DATANET-30
Programming
Reference Manual

DATANET-30
PROGRAMMING

REFERENCE MANUAL

JANUARY 1964

GENERAL 3 ELECTRIC

COMPUTER DEPARTMENT

FOREWORD

This manual will cover the aspects of programming the General Electric DATANET-30 Com-
munications Processor. The assumptions are that the individual doing the programming is
already famiiiar with programming techniques, and has a comprehensive understanding of
the communications system in which the DATANET-30 is operating.

References to be used in addition to this manual are the DATANET-30 system manual and
the glossary of terms of the X3.3.2 committee of the American Standards Association. Familiarity
with the document is important before proceeding into the actually programming of the
DATANET-30.

@ 1964 by General Electric Company

DATANET =80

CONTENTS

Page

1. GENERAL DESCRIPTION 1-1
The Memory Unit v v ittt i i et et e e e e e e e et e e e et e I-1
The Buffer Selector i i i ittt e et e e ii e 1-2
The Bit Buffer Unit Module ittt i ittt ten e, 1-2
7= o U= o=) I-2

Bit Buffer Channel i it it ittt ittt ot oot e oo nesann 1-2

The Character/Word Buffer Unit (CWU)t it v vt v, I-3
The Character Buffer Channel (CBC)t i it v n ... 1-3

The Word Buffer Channel (WBC) v v i it i it et e e e e e e n 1-4

The Receive Parallel Unit Buffer Module 1-4
The Receive Parallel Unit it ittt it it it i e 1-4
ReECEIVE SEQUENCE v i v v ittt et e ot et e e et i I-4

The CIU-930 Computer Interface Unit, 1-5
The CIU-931 Computer Interface Unit 1-6
The Controller SeleCtor. v v v i v i i i it e ettt et et et i oo o e I-7
Data Communications ProCesSOr. . v . v v v v v v v v v v oo v oo o v e a e s oo I-7
Data FIlOW « v v v v v vt e e et e bt e et ittt e st s oo s oo I-7
Detailed Block Diagram . . v v v v v v v vt v v et v o e v et ne o e ae e I-10
Description of Registerso v v it i ittt i e e I1-10
Instruction Cycles v i i it i ittt ettt i e I-19
Paper Tape Reader. v v v v i v ittt it it e ittt i e oo 1-28
Hardware Load i v v vt vt i vt e oottt nnenaneesan 1-28
The Elapsed Time Clock (Q-counter)o v i v v v v en ., 1-29
The Q-counter and Hardware Load 1-29
Instruction Formatso it v it ittt et e et et e e e e 1-30
Non-general Instructions v it it . I-30
General InStructions . . . v v v v v it i i e e e e e e e e 1-31
Representation of Information in Memory 1-32
Alphanumeric Datao o it i e e e e e e 1-32
Numeric Data i ittt ittt e et et e e e e e 1-33
Double Length Binary Data.« oo v it v i ittt it i e e e v 1-35

11. INSTRUCTION REPERTOIRE II-1
Internal InStructions o v i i i i i i ittt e e e e e e e e e e e e e e e II-1
Load InStructions . . . o v v v v it s e e e e e e e e e e e e e e 1I-3
Store Instructions o v v i i i i it e e e e e e e e e e e 1I-5
Arithmetic Instructions oot i vt e e e e e e e e 1I-6
Logical Instructions 0 i i it it it ittt ettt e e e ee e 1I-8
Register Transfer Instructions i i it i it vt v 1I-12
Branch Instructionsou... e e e e e e 11-16
Macro-InstruCtionS. . . . v v v v vt it i e e e e e e e e e e e e e 11-18
Special Instructions i ittt i e e e e e 1I-22
Buffer Selector InStructions o v v vt i it it e et e e 1I-25

DATANET =80

iii

III1. ADDRESSING MEMORY -1
General DesCription . v v v v v vt i it i e e e e e e e e e e I1-1
Detailed Description. o i i i i i e e e e e e III-3

Program Bank Addressing« . v v v v v vt it i e e e e e e II1-3
Common Data Bank Addressingt III-6
Channel Table Addressing v i i it i it ittt it i e in e e I-7
Indirect Addressing« .o v ittt ittt i et 111-9
Subroutine Linkage o v v v i i i i e e e e e e e e e e e e e e I1-10
IndexXing . . v v v it i e e e e e e e e e e e e n1-11
Memory Addressing Using the General Assembly Program 1-12

V. CONTROL CONSOLE Iv-1

The Mode Select Pushbutton Switches V-1
The SET A, B, C,andPButton, Iv-1
The INSERT MEMORY Button 0., Iv-2
The DISPLAY MEMORY Button, Iv-2

The ERROR Light and Buzzer.« v vt ittt ittt et it e e e nnn V-2

Power-OnSequence i i it ittt e e e e e -3

V. PROGRAMMING CONSIDERATIONS V-1
Programming the Buffers o v v it ittt i e e V-1
Service Rate v i it i e e e e e e e e e e V-1
Basic Program Cycle o i it it it it e e e e e v-1
Functional Sequence o v v i i it i it e e e e e e V-4
Programming Conventions. ot e V-6
Buffer Operations. o i i e V-
Bit Buffer Channel i e e e e e V-1
Character Buffer Channel (CBC). vttt v ittt it e ne Vv-21
Word Buffer Channel (WBC). v v i it ittt et e et e e V-25
The Receive Parallel Unit (RPU)ttt i e, Vv-31
Programming the Peripheral Equipment on the Controller Selector V-34
General Description v v v v v i ittt e e e e e e e V-34
The Disc Storage Unit (DSU) . . vt v v i i it it et e et e e e e V-35
Programming the Magnetic Tape Units e e e V-44
Decimal Mode . . v v vt vt i e e et e e e e e e e e e e e V-44
Binary Mode . . . v . vt it e e e e e e e e e e e e e e e e e e V-45
Record Length. o o0 i it it it it e e et e et e e V-45
Magnetic Tape Instructions ittt it it V-46
Command WOrdsS . . . vt it i it it e it e e st e et e V-48
Programming Example v i v it i i e e e e e e e e e V-49
Tape Unit Conditions it i ittt e et et e e e e V-50
Branch Conditions ittt i ittt s it e e e V-50

DATANET = 30

iv

Programming the Paper Tape Reader u....
Reading Paper Tape Under Program Control
Hardware Load and the Paper Tape Reader
Hardware Load Format

Utility Routines. v v v i it it e e s i i et e e e e e e e e e

System Considerations it ittt ittt e e
The Message Switching Center
Integrated Data Processing v v i i i ittt e e e e e

Program Preparation.ottt ittt e
General L e e

The General Assembly Program
General Description
The Coding Sheet. v i i i it it it it et ettt eiee e
Relative Addressing
Pseudo-Operationsttt ittt
Assembly Errors and Suspected Errors
Error Codes

...............
................

.............................

.........................

..........................

................................
................................

..................

.....................................

APPENDIX

A DATANET-30 GENERAL ASSEMBLY PROGRAM
(RUN ON THE GE-225 INFORMATION PROCESSING SYSTEM)

CHARACTERISTICS SUMMARY
CIU-930 COMPUTER INTERFACE UNIT

CIU-931

H O a W

INSTRUCTION SUMMARY

Page

V-52
V-52
V-55
V-58
V-59
V-60
V-60
V-60
V-61
V-61
V-62
V-62
V-63
V-65
V-65
V-69
V-70

B-1

C-1

DATANET =80

ILLUSTRATIONS

Figure Page
1. DATANET-30 . . o it it e e e e et e e et et s e e e e viii
2. The Receive Parallel Unit with the DATANET-3101............... 1-4
3. Computer Interface Block Diagram. v v v v i v i v vt v v v v I-5
4. Basic BIoCK DIiagram . . o v v v v vt vttt it e e e e e e e 1-8
5. Basic BlocK Diagram . . v v v v v v v v v v o v s e et e e e e e e 1-9
6. Detailed Block Diagram DATANET-30 i, I-11
T. Detailed Block Diagram DATANET-30 Instruction Cycle 1-18
8. Detailed Block Diagram DATANET-30 Load A (LDA). 1-20
9. Detailed Block Diagram DATANET-30 Store B(STB). 1-22

10. Detailed Block Diagram DATANET-30 Add Memory to A (AMA). 1-24
11. Detailed Block Diagram DATANET -30 Shift Right 1

Receive Lines to B-register (SR1 BR, B) v v v v v oo, 1-26
12. Paper Tape Reader . . . vt vt i v it it i it et it ettt e e ie e e e 1-28
13.A. Control Console SwitChes v v i it i it it i e vt a e e 1v-4
13.B. Control Console Switches e e e e e e IvV-5
14. General Timing Diagramvovee... e e e V-3
15, Relative Timing for Scanning Buffers e e e e e e V-4
16. Data Flow Functional Block Diagram /e e h e e s e e V-5
17. Hardware Scan Block Diagram. . . . v v v v v v vt vt v v vt vt v n o ee e nnn V-117
18. CBC Receive Timing Diagram v v v vt v v o v v v et s vt e en e e e vn V-23
19. CBC Transmit Timing Diagram v v v v v vt vt et ettt e e e e e e e V-24
20. WBC Receive Timing Diagram. e e e e e e V-28
21. WBC Transmit Timing Diagram. v v i vt ittt it et e et e e e n V-29
22. Receive Parallel Unit Block Diagram . : v v v v i vt v v v v v v v unan V-33

A-1, Flow Diagram of the DATANET-30 General Assembly Program A-3

A-2, Arrangement of Input for Pass 2 ittt it e e e A-10

A-3 Flow Chart for Assembly Program 3 A-12

DATANET =80

vii

: " S se e €0
as sas es ottt tn

s ses s88 o0

see s o0s
e B

Figure 1. DATANET - 30

DATANET =80

viii

I. GENERAL DESCRIPTION

The DATANET-30 is a single address, stored program, special purpose, digital computer
which operates primarily in a straight binary mode but processes both alphanumeric and binary
information. It performs computation (arithmetic) operations and acts as central control for
the DATANET-30 system. Programs to be executed and data to be operated upon are stored

. .in a magnetic core memory where each core represents a binary digit (bit) of an instruction

or data word. A word is the basic unit of addressable information in the memory.

The overall function is to simultaneously receive, store, process and transmit data in a com-
munications oriented system.

The system can accommodate any standard transmission speed ranging from 45 to 3,000 bits

~ per second. The basic DATANET-30 controls the transmission of digital data information
over normal common carrier facilities to either another DATANET-30, a DATANET-15, a
DATANET-600, or any of the standard teletype terminal units in use, such as the Automatic
Send Receive (ASR), Keyboard Send Receive (KSR), or Receive Only (RO) units.

The instruction repertoire contains 78 basic instructions and the hardware is capable of executing
over 144,000 instructions per second.

Figure 1 shows the major functional sections of the DATANET-30 Communication System,
consisting of:

1. The buffer selector and associated buffer units
2. The controller selector and associated high-speed controllers
3. The DATANET-30 Data Communications Processor.

THE MEMORY UNIT

The DATANET-30 uses a magnetic core memory to store program instructions, alphanumeric
information, and binary data. Standard memory units are available in 4096, 8192 and 16,384
word sizes. Each word consists of 18 bits. An 18-bit word can contain three 6-bit characters,
two 8-bit characters, or one machine instruction.

DATANET =380

I-1

The memory cycle time is 6.94 microseconds for a read-restore cycle, a clear-write cycle,
or a read-compute-write cycle.

During a read-restore cycle, 18 bits of information are read from the memory and transferred
to the data communications processor.

During a clear-write cycle, 18 bits of information are transferred from the data communications
processor and written into memory.

During a read-compute-write cycle, 18 bits of information are read from memory, changed
by the data communications processor, and then the new information is written back into memory.

THE BUFFER SELECTOR

All units connected directly to the buffer selector are referred to as “buffers.” Information
flows via the buffers and the buffer selector to and from the data communications processor.

The buffer selector contains 128 channels numbered O to 127. Each buffer occupies one channel
address of the buffer selector, whether the channel is simplex, half-duplex, or full-duplex.
The buffer selector channel address for each buffer is established by the wiring of an address
plug. The address can be changed or new addresses (buffers) added by changing the existing
plug wiring or inserting a new address plug. The channel addresses in any given buffer module
need not be sequential. However the addresses for bit buffers must be sequential. Channel 0
is always reserved for the paper tape reader.

THE BIT BUFFER UNIT MODULE
General

The bit buffer units contain a control section and up to ten bit buffer channels.

The bit buffer unit control section contains hardware that is common to all the bit buffer channels
in the module. A Dbit buffer module may terminate from 1 to 10 full-duplex or half-duplex trans-
mission lines which are all operating at the same bit rate.

Bit Buffer Channel

The function of a bit buffer channel is to transmit data to and receive data from a remote
terminal on a bit basis.

Each bit buffer channel in a module is assigned a buffer selector address by the address plug
for that module. The addressapplies to both the receive and the transmit section. The addresses
for the bit buffers in a module can be whatever is desired for the system and they need not

DATANET =80

I-2

be sequential. Thus, a bit buffer may be added to a module and given an address without disturb-
ing the existing address arrangement. However, the addresses of all bit buffers must be
sequential.

The bit buffer provides the interface between the DATANET-30 and one full-duplex, half-duplex,
or simplex transmission line on a bit basis. Usually system considerations will limit the bit
buffer lines to an operating speed of less than 300 bits per second. Standard teletype rates of
45, 50, 56.26, 75, 110, and 150 bits per second are selected with the timing connector plug.
The selected bit rate will apply to all the bit buffer channels physically located in that module.
If more than one bit rate isinuse in an existing system, the different bit rates must be terminated
in separate bit buffer modules. Since the bit buffer channel communicates with the remote
terminals on a bit basis, the code level can be different in the separate bit buffers. The code
level of individual bit buffers is recognized by the program.

THE CHARACTER/ WORD BUFFER UNIT (CWU)

The character/word buffer unit module can contain either two character buffer channels (CBC),
two word buffer channels (WBC), or one of each. Each character/word buffer has a control
section.

The Character Buffer Channel (CBC)

The function of a character buffer is to transmit data to and receive data from a remote terminal
on a character basis. Transmission to and from a remote terminal is on a bit serial, asynchro-
nous basis.

The character buffer control unit contains hardware to control the bit rate and character length.
The character buffers in a module may be operating at different bit rates and different character
lengths. The standard bit rates are 300, 600, 1200, 1800, 2000, 2400, or 3000 bits per second.
The code level may be any one of 5-, 6-, 7-, or 8-level codes with start-stop bit synchronization.
Both the bit rate and code level (character length) may be selected or changed by means of a
connector for each buffer. The timing connector plug is available in any one of the standard
bit rates. The code level plug is available for 5-, 6-, 7-, or 8-level codes. Thus, by changing
plug connectors, both bit rate and code level may be changed to suit changing remote terminal
operations.

One character buffer channel provides the interface between the DATANET-30 and a half-
duplex transmission line.

Usually, a character buffer channel operates with a character oriented device at speeds higher
than 300 bits per second. At this higher rate it is necessary to have some kind of digital subset
(DSS) on each end of the transmission line.

DATANET =380

I-3

The Word Buffer Channel (WBC)

The function of a word buffer channel is to transmit data to and receive data from another
DATANET-30 or a DATANET-600.

The word buffer can operate at the same standard bit rates as the character buffer. The bit
rate is established by a timing connector plug. The word length is not variable. It is established
at 18 bits for a DATANET-30 word, plus one parity bit and one control bit, giving a total of 20
bits per word. This word length is established by a 20-bit code level connector. The DATA-
NET-600 word is similarly established at 14 bits.

THE RECEIVE PARALLEL UNIT BUFFER MODULE

The receive parallel unit buffer module can contain 1 or 2 receive parallel units (RPU). Each
unit receives information from one communications channel. Each RPU has a control section.
The buffer selector address for each channel (RPU) is specified by the address plug for the
module and each RPU is addressed independently of the other. The code level for each RPU
may be different.

The Receive Parallel Unit

The receive parallel unit provides buffering, on a receive-only basis, for one character of
information in any parallel code up to a 14-channel code level. The RPU bhuffers the input
from a local DATANET-3101 with an 8-level code. A timing connector plug is not used. The
upper limit of speed of transmission (receiving information) is determined by the scan rate
of the program and should be consistent with the system rate. Operation is asynchronous,
timed by the transmitting device.

Receive Parallel

Unit
data lines data lines
DATANET 1 T T T DATANET
3101 H ' H ; 30
ACCUMULATOR COMMUNICATION
PROCESSOR
2 control lines 2 control lines

Figure 2. The Receive Parallel Unit with the DATANET-3101

Receive Sequence

The RPU and the DATANET-3101 accumulator are directly connected (on line at all times).
When no signals are present on the line, the receive flag is not set and the program ignores
the buffer. When a character is received, the receive flag is set and the program must take
the character before the next one is transmitted.

DATANET =80

I1-4

The DATANET-3101 system uses answer-back lines to acknowledge the transmission or provide
a signal indicating that an error has occurred.

THE CIlU-930 COMPUTER INTERFACE UNIT

For those systems requiring a combination data communication-information processing system,
a CIU-930 Computer Interface Unit is provided., This unit permits attaching a DATANET-30
data communication processor to a General Electric Compatibles/200 Information Processing
System, With this combination, the DATANET-30 is responsible for the communications half
of the system, while the Compatibles/200 system is responsible for the data processing.

Twenty-one-bit words are transferred in parallel to and from the information processing system
via the Computer Interface Unit, The memory address is also transferred in parallel from
the address register in the CIU-930 to the processing system prior to the data transfer.

The CIU allows addressing any location in the central processor memory, The CIU-930 connects
into any channel of the DATANET-30 buffer selector in the same manner as any other buffer,
The buffer selector address of the CIU-930 is specified by the wiring of the buffer selector
address plug for the module, There is no DATANET-30 hardware restriction on the number
of CIU’s which may be used, othér than the physical space occupied, On processing system
side. the CIU-930 can connect into any GE-215/225/235 priority control channel,

Datanet=30
21
Address Data Register
CIU-930 Register 21 Bits
21
Busy
Not
Busy Information
Processing
N System

Figure I-3. Computer Interface Block Diagram

DATANET =30

1-5

The CIU can be tested for a busy/not-busy condition by the DATANET-30. This busy/not-busy
test tells the DATANET-30 whether or not it can put data into the data and address registers
of the CIU-930, and whether or not it can take data from the data register.

The DATANET-30 communicates with the Compatibles/200 central processor only on a memory
interrupt basis. The DATANET-30, under program control, puts data and address information
into the CIU to interrupt the central processor. The central processor cannot control the DATA-
NET-30, as is possible with other peripheral equipment. Since both the DATANET-30 and the
central processor have stored programs and since the DATANET-30 operates in real time,
the DATANET-30 must have control and priority between the two programs.

When the Information Processing system has data for the DATANET-30, it will set a flag in a
memory location of the central processor, whichisperiodically interrogated by the DATANET-30.
When the DATANET-30 is ready to accept the traffic, a control instruction is-sent to the central
processor, the processing system program is interrupted, and the traffic is transmitted to the
DATANET-30. The DATANET-30 then processes the traffic and sends it on to the designated
remote station. Thus the information processing system and the DATANET-30 exchange control
words, instructions, and traffic under control of the DATANET-30.

THE CIlU-931 COMPUTER INTERFACE UNIT

The CIU-931 Computer Interface Unit of the DATANET-301is an 18-bit buffer within the DATANET-
30 that provides the connectinglinkbetween the DATANET-30 and a General Electric Compatibles/
400 system. The CIU connects into the buffer selector of the DATANET-30 and one standard
input/output channel of a Compatibles/400 system. The channel may be either a word channel
or a character channel for input and output. Direction of data flow is under program control.

The transfer rate is up to 43,200 characters per second or 14,400 DATANET-30 words per
second. The actual transfer rate will be determined by the DATANET-30 program.

The CIU permits both the DATANET-30 and the Compatibles/400 system to execute programs
concurrently with the transfer of data in either direction. The CIU is able to respond to the
processing system without the need of service from the DATANET-30 program. When the CIU
responds to the processing system, a signal is generated to indicate to the DATANET-30 program
that service is required. The information from the Compatibles/400 command will be stored
in the CIU until the DATANET-30 program is able to service the request. Conversely, the
CIU will request service from the processing system and store the request until the latter can
respond.

All data transferred thru the CIU-931 is parity checked for accuracy. In the event of a parity
error, an appropriate signal is generated in the CIU.

DATANET =30

1-6

THE CONTROLLER SELECTOR

The controller selector permits attaching computer-type peripherals to the DATANET-30.

Eight high-speed channels may be connected to the controller selector enabling the transfer
of data to and from the DATANET-30 on a memory interrupt basis. The eight high-speed
channels, numbered O through 7, operate on a priority basis, with channel 0 having the highest
priority and channel 7 the lowest.

The controller selector channel priority assignment is:
Channels 0-5 - Any combination of:

Single-access disc storage units
Dual-access disc storage unit
Magnetic tape controller

Each disc storage unit controller may have 4 disc storage units.

Each magnetic tape controller may have 8 tape handlers.

DATA COMMUNICATIONS PROCESSOR
Data Flow

The DATANET-30 is organized on an 18-bit parallel, bus logic arrangement. Figure 4is a
basic. diagram of the principal internal working units of the communications processor. The
data is transferred from memory to the arithmetic unit or from a working register through
the lower data bus and the Y-register to the arithmetic unit. The Y-register holds the data
while it is being processed by the arithmetic unit. After the data has been processed by the
arithmetic wunit, it is sent to the Z drivers, which are a common distribution center for all
data coming from the arithmetic unit and going to a working register, memory, control unit,
or an input/output channel. The plus, zero, and even flip-flops also connected to the Z drivers
will reflect the branch conditions of any data sent through the Z drivers. For example, if a
word coming from memory and going to a working register is plus, non-zero and odd, the branch
- conditions would be plus, non-zero, and odd. If the data word was all zeros the branch conditions
would be 'plus, zero, and even. From the Z drivers the data flows along the upper data bus to
a working register, an input/output channel, or to the memory, according to the instruction
currently being executed.

In Figure ‘5, the buffer selector and controller selector have been added to Figure 4. Data
coming from a working register, going to a transmit data line, flows under program control
from a specified register to the lower data bus into the Y-register. From the Y-register the

DATANET=30

I-7

Plus | Zero |Even

| ‘t
Upper Data Bus

Z Drivers
Registers Arithmetic
Unit

A A

- Y-Register

Working f | Memory
|
1

Lower Data Bus

Figure 4. Basic Block Diagram

data flows through the arithmetic unit and the Z drivers onto the upper data bus, where it is
then distributed to the buffer selector. The buffer selector then passes the data along to the
proper output channel.

Data being received from a specified remote terminal is temporarily stored in a bit buffer,
word buffer, or character buffer. The buffer selector then passes the data from the receive
buffer channel through the receive data lines to the lower data bus, where it is then sent to
the Y-register. From the Y-register the data is sent through the arithmetic unit to the
Z drivers, where it is then distributed to the proper working register under program control.

The flow of data to and from the controller selector follows the same paths as for the buffer
selector, with the exception that data going to a high-speed peripheral comes from memory
and data coming from a high-speed peripheral is put into memory without first going through
a working register.

Data flows to and from the controller selector under automatic control of the DATANET-30
circuitry.

DATANET= 30

I-8

Plus | Zero|Even

A
Upper Data Bus »

Z Drivers
Y [
Working Memor Arithmetic
Registers y Unit

| 1

Lower Data Bus

; Y-Register
I t :

¢ ,

Receive
and Xmit. Data
Data Lines Register
0 e 0 0l27 0 e o o o 7
Channels Channels
Buffer Selector Controller Selector

Remote
Terminal

Q-

High-Speed Peripherals

Figure 5. Basic Block Diagram

DATANET =80

Detailed Block Diagram

The detailed block diagram (Figure 6) shows many more data paths of the communications
processor, including those for the memory unit, the buffer selector, and the controller selector;
but the overall pattern of data flow still applies. In general, data flows from one or more registers
to the lower data bus, through the Y-register to the arithmetic unit, to the Z drivers, and then
to one or more of the registers connected to the upper data bus. Data may also go from the
memory to the arithmetic unit at the same time that data is coming from the Y-register.

The register transfer instructions, a major class of instructions, permit any combination of
up to six (specific) registers to be combinedin the Y-register, to be manipulated in some selected
manner, and then have the result putinany combination of up to four (specific) registers. Further
details of the register transfer instructions are given in the discussion of the instruction reper-
torie.

Description of Registers

This section contains information about each of the blocks on the detailed block diagram. Certain
conventions are followed: ‘ ‘

First Item: The size of the register.

Second Item: The abbreviation for the name of the register (no abb. means no abbreviation
is used).

Third Item: A or N, to indicate that the register is accessible or is not directly acces~

sible to the program.

A-Register (18 bits, A, A)

B-Register (18 bits, B, A)

The A and B registers are the principal working registers of the DATANET-30. They are
identical and have identical functions and instructions except for the parity network, which is
connected to just the B-register.

‘C-Register (7 bits, C, A)

The C-register is used to specify a particular input/output channel of the buffer selector. In
addition, C can be used as a normal index register when indirect addressing is used.

L-Register (14 bits, L, N)

The L-register contains the address of the next memory location to be accessed. In the step/
stop mode, the register will contain the operand address of the instruction last executed.

DATANET =80

I-10

0% = LaANV.LVC

*g 2andtg

CONTROLLER CONTROLLER

CONTROLLER '
SELECTOR

- e 1

11-1
“wreaderq Joord parrenq

| |
I paTA ADDRESS 1
| REGISTER REGISTER |
21 15
| BRANCH FLIP-FLOPS
| | PLOS 2ERO
| |
S O S O [
Z DRIVERS
18
| I ———1-
INTERNAL !
A B c Q P L MEMORY
FUNCTION REGISTER REGISTE STER COUNTER COUNTER REGISTER ADDRESS i
DRIVERS o 18 * 18 R 7 14 15 15 ! LINES 15 |
l MAGNETIC I A L S B C
MEMORY D 0 H | H
bl ee fmemt oo |Toa
E I F N
MEMORY | mone ol | A I A
UNIT | £
Se=smnal
N REGISTER
p—— REGISTER , l 18 |
STATUS |
LINES | |
- -_————— - — —
Y REGISTER
18
—— e e ——— ————m———— — =7
| INSERT
| SWITCRES
18
EXTERNAL RECETVE ERTERNAL BUFFER
FUNCTION DATA STATUS gwss
DRIVERS | o LINES LINES e [

; T i b

F—————-

FFER
ECTOR

mw®
ra

_________________ S| S

PAPER TAPE J BUFFER # 1 BUFFER # 127

N-Register (7 bits, N, N)

The N-register is used to facilitate the instruction decoding process. The register contains
the high order 7 bits of the instruction to be executed. In the step/stop mode, the register
will contain the operation code of the last instruction executed. '

P-Counter (14 bits, P, A)

The P-counter contains the address of the next instruction to be executed. Some bits of the
P-counter are used for generating addresses. The P-counter will count up through program
banks.

Q-Counter (14 bits, Q, A)

The Q-counter serves as the elapsed time clock.

Y-Register (18 bits, Y, N)

The Y;-register is used to form and hold the intermediate operand for an instruction.

Z Drivers (18 bits, Z, N)

The Z drivers are a common data distribution center for all data coming from the arithmetic
unit and going to a working register, memory, control unit, or an input/output (I/0) channel.
Data passes through the Z drivers without delay enroute to the destination determined by the
instruction being executed at the time that the data exists in the drivers.

Arithmetic Unit (18 bits, no abb., N)

The arithmetic unit performs the following functions on the contents of Y and/or M and puts
the result into the Z drivers:

Binary addition

Logical AND

Logical OR

Logical EXCLUSIVE OR
Shift left, right, circulate
Bit change

Address modification.

o

NpoR e s

Branch Flip-Flops (BFF’s, A)

The plus, zero, and even flip-flops are connected to the Z drivers. These three flip-flops
are set at the completion of every non-branch instruction and will reflect the branch conditions
of any data passing through the Z drivers. The plus FF (PFF) stores the status of the high

DATANET =80

I-12

order bit of the result Z(18). The zero FF (ZFF) stores the status of the entire result Z(1-18).
The even FF (EFF) stores the status of the low order bit Z(1) of the result. The results of an
operation is available for test on the next instruction. When the branch is based on contents
of the C-register, only Z(1-7) are reflected in ZFF and EFF. When the branch is based on
the internal status lines, only Z(1-10) are reflected in ZFF and EFF.

Plus Flip-Flop (1 bit, PFF, A)

The PFF records (for testing) the condition of Z(18) at the end of an instruction. If Z(18) was
zero, the PFF would be plus; but if Z(18) was one, the PFF would be minus. The notation Z(18)
refers to bit position 18 of Z -- that is, the high order position of Z.

Zero Flip-Flop (1 bit, ZFF, A)

The ZFF records (for testing) the condition of Z at the end of an instruction. If all of the Z
drivers were zero, the ZFF would be zero; but if-any one of the Z drivers were non-zero, the
ZFF would be non-zero.

Even Flip-Flop (1 bit, EFF, A)

The EFF records (for testing) the condition of Z(1) at the end of an instruction. If Z(1) was
zero, the EFF would be even; but if Z(1) was one, the EFF would be odd.

On double length instructions (AMD, LDD, STD) the branch flip-flops indicate the following:

18 { Mor A 1 18 M+l or B 1
\ o~ J
Plus Even
FF Zero FF
FF

Thus the last word through the Z drivers can be tested for being:
1. Plus or minus (sign bit)

2. 0Odd or even (numerical sense)
3. All zeros or not all zeros.

Insert Switches (18 switches, S, A)

The switches are located on the control console and are described in the discussion of the
control console. They can be gated in under program control.

DATANET =80

I-13

Internal Function Drivers (10 drivers, IFD, A)

These drivers can activate special control functions. These functions are listed under “Special
Instructions” as the Drive Internal Function (DIF) instructions.

Internal Status Lines (10 lines, ISL, A)

These lines are used to test the status of various special conditions. These conditions are
listed under “Special Instructions” as the AND Internal Status (NIS) instructions.

THE MEMORY UNIT

M-Register (18 bits, no abb., N)

The M-register is the memory output register. References to M in many places in this manual
refer to the contents of a memory location, which is actually made available in the M-register.
In the step/stop mode, the register will contain the contents of the last memory location accessed
as specu”led by L :

Memory Drivers (18 drivers, no abb., N)

The memory drivers are used to write a new word into the memory and to regenerate a word
when it is read out of the memory.

Memory Address Lines (14 lines, no abb., N)

These contain the address of the memory location being accessed.

THE BUFFER SELECTOR

Receive Data Lines (21 lines, R, A)

These lines are used to receive data from all buffer units on the buffer selector.

Transmit Data Drivers (21 drivers, T, A)

These drivers are used to send data to all buffer units on the buffer selector.

External Function Drivers (10 drivers, EFD, A)

These drivers are used to send control signals to a buffer unit. The function of each driver
depends on the particular type of buffer unit. The functions are listed under “Buffer Selector
Instructions” as the DEF instructions.

DATANET =30

I-14

External Status Lines (10 lines, ESL, A)

These lines are used to test various conditions in a buffer unit. The condition tested by each
line depends on the particular buffer unit. The conditions are listed under “Buffer Selector
Instructions” as the NES instructions.

Buffer Address Decode (128, N)

This unit decodes the C-register into a 1 out of 128 signal to select the desired buffer address.

THE CONTROLLER SELECTOR

Data Register (21 bits, no abb., N)

The controller selector data register contains the data being transferred between the controller
selector and the DATANET-30.

Address Register (14 bits, no abb., N)

The controller selector address register contains the address of the next memory location
to be accessed by the controller selector.

PARITY NETWORKS (21 bits, no abb., A)

Although not shown on the block diagram, the parity networks are attached to the B-register
and consist of a word parity network and a character parity network.

There are two outputs from the parity network, one for character parity and one for word parity.
Either output may be tested to check incoming data. The appropriate output is automatically
sent to a buffer unit when information is transmitted.

The input to the word parity network consists of the 18 bits of the B-register and the control
bit 1 and control bit 2 flip-flops. The output of the word parity network is bit 21 and is used
with the word buffer channel and CIU. The inputs to the character parity network are bits
1-6 of the B-register and the control bit 1 and 3 flip-flops. The character parity is used almost
exclusively for generating correct parity on 8-level teletype characters. Each time a word
.is brought into the B-register, the word parity network will generate correct parity on it. At
the same time, proper character parity will be generated on bits 1-6 of the B-register.

CONTROL BITS 1, 2 and 3

The control bits are special-purpose flip-flops and are used as needed. Since there are 21
receive data lines and the registers are 18-bit registers, the receive data lines 19, 20, and
21 go to control bits 1, 2, and 3, respectively. Control bit 3 is also referred to as the “parity
bit.” The following chart shows the instructions and conditions affecting the control bits.

DATANET =380

1-15

CB1 CB2 CB3 (Parity)
Buffer Selector
Receive Data Lines 19 20 21
Instructions
BCO Y09 Resets only Y06
NIS NIS 8 NIS 9 NIS O
DIF DIF 8 DIF 9 DIF O
LDF Z08 z09 Z10
STF z08 z09 z10 /

The paper tape reader also uses the control bits in a special way when reading paper tape

under program control.

The transmit data lines use the control bits as follows.

Ellzolwlls

ll Transmit Data Lines

CB3 |_CBL2| | 18

1 B-register

\,

~"

Parity Network

When transferring data to a word buffer or a CIU, where a parity bit is needed, put a word in
the B-register, set bits 19 and 20 as required (DIF instructions) and when a Register Transfer
instruction is executed, the proper parity will go to line 21.

DATANET =30

1-16

Instruction Cycles

The following examples illustrate typical situations and the flow of information by large lines
with arrowheads indicating the direction of flow. The steps are numbered to tie in with the
corresponding explanation. These examples are for one 6.94 microsecond word time each.

The function the instruction cycle (Figure 7) performs is the initial decoding of the instruction
and the generation of the desired memory address and its transfer to the L-register. This
prepares the DATANET-30 for the execution cycles to follow:

18

1. At the very start of the instruction cycle (actually slightly before) the address of the
next instruction is transferred from P to L. After this takes place, P is incremented
by plus 1.
2. The L-register is transferred to the memory address lines.
3. When the instruction is read out, it is transferred from M to N where, in this example,
a non general instruction is decoded.
4. After the instruction is decoded the address modification mode is decoded and the
correct section of the arithmetic unit enabled (see “Addressing Memory”).
5. The desired memory address is transferred from the arithmetic unit to Z.
6. The address is then sent to L to prepare for addressing memory on the next cycle.
7. Simultaneously with steps 3, 4, and 5, the contents of M are being regenerated by the
memory drivers. \
. |
xEcTsTER . |
l EU:RMCH;;P‘MHM
I
_______________ A 1
|
B c Q 5
REGISTER REGISTER COUNTER ib I
18 7 14 1 |
1 2 f— |
/4' CORE m:s | ARITHMETIC
MEMORY | MEMORY 18 oNIT
UNIT | I
; |
N REGLSTER
REGISTER ; 18 '
3 | 7 |
,_] L — 4

DATANET =80

Figure 7. Detailed Block Diagram DATANET -30
Instruction Cycle

I-17

LOAD A-REGISTER (LDA) EXECUTION CYCLE. This instruction performs the function of

transferring information from M to A (Figure 8):

1.

The operand address in L is transferred to the memory address lines for accessing
the memory. ~

The contents of M are transferred to the arithmetic unit.
The contents of M are transferred through the arithmetic unit to Z.
The contents of M are transferred from Z to A, thus loading A with the contents of M.

Simultaneously with steps 2, 3, and 4, the contents of M are being regenerated by the
memory drivers.

The branch flip-flops store the plus, zero, and even conditions of the contents of
memory.

r——— e e e e, — — — — — —
!
AIDRESS
REGISTER ‘
b BRANCH FLIP-FLOPS
| PLUS R0 EVER
|
4 6
Z DRIVERS
18
3
ARITRMETIC
UNIT
2
ﬁ Y REGISTER

DATANET =30

18

INSERT
SWITCHES
18

Figure 8. Detailed Block Diagram DATANET-30
Load A (LDA)

1-18

STORE B-REGISTER (STB) EXECUTION CYCLE. Information is again transferred from B

to the memory (Figure 9):

1.

The operand address in L is transferred to the memory address lines for accessing

the memory.

The contents of B is transferred to Y while the memory is being read out and cleared.

B is transferred from Y to the arithmetic unit.

B is then transferred to Z.

The contents of B is then transferred from Z to the memory drivers for the generation
in memory of the new information.

The branch flip-flops store the plus, zero, and even conditions of the contents of B,

DATANET =380

18

B
REGISTER
18

ARITHMETIC

|
MEMORY /4;
UNIT

N
REGISTER

Y REGISTER

INSERT
SWITCHES
18

Figure 9. Detailed Block Diagram DATANET-30

Store B (STB)

I-19

ADD MEMORY TO A-REGISTER (AMA) EXECUTION CYCLE, This instruction replaces A
with the sum of A and M, and regenerates Mﬁlg‘ure 10): ‘ ’

1. The operand address in L is transferred to the memory address lines for accessmg
memory.

2. The contents of A is transferred to Y while the memory is being read out.
3. The contents of M is read from memory and transferred to the arithmetic unit.
4. The contents of A is transferred through Y to the arithmetic unit.

5. The binary arithmetic sum of M and A is generated by the arithmetic unit and transferred
to Z.

6. The sum in Z is transferred to A.

7. Simultaneously with steps 3, 4, 5, and 6, the contents of M are bemg regenerated by
the memory drivers.

8. ’I‘he branch ﬂ1p ﬂops store the plus, Zero, and even conditions of the bmary ar1thmet1c
sum of A and M.

4o ¢ 7

Figure 10. Detailed Block Diagram DATANET-30
Add Memory to A (AMA)

DATANET =30

I-20

SHIFT RIGHT ONE (SR1) BR,B CYCLE. This instruction performs the Shift Right One (SR1)
function in one word time (Figure 11):

1. At the very start of the instruction cycle (actually slightly before) the address of the
next instruction is transferred from P to L. After this takes place, P is incremented
by plus 1.

2. The L-register is transferred to the memory address lines.

3. When the instruction is read out, it is transferred from M to N where, in this example,
a general instruction (SR1 BR,B) is decoded.

4. After the instruction is decoded, the contents of B are transferred to Y.

5. Simultaneously with step 3, the contents of R are transferred to Y.

6. The logical OR of B and R is done in Y and transferred to the arithmetic unit.

7. The arit\hmeti,c unit performs a SR1 function on Y and transfers the result to Z.
8. The result in Z is transferred to B.

9. Simultaneously with steps 3, 4, 5, 6, and 7, the contents of M are being regenerated
by the memory drivers.

10. The branch f{lip-flops store the‘plus, zero, and even conditions of the new contents
of B.

BRANCH FLIP-FLOPS
2230 EVER

T
Z DRIVERS

18

ARITHMETIC

Y REGISTER

Figure 11. Detalled Block Diagram DATANET-30 Shift Right 1 Receive Lines
Lo to B-register (SR1 BR, B)

DATANET = 80

I-21

Paper Tape Reader

The paper tape reader will read 5-, 6-, 7-, or 8-level tape under program control, or 8-level
tape under hardware control. When reading is done under hardware control, this is referred
to as “hardware load.” Normally, 8-level tape is used in both cases.

The reader is permanently tied to buffer selector address 0. It operates like any other remote
terminal connected to the buffer selector when under program control, in the sense that it uses
the external function drivers for control and the external status lines for testing. As information
is read, it is transferred into input buffer 0 and the receive flag is set to indicate that data is
present. This flag may be tested by an NES command.

The primary function of the paper tape reader is to contain either a bootstrap program to be
used at the start of a day, or a special restart and error recovery program to be used in the
event that an error condition develops in the execution of the normal program.

The secondary function of Hardware Load and the paper tape reader is to initially load the
programs into memory. Once the programs are loaded, they may be stored in the disc storage
unit or on magnetic tape and recalled as necessary.

The third possible function is to enter data via the paper tape reader under program control.
This is not a normal usage, however, and is more of an exception than a rule to the intended
use of the reader.

Hardware Load

Hardware Load is a process whereby data is trans-
ferred from the paper tape reader to memory under
hardware control. This is used for initial loading of
programs, for the loading of maintenance diagnostics

when necessary, and for the automatic restart of an
operating program upon discovery of a fault condition,

Hardware load may be initiated in five ways,

1. Manually from the control console.

2. By execution of a DIF 4 instruction,

3. When Q counts down to -32.

4, When the second LDQ instruction is executed
after a program interrupt occurs while in

the operate mode.

5. When in the operate mode and a halt occurs.

Figure 12. Paper Tape Reader

DATANET =80

1-22

Hardware Load has a special format. The generation of paper tape in the hardware load format
is described in the section on programming the paper tape reader.

The Elapsed Time Clock (Q-counter)

The DATANET-30 is a real time data communications processor. Real time programs have
a periodic nature of operation. The elapsed time clock (the Q-counter) provides an efficient
technique for achieving this.

The Q-counter is loaded by the program, and is counted down one each word time. This serves
as a word/time counter. Q can be loaded with any number between -32 and +16,351. If loaded
with 16,351, this is equal to approximately 112 milliseconds.

When Q counts down to zero, a program interrupt is initiated, thus permitting the periodic
execution of programs at any period up to 112 milliseconds. The Q-counter may be used as
a relatively accurate real time clock by counting the number of program interrupts when they
occur. For example, if a delay of 900 milliseconds is desired and the communication lines
are scanned every 12.5 milliseconds, then a count of 72 interrupts equals 900 milliseconds.

The Q-counter and Hardware Load

The Q-counter also serves as a reliability check on the system. When Q counts down to -32,
the DATANET-30 assumes a circuit failure and automatically initiates loading a restart pro-
gram by initiating hardware load. Successful operation of the programs depends on preventing
Q from counting to -32 and reading in a restart program. This is achieved in the Program
Interrupt Routine by loading the Q-counter before it counts down to -32. Also, in the operate
mode, protection against a “dead loop” which includes an instruction to load the Q-counter,
has been achieved by counting the number of times the counter has been loaded since the last
program interrupt. Hardware load will be initiated upon execution of the second Load Q instruction.
This assures that the Program Interrupt Routine is executed periodically. The Program Inter-
rupt Routine may be written to check the program and initiate a hardware load if a fault is found.
This hardware-software feature provides a very adequate check on the proper operation of the
program. In the event that certain programs do not require a periodic interrupt, this feature
may be inhibited by the Q-counter switch on the operating panel.

Upon the completion of loading the restart program, control is returned to the program and
the necessary details involved in the restart process are completed.

DATANET =80

I-23

INSTRUCTION FORMATS
There are two main groups of instructions:

1. Non-general instructions - Those for which the low-order bits specify a memory
address -- for example, memory reference instructions which may be subject to
address modification.

2. General instructions - Those for which the low-order bits contain information to be
used by the instruction.

The notation I () refers to the contents of an instruction word. General instructions may
be recognized by the fact that the three high-order bits, I (16-18), are all zeros. (When expressed
in octal notation, the general instructions start with a 0 in the high order position).

There is one format for non-general instructions and three for general instructions (register
transfer, status line and function driver, and C-register instructions).

Non-general Instructions

The non-general, or memory reference, instructions have four fields:

— Operation Code
Indirect Addressing Bit
Addressing Mode

Partial
Memory Address

18 13 12 11 10 9 1 Position in the
Instruction Word, I

DATANET = 30

1-24

General Instructions
The fields for the three types of general instructions are as follows:

1. The register transfer instructions have three fields:

Operation Code

FROM Registers A,B,C,Q,R,S

l— TO Registers A,B,C,T,Z

18 17 16 15 12 11 10 9 8 7 6 5 4 3 2 1

2. The status line and function driver instructions have two fields:

Operation Code

Which Lines or Drivers

18 17 16 15 11 10 1

3. The C-register instructions have two pertinent fields:

Operation Code

I—The Value I

(8 bits) Not Used (7 bits)

18 11 10 9 8 7 1

DATANET =80

1-25

REPRESENTATION OF INFORMATION IN MEMORY

Alphanumeric Data

Each DATANET-30 word can contain three six-bit alphanumeric characters. The 64 possible
bit combinations can be assigned to 64 symbols in any manner desired, because the DATANET-
30 does not use alphanumeric data as a unique code. Therefore, other system conditions will
determine the actual bit-pattern-to-symbol assignment. An alphanumeric data word would look
like this in memory:

1st Character

2nd Character

3rd Character

r

18 13 12 7 6 1

Each DATANET-30 word can contain two eight-bit alphanumeric characters. The particular
code set used is dependent primarily on the remote terminals. This word might appear as
follows:

Spare lst Character

[__ 2nd Character

18 17 16 9 8 1

Eight-level teletype characters can be stored conveniently in memory as six-bit characters.
The DATANET-30 has two special instructions to facilitate stripping off and checking the parity
and control bits when a character is received, and generation and insertion of parity and control
bits when a character is to be transmitted. If desired for some applications, two eight-level
characters could be stored in a word as eight-bit characters including the parity and control bits.

1st Character

2nd Character

3rd Character

Three 8-level characters
stripped of control and
parity bits.

18 13 12 7 6 1 -

DATANET =80

1-26

Spare
———1st Character

2nd Character

0 0 C D D P D D D D C D D P D D D D

18 17 16 9 8 . 1

Two 8-level characters still containing parity and control bits, where:

C = Control Bit
D = Data Bit
Parity Bit

-9
Il

Numeric Data

Positive numbers are represented by integers. Negative numbers are represented in the 2’s
complement form. The DATANET-30 utilizes 2’s complement arithmetic. Therefore, the
high-order bit is properly thought of as the sign bit, when it is understood that the sign is a
2’s complement sign, not an algebraic sign. The bits are shown in groups merely to simplify

the presentation. There is no hardware sign bit in either the A or B registers. The sign is
always programmed.

The Sign (in the two's
complement sense)

The Number

18 |17 1

The number is considered a 17-bit number with bit 18 as the sign bit. In case of overflow
of a positive number into bit 18 position, the sign changes and goes negative. Conversely, with
a negative number, bit 18 will change in the event of overflow. This condition is tested with
a Branch On Plus or Branch On Minus instruction.

DATANET =380

1-27

Examples of binary representation of numeric data are shown below:

SIGN

216 ,15 214 213 512 211 710 59 ,8

27

2

6

0 00 000 000 000 000 000
18 17
0 00 000 000 000 000 101
18 17
1 11 111 111 111 111 011
18 17
1 11 111 111 111 111 111
18 17
1 00 000 000 000 000 001
18 17
0 11 111 111 111 111 111
18 17

DATANET =80

0 (negative zero is
not permissible)

+5

-131,071 (the largest
negative number)

+131,071 (the largest
positive number)

1-28

Double Length Binary Data

There are instructions which perform operation on double length words (36 bits). The numerical
range is increased from (-131,071 to +131,071) to (-34, 353, 367 368 to +34, 359, 738, 367).

These double length words are stored in memory and the registers as below, where M(18),
A(18) is a “two” complement sign. M must be even for all double length instructions.

SIGN M M+1

HIGH LOowW
ORDER 18 1§18 1] ORDER

The branch flip-flops are treated in a special manner by the three double length instructions
(LDD, STD, AMD). The plus flip-flop is set on A(18). The zero flip-flop is set on the entire
36 bits of the double length result. The even flip-flop is set on B(1). The sign is programmed.

DATANET =30

I-29

II. INSTRUCTION REPERTOIRE

There are over 78 basic instructions with many variations of some of them. These are classified
into three groups:

1. Internal instructions

2. Buffer selector instructions
3. Controller selector instructions.

INTERNAL INSTRUCTIONS

The internal instructions are further classified into eight subgroups:

1. Load

2. Store

3. Arithmetic

4. Logical

5. Register Transfer
6. Branch

7. Macro

8. Special

In the following discussion, an M in the “Operand” column means that the instruction refers
to a memory location. All such instructions use one of the addressing modes; therefore, no
specific mention is made of these modes here.

I or FROM, TO in the operand column means that the information to be used in executing the
instruction is made up of the bits in the low-order part of the instruction itself.

For brevity, the notation I (1-7) will be used for the 7 low-order bits of the instruction word.
B (18) stands for the high-order bit of B. M stands for all 18 bits of the memory location;
B stands for all 18 bits of the B-register; C stands for all 7 bits of the C-register, etc.

DATANET =30

At times the discussion will refer to M as a memory location. It should be understood that what
is really meant is the effective address -- that is, the memory location specified by M and
the addressing mode. M is used for brevity.

The following word times assume that direct addressing is used. Add one additional word
time when using indirect addressing. All instructions that address memory are also indirectly
addressable.

DATANET = 30-

Load Instructions
Mnemonic
LDA

LOAD A.

LDB

LOAD B.

LDC

LOAD C.

LDD

LOAD DOUBLE.

LDQ

LOAD Q.
LDz

LOAD Z,
CMA

COMPLEMENT MEMORY TO A,

Operand

M

Word Times

2

The contents of M replace the contents of
A. The contents of M are unchanged.

2

The contents of M replace the contents of B.
The contents of M are unchanged.

2

The contents of M (1-7) replace the contents
of C. The high order bits of M are ignored
and M is unchanged.

3

The contents of M (1-18) replace the contents
of A. The contents of M+1 replace the contents
of B. M must be even. M and M+1 are un-
changed.

2
The contents of M replace the contents of Q.
The contents of M are unchanged.

2
The contents of M is placed only in Z and the
branch flip-flops. M remains unchanged. Z
sets up the branch flip-flops.

2
The 1’s complement of the contents ofM replaces

the contents of A. The contents of M are un-
changed.

DATANET =80

Mnemonic Operand Word Times
CMB M 2
COMPLEMENT MEMORY TO B. The 1’s complement of the contents of M

replaces the contents of B. The contents of
M remain unchanged.

PIC I 1

PLACEIINC. I (1-7) is placed in C. 1 is bits 1-7 of the
instruction.

DATANET =80

Store Instructions

Mnemonic Operand
STA M
STORE A.

STB M
STORE B.

STC M
STORE C.

STD M

STORE DOUBLE.

STZ M
STORE ZERO.

CAM M

COMPLEMENT A TO MEMORY.

CBM M

COMPLEMENT B TO MEMORY.

CMM M

COMPLEMENT MEMORY TO
MEMORY.

Word Times

2

The contents of A replace the contents of M.
The contents of A remain unchanged.

2

The contents of B replace the contents of M.
The contents of B remain unchanged.

2

The contents of C are stored in M (1-7). The
contents of M (8-18) are reset to zero and C
remains unchanged.

3

The contents of A are stored in M and the
contents of B are stored in M+1. M must be
even. The contents of A and B are unchanged.

A zero is stored in M.

2

The 1’s complement of the contents of A is
stored in M, The contents of A remain un-
changed.

2
The 1’s complement of the contents of B is

stored in M. The contents of B remain un-
changed.

2

The 1’s complement of the contents of M is
stored in M, the same memory location.

DATANET =30

Arithmetic Instructions
Mnemonic

AMA

ADD MEMORY TO A.

AMB

ADD MEMORY TO B.

AIC

ADDITO C.

AMD

ADD MEMORY DOUBLE.

AAM

ADD A TO MEMORY.

ABM

ADD B TO MEMORY.

ADO

ADD ONE.

DATANET =80

Operand

Word Times

2

The contents of M are added to the contents
of A and the result is placed in A.

2

The contents of M are added to the contents of
B and the result is placed in B.

1

I (1-7) are added to the contents of C and the
result is placed in C.

3

The contents of M+1 are added to the contents
of B and the result is placed in B, and the
contents of M and a carry from the first are
added to the contents of A and the resultis
placed in A. M must be even. M and M+1 are
unchanged.

2

The contents of A are added to the contents of
M and the result is stored in M. A remains
unchanged.

2

The contents of B are added to the contents
of M and the result is stored in M. B remains
unchanged.

2

One is added to the contents of M and the result
is stored in M.

11-6

Mnemonic __erand
SBO M

SUBTRACT ONE.

AAZ M

ADD A TO Z.

ABZ M

ADD B TO Z.

Word Times
2

One is subtracted from the contents of M and
the result is stored in M.

2

The contents of A are added to the contents
of M. The result in the Z drivers is placed
only in the branch flip-flops. A and M are
unchanged.

2

The contents of B are added to the contents
of M. The result in the Z drivers is placed
only in the branch flip-flops. B and M remain
unchanged.

DATANET =30

Logical Instructions

The truth table for the logical AND function is:

Y
(4,B,C)

—~HOoOo

Mnemonic

NMA

NMB

NAM

NBM

NAZ

DATANET =80

AND MEMORY TO A.

AND MEMORY TO B.

AND A TO MEMORY.

AND B TO MEMORY.

AND A TO Z.

M
(M,1)

Ok O

erand

Word Times
2

A logical AND is performed with the contents
of M and the contents of A. The result is placed
in A.

2

A logical AND is performed with the contents
of M and the contents of B. The result is placed
in B.

2

A logical AND is performed with the contents
of A and the contents of M. The result is stored
in M.

2

A logical AND is performed with the contents
of B and the contents of M. The result is stored
in M.

2

A logical AND is performed on the contents
of A and the contents of M. The result in the
Z drivers is placed only in the branch flip-
flops. A and M remain unchanged.

I1-8

Mnemonic Operand

NBZ M
AND B TO Z.

NCZ 1
AND C TO Z.

The truth table for the logical OR function is:

Y
(A,B)

- -0 0

RMA M
OR MEMORY TO A.

RMB M
OR MEMORY TO B.

RAM M

OR A TO MEMORY.

= Ok O

Word Times
2

A logical AND is performed on the contents
of B and the contents of M. The result in the
Z drivers is placed only in the branch flip-
flops. B and M remain unchanged.

1

A logical AND is performed on I (1-7) and the
contents of C. The result in the Z drivers is
placed only in the branch flip-flops. C remains
unchanged.

A logical OR is performed with the contents
of M and the contents of A. The result is placed
in A.

2
A logical OR is performed with the contents of
M and the contents of A. The result is placed
in A.

2
A logical OR is performed with the contents

of A and the contents of M. The result is stored
in M.

DATANET =80

Mnemonic Operand Word Times

RBM M 2
OR B TO MEMORY. A logical OR is performed with the contents of
B and the contents of M. The result is stored
in M.

The truth table for the logical EXCLUSIVE OR function is:

M
,C) (M,I) (A,B,M)

-0 O

XMA M 2
EXCLUSIVE OR MEMORY TO A. A logical EXCLUSIVE OR is performed with

the contents of M and the contents of A. The
result is placed in A.

XMB M : 2
EXCLUSIVE OR MEMORY TO B, A logical EXCLUSIVE OR is performed with

the contents of M and the contents of B. The
result is placed in B.

XAM M 2
EXCLUSIVE OR A TO MEMORY. A logical EXCLUSIVE OR is performed with

the contents of A and the contents of M. The
result is stored in M.

XBM M 2

EXCLUSIVE OR B TO MEMORY. A logical EXCLUSIVE OR is performed with
the contents of B and the contents of M. The
result is stored in M.

DATANET =30

II-10

Mnemonic Operand
XAZ M

EXCLUSIVE OR A TO Z.

XBZ M

EXCLUSIVE OR B TO Z.

XCz : I

EXCLUSIVE OR C TO Z.

Word Times
2

A logical EXCLUSIVE OR is performed on the
contents of A and M. The result in the Z
drivers is placed only in the branch flip-flops.
A and M remain unchanged.

2

A logical EXCLUSIVE OR is performed on the
contents of B’ and the contents of M. The
result in the Z drivers is placed only in the
branch flip-flops. B and M remain unchanged.

1

A logical EXCLUSIVE OR is performed on I
(1-7) and the contents of C. The resultin Z
is placed only in the branch flip-flops. C re-
mains unchanged.

DATANET =30

I-11

Register Transfer Instructions

All of the register transfer instructions use the low order bits of the instruction to specify
which locations are to be included in the FROM group and which in the TO group. The possi-
bilities are:

Bit Position in I

FROM: The A-register - 1
The B-register -
The C-counter -
The Q-counter -
The receive data lines -
(From X, the address of a
particular buffer)
The insert switches - 5
Zero is transferred to the
specified TO location

DO QW
R =)

QW

TO: The A-register -
The B-register -
The C-counter -
The transmit data lines -
(To X, the address of a
particular buffer)
Z The Z-drivers; FROM remains
unchanged.

HQW >
(S R RN

If R, S, or T is specified, the control bit 1, control bit 2, and parity flip-flops (internal functions)
are used for the “extra” positions, since R, S and T are all more than 18 bits.

Any register specified in the FROM group will remain unchanged after the register transfer
operation if it does not appear in the TO group. If R is specified in the FROM group, after the
data is transferred, the receive flag and receive data buffer are reset by an automatically
generated signal activating external function driver 1 (DEF1).

With the exception of T in the TO group, the TO register will contain the result after a register
transfer instruction. If T is specified in the TO group, before the data is transferred, the
transmit flag and transmit buffer are reset by an automatically generated signal activating
external function driver 2 (DEF2).

When a register transfer instruction is executed, the contents of those registers which are
specified to be used as the FROM group for this instruction are logically OR-ed together into
the Y-register. Then the data goes from Y to Z with the operation specified by the instruction
being performed on the data as it goes from Y to Z. Finally the result goes from the Z drivers
to all of those registers which are specified inthe TO group. The plus, zero, and even flip-flops

DATANET =80

II-12

will take on their new states in the normal manner. If no registers are specified in the FROM
group, the output from the Y-register will be zero. If no registers are specified in the TO
group, the only outputs are the new states of the plus, zero, and even flip-flops. Register transfer
instructions with more than one register in the FROM and TO groups can be specified. For
example: TRA O,ABC; TRA ABC,Z; SL6 BC,AB.

Mnemonic Operand Word Times
TRA FROM, TO 1
TRANSFER. In going from Y to Z, no change is made in
the data.
TRC FROM, TO 1
TRANSFER COMPLEMENT. In going from Y to Z, the data is changed into

its 1’s complement.

SL1 FROM, TO 1

SHIFT LEFT ONE. In going from Y to Z, the data is shifted left
one position. The high-order bit is lost and
a zero goes into the low-order position.

SR1 FROM, TO 1

SHIFT RIGHT ONE., In going from Y to Z, the data is shifted right
one position. The low-order bit is lost and a
zero goes into the high-order position.

SL6 FROM, TO 1

SHIFT LEFT SIX. In going from Y to Z, the data is shifted left
six positions. The six high-order bits are lost
and zeros go into the six low-order positions.

SR6 FROM, TO 1

SHIFT RIGHT SIX. In going from Y to Z, the data is shifted right
six positions. The six low-order bits are lost
and zeros go into the six high-order positions.

DATANET =30

II-13

Mnemaonic Operand Word Times
CL1 FROM, TO 1

CIRCULATE LEFT ONE. In going from Y to Z, the data is circulated
left one position. The high-order bit goes
into the low-order position; no bits are lost.

CRI1 FROM, TO 1

CIRCULATE RIGHT ONE. In going from Y to Z, the data is circulated
right one position. The low-order bit goes
into the high-order position; no bits are lost.

CL8 FROM, TO 1

CIRCULATE LEFT SIX. In going from Y to Z, the data is circulated
left six positions. The six high-order bits
go into the six low-order positions; no bits
are lost.

crs FROM, TO 1

CIRCULATE RIGHT SIX. In going from Y to Z, the data is circulated
right six positions. The six low-order bits
go into the six high-order positions; no bits

are lost.
SLS FROM A, TO A 1
SHIFT LEFT SPECIAL. This instruction is a SL1 instruction with

one added function - Z (1) = B (18). Bit B
(18) is shifted into Bit A (1).

FROM A |18 17 1|
LOST / / ,/— B(18)
TO A [18 2 1
SRS FROM B, TO B 1
SHIFT RIGHT SPECIAL. This instruction is a SR1 instruction with

one added function - Z (18) = A (1). Bit A
(1) is shifted into Bit B (18).

DATANET =80

I-14

Mnemonic Operand Word Times
BCO FROM, TO 1
BIT CHANGE ZERO. This is a special instruction for use with
eight-level Frieden data. In going from Y
to Z, the data is rearranged from the eight-
level format used on a transmission line to
the six-bit alphanumeric format used in com-
puters. The other two bits, the parity and
control bits, are put in the CB1 and CB3
flip-flops.
FROM X X X X X X X X X|c Dpg Ds P D4y D3 Dy Dp|X Y
TO 0 0 0 0 0 0 0 0 0 0 0 0 D6 DS D4 D3 D2 D]_ Z
P goes to the parity flip-flop (CB3)
C goes to the control bit flip-flop 1 (CB1)
BC1 FROM, TO 1
BIT CHANGE ONE. This is the reverse operation of BCO.
going from Y to Z, the data is rearranged
from the six-bit alphanumeric format into the
eight-level format used on a transmission line.
The control bit comes from BC1 and the parity
bit comes from the output of the character
parity network.
FROM X X X X X X X X X X X | Dg D5 Dy D3 D2 Dy Y
TO OOOOOOlIllICD6D5PD4D3D2D10 7
P is the output from the character parity network
C is the control bit 1 flip-flop (CB1)

DATANET =80

1)
\ \—.-LOST
]

II-15

Branch Instructions

The states of the plus, zero, and even flip-flops are not changed by any branch instruction.

Mnemonic _O_Eerand Word Times
BRU M : 1
BRANCH UNCONDITIONALLY. . Control is transferréd to the instruction in

M within the same program bank., When
indirect addressing is specified, control is
transferred to the address in M.

BRS M 3

BRANCH TO SUBROUTINE. The location of the instruction following the
BRS is stored in M; then, control is trans-
ferred to the location specified by the contents
of M+1. M must be even.

The remaining branch instructions are conditional branches. Control is transferred to M if
the appropriate conditional test is satisfied. Otherwise, control goes to the next instruction -
that is, the instruction following the branch instruction.

BZE M 1
BRANCH ON ZERO. If the ZFF is zero, control is transferred
to M. .
BNZ M 1
BRANCH ON NON-ZERO. If the ZFF is non-zero, control is transferred
to M.
BPL - M 1

BRANCH ON PLUS. ‘ If the plus flip-flop is plus, control is trans-
« ferred to M.

BMI . M 1

BRANCH ON MINUS. If the plus flip-flop is minus, control is trans-
ferred to M. :

DATANET=30—

II-16

Mnemonic
BEV

BRANCH ON EVEN.

Operand Word Times

1

If the even flip-flop is even, control is trans-
ferred to M.

BOD 1
BRANCH ON ODD. If the even flip-flop is odd, control is trans-
ferred to M.
prus| £1us =9 EVEN| 1 = odd
FF 0 = even
SIGN [

s — [18 |17 2 [1]
. 2 DRIVERS -,

All zeros = 0
Any 1 = 1 (non-zero)

DATANET =30

I-17

Macro-Instructions

The following instructions are macro-instructions. That is, they are not actual machine instruc-
tions; however, the General Assembly Program will recognize the mnemonics for the macro-
instructions and generate the appropriate series of instructions to do the specified operation.

Mnemonic

cL2

CL3

CL4

CL5

CL7

CL8

CL9

CR2

DATANET =30

CIRCULATE LEFT 2.

CIRCULATE LEFT 3.

CIRCULATE LEFT 4.

CIRCULATE LEFT 5.

CIRCULATE LEFT 1.

CIRCULATE LEFT 8.

CIRCULATE LEFT 9.

CIRCULATE RIGHT 2.

erand

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

Word Times
2

The contents of the specified FROM location
is shifted left 2 places. The bits leaving
position 18 are shifted into position 1 of the
TO location.

2

The contents of the specified FROM location
are shifted right 2 places. Bits leavingposition
1 are shifted into position 18 of the TO location.

I-18

Mnemonic

CR3

CIRCULATE RIGHT 3.

CR4

CIRCULATE RIGHT 4.

CR5

CIRCULATE RIGHT 5.

CR7

CIRCULATE RIGHT 1.

CR8

CIRCULATE RIGHT 8.

CR9

CIRCULATE RIGHT 9.

SAM

Operand

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

SUBTRACT B FROM MEMORY.

SBM

SUBTRACT B FROM MEMORY.

SL2

SHIFT LEFT 2.

FROM, TO

Word Times

7
The contents of the A-register are subtracted

from the specified memory location M. The
result is placed in M.

7

The contents of the B-register are subtracted
from the specified memory location M. Theé
result is placed in M.

2

The contents of the FROM location are shifted
left 2 binary places and put into the TO location.

DATANET =380

11-19

Mnemonic

SL3

SHIFT LEFT 3.
SL4

SHIFT LEFT 4.
SL5

SHIFT LEFT 5.
SL7

SHIFT LEFT 7.
SI1.8

SHIFT LEFT 8.
SL9

SHIFT LEFT 9.
SLD

SHIFT LEFT DOUBLE.
sMA

Operand

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

SUBTRACT MEMORY FROM A.

Word Times

3

2(1)

The contents of registers A and B are shifted
left double I number of times. Bits shifted
out of B (18) enter A (1). Bits shifted out of
A (18) are lost. The vacated positions of the
B-register are filled with zeros.

The contents of the specified memory location
M are subtracted from the contents of the A-
register. The result is placed in A.

DATANET =30

II-20

Mnemonic

Operand
FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

SMB

SUBTRACT MEMORY FROM B.
SR2

SHIFT RIGHT 2.
SR3

SHIFT RIGHT 3.
SR4

SHIFT RIGHT 4.
SR5

SHIFT RIGHT 5.
SR7

SHIFT RIGHT 7.
SR8

SHIFT RIGHT 8.
SR9

SHIFT RIGHT 9.
SRD

SHIFT RIGHT DOUBLE.

Word Times

4

The contents of the specified memory location
M are subtracted from the contents of the
B-register. The result is placed in B.

2

The contents of the FROM location are shifted
right 2 binary places and placed in the TO
location.

2(I)

The contents of registers A and B are shifted
right I places., The vacated positions of the
A-register are filled with zeros. Bits shifted
out of A (1) go into B (18). Bits shifted out of
B (1) are lost.

DATANET =80

I-21

Special Instructions

INTERNAL FUNCTION DRIVERS

Mnemonic Operand : Word Times
DIF I 1
DRIVE INTERNAL FUNCTION. A signal will be sent to those internal function

drivers which correspond to 1-bits in I.

Function
DIF 1 Reset control bit flip-flops 1 and 2, and parity
bit flip-flop.
DIF 2 Reset the buzzer flip-flop.
DIF 3 Set the buzzer flip-flop.
DIF 4 Initiate the hardware load process.
DIF 5-6 Not assigned.
DIF 7 This is the SEL instruction,
DI 8 Set control bit flip-flop 1.
DIF 9 Set control bit flip-flop 2.
DIF 0 Set the parity bit flip-flop.

INTERNAL STATUS LINES

NIS I 1
AND INTERNAL STATUS The NIS instructions allow the program to
LINES TO Z. interrogate the status of the I internal status

lines. A logical AND is performed with I
(1-10) and the internal status lines.

The result of the AND sets the branch flip-flops
in accordance with the results of the AND.

If the tested condition is true, the zero flip-
flop will have been set+ 0. A 1is a true con-
dition. If the zero flip-flop is to be 0, then
7 (1-10) must all have been 0.

DATANET =80

I-22

Mnemonic Qp_erand
NIS 1 Will be true if

Word Times

The character parity output of the parity net-
work is a 1.
The word parity output of the parity network

Control bit flip-flop 2 and the word parity
output of the parity network are identical,
This is intended for use when transmitting
data with error-correcting techniques.

The OPERATING MODE/MAINTENANCE MODE
switch is in the MAINTENANCE MODE

Controller selector is ready.
Control bit flip~-flop 1 is a 1.
Control bit flip-flop 2 is a 1.
The parity bit flip-flop is a 1.

NIS 2 Will be true if
is a 1.
NIS 3 Will be true if
NIS 4 Will be true if
position.
NIS 5-6 Will be true if Not assigned.
NIS 7 Will be true if
NIS 8 Will be true if
NIS 9 Will be true if
NIS O Will be true if
10 9 8 7 6 5 4 3 2 1
Y-register

These positions in the
Y-register correspond by
number to the internal status
line defined above

Bit Position of Internal Status Lines

DATANET =80

I1-23

LOAD SPECIAL FLIP-FLOPS.

~Plus FF

2

Selected bits from the contents of M are used
to restore the conditions (saved by a STF
instruction) of the plus, zero, even, control
bit 1, control bit 2, and parity flip-flops. Bit
position 1 goes to the even flip-flop. Bit
position 2 goes to the zero flip-flop and hit
position 18 goes to the plus flip-flop. Bits
8, 9, and 10 go to control bit flip-flops 1 and 2
and the parity flip-flop, respectively.

~-Parity FF
-Control Bit FF 2
Control Bit FF 1
Zero FF

f

Even FF

Contents X X X X X

of

Memory 18

Mnemonic
STF

STORE SPECIAL FLIP-FLOPS.

HLT

CONDITIONAL HALT.

Operand

10 9 8 2 1

Word Times
2

The conditions of the plus, zero, even, control
bit 1, control bit 2, and parity flip-flops are
stored in M in positions 18, 2, 1, 8, 9, and 10,
respectively (same as in LDF).

1

The DATANET-30 will halt if this instruction
is executed when the INHIBIT HALT switch
on the MAINTENANCE panel is in DISABLE
position. If the INHIBIT HALT switch is in
the OPERATE position, hardware load will
be initiated when this instruction is executed.

DATANET =380

I1-24

Buffer Selector Instructions

There are six buffer selector instructions.
transfer TO T have already been covered.

The register transfer FROM R, and the register

Mnemonic Operand Word Times
LDT M 2
LOAD T. The contents of M are sent to the transmit
data drivers and from there to whichever channel
has been preselected by the contents of the C-
counter. The contents of M are unchanged
(used only with the CIU-930).
EXTERNAL FUNCTION DRIVERS
DEF 1 1
DRIVE EXTERNAL FUNCTION. A signal will be sent to those external function
drivers which correspond to 1’s in I. The
signal(s) will actually get to only the buffer
unit which has been preselected by the C-
counter. The meaning of each driver varies
with the particular input/output device.
BBC CBC WBC RPU
DEF1 | A A A)
2 B
3 C C C
4 D D D
5 E NU NU
6 NU NU NU
7 NU NU NU
8 NU NU NU
9 NU NU
0 NU G NU J

DATANET =30

1I-25

- Reset receive clock.
U - Not used

ZmroaQw»
1

EXTERNAL STATUS LINES

Mnemonic
NES

AND EXTERNAL STATUS
LINES TO Z.

NES 1

A

B

c - Interlock on.
D - Carrier on.
E -

F

G

H

NU - Not used.

- Reset receive flag and receive data buffer.
- Reset transmit flag and data buffer.

Set receive mode. (Turn carrier off.)

- Set transmit mode. (Turn carrier on.)

Operand Word Times
I 1

A logical AND is performed with I (1-10)
and the external status lines. The only results
are the new states of the plus, zero, and even
flip-flops. The meaning of each line varies
with the particular input/output device.

BBC CBC WBC RPU
A E G see_
B F H

NU J NU

NU K

Cc G

D M

NU N

NU NU

NU NU v

NU NU NU

- Receive flag is set (data buffer contains a new bit).
- Transmit flag is set (data buffer is ready for a new bit).

Receive flag is set (data register contains a new character).

- Transmit flag is set (data register is ready for a new character).
- Receive flag is set (data register contains a new word).

- Transmit flag is set (data register is ready for a new word).

DATANET =30

1I-26

Mnemonic Operand Word Time
SCN 1 1+3N

SCAN. The bit buffer channels are scanned starting
with channel I. N equals the number of channels
scanned. The instruction is terminated upon
detection of the end scan plug in scan word 2,
field 2,

DATANET =30

II-27

. ADDRESSING MEMORY

General Description

The address field of the instruction is divided into a partial memory address and an addressing
mode.

12 10 9 1

MODE ADDRESS

The four modes for addressing memory are:

Program Bank addressing
Common Data Bank addressing
Channel Table addressing
Indirect

oo

Bit Positions

12 |11 |10

0| 0| X |Program Bank addressing

0] 1| O [Common Data Bank addressing

0 1 1 | Channel Table Address

1| X | X | To any of the 3 above

DATANET =30

DETAILED DESCRIPTION

The following descriptions of the hardware aspects of memory addressing are given for use
when debugging programs. The General Assembly Program automatically assigns proper
addressing for each instruction,

Program Bank Addressing

Program bank addressing can only address locations in the common data bank or another loca-
tion in the same program bank. The addresses within 1024 memory locations of the base loca-
tion of the program bank in which the instruction is located may be directly addressed by an
instruction within the program bank.

The eight 1024-word program banks for an 8192-word memory are listed in the table below:

Memory Locations
Program Bank Start End

Decimal Octal Decimal Octal
1 0000 0000 to 1023 1777
2 1024 2000 to 2047 3777
3 2048 4000 to 3071 57717
4 3072 6000 to 4095 7777
5 4096 10000 to 5119 11777
6 5120 12000 to 6143 13777
7 6144 14000 to 7167 15777
8 7168 16000 to 8191 17777

Each program bank has upper and lower limits for direct addressing. When it is necessary
to go from one program bank to another, indirect addressing is used. When approaching the
upper limit of a program bank, some caution is necessary regarding the type of instruction
placed in the last location of the program bank. Upon the execution of the last instruction in
a program bank, the P-counter contains the address of the first instruction in the next program
bank. If a branch instruction is in the last location, the program will branch to the corresponding
address in the next program bank.

There are two ways to change from one program bank to another:

1. The P-counter counts up past the program bank boundary.
2. A branch instruction is given in the indirect mode.

DATANET =80

Location Instruction Symbol OPR Operand
01750 ORG 1000
01750 000001 FIRST DEC 1
03720 ORG 2000
03720 000002 SECOND DEC 2
05670 ORG 3000
05670 000003 THIRD DEC 3
07640 ORG 4000
07640 000004 FOURTH DEC 4
START EXAMPLE PROGRAM
01604 ORG 900
01604 401750 LDA FIRST
01605 400000 LDA FOURTH
03554 ORG 1900
03554 401720 LDA SECOND
05524 ORG 2900
05524 401670 LDA THIRD
07474 ORG 3900
07474 401640 LDA FOURTH
101750 END 1000

DATANET =80

Remarks

ORIGIN IN 1ST PROGRAM BANK
ORIGIN IN 2ND PROGRAM BANK
ORIGIN IN 3RD PROGRAM BANK

ORIGIN IN 4TH PROGRAM BANK

ORIGIN LOCATION

PROGRAM BANK ADDRESSING APPEARS.
PROGRAM BANK ADDRESSING CAN BE NOTED
BY A BINARY 01 IN BIT POSITIONS 11
AND 10. THIS CAN BE SEEN AS AN
OCTAL Ol IN THE MACHINE INSTRUCTION.

THIS INSTRUCTION PRODUCES AN ERROR
TAG (A) BECAUSE THE SYMBOL "FOURTH"
IS NOT IN THE SAME PROGRAM BANK OR
THE COMMON DATA BANK###¥#dd

ORIGIN LOCATION
NOTE PROGRAM BANK ADDRESSING

ORIGIN LOCATION
NOTE PROGRAM BANK ADDRESSING

ORIGIN LOCATION
NOTE PROGRAM BANK ADDRESSING

THE PROGRAM BANK ADDRESSING CAN BE
NOTED BY THE 3RD OCTAL DIGIT IN EACH
OF THE PRECEDING LDA INSTRUCTIONS.

Common Data Bank Addressing

The common data bank is the first 512 words of memory and may be addressed directly from
any location in memory. In the following example, common data bank addressing is denoted by
the 2 in the third digit of the octal instruction. All instructions that refer to an address in the
common data bank will always be assigned commondata bank addressing by the General Assembly
Program.

Location Instruction OPR Operand Remarks

11610 ORG 5000
11610 402024 1DA 50 LOAD A Register with contents cell 2039
11611 702231 STB 153 STORE B Register in location 1531g
11612 342764 ADO 500 ADD one to location 5001g

Channel Table Addressing

A channel table is a table with a mnemonic that is symbolic and starts with the character $.
The starting locations of the channel table must be a multiple of 16 decimal and located in the
first 8192 words of memory. The channel table may be addressed directly from anywhere in
memaory. The maximum table length is 128 locations. When referred to, the base address
(starting location) is automatically indexed by the C-register. The channel table addressing
mode will be assigned to any instruction which refers to a channel table ($ - -).

Example 1:

ORG 512
$SW1 DEC 0 Scan Word Table Channel 0

Scan Word Table Channel 1

Example 2:
ORG 608
SPOINT DEC 0 Pointer for Channel 0
Pointer for Channel 1
Example 3:
ORG 2048
PIC 1

4000 403040 LDA $SW1 The A-register is loaded with the contents of location 513
(Location 512 + value of C-register)

DATANET =80

I11-4

If the number of channels (table size) exceeds 16, the location of the table must be a multiple
of the next higher power of 2.

Example:
Number of Channels Starting loca_tion must be a multiple of
0-16 16
17-32 32
33-64 64
65-128 128

Indirect Addressing

Indirect addressing (2nd level addressing) is where the address part of an instruction is the
location in memory where the address of the operand may be found or is to be stored.

Indirect addressing is specified in an instruction when an X is placed in the index column (col.
20) of the coding sheet.

Indirect addressing must be used to access an address in another Program Bank, with the ex-
ception of the Common Data Bank or Channel Table. It must also be used to branch across bank
boundries.

Indirect address (second level address) example:

Location Instruction OPR Operand X Remarks
* ORG 2048
4000 404030 LpA POINT X Load Register A with alpha
%
% .
4030 POINT IND ALPHA
7760 ALPHA OCT 000174

DATANET =80

IiI-5

Indexing

During indirect addressing, the first operand address can be indexed by any one of A-, B-, or C-
registers by specifying which register in the pointer. Bits 16-17 of the indirect address word
specify which register to be used for indexing as follows:

. Pseudo-
Bits (18-17-16) Function Operation
000 No indexing IND
001 Index by A INA Base address indexed by contents of A
010 Index by B INB Base address indexed by contents of B
011 Index by C INC Base address indexed by contents of C

The pseudo-operations IND, INA, INB, and INC are used by the General Assembly Program
to automatically add these bits as required.

LoC INSTRUCTION OPR OPERAND X REMARKS
ORG 2048

*

* Convert Octal digit to baudot

*
04000 601100 ~ LDB DIGIT Pick up octal digit
04001 404400 LDA BAUDOT X ' Convert

. *

. * BAUDOT CONVERSION TABLE
- %*
04400 204401 BAUDOT INB *+1 Octal to Baudot Conv Table

04401 000054 OCT 54 Baudot Char 0
04402 000056 OCT 56 " 1
04403 000046 ‘ OCT 46 2
04404 000002 OCT 02 3
05100 000002 DIGIT OCT 000002

%*

* Branch to switch table

* Depending on contents of C-register
*

ORG 2048
04000 201100 LDC DIGIT Pick up value in C-reg
04001 104400 BRU $POINT X

ORG 4096
10000 010200 $POINT IND ENTER O GO TO ENTER O IF C = 0
10001 010300 IND ENTER 1 "1 1
10002 010400 IND ENTER 2 "2 2
10003 010500 IND ENTER 3 "3 3

- DATANET =80

II1-6

Subroutine Linkage

Indirect addressing and a special Branch Subroutine (BRS) instruction provide a means for
getting to and from subroutines and program banks. The BRS command is a 3-word-time in-
struction which, during the first execution cycle, stores P+1 (the address of the word following
the BRS) in memory location M and during the second cycle loads the contents of (M+1) into
the P-counter, as follows:

ALPHA BRS SUBRN Transfer to Subroutine
Li)A 0 Continue

SUBRN IND 0 Subroutine linkage
IND SUBRN1

SUBRN1 LDB SUBRN Start of subroutine
B'RU SUBRN X Exit from subroutine

When the BRS at location ALPHA is executed:

The P-counter + 1 is stored in SUBRN.
2. The program branches to location contained in SUBRN+1.

3. The subroutine is executed. This subroutine may be located anywhere in memory.

4. The exit from the subroutine via the BRU SUBRN X causes the contents of SUBRN
(location ALPHA+1) to be loaded into P.

5. The LDA instruction following the BRS is executed after execution of the subroutine.

Thus, 1 instruction (BRS), 2 words in memory (SUBRN and SUBRN+1), and 5 word times (BRS
and BRU X) are needed for the general subroutine linkage, since the two linkage words are
normally in the common data bank and can be accessed from anywhere in memory.

This technique of subroutine linkage has these advantages:

1. Only 1 instruction is needed in the main program to call a subroutine.
2. The subroutine may be located anywhere in memory at no sacrifice in time or memory.

3. The subroutine may be called from anywhere in memory at no sacrifice in time or
memory.

DATANET =30

4. All subroutine linkage bookkeeping is handled by hardware and not by the main pro-
gram or the subroutine.

5. All three registers, A, B, and C, may be used for input to the subroutine, since no
register is used for linkage.

The following rules must be observed when using the subroutine BRS command.

1. The first word of the subroutine linkage must be in an even location. (The General
Assembly Program will error tag an odd location or force it to an even location.)

2. The subroutine linkage must be placed in a common location to both program points,
i.e., common data bank, same program bank.

DATANET =30

III-8

IV. CONTROL CONSOLE

The control console (Figure 13) serves both operator and maintenance functions. The control
exercised by the console is not normally used during normal program execution. Control from
the console is concerned with initially loading the program into memory, starting the execution
thereof, monitoring the progress of the program, and program debugging.

The switches and lights and their more important functions are:

1.

The contents of the A, B, C and P registers may be modified directly from the control
console.

The contents of memory may be displayed in the M-register. The P-counter is used
to specify the memory location to be displayed.

The P-counter is automatically incremented so that sequential locations in memory
may be displayed by depressing the SINGLE CYCLE button.

The contents of memory may be modified by the 18 INSERT SWITCHES.

The automatic loading of a program may be initiated from the control console (hard-
ware load).

THE MODE SELECT PUSHBUTTON SWITCHES
The SET A, B, C, and P Button

The following steps are used to set the A, B or C registers and the P-counter to a desired

configuration,
1. DPress the Set A, B, C, or P button.
2. Lift the INSERT SWITCHES under the register position to be inserted.
3. The inserted configuration is immediately set up in the desired register (counter).

DATANET =30

Iv-1

The INSERT MEMORY Button

The following steps are used to insert data into memory:

1.

2.

Press SET P button.
Put desired memory address in the P-counter.
Press the INSERT MEMORY button.

Lift the INSERT SWITCHES to the desired input. The input is indicated in the Y-
register.

Press the SINGLE CYCLE button. The input from the Y-register is transferred to
the memory location specified by the P-counter. The P-counter will count up 1.

Insert the next desired input into the Y-register with the insert switches.

Press the SINGLE CYCLE button. The input in the Y-register is transferred to memory
location specified by the P-counter.

Continue steps 4 and 5 until all input has been inserted into memory.

Press the PROGRAM RUN button, then the RUN button to start the program. The pro-
gram will start at the location specified by the P-counter.

The DISPLAY MEMORY Button

The following steps allow the contents of memory to be displayed:

1.

2.

Press the SINGLE CYCLE button to halt.
Press DISPLAY MEMORY button.

Press SINGLE CYCLE. The contents of memory location as specified by the P-counter
are displayed in the M-register. The P counter counts up 1.

The contents of the other registers will be as previously defined under description
of registers.

THE ERROR LIGHT AND BUZZER

The ERROR light and buzzer are used to indicate that data read out of memory does not agree
with the INSERT SWITCHES.

If a DIF 3 instruction is executed, the error light will turn on. This does not indicate an alert
halt and the program will continue to run.

DATANET =30

Iv-2

The error light and buzzer only work in either the DISPLAY MEMORY or INSERT MEMORY
mode. The error light does not refer to an error in an operating program. The error light
and buzzer are both turned on and off with the DIF 3 and DIF 2 instructions.

If the INSERT MEMORY or DISPLAY MEMORY mode is set, the RUN button has been pressed,
and the HALT/DISABLE switch is in the HALT position, the error light turning on will indicate
an error, halt the DATANET-30, and the location of the error will be indicated in the L-register.
This is mainly a maintenance feature.

POWER-ON SEQUENCE
The power-on sequence is shown below:

1. Turn on main circuit breaker located behind the front panel of rack 3.
2. Press AC ON button

3. Wait 10 seconds, then press DC ON button.

4. Press MANUAL RESET.

DATANET =80

-Al

0% =LINTLI

MODE
SELECT

Set

Set

a w >

Set
Set P

Program
Run

Display
Memory

Insert
Memory

The Insert Switches can set A.
The Insert Switches can set B.
The Insert Switches can set C.
The Insert Switches can set P.

Instructions are executed in
the normal manner. This mode
must be selected for the
program to be executed.

The contents of the location
specified by P can be displayed.
The contents will be compared
to the Insert Switches. A dis-
crepancy will result in a halt
condition.

Figure 13-A.

The data in the Insert Switches
can be stored in the memory loca-
tion specified by P. After stor-
age, the location's contents will
be read out and compared to the
switches. A discrepancy will re-
sult in a halt condition and will
turn on the buzzer.

RESET P

RESET A

RESET B

RESET M

RESET C

RESET Y

MANUAL/
PROGRAM

INSERT
SWITCHES

Control Console Switches

Pressed

Pressed

Pressed

Pressed

Pressed

Pressed

Program

Manual

Up
Center

Down

Resets P.

Resets A.

Resets B.

Resets M.

Resets C.

Resets Y.

Run Flip-Flop is locked on.
COUNT P, COUNT Q and HALT
switches are bypassed such
that P COUNTS, Q COUNTS and
HALT conditions are ignored.
All other switches are in-
operative except the INSERT
and POWER switches.

All switches are operative.

The switch position equals 1.
The switch position equals 0.

The switch position equals 1.

0% =1LaNT.LVC

G-AlI

COUNT P Off P counts normally.

On P does not count.
COUNT Q Off Q counts normally.

On Q does not count.
HALT Off A halt condition will halt the
DISABLE DATANET-30 if the key switch

is in manual position.

On Halt conditions are ignored.

BUZZER Up Resets the Buzzer.

Center Will buzz.

Down Prevents the buzzer from
turning on.

MANUAL Depressed Initiates the Hardware Load
LOAD process, if the Program Run
button has been pressed.

RUN Depressed Starts the DATANET-30 program MANUAL Depressed Resets all Registers,
running continuously, if in RESET Counters and Flip-Flops.
the Program Run, Display
Memory, or Insert Memory mode.

SINGLE Depressed When running in Program Run
CYCLE mode, halts the DATANET-30.
When already halted, one in-
struction or action will be
executed each time the
switch is depressed. The
‘Figure 13"B. Control CO'nSOle SWitCheS action depends on the posi

tion of the mode selected.

V. PROGRAMMING CONSIDERATIONS

PROGRAMMING THE BUFFERS
Service Rate
Wheén servicing transmission lines on a bit basis there are certain timing factors which must

be taken into account. The following table shows the service rate for six standard teletype
transmission speeds:

Bits per Second ' Service Rate (milliseconds)
45 22,2
50 20.0
56.25 17.7
75 13.3
110 - 9.09

150 6.67

In each case, the service rate can be defined as the operation of the receive or transmit flag
of the bit buffer.

When scanning the bit buffers, the service rate is taken into account and the Program Interrupt
Executive initiates scanning at a rate slightly faster than the service rate. For a 45-bit/second
transmission line having a service time of 22,2 milliseconds, the line would be scanned approxi-
mately every 21.0 milliseconds to ensure that any speed variations in the remote terminal
would not result in data lost at the DATANET-30.

Basic Program Cycle

A real time program response time to certain events must be very small. The communications
programs must be divided into the following events:

1. Receive bits
2. Assemble bits into characters

DATANET =30

Assemble characters into words

Assemble words into blocks

Assemble blocks into messages

Assign message routing

Disassemble blocks into words for transmission
Disassemble words into characters

Put the character in the buffer for transmission.

The program to do this is divided into two basic cycles.

1. Line service cycle (hardware scan and program scan) -- when each buffer is sampled
within a bit or character time and the bit or character present is moved to or from
the buffer.

2. Processing cycle-- when all the rest of the processing to be done by the program
must be accomplished. The bit buffer assembly areas and the other buffers are serviced
on a character time bases.

Since a basic premise of the DATANET-30 is to receive (or transmit) each bit or character
within rigid time limitations, the line service cycle must be initiated within a certain amount
of time.

Line Service Line Service

i Interrupt i
Process \ Process

I P AT Al 1
-~
Hardware Full Cycle
Scan Program
Scan
Hardware Program
Scan] Scan

The time will vary with the line service rate required by the remote terminals. One full cycle
must therefore be completed at a rate slightly faster than the fastest service rate. In order
to do this, processing must be interrupted to allow the hardware scan instruction to service
the lines (3 word times per line). The interruption must be timed so that, from the end of one
scan cycle to the end of the next scan cycle, the total elapsed time is less than one bit time.
Consideration must also be given to memory cycles used during the scan by the controller
selector peripherals,

DATANET =30

Although the above only discussed the bit time for the bit buffers, the scanning and processing
of character and word buffers follow the same rules. The scanning of character and word
buffers however is done by programming for each buffer.

The control of data transfer going to or from a buffer is accomplished by the register transfer
instructions, the C-register and the transmit/receive data lines. The receive buffer address
in the C-register allows the character or word in the receive buffer to be set up on the receive
data lines. The register transfer instruction -- that is, TRA R, B -- then transfers the
configuration of the receive data lines to the designated working register.

The transmit sequence using the transmit data lines is basically the opposite of the sequence
using the receive data lines. The address of the transmit buffer is first set up in the C-register.
Then the transfer of the configuration in one of the FROM registers, again using a register
transfer instruction, is transferred to the transmit data lines. The only transmit buffer that
will be able to accept the configuration on the transmit data lines will be the one addressed

by the C-register. _ ‘ o ‘ , : Line
Interrupt Service
' - Line Service o .) .
N, . .
r i N ‘ \\\\\>~;L
Hardware Program Scan
Scan on on Character Process
Bit Basis Basis
Bit Buffer Channel Move character out Move character to
Scan of scan word 3 location & from memory location
Word to accumulation location for building words to
3 in memory for that line blocks etc.
Character Buffer Channel Move character out of Do DSU operation
Char character buffer to '
Buffer location in memory for i Do Tape Operation

the channel C

Word Buffer Channel Move word out of word . ‘ Do all other functions

Word buffer to memory
Buffer location
BBC Scan Move character to scan
e | Word 1 word 2 to be transmitted
CBC Move character from memory
- Char to character buffer to be
Buffer transmitted
WBC Word Move word to word buffer

O F—
Buffer to be transmitted

NS
Program Cycle

Figure 14. General Timing Diagram

DATANET = 30

—lHardware scan
Bit Buffer Channel Scan
ord 1
n 3
Character Buffer Channel Char
Buffer
Word Buffer Channel Word
Buffer
Note: The timing will vary depending

upon the speed of transmission
for the various buffer.

Figure 15. Relative Timing for Scanning Buffers

Functional Sequence

The normal flow of data occurs as shown below. The program periodically halts to allow the
SCN instruction to take bits from the bit buffers to form characters in memory. When a charac-
ter is formed, it is transferred over to another area of memory where the program accumulates
characters into words. The words are accumulated into blocks of variable lengths and then
transferred to the disc storage unit, where the queue, journal, intercept, and in-transit storage
areas are established under program control. The same basic process occurs for the character
and word buffers. However, all other buffers must be scanned by the program.

DATANET =380

1
Incoming Scan I
27 I
Bt —;,p Charact ! Word I Qeue
Buffer cter Journal
| r : Intercept
| | |
Character __I Blocks i Disc
Buffer —| Variable | S;ﬁ;:ge
| |
| |
Word —-I
Buffer ——1 |
' |
I

Blocks
Word ~€&— vVariable 4—'—-—

Character freetlf-——]
Buffer Buf fer |
\— Memory
Bit Outgoing
Buffer

Figure 16, Data Flow Functional Block Diagram

DATANET =30

<

PROGRAMMING CONVENTIONS

In writing programs for the DATANET-30, there are a few conventions which should be con-
sidered. The suggestions made here are not hard and fast rules, but must be considered for
maximum programming efficiency:

1.

10.

DATANET =30

Do not use locations 0 and 1 in memory; these locations are used by program interrupt,.
When the Q-counter counts down to zero, P+l is stored in location 0 and control is
transferred to the location specified by location 1.

Do not use cells 3, 4, and 5. These locations are used by the controller selector unit
for storage of command words.

If possible, all subroutine linkages and constants should be located in the common
data bank (cells 8 - 511 in memory).

Channel tables must be located in the first 8192 words of memory.

. U’Eility routines should be stored at the top of the memory, so that they will not be

destroyed when reading in later programs.
The following checks should be made:

a. Before issuing any SEL instruction, check the ready status of the controller with
the CSR instruction.

b. Before issuing any CSR instruction, check for the completion of the previous
SEL sequence with an NIS 7 instruction.

c. Before changing memory locations 3, 4, and 5, check for completion of the previous
SEL sequence with an NIS 7 instruction.

When closing a file on magnetic tape always write an end of file on the tape.

When branching to a subroutine, the symbolic name of the subroutine link will be followed
by 1:

" BRS " REPRT Go to report subroutine

REPRT IND 0 Subroutine linkage
IND REPRT1 REPRT 1 is the actual starting
address of the subroutine.

The last character to be transmitted at the end of transmitting a message must be
an all marks character (all 1's).

At the end of each program bank, careful consideration should be given to the instructions
in the last 2 positions and to those instructions that fell into the succeeding program
bank.

11. The following memory allocation has been established as a standard programming

convention:
Decimal Location Contents
0000 - 0007 Program interrupt and controller
selector command words
0008 - 0031 Parameters for utility routines and
. general use
0032 - 0511 . Program constants, subroutine linkage
5.12 - 1023 ’ Scan words (channel tables) and constants
1024 - 7499 Object programs
7500 - 7999 Utility programs and programming tools
8000 - 8191 Loader programs

12. The C-register instructions (PIC. AIC, XCZ, NCZ) will have decimal or symbolic
operands which will be assembled as a numerical value rather than a memory address.

13. If an operand referred to by a double length instruction (LDD, STD, BRS, AMD) falls
in an odd location, the operand will be stored in the next highest even location and a
“no-operation” instruction will be inserted in the vacated odd location.

BUFFER OPERATIONS

Bit Buffer Channel

Data is sent to a buffer via the transmit data drivers. Data is received from a buffer via the
receive data lines. Control signals are sent to a buffer via EFD, the external function drivers.
Information as to the status of a buffer is tested via ESL, the external status lines.

DATANET =80

BIT BUFFER INSTRUCTIONS

Mnemonic Operand ‘Word Times
Register Transfer R,
TRA FROM, TO The bit contained in the receive buffer is

transferred to position 18 of R; the receive
buffer and flag are reset.

Register Transfer , T
TRA FROM, TO The low order bit of the Z drivers is trans-
ferred to the transmit data buffer. The transmit
flag is reset.
SCN 1 1+3N
SCAN Scan the bit buffer units. The bit buffers
are interrogated for data received or to be
transmitted. = Data ‘is moved to and from
the bit buffers.
DEF 1 1
DEF 1. Reset receive flag and receive data buffer.
DEF 2, Reset transmit flag and data buffer.
DEF 3. Set receive mode turn carrier off.
DEF 4. Set transmit mode turn carrier on.
DEF 5. Reset receive clock.
DEF 6-10. Not used.
NES 1 1
NES 1. Receive flag set (data buffer contains a new bit).
NES 2. Transmit flag set (data buffer is ready for a new bit).
NES 3-4. Not used.
NES 5. Interlock on.
NES 6. Carrier on.
NES 7-10. Not used.

DATANET =30

RECEIVE OPERATION

Assume that a remote terminal device is sending out a continuous stream of marks, (the line
is in the idle condition). Then the operator at the remote terminal begins transmitting information.
When the start bit (a space) is received, a clock is started. The clock is used to time the future
sampling of the line. The start bit is transferred into the receive data buffer by the bit buffer
channel (BBC), and the receive flag is set. When the clock reaches the proper time, the line
is sampled again, the bit on the line is transferred to the receive data buffer, and the receive
flag is set. This process of sampling the line at regular intervals, transferring the data on
the line to the receive data buffer, and setting the receive flag continues until the clock of the
BBC is stopped by the program. Since the BBC will transfer the information from the line into
the receive data buffer every bit time, the program must test the receive flag and take away
the bit in the receive data buffer before the line is sampled again by the BBC.

Whenever the bit is taken, the receive flag and the receive data buffer are automatically reset.
At some point, the program decides that the appropriate number of bits have been received and
sends a signal to the BBC which stops the clock. The receive flag will remain reset until another
start bit is received. As a protection against noise on the transmission line causing the clock
to start running, the BBC circuitry requires the space condition to exist on the line for at least
one-half of a bit-time to start the clock. Thus, noise of less duration than one-haif of a bit-time
will have no effect.

A BBC can be used with a half-duplex line by ignoring the receive section when sending and by
ignoring the transmit section when receiving. If a subset is used, control of the carrier is
accomplished by activating the appropriate external function driver (with a DEF instruction).

The following timing diagram shows how the character Y would be received by a bit buffer as
a 5-level teletype character.

| |

Start | stop |

Pulse 1 0 1 0 1 | Pulse|

|]

Receive Line l I

1 Clock

NiNIninin]

3 Data Buffer

O [LT LT

5 Reset Clock
DEF 5

DATANET =80

1. When a start pulse is received the clock in the receive unit is started and the line is
sampled in the center of each bit period of the character.

2. The receive flag is set when the line is sampled and the bit is sent to the receive data
buffer.

3. The data buffer temporarily stores the bit which has just come in from the line.

4. The program tests to see if the flag is set. If it is, the program will transfer the bit
to a register. Transferring the bit will automatically reset the receive flag and data
buffer by issuing a DEF1 instruction.

5. After the complete character is received the program initiates a DEF5 instruction
which resets the clock. The clockwillnot be set again until another start bit is received.

TRANSMIT OPERATION

Assume that the program is not transmitting and that the transmit flag is set. This means that
the BBC is ready to take a new bit from the program. The program sends a bit to the transmit
data buffer. This automatically resets the transmit flag. At regular intervals, the BBC transfers
the bit in the transmit data buffer to the transmission line. When this happens, the transmit
data buffer shifts a bit onto the line, whether or not a new bit has been supplied. The program
must test the transmit flag and provide a new bit before this transfer occurs. This process will
repeat for each bit in the bit stream. At the end of the bit stream, the last bit will remain in
the transmit data buffer and will be transferred to the line regularly. Therefore, the last bit
in a bit stream will be a 1, so that the line remains in the mark condition when no information
is being transmitted. Note that with a BBC the length of the bit stream is completely under
program control.

The next diagram illustrates how the character R would be transmitted to a communications
line. The character R would be represented in memory as 11101010, where the right-hand 0
is the start bit and the two left-hand 1’s are the stop bits. The 5 bits in between the start bit
and stop bits represent the 5-level teletype code for the letter R.

1. The transmit clock occurs every bit period as specified by the data timing unit.

2. The transmit flag is set each time the transmit clock occurs and is reset when the
data is transferred to the transmit buffer.

3. When the program finds the transmit flag set, it transfers the next data bit to the BBC,
which automatically resets the transmit flag.

4. This shows how the transmit buffer would look over a period of one character time.

5. This shows the signal as it appears on the line.

DATANET =30

V-10

1. Transmit Clock _J—-'_—l__l-__
2. Transmit Flag ___—|_‘-—|__

3. Data Transfer

N
I Epiipgl
-

4. Transmit Buffer

5. Transmit Line

0 0 1 0 1 0 _lﬁ/_l, 1
Stop

2
-ﬁART 5 DATA STOF '

HARDWARE SCAN

The SCN instruction is for use with the bit channels only. It will not operate properly with any
other buffer unit. Therefore, only bit buffers should be among the channels from C to C £ This
means that all bit buffer channels should be addressed sequentially.

Bit buffer channel addresses can not be intermixed with character buffer channels or word buffer
channels.

The initial channel to be scanned is specified in the instruction. The final channel to be scanned
is specified by the scan words or channel 127, whichever occurs first. Channels are scanned
sequentially as follows:

Ci Cin, Cue, o, G2, Cea, Gy |
where ’ :

C. is the initial channel,

C P is the final channel, and

N"= number of channels scanned
f-itl1.

i

The time required for SCN is one word time for setup plus three word times for each channel
scanned, or:

Word Times = 1+3N.

DATANET =30

V-1l

This time is required whether data is transferred or not. Also, this time is required for a
simplex, half-duplex, or full-duplex channel.

The SCN instruction uses the A and B registers, and the previous contents will be destroyed.
Also the C-register will contain C, after it is completed. At the end of a Transmission, the

last word placed in scan word one continues to be transmitted, It is necessary to put a word
of all marks in scan word one for idle line condition,

DEF1l, DEF2, DEF5, NES1, NES2, and all data transfer is handled automatically by the SCN
instruction. The program must, however, give the DEF3 and DEF4 instructions appropriately.

Scan Word 1

r_—SWIFl the next character to be
transmitted.

18 14 13 1

It is possible to transmit 5-, 6-, 7-, and 8-level codes of 8, 9, 10, and 11 bits. The format
for 5-level, 8-unit codes is:

— Spare Bits must be Zero
~ End-of-Character Bit
Stop Bits

Data Bits

-

0 0 0 o011 1 1{fp p D D DJ|O

Start Bit

13 12 11 10 9 8 7 6 5 4 3 2 1

DATANET =30

The format for 8-level, 11-unit codes is:

—— Spare Bits must be Zero
F——End—of-Character Bit
— Stop Bits

Data Bits

|.Start Bit

0 1 1 1{p p p D D D D D 0

13 12 11 10, 9 8 7 6 5 4 3 2 1

The format for 6- and 7-level codes is similar.

It is sometimes necessary to transmit one or more fill characters. A delay time of one character
is a marking condition on the line for one character time. This can be achieved by making the
start bits, data bits, and stop bits all 1’s. This should also be the last character transmitted

at the end of transmitting a message. A one-character delay for 8-level, 11-unit codes is as
follows:

Spare bits must be Zero
End-of-Character bit

l—Data bits are all 1's

13 12 11 10 9 8 7 6 5 4 3 2 1

The end-of-character bit is defined as the last 1-bit in the field. This must be present. If
not, the last 1-bit of data will be interpreted as the end-of-character bit.

DATANET = $0

v-13

Scan Word 2

—— SW2F4 Transmit Character Flag
SW2F3 Code Level (5,6,7, or 8)
SW2F2 End-Hardware-Scan Flag

SW2F1 The character which is in the process

not used of being transmitted
X X
18 17 16 15 14 13 12 1

SW2F1 is controlled entirely by hardware and requires no detail program control. The bits
are shifted right to the bit buffer channel and then to the line until the end-of-character bit is
in position 1. This occurs when SW2F1 is (000000000001).

SW2F2 is set to indicate the final bit buffer channel number when the program is initially as-
sembled and thereafter need not be considered. It is necessary to change SW2F2 for the final
channel for any change in the number of bit buffer channels:

1
0

this is the last bit buffer to be scanned.
continue scanning.

no

If the final channel is not indicated, the SCN instruction will automatically end at channel 63.

SW2F3 defines for receive purposes the code level of the line (5, 6, 7, or 8) as follows:

SW2F3 (Bits 17 and 16)

17|16
00 = 5-level code
01 = 6-level code
10 = T7-level code
11 = 8-level code.

This is set when the program is initially assembled (or changed octally) and thereafter need
not be considered.

SW2F4 is set by the hardware when the new transmit character is transferred from SW1F1
to SW2F1. It is reset by the program after the new character is loaded into SW1F1.

DATANET=30

V-14

SW2F4

1 = SW1F1 is ready for a new character
0 = SW1F1 is not ready for a new character.
Scan Word 3

SW3F1 is set by the hardware when SW3F2 receives a full character as defined by SW2F3.
The data bits will be in the following positions:

5-level code in positions 2-6. Positions 7-9 are 0.
6-level code in positions 2-7. Positions 8-9 are 0.
7-level code in positions 2-8. Position 9 is 0.
8-level code in positions 2-9.

SW3F3 Receive Character Flag
—— SW3F2 The character which is in the process of
being received. The character is being

put together in this field.

SW3F1 The last character received

18 17 10 9 2 1

SW3F2 is controlled entirely by hardware and requires no program control.

‘SW3F3 is set by the hardware when the new received character is transferred from SW3F2 to
SW3F1l. It is reset by the program after the new character is removed from SW3F1. SW3F1
does not have to be changed by the program.

SW3F3
1 = SW3F1 has a new character
0 = SW3F1 does not have a new character.

Scan Word Locations in Memory

The three scan words per line are located in memory as follows.

DATANET =30

V-15

Location

Decimal Octal

(" Channel 0 512 1000
Channel 1 513 1001
Scan Word 1 4
9 Channel 127 639 1177
f Channel 0 640 1200
Channel 1 641 1201
Scan Word 2 <)
_ Channel 127 767 1377
f Channel 0 768 1400
Channel 1 769 1401
Scan Word 3 < : :
| Channel 127 895 1577

Any of the 384 locations not used for scanning BBC’s, may be used for any other purpose. For
example, channel 0 is used for the paper tape reader and the scan instruction does not apply
to paper tape. Scan words 1, 2 and 3 for the paper tape reader are wired in hardware.

Receive and Transmit

The Scan instruction accomplishes the following at a rate necessary to check each bit buffer
once each bit time.

Receive

When a start bit appears in the bit buffer, the receive flag is set. The SCN instruction transfers
the bit to the character-being-received half of scan word 3, and resets the receive flag. When
the next bit of the character appears in the bit buffer, the receive flag is set, the SCN instruction
shifts the previous bit over 1 position and transfers in the new bit of the character. Prior to
each shift and transfer of a bit, the SCN instruction checks for whether or not the bit in the bit
buffer is the last bit for the character. When the last bit is in the bit buffer, the character
is shifted to the last-character-received side and the last bit is shifted in also. The character
must then be shifted out by the program before another character is fully received. New charac-
ters are shifted into the last-character-received side whether the preceding one was shifted
out or not.

DATANET =80

V-16

TR ¥ YN (P 0 o S— -

swi] o 0] O 0jo]of{o0 joO 0 1 1 1 0]1 60jo0jJojo

Transmit
18 17 16 15 Y
swz 1 afrfo]1fofo]o
to line
SW3 Ny .)
Character being Received Last Character Received Receive
Shifted out by
Scan Instruction v Program
Transfers bit
y4
l¢-Receive Data Buffer
Bit Buffer
Figure 17. Hardware Scan Block Diagram
Transmit

‘Assuming that the transmit mode has been set, once each scan cycle a bit will be transmitted
from the bit buffer. If nothing is to be transmitted, the line should be in a marking condition
(idle). Scan word 2 contains the character being transmitted. Upon the completion of trans-
mitting a character from scan word 2, the character in scan word 1 is transferred into scan
word 2, and automatically transmitted. The program loads scan word 1 with the next character
to be transmitted.

PROGRAM INTERRUPT

Program interrupt occurs under control of the Q-counter. When Q counts to zero, the following
sequence occurs:

1. The instruction being executed is completed, This can take from 1 to 10 (ten word times
is the *worst case execution time of the CSR instruction) word times, depending on
the instruction.

~ *See “Instruction Repertoire” for detailed description.

DATANET =80

2.A If a memory interrupt is requested by the controller selector, 1 word time is taken
to service the request.

3. Effectively, a BRS 0 is executed. This operation requires 2 word times plus execution
of the program, Interrupt can take from 3 to 13 word times.

If Alpha is the location of the instruction being executed when the program interrupt occurred,
then the BRS 0 performs the following:

1. Alpha +1 is stored in location 0.

2. The contents of location 1 is transferred to the P-register and program execution
started there.

The Program Interrupt Routine must begin with:

* STF Wws1 Store special flip-flops
LDQ Count Load Q with new value
STD WS2 Store A and B
STC Wws3 Store C

The Program Interrupt Routine must end with:

* ILDC ws3 Load C
LDD WS2 Load A and B
LDF ws1 Load special flip-flops
BRU 0 X Return to point of interrupt

The Program Interrupt Routine will normally include execution of the Scan instruction. Also,
the worst case execution of the Program Interrupt Routine will be less than the time period
between program interrupts. Thus, a program interrupt cannot occur while a Scan instruction
is being executed. A program interrupt during an SCN instruction cannot be successfully done.

PROGRAMMING EXAMPLES, BIT BUFFER CHANNEL

The following example shows one method that might be used to receive one character from a
bit buffer. This method does not use the SCN instruction.

Location Instruction Symbol OPR Operand Remarks
15530 ORG 7000 ORIGIN LOCATION 7000
15530 600000 RECVE LDB BIT7 BIT NUMBER SEVEN
15531 022001 NES 1 RECEIVE FLAG SET
15532 121531 BZE *-1 NO, GO BACK
15533 042444 SR1 BR,B YES, SHIFT NEW BIT TO B-REGISTER
15534 160000 BEV RECVE+1 COMPLETE CHARACTER NOT IN, GO BACK
15535 026020 DEF 5 CHARACTER IN, RESET RECEIVE CLOCK

* See “Instruction Repertoire” for detailed description.

DATANET =80

Initially bit 7 is put into the B-register. This will be used to test whether a whole
character has been received.

The NES1 command tests to see if the receive flag is set. If the flag is not set, the
BZE command branches back to test the flag again.

If the flag is set, the bit contained in the data buffer is shifted into position 17 of the
B-register.

If the B-register is even, control is transferred back to get the next bit. If the B-
register is odd, meaning the initial bit set in B has reached position 1, the even test
fails and the program continues with the next instruction.

The DEF5 instruction resets the receive clock.

The next example is one method which might be used to transmit one character onto a trans-
mission line via a bit buffer without using the SCN instruction.

Location Instruction Symbol OPR Operand Remarks
03720 ORG 2000
02400 $NCHAR EQU 1280
03720 603120 LDB $NCHAR - LOAD CHARACTER FROM TABLE
03721 022002 XMIT NES 2 : TRANSMIT FLAG SET
03722 121721 BZE *-1 NO, GO BACK
03723 060401 TRA B,T TRANSFER BIT TO TRANSMIT DATA DRIVERS
03724 042404 SRL B,B SHIFT B-REGISTER RIGHT ONE
03725 131721 BNZ XMIT WHOLE CHARACTER NOT OUT, GO BACK
1. The character to be transmitted is put into the B-register.
2. The transmit flag is tested to see if it is set.
3. When the flag sets the low order bit of B is sent to the transmit buffer.
4. Bits shifted right 1 place and tested for zero. If B is non-zero, control is transferred

back to transmit next bit. When B becomes zero, the BNZ test fails and the program
goes on to execute the next instruction.

The next two examples show how to receive a character and transmit a character using Hard-
ware Scan (SCN). It should be noted these are examples and do not necessarily show the way
they will be written in the operating programs.

DATANET =30

Receive - Hardware Scan

Location Instruction Symbol OPR Operand Remarks
REM SAMPLE HARDWARE SCAN RECEIVE
PROGRAM
05670 ORG 3000 ORIGIN 3000
01400 $5CW3 EQU 768 SCAN WORD STARTING ADDRESS
05670 377777 NBIT18 oCT 377777 MASK FOR RECEIVE FLAG
05671 030001 START SCN 1 SCAN BIT BUFFER
05672 603060 LDB $scw3 LOAD CHARACTER BEING RECEIVED
05673 141671 BPL *-2 CHARACTER NOT IN, GO BACK
05674 401670 LDA NBIT18 CHARACTER IN, GET MASK CONSTANT
05675 533060 NAM $SCW3 MASK OFF RECEIVE FLAG

Transmit - Hardware Scan

Location Instruction Symbol OPR Operand Remarks
01750 ORG 1000 ORIGIN LOCATION 1000
01000 $SCW1 EQU 513 SCAN WORD ONE
01200 $scw2 EQU 641 SCAN WORD TWO
01750 030001 SCN 1 SCAN BIT BUFFER
01751 603050 LDB $sCw2 LOAD SCAN WORD TWO
01752 141750 BPL *=-2 TRANSMIT FLAG NOT SET, GO BACK
01753 603070 LDB $XWORD LOAD CHARACTER TO BE TRANSMITTED
01754 703040 STB $scwl STORE IN SCAN WORD ONE
01755 601767 LDB BIT18N LOAD MASK
01756 733050 NBM $SCW2 MASK OFF TRANSMIT FLAG
01767 377777 BIT18N oCT 377777 MASK CONSTANT
01600 $XWORD EQU 896 TABLE LOCATION, NEXT CHARACTER TO
XMIT.

Next, is a simplified example of a Program Interrupt Executive Routine containing a Scan instruc-
tion. At Symbol PIE1l is found the Store Flip-Flops instruction. This saves all the branch and
control flip-flops from the last instruction executed. Next, all the registers are stored and the
SCN (Scan) instruction is issued. Upon leaving the Scan instruction, the registers and flip-
flops are restored and control is transferred back to the program which was interrupted.

If control of mode conditions within the bit buffers is required, it should be noted that the indi-
vidual channels must be set to their appropriate mode before entering the Scan Operation
(Receive or Transmit Mode).

DATANET=80

v-20

Location Instruction Symbol OPR Operand x Remarks

REM SAMPLE PROGRAM INTERRUPT EXECUTIVE
00000 ORG 0000 ORIGIN OF SUBROUTINE LINK
00000 000000 PIE IND 0 LOCATION ZERO
00001 017500 IND PIEL LOCATION ONE
17500 : ORG 8000 ORIGIN OF PIE SUBROUTINE
17500 361514 PIEl STF PIEF STORE FLIP-FLOPS
17501 231515 LDQ PIEQ LOAD Q-COUNTER
17502 301511 STC PIEC STORE C-COUNTER
17503 311512 STD PIED STORE A- AND B-REGISTERS
17504 030001 SCN 1 SCAN BIT BUFFERS
17505 211512 LDD PIED LOAD A- AND B~REGISTERS
17506 201511 LDC PIEC LOAD C-COUNTER
17507 261514 LDF PIEF LOAD FLIP-FLOPS
17510 106000 BRU PIE X BRANCH BACK TO EXIT POINT
17511 000000 PIEC DEC 0 TEMPORARY STORAGE FOR C-COUNTER
17512 000000 PIED DEC 0 STORAGE FOR A-REGISTER
17513 000000 DEC 0 STORAGE FOR B~REGISTER
17514 000000 PIEF DEC 0 FLIP-FLOP STORAGE
17515 003554 PIEQ DEC 1900 Q-COUNTER STORAGE (CONSTANT)

Character Buffer Channel (CBC)
The character buffer channel provides the interface to a half-duplex transmission line. The

standard bit stream lengths are 5, 6, 7, and 8 bits. The character buffers should be used on
lines operating at 300 bits per second or greater.

CHARACTER BUFFER INSTRUCTIONS

Mnemonic Operand Word Times
Register Transfer ,T (TRA from toT)

The least significant 5, 6, 7, or 8 bits of the
7 drivers are sent to the transmit data buffer
and the transmit flag is reset.

DEF I 1
DEF 1 Reset receive flag and data register.
DEF 2 Reset transmit flag and data register.
DEF 3 Set receive mode (turn carrier off).
DEF 4 Set transmit mode (turn carrier on).
DEF 5-8 Not used.
DEF 9 Answer incoming call.
DEF 0O Disconnect call.

DATANET =80

V-21

’ Mnemonic Operand Word Times

‘NES , I 1
‘NES 1 Receive flag set (data register contains a new character).
NES 2 Transmit flag set (data register is ready for a new character).
NES 3 Call in progress.
NES 4 Request answer.
NES 5 Data mode.
NES 6 Carrier on.
NES 7 Clear to send.
NES 8-10 Not used.

LDT - Do not use.
SCN - Do not use.

Register'Transfer R, (TRA from R to)

The 5, 6, 7 or 8 bits as specified by the size
of the character buffer are transferred from
R. The receive data buffer and flag are
reset (DEF1).

5,6,7, or 8 bits

8

- &

e = -

L R (8,7,6, or 5 - 1)

RECEIVE OPERATION

Assume that the character buffer channel (CBC) has been put in the receive mode by the pro-
gram, that the receive flag is reset, and that the sending unit is transmitting a continuous stream
of marks. (The line is in the idle condition.) The sending unit starts transmitting a character.
The character is preceded by a start bit (a space) and followed by a stop bit (a mark). When
the start bit is received, a clock is started. The clock is used to time the future sampling
of the line. The start bit is shifted into the shift register. At regular intervals, the line is
sampled and the bit which is present at sampling time is shifted into the shift register. When
the shift register is full, the character bits are automatically transferred into the data register,
the receive flag is set, and the clock is stopped. The clock will start again and the above process
will repeat when the next start bit is received on the transmission line. As a protection against
noise on the transmission line causing the clock to start running, the character buffer circuitry
requires that the space condition exist on the line for at least one-half of a bit time to start
the clock. Thus, noise of less duration than one-half of a bit time will have no effect. Since
the character buffer will transfer a word into the data register whether or not the data register
and receive flag are reset, the program must test the receive flag and take the character before

DATANET =30

V-22

another is transferred into the data register. When the program takes the character from
the data register, the data register and the receive flag are automatically reset.

The timing diagram (Figure 18) illustrates how an 8-bit word would be received at a CBC.

1.
2.

DATANET =80

The DEF 3 instruction puts the CBC into the receive mode.
The DEF 1 instruction resets the receive flag and data buffer.
The receive clock is shown sampling the line every bit period.

Line 4 shows that the contents of the receive buffer are transferred to the data register
after all the bits are received.

Line 5 shows the receive communications line going into the CBC.
Line 6 shows what the receive buffer would look like after allbits are received.

Line 8 shows the receive flag setting when the receive buffer is transferred to the
data .register.

1 DEF 3

2 DEF 1

3 Rec. Clock —WJWM
4 Transfer Receive |_|

Buffer to Data

Register
5 Receive Line l—l U
6 Receive Buffer o0j1 1 1 0 1 1 1

Data Stop Bits

Start Bit

7 Receive Flag

Figure 18. CBC Receive Timing Diagram

V-23

TRANSMIT OPERATION

Assume that the program has put the CBC in the transmit mode, the CBC is in theprocess
of sending a word out on the line, and a word is waiting in the data register. When the current
word has been shifted into the line, the CBC will transfer the word in the data register to the
shift register. At this time, the transmit flag will automatically be set. The 5 bits transferred
into the shift register will automatically be preceded by a start bit and followed by 2 stop bits
when transmitted onto the line for a total of 8 bits. When the shift register is again empty,
the CBC will transfer the word in the data register to the shift register and repeat the process
if the transmit flag is reset. However, if the transmit flag is still set, indicating that the program
has not put a new word into the data register, the CBC will continue to put stop bits (marks)
on the line until the transmit flag is reset. When the program transfers a new word into the
data register, the transmit flag will be automatically reset and the above process will be re-
peated. For maximum line utilization, the program must test the transmit flag and supply a
new word before the current word has been completely shifted onto the line.

1 DEF 4 {1

[L_[L_[l_[l_[l_J1__[]__j

2 Transmit Clock [
=

3 Transfer Data

Register to Transmit
Buffer shift register

Start Data Stop
>
4 N Y
4 Transmit Buffer 0 0 1 0 1 0 1 1

5 Transmit Line

6 Transmit Flag

Figure 19. CBC Transmit Timing Diagram

The timing diagram (Figure 19) illustrates graphically what happens when a 5-bit character
is transmitted onto a communications line by a character buffer channel.

DATANET =30

V-24

1. The DEF 4 instruction sets the character buffer to the transmit mode.
2. The transmit clock sends data onto the line at regular intervals.

3. When the transmit buffer shift register becomes empty the data contained in the data
register is transferred to the shift register.

4. This is the binary representation of the character in the shift register.
5. Line 5 shows the output of the transmit section of the character buffer.
6. The transmit flag is shown setting when the word is transferred from the data register

to the shift register.

The example below shows one method that might be used to receive characters from a character
buffer.

Symbol OPR Operand X Remarks
ORG 7000
DEF 31 SET RECEIVE MODE, RESET FLAG AND
BUFFER
LOOK NES 1 RECEIVE FLAG SET?
BZE *-1 NO, GO BACK
TRA R,B YES, TRANSFER CHARACTER TO B
STB INPUT X STORE IN MEMORY
ADO INPUT ADD ONE TO INPUT ADDRESS
XBZ EOM IS THIS THE END OF MESSAGE?
BNZ LOOK NO, GO GET ANOTHER CHARACTER
INPUT IND 1000 INPUT ADDRESS
EOM OCT 000077 END-OQF -MESSAGE CHARACTER

1. The DEF 31 instruction puts the character buffer into the receive mode and resets
the receive flag and data buffer.

2. The NES 1 command tests the receive flag for a.set condition.
3. When the flag sets, the BZE testfails and the character is transferred to the B-register.
4. The character is stored inmemory andtestedto see if it is an end-of-message character.

5. If the character isn’t an EOM, control is transferred back to get next character.

Word Buffer Channel (WBC)

The word buffer channel (WBC) provides the interface to a half-duplex transmission line, on a
word basis. A WBC buffers a bit stream 20 bits in length, where the length is determined by
the wiring in the 20-bit code level connector. '

DATANET =80

V-25

The 20-bit buffer is intended for interconnecting DATANET-30’s. Usually system considerations
indicate that a WBC should be used on lines operating at more than 300 bits per second. The
following rates are selectable with standard speed connectors: 600, 1200, 1800, 2000, 2400, and
3000 bits per second. Two WBC’s can be mounted in a buffer module and the speeds of operation
may be independently selected. Each buffer selector address of each WBC is independently
assigned and is specified by the wiring of the address plug for the module,

WORD BUFFER INSTRUCTION

Mnemonic Operand Word Times
Register Transfer R, (TRA from R, to-)

The 20 bits in the data register are distributed as follows:

Bits 18-1 go to R(18-1). Bit 19 goes to the
control bit 1 flip-flop and bit 20 goes to the
control bit 3 flip-flops. The receive flag and
data register are reset.

20 bits
20 19 18 1
—1 R (18-1)
Control Bit 1 F-F
Control Bit 3 F-F
Register Transfer ,T (TRA from to T)

Bits 18-1 of the B-register are transferred
to bits 18-1 of the transmit data register.
Bits 19 and 20 of the transmit data register
come from control bit 1 and the word parity
network.

Word Parity Network

Control Bit 1 F-F

—7TI (18-1)

20 19 18 1

DATANET =80

V-26

Mnemonic : erand Word Times

DEF I 1
DEF 1 Reset receive flag and data buffer.
DEF 2 Reset transmit flag and data register.
DEF 3 Set receive mode (turn carrier off).
DEF 4 Set transmit mode (turn carrier on) and initiate transmission.

DEF 5-10 Not used.

NES 1 : 1
NES 1 Receive flag set (data register contains a new word).
NES 2 Transmit flag set (data register is ready for a new word).

NES 3-10 Not used.

LDT - Do not use.
SCN - Do not use.

RECEIVE OPERATION

Assume that the WBC has been put in the receive mode by the program, that the receive flag
is reset, and that the sending unit is transmitting a continuous stream of marks (the line is in
the idle condition). The sending unit starts transmitting a 20-bit word. The word is preceded
by a start bit (a space) and followed by a stop bit (a mark). When the start bit is received, a
clock is started. The clock is used to time the future sampling of the line. The start bit is
shifted into the shift register. At regular intervals, the line is sampled and the bit which is
present at sampling time is shifted into the shift register. When the shift register is full, the
20-data bits are automatically transferred into the data register, the receive flag is set, and
the clock is stopped. The clock will start again and the above process will repeat when the
next start bit is received on the transmission line. As a protection against noise on the trans-
mission line causing the clock to start running, the word buffer circuitry requires that the space
condition exist on the line for at least one-half of a bit time to start the clock. Thus, noise of
less duration than one-half of a bit time will have no effect. Since the word buffer will transfer
a word into the data register whether or not the data register and receive flag are reset, the
program must test the receive flag and take the word before another is transferred into the data
register. When the program takes the word from the data register, the data register and the
receive flag are automatically reset.

The timing diagram (Figure 20) illustrates how a 20-bit word would be received at a WBC:
1. The DEF 3 instruction puts the WBC into the receive mode.
2. The DEF 1 instruction resets the receive flag and data buffer.

3. The receive clock is shown sampling the line every bit period.

DATANET =80

v-27

S aedegEEies e e &l

4. Line 4 shows that the contents of the receive buffer are transferred to the data register
after all the bits are received.

5. Line 5 shows the receive communications line going into the WBC.
6. Line 6 shows what the receive buffer would look like after all 22 bits are received.

7. Line 7 shows the receive flag setting when the receive buffer is transferred to the
data register.

1 DEF 3

3 Rec. Clock H H H || || “”“ Il ll ” H ” “llll”“ Il “ || || IHHHH

4 Transfer Receive
Buffer to Data
Register

5 Receive Line | I ’ l | I r_

0fr 1.2 010 1 1010001100101

1
"6 Receive Buffer : \Stop

Start Bit
Bit —— DATA BITS

Y

7 Receive Flag

Figure 20. WBC Receive Timing Diagram

TRANSMIT OPERATION

Assume that the program has put the WBC in the transmit mode, the WBC is in the process of
sending a word out on the line, and a word is waiting in the data register. When the current
word has been shifted into the line, the WBC will transfer the word in the data register to the
shift register. At this time, the transmit flag will automatically be set. The 20 bits transferred
into the shift register will automatically be preceded by a start bit and followed by a stop bit

DATANET =80

V-28

when transmitted onto the line for a total of 22 bits. When the shift register is again empty,
the WBC will transfer the word in the data register to the shift register and repeat the process
if the transmit flag is reset. However, if the transmit flag is still set, indicating that the pro-
gram has not put a new word into the data register, the WBC will continue to put stop bits (marks)
on the line until the transmit flag is reset. When the program transfers a new word into the
data register, the transmit flag will be automatically reset and the above process will be re-
peated. For maximum line utilization, the program must test the transmit flag and supplya
new word before the current word has been completely shifted onto the line.

2 Transmit Clock JJ”UUUWUMUUUMMW
3 Transfer Data I] ‘ H

Register to

Transmit Buffer Start
Stop
4 Transmit Buffer 01101011001 110010110o011

5 Transmit Line | I | | ‘ l

6 Transmit Flag

Figure 21. WBC Transmit Timing Diagram

DATANET =80

V-29

The timing diagram (Figure 21) illustrates what happens when a 20-bit word is transmitted onto
a communications line by a word buffer channel:

1. The DEF 4 instruction sets the WBC to the transmit mode.

2. The transmit clock sends data onto the line at regular intervals determined by the
baud rate of the line.

3. When the transmit buffer shift register becomes empty the data contained in the data
register is transferred to the shift register.

4. This is the binary representation of the binary word in the shift register.
5. Line 5 shows the output of the transmit section of the WBC.

6. The transmit flag is shown setting when the word is transferred from the data register
to the shift register. '

RECEIVE-WORD BUFFER EXAMPLE

Location Instruction Symbol OPR Opetrand X Remarks
REM RECEIVE VIA WORD BUFFER
03720 ORG 2000 ORIGIN LOCATION 2000

03720 011017 PIC 15 PLACE BUFFER ADDRESS IN C
03721 026005 DEF 31 SET RECEIVE MODE, RESET BUFFER
03722 022001 RECVE NES 1 TEST FOR FLAG SET

03723 121722 BZE %1 NOT SET, GO BACK

03724 060044 TRA R,B SET, TRANSFER R TO B

03725 705730 STB MEMORY X STORE WORD IN MEMORY

03726 341730 ADO MEMORY INCREMENT MEMORY ADDRESS
03727 101722 BRU RECVE GO GET NEXT WORD

03730 005670 MEMORY IND 3000 INPUT AREA INDIRECT ADDRESS

Initially the word buffer address is put into the C-register. The receive mode is set and the
buffer is reset by the DEF 3 1 instruction. The flag is tested and the program waits for the
flag to set. When the flag sets, the contents of the data buffer are transferred to the B-register,
which automatically resets the receive flag and data buffer. The data is stored in memory,
and control is transferred back to get next word.

DATANET =30

V-30

TRANSMIT-WORD BUFFER-EXAMPLE

Location Instruction Symbol OPR Operand X Remarks
07640 ORG 4000 ORIGIN LOCATION 4000
07640 011032 PIC WBCHN PUT WORD BUFFER ADDRESS IN C
07641 062004 TRC 0,B TRANSFER ALL 1's TO B
07642 022002 NES 2 TRANSMIT FLAG SET
07643 121642 BZE *-1 NO, GO BACK
07644 060401 TRA B,T YES, TRANSFER WORD TO BUFFER
07645 026010 DEF 4 SET TRANSMIT MODE
07646 605655 LOOP LDB NEXTWD X LOAD NEXT WORD TO GO
07647 022002 NES 2 TRANSMIT FLAG SET
07648 121647 BZE *-1 NO, GO BACK
07649 060401 TRA B,T YES, TRANSFER WORD TO BUFFER
07650 341655 ADO NEXTWD ADD ONE TO OUTPUT AREA ADDRESS
07651 351654 SBO WDENT SUBTRACT ONE FROM WORD COUNT
07652 131646 BNZ LOOP BRANCH TO TRANSMIT NEXT WORD
07653 106000 BRU 0 X BRANCH LOCATION O
07654 WDCNT DEC 50 NUMBER OF WORDS TO GO
07655 NEXTWD IND 6000 OUTPUT AREA INDIRECT ADDRESS
WBCHN EQU 26 :

The Receive Parallel Unit (RPU)

The receive parallel unit (RPU) is a 14-channel, parallel-receive-only unit attached to the
buffer selector. Each RPU has an address plug, but no timing plug. Data is received asynchro-
nously at the rate of transmission of the transmitting device.

RECEIVE PA

External Function (DEF) Lines

All 10 DEF lines from the DATANET-30 are brought into the RPU. The line names given apply
to the Bell System’s DATA-PHONE Data Set 402B. However, these lines may perform other
functions for other digital subset interfaces.

Mnemonic Operand Word Times
DEF 1 1
DRIVE EXTERNAL FUNCTION

DEF 1 Reset Character Ready 1
DEF 2 Reset Answer Back A and B 1
DEF 3 Reset Answer Back Mode 1
DEF 4 Set Answer Back Mode 1
DEF 5 Answer Back A 1
DEF 6 Auxiliary Function (Set Transit Mode) 1
DEF 17 Auxiliary Function (Reset Transmit Mode) 1
DEF 8 Answer Back B 1
DEF 9 Answer Incoming Call 1
DEF 10 Disconnect Call 1

DATANET = 80

v-31

Mnemonic "~ Operand Word Times

NES I 1
AND EXTERNAL STATUS
LINES TO Z
NES 1 ‘Character Ready 1
NES 2 Auxiliary Status Line (Line Turn Around) 1
NES 3 Call in Progress 1
NES 4 - Request to Answer Call 1
NES 5 Auxiliary Status Line (Space Detect) 1
NES 6 Auxiliary Status Line 1
NES 7 Auxiliary Status Line 1
NES 8 Auxiliary Status Line 1

RECEIVE OPERATION

The RPU will accept any parallel character occupying up to 14 channels. The number of channels
can be reduced to fit the code in use when fewer than 14 channels are used.

Characters are transferred to the least significant bit positions of the DATANET-30 word. The
least significant digit of the character will be transferred to Y-Z01, the second least significant
digit to Y-Z02, etc.

The RPU is a single buffer device. The character being received will exist in the single buffer
for only one character time. As the transmitting device transmits each succeeding character,
the new character appears in the buffer immediately. A character must be shifted out of the
buffer before the next one is received (transmitted) or the character in the buffer will be lost.

Assume that nothing is being received, and that the RPU is in a state to receive data. When a
character is received it is sent to the receive buffer and a flag is set. The program has been
periodically interrogating the state of the flag. When the flag is set, and when the program detects
this condition, the character is transferred out of the RPU buffer and the flag is reset.

The RPU is capable of utilizing automatic answering and answer-back features of the digital
subset. Both hardware automatic answering and program answering can be done. Hardware
answering is done by the digital subset. When the digital subset answers, the external status
line (ESL 3)-call-in~-progress signal will be set until the call is terminated. The program can
terminate a call with a Drive External Function (DEF 10)-Disconnect Call instruction.

When the program does the automatic answering, upon the receipt of an incoming call, an External
Status Line (ESL4) signal -- request to answer call -- is set, but the call is not answered
until the program can do so. The program can answer with a Drive External Function (DEF9)

DATANET =80

V-32

instruction - Answer Incoming Call.
connect Call.

Normally, the RPU will be in the receive mode. To initiate the answer-back mode, a DEF, .
Set Answer Back Mode instruction is executed. This puts the RPU in the answer-back mode.
There are two answer-back lines that can be set by DEF instructions: Set Answer Back A and
Set Answer Back B. The DEF instruction Reset Answer Back A and B will remove the answer-

The call is terminated with the DEF instruction - Dis-

back mode. The digital subset is returned to the receive mode by the DEF instruction Reset

Answer Back Mode.

Transmitting p| Digital Digital
Device Subset Subset

2 to 14
Receive
Lines

Control
Lines

Control

Receive
Register

Buffer
Selector

Figure 22, Receive Parallel Unit Block Diagram

Flag

DATANET = 80—

V-33

PROGRAMMING THE PERIPHERAL EQUIPMENT
ON THE CONTROLLER SELECTOR

General Description
The controller selector enables the DATANET-30 to incorporate a variety of peripheral devices.

The controller selector is a common control and transfer point for such peripheral units as the
magnetic tape system and disc storage units.

Through the use of plug-in connectors, peripheral units can be connected in varying configu-
rations and interchanged according to the requirements of the system.

CONTROLLER SELECTOR INSTRUCTIONS

The instructions in this section are broken down into the areas of each peripheral device. There
are 3 basic instructions which apply to all peripherals.

Mnemonic Operand Word Times
CSR I 3-10
CONTROLLER STATUS REQUEST. Loads the B-register with an image of the

status lines of the peripheral controller specified
by I. 1 is the plug number of the peripheral
on the controller selector.

NIS 7 1
AND INTERNAL STATUS Interrogates the controller selector to deter-
LINE 7. mine if the last controller select command
issued has been completed. Sets the branch
flip-flops:
1 = controller select is finished.

0 = controller select has not been completed.

SEL 1
SELECT. Initiates operations as specified by locations
3, 4, and 5 of memory.

This instruction is equivalent to a DIF7.
(Drive Internal Function)

DATANET =80

V-34

PERIPHERAL COMMAND WORDS

The peripheral command words are stored in a constants area. In order to transfer the com-
mand words to a peripheral, they are moved from the constants area to memory locations 3, .
4, and 5; and a select (SEL) instruction is executed.

Memory location 3 contains the address of the selected peripheral in bit positions 1, 2 and 3.
Since the commands for the peripherals are 20 bits in length and the DATANET-30 word only
contains 18 bits, two bits must be added to the two peripheral command words contained in
memory locations 4 and 5. The two extra bits for command word 3 come from positions 13

and 14 of location 3. Two extra bits for command word 2 come from positions 8 and 7 of -
location 3:
18 14 13 8 7 3 2 1
7 Memory Location 3 - CW1
y Controller (To controller selector only)
% / / Address .
A |
20|19 {18 1

Memory ‘Location 4 - CW2

2041918 ’ Memory Location 5 - CW3

The controller selector stores the bits in positions 7, 8, 13, and 14 from command word 1
and automatically adds the extra bits onto command words 2 and 3 when they are sent to the
peripheral unit in order to have the proper length and bit configuration. This pattern is followed
for all peripherals on the controller selector. '

The Disc Storage Unit (DSU)

This section contains only information special to programming the disc storage unit (DSU)
from the DATANET-30. Additional information may be found in the manual for the DSU and
other publications.

A DSU consists of 16 storage discs. Information can be recorded or retrieved from both sides
of each disc. From one to four 16-disc file units can be connected into one DSU controller.

DATANET =30

V-35

The maximum bit transfer rate between main memory and a disc file is 500kc (five hundred
thousand bits per second), However, informationis transferred between memory and the controller
or between the controller and the disc file in groups of 18-bit words, or at a rate of 25ke (twenty-
five thousand words per second). At this rate, a DSU demands memory access every fifth word
time. For this reason, a DSU should be given the highest priority of any of the peripherals
connected into the controller selector. The recommended plug address for a DSU is 0, but it
could have any plug address from O to 7 provided it had the highest priority (lowest address
number) of the particular configuration connected into the controller selector.

Each word recorded on a disc consists of 18 information bits plus an odd parity bit which is
generated by the DSU controller. The minimum amount of information which can be trans-
ferred in either direction by one instruction is 64 words, or one frame. The maximum amount
of information which can be transferred in either direction is sixteen 64-word records.

Each 64-word frame is recorded serially in a circular track. There are 256 tracks on each
surface of a disc. The 128 outer tracks are each divided into. 16 sectors, each sector capable
of storing one 64-word record. The transfer rate to or from the 128 outer tracks is 500,000
bits per second. The 128 inner tracks are each divided into 8 sectors, each sector capable of
storing one 64-word record. The transfer rate to or from the 128 inner tracks is 250,000 bits
per second.

Each disc is served by a positioning arm. Each positioning arm contains eight read-write
heads; four heads serve the upper surface of the disc and four derve the lower surface. An
actuator for each positioning arm can move the arm parallel to the disc, so that all 256 tracks
on each surface can be served. The heads are numbered 0-7. Heads 0-3 serve the 128 inner
tracks (2 for each side of the disc). Heads 4 -7 serve the 128 outer tracks (2 for each side of
the disc). ~Because there are 4 heads for each side of the disc, the actuator must move the
positioning arm a maximum of 63 track positions to serve the 256 tracks on a disc surface.

DISC STORAGE UNIT COMMAND WORD FORMAT

The DSU command word format is shown below.

QOperation QOctal Code File No. Bits 1514 13
PRF 00020P 1st command word 0 001
5F0000 2nd command word 1 010
MMMMMM 3rd command word 2 111
3 100
POSITION One of the DSU controllers, P, (0-3) is positioned to receive or transmit a

specific record. P is the plug number of the DSU on the controller selector.
The line M contains the actual address (octal) of the selected disc file. F is
the disc file number on the controller selected by P.

DATANET =380

V-36

Operation Qctal Code

RRF 00010P 1st command word
2FOONN 2nd command word
OMMMMM 3rd command word
READ N is the number (1 - 16) of 64-word records to be transmitted from disc storage

to core storage. F is the number (0 - 3) of the selected disc file. M is the core
memory address into which the first word of the record is stored. P is the
plug number of the DSU on the controller selector.

WRF 00030P 1st command word
TFOONN 2nd command word
OMMMMM 3rd command word
WRITE N is the number (1 -~ 16) of 64-word records to be transmitted from core storage

to disc storage. F is the number (0-3) of the selected disc file. M is the
memory location of the first word to be transmitted from core storage to disc
storage. P is the plug number of the DSU on the controller selector.

NOTE: The mnemonics are never used in actual coding. The command words
must be written in octal form.

The sequence for addressing the DSU is to select the DSU to be addressed and position one
of the arms. The access time varies depending upon the distance the arm must travel to be in
position and upon latency time. After the desired arm is in position, the read/write instructions
may be executed.

POSITION COMMAND WORDS

When the command words are to be executed, it is first necessary to store the three command
words in memory locations 3, 4, and 5. An SEL instruction executes the positioning instructions
(command words).

The third word sent from memory to the controller selects the arm, the arm position, and the
address of the frame or frames to be transferred. Bit positions 14 and 13 of command word 1
'and bit positions 18-15 of command word 2 select the arm (0 - 15) which contains the head or
heads to do the writing or reading. Bits 14-9 of command word 3 select the arm position
(0-63) involved in the transfer of information. Bits 8-2 select the first frame (0-95) to be
read or written.

DATANET =50

v-31

Below is shown the command word format for positioning an arm to a desired track and frame.

[18 17 16 1514 1312 11 10 9]s 7]6 s 4|3 2 1 Command Word 1
I | | CPlug Number
Not Used Not Used Not Used
Not Used 1 0 Position Command

Must be Zero .

18 17 1615 14 13}112 11 10 9 8 7 6 5 4 3 2 1 Command Word 2
J J
T Y_All zeros
. Disc File Number
1 0 1
Position
Command
18 1 14 13 12 8 7 1 Command Word 3

[\ .

7 16 15
J
L Arm Number

of the Disc File

.

11 10 9 6 5 4 3 2
J
1 = Read Next Frame
E Frame #
Arm Position

Selection of the frame to be transferred also automatically selects the head which is to perform
the read or write operation. Each of the eight heads on the positioning arm can read a specified
number of frames as follows:

Frame Number

Per Arm Position Head Number
0- 7 0
8 - 15 1
16 - 23 2
24 - 31 3
32 - 47 4
48 - 63 5
64 - 79 6
80 - 95 7

DATANET =80

V-38

The seven bits of the frame number (command word 3) designate the head which is to perform
the read or write operation as well as the number of the frame. All the 96 frames capable of
being read when the positioning arm is in a given position can be addressed by the seven frame
number bits whose binary value varies from 0000000 for frame O to 1011111 for frame 95,

as follows:

Command Word 3

Bits 8 76 5

4

3

2

0000
to

0000

0001

0001

Bits 8 76 5

0

1

0

1

0

1

0110
to
0111

1000
to
1001

1010
to
1011

1100
to
1111

Inner Tracks 0 - 63
Frames 0 through 7

Inner Tracks 0 - 63
Frames 8 through 15

Inner Tracks 0 - 63
Frames 16 through 23

Inner Tracks 0 - 63
Frames 24 through 31

Outer Tracks 0 - 63
Frames 32 through 47

Outer Tracks 0 - 63
Frames 48 through 63

Outer Tracks 0 - 63
Frames 64 through 79

Outer Tracks 0 - 63
Frames 80 through 95

96 through 127
Invalid Address

Top Side
Top Side
Bottom Side
Bottom Side

Top Side

Top Side
Bottom Side

Bottom Side

The maximum number of frames which can be transferred by one instruction is 16. It is not
necessary that these 16 frames (or any part of 16 frames) all be in the outer tracks or all be

in the inner tracks.

DATANET =380

The transfer of information during the execution of an instruction can start

V-39

in the inner tracks and continue in the outer tracks. As frames are being transferred, a count
is maintained in the DSU controller, so thatthe read or write operation continues for the specified
number of frames, As already explained, the sequential incrementing of the frame address
in the controller automatically results in the proper head switching, Because frame 95 is the
highest valid address, incrementing the address in the controller beyond 95 causes frame 0
to be the next frame transferred.

Bit 1 of word 3 is identified by read next frame, When this bit is on (contains a 1) the seven
bits of the frame address are ignored and the subsequent reading or writing operation takes
place in the next frame, Bit 1 of command word 3 is used when it is desired to sample a frame
from any given position of the positioning arm, Rather than search for a specific frame out
of the 96 possible, the next frame can be read, This form of addressing can also be used when
it is known that every frame in a track is to be transferred and it does not make any difference
which is read first,

READ/WRITE COMMAND WORDS

After a DSU arm has been positioned the DSU can then be addressed for a read or write operation,
It is first necessary to store the three command words for the read/write operation in memory
locations 3, 4, and 5, An SEL instruction executes the read or write.

The command word format for read or write operations is as follows:

IlS 17 16 15| 14 13 I 12 11 10 9 l 8 716 5 4| 3 2 1 Command Word 1
I l CPlug Number
00 Not Used Not Used
Not Used 01 Read
11 Write
L18 17 1615 14 1312 11 10 9 8 7 6| 5 4 3 2 1 Command Word 2
A J
\O/_AL_ No. Of Frames
1 Remove power
Disc File Number 0 Hold power
010 Read
111 Write
18 17 16 |15 14 13 12 11 10 9 8 7 |6 5 4 3 2 TI Command Word 3
\ J U J
T
Starting Location 0
0 in Memory

DATANET =80

V-40

Command word 1 selects the controller selector plug (P) into which the DSU is connected.
Once the DSU unit has been. selected by the controller selector, the DSU controller goes into
the busy state and waits for the next two words from memory. The next two words are sent
to the DSU controller and indicates the operation to be performed (read or write), the file which
is to perform the operation, the number of frames to be transferred, and the starting address
in memory where information is to be sent or retrieved.

Bit positions 8 and 7 of word 1, and 18- 16 of word 2 cause the file to read (octal 12) or write
octal 37), Bits 15-13 of word 2 indicate the file which is to perform the read or write operation.

Bits 5 - 1 of word 2 indicates the number of records (0 - 16) which can be transferred. A “1”
in bit position 10 of command word 2 of a Read or Write sequence will cause power to be removed
from the positioning motor upon completion of that sequence. A “0” in bit position 10 of command
word 2 holds power to the positioning motor.

Bits 15-7 of word 3 transferred to the controller indicate the starting location in memory
of the read or write operation. The nine bits of the starting location address allow this address
in the controller to be stepped 1024 times or, in other words, to count the 1024 words of 16
records, the maximum which can be transferred by one instruction. Because bits 6 -1 of word
3 are not used, the starting location address must be a multiple of 64. Bits 15~ 7 can address
memory capacities up to 32,767 words.

BRANCH CONDITIONS

Single-access DSU branch conditions may be tested by looking at the B- reglster after a CSR
command. Bits 15, 16, 17, and 18 are on in the illustration below:

B-register |18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

LControl ler Ready

Echo

/ Used for Dual Access
_ Controller

. File 3 error

L File 2 error

L File 1 error

L__ File O error

| File error (any error)

L_. Any error.
L__ Parity error
l— Input/output error
L File 3 not ready

L File 2 not ready

L. File 1 not ready

L File O not ready

DETANET = 30

V-41

The dual-access DSU may be tested in an identical manner with two additional test positions:

L* 1& ILe

18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

— J
Same as single access l- Same as single access

LOCKOUT INDICATOR
The other processor has set
lockout bit

Test and Branch - the other processor
has issued a test-and-branch instruction

SAMPLE CODING TO ADDRESS a DSU

Below is given a sample coding for positioning the arm:

NIS 7

BZE *-1

CSR 0

BEV *-1

BMI *-2

LDB 1st Word (Command)

STB 3

LDD 2nd and 3rd Word (Command)

STD 4

SEL (Arm starts seek for Position. DSU goes ready when in position. Now issue

Read or Write.)

Below is given a sample coding for a read or write operation:

NIS 7

BZE *-1

CSR -0

BEV *¥-1

BMI *-2

LDB 1st Word (Cemmand) Read/Write

STB 3

LDD 2nd and 3rd Word (Command) Read/Write
STD 4

SEL (To Execute Read/Write.)

DATANET = 80

V-42

Operating Times

Following are the DSU operating times:

Speed of rotation of discs 1200 rpm
Effective bit transfer rate :

Inner tracks 250 ke

Outer tracks 500 ke
Maximum latency time* 52 ms
Average latency time 26 ms
Average access time (latency time

plus positioning time) 199 ms

PHYSICAL CHARACTERISTICS

The physical characteristics of the DSU are shown below:

Number of discs per file 16
Number of recording surfaces 32
Number of positioning arms 16
Number of read/write heads per positioning arm 8
Number of read/write heads per surface 4
Number of tracks per surface 256

Inner zone 128

Outer zone 128
Number of words per frame 64
Number of frames per track

Inner zone 8

Quter zone 16
Number of frames per surface 3,072
Number of frames per 16-disc file 98,304
Number of words per file 6,291,456
Number of bits per file

Information bits 132,120,576

Check word bits 2,064,384
Total number of bits per file 134,184,960

* Latency time is the time necessary for a piece of information to reach a read/write head as
the disc revolves.

DATANET= 380

V-43

PROGRAMMING THE MAGNETIC TAPE UNITS

This section contains only information special to programming the magnetic tapes from the
DATANET-30. More detailed information on magnetic tape and additional programming infor-
mation may be found in the manual for the magnetic tape units and other publications.

Magnetic tape units can be operated in two different modes: decimal and special binary. During
forward movement of the tape, information can be written on or read from tape in both modes.
During backward movement, information can be read from tape in both modes.

During the decimal mode of operation the zone bits -- the two most significant bits of each
six-bit binary-coded decimal (BCD) character -- are altered during transfer of information
between magnetic tape and memory. This alteration of the zone bits takes place automatically
in the tape controller as follows:

BCD Character BCD Character
in Memory on Tape
0 0 XXXX 0 0 XXXX
01 XXXX 11 XXXX
1 0 XXXX 1 0 XXXX
11 XXXX 01 XXXX

The four least significant bits (XXXX) of each BCD character are the same in memory or on
tape with one exception: a BCD 0 in memory is 000000 but on magnetic tape it is 001010. The
alteration of. information during the decimal mode takes place for any configuration of bits (there
are no illegal bit configurations). The alteration of information during the decimal mode of
operation makes the DATANET-30 magnetic tapes compatible with magnetic tape formats now
in use.

During binary operations of magnetic tapes, information is transferred between magnetic tapes
and memory without alteration of bits.

Decimal Mode

In the decimal mode of magnetic tape operations, 18 bits (18- 1) of a memory word correspond
to 3 BCD characters. Each word from memory is checked for parity in the tape controller.
When information is read from tape, bits 0 and 1 are made 0 when three BCD characters enter
a memory cell, The following illustration shows the relationship between a word in memory
and the three BCD characters on magnetic tape.

DATANET =80

V-44

3 - 8ix Bit BCD Characters in Memory

e

b

Tape
MovementT 18 17 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(3 14 15 16 17 18 P 4—J

7 8 9 10 11 12 Pp| -

1 2 3 4 5 6 P| g

P is a generated even parity bit for each character

Binary Mode

During binary mode operations, 18 bits (1 -18) are written on tape as three lines of information.

18 - Bit Binary Word in Memory

.

4 N
Tape
Movement T 18 17 16 15 14 13 12 11 10 9 8 7 6 5 & 3 2 1

13 14 15 16 17 18 P 4————’

7 8 9 10 11 12 P| -

1 2 3 4 5 6 Pl g
LV\M—QMM‘_

P is a generated odd parity bit for each line of
binary information

The format of information on tape in the binary mode is the same as in the decimal mode. In
the binary mode, however, the zone bits and 0 are not altered during the transfer of information.
Also, in the binary mode, the parity bit P generated for each line on tape is an odd parity bit.

Record Length

After reading (in binary or decimal mode) N words from magnetic tape into memory starting
at location M, memory location M + N will contain zeros if exactly N words were read from a
record on tape containing N words. If the number of words contained in the record currently
read is less than N, then only the contents of the record will be stored in memory and the 2’s
complement of the difference (N - record length) will be stored in memory cell M + N with a
1-bit in position 18. If the number of words in the record is greater than N, then only N words
will be stored in memory and the increment (record length - N) will be stored in memory cell
M + N with a 0 in the sign position. M is not automatically modified. In order to forward space
(skip) one record, the RTS, RTD, or RTB command is used with N set equal to 0. This statement

DATANET =30

V-45

also applies to the read tape backward instructions except that M - N will contain zeros if
exactly N words were read from a record on tape containing N words. M - N will contain the
2’s complement of the difference (N - record length) with a 1 in position 18 if the number of
words contained in the record currently read is less than N. M - N will contain the increment
(record length - N) if the number of words in the record is greater than N.

Magnetic Tape Instructions
Operation

WTD
WRITE TAPE DECIMAL.

RTD
READ TAPE DECIMAL.

WTB
WRITE TAPE BINARY.

RTB ,
READ T APE BINARY.

DATANET =380

Octal Code

0TO00P - CW1 .
2MMMMM - CW2
TNNNNN - CW3

N decimal words from memory starting atlocation
M are written on handler T. Pis the plug number
of the tape controller,

0T000P
4MMMMM
TNNNNN

A maximum of N decimal words is read by tape
handler T and placed in memory starting at loca-
tion M.

0T020P
SMMMMM
TNNNNN

N words of information from memory starting
at location M are written by tape handler T. Bits
18-1 are written on tape exactly as in memory.

0T020P
SMMMMM
TNNNNN

A maximum of N words is read by tape handler
T and stored in memory starting at location M.

V-46

Operation
RBD

READ BACKWARD DECIMAL,

RBB
READ BACKWARD BINARY,

RWD
REWIND.

WEF
WRITE END-OF-FILE.

BKW

BACKSPACE AND POSITION WRITE HEAD.,

Octal Code

0T010P
4MMMMM
TNNNNN

Decimal information is read from tape moving
backwards. A maximum of N words is read into
memory, the first word being placed in location
M. The second word is placed in M - 1 and so
on until N words are read. The tape controller
alters the zone bits of characters read so that
they conform to GE Compatibles/200 internal
BCD characters.

0T030P
SMMMMM
TNNNNN

Information is read from tape moving backwards.
Contents of bit positions 2-19 of each word read
are placed in memory exactly as on tape (zone
bits are not altered)., A maximum of N words is
read into memory, the first word being placed
in M. The second word read is placedinM-1
and so forth until N words are read.

0T020P
000000
T00000

Rewind tape handler T to leader.

0T000P
200000
T00000

The end-of-file character (0001111) and end-of-
file gap are written on tape by tape handler T.

0T010P
600000
T00000

The tape on tape handler T is backspaced one
record and the write head is positioned to write.

DATANET =30

v-47

Command Words

The table below shows the digits used for specifying each tape handler:

Handler
Command
Word 0 1 2 3 4 5 6 7
1st Word 000Y,0P 000Y;0P 000Y;0P 010Y,0P 020Y,0P 020Y,0P 020Y,0P 030Y,0P
2nd Word ¥, MMM Y, MMMMM Y, MMMMM Y, MMMMM ¥, MMMMM ¥, MMMMM ¥, MMMMM YZMMMI'M

3rd Word LNNNNN 2NNNNN 4NNNNN ONNNNN INNNNN 2NNNNN 4NNNNN ONNNNN

Y; Y9 are the octal digits for the different tape instructions. The numbers underlined
are used for specifying the handler number.

P is the plug number of the tape controller.
M is the address being written out of or read into memory.

N is the number of words being read or written - that is, record length. For example:

Instruction Tape Handler Plug
RTB 3 2
The 3 command 0T020P = 010202
words from “Octal SMMMMM = 500200
Code” column. TNNNNN = 000400

From table above ——
number of words
being read or written

DATANET =380

V-48

T for T for
Inst. 4] Y, Command Command
Handler Number Word 1 Word 3
WID 0 2
WTB 2 3 0 0 1
RTD 0 4 1 0 2
RTB 2 5 2 0 4
RBD 1 4 3 1 0
RBB 3 5 4 2 1
RWD 2 0 5 2 2
WEF 0 2 6 2 4
BKW 1 6 7 3 0

The above tables can be used when setting up the three command words. Before issuing the
command words to the tape controller, the command words are first transferred to memory
locations 3, 4, and 5. A SEL instruction executes the transfer of the command words to the
magnetic tape controller. When the command word instructions are coded, the above octal
coding is used as the operand.

Programming Example

The following example shows how to write 64-word records on magnetic tape handler 2 out of
location 500:

Symbol OPR Operand Remarks
WTB CSR 1 GET STATUS LINES
NBZ READY TAPE READY?
BZE *-2 NO, GO BACK
LDB 1STWD GET COMMAND WORD 1
STB 3 STORE IN LOCATION 3
LDbD wWD2,3 GET WORDS 2 AND 3
- STD 4 STORE IN LOCATIONS 4 AND 5
- SEL SELECT PERIPHERAL
NIS 7 SELECT DONE?
BZE %1 NO GO, WAIT
BRU WTB
READY OCT 000001 BIT 1 TO TEST READY
1STWD OCT 000201 COMMAND WORD 1
wD2,3 OCT 300500 COMMAND WORD 2
OCT - 200100 COMMAND WORD 3

DATANET =30

V-49

In the preceding example, initially the CSR command is executed to test the ready status of
the tape controller. When the controller becomes ready, the 3 command words are loaded from
their temporary storage locations and put into locations 3, 4, and 5. The SEL command initiates
operation of the controller selector unit and the commands are automatically sent to the tape
controller. Next, the NIS7 interrogates the controller selector to see if the last controller
select is finished. When the select has been finished the program returns to write a new record.

Tape Unit Conditions

Tapes contain a silver spot to signal the physical end of the tape. When detected by a photo-
electric cell within the tape unit, an indicator on the tape controller is set. The condition of the
indicator should be tested by programmed instructions after reading or writing each record.
If the indicator is not set, normal processing will continue. If it is set, an end-of-tape branch
will jump into specified subroutines - normally rewinding the current reel and switching to a
new reel. The end of file sentinel is the magnetic representation of the binary code 001111
preceded by an erased section of the tape 3-3/4 inches long.

During magnetic tape operations several other exceptional conditions may occur which are
secondary to the main processing job. Handling of these exceptional conditions may be conven-
iently assigned to “executive routines.” These conditions are handled as branch conditions.

Branch Conditions

The branch conditions concerned with the tape controller may be tested by examining the bits
in the B-register after a CSR instruction. When the particular bit is on, the condition is true,
as shown below: :

B-register 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
l_Controller
Ready
Echo
Any Error
Modulo 3 or 4 Error
Input/output Error

L L—Tape Parity Error
Any Handler Rewinding

— End of Tape

—End of File

DATANET =380

V-50

Examples:
Controller Ready (Controller on Plug 4)

CSR 4
BEV *¥-1 (not ready)

Echo
CSR 4
SR1 B,Z
BEV No error
Any Error
CSR 4 CSR
NBZ 004L . SL.6

BZE No error BPL
0041, OCT 004000

Mod 3 or 4 Error

CSR 4 CSR
NBZ 01L SL5
BZE No error BPL

01L OCT 010000

Tape Parity Error

CSR 4 CSR
NBZ 04L SL3

BZE No error BPL

04L OCT 040000

Any Handler Rewinding

CSR 4 CSR

NBZ 1L SL2

BZE No error BPL
1L OCT 100000

DATANET = 30—

4
B,Z
No error

4
B,Z
No error

4
B,Z
No error

4
B,Z
No error

V-51

PROGRAMMING THE PAPER TAPE READER

The paper tape reader reads at a continuous rate of 300 characters per second. Tape can be
read under program control or hardware control, depending upon the format in which it is punched.
Paper tape punched in the hardware load format is always read at the maximum 300-character-
per-second rate under automatic control of the DATANET-30 circuitry, The paper tape reader
is always on buffer selector address 0.

Paper tape may be read under program control in two modes, continuous mode and step mode,
Five- to eight-level tape may be read but normally only eight-level tape will be used. I paper
tape is read in continuous mode, the character under the read station must be taken away 500
microseconds after the flag is set, If the 500 microsecond timing restriction is not met, reading
must be done in the step mode at a speed of approximately 50 characters per second,

In either mode, when the sprocket hole is detected, the character under the read station causes
the receive flag to be set. When the character is taken away, the flag is automatically reset
and the reader moves the tape to the next character. This control of the movement of tape is
in effect at both 300 and 50 characters-per-second speeds, The sprocket hole serves as a timing
source, A sprocket hole only indicates a character and will set the receive flag,

The reader is turned on by the POWER ON switch on the paper tape reader control panel, Normal
operation requires that the reader be turned on at all times,

Reading Paper Tape Under Program Control
PAPER TAPE READER INSTRUCTIONS

Following are the paper tape reader instructions:
Register Transfer (From R,)
The character contained in the buffer is transferred to register A or B, as in the diagram below,

The receive flag and data buffer are reset, If stopped, any register transfer instruction from R
:starts paper moving or allows the movement of paper to continue,

21 20 19|18 6 5 4 3 2 1 To A or B

— Input Buffer '"O"
0000.000-4—|
Channel 1
Sprocket
Channel 8

DATANET =80

V-52

DEF 1 Reset flag and read next character. The reader starts paper moving through the
reader or allows the movement of paper to continue.

DEF 2-10 No effect,

NES 1 Read flag set (a new character is ready),
SCN Do not use,
LDT No effect,

Register Transfer , T - No effect,

The following example is a few lines of coding which show one way in which paper tape might
be read. In this example, paper tape is punched in 6-level code and 3 characters are assembled
into one word, Channels 7 and 8 are not punched. In this example, the 7 and 8 channels are

transferred but are not used.

Location Instruction Symbol ﬂ M M
13560 ORG 6000 ORIGIN LOCATION
13560 011000 PIC 0 PUT PAPER TAPE READER ADDRESS IN C
13561 022001 READ NES 1 CHARACTER PRESENT?
13562 121561 BZE *-1 'NO, GO BACK
13563 044044 SL6 R,B YES, SHIFT TO B-REGISTER
13564 022001 NES 1 CHARACTER PRESENT?
13565 121564 BZE *-1 NO, GO BACK
13566 044444 SL6 BR,B YES, SHIFT TO B-REGISTER
13567 022001 NES 1 CHARACTER PRESENT?
13570 121567 BZE *-1 NO, GO BACK
13571 060444 TRA BR,B YES, TRANSFER TO B
13572 705576 STB WKSTOR X STORE IN MEMORY INPUT AREA
13573 341576 ADO WKSTOR ADD 1 TO INDIRECT MEMORY ADDRESS
13574 771577 XBZ STOP IS THIS A STOP WORD?
13575 131561 BNZ READ NO, GO READ NEW WORD
13576 001750 WKSTOR IND 1000 INDIRECT ADDRESS
13577 777777 STOP OCT 777777 STOP CONSTANT

Initially buffer selector address 0 is put into the C-register, The NES1 command tests the
buffer for a character, and status line 1 will remain a 0 until a character is present, When
the flag sets, the program falls through the BZE test and shifts the character into the B-register.
When three characters have been assembled in the B-register, they are stored away in memory
and a test is made to see if the last word was a stop signal, If the word was not a stop signal,
control is transferred back to the symbol READ and the reading process continues,

NOTE: When tape is loaded in the reader, the tape will stop with a sprocket hole over the read
station. A sprocket hole by itself will set the flag and represents a “blank” character,

DATANET=80

V-53

PROGRAM LOAD FORMAT

A paper tape generated by General Assembly Program 3 in the program load format can only
be loaded into the DATANET-30 by a loader program, It is not hardware loadable,

The program load paper tape code is shown below:

Channel on Tape
8 7 6 5 4 3 2 1
Leader ——— 90 0 o0 1 o 0O 0 O 1 = Hole
Flag ———jp1 6 0 O o 0 O 0 0 = No Hole
Digit 0 0 0 1 1 1 o 0 o0
1 o o0 0 O o0 o0 ©0 1
2 0 0 o0 0 0 O 1 0
7 0 0 O 0 0 1 1 1
EXAMPLE: Sprocket hole
£ 18 inch Leader
° 9
]
I]
°
°

~&————TFlag

Word Count
(Number of data words
in this record)

Origin

Tape Movement r

Binary Data Card <
Image
Data
6 frames/word

Hash Total

o0 ntf————=Blank Frame
. Flag
_‘___Word Count

~———Origin (6 frames)

Binaryllt)nztgi Card 4 \\\\\\\\\\

= ———|{{ ¢———Data
}4——-—Hash Total
.

-€———Word Count

NNNNNWHZ0888 o e

[3K]
. e Program

——

Transfer Card
(WD CNT = 0)

DATANET =30

V-54 -

Hardware Load and the Paper Tape Reader

Once initiated, the loading of data from the paper tape reader is accomplished entirely under
hardware control, A special format (operation code), in channels 7 and 8 (the control channels)
controls the shift of data in channels 1 - 6 from the reader to the B-register and then into memory,
The characters in channels 1-6 are transferred into the B-register and assembled to form a
word, Since the DATANET-30 word is 18 bits, two shifts of 6 bits each are required,

18 13 12 7 6 1

T

SL6 SL6 6 bits from reader

When the B-register is filled with the third transfer of data into B, the word is transferred
to memory. (Operation code 01XXXXXX.)

Operation code in

channels 8 & 7 Operation
8 7 654321
10 111111 Begin hardware load, The reader searches for this code before the transfer

of data can start,

0 0 XXXXXX SL6 BR, B
Bits 1-6 from the paper tape reader are OR-ed into 1-6 of Y with the
contents of the B-register. Y is shifted left 6 to Z, Z is transferred to
the B-register,

0 1 XXXXXX TRA BR, B
Store B in memory location specified by P. Count Pup 1. Clear B.

Bits 1-6 from the paper tape reader are OR-ed into 1-6 of Y with the
contents of the B-register. Y is transferred to Z without change, 7 is
transferred to the B-register, The contents of the B-register are stored
in memory as specified by P, P is counted up by 1, and the B-register
is cleared,

1 1 XXXXXX TRA BR, B
TRA B, P. Clear B

Bits 1-6 from the paper tape reader are OR-ed into 1-6 of Y with the
contents of the B-register., Y is transferred to Z without change, Z is
transferred to B, Then the contents of the B-register are transferred
to P, and the B-register is cleared.

DATANET =80

V-55

Operation code in

channels 8 & 7 Operation
1 0 XXXXX0 End hardware load, Control is automatically transferred to the program,

The program starts at the address specified by the P-counter,

NOTE:‘ Only begin hardware load and end hardware load use all 8 channels for the operation
code, A punch is a 1, a blank is a 0. A blank space (sprocket hole only) causes zeros to be
transferred into B,

DATANET =380

V-56

STRUCTURE TABLE TO
HARDWARE LOAD OPERATION

The sequence of operations for hardware load is shown by the following steps:

1. When hardware load is initiated, the C-register is set to zero, the Q-counter is set
to -1, the paper starts moving through the reader, and the tape is examined for the

begin hardware load character.

2. Read a character,

P-counter

Starting Location
of Program

Character

87 | 654321 This Occurs Go To Step
[

10 l11].111 Sets B-register to Zero 3
:Begin HWL
|
|

XX § XXXXXX Nothing happens 2

any character

except hardware

load

3. Read a character,

Chﬁracter

87 |654321 Go To Step
1

00 ! XXXXXX (O0XX) SL6 BR,B 3

VIW

0] X X
!

01: XXXXXX (1XX) TRA BR, B

"“lw STB "P CTR'

1 | X X Count P (P=P+1)
| Set B-register to zero 3
|

JL XX (3%X) TRA BR, P
|é§§{VJ Set B-register to zero 3

3 I X X

t

10 | 000000 (200) Start the program at

é | H 5 location specified by
I
|

DATANET =380

V-57

Hardware Load Format

The hardware load format output of the General Assembly Program may be loaded into the
DATANET-30 by either hardware load or a loader program, When the paper tape is loaded via
a loader program, checking is accomplished by the block hash total and program hash total,
When the paper tape is loaded via hardware load, no checking by hash total is accomplished.

The block hash total is located at position N + 1 of a block of N words, Program hash total is
located after the address of a transfer word, and before the end hardware load character., Block
is the equivalent of a binary card or binary tape record. Octal cards will be converted to a
block length of one. An example of hardware load paper tape format is shown below:

T 1Y

I 'lﬁ:‘é 18 inches of Leader

Tape 1!

Moves [l g————Start H.L. Character
This Way y -f—— Word Count (N)

Binary Data—ca}i< \\\\\\\\\\\ ~4——Origin

e — - Data

—~4—————Block Hash Total

N/

~¢———ljord Count

Binary Data Card < k\\\\\\\\\\(~¢———Origin

el Data
] l , ~f——— _Block Hash Total
\.
Transfer Card / ~4——— _Word Count (=0)
—_——

~4—— Origin (Transfer)

—4———— Program Hash Total

2]) ~g—— End H.L. Character

~stf————— 3 Blank Frames

minm
Next Program or 18 inches
of Leader
> (next Program will start
with "Start H.L. Character')
/

AT

ANET=30

V-58

UTILITY ROUTINES

Since the output from the DATANET-30 General Assembly Program is magnetic tape (switch
option) or punched cards and the input to the DATANET-30 is punched paper tape, a conversion
program is needed, A utility routine (General Assembly Program 3) on the DATANET-30
General Assembly Program systems tape will accomplish this, producing paper tape in various
formats on a free-standing paper tape unit which has the eight-level straight transfer mode.
One of the formats is compatible with hardware load, so that self-loading programs can be

produced. Other formats are read by paper tape loader programs,

The Paper Tape Conversion (General Assembly Program 3) Utility Routine can be run following
the DATANET-30 General Assembly Program by setting the console switches,

DATANET = 30

V-59

SYSTEM CONSIDERATIONS

The Message Switching Center

When operating as a message switching center, the configuration of the overall system must
be considered:

1. Number and type of incoming/outgoing lines -- half duplex, full duplex, etc,
2. Number of receive-only remote terminals
3. Number of stations per multipoint line

4, The speed of transmission on each line, if there are transmission speed differences
in the system,

5. The handling of priority messages, if any
6. Whether or not another DATANET-30 is included in the system
7. Routing codes: multiple broadcast or single address
8. Remote sfation identification codes
9. Message format
10. How communication with other networks will be handled
11. Control of the system for beginning of day and end of day
12. The type of remote terminal equipment and all operating characteristics.

The above list only partially covers the considerations necessary., After the characteristics
of each system have been determined, the programming can proceed.

Integrated Data Processing

The inclusion of a computer in the overall system permits various methods of handling incoming/
outgoing messages,

In one case, incoming data intended for the computer is transferred directly, In another, the
incoming data is stored first in a disc storage unit and retrieved by the computer,

A system may also store data in the disc storage unit and transfer it to the computer at a certain
time of day for batch processing, Individual operating procedures and program requirements
will necessarily be developed for each system,

 DATANET=30

V-60

PROGRAM PREPARATION

General

The principal programming tool is an assembler, Writing programs at the assembler language
level is the fastest and most economical way to create the efficient real-time programs needed,

The relative importance assigned to the system factors of operating time, memory utilization,
and coding effort strongly affects the relative importance assigned to the software factors of
assembler, compiler, and subroutines,

For real-time applications, operating time is of paramount importance, because system capability
is strongly dependent upon program efficiency of operating time, Memory utilization is also
important, since system performance depends strongly on the amount of memory available for
data storage. Coding effort is of much less importance in the overall considerations and life
of a program,

In order to minimize the operating time and the memory space needed, the program should be
written at the assembly language level,

The DATANET-30 assembly program was written to run on a GE-225 Information Processing
System. Programs written for the DATANET-30 must be assembled on a GE-225. If the pro-
grams are written at the Computer Department Headquarters, assembly can be done there, If
the programs are written in other areas, they can be assembled at one of the many General
Electric Information Processing Centers located throughout the country,

For most systems, the system capability will be inversely proportional to the amount of time
required to service a line -- that is, if the time per line can be reduced 20 percent with more
efficient programming, then the system has the capability to handle 20 percent more lines,
Another way of looking at the importance of the operating time used by a program is that if
system requirements specify that 10 ms are available in which to service all lines once, then
a program which requires 11 ms cannot be used unless the 10 ms specification is changed, the
number of lines reduced, or the 11 ms program made more efficient. Because the amount of
operating time is so important, several special features have been included in the hardware
to reduce the operating time. Writing the actual coding at the assembler level is the best way
to utilize these special features and attain the necessary efficiency,

The amount of memory used for the instructions and tables in a program will determine how
much memory is left over for data storage. Decreasing the program memory required will
increase the data storage memory available, thus improving the store and forward performance,
In addition, for those applications which permit giving a busy signal, more data storage memory
will delay or possibly eliminate the point at which a busy signal will have to be given because
of a full memory. For those applications which do not permit giving a busy signal, decreasing
the memory required for the program will decrease the total amount of memory needed in the
system.,

DATANET =30

V-61

THE GENERAL ASSEMBLY PROGRAM
General Description

The General Assembly Program is an effort-saving procedure that permits writing programs
in specific mnemonics rather than in the absolute computer coding. For example, mnemonic
ADO is used to indicate the add 1 operation, mnemonic SBO to indicate the subtract 1 operation,
etc. The instruction mnemonics are chosen to be as self-explanatory as possible,

The General Assembly Program examines the mnemonics and translates them into the corre-
sponding absolute code of the computer, The output of the assembly program is the original
source program converted to absolute code in machine readable form on punched cards, magnetic
tape, or paper tape.

When a program is written, memory addresses may be specified in decimal or symbolic notation,
ADO 100 means add 1 to location 100, ADO BETA means add 1 to location BETA, where the
General Assembly Program automatically assigns the memory location of BETA, The pro-
grammer need only specify the starting address into-which the first instruction of the program
is stored.

In addition to the mnemonic code for the instructions in the normal list of instructions, the
General Assembly Program uses other mnemonic codes called “pseudo-operations,” A pseudo-
operation is not a computer instruction but is a control instruction to the General Assembly
Program, The pseudo-operation has the same form as a computer instruction, and it is listed
like a normal instruction in the preparation of a program, For example, ORG is a pseudo-
operation which may be used to indicate the starting address in the assignment of a program
to memory. Thus, ORG 400 indicates thataprogram is to enter memory with the first instruction
at locaticn 400 decimal. The General Assembly Program automatically assigns succeeding
memory locations to the remaining instructions of the program,

In addition to translating the mnemonics into machine language, the General Assembly Program
provides the following advantages:

1. Various errors, specifically clerical errors, are detected during program assembly.
This effects a substantial saving in program debugging effort, because the errors can
be rectified prior to debugging,

2. The assembler generates punched cards and/or a listing on the high-speed printer that
includes all error indications, the assembled program, and a complete list of symbols
used, with their assigned memory locations. This provides an accurate record of the
program plus helpful auxiliary information,

DATANET =30

V-62

The Coding Sheet

The General Assembly Program coding sheet is divided into six fields: symbol, operation,
operand, X, remarks, and sequence. The numbers 1-80 in the header information on each sheet
correspond to the column numbers of a standard 80-column punched card. When a symbolic
program is punched into cards, columns 7 and 21 are not used; these blank columns separate
fields used in the program assembly,

SYMBOL FIELD

Columns 1-6 constitute the symbol field, Symbols may consist of from 1 to 6 characters, At
least, one of the characters in the symbol field must be alphabetic, HOPE and CONST3 are
legitimate symbols; 345 is not a legitimate symbol. A symbol may be either to the right or
left in the symbol field; that is, the symbol AB in columns 1 and 2 is the same symbol as AB
in columns 5 and 6. The plus and minus signs cannot be used in the symbol field, because they
are used in the operand field for relative addressing. A blank (space) in the symbol field is
ignored by the General Assembly Program assembler,

OPERATION FIELD

Columns 8, 9, and 10 make up the operation field. Any of the mnemonic codes for the normal
computer instructions (LDA, BRU, etc.) or for the pseudo-operations (ORG, DEC, etc.) can be
placed in this field. An invalid mnemonic causes an error notation during assembly.

OPERAND FIELD

Columns 12-19 constitute the operand field, Operands may be alphabetic or alphanumeric
symbols up to six characters in length or a decimal number, and can be positioned anywhere
in the operand field. A single asterisk may be placed in this field to denote reference to this
instruction address. (This is equivalent to writing the same symbolic name in both the symbol
and operand fields on one line,) Symbols may also consist of arithmetic combinations not to
exceed eight characters of sums and differences of numbers, symbols, and asterisks., Arithmetic
expressions permit relative referencing to a specified symbol (for example, *-1 which means
self minus one) to reduce the number of symbols used. The plus and minus signs are used only
in the operand field and only when expressing a relative address or a signed constant, The
subject of relative addressing is discussed later, All numbers appearing in the operand field
are considered to be decimal except when following the operation OCT, ALF, LOC, and EQO.
Numbers following OCT, LOC, and EQO are assumed to be octal and are converted to their
binary equivalent. Digits following ALF are converted to their binary-coded decimal (BCD)
equivalents. Blanks (spaces) in the operand field are ignored, unless they follow the operation
ALF or NAL.

X FIELD

Indirect addressing is specified by an X in column 20, If a character other than a blank appears
in column 20, the General Assembly Program inserts the indirect address bit into the absolute
instruction word being assembled. However, if the character in the X field is not an “X” or a
blank, an error will be flagged by the assembly program, A blank in column 20 indicates that
no indirect addressing is to be performed. ‘

DATANET =80

V-63

GENERAL @ ELECTRIC DATANET 30 GENERAL ASSEMBLY PROGRAM CODING SHEET

COMPUTER DEPARTMENT, PHCENIX, ARIZONA

0% =L NVLY

¥9-A

w

@ N o 6w »

14

2z

23

24

PROGRAMMER PROGRAM I’DATE PAGE"
oF
Symbol Opr Operand) X REMARKS Sequence
1[2[3]4}5!5 [HERED !zlia‘u}uLleiwlxepn 20 | 31 75 76!77]73[79]50
- i J L I — i 1 1 i :
: TR S A L
A — L
. [4 A :
— 11 i L . 1 I } L 1
It L | L 1 1 i L 4 1
" PR S ST R L0
: N PRSP S o
— - 4 1 - s L L i)
R R T Ay L PR SR
1 n 1 L il 1 i + 1 1
It N L . L I . n L !
Lot AR L N
" — L L 1 I H 1 L L Il
e 1 A B] J. 3. 1 3 1
n i 1 I i il Il A
1] L] 1 4. i, 1 L 1 1
L - PR R ¢ byt
i | L. L 1 1 1 i i
i i n 1 i i A 1 1 I 1
2 A A Iy 1 I L L. 1 1 1 1
L] 4 L L I 1 i 1 l i 1
PR W R ! T L ot
. . R S T Loy
I i A i) i L i L i

REMARKS FIELD

Columns 25-175 make up the remarks field., Remarks are written in this field for reference
by the programmer. These remarks are punched in the assembly program source deck, but the
information is not carried through to the final object program. Thus, information in the remarks
field is obtained only on a printed listing,

SEQUENCE FIELD

Columns 76 - 80 constitute the sequence field, Each card is numbered so that a deck can be
sorted into proper order should the cards get out of sequence, The sequence field is not pertinent
to the General Assembly Program,

Relative Addressing

The General Assembly Program provides facility for the assignment of addresses relative to
some starting point (relative addressing), Assume, for example, that the symbol B is equal to
memory location 0500, Using the technique of relative addressing, memory location 0510 can
now be addressed by simply writing B+10 in the operand field of the coding sheet:

Symbol Operation Operand
B EQU 500
LDA B
LDA B+10

The EQU pseudo-operation equates the symbol B to memory location 0500, The instruction
LDA (Load Register A) loads the A-register with the contents of memory location 0500, The
next LDA instruction, some program steps later, loads register A with the contents of B+10
(location 0500 + 10 = 0510).

Pseudo-Operations

In addition to the machine instructions in the DATANET-30 instruction repertoire, there are a
number of pseudo-operations which facilitate programming, A pseudo-operation is not a computer
instruction, It is a control instruction to the General Assembly Program in assembling a pro-
gram, and it is listed the same asa normal instruction in the preparation of a program, Normally,
pseudo-operations are never executed by the computer as actual instructions. Pseudo-operations
are used to generate constants, to control the assembly process, or to annotate the program
listing.

DATANET =80

V-65

The various pseudo-operations are given below in alphabetical order:

ALF

ALPHANUMERIC. The first three characters in the operand field are converted to a binary-
coded decimal word and assigned a memory location, Blanks are considered characters.

*

ASTERISK, If an asterisk (*) isinthe first column of the symbol field, the entire card is assumed
to be a remarks card and the mnemonic REM need not be specified in columns 8 - 10, This
operation will have no effect on the assembled program and is used only to annotate the program
listing. The complete card (columns 1 - 80) is reproduced in the program listing.

NOTE: An asterisk in any other symbol field column is illegal, if an asterisk is not in the first
column,

* Fx

ASTERISK 12,7,8 ASTERISK., Slew to top of page. Causes the printing of the assembly listing
to start at the top of a new page. A card with the characters * 12-7-8, * punched in columns
1-3, will be treated as a Remarks card and cause the printer to slew to the top of the next
page. The character in column 2 is a multiple punch of 12,7,8.

BSS

BLOCK STARTED BY SYMBOL, Increases the memory allocation counter in the General Assem-
bly Program by the number specified in the operand field, It is used to reserve a block of
memory locations. The operand may be decimal or symbolic. If decimal, the number is con-
verted to binary, If symbolic, the symbol used must be predefined, The BSS operation may
be used as often as desired.

$

DOLLAR SIGN, When the $ character is used as the leading character of a symbol, and the
symbol is referenced by an instruction, the General Assembly Program automatically inserts
memory addressing mode 3 into the instruction word, divides the address of the $ symbol
by 16, and inserts the resultant address into the instruction word, The absolute address of the
$ symbol (initially assigned by the programmer) must be less than 8191 and modulo 16,
(For further information see Chapter III,)

DDC

DOUBLE LENGTH DECIMAL, Used to enter decimal constants larger than 131,071 or, in other
words, a constant larger than can fit into one word. The decimal constant is assigned two
sequential memory locations starting with the first available even location, and with the least
significant half in the odd location. Ifno binary scale is specified, the assembly program assumes
a binary scale of 35.

DATANET = 80

V-66

DEC

DECIMAL, Used to enter a decimal constant in the object program and to convert it to binary.
The constant is assigned one memory location. The operand may be symbolic or decimal, If
the operand is symbolic, at least one character must be other than 0 through 9, +, -, ., B, or E,
Leading zeros are ignored and the number right justified,.

END

END OF PROGRAM. Causes the assembly program to generate an instruction that transfers
control to the location specified in the operand field when the object program is executed. The
operand may be decimal or symbolic. If decimal, the operand is converted to binary, If symbolic,
the symbol must be predefined. In addition, the END operation signifies end-of-program and
terminates assembly, This operation may be used only once and must be the last instruction
of the source program. If no END operation is used, an error comment will result but assembly
will be terminated by the end-of-deck condition, The X field of an END operation is not used
by the assembly program.

EQO

EQUALS OCTAL, Performs the same function as the EQU operation, but the content of the
operand field is assumed to be an octal number,

EQU

EQUALS, Used to overrule the normal memory assignment performed by the assembly pro-
gram, The operand may be decimal or symbolic and specifies the memory location to be used
by the assembly program., If the operand is decimal, it is converted to binary, If symbolic,
the symbol used must be predefined., The EQU operation may be used as often as desired and
at any point in the source program. This operation has no effect on the memory allocation
register in the assembly program, so. that the normal memory assignment by the assembly
program continues in sequence,

IND
INDIRECT ADDRESS, Used to generate a constant, where the constant is a memory address.

The operand may be symbolic ¢r numeric, If numeric, it is assumed to be a decimal number
and is converted to binary. If symbolic, the address of the symbol is used.

INA

INDEX BY A-REGISTER, Simiiar to IND except that a bit is set in this word so that when it
is used as an indirect address, the contents of the A-register will be added to the memory
address portion of this word. ‘

DATANET=30-

V-67

INB

INDEX BY B. Same as INA except that the B-register is used instead of the A-register.

INC

INDEX BY C. Same as INA except that the C-register is used instead of the A-register.

LOC

LOCATION IN OCTAL. Performs the same function as the ORG operation but the contents of
the operand field are assumed to be in octal form,

NAL

NEGATIVE ALPHANUMERIC, Used to enter the 2’s complement of an alphanumeric constant
in the object program.

ocT

OCTAL, Used to enter an octal constant in the object program. The octal number in the oper-
and field is converted to binary (right-justified) and assigned one memory location determined
by the memory allocation register, The assembly program ignores leading zeros in the operand
field. If fewer than six digits are provided for the operand field, the assembly program will
right justify the digits, A leading plus or minus sign in the operand field will set the leading
bit of the constant to 0 or 1.

ORG

ORIGIN, Establishes the starting location in memory of the program. The assembly program
begins assembly of the object program as specified by ORG. One ORG card is required at the
beginning of each assembly run. If no ORG card is included, the assembly of the program
automatically begins at location 0000. Any number of ORG cards may be used in one assembly,
The number following ORG must be in decimal,

REM

REMARKS, Lines identified by REM in the operand field are used to annotate the program listing,

These lines are not assigned memory locations in the assembly program, The complete card,
columns 1 - 80, is reproduced in the program listing,

DATANET =30

V-68

TCD

PUNCH TRANSFER CARD, Generates an instruction that transfers control to the location
specified in the operand field when the object program is being loaded. The operand may be
decimal or symbolic. If decimal, the address is converted to binary, If symbolic, the symbol
used must be predefined. TCD may be used as often as desired in the source program, This
operation has no effect on the memory allocation register, so that the memory assignment by
the assembly program will continue in sequence,

ZXX ~ The Z is followed by 2 octal digits. These digits become the operation code portion of
the generated word (instruction), The operand is computed normally and is assumed to be
either symbolic, decimal numeric, or a combination,

Assembly Errors and Suspected Errors

The following codes listed are errors or suspected errors found during assembly by the General
Assembly Program. The objective is to convey as much error information as possible to the
programmer,

Except for machine malfunctions, the computer will stop only under three circumstances, during
assembly:

1. The number of special symbolic operands exceeds the size of the symbol table (symbolic
table overflow).

2. The total number of symbols exceeds the size of the symbol table,

3. During the final phase of assembly, a name appearing in the symbol field cannot be
found in the symbol table (lost symbol).

When these errors occur, an indicative typeout results and the computer goes into a programmed
loop. However, if desired, switch 19 may be manually set, and assembly will continue. The
result of forcing the assembly to continue is:

1. The special symbolic operands encountered after the error halt are not entered in
symbol table 1. This may result in the improper assignment of a memory address to
these symbols in the following phases,

2. The symbols following the error halt and are not entered into symbol table 2., This will
result in the detection of undefined symbols during the final phase,

3. Assembly will continue. If the symbolic name was a special operand, the assignment
of memory locations to the instructions following the error halt may be out of phase
with the numeric assignment performed by the previous phase of the assembly.

DATANET =80

V-69

Error Codes

Following is a list of the error codes:

Code

@

DATANET =80

Illegal Mnemonic Operation

This becomes a HLT (00).

Undefined Symbol

A symbol name appearing in the operand field does not appear in the symbol field
of any instruction. Constant 0000 is inserted as an operand address,

Multiply Defined Symbol

Either the symbol field or the operand field contains a symbolic name which appears
in the symbol field of two different instruction lines, If the error detected was in
the symbol field, assembly will continue with the present setting of the memory
allocation register, If the error detected wasin the operand field, the value assigned
to the symbol the last time it appeared will be used as the operand address in the
assembled instruction,

Error or Suspected Error in the Operand Address

Blank operand field in a line normally requiring an address. An entry in the operand
field of a line which normally should be blank., The numeric value of the operand
does not meet the requirement of the line in which it was used. The value of the
operand address will be logically OR-ed into the instruction,

Error or Suspected Error in X-Field

The X-field contains an entry in an instruction which does not access memory.
The X-field contains any character other than X or is a numeric.

Scale Factors in DEC

The specified binary and decimal scales are incompatible, Two decimal or binary
scales have been specified in the constant line,

Channel Table Usage

The $ character in the first position of a symbol indicates to DATANET-30 General
Assembly Program that this istobe treated specially. This symbol must be assigned
by the programmer to a memory location that is a multiple of 161(. If this error
tag appears, it means that either the specified address was not module 16 or
less than 8192 or both.

V-70

APPENDIX A

DATANET-30 GENERAL ASSEMBLY PROGRAM

DATANET-30 SYSTEMS TAPE

The DATANET-30 systems tape contains the following programs:
1. DATANET-30 General Assembly Program
2. General Assembly Program 3 (paper tape conversion)
3. General Assembly Program 4 (magnetic tape updating).
The programs above are linked together in this order:
1. General Assembly Program 4

2. DATANET-30 General Assembly Program
3. General Assembly Program 3.

To run General AVssembly: Program 4, it is necessary to call the program from the éyStems
tape with a “call General Assembly Program 4” card,
The DATANET-30 General Assembly Program may be run:
1. After General Assembly Program 4 (with SW1 and SW16 down)
2. By itself (using DATANET-30 General Assembly Program call card),
General Assembly Program 3 may be run:
1. After DATANET-30 Géneral Assembly Prbgram

2. By itself (using General Assembly Program 3 call card).

General Assembly Program 4 is used to update symbolic source programs, It updates magnetic
tape by comparing the sequence number of a card to the sequence number of a record on tape
and inserts the card in the correct position,

DATANET =30

General Assembly Program 3 is used to convert punched cards or magnetic tape to punched
paper tape and will punch paper tape in either of two formats, depending on the console switch
setting.

DATANET-30 GENERAL ASSEMBLY PROGRAM

DATANET-30 General Assembly Program has operating procedures identical to those for the
GE-225 General Assembly Program,

The DATANET-30 General Assembly Program operates either from cards or a systems tape,
When the General Assembly Program is loaded from cards, it is referred to as a Card General
Assembly Program, When the assembly program is loaded from the systems tape, it is referred
to as a Tape General Assembly Program,

Since cards or tape may be used as the input/output medium, there is a separate set of operating
instructions for card assembly programs and tape assembly programs,

The General Assembly Program is made up of three separate programs: pass 0, pass 1, and
pass 2., The input to pass 0 is the symbolic program. The output from pass 0 plus the output
from pass 1 is the input to pass 2, The output from pass 2 is the assembled program,

Cards or tape 'may be used as the input and output for all passes, Whether cards or tape are
used determines the setting of console switch 4, A flow diagram of the three assembly pro-
grams is shown in Figure A-1.

The minimum hardware requirements for the operation of the DATANET-30 General Assembly
Program are:

Card reader

Card punch or magnetic tape
Typewriter

8192 words of memory.

SO DN

Options and Console Switches

The console switches (A-register input switches) of the GE-225 are used to indicate the periph-
eral configuration available while using the General Assembly Program,. All switches, with
the exception of switch 19, should be set initially and remain the same through all passes of
the assembly program, .

DATANET =30

Symbolic
Program
Cards or Tape 1 — - Printer
Y pol TePLE — — ~
SV = T syebolte
Pass 0 - ’& packe
) — —
Coll‘lme — .
4 nts -— - Typewriter
Output
Pass 0O
Cards or Tape
Printer
Y -
-
Pass 1 \e 3 -~
4\ 80
0 -~
s~
V - - Typewriter
- comments .
Output - pssembly "="—
- AP —
Pass 1 e ——
Cards or Tape
* Printer
) -
-~
-
S Pass 2 . 5»(,'\}‘%, -
1\~
1ecs
ovdz-
Y -~
_
Assembled -
bl .
____:\Sieﬂ;z___m
Cards and/or Tape Comments

Figure A-1. Flow Diagram of the DATANET-30
General Assembly Program

Switch 2

Normal: Printer is on line,

Down: No on-line printer, An octal program deck is punched instead of a binary pro-
gram deck.

Switch 3

Normal: Tape 3 is used to print comments on the assembly program pass 2 program listing,

Down: Comments are omitted from the assembly program pass 2 program listing,

DATANET =30

Switch 4

Normal: Tapes 4 and 5 are used as output/input to assembly program passes 0, 1, and 2,
respectively,
Down: Cards instead of tapes are used as output/input to passes 0, 1, and 2, respectively,

(Switch 4 down overrides switches 3 and 6.)

Switch 6

Normal: The binary program output is not written on tape 6.

Down: The binary program output from pass 2 is written on tape 6.

Switch 7

Normal: Ignored

Down: Go To Assembly 3 upon completion of General Assembly.

Switch 9

Normal: Card punch on line,

Down: No card punch on line.

Switch 14

Normal: No packed symbolic listing.

Down: Packed symbolic listing,

Switch 15

Normal: Ignored by the assembly program,

Down: Symbolic program deck is written on tape 3 before any processing is done by the
assembly program,

Switch 16

Normal: Input to pass 0 is the symbolic program card deck,

Down: Input to pass 0 is on tape 3. Tape 3, the comments tape, may be changed instead
of the symbolic card deck through an updating routine before making a second
assembly.

DATANET =30

Switch 18

Normal: Types or prints “no reference symbols” after pass 0,
Down: Suppresses the typing or printing of “no reference symbols” after pass 0,
Switch 19

Toggling of switch 19 bypasses “symbol table overflow” stop during passes 0 and 1, and “symbol
lost” stop during pass 2.

Switch Combinations and Requirements

The following table shows different switch combinations and their requirements:

Comment Working Binary
Switch Tape Tape Program Punch Printer
Programs Down #3 #4 & #5 Tape #6 On-Line On-Line
CARD 2 & 4 No No No Yes No
General Assembly 4 No No No Yes Yes
Program
TAPE None Yes Yes No Yes Yes
General Assembly 2 Yes Yes No Yes No
Program 3 No Yes No Yes Yes
6 Yes Yes Yes Yes Yes
6 & 9% Yes Yes Yes No Yes
3&6 No Yes Yes Yes Yes
3,6 & 9%

* When switch 9 is used, switch 6 also must be set, because the punch is off line and the output
must be written on tape. '

When switch 16 is used, and switch 3 is in normal position, the input to pass 0, the original
symbolic deck, is read from tape 3 instead of cards.

The other switches pertain to format and may be used at the discretion of the programmer,
providing the hardware is available.

DATANET =380

Card General Assembly Program Operating Instructions

GENERAL ASSEMBLY PROGRAM PASS 0

The procedure for pass 0 is as follows:

1.

Set up input deck starting with the pass 0 binary deck, followed by symbolic program,
followed by one blank card.

Set console switches as desired,

Load cards in card reader; depress LOAD CARD, RESET ALARMS, and RESET P;
place processor in AUTO mode; and depress START,

If switch 4 is down, the output from pass 0 will be punched cards, These cards must
be arranged in the order described on a later page, This output will also be listed
if the printer is on line. In addition, a packed list of special symbols (which may be
suppressed by a switch setting), a list of undefined symbols, a list of multiple symbols,
and the symbolic names which are not referenced in the program are printed., If no
high-speed printer is available on line, the above lists will be typed on the typewriter,

Messages:

NO END CARD Indicates the symbolic deck does not terminate with an end
card. Assembly will continue to the normal end of job,

END OF PASS 0 Signifies the end of assembly program run 0,

SYMBOL TABLE Indicates the number of special symbolic operands exceeds

OVERFLOW 1 250, Program goes into loop which may be overridden by
setting switch 19, This causes pass 0 to continue but all
special symbols following this loop are not placed in the
table.

SYMBOL TABLE Indicates the total number of symbols exceeds 1000, The

OVERFLOW 2 program goes into a loop which may be overridden by setting

switch 19, Pass 0 then continues but symbols following the
loop are not analyzed as undefined, multiple, or no reference
symbols,

CARD READ ERROR
Action Required: a, Place computer in manual mode,

b. Backspace card reader by removing the cards from the
hopper and the card from the read platforith. Place
these cards in front of the deck, replace the deck in the
card hopper, and place the last card read in the read
platform,

* Special symbolic operands which are referred to by double length instruction.

DATANET =30

¢, Press A—p=I button,

d. Place processor in AUTO mode and depress START,

UNDEFINED A symbol or symbols were referenced but were not defined,
SYMBOLS

MULTIPLE A multiply-defined symbol in the symbol or operand fields.,
SYMBOLS

NO REFERENCE No reference was made to the symbols following this message.
XXX ERRORS If tape 3 is used for comments, this typeout signifies the
TAPE 3 number of bad spots on tape 3. (Switch 3 in normal position,)
XXX ERRORS Signifies the number of bad spots on tape 4, (Switch 4 in
TAPE 4 normal position.)

6. Action required for all other stops:
a. Place processor in MANUAL mode,.

b. Check the CARD PUNCH READY indicator, If punch is not in ready status, place
in ready status and depress START.

¢, Check the N-REGISTER READY light, If not in ready status, manually type spaces
until N-register becomes ready and depress START. If the CARD READER alarm
indicator is on, check the card deck for damaged cards, Replace if necessary and
reload the program from the beginning,

OUTPUT FROM GENERAL ASSEMBLY PROGRAM PASS 0

The output from pass 0 is shown below:

€—— Symbol Table 1
ymbol Table * The symbol table 1 header card

may be recognized by the Hollerith
Symbol Table 1 * character ST1 punched in columns

¢ jeader card 1, 2, and 3. «8” in Hollerith code
is a 0-2 punch, “T”isa0-3 punch,

The code for “1” is a 1 punch,

@—————— Packed Symbolic Cards

Front of Deck

DATANET =30

Rearrange the output from assembly program pass 0 as shown below:

Two Blanks

Packed Symbolic Cards

Symbol Table 1

Symbol Table 1 Header Card

Assembly Program Pass 1 Binary Deck

Front of Deck

GENERAL ASSEMBLY PROGRAM PASS 1

The procedure for pass 1 is as follows:

1. If console switch 4 is down, the output from pass 0 is a packed program with sequence
numbers starting with 20000 (columns 74 -78) followed by a table of special symbolic
operands with sequence numbers starting at 10000 (columns 74 -78). The cards that
have sequence numbers beginning with 1XXXX (columns 74 -78) should be placed in
front of those cards starting with 2XXXX (columns 74 -178) prior to combining them
with the pass 1 binary deck followed by the rearranged output from pass 0, followed
by two blank cards, (See Figure A-2,)

If console switch 4 is in normal position the output from pass 0 is written on tapes
4 and 5. In this case only the pass 1 program and two blanks are loaded into the card
reader,

2. Load cards, (Same as #3 page A-6)

3. If switch 4 is down, the output from pass 1 is a sorted table of symbols and equivalent
locations, which is punched out, If the printer is on line, these are listed on the high-
speed printer, In addition, a list of all multiply-defined symbols, together with all of
the equivalent values associated with each symbol, is printed (or typed if no printer
is available),

If switch 4 is in normal position, the output from pass 1 is written on tapes 4 and 5,
in which case, only the pass 2 program and two blanks are loaded into the card reader,

DATANET =80

Errors or possible errors detected in the operand field of a BSS, EQU,.or ORG instruc-
tion are printed or typed with the present setting of the memory allocation register,
the card type, and the error code. The error codes are:

U - an undefined symbol
A - apossible error in an address

4, Messages:

NO END CARD Indicates the symbolic deck does not terminate with an end
card, Assembly continues to the normal end of job,

MULTIPLE Indicates a multiply-defined symbol in the symbol or operand

SYMBOLS fields.

END OF PASS1 Signifies the end of the assembly program pass 1 run,

SYMBOL TABLE Messages (and action to be taken) are the same as for the

OVERFLOW General Assembly Program 0 run.,

5., For all other errors, repeat previous load procedure described for pass 1.

GENERAL ASSEMBLY PROGRAM PASS 2

The procedure for pass 2 is as follows:

1. The input for pass 2 is the output from pass 0 and pass 1. If console switch 4 is down,
set up the input deck as follows:

Assembly program pass 2 binary deck followed by the output of pass 1 followed by the
rearranged output from pass 0. (See Figure A-2.)

2. Load cards,
3. Messages:

ERRORS Indicates presence of a real or suspected source program

error,
NO ERRORS Indicates no errors were found.
END OF PASS 2 Signifies the end of the pass 2 run,
SYMBOL LOST Is typed with the setting of the memory allocation register

and the symbol in question when a symbol appearing in the
symbol field cannot be found in the symbol table, This is
caused by a machine error and may necessitate a reassembly,
Action required for SYMBOL LOST:

a, List all output from pass 0,

DATANET = &0

b. Correct cards as necessary.

¢c. Restart assembly at assembly program 0, 1, or 2, as
required,

4, The output from pass 2 is an octal punched card deck, if no printer is on-line, or a
printer listing, if a high-speed printer is available, and binary cards, The listing
(or octal cards) contains the octal memory location assigned to the instruction in octal,
the symbolic instruction, and the codes for real or suspected errors in the instruction,

Rearranged Output from Assembly Program Pass 0, 1, 2

|

| |
@——— Symbol Table 1 Deck @ — — — — — - —| -~
, @§————— Symbol Table 1 Header Card <4 ——-i- _: _J

€—————— Ssymbol Table 2 Deck @ — — — — L1

44— Symbol Table 2 Header Card - — —

Pass 2 Binary Deck

Figure A-2, Arrangement of Input for Pass 2

DATANET = 30

A-10

DATANET-30 General Assembly Program may be modified for 4k memory GE-225’s to accept
up to 500 symbols,

These binary corrections are listed below and should be inserted before assembly program 0:

LOCATIONS CONTENTS
Assembly Program 0 000538 7648
000548 7776 8

This binary correction card should be inserted before the assembly program 1 transfer card,

LOCATIONS CONTENTS
Assembly Program 1 011108 ’7648

Tape General Assembly Program Operating Instructions

To run the Tape General Assembly Program:
1. Mount the DATANET-30 General Assembly Program systems tape on handler 1, Mount
working tapes on handlers 3,4 and 5, with the write-permit rings in place. If console
switch 6 is set, mount a working tape on handler 6,
2. Load the input deck into the card reader, It should be set up as follows:

a., DATANET-30 General Assembly Program call card,

b. Symbolic program to be assembled, (If symbolic program is on magnetic tape,
mount the tape on handler 3 and set console switch 16.)

¢. Two blank cards,

3. Depress RESET ALARM and RESET A, LOAD CARD, and RESET P, Depress AUTO
and START,

The assembly program will be called in and will run from start to completion, Error messages
are the same as described in preceding pages.

GENERAL ASSEMBLY PROGRAM 3 - PAPER TAPE CONVERSION

Assembly program 3 (see flow chart in Figure A-3) is a magnetic tape or cards-to-paper-tape
conversion program., It may be run from the systems tape or by loading the assembly program
3 program from punched cards, The minimum hardware requirements are as follows.

1. Card reader or magnetic tape 3. 4096 words of memory
2. Paper tape punch 4. Typewriter.

DATANET =380

A-11

Processing

The input to assembly program 3 may be magnetic tape, binary cards, or octal cards, Type
of input (cards or tape) is determined by console switch setting, The format of paper tape out-

put is determined by switch setting,

Assembly program 3 examines the console switch settings and types a message to the operator
instructing him to set the paper tape punch to the mode specified by the console switches, After
acknowledgment by the operator of correct paper tape mode, the program punches a leader of

18 inches.

Initialize

v

Determine
Type of
Tnput/Output

v

Clear Storage Area's

Counters etc.

Read switch and Set up
Program Switches

Tell Operator how to

Set Paper Punch

Read Cards or Tape

.I Read Cards.

Type
————— 1 Appropriate
Message
Read Input
A 4 Data
,,f4f>~\‘
Read - -
Tape
6
*)
s Page A-13
Figure A-3.

DATANET =30

Flow Chart for Assembly Program 3

re - \\‘\
_K
Punch in Punch in
Hardware Program
Load Format Load Format
Page A-12

y § No|‘

Yes

Yes

No. Type
"End" & Halt

Figure A-3. Flow Chart for Assembly Program 3

Then assembly program 3 reads in the input to be punched, and punches it in the desired mode.
Punching is continuous until a transfer cardor tape end-of-file is detected at which time assembly
program 3 terminates the punching of data,

The program then tests to see if there is more data to be punched in either the card reader or
tape unit; if so, it is punched in the specified format. If no more data is to be punched, the pro-
gram punches 18 inches of trailer, types “end” messages, and terminates,

For paper tape punches in hardware load format or program load format, it is necessary for the
system to have a free-standing paper tape unit with the 8-level straight transfer mode feature
(Model 4WGA652).

DATANET =380

Assembly Program 3 Console Switch Settings

The switch settings for assembly program 3 are as follows:

Switch 6

Normal: Input to assembly program 3 is on cards,

Down: Input to assembly program 3 is on tape 6, plug 1,

Switch 7

Normal: Ignored.

Down: Read in assembly program 3 from systems tape program after completion of

DATANET-30 General Assembly Program,

Console switches 10, 11, and 12 define the mode in which the output is to be punched, No other
modes exist at this time,

SWITCHES
FORMAT 10 11 12
Hardware Load Format Norm Norm Norm
Program Load Format Norm Norm Down

Operating Instructions

If a DATANET-30 Systems Tape is available, mount the systems tape on handler 1, controller
1. and assemble deck as follows:

1. Place assembly program 3 call card in the card reader followed by deck to be punched,
If input is on tape, mount the tape on handler 6 and set console switch 6.

2. Two blank cards.
3. Set console switch as desired for mode.

4. Depress LOAD CARD, RESET P, AUTO, and START.

If a DATANET-30 Systems Tape is not available, assemble deck as follows:

1. Place the assembly program 3 program on cards on the card reader followed by the
deck to be punched, If input is on tape mount the tape on handler 6 and set console
switch 6.

DATANET =80

A-14

2. Two blanks.
3. Set console switches as desired,

4. Depress LOAD CARD, RESET P, AUTO, and START.

If assembly program 3 is to be run following a DATANET-30 General Assembly Program, the
DATANET-30 Systems Tape must be on tape 1:

1. Set console switch 7. This causes assembly program 3 to be read in after completion
of the DATANET-30 General Assembly Program,

2. Set console switches as desired for proper mode,

3. Set console switch 6. This writes the ouput of DATANET-30 General Assembly Pro-
gram on tape 6.

4. Run the General Assembly Program as previously described,.

GENERAL ASSEMBLY PROGRAM 4

General

Assembly program 4 is a magnetic tape generating and updating routine, It may be used to make
the symbolic source tapes input to the DATANET-30 General Assembly Program. Assembly
program 4 is included on the DATANET-30 Systems Tape and may be called in and executed
with the assembly program 4 call card, or it may be loaded from punched cards,

The minimum systems configuration required is:

8192 words of memory

Typewriter

High-speed printer

Magnetic tape controller with two handlers
Card reader,

S O DN

Control Cards

The following control cards are used:

NEW Characters N - E - W punched in columns 8, 9, and 10,
FIN Characters F - I - N punched in columns 8, 9, and 10,
DEL Characters D - E - L punched in columns 8, 9, and 10.

DATANET =30

There are two types of DEL control cards:

1. Range delete

Columns 8- 10 Columns 12 - 16 Columns 76 - 80

DEL (TO) (FROM)

Records on the old master starting with sequence number (FROM) to record starting
with sequence number (TO) are deleted,

2. Single delete

Columns 8- 10 Columns 76 - 80

DEL (THIS)

Record on old master with sequence number (THIS) is deleted.

Action on Detecting Control Cards

The action below takes place upon detection of control cards:

1. NEW -
2. FIN -
3. DEL -

DEL -

The remaining cards in the card reader are written on tape 3 (new master)
until a FIN card is detected,

Signifies to assembly program 4 that there are no more cards to read, If
any records exist on the old master they are copied to the new master with
new sequenced numbers inserted., Old master and new master tapes are closed
and rewound {new master with end-of-file record), Program is terminated,

Range - Old master is copied to new master with new sequence numbers
until columns 76 - 80 of DEL card are equal to columns 76 - 80 of old master,
Old master is then searched until columns 76 - 80 of old master are greater
than columns 12-16 of DEL cards, Another card is read in and processing
continues,

Single - Old master is copies to new master with new sequence numbers until
columns 76 - 80 of DEL card are equal to columns 76 - 80 of old master. Another
card is read in and the old master is advanced to the next record. Processing
continues,

4, All other cards are assumed to be updating cards., They are inserted according to
their sequence number, If the sequence number of an input card is equal to the sequence
number of a record on the old master, the input card will replace the old master record,

NOTE: All input cards including control cards must be in sequence columns 76 - 80, Any card -
out of sequence will be ignored and error flagged. All input decks must end with a FIN card
(no sequence number needed) and two blanks,

DATANET = 3

Operating Procedure

The operating procedure for assembly program 4 is as follows:

1. Mount the DATANET-30 Systems Tape on handler 1, plug 1. If General Assembly
program 4 is to be run from cards, place General Assembly Program 4 program in
the card reader.

2. Place old master tape to be updated on handler 2, plug 1, If a new tape is to be gener-
ated, place a working tape on handler 2, plug 1.

3. Place a good tape with a write-permit ring on handler 3, plug 1. This is the new master,

4, If General Assembly Program 4 is to be run from systems tape, place a General Assem-
bly Program 4 call card followed by the updating deck in the card reader. If General
Assembly Program 4 is to be run from cards, place the updating deck behind the General
Assembly Program 4 program deck,

5. Depress LOAD CARD, RESET ALARM, RESET P, and START,

6. If DATANET-30 General Assembly Program is to be run following General Assembly
Program 4, place the following console switches down:

Switch 1. This calls in DATANET-30 General Assembly Program after completion
of General Assembly Program 4,

Switch * 16. This switch is pertinent to DATANET-30 General Assembly Program
only, It indicates that the source program is on tape 3.

For other switch settings see DATANET-30 General Assembly Program operating instructions.

DATANET =30

A-17

Memory Addressing Using the General Assembly Program

The previous discussion has centered on describing the memory addressing features built into
the DATANET-30. This section will describe the memory addressing features built into the
General Assembly Program,

The General Assembly Program instruction mnemonics and pseudo-operations provide a tech-
nique for program preparation. This is particularly true with respect to memory addressing,
since the General Assembly Program does a great deal of the generation and validity checking
of addresses.

The General Assembly Program will interpret an asterisk (*) in the operand field on input data
to mean the address of that instruction.

Location Instruction
05000 LDA *+ 10

In this example, * = 05000 and the relative address *+10 will be 05010.

The * serves as a flag to the General Assembly Program and causes the performance of a
special calculation to generate the desired address.

The assembly program is also flagged by the character X in the “X” column. This indicates
that indirect addressing is desired on that instruction. The assembly program generates the
desired address according to the standard rules and then adds a 1-bit inI (12). One other
special requirement must be flagged to the assembly program by the programmer. When it
is desired to use channel table addressing, a symbolic operand must be used and the symbol
must start with the character $ (dollar sign). The assembly program, upon finding this con-
dition, will assign addressing mode 3 (channel table addressing) by making I (10-11) = 11.
It then checks the location of the symbol, verifies that it is less than 8192 and that it is a multiple
of 16 (that the low order 4 bits are all zero), divides the location by 16 and inserts the remaining
9 significant bits in the instruction.

DATANET =30

A-18

To use this mode properly the programmer must do what is done when using any other symbolic
address except that the symbol must start with a $ sign, and must be in a modulo 16 address
in the first 8192 words of memory.

The two remaining techniques for specifying the desired address are pure symbolic and decimal.
Examples of these are:

LDA CONST3
LDA WwS1
LDA 5

LDA 511

LDA 8000

CONST 3 and WS1 are symbolic addresses; and 5, 511, and 8000 are decimal addresses. The
General Assembly Program checks the desired address, if it is in the same program bank as
the instruction being assembled. If it is, address modification mode 0 or 1 (program bank
addressing) is assigned along with the correct partial address. If it is not in the same program
bank, it is checked for being in the common data bank. If it is, address modification mode 2
(common data bank addressing) is assigned along with the correct partial address. If neither
case applies, it is not possible to generate the address directly. The assembly program flags
this condition with an A on the assembly program output listing. This indicates an invalid
address and must be corrected.

With program banks of 1,024 words, most desired addresses will be either in the common
data bank or in the same program bank. The first assembly by the General Assembly Program
will indicate the addresses which need to be changed to indirect addressing.

DATANET =80

A-19

APPENDIX B

CHARACTERISTICS SUMMARY

COMMUNICATIONS PROCESSOR

Single address
Stored program
Read/compute/write cycle
Binary
18 bit word length
Parallel
128 buffer selector channels
Automatic program reload
Memory interrupt feature
Automatic bit buffer scan command
Elapsed time program interrupt counter
78 basic instructions
Indirect addressing
Indexing

6. 94 microsecond word time

MEMORY

6. 94 microsecond memory cycle
Memory size (words):

4,096

8,192
16,384

HARDWARE SCAN

Bit buffer units only
5-, 6-, 7-, or 8-level codes
Scan time: 21 microseconds per simplex, half-duplex, or full-duplex channel.

DATANET =380

INSTRUCTION SUMMARY

Time in Microseconds

Load Single and double word 14 and 21 *
Store Single and double word 14 and 21
Arithmetic 18 bit parallel addition 14
Logical AND, OR and EXCLUSIVE OR 14
Branch Conditional and unconditional 7

To subroutine 21
Register Transfer 7

BUFFER SELECTOR BUFFER UNITS
Bit Buffer Unit
10 simplex channels input and 10 simplex channels output/module

10 half-duplex channels/module
10 full-duplex (or echoplex) channels/module

Module data rates (bits/sec)

Code level: 5, 6, 7, or 8 bits/character

Character format: start/stop bit asychronous;
one stop bit (minimum),

Compatible digital subsets: 103A; 103B.

20 ma d-c loop or bipolar voltage interface.

Character Buffer Unit

2 simplex channels/module
2 half-duplex channels/module
—— T full-duplex chammel/modute

* For ease of computation the 6, 94 u sec memory cycle is rounded to 7.0 u sec.

DATANET =80

Channel data rates
- 300 bits/sec to 3000 bits/sec
Code level: 5, 6, 7, or 8 bits/character

Character format: start/stop bit asychronous;

one stop bit (minimum),
Compatible digital subsets: 202A; 202B.
Bipolar voltage interface,

Word Buffer Unit

2 simplex channels/module
2 half-duplex channels/module
1 full-duplex channel/module

Channel data rates (bits/sec)

1200
1800
2000
2400
3000

Code level: 20 bits

Character format: start/stop bit asychronous;

one stop bit (minimum),
Compatible digital subsets: 202A; 202B.
Bipolar voltage interface.

Receive Character Parallel Buffer Unit

2 units/module

Up to 14 bits parallel

Receive only

Answer back capability

Up to 13,000 characters/second

Compatible digital subsets: 401B; 401F; 402B.

CONTROLLER SELECTOR UNIT

Maximum transfer rate 28,800 words/sec
Data transfer cycle time 17.34 microseconds
DATANET-30 memory interrupt time 7 microseconds/word
Execute status request 28 - 70 microseconds

DATANET =80

Peripheral Combination Chart:

Peripheral

Single access DSU

Dual access DSU

15 ke tape controller
41.5 kc tape controller
Computer interface unit

The load factor represents the index for peripherals

load factors does not exceed 1.00,

Possible
Address

iy
-

-

MO OO
Lo W =
[N

-
Tgroron

-
-
-

Load Factor
Per Peripheral

.55
.55
.1
.28
#

that may be run concurrently if sum of

DATANET =30

APPENDIX C

ClU-930 COMPUTER INTERFACE UNIT

GENERAL

The CIU-930 provides the interface for the DATANET-30 and a Compatibles/200 information
processing system and is used to transfer 21-bit words between them, The words are transferred
in parallel, The CIU-930 connects into any channel of the DATANET-30 buffer selector in the
same manner as any other DATANET-30 buffer, On the processor side, the CIU-930 connects
into any priority control channel., The buffer selector address of the CIU is specified by the
wiring of the buffer selector address plug for the CIU module, There is no DATANET-30 hard-
ware restriction on the number of CIU’s which may be used, other than the physical space
occupied. Each CIU-930 occupies one module, The CIU is asynchronous. It has no service
rate and is program controlled,

ClU-930 INSTRUCTIONS

Following are the CIU-930 instructions:

Register Transfer TRAR, B

Five things are accomplished (see illustration below):

1. The data word contained in the CIU data register is transferred to B: CIU (18-~1)
to. B(18-1), CIU(19) to control bit 1 flip-flop, CIU (20) to control bit 2 flip-flop and
CIU (21) to control bit 3 flip-flop.

2. The CIU data register is reset.
3. The address register is increased by 1 and transmit mode is set (DEF2).
4, The transfer of another word is initiated.

5. The CIU is put in the busy condition,

DATANET =80

CIU-930 to DATANET-30

21 20 19 18 1

l v R(18 - 1)
R(19) to control bit 1 flip-flop

R(20) to control bit 2 flip-flop

R(21) to control bit 3 flip-flop

Register Transfer , T

Four things are accomplished (see illustration below):
1. The 18-bit word contained in the B-register is sent to the transmit buffer positions
18-1, Control bit 1 flip-flop goes to position 19, control bit 2 flip-flop to position
20, and word parity output to position 21,
2. The transfer of the word from the CIU to the Compatibles/200 system is initiated,

3. The address register is increased by 1 and transmit mode is set (DEF2).

4, The CIU is put in the busy condition,

DATANET-30 to CIU-930

T(21) Word parity output

T(20) Control bit 2 flip-flop

T(19) Control bit 1 flip-flop

l v T(18 - 1)

1 1 1 1
21 20 19 18 1
Mnemonic gmerand Word Times
LDT M 1

The contents of the specified memory address M are sent to the address register
of the CIU,

DATANET =80

Mnemonic Operand Word Times
DEF I 1

DEF 1 Resets data register, increases address register by 1, and puts CIU in receive
mode, Puts the CIU in busy condition, which initiates the transfer of another word
from the computer.

DEF 2 Resets data register (before data comes from a register during a register transfer
instruction), Puts the CIU in the transmit mode, increases address register by 1.

DEF 3-8 Not used,
DEF 9 Sends an automatic program interrupt signal to the computer,

DEF 0 Resets the address register (before the address comes from the program during
a Load T (ILDT) instruction,

EXTERNAL STATUS LINES

External status line indications are as follows:
NES 1 The CIU is not busy.

NES2-10 Not used.

RECEIVE OPERATION

Assume that nothing is happening as far as the CIU is concerned. At some point, the program
in the DATANET-30 initiates taking a block of words from the central processor memory. The
program puts a number equal to one less than the initial memory address of the block in the
address register of the CIU by means of an LDT instruction. Then the program sends a control
signal to the CIU, via the external function drivers, which increases the address register by
1, puts the CIU in the receive mode, resets the data register, and initiates the transfer of the
word from the specified central processor memory location to the data register in the CIU.
After th word is in the data register, the CIU is no longer busy.

\

This condition can be tested via external status line 1 (NES 1). The program now executes a
register transfer instruction to take the word out of the data register of the CIU and into the
DATANET-30. This register transfer instruction also increases the address in the CIU address
register by 1, puts the CIU in the receive mode, resets the data register, and initiates the
transfer of another word from the central processor memory. This process repeats until the
DATANET-30 program has received a sufficient number of words,

DATANET =80

An example of receive operation is shown below:

Location Instruction Symbol OPR Operand X Remarks
05670 ORG 3000 ORIGIN LOCATION

05670 011031 PIC 25 PLACE CIU ADDRESS IN C COUNTER
05671 024001 DIF 1 RESET CB1,2 AND 3

05672 251763 LDT ADRESS LOAD CIU WITH 225 MEMORY (225 ADD. -1)
05673 026002 DEF 1 SETS REC, MODE

05674 022001 GETWD NES 1 CIU BUSY

05675 121673 BZE *-1 YES, GO BACK

05676 060044 TRA R,B NO, TRANSFER WORD TO B

05677 020002 NIS 2 CHECK OUTPUT OF WORD PARITY NETWORK
05700 135710 BZE ERROR X IF OUTPUT IS ZERO EXIT TO ERROR
05701 705706 STB DATAIN X PARITY OK STORE IN MEMORY

05702 771705 XBZ END IS THIS THE LAST WORD?

05703 125711 BZE EXIT X YES, EXIT

05704 341706 ADO DATAIN NO, ADD ONE TO MEMORY ADDRESS
05705 101673 BRU GETWD GO BACK GET NEXT WORD

05706 777777 END oCT 777777 END CONSTANT

05707 015530 DATAIN IND 7000 INPUT ADDRESS

05710 000763 ADRESS IND 499 225 ADDRESS-1

05711 005752 ERROR IND 3050 ERROR ADDRESS

05712 005757 EXIT IND 3055 NORMAL EXIT ADDRESS

Initially the CIU address is put into the C-register. The address register of the CIU is loaded
with the desired central processor memory address., The address must be less than the desired
starting address, because the DEF 1 instruction which puts the CIU into the receive mode, also
increments the address counter by 1, The CIU is tested for a busy condition by the NES1 com-~
mand and the program stays in a loop until the CIU becomes ready. When the CIU becomes
ready, the word is transferred to the B-register and the address counter is automatically counted
up 1. The word is stored in memory, then tested for end-of-block condition, If the end-of-block
condition is not found, control is transferred back to get another word,

Transmit Operation

Assume that nothing is happening as far as the CIU is concerned. At some point, the program
in the DATANET-30 decides to put a block of words into the Compatibles/200 system. The
program puts a number equal to one less than the initial memory address into the address
register of the CIU with an LDT instruction,

Then the program transfers a word into the CIU data register with a register transfer instruction.
This register transfer instruction also puts the CIU in the busy condition mode, increases the
address in the address register by 1, and initiates the transfer of the word from the data register
into the central processor memory. After the word has been written into memory, the CIU is

DATANET =80

no longer busy. This condition can be tested via external status line 1 (NES1). The DATANET-
30 program can now put another word in the data register and send it to the central processor.
This process repeats until the DATANET-30 program decides that sufficient words have been
transferred to the Compatibles/200 system,

The transmit example works just the reverse of receive with the exception of the DEF 2 instruc-
tion to set the CIU to the transmit mode and the DIF 1 to reset the CB1, CB2, and parity flip-flops,

Location Instruction Symbol OPR Operand X Remarks
REM TRANSMIT TO 225 VIA CIU
07640 ORG 4000 ORIGIN LOCATION 4000

07640 011031 PIC 25 PLACE CIU ADDRESS IN C

07641 026001 DIF 1 RESET CBl, 2 AND 3

07642 251747 LDT ADRESS LOAD 225 ADDRESS INTO CIU & SET TRANS
07643 022001 SENDWD NES 1 CIU BUSY MODE
07644 121643 BZE *-1 YES TRY AGAIN

07645 601653 LDB DATOUT X NO LOAD WORD TO BE TRANSFERRED
07646 060401 TRA B,T TRANSFER TO CIU DATA BUFFER

07647 771654 XBZ ENDWD IS THIS THE LAST WORD?

07650 121655 BZE TEXIT YES EXIT

07651 341653 ADO DATOUT NO ADD ONE TO MEMORY ADDRESS

07652 101643 BRU SENDWD GO BACK TRANSMIT NEXT WORD

07653 013560 DATOUT IND 6000 DATANET-30 OUTPUT ADDRESS

07654 7777717 ENDWD OCT 777777 END WORD CONSTANT

07655 007722 TEXIT IND 4050 EXIT ADDRESS

07656 001747 ADRESS IND 999 225 ADDRESS-1

DATANET =380

APPENDIX D

ClU-93I

This information will be issued at a later date.

DATANET =80

APPENDIX E

INSTRUCTION SUMMARY

CONVERSION TABLE, 5-LEVEL BAUDOT TO OCTAL

MACRO COMMANDS

The DATANET-30 General Assembly Program recognizes various macro commands, and will
assemble them as follows:

CL2 F,T CLl F,T CR3 F,T CRlI F,T
cLlt T,T CRl T,T
CRl T,T
CL3 F,T CLl F,T
CLt T,T CR4 F,T CR6 F,T
cLlt T,T cLt T,T
CLt T,T
Cl4 F,T...... CL6 F,T
CRl1 T,T CR5 F,T CR6 F,T
CRlL T,T cLit T,T
CL5 F,T CL6 F,T CR7 F,T CR6 F,T
CRl T,T CRl T,T
CL7 F,T CL6 F,T CRS8 F,T CR6 F,T
CLl T,T CRl T,T
CRl T,T
CL8 F,T CL6 F,T
CLt T,T CR9 F,T CR6 F,T
CLl T,T CRl T,T
‘ CRl T,T
CL9 F,T Ch6 F,T CRl1 T,T
CLl T,T
cLt T,T SL2 F,T st F,T
CLl T,T SLis T,T
CR2 F,T CRl F,T SL3 F,T SL1 F,T
CRl T,T st T,T
SL1 T,T

DATANET =80

SL4 F,T...... SL1 F,T SR17 FT SR6
SLi T, T SR1
SL1 T,T
SL1 T,T SR8 FT SR6
SR1
SL5 FT ..., SLi F,T SR1
sL1 T,T
sLi T,T SR9 FT SR6
SLt T, T SR1
SsL1 T,T SR1
SR1
SL7 F,T SL6 F,T
SLi T,T SAM O L. CMM
AAM
SL8 F,T SL6 F,T CMM
SL1 T, T
sLL1 T,T SBM a ... CMM
ABM
SL9 F,T SL6 F,T CMM
sL1 T,T
sL1 T,T SMA o L TRC
SLt T, T AMA
TRC
SR2 F,T SR1 F,T
SRl T,T SMB o« .. TRC
AMB
SR3 F,T...... SR1 F,T TRC
SRI T,T
SR1 T,T SLD I, (SLS
(SL1
SR4 F,T SR1 F,T] .
SR1 T, T I times .
SR1 T,T (SLS
SRl T,T (SL1
SR5 F,T SR1 F,T SRD (SRS
SR1 T,T (SRI
SRl T,T . ”/,.
SR1 T, T I times .
SR1 T,T \‘\\‘(SRS
(SR1

F is the Register FROM
T is the Register TO

-

HAEAH" HSA" AX
HHHEA H3A4a43 34

DRI VIR

RRR

R

QR

PE T, W WRE PRy
W W > @ o > >

e v

>
>

(MW

DATANET =380

The macro commands that are register transfer commands (with the exception of the double
shifts) have the same error checks as a non-macro register transfer command, plus some
additional checks. An error will be flagged when the user attempts to:

Register Transfer MACRO 0, anything
Register Transfer MACRO anything, Z
Register Transfer MACRO anything, T

The from-to bits in the instruction will not be deleted on any of the above errors. The error
tag only signifies that the instruction should be examined to see if it is correct.

The macro commands SMA, SMB, SAM and SBM, will have the same error checks and same
addressing capabilities as non-macro commands requiring a memory address,

No error checks are perfomed on the macro double shift commands SLD and SRD, The operand
must be decimal and must be left-justified in the operand field.

DATANET =380

(ALPHABETICAL SEQUENCE)

5-LEVEL MOD 28 TELETYPE

BAUDOT TO OCTAL CONVERSION TABLE

(NUMERICAL SEQUENCE)

) LEFT RIGHT LEFT RIGHT
LETTERS FIGURES JUSTIFIED JUSTIFIED LETTERS FIGURES JUSTIFIED JUSTIFIED
A - 06 03 Blank Blank 00 00
B ? 62 31 E 3 02 01
C : 34 16 Line Feed Line Feed 04 02
D $ 22 11 A —_ 06 03
E 3 02 01 Space Space 10 04
F Lox) 32 15 S BELL *) 12 05
G + 64 32 I 8 14 06
H # 50 24 U 7 16 07
I 8 14 06 Carr.Ret. Carr.Ret. 20 10
J ') 26 13 D $ 22 11
K (36 17 R 4 24 12
L) 44y 22 J tox) 26 13
M . 70 34 N s 30 14
N s 30 14 F Lox) 32 15
) 9 60 30 C : 34 16
P 0 54 26 K (36 17
Q 1 56 27 T 5 40 20
R 4 24 12 4 "ok) 42 21
S BELL *) 12 05 L) 44 22
T 5 40 20 W 2 46 23
U 7 16 07 . H # 50 24
\ 5 %) 74 36 Y 6 52 25
W 2 46 23 P 0 54 26
X / 72 35 Q 1 56 27
Y 6 52 25 0] 9 60 30
Z "ok) 42 21 B ? 62 31
G + 64 32
Figs. Figs. 66 33
0 54 26 M . 70 34
1 56 27 X / 72 35
2 46 23 \ 5 %) 74 36
3 02 0l Ltrs Ltrs. 76 37
4 24 12
5 40 20
6 52 25
7 16 07
8 14 06
9 60 30
BLANK BLANK 00 00
LTRS. LTRS. 76 37
FIGS. FIGS. 66 33
L.FEED L.FEED 04 02
SPACE SPACE 10 04
CR.RET. CR.RET. 20 10

* NOTE: These symbols are not on printer; for convenience, however, they are printed on
ym 5 y P

this form.

DATANET =80

FIRST
OCTAL
DIGIT
0
0 HLT
0
0 HLT
0 HLT
0 HLT
1 BRU
2 LDC
3 STC
4 EDA
5 STA
6 LDB
7 STB

DATANET =30

DATANET-30 DATA COMMUNICATIONS PROCESSOR

AIC
PIC

NCZ

XCZ

BRS
DD
STD
CMA
CAM
CMB

CBM

NIS

NES

DIF

DEF

BZE

LDZ

STZ

AMA

AMB

ABM

ABBREVIATED
INSTRUCTION REPERTOIRE

SCN

CSR

BNZ
LDQ

CcMM

SECOND
OCTAL
DIGIT

SL1

SR1

SL6

SR6

BPL

ADO

RBM

CL1

CRL

CL6

CR6

BM1

LDT

SBO

TRA

TRC

BCO

BC1

BEV

LDF

STF

NAZ

ABZ

NBZ

SLS

SRS

BOD

AMD

XBZ

THIRD
OCTAL
DIGIT

GENERAL

NON-
GENERAL

DATANET-30 DATA COMMUNICATIONS PROCESSOR

INSTRUCTION REPERTOIRE

WORD CODE

TIMES OCTAL OPERAND FUNCTIONAL DESCRIPTION

Sl LOAD INSTRUCTIONS
2 40 LDA M LOAD A FROM M
2 60 LDB M LOAD B FROM M
2 20 LDC M LOAD C FROM M
3 21 LDD M LOAD DOUBLE -- A FROM M, B FROM M+l
2 26 LDF M LOAD SPECIAL FLIP-FLOPS FROM M
2 23 LDQ M LOAD Q FROM M
2 25 LDT M LOAD T -- SEND M TO TRANSMIT DATA DRIVERS
2 22 LDZ M LOAD Z ~- SEND M TO Z DRIVERS (NO FURTHER)
2 41 cMA M LOAD A WITH M-NOT (COMPLEMENT M TO A)
2 61 CMB M LOAD B WITH M-NOT (COMPLEMENT M TO B)
1 011 PIC I PIACE I IN C

wokddk STORE TNSTRUCTIONS
2 50 STA M STORE A IN M
2 70 STB M STORE B IN M
2 30 STC M STORE C IN M
3 31 STD M STORE DOUBLE -- A IN M, B IN M+l
2 36 STF M STORE SPECIAL FLIP-FLOPS IN M
2 32 STZ M STORE ZERO IN M
2 51 CAM M STORE A-NOT IN M (COMPLEMENT A TO M)
2 71 CBM M STORE B-NOT IN M (COMPLEMENT B TO M)
2 33 CMM M STORE M-NOT IN M (COMPLEMENT M TO M)

ek ARITHMETIC INSTRUCTIONS

2 42 AMA M ADD M TO A

3 52 AAM M ADD A TO M

2 46 AAZ M ADD A, M - RESULT TO 7 DRIVERS

2 62 AMB M ADD M TO B

3 72 ABM M ADD B TO M

2 66 ABZ M ADD B, M - RESULT TO Z DRIVERS

3 37 AMD M ADD DOUBLE LENGTH WORD M- (M+l) TO A-B
3 34 ADO M ADD ONE TO M

3 35 SBO M SUBTRACT ONE FROM M

1 010 AIC I ADD I TO C

DATANET =30

TIMES OCTAL OPERAND FUNCTIONAL DESCRIPTION

BRANCH INSTRUCTIONS

1 10 BRU M BRANCH UNCONDITIONALLY
3 11 BRS M BRANCH TO SUBROUTINE
1 12 BZE M BRANCH IF ZERO FF IS ZERO
1 13 BNZ M BRANCH IF ZERO FF IS NON-ZERO
1 14 BPL M BRANCH IF PLUS FF IS PLUS
1 15 BMI M BRANCH IF PLUS FF IS MINUS
1 16 BEV M BRANCH IF EVEN FF IS EVEN
1 17 BOD M BRANCH IF EVEN FF IS ODD
ek LOGICAL OPERATION INSTRUCTIONS
2 43 NMA M M AND A TO A
2 53 NAM M M AND A TO M
2 63 NMB M M AND B TO B
2 73 NBM M M AND B TO M
2 56 NAZ M M AND A TO Z ONLY
2 76 NBZ M M AND B TO Z ONLY
1 012 NCZ I I AND C TO Z ONLY
1 020 NIS I I AND INTERNAL STATUS LINES TO Z ONLY
1 022 NES I 1 AND EXTERNAL STATUS LINES TO Z ONLY
2 44 BMA M M OR A TO A
2 54 RAM M M ORATOM
2 64 RMB M M OR B TO B
2 74 RBM M M OR B TOM
2 45 XMA M M XOR A TO A
2 55 XAM M M XOR A TO M
2 65 XMB M M XOR B TO B
2 75 XBM M M XOR B TO M
2 57 XAZ M M XOR A TO Z ONLY
2 77 XBZ M M XOR B TO Z ONLY
1 014 XCZ 1 I XOR C TO Z ONLY
REGISTER TRANSFER INSTRUCTIONS FROM ABCQRS - TO ABCTZ
1 060 TRA FROM, TO TRANSFER
1 062 TRC FROM, TO TRANSFER COMPLEMENT
1 040 SL1 FROM, TO SHIFT LEFT ONE
1 042 SR1 FROM, TO SHIFT RIGHT ONE
1 044 SL6 FROM, TO SHIFT LEFT SIX
1 046 SR6 FROM, TO SHIFT RIGHT SIX
1 070 SLS FROM, TO SHIFT LEFT SPECIAL
1 072 SRS FROM, TO SHIFT RIGHT SPECIAL
1 050 CL1 FROM, TO CIRCULATE LEFT ONE
1 052 CR1 FROM, TO CIRCULATE RIGHT ONE
1 054 CLb FROM, TO CIRCULATE LEFT SIX
1 056 CRo FROM, TO CIRCULATE RIGHT SIX
1 064 BCO FROM, TO BIT CHANGE ZERO (8-LEVEL LINE TO 6-BIT)
1 066 BC1 FROM, TO BIT CHANGE ONE (6-BIT TO 8-LEVEL LINE)

DATANET =380

WORD CODE
TIMES OCTAL OPERAND FUNCTTONAL DESCRIPTION

Fekdokdk SPECTAT. INSTRUCTIONS

1 00 HLT CONDITIONAL HALT
1 024 DIF I DRIVE INTERNAI FUNCTION LINES
1 026 DEF I DRIVE EXTERNAL FUNCTION LINES
030 SCN I SCAN BIT BUFFERS ’
032 CSR I CONTROLLER STATUS REQUEST

DATANET =80

OPR

GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP

AAM
AAZ
ABM
ABZ
ADO
AIC
AMA
AMB
AMD
BCO

BC1
BEV
BKW
BMI
BNZ
BOD
BPL
BRS
BRU
BZE

CAM
CBM
CL1
cL2
CL3
CL4
CL5
CL6
cL7
cL8

OPERAND

MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONIC

TTINIIZIIRX

FROM, TO

FROM, TO

<

TIIIIXXXX

M
M

FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO

OCTAL

520000
460000
720000
660000
340000
010000
420000
620000
240000
064000

066000
160000

150000
130000
170000
140000
110000
100000
120000

510000
710000
050000

054000

GROUP

BBC
BSU
CcBC
CIlu
Csu
DSU
HSP
MACRO
MTS
PTR
RPU
wBC

MTS

MACRO
MACRO
MACRO
MACRO

MACRO
MACRO

ALPHANUMERIC LISTING
DATANET 30
COMMUNICATIONS PROCESSOR
INSTRUCTION REPERTOIRE

DESCRIPTION

INTERNAL INSTRUCTIONS

BIT BUFFER CHANNEL INSTRUCTIONS
BUFFER SELECTOR UNIT INSTRUCTIONS
CHARACTER BUFFER CHANNEL INSTRUCTIONS
COMPUTER INTERFACE UNIT INSTRUCTIONS
CONTROLLER SELECTOR UNIT INSTRUCTIONS
DISC STORAGE UNIT INSTRUCTIONS

HIGH SPEED PRINTER INSTRUCTIONS
GENERAL ASSEMBLY PROGRAM MACRO INSTRUCTIONS
MAGNETIC TAPE SYSTEM INSTRUCTIONS
PAPER TAPE READER INSTRUCTIONS
RECEIVE PARALLEL UNIT INSTRUCTIONS
WORD BUFFER CHANNEL INSTRUCTIONS

ADD A TO M

ADD A,M - RESULT TO Z DRIVERS

ADD B TO M

ADD B,M - RESULT TO Z DRIVERS

ADD ONE TO M

ADD I TO C

ADD M TO A

ADD M TO B

ADD DOUBLE -- ADD M,M+1 TO A,B

BIT CHANGE ZERO (8-LEVEL LINE TO 6-BIT)

BIT CHANGE ONE (6-BIT TO 8-LEVEL LINE)D
BRANCH IF EVEN FF IS EVEN

BACKSPACE AND POSITION WRITE HEAD
BRANCH IF PLUS FF IS MINUS

BRANCH IF ZERO FF IS NON-ZERO

BRANCH IF EVEN FF IS ODD

BRANCH IF PLUS FF IS PLUS

BRANCH TO SUBROUTINE

BRANCH UNCONDITIONALLY

BRANCH IF ZERO FF IS ZERO

STORE A-NOT IN M (COMPLEMENT A TO M)
STORE B-NOT IN M (COMPLEMENT B TO M)
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT

PONOYWV FWN

bt N e et e e e b =R RN = W N W N W

WN = RNWWN-=NDN

DATANET=30

OPR

cL9
CMA
CMB
CMM
CR1
CR2
CR3
CRL
CR5
CRb

GR7
CR8
CR9
CSR
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

OPERAND

FROM, TO
M

M

M

FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO

FROM, TO
FROM, TO
FROM, TO

VT W N e

QUNEHOWOWIFITWNRNO

QW RONOWVI WK - =

OCTAL

410000
610000
330000
052000

056000

032000
026000
026001
026002
026004
026010
026020

026040
026100
026001
026002
026004
026010
026400
027000
026001
026002
026400
027000

026001
026001
026002
026004
026010
026020
026040
026100
026200
026400
027000

GROUP

MACRO

MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
csu
BSU
BBC
BBC
BBC
BBC
BBC

BBC
BBC
cBC
cBc
CBC
CBC
CBC
CBC
clu
clu
CIu
CIU

PTR
RPU
RPU
RPU
RPU
RPU
RPU
RPU
RPU
RPU
RPU

DESCRIPTION

CIRCULATE LEFT 9
LOAD A WITH M-NOT (COMPLEMENT M TO A)
LOAD B WITH M=NOT (COMPLEMENT M TO B)
STORE M-NOT IN M (COMPLEMENT M TO M)
CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT

Y W RN

CIRCULATE RIGHT 7

CIRCULATE RIGHT 8

CIRCULATE RIGHT 9

CONTROLLER STATUS REQUEST

DRIVE EXTERNAL FUNCTION

RESET RECEIVE FLAG AND DATA BUFFER
RESET TRANSMIT FLAG AND DATA BUFFER
TURN CARRIER OFF

TURN CARRIER ON

RESET RECEIVE CLOCK

SET ECHO MODE

RESET ECHO MODE

RESET RECEIVE FLAG AND DATA BUFFER
RESET TRANSMIT FLAG AND DATA BUFFER
TURN CARRIER OFF

TURN CARRIER ON

ANSWER INCOMING CALL

DISCONNECT CALL

RESET FLAG AND BUFFER, SET RECEIVE MODE
RESET FLAG AND BUFFER, SET TRANSMIT MODE

AUTOMATIC PRIORITY INTERRUPT THE 225
RESET THE ADDRESS REGISTER

RESET FLAG AND READ NEXT CHARACTER
RESET CHARACTER PREADY

RESET ANSWERBACK A AND B

RESET ANSWERBACK MCDE

SET ANSWERBACK MODE

ANSVIERBACK A

AUX FUNCTION SET TRANSMIT MODE
AUX FUNCTION RESET TRANSMIT MODE
ANSWERBACK B

ANSWER INCOMING CALL

DISCONNECT CALL

.
—

s b e N WNN ARWWR NN =
[}
—
o

b et bt ek b b b ek e b b

bt jad b bk e b pb b b et et

DATANET =30

OPR

DEF
DEF
DEF
DEF
DIF
DIF
DIF
DIF

DIF
DIF
DIF
DIF
DIF
HLT
LDA
LDB
LDC
LDD

LDF
LDQ
LDT
LDZ
NAM
NAZ
HBM
NBZ
NCZ
NES

NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES

OPERAND

ZTIZTII—~OWoON & NN = e NN

=TT TIZTIITIRIZ

FUWN === OV ST WN = O U N

OCTAL

026001
026002
026004
026010
024000
024001
024002
024004

024010
024100
024200
024400
025000
000000
400000
600000
200000
210000

260000
230000
250000
220000
530000
560000
730000
760000
012000
022000

022001
022002
022020
022040
022001
022002
022004
022010
022020
022040
022100
022001
022001
022001
022002
022004
022010

GROUP

wBC
WBC
wBC
WBC

Csu

BSU

BSU

BBC
BBC
BBC
BBC
CBC
cBC
cBC
cBC
csC
csC
CcBC
cIu
PTR
RPU
RPU
RPU
RPU

DESCRIPTION

RESET RECEIVE FLAG AND DATA BUFFER

RESET TRANSMIT FLAG AND DATA BUFFER

TURN CARRIER OFF

TURN CARRIER ON

DRIVE INTERNAL FUNCTION

RESET CB 1 AND 2, AND RESET PARITY BIT FF
RESET BUZZER FLIP-FLOP

SET BUZZER FLIP-FLOP

INITIATE HARDWARE LOAD PROCESS
SELECT PERIPHERAL CONTROLLER
SET CONTROL BIT FLIP-FLOP 1
SET CONTROL BIT FLIP-FLOP 2
SET THE PARITY BIT FLIP-FLOP
CONDITIONAL HALT

LOAD A FROM M

LOAD B FROM M

LOAD C FROM M

LOAD DOUBLE -- A,B FROM M,M+1

LOAD SPECIAL FLIP-FLOPS FROM M

LOAD 0 FROM M

LOAD T (TRANSMIT DATA DRIVERS) FROM M
LOAD Z (BRANCH FLIP-FLOPS) FROM M

M AND A TO M

M AND A TO Z ONLY

M AND B TO M

M AND B TO Z ONLY

I AND C TO Z ONLY

1 AND EXTERNAL STATUS LINES TO Z ONLY

RC FLAG SET (BUFFER CONTAINS A NEW BIT)
TX FLAG SET (BUFFER READY FOR A NEW BIT)
INTERLOCK ON

CARRIER ON

RC FLAG SET (BUFFER CONTAINS A NEW CHAR,)
TX FLAG SET (BUFFER READY FOR A NEW CHAR,)
CALL IN PROGRESS

REQUEST ANSWER

DATA MODE

CARRIER ON

CLEAR TO SEND

FLAG SET (BUFFER READY)

READ FLAG SET (BUFFER CONTAINS A NEW CHAR,)

CHARACTER READY

LINE TURN AROUND

CALL IN PROGRESS
REQUEST TO ANSWER CALL

=
-

NN NNRNRNNN NN NN bt e b b el bbb ok b b ek b b

b b b b b b pb et b

e bk b b d et

DATANET =80

OPR

NES
NES
NES
NES
NES
NES

NIS
NIS
NIS
NIS
NIS
NIS
NIS
NIS
NIS

NMA
NMB
PIC
PRF
RAM
RBD
RBM
RBS
RMA
RMB

RRF
RTB
RTD
RWD
SAM
SBM
SBO
SCN
SEL

SL1
SL2
SL3
SLL
SL5
SL6
SL7
SL8
SLS
SLD

OPERAND

N=oo~NOVWU,

O WO FNWN = —

T 2 =~zIx

X

T2

FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
I

OCTAL

022020
022040
022100
022200
022001
022002

020000
020001
020002
020004
020100
020010
020200
020400
021000

430000
630000
011000
540000
740000

440000
640000

350000
030000
024100

040000

044000

GROUP

RPU
RPU
RPU
RPU
wBC
WBC

Csu

DsSuU

MTS

MTS

DSU
MTS
MTS
MTS
MACRO
MACRO

BBC
Csu

MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
MACRO

DESCRIPTION

SPACE DETECT

AUX STATUS LINE

AUX STATUS LINE

AUX STATUS LINE

RC FLAG SET (BUFFER CONTAINS A NEW WORD)
TX FLAG SET (BUFFER READY FOR A NEW WORD)

I AND INTERNAL STATUS LINES TO Z ONLY
CHARACTER PARITY OUTPUT

WORD PARITY OUTPUT

CB FF 2 AND WORD PARITY OUTPUT ARE EQUAL
SELECT COMMAND IS COMPLETED

SWITCH IS IN THE MAINTENANCE MODE

CB FF 1

CB FF 2

PARITY FF

M AND A TO A

M AND B TO B

PLACE I IN C

POSITION DISC STORAGE UNIT
M OR A TO M

READ BACKWARD DECIMAL

MOR B TO M

READ BACKWARD BINARY

M OR A TO A

M OR B TO B

READ DSU

READ TAPE BINAPRY

READ TAPE DECIMAL

REWIND

SUBTRACT A FROM M

SUBTRACT B FROM M

SUBTRACT ONE FROM M

SCAN BIT BUFFER UNITS

SELECT PERIPHERAL CONTROLLER

SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT LEFT
SHIFT A,B LEFT I BITS

O OONOWVI LS WN -

—

b b b b b b

N

1+3
2
1+3

1+3
1+3
1+3

143N

—
+
W

N FETWN=UV S WN -

DATANET =80

OPR OPERAND OCTAL GROUP DESCRIPTION W.T.

SLS FROM, TO 070000 SHIFT LEFT SPECIAL 1
SLT HSP SLEW PAPER TO TAPE PUNCH 143
SLW HSP SLEWING OF PAPER 1+3
SMA M MACRO SUBTRACT M FROM A 4
SMB M MACRO SUBTRACT M FROM B 4
SMD M MACRO SUBTRACT M,M+1 FROM A,B 7
SR1 FROM, TO 042000 SHIFT RIGHT 1 1
SR2 FROM, TO MACRO SHIFT RIGHT 2 2
SR3 FROM, TO MACRO SHIFT RIGHT 3 3
SRY4 FROM, TO MACRO SHIFT PIGHT & 4
SRS FROM, TO MACRO SHIFT RIGHT 5 5
SR6 FROM, TO 046000 SHIFT RIGHT 6 1
SR7 FROM,TO MACRO SHIFT RIGHT 7 2
SRS FROM, TO MACRO SHIFT RIGHT 8 3
SR9 FROM, TO MACRO SHIFT RIGHT 9 4
SRD 1 MACRO SHIFT A,B RIGHT I BITS 2 1
SRS FROM, TO 072000 CIRCULATE RIGHT SPECIAL 1
STA M 500000 STORE A IN M 2
STB M 700000 STORE B IN M 2
STC M 3200000 STORE € IN M 2
STD M 310000 STORE DOUBLE -- A,B IN M,M+1 3
STF M 360000 STORE SPECIAL FLIP-FLOPS 2
STZ M 320000 STOPE ZERO IN M 2
TRA FROM, TO 060000 TRANSFER 1
TRC FROM, TO 062000 TRANSFER COMPLEMENT 1
WEF MTS WRITE END OF FILE 1+3
WEL HSP WRITE FORMAT LINE 1+3
WPL HSP WRITE PRINT LINE 143
WRF DSU WRITE DSU

WTB MTS WRITE TAPE BINARY 143
WTD MTS WRITE TAPE DECIMAL 143
XAM M 550000 M XOR A TO M 2
XAZ M 570000 M XOR A TO Z ONLY 2
XBM M 750000 M XOR B TO M 2
XBZ M 770000 M XOR B TO Z ONLY 2
XCZ I 014000 I XOR C TO Z ONLY 1
XMA M 450000 M XOR A TO A 2
XMB M 650000 M XOR B TO B 2

DATANET = 30

OPR

GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP
GROUP

HLT
AlIC
PIC
NCZ
XCZ
NIS
NIS
NIS
NIS
NIS

NIS
NIS
NIS
NIS
NES
NES
NES
NES
NES
NES

NES
NES
NES
NES
NES
NES
NES
NES
NES
NES
NES

OPERAND

MNEMONIC
MNEMONIC
MNEMONIC
MNEMONTIC
MNEMONIC
MNEMONTIC
MNEMONIC
MNEMONIC
MNEMONIC
MNEMONTIC
MNEMONIC
MNEMONIC

W N b et bt bt bt bt et

b b b b e O WO 00 N

VMUV EFWWNNRNR -

OCTAL

000000
010000
011000
012000
014000
020000
020001
020002
020004
020010

020100
020200
020400
021000
022000
022001
022001
022001
022001
022001

022001
022002
022002
022002
022002
022004
022004
022010
022010
022020
022020

OCTAL LISTING
DATANET 30

COMMUNICATIONS PROCESSOR
INSTRUCTION REPERTQIRE

GROUP

BBU
BSU
CBU
clu
Csu
HSP
MACRO
MRADS
MTS
PTR
wBU

csu

BSU
BBC
CBC
Clu
PTR
RPU

wBC
BBC
CBC
RPU
WBC
CBC
RPU
CBC
RPU
cscC
RPU

DESCRIPTION

INTERNAL INSTRUCTIONS

BIT BUFFER UNIT INSTRUCTIONS

BUFFER SELECTOR UMNIT INSTRUCTIONS

CHARACTER BUFFER UNIT INSTRUCTIONS

COMPUTER INTERFACE UNIT INSTRUCTIONS
CONTROLLER SELECTOR UNIT INSTRUCTIONS

HIGH SPEED PRINTER INSTRUCTIONS

GENERAL ASSEMBLY PROGRAM MACRO INSTRUCTIONS

MASS RANDOM ACCESS DATA STORAGE. INSTRUCTIONS

MAGENTIC TAPE SYSTEM INSTRUCTIONS
PAPER TAPE READER INSTRUCTIONS
WORD BUFFER UNIT INSTRUCTIONS

CONDITIOMAL HALT

ADD I TO C

PLACE T IN C

I AND C TO Z ONLY

I XOR C TO Z ONLY

I AND INTERNAL STATUS LINES TO Z ONLY
CHARACTER PARITY OUTPUT

WORD PARITY OUTPUT

CB FF 2 AND WORD PARITY OUTPUT ARE EQUAL
SWITCH 1S IN THE MAINTENANCE MODE

SELECT COMMAND IS COMPLETED

CB FF 1

CB FF 2

PARITY FF

I AND EXTERNAL STATUS LINES TO Z ONLY

RC FLAG SET (BUFFER CONTAINS A NEW BIT)

RC FLAG SET (BUFFER CONTAINS A NEW CHAR,)D
FLAG SET (BUFFER READY)

READ FLAG SET (BUFFER CONTAINS A NEW CHAR,)D
CHARACTER READY

RC FLAG SET (BUFFER CONTAINS A NEW WORD)
TX FLAG SET (BUFFER READY FOR A NEW BIT)D
TX FLAG SET (BUFFER READY FOR A NEW CHAR,)
LINE TURN AROUND

WBC FLAG SET (BUFFER READY FOR A NEW WORD)
CALL IN PROGRESS

CALL IN PROGRESS

REOUEST ANSWER

REOUEST TO ANSWER CALL

DATA MODE

SPACE DETECT

b b e b D pd ek b b b

R e o e

DATANET =30

E-17

OPR

NES
NES
NES
NES
NES
DIF
DIF
DIF
DIF

DIF
DIF
SEL
DIF
DIF
DIF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

OV E S WW

OPERAND

~N & W AN ot 0NNV

e b O WO 0O

W NN NNN -

OCTAL

022040
022040
022100
022100
022200
024000
024001
024002
024004

024010
024100
024100
024200
024400
025000
026000
026001
026001
026001

026001
026001
026001
026002
026002
026002
026002
026002
026004
026004

026004
026004
026010
026010
026010
026010
026020
026020
026040
026040

GROUP

CBC
RPU
CBC
RPU
RPU

Csu
Ccsu

BSU
BBC
cBC
Cclu

PTR
RPU
WBC
BBC
CBC
CIU
viBC
RPU
BBC
csC

RPU
WBC
BBC
CBC
RPU
WBC
BBC
RPU
BBC
RPU

DESCRIPTION

CARRIER ON

AUX STATUS LINE

CLEAR TO SEND

AUX STATUS LINE

AUX STATUS LINE

DRIVE INTERNAL FUNCTION

RESET CB 1 AND 2, AND RESET PARITY BIT FF
RESET BUZZER FLIP-FLOP

SET BUZZER FLIP-FLOP

INITIATE HARDWARE LOAD PROCESS

SELECT PERIPHERAL CONTROLLER

SELECT PERIPHERAL CONTROLLEP

SET CONTROL BIT FLIP-FLOP 1

SET CONTROL BIT FLIP-FLOP 2

SET THE PARITY BIT FLIP-FLOP

DRIVE EXTERNAL FUNCTION

RESET RECEIVE FLAG AND DATA BUFFER
RESET RECEIVE FLAG AND DATA BUFFER
RESET FLAG AND BUFFER, SET RECEIVE MODE

RESET FLAG AND READ NEXT CHARACTER

RESET CHARACTER READY

RESET RECEIVE FLAG AND DATA BUFFER

RESET TRANSMIT FLAG AND DATA BUFFER
RESET TRANSMIT FLAG AND DATA BUFFER
RESET FLAG AND BUFFER, SET TRANSMIT MODE
RESET TRANSMIT FLAG AND DATA BUFFER
RESET ANSWERBACK A AND B

TURN CARRIER OFF

TURN CARRIER OFF

RESET ANSWERBACK MODE

TURN CARRIER OFF

TURPN CARRIER ON

TURN CARRIER ON

SET ANSWERBACK MODE

TURN CARRIER ON

RESET RECEIVE CLOCK

ANSWERBACK A

SET ECHO MODE

AUX FUNCTION SET TRANSMIT MODE

W,T,

b b et pd e pd b b

b ft b b et r—

—

DATANET =80

OPR OPERAND OCTAL GROUP DESCRIPTION

DEF 7 026100 BBC RESET ECHO MODE

DEF 7 026100 RPU AUX FUNCTION RESET TRANSMIT MODE

DEF 8 026200 RPU ANSVWERBACK B

DEF 9 026400 CBC ANSWER INCOMING CALL

DEF 9 026400 CIU AUTOMATIC PRIORITY INTERRUPT THE 225
DEF 9 026400 RPU ANSWER INCOMING CALL

DEF 0 027000 CBC DISCONNECT CALL

DEF 0 027000 CIU RESET THE ADDRESS REGISTER

DEF 0 027000 RPU DISCONNECT CALL

SCN I 030000 BBC SCAN BIT BUFFER UNITS

CSR I 032000 CsU CONTROLLER STATUS REQUEST

SL1 FROM, TO 040000 SHIFT LEFT 1

SR1 FROM,TO 042000 SHIFT RIGHT 1

SL6 FROM, TO 044000 SHIFT LEFT 6

SRb6 FROM, TO 046000 SHIFT RIGHT 6

cL1 FROM, TO 050000 CIRCULATE LEFT 1

CR1 FROM,TO 052000 CIRCULATE RIGHT 1

CL6 FROM,TO 054000 CIRCULATE LEFT 6

CR6 FROM, TO 056000 CIRCULATE RIGHT 6

TRA FROM,TO 060000 TRANSFER

TRC FROM, TO 062000 TRANSFER COMPLEMENT .

BCO FROM,TO 064000 BIT CHANGE ZERQ (8-LEVEL LINE TO 6-BIT)
BC1 FROM, TO 066000 BIT CHANGE OME (6-BIT TO 8-LEVEL LINE)
SLS FROM,TO 070000 SHIFT LEFT SPECIAL

SRS FROM, TO 072000 CIRCULATE RIGHT SPECIAL

BRU M 100000 BRANCH UNCONDITIONALLY

BRS M 110000 BRANCH TO SUBRQOQUTINE

BZE M 120000 BRANCH IF ZERO FF IS ZERO

BNZ M 130000 BRANCH IF ZERO FF IS MNON-ZERO

BPL M 140000 BRAMNCH 1F PLUS FF IS PLUS

BMI M 150000 BRANCH TF PLUS FF IS MINUS

BEV M 160000 BRANCH IF EVEN FF IS EVEN

BOD M 170000 BRANCH IF EVEM FF IS ODD

LDC M 200000 LOAD C FROM M

LDD M 210000 LOAD DOUBLE == A,B FROM M, M+l

LDZ M 220000 LOAD Z (BPANCH FLIP-FLOPS) FROM M
LDQ M 230000 LOAD O FROM M

AMD M 240000 ADD DOUBLE =-- ADD M,M+1 TC A,B

LDT M 250000 BSU LOAD T (TRANSMIT DATA DRIVEPS) FROM M
LDF M 260000 LOAD SPECIAL FLIP-FLOPS FROM M

Bt b b bd b b b b e =
L} + -
— N —
=} zZ -

bt b b N b b e b s s e e e N S ey er gV}

NN W NN W N e e

DATANET =80

E-~19

OPR

STC
STD
STZ
CMM
ADO
SBO
STF
LDA
CMA
AMA

NMA
RMA
XMA
AAZ
STA
CAM
AAM
NAM
RAM
XAM

NAZ
XAZ
LDB
CMB
AM?3
NMB
RMB
XMB
ABZ
STB

CBM
ABM
NBM
RBM
XBM
NBZ
XBZ

GRQUP

SLT
SLYI
WFL
WPL

GROUP
PRF

RRF
WRF

OPERAND OCTAL
M 300000
M 310000
M 320000
M 330000
M 340000
M 350000
M 360000
M 400000
M 410000
M 420000
M 430000
M 440000
M 450000
M 460000
M 500000
M 510000
M 520000
M 530000
M 540000
M 550000
M 560000
M 570000
M 600000
M 610000
M 620000
M 630000
M 640000
M 650000
M 660000
M 700000
M 710000
M 720000
M 730000
M 740000
M 750000
M 760000
M 770000

MNEMOMIC

MNEMOMNIC

GROUP

HSP

HSP
HSP
HSP
HSP

DSy
DSU

DSU
DSU

DESCPIPTION

STORE C IN M

STORE DOUBLE =-- A,B IN M,M+]

STORE ZERPO IN M

STORE M=NOT IN M (COMPLEMENT M TO M)
ADD ONE TO M

SUBTRACT ONE FROM M

STORE SPECIAL FLIP-FLOPS

LOAD A FROM M

LOAD A WITH M~NOT C(COMPLEMEMT M TO A)
ADD M TO A

M AND A TO A

M OR A TO A

M XOR A TO A

ADD A,M - RESULT TO Z DRIVEPRS

STORE A IN M

STORE A-NOT IN M (COMPLEMENT A TO M)
ADD A TO M

M AND A TO M

M OR A TO M

M XOR A TO M

M AND A TO Z ONLY

M XOR A TO Z ONLY

LOAD B FROM M

LOAD B WITH M-NOT (COMPLEMENT M TO B)
ADD M TO B

M AND B TO B

M OR B TO B

M XOR B TO B

ADD B,M - RESULT TO Z DRIVERS

STORE B IN M

STORE B-MOT IN M (COMPLEMENT B TO M)
ADD B TO M

M AND B TO M

M OR B TO M

M XOR B TO M

M AND B TO Z ONLY

M XOR B TO Z ONLY

HIGH SPEED PRINTER INSTRUCTIONS

SLEY PAPER TO TAPE PUNCH
SLEWING OF PAPER
WRITE FORMAT LINE
WRPITE PRINT LINE

DISC STORAGE UNIT INSTRUCTIONS
POSTITION DISC STORAGE UNIT

READ DSU
WRITE DSU

W,T

NNNWNNNNRNN NRNNNWWNRNNWN

NNNNNDNNNSNRN

RN NN N WN

1+3
1+3
1+3
1+3

DATANET =80

E-20

OPR
GROUP

BKW
RBD
RBS
RTB
RTD
RWD
WEF
WTB
WTD

GROUP

CL2
CL3
CLY4
CLS
CL7
cLg
CcL9
CR?
CR3
CRL

CRS
cr7
CR8
CRY
SAM
SBM
SL?
SL3
SLY
SLS

SL7
SL8
SL9
SLD
SMA
SMB
SMD
SR2
SR3
SRL

SRS
SR7
SR8
SR9
5RD

CPERAND

MNEMONIC

MNEMONIC

FROM, TO
FROM,TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM, TO
FROM,TO
FROM, TO
FROM,TO

FROM, TO
FPOM,TO
FROM, TO
FROM,TO
!\I

M

FROM, TO
FROM,TO
FROM,TO
FROM, TO

FROM, TO
FROM, TO
FROM,TO
1
M
M
M
FROM, TO
FROM, TO
FROM, TO

FROM, TO
FROM, TO
FROM, TO
FROM, TO
I

OCTAL

GROUP
MTS

MTS
MTS
MTS
MTS
MTS
MTS
MTS
MTS
MTS

MACRO

MACRO
MACRO
MACRO
MACRO
MACPO
MACRO
MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
MACRO
MACRO

DESCRIPTION
MAGNETIC TAPE SYSTEM INSTRUCTIONS

BACKSPACE AND POSITION WRITE HEAD
READ BACKWARD DECIMAL

READ BACKWARD BINARY

READ TAPE BINARY

READ TAPE DECIMAL

REWIND

WRITE END OF FILE

WRITE TAPE BINARY

WRITE TAPE DECIMAL

GENERAL ASSEMBLY PROGRAM MACRO INSTRUCTIONS

CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE LEFT
CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT

WoeNUV FWR

W

CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT
CIRCULATE RIGHT
SUBTRACT A FROM
SUBTRACT B FROM
SHIFT LEFT 2
SHIFT LEFT 3
SHIFT LEFT &
SHIFT LEFT 5

T ITOwoo~NwW

SHIFT LEFT 7

SHIFT LEFT 8

SHIFT LEFT 9

SHIFT A,B LEFT I BITS
SUBTRACT M FROM A
SUBTRACT M FROM B
SUBTRACT M,M+1 FROM A,B
SHIFT RIGHT 2

SHIFT RIGHT 3

SHIFT RIGHT 4

SHIFT RIGHT
SHIFT RIGHT
SHIFT RIGHT
SHIFT RIGHT
SHIFT A,B RIGHT I BITS

[SelNo TN IV)

1+3
1+3
1+3
1+3
1+3
1+3
1+3
143
1+3

VT EFWNNN FWNON W RN EWNRNWWN

FWRNNFFENEFTWN

N FWwWN W

DATANET =380

E-21

