
CCPB-1 074

DATANET-30
Assembly Program
Reference Manual

ADVANCE INFORMATION

DATANET-30
ASSEMBLY PROGRAM
REFERENCE MANUAL

The Material contained herein is advance information relating to pro­
gramming and computer applications and is supplied to interested
persons without representation or warranty as to its content, accuracy,
or freedom from defects or errors. The General Electric Company
therefore assumes no responsibility, and shall not be liable for damages
ariSing from the supply or use of this material.

September 1964

GENERAL e ELECTRIC
COMPUTER DEPARTMENT

o 1964 by General Electric Company

1. INTRODUCTION

Machine Requirements for Assembling

2. SOURCE-CARD FORMAT

A.
B.
C.
D.
E.
F.
G.
H.

Sequence Field
Control Field .
Repeat Field
Symbol Field
Modifier Field
Operation Code (Op Code) Field
Operand Field
Remarks Field

3. SYMBOLS (REFERENCE LABELS)

A.
B.
C.
D.

Ordinary Symbols
Redefinable Symbols
Machine Instructions
Addressing Modes

4. DATA GENERATING PSEUDO-OPERATIONS

A.

B.

C.

D.

Constants
Decimal Number .
Octal Number
Double-Decimal Constant
Subroutine Linkage .
Micro Programming.
Indirect Addressing Pointers
Indirect Address with No Indexing
Indirect Address Indexed by the A-Register
Indirect Address Indexed by the B-Register
Indirect Address Indexed by the C- Register
Tables .. .
Repetitive Tables
Nonrepetitive Tables .. .
Field Definition ... , .
Multifield Constant.
Condition .. .
Conditional Constant
Messages '
Alphanumeric ... ,.
Negative Alphanumeric
Teletype Left-Justified .
Teletype Right-Justified

Page

1

3
4
4
4
5
5
5
8

9
9

10
10

11
11
12
12
12
13
13
14
14
14
14
14
15
15
16
16
20
20
21
21
22
22
22

[ID&1J&~~1J~ ~@------------
iii

Page

5. DIRECTIVE PSEUDO-OPERATIONS

A. Memory Allocation .. 23
Origin. .. 23
Location in Octal , 24
Equals , 24
Equals Octal .. 24
Block Started by Symbol. .. 25
Symbol Control. .. 25
Force Symbol to Even Location. .. 26
Force Symbol to Odd Location 26
Inhibit Assembler Movement of a Symbol _ 26

B. Control of the Object Program During Assembly 26
Write Object Program on DSU 26
Write Object Program Absolute. 27
Punch Transfer Card 27
End of Program . 27
Input/Output Control . 28

C. Use of the DSU During Assembly. .. 28
Disc Storage Addresses .. 28

D. Segmentation..... 29
Prefix 29
Dump Symbol Tables . 30
Load Symbol Tables . 31

E . Documentation...................................... 31
Asterisk . 31
Percent. 31
Title. 32
Slew to Top of Page. 32
No List. 32
Resume Listing. 33

F. Miscellaneous Pseudo-Operations . 33
Switch to Old Card Format. 33
Switch to New Card Format 34
Reset Sequence Counter. .. 34
Delete. .. 35
Subroutine Call .. , 35

6. CONTROL CARD 37

7. UPDATING PROCEDURES 39

8. USE OF THE CONSOLE FOR ASSEMBLY

Console Switches , 41
Console Lights 41

9. ERROR INDICATIONS ON OBJECT LISTING

Assembly Errors and Suspected Errors , 43
Error Codes .. 43

[ID&1r&~~1rc:J ~@------------
iv

APPENDIXES

A. INTRODUCTION TO SYMBOLIC PROGRAMMING

B. COMPATIBILITY WITH OLD FORMAT

C. DIRECTIONS FOR CONSTRUCTING I/O PAC'S

D. PROGRAM OVERLAYS

Page

47

49

51

64

[ID&1JfA\~~1Jc:J ~®------------
v

1. INTRODU C TION

It is assumed that the reader is familiar with the basic principles of assemblers. Readers who
are not familiar with assemblers should readAppendixA to this manual, "Introduction to Symbolic
Programming," before attempting the rest of the manual.

The DATANET-30 Assembler will accept either of two source-card formats, the one described
below, or the "old" format used by the previous DATANET-30 General Assembly Program.
Persons wishing to use the old format should read Appendix B, "Compatibility with Previous
Card Format."

MACHINE REQUIREMENTS FOR ASSEMBLING

There are always two questions which must be answered before a piece of software can be
written: 1) what memory size will be required, and 2) what peripherals will be required? The
manufacturer is always torn between, on the one hand, writing software that will run on a mini­
mum machine configuration so it will be available to all customers, and on the other hand,
writing more powerful software which may require larger configurations. For the DATANET-30
Assembler, General Electric chose to go the "unlimited" route, requiring at least an 8k memory.
However, General Electric will also provide a modified assembler for the 4k DATANET-30.
The 4k assembler will lack some of the "nice to have but not essential" features of the 8 and
16k assemblers, and will have smaller Symbol Tables. The following features will not be avail­
able in the 4k assembler:

old card format, subroutine call, automatic update, title card, symbol table dump, symbol
table load, prefix, sequence check, "percent variation" of remarks card, field definition
and multifield constants, micro programming, control card, resequencing of source program
on master file.

The choice of required peripherals was much more difficult to make. For example, a DATANET-30
may be free-standing with no conventional computer peripherals. It may tie directly to a 200
Series, 400 Series, or 600 Series General Electric computer, or even to a competitor's computer.
It may share peripherals with any other General Electric computer. With the wide variety of
configurations being used, it was impossible to arrive at any standard peripheral configuration
for assembling. Therefore, the problem was solved by stepping around it.

The DATANET-30 Assembler works with "files" instead of peripherals. The assembler never
addresses any peripheral devices. Instead, it branches to predetermined memory locations, which
are assumed to link to subroutines in an Input/Output Package, or I/O PAC D The I/O PAC is
a "plug-in" subprogram which works with the assembler. One can change peripheral configu­
rations by changing I/O PAC's.

[ID&lr&~~lrc:J ~®------------
-1-

For example, when the assembler needs a new source card, it branches to a particular linkage
point in the I/O PAC. When the I/O PAC returns to the assembler, the assembler expects an
80-column BCD record at a given memory location. The assembler doesn't care whether the
record came from an on-line card reader, or from a magnetic tape written by a satellite com­
puter, or from another computer through a computer interface unit, or from another computer
over a high-speed transmission line, or from a dual-access disc storage unit (DSU) where
it was placed by another computer,or from Teletype or from a paper tape reader. The as­
sembler doesn't care whether the record was always in BCD code or whether it originated in
some other code and was converted by the I/O PAC. The assembler doesn't care whether the
record was originally 80 columns or whether it was a condensed record which was spread and
blank-filled by the I/O PAC.

General Electric will provide I/O PAC's for a variety of peripheral configurations. General
Electric will also provide the speCifications, as part of this manual, for writing I/O PAC's.
Thus, customers may modify I/O PAC's or write their own I/O PAC's to better tie in with their
own operating systems. Not all I/O PAC's will make use of the full power of the assembler. For
example, automatic update of source programs or subroutine call from library are not really
practical unless one has access to magnetic tapes. The most basic assembly requires a mini­
mum of one input device and one output device (capable of handling both BCD and binary data).
If a DSU is on-line, it could serve for more than one file. The DATANET-30 can assemble with
nothing but a DSU, provided there is some way to get the source program onto the DSU and the
object listing off the DSU. (This might be accomplished by a conventional computer which shares
the DSU with the DATANET-30.)

Appendix C of this manual discusses some of the principles behind the I/O PAC, and the pros
and cons of buffering and blocking for each file. It also gives speCifications for each file, such
as recording mode, record size, working area, subroutine linkage, etc.

[ID&lF&~~lFCJ ~®------------
-2-

2. SOURCE-CARD FORMAT

The DATANET-30 is a single-address machine and therefore, only three fields are essential
for assembly. Those three are the Symbol field for identifying an instruction, the Op Code to
designate what action is to be taken, and the Operand field to designate which is to be acted upon.
However, several other fields are provided for convenience. The fields will be discussed in
the order in which they appear on the source card, left-to-right.

A. SEQUENCE FIELD, columns 1-5

The Sequence field is provided for the convenience of the programmer, and is normally ignored
by the assembler. However, the programmer may, by pseudo-operation, instruct the assembler
to check the source cards for ascending sequence. The programmer may restart sequencing
as often as necessary. For example, canned subroutines frequently contain their own sequence
numbers and it is necessary to restart the sequence check for each new subroutine.

GENERAL" ELECTRIC

REFERENCE
SYYBOL

DA T ANET - 30 PROGRAMMING FORM

I PROGRAM

OP
CODE RDlAftKS OR CONTINUA'l1ON OF OPERAND

I DATE I PAGE

~ ____ ~5~'~.~'~10~ ____ ~~~~~2~122~U~ ________ ~~;=-;~'~3«~,"'~7~G~~~52~53_5~5~$~M5~'~.1~~~.'~65~~r~~m~71~13~U~1.~"~19~80

l I I I I I I I I I I I I I I I I I
CJ(\98(7/U)

DATANET-30 Programming Form

[ID£lr£~~lrc:J ~@------------
-3-

If sequence checking is requested, the assembler will flag, on the object listing, any source card
whose sequence number is not greater than that of the preceding card. All nonnumeric characters
in the Sequence field will be treated as zeros.

B. CONTROL FIELD, column 6

This field is normally blank. It has several uses, which are discussed at various places else­
where in this manual.

C. REPEAT FIELD, columns 7-8

This field is normally blank. It can serve any of several purposes. With most operation codes,
the Repeat field tells the assembler to repeat the instruction contained on the card the indicated
number of times. For example, if the programmer wants a 67-word block of memory preset
to zero, he may write a DEC 0 instruction with the number 67 in the Repeat field.

On those operation codes used to enter messages in BCD or Teletype codes, the Repeat field tells
how many computer words are required for the message. For example, to enter the message
OUT OF STOCK on one card, the programmer would write the number 4 in the Repeat field
because the message (12 characters) uses four words. If the Repeat field is blank on a message
card, the assembler assumes a I-word message.

D. SYMBOL FIELD, columns 10-17

This field has the same rules that apply to most assembly programs. If no symbol is desired,
the field is left blank. If a symbol is desired, the field may contain up to 8 characters, at least
one of which must be nonnumeric. A plus or minus sign and an asterisk are not allowed. Lead­
ing or imbedded blanks are deleted by the assembler as it analyzes the Symbol field.

On most cards, the use of the Symbol field is optional. On a few pseudo-operations, such as
EQU, a symbol is mandatory. On some pseudo-operations, such as END or ORG, a symbol is

. either prohibited or ignored. On some pseudo-operations, the Symbol field is used, not for a
symbol but for special controls, which are described with the pseudo-operation.

[IDfA\lrfA\~~lr~ ~®------------
- 4 -

E. MODIFIER FIELD, column 18

This field is normally blank. It has many miscellaneous uses, which are described briefly here
and in detail later.

D. This instruction must be placed at an even location.

M. This card contains multiple operands. See discussion of Nonrepetitive Tables. The
assembler will generate one instruction for each operand on the card. The operands
must be separated from each other by slashes.

I. If on an SBR card, means call subroutines immediately. On all other cards, means this
card contains more than one instruction. Only the first instruction may contain a Ref­
erence Symbol. The instructions are separated from each other by slashes.

Example

MOVE IPIC O/LDD $IN/STD $OUT/ AIC 2/XCZ 28/BNZ *-4

S. The Reference Symbol should not be prefixed.

0 0 Symbols in the Operand should not be prefixed.

A. Use absolute address in the MIC instruction.

/ Ignore the Reference Symbol on this card. May be used to label the rows in a table
for documentation.

F. OPERATION CODE (OP CODE) FIELD, columns 19-21

All Op Codes, both machine and pseudo, are three characters. A blank Op Code or an illegal Op
Code will be flagged and replaced with a HALT.

G. OPERAND FIELD, columns 23-30

The Operand field is free-floating format. It may start anywhere between columns 23 and 30,
inclusive, and may extend to the end of the card. The operand is terminated either by a blank
or, if indirect addressing is used, by a comma. For this reason, imbedded blanks are not per­
mitted within the operand, even between elements in an expression.

[ID1A\1r1A\~~1r c:J ~®------------
-5-

The operand may take any of several forms, depending partly upon the Op Code used.

1. Machine Memory Addresses.

a. Numeric. Memory addresses may be written as numbers. In most cases, the
number is assumed to be decimal. On some pseudo-operations the number is
assumed to be octal.

b. Symbolic. Since any machine instruction may be given a symbol, other instructions
may refer to labeled instructions symbolically. Of course, a symbol does not have
to refer to a memory address. By use of the EQU pseudo-operation, one may equate
a symbol to some number or other symbol. The rules pertaining to symbols are
defined in Chapter 3.

c. Self-addressing: the asterisk convention. An asterisk in the operand of an instruction
always represents the address of the instruction itself. The asterisk is used most
often in "expressions" (see below) to refer forward or backward a few locations
from the instruction itself.

d. ExpreSSions. Memory addresses may be defined by expressions which are the sum
and difference of numbers, symbols, and/ or asterisks. An operand may contain
any number of elements (i.e., numbers, symbols, asterisks) but all elements must
fit on one card. (A few pseudo-operations are restricted to one or two elements.)
Thus, the instruction

LDB *+TAX-SYMBOLZ+81+START

is perfectly valid.

2. Register-Transfer and Shift Instructions

These instructions do not refer to memory addresses, but to a limited number of
registers or data lines. Operands for these instructions can take only one form. They
must always consist of a FROM GROUP and a TO GROUP separated from each other
by commas. Each register must be specified only by the character assigned to it in the
DATANET-30 programming manual. Thus, to transfer the B-register to the A-register,
the following is used:

TRA B,A

Several registers in either or both groups may be speCified. Thus to transfer the
LOGICAL OR of the receive data lines and the A-register to both the B- and C-register,
the following is used:

TRA AR,BC

[ID&1fIA\~~1fCl ~@------------
-6-

3. status Lines and Function Drivers.

Some instructions (e.g., DEF, NIS) refer neither to memory locations nor registers
but to individual status lines or function drivers. Each line or driver is represented
by one of ten bits in the Operand field. Each bit is identified by a digit, 0 through 9.
To drive external function number 6, the following is used:

DEF 6

It is possible to call for several status lines or function drivers at the same time. For
example, to drive external functions one, seven, and three all with one command, the
following is used:

DEF 173

One may also call for status lines or function drivers symbolically by defining the symbol
to represent the desired bit configuration. For example, interrogating the parity flip-flop
requires ANDing Internal Status Line 41=0. This can be done as follows:

PARITY CDN 1000
NIS PARITY

4. Literals. It is frequently necessary to include constants, parameters, messages and the
like in object programs. In many cases, such data must be entered, not as binary num­
bers, but in some code such as BCD or Teletype, To facilitate this, the assembler
contains several pseudo-operations which will insert the constants or messages in any
of several codes,

In several pseudo-operations, it is permissible to enter several words of a message on
one card, Because a message may contain leading, embedded, or trailing blanks, the
assembler cannot determine from the message itself where the message begins and where
it ends, Therefore, messages must always start in column 23 (the first column of the
Operand field) and the programmer must tell the assembler, in the Repeat field, how long
the message is.

In summary, then, there are seven types of operands:

a, Decimal
b. Octal
c, Symbolic
d, Asterisk
e, Register-transfer and shift
f, StatuS-line/function driver
g, Literal

Certain types of operands apply only to certain operation codes,

[ID&1i&~~1iCJ ~®------------
-7-

H. REMARKS FIELD

Remarks may start anywhere after the Operand. The only requirement is that there be at least
one blank between the Operand and Remarks field. Normally remarks will always start in the
same column for neatness of documentation, moving the remarks over only for cards with extra
long operands. Columns 9 and 22 are not used for coding purposes. They may, however, be used
on a remarks (*) card.

[ID&1r&~~1rCJ ~@------------
-8-

3. SYMBOLS (REFERENCE LABELS)

A. ORDINARY SYMBOLS

Symbols may be up to eight characters long. Ordinary symbols must contain at least one non­
numeric character and at least one character other than a pound sign. They must not contain
commas or plus or minus signs. Ordinary symbols of seven or fewer characters may be pre­
fixed by the assembler (see PFX pseudo-operations).

B. REDEFINABLE SYMBOLS

A set of eight symbols, consisting exclusively of pound signs, is reserved for special usage.
These symbols are never entered into the assembler symbol taQle, but are kept in a separate
table. Any of the symbols in this set may be reused as often as desired. Each time the symbol
is reused, it takes a new value. Any time a redefinable symbol is named in an Operand field,
it equals the last value assigned to that symbol. Redefinable symbols can be referred to only
in a backward direction.

Redefinable symbols are much more restricted than are ordinary symbols. For example, they
cannot be equated to other values. They cannot be forced to odd or even locations. They are
illegal in some pseudo-operations.

Redefinable symbols can be used in lieu of the asterisk in tight loops as illustrated below.

PIC 0
41= LDD $INPUT MOVE INPUT TO OUTPUT

STD $OUTPUT
AIC 2
XCZ 38
BNZ 41=

41= NIS 7 WAIT FOR SELECT TO FINISH
BNZ 41=

#= CSR 6 WAIT FOR PRINTER READY
BEV #=

The main reasons for using redefinable symbols, however, is to reduce the demand on the symbol
table, and to reduce the probability of symbol conflict between subroutines and program segments.

[IDfi\1rfi\~~1r~ ~®------------
-9-

C. MACHINE INSTRUCTIONS

The machine instructions are described in the DATANET-30 Programmers Reference Manual,
and need not be discussed here.

D. ADDRESSING MODES

If an operand address is to be generated as a channel table, it must be so indicated. Normally,
a channel-table operand will contain only one element, although it can be an expression if the re­
sulting address is modulo 16. An expression will be assigned channel-table addressing if and
only if the first element in the expression is a channel table. Thus, $INPUT+16 will be aSSigned
channel-table addressing, but 16+$INPUT will not. Any symbol which starts with a dollar sign
will be considered a channel table.

If channel-table addressing is not requested by the program the assembler will automatically
select program-bank or common-data-bank addressing, as appropriate.

Because of the free format, no column is assigned for indirect addressing. Therefore indirect
addressing is indicated by a comma immediately following the operand. For improved docu­
mentation, follow the comma by another character, as in the second example below:

LDB INPUT,
STB OUTPUT,X

[ID&1F&~~1FCJ ~@------------
-10-

4. DATA GENERATING PSEUDO-OPERATIONS

In this manual, the pseudo-operations are divided into two major classifications:

1. Data generating, those which generate constants or other data which become part of the
object program.

2. Directive, those which do not become part of the object program, but which tell the
assembler how to assign memory in the object program, how to use peripherals during
the assembly process, how to document the listing, etc.

For convenience, data generating pseudo-operations are further divided into groups for generating
" constants," for generating indirect act'dressing pOinters, for generating tables, and for generating
messages.

A. CONSTANTS

Decimal Number

DEC

This pseudo-operation places the binary equivalent of the operand into the object program. The
operand will most often be numeric. When a numeric operand is used, the number will be evalu­
ated as a decimal number. The operand may also be symbolic. A symbolic operand will re­
present either a memory address or some numeric value defined by an EQU, EQO, or CDN
pseudo-operation. Operands may also be sum-and-difference expreSSions of numbers and/or
symbols. Numbers must be not greater than 131,071 nor less than -131,071. Leading zeros
are ignored and the number right-justified.

a:
w
><
!l.
o OP
~ CODE

18 19 21 22 23

OPERAND

34 35

I
_ .. ----L-J.._ ~_ ------1_~__1_~_.!_._~ ___ L-L. -L- _~

DEC 5
----1- I ! I I

APPEARS IN MEMORY

000005

000014

001640
777773
777764

@&~&~~~~~@-------------------------
-11-

Octal Number

OCT

Generates a one-word constant in the object program. The operand may be either numeric or
symbolic, or a sum-and-difference expression of numerics and/or symbolics. When a numeric
operand is used, the number is interpreted as octal, and must not contain any digits greater than
seven. A DATANET-30 word (18 bits) contains space for a maximum of six octal digits. All
octal numbers will be right-justified by the assembler. Leading zeros will be ignored and there­
fore need not be supplied. For example, OCT 77 is the same as OCT 000077.

OPERAND I ~ o OP
~ CODl~

18 19 21 22 23

OC T 2 7
- --L~---t--+---'_--1. __ .--.L_ ... _ .-L._ . ..L __ l_-l. __ ----L-__ l_ ~ __

OC T 3 7 7
01c'Tt

I

Double-Decimal Constant

DDC

j 1 I I

- 3 3 7

APPEARS IN MEMORY

000027

000377

400337

This is the same as DEC except that it generates two data words instead of one. Unless told to
do otherwise, the assembler will always place a DDC so that the most-significant word is at an
even memory address. The allowable number range on the DDC is -34,359,738,367 to
+34,359,738,367.

~--------------

OPERANf'

23

1 2

- 2 4
l.. _-.1l ___ . ..L. J __ ;

Subroutine Linkage

LNK

34
APPEARS IN MEMORY

000000

000014

777777

777750

This pseudo-operation generates two words; the first will be a zero, and the second will be the
address specified in the operand. Unless told to do otherwise, the assembler will force the
LNK pseudo-operation to an even location. For example, a subroutine, whose calling name will
be READ, starts at a location called READl. One could set up the linkage as follows:

I ~
i Pt.Fr:RENCE ~ OP

~JiG __ ~~_YM_B_O_L ___ 1--17 f---~-tl_9C_O_D_:-t1 _22+-23 ___ ._0_P~:_ND ____ ~ 3

~ • _~ _J _ '---- ~-'-----'---t---+-'-----"---t--t----'--,------,-~-L---~~--'---+---+--tI
iRE A D 1._ Li ~K1i.EJ!\J:)_L~_L , __ , , _ L.. i __ i-t . ~

1-..;... , ! _ L '----_J ____ L ---

APPEARS IN MEMORY

000000

ADDRESS OF READ 1

lID&1J&~~1JCJ ~@------------
-12-

The first generated word, which would be at an even location, would contain a zero. The second
would contain the address of READl. The DDC pseudo-operation would accomplish the same
thing.

Micro Programming

MIC

Occasionally, it is necessary to set up a word containg certain known bit combinations with
addresses whose values are not known before assembly. It is for this purpose that the MIC
instruction is provided.

The MIC instruction requires two operands. The first operand forms a {(base" with which the
second operand will be combined. The first operand may be an octal number or a numeric/
symbolic sum-and-difference expression. If it is an expression, the elements will be ORed to­
gether. The first operand must be followed by a space, or by a comma, (or by a comma and a
space). A comma in this position will not cause indirect addressing.

The second operand comprises an address which will be calculated as a unit and then ORed
together with the "base" described by the first operand. The second operand may be a decimal
number, a symbol or a sum-and-difference expression. If the second operand is an expression,
the elements will be added. If the second operand is terminated by a comma, the indirect-ad­
dressing bit will be turned on.

After the second operand has been calculated, it will be converted to machine form, i.e., pro­
gram-bank, common-data-bank, or channel table, and will then be ORed with the base provided.
If, however, the Modifier field contains the letter A, the address will not be converted to machine
form, but will be in absolute binary.

Examples:

Construct a word containg bits 17 and 18 and the address, in machine form, of READ+18.

MIC 600000,READ+18

Construct the same thing, but with the address of READ+18 in absolute binary form

AJ.\.UC 600000, READ+18

B. INDIRECT ADDRESSING POINTERS

In the DATANET-30, indirect addressing may be done with no indexing, or with indexing by one
of the three registers, A, B, or C. The indication of indexing, plus the indirect address as an
absolute binary number, are contained in one word, which may be set up by one of the following
pseudo-operations.

[ID&1r&~~1rc:J ~®------------
-13-

Indirect Address with no Indexing

IND

U sed to generate a constant, where the constant is a memory address. The operand may be a
decimal number, a symbol, or a sum-and-difference expression. If numeric, it is assumed to
be a decimal number and is converted to binary. If symbolic, the address of the symbol is used.

Examples:

IND 1280
IND *
IND *+INPUT+2

Indirect Address Indexed by the A-Register

INA

Similar to IND except that a bit is set in this word so that when it is used as an indirect address,
the contents of the A-register will be added to the memory address portion of this word.

Indirect Address Indexed by the B-Register

INB

Same as INA except that the B-register is used instead of the A-register.

Indirect Address Indexed by the C-Register

INC

Same as INA except that the C-register is used instead of the A-register.

C. TABLES

Communications processing usually requires extensive use of tables. Therefore, the DATANET-30
Assembler has several features for minimizing the work of constructing tables.

Tables may take any of several forms, depending upon the job to be done. Most tables are two­
dimensional, that is, with rows and columns. In a computer's memory, the table may be either
column-oriented or row-oriented. In a column-oriented table, all elements of a column are ad­
jacent to each other (different columns mayor may not be adjacent to each other). In a row­
oriented table, all elements of a row are adjacent to each other in memory. Most files are row­
oriented tables that is, each record is a "row" containing all items for one unit, such as all data
for one employee in a payroll record. For large tables kept in memory, on the other hand, there
is frequently an advantage to column-oriented tables. Or tables may really be a mixture of
column-oriented and row-oriented. For example, in DATANET-30 Communication processing,

[ID&1r&~~1rc:J ~@------------
-14-

there are frequently advantages in having all elements in a column adjacent to each other. At
the same time, one will likely have to pack several items, that is, several columns, of information
for a unit into one word. Thus, the table becomes a compromise between column-oriented and
row-oriented.

Repetitive Tables

Tables may also be classified as either repetitive, with every row in a column containing the same
value as every other row, or nonrepetitive. One normally thinks of nonrepetitive tables, for if
every item were the same, there would hardly be need for a table. But in communication pro­
cessing) many tables are really status indicators, whose values are changed by the program many
times during a working day, or even several times per second. When the programmer writes
the program, he sets each row to its initial condition, which typically will be the same for all
rows.

With the DATANET-30 Assembler, one may construct a repetitive table of any size with justone
card. To set up a repetitive table, the programmer fills out the card with the appropriate opera-
tion code, .or pseudo-operation, and operand. Then, in the Repeat field, the programmer indicates
the total number of words to be generated in the table. The Repeat field may be either numeric
(up to 99) or symbolic. SymbOlic repeat symbols are limited, of course, to two characters be­
cause that is the size of the Repeat field. If the Repeat field is symbolic, the symbol must have
been previously defined by an EQU or EQO card equating the symbol to a numeric value. Failure
to properly predefine a symbol used in the Repeat field will usually result in an "unpatchable"
error condition, for the assembler will not repeat the card if the symbol was not previously
defined, and the next card will assemble at the next memory location, leaving no space to patCh
in the unassembled table. Nevertheless, use of a symbolic Repeat field is encouraged because
frequently the size of several repetitive tables will be determined by the number of Teletype
lines in the system, and if one uses symbols, he need only change the EQU card defining the
symbol, and reassemble, in order to change the number of lines. To generate a table greater
than ninety-nine words long, with one card, one must use a symbolic repeat.

If a Reference Symbol is used on a card with a Repeat field, the symbol will assume the address
of the first word in the table. Below is an example of how a channel table for a five-line system,
on addresses 1-5, would assemble:

LOC INST. SEQUENCE REPEAT SYMBOL OP OPERAND REMARKS
NO. CODE

ORG 512
01000 000777 6 $SW1 OCT 777
01001 000777
01002 000777
01003 000777
01004 000777
01005 000777

Nonrepetitive Tables

For our purposes here, nonrepetitive tables are further divided into unpacked and packed tables.

[ID&1F&~~1FCJ ~@------------
-15-

Unpacked

Unpacked tables (containing only one item per word) may be entered one item per card, using the
appropriate operation code or pseudo-operation and an operand. However, if all items in a table
(or section of a table) are to be constructed by the same Op Code (as they usually are), one may
enter several rows of the table on one card. To do this, the programmer should place an M in
the Modifier field and then list the operand values, one after another but separated by slashes,
in the Operand field. Obviously, one cannot use symbols containing slashes on one of these cards.

As an example, to construct a code-conversion table (called CONVERT) using the OCT pseudo­
operation where the first ten values of the table are 17, 12, 33, 4, 67, 15, 23, 42, 6, and 35, enter
the first ten rows of the table as follows:

CONVERT MOCT 17/12/33/4/67/15/23/42/6/35

Or, construct a jump-table consisting of branches to several subroutines:

JUMP MBRU ERROR/TYPEA/NORMAL/ERROR6/NORMAL

Putting several operands on one card does complicate changing a source deck, but it has particular
value when slow peripherals, such as Teletype, must be used for assembling, because it reduces
the volume of input records.

Packed Tables

Nonrepetitive packed tables (containing more than one item per word) must be entered one word
per card, unless the programmer wants to do his own packing. Most packed tables are so tedious
to construct that the programmer will use one of the techniques described below, even though the
techniques allow entering only one word per card.

Of the two techniques described below, only the first will have wide-spread application in com­
munication processing. Each of the techniques requires using two pseudo-operations in relation
to each other.

Field Definition

FDN

This pseudo-operation is used in conjunction with the MFC pseudo-operation. See MFC below.

Multifield Constant

MFC

Permits packing several fields into one word of memory. U sed together with the FDN card.

[ID£1J£~~1J~ ~®------------
-16-

The FDN is a DIRECTIVE pseudo-operation, but it is explained here because of its relationship
to the MFC. In a source program, the MFC must must always be preceded by the related FDN
cards, but the MFC is explained first because it shows the need for the FDN.

In message switching, twenty or thirty parameters are generally needed for every Teletype
station. and there might be several hundred stations in a network. Because memory is limited,
one cannot afford to use a separate memory cell for every parameter for every station. Many
of the parameters require only a few bits each, so one usually packs several parameters for one
station into one word. The work of constructing large tables with several parameters in each
word is tedious enough even if all parameters are in the same kind of code (that is, all octal,
or all five-level Teletype). Frequently, however, the various parameters are in different codes.
One way to construct the tables is to manually convert the codes to their binary representations,
manually "shift" each parameter into its place, manually OR the parameter into a word, and
when done, convert the word to its octal representation so that it may be entered into the program
by the OCT pseudo-operation.

The MFC pseudo-operation does the converting, shifting, and ORing. The programmer need only
list the parameters and the assembler will generate the constant.

The assembler must know the following items about each parameter:

1. What bit positions does the parameter occupy?

2. In what code should the parameter be stored? For example, if a parameter is "12,"
the assembler must know whether this is a decimal number to be translated to its binary
equivalent, or an octal number, or an alphanumeric field to be retained in its BCD rep­
resentation, or an alphanumeric field to be stored in one of the Teletype codes.

Normally. every word in anyone table will contain the same type of information in the same bit
positions in every word. For example, a table of 120 words might contain a line number in bits
18 through 14 of every word, and every line number would be expressed as a decimal number
on the MFC card. Obviously, it should not be necessary to define on each of the 120 cards what
bit positions are used by line number, or in what code the line number will be expressed. Rather,
these items could be defined just once at the front of the table, and the assembler would remember
how to process line numbers. It is the function of the FDN card to tell the assembler how to
interpret data on following MFC cards, and where to put the data.

One FDN card describes only one of the parameters to be placed into the table. Since the purpose
of the MFC card is to permit packing several fields into one word, one would expect several FDN
cards to precede a table. There must, then, be some way to specify which FDN card defines which
field.

To facilitate this, the fields are numbered from 1-31 inclusive. Each FDN card contains its field
number, which must be written in the Repeat field (hence, the FDN card cannot be repeated).
Columns 10-12 must contain one of the literals (for instance,DEC, OCT, ALF, T5L) given at the
end of the MFC description below, to tell how the field should be interpreted. The operand con­
tains the number of the leftmost bit position to be occupied by the field, followed by a comma or
a space (or a comma and a space), followed by the rightmost bit pOSition.

[Q)&lJ&~~lJCJ ~@------------
-17-

For example, a table consisting of one word per station is to contain four parameters for each
station, as follows:

1. Line number, bit positions 18-14, to be expressed as a decimal number.

2. Call-directing code, bit positions 12-7, to be stored as five-level Teletype, left-justified.

3. A BCD code, in bit positions 6-1, to be used for communicating with an on-line computer.

4. A code, in bit 13, to indicate whether station is on a full-duplex or half-duplex line.
This will be indicated symbolically where the symbols have been previously defined by
a CDN, EQU, or EQO.

The FDN cards would be:

4 SYM
1 DEC
2 T5L
3 ALF

FDN
FDN
FDN
FDN

13,13
18,14
12,7
6,1

LINE TYPE
LINE NUMBER
CDC
COMPUTER ID CODE

The table can now be constructed by means of the MFC pseudo-operation. It is only necessary to
list the parameters in the Operand field of the MFC card. The parameters are separated from
each other by commas (and up to eight blanks, if desired). The last parameter is followed by a
blank rather than a comma. The parameters must follow a specific sequence, however. Line
number, because it was defined as field #1, must be the first parameter on the MFC card;
call-directing code must be next, etc. The table might appear as follows:

MFC
MFC
MFC
MFC
MFC
MFC
etc.

17, C, K, FULL
3, Y,S, FULL
21,Z,A,HALF
9,F,X,FULL
11,P,X, FULL
12,P,H,HALF

CHICAGO
NEW YORK
PHOENIX
SAN FRANCISCO
PITTSBURGH
PRESCOTT

When finished with a table, any or all field numbers may be redefined for use in another table.
At times, however, it may be desirable to save one set of field definitions while another set is
used. For example, in a row-oriented table, the programmer might want to use several sets of
field definitions, one after another, on a repetitive basis. To extend the example used above,
suppose that each station required another word, containing three parameters, e.g., transmitter
start code; line number for alternate routing, and CDC for alternate routing. Instead of putting
this control word into a separate column, the programmer may desire to put both words for each
station together. Thus, two sets of field definitions are needed. The second set can be definerl
by simply using other field numbers, as shown below.

* FIELD DEFINITIONS FOR FIRST WORD, EACH STATION

*
1 DEC FDN 18,14 LINE NUMBER
2 T5 L FDN 12, 7 CDC, PRIMARY ROUTING
3 ALF FDN 6,1 COMPUTER ID CODE
4 SYM FDN 13,13 LINE TYPE

* FIELD DEFINITIONS FOR SECOND WORD, EACH STATION

*
*

5 T5L
6 DEC
7 T5L

FDN
FDN
FDN

12,7
5,1
18,13

TRANSMITTER STOP CODE
LINE NUMBER, ALTERNATE ROUTE
CDC, ALTERNATE ROUTE

[ID&lf&~~lfc:J ~®------------
-18-

The programmer may now use either set of field definitions as desired. Obviously, some way
is needed to specify on each MFC card which set of field definitions to use. If the set to be used
starts with field 1, no indication is needed; the assembler will automatically start with field 1.
If the set to be used starts with some other field number, the programmer must place the number
of the first field in the set into the Repeat field (MFC cards cannot be repeated). Below is an
extension of the example given above, in which every station has two words adjacent to each other
in the table:

MFC
5 MFC

MFC
5 MFC

17,C,K,FULL
L,3,U
3,Y,S,FULL
B,13,T

CHICAGO

NEW YORK

Note that there was nothing in the FDN cards which told the assembler that fields 1-4 comprise
one set and fields 5-7 another. It is the number of parameters on the MFC card which determines
the size of this set.

The programmer may err and provide a field too big to fit into the number of bits specified on
the FDN cards. In the example above, only five bits were provided for line number. If the pro­
grammer calls for a line number greater than 31 (largest possible in five bits) the assembler will
chop off all high-order bits in the oversize number and will flag the word as an error.

Commas and spaces are used on the MFC card to separate fields. Therefore, these two characters
cannot be used as literals in alphanumeric or Teletype fields. Plus or minus signs, on the other
hand, may be used as literals in the alphanumeric or Teletype fields, but if they are used in nu­
meric (DEC or OCT) or symbolic fields, they will be treated algebraically.

Below is the list of parameter types that are available in the initial release of the assembler.
Provision for eight-level and other codes will be added to the assembler after more research
has been done to define the best ways to handle such codes internally.

DEC The parameter must be written as a decimal number. It will be converted to its binary
equivalent. --

OCT The parameter must be written as an octal number.

SYM The parameter may be symbolic, decimal, or a sum-and-difference expression of several
symbols and/or decimal numbers.

ALF The characters in the parameter will be stored "as is," that is, in their BCD representa­
tion.

T5L Each character is converted to its five-level Teletype equivalent and stored left-justified,
that is, with a start bit for a total of six bits.

T5R Same as T5 L, but right-justified, without start bit.

[ID&1T&~~1TCJ ~@------------
-19-

Condition

CDN

Sets up the conditions used by the CDC pseudo-operation. Also used as an 18-bit EQO.

Conditional Constant

CDC

Primary intent is to construct words from conditions on the CDN cards. The CDC operand
can be an octal number and/or a symbol. The elements are ORed together.

CDN and CDC are used to construct a special kind of packed table: a table in which each item
can take one of only a few conditions, perhaps only two conditions. In such cases, each condition
may be given a name. The CDN (Condition) is used to describe what bit combination is repre­
sented by the name. The CDN is a directive pseudo-operation; it does not generate any data,
but it tells the assembler what bits to turn on when the name is called for later in some other
pseudo-operation. The name on the CDN card is entered into the assembler symbol-table.
Opposite the name in the symbol table is the bit configuration described by the programmer.
In function, the CDN card is just an 18-bit EQO card; but while the EQO card can have symbolic
operands, the CDN can have only octal numeric operands. The CDN must have a Reference
Symbol.

CDC. mate to the CDN, is used to generate constants, or words in a table. The operand can be
any symbol or octal number. The CDC is very similar to the OCT pseudo-operation, but in CDC,
the values in the operand are ORed together. In OCT, the values in the operand are added to­
gether.

The use of the CDN and CDC is illustrated below by showing how they were used in writing the
DATANET-30 Assembler. The assembler is basically an interpretive system. Each Op Code has
several words which describe just how that Op Code should be processed. The construction of
just one of those control tables is described below.

Bit 18 ON tells the assembler that for this Op Code the operand should either be ignored (for
instance, the EJT card) or requires some special handling (such as shift commands). Final
determination depends on bits in other words. We might call this condition NOT/STD for "not
standard. " Bit 17 ON says that octal numeric operands are permitted; bit 16 ON says decimal
numeric operands are permitted; bit 13 ON says symbolic operands are permitted; bit 9 ON says
sum-and-difference expressions are permitted as operands; bit 8 ON says the command must
be placed at an even location (e.g., DDC); bit 7 ON says operand address must be even (LDD, BRS,
etc.); bits 1 and 2 ON tell how many words the Op Code generates in the object program. This is
only a partial list, for every bit in the word is used, but it suffices to illustrate the use of CDN
and CDC.

lIDfA\lYfA\~~lYCj ~@------------
-20-

We now give names to each of the conditions, and then generate the tables:

NOT/STD
OCT
DEC
SYMBOLIC
SUMDIF
DL
DR

(LDB)
(DDC)
(OCT)
(EQU)

CDN
CDN
CDN
CDN
CDN
CDN
CDN

CDC
CDC
CDC
CDC

400000
200000
100000
10000
400
200
100

BIT 18, NOT STANDARD OPERAND
BIT 17, OCTAL OPERAND OK
BIT 16, DECIMAL OPERAND OK
BIT 13, SYMBOLIC OPERAND OK
BIT 9, SUM-AND-DIFFERENCE
BIT 8, PLACE AT EVEN LOCATION
BIT 7, EVEN OPERAND REQUIRED

DEC+SYMBOLIC+SUMDIF +1
DEC+SYMBOLIC+SUMDIF +DL+2
OCT +SYMBOLIC+SUMDIF ± 1
DEC+SYMBOLIC+SUMDIF

It turned out that certain combinations turned up very often. For example, most machine com­
mands that use memory addresses have the same conditions. Rather than repeat DEC+SYMBOLIC+
SUMDIF+l over and over, this bit combination was lumped together under still another name to
reduce the repetition.

Note that the CDN is not restricted to use with YES/NO (one-bit) conditions. For example,
assume that the right-hand three bits are to be used to indicate color. CDN could be used as
follows:

RED
GREEN
BLUE
YELLOW
PURPLE
BLACK

CDN
CDN
CDN
CDN
CDN
CDN

o
1
2
3
4
5

It is not really necessary to define a condition which represents zeros in the field, but one may
wish to do so for purposes of documentation. In the above example, if no color were specified,
the result would be RED, so it is not necessary to define RED; but calling for RED in an operand
gives more positive documentation.

D. MESSAGES

Messages may be entered into the program in either BCD or a Teletype code, depending upon
the pseudo-operation. Whatever the code selected, the format of the message is the same. The
message must start at the beginning of the Operand field (column 23), and may continue as far
as necessary, through and including column 79. This provides for 57 columns, or 19 DATANET-30
words of message on one card. The Repeat field must tell the assembler how many DATANET-30
words are in the message. If the Repeat field is blank, the assembler will generate only one word
(three characters) of message.

Alphanumeric

ALF

The message is generated in BCD code.

[ID&1J&~~1J~ ~®------------
-21-

Negative Alphanumeric

NAL

Same as ALF, except that each word is two's complemented. This might be used for generating
constants on tables where an ADD command will be used for a three-way compare.

Teletype Left-Justified

T5L

Teletype, five-level code, left-justified (with start bit). This operation code stores three char­
acters per word.

Teletype Right-Justified

T5R

Teletype, five-level code, right-justified (no start bit). This operation code stores three char­
acters per word, but only five bits per character. The three high-order bits of the word are
zero.

[ID&1f&~~1fCJ ~®------------
-22-

5. DIRECTIVE PSEUDO-OPERATIONS

A. MEMORY ALLOCATION

Origin

ORG

Establishes the starting location in memory of the program. The assembly program begins
assembly of the object program as speCified by ORG. One ORG card is required at the beginning
of each assembly run. If no ORG card is incl~ded, the assembly of the program automatically
begins at location 0000. Any number of ORG cards may be used in one assembly. The number
following ORG must be in decimal.

This pseudo-instruction controls the memory assignments performed by the General Assembly
Program. When an ORG instruction is encountered the assembly program uses the contents of
the Operand field to reset an internal counter in the assembly program referred to as the memory
allocation register (MAR). Normally, the MAR is increased by 1 for each instruction encountered.

If the operand is a decimal, it is converted to binary by the program before being used. If the
operand is symbolic, the symbol(s) must be predefined before being used. A symbol is defined
by plaCing its name in the Symbol field (columns 10-17) once, and only once, in a given program.
The General Assembly Program ignores all but the Operand field on an ORG instruction.

REFERENCE
SYMBOL

II:
Ial
>­
I&.

o OP
~ CODE

II 10 17 18 19 21 22 23

OR,G 100 0

INTERUPT
I ..l I

OPERAND REMARKS OR CONTINUATION OF OPE

3.. 35 37 38 40 .. 1 .. 3 46 .. 7 49 50 52 53

.

-r-~~-L-~~~~~~~I~-+-~~-~~~~~~~;-~~~~~~~I~~~~~-~~-+­
+~L-~' . __ cl~~~~_~~I(~'~~~I~;~'~~~1 ~1~t~t~I~!_~~~+-~-+ __ ~~._~~~~+-_~

; ~ 2 __ '. ________ 1. __ ..L __ ...!..' J,....-

, i
t +--- ~ - -'--'---'---'---'----'--- - __ 1- i -- ---. __ ..L..---L-_'--___ _

~ ___ .. _ ,_ ._.1. ___ L_-1_.J.. __ L....L- __ r-..!~-L. _ __-,---,--I ----'-_~ ___ ~--'-__'_--'---L_

~ I , _L- +----,' . ..y-l+-- t

" -

t_I-- :~~-_-~_~_~~---o --¥R-~,---+-G". -2~~~ ~ :_"~~ -.:=i:_:_:-c~~:t'~~-'d n

~ \KO,N ~L _'- _L r~?Lt} _ 1.!!~5} _? .--'. ____ '-_~ --L_.t~~ ~~~~ __ !'Cr __ ~T~I~~s I~I..! __

'~'L~~T~L _d_~_
~.-.L-f--"--'- . ------- t-· .. ·---"-· f-- -.. -

-f-_L--L-+---'---' --'---+--'--- .L-- f----~- -t--~.-- !---'-

.1 . .1 1
I

.1 '-

[ID£1r£[f!]~1F~ ~@------------
-23-

Location In Octal

LOC

This operation performs the same functions as an ORG; however, the contents of the Operand
field must be an octal number or symbolic. The assembly program will ignore leading zeros.

Equals

EQU

a:
~
>­
[J..

Ci OP
~ CODf'

18 19

.t.1

~1o.::..J.... I 1

--~---'------.-------'-------------"---------- .------.... 1
OPERAND RF.MARKS OR CONTINUATION OF opr:H.\NIJ

This instruction equates a new symbol to some memory location already known to the assembly
program. The operand (decimal or symbolic) indicates the specific memory location to be used.
This instruction does not affect the memory allocation register; thus, it may be used as often
as necessary, and at any point within the source or symbolic program, without disturbing the
memory assignment sequence. If the operand is symbolic, the symbol must be predefined. A
decimal operand is converted to binary before being utilized.

~---------'----r----.-r--~-------"---- ------.-.---.. -- ---.- -.----.-- -------.- -'-

f 15 1

1>-

IE OP REFERENC,:

---'r.

I
SYMBOL ~ CODE OPERAND Rf:)AARKS OR CONTINliATION 'JF OPE:R';W'

10 17 18 19 2i 22 23 34 35 37 38 40 4! 4344 4647 4q 50 52 q Sf'

~!~~-c~-.. -: -=:~-.. ~-_t-c-+:~~:~.-.~~:f=.-:~=~~=-~~------~~~-~~-..l-I -'-----~-... _-1ff-c-~) 'M'¥~T~~: i::f:;ir NE~';j:
~A REA 2 l~-~ Ut C R D + 4 0 " i ~ ~

- ~ I

Equals Octal

EQO

The EQO instruction is the same as the EQU except that the Operand field must be in octal form
or symbolic. Leading zeros in the Operand field are ignored.

[IDfA\1rfA\~~1r c:J ~©------------
-24-

t a::
!oJ
>-
t..

REFERENCE 0 OP
SYMBOL 0 CODE OPERAND REMARKS OR CONTINUATION OF OPERAND

2

10 17 18 19 21 22 23 34 3S 37 38 4041 4344 4647 4950 52 53 SS 5

I .
CRD

1. .. -' ... L .. ~..L-L_L
EQO 4 0 0 . . , I

IAl~l~ LAL_L-c.--L- ~~~ S-~D-L--L-L CRD MU ST BE PRE DE F I N,E D
~- ~

lii";:,:'-' .L.-L-..L...l.
~ l. I I I ..J _-'--)_ .1-._

~ ---

Block Started by Symbol

BSS

A BSS causes the assembly program to increase the memory allocation register (MAR) by the
number in the Operand field. This instruction is used to reserve a block of memory locations in
the object program. The Operand field may be decimal or symbolic. If symbolic, the symbol
used must be predefined. If decimal, the operand is converted to binary by the assembly program
before use. The BSS can be used as often as needed.

a::
!oJ
>-
t..

REFERENCE 0 OP
SYMBOL 0 CODE OPERAND REMARKS OR CONTINUATION OF OPERAND

2

10 17 18 19 21 22 23 34 3S 37 38 40 41 4344 4647 4950 52 53 SS 56

I l

OR,G 1 441 . ..L.. .j._ -'-..-,-~ I

CRD BSS 2 8 MAR I S I,N eRE ASE D BY 2 8
_.t __ ~ __ . __ .L_._~ I

PRINT ~?~ 4 0 M,AR I S IN eRE A SE D BY 40
L __ L __ i......--L--L-,-' -,'_ -- I IL-l. I L._

I NDE X BSS 3 MAR I S IN C RE ASE D BY 3
'. L .• _it.._-'--:- .-L -~~~ -_ _--- .-

! __ . ;.L.. 1 --'-,..... ~.-~ -I ... -..-....

The BSS instruction of line 2 of the example will reserve 28 consecutive memory locations starting
at location 144. The other BSS commands reserve additional blocks of memory.

A negative decimal operand can be used to reduce the MAR, in effect equating a block of memory
to another block already defined.

Symbol Control

The pseudo-operations in this group must be used before the associated symbols are defined, or
the pseudo-operation will be ignored.

@&~&~~~~~@-------------------------
-25-

Force Symbol to Even Location

EVN

The symbol named in the Operand field will be forced to an even location.

Force Symbol to Odd Location

ODD

The symbol named in the Operand field will be forced to an odd location.

Inhibit Assembler Movement of a Symbol

INH

Inhibit assembler's freedom to move a symbol. Usually, whenever the assembler finds a symbol
in the operand of a double-length instruction (e.g., LDD, BRS) the assembler will force that symbol
to the next available even location. The programmer does not always want that to happen; hence,
this pseudo-operation.

B. CONTROL OF THE OBJECT PROGRAM DURING ASSEMBLY

DATANET-30 may work in any of several operating systems. Hence, the assembler makes no
attempt to establish its own operating system, but rather attempts to provide the flexibility to
enable the input! output packages to tie into any of several operatin~ systems.

Object programs may be written in anyone of three formats. ((Transfer" records may be in­
serted at intermediate points in the program as well as at the end of the program. Although
the assembler itself does not attach ((identification" to ohject records, provisions are made to
give input! output packages information they may need for identifying object programs.

Unless told to do otherwise, the assembler will huild object programs in a Card Format, with
an origin address, word-count, and hash total on each card. A similar format, but designed to
fit a DSU record, is available when requested by pseudo-operation. Most production-type pro­
grams, however, will not be called in by loaders but will be read in large blocks directly from the
DSU into the memory locations in which they will be executed. Therefore, the programmer may
request by pseudo-operation a format which builds "program images" in DSU format.

Write Object Program on DSU

WOD

This causes the assembler to build the object program in 54-word records, with a record-origin,
word-count, and hash total on each record. This format might also be used when programs
are being stored on magnetic tape.

LID!lYIr£~~uCJ ~@------------
-26-

Write Object Program Absolute

WOA

The program is generated in 54-word records with no control words. Using this format requires
the use of several other pseudo-operations, and can become quite complex. For detailed instruc­
tions, see Appendix D.

Punch Transfer Card

Teo
A TCD generates an instruction that will cause the loader to transfer control to the location
specified by the Operand field. The operand may be decimal or symbolic. A TCD (transfer
control data card) may be used as often as necessary in a source program, because this in­
struction does not affect the memory allocation register. A symbol in the operand must be pre­
defined.

The transfer card is the last card of a segment of the object programs. When the program is
loaded for execution, the transfer card directs the central processor to the location of the starting
location of the program to be executed. The TCD cannot be used in place of an END instruction
at the end of a source program. The assembler will look for additional source program cards
following a TCD card.

End of Program

END

Causes the assembly program to generate an instruction that transfers control to the location
specified in the Operand field when the object program is executed. The operand may be decimal
or symbolic. If decimal, the operand is converted to binary. If symbolic, the symbol must be
predefined. In addition, the END operation Signifies end-of-program and terminates assembly.
This operation may be used only once and must be the last instruction of the source program.
If no END operation is used, an error comment will result but assembly will be terminated by
the end-of-deck condition. The X-field of an END operation is not used by the assembly program.

The TCD instruction previously described should be used where a transfer control card is to be
generated before the end of the assembly program.

The last card in a source program must be an END card or the assembler will halt.

10

REFERENCE
SYMBOL

STAR,Tl

It
ILl
>­
t.. o OP
~ CODE

17 18 19 21 22 23

OPERAND

LDA ~IRST

-
REMARKS OR CONTINUATION OF 0

34 35 37 38 40 41 4344 4647 4950 52

_-L __ -L_L_+_~---LI -r--t--,-.sF~+--'----L--L--JL-1--L--L-'----L--L'-L+--L---L-+-L-!--+--'---'--+----L-L-~--.l-+_L--<--II
- L __ J _~ __ J...--,-I --'---'---+_+---,-->' ~'---1--+--+----L I I I I

[ID&lT&~~lTc:J ~®------------
-27-

Input/ Output Control

IOC

This pseudo-operation does not cause any action in the assembler itself. The assembler turns
control over to the Input/Output Package. The assembler makes the IOC card available to the
I/O PAC so that the I/O PAC may extract any parameters it may need. The entire 10C card,
except columns 1-6 and 19-21 are available for parameters, and the format of the IOC card is
left to the I/O PAC author. The 10C card might be used, for example, to mark a ttprogram
Index" on a disc-oriented system (see Appendix D). Or it might be used to give identification data
to be attached to each record by an I/o PAC.

C. USE OF THE DSU DURING ASSEMBLY

Disc Storage Addresses

DSA

In many installations, the disc storage unit (DSU) will be used for one or more of the files re­
quired by the assembler, and frequently the disc addresses to be used will vary from one assembly
to the next (see Appendix C). The DSA pseudo-operation enables the programmer to specify what
addresses should be used.

Each file used by the assembler, such as source program or object listing, is assigned a number
(see Appendix C). On the DSA card, the programmer must specify, by number, for which file
he is giving DSU addresses. The file number must be placed in the Repeat field (DSA cards
cannot be repeated). In the Operand field, the programmer specifies a range of DSU addresses
by giving a starting address and an ending address. The two addresses are separated from each
other by a comma and/or one or more blanks. Addresses may be either octal or symbolic, but
if symbolic, must be previously defined by a CDN command.

In some situations. it will be necessary to define ranges for more than one file on the same card.
This may be done if the files have adjacent numbers in the numbering system described in Ap­
pendix C. The Repeat field must contain the lowest file number in the group. The pairs of ad­
dresses must be separated from each other by slashes. For example, define DSU addresses
for files 3 and 4:

E-<
a:
III

<I;)<
III '" ~ REFERENCE 0 OP

SYMBOL a CODE OPERAND REMARKS OR CONTINUATIO 2

8 g 10 17 18 19 21 22 23 34 35 31 38 4041 4344 4647 4950

I

3 I t 1M DSA 1 0 0 p o 0
I'

1 3 714 0 o / 1 40,0 00.1 1 7 7 400

I , , ...
~ -

Because of the M in the Modifier field, the assembler will continue analyzing pairs of DSU
addresses until it finds a pair not terminated by a slash. Each time it finds a slash, it adds one
to the file number.

[ID&IJ&~~IJc:J ~@------------
-28-

D. SEGMENTATION

Provision is made for two types of Segmentation problems; one is that of assembling several
segments together; the other is that of assembling segments, which must run together as one
program, at different times.

Two problems which frequently arise with assembling segments together are those of overlapping
memory and using the same symbol more than once. There is nothing the assembler can do to
prevent overlapping memory, but it will flag any ORG or LOC instructions which set the Memory
Allocation Register back, that is, reset it to a lower value.

Prefix

PFX

U sed to make all symbols within a program segment unique from symbols used elsewhere. The
PFX does not guarantee uniqueness, but it reduces the probability of duplicate symbols. Place
some character in the first column of the Symbol field (column 10). The assembler will auto­
matically attach this character to the front of all symbols, both in the Symbol field and in the
Operand field, until another PFX card replaces this one, except under the following conditions:

Symbols containing eight characters will not be prefixed

Redefinable symbols will not be prefixed

Symbols in the Symbol field will not be prefixed on any cards which contain an "S" in the
Modifier field

Symbols in the Operand field will not be prefixed on any cards which contain an "0" in the
Modifier field.

Prefixing may be started, stopped, or changed as often as desired. Prefixing will be stopped by
any PFX card which contains either a zero or a blank in column 10.

10

o/q

REFERENCE
SYMBOL

1--.-1._ I I , I

It
[U

>'

'" o OP
~ CODE

17 18 19 21 22 23

OPERAND REMARKS OR CONTINUATION OF OPERAND

34 35 37 38 40 41 43 44 4647 4950 52 53 55

.p F,X A L'-' S YM B a L S Fa L La WIN ,G THIS WI L L

[ID&1J&~~1JCJ ~®------------
-29-

Assembling segments separately has some of the same problems as assembling them together,
but it has the additional problem of making symbols, which are referred to by different assemblies,
fall in the same location in all assemblies. One can accomplish this by filling out EQO cards
after the first assembly and adding the EQO cards to all subsequent assemblies. However, the
assembler provides an easier way through two pseudo-operations, DMP, and LDS. The use of
these pseudo-operations requires additional files.

Dump Symbol Tables

DMP

This pseudo-operation requires two operands, which define a range of memory addresses. The
assembler will dump every symbol, together with its address and control bits, between the two
addresses indicated. For example, dump all symbols whose addresses are in the common data
bank:

0::
W
>-
'" REFERENCE 0 OP

SYMBOL 0 CODE OPERAND ::I!
10 17 18 19 21 22 23 34

DUMP # 1 DMP o • 5 1 2
I.-.L-.l-_..L -+-------i--L I -L I~_i- I

I I I 1 I I I I I.

........--..... - ~

Or, dump all symbols whose addresses fall between the addresses assigned to the two symbols,
HERE and THERE:

I

0::
W
>-
'" REFERENCE 0 OP

SYMBOL 0 CODE OPERAND ::I!

10 17 18 19 21 22 23 34

D UM;t? # 2
1

DMP HERE , T~,ERE

I I

-
The addresses given are inclusive addresses. In the first example any symbol which has an
address of either 0 or 512 or anything between will be dumped.

The first six columns of the Symbol field will be written onto each record of the symbol table
file for identification.

Symbols defined by CDN cards will not be dumped. Prefixed symbols will be dumped with their
prefixes.

[ID&1Y&~~1Yc:J ~©------------
-30-

Load Symbol Tables

LDS

This pseudo-operation also requires two operands which define a range of addresses. The
operands may be either numeric or symbolic, but if symbolic, they must have been previously
defined. The first six columns should contain the identification which was written onto the symbol
table file by the assembly which wrote the file (see DMP).

The LDS card causes the assembler to read the symbol table file. The assembler will accept
only those records on the file whose identification matches that on the LDS card. The assembler
will load into its symbol table all symbols whose addresses fall within the range specified.

If prefixing is in affect when the LDS card is executed, all symbols loaded from the symbol table
file will be prefixed also. Normally, this is not desired, so the programmer should use caution.

10

REFERENCE
SYMBOL

IX:
W
>­
U-
S OP
~ CODE

17 18 19 21 22 23

OPERAND REMARKS OR CONTINUATION OF OPERAND

34 3S 37 38 40 41 4344 4647 49 50 52 53 5S 56

L D S 1 2 8 J 2 5 ,5 LOADS, AL,L SYMBOLS FROM

DUM P # 1 WH 0 SEA D D RES S E S

LIE B E TWE EN 1 2 8 TO 2 5 5
_~!~n_Ln_'~~.--L~ nn ,--_~...L-.J __ ~I , I I . .L--L_l~~ ~~....L-L_--L--= ~.L_L_ ~-:... --L .. ' _L L INCLUSIVE lL .l 1._ '-_...l.. ~ L----L..... ~-. _ .. J ~~L . '-- __ ~.~L .. ! __ ~'~ 1 ~_-L_.L.n-,---L_nL_L~~-'-_ --'-~~-L-....L-r-....L--1_f-.~-'--~L. ~ __ ' __ -L ~ _ L __ ', _____ .L- __ ',:,:,~

-
E. DOCUMENTATION

Asterisk (*)

An asterisk in the Control field (column 6) makes a Remark field out of the remainder of the
card. Such cards will be printed on the object listing, but will cause no other assembler action.

Percent (%)

A percent (%) in the Control field yields a variation of the remark card. The assembler will
slew two lines, print columns 7-80 (columns 1-6 will be blanked out by the assembler) and slew
two more lines. Such cards will stand out on the listing.

..J f-o
IX:

0 W
IX: « >-
f-o W '" Z II. REFERENCE S OP W 0 IX: SYMBOL 0 CODE OPERAND REMARKS OR CONTI U ::II

6 7 8 " 10 11 18 19 21 22 23 34 35 37 38 4041 4344 4647

,

* RE .M ARK,S MA,Y BE E NT ER ED BEGI N NIN G I N C OL 7 , , ,

, I I I

- --~I I , I I I

% RE M ARK S PL US SL E W TWO LI iN",E,S e-- <---L_ - __ '-----.L-L I I I I ~..L.- '--...!j

~ , I I ---'----'---- __ L
<- ----'----"- - L-L --- ---

ID)&\1TfA\~~1TC3 ~@------------

-31-

Title

TTL

Columns 23-80 of the title card will be printed at the top of each page hereafter until another
title card appears. The first title card in the program will also be printed on all pages preceding
the first card.

For example, a program contains two title cards, the first one appearing on page 5 and the second
on page 12. The first title card will be printed on pages 1-12 and the second title card will be
printed on pages 13 and following. Any number of title cards may be used.

OP
CODE OPERAND REMARKS OR CONTINUATION OF OPERAND

19 21 22 23 34 3S 37 38 40 oil 43 4647 4950 52 53 SS 56 58 S9

I

I-Ltb D,V ~ ,R.L~ IY' ,N UNI,B ER TH.R EE,. HE ,AD E R A N AL Y S I S

__ .L---'--- -- _-'---.-1 I I I I I . 4-_~ _-'--.L- -----L.~ --4-. . - -L

(The above is a title of a par of a :::>rogr 1m.)
~_.1_L..... .•. __ .I. • . I I I ~ __ !.. __ ---L-L- -L--'-- .L..-__ .:...... __ ----'-_ . .1._ --L--L_ I--~

, -.--L_ --<-. _.-' --- . _ . ..l. ... ' --

J

Slew to Top of Page

EJT

Eject printer listing to top of page. The EJT card will be printed before the listing slews to top
of page.

I .,

OP
CODE OPERAND REYARKS OR CONTINUATION OF OPERAND

19 21 22 23 3 .. 35 37 38 4041 4344 4647 4950 52 53 S5 56 58 S9 6162

I I

EJT Iqfor:rp.atipI\ here w\ll b ~ ~h~ 1 ast ~ir e pri ~ted or a p'a~ e bef< repr nting startE
on the next page.

I

I

No List

NLS

This card, and those following it, will not be printed on the object listing.

[ID!A\1J!A\~~1JCl ~@------------
-32-

Resume Listing

LST

This card, arid those following it, will be printed.

OP
CODE OPERAND REUARKS OR CONTINUATION OF OPERAND

19 21 22 23 34 3S 37 38 40 41 43 44 4647 49 50 52 53 55 56 58 5

N LSI N F O,R MAT ION HER tE .W IL,L NO T BE PRINTED

5 1 1

l±
~ '-- --L_ ,--J--f---..L--, - '--L-l_

-L I ,. -, .. L~ __ ,', ' 1 I , I --,--' -"----'---'----1f-..L...-..L- '-->--L-+---'--L-+--L--L.......fL-J..---'--+-_~ I-.. L~ __ ~.L_
_ .------_ , ___ , I ! I I _~>----'---...l ___J-._.1_ ~--...L-._-'-_ _ ~, ~' t---....L--'--r----!...-.-:--

~l~.:r~_,! .N_c~\9B.M,A.T JQE~_!!~l!. ~_..J.W ~b.b r- .l.J?£ ~ I_.,-~:I ~.P~ .1 t I < L ~ ~_L' ., L I ' '" ,
J J

t
~,- .

!

-
F. MISCELLANEOUS PSEUDO-OPERATIONS

Switch to Old Card Format

OLD

Must precede any cards written in the "old" format. (See Appendix B.)

I

OP
CODE OPERAND REMARKS OR CONTINUATION

19 21 22 23 34 35 37 38 4041 4344 4647 4950

I I

OLD REMA RK S MAY BE INS ER,T ED HE~ E
I

....

[ID£1J£~~1JCJ ~@------------
-33-

Switch to New Card Format

NEW

Must precede cards written in new format when some "old" format cards have been used ahead
of the new. The assembly program assumes new format unless notified as "old." (See Appendix
B.)

I •
I

a::
\II
>-
'" ~ENCE 0 OP

30L 0 CODE OPERAND REMARKS OR CONTINUATlOr-
:::l!

17 18 19 21 22 23 34 3S 37 38 4041 4344 4647 4950

"---L-L
,

NEW
~_'_'----- f-- --1_.--1- I I I I

This pE: e do-or el ation is illegal in new f)rmat NE' if mllEt be used in
otrrar m 1:---1-- - ~.~-l-.--L-1-1 I I I

__ L_. __

~
-. .1_1 _ - __l ___ .L_~.!...-.LL __ l_...L-I.....- __ ..L.. .• L.... ._..L-~ __ . ..L __ --'-- ,-_.J...._ -'-- __ -'--_.1. _ -

__L-.l I. ---I

-

Reset Sequence Counter

SEQ

Reset the sequence counter to zero and check sequence of Source program. This pseudo-op­
eration may be used as often as desired. Every time it is used, the sequence counter will be
set back to zero. This is useful if each subroutine contains its own set of sequence numbers.

I

~

OP
CODE OPERAND REMARKS OR CONTINUATION OF OPE

19 21 22 23 34 3S 37 38 4041 4344 4647 4950 S2 53

I . I

SEQ S EQ.uE N,C E C,OU N,TE R I S SET TO ZE RO
I

.....

@&lY&~~lYCJ ~@------------
-34-

Delete

DLT

Delete cards from master file. The DLT pseudo-operation is used only on Update runs, and will
be ignored if used in anything other than an Update. A DLT may delete either a single card or a
block of cards from the master file. If only one card is to be deleted, the Operand field of the
D LT card may be blank. If a block of cards is to be deleted, the Operand should contain the
sequence number of the last card in the block. See "Updating Procedures.»

..J f-<
o ~
0:: W
f-< n.
z w

,SEQUENCES 8 0::

! 1 5 6 7 8 II 10

REFERENCE
SYMBOL

0::
III
>­
t.. o OP
~ CODE

17 18 19 21 22 23

I

OPERAND

34 1
r--L-L~--- ---t--+-t---------t-+--+-t------------~

l? -1-6_L ~LJL5_ . -t---'-t--t--L -l . L_+--,~ -L_ -_ PJ-.~--t--t__'_---L....-..1---'----..i..-,.~-..L..-L_
l... _~ ---' I "_ ~ -L--' I-.......

Card Number 26815 will be deleted.
J

..J f-<
0::

0 III
0:: 01; >-
f-< W '" Z n. REFERENCE 0 OP III SEQUENCES 0 0:: SYMBOL 0 CODE OPERAND U ::I

i 1 5 6 7 8 II 10 17 18 19 21 22 23 34

r~-
c~·!~ --1-.~ i

DLT 28 7 0 0
-L

L

-
Cards 28612 to 28700, inclusive, will be deleted.

Subroutine Call

SBR

The assembler will call subroutines from a library file, provided, of course, that the computer
used for assembling has the necessary peripheral device.

The programmer requests a subroutine by use of the SBR pseudo-operation. The Symbol field
of the SBR card must contain the subroutine ID, left-justified. ID is limited to six characters.
The ID on the SBR card must exactly match the ID on the library file, character-by-character,
for the assembler does only a double-word compare, with no analysis of characters.

Normally, when the assembler encounters an SBR card, it adds the request to a list, but does not
immediately call the subroutine. A maximum of fifteen subroutines may be requested at anyone
time. When the assembler reaches the END card of the source deck, it will call all requested
subroutines which have not yet been called, and assemble them at the end of the program.

[ID£1J£~~lrc:J ~@------------
-35-

Occasionally, it may be desirable to call subroutines before the end of the program. To do this,
the programmer places an I in the Modifier field (column 18) of the SBR card. The assembler will
immediately call all subroutines in the Request table. This clears the Request table so the pro­
grammer may request up to ten more subroutines. One may request "immediate" call of sub­
routines as often as desired, but he should not do so indiscriminately, because the assembler must
pass the library file from the beginning every time a request for immediate call is given.

When subroutines are called, the assembler counts how many requested subroutines were found.
If, at end-of-file of the library file, not all subroutines have been found, the assembler will print
a warning on the listing but will not indicate which subroutines were missing.

Subroutines will be called in the sequence in which they appear on the library file, regardless
of the sequence they are requested. If it is necessary to assemble the subroutines in a different
sequence, the Immediate-Call option must be used to force calling the later subroutines fir st.

Once a subroutine is called, it becomes part of the work file, which may serve as input to a later
assembly if an update run is needed. One would not want the subroutines to be called again. To
prevent this, the assembler converts subroutine request cards to REMARKS cards. For this
reason, one cannot delete a subroutine by merely deleting the request card. He must delete
every card in the subroutine. (See block-delete feature in Updating Procedures.)

Library call is not available in the 4k assembler.

10

REFERENCE
SYMBOL

a:
I.LI
><
'" o OP
~ CODE

17 18 19 21 22 23

OPERAND REloIARKS OR CONTINUATION OF OPERAND

34 35 37 38 40 41 4344 4647 49 50 52 53 5S 56 58 59

.~J_J.0L·_+!~l , ~~ R,E.lVJ;A,R,K,S~ll START, HE,RE SUBROUTINE -1.._'--1

! D30 16 I S ADDED TO THE REQUEST L1 ST
__ l ___ .!... _ L_-L_.L...J __ , '--- t--L -L I Ii! I , , t.. ~.1- -..L-.. .~_

, •• 1. .. ' ... L ... ! L.~, I I '.....L_' __ L....L-L- ~.L.-I----'---->. ~--'---i---'--L .--- .. .L_.l t ..
• _.1 • .L L~_ .• _ ._1... l.~ _.L....L_ . .L......l..... L-. __ .!--->--L.--L_---'--.~~ __ ~_..l....._~-..I.- '--.~ ~_I---'-_l ___ -'-._':"'_. __ . _ l __ .~
fl.

:D 3 0,' 3"7 ·:-=~~t !~~::~~:i~~~t ~r3~~ri;7A ~{ ~~~~~~:d~;li~·~E!i'~: t
• .l. i ._ i iT,HLE L~.E T \Y...L..1.~!L. B~E ,I NS!.ERT ED .ltN.T~~1 IT H~E i.

j , I . i ~PR;oG ,RAM AT.:ri~I S j r.olI N,T I Nt !,H~E .Ats S ErBLiY

1L...,1 Ii I i.1 .1 L.. iIi I

[ID&\1r£~~1rCJ ~@------------
-36-

6. CONTROL CARD

The control card is optional, but ifused, it must be the first card in the source deck. If it appears
later in the deck, the assembler will halt. The control card is identified by a C in column 6.

However, the r/o PAC may require that some other card, such as a DSA or roc card, be the first
card. Therefore, all control information required on the control card is placed into columns not
used by the DSA or roc. Thus, the control card information may be placed on the same card with
other pseudo-operations (such as DSA or rOC). If a control card is not used, the assembler will
assume that the standard option for assembly is selected. (See column 11.)

If column 10 contains aU, the assembler will update an old master file containing a source program.
The control card must be the first card of the change deck. If column 10 contains an S, the
assembler will also update, but as it updates, the assembler will resequence the new work file
so that it may be used as input to a later assembly.

When a new program is assembled the first time, it may contain several sets of sequence numbers.
For example, each subroutine may start with sequence number O. If these sequence numbers
were copied onto the work file, it would be very difficult to update the work file on a later
assembly. Therefore, the programmer may instruct the assembler to resequence the source
deck while assembling. To do this, he must place an R in column 10. If column 10 does not con­
tain a U, S, or R, the assembler will accomplish a normal assembly.

Column 11 determines whether the standard or the optional assembly will be used. The standard
is when column 11 is blank. The option is when column 11 contains a Y.

If column 11 is blank, the assembler will not read the file the second time, but the programmer
must then flag all symbols to be forced even with a D in the Modifier field, or must name the sym­
bol in the operand of the EVN pseudo-operation before defining the symbol, or must refer to the
symbol in a double-length command before defining the symbol.

If column 11 contains Y, the assembler will automatically force all symbols named in the operand
of "double-length" instructions to an even location. This forces the assembler to read the work
file an extra time, and increases the assembly time.

Columns 12-17 are available for a date, which will be printed on the title line of every page. If
a date is used, the assembler will insert a slash between the second and third characters and
between the fourth and fifth characters. Thus, 070464 will become 07/04/64.

[ID&IJ&~~IJCJ ~®------------
-37-

Although the assembler itself has no use for them, it will save columns 1-5 of the control card in
predetermined locations. The thought behind this is that a customer might stack several source
programs on one magnetic tape. He could use columns 1-5 of the control card to identify the pro­
gram being assembled. However, the ability to stack several source programs on one tape will
not be built into the assembler. If this feature is to be incorporated it will be the responsibility
of the I/O PAC to copy all programs preceding and following the subject program onto the new
work file. The I/O PAC must also attach the ID to each record, etc.

[ID£1r£~~1rC3 ~@-. ------------
-38-

7. UPDATING PROCEDURES

Message switching programs are usually long and it would be time-consuming to reassemble
each time from cards or from Teletype. If suitable peripherals (for instance, magnetic tape)
are available, the assembler will update a previous assembly. Updating implies at least two in­
puts: the previous assembly, called old master, and the changes to the old master. The old
master is the work file from the previous assembly. The changes are what normally would be
the source file.

If an update run is to be made, the first card of the changes must be a control card (see description
of control card). If the first card is not a control card (requesting an update) the assembler will
assemble only the changes.

Updating a file usually permits at least three basic transactions:

1. Changing existing records
2. Deleting existing records from the file
3. Inserting new records into the file

The key for the update is the sequence number. Zero is not a valid sequence number on change
cards.

Changing of existing records is accomplished by simple replacement. Thus, to change a card in
the old master, the programmer should fill out a new card containing the sequence number of
the card to be changed and containing the instruction as it should be assembled.

Deletion is handled by the pseudo-operation DLT. The DLT card should contain the sequence
number of the card to be deleted. Sometimes it is necessary to delete entire blocks of cards.
It is not necessary to fill out a DLT card for each card in the block to be deleted. Instead, the
programmer should put the number of the first card in the block in the Sequence field, and the
number of the last card in the block in the Operand field. (If only one card is to be deleted, the
Operand field should be left blank.)

If new cards are to be inserted into a program, the insertion cards must contain sequence numbers
greater than the last card before the insertion and less than the first card after the insertion.
The assembler, when it assigns sequence numbers to the work file, assigns only numbers
divisible by ten, so there is always opportunity to assign sequence numbers for insertion. This
does not mean that one is limited to inserting nine cards between any two cards. One may have
any number of change cards with the same sequence number. For example, if one wanted to
insert fifty cards at one point, all fifty cards could have the same sequence number.

If one wishes to update an assembly containing both old and new card formats, he must observe
certain conventions. See the appendix "Compatiblilty with Previous Format."

A simplified block-diagram of the update process is shown below. A study of this diagram may
clear up questions on the procedures for updating.

[ID&1r&~~lrc:J ~@------------

-39-

The change deck must terminate with an END card. The old master will also have an END card.
Of the two, the one with the higher sequence number will terminate the assembly. The one with
the lower sequence number will be ignored, but must be present. It will not appear on the output
listing.

Old Master
Less than

Change

Deliver Old
Master to

Assembler for
Processing

No Read a
Change Card

No Read Old

Compare
Sequence
Numbers

Change Less
Than Old Master

(Insertion)

IRliver Change
to Assembler

for Processing

Process the
Card

Master File

Sequence
Numbers

Equal

"Erase" Old
Master Record

Read Old
Assign New Master File

Sequence Number
(if Requested)

Erase
Change
Card

No Yes

New Master
(Work File)

Erase the Card

>----....

[ID£1F£~~1FCl ~®------------
-40-

8. USE OF THE CONSOLE FOR ASSEMBLY

CONSOLE SWITCHES

Console Switch 18. This is the general purpose toggle switch which will be used whenever an
I/O PAC pauses to permit some kind of operator action. The I/O PAC will turn on the Error
light and set up a code in the console lights (see below) to indicate why it paused. For example,
the program might pause to permit the operator to change tape handlers, or to let him decide
whether or not to ignore an input/output error. When the operator has taken the necessary action,
he must turn switch 18 on and off. The program will turn off the Error light/buzzer and will
continue.

Console Switch 17. If this switch is on, the assembler will delete all cards which contain a D
(for delete) in the Control field (column 6). This option is provided to enable the programmer to
delete debugging subroutines, and the calling sequences to them, during final assembly. It will be
used mostly by installations which do not have the necessary peripherals for using the DAT ANET -30
Monitor and Debug system.

Console Switches 16-10 are used only when assembling with limited peripheral configurations.
Many users will not be concerned with them at all. Console Switches 9-1 are available to I/O
PAC's. For a discussion of the uses of switches 16-10, see Appendix C.

CONSOLE LIGHTS

If the assembler caused the stop, the C-register will contain 1778• If the I/O PAC caused the
stop, the C-register will contain the file numbers for which the stop was made.

If the stop was made because of an error condition, the A-register will contain 7770008. If the
stop is not for an error condition, the A-register will contain 0007778• The B-register will
contain a code indicating the specifiC reason for the stop. The B-register codes for peripheral
conditions will depend upon the I/O PAC. The B-register codes used by the assembler are as
follows:

Error Conditions (7770008 in A-register)

000077 ~ A control card appeared, but it was not the first card in the deck.

007700. A file assigned to the DSU has required more space on the DSA card, or no DSA
card was provided for this file.

000777 in A-register "Normal" Conditions

777777. End-of-job.

Anything else: Assembler is pausing as requested by console switch (see Appendix C)D

[g)&1r&~~1rCJ~®------------
-41-

9. ERROR INDICATIONS ON OBJECT LISTING

ASSEMBLY ERRORS AND SUSPECTED ERRORS

The following codes listed are errors or suspected errors found during assembly by the General
Assembly Program. The object is to convey as much error information as possible regarding
errors in the object program.

Except for machine malfunctions, the computer will stop only under two circumstances during as­
sembly:

1. The DSU addresses given by a DSA card have been exceeded.
2. A control card was inserted in the object program deck after the first card.

Error Codes

Following is a list of the error codes:

Code

o Illegal Mnemonic Operation

This becomes a HLT (00).

U Undefined Symbol

A symbol name appearing in the Operand field does not appear in the Symbol field
of any instruction. Constant 0000 is inserted as an operand address.

M Multiply Defined Symbol

Either the Symbol field or the Operand field contains a symbolic name which appears
in the Symbol field of two different instruction lines. If the error detected was in
the Symbol field, assembly will continue with the present setting of the memory al­
location register. If the error detected was in the Operand field, the value assigned
to the symbol the last time it appeared will be used as the operand address in the
assembled instruction.

A Error or Suspected Error in the Operand Address

Blank Operand field in a line normally requiring an address. An entry in the Operand
field of a line which normally should be blank. The numeric value of the operand does
not meet the requirement of the line in which it was used. The value of the operand
address will be logically ORed into the instruction.

[ID£lf£~~lfc:J ~@------------

-43-

Code

T Error or Suspected Error in X- Field

The X-field contains an entry in an instruction which does not access memory. The
X-field contains any character other than X or is a numeric.

S Size Error

An error occurred in the size of DEC, DOC, or OCT, or a number was too big to
fit the indicated field size.

$ Channel Table Usage

The $ character in the first position of a symbol indicates to DATANET-30 General
Assembly Program that this is to be treated specially. This symbol must be assigned
by the programmer to a memory location that is a multiple of 1610• If this error
tag appears, it means that either the specified address was not modulo 16 or less
than 8192 or both.

E Message Words Exceeded

Indicates that more words were specified on a message card than can fit on one card.

F Symbol Table Full

Indicates that the symbol was omitted because the symbol table was full. This has
the same effect as an undefined symbol.

C Control Field Illegal

Indicates illegal use of the Control field, such as having a character not allowed in
the Modifier field.

L Illegal Symbol Field

Indicates a Symbol field error, such as the use of an illegal character or an all
numeric symbol.

B Backed Up Allocation Register

The assembler memory allocation register (MAR) was backed up (reset to a lower
number) by an ORG or LOC instruction. This may not be an error but is flagged
as a potential error.

[IDlA\lJlA\~~lJCJ ~@------------
-44-

Code

Hyphen

Slash

Skipped Memory Location

The assembly program skipped a memory location because something was forced
to an even (odd) location. This is not necessarily an error but is flagged as a poten­
tial error.

Assembler Error

Indicates an assembler error. If a slash is present on a large block of instructions
on the listing, this probably means that the Input/Output Package lost a record on
the work file. If it happens on isolated instructions, contact the DATANET-30 Pro­
gramming Unit, Computer Department, Phoenix, Arizona.

Q Source card out of sequence

[ID&lr&~~lrCJ ~®------------
-45-

APPENDIX A
INTRODUCTION TO SYMBOLIC PROGRAMMING

Before proceeding into the discussion of symbolic programming, it is necessary to define the
following terms:

1. Machine instruction. This is the instruction actually used by the computer to perform
an operation. It also means that the instruction is in a form the computer can actu­
ally use. For example, 400015 is the actual machine instruction for Load A with the
contents of memory location 15.

2. Mnemonic instruction. This is the instruction notation used in writing programs to
represent the actual machine instruction on the coding sheet. The mnemonic for an
instruction is changed by the assembly program into an actual machine instruction
form. For example, LDA (Load A) becomes 400000.

3. Source program. This is the program set down on the coding sheet. Each line of
coding is then punched on a card.

4. Source program deck. The results obtained after punching all the instructions on a
coding sheet onto punched cards and retained in the order as written on the coding
sheet.

5. Object program. The result obtained after the source program has been processed
by the assembly program to produce the instruction on the coding sheet into machine
instruction form.

6. Pseudo-operations. A pseudo-instruction (operation) is an instruction used by the
General Assembly Program when assembling the source program. The pseudo-op­
eration has the same form as a computer instruction and is listed in the source pro­
gram the same as a normal computer instruction. However, the pseudo-operations
are never executed by the computer. Pseudo-operations are used to control the as­
sembly process, generate constants and to annotate the object program listing.

7. Macro-Instructions. Macro-instructions are not actual machine instructions. The
General Assembly Program will recognize the mnemonics for the macro-instructions
and generate and insert in the object program the necessary series of instructions
to do the specified operation.

8. Symbolic notation. The designation (NAME) given to a location in memory instead
of the actual memory location.

[IDfi\1rfi\~~1r ~~®----------------

-47-

A computer instruction must specify the location of data as well as the operation to be performed.
In symbolic programming, the actual location of a word in memory is always referred to by a
name or symbol. The symbol is usually chosen to have a meaning in relation to the purpose
or use of the memory location. For example, if a number 4 is used as a constant, this could
be referred to CONST4. When it is necessary to use this constant, the instruction

LDA CONST4

would load the A-register with the contents of the memory location with the symbol, CONST4.
The programmer does not need to know the actual memory location of this constant.

Thus, in the actual writing of a program, the use of symbols to designate memory locations and
mnemonics to designate the operation, allows the programmer to list the desired operations
in a language easily understood by the individual person.

[Q)&1J&~~1JCJ ~@------------

-48-

APPENDIX B
COMPATIBILITY WITH OLD FORMA T

The old format is defined in the DA TANET-30 Programming Manual, pages V -63 to V -65. The
old format was used when programs were assembled on the GE-225 computer.

The DA TANET-30 assembly program is designed to use the new format and will assume that
the new format is being used. However, the old format may be used by preceding the old for­
mat deck with a card in the new format containing the pseudo-operation OLD. One can switch
back to the new format by use of the pseudo-operation NEW, which would itself still be in the
old format. One may switch back and forth between formats as often as desired, but he must
always advise the assembler of the switch.

All pseudo-operations from the old assembler will also work in the new assembler, except
as follows:

1. *:f* will print before it ejects rather than after.

2. Double decimal numbers which extend onto a second card will not assemble properly
in the new assembler. Double decimal numbers exceeding 8 digits must be entered
in the new format.

3. The assembler program will not do scaling of decimal or double numbers.

4. The Z-option has been replaced by the MIC instruction

Many pseudo-operations have been added to the new assembler. Although some of these will
work in the old format, it should be assumed in general that they will not.

[ID/A\1r/A\~~1r c:J ~@------------

-49-

APPENDIX C
DIREC TIONS FOR CONS TRU C TING I/O PA C'S

A. INTRODUCTION

When one designs records without knowing the nature of the storage medium, he cannot hope
to achieve full utilization of the storage capacity of the device to be used. For example, a
binary card will hold forty DA TANET-30 words. A 200-Series DSU record will hold 64 words.
If the same data may be written onto either storage medium, at least one of the two media will
be used inefficiently. Furthermore, placing the input/output functions onto a program which
is not an integral part of the assembler will usually mean moving records more often than would
otherwise be necessary, so the assembler is slightly slower than would be a more conventional
assembler. Further limiting the speed of the assembler is the fact that there is not adequate
memory for extensive blocking or buffering of records.

But the slight decreases in efficiency of speed and storage are a small price to pay for the flexi­
bility and power available through the I/O PAC concept. Not only does the technique permit a
wide variety of peripheral configurations, but it permits adapting to the operating systems of
the various computers with which the DA TANE T-30 may be associated.

It was necessary to divide the work of record handling. Part of the work is aSSigned to the
assembler and part of it to the I/O PAC. All work independent of the input/output device is
given to the assembler. This includes formatting, packing, and unpacking. The I/O PAC should
never have to modify or analyze a record except in those cases where code-conversions (such
as from Teletype) are required or when space-suppression of other condensing are worth the
effort.

The I/O PAC must perform all functions dependent on the peripheral device. These include
not only the reading and writing of records, but all error checks and associated recovery pro­
cedures, end-of-tape and end-of-file checks, labeling, fencing, blocking and deblocking.

Persons who contemplate writing their own I/O PAC's are advised not to worry greatly about
getting peak efficiency out of their peripherals, because the typical DATANET-30 user will
find that he will not need to make many assemblies. This is because the DA TANET-30 is most
often used in situations where the same program (or a program set) runs day in and day out.
Most customers will need several assemblies to get their original system debugged, and an
occasional assembly over the years to make revisions. Thus, it is not worth a great programming
effort to save five minutes per assembly. On the other hand, if one is using an extremely slow
peripheral, such as Teletype, assembly time could run into hours. In that case, it would defini­
tely pay to work with condensed records, where the I/O PAC blank-fills input records and
blank suppresses output records.

@£~£~~~~~®-------------------------
-51-

B. FILE CONVENTIONS, GENERAL

1. Input Files.

The I/O PAC must return to the assembler with a code in the A-register to indicate the status
of the "record" just read. The codes are:

Zero; normal record, no unrecoverable errors

Negative; End-of-file. (This should not be confused with end-of-reel on multireel tape
file. If multireel files are permitted, the I/O PAC must determine for itself whether
more reels are needed.) The EOF return does not deliver a record, but is given only
if the assembler calls for a record after the last record has been delivered.

Positive, Nonzero; unrecoverable error. The assembler will continue, but if possible
will flag the corresponding output record. BEFORE RETURNING to the assembler,
the I/O PAC should, when practical, make appropriate attempts to reread the record.
The I/O PAC, after determining that it cannot recover from the error, should place
the file number (see below) in the C-register and add one to $ERRORS (see memory map
at the end of this appendix). At the end of the run, the assembler will list the number
of errors on each file. The I/O PAC may also inform the operator of errors, if the
I/O PAC author so desires. If a standard Teletype configuration is available, the I/O
PAC might log a message. Otherwise, it might load a register with an error code
(and file code), turn on the buzzer, and wait for the operator to acknowledge the error
(see PAUSE subroutine below).

2. Output Files.

The I/O PAC must return to the assembler with a code in the A-register to indicate the status
of the record just written:

Zero; normal record, no unrecoverable errors

Nonzero; unrecoverable error. If possible, the assembler will flag the next output record
to warn of the error. Before returning to the assembler, the I/O PAC should place
the file number in the C-register and add one to $ERRORS. As was the case with
input files, the I/O PAC may inform the operator of the error and let him take appropriate
action. Whether or not assembly should continue after an output error is up to the
I/O PAC author, and his decision may depend on the file. For example, an error in
the object listing can probably be ignored. An error in the object program is more
serious, and may call for rerun.

3. Nonexistent Files.

As stated earlier, some I/O PAC's will not provide for all allowable files because the required
peripherals are not available. However, the assembler will not know that the file does not exist,
so if a programmer uses a pseudo-operation which calls for a nonexistent file, the assembler
will request a read (or write) of the I/O PAC. Therefore, the I/O PAC must provide linkage
for every file. It is suggested that the I/O PAC place the file number in the C-register, add
one to $ERRORS, and return to the assembler. If an input file, there should be an End-of-File
return. If an output file, there should be a normal return.

[ID&1J&~~1Jc:J ~®------------
-52-

4. Opening a File.

The assembler does not call for opening of files. When some opening procedures, such as re­
winding, waiting for rewind, or initialization of buffering is required, the I/O PAC should take
care of such things on the first call for the file, and should set a switch so that future calls
on the file will bypass the opening procedure. If magnetic tapes are being used, it would be
desirable to rewind all tapes on the first call for the Source file (even if the source file is
not on tape) to minimize waiting time for rewinding tapes.

Particular care should be exercised on the opening procedures for those files which may be
used several times, such as the Subroutine Library or the work file, if these are on magnetic
tape. These tapes probably should not be rewound by the opening procedure after the first
time they are opened, but should be rewound by the closing routines. The opening routines
should, however, wait for rewinding tapes each time they are called upon.

5. Closing a File.

The assembler does call for the closing of every file, both input and output. The assembler
may close an input file long before reaching end-of-file. For example, the assembler will
close the Subroutine-Library as soon as it has found all requested subroutines.

When the assembler calls for the closing of nonexistent files, the I/O PAC should branch back
immediately. There is no need to give any error indication. Even many existent files will not
require any action for closing if they are not on magnetic tape. Magnetic tape files will normally
require only rewinding if input files, or tape marking and rewinding if output files. If the files
can be opened again, it may also be appropriate to set flags to indicate the {(closed" status.

There is only one subroutine linkage for the closing of all files. The assembler enters the CLOSE
routine with the file number in the C-register.

6. File Numbering System.

Every file is given a number, as described in the table at the end of this appendix. The number
is used for several purposes. It serves as a key for the close routine, for logging errors in
$ERRORS, and for keeping track of disc storage unit addresses aSSigned to the various files
(see {(Using the DSU for Input/Output" below).

C. SUBROUTINES AVAILABLE TO I/O PAC'S

The assembler contains several· subroutines which are available to I/O PAC's. In general,
they do not save registers. The MOVE and FILL routines are much less efficient than would
be custom-programmed loops, but they do save space, which is important.

The subroutines are:

1. MOVE. Move a specified number of words from one area to another. Uses A-register
as an index. Uses B-register for moving.

BRS MOVE
INA address from which data are to be moved
INA address to which data are to be moved
DEC number of words to be moved

[ID£1Y£~~1YCJ ~®------------
-53-

2. FILL. Fills a specified number of consecutive words with a specified constant.

BRS FILL
INA address of area to be filled

(Constant with which to fill the area)
DEC number of words to be filled.

Example:

Fill 30 words at OUTPUT with zeros
BRS FILL
INA OUTPUT
ALF 000 (Constant for area)
DEC 30

3. PAUSE. Waits for Sign Switch (Console Switch 18) to be turned ON and then OFF.
Turns off buzzer. (Does not turn on buzzer.)

4. DSUCYL. Calculate next disc address, cylindrically. (See "u sing DSU as PeripheraL")
Calculates the next available DSU address, in a cylindrical fashion, available for this
file. File number must be indicated by C-register. The routine will exhaust one
actuator pOSition (96 records) and will then advance to next actuator position on the
same disc. When the actuator reaches the edge of a cylinder, the DSU address advances
to the next disc and moves to the inside edge of the cylinder (the first actuator pOSition
prescribed by the DSA card). When actuator reaches last disc allowed by "final address,"
will return to disc in "beginning address," next actuator pOSition. Returns with DSU
address in the A-register.

5. DSUDSK Calculate next DSU address for this file in the Disc Mode. Will continue to
advance along one disc until disc is exhausted. Will then go to disc with next-higher
address. Returns with DSU address in the A-register.

D. USING THE DSU AS AN INPUT/OUTPUT DEVICE

Most DATANET-30's installed for message switching will have disc storage units. In many
cases, the DSU will be the only high-speed peripheral available. Almost always there will
be at least some open areas on the DSU which can be used as scratch areas, viz., the areas
used during the day for queueing. Purely temporary disc areas may be used for the work file.
Even semipermanent files, such as the object program and symbol-table dumps, may be placed
onto the disc. In fact, in most installations, the user wants the object program on the DSU.

In some cases, the person who writes the I/O PAC will know what areas of the DSU will be
available for the various files, or at least for some of the files. For example, if a given disc
is always used for temporary storage, that area might also always be used for the work file,
or for the source file if the source file is to be placed onto the DSU by an external computer.
When fixed DSU areas are to be used by the assembler, the author of the I/O PAC can build that
knowledge into the program. He may, if he desires, calculate his own DSU addresses.

[ID&\lr&\~~lrc:J ~@------------

-54-

In other cases, however, the DSU addresses to be used may vary from one assembly to the next.
This is especially true of the object program and symbol-table dumps. To make this possible,
the assembler includes a pseudo-operation, DSA, by which the programmer may specify a range
of DSU addresses to be used for a given file. (For detailed instructions on filling out the DSA
card, see Pseudo-Operations section of this manual.) The assembler will store the starting
address in one table, and the ending address in another table. Each time the I/O PAC calls
on one of the address-calculation subroutines described above (DSUCYL or DSUDSK) the sub­
routine will increment the starting address table to the next available disc address, and will
check to see if the address is greater than the associated "ending address." If not, the sub­
routine will give an address to the I/O PAC. If the calculated address exceeds the ending address,
the assembler will halt with the buzzer turned on. This is to protect other data on the DSU.

The DSA card has no prOVISIOns for assigning plug (channel) number or file-box number. It is
assumed that the author of the I/O PAC knows the plug and box numbers. If he doesn't, he should
select some file number which does not use the DSU, and use that to enter, on a DSA card, octal
numbers which contain the necessary information.

The disc storage addresses must be specified before the file is called upon. The work file,
and the old master if one is used, must be specified on the very first card. Since the control
card must also be the first card, it was designed to dovetail with a DSA card so that they could
both be the first card in the SOU RCE deck.

Of course, if the source program is tobe on the DSU, the I/O PAC must know the starting address
of the source file even before the first card is read. The author of that I/O PAC has a problem.
He may be able to assume a starting address (if source programs are always stored in the same
place) or he may have to request the first address to be entered through the console switches.

If an I/O PAC is to use the address calculation routines in the assembler, even when using fixed
addresses, it must make sure that the associated address ranges are stored in the proper
tables discussed above.

Several files (for instance, work file, symbol-table dump) were deliberately designed as 32
words each so that they would block two per DSU record. The I/O PAC must take care of the
blocking and deblocking. This is quite simple, since one can just add one to a flag and branch
on ODD/EVEN. The blocking, of course, does require moving the records from or to an I/O
area.

No proviSion was made for chaining. If chaining is necessary, the I/O PAC author should study
the detailed instructions for each file to determine where he may place chaining addresses.

E. ASSEMBLING WITH TELETYPE

Assembling with Teletype is, to say the least, undesirable. The effective speed ratios between
Teletype and DSU or magnetic tapes will be two or three orders of magnitude (i.e., 1/100 or
1/1000). Nevertheless, Teletype may occasionally be the only medium available, at least for
the source program and for the object listing. (U sually, a DSU will be available for work file
and object program.) When using Teletype, the objective is to reduce not only the number of
records, but the number of characters to be processed. For this reason, the assembler contains
a number of features, such as the Repeat field and the multiple-operand, to reduce the number

-55-

of characters required to define a problem. But the author of an I/O PAC could do consider­
ably more to reduce character volume. For example, he might set-up the source file as a free­
format with field separators. Thus, the source file need not contain any redundant blanks. Se­
quence fields could be deleted. User programmers could be encouraged touse short symbols
and concise remarks. The functions of the I/O PAC, then, would be not only to read/write
records and convert them back and forth between Teletype code and BCD code (used by the
assembler) but to "spread" an input record so that it looks like a card image, or to condense an
output record to eliminate superfluous blanks.

If Teletype is being used also for the object listing, it might be desirable to print only the
symbol tables, rather than an object listing. Or one might elect to print only selected records
in the object listing. The idea of eliminating the object listing is not too farfetched, because
one could have obtained a "free" copy of the source program either while it was being punched
or while it was being transmitted.

If it is necessary to use Teletype for the work file and even the object program, the problem
is more complicated because these are binary files, and one must store all eighteen bits of
every word, and all bit combinations are legal. This may require going to some pseudo-code.

The interrupt linkage (memory cells 0 and 1) and the first 64 scan words were deliberately left
open to permit assembling by Teletype. It is assumed that Teletype would be reading or writing
concurrently with the assembly process. A limited amount of buffering should be provided in
the r/o PAC so that the interrupt routine will have a place to assemble incoming data while the
previous record is being processed. It should not be necessary to stop the Teletype and repoll
it between records because the assembler should be able to keep up with 100 wpm Teletype.
One case where the assembler would have trouble keeping up would be if a programmer used
the multiple-operand option with many short symbolic operands (one or two characters each)
whose symbols were toward the end of a long symbol table. This would mean that the assembler
would have to search a long table in two or three character times, in addition to all its other
processing.

File Descriptions

o. SOURCE FILE. This is a card image in one of the allowable formats. It really contains
81 columns. The 81st column should be blank.

Occasionally a programmer forgets to follow his source program with an END card. In
such cases, if the r/o PAC can detect an end-of-file condition, it should so indicate to the
assembler, and the assembler will terminate the first pass and continue with subsequent
passes. If the I/O PAC cannot detect an end-of-file condition, the program will just "hang"
in a not-ready condition.

The source file is a fairly high-volume file, so if buffering and/or blocking are feasible with
the peripheral device, and if adequate memory is available, one may consider buffering or
blocking. However, the source file is not the largest file. Furthermore, if an old master
tape is used for updating source programs, the source file will consist only of changes on
all but the first assembly. Therefore, unless there is memory to burn, one probably should
not waste it on speeding up the source file.

[ID£lr£~[glrc:J ~®------------
-56-

1. WORK FILE. With the exception of a possible Subroutine-Library and the object listing,
the work file is the largest file in the system. It contains the images of the source file,
plus many control words generated by the first pass of the assembler. The work file will
contain at least one record for every record in the source file, but it may also contain one
or more overflow records. For example, any source card which generates several instructions
or data words (such as messages or tables) will generate an overflow record.

The work file is an output of the first phase. It serves as input to the last phase and to the
optional phase if it is used (see control card). It also serves as the old master file for later
updates. Because it is high volume, and because it may be passed several times, the work
file should be put onto one of the highest-speed peripherals available for the job, such as
DSU or magnetic tape. The work-file record was deliberately designed at 32 words so that
it would block two per DSU record. Because two records completely fill a GE-200 Series
DSU record, there is no space for a chaining address. However, if chaining is necessary
for some reason, the author of the I/O PAC can cheat a bit on the use of th~ last word
of each record because, as described below, only three bits of the last word are absolutely
necessary.

Work-file records are of two types: the main record, which contains the source-card
image in the first 27 words and binary control information in the last five words; and over­
flow records, which consist entirely of binary control information. The last word of every
record contains the following information:

Bit 18 on identifies a main record; bit 18 off is an overflow record.

Bit 17 on says this is the last record generated by the source card; bit 17 off says one
or more overflow records follow this one.

Bit 16 on says the source card is in old format.

Bits 15-1 contain a binary sequence number which is assigned to each record by the
assembler. The assembler checks the sequence number later when it reads the work file
back. The sequence number is strictly for protection against lost records. If for
some reason the I/O PAC needs to attach its own information (such as chaining address)
to each record, the I/O PAC may use these bit positions, but when the file is read back,
the I/O PAC should dummy in the sequence numbers to avoid extaneous error indications
on the listing.

2. OLD MASTER FILE. This is simply the work file from a previous assembly. It is one of the
inputs to an update run. It will necessarily have the same blocking factor as the work file.
If one considers buffering the old master, he should remember that the old master will be in
memory at the same time as the source file and the work file, as well as the Subroutine­
Library and the symbol table load if they are used.

The old master will contain both main and overflow records. It is not necessary for the I/O
PAC to filter out the overflow records because the assembler will do this, but the I/O PAC
may do this if it will have any particular speed advantage. In any case, the I/O PAC must
deliver all 32 words of a record because the assembler will interrogate the sign bit of the
last word in the record.

[ID&1Y&~~1YCJ ~@------------

-57-

3. SUBROUTINE LIBRARY

This file may be recorded in any mode, and may be blocked and/or buffered according to
the amount of memory available. The source file, work file, and old master (if used)
will be in memory at the same time as the Subroutine· Library. The Subroutine Library is
a high-volume file and may be a high-frequency file, so speed is worth considering.

Records may be card images, or they may be "truncated" records to reduce file space.
If they are truncated, the I/O PAC must blank fill the unused part of a card image before
delivering the record to the assembler.

Each subroutine on the file must be preceded by an identification card. The ID card con­
tains the literal "+-+" in columns 1-3 and the subroutine ID in columns 7-12. Columns
4-6 must contain blanks if the subroutine is in new card format. They must contain the
literal "OLD" if the subroutine is in the old format (see Appendix B). The last subroutine
must be followed by a card containing "+-+END" in columns 1-6. The I/O PAC need not
watch for ID cards; the assembler will handle all of the housekeeping.

The Subroutine· Library may be closed several times during an assembly. The library
will usually be on mag tape. The I/O PAC should rewind the tape and set a flag when re­
quested to close the library file. On later calls for subroutines, the I/O PAC should wait
for rewinding tape if the closed flag is on.

4. SYMBOL TABLE DUMP

This is a low-volume file. There is little to be gained from either blocking or buffering
the file.

The first two words of each record contain the Identification lifted from the DMP card.
The third word is a binary sequence number attached by the assembler. The fourth word
contains a word-count for this card. The remainder of the record consists of up to seven
sets of four words each. Each set contains a symbol, its associated address, and its control
bits.

5. LOAD SYMBOL TABLE

This reads the file which was written by symbol table dump. Again, there is little value in
buffering or blocking.

6. OBJECT LISTING

This is one of the larger files in the system, so buffering will be desirable and, if mag
tapes are used, blocking may be worthwhile for time-savings on the DATANET-30. (The
media conversion routine will be printer-bound, so blocking won't do much for the tape-to­
printer computer.)

The object listing is also the most complicated file because it contains slewing-control
and variable-length records. The assembler will branch to the I/O PAC with two parameters
in the registers. The B-register will contain the number of DATANET-30 records in the
printer line. (39 maximum.) The I/O PAC should use this number to set whatever end­
of-line indicator is needed by the machine that will do the printing.

[ID£1J£~~lrc:J ~®------------
-58-

The C-register will contain the slewing control. There are only three combinations.

Print, single-spaced.
Print, double-spaced.

Zero.
One.
Two. Slew to top of page, and then print, double-spaced.

7. OBJECT PROORAM

This is a low-volume file and need not be either buffered or blocked. In fact, blocking
would be undesirable in most cases because one wants the loader to use a minimum of
memory for input buffers.

The record size will depend upon which output (card format or DSU format) was chosen by
the programmer. The assembler will branch to the I/O PAC with the record-size in the
B-register.

8. LOAD ASSEMBLER

This is a program-loader, to be included as part of the I/O PAC. The input area used by
the loader must be in the areas assigned to the I/O PAC. (Most loaders use upper memory,
but this is used by the assembler for the symbol table, which must be left intact between
passes.) The loader may use any of the buffers used for other files. The loader must
not clear memory.

9. READ WORK FILE

This routine reads back the work file which was written earlier (File 41=1). The assembler
will read this file either once or twice, depending on whether or not the programmer elected
to flag instructions which had to be forced to even locations.

The blocking factor for this file must be the same as for File 41=1.

It is not necessary to provide disc storage addresses for this file by DSA cards. The
assembler will automatically use the addresses assigned to File #1.

If the magnetic tape is used for this file, it is recommended the close routine for File
#1 mark and rewind the tape and that the close routine for File #9 rewind the tape and set
a "closed" flag. Then, on the first call on File #9, the I/O PAC should wait for rewinding
tape.. This will eliminate the possibility of addressing the rewinding tape, even if the file
is called upon more than once ..

CONSOLE SWITCHES

Console Switches 16-10 are for use in installations which do not have sufficient peripheral devices
to permit an "automatic start-to-finish" assembly .. The switches may be used to give the operator
a chance to change tape handlers, etc.

@&~&~~~~~@-------------------------
-59-

CS 16. Pause before executing source phase or before loading next phase of the assembly
program. As soon as the assembler is loaded into memory, it will interrogate switch
16, and if CS 16 is on, the assembler will wait for it to be turned off before proceeding.
When the first phase is finished, the assembler will once again interrogate CS 16 before
calling for the loading of the next phase.

CS 15. Pause before executing optional phase. If the optional phase was not requested by the
control card, the assembler will ignore CS 15.

CS 14. Pause before executing object phase, or before loading report phase.

CS 13. Repeat the object phase before loading the report phase, or repeat the report phase.

CS 12. Pause before reading or writing next record. This enables the operator to stop the
assembler without losing data when the assembler is working in a read-time environment.

CS 11. Suppress printing during the object phase.

CS 10. Suppress ttpunching" of object program during object phase.

Example Of Use Of Switches 16-10.

Assume that the only peripherals, besides the standard-equipment paper tape reader, available
for assembly are two tape handlers (one dual). This will not permit "automatic start-to-stop"
operation. The operator will have to change tapes between phases.

Media conversions will be handled by an off-line computer. Subroutine-call, automatic update,
symbol-table dump, and symbol table load will not be used because there are not enough pe­
ripherals available.IBelow are the procedures to use in running the assembly.

Mount a scratch tape on Handler B. This will be the work file. It may remain in place until the
last phase of the assembly.

Mount the tape containing the assembly program on Handler A. Put CS 16 down. Mount the
paper tape loop which will read the assembler from mag tape. Push Manual Load. The source
phase of the assembler will be loaded into memory.

Because CS 16 is on, the assembler will not execute, but will wait for CS 16 to be turned off"
Remove the program tape from Handler A and replace it with the source program. Turn CS 16
off for just an instant; then turn it back on again. The momentary off position will permit the
source phase to execute.

[ID&1Y&~~1YCJ ~@------------
-60-

When the source phase is finished, it will interrogate CS 16 again before loading the next phase.
Because CS 16 is On, the program will pause. This gives the operator the chance to remove the
source tape and to replace it with the program tape (which contains the assembler). When
this is done, first turn CS 14 On and then turn CS 16 Off. This permits the assembler to load
the optional and object phases (which are in memory together) into memory.

Assume that the optional phase is not being used (see control card). The assembler will pro­
ceed immediately to the Object phase, but because CS 14 is On, the assembler will not execute.

Replace the program tape on Handler A with a scratch tape. This tape will receive the object
program. The work file is still needed during the object phase, so no peripheral is available
to receive the object listing. Turn CS 11 and CS 13 on. Turn CS 14 Off for just an instant
and then turn it back on again. This will permit the object phase to execute. Because CS 11
is on, the assembler will not call for the writing of the object listing.

At the end of the object phase, the assembler will interrogate CS 13. Because a "Repeat Run"
was requested, the assembler will go back to the beginning of the object phase. But because CS 14
is on again, the assembler will not execute.

Replace the object program tape on Handler A with another scratch tape, which will receive
the object listing. Turn CS 11 and CS 13 Off, and turn CS 10 on. Now turn CS 14 off for just
an instant. This permits the object phase to execute once again. But because CS 10 is on,
the assembler will not attempt to write the object program.

When the object phase is finished this time, the assembler will not re-execute the object phase
because CS 10 is off. However, the assembler will pause before loading the report phase be­
cause CS 14 is on.

The reports are part of the object listing. Therefore, the tape on Handler A must not be
disturbed. Remove the work file (no longer needed) from Handler B and mount the program
tape. (Adjust handler addresses as necessary.) Turn CS 14 off. The reports phase will now
load and the program will continue to end-of-job.

[ID&IY&~~IY~ ~@------------
-61-

ASC II

DATA INTERCHANGE CODE

Non-Typing--Control
Character Octal Character Octal Function Octal

@ 600 Sp 500 NULL 400
A 602 , 502· SaM 402
B 604 " 504 EOA 404
C 606 "# 506 EOM 406
D 610 1. 510 EaT 410
E 612 % 512 WRU 412
F 614 ~ 514 RU 414
G 616 , 516 BELL 416
H 620 .L 520 FEO 420
I 622 1 522 H.TAB 422
J 624 * 524 Line Feed 424 -K 626 .±. 526 U.TAB 426
L 630 .z.. 530 FORM 430
M 632 - 532 RETURN 432
N 634 - 534 SO 434
a 636 t 536 SI 436
P 640 0 540 DCa 440
Q 642 1 542 X-ON 442
R -644 2 544 Tape Aux. On 444
S 646 3 546 X-OFF 446
T 650 4 550 Aux. Off, 450
U 652 5 552 ERROR 452
V 654 6 554 SYNC 454
W 656 7 556 LEM 456
X 660 8 560 So 460
Y 662 9 562 S1 462
Z 664 564 S2 464
[666 ; 566 S3 466

'" 670 ~ 570 S4 470
j 672 - 572 S5 472
t 674 > 574 S6 474 .. 676 .:L 576 S7 476 -

Ack. 770
Alt. Mode 772
Rub Out 776

Characters as they appear left-justified in DATANET-30.
_ Characters underlined are obtained in conjunction with shift key.

[ID£Ll£~~Llc:J ~®------------
- 62 -

GENERAL ELECTRIC STANDARD CHARACTER SET

Standard GE-Interna1 Hollerith Standard GE-Interna1 Hollerith
Character Machine Octal Card Character Machine Octal Card

Set Code Code Code Set Code Code Code

0 00 0000 00 0 4 10 0000 40 11-0
1 00 0001 01 1 J 10 0001 41 11-1
2 00 0010 02 2 K 10 0010 42 11-2
3 00 0011 03 3 L 10 0011 43 11-3
4 00 0100 04 4 M 10 0100 44 11-4
5 00 0101 05 5 N 10 0101 45 11-5
6 00 0110 06 6 0 10 0110 46 11-6
7 00 0111 07 7 P 10 0111 47 11-7
8 00 1000 10 8 Q 10 1000 50 11-8
9 00 1001 11 9 R 10 1001 51 11-9
[00 1010 12 2-8 - 10 1010 52 11
iF 00 1011 13 3-8 $ 10 1011 53 11-3-8
@ 00 1100 14 4-8 * 10 1100 54 11-4-8
: 00 1101 15 5-8) 10 1101 55 11-5-8
> 00 1110 16 6-8 ; 10 1110 56 11-6-8
? 00 1111 17 7-8 I 10 1111 57 11-7-8
is 01 0000 20 (blank) + 11 0000 60 12-0
A 01 0001 21 12-1 / 11 0001 61 0-1
B 01 0010 22 12-2 S 11 0010 62 0-2
C 01 0011 23 12-3 T 11 0011 63 0-3
D 01 0100 24 12-4 U 11 0100 64 0-4
E 01 0101 25 12-5 V 11 0101 65 0-5
F 01 0110 26 12-6 W 11 0110 66 0-6
G 01 0111 27 12-7 X 11 0111 67 0-7
H 01 1000 30 12-8 y 11 1000 70 0-8
I 01 1001 31 12-9 Z 11 1001 71 0-9
& 01 1010 32 12 ~ 11 1010 72 0-2-8

01 1011 33 12-3-8 , 11 1011 73 0-3-8
] 01 1100 34 12-4-8 % 11 1100 74 0-4-8
(01 1101 35 12-5-8 = 11 1101 75 0-5-8
< 01 1110 36 12-6-8 " 11 1110 76 0-6-8

\ 01 1111 37 12-7-8 ! 11 1111 77 0-7-8

[IDfl\lrfl\~~lr~ ~@------------
- 63 -

APPENDIX D

PROGRAM OVERLAYS

To be available at a later date.

[ID&lJ&~~lJc:J ~@------------

- 64 -

