sequence of
instructions ta ke assembled whenever ils name appears in Lhe
apende fleld:

ALDLG ‘ - MACRO

MOV a, L

ALl 10

MoV L, A

MOV A H

AT 0

MOV - HA

ENDM
The macro definition is begun by Lhe MACRD pseudo—op. The label
tield af the MACRO pseudo—op defines the name of The macra, 1in
example L, ALDDIO.. Statements Following the MACRO pseudo—ap
vapresent The body of The macre definitiaon These statemaents will
be processed by The assembler when The macroe name ocours in Lhe
opeode Field (when the macro 15 “ecalleds). The ENDOM pseudo—op
ends Lhe macro definition The macro dafinition must be placed al
the beginning of LThe assembler source Ffile, only Lhe EJE, SFC, aod
FRNT pseudo-ops may occur before The macro definitions,

Lo 1.1 MACRO FARAMETERS

Dbviously, a macro definition like ADDLO is of limited use How
many times would you add the number 10 to The H and L registers?
It is much more likely that similar rather Lhan identical
sequences of instruclions occour in & program Allowing &8 macro
definition to have variables that may have various values when Lhe

RLES MANLDAL

macro is called is one way of doing This. For example, if we make
The actual value added to the H and L registers a macra parameter,
Lhe user can detfine a macro that, when called, will generate

R

alalements that will add any number fraom O to Z%5 te the H and L

reglstars:

ADDX MACRD NLIM
S MOV AL

ALY SNLIM
Moy L, A
MOV A H
AT 0
M H, A
ENEM

Lf The macro 135 called in the following way:

LHLD VALADR
SO0X o
SHLD VALADR

The ¥ollowing statements will be generated:

LHLI VAL ADK
MV A, L.
And b

MY L, A
ACT O

M H, A
CEHLD VALADR

What happens 15 that in the macro definition, tThe names of all tLhe
macro paramalers are liszltled {(separated by commas) i1n Lhe operand
field of the MACRD pseudo—-op. When the macro is called, the
actual values to be wsed are listed in The operand field of The
calling statemaent (separated by commas). Then, wheraver a macro
parameter name appears in LThe body of Lhe macro definition,

praceeded by an ampersand, The acluyal value of Lhe paramstser is
subatiTuled an place of The ampersand and name, NMote that This

subatitulion is donse character for characlter (up Lo 32 characlters
petr parameler). The macro parametlers need nol be numeric Also,
Lhe substitution may oceur in Lhe label, opeode, aperand, commant,
arany combinaltion of fields. For example, for The macro
definition: N ’ :

SAVEA ' CMAGRD - TYPE, LOG
, STYFE sLoC
ENDM |

RINGE MANUAL
The call:

SAVEA
will wesult in:

STA

while the call:

SAVEA

will result in:
“TaX

oL UL MACRO PARAMETER

zltataed, when
paramelars
slhatemaent,
in &
an

& mactro

-
L B

CREE R

TR

paramelar

avan numbar of

b

15

5ThR, VAL

VAL

STAX, D

o

DELIMETERS

called, the aoltuzl values
Howaver,
belween quoles

quates in any paramaelar.

are examplas of valid paramelers:

E0

[ZR
FSYEIN
Lo & GENERATING LUNTEUE
fomacre call may generate
The following definition

MALRD
MUV
DIRA
=
ZMA
MOV
MoV
LM&
MOV
INX
B
EENTDIM

QRS0

ERNDARED

X 40
Ry BB, 00

LARELS

statements with labwels, For
» (Lo make I, E=abscolule value

\

A I
A
ENMDARED

A
E/ A

E, A
I
#

af
are listed in The operand field of The calling
separaled by commas.
iF they ocour

fhe

commas "and blanks may
Also,
The

There

fallowing

@ ampd @,
af L ED

LIS FANLAL

The ¥irst Lime ABSD is cxlled, label ENDAESD will be defined
Untortunately, The second Time ARSD is called, ENDABRSD will alsa
be defined and 8 duplicate definiftion error will resualt, What is
neaded 15 &8 way to generale & unigque label each time Lhe macro is
2l led The Fuluredata Maoro Assembler provides this capability
by pre-defining a special parameler - INDX — which will 2lways
have a unique 5 digit numerie valuye e2ach time 8 macro i3 ocalled
The maero AERSD may now be defined in the following way:

AR MALRD
MoV A
DRA A
JF ARZINDX -
Uy T T
MV 0. a
MoV A E
C:MA
MV E.A
INX - 1l
ARE INDX el #
ENDM

Azsuming That this i1s the only macro defined and that Lhere are
exantly two calls made, the First call detines The label AROOGGL
and the second call defines the label ABROOOOZ. Note Thal a label
‘i the actual macro call stalement takes on The current location
countaer value at Lhe beginning of the cadll.

Lol & CONCATENATING FARAMETERS _
In the previous example, Lhe value of parameter INDX was appended
Tw the right of the characlers AR simply by writing The parameler
name, praceaded by anampersand, Lo Lhe immediate vight of the
characlers A ARETMIX. T+, also, the user wished to append an A
to the right of the value of paramelsr INDX, a problem would have
AraSen: ' : '

: i
JF ABLINDIXA

The macrno processar would have interpreted this to mearn: Zubstitule
Lhe value for paramatar INDXA. Ta solve Lhis problem, The macro
processor Fecognizes & parameler name delimiter: ! whose only

funcetien is Lo indicate Lhe end of a parameter name. The correct
way to append an A to the right of the value of parameler INDX is:

R AB%INDX'A

On the first eall, this would result in the statement:

DO MANUJAL

JF ABOOOOLA

Note Thatl if ' appears anywhere olher Lhan afler a macro parameter
(or a set symbol), it will be freated as a normal charactar

Lol 4 LITERAL AMPERSAND

Zinee Lhe ampersand signals the macro processor Lo substitute a
parameter value, 3 special sel of characltlers is needed to Lell the
macro processior Lhat rather than substituting an actual ampersand
character i3z wanted For example, 1Ff the user wanls Lo pul an
smpersand into the A reglrster, he might Lhink Lo write:

MVI Ay &

However, for reasons explained under Advanced Coansideratltions,
whenaver a8 single ampersand is wanted in the generated statament,
four ampersands must be writien in The actual source:

°

MVl Py o e Sl
oLo% MACRO LIBRARY

All macro definitions musit be placed af Lhe baginning of LTha
Eouree inpul File However, by specifying The M oplion, & secand
mource F1le of macro defipitions may be included in Lhe assembly.
Az oan Lhe main inpul File, The first statement othear Than EJE,
SRFG. and PRINT which i3 not in a4 macro definition will terminate
reading of macra definilions

Lodod DUPLICATE MACRD DEFINITIONS

I+ twe macros wilh Lhe zame name are defined, The last macro
detfinition read will be The one used Thus macro definitions in
The main souree file Take precedence over macro defimitions an the
macero library. i

b/ MALRD CALLE WITHIN MACRGES

A macro definition may inelude a statement which calls another (or
The same) macr o These calls may be nested to any level
(depending on Lhe symbol table space available), A macro
detaniticon may not have anothery macro defined in 1Ls body.

iodo® EXITM STATEMENT
Nhén processed, The EXITM statemen! cauyses immediate Lermination

of the curvent or named macro, The next stalement processed will
be the first one following the macro call. The syntayx is:

RIS MANUAL

EXITM [<macrao—mnames]
Mote that no label is allowed,
i CONDITIONAL ASSEMELY

Thesse statements allow & programmse Lo selectivaely assemble
statements in & source file For example, if &8 programmer Jdid not
know whether Lhe program was gqoing To be used with a Tape or disk,
bath the calls to the tape subroutine and disk subroutine could be
included in the source file, and conditional statements used Lo
aclually assemble the one neseded:

CLEVICE ' DEF STAPE

IF “HDEVICE ="TAPE- .
LHLD TAFEFCE .
ZALL TAFELD

- ELSEIF “RODEVICE - =-DISK~

S LHLD DISKFCE
CALL DISK IO
ENLIF

More often, conditional statlements will be used Lo implement more
complex macros. For wexample, the ADDX macro defined in section
io oL ecould be expanded Lo add 2 number belween O and Z535 to The
B, DE, or HL registers:

EADNXY MACRD REG, NUM.
I F . 84. 3 E.‘.:" o E: l::
FEISL, DEFL o
' ELSEIF HREGY = [E-
REGH) DEFL e
FEL. : DEFL. B
- ELSE
REGH DEFL SHe
- RELL DEFL L~
' ENDIF
MoV A YREGL
AR & NLIM
MOV YREGL., A
MOV - Ay ¥REGH
ACIL O
MoV HREGH, A

RIOOS MANUAL

ENDM

ADDOXY could be expandedlfurther to add a number between O and
AEEE7 to the BC, DE, or HL registers:

ADDXY . MACRD REG, NLIM
IF “UREG =-RC-
REGH : DEFL a8 =1
REGL DEFL. G
ELSEIF “®<=-TE"~
REGH » DEFL g e
REGL. DEFL. “E
ELZE
REGH : DEFL “H-
REGL. DEFL “Le
ENDIF
NLIMH DEFL ENLIM A Z5E
INLIML. DEFL. LNLIM. MOLD. 2546
MOV A, BREGL
ADI LNLIML.
M EREGL, A
MV A, YREGH
ACIT SNLIMH
MV SMREGH, A
ENDM ’

e of the more common uses of conditional statements is Lo
generate tables thal would be lomg, tedicous, and error prone to
entar by hand The following example gensrates a table that could
be used to check whethar 8 character is numeric:

TABLE Eaid #
CHAR LEFG 0
‘ Do 2546 o
1F &CHAR <07, OR. &CHAR> =9~
| o (¢
ELSE
Do X-FF~
' ENDIF ,
LCHAR DEFG LCHAR+L
- ’ ENDDO

L2 1 SET SYMBOLS

w2t symbols (and macroe paramelars) are Lhe variables used by the
copditional statements. Their value may be either numeric (0 lo
45537) or a character string (0O to 32 charactars long). The

values are set by wsing the DEFG (define global) and DEFL (define

RDDS MANUAL

local) statements,
L.Z 1.1 DEFL STATEMENT

This statement is used Lo define (and redefine) a local sat

symbol., A local sel symbol is only known in the macro in which it
15 detfined A sel symbol of the same name defined in a different
macra is aclually a8 different selt symbol. The syntax is:

{zal, aymbﬂl*name. DEFL “Lexpression> ! “Ustring>-

I+ quotes are placed around the operand, i1l i3 treated as a
character s3tring and may be 28 maximum of 32 characlters long
Buotes embedded in Lhe string must be doubled They are, howsever,
stored as double, notl single, quotes If quotes are not placed
around The operand, it is Trealed 83 an integer'ehpr¢551nn

Labels may appear in Lhe expression only it they have bean
previously defined

Note that when defining a2 set symbol, an ampersand must not
preceed Lhe name in The label field When using the set symbol,
an amparsand must preceed The nama.

1.2 1.2 DEFG STATEMENT

This statement is used 1o define (and redefine) a global setl,

Symbol. A globkal set symbol is koown in all macros unless a local
5l symbol of the same name i3 defined in a particular macro. In

this case) the glebal set symbol will become unknowrn, in Lhat
particular macro only, as soon as the like namaed local set symbol
is defined The syntax is:

{set*symbal~name} DEF5 »-Apress1on, Vovstrings:e

1+ quotles are placed around the upurand, it is treated as a2
character string and may be a maximum of 32 characters long.
Quotes embedded in the string must be doubled If quotes are notl
placed around The opetrand, if i3 treated as an integer exprassian
Labels may appear in Lhe expression nnly if they have been
prevxuu:ly dwflnad

Note that. when defining a8 sel symbol, an ampersand must not
precesd the name in the label field - When wsing the sel symbol,
an ampersand must precead Lthe name.

1.2. 2 1IF BLOCK

An IF block begins with an IF statement and ends with an ENDIF

RS MANLIAL

Blataemeant,. IF blocks may be nested within IF blocks or DO blocks
o any level.

o202 1 IF STATEMENT

The IF statement begins an IF block. It may have an opltional nama
i The label field which may be referred o in the EXITIF
statement. I¥ the expression in Lhe operand field of the IF
statement i3 non-2ero, The statements following tThe IF staltlement
up to the first ELSEIF, ELSE, or EXITIF statemsant afl Lthe same
nesting level will be processed I¥ the expression 15 zero the
sftatements following the IF up Lo the first ELSEIF, ELSE, or ENDIF
statlemaent &t LThe same nesiing level will be ignored The synlax

15:

[Lif—-block-namel] IF “expressions
L2 2 % ELSEIF STATEMENT

The ELSEIF statement is wused in conjunchion with an IF staltemant
To test an allernale condilion withoul going To a8 deeper nesting
laval, It the expression in Lhe IF statement was O and the
expressions in &ll previous ELSEIF statements al This nesting
level were O, and the expression in this ELEEIF statement 13
non—zero, statements oup to the next ELSEIF, ELZE, or ENDIF
atatement at this nesting level will be processed The syntax is:

ELSEIF Caxpression -

Matle thatl mo label is a8llowed
i.Z 703 ELSE STATEMENT .

The ELSE statement is used in conjunction with an IF statement Lo
cindicalte the last alternative. It is identical o

ELSEILF i
That is, if Lhe expressions in the IF statement and all subsequent

ELSEIF statements at this nesting level are O, the sltatlemenlts
after the ELSE statement up Lo Lhe closing ENDIF statement are

procesaed. - The syntax is:
. ELSBE
Nate that no label or operand is allowed

1.2 2 4 EXITIF STATEMENT

ROCE MANLIAL

The EXITIF statement when processed will cause all statements up
too the closing ENDIF statement in the named or current IF block to
be ignored. The syntax is:

EXITIF [<if-block-namel]
Note that no label is allcawed
1.2, 2.5 ENDIF STATEMENT
The ENDIF statement Lerminates an IF block The syntax is:

ENDIF
Note tLhat no label or operand i3 allowed.
1.2 3 DO RBLOCK
A D block begins with a DD statement and ends with an ENDDI
statement. It causes repelitive assembly of Lhe statements within
the block. DO blocks may be nested within IF blocks or DO blocks
to any level. -
L0231 DO STATEMENT
The DD statement begins a DO ﬁlock. It may have an oplional names
in the label field which may be referved to an LThe EXITDO and
NEXTOD statements. The expression in Lhe operand tield is
evalualed ONCE a1t the entry ta LThe DO block and is stored as the

DI COUNT - Lhe number of tTimes Lhe stalements within The block are
processad The syntax is:

U<do-block-name>] DD [<expression>]
1+ the expression is omitted, the block will be proaeséed L5538
- times (essentially indefinitely).

L2 & 2 EXITIMG STATEMENT
The EXITIO statements, when processad, causes the assembler Lo
immediately terminatle processing stalements in the current or
named DI block and begin af the first staltement afler the closing
ENDDO statement. The syntax is:

EXITDO [<do—block—name>]

Nizte That noe label i1s allowed

L0233 NEXTDD STATEMENT

he MANUAL

The NEXTDO statement, when processed, causes the assembler to
immediately begin processing the next iteration of the current or
named DO block. That is, if this is not the last iteration, the
next statement prucessed will be the first statement after the DO
statement. The syntax is:

NEXTDO [{do~block—name>]

Note that noe label is allowed.

1.2 .3 4 ENDﬁD'STATEMENT

The ENDDD statement ferminates a DO block. .The syntax is:
ENDDC

Note that no labei or operand is allowed.

1.2 3 5 SUBSTR STATEMENT

t symbol. © If the sel-symbol has not been previocusly defined, a

’e SUBSTR (substring) statement assigns a part of a string to a
en local selt-symbol will be defined. The syntax is:

<set-symbol-name> SURSTR {expressiconl>, CexpressionZ?, -{string>~

Lexpressioni> defines the beginning character position of the
substring. The first characlter is pwsition 1. LexpressionZ>
defines the length of fthe substring. If <{expression2> is O, the
substring will begin with the character defined by {expressionl>
“and continue to the end of the string.

1.2 3 &6 LENGTH STATEMENT

The LENGTH statement assiagns Lhe length of a string to a set
symbal. If the set-symbal has nol been previously defined, a new
local sel-symbol will be defined The syntax is:

<{sel-symbol-name LENGTH r<string>~
i. 3 ADVANCED CONSIDERATIDNS

‘Each source line is scanned twice before processing for ampersands
which signal set symbol or macro parameter substitution. During
ch scan any set symbol names preceeded by ampersands have their
alues substituted for the ampersand and name. Any doubled
ampersands are replaced by a single ampersand This allows the

RIDOS MANLAL

following capabilities:

1. & 1 SUBSCRIFTED SET SYMBOLS

Thea ?oilawing statement will define a set symbol whose name is
based on the value of anolher sel symbol:

A%l *DEFL. LAY

If %1 has the integer value 4, the set symbol AO00O04 will be
defined to have Lhe value A The following statement uses Thae setf
symbal:

MVI B, “%%A%I -

On the first scam the &% is replaced by & and &I is replaced by
Q0004 leaving: .

MVI B, “%A00004 -
Orn the second scan, &A00004 is replaced by A leaving:
MVI E, A~

Ey varying the value of the selt symbol I, sel symbols may be
defined and referenced which are indexed using I as a subscripl.

1,32 INDIRECT SET SYMBOLS

The following statements will define a sel symbol whose value is
the name of another st symbol: v

-

A DEFG “ABC~
E : DEFG A
The following statemant will use Lhe set

sel, symbol B a3 an indirsct
veference to the value of set symbol A; '

IF - & ABr="ABL S

On the first scan, the first two ampersands will be replaced by a
»ingle ampersand and ¥B will be replaced by A leaving:

IF - &= AR
On the second scan{k&a Mill be replaced by ABC leaving:

IF | ‘ABC/=-AEC"

RIOOE MANUAL

i. 4 A“SEMBLER PRINT STATEMENT

The PRINT statement controls which source lines are displayaed
and/ar-printed Thers are now four possible aperands.

i. 4. 1 PRINT OFF

Suppresses printing of all following soutrce lines including
itseldf. . '

1. 4.2 PRINT ON

Cauyses printing of all source lines except for those in a macro or
lines skipped due to conditional assembly pseudo—oaps or the
conditional pseudo-~ops Lhemselves: DEFG, DEFL, IF, ELSEIF, ELSE,
ENDIF, EXITIF, DO, EXITDRO, NEXTDO, ENDDROL)

3 FPRINT GEN

Causes printing of all source lines except for those skipped due
- to conditional assembly pseudo—ops or the conditional pseudo—ops
themselves. A plus sign will be printed to Lhe leff of Lhe
location counter value for source lines contained in 38 macro,

-~ 1. 4.4 PRINT ALL

Causes printing of all source lines including Lhose skipped dus Lo
conditional assembly pseudo—ops and the pseudo-ops Lhemselves
Lines skipped will have no location counter value or object code
printed, '

1.4.5 SUBSTITUTION

Lines atre printed after macro parame?er and set symbol
substa1ut1nn takﬁs place. ’

1.5 ASSEMBLER EXPRE““IDN

Dperands may now be general expressions containing Lhe
operators: +, =, unary = #, ./, (,), MOD. ,. SHR. ,. SHL. , . ANL. , . OR. ,
.XOR. , and . NOT., as well a5 the relational operators

=y 3y L =y =y 3K Character strings in quotes may be used as
arguments ‘with fLhe relational operators. Blanks delimit the
lexpression. Expressions are avaluated left to right.: Up to 8
levels of parentheses are allowed. Operators with higher
precedence ares evaluated before operators of lower precedence that
immediately preceed or follow Lhem. .The operator precedences are
as fuollows: '

RDOS MANUAL

:Parenthesized expressions
¥, /. MODL , . SHL. » . SHR.

c4) =, unary - '

Ty gy ey L=,

;. NOT.

. AND.

;. OR. . XOR.

- RN TN

Exampl as:

2+3%#4 (result is 14)

(Z+2)#4 (result is Z0)

5 0R X“A“ (resuylt is 1S)

S . SHR. 1 (result is 2)

.NOT. 5#4 (result is X-“EB-)
“ABC < “DEF~ {(result is {)

“ABC<-AB- (result is 1)

ABC =-DE~. OR. “WXYZ- 347 (resull is 1)
&300%-DEFG- (resull is 0) -

‘A B=QA B’ (result is-1l)

pte that strinys of 2 or less characters are treated as tLheir
Tidmeric equivalents (i e AR is equal to X< 4142-). The null
string (11) is equal to O

1. & RELOCATION FPSEUDC-INSTRUCTIONS

The RDOS Assembletr contains the following additional
Tpseudo=instructions to implement the relocaltion fezalures:

ASED

The ASEG statemen?t is used to define an absolule segment. The
default for the assembler is an absolute segment starting atl
location zero. After intervening R3EGSs, an ASELG instruction will
reselt the instruction counter to the value of Lhe end of the
previous absolule segment

RSEG <rsweg name>

~ The RSEG statement defines a relocatable segment. Up to eight
segments are allowed in one assembly, each identified by a name in
Lhe operand field Each RSEG may be stopped and started again
where they were lefl off by another RSEG statement with the same
name. ‘ ‘ o

4

FLBL {symbol>l, <symboll. ..

The BLBL statement is used to list all the external references and
entry points in an ass=mbly. A maximum of 253 external references

RDIJS MANLUAL

may be used in one assembly.
ORG <Lexpressions

The DRG statement 15 used Lo reorigin the subsequent lines of
code. The <expressionr of The ORG statement must be absolutle if
it is in an absolule segment and relative Lo Lhe start of tLhe
current REEG if it is in a8 relocaltlable segment.

i. 7 AS3EMBLER ERROR MESSAGES

English error messages are now displayed immediately below the
lipe in ervor. More than one message may be printed for each
line. They should be self explanalory.

0SS MANUAL

2. RDOS LINKAGE EDITOR

Run the Linkage Editor by ftyping JL. The available options will
be displayed on the scraen.

2.1 LINKAGE EDITOR DPTIONS

i Input to fthe Linkage Editor is in a command fileae
cerealted using The Editor, The file contains Lhe
trelocatable inpul filenames, the #IRG and #END
statements and the REEG s to be included

i An absolute object file is Lo be writften on disk

o REEG“s 1That are not specifically listed are to be
deleted from tThe outpul modul e

w

The symbol table is to be read fram =ach input file
and then appended to Lthe end of The absolute object
file, The symbol table can then be loaded by the
debugger and used for symbolic debugging. All
relative addresses are relocated by adding the base
address of the appropriate RSEG

L List the memory map énd reference 1list an the CRT.

F Print Lhe memory map and reference list on the
Mieroprinter.

B Send the memory map and reference list to the Serial
Fort.

If "C" is specified the Linkage Editor will prompt SPECIFY COMMAND
FILE. Type the file name arnd RETURN” I+ "C" was notl specifised Lhe
Linkange Editor will prompt SFECIFY INFUT FILE. Enfer the filename
and RETURN. The Linkage Ediltor will the open the file, list tLhe
R3EG s and their lengths on the screen and ask INCLUDE THIS FILE?.
Type "Y" to include the file, "N" to ignore it. Once a file is
included, you must not remove Lhe disk containing Lhe file Afler
processing your response, The Linkage Editor will again prompl
SPECIFY INFUT FILE. It another file is to be included proceed as
befare, if not enter a RETURN. .

If "D" is specified the Linkage Ediior will prompt SPECIFY OBJECT
FILE. Type the file name and RETURN. '

"The Linkage Editor will Lhen prompt LINKER INPUT.

RIDOSE MANDAL

2.2 LINKAGE EDITOR INPUT

Enter the RSEGs and their locations in memory using the following
Formal:

HIRG Cabsolute addresss

Llist of RSEGs fto be included separated by commass
#ORG <absolute addresss

+list of RSEEGs Lo be included separataed by commasi
#END <entry point, must te a global symboll

I¥ "D" (delete RSEGs) is not specified all RSEGs that are naot
listed are included afler Lhe last #ORG statement.

- If an entry point i3 not specified the default i3 Lhe entry point
of the first relocatable file to be included

When the Linkage Editor is finished it displays the message
FUNMCTION COMPLETED.

T2.03 LINKAGE EDITOR COMMAND FILE

The command file is created using the Editor. It supplies the
Linkage Editor with the necessary informaltion aboul inputl files
and the desired location for RSEGs. The formal of The command
file is as follows:

<inpul filenames
winput filenamel

Linpul filenamel \

#ORG <absolulte addresssh .
Lraegq names saeparated by commass
#ORG <Labsolute addrassi .
Arseq names sepatrated by commasz

H$IR5 <absolute address:
{rseq names s=parated by commass
HEND <entry point symboll

4 LINKAGE EDITOR QUTFUT

If requested the Linkage Editor will output, to the CRT and/or the
printer, a8 reference list and a meamory map.

RDD:S MANUAL

The retference list shows for each input file the RSEGs, their
absolute addresses, and their lenglhs. It also lists all of the
global symbols in each file and their absolutse addresses. The
formal of the reference list is as follows:

FILE R5EG ADDR LENGTH
GLOBALSE

The memory map shows The memory locations of The RSEGs. It lists
them in the order in which Thay were enlered in the linker input.
So if Lhe operands of Lhe #ORG statements were in assending ordear
the memory map will alsa be The format of the memory map is as
Ffollowms:

ADDRESS RSES FILE LENGTH

1¥ a REEG was overlaid by another REEG of the same name, 11 will
be flagged by an "O" to The righl of The length column if there
is more Lhan one RSEG of the same name the first one sncountered
by - the Linkage Ediftor will be used It a RSEG has been deleled
("I was specified and LThe RSEG was notl listed) the entry in the
memory map will be flagged with an "D".

AL the end of the listing the entry point for Tthe object module is
gLV,

2.5 LINKAGE EDITOR ERROR MESSAGES

Error messages and Lheir meanings are described in the following
section

NOT A SOURCE FILE ~ The command file is not an Editor source file

NOT A RELOCATABLE FILE — The Linkage Editar inpul file was not
created by the Futuredata Relocating Assembler or the "R"
atltiribute has been changad using the Monitlor,

FARM ERR. .. RESPECIFY - Syntax error in the linker input.

ilabel}'**DUPLICATE GLOEAL IN <filename> — The first occurance of

RDOS MANDAL

a global label iz usad for address references. all additional
definitions are flagged as an ervor.

“labell ##UNRESDLVED REFERENCE IN <filename> — The external
referénce was not found in the glebal symbol table

IN RSEG <rsegl ##UNRESOLVED REFERENCE IN <filanamel — Refarence

between RSEGs in the same assembly can not be correctly relocated
FProbable cause is references %o a R5EG that has been delelad

##OELETED RSEG REFERENCED IN <filenamel — An RSEG which was not
snceluded i3 neaded Lo resolve address references. .

##ERROR IN COMMAND FILE - Incorvrect ¥ile pame was specified or a
syntax error in the command file. . _

##RELOCATION ERROR IN <Ifilename’ - Inputl filz was nolt correctly
assembled with the RDOZ assembler.

##TABLE OVERFLOW - Mare memory is needed by the Linkage Editor.

##SYMBOL, TABLE NOT FOLND IN <filenamel - ThaAsymbol table was not
inclouded when the program was assembled

##SEQUJENCE ERROR IN <RELOCATABLE FILE NAMEZ - records in
<relocatable file name> are nol in proper order. Reassemble

RDOE MANUAL

o
-t

RDOS DERBUGGER

Run the Debugg=r by Lyping JD or JI. The screen will display

memaory centered at

O in The same formal as the Futuredata DOS

Debugaer. All commands are identical Lo those in the DOS Debugger
i th twe execeplions necessary for symbolic debugging:

3.

I LOADING A SYMEOL TAEBLE

In order to have a symbol fable included in an object file, you

must selsact

the oplion which causes it to be included bolh when

Assembling and Linkage Editing. In order %o load the symbol table
you must specify ils beginning address and whether you want all
symbols or only global symbols at the time you leoad the program

The format

of the load command is:

°

L <filenamail, [Koffsetl1l, [<symbol fable address>1C,G11]

';;e(:i fied,
specified

sntities enclosed in hraeckels are oplional). I <offsel> i3 nat
its detault is O If <symbol table address> is nol
but the preceeding comma is, ils defaull is the

currently displayed address. Examples:

LTEST. Ly, 2000

L.

L

TEST. L, O, 2000, G
TEST. L.y » 13

TEST. L, LO0O,

Loads symbols for TEST.L starting at X<2000-

Loads global symbols for TEST. L starting at -
X 2000~

Loads global symbols for TEST. L starting at
the curraently displayed address

Loads symbols for TEST.L starting at tha
currently displayed address. Offsets program
by X-100<, Does not offset addresses,
however, and thus makes symbol table
meaningless.

After vreading the symbol table, the Uebugger prints the lozded

)

length of the table at the bottom of the screen (in hax).
E: -

<ampl es:

SYMTAE LENGTH=015A »
GLOEAL SYMTAE LENGTH=004E

t you attempt to load the symbol table where there is no memory
v whers LThere is protected memory, the message “FARTLY LOADED-

will be appended to the length message. Example:

'ROIOS MANLIAL

SYMTAE LENGTH=201A; PARTLY LOADED

In this case wnly part of the symbol table could be leaaded You
may reference Lhose symbols loaded in order Lo load Lthe complete
symbol "takle, you must either add more memory or specify a lower.
symbol Table address.

3. Z REFERENCING A SYMREOL

You may use a symbolic reference wharaever you can use a
hexadecimal address. The syntax of 8 symbolic reference is:

HL<relocatable file namel: J<symboll

The <relocatable file name> may be necessary since identical
symbols may occur in separate assemblies. I¥ Lhis is the case,
and The <relocatable file namer is nol specified, The address of
Lhe tirst symbol encounftered in the table will be used Exampl es:

D#NEGATE

DHTEST L. R: START+4

D#TESTL. R: STARTHETESTZ. R: START
DHEEIGIN#

L 1: TESTL, , #5PACE-LO

1 you use a8 symbol which i1s not in The currently loaded symbol
Lable, The Debugger displays LThe message:

UNDEFINED SYMEOL

al The boltom of The scereen.

A PPENIDTIX

FUTUREDATA SYSTEM 31 CHECKOUT

1. Connect the keyboard & CRT to the mainfram.
| ~ CAUTION

‘ fConhectiné keyboafd-into the wrong connector may
-cause dammage to the keyboard.

INTER-UNIT CASLING

i.

I

2. Open the mainframe top and connect disk drive connector
to the rear plug on the TAPE & EIA I/0 Board. Ensure
that red strip on ribbon cable is toward the rear of the
unit. Ensure that all cards are properly seated.

 CAUTION

Be careful, if removing CPU card and/or Emulator card.

- They are interconnected with short ribbon cables which

- may become disconnected. Both cards should be removed -
at the same time. : T ' o

FAN
T W T ;:«‘:'
ik
. [
—J
0N £ [l B

+ CPU Bmulator 16K RAM Debug/PROM CRT & Keyboa
rd Tape § FIA
Cad Cud i lonﬂ Programmer 1/0 Board 130 Board

3.

4.
5,

6.

7.

9.

-10.

1.

12,

.1.3.

- FUTUREDATA SYSTEM 31 CHECKOUT PAGE 2

Connect CRT and Disk power plugs into the auxi]]ary-
power sockets on the rear of the mainframe. Then plug
in the mainframe to a wall socket.

~ CAUTION

AppIying or rembving‘power from the disk drive with a
diskette in the unit may destroy the diskette.

“Turn on the power switches on the ma1nframe and the

disk drive.

"Insert the system diskette, into DRIVE O with the label
toward the power switch, and close the diskette door.

‘Press the LOAD button on the keyboard; then t}pe D.

The system will initialized with the prompt;
FUTUREDATA DISK OPERATING SYSTEM-VER 1. 0

‘Type D, return on the keyboard. A d1rectory of the files
-on the disk will be printed on the CRT.

CAUTION

Ensure that the diskette is for the same microporcessor

~as the CPU. i.e. 8080 diskette, 8080 CPU card
8.

Type JD return. A d1sp1ay of the contents of memony
around the location 0000 should be seen.

Type JE return. A display of the doub?e dotted line

~editor, plus a prompt at the bottom of the screen -

shou]d be seen.

Type JA return. .A prompt 1nd1cat1ng which assemb]er

. you -have ava11ab1e should be seen.

Type Ju return A d1sp1ay of thevcopy utiiity sheu1d 3
be seen. ‘ ' ,

This. comp]etes the ver1f1cat1on of all ‘major funct1ons

~of the M1crosystem 31.

Open the d1sk drive door by pressing stra1ght in on the ,‘

latch to the left of the door. The d1skette should be

, ejected

14,

Remove powek from all units, and disconnect them.

3.

'GETTING STARTED WITH THE FUTUREDATA

MICROSYSTEM 31

 INITIALIZING A NEW DISK

Initialize system by applying power, inserting a system
diskette, pressing the LOAD button, and typing D.

. Place a write enable tape over the write protect slot

on the rear edge of a blank double density soft sec-
tored diskette. Then insert it into drive 1 with the
label facing to the right.

Type I return. The system will respond with the ques-
tion: INITIALIZE DISKETTE IN DRIVE:1? .

Type Y. Any other response will result in an error
1ndlcatlon.

When the system is flnlshed 1n1t1a1121ng the new dlsk—
ette, the following message will be displayed: ‘

FILES ON DRIVE:l: 76 FREE TRACKS
PW .1 DIR

DUPLICATING A DISKETTE

1.

2.

3.

First, initialize a diskette as defined above.

Then insert the diskette to be copled into drive #,
leaving the initialized diskette in drive l

Type X ﬂ 1, A return.

DOUBLE DENSITY DISK SYSTEMS

PRELIMINARY

The Microsystem/ 3] with double density dual disk drive provides
over 1 megabyte of on-line random access disk storage. The
diskettes are organized as 77 Lracks of 52 sectors each. Each
saector is 128 byles. The first track on =ach diskelte is reserved
for the disk directory. The user may havs up Lo 76 files of ona
track each per diskelts, one file of 76 tracks or any combination
in between ~The minimum file is 32 sectors of 123 byltes or &45546
bytes total. The maximum file is 7& tracks of 6656 bytes or

505, 85946 bytes total.

1.O Introduction

2.0 Installatian

The Microdisks3 may be connected Lo any Microystem. The)

Microdisk/38 is connected to the Microsystem with a2 20 conductaor

flat ribbon cable Connect the Microdisks/3 cable to JZ on the

Tape/EIA board. This 1s the onpnly board with twe Z0 conductor, M

"headears The red stripe on Lhe cable should be aligned toward the
3 nf the system and the cable ruuted out thraugh the flat cable
imp at. the left rear.

ﬂat Cable Clamp

1 &ed Stripe

| //,f‘TMMVTmAEBan

See also section 13. 1.2 of "FUTUREDATA DISK OPERATING SYSTEM USERS
MANUAL." :

It will also be necessary to replace the system bootstrap EPROM.

The procedure varies somewhat depending on the CPU card in the

Microsystem. It the CPU card is a Z-80, 8089, 6300, 6302 or S080A

mod IIi then the boolstrap EFROM on the proacessor board is

placed. * The double density EPROM“s are labled Z80ODD for the

: .C‘OA mod II, 80€S, and Z-80. They are labled 68DD for the 6800
nd A802.0 If the CPU card 1; an 8030A (p c.. card 10020 rev. A or

B) then the follow:ng is requzred

1. If it is a tape based system (Microsystem/10 or

DOUELE DENSITY DISK SYSTEMZ

Microsystem/1%) Then the bootstrap EFROM on the Tape/EIA
board must be disabled as deseribed in 18 1 of “"FUTUREDATA
DISK OPERATING SYSTEM USERS MANUAL™.

. In additicn, tape based systems will require a FROM/RAM board
to hold the double density boot EFROM This is supplied with
all Microdisk/3 packages that conmect to existing systems and
all 2080A systems that do not have The mod II CFU board

If a Microprinter i3 alse to be used with the system, then tha
Microprinter is connected to Lhe disk in a daisy chain fashion.

To connect the printer: remove The top caover on the Microdisk/s3
and connect the 20 connductor printer cable to the 20 connductor
header clamped To the top of drive 1. Note: the red stripes on
the Lhe two cables should mateh, Also note Lhatl the Microdisks3
must be powered on in order to use the printzr, if the printer is
"daisy ohained" through the disk, Under normal operalting
conditicons, this is always the case '

.0 Memory Strapping

The double density D05 software trejuires the following memocy
board strapping:

Systems utilizing SK RAM boards

1&E memary, Cdnheet.Jump&rs at locations O, and 5 on board
. Connecl jumpsrs at locations 1, and & on
b ar d 2 .

24K memory Connaect & jumper at location O on board i

Connect jumpsers a8t locations 1, and 5 on board
2.0 Coonect jumpers at leocations 2, and & on
board 3

FEE memory Connect & jumper at location O on board
Connect g jumper gt location 1 on board
Connect jumpers at Jocations 2, and 5 on board

= Connect jumpers at locations =5 and & an
board 4.

i.

JOK. memary Connect a jgumper at location O on board .

Connmect a jumper at leocalion 1 on board Z
Connect a jumpsr at locatibn 2 on board 2
Conmnect gumperz at locations 3 -and 5 on board
4. Connect jumpers at locations 4, and & oon

board 5

4 memoty Cunnect a pumper at location O on board 1.

DOURLE DENSITY DISK SYZTEM:

Connect a jumper at location I on board 2
Connect o jumper at location £ on board 3
Connect & jumper at location 3 on board 4.
Connect jumpers at locations 4, and S on board
5. Connect 38 jumper atf location & on board 4.

Systems utilizing 16K RAM boeards

L6 memory - Connect jumpers ai locations O, 1, S, and A4
on board 1. : :

BLE memory - Connect jumpers at locations O, and I on board
1.¢ Connect jumpers at lacations 2, 3, 5 and
A4 on board 2.

48K memory Connect jumpers at locations O, and | on board
1. Connect jumpers at locations 2, and 3 on-
board 2. Connect jumpers at locations 4, 5
‘and A4 on board 3.

Systems utilizing a8 32K RAM card

32K memoty ' lonnnwt Jumpers at locations "5-2", "“6~-3", and
BRI R =2y’ Il .
4

Systems utilizing 32K and 146K cards.
48K memory , CénnectAJumpers at lacation "32" on the 3ZK

RAM card. Ceonnect jumpers at locations 4 5,.
and A6 on the 16K RAM card’ .

Systems utilizing al4BK RAM card.

48K memotry Connect jumpers at locations "S-4", and “48".
4.0 Disk Drive Strapping

Figqures 1 and 2 show the opftion strapping for the double density
disk drives. Notle the different strapping for drive "0 and drive
B G Some fault isolation can be accomplished by interchanging
the functions of drive "0" and drive "1". This is done by
~removing the rear panel.

CAUTION: POTENTIALLY LETHAL VOLTAGES EXIST INSIDE THE DISK
S|i! 2EGYSTEM. THE FPOWER CORD MUST EE DISCONNECTED FROM THE WALL

ET WHENEVER THE COVER OR REAR PANEL ARE REMOVED.

.he jumpers on the drives may now be altered -tp change drive "O"
into drive "1" and vice-versa. The 34 conductor cable connecting
the the two disk drives and disk controller can now be .

DOUELE DENSITY DISKE SYSTEMS

disconnected from the suspected drive and the other substituted in
il.s place. . . ,

