THE COMPATIBLES /400

GE-425/435

Macro Assembly Program
Reference IVIanuaI

ADVANCE INFORMATION

GENERAL §B ELECTRIC

GE-425/435

MACRO ASSEMBLY PROGRAM
REFERENCE MANUAL

ADVANCE INFORMATION

DECEMBER 1963

The Material contained herein is advance information relating to pro-
gramming and computer applications and is supplied to interested
persons without representation or warranty as to its content, accuracy,
or freedom from defects or errors. The General Electric Company
therefore assumes no responsibility, and shall not be liable for damages
arising from the supply or use of this material.

GENERAL ELECTRIC

COMPUTER DEPARTMENT
PHOENIX, ARIZONA

FOREWORD

This manual is a reprint of the Advance Information draft pub-
lished in December 1963. To make the manual less bulky and
easier to use we have reduced the draft photographically and
placed two pages side-by-side on a sheet. Each reduced page
is carefully numbered to make it easy for you to read the pages

in the right sequence.

The following manuals,used in conjunction with the GE-425/435
Macro Assembly Program Reference Manual,are identified by

their respective CPB numbers:

GE-425/435 Basic Input/Output System
Reference Manual

GE-425/435 Extended Input/Output System
Reference Manual

GE-425/435 Loader Reference Manual
GE-425/435 Program Monitor Reference Manual
GE-425/435 Sort Generator Reference Manual
GE-425/435 Merge Generator Reference Manual

GE-425/435 Report Program Generator
Reference Manual

Copyright @ 1963

by

GENERAL ELECTRIC COMPANY

CPB-352

CPB-353
CPB- 354
CPB-355
CPB-356

CPB-357

CPB-358

The Macro Assembly Program has been designed to provide a convenient,
flexible programming environment. The program is capable of translating
two levels of language into the instruction formats of the GE-425 and
GE-435 computers.

The macro assembly language provided is a logical and powerful extension
to the essentially machine oriented, basic assembly language, which is
also available in the Macro Assembly Program. This extension takes the
form of macro-instructions that can be used to perform operations upon
data described in a field-oriented manner.

Macro-instructions have been provided to accomplish the following func-
tions:

e Input/output operations
e Arithmetic operations
e Data movement

e Procedure control

The input/output. macro-instructions communicate with the basic input/output
system and the extended input/output system. This in turn provides for
standardization and ease of programming for all peripheral equipment avail-
able for the GE-425/435. For complete documentation of these two software
packages see the Basic Input/Output System and the Extended Input/Output
System Manuals.

SCOPE OF THIS MANUAL

This manual is intended as a reference for the Macro Assembly Program.
The manual consists of four sections, each of which is described briefly
below:

Basic Assembly Language -- The reader is first introduced to the
basic, "one-to-one' language of the assembler. The format for
this symbolic language is discussed. The GE-425/435 computer
instruction repertoire is listed, followed by a description of the
complementary instruction words which must accompany certain
of the instructions. Pseudo-operations, which instruct and control
the assembly process are described individually.

-iii- 12/6/63

Macro Assembly Language -- The second section of this manual
describes the macro assembly language, with which one instruction

ognonorata caonvaoaral carmmnit Anaratinnag A Annanal Algriiocine

ulay pTilitliale oTtvoial buuxyul.c.t UFCL alliullo. o gcucl. al l.quUDDlUll

of the source language is presented first, followed by four chap-
ters which describe the four divisions of the macro assembly
language. These divisions are:

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

DATA DIVISION

PROCEDURE DIVISION

The third section of this manual describes the assembly program
functions of the Macro Assembly Program.

The program operating instructions are contained in the fourth
section of the manual.

Each of the first two sections is preceded by a detailed Table of
Contents.

Before proceeding into the detailed use of the languages, an introduction to
the computer configuration, coding form, and program operation is in order.

MINIMUM SYSTEM CONFIGURATION

The Macro Assembly Program requires the following minimum configuration:
e GE-425/435 Central Processor with an 8K memory

® Magnetic tape control unit

] Four tape handlers

e Printer

e Card reader

e Card punch.

Material so marked is not available at the present time.

-iv- 12/6/63

Additional memory modules are used to advantage by the program, and
additional magnetic tapes may be substituted for slower peripherals.

PROGRAMMING FORM

The programming form used for the Macro Assembly Program (see
Figure 1) provides for the use of one of the languages, or for a mix of
the basic and macro assembly languages. All source language is
written onto this one form, representing the columns of the 80-column
card into which each line entry is to be punched. Because of the dual
headings on the form, it may be used for different divisions of the
macro assembly language.

An overall view of the use of each of the columns is given in Table 1,
and a reference is listed to a further explanation of the information
contained therein. The first group of field entries represent the top
level of the dual headings, and includesentries used by both the
Procedure Division and the basic assembly language, as well as the
one-level headings shared with the Data Division. The entries which
are listed below the duuble lines are those pertaining to the lower
level of headings used only by the Data Division.

-v- 12/6/63

£9/9/21

GENERAL @ ELECTRIC GE-425/435 PROGRAMMING FORM

[ProGrAM FROGRAMME R DATE - e aGE o+ 7
T REFERENCE SYMBOL OPERATION OFERATION PARAMETERS - a
M
SEQUENCE € 5 toenT
DATA NAME LEVE PICTURE 0CCURS vaLuE
v o]r [e] 1ef17ivs 10] 20 22 24 28 o v 4] as o
I J O A Coalioa boa o on e
PRGN G B S PR S) . IO
I S + P T S
- PR O S Y [
n P o
-~ B ' LA a2 DU
. % |] T T s
B O S | ! [T VR I
" P P L % - P T P
" 1 I i SURN B 1 % —_—t 4 B . i n LS PR _— + '
P P J o B S P T [
IR SRR SO L .‘r 4 G L
AU VIR G S AN SR S R e Lo .
SR S S I DT S S S Y - + PR e S P
1 L . -
Lo 4 T [RS Co
FUDNSRUER ! P T R
f
P T .
' A) o
T R
P e Lo
P T O R
TR S . .
PO S T A .
PR T T S S R SR
L PR S -
P
P SR S f -
P [T . Lo
Looea [S S G S TS O S R [,
1 hedo1 A T S S VU U SR G) - PR o F O .
0 T G S S T U G SR S S FURTV SR, . P O O S -
s ,‘ B S U S Uy VA Sy S S S S S ES SH P S P f P S Y Lo
» 4 - JE PO ST U G U PSS SR SR [a— B 7 T T O IS
) | Lt 4 S N S T SO ST S S SOV E U UGN S DS SRy GRS S S S S P R L Co
FRRRSE e e PR O Co
e 0 I A . A I
[[S [S U S U S W W " Co A [
Looa o xﬁ % N AR A AT R GNP S SR S S P
L O U PR S ' [P S [B
IO S — S L P S U S R
- PSS SO GD TOURS WS SO S S S N U NS P S B P TR
PR S T W [P ST S G WU SO S VPR I (PR S TUNT U WY D S S SRR S P U S Y S S S N
R 414 s oAb L PP R S S S PR 't P S M. PR W U TN TS B U DU IT S S Gy B [S ST S O
SR S — F U VORIV IS Gt « 1 PR S St PSR U Y PR N FUS GO A S N T S g S S 1 O -

Figure 1. Macro Assembly Programming Form

Table 1.

Programming Field Entries

Procedure
>

The parameter needed to complete
i
i

Macro Division Reference
lleading Col. No. or Basic Coding Entry Chapter
Sequence No. 1-6 Data 1 Sequence numbers checked using 2-7,21
Procedure GE-425/435 collating sequence 2-58
Basic J 1-3
Type 7 Data * C,R 2-7,32
Procedure * C 2-9,58
Basic * 1-3
Reference Procedure An eight character(or less) 2-9,59
Symbol 9-16 Basic program reference symbol. 1-3,8
Operation 17-24 Data File Parameters 2-41
Procedure A macro instruction, program
mnemonic instruction, or operation.| 2-9,60
Basic Mnemonic code. 1-3,41,71
i Operation Data File parameter options 2-41
Parameters 25-76 2-10.,60

Basic Y the vperativn functiovi. 1-4,13
Iden 77-80 Data SN Any four character identification | 2-9

Procedure 2-10,61

Basic 1-4
Data Name 9-16 Data Symbolic Data Name 2-22
Level 18-19 Data FD,01,02,03,04 2-23
Sync 21 Data L,R 2-30

r—.—-

Use 23 Data u,I,S 2-35
Picture 25-40 Data 9,X,A 2=24
Occurs 41-44 Data 1, 2, 3, 2-38
Value 45-76 Data Any Working Storage Value 2-29
Note: The entries for the Identification and Environment Division are discussed

in Chapters IV and V.

~-vii-

12/6/63

PROGRAM OPERATION

Source program 80-column punched cards are prepared from the
1

programming form and can be entered into the Macro Asse'nb

either from the card reader or from magnetic tape as card
records.

1 UK1 aim

B"‘
0
-+

The Macro Assembly Program is composed of three phases:

1. Translator phase
2. Selector phase
3. Assembler phase

The translator phase of the Macro Assembly Program analyzes the
source input deck and determines if the macro-assembly language has
been used. If the source program does not contain an Environment or
Data Division, the assembler phase is loaded into the computer by-
passing the phases not essential to the assembly.

A complete explanation of the phases and their functions is developed

in Sections One, Two, and Three. (Refer to flow diagram in Assembly
Program Organization, Section Three.)

-viii- 12/6/63

IIL.

IV.

CONTENTS

INTRODUCTION 1- 1
Scope of this Sectionof the Manual 1- 2
PROGRAMMING FORM FIELDS 1- 3
LANGUAGE FORMAT 1- 7
Machine Instruction Format 1- 7
Symbolic Instructions ittt it 1- 8
Assembler Phasettt itteneenens 1-10
Classification of Symbols 1-12
Operation Parameter Entries 1-13
RELOCATABLE SEGMENTS 1-31
Local and Global Synibols o v v v o v v v v v v v v v i v o h 1-31
Assembler Action in Global Symbolic References 1-34
Relocatable Errors0 i i i it it ittt e 1-35
COMPUTER OPERATION CODES 1-41
Listing of Computer Operation Codes 1-41
Complementary Instruction Words 1-55
Branch Counter -- BCTR v v v v v v v vt v v v 1-55
Move Counter -- MCTR v v v it v v e v 1-57
List Pointer Word -- LPW 1-58
Data Control Words -- DCWC-DCWW......... 1-60
Address Modification Sequence Words 1-61
Second Address Sequence Words 1-63
Indirect Address Words --IAW............. 1-64
Input/Output Mnemonic Operation Formats 1-66
Class 1 -- Input/Output Mnemonics 1-66
Class 2 -- Input/Output Mnemonics 1-68
1-i 12/6/63

VI. PSEUDO-OPERATIONS 1-71

System Oriented- Pseudo-Operations 1-73
Segment Name -- SGMT 1-73
Define Internal Global Symbols -- DIG 1-175
Define External Global Symbols -- DXG 1-77
Define Global Reference Remotely -- DGRR 1-79
Define Global Reference Ends --DGRE 1-82
Define Global Reference -- DGR 1-83
Equals Global Symbol -- EQUG 1-85
Call Segment at Load Time -- CALL 1-87
Include Library Segment -- INCL 1-89
Include Symbolic Segment -- INCS 1-90

Memory Allocation Pseudo-Operations 1-92
Block Started by Symbol -- BSS. 1-92
Block Started by Symbol in the Loader Area --

BSSL............ 1-94
Block Preceded by Symbol -- BPS ., 1-96
Block Preceded by Symbol in the Loader Area --

BPSL 1-98
Last Symbol in Block-- LSB 1-100
Last Symbol in Block in the Loader Area -- LSBL 1-102
Accumulator Reference Point -- ARP......... 1-104
Accumulator Reference Point in the Loader Area --

ARPL 1-106
Accumulator i it i, 1-108
Fill Word-- FILLt 1-111

Constant Producing Pseudo-Operations 1-113
Decimal Constants -- DECS-DECD-DECT-DECQ 1-114
Alphanumeric Constant -- AN. 1-115
Last Symbol Alphanumeric -- LSAN 1-118
Octal Constants -- OCTS-OCTD-OCTT-OCTQ. .. 1-120

Assembly Output Control Pseudo-Operations. 1-122
Title == TTL i ittt it e ettt et vnan 1-122
Eject Page -- EJT ittt it i o 1-123
Identify Binary Output -- IDEN 1-124
Full Binary Cards -- FULL 1-125
Symbolic Analyzer -- SYAL 1-126

1-ii 12/6/63

Miscellaneous Pseudo-Operations v v v v vt 1-127

Origin--ORG e e 1-1217
OriginOctal -=-ORGO v 1-129
Equals - EQU. it 1-130
Equals Octal -- EQUO.ot tv v e v 1-132
Prefix -- PRFX ittt ittt 1-133
Communication Between Regions. 1-134
Transfer Control Card-- TCD............ 1-136
End of Program--END 1-137
TABLES 1-139

A. Alphabetic Listing --
Computer Instruction Repertoire 1-139

B. Alphabetic Listing --
Pseudo-Operationso oo vveeennen 1-151
SUPPLEMENT TO CHAPTER IV 1-153

1-iii 12/6/63

1. INTRODUCTION

As the word "basic' suggests a basic assembly language is the nearest to the
machine language. The GE-425/435 basic assembly language consists of a
series of symbolic codes called mnemonic operation codes; one code exists
for each operation which the computer can execute.

Designed as a subset of the more powerful and versatile Macro Assembly
Program, the basic assembly language operates in two environments. When
using the Macro Assembly Program the basic language may be combined
with macro instructions as described in the Macro Assembly Language
section of this manual. In other applications a programmer may elect to
code entirely within the basic language. As explained in the General Intro-
duction to this manual, the Macro Assembly Program has one assembler
which assembles both the basic assembly language source instructions and
the translated macro assembly language instructions.

All large programs can be thought of as a combination of logically distinct
parts, or segments. The asse nbler permits the user to divide his coding
into segments and to assemble each segment separately. During checkout
only those segments with errors need to be reassembled.

Two modes of assembling are possible with this assembler: absolute or
relocatable. In many cases, a relocatable, segmented environment is
advantageous as it provides an opportunity for easy use of the more powerful
tools provided within the GE-425/435 software system. Use of the reloca-

table format simplifies the debugging stage of program development. Changes

to parts of a production program may be made easier in a relocatable
environment. In addition, when a program is written in a relocatable mode,
the programmer is able to call in subroutines {from the library at load time,
and he is assured that the latest version of the subroutine is being used.

The basic assembly language was designed to provide --

e a symbolic representation of the entire GE-425 ‘435 instruction repertoire.

e a set of pseudo-operations for the reservatirn of memory areas and
for the handling of decimal and octal constants.

e the optional capability of referencing a proge. thut exists in a
subroutine library.

1-1 12/6 63

e compatibility with the macro assembly language.
e a symbol analyzer at the termination of the assembly.

e a convenient coding form identical to that used for the macro assembly
language.

SCOPE OF THIS SECTION OF THE MANUAL

The purpose of this section of the Macro Assembly Program Manual is to
explain the basic assembly language and its related assembly process.
The format of the basic language and the rules geverning its entry into
the coding form are first explained. Following this. a general discussion
on the relocatable mode of programming is given to clarify this concept
belore the basic assembly language instructions are presented. The
GE-425/435 instruction repertoire. although listed in this section, is not
described in detail. A complete explanation of these instructions is found
in the GE-425 435 Relerence Munuil.

In reading through the discussion of the basic language iormat, the reader
will encounter several examples showing pseudo-operations which are not
defined until Chapter VI - Pseudo-Operations. He!orence to Table B
which lists the functions of all ot theso operations. rmay add the reader
until he has become familiar with tnesc operations o Chapter VI

1-2 12/6/63

II. PROGRAMMING FORM FIELDS

The GE-425/435 Programming Form is used for both the macro and the
basic assembly language. Figire II-1 illustrates this form. The entries
on the form are shown merely to indicate their placement in the basic
assembly language. An explanation of the various entries will be given in
Chapter III of this section. In the paragraphs below the headings used by
the basic assembly language entries are described.

Sequence (col. 1-6)

To insure proper sequence within the source input, the programmer may
place sequence numbers in columns 1-6 of his programming form.

Columns 1, 2, and 3 may be related to a coding form page number and
columns four and five to a line number within the page. Column 6 is then
available for insertions which may be necessary later. The sequence
numbers assigned by the programmer are checked according to the
GE-425/435 collating sequence. If a sequence error is detected during
assembly, it is flagged as an error on the listing and the assembly continues.

Type (col. 7)
An asterisk (*) in column 7 indicates that the entire source input contains
comments. These comments are listed on the assembly output; they have

no effect on the assembly process.

Reference Symbol (col. 9-16)

The Reference Symbol enables the programmer to assign symbols to
instructions, constants, etc. The Reference Symbol may be written any-
where within the eight-column field.

Operation (col. 17-24)

The Operation portion of the coding form is used for the entry of the mnemonic
codes representing the GE-425,435 machine operation or the pseudo-operation
which controls and instructs the assembler. These codes may be written
anywhere within the operation field.

On occasion, the programmer may wish to specify a value for the operation

field directly, and avoid the use of a mnemonic operation which may be
meaningless. For example he may wish to indicate the type of a parameter

1-3 12/6/63

:n & subroutine call. This is done by placing the desired octal value in the
'wo most significant columns of the Operation field.

Opervation Parameters (col. 25-76)

The parameters needed to complete the function indicated by the Operation
vre entered left-justified in the Operations Parameters portion of the

voding form. A parameter may be a symbolic address, an absolute address,
in espression, a literal, or a value, depending on the operation with which
it is associated. (Further discussion on each of these parameters is found
in the chapter on Language Format.) In addition comments may be placed
in the Operations Parameters following the firstblank column.

Idertilication (col. 77-80)

“he ldentification provides four columns for entering the identification of
the symbolic assembly input of the program. The four characters are
=ssivned by the user; they are not checked by the assembler, but are
printed on the assembly listing.

1-4 12/6/63

GENERALED ELECTRIC

GE-425/435 Programming Form

S-1

PROGAAM CRCGRAMMER DaTE PAGE ar
: MEFERENCE SYMBO L OPERATION OPERATION PARAMETERS
M
seEqueENCE I} oENT.
ve . ercTume occurs ALuE
1) 17 19 dq 22 24f 28 a0 | at aa) as 77 80
0.0, 1,00, L B S, P I U S S S S . - s s P N T.A.x.1]}
0,0, 1, 0,2, " P NP S PP N - L - R N
0.0,1,063, L | R L e - . - — N L N
0.0, 1.0y, L S , e L N - . P " PR s N N
0.0,1.6,5, A S “ N . . - " . U N s
8 .0.1.0.hb, S!T.5 . " PR N " o P P i T
Q.91 .91, I N - R L iow o T.0.T.7.AM, (Fo.R P N, - -
©.0.1.0,9 _R.P.A 815 .9, R e IR S L | N L
0.0.1,0,9, £.D.0.CT L YA N N N T "
Q. Qi 0 N.E T P AN, o o R . I, L e o L N N L P PN .
i N - - . " ; N PO ST R " — I
P P o e A — n R L L . NP R A L .
T N S — PR A N P . N s N L P
AN N RPN P i S PO P - P = N R N
e P S A NN a1 . L " A PR A s A L NN B]
L N . P PR f N N " R s N | I N o B S
A 4 i . A L A 1 I1 L L] [D SO S VU S . s i A i + i i 4 1 i i 4 4 1 " i 'y e n i 4 e U 'S i 4 i .
L NN) e N R N SN P SR S DU S S F s . R
L a4 a " B . L R L L A NG SR N ST . N,
N N L L j N . N s i L NP " . i - s
N . L 4 - . R - N NN P . s NI U S SO
1 i 4 I Iy —t ' 1 i " R N a I A L 4 4 4 e A 4 4 i 1 e " 4 A s A e A ’e i (VU S T S—
PR — L 4 Il % . P . PN ' P " I R - .
L . + IOV W G S S " l i " - + ;i P . . 1 R G N i
o : P A ot ¢ N " H P - . R R Lo T S S S PR ;
- 1 R IR B R T RN BN
ka4 — Ay U s { Fu— " U S U SR P — L PR SRS PR S S P SO S ST S TR S S S
L H PO S RSNt (S i + N a1 . R " N s " P " 2 PR N .
e NEENIFENE SSEN . . L PR D S . -
i P | i1 N B ! ek A 44 - AN L1 " i Pt PR " PR S G S " LA P Loa o
P N SN — oo . PSS s Lo oy - - " P i P .
L n " U S S - H . o L " ORI S PR " I i PP S S S G S L PR
_— i n Pt PN G T ‘ L . + . " —— Rt 1 + n " i n L L n U 4 L 1 U S G S S S VN S PR L L I y
N P N N A T] NN et — i1 N T ! PR N PO PO L P .
" — - U S VN S S " JI B T MU n P T U R S P S S N S ST R N S P ——t PR "
; L RN N e e w1 N . NN A R
" T R s T S P — i PSS T G P P " P L Loy L " PO S | PR S Y S 2 L
N R ; . hedea R N o N - L L o - P
a4 P . N N-— — " " " NN L - — . L A P
L — " . N s) o - P SRSV SN T L Y s]
- P P BT - . N S Lo e e L o L " P
" PNt P RS PR 1 . A1 4 A PR : PR - 1 L PR FU n P S S S
a4 | F TR S S G R s PSR S S [- " TS S S S U S S S PR S S P ST .
by i i 1 e i i i e 1. i 1 A d 1 e 1 i 1 1 i n i i i i i A i il " i A L i n i 1 i o
S n § PR PR A Pt A bkl i 1 1 WS SO S W S S U R S S SO SH S W | PN SR S | PR

Figure 1. Sample Coding Form

III. LANGUAGE FORMAT

The basic assembly language is composed of two types of instructions: the
GE-425/435 instruction repertoire and the pseudo-operations which control
and instruct the assembler. These instructions are entered in the coding
form using the entries defined in the previous chapter. This chapter will
describe the format of the various language entries. A brief discussion of
the GE-425/435 instruction format precedes the language format
description.

MACHINE INSTRUCTION FORMAT

The GE-425/435 instruction repertoire includes two types of instructions:
the single address instruction and the two-address instruction. A detailed
discussion of these two types of instructions is found in the GE-425/435
Reference Manual. For convenijence to the reader a brief definition of each
type is given below.

Single Address Instructions

The single address instructions consist of three parts: the Operation
Code, the Address Field, and the Address Control Field. The three parts
are located in the 24-bit GE-425/435 word as shown below:

23 18 17 16 15 14 o 0
Operation Address
Code Control Address Field

Field

The Operation Code determines the operation to be performed; the Address
Field supplies the address for the operation; the Address Control Field
indicates whether the address is to be modified by one of six fixed index
registers changed by an address modification sequence, or used without
modification.

Two Address Instructions

The format of the first word of the Two Address instruction is identical
with that of the Single Address instruction; however, the Address Control
Field has a somewhat different significance. The Address Control Field

1-7 12/6/63

indicates whether the first address should be modified before entering a
tecund Address Sequence, or whether the location of one of the fixed index
registers should be used as the second address.

SYMBOLIC INSTRUCTIONS

The format of the symbolic instruction is similar to that of the machine
instruction, consisting of an Operation Code, an Address, and an Address
Conirol. The symbolic instruction has no definite memory location until
assembly time. However, a symbolic instruction does have a symbolic
Ibcation known as the Reference Symbol. When a programmer relates a
Ieference Symbol to a symbolic instruction, the Reference Symbol repre-
sents the memory location which the assembler will assign to the instruction.

Symbolic instructions are entered on the coding form as follows:
¢ The symbolic location is written in the Reference Symbol columns.
e The mnemonic operation code is written in the Operation columns.

¢ The Address and Address Control are written in the Operation
Parameters columns.

The Address begins in the first column of the Operation Parameters. It
may be absolute, symbolic, or a combination of both, (calculated) or the
Address may be a literal. The Address may be terminated by a blank or by
a comma,; if it is terminated by a blank, the assembler assumes an
Address Control Field of zero; if it is terminated by a comma, the
assembler processes the remaining Operaticn Parameter as an Address
Control Field. The Address Control Field may be an absolute, symbolic,
or calculated value.

Symbolic Reference Entries

Ey using Reference Symbols, the programmer equates his assigned symbol
to the data with which it is associated. The symbol becomes synonymous
to the memory cell in which the data is located; the data may be referenced
by its symbol, eliminating the need for assigning and keeping track of
memory locations.

The following rules govern the construction and use of symbols.
L. A Reference Symbol may be written in columns 9 through 16 of
the coding form. It may contain from one to eight alphanumeric

characters.

1-8 12/6/63

A symbol is built using any of 37 characters of the GE-425/435
character set. The allowable characters are:

Alphabetics A, B, C,....LZ
Numerals 0,1,2,....9
Special Character _~ (tilde)

At least one character of a symbol must be alphabetic.

A Reference Symbol may be floated anywhere within the eight
columns provided for the Reference Symbol. It should not contain
imbedded blanks because blanks are not considered as part of a
symbol. If blanks are present they will be deleted. The resulting
symbol is right justified. and zeros are placed in the positions to
the left of the significant characters.

Let A represent a blank; then the following all represent the same
Reference Symbol on a coding sheet:

AZ AANAANAA
AAZ AAANS
AAAZ AAAA
ANAAZ AANA
AAAAAZ AN
AANANAANAZ N
AAAAAANAZ
AANAANANT
All of these Reference Symbols would result in the same symbol:

000000AZ

A symbol is defined when it appears as the Reference Symbol of a
symbolic instruction or pseudo-operation.

1-9 12/6/63

(1)

A symhbol must be defined only once within the program. More
than one such definition results in an error indication by the
assembler each time the symbol is used.

6. When a program is written as a series of distinct regions *.
different prefix characters may be appended to the symbols
used in each section.

7. Symbols used in the Operation Parameters field must be defined,
or use of them results in an error indication on the assembler
listing.

8. Symbols used in the Operation Parameters field may not contain
imbedded blanks. A blank column in the Operation Parameters
columns indicates the end of significant data. Information
following a blank column is treated as comments.

ASSEMBLER PHASE

To fully understand the basic assembly language, a brief description of the
assembler process seems appropriate at this point. The assembler has

two passes, briefly described below. If a symbolic analysis of the assembled
program is desired, it may be performed following the regular assembly
operation.

Pass I

Pass I reads the symbolic source input. assigns memory locations to
machine instructions and constants. processes pseudo-operations, and
constructs a table containing the Reference Symbols which appear in the
source program and the relative address which each symbol represents. In
addition, Pass I supplies the binary machine operation code for each
mnemonic code used by the programmer.

The primary functions of Pass 1 are the assignment and allocation of memory
locaticns and the construction of the symbol table. In accomplishing these
functivis, Pass T employs a "location counter” to control all memory assign-
ments made by the assembler. The location counter always contains a value
which corresponds to the next memory location which may be assigned oy

the assembler.

*Subdivisions within segments are referred to as regions.

1-10 12/6/63

As Pass I processes a symbolic record, it identifies it as either a symbolic
instruction or pseudo-operation. If it is a symbolic instruction, the assembler
increments the location counter by one and looks for a Reference Symbol. If
there is a symbol, it is placed in the symbol table with the value which was

in the location counter prior to incrementation. A pseudo-operation can

affect the location counter in several different ways. It may cause it to be
incremented by a particular value as in the case of the BSS; or. it may have
no effect at all on the location countef as in the case of the EQU. Pass I
identifies the pseudo-operation; affects the location counter in the specified
manner; and, looks for a Reference Symbol. If there is a symbol, it is

placed in the symbol table, with the appropriate value from the location counter,
and with any flags which are necessary to identify and retrieve it in Pass II.

In either case, the symbolic record and the data gathered by Pass I are

written on an intermediate tape for Pass II processing.

Thus, Pass I assigns relative memory locations to all instructions and con-
structs a symbol table containing all Reference Symbols and the relative
memory addresses which the symbols represent.

Pass 1T
Pass 1l reads the symbolic instructions from the intermediate tape and pro-
duces the binary object program and the assembly listing. Pass I has
supplied a machine operation code for each mnemonic operation code. Pass II
must supply an Address and an Address Control {from entries in the Opera-
tion Parameters. In performing this function, Pass II relies, for the most
part, upon the data in the symbol table.

Pass II searches the Operation Parameters of each instruction for symbols.
When it finds a symbol. Pass Il goes to the symbol table to obtain the value
assigned to that symbol in Pass I. It replaces the symbol with the value
from the symbol table and thus arrives at the address field of the instruction.

When a symbolic instruction has been completely processed, it is printed on
the assembly listing with its octal location, the contents of that location, and
an indication of any errors detected during processing. The assembled
instruction is stored in a binary program card area to be punched when the
area is filled.

When the final entry from the intermediate tape has been processed, listed

and punched, Pass II and the assembly program are complete. An assembly
listing has been printed and a binary program has been punched.

1-11 12/6/63

Symbolic Analyzer

The Symbolic Analyzer lists every symbol with its address and all
references to each symbol. Each reference will consist of the
operation code that references the symbol, the page and line number
of the reference, and the address of the reference.

CLASSIFICATION OF SYMBOLS

As mentioned in the brief assembly description above, the assembler
constructs a symbol table in Pass I. When a symbolic reference is
encountered during a relocatable assembly it must be classified as
either relocatable or absolute.

Absolute Symbols

An absolute symbolic reference in the Reference Symbol field of an
instruction represents either a fixed machine location or a value. In
either case, because the absolute symbolic reference will probably
appear in the Operations Parameters field of subsequent instructions
the assembler will mark the symbolic reference as absolute. In the
following example all symbols are treated as absolute.

il

Example
REFERENCE SYMBOL OPERATION OPERATION FARAMETERS
5 u,
DATA NAME LEvELY \Nd SE PICTURE
9 16 7 191} 20 22 2425
S R S S T RS a1 R SO VY SR SR T SO T SR T N
4y TR ‘L a1 11 L
T S G L t A} U S Bt T W S S S
FoxaR20 0 o Jelouu SN e
R S ElG Ul 200 4o, . N
Hopod DA JEiquLg N N .
T Y P EC MR NS Q ULE 2.0 . L
Jpovean oo gl P L
PLUS. . Jelgii K 6L . . ., .
L A 1 1 t i " ,“‘;"v . ‘ { n L ! i 1 L 1 1 i
1-12 12/6/63

Relocatable Symbols

All Reference Symbols that are not classified as absolute are
marked as relocatable. Therefore, any Reference Symbol which
does not represent a fixed machine address or a value is reloca-
table. (See Chapter IV, Relocatable Segments.)

OPERATION PARAMETER ENTRIES

Operation Parameter entries may be of four different types:
1. Absolute - a decimal integer
2. Symbolic - a symbol

3. Calculated

an expression
4. Literal - a literal

Normally all four entries appear in a program; they are described
in the following paragraphs.

Absolute Entries

To form an Absolute Entry, the programmer determines the deci-
mal value he wishes to employ in an instruction and places that
value in the proper place in the Operation Parameters field (or
column).

Example
REFERENCE SYMBOL OPERATION TORPERATION PARAMETERS
{ Is v}
DATA NAME Vaved N i PICTURE

9 16 Q17 118 19] o0 Cl 22 2425
4 1} I S [L B D S N P ~.14,Q; Q; %4“4 R (R N Y WS S R
SR T S R A ,D,AS,T FE R S _'_Q,;__Q_x_s,L, S S S S B

[T S T VO SO | ,ﬁ,,LJSf T [,_'4_049_;_61_.741),,¢A4__;_-
I S T S SR ST ’BL_UL ,,,,,T,,,ﬂ%“_l_x_o_z.z.uskq el
1. N .

1-13 12/6/63

Note:
Programming in absolute places the responsibility of memory allo-

cation upon the programmer rather ,than upon the assembler. For
this reason it is recommended that absolute programming be avoided.

Symbolic Entries

To form a Symbolic Entry, the programmer uses the symbols which
he has assigned to his instructions and data. He references his
instructions by their assigned symbols.

Example

Assume that the current value of the location counter is 1000.

OPEIATION PARAMETERS

REFERENCE SYMBOL CPERATION
SY uS

N DATA NAME se bir ::V‘F‘E- 25 N:‘ 22 I3 ¥ P FICTURE i
Y I— J S S R L, Dl@, - J,,, ,G,,L.R,Le.qﬁdﬂ [R5 VDU TN SN SOUUUES W NASR S S R
Gl e A-,Dji, N - D’LLD_).L}_‘_C_LI,LA S U Y NN IR TR S
T N E,T‘AﬁA ‘,. ,._NL£4AT_L_PLAL¥L7JA1 S W T E e
A BRI L T e

learoay . Bas ool oo oo i
Ihepovtr Bss | .. D et a o
,_N,L,E, .IAA__P,LE)A,,L RN 5 ,SL_.S PR SE— T l D U S S S S [SPURY TR VR SN

PR PR NN I

During Pass I, the assembler assigns values to the symbols GRPAY
(1004), DEDUCT (1005), and NE'TPAY (1008). The symbols and their
assigned values are storeo in the symuol table. During Pass 1I,
symbols in the Operutions Parameters ave 'looked up™ in the symbol
table and replaced by the 2ppropriate values from the symbol table.
Thus. the assembiy program provides an address for the programmer's
symbolic address giving:

LDS 1004
ADS 1005
STS 1006, 3
BRU 1007

The asterisk (*) is a special type symibol; the assembler replaces it
with the current value of the location counter.

i-14 12,/6/63

Previously Defined Symbols

Symbols are assigned values during Pass I processing. Since the
Operation Parameters are normally processed during Pass II, it does
not matter where within a program a symbol is defined so long as it

is defined. However, in the case of several of the pseudo-operations
(BSS, BSSL, LSB, LSBL, BPS, BPSL, ARP, ARPL, ACUM, ORG and
EQU) the address must be calculated in Pass I since these instructions
either control the Pass I location counter or cause an entry in the
symbol table during Pass I.

When an entry containing one or more symbols appears in the Operation
Parameters field of one of these pseudo-operations, the assembler

must use the symbol table to calculate the value of the entry. Obviously,

the assembler cannot calculate that value unless all symbols appearing
in the entry exist in the symbol table. They are in the symbol table
only if they were defined prior to the pseudo-operation which uses them.
Therefore, the pseudo-operations BSS, BSSL,
ARP, ARPL, ACUM, ORG and EQU demand that symbols used in
Operation Parameters be previously defined. Consider the following
example:

REFERENCE SYMBO L T OPERATICON OPERATION DAFAETERS
At NAME —l\r‘ vEW ;N US PICTURE
9 eATA [IO clez| | 2afas
TABLEL, . BSS! 1 A o L
A (TS O S LQJU__%, ; J o 1 Il s U SR B L 1 N
L&& LLL, + 4B &S} | A1 L
| IR S i 1‘ n + 1‘ i 1 " U I 1 L L

In Pass I, the assembler will attempt to reserve the space for TABLE1
by adding the symbolic value A to the location counter. The assembler
goes to the symbol table to find the value of A. However, A has not

yet been defined and is not in the symbol table. Therefore, the location

counter cannot be incremented and space cannot be reserved. The same

procedure takes place for TABLE2; A is now in the symbol table and
ten memory locations are reserved.

12/6/63

LSB, LSBL, BPS, BPSL,

Cilculated Entries

T form a calculated entry the programmer states the entry as an
expression, thus allowing the assembler to calculate the value of

the entry.

An expression is a series of symbols and/or integers called elements
*, and / These operators
represent the arithmetic operations: add subtract, multiply, and

which are connected by the operators: +, -

divide, respectively.

b

According to the normal arithmetic rule, the

elements of an expression are evaluated from left to right, with
multiplication and division preceding addition and subtraction.

Example

Calculated Addressing

Assume that the current value of the location counter is 1000. Note
that the * in this case is an operator.
sents the current value of the location counter.

The * as an element repre-

- [’:‘! REFERENCE SYMBO L OPERATION 5PERATION PARAMETER
NCF ;'] sy o
o . 1. CATA NAME N tgvr‘-:;Jzo LAY S I FICTURE
[P L [SR T L_ DJS_,,,A o ih s G.J.R L?, A YJ* ‘ _18_1.-1' T). 4
‘ v e JADS L D.£.D.0.C.T.t. L J[B,
. AT Ky 3 - NET.PA Y 1'; I
. b ﬁ}-eu RU| ; ; T, 200 L
. S U - 4 1 L L i 1 0101 H i 2 Lo b SRR S S W TR 3
P07/ R SR -39S0 RN I
WETE b B8 L LB L
FLAY : B 5.5 I | - VT -
. | . P TR B N T
SRV DU N O

Pass I assigns values to the symbols B (2), GRPAY (1004), DEDUCT
(1006), NETPAY (1008) and T (3).
va.ues are stored in the symbol table.

The symbols and their assigned

12/6/63

.) . 3. Calculated Address, Fixed Index
During Pass II, the symbols in the Operation Parameters are

replaced by the appropriate Values fI’Om the SymbOl table' HaVing REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
evaluated the expression in the Operation Parameters, the assembler
calculates an address glvmg DATA NAME LEVEL st s FICTURE
s 1617|178 t9}20] 22| F| 24f2s8 i
LDS 1005, 5 e o ., JEDS TARLE +.1.,.3, « « o .
ADS 1007’ 1 771I,7: : : 1 1 : L 1 iy 1. L. L i A U R Iy 1 L
STS 1009 , T
BRU 1023 ’
The follc?wing examplgs demonstrate tl}e various types of entries Develop an effective address by adding the address portion of
allowed in the Operation Parameters field. index register three to the calculated address TABLE+1. Load
the contents of this location into the single accumulator.
Examples
1. Absolute Address, Fixed Index
e 4, Calculated Address, Symbolic Index
' ST . I R
9 DATANAME 16 |17 SeV§el 20 yNr: 22 SE 24 25 preTuRe = e - “ L At bbb
ST T S S S J’ S. .,7*7‘—11+L464-—4—J [W VU VRN S U EO S § e - — LD‘S‘? % } ; T.AB.LE +‘1‘3‘Ei*‘r' +
P T N SR L. T,,;N_%____,‘,A.,,L,_L,A [S SR U S S - i L { S S G U U T S Y S SO S
Lo P . ,H,_L, T [Y S R S U S S R i § | L P I
Same as Example 3, if BT EQU 3.
Develop an effective address by adding the address portion of
index register six to the address portion of the instruction.
Load the contents of this location into the single accumulator.
5. Calculated Index
2. Symbolic Address, No Index
R Y S— [UL U E S 5 B Tl r.;,y-,j_,___ S IR T ——
SN S S i e F T S S S SN U SR S
i | B et NI TG A R e JLABLE 1, G+ D
; SRR (15 TS SR & OV - 10 S
' v L - - e ,_-,_%7,,,4_.,,,;74 PRI W S— - 3
| S T - . R . - _4,,,4;._,,“_:_141, . EUE Y Ty

Same as Example 4, if G EQU 1, D EQU 2.

Load the contents of symbolic location TABLE into the single
accumulator.

1-17 12/6/63 1-18 12/6/63

g:nwnt Restrictions

Tl e following restrictions exist on the content of Operation Parameters:
8. Next Word Indexing
I. External global symbols (as described in Local and Global

REFERENCE sYMBOL eRERATION CPERATION PARAMETERS Symbols, page 1 - 31) are permitted only in the expression
: " that indicates the address portion of Operation Parameters;
. oataname f ot N e s PlevuRe they are not permitted in the Address Control.
SN W WU S TSNS USSR S «LT‘D Ls ,1, S __LA LB ,L .2 L3 11 1 1 1 1 1 1 i 1.
o _; X .00, 4 .o 2. The value that results from calculating the expression for
| e . L T L address control must be absolute. (See Relocation Errors,
P SOOI S S— b e pagel - 35.)
The instruction calls for next word indexing. The AMS word Size Restrictions
is an index. An effective address is developed by adding the -
address portion of the Address Modification Sequence (AMS) Tt e Address Control Field of the GE-425,435 instruction word may contain
word to the symbolic address TABLE. The contents of the values which range from 0 to 7. (See word format cn page 1 - 6 .) It
effective address are loaded into the single accumulator. miiy indicate a fixed index register -- values 1 to 6. It may indicate an

Acdress Modification Sequence -- value 7. It may indicate that no address
centrol is required -- value 0 (this is normally indicated by terminating
the Address with a blank, although "0' will produce the same result).

7. Multiple Next Word Indexing

Tlhe Address Field of a GE-425/435 instruction word may contain values

nerEnemem sTmmor orEmA e TERATIoN mamamevEns wtrich range from 0 to 32,767. The full capacity of the Address Field is
I ceved [% - crerome nct required by all GE-425/435 instructions; for example, the value in a
2 pofrrgre tejeol Cleel 7| 2efos Shitt instruction can range only between 0 and 31, while the restore value
e M EM e T.A A."B;.LAE‘, E L in 2 Branch Counter can range only between ¢ and 511.
S W S [S N U S - LI WY i 1 . L L 1 Iy 1 1 n 1 1
“:i L*Li ’ - e ;m ‘%i‘ral e ‘ A« the assembler constructs the fields for a machine instruction, it com-
L * . A 1. . . L pares the binary representation of the value which the programmer has
specified for a field, with that field's allowable range. When the value
If E EQU 7, the instruction calls for next word indexing. The exceeds the allowable range, a predictable result always occurs. The
AMS word is an index; its symbolic address is added to the assembly retains from the specified value in its binary representation,
symbolic address TABLE. The AMS word specifies continuation. a number of the least significant bits sufficient to fill the field without
The next AMS word is examined. It is an index. Its address is overtlowing.
added to the previously calculated address. Since no further
continuation is specified, the effective address has been developed. Values which exceed the allowable ranges are truncated as follows:
One word is moved from that location to the symbolic location
RATE. 1. All Address Control Values are truncated modulo-8

2. All Addresses are truncated modulo 32,768
3. All Shift Counts are truncated modulo-32

4. All counts specified for Branch Counters, Move Counters,
LPW's or DCW's are truncated modulo-512.

—
!

p—

fda)

12/6/63 1-20 126,63

Literals
literal within the field that represents these generated words. Zeros

During the course of coding a program, there are many occasions when a are inserted in the left most character positions when the literal
programmer desires to use constants. To enter these constants, the does not completely fill the field.

programmer uses one of the many pseudo-operations that are provided

in the basic assembly language or he enters them in the Operation Example

Parameters as literals. A literal specifies the actual value of the data
that is to be operated on by the Operation. The allowable length of the

literal is determined by the type of literal and the Operation with which REFERENCE sYmeoL erERaTION ORERATION BARAMETERS
it is associated. Any literal which exceeds the number of allowable " N Bl | PlETURE
characters or includes an invalid character will be flagged as a literal o PRTRNAMT el TR 0] Maz] # adfes '
error on the assembly listing. i ST R BN R S TS VO SR S
—_— [1 L i 1 1 T 1 1 1 1 1 1 1 1 1 I 1
The four types of literals. that are allowed in the bgsic assembly ALJ_::‘_A_L,LJLLQ*, T " :P :A :\/ IRJJLJ.LLL_LLLLQ&_B;D:
language are alphanumeric, decimal, octal, and binary. PRV O - H.£. ADR +.2 T
— B.L. el “,..L_.,D,LD,A . o -t I_?_.LBJ_QLE_‘_A_ IN 16 P . 1 L 1 L
1. Alphanumeric Literals M e HeEADR T, o o o
[T T S .B rR Lu — ‘7”4. DA | S ST L i i il 1 L i
Alphanumeric constants are entered in a program by means of SRV SRS O U O S T O N S S
the AN pscudo-operation, or by entering them as alphanumeric I T R S S R
literals in the Operation Parameters. An alphanumeric literal iIn fﬁ:ﬁ:ﬁjﬁ:ﬂh": B‘é s g T S = 'tftj:t-:ﬂj:::-:#
is indicated in the Operation Parameters by preceding the ' A I I T T T - T

literal with a quotation mark ("), entering the literal, which
can be a maximum of 16 characters in length, and terminating

the literal with a quotation mark (). After executing the instruction at location A, the quadruple accumu-

lator would appear as follows:
Since the quotation mark is used as a delimiter, it is the only

character of the computer'’s character set which may not be 00P AI YR® LlL R E|C QR DW
part of an alphanumeric literal.

After executing the instruction at location B, the double accumulator
The Operation normally specifies the number of words of would appear as follows:

constant information that the assembler will generate for the
literal (see pagel - 30). The assembler right justifies the

|PacElanp . |

1-21 12/6/63 1-22 12/6/63

Decimal Literals

Decimal constants are entered in a program by means of the
decimal data pseudo-operations or by entering decimal literals
in the Operation Parameters. A decimal literal is indicated in
the Operation Parameters by preceding the literal with the
pounds sign (#) and entering the literal, which can be 16 digits
in length, and terminating the literal with a pounds sign or a
blank. When a literal is used in a two address instruction which
refers to a fixed index register, the comma or pound sign may
terminate the literal.

A decimal literal must contain only the digits 0 - 9 and may be
preceded by a plus (+) or minus (-) sign. If these rules are
violated, a flag will appear on the assembly listing.

The Operation normally specifies the number of words of
constant information that the assembler will generate for the
literal. (See list of literals on page 1 - 30.) The assembler
right justifies the literal within the field that represents these
generated words. If the literal does not completely occupy the
field, zeros are inserted in the left most character positions.

Example
REFERENCE SYMBO L DORPERATION OPERATION PARAMETERS
VTR o
DATA KAMY . LY7£‘?J-EVE:§L{ 25 N(‘ 22 [24l 28 PICTURE
F R N " S P N ST TS R T
t P, ,,L,,¥_ 1 1 A 1 1 1 1 A 1 1 1
. L.DS. #oLF L e
‘ A.DS . Cod N T
i S TS . Cgu . NTue 0 -
P L..0D ; #.~-4.80.,0.0.0, . .
T ADD I P Ahy SR W S S R
e R O - . . L E D S
A S T A R S Y . B I T T R SO S
S T .. B F— ,t . - P .
1-23 12/6/63

After executing the instruction at location A, the single accumu-
lator would appear as follows:

lOOOII

After executing the instruction at location B, the double accumu-
lator would appear as follows:

0048[0000

Since the literal is negative, the least significant character of
the accumulator must indicate it.

Octal Literals

Octal constants are entered in a program by means of the octal
pseudo-operations or by entering cctal literals in the Operation
Parameters. An octal literal is indicated in the Operation
Parameters by preceding the literal with two characters: pound
sign # and the letter O. The octal literal is entered immediately
following these two indicators; it may be a maximum of 32
octal numbers and is terminated by either the pound sign (#) or
a blank.

An octal literal must contain only the octal numbers 0 - 7 and
must not be preceded by the plus or the minus sign. If these
rules are violated, a flag will appear on the assembly listing.

The Operation normally specifies the number of words of constant
information that the assembler will generate for the literal. (See

list of literals on page 1 - 30.) The assembler right justifies the
literal within the field that represents these generated words.

If the literal does not completely fill the field, zeros are inserted
in the left most character positions.

1-24 12/6/63

Example
REFEMENCE SYMBO L OPERAYION "OPERATION PARAMETERS
. -

) DATA NAME ve 7 lie Vel 20| N 22 24f 28 PreTURE wfar YR
J SR N S S B R R SRS RS P — 1 . B WSS S S NS SN W TR S 1 i 1 1 Loog
- Lo md ol L ET— I DS SR SR RO 1 Y NN TR T W U W W S SN P S
[0 SN W T N (IR T | LS 4 - RS USSP TS LY WO SN U SIS W SRR (N R S S]
A DD #.0.5.6.565.65.65.56.1.2.5.65 bt
4 i L It & D ‘T,, F .I IEALID_JA 2 i SRS TS Nt Y NSRS W Y SR S—
i N NN Md7.7.2.7 I

RS G A F.LELDB., . . . L M
[O W G S ,J__,,,L' L SO G S G PRSBSOS B -
J SRS N W DR S LAA‘ I T Lot 1 1ok 1 A 1 i i Lot
Y T i i i 1 1 1“‘ — 1 1 i O 1 1 4 i i L

After executing the instruction at location A, the double accumu-
lator would appear in octal as follows:

|56 565656/5612565 8]

The instruction at location B would cause the octal mask 00007777
to modify location FIELDB.

Binary Literals

Binary constants are entered in a program as binary literals.
These are indicated in the Operation Parameters by preceding the
literal with two characters: a pound sign (#) and the letter B. A
decimal integer from 0 to 16,777,215 immediately follows these
indicators and constitutes the value of the binary literal. The
literal is terminated by either the pound sign (#) or a blank. When
a literal is used in a two address instruction which refers to a
fixed index register, the comma or pound sign may terminate the
literal.

1-25 12/6/63

The decimal number to be converted to a binary value must be
composed of the digits 0 - 9 and must not be preceded by a
plus (+) or a minus (-) sign. If these rules are violated a flag
will appear on the assembly listing.

The asscmbler constructs the final binary value for the literal

by converting the indicated decimal value to binary and right
justifying the result in one machine word. The assembler inserts
zeros in the unused left most bits of the word.

Example

REFERENCE SYMBOL OPERATION OPERATIOM PARAMETERA
.
5 u
DATA NAME LEVEY 'N SF PICTURE
k4 1617 11= 19120 cf 22 24825 _
IS S I = ' IS SN U S EY TS UNE DU IS U SR S R
Gt b a0 SRNNN G Y S S RN T S SUNN ST SR R DS
§ D N T SO YR S [[[U S FRRS W WA SO S QU WU SO
,AL__]__L Ao 1 " L D\S #1815.21#1, U FURS NSNSS Mo
B L S TS PIWERL
8. . o . JA B.M H.B.A . o ..
| I ﬂip T.Wgd.1.NC, .

After executing the instruction at location A, the single accumu-
lator contains the binary value 32. After executing the instruction
at location B, location TWOINC has been increased by the binary
value 2.

Immediate Value Literals

For each of the four types of literals just explained, the assembler
generates at least one full machine word of constant information.
These generated words are placed starting at the end of the main
body of coding.

1-26 12/6,/63

In addition, the complete literal capability can be utilized by
the following immediate value instructions:

AIM
AIX
CMI
CXI1
MFI
LXI

4

X

When literals appear in the Operand Parameters of immediate
value instructions, remote constant information is not generated
by the assembler. Because of the nature of immediate value
instructions, the value of the literal is placed in the address
portion of the instruction itself.

The following restrictions apply to use of immediate value
instructions:

1. Alphanumeric literals must not exceed two characters in
length.

2. Decimal literals must be integers within the range * 799,
3. Octal literals must not exceed 5 octal numbers in length.

4, Binary literals must be indicated by decimal integers
which do not exceed 32, 76'7.

If any of these restrictions are violated, a flag will appear on the

assembly listing.

Example
1 -
REFERFNCE SYMBO L ODPERATION OPERATION PARAMETERS
; ‘ = T sv Us PICTURF
9 DATA NAME A T ! Lv?s’izo Nl 22| Bl 2af 28
T v T
PN TR S NN W SN U QU ¥ S | I3 PR SR T T U S SO i
L - j 1 1
IR SUSRREU S SR T I PR
. BRI DR FTER L
A lex1 NI SR
. J T T S S R A, ;BLRJ& P B R s Y
lB i JCX T #.-. 0.9 .00 ..
I B REL 1. i a1 ..
RN TN TR SRR USRS S S - - e
[Y OF S I g ot 5. .
o~ a1 x | mBso, 6
1-217 12/6/63

The instruction at location A causes the letter M to be compared to
index register 3. The instruction at location B causes the decimal
value -14 to be logically compared to index register 4. The instruc-
tion at location C causes index register 5 to be increased by the
octal number 10 (decimal 8). The instruction at location D causes
the index register 6 to be increased by 50.

Literal Pooling - Assembler Action

As previously mentioned, when the assembler generates words of
constant information the words are placed starting at the end of the
program. The location of the last instruction in the program ic known

at the end of Pass I. The assembler begins building the required literals
11 the succeeding memory cell.

While building the required constants, the assembler insures that no
duplicate constants occur when constants are identical in word length.
When constants are unequal in word length, an attempt is made to match
the smaller length constants with portions of the longer constants to
avoid duplication.

For example, assume that the final location used by the program is 2020.
When the instruction

A LDQ #14

is encountered, an addition is made to the literal table in the following
way:

LOCATION CONTENTS
2021 0000
2022 0000
2023 0000
2024 0001

And the address for the instruction at location A becomes 2024.

1-28 12/6/63

When the programmer uses the following constructions, no additions are

made to the literal table:

CONSTRUCTION
LDS #O4
LDD O
LDT #O#
LDS #14
LDD # 14
LDT #1#
LDS #O#
LDS #B1#
LDS "
LDD e

Instructions Which Permit Literals

Literals are permitted with the mnemonic operations in the table below.

CONVERSION
LDS 2021
LDD 2022
LDT 2023
LDS 2024
LDD 2024
LDT 2024
LDS 2024
LDS 2024
LDS 2024
LDD 2024

The number of words generated can be influenced by the length of the

literal. If the literal specified is larger than the number of words speci-
fied by the mnemonic operation, a flag will appear on the assembly listing
and the larger literal will be generated (up to a maximum of four words).

1-29

12/6/63

Instruction

LOAD SINGLE ACCUMULATOR
LOAD DOUBLE ACCUMULATOR
LOAD TRIPLE ACCUMULATOR
LOAD QUADRUPLE ACCUMULATOR
ADD DECIMAL SINGLE

ADD DECIMAL DOUBLE

ADD DECIMAL TRIPLE

ADD DECIMAL QUADRUPLE
SUBTRACT DECIMAL SINGLE
SUBTRACT DECIMAL DOUBLE
SUBTRACT DECIMAL TRIPLE
SUBTRACT DECIMAL QUADRUPLE
COMPARE ALPHA ACCUMULATOR
COMPARE DECIMAL ACCUMULATOR
VARIABLE LENGTH MULTIPLY
VARIABLE LENGTH DIVIDE
EXPLODE

ADD BINARY TO MEMORY

ADD BINARY TO INDEX
SUBTRACT BINARY FROM MEMORY
SUBTRACT BINARY FROM INDEX

AND TO MEMORY

" Mnemonic

SDS
SDD
SDT
SDQ
CAA

CDA

VLD
EXP
ABM
ABX
SBM

SBX

Number of Worls
Generated

by the Litera.
1

2

% CAA and CDA allow 1-4 words.
on the length of the literal.

1-30

The number of words required depend

12/6/63

Instruction

AND TO INDEX

OR INCLUSIVE TO MEMORY
OR INCLUSIVE TO INDEX

OR EXCLUSIVE TO MEMORY
OR EXCLUSIVE TO INDEX
COMPARE MEMORY TO MEMORY
COMPARE INDEX TO MEMORY
MOVE FROM MEMORY

LOAD INDEX

Mnemonic

RIM

RIX

CMM

CXM

1-30a

Number of Words
Generated

by the Literal
1

1

1

12/6/63

IV. RELOCATABLE SEGMENTS

In every program, there are strings of coding which can be isolated as
logical entities. For example, in a payroll application, one might choose
to identify such entities as initialization, tax calculation, dollar extension
bond deduction, etc. Each of these logical entities is called a segment.
A relocatable segment is a logical entity which can be placed anywhere
in memory at load time. The assembler assigns relative locations to
the instructions and constants, and supplies extra information in the
object program to permit the loader to position the program in any con-
venient memory area and adjust it to operate properly wherever it is
placed.

4

The user may organize a large program into many small independent
segments. Each of these segments may be assembled independently of
the main program. Since each segment is tested separately, the cause
of a bad result may be rapidly isolated. If the same bad result occurred
while testing the complete object program, it could be attributed to an
error in any of its parts, and could result in unnecessary computer time
and programmer effort to isolate the bug. The use of segments reduces
the total elapsed time in program development, since the segments can
be distributed among several programmers who work simultaneously.

Changes to a relocatable segment are made by correcting the symbolic
coding and reassembling only the segment found to be in error. If the
corrections change the size or the storage allocation of this relocatable
segment, storage assignments in the main program, with which the seg-
ment is used, are not affected. Conversely, independent changes in the
s:ze and storage assignments of a relocatable main program do not affect
the use of the relocatable segments called upon by the main program. In
addition, if certain segments are required in other programs, the relo-
catable binary output can easily be incorporated without a time consuming
reassembly.

LOCAL AND GLOBAL SYMBOLS

When a program is written for a relocatable assembly, a means of
communication between the series of distinct but interacting relocatable
segments is required. The global symbol forms the basis for this
communication. A global symbol may be defined as a symbol which is
referenced in more than one segment of a relocatable program. A local
svmbol is one which is referenced only within the segment in which the
svmbol is defined.

1-31 12/6/63

There are two types of global symbols: internal and external. An in-
ternal global symbol is "internal" to the segment in which it is defined.
An external global symbol is "external to any segment in which it is
referenced except that segment in which it is defined. See the examples
and explanation following.

After a relocatable segment has been coded, the user must indicate to
the assembler, by use of a pseudo-operation, those symbolic references
which the segment requires for communicating with other segments at
execution time. He must further indicate whether the global symbols
are internal or external by his choice of pseudo-operation.

A detailed description of the pseudo-operations which provide the
necessary indication to the assembler for global symbols is presented
in Chapter VI, Pseudo-Operations. At this point, only the general con-
cept of the interrelationship of segments is given.

Consider the example on the opposite page in which lines of coding
appear in three separate segments.

In segment 1, there are three symbolic references: FICA, PRINT, and
A. A and PRINT are referenced only within segment 1 and, hence, are
not required for communication purposes. These symbolic references
are local symbols. Segment 1 requires communication with segment 2;
the symbol reference FICA is common to both segments. To insure
proper linkage at load time, the user must indicate that FICA is global
when segment 1 is assembled, and again that FICA is global when seg-
ment 2 is assembled. In segment 1, FICA is termed an external global
reference because it is defined outside the segment. In segment 2,
FICA is termed an internal global reference because it is defined within
the segment. Appropriate pseudo-operations for indicating internal and
external global symbols are found on pages 1-74 and 1-76.

1-32 12/6/63

REFERENCE SYMBOL

OPERATION

OPERATION PARAMETERS

s | o DATA NAME 16 f17 %fvigguzosyNsz USE 24f 28 PreTuRe 4)
. sgs\,.gb‘t l s I PR SO VY SANS W SR SN N WY SN S Y S R
L4 1 1 1 L L 1 KD 1 1) 1] 1 1 1 1 YU S
oy 1 ST 1 31 2 T i L A 1 [} L i i
i1 i l A LDnS Fl‘leBl 1 1 L 1 L L :
N L JSIT.S P RNT, . N S
.. BIRWD N
PRINT ., JRISS 5 R S U S S
PSR N N S L1 PR SR R S PR Y VU TN S S S
. 1 1 i N LIS 1 1 1 1 1 1 i 1 1 1] L] A .
U I S U W T E LI S T T S S SN SA S S S E S S S,
_—AA——_L L D.S Ll 1 ' L i 1 ! i PRI 1 1 L 1
— PR ‘. lr IR R SR SN S) ST TR S B S S
i) 1 1 i i 4 A . -+ 1 L L L 1 1 i 1 + A 1 L i s L
U GOt S B S [NN U G SR D TOUS S SR SRS SIS SN S S S
- s.ansbt a ! L T i 1 L1 s 1 1 1 1 L
L " L 1 e 1 n I} [! IR NSO N i L il Lt
1.1 1 Il] 1 1 3l 1 1 R R SR | ! 1 A S SRR | L "
U S S S G | P P T T SR S S S SR S G ¥
T e A R.S.S, | I S Lo L ot
PR W S 1 M PSS U R W S s S DU S
L 1 L LS 1 1 L SR A It 4 i ' 1
1 TR It I t 1 L 1 " " Loy P 1 s 4
e s 1 L L i p XE: CA LATIA‘XA lll 1 1) i n
1 1 1 1. L i L 4 i L) U T i 1 I " s 4 1
] ‘ } L ! i ! i -l : 3 1 1 ! L4 1 I L 1 ! Lo
] Ees e!: 3 - t]‘ : RTINS R B S I P T S SR G S
v 1 i A Lo L F U R T L
P S S S S A i T 44 P R T S
ot 1 ! I i i LN ! R T 1 1 PR i Il i 1
P VR Y S N | v g SRS U VO SN S S TR SO AUV W SR |
c.al TAKX, 9 XA { CALTAX LT, .
5 i " 1 L ! It A 1 1 | L 1 1 It i 1 1 4 1
i) L 1 L} 1 ! L 1 L L i I —
i L 1 | : 1 it .y I L 1 ' L 1 L 4 1 1 1 L
CRLTITAX L TIA R, b, ob . VIR R -
T S VA SRS T W 1 PO O R T B | b
i] 4 1 L 1 1 1 3 " T S L 1 4 1
1 4 1 FUNS S 4 : + 1 n " 1 i 1)
4 N]r ‘ .
1-33 12/6/63

The following table lists the symbolic references listed in this example
and comments as to their relationship in the segments,

Symbolic Reference Comment

FICA External global reference in
segment 1
Internal global reference in
segment 2

PRINT Local to segment 1

A Local to segment 1

CALTAX External global reference in
segment 2
Internal global reference in
segment 3

CALTAXIT Local to segment 3

ASSEMBLER ACTION IN GLOBAL SYMBOLIC REFERENCES

If a symbolic reference in a segment is an internal global reference, a
special flag appears in the symbol table, When the symbol table has
been completed, the assembler scans the table and punches out internal
global cards containing the names of the symbols and their assigned
addresses within the segment. The loader uses this information when
the segment is loaded into memory.

If the symbolic reference is an external global reference, the assembler
performs the following actions:

1. Each instruction in which an external global symbol appears is
flagged. The address of the instruction is calculated by
assuming that the external global symbol itself has an absolute
value of zero.

2. The assembler punches out external global cards containing

the external global symbol names and the relative address(es)
assigned to each.

1-34 12/6/63

RELOCATION ERRORS

‘When coding for a relocatable assembly, it is sometimes possible to
inadvertently generate errors in the use of relocatable reference symbols
in the Operation Parameters. When these errors are flagged by the
assembler, it is important that the programmer understand the reason
why.

Reference Symbols, when they are encountered by the assembler, are
classified as being relocatable or absolute. Operation Parameters are
most often constructed from Reference Symbols. The way that Reference
Symbols are used in the construction of Operation Parameters
determines whether the address in the Operation Parameter field is
relocatable or absolute. When the assembler has made this determina~-
tion, it can indicate the result to the loader by means of the reserved

bits on the binary output.

All relocatable programs are assembled with their addresses starting
at zero. When they are loaded into the machine at object time, their
location in memory depends upon the current setting of the program
counter. Since they will be relocated, the loader must be aware that
the relocatable address will be modified (added to the base load
address) and that absolute addresses must remain unaltered. For
example, consider the following instructions assembled relative to
Zero.

REFERENCE SYMBOL OPERATION OPEIATIZN PAKAMLTL -
SY U
DATA NAME LEVEL] N E PICTURE
9 16 17} 18 v9]z20| cf 22 24l 25
o 1A, JLD.S B, . . R
1 Ce . ISTRISA Co . L
2 L L IS\ T.S D S
3 L 1 T L BR.U E, 1 1 it n 1 I .
4 B. L L1 P:S S} 1. . JI P
T
5 D . L SwS 21 TR P
6 e L DD e
Cooo v L dEQU T T .
SR RO [N EE S S SR S, ‘ : | IS S | L 1 d 1 L A —_ N
’
] i i i
0 H i 1 1 P Jumpt

1-35 12/6/63

The binary output appears as follows:

Relative
Location

Lo R N)

REFERENCE SYMBO .

[(SN TN I S R W .

O

OPFERATITN

: rv OPERATION PARAMETER

where R is a flag to the loader which indicates that the address must
be relocated and A is a flag which indicaies the address must remain
unchanged. Therefore, if the program is loaded starting at 1501, it

would appear in memory as follows:

Memory
Location

1501
1502
1503
1504
1505
1506
1507

,(reserve 1001m0§)
4ireservear

L .DJD_ —y

1-36

locution) -

S S T S S T G S S G,
S Y S ST W B W S

U S W S S

1 50 S, . —_
o [S U N SN ST S N,
5 f\ b, . R SR S S S

7 5 .C‘ - _L U VR W S -,
12/6/63

If the program were loaded at location 1630, it would appear as

follows:

Memory
Location

1630
1631
1632
1633
1634
1635
1636

REFERENCE SYMBOL

OPERATION

OFERATIOM PARAMETERS

DATA NAME
9

191 20 cl 22

§ SUENRE S VS VOIS A WY S

(S S 1 i L 1 L. 1 i 1 1 L L1
S T SR | gl Lak 5.5 TP U WY
L A Laby 3 b L

| e eservied Jlogation) 44 \ R
b1 _(_e,servﬁd_ lQ‘at) TR Sy § SN S IS R S S
o DD 2 P
S o Looawo 4o L b0

When the assembler encounters a relocation error (some value which
is meaningless), a flag is produced on the assembly listing., It is
imperative that the programmer understands the assembly process of
detecting errors so that these mistakes can be avoided or corrected.

By far, the vast majority of programs that are written contain addresses
formed by connecting symbols and values with plus and minus signs
only, In this environment, the programmer should check to discover
whether the value of the address is absolute, relocatable,or a reloca-

tion error.

The assembler also checks these values during assembly.

Procedure for expressions connected by plus and minus only

1.

Examine each element of the expression. If it is a numeric

value, remove it from consideration.

If it is a symbol

which represents an absolute value, remove it from con-
sideration. K it is a symbol which represents a relocatable
value, substitute the letter M (this value can be Moved at
load time) in place of the symbol.

1-37

12/6/63

2. This will leave an expression in terms of one unknown, M. 3. Relocatable

3. Combine like terms in this expression

a. if the result is 0 or nothing, the address is EEN® BSS 1
absolute and cannot be moved. .
b. if the result is M, the address is relocatable .
and must be moved. LDS EENO
c. if the result is anything else, the address is The symbol EENO represents a relocatable memory cell which will
a relocatable error, be moved at load time. The letter M is substituted for the symbol
EENO. Since the result is M, the address is relocatable.
Examples
4. Relocatable
L. Absolute :
. GR@S BSS 1
SRSA 3
LDS GROS+T
The expression for the address of the Shift instruction contains only one M is substituted for the symbol GROS and the 7 is ignored. Since the
term, i.e., the absolute value 3. Because it is an absolute value, it is result is M, the address is relocatable.
ignored. Since the result has produced nothing, the address is considered
absolute. 5. Absolute
2. Absolute
BEGTAB BSS 99
. ENDTAB BSS 1
EQU 3
. BCTR ENDTAB - BEGTAB
SRSA ALTER
The symbols ENDTAB and BEGTAB both represent relocatable elements.
Since the symbol ALTER represents an absolute value, it is ignored. When M is substituted, the equation M - M = 0 results. Since the
The remaining procedure is the same as Example 1. equation has produced 0, the address is absolute. This example illus-

trates the fact that the difference between two relocatable symbolic
references is absolute.

1-38 12/6/63 1-39 12/6/63

6. Relocatable Error
BEGTAB BSS 99
ENDTAB BSS 1

V. COMPUTER OPERATION CODES

The GE-425/435 instruction repertoire is listed on the following pages.

A detailed description of the functions and operation of these instructions
is found in the GE-425/435 Reference manual. In the listing which fo.lows,
all two-address instructions are indicated by (2A) in the left margin.

LISTING OF COMPUTER OPERATION CODES

BCTR ENDTAB + BEGTAB Data Transfer Instructions Mnemonic Octal
The symbols ENDTAB and BEGTAB both represent relocatable elements. Load Single LDS 40
When M is substituted, the equation M + M = 2M results. Since the
result is not 0 or M, the address is flagged as a relocation error. Load Double LDD 41
These examples cover some of the more common types of expressions Load Triple LDT 42
that can appear in the Operation Parameters. On occasion, a pro-
grammer will wish to combine symbolic references by connecting them Load Quadruple LDQ 43

with the multiplication (*) and division (/) operators. In this environ-
ment, the rules for determining the nature of the Operation Parameters (2A) Move From First Memory MFM 30
become slightly more complex. A description of this procedure may be

found at the end of this section of the manual in the Supplement to (2A) Load Index LDX 30
Chapter IV, on page 1-151.
(2A) Move From Immediate MFI 31
(2A) Load Index with Immediate LXI 31
(2A) Store Single STS 44
Store Double STD 45
Store Triple STT 46
Store Quadruple STQ 47
(2A) Move To First Address Field MTA 32
(2A) Store Index in Address Field SXA 32
Move MOV 06
(2A) Move on Index Control MXC 06
Move Counter MCTR
1-40 12/6/63 1-41 12/6/63

Arithmetic Instructions Mnemonic Octal Shift Instructions

‘ (See Tables 1 and 2 on page 1-54) Mnemonic Octal
Add Decimal Single ADS 50 T
: Shift Right Single Decimal SRSD . 22
Subtract Decimal Single SDS 60
Shift Right Single Decimal and Set SREDS 22
Add Decimal Double ADD 51
Shift Right Single Alpha SRSA 22
Subtract Decimal Double SDD 61
Shift Right Single Alpha and Set SREAS 22
Add Decimal Triple ADT 52
Shift Right Double Decimal SRDD 22
Subtract Decimal Triple SDT 62
Shift Right Double Decimal and Set SRDDS 22
Add Decimal Quadruple ADQ 53
Shift Right Double Alpha SRDA 22
Subtract Decimal Quadruple SDQ 63
Shift Right Double Alpha and Set SRDAS 22
(24) Add Immediate to Memory AIM 33
(2A) Add Immediate to Index AIX 33
Variable Length Multiply VLM 27
Variable Length Divide VLD 26
Add to Memory Single AMS 54
Add to Memory Double AMD 55
Add to Memory Triple AMT 56 o . .
* In all shift instructions, bits 14 through 7 determine the length
Add to Memory Quadruple AMQ 57 of the accumulator, the direction, and the type of the shift.
(2A) Add Binary to Memory ABM 34
(24) Add Binary to Index ABX 34
(2A) Subtract Binary from Memory SBM 35
(2A) Subtract Binary from Index SBX 35

1-42 12/6/63 1-43 12/6/63

Shift Instructions (Continued) Mnemonic Octal Shift Instructions (Continued) Mnemonic Octal

Shift Right Triple Decimal SRTD 22 Shift Left Quadruple Alpha SLQA 22
Shift Right Triple Decimal and Set SRTDS 22 Shift Left Quadruple Alpha and Set SLQAS 22
Shift Right Triple Alpha SRTA 22 Rotate Right Single Decimal RRSD 22
Shift Right Triple Alpha and Set SRTAS 22 Rotate Right Single Decimal and Set RRSDS 22
Shift Right Quadruple Decimal SRQD 22 Rotate Right Single Alpha RRSA 22
Shift Right Quadruple Decimal and Set SRQDS 22 Rotate Right Single Alpha and Set RRSAS 22
Shift Rigiht Quadruple Alpha SRQA 22 Rotate Right Double Decimal RRDD 22
Shift Right Quadruple Alpha and Set SRQAS 29 Rotate Right Double Decimal and Set RRDDS 22
Shift Left Single Decimal SLSD 22 Rotate Right Double Alpha RRDA 22
Shift Left Single Decimal and Set SLSDS 22 Rotate Right Double Alpha and Set RRDAS 22
Shift Left Single Alpha SLSA 22 Rotate Right Triple Decimal RRTD 22
Shift Left Single Alpha and Set SLSAS 22 Rotate Right Triple Decimal and Set RRTDS 22
Shift Left Double Decimal SLDD 22 Rotate Right Triple Alpha RRTA 22
Shift Left Double Decimal and Set SLDDS 22 Rotate Right Triple Alpha and Set RRTAS 22
Shift T.eft Double Alpha SLDA 22 Rotate Right Quadruple Decimal RRQD 22
Shift Left Double Alpha and Set SLDAS 22 Rotate Right Quadruple Decimal and Set RRQDS 22
sShifi Left Triple Decimal SLTD 22 Rotate Right Quadruple Alpha RRQA 22
shitt Lett Triple Decimal and Set SLTDS 22 Rotate Right Quadruple Alpha and Set RRQAS 22
shift Left Triple Alpha SLTA 22 Rotate Left Single Decimal RLSD 22
shift Leit Triple Alpha and Set SL.TAS 22 Rotate Left Single Decimal and Set RLSDS 22
Shift Left Quadruple Decimal SLQD 22 Rotute Left Single Alpha RLSA 22
shift Left Quadruple Decimal and Set SLQDS 22 Rotare Left Single Alpha and Set RLSAS 22

1~-44 12,6/63 1-45 12/6/63

Shift Instructions (Continued)

Rotate Left Double Decimal

Rotate Left Double Decimal and Set
Rotate Left Double Alpha

Rotate Left Double Alpha and Set
Rotate Left Triple Decimal

Rotate Left Triple Decimal and Set
Rotate Left Triple Alpha

Rotate Left Triple Alpha and Set
Rotate Left Quadruple Decimal
Rotate Left Quadruple Decimal and Set
Rotate Left Quadruple Alpha

Rotate Left Quadruple Alpha and Set
Shift Right Single (Binary)

Shift Right Single (Binary) Test
Shift Right Double (Binary)

Shift Right Double (Binary) Test
Rotate Right Single (Binary)

Rotate Right Single (Binary) Test
Rotate Right Double (Binary)

Rotate Right Double (Binary) Test

1-46

Mnemonic

RLDD
RLDDS
RLDA
RLDAS
RLTD
RLTDS
RLTA
RLTAS
RLQD
RLQDS
RLQA
RLQAS
SRS
SRST
SRD
SRDT
RRS
RRST
RRD

RRDT

12/6/63

Octal
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22
22

22

(2A)

(2A)

Compare Instructions

Compare Alphanumeric Accumulator to Memory

Compare Decimal Accumulator to Memory

Compare Memory to Immediate
Comipare Index to Immediate
Compare Second to First Memory

Compare Index to Memory

Branch Instructions_»

Branch Unconditionally

sStore Program Counter and Branch
Prosram Counter to Index and Branch
Branch if Equal

Araich if Less

3raach if Greater

Braich on Count

Braich on Index Count

Braich Counter

Branch if Zero

Branch if Minus

1-47

Mnemonic

CAA
CDA
CMI
CXI
CMM

CXM

BRU
SPB
PXB
BRE
BRL
BRG
BRC
BXC
BCTR
BRZ

BRM

12/6/63

Octal
03
02
01
01
04

04

Octal
10
17
17
13
14
12
16

16

15

11

Logical Instructions Mnemonic Octal Miscellaneous Instructions Mnemonic Octal

{2A) AND to Memory ANM 24 (2A) General GEN 07
(2A) AND to Index ANX 24 Halt HLT 00
{2A) OR Inclusive to Memory RIM 23 Load Accumulator Location and length LAL 33
(2A) OR Inclusive to Index RIX 23 Store Accumulator Location and length SAL 37
(2A) OR Exclusive to Memory RXM 25 Explode EXP 2)
(2A) OR Exclusive to Index RXX 25 Implode IMP 21
Edit EDT 05 Low Bit Test LBT 22
Reset Accumulator Length Single RALS 22

Central Processor Instructions Mnemonic Octal Reset Accumulator Length Double RALD 22

{2A) Central Processor Operation CPO 67 Reset Accumulator Length Triple RALT 22
(2A) Set Status by ANDing SSA 67 Reset Accumulator Length Quadruple RALQ 22
{2A) Set Status by ORing SsO 67 Index X 09
(2A) Set Status by Loading SSL 67 Index Pointer XP 01
{2A) Request Status of Processor RQSP 67 Index Link XL 02
Index Indirect X* 10

Index Pointer Indirect XP* 11

Index Link Indirect XL* 12

Operand O 0

Operand Pointer oP (1

Operand Link OL 2

Indirect Address Word IAW 00

1-48 12,6/63

1-49 12/6/63

Miscellaneous Instructions (Continued) Mnemonic Octal Printer Mnemonic Command

Data Control Word' Character Count DCWC P-inl in the Edited mode (data controls slewing) PRE 30
Data Control Word Word Count DCWW Print in the Edited mode-slew Single line PRES 31
List Pointer Word LPW Print in the Edited mode-slew Double line PRED 32
P-int in the Edited mode to Top of page PRET 33
Input/Output Commands P-int in the Non-edited mode-slew no lines PRN 10
All Input/Output Commands are Two-Address Instructions. P-int in the Non-edited mode-slew Single line PRNS 11
P-int in the Non-edited mode-slew Double line PRND 12
Common to All Peripherals Mnemonic Command P-int in the Non-edited mode-slew to Top of page PRNT 13
Request Status RQS 00 slew Printer Single line SPRS 61
Reset Status RSS 40 slew Printer Double line SPRD 62
v 3lew Printer to Top of page SPRT - 63
Card Reader Mnemonic Command
Read Card Decimal RCD 02 Zonsole Typewriter Mnemonic Command
Read Card Binary RCB 01 Request Status of Typewriter RQST 00
Read Card Mixed mode RCM 03 Resel Status of Typewriter RSST 40
Tyvpe Input-Octal TIO 01
Card Punch Mnemonic Command [vpe Input-Alphanumeric TIA 03
Punch Card Decimal PCD 12 Type Output-Octal TOO 1
Punch Card Binary PCB 11 ‘Type Output-Alphanumeric TOA 13
Punch Card in Edited mode PCE 13

1-50 12/6/63 1-51 12/6/63

Paper Tape

Read Paper Tape

Punch Paper Tape

Punch Edited Tape-system mode
Puﬁch Single character mode Tape

Punch Double character mode Tape

Magnetic Tape

Read Tape Binary

Read Tape Decimal
Write Tape Binary
Write Tape Decimal
Write End of File
Backspace one Record
Backspace one File

Set Density Low

Set Density High
Forward Space one Record
Forward Space one File
Rewind

Rewind and Standby

Erase

1-52

Disc Storage Unit

Mnemonic Command
RPT 02
PPT 11
PET 31
PST 16
PDT 13

Mnemonic Command
RTB 05
RTD 04
WTB 15
WTD 14
WEF 55
BSR 46
BSF 47
SDL 61
SDH 60
FSR 44
FSF 45
RWD 70
RWS 72
ERS 54

12/6/63

Seek/Write File

Seek/Write File and Release seek
Seek/Write File and Increment address
Seek/Write File and Verify

Seek/Read File

Seek/Read File and Release Seek
Seek/Read File and Increment address
Seek/Compare

Read Buffer

Read File Continuous and Release seek
Write Buffer

Write File Continuous and Release seek
Accept Buffer Address

Write File Continuous, Verify and release seek
Seek File

Seek/Link

Load Buffer For Compare

Move Data

Write File

Write File and Release seek

Write File and Increment address

Write File and Verify

1-53

Mnemonic Cornmand
SWF 10
SWFR 11
SWFI 12
SWFV 13
SRF 14
SRFR 15
SRFI 16
SCPR 17
RB 24
RFCR 25
wWB 30
WFCR 31
ABA 32
WFCV 33
SF 34
SLNK 35
LBFC 36
MVDT 37
WF 50
WFR 51
WFI 52
WFV 53

12/6/63

Disc Storage Unit (Continued) Mnemonic Command
Read File RF 54
Read File and Release seek RFR 55
Read File and Increment address RFI 56
Compare CPR 57
Link LNK 75
Document Handler Mnemonic Command
Read Document RDOC 01
Feed Document FDOC 41
Pocket Document PDOC 43
Table 1. Shift Mnemonics For Characters
S R S A S
SINGLE
SHIFT RIGHT D ALPHA SET
ACCUM
DOUBLE LENGTH
R L T D JAN
TRIPLE
ROTATE LEFT Q DECIMAL NO ACCUMU-
QUADRUPLE LATOR LENGTH
B CHANGE
1-54 12/6/63

Table 2. Shift Mnemonics For Binary
S R S T
SHIFT SINGLE TEST
RIGHT
R D AN
ROTATE DCUBLE NO TEST

Using these two tables, the programmer
can form any of the Shift Mnemonic Op-
eration Codes.

COMPLEMENTARY INSTRUCTION WORDS

In order to accomplish their function, certain GE-423/435 instructions
require information in addition to that contained within the instruction
word. The words supplying this additional data are called complementary
instruction words. Such words must be provided in the proper format
when using the instructions requiring them.

The basic assembly language includes the mnemonic operation codes
designed to form the complementary instruction words. These mnemonic
codes are described on the following pages.

BRANCH COUNTER BCTR

Function

BCTR enables the programmer to specify the count required by the
Branch on Index Count (BXC) and the Branch on Count (BRC).

1-55 12/6/63

Format

BCTR may contain

e A symbol or blanks as the Reference Symbol

o BCTR as the operation

e An expression in the Operation Parameters for the count of the branch

counter.

Assembly Action

If there is a Reference Symbol, it is defined as the current value of the
location counter. A branch counter is formed by using the value of the
expression in the Operation Parameter as the count.

Example

This coding causes 100 words of data to be moved from a work area in
memory, WRKAR, to a table in memory, TABLE 1. The SETTAB cod-
ing is executed once before the BXC command is encountered and 99 add-
itional times on the BXC command. The BCTR controls the associated
BXC command.

Notes

1. The Branch Counter specifies the number of times that the associ-
ated BXC or BRC will branch before falling through to the next
instruction.

2. The largest value which a Branch Counter can contain is 511.

Therefore, if the value specified for a Branch Counter exceeds
511, it will be truncated modulo 512.

1-56 12/6/63

3. The value that results from calculating the expression in the Op-
eration Parameters, must be absolute (See Relocation Errors,

page 1-35.)

4. The Operation Parameters may not contain external global
symbols. (See Local and Global Symbols, page1-31.)

MOVE COUNTER MCTR

Function

MCTR enables the programmer to specify the count required by the Move
(MOV) and the Move or Index Control (MXC) instructions.

Format

MCTR may contain
1. A symbol or blanks as the Reference Symbol
2. MCTR as the operation
3. An expression in the Operation Parameters for the address.

4. An expression in the Operation Parameters for the count of the
Move Counter.

Assembly Action

If there is a Reference Symbol, it is defined as the current value of the
location counter. A Move Counter is formed using the first expression
in the Operation Parameters as the Address Filed, and the value of the
second expression as the count of the number of words to be moved.

1-57 . 12/6/63

Example e LPW as the Operation

Toremence siTs T STEsrion R TETT e e An express%on %n the Operat%on Parameters for the address
- ! i o An expression in the Operation Parameters for the count of
DATA NAME !L:VEL ﬁyu USE) PICTURE the LISt POinter WOI'd-

9 16 §t7 N] 19| 20 Cl 22 24§25

A £ ’ 9 U | N T ! A i

= 5 a— ssembly Action

[0 < FUCE S AT P 2.8.% b VI R T y
T.p 3, C TR, cTiR WR K AR, AL . iy s "
i ’ 1 Ry = If there is a Reference Symbol, it is defined as the current value of

S R S — YO
| B B

f

the location counter. A List Pointer Word is formed using the first
expression in the Operation Parameters as the Address Field of the

i
1
i
: PR T T S |
!
1
L

R e TSI NEpUN UMDY Sy Ny

ST 2 O B+ S8 CYR !\KQ\/ : T :h B: £ ‘_'; _ ’ LPW and the value of the second expression as the count of the num-
U I 111 T.ALC TR ber of words in the associated data control list.
This coding causes 100 words to be moved from a work area in memory, Example
WRKAR’ to a table in memory’ TABLEI.' ’I‘he MCTR supplies the address REFERENCE SYMBO L OPERATION OPERATION PARAMETER
from which data is moved and controls the number of words moved.
Notes 9 : DATA NAME ‘e ‘7IL!.3EV‘EA_ 20 vNc 22 SE 24 28 P.ICTURE
- PYSN N SR R W T LL'an‘/ L-’;f?.T.I.)H’. e 4
1. The largest number of words which can be moved using a Move
Counter is 512. Therefore, if the value specified for a Move The data control list is at symbolic location LIST1 and contains seven
Counter exceeds 512, it will be truncated modulo 512. words. Note that the two expressions in the Operation Parameters

field are separated by a comma.
2. The value that results from calculating the expression for the

count must be absolute. (See Relocatable Errors, page 1-35.) Notes

3. The expression for the address may contain external global 1. A single data control list may not contain more than 512 words.
symbols, the expression for the count may not. (See Local and If the value specified for the count of an LPW exceeds 512, it
Global Symbols, page 1-31.) will be truncated modulo 512.

2. The value that results from calculating the expression for
the count must be absolute (see Relocation Errors, page 1-35).

LIST POINTER WORD LPW
i 3. The expression for the address may contain external global
symbols; the expression for the count may not (see Local and
Global Symbols, page 1-31).
Function

4. The count in an LPW should be the count of the DCW's +1.
LPW enables the programmer to specify the list pointer words which
indicate the location and size of associated data control lists.
Format

LPW may contain

® A symbol or blanks as the Reference Symbol

1-58 12/6/63
/6/ 1-59 12/6/63

DATA CONTROL WORDS DCWC-DCWW

Function

DCWC (Data Control Word-Character Count) and DCWW (Data Control
Word-Word Count) enable the programmer to construct input and out-
put data control lists by indicating the individual data control words
which comprise such lists.

Format
DCWC and DCWW may contain

A symbol or blanks as the Reference Symbol

DCWC or DCWW as the Operation

An expression in the Operation Parameters for the address
An expression in the Operation Parameters for the count of
the data control word.

Assembly Action

If there is a Reference Symbol, it is defined as the current value

of the location counter. A data control word (DCW) is formed using
the first expression in the Operation Parameters as the Address Field
of the DCW and the value of the second expression as the DCW char-
acter count. (The assembler multiplies the DCWW count by four
before using it as a character count.)

Example

Notes

1. The DCWC contains a character count while the count in the
DCWW is a word count.

2. A single DCW cannot control more than 512 characters. If
the value specified for a DCW count exceeds 512, it will be
truncated modulo 512.

3. The value that results from calculating the expression for
the count must be absolute (see Relocation Errors, page 1-35),

4. The expression for the address may contain external global
symbols; the expression for the count may not (see Local
and Global Symbols, pagel-31).

ADDRESS MODIFICATION SEQUENCE WORD

N W e
' =
. .

B
Tl
[
:

T i
¥z

[

HEE)

oA R
T2z 2zZ
AR

TR

OCH P W

Note that the expressions in the Operation Parameters field are
separated by commas.

1-60 12/6/63

wLOR.D. .

Function

X (Index), XP (Index Pointer), and XL (Index Link) enable the pro-
grammer to specify Address Modification Sequence (AMS) words
and to indicate their class. (Address Modification is discussed in
detail in the GE-425/435 Reference Manual.)

Format
X, XP, and XL may contain

A symbol or blanks as the Reference Symbol

X, XP, or XL as the operation

An expression in the Operation Parameters for the address.
If desired an expression in the Operation Parameters for the
address control of the AMS word.

Assembly Action

If there is a Reference Symbol, it is defined as the current value

of the location counter. An AMS word is formed using the first ex-
pression in the operations Parameters as the Address Field of the

AMS word. If there is a second expression, it is used as the Address
Control field of the AMS word. The class is established by the mnemon-
ic operation code employed by the programmer.

1-61 12/6/63

Examples

N — —— - L
1.[REFEREMCE SVMBO L 2 e AN OPERATIUN ~ ARAME TESS
S — -
el L
TATA NAME LEVE N " PICTURE
9 16 "L“Z 19| 20 <l 2z 24 2%
= 1
MeDIEY. L I LT RATE T
‘ S BN
I . T

Example 1 forms an AMS Index whose address is RATE and whose
Address Control Field specifies continuation MODIFY is defined as
the location of the AMS word.

T RO S SRS

AT

Example 2 forms an AMS Index Pointer whose address is RATE.
3.

SIS W S | P WM T |

e - i i —
C SRR I O PR ST A
b I o lx;. . ‘.Im,aunli#z#y*_,,@“

imedo b

Example 3 forms an AMS Index Link whose address is MODIFY.

Example 4 forms the same AMS words as exampie 1, 2, and 3; how-
ever, the Indirect Address Indicator is set forth in each of the AMS
words. Refer to the GE-425/435 Reference Manual.

Notes

1. For documentation purposes, these instructions should be
left-justified in the second half of the operation columns of
the coding form.

2. If any other value besides 7 is specified for the Address
Control Field, continuation will not take place. Values
greater than 7 are truncated modulo-8. Such values will
cause a flag to appear on the appropriate line in the assembly
listing.

1-62 12/6/63

e

3. The value that results from calculating the expression for the
address control must be absolute. (See Relocation Errors,
page 1-35.)

4. The expression for the address may contain external global
symbols; the expression for the address control may not. (See
Local and Global Symbols, page1-31.)

SECOND ADDRESS SEQUENCE WORDS

’

Function

O (Operand), OP (Operand Pointer) and OL (Operand Link) enable the
programmer to specify Second Address Sequence (SAS) words and to
indicate their class.

Format

O, OP, and OL may contain

®» A symbol or blanks as the Reference Symbol

o O, OP, or OL as the operation

® An expression in the Operation Parameters for the address of the
SAS word.

Assembly Action

The Reference Symbol, if any, is defined as the current value of the lo-
cation counter. An SAS word is formed using the expression in the oper-
ation Parameters as the Address Field of the SAS word. The class is
2xtablished by the mnemonic operation code employed by the programmer.

Examples
REFERENCE SYMBO L OPERATION OPERATION FARAMETERS
I %
DATA NAME LEVEL N > T U
9 16 17 {18 19| 20 ;C 22 E 24) 25 !]C URE
— 1 i 1 1L 1 .,QL_ 04 1 U S Y L Lot

Example 1 forms an SAS operand.

1-63 12/6/63

2 REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
.

A " Assembly Action
S PATA NAME 1e]i7]58 V¥ 20 VNC 22 SE 24§25 pleTure
ADR. 2, . . S P RB.T.6£, . . If there is a Reference Symbol, it is defined as the current value of the
S location counter. An Indirect Address Word is formed using the first ex-
Example 2 forms an SAS operand Pointer whose address is RATE. pression in the Operation Parameters as the Address Field of the IAW.
ADR2 is defined as the location of the SAS word. If there is a second expression, it is used as the Address Control Field
of the IAW.

3 " S S S S M -

DRSS S - CYOY-Vow Examples

SR U N N SN S S S PR - 4 - i L 1 1

' L. {sh't-:szRENCE SYMBOL OPERATION OPERATION FARAMI TERS
Example 3 forms an SAS operand Link whose address is ADR2. ,
° DATA NAME P %aEV‘F;.. 20 sch 22 USE_ 24 PICTUREFE

b 2E

Notes R 22
‘,JHJ___L._A__A__A_A_V,i_T 7Y RAT.E o o o o
1 . |

S R S N S | L U S R T

1. For documentation purposes, the mnemonics for these in-
structions should be left-justified in the second half of the
operation.

Example 1 forms an Indirect Address Word whose address is RATE.

2. The value that results from calculating the expression for ’

the address control must be absolute (see Relocation Errors, 20y C e
pagel—35). P S S SR S I‘h.w% Rﬁ JTIEI,J.IA ek
3. The expression for the address may contain external global)
symbols; the expression for the address control may not Example 2 forms an Indirect Address Word whose address is RATE and
(see Local and Global Symbols, pagel-31). whose Address Control Field specifies continuation.
Notes
INDIRECT ADDRESS WORDS IAW 1. If the value specified for the Address Control Field is other than

7, continuation will not take place. Values greater than 7 are
truncated modulo-8. Such values will cause a flag to appear in the
appropriate line on the assembly listing.

Function
2. The value that results from calculating the expression for the
IAW enables the programmer to specify Indirect Address Words. address control must be absolute (see Relocations Errors,
pagel-35).
Format

3. The expression for the address may contain external global

IAW may contain symbols: the expression for the address control may not (see
Local and Global Symbols 1-31).

A symbol or blanks as the Reference Symbol

IAW as the operation

An expression in the Operation Parameters for the address.

An expression in the Operation Parameters for the address control

of the IAW.

1-65 12/6/63
1-64 12/6/63 8/

INPUT/OUTPUT MNEMONIC OPERATION FORMATS

The Basic Assembly Language separates the input/output operation codes
into two broad classes according to the information which must be supplied

in the Operation Parameters. The first class consists of those instructions

which involve channel, device and Address Control. The second class
consists of those instructions which involve only the Address Control.
(Refer to Basic Input/Output System manual.)

CLASS 1 INPUT/OUTPUT MNEMONICS

Function

Class 1 contains all instructions which deal with input/output devices other
than the console typewriter.

Format
A Class 1 instruction may contain

A Symbol or blanks as the Reference Symbol

A Class 1 mnemonic operation code as the operation

An expression in the Operation Parameters for the channel

An expression in the Operation Parameters for the device

An expression in the Operation Parameters for the address control
of the Class 1 instruction.

Examples

1 REFERENCE SYMBOL OPERATION OPERATION FARAMETERS

DATA NAME T EVEid N = PICTURE
9 1617 ¢ 1a] 20 ol 22 24f 25

TR S R L1 R:TLB_’ﬁ_,I_J, LJ)JlI}ISI Ly | I SN N BAPR']

Example 1 shows a Read Tape Binary command to Channel 1, magnetic
tape unit 2. Status is stored in fixed index register 3.

T R S S R

1A=sz 1 1 1 L
P H2.LSTAT, .

. . _JRITR
1 A

2. v

'
1
- T

FEF T

4
1
1
L

1
i T ;

L
n
L : "
1

1

Example 2 shows a Read Tape Binary command to Channel 1, magnetic
tape unit 2. The operand pointer sends status to HOLSTAT.

1-66 12/6/63

3 REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
.

s y
DATA NAME LEVEY vN SE PICTURE
9 16 18 19] 20 22 24Q 258

==
-
(re

J'J\ c\‘qn L PR TR
. XP DEVACE. . .
. ¢‘P HJ” LSTAT, . . |

I
|
l)‘
N
l

\

1
i
i1
n

S S S Y

L Lo
P S S S R
I\ 1 L L 1 1
1 FE— TR S T 1 L

Example 3 shows a Read Tape Binary command to Chdnnel 1. The index
pointer establishes a device code. The operand pointer sends status to
HOLSTAT.

. ;
VO TR TR R L + 4 L

: | G
ol . P C. H
I N D 12 1.0,
; 4 L . L L L] L i + : : X : 1

i |

R T S N S Rt N i —

P L 1 i

A 1
!
1

I

R
T
Y
.

v
L

Example 4 shows a Read Tape Binary command to magnetic tape unit 2.
The index pointer establishes the channel. The operand pointer sends
status to HOLSTAT.

R.T.B

b
L Lk

R
Folblo

Example 5 shows a Read Tape Binary command. The first index pointer
establishes the channel; the second the device code. The operand pointer
sends status to HOLSTAT

Notes

1. Expressions in the Operation Parameters must be separated by
commas. The number of commas which precede a particular
expression establish its function. Thus, an expression for the
device must always be preceded by one comma and an expression
for the address control by two commas.

2. The value that results from calculating the expression for the

channel, device and address control must be absolute (see Re-
location Errors, page 1-35).

1-67 12/6/63

3. External global symbols may not be used in the Operation Para-
meters (Local and Global Symbols, page 1-31).

CLASS 2 INPUT/OUTPUT MNEMONICS

Function

Class 2 input/output mnemonics contains all instructions which deal with
the console typewriter and the central processor channel.

Format

A Class 2 instruction may contain:

e A symbol or blanks as the Reference Symbol

e A Class 2 mnemonic operation code as the Operation

® An expression in the Operation Parameters for the address control
of the Class 2 instruction.

Examples
1- N —
REFERENCF SYMBOL OFPERATION OPERATION FARAME TERS
IS US
v
DATA NAME Level N & PICTURE
9 16§17 117 19l 20 <l 22 24) 25
SO IS R 'Y _J..__.J..__Ai,_L,z‘ﬁ gx B W SR | L 1 1 1 i \ [
[T TR S S ! . R ' PR L
TR FU RN T S SN AVRU G S P R S SN ST T S S SIS
S T T SO GO N ST SN 3 i 1 ! i 1 L " . L i 1 PR
; T
LN U S . 1 R 9 5 P ’,._, R 55 B e
T
SR U SR S - BE SRR e . P S U SR SR T e

Example 1 shows two Class 2 commands, a Type Output Alphanumeric
and a Request Status of Processor, which sends status to fixed index 3.

1-68 12/6/63

9.| REFERENCE sYMBOL OPERATION OPERATION PARAMETERS
i Y%
o DATA NAME weler 17515,420 L% = I e PICTURE
TR SO SO Tiﬁ.‘ﬁ TSNS Y U GO SN S SN ST SR S IR
ey [, . 3P HZ LS TA. T\ « o 00
R S T W' ! AR} TR S T B S| L ek
- L LIt)] ! P SRS VR G SRR SR VAN WY SO SO SR
L e A ‘ S S S S S UUU R PR
e Roesep T
T e AL TAT

Example 2 shows two Class 2 commands, a Type Output Alphanumeric
and a Request Status of Processor. The Operand Pointers send status
to HOLSTAT.

Notes

1. The value that results from calculating the expression for the
address control must be absolute (see Relocation Errors,
page 1-35).

2. External global symbols may not be used in the Qperation Para-
meters. (see Local and Global Symbols, page 1-31).

1-69 12/6/63

VI. PSEUDO-OPERATIONS

Pseudo-operations are mnemonic codes which have the same general
form as computer operations; however, they perform their function dur-
ing the running of the assembly and are never executed by the computer
as machine instructions. These instructions are used to control and in-
struct the assembly of a program.

Pseudo-operations may be used to communicate with the various portions
of the GE-425/435 software system, to indicate constants, to influence
memory assignments, to annotate the assembly listing etc.

Available pseudo-operations are listed and explained on the following
pages.

SYSTEM ORIENTED PSEUDO-OPERATIONS MNEMONIC
Segment Name SGMT
Define Internal Global symbols DIG
Define External Global symbols DXG
Define Global Reference Remotely DGRR
Define Global Reference Ends DGRE
Define Global Reference DGR
Equals Global symbol EQUG
Call segment at load time CALL
Include Library segment INCL
Include Symbolic segment INCS
Block Started by Symbol in the Loader area BSSL
Block Preceded by Symbol in the Loader area BPSL
Last Symbol in Block in the Loader area LSBL
Accumulator Reference Point in the Loader area ARPL

1-71 12/6/63

MEMORY ALLOCATION PSEUDO-CPERATIONS
Block Started by Symbol

Block Preceded by Symbol

Last Symbol in Block

Accumulator Reference Point

Accumulator Reference Point in the Loader area
Accumulator

Fill word

CONSTANT PRODUCING PSEUDO-OPERATIONS
Decimal Constant Single word

Decimal Constant Double word

Decimal Constant Triple word

Decimal Constant Quadruple word

Alphanumeric constant

Last Symbol Alphanumeric

Octal Constant Single word

Octal Constant Double word

Octal Constant Triple word

Octal Constant Quadruple word

1-72

MNEMONIC
BSS
BPS
LSB
ARP
ARPL
ACUM

FILL

MNEMONIC
DECS
DECD
DECT
DECQ
AN
LSAN
OCTS
OCTD
OCTT

0oCcTQ

12/6/63

ASSEMBLY OUTPUT CONTROL PSEUDO-OPERATIONS MNEMONIC

Title TTL
Eject page EJT
Identify binary output IDEN
Full binary cards FULL
Symbolic Analyzer SYAL
MISCELLANEOUS PSEUDO-OPERATIONS MNEMONIC
Origin ORG
Origin Octal ORGO
Equals EQU
Equals Octal EQUO
Prefix PRFX
Transfer Control Card TCD
End of program END

SYSTEM ORIENTED PSEUDO-OPERATIONS

SEGMENT NAME SGMT

Function
~netion

All segments must be given a unique name to be punched on the out-
put program header card. (See Section I, Assembly Functions.)

1-73 12/6/63

SGMT allows the programmer to name his segments (program). In
addition, SGMT allows the programmer to specify an absolute origin
for the segment, thus giving him the ability to assemble in the absolu:e
mode.

Format

SGMT may contain

® The segment name as the Reference Symbol
e SGMT as the operation

o An expression or blanks in the Operation Parameters.

Assembler Action

When the assembler recognizes the SGMT pseudo-operation, it isolates
the segment name and retains it for the program header card.

The Operation Parameters can contain three types of entries:

1. Blanks: Blanks in the Operation Parameters indicate the
relocatable mode of assembly. All instructions are assem-
bled relative to zero; the assembly listing is relative to zero;
relocatable errors are flagged.

2. An expression containing one external global symbol: In add-
ition tc the general restrictions placed on external global
symbols on page 1-79, the external global must be either pre-
ceded by a plus sign, or the plus sign must be implied. The
condition, then indicates the relocatable mode of assembly.

3. An absolute decimal value: Because the absolute value is by
definition the origin of the segment (program), its presence
indicates the absolute mode of assembly. All instructions
are listed relative to the starting origin. Relocatable errors
are flagged for warning purposes only, since the program can
be moved by changing the starting address on the origin.

Restriction

SGMT must be the first card of every segment or program that is pre-
sented for assembly. In addition, if the segment is to be placed in the
library, it must be given a unique name. This will insure that both
the assembler and librarian will be able to locate the segment at some
future time.

1-74 12/6/63

Example
the segment being assembled. The names of these references are re-

Lo e P SEERATION PARAMETERS quired at load time to insure that separately compiled segments are
i [properly linked.
| Is U
CATA NAME I:;\fg‘ YNA SE‘ PICTURFE
9 16 170 'i‘ VSH‘ 2 Cl 22 2425 Format
JeRg S e Ay oM T o L L —
SO SR OV TS bt DIG must contain
(Y PR TR (S (R S U =L L .
R - @ DIG as the Operation
» Internal global references that are listed in the Operation Parameters.
The programmer indicates that the name of the segment is GROSPAY. These symbolic references must be eight characters or less. They
Further, since the Operation Parameter field is blank, a relocatable must be separated by a comma. .
assembly is indicated. o All internal global symbols listed must also be found in the Refer-
ence Symbol field.
2. B RATION PARAMETERS .
REFERENCE SYMBOL OPERATIQN DPE 3 _,\ssembler Actl()n
fs US
o oamaname o[RS | N ea| K| ea]es Frervee ‘When the assembler encounters a DIG, the Operation Parameters are
FrL.s.c.b b Je 6T Tl e, Ak 1, 8.0, D0 scanned and each symbolic reference is stored on the symbol table with
(SRR IO B P S S S a unique flag that defines it as an internal global symbol.
Example

The programmer indicates that the name of the segment name is FISCAL.

Since the Operation Parameter field contains a symbolic reference (by REFERENCE sYMBOL OPERATION PRERATION PARAMETERS
definition, an external global symbol), a relocatable assembly is indicated. - -
DATA NAME LEVE N e FICTURF
El 16 J17 58 13 20 <22 24425
3 . RPN SR | R I T N SR U S R :_AJ‘,, 4 — " TR WY SUS SN SR S SR S
T l.mch.b, o JSlem™ L0 Cul 0 iy (N SR et e
o) l ‘l) X \' .) . i s J S N S S SN NN S S W T S T 1 4 ‘ i 1 i 1 I 1 i 1
| B 7' I ! L SN I U S S L l A]: TR R TR B N i L G W
e ‘ ‘ e DG FLicA. . 5A.LARY. .
o)) - et eu DIV LG LS. R o W
The programmer indicates that the segment name is TIMCAL. Since the . L iy, e
Operation Parameter field contains a decimal value, an absolute assembly T ! ' oot e e a1
is indicated. e ,«;L.Jm,,;- | T SO S S Y Y OO0 S S
E LA oo WLSE. S 5 T — :
S AL BR. .Y, . JLiSE& | S s R N
I NS OR. . . L ‘,_31& _____ . A a -
TS GRS T S |= - T RS P
DEFINE INTERNAL GLOBAL SYMBOL DIG SIS N "__:L_M) ,L o
Function By using DIG, the three symbols, FICA, SALARY, ancd INSUR, are set
Lunction forth as internal global symbols. They will be entered on the symbol .
DIG indicates those symbolic global references which are defined within table and marked as such. At the end of Pass I of the assembler, each

internal global symbol together with its value and type (absolute or

1-75 12/6/63 1-76 12/6/63

relocatable) is punched into an internal global card so that the loader
can effect the proper linkage among segments at load time.

Note

DIG should appear near the beginning of the program deck with the other
pseudo-operations that effect linkage. When DIG is used in this way, the
coding will contain centralized documentation which describes the inter-
action between segments.

DEFINE EXTERNAL GLOBAL SYMBOLS DXG

Function
DXG must contain

o DXG as the operation
® A list of external global symbolic references that will be found with-

in the segment in the Operation Parameters. These symbolic re-
ferences must be eight characters or less. They are separated by
a comma.

Assembler Action

When the assembler encounters a DXG, the Operation Parameters are
scanned and each symbolic reference is stored on the symbol table
with a unique flag that defines it as an external global symbol.

1-°7 12/6/63

Example

REFERCNCE SYMBOL TPERATION PERATION PARAMETERS
! T
. DATA NAME . svl'«_':wfi“m N ool 5| sl ae PICTURE
[S
SO RN S S D S S Y .- SRR T O VT N W U G GNP Ui S N
T P EUO B o) ,;, R GRS TR VG SN GO SUURT SIS SN SO S
T T S T TR T EE S O S S S O e U DS
j S S SR IO TR SO S : RS ST DS JUREE PO R W S S
U 100 S S BN LD‘Q.D - L*LMAL e
L JU— D X.G. _ B 158 R.T C Hie LC,J‘ N P S H
- PR P o B - ! —a T S M, RS B
F— . L IR U O G N Y S
Lo BLI - —q 1o e [W RN S Eo
p)(,B SR S B ,QL_N _.L EADJ_.?._A ‘:LL__._A_A_.L_
-t . — - —_ L - L L 1 e B WS W B S
PR i : PR PR S SR S ST ' L
3 o - Lo b L
L . - “ p ,X B TJ_I_A.CA.Lﬁ A’,.LE._L.._I U0 S W A
" . DU S S S S TR SR S 1
- i .. S [S S ! | S S 1
- N - R L i [T l T T SR
P X_B . P RTCHECK b,
el - [') (P VY S
- b S - F T S PO S
e el PR St : (S S G S N

The three symbols, BONDED, TIME, and PRTCHECK, are declared to
be External Global Symbols. They will be entered on the symbol table
and marked as such. At the termination of Pass II of the assembler,
each external global symbol will appear in the binary output. Further,
every location within the segment that requires the external global for
completeness will also be indicated.

Notes

1. All symbols preceded by a lozenge are assumed to be symbols
which are communicating with the various portions of the
GE-425/435 software system. When the assembler encounters
such references in the Operation Parameters, it automatically
classifies them as external global symbols. For example,
when a programmer wishes to communicate with the Basic Input/
Output System such references as 0 CARD, O TAPE, O TYPE,

0O DEMND, etc., are all classified as external global symbols.
They need not be declared as such by a DXG.

1-78 12/6/63

2. DXG should appear near the beginning of the program deck with
the other pseudo-operations that effect segment iinkage. When
DXG is used in this way. the coding will contain centralized

documentation which describes the interaction between segments.

Restrictions

The following restrictions must be observed when using external global
symbols:

1. The external global symbol may he preceded by either a plus
(+) or a minus (-) sign; no other operators are allowed. If the
external global symbol is the first term in the Operation Fara-
meters and is not preceded by a sign is implied.

2. The external global symbol may be followed by a plus (+) or a
minus (-) sign, or in the case of the last term of an expression
by a blank or a comma (,). No other operations are allowed.

Thus, external symbols may not be used as factors in either multiplica-
tion or division. The assembly listing will flag any violations of these
rules.

DEFINE GLOBAL REFERENCE REMOTELY DGRR

Function

The DGRR pseudo-operation helps to reduce the number of global symbols
required for communication between segments.

One or more of the segments of a program may contain ""chains" * of
data which must be referenced by other segments, for example, the in-
dividual files of a working stcrage area. Since, in most cases, segments

* ""Chains' may be defined as related records in a file, which each con-
tain similar elements of data. For example a Personnel File

EMPNO | EMPNAM | EMGROPAY . 'J

1-79 12/6/63

deal with the individual elements of the chain rather than the chain as a
whole, the segments must be able to reiereace each element individually,
as well as the chain itself.

The normal method of obtaining data from ancther segment requires that
an external global symbol be assigned to each element of such data. How-
ever there is a limit to the number of external global symbols which the
Inader and the assembler can handle efficiently. Assigning a global symbol
t> each element in a chain of elements tends to produce a large number of
zxternal global symbols.

The pseudo-operation DGRR helps to reduce the number of external global

- symbols required for the efficient operation of a program.

Consider the following exampie:

REFERENCE SYMBO L OPERATION OPERATION PARAMETERS
N

DATA NAME LEVEL vN SE PICTURE
) 16 J17 18 18] 2¢C <l 22 24f 28
JNREC, G.R.RY P L
EMP. N2 _ . | JRIS. S . U S| L
EMN P NAM is‘s i b . a4
EMG RYP.AYIE S5 SN & PO . :

f i

X i L) i I L4 ' It I i ' - It
: P o i) I SRV T P
S T T O G %., Y“ é T S N T S Sy S

The DGRR assigns the global symbol INREC to the chain of data which
follows. Further, it instructs the assembler to define the elements of
tre chain, EMPNO, EMPNAM and EMGROPAY, as INREC+0, INREC+2
and INREC+8, respectively. Any time the assembler recognizes a refer-
ence to an element from the DGRR, it converts that reference to the
global' symbol INREC with the proper increment.

Format

DGRR must contain:

e A symbol as the Reference Symbhoi
e DGRR as the Operation.

1-80 12/6/63

Assembler Action

When the assembler encounters a DGRR, it realizes that it is dealing with

a storage allocating section which will be defined in one of the other seg-

ments (see DGR). This implies that no actual storage allocation will take

place in the segment that is currently being assembled.

The Reference Symbol in the DGRR is treated as an external global symbol.
A new location counter is initiated so that increments from the base external

global can be calculated. As Reference Symbols are encountered after
the DGRR, they are placed in the symbol table along with their increment

and a marker which points at the base external global. This process con-

tinues until one of the following occurs:

1. the assembler encounters another DGRR which reinitiates the
entire process with a new external global, or

2. the assembler encounters a DGRE (Define Global Reference
Ends) which terminates the reference area, or

3. the assembler encounters an END or TCD which terminates
the assembly, or

4. the assembler encounters a maghine operation or illegal pseudo-
operation. Legal pseudo-operations are: BSS, LSB, AN, LSAN,

OCT (S, D, T, Q), DEC (S, D, T,Q), BPS, TTL, and EJT.

The DGRR indicates that the subsequent block reservation is not defined

within the segment; therefore, no storage is to be allocated. The
symbolic reference WS is treated as a basic external global symbol.
The symbols: EENO, EMPNAME, and EMPAY, are converted respe:t-
ively to WS+0, WS+2 and WS+8. When the instruction at location Ais
converted, the assembler communicates the following information to
the loader:

1. An external global symbol (WS) appears at this point.

9. The value 9 must be added to the value WS since EMPAY+1
equals (WS+8)+1 or WS+9.

Note

DGRR should appear near the beginning of the program deck with the
other pseudo-operations that effect segment linkage. When DGRR is
used in this way, the coding will contain centralized documentation
which describes the interaction between segments.

DEFINE GLOBAL REFERENCE ENDS ' " DGRE

Example
REFERENCE SYMBOL ODPERATION OPERATION PARAMETERS
SV us
. DATA NAME volir t5EYE oo | M 22| el 2d) e PICTURE
IS T T W' I 1 1 LAY 1 I L4l 1 1] 1 1 | R T
P TR S W S TS IR T S W T S S
|] 1 1 1] LU 1 I i1 i L 1 i 1 1 L +
_mL&.L.__L.__L_A 1 L D G‘.R R‘ SN SN W S | i 1 I 4 1
FAEAANLdL 1 1 1. 8 SASI ll L N S 1 A 1 | BN R
£emP NAME |BSS || b, o L
Emeny . . |BIS.S, | 20 e e
AN Y (YR I . N
" R L S FM;‘A,, i ¢ 1 U H S
L R G e i, o ,‘,‘é____ i J P G S SN VS S Y
b J.__._L*,,A~1“ U ‘r } JUSL R S Y G NSNS A E Y SO
DR 5 ¥ >R BRI F N A
T O S T G B L ,‘:A‘,__._AL_L, P O S S
[T G U - ! JRRSPRNID S IS SR T S U G S S
S [' . 4 SO S SR D G S G

1-81 12/6/63

Function

When a global reference is defined remotely, the programmer must
indicate when the definition has STOPPED, i.e., when to resurne nor-
mal assembly and begin stepping the location counter. DGRE perforras
this function.

Format

DGRE must contain

e A symbol or blanks in the Reference Symbol
e DGRE as the Operation

Assembler Action

When the assembler encounters a DGRE, it ceases to operate in a re-
mote mode and begins the normal assembly process.

1-82 12/6. 63

Example
REFYRENCE SYMBO L. OPERATION OPERATION PARAMETERS
! k| Tu
s Y, s
DATA NAME TLEVEL N E PICTURE
9 16 170 9 19 20 <22 | 24 25
NS O [S Y SN S S ~ ——— L 1 i J 1 1 i 1 i] 1
1 Lo oA FE— ' 1 2 L 1 1 1 1 1 2
1 i [i L 1 - . . S i I It i G 1
R 8 R vy I —dee e M SSRGS S R B -
-
18 R PO . .
B b . - .
b - -4 7;1.-.J>_.A. L —
)] g
- [' i N S . i TR
Tt -
P -l S, - - - L S G - — ks
1 e
“Wher the assembler enc 5 to process subs-quen’
YR QU OT ang b tw ;Anner aebcrmed vader the DGRR pseuco

s encountered, norrmal assembly is resumod.

10201,

When DCAE is use 4 17 s alwavs used with 2 DGRR. Both instructions
should b= place ¢ noar tha heginning of the program deck with other
pseudn-cpera that effsct segment linkage. In this way, the coding
will contain (.1.:ut3‘;,uu,ed dcecumentation which describes the interaction
between segments.

DEFINE GLOBAL REFERENCE DGR

Function

One segment in a program must insure that storage is allocated for
data that must be available to other segments. The DGR pseudo-
operation is used to indicate the beginning of common storage in
this segment, ‘

1-83 12/6/63

Format

DGR must contain

e A symbol in the Reference Symbol
¢ DGR as the Operation

Assembler Action

DA was assigned to location 1000, reference symiy:l

When the assembler encounters a DGR, it automatically classifies the
Feference Symbol as an internal global symbol. The assembly then con-
: rues in its normal way; subsequent cards contain information about
siorage which must be allocated within the current segment.

L V) m

L ,:- MDY [ODUERATION DEPEZRAATION ”AR)\M!"[F;.'Y.‘-“
S 1 ’ e
\)
~E . e 1:' Bl safer cre
. Y RN pia A
g vy
. ¥ ’\1\. L o - [
P N 0N (SYI‘(‘W‘ i i S ki A
o l E :) i - LL 1
B L& b fhba
,, o - 8> :4*5 4 e .
K - A.‘i,)LLP O
Lol - — i ‘i — Q__{._.’ VTS U Y MO

:ombler encouniers the DGH the symbol WS is defined |
al symbol. The assembler then proceeds in the normal

ntery
aner. ks ing the following address assignments:

Address Assignment

Reference Symbol (Decirnal Notation)

A 1000
WS 1001
EENO 1001
EMPNAME 1003
EMPAY 1009
B 1011

1-84 12/6/63

Note

DGR should appear near the beginning of the program deck with the
other pseudo-operations that effect segment linkage. When it is used
this way, the coding will contain centralized documentation which des-
cribes interaction between segments.

EQUALS GLOBAL SYMBOL EQUG

Function

EQUG equates a local symbol to an external global symbol.

Format

EQUG must contain

e A local symbol as the Reference Symbol.

e EQUG as the Operation

e An expression containing one external global symbol in the Operation

Parameters.

Assembler Action

The assembler enters the local symbol in the Symbol Table with a flag
indicating that all references to that symbol are actually referencing
the external global symbol to which it has been equated.

1-85 12 6/63

Example

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
P u,
DATA NAME LEVE N s picT
s se i |Te 19]20] fezf Bf 24f2s URE
—~ S 4 i W N S 1 1 T G T I 1 %
"] 1 1 L n " 1 Il i [P S B
- F U R S | i 1 bt 1 L
. SY SPRIN.T. o o ho
PR R W S S| LA : PR S S S TR S S S |
. i 1 1 i 1 LY 4 5. 1 1 1 i 1 1 1 1 1 "
TA i TESSRSNEESE BRSNS S R SUNNIN S G +fL_- U ST S T SR TN [St
N i -
T.LME. AL, JE Q Lo G P LN T ILME =) S
PR o S T U S T S S S SN SRy SO S W R
S] N S i 1 L S b % 1 L i 1 Y 1 1 L i i I i
TR SR | .
- —Y - ' + ;r 1 L 1 1 i 1 L 'y 1 [U
L.o.g.P. , | LiD.s TN CALLL 2,0, LR
b N]
- 1 F IR T T} L i ., N f 1 1 PR Y n n s 1)‘ 1
TS 'S fer IS G NS A SO S S VY S U S R S
- ,LvJ__AAL,,AAA_LvV_.,‘;hiJ S 1 1 1 i 1 L I T SN G S i 1
| o o PR } PRIWNT by v v v,
i
Y L Lt ! n I 'l LS : i i i i L L N t I i i L
1 I
S S U S E SR % al : L L s P
R RN S 1 " L ‘rh i ‘: i 1 L 4 1

Assume that two different programmers were writing separate segments
of a production program, the following situation might occur. One pro-
grammer might define the symbol for his time calculation routine as
TIMECAL. The other programmer might refer to the same routire in
his segment as GENTIME-15. Similar referencing might occur with
PRINT and SYSPRINT. To equate the two sets reference symbols, the
pseudo-operation EQUG is used as shown.

The first EQUG instructs the assembler to substitute the external global
symbol SYSPRINT for the symbol PRINT. The second EQUG instructs
the assembler to substitute GENTIME-15 for TIMECAL, i.e., the in-
struction at symbolic reference LOOP will be treated as if it were
written:

LOOP I.DS GENTIME-15+20, 2

which results in
LOOP LDS GENTIME+5, 2

where GENTIME is now an external global symbcl.

1-86 12/6 63

Note

EQUG should appear near the beginning of the program deck with the
other pseudo-operations that effect segment linkage. When it is used
in this way, the coding will contain centralized documentation which
describes the interaction between segments.

Restriction

The following restrictions must be observed when equating a local symbol
to an external global symbol.

1. The external global symbol may be preceded by a plus (+) sign;
no other operators are allowed. If the external global symbol
is the first term in the Operation Parameters and is not pre-
ceded by a sign, the plus sign is implied.

2. The external global symbol may be followed by a plus (+) or a
minus (-) sign, or in the case of the last term of an expression,
by a blank or a comma (,). No other operations are allowed.

CALL SEGMENT AT LOAD TIME CALL

Function

Any given segment may contain a CALL pseudo-operation. The CALL
pseudo-operation indicates that the segments named in the Operation
Parameters are needed for the successful running of the given segment.
In contrast to INCL, CALL indicates that the required segments are
requested from a library tape and loaded by the loader at execution
time.

Format

CALL must contain
e CALL as the Operation

o In the Operation Parameters. the names of the segments which the
loader is to provide. These names are separated by commas.

1-87 12/6/63

ASSEMBLER ACTION

When the assembler recognizes a CALL, it extracts the segment names
from the Operation Parameters and places them in the program header
card.

KExample

OPERATION PARAMETERS

s TR
|

1 BT 8.2 6 1 HC.B.R.D,

REFE s MBO L OPERATION
Sv [¥)
TA L AME Levey N PICTURF OCCUR
cefi- iy qwlenl claz| Bl 2afes 40 | a1
1 . SR S - N i L 1 L 1 i 1 L 1 i 1 1 i . L 1 i —
AY) ya
- - ,t,_D<X‘G1M |IIMICITJJJL1LJI'-’I R P 1
‘ B P A T . L) S N S S T ' L T I L L L
— P - . 1 L L L L L i SV R ST L R S
- . P o

T.1.0hE.C.ARD,

L ! i n 1 Lo N L H 1

PRI
B.EN.DEDLC, .

) . FUNPRNFIRES A N S - 1 1 L L L i n

T.1.ME TP 1

e s R T S L ; L1 P Il

In this example, the assembler will inform the loader that two previously
assembled segments are required from the library tape before execution.
In this case, the names of the segments are TIMECARD and BONDEDUC;
th:se names are placed on the program header card.

'TLe 1struction at location A illustrates one important point, if the symbol
TIMETPI is assumed to be an entry point in the segment named
TIMECARD. The name of the segment need not be the same as one of

its entry points since entry points are defined globals in the "called"
segment.

CALL should appear near the beginning of the program deck with the other
pseudo-operations that effect segment linkage. When it is used in this
way, the coding will contain centralized documentation which describes
the interaction between segments.

1-88 12/6/63

INCLUDE LIBRARY SEGMENT INCL

Function

Any given segment may contain an INCL pseudo operation. The INCL
pseudo-operation indicates that the segments named in the Operation
Parameters are needed for the successful running of the given segment.
In contrast to CALL, INCL causes that the required segments to be
supplied at assembly time.

Format

INCL must contain

e INCL as the Operation

e In the Operation Parameters, the names of the segments which

are to be supplied. These names are separated by commas.

Assembler Action

When the assembler encounters an INCL, it extracts the segment names
from the Operation Parameter and places them in the program header
card. In addition, the system tape is searched for the named routines
which are then appended to the segment begin assembled. An indica-
tion is given to the user if the segment cannot be found.

Example
'][e L T T T T Rk el T
P1C UR e ol o
] 4t

Lo i . t S U T S S DAPMIS AT SOV SN S N S (Y U SR S

-~ ~ !
IR -)(AJ. . P I:ka,l U O S ST S G Y oy Y S S

I
+

T U N WU VOV UUUv i EpUS Uity WSS RSN JUSY ST S S
U S 6 S A ST PES §

e e S v i

INCL I BT PE , TRC.ARD., PP INT.
CALL TIMECARAT, Gt el
e Ty, e T
3 1 -

1-89 12/6/63

In this example, the programmer requests three segments at assembly
time: IOTAPE, IOCARD and PRINT. These segment names are extract-
ed and placed on the program header card. When the segment has been
assembled, the system tape is searched and the previously assembled
segments are punched.

The instruction location A illustrates one important point if the symbol
101 is assumed to be an entry point in the segment named IOTAPE. The
name of the segment need not be the same as one of its entry points since
entry points are defined as internal globals within the "included" segmert.

Note

INCL should appear near the beginning of the program deck with the
other pseudo-operations that effect segment linkage. When it is used

in this way, the coding will contain centralized documentation which des-
cribes the interaction between segments.

INCLUDE SYMBOLIC SEGMENT INCS

Function

INCS allows the programmer to specify the names of sepments which
he wishes to have reassembled with his program. Sections of the pro-
gram library may be kept in symbolic form and assembled with the
current segment.

Format

INCS must contain

e INCS as the Operation

e In the Operation Parameters, the names of the segments which are
to be assembled with the current program. These names must be

separated by commas.

Assembler Action

When the assembler encounters an INCS, it extructs the segment names
from the Operation Parameters and retains them in a table. At the end
of Pass I, these symbolic segments are located on the system tape. The
assembler then continues to process these segments just as if they had
been placed within the programmer's input.

1-90 12,6,/63

Example

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
—[S\I Y%
. DATA NAME vodo i sEVEH Lo N L e Lk PICTURE
+
RS ENUS NI R W R N T S Y i n (1 L I Lo It 'l F—
N N L) — 1 AL) 1 ! L 1 1 1 1 I i n "
P O N N ST SR B SO T TR S S S S S S S S
L . T N.CIL LT APE THCAHARD
e JTINCS ¢cRr.Zs PART.S, . .
-+ —t b L4 - .;_.,..m: . !A L 1 % II 4. 1 4 1 1 L i i
B T SN SO Y S N N 1 L i L 1 " 1 n L [
P S S 1{,,;34_,‘ ; ; P

In this example, the programmef requests two segments at assembly
time: GROS and PARTS. The INCS pseudo-operation specifies that
these segments reside on the system tape in symbolic form. At the end

of Pass I, the system tape is searched and the two segments are located.

These segments are then assembled with the current segment.

Note

INCS should appear near the beginning of the program deck with the other
pseudo-operations that effect segment linkage. When it is used in this
way, the coding will contain centralized documentation which describes
the interaction between segments.

BLOCK STARTED BY SYMBOL IN THE LOADER AREA BSSL

Function

BSSL allows the programmer to allocate storage in the memory that is
occupied by the loader. BSSL is described under Memory Allocation
Pseudo-Operations.

BLOCK PRECEDED BY SYMBOL IN THE LOADER AREA BPSL

BPSL performs a function similar to BSSL. BPSL is described under
Memory Allocation Pseudo-Operations.

1-91 12/6/63

LAST SYMBOL IN BLOCK IN THE LOADER AREA LSBL

LSBL performs a function similar to BSSL. LSBL is described under
Memory Allocation Pseudo Operations.

ACCUMULATOR REFERENCE POINT IN THE LOADER AREA ARPL

ARPL performs a function similar to BSSL. ARPL is described under
Memory Allocation Pseudo-Operations.

MEMORY ALLOCATION PSEUDO-OPERATIONS -

BLOCK STARTED BY SYMBOL BSS

Functipl

BSS reserves a block of consecutive memory locations and defines a
Reference Symbol as the first of the reserved locations.

Format

BSS must contain

e A symbol or blanks as the Reference Symbol

e BSS as the Operation.

e An expression in the Operation Parameters for the number of words

to be reserved by the BSS.

Assembler Action

The Reference Symbol is defined as the current value of the location
counter. The location counter is then increased by the value of the ex-
pression in the Operation Parameter; thus, the assembler reserves a

1-92 12/6/63

block of memory which is equal in length to the value of the expression.
The symbol, therefore, represents the first location in the reserved
block. BSS reserves memory; however, it does not clear the reserved

area.

by a BSS will initially contain zeroes.

Examples

Therefore, the programmer may not assume that an area reserved

Assume that the current value of the location counter is 100.

1.

REFERENCE SYMBOL

OPERATION

OPERATION PARAMETERS

BLOCK STARTED BY SYMBOL IN THE LOADER AREA BSSL

DATA NAME
9 16

SV u
Levey N €
a 18|20 cf 22 24

28

RL{JC l'ﬂl i N

1.0,

PN S S TN NN N S T B

IBSsS 1

In example 1, the BSS defines RECA as 1100 and reserves 110 locations

(1100-1109).

2- S T S G T S |

I

R W YR S|

ey
r.,ll

a

1 L L T S S | o1

'
1

S TE .

Lod

eloul
2[8.5]

0
)

n

|
TR R T T R S T
L

Q0.
£

In example 2. SIZE equals 100; therefore the BSS reserves 100 locations

(1110-1209).

3.

Loei

Co.DIE

"

In example 3, the BSS defines CODE as 210, the current value of the lo-
Since no locations are to be reserved, the location count-

cation counter.
er remains at 1210.

Notes

1. All symbols used in the Operation Parameters of a BSS must
have been previously defined (see Previously Defined Symbols,

page 1-15).

2. The result of evaluating the expression ir the Operation Para-
meters must be absolute (see Relocation Errors, page 1-35).

1-93

12/6/63

BSSL reserves a block of consecutive memory locations and defines a
Reference Symbol as the first of the reserved locations. Unlike BSS,

the block of reserved locations is not allocated "in line''; the block is
reserved in the area occupied by the loader. Thus, BSSL allows the
programmer to make use of the entire computer memory for his applicé.-
tions because it gives him the facility to overlay the loader.

Format

BSSL must contain

e A symbol as the Reference Symbol

e BSSL as the Operation

e An expression in the Operation Parameters for the number of words
to be reserved by the BSSL.

Assembler Action

The expression in the Operation Parameters is evaluated to determine

the number of words to be reserved. This value and the Reference Symbol
are placed in the symbol table with a special flag. At the end of Pass L,
the assembler punches this information so that the storage can be allocated
when the program is loaded. When the loader reserves this memory, i:
does not clear the allocated area. Therefore, the programmer must not
assume that the area reserved by a BSSL will initially contain zeroes.

1-94 12/6/63

Example

REFERENCE SYMBOL OPERATION OPERATION PARAMEYERS
™,) PICTURE
° DATA NAME vofirlie V¥l 20 " 22| E| 2af2s
i 4 XL 1 4 L 1 “ L N 1 1 4 A 4 1 i 1 1 1 B I
Il Il] 1 1 PR . 1 F I Bt L s 1 1 4 1 i i "
1 1 1 1 1] LI 1 } I 1 1 'l i L Il 1 e
1 1 1 L 1 1 B 5.5 3'. 1 1 L 1 1 i VU B
B. ot 1 JE'S 1 i B 5 .S le o i i 1 i 1 1 S T}
N ooy oo BISS L 5.0,0, , , . N
LT, e RIS S L P00 00 0
P S S 1 S5 b S TR SN S T N B |
TS TN LI T S VR SR S § P T S S S |
S S S S B A P S G S SO SN TR U TS T B
I I i 1 1 1 A ! [} 1 1 1 L '

In this example, if we assume that symbol A is assigned to location 7500,
symbol B will be assigned to location 7502 and symbol D will be assigned
to location 7503. Symbolic reference IN will be punched in the binary
deck with an indication that a block of 500 memory locations are to be re-
served by the loader. The symbol IN will be assigned to the first location
of this block.

Symbolic reference OUT will be punched in the binary deck with an indica-

tion that a block of 100 memory locations are to be reserved by the loader.

The symbol OUT will assigned to the first location of this block.

In this example, a block of 500 locations is reserved starting at symbolic
location OUT. If there are other "loader area'" pseudo-operations in the
program, there is no guarantee that the two blocks of reserved locations
will be next to each other in memory. Thus, the programmer may not
assume that IN+500 is location OUT.

Notes

1. All symbols used in the Operation Parameters of aBSSL must
have been previously defined (see Previously Defined Symbols,
page 1-15).

2. The results of evaluating the expression in the Operation Para-
meters must be absolute (see Relocatable Errors, page 1-35).

3. BSSL should appear near the beginning of the program deck with
the other pseudo-operations that allocate storage in the area
occupied by the loader. When it is used in this way, the coding
will contain centralized documentation that describes the over-
lay of the loader.

1-95 12/6/63

_BLOCK PRECEDED BY SYMBOL BPS

Function

BPS reserves a block of memory locations within a program and defines
a Reference Symbol as the location which immediately precedes the block.

Format
BPS must contain

® A symbol or blanks as the Reference Symbol

» BPS as the Operation

® An expression in the Operation Parameters for the number of words
to be reserved by the BPS.

Assembler Action

If there is a Reference Symbol, it is delined as one less than the current
value of the location counter. The jscation counter s then increased by
the value of the expression in the Operation Parameters; thus, a block

oI memory is reserved which is equal in length to the value of that ex-
pression. BPS reserves memory: however, it does nct clear the reserved
wrea. Therefore, the programmer may not assume that an area reserved
vy a BPS will imitially contain zerors,

Assume that the current value of the location counter is 2000.

FREFERENCE SYMBL @, D CPERATION PARAMETER

FICTURE

9z ST I Y

i
4 ~| IJDJ;_,_.L;J,AL 1 PR | 1 L Il i

-,] i e
T SLEa . B PS,

I B P S S

S - ,
"he BSS defines TABLEL as 2000 and €eserves 10 locations (2000 - 2009).
“he BPS defines TABLEZ2 as 2009 and reserves 10 locations (2010 - 2019).

1-96 12/6/63

Since TABLE1 was defined by a BSS and represents the first location in

a reserved block, fixed index register 1 must be set to zero if the pro-
grammer desires to obtain the first item from TABLEL; one if the second
item is desired, etc.

TR S S G S S

S T VU S N S (]

b——

[S B S

———t o

b— oo gl

e W B S T St

R I SN S G

o T S

L+ F R FFF R K
O N N ST S S S &

I N T G U A A A

R S S T U S S

1-97 12/6/63

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
[u,
DATA NAME LEVEL N e PICTURF
9 16 Q1718 18] 20 cf 22 24f 28
S S S SO T G B I P SN GO SR SR SN NN SIS S N SO PR
SR IR T G L L i N ' VR i L 1 "
R N Y A O U LY ! - 1 + 1 1 It L 1 1 1 L IO
R 'S 4 O il 4« b
DN T R COY: SRR S U D
A 4 1 1 L [T 1 - L 1 1 1 1 1
TS S G PR R Lo L
PO OGO - I PR L s U S S B
- PO S } Lo PN FRR S S
G S S T S . [Lo R
- N S— i 1 1 L L i 1 L —_-— [S —
I T S SRS S S S R R T R e L L

Since TABLE2 was defined by a BPS and represcnts the location which
precedes the first position of the reserved block. fixed index register

1 must be set to one to obtain the first item from: TABLEZ2; two tc ob-
tain the second item, etc. Because TABLE2 has been defined by a BPS,
any of the 10 items from the table may be obtained by loading index re-
¢gister one with the table position of the desired item.

Notes

1. All symbols used in the Operation Parameters of a BPS must
have been previously defined (see Previously Defined Symbols,
page 1-15).

2. The result of evaluating the expression in the Operation Para-
meters must be absolute (see Relocation Errors, page 1-35).

BLOCK PRECEDED BY SYMBOL IN THE LOADER AREA BPSL

Function

BPSL reserves a block of consecutive memory locations and defines a
Reference Symbol, as the location which immediately precedes that
block. Unlike BPS, the block of reserved locations is not allocated "in
line"; the block is reserved in the area occupied by the loader. Thus,
BPSL allows the programmer to make use of the entire computer
memory for his applications since it gives him the facility to overlay
the loader.

Format

BPSL must contain

e A symbol as the Reference Symbol

[BPSL as the Operation

[An expression in the Operation Parameters for the number of words
to be reserved by the BPSL.

1-98 12/6/63

Assembler Action

The expression in the Operation Parameters is evaluated to deter mine
the number of words to bé reserved. This value and the Reference
Symbol are placed on the symbol table with a special flag. At the end
of Pass I, the assembler punches this information so that the storage
can be allocated when the program is loaded. When the loader reserves
this memory, it does not clear the allocated area. Therefore, the
programmer may not assume that the area reserved by a BPSL will ini-
tially contain zeroes.

REFERENCE#MBOL DPERATION OPERATION PARAMETERS
i Y%
N DATA NAME 16 l17 %szvss. 20 NC 22 gl L. 0.5 PICTURE
-l 1 i L i 1 1 L A i i ! 1 1 1 1 1 1 1 1 i 1
Lt f IS T B : A1 ' T | I S T S| ¢ 1 L
‘S Y N S S ¢ 1 1 1y L T 1 L " | S 1
AT 8IS .S 2 . PR
R . J8. 8.8 Lo oy . e
N 9.5 L 0.0, ., ., M .
WT B P.5 L 1.0.00 v vy
S G R IV S S S T B;i»ﬁ_‘ L'. L " I} i L n . L
— P 5,‘ L i L1 TR Lo« L -
S S S S T P T W SN SR TR B
ju Y L A 4 i ‘r‘ } L] i i L L ORI B

In this example, if we assume that symbol A is assigned to location
7500, symbol B will be assigned to location 7502 and symbol D will be
assigned to location 7503.

Symbolic reference IN will be punched in the binary deck with an indica-
tion that a block of 500 memory locations are to be reserved by the
loader. The symbol IN will be assigned to the location which immediate-
ly precedes this block.

Symbolic reference OUT will be punched in the binary deck with an indi-
cation that a block of 100 memory locations are to be reserved by the
loader. The symbol OUT will be assigned to the location which imme-
diately precedes this block.

1-99 12/6/63

[n this example, a block of 500 locations is reserved starting at symbolic
location IN+1 and a block of 100 locations is reserved starting at sym-
holic location OUT+1. If there are other ""loader area' pseudo-operations
in the program, there is no guarantee that the two blocks of reserved
locations will be next to each other in memory. Thus, the programmer
may not assume that IN+500 is location QUT.

Notes
1. All symbols used in the Operation Parameters of a BPSL must
have been previously defined.

2. The results of evaluating the expression in the Operation Para-
meters must be absolute (see Relocations Errors, page 1-35).

3. BPSL should appear near the beginning of the program deck
with the other pseudo-operations that allocate storage in the
area occupied by the loader. When it is used in this way, the
coding will contain centralized documentation that described
the overlay of the loader.

'LAST SYMBOL IN BLOCK LSB

Function

1.SB is used to reserve a block of consecutive memory locations and to
assign a Reference Symbol to the last of the reserved locations.

Format

1.SB must contain

® A symbol or blanks as the Reference Symbol
» ISB as the QOperation

® An expression in the Operation Parameters for the number of
words to be reserved by the LSB.

1-100 12/6/63

Assembler Action

The location counter is increased by the value of the expression in the
Operation Parameters; thus, the assembler reserves a block of memory
which is equal in length to the value of that expression. The Reference
Symbol is defined as one less than the value of the location counter, after
if has been increased. The symbol, therefore, represents the last
location in the reserved block. LSB reserves memory; however, it does
not clear the reserved area. Therefore, the programmer may not assume
that an area reserved by an LSB will initially contain zeroes.

Example

Assume that the current value of the location counter is 1100.

REFERENCE SYMBOL OPERATION CPERATION PARAME "£RS
IS [v)
DATA NAME LEVEL ™ S PICTURE
9 16 J17] ' tal20| 22 24 28
_IAQL‘EJEMJ_M_L‘,A.L_FSIP\ ‘11 1 i R T E— 1 S I
_G.—LMJMAL.YL,,L, B%S_LS r I SR S SR
i

The LSB reserves four locations (1100-1103) and defines TOTPAY as 1103.

The BSS defines GROPAY as 1104 and reserves four locations (1104-1107).

|t L . Ti PR T G S .

R QIS S — L. L DA?; ! .R:D’JP i.ﬁ.Ly|+15 L 1
R Y S TR PRy .

L e ST R { 12T P.AY. s

In the example, the programmer may address the area reserved by the
LSB symbolically. The area reserved by the BSS must be addressed
relative to the symbol, GROPAY.

1-101 12/6/63

LAST SYMBOL IN BLOCK IN THE LOADER AREA LSBL

Function

LSBL reserves a block of consecutive memory locations and defines a
Reference Symbol to the last of the reserved locations. Unlike L3B, th2
block of reserved locations is not allocated "in line"; the block is re-
served in the area occupied by the loader. Thus, LSBL allows the
programmer to make use of the entire computer memory for his appli-
cations since it gives him the facility to overlay the loader.

Format

LSBL must contain

e A symbol as the Reference Symbol

° ISBL as the Operation

e An expression in the Operation Parameters for the number of words

to be reserved by the LSBL.

Assembler Action

The expression in the Operation Parameters is evaluated to determine
the number of words to be reserved. This value and the Reference
Symbol are placed on the symbol table with a special flag. At the end
of Pass I, the assembler punches this information so that the storage
can be allocated when the program is loaded. When the loader reserves
this memory, it does not clear the allocated area. Therefore, the
programmer may not assume that the area reserved by an LSBL will
initially contain zeroes.

1-102 12,6/63

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
1S [¥)

[DATA NAME 16 fr7 |55 Vo) eo YNc 22 SE 24 25 PreTURE
P S TR S S S [I PSR ST WA TN SN ST SN S S S |
P SO TR S R . AR VAN S A S SO T SU SN S|
1 1 Y L 1) .t 1 } 1 1 1 A 1 L 1 1
A, ., JBIS.S b S . o
— PR T RIS .S B N R U B N IS
LN, oo JrlsiBiL 5,00, 1 o M
.o T, o 0 QLS B L 1,0.,0 v v v o
D. |Bls.s; 4, .
P R o« | | W O S G Bt N
L A1 1 L L ‘\ il 1 I PR 1 'l 1 I
[S Y T I T | . ! [T WO T TS N T B P
e y S S I ! P U (I S S W

In this example, if we assume that symbol A is assigned to location
7500, symbol B will be assigned to location 7502 and symbol D will be
assigned to location 7503.

Symbolic reference IN will be punched in the binary deck with an
indication that a block of 500 memory locations are to be reserved by
the loader. The symbol IN will be assigned to the last location in this
block.

Symbolic reference OUT will be punched in the binary deck with an
indication that a block of 100 memory locations are to be reserved by
the loader. - The symbol OUT will be assigned to the last location of
this block.

In this example, a block of 500 locations is reserved starting at sym-
bolic location IN-499 and a block of 100 locations is reserved starting

at symbolic location OUT-99. I there are other "loader area' pseudo-

operations in the program, there is no guarantee that the two blocks of
reserved locations will be next to each other in memory. Thus, the
programmer may not assume that IN+100 is location OUT.

1-105 12/6/63

MNote

<

. All symbols used in the Operation Parameters of LSBL must have

been previously defined. (See Previously Defined Symbols, page 1-15.)

. The result of evaluating the expression in the Operation Para-

meters must be absolute (see Relocation Errors, page 1-35).

. LSBL should appear near the beginning of the program deck with

the other pseudo-operations that allocate storage in the area
occupied by the loader. When it is used in this way. the coding
will contain centralized documentation that describes the over-
lay of the loader.

'ACCUMULATOR REFERENCE POINT ARP

Function

ARF insures the programmer that those symbols which he uses as accumu-
lator references are defined as locations which are evenly divisible by

four.

This need occurs because of the hardware requirement that the

high order word of the quadruple accumulator be a memory location
which is evenly divisible by four. This concept is referred to as 0 MOD
4 and means that the number of the memory location must produce a
zercv remainder when divided by four.

)

|

Format

ARF must contain

[]
L]
L]

A symbol or blanks as the Reference Symbol

ARP as the Operation

An expression in the Operation Parameters for the number of

words to be reserved by the ARP.

The ARP is executed in three steps:

1.

The assembler determines whether the current value of the
location counter is evenly divisible by four. I it is, the

1-104 12/6/63

assembler goes on to Step two. Otherwise, the assembler
advances the location counter to the next location which is
evenly divisible by four. In this process, from one to three
locations may be ""skipped over''. These skipped locations are
filled with Fill words which are generated by the assembler (see
Fill on page 1-111. It is strongly recommended that the Fill
instruction be used in conjunction with ARP to prevent errors
which might occur if for any reason the program should branch
to a skipped location).

2. It there is a Reference Symbol, it is defined as the current
value of the location counter as adjusted in Step one.

3. The location counter is now increased by the value of the ex-
pression in the Operation Parameters; thus, reserving a block
of memory which is equal in length to the value of that expres-
sion. ARP reserves memory; however, it does not clear the
reserved area. Therefore, the programmer may not assume
that an area reserved by an ARP will initially contain zeroes.

Example

FOFTRENTE Soman CUERATIDN DL RA LN TDado. o
TS :
-
- i Db T Ta
: ! , i

e RHEN NG R EY B R

Coao Co IE OV, SRR U LIV T GO R S
Mma. s TAQLKJIJ\/ 3 H L] — e ﬂ‘ 124,4 P SO S ST
SEeT N C Lo aaas

AT .L) N‘FJ K P‘

In this example the location counter is set to the next location which

Is evenly divisible by four. The intervening words are Filled and two
input areas, MASTERIN and DETAILIN, are reserved. The accumu-
lator may now be located around various portions of the input records.

1-105 12/6/63

Notes

1. All symbols used in the Operation Parameters of an ARP must
have been previously defined (see Section Previously Defined
Symbols, page 1-15).

2. The result of evaluating the expression in the Operation Para-
meters must be absolute (see Relocation Errors, page 1-35).

ACCUMULATOR REFERENCE POINT IN THE LOADER AREA _ ARPL,

Function

ARPL reserves a block of consecutive memory locations starting at a
0 Mod 4 address and defines a Reference Symbol as the first of the
reserved locations. Unlike ARP, the block of reserved location, when
using ARPL, is not allocated "in line". The block is reserved in the
area occupied by the loader. Thus ARPL allows the programmer to
make use of the entire computer memory for his applications since it
gives him the facility to overlay the loader.

Format

ARPL must contain

e A symbol as the Reference Symbol

e ARPL as the Operation

L) An expression in the Operation Parameters for the number of
words to be reserved by the ARPL.

Assembler Action

The expression in the Operation Parameters is evaluated to determine
the number of words to be reserved. This value and the Reference
Symbol are placed on the symbol table with a special flag. At the end
of Pass L the assembler punches this information so that storage can be
allocated whenthe program is loaded. When the loader reserves this
memory. it does so after stepping its data location counter to a 0 Mod
4 state. The procedure is similar to the assembler action on ARP with
one exception: Fill words are not generated by the loader. When the
loader reserves this memory, it does not clear the allocated area.
Therefore, the programmer may not assume that the area reserved

by ARPL will initially contain zeroes.

1-106 12/6,/63

‘j;‘;sl;—snzwce syMBsoL OPERATION OPERATION PARAMETERS
i ls u
TATA NAME !lT;VEL_ N SE PICTURE

s vefrjte teleo] ¢fe2 2af 25

—AVA,,LA_J__lg,Jf,,L,“J, Br.S 'EliL 2., PR S RS S TN S R S
ﬁ: [T T L B,5A5¢ Lo v PR L4 L
;,:N;, L I B A_ R_LE,LL 5.00, L SO S S T S |
| 12 S R AU 1. R.D;LL o T« PR .
108 T R PB—‘—S S ; Y ; L

In this example, if we assume that symbol A is assigned to location
7500, symbol B will be assigned to location 7502 and symbol D will be
assigned to location 7503.

Symbolic reference IN will be punched in the binary deck with an indica-
tion that a block of 500 memory locations starting at a 0 Mod 4 cell are
to be reserved by the loader. The symbol N will be assigned to the
first location (0 Mod 4) of this block.

Symbolic reference OUT will be punched in the binary deck with an
indication that a block of 100 memory locations starting at a 0 Mod 4
cell are to be reserved by the loader. The symbol OUT will be
assigned to the first location (0 Mod 4) of this block.

In this example, a block of 500 locations is reserved starting at sym-
bolic location IN and a block of 100 locations is reserved starting at
symbolic location OUT. Further, both locations IN and OUT are
assigned to 0 Mod 4 memory locations. If there are other "loader
area' pseudo-operations in the program, there is no guarantee that
the two blocks of reserved locations will be next to each other. Thus,
the programmer may not assume that IN+500 is location OUT.

1-107 12/6/63

Notes

1. All symbols used in the Operation Parameters of an ARPL must
have been previously defined. (See Previously Defined Symbols,

page 1-15),

2. The result of evaluating the expression in the Operation Para-
meters must be absolute (see Relocation Errors, page 1-35).

3. ARPL should appear near the beginning of the program deck
with the other pseudo-operations that allocate storage in the
area occupied by the loader. When it is used in this way, the
coding will contain centralized documentation that describes
the overlay of the loader.

ACCUMULATOR AC_UM

Function

The ACUM pseudo- operation allows the program to establish a working
accumulator of 1, 2, 3,or 4 words and to define a symbol representing
the location of that accumulator. Further. it assures. through the
generation of Fill words (see FILL. page 1-111)that the area reserved
for that accumulator will be properly positioned in memory.

Note

Since the most significant word of the quadruple accumulator must al-
ways be in a location which is evenly divisible by 4. it follows that:

e The most significant word of the triple accumulator must always
be in a location which. when divided by 4. produces a remainder
of 1.

® The most significant word of the double accurulator must always
be in a location which, when divided by 4. produces a remainder
of 2.

1-108 12 6 63

e The most significant word of the single accumulator must always
be in a location which, when divided by 4, produces a remainder
of 3.

Format

ACUM must contain

® A symbol as the Reference Symbol

e ACUM as the Operation

o Inthe Operation Parameters, an expression for the size of the

accumulator.

Assembler Action

The assembler evaluates the expression in the Operation Parameters,
and, based on the value of that expression, adjusts the location counter
to the proper setting; producing a Fill word for each location skipped
while adjusting the location counter. The Reference Symbol is then
defined as the current value of the location counter and the value of

the expression is added to the location counter; thus, reserving space
for the specified accumulator.

Note

The expression for the accumulator size may be zero, one, two, three,
or four. If the expression is zero, the ACUM will be treated as an
ARPO . If it exceeds four, it will be flagged and treated as an

ACUM 4. ACUM reserves memory; however, it does not clear the
reserved area. Therefore, the programmer may not assume that an
area reserved by an ACUM will initially contain zeroes.

1-109 12/6/63

Examples

The programmer requires a single accumulator.

1
REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
DATA NAME LEV%L SVN USE PICTURE
9) wef17!7s 19]20] ¢f22 24f 25
- L . - e i A RIP 3! 1 i 1) I 1 1 1 .
Ac.comt, o JBS.S T R
SIS DU PR UG SN Y .

Assume that the current value of the location counter is 1010; then the
ARP 3 Fills locations 1010-1011 and sets the location counter to 1015.
The BSS 1 defines ACCUM1 as 1015 and reserves memory for the singls
accumulator. Five locations, 1010-1014 are wasted.

2.

Loy
PR S L

A :
FAA_QLLAUIM,

Assume the location counter is positioned at 1010; then, the ACUM A
Fills location 1010 and advances the location counter to 1011. ACCUM.
is defined as 1011, a single accumulator, and memory is reserved for
a single accumulator. Only one location, 1010 is wasted.

3.

F.LCA o c [0 S U S S NS T S T
e JDIELCIQ Y2, 0,002,301 L
P W 1 i 1 L I) U PR M - 1 "
I L L LT : I 1. i | O S S
" Lo L L LAY I T 1 P L 1 Il ;',
1 PR N L TR N S| PR TN R
IS TR T T SR T LA A T S S P S S S S S YN
1 L 1 A .l T{ " Nt 1 1 1 " i L1 N —
IR Lo, L F.L.CA PO T S
AR (1Y - CRAwP AN, . o o

1-110 12/6,/63

Example three sets the location to the next location which is evenly
divisible by four, Fills the intervening locations, and forms a four-word
constant FICA. Later instructions locate the accumulator at FICA

and determine if GROPAY exceeds 480000,

Notes

1. All symbols used in the Operation Parameters of an ACUM
must have been previously defined (see Previously Defined
Symbols, page I-15).)

2. The result of evaluating the expression in the Operation
Parameters must be absolute (see Relocation Errors,
page 1-35).

FILL WORD FILL

Function

FILL allows the programmer to specify the contents of Fill words
produced by the assembler during the processing of an ARP or an
ACUM.

Format
FILL must contain

A mnemonic machine operation code as the Reference Symbol
FILL as the Operation

An expression in the Operation Parameters for the address
An expression in the Operation Parameters for the address of
the Fill word.

Assembler Action

The basic assembly language maintains a simulated line of coding
with which it fills location skipped during the processing of an ARP
or ACUM. Initially, this line is set to HLT O.

1-111 12/6/63

When a Fill word is required, the assembler supplies this line of coding.
FILL instructs the assembler to reconstruct the sirmulated line of coding.
The mnemonic operation code from the Reference Symbol of the FILL be-
ccmes the Operation of the simulated line of coding; the Operation Para-
meters from the FILL complete the simulated line of coding. Any Fill
words produced by the assembler, prior to another FILL, will contain
the command specified in the FILL.

Examples

1.
REFERENCE SYMBOL OPERATION OPERATION PARAMETERS

SV uS
v PATA NaME 16 17|76 Vo] 20 " 22| | a2 rleTuRE
o e jE DS A L
L 1 1 L 1 N H DIS P)l I 4 1 + 1 i 1 4 i 1
PXB . o JFlrL .U.N\.F’l).é. PR S
oo JARLP W T TR R

In example one, the Fill line is set to PXB DUMP, 6 to be used if loca-
tions are skipped during execution of the ARP. Assume that the location
counter for LDS is 1000. The coding above would result in the assembler
assigning the following location values:

1000 LDS A
1001 ADS B
1002 PXB DUMP, 6
1003 PXB DUMP, 6
1004 ARP 1000
2,
JXIBI 1 1 1 ' F ‘ |L L MllLN_LJ—J—LﬁL'Z_L_,_L‘:Q——L_I
(A GG oM., JAlc UM 3

Example two sets the Fill line to a PXB MONITOR, 6 and uses the PXB
as Fill if locations are skipped during execution of the ACUM.

1-112 12/6/63

CONSTANT PRODUCING PSEUDO OPERATIONS

Often in writing a program, the programmer will find that some of the
items with which he is working remain static during the duration of his
program. Such items are called constants, and they occur in nearly
all programs.

A constant may be classified in terms of its composition as numeric,
alphabetic, or alphanumeric.

A numeric constant is composed of some combination of the numerals
zero to nine and may contain a leading plus sign or minus sign. An
alphabetic constant is composed of some combination of the 26 alpha-
betic characters; it has no sign. An alphanumeric constant may contain
numeric, alphabetic, or special machine characters; it has no sign.

In terms of its use, a constant may be classified as either numeric or
alphanumeric. A constant is numeric when it is used computationally.
that is, when it is involved in an arithmetic or logical operation. If 2

constant is not used computationally. it is considered to be alphanumeric.

For example, the programmer is producing a printed report. each page
of which will contain a page number and a date. The page number will
change with each page; however. the remaining data is constant:

PAGEANO. AXXXX DATE 011563

To take care of the requirements. the programmer creates four
constants:

1. PAGEANO
2. DATE

3. 011563

4. 1

In terms of composition, the first constant is alphanumeric - letters and
symbols. The second constant is alphabetic - all letters. The third
and fourth are numeric.

In terms of their use, constants one. two and three are alphanumeric -

not computational. Constant four is numeric: it is used to update the
page count and is, therefore, computational.

1-113 12/6,/63

The pseudo-operations which are described on the following pages may
be used by the programmer to generate the constants required in his
program. They may also be used to set areas reserved for variable data
to an initial state.

DECS-DECD-DECT-DECQ

DECIMAL CONSTANTS

Function

These four mnemonics represent

DECS Decimal Single
DECD Decimal Double
DECT Decimal Triple
DECQ Decimal Quadruple

These four pseudo-operations are used to create decimal constants of
one, two, three or four words respectively.

Format

A decimal constant contains

e A symbol or blanks as the Reference Symbol.

e DECS, DECD, DECT, or DECQ as the Operation.

e In the Operation Parameters, a decimal number, with or without

a leading sign, as the constant.

The limitation on the number of digits which may appear in a decimal
constant is as follows:

DECS One to four digits
DECD One to eight digits
DECT One to twelve digils
DECQ One to sixteen digits

Assembler Action

The specified constant is right-justified and assembled into one, two,
three or four computer words depending upon the mnemonic operation
code. If it is preceded by a minus sign, the constant is assembled as

a negative quantity. If there is a leading plus sign or if there is no sig,
the constant is assembled as a positive quantity.

1-114 12/6/63

This coding produces the following results

If there is a Reference Symbol, it is defined as the location of the Decimal Location Content
word containing the least significant digit of the decimal constant.
Decimal points may not appear in constants generated by Decimal 1000 2000 K1 is defined as 1000
Instructions. 1001 0001 K2 is defined as 1001
1002 1234
1003 5678 K3 is defined as 1003
Example 1004 0000
- 1005 0012 K4 is defined as 1005
Assume that the current value of the location counter is 1000. 1006 1234
1007 5678
1008 9012 K5 is defined as 1008
1009 0000
1010 0000
1011 0123 K6 is defined as 1011
1012 1234
REFERENCE SYMBOL OPERATION OPERATION PARAMETERS 1013 5678
1014 9012
DATA NAME ';f vEL 5"N us' PICTURE 1015 3456 K7 is defined as 1015
9 i | tefrr e 19]ar] 22 Bl 2425 40| 4 1016 0000
';)\\ L 'DD?égj_éM 'r,;',o.o.o. s T NN Sy W W' i017 0000
/7R S T T TR S i, T S — 1018 0000
PRSI T Y3 TS 1019 1234 K8 is defined as 1019
IK.&5 . D e T i * 12,346 578906012 L
IK b DECT] L S O T N
K7 oo pecol +.1.2.3.4.56.67.89.0.1.2.34.5 6,
K& . ‘:‘_{DAE_ HeTol I T L VS S ALPHANUMERIC CONSTANT AN
ARV S ' L R DRI ENRE T E E S S S SO O S AT
‘Function
AN enables the programmer to form alphanumeric constants within his
program.
Format
An alphanumeric constant may contain
e A symbol or blanks as the Reference Symbol
e AN as the Operation
e A word count (1-13) in the second half of the Operation
o The characters of the alphanumeric constant in the Operation Para-
meters.
1-115 12/6/63

12/6/63 1-116 12/6/63

Assembly Action

If there is a Reference Symbol, it is defined as the current value of the
location counter, i.e., as the first word of the constant which is formed.
The assembler forms the number of words indicated in the second half

of the Operation. Each word contains four of the specified characters;
the first word contains the first four characters, the second word the next
four characters, etc. Since the Operation Parameters contains a max-
imum of 52 columns (25-76), the maximum word count permissible in

an AN is 13 (52:4). An alpha-numeric constant produced by AN may con-
tain any combination of valid machine characters including commas and
blanks. Commas may immediately follow the last character of the con-
stant in the Operation Parameters.

Examples
Assume that the location counter is 1000

1. .

LY TRENCFE SYMBO L DPERATION DFERATION PARAMETERS
S e -
| g8 Ys
DATA NAME | EvEL N € PICTURE
5 SRR A

16 2ot cl22 24 28

Aol

REFERENCE SYMBOL OPERATION - OPERATION PARAMETERS

s
DATA NAME LEVEY Y SE
9 161718 1e]20] 22 24) 28

Coa JANN, 1.3

PICTURE

In example four 13 words of blanks will be formed .

LAST SYMBOL ALPHANUMERIC LSAN

[recn AN e

In example one, MSG1 will be assigned to 1000 and form four words (1000-
1003) containing 16 characters from the Operation Parameters.

2.

8.8.G.J LNLAME&ML&M_AL

oo Lo Lol] 4+ L { Q‘,,‘I,, . FEUY SR L 1 4 4.1 L PO S WS
AL LlAJL *‘P’*Ljr:l:&a G.EBANO . .]

In example two, MSG2 will be assigned to 1004 and form two words (1004~
1005) containing eight characters from the Operation Parameters.

. e
T L
t&i&:.ju . _,_}mu_mlz,m

In example three, MSG3 will be assigned to 1006 and form two words
(1006-1007) containing eight characters from the Operation Parameters.

e

1-117 12/6/63

SR S 4 - [N N
O VoA keSS o

U GG U B S ST,

Function

1SAN enables the programmer to enter alphanumeric constants into his
program. It is identical in use to the AN pseudo-operation which was
just described, with the exception that the Reference Symbol is assigned
to the last word produced by the assembler.

Format

LSAN may contain

A symbol or blanks as the Reference Symbols

LSAN as‘the Operation

A word count (1-13) in the second half of the Operation

The characters of the alphanumeric constant in the Operation Para-
meters.

Assembler Action

If there is a Reference Symbol,it is assigned to the last word of a multi-
word constant which is formed by the assembler. The assembler con-
structs the number of words indicated in the second half of the operation.
Each word will contain four characters. The first word is taken from
columns 25-28 of the Operation Parameters; each suceeding word is con-
stracted from the succeeding four columns of the Operation Parameters.
An LSAN Operation allows for a maximum of 13 words to be entered in
the 52 columns (25-76). Any combination of valid symbols may be used
in the Operation Parameters.

1-118 12/6/63

Examples

Assume that the location counter is at 1000.

1.
REFERENCE SYMBOL OPFRATION OPERATION PARAMETERS
FY Yy
DATA NAME LEVEL N [PICTURE
9 16 17] s 19| 20 22 “| 24 28 40
G T N L S ANLS PeRAT FZRAERRIR, .

In example one,MSG1 will be assigned to 1004 and form five words taken
from the Operation Parameters. The last word will contain blanks since
there are only 14 characters specified.

2.

L—l—l*I__L_A. I — | + } + 2 —
N~ IIL]SAA!N!D! ! ; PA.G.EN~F, ey b

In example two, MSG2 will be assigned 1006 and the six characters in
PAGE -~ # will be found in the six high order position of location 1005 and
1006 with two trailing blanks. j

3.

i l C

n5.6.3. . . L<inlz 134567830

In example three MSG3 will be assigned to 1009 and the numbers 1---0
will appear in the high order ten characters position of words 1007-1009.

4. ey

e ' ‘ T

LANIS . |LS.Aa N T

WU T U L

< N L L

In example four, blanks will be assigned to location 1013 and four words
of blanks will be placed in words 1010-1013.

1-119 12/6/63

OCTAL CONSTANTS __OCTS-OCTD-OCTT-0CTQ

Fuiction

These four mnemonics represent

OCTS Octal Single
OCTD Octal Double
OCTT Octal Triple
OCTQ Octal Quadruple

These four pseudo-operations are used to Create octal constants of one,
two, three, or four words respectively.

Format

An octal constant may contain

¢ A symbol or blanks as the Reference Symbol

¢ OCTS, OCTD, OCTT, or OCTRQ as the Operation

® An unsigned octal number as the constant in the Operation Parameters.

The limitation on the number of digits which may appear in an octal
constant is as follows:

OCTS One to eight octal digits
OCTD One to sixteen octal digits
OCTT One to twenty-four octal digits
OCTQ One to thirty-two octal digits

Assembly Action

The specified constant is right justified and assembled into one, two,

three or four computer words depending upon the mnemonic operation
code. If there is a Reference Symbol, it is defined as the location of

the word containing the least significant digit of the octal constant.

1-120 12/6/63

Example ASSEMBLY OUTPUT CONTROL PSEUDO-OPERATIONS

Assume that the current value of the location counter is 2000.

, TITLE TTL
DATA NAME E» VR QVlN USE PICTURE
RS RN R TV TS 75 2 I B Function
o K, LlAv,,L,,l,,L,.A.,, V23 C«_xl,é,4 , - [I T T S R 1 et a4
£iiD o BT h ‘72 ‘ 3'3’1‘ T TTL allows the programmer to specify the heading line printed at the
ﬁ‘?‘ 2 e HE 2’-‘{1%* P -iLJ_leLKLIE:Ez—Sv:W%_J - top of each page of the assembly listing.
0K b . ﬁf Nk asd IRERSREN VI YT - Y
7 T ledTel T Ihhatesss 433000
z.K48..; .zC.TQ_ L i,_;,IAMESAALY.Qv U Ty S S,

Format

TTL must contain

This coding produces the following results: e TTL as the Operation

e A page heading in columns 25-76 of the coding form.

Decimal Location Content
2000 177777717 OK1 is defined as 2000
2001 00000012 OK2 is defined as 2001 A bler Acti
2002 17171717 ssembler Actlon
gggz 3)3(1)3(1)3(1)3 OK3 is defined as 2003 When the assembler encounters a TTL in_Pa}ss II, it prints the card
2005 00001234 OK4 is defined as 2005 containing the TTL, slews the assembly listing to the top of page; and
2006 00000000 prints columns 25-76 of the TTL as the page heading. This same
2007 00007777 heading w;ll be printed on‘all subsequent pages of the listing until a
2008 66665555 OKS5 is defined as 2008 new TTL is recelvefi. 13.'r1or to encountering a TTL, the assembler
2009 00000000 will supply the heading line.
2010 00000000
2011 00123456 OKG6 is defined as 2011 Example
2012 00000600 L
2013 00000000 OPERATION OPERATION PARAMETERS
2014 00776655 % Y%
2015 44332211 OK7 is defined as 2015 17 [T V58] 20 | N 22| | 2e)es preTune T P)
2016 00000000 T.T.1 IPANM.Rg L L, MASTER FI.LE [UPDATE,
2017 00000000 S — S S S S S WSS S S SN S Y EP S St S
2018 00000000 e P S S ST DU SR RS R
2019 12345670 OK8 is defined as 2019

1-121 12/6/63 1-122 12/6/63

EJECT PAGE EJT

1IDENTIFY BINARY OUTPUT IDEN

Function

EJT causes the assembler to slew the assembly listing to the top of the
page before reading the next instruction.

Format

EJT contains EJT as the Operation.

Assembler Action

When the assembler encounters an EJT in Pass II, it prints the card
containing the EJT and slews the assembly listing to the top of the

page.

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
IS, u
DATA NAME LEVEY N SE PICTURE
» 1617 |18 19] 20 | 22 24Q25
IS N SN S SRS W1 Il i IR SR SR S W VO B
T I 4 1 [Lot '

1-123 12/6/63

Function

IDEN allows the programmer to specify the identification, in columns
"1'7-80, for his binary cards.

—J!-‘ormat
IDEN must contain

IDEN as the Operation
e Four identification characters in columns 25-28,

Assembler Action

When theassembler encounters an IDEN, it causes the characters
contained in columns 25-28 from the IDEN to be punched in all binary
output cards. Any four characters selected by the programmer may be
used as identification. If the source program does not contain an IDEN,
the identification field in the binary output cards is blank.

"
lExample
REFERENCE SYMBOL OPERATION T ORERATION PARAMETERS
PY US
DATA NAME Levey N - PICTURE
[16 §17]18 19j20] ¢ 22 24f 25
o o JIIDEN GeEeeD, .
1 1 1) D T 4] I 1 1 USSR | 1 1 1 i i
Restriction
fiichbdnctutmoshed i

The source program may not contain more than one IDEN,

1-124 12/6/63

FULL BINARY CARDS] - FULL

Function

The normal binary output card contains such data as card type, word
count, checksum, instruction flags, instructions,and identification.
Occasionally, as in the case of a memory load program, it may be
necessary to produce output cards which contain conly instructions.
FULL controls the format of the binary output card, by instructing
the assembler to produce its output in the full card format - 40
instructions per card.

Format

FULL contains FULL in the Operation.

Assembler Action

When the assembler encounters a FULL it produces the binary pro-
gram in the full card format,

Example
REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
’sV US
DATA NAME LEVEL N e PICTURE
° te]17]7a "vel20| o 22 24f 28
Il VS S 'S ‘U\LyL L L IS W S 1 1 I 1 I
SR IR S SR SR | TS S A SR N
T T
1-125 12/6/63

SYMBOLIC ANALYZER SYAL

Function
SYAL instructs the assembler to produce a symbolic analyzer tape

during Pass II and to engage the Symbolic Analyzer Program upon
termination of Pass II.

Format

SYAL contains SYAL as the Operation.

Assembler Action

When the assembler recognizes the SYAL in Pass I, it signals Pass II
to produce the symbolic analyzer tape and to engage the Symbolic
Analyzer upon termination of Pass II. The symbolic analyzer portion
of the assembler is optional but it is highly recommended. Its use
requires an additional tape unit.

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
® Y%
DATA NAME Levey N < PICTURE

9 161718 19j20] C]22

L1 F U R S| L YIA L y S S S S W | IR RS TR SN DU W'}

' [L TN W T D PR RS N S | 14

24Q 28

1-126 12/6/63

MISCELLANEOUS PSEUDO-OPERATIONS

ORIGIN ORG

Function

ORG sets the location counter to a specific value during the assembly
of a program,

Format

ORG may contain

e A symbol or blanks as the Reference Symbol
o ORG as the Operation

® An expression in the Operation Parameters to indicate the value
at which the location counter is to be set.

Assembler Action

If there is a Reference Symbol, it is defined as the value of the expres-
sion in the Operation Parameters. Since ORG sets the location counter
to a specified value, it causes the next assembled instruction to be as-
signed to the location represented by that value. The process is com-
pleted in Pass II where the assembler informs the loader of the fact

that a change in the location counter has occurred. This is accomplished

by means of flags on the binary output.

Examples
1.
REFERENCE SYMBO L OPERATION OPERATION PARAMETERS
F‘/ US
"DATA NAME LEVEL N E PICTURE
9 16 17 18 19| 20 | 22 24828
R.R|T1£. L ,‘R16 1,0.0,0, 4 o [T Ty
1 L i1 I i 4 B;_SuS 'lOL 1 L 1 1 1 i A
1 1 1 1 I 1 1 ‘L 4

1-127 12/6/63

The ORG sets the location counter to 1000 decimal and defines RATE as
1000. The BSS reserves 10 locations (1000-1009).

REFERENCE SYMBOL OPERATION OPERATION FPARAMETERS
‘ ’V us
DATA NAME LEVEL] N E PICTURE
° 16 17|18 19| 20 q 22 24 2¢
T ' | S WY TN Sl Ll A S SO SN U T
P S R Ll 0,00 v oy ey
| l t ln F_a Wt B 5‘5 110, I L 1 L 1 1 + 1 A 1 i

The ORG sets the location counter to 1100 decimal. The BSS reserves
10 locations (1100-1109) and defines TIME as 1100.

3.

R U VT Y n TN S N

A i W RA.T. .0 0 . . .
HXOR.S. LIRS 9.0

U ST R N | I S Y S S S

The ORG sets the location counter to RATE+10 (1010 decimal). The
BSS reserves 90 locations (1010-1099) and defines HOURS as 1010.

4.

i TIPS N SR W |

1
L . "
L i i oy Il

Rt
L

2.0.0
RAT

s
P
k

The ORG sets the location counter to 200 decimal and defines START as
200. The LDS 1000 is assigned to location 200 and BEGIN is defined as
200,

Notes

1. All symbols appearing in the Operation Parameters of an ORG must
have been previously defined (see Previously Defined Symbols,
page 1-15),

2. The expression in the Operation Parameters may not contain an
external global symbol (see Local and Global Symbols, page 1-31).
This function is accomplished by means of the SGMT pseudo-
operation (see description of SGMT, page 1-35),

1-128 12/6/63

ORIGIN OCTAL ORGO

Function

ORGO sets the location counter to a specific octal value during the
assembly of a program.

Format

ORGO must contain

e A symbol or blanks as the Reference Symbol
e ORGO as the Operation

® An unsigned octal number in the Operation Parameters as the
setting of the location counter.

Assembler Action

The ORGO performs the same function as the ORG, however, the
setting of the location counter must be expressed as an octal number
in the Operation.

Example
REFERENCE SYMBOD o OPERATION OPEHRATION PARAME ERS
« s Y,
s S0 ,
DATA NAMI T UVE L N E PICTURE
9 16 (‘1}“‘~ 19 20 <l oz
. :
,—lJNJ_R,L&l)aL [- z£16 }“ [U NS WU VRN S Sy
RS TN S S — 13 PR 4 P - [PUR SN TR S —— D DR
S N TPSUUP S O QG S w, S SR URT Wr ST SR SO SO §
f 1 s T S B | Lo o SN UUS SIS S SN SPC I |

The ORGO sets the location counier to 200 octal “12id decima - ad
defines INREC as 128 decimna’t,

1-129 12/6,863

'EQUALS EQU

Function

EQU instructs the assembler to define the symbol which appears in
the Reference Symbol as the value specified in the Operations Para-
meters,

Format

EQU must contain

e A symbol as the Reference Symbol

e EQU as the Operation

e An expression in the Operation Parameters for the value of the
Reference Symbol.

Assembler Action

The assembler defines the Reference Symbol as the value of the expres-
sion in the Operation Parameters. If the expression is an asterisk,

the Reference Symbol is defined as the current value of the location
counter,

e
Examples
e

g REFERENCE SYMBO L OPERATION - DOPERATION CARAMETE N

- U
s [s)

i GATA NAME LEVEL "N S,. Bre Ty

3 16 §17 § 18 19| 20 <22 242"

E_?_.Aﬁi._\l:_l.fmAQt Lo €0 .U, [T SO LT)

i1 example 7, the EQU defines PAYCL: a3 the current value ot 707
1acation counter 18C0,

1-130 14/6/83

2.
REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
™, ‘s PICTURE
° DATA NAME 16]17| 58 Y15 20| " 22| F| 24f2s
A) U S S WO | 1 n i | i " i A A -
| Q.u .H.Y.C.h N P Y
i - v

In example 2, the EQU defines TIMCD as the symbolic value PAYCD
(1000).

3.

In example 3, the EQU defines FICA as 200.

Notes

1. All symbols appearing in the Operation Parameters of an EQU
must have been previously defined. (see Previously Defined

Symbols, page 1-15).

2. -The expression in the Operation Parameters may not contain an

external global symbol (see Local and Global Symbols, page 1-31).

This function is accomplished by means of the EQUG pseudo-
operation (see page 1-85).

1-131 12/6/63

EQUALS OCTAL EQUO

Function

EQUO instructs the assembler to define the symbol which appears in

the Reference Symbol as the octal number specified in the Operation
Parameters,

Format
EQUO must contain

® A symbol as the Reference Symbol

e EQUO as the Operation

¢ An unsigned octal number in the Operation Parameters as the
value of the Reference Symbol.

Assembler Action

EQUO performs the same function as EQU,

Example
REFERENCE SYMBOL OPERATICN OPERATION PARAMETERS
e Y%
DATA NAME LEVEL N & PICTURE
° 161798 19]20] 22 24§28
AGEu v JEOLIK Y o T R S
A 1 1 A 1 H 1 1 1 1 1 i 4 1 L 1
N 1 1 i i 1] 1L . 1 1 i 4. 1 A L 1 1
1 4 4 i 1 1 1 !] 1] 1 1. 1 i 1

The EQUO defines AGE as 101 octal (65 decimal).

1-132 12/6/63

PREFIX PRFX

A programmer may decide to further subdivide his segments into
smaller regions, to code each of the regions as an entry, and to com-
bine the regions as a single source segment for assembly.

Since each of the regions is written separately, there is a possibility
that similar symbols exist in two or more of the regions. If similar

symbols do exist, multiple defined errors will occur during the assembly.

PRFX minimizes this problem by allowing the programmer to specify
a unique prefix character for each of his regions.

Format
PRFX must contain
® A single alphanumeric or numeric prefix character in card column

nine, the first column of the Reference Symbol.
¢ PRFX as the Operation.

Assembler Action

When the assembler encounters a PRFX, it saves the prefix character.
During assembly, the symbols which appear in subsequent instructions
in either the Reference Symbol or the Operation Parameters are pre-
fixed with that prefix character. The assembler stops prefixing
instructions when it encounters a new PRFX. Subsequent instructions
are prefixed with the new prefix character. This procedure minimizes
the possibility of multi-defined symbols between regions.

The assembler right justifies all symbols and replaces leading blanks
with zeroes. Thus, the symbol PAY becomes 00000PAY. When the
assembler encounters a symbol in a prefixed region, it examines the
high order character of that symbol. If the character is a zero, the
assembler replaces it with the prefix character. Thus, in a region
prefixed by X, PAY becomes X0000PAY.

1-133 12/6,63

Note:
Ejght character symbols are not prefixed and a region prefixed by a
zero is equivalent to an unprefixed region.

Communication Between Regions

Although the regions of a segment are treated as distinct tinits by the
programmer, there will be times when communication between them is
required; one may contain data, constants or subroutines used by
another., Since eight character symbols are not prefixed, they may be
used whenever communication is necessary. If the programmer does
not desire to use eight character symbols, he may employ the $
character to facilitate communication,

When using the $§ method, the programmer should append the proper
prefix character and the $ to the high order side of the symbol before
placing it in the Operation Parameters of his instruction. The symbol
will then be assembled using the character which precedes the $ as
the prefix character for that symbol.

Examples
1.
AI sF:E"F”> SYMBO L OPERATION OPERATYION PARAMETERS
. ! J R T
CATA NAME ‘Lx—vn N E PICTURE
9 16§17 1ol 20 Cl 22 2425
3 T
QL__L__J._.,,J,#J,.“L,,PTR(F X 1 L : : 1 1 L I I 1] 1 -
,LM‘_Q_LMIL_L-_I-.A_B‘SAS 2 L P S 1 TS B T | L -
LAMNE o |BiIS.S L0 o

Example 1 shows a region prefixed by a zero, an unpreﬁxed Jregion,

1-134 12/6,/63

2. REFERENCE SYMBOL ODPERATION OPERATION PARAMETERS
sV L)S
9 PATA NAME 1o o7 |6 Y Fo] 20 | N 22| €| 22 PreTuRe
,‘x_.AJA_,x,_'_,L, - {Pﬁf X P R T Ry P U S W S | 1
EMP.NZ . QU] $6 MPN&K o OS5 EMNPNA,
RAaTE. . . j£EQ.U. _ 24 RAYTE. o
TZT.PAY. LSB. B K T
GR.¥P.AY 'L S B - L DR . - -
FI.C.A . . DECD:. ~-44.8.0 0.0.0. . . -
£2 T~A.BJ. —L L .D D L : .,,8_'.&1 1,'_£ i L TR " . i
- U E T, E ,‘,' PR — ,?,,‘_ia_“_J_ i 1 1 i I UR G B i
. jtobp o jemeNg

Example 2 shows a region prefixed by X and a method of communi-
cating with other regions using the EQU.

3.

Hz
4
F“
F

P

Pprrxl T N .
Q.U 1 1S EMPNEY 0 $EMP NG
Qu 4 | | |sEMPNG e

2 ‘QLLJ,, _4 - ! X_SJT_J{T,P&\I n L) i

EQu i L X $ERAPAY. L

fL S B s . ,2.‘,,4vLA_.. (RO VY SAUY VO S S SN T

gL. D D ey — T& ;TAR‘-—BJY L e LS

PADD. o RATE L

STD . e rR&.PAY .

LDD CEMP NS T

Example 3 shows a region prefixed by a Z and a method for communi-
cating with other regions using the EQU.

4, 7
Y .
Vo e
i

PR X
i DD B}
ADD.
S TD
.LDD

X$ TETPAY. . .

gZ $R.A T_E.-___A—__‘ P G EUD U
S GREZPAY.

S EMPN @ % DEEMNP NS

Example 4 shows a region prefixed by Y and a method for communi-
cating with other regions without using the EQU.

1-135

12/6/63

TRANSFER CONTROL CARD TCD

Function

TCD indicates that an interruption in the loading process is desired so
that the programmer may execute some instructions in his program and
then return control to the loader.

Two functions are performed by TCD.

1.’ It terminates the assembly of this segment.

2. It prepares the loader transfer card (TCD-Type 60).

Format
TCD must contain
® TCD as the Operation

® An expression in the Operation Parameters for the address to
which control will be transferred during loading.

Assembler Action

When the assembler encounters a TCD it completes the processing and
punching of all previous instructions and punches a transfer card to the
address indicated in the Operation Pararneters.

Example
i RE. e s o T T S N
START . L Tl leRgPAY. .
B S B S N G S S
i i SRS - HRH [S - UM PO N S S
. TART L.

12/6/63

Note

Conirol must be returned to the loader by the object program. This is
accomplished by an unconditional branch to zero on index register 6
(BRU 0,6).

Restriction

The expression in the Operation Parameters may contain one external
global symbol. In addition to the restrictions placed on external
global symbols in DXG page 1-79, the external global must be either
preceded by a plus sign or the plus sign must be implied.

Care must be exercised if this external global symbol feature is used.
When the object program receives control, the programmer must be
sure that all necessary subroutines are in memory and that all required
external global symbols have been defined.

END OF PROGRAM END

Function

The END pseudo-operation terminates the assembly of this segment and
prepares an END transfer card for the loader (card type 70).

Format

END may contain

e END as the Operation
e An expression or blanks in the Operation Parameters.

Assembler Action

When the END is encountered in Pass II, the Operation Parameters is
scanned. If the field is blank, no transfer control card is produced. If
the field contains an expression, the expression is evaluated and the
resulting address is placed in the transfer control card.

1-137 12/6/63

Examples
1.
REFERENCE SYMBOL OPERATION OPERATION P‘ARAMETERS
R Y
DATA NAME Leved
° 1617 |e V6] 20| N 22 E| 2af2s PrevuRe
Iwa. (. NP.RZGLID.S Jeraray .
1 1 1 1 L. 1 1 [B 1 1 1 1 : i 1 1. 1 L L 1 4
1 s 1 L IS S | [t " " ' Il I N L 1 1 1 i 1
PR L P PR T SN P R
. L JEIND malL NPR. GG, . 1
I ¥ i i 1 i 1 . 1 1 i 1 1 i i i

Example 1 indicates the assembly of a main segment. A transfer of
control to symbolic location MAINPROG is effected at the end of the
loading process.

2,

PR SRS W W S N | R L

S.T.A.RT.E £.GILIDS. p.A

1 AN} 1

L
s
L

1 1 L L L 1
L
L

L T
TR &NIDJ .

Example 2 indicates the assembly of a subsegment. There will be no
address in the transfer control card produced.

Note

When an expression is present in the Operation Parameters, it may
contain one external global symbol. In addition to the restrictions
placed on external global symbols on pagé 1-79 , the external global
must be either preceded by a plus sign or the plus sign must be
implied.

1-138 12/6/63

TABLES

A_ALPHABETIC LISTING - COMPUTER INSTRUCTION REPERTOIRE

Mnemonic Code *

ABA (24)
ABM (24)
ABX (24)
ADD
ADQ
ADS
ADT
AIM (24)
AIX (24)
AMD
AMQ
AMS
AMT
ANM (24)
ANX (24)

BCTR

BRC (24)
BRE

BRG

BRL

BRM

Computer Operation

Accept Buffer Address
Add Binary to Memory
Add Binary to Index

Add Decimal Double

Add Decimal Quadruple
Add Decimal Single

Add Decimal Triple

Add Immediate to Memory
Add Immediate to Index
Add to Memory Double
Add to Memory Quadruple
Add to Memory Single
Add to Memory Triple
AND to Memory

AND to Index

Branch Counter
Branch on Count
Branch if Equal
Branch if Greater
Branch if Less

Branch if Minus

Octal

32 x
34
34
51
53
50
52
33
33
55
57
54
56
24
24

16
13
12
14
11

* 2A in this column indicates a two-address instruction,

x An x following an Octal Code indicates that the octal value is a com-
mand code, , not an operation code.

1-139

12/6/63

Mnemonic Code * Computer Operation Octal
BRU Branch Unconditionally 10
BRZ Branch if Zero 15
BSF (2A) Backspace one File 47
BSR (24A) Backspace one Record 46
BXC (24) Branch on Incex Count 16
CAA Compare Alphanumeric Accumulator

to Memory 03
CDA Compare Decimal Accumulator to

Memory 02
CMI (2A) Compare Memory to Immediate 01
CMM (24) Compare Second to first Memory 04
CPO (24) Central Processor Operation 67
CPR (2A) Compare 57
CXI (24) Compare Index to Immediate 01
CXM (24) Compare Index to Memory 04
DCWC Data Control Word Character

Count
DCWwW Data Control Word Word Count
EDT Edit 05
ERS (24A) Erase 54 x
EXP Explode 20

* 2A in this column indicates a two-address instruction.

command code, not an oper¢ on code.

1-140

%X An x foll~wing an Octal Code iadicates that the octal value is a

12/6/63

Mnemonic Code

FDOC
FSF
FSR

GEN

HLT

IAW
IMP

LAL

LBFC
LBT
LDD
LDQ
LDS
LDT
LDX
LNK
LPW
LXI

MCTR
MFI

K3

(24)
(24)
(24)

(24)

(24)

(24)
(2A)

(24)

(24)

Computer Operation

Feed Document
Forward Space one File

Forward Space one Record

General

Halt

Indirect Address Word

Implode

Load Accumulator Location and
Length

Load Buffer for Compare
Low Bit Test

Load Double

Load Quadruple

Load Single

Load Triple

Load Index

Link

List Pointer Word

Load Index with Immediate

Move Counter

Move From Immediate

Octal

41 x
45 x
44 x

07

00

00
21

36
36 x
22
41
43
40
42
30
75 x

31

31

* 92A in this column indicates a two-address instruction.

x An x following an Octal Code indicates that the octal value is a
command code, not an operation code.

1-141

12/6/63

Mnemonic Code

MFM
MOV
MTA
MVDT
MXC

OL
OoP

PCB
PCD
PCE
PDOC
PDT

PET
PPT
PRE

PRED

PRES

PRET

PRN

| 3

(24)
(2A)
(24)
(24)
(24)

(2A)
(2A)
(2A)
(24)
(2A)

(24)
(24)
(2A)

(24)

(24)

(24)

(24)

Computer Operation

Move from First Memory
Move

Move to first Address Field
Move Data

Move on Index Control

Operand
Operand Link

Operand Pointer

Punch Card Binary

Punch Card Decimal
Punch Card in Edited Mode
Pocket Document

Punch Double character mode
Tape

Punch Edited Tape - system mode
Punch Paper Tape

Print in the Edit mode (data
controls slewing)

Print in the Edit mode - slew
Double line

Print in the Edit mode - slew
Single line

Print in the Edit mode to Top
of page

Print in the Non-edited mode -
slew no lines

Cctal
30
06
32
37 x
06
00
02
01
11 x
12 x
13 x
43 x
13 x
31 x
11 x
30 x
32 x
31 x
33 x
10 x

% 2A in this column indicates a two-address instruction.

x An x following an Octal Code indicates that the octal value in a
command code, not an operation code.

1-142

12/6/63

Mnemonic Code

Computer Operation

Octal

PRND (24) Print in the Non-edited mode -

slew Double line 12 x
PRNT (2A) Print in the Non-edited mode -

slew to Top of page 13 x
PRNS (24) Print in the Non-edited mode -

slew Single line 11 x
PST (24) Punch Single character mode Tape 16 x
PXB (24) Program counter to Index and

Branch 17
RALD Reset Accumulator Length Double 22
RALQ Reset Accumulator Length

Quadruple 22
RALS Reset Accumulator Length Single 22
RALT Reset Accumulator Length Triple 22
RB (2A) Read Buffer 24 x
RCB (24A) Read Card Binary 01 x
RCD (2A) Read Card Decimal 02 x
RCM (24A) Read Card Mixed mode 03 x
RDOC (2A) Read Document 01 x
RF (24) Read File 54 x
RFCR (24) Read File Continuous and

Release Seek 25 x
RFI (2A) Read File and Increment Address 56 x
RFR (2A) Read File and Release seek 55 x
RIM (24) OR Inclusive to Memory 23
RIX (24) OR Inclusive to Index 23

* 2Ain this column indicates a two-address instruction.
x An x following an Octal Code indicates that the octal value is a
command code, not an operation code.
1-143 12/6/63

Mnemonic Code *

RL.DA
RLDAS

RLDD
RLDDS

RLQA
RLQAS

RLQD
RLQDS

RLSA

RLSAS

RLSD

RLSDS

RLTA

RLTAS

RLTD

RLTDS

RPT (24)
RQSP (24)
RQS (2A)
RQST

RRD

RRDA

Computer Operation

Rotate Left Doubie Alpha

Rotate Left Double Alpha
and Set

Rotate Left Double Decimal

Rotate Left Double Decirnal
and Set

Rotate Left Quadruple Alpha

Rotate Left Quadruple Alpha
and Set

Rotate Left Quadruple Decimal

Rotate Left Quadruple Decimal
and Set

Rotate Left Single Alpha

Rotate Left Single Alpha and Set
Rotate Left Single Decimal

Rotate Left Single Decimal and Set
Rotate Left Triple Alpha

Rotate Left Triple Alpha and Set
Rotate Left Triple Decimal

Rotate Left Triple Decimal and Set
Read Paper Tape

Request Status of Processor
Request Status

Request Status of Typewriter
Rotate Right Double (binary)
Rotate Right Double Alpha

Octal

22

22
22

22
22

22
22

22
22
22
22
22
22
22
22
22
02 x
67
00 x
00
22
22

~ 2A in this column indicates a two-address instruction.

command code, not an operation code.

1-144

» An x following an Octal Code indicates that the octal value is a

12/6/63

Mnemonic Code

RRDAS

RRDD
RRDDS

RRDT
RRQA
RRQAS

RRQD
RRQDS

RRS
RRSA
RRSAS
RRSD
RSDS

RRST
RRTA
RRTAS
RRTD
RRTDS

RSS
RSST
RTB
RTD

E3

(24)
(24)
(24)
(24)

Computer Operation

Rotate Right Double Alpha and
Set

Rotate Right Double Decimal

Rotate Right Double Decimal and
Set

Rotate Right Double (binary) Test
Rotate Right Quadruple Alpha

Rotate Right Quadruple Alpha and
Set

Rotate Right Quadruple Decimal

Rotate Right Quadruple Decimal
and Set

Rotate Right Single (binary)
Rotate Right Single Alpha

Rotate Right Single Alpha and Set
Rotate Right Single Decimal

Rotate Right Single Decimal and
Set

Rotate Right Single (binary) Test
Rotate Right Triple Alpha

Rotate Right Triple Alpha and Set
Rotate Right Triple Decimal

Rotate Right Triple Decimal and
Set

Reset Status

Reset Status of Typewriter
Read Tape Binary

Read Tape Decimal

Octal

22
22

22
22
22

22
22

22
22
22
22
22

22
22
22
22
22

22
40 x
40 x

04 x

% 2A in this column indicates a two-address instruction.

x An x following an Octal Code indicates that the octal value is a
command code, not an operation code.

1-145

12/6/63

Mnemonic Code

Computer Operation

Octal

RWD (2A) Rewind 70 x
RWS (24) Rewind and Standby 72 x
RXM (24) OR Exclusive to Memory 25
RXX (24) OR Exclusive to Index 25
SAL Store Accumulator Location and

length 37
SBM (24) Subtract Binary from Memory 35
SBX (24) Subtract Binary from Index 35
SCPR (2A) Seek/Compare 17 x
SDD Subtract Decimal Double 61
SDL (2A) Set Density Low 61 x
SDH (24) Set Density High 60 x
SDQ Subtract Decimal Quadruple 63
SDS Subtract Decimal Single 60
SDT Subtract Decimal Triple 62
SF (2A) Seek File 34 x
SLDA Shift Left Double Alpha 22
SLDAS Shift Left Double Alpha and Set 22
SLDD Shift Left Double Decimal 22
SLDDS Shift Left Double Decimal and Set 22
SLNK (2A) Seek/Link 35 =
SLQA Shift Left Quadruple Alpha 22
SLQAS Shift Left Quadruple Alpha and Set 22
SLQD Shift Left Quadruple Decimal 22
SLQDS Shift Left Quadruple Decimal

and Set 22

2A in this column indicates a two-address instruction.
x An x following an Octal Code indicates that the octal value is a
command code, not an operation code.
1-146 12/6/63

Mnemonic Code

SLSA
SLSAS
SLSD
SLSDS
SLTA
SLPAS
SLTD
SLTDS
SPB
SPRD
SPRS
SPRT
SRD
SRDA
SRDAS
SRDDS

SRDT
SRF
SRFI

SRFR
SRQA
SRQAS

SRQD

(24)
(24)
(24)
(24)

(24)
(24)

(24)

Computer Operation

Shift Left Single Alpha

Shift Left Single Alpha and Set
Shift Left Single Decimal

Shift Left Single Decimal and Set
Shift Left Triple Alpha

Shift Left Triple Alpha and Set
Shift Left Triple Decimal

Shift Left Triple Decimal and Set
Store Program counter and Branch
Slew Printer Double line

Slew Printer Single line

Slew Printer to Top of page

Shift Right Double {binary)

Shift Right Double Alpha

Shift Right Double Alpha and Set

Shift Right Double Decimal and
Set

Shifr Right Double (binary) Test
Seek/Read File

Seek/Read File and Increment
address

Seek/Read File and Release seek
Shift Right Quadruple Alpha

Shift Right Quadruple Alpha and
Set

Shift Right Quadruple Decimal

Octal

22
22
22
22
22
22
22
22
17
62 x
61 x
63 x
22
22
22

22
22
14 x

16 x

22

22
22

sk

2A in this column indicates a two-address instruction.

x An x following an Octal Code indicates that the octal value is a
command code, not an operation code.

1-147

12/6/63

Mnemonic Code

SRQDS

SRS
SRSA
SRSAS
SRSD
SRSDS
SRST
SRTA
SRTAS
SRTD
SRTDS

SSA
SSL
SSO
STD
STQ
STS
STT
SWF
SWFI

SWFR
SWFV
SXA

(24)
(24)
(24)

(24)
(24)

(24)
(24)
(24)

Computer Operation

Shift Right Quadruple Decimal
and Set

Shift Right Single (binary)

Shift Right Single Alpha

Shift Right Single Alpha and Set
Shift Right Single Decima.

Shift Right Single Decimal and Set
Shift Right Single (binary) Test
Shift Right Triple Alpha

Shift Right Triple Alpha and Set
Shift Right Triple Decimal

Shift Right Triple Decimal and
Set

Set Status by ANDing
Set Status by Loading
Set Status by ORing
Store Double

Store Quadruple
Store Single

Store Triple
Seek/Write File

Seek/Write File and Increment
address

Seek/Write File and Release seek
Seek/Write File and Verify

Store Index in Address fie.d

Octal

22
22
22
22
22
22
22
22
22
22

22
67
67
67
45
47
44
46
10 x

12 x

13 x
32

* 2A in this column indicates a two-address instruction.

command code, not an operation code.

1-148

% An x following an Octal Code indicates that the octal value is a

12/6/63

Mnemonic Code

TIA
TIO
TOA
TOO

VLD
VLM

WB
WEF
WF
WFCF
WFCR

WFCV

WEFI

WFR
WEV
WTB
WTD

X
XL
XP
X

XL*
X P

(24)
(24)
(24)
(2A)

(24)
(24)
(24)

(2A)

(24)

(24)
(24)
(24)
(24)
(24)

Computer Operation

Type Input - Alphanumeric
Type Input - Octal

Type Output - Alphanumeric
Type Output - Octal

Variable Length Divide
Variable Length Multiply

Write Buffer
Write End of File
Write File

Write File Continuous and
Release seek

Write File Continuous, Verify
and Release seek

Write File and Increment address
Write File and Release seek
Write File and Verify

Write Tape Binary

Write Tape Decimal

Index

Index Link

Index Pointer
Index Indirect
Index Link Indirect

Index Pointer Indirect

Octal

03
01
13
11

26
27

30
55
50

31

33
52
51
53
15
14

00
02
01
10
12
11

< 2A in this column indicates a two-address instruction.

x An x following an Octal Code indicates that the octal value is a
command code, not an operation code.

1-149

12/6/63

B. ALPHABETIC LISTING - PSEUDO OPERATIONS

Mnemonic Code

ACUM
AN
ARP
ARPL

BPS
BPSL

BSS
BSSL

CALL

DECD
DECQ
DECX
DECT
DGR
DGRE
DGRR
DIG
DXG

END
EJT

Manual
Page
1-108
1-116
1-104
1-106

1-96
1-98

1-92
1-94

1-87

1-114
1-114
1-114
1-114
1-83
1-82
1-79
1-75
1-77

1-137
1-123

Pseudo Operation

Accumulator
Alphanumeric constant
Accumulator Reference Point

Accumulator Reference Point in
the Loader area

Block Preceded by Symbol

Block Preceded by Symbol in the
Loader area

Block Started by Symbol

Block Started by Symbol in the
Loader area

Call segment at load time

Decimal Constant Double word
Decimal Constant Quadruple word
Decimal Constant Single word
Decimal Constant Triple word
Define Global Reference

Define Global Reference Ends
Define Global Reference Remotely
Define Internal Global symbols

Define External Global symbols

End of program

Eject page

12/6/63

Mnemonic Code

EQU
EQUG
EQUO

FILL
FULL

IDEN
INCL
INCS

LSAN
LSB
LSBL

OCTD
OCTQ
OCTS
ocTT
ORG

ORGO

PRFX

SGMT
SYAL

TCD
TTL

Manual
Page

1-130
1-85

1-132

1-118
1-100
1-120

1-120
1-120
1-120
1-120
1-127

1-129

Pseudo Operation

Equals
Equals Global symbol
Equals Octal

Fill word

Full binary cards

Identify binary output
Include Library segment

Include Symbolic segment

Last Symbol Alphanumeric
Last Symbol in Block

Last Symbol in Block in the
Loader area

Octal Congtant Double word
Octal Constant Quadruple word
Octal Constant Single word
Octal Constant Triple word
Origin

Origin Octal

Prefix

Segment Name

Symbolic Analyzer

Transfer Control Card

Title

12/6/63

SUPPLEMENT TO CHAPTER IV

The possibility of generating relocation errors was discussed in Chapter
IV, In that Chapter, expressions containing only the plus (+) and minus
(-) operators were considered. On occasion, the programmer may wish
to employ the multiplication (*) and division (/) operators and have the
assembler calculate these more complex relationships. Because this is
a more complex environment, it is natural to expect that the assembler's
procedure for detecting relocation errors is more complex. However, it
is essential that the programmer understand this procedure if errors are
to be avoided during coding.

The procedure which follows is mainly applicable to complex expressions;
however, it is general enough to be used on simple expressions, too. This
stems from the fact that the assembler itself has only one procedure for .
detecting relocation errors.

The example which follows is a contrived, unreal vehicle, intended only
to portray many aspects of relocation errors.

Preliminary Procedure

Step 1 Partition the expression into simple and complex groups. A
simple group is one element (a symbolic reference or an
absolute value) which is connected to the expression by either
the plus or minus operator. A complex group contains two or
more elements (symbolic references and/or absolute values)
that are connected to each other by either the raultiplication
or division operators. The complex group, itself, is connected
to the rest of the expression by either the plus or minus sign.

Therefore, in the expression

A*B/C-D-5*E*F+16+22*G

A*B/C Constitutes a complex group,
D Constitutes a simple group (an element),
5*EXF Constitutes a complex group,
16 Constitutes a simple group (an element) and
22*G Constitutes a complex group.

Step 2 Each simple group (element) is examined. If the group

(element) is absolute it will have no effect on the expression
and is therefore dropped from consideration. Thus, in the

1-153 12/6/63

previous example, the absolute value 16 is immediately b) Each relocatable symbolic reference is replaced by the

ignored. If D represents an absolute svmbolic relerence, letter M since it will be moved by the loader. If symbolic
it is also ignored: however, if it represents a symbolic references D, E, and G are assumed to be relocatable,
reference, it is retained. the resulting expression will be in terms of one unknown,
M:
Step 3 Each complex group is examined.
-M-20*M+22M

a) If each element in the group is absolute it will have no
effect on the expression and is therefore dropped from

consideration. Thus, in the example above, if symbolic Final Determination
references A, B and C were all absolute, the complex
group A*B/C would be ignored. After like terms are combined according to the rules of mathematics,

the result will indicate one of three possible conditions:
b) If there is more than one relocatable symbolic reference

in the complex group, the entire expression is meaning- 1. if the result is 0 or nothing, the address is absolute
less and a relocation error is flagged on the assembly and cannot be moved.
listing. Thus, in the previous example, if symbolic
references E and F were both relocatable, the entire 2. if the result is M, the address is relocatable and must
expression is in error. be moved.

c¢) If the complex group contains one relocatable symbolic 3. if the result is anything else, the address is a reloca-
reference and the division operator appears anywhere in tion error,
the group, the entire expression is meaningless and a
relocation error is flagged on the assembly listing. In the example, then, the result of combining like terms produces:
Thus, in the example above, if symbolic reference A
was relocatable, the entire expression is in error because 22M - 21M or

of the presence of the division operator,
M
Substitution Procedure.

This result indicates that the original expression is relocatable.
The substitution procedure is performed if no errors were discovered
in the preliminary procedure,
aj Each absolute symbolic reference is replaced by its
absolute value. Thus, in the previous example, if the
symbolic reference F has a value of 4, the result of
the absolute substitution would be:

-D-5*E*4+22*G, or
-D-20*E+22*G

Note:

The absolute value 16 has been dropped from consideration during the
preliminary procedure and, in order to continue the example, complex
group A*B/C is assumed to contain only absolute elements.

1-154 12/6/63 1-155 12/6/63

=i

II.

III.

Iv.

VI.

CONTENTS

INTRODUCTION

System Configuration

THE SOURCE LANGUAGE

PROGRAMMING FORM FIELDS

IDENTIFICATION DIVISION

Identification Division Entries
SEGMENT. e
AUTHOR. o e e e e e s e s
TITLE -« « o o o e e e e e e e e e e e e e e e

IDEN « ¢ o o i e e e e e e e e
Example of a Typical Identification Division

ENVIRONMENT DIVISION

Environment Division Entries
SRMETHOD
MEMSIZE e e e
DEFCHKPT ittt ittt
DEFOPEN it i e e
DEFCLOSE i ittt et e e e e
DEFEOR e

DATA DIVISION

Writing the Data Division
SEQUENCE . . i v it s et e e e e e e e e e e
DataName
Level e e
Picture e
Value e e e e e e e e

2- 1

2-11

2-11
2-11
2-13
2-13
2-14

2-14

2-15

2-15
2-16
2-16
2-16
2-117
2-18
2-18
2-18
2-19

2-21

2-21
2-21
2-22
2-23
2-24
2-29

12/6/63

SYNC . o vt e e e e e e e e e e e e 2-30
TYPE & v i i e e e e e e e e e e e e 2-32
L= P 2-35
OCCUTS & o o it e e e s e e e e e e e e e e e e 2-38
Iden e e 2-39
Data Division Sections, 2-40
File Section 2-40
File Section Conventions 2-48
Working Storage Section, 2-49
Working Storage Section Conventions 2-49
Memory Allocation 2-52
VII. PROCEDURE DIVISION 2-57
Writing the Procedure Division 2-57
Sequenceo..e e .. e e e e e e e 2-58
7' 1< 2-58
Reference Symbol 2-59
Operationt nnnnnn 2-60
Operation Parameters e e e e e e 2-60
Iden e e e 2-61
Use of Operation Parameters 2-61
Macro Instruction Descriptions 2-65
Input/Output Operations 2-68
READ et i e 2-68
WRITE ittt e i 2-69
WRITEX it ittt e ei v 2-71
OPEN et e e e e e 2-172
CLOSE ittt i i it iiiee 2-73
TYPE i e e e 2-74
Extended Input/Output System Service
Macro-Instructions 2-74
Data Movement oo, 2-T1
MOVE i it it i 2-T17
LOAD e e 2-80
UNLOAD i ittt it e it e e e e i ia e 2-81
Procedure Control Operations 2-83
COMPARE i 2-83
5 2-85
SETSW . .ttt i e e e e e e e 2-86
GOTO ...ttt e ettt ettt i e e 2-87
GOTO...DEPENDINGON 2-88
HALT i i ettt it e 2-88
EOJ . . e e e e 2-89
ABORT ittt ittt iniinnen 2-90

2-ii 12/6/63

Arithmetic Operations

Add and Round -- ADDR
Add and Truncate -- ADDT . . .
Subtract and Round -- SUBR . .
Subtract and Truncate -- SUBT
Multiply and Round -- MPYR . .
Multiply and Truncate -- MPYT
Divide and Round -- DIVR

Divide and Truncate -- DIVT . .

VIII. SEGMENTED PROGRAMS

..........

oooooooooo

oooooooooo

Internal and External Global Symbols
Define Internal Global -- DIG
Define External Global --DXG

Common Data Areas00'.ouv....
AREADEF
Define Global Reference Remote -- DGRR

Define Global Reference Ends -- DGRE

Define Global Reference -- DGR . .
IX. SAMPLE PROGRAM

Alphabetic Table of Macro Instructions

2-iii

..........

NDDDNDDNDDNDNDNDDDNDN
UL

WO WWYWWWTWW

T O WLWN D=

12/6/63

I. INTRODUCTION

The Macro Assembly Program offers a macro source language and the
means for translating this language into the instruction format of the
GE-425/435 computer. In the basic assembly language, a code exists
for each operation which the computer can execute. The macro assem-
bly language provides instructions which produce a series of these
operation codes. The macro language performs operations upon data
described in a field-oriented manner and is a logical extension to the
basic assembly language.

Macro-instructions simplify the problem of programming, because they
eliminate many of the tedious coding tasks. These instructions relieve
the programmer of such details as masking and aligning data. In this
way, the opportunity for introducing errors into the source program is
greatly reduced. The programmer may choose to write his entire pro-

gram in the macro assembly language, or he may combine basic assembly

operations with macro operations.

The macro assembly language provides instructions which will accom-
plish the following functions:

Input/output operations
Arithmetic operations
Data movement

Procedure control

Additional macro-instructions may be added to the source language.
Generator(s) required to process the new macro instruction(s) may be
written by the customer in either the macro or basic assembly lan-
guages, or may be added to the Macro Assembly Program by means of
a library routine.

The Macro Assembly Program achieves the following objectives. The

2-1 12/6/63

program includes:
A minimum but adequate set of field-oriented macro-instructions

All machine and pseudo-operations available in the basic assembly
language

A detached Data Division with a fixed format
A means for making the automatic input/output routines available

A source language that is easily used by the programmer and easily
assembled

An Identification Division that provides adequate source program
documentation.

The Macro Assembly Program has the following capabilities. The pro-
gram:

Performs a straight basic assembly without executing unnecessary
phases of the Macro Assembly Program

Allows new macro instructions to be added to the system
Is upward compatible with future GE-400 series computers
Provides extensive error analysis of the source language

Performs a rapid assembly of source programs.

SYSTEM CONFIGURATION

The Macro Assembly Program operates on the following configuration:
GE-425/435 computer with 8K memory
Magnetic tape control unit
Four tape ha.nd!ers

Printer

2-2 12/6/63

Card reader II. THE SOURCE LANGUAGE

Card punch
Additional magngtic tapes may be substituted for the card reader, card The Macro Assembly Program source language resembles English gram-
punch, or the printer. The Macro Assemb.ly Program. takgs advantage mar and can be readily understood. It is composed of certain combina-
of the 16K or 32K core memory options as illustrated in Figure J-1 tions of characters or "words" which, when written according to given
below: conventions, describe an information processing function.
The words of the macro assembly language are made up of characters
‘rom the standard GE character set. This includes:
Alphabetics AL .. Z
System Scratch Scratch Scratch
Tape Tape Tape Tape Numerics 0,1...9

plus the tilde (~). There must be no imbedded blanks,

When writing in the macro assembly language, there are two types of
words which must be considered. First, there are the macro instruc-
tions, which generate the actual computer operations. Second, there
are the words with which a programmer describes his data or allocates
— — SK MEMORY _ _| memory for the location of this data. These words are written by the

16K MEMORY programmer in a manner which is easily understood, but which of neces-
--------- sity must follow certain conventions. These will be discussed later in
32K MEMORY OR tiis section of the manual. The types of words used in the source lang-
OR _ uage are illustrated below. The underlined words are the macro-instruc-
e T < . 5 T N tions.
| | | L
I i | I
START OPEN INPUT; PAY~MSTR; TIMECDS
CARD READER PRINTER ALT CARD PUNCH
TH READ PAY~MSTR
— —
A Macro Assembly Source Program consists of four divisions:
-
IDENTIFICATION DIVISION
Figure I-1 ENVIRONMENT DIVISION

DATA DIVISION
PROCEDURE DIVISION

The function of each of these divisions is discussed briefly in this chapter
tc present an all-over view of the source language .

2-3 12/6/63 2-5 12/6/63

In the Identificatiou Division the programmer identifies his program and
labels the outputs of the assembly.

In the Environment Division, the programmer describes the character-
istics of the object computer and specifies the major control routines
required by the Extended Input/ Qutput System.

In the Data Division, the programmer describes the format of the data
files and allocates memory for file areas, working storage, and con-
stants.

In the Procedure Division, the programmer writes macro-instructions
and/or basic assembly language operations and pseudo-operations which
define the functions to be performed. The instructions in this division
operate on the data described in the Data Division.

In the section describing the basic assembly language, the concept of
relocatable segments was discussed. It is possible in writing in the
macro assembly language, to produce relocatable segments for use with-
in the GE-425,435 operating system environment. Each segment written
must be named in the Identification Division and be specified as to whether
it is to be a relocatable or absolute assembly. More details describing
the communication between segments is discussed in Chapter VIII, Seg-
mented Programs.

2-6 12/6/63

III. PROGRAMMING FORM FIELDS

The macro assembly language uses both levels of the dual headings on

the GE-425,435 Programming Form. This chapter discusses the place-
ment of the four divisions of the source language on this form, and de-
fines the fields used where necessary. The sample coding in Figure II-.
is shown merely to illustrate placement; the various entries are discussed
in detail in the Chapters describing the four divisions.

IDENTIFICATIONADIVISION is written into columns 8-30. Each entry
within this division starts in column 17. Descriptions of any of the op-
tions which may be used with each entry are written in the Operation
Parametérs, starting in column 25. Comments niay be written into the
Identification Division by inserting an * in column 7.

ENVIRONMENTADIVISION is written into columns 8-27. Each entry starts
in column 17. Parameters for the individual entry are written in the Op-
eration Parameters, starting in column 25.

DATA DIVISION is written in columns 8-20. This division uses the lower
level of headings across the programming form. A brief definition of
each of these fields follows:

Sequence (Cols. 1-6)

The Sequence number is provided as a convenient method for the pro-
grammer to maintain an order within his source deck.

Type (Col. 7)

This column describes the use of the line in which it appears.

Data Name (Cols. 9-16)

The data name is the name a programmer assigns to an entry in the
Data Division.

Level (Cols. 18-19)

With alevel entry, the programmer defines the various levels of a logi-
cal record and indicates unrelated items in working storage.

2-17 12/6,63

T , P
R] : TR I LR
A BRI 1 AA..‘A - e - A LRI B S AR RS S
o | ,L, H Pl ! Py ' !
® MA” v ' — H — . ; L
SN) NI B A A
F&AJ i .x‘,nw. : R . I H [
" L;*‘_L”.L - ° ktA;a,.L»n 1 T . A_*_p
° JJ_AA,L,# PR P .L,;h‘ 44 4 -
N 140 S I I I I i
I | : [C
T R DR TR A du.".
P P Pa P iz |
' EER R R I I I I IR .
514444 4 P 4 I d i
i 4 j !
EEEE Cdgsde e d T P
IERRRE I R iy
] IRREE TTititity T H
! R EEEEEEE IR N IR N R IR $4d
1491444 oA I ,] L4 -
1 BERREREEEE 11T 44
: S071177 1 EER A A A U R B IR R
S AREEERE SEEEE IR IR IR I E AR BRI IR TR NS 44y
a5REREE IRRRRRREREERERRERE Sk
A,ML, 4o EEE ol - PR
I S A I RO IS ; : Pl
11117 T B AN
4 1 PR T B S TS B B G114
] LA._ i ,m_A) ; P 1]
1] HR AR I B R A AR B B R Tl T
EEREE EERRRERRIRRRRRRRRaRETRE - PEE
‘p:‘;. i 1 .%MM SRIE I i 4
NN FH I A] PR B i B
B8 BRERERRERE 1 &_f,
R | i [.,.w,. 17 1 AAA_J
R (R I I I R I I R I ENERE
: IR IR LR .N:J;,.:A._-g.;;, i ™
| , Paddia gy, s
5 1 4 - B ERE R i 4 < 1 - 1 4 4 -
- EEE I IR Iy I 4 .LL,+,;A_LVJ..AAV‘,L { .,&..,.%
z ;;4, ,_v, ;) 1 ,”—W, 17 Bl VT
2 : B RIS EERA R BRRRRREE
S AEMERNERREERE A4S e
” i *M .Ivulw f:.L. Rt sor v Cer e ey i [.n, . .0 P M .
o i < " ol
5 e 5] | Pb T R i P
M “_M, ;#M.ML»,L__#_AL.L*Jk*k;_#“4¢$AA,J,_JVLTL_‘;,H,JM4¢._LLM_A_
V [DA SR B [} AT R R R TR T B T T B S BT B S R N I T I B R S e]
5 B X P - . ST
& 3r [s q | i e SN
2 e R R + I i A I O
" O SIS TEIE IE IS IS A I A I N U A 0 A U I A dadd1id 4 M
- :
% m T 1111111111 4 4 4 4 4 4+ 4 A 1171114 44 A
4 4.4 44 4 94994444 444 4444 4 44 <44 4 4 4 44 4 4 4 4 44 4 4 4 4 + o
B] & 1
X o« Tl 7777777773711 1111717117117 191 1171717111
g ES L 1M1 I i e e
8 f3 | BEREREERRRERRnR R RRRRERR S R
: a3 T I il 1] e
2 2441111110 EEEEEEEEEECRRERRRERN RS
o | A=K - S T N O O 0 A A] I8N, 11111 1dds
Hyeg (A= | 1M e IRERCSRERRRRRREE R
epyriadel |11l T T AT e]
—ggadas | 11101041114 GECEC RN CEER
2| >alalal H U u 4 - o..eﬁA.Aﬁ. aad
3] v A | 1 [:
L DM N B I M‘J., ‘H\lf_v.\)l\%
z 3 > 1 wl | oo
mm S Z W e 'l Tl e, LT
i FERIC EREL B N i !
@5 | FlHdHd 4 20> | ad 0 NM EAN - qda
/%. unerF_W.wmwa.\R lﬂ.rrrr_ .o q,\. aq . v LSO, BOT O - m QPCF . o o
(oW m [sia =10 ..RID ﬂ» [H e AVI
- vl..-).| , T - i LS
S = RN =
ek N 4449 4 44 - -4
o IZiiieliE (1T gs e e R
o qlu MJL.,.G.,.”, vz PRSI S argr
- 2 FR N L= I -A | Mo o i3A e wxeqa
e s R A , »> L law xa | Jeda
juur 2l o B b B L TE Wy € lsl-we
™) = 2 | o L AQq QU ol og
> BCERECEE TR o
Frou . R d . |
a i i ! ! . L.
— aO.L‘O.D.DOO, ; ; aqa . "ad odda m
< PR K L E e N1 du o .iu i J,ol...QJJ o
‘ 175 217 1 1 11 s -
€ || i |ddddaag BENREERRREERCEL g -
= 5] § 999999 111 0ad 11ad ado 5
z - Add dq9 9 F 77 Tdo ldd ooa ,
w '3 ALAA A 9 [1 Ll g o o
(L * -|oladoaddga A_JVA,_L“ ML,__mQ add L

[
1
©

12/6/63

Figure III-1. Sample Programming Form

Sync (Synchronization) (Col. 21)

The Sync entry specifies the positioning of elementary items within a
computer word or words.

Use (Col. 23)
The Use column specifies how a data item is to be used in memory.

Picture (Cols. 25-40)

The Picture field describes the mode, size, decimal point location, and
editing characteristics of the data name entry.

Occurs (Cols. 41-44)

The entry in the Occurs columns indicates the number of times an item is
to be repeated.

Value (Cols. 45-76)

The Value columns specify an initial value for data items in the Working
Storage Section.

Iden (Identification) (Cols. 77-80)

The Iden columns associate the individual card with a source program
deck.

PROCEDURE A DIVISION is written in columns 8-25. This division uses
the upper level of headings plus those headings which apply to both Pro-
cedure and Data Divisions. A brief definition of these fields follows:

Type (Col. T)

The Typ€ column is used to indicate a comment or continuation line.

Feference Symbol (Cols. 9-16)

Trne Reference Symbol field is used to assign symbols to the instructions
2u0 pseudo-operations written in the Procedure Division.

“sueration (Cols. 17-24)

-« Operation entry is a mnemonic code: a macro instruction, instruc-
... irom the GE-425/435 instruction repertoire, or a pseudo-operation.

2-9 12/6/63

Operation Parameters (Cols. 25-76)

The parameters entered into the Operation Parameter columns complete
the function indicated by the Operation.

Iden (Cols. 77-80) -- same use as in Data Division.

2-10 12/6/63

IV. IDENTIFICATION DIVISION Format

The format for the SEGMENT entry is as follows:

In the Identification Division the programmer identifies the source pro- OPERATION OPERATION PARAME TERS
gram, labels the output from the assembly, and specifies an absolute —
or a relocatable assembly. This division is written first on the "Blanks

GE-425/435 Programming Form. SEGMENT Segment name < ;Expression

;Absolute decimal val.«

Any Macro Assembly Program begins with IDEN TIFICA TIONADIVISION
written into columns 8-30. The only required entry within the division The segment name should be a unique name which will be written on the

is SEGMENT. The remaining entries are optional. Comments may be output program header card. The segment name must follow the rules
included in the Identification Division by inserting an * in column 7, and established for Reference Symbol on page 2-59 .
then writing the comments in columns 8-80.

The second parameter, which immediately follows the segment name

IDENTIFICATION DIVISION ENTRIES should contain one of the following:
The four permissible entries in the Identification Division are Blanks Blanks indicate the relocatable mode of assembly.
All instructions are assembled relative to zero; the
SEGMENT assembly listing is relative to zero; relocatable errors
are flagged.
AUTHOR
Expression The expression must contain one external global
TITLE symbol. Thesymbolmust adhere to the general res-
trictions placed on external global symbols in the
IDEN discussion of DXG in the Basic Assembly Language
section, page 1-77. This condition indicates the re-
Each entry is written starting in column 17. A description of the options locatable mode of assembly.
which may be used with each entry is described in the following paragraphs.
The options are written in the Operation Parameters columns starting Absolute The absolute value defines the origin of the segment
in column 25. Decimal and indicates the absolute mode of assembly All
Value instructions are assembled relative to the starting

origin and the assembler produces an absolute listing.

Relocatable errors are flagged for warning purposes
SEGMENT Required only. The program may be moved by changing the

starting address on the output origin card.

Examples
In the SEGMENT entry the programmer names his segments (programs). T
This entry allows the programmer to specify an absolute origin for the 1. — _
segment, thus giving him the ability to assemble in the absolute mode. FEFERENOs s errRaTIoN oFENas Famamsrins
This entry is required and must precede the other entries in the division. B D_A:‘N;;’f‘ ’ _‘,T S'N o T
JIDeNT.IF L, I T *525 DIVaSIPBN. . . s
- b S E &M EN T GRS P AN, .

2-11 12/6/63 2-12 12/6/63

This example indicates that the name of the segment is GROSPAY. Since
the segment name is followed by blanks, a relocatable assembly is in-
dicated.

2.

REFERENCE SYMBOL OPERATION OFERATION PARAMETERS
= s
DATA NAME LEVEY N, E TrteTuRE 40 ”occ
9 1617118 19 o Cl| 22 | 24f 25

PR T S R T R a

i JSE e mMENT

S S W T T

]

Fi.cAL; T IMECAL 500, .

This example indicates that the name of the segment is FICAL. Since
the segment name is followed by a symbolic reference (an external global
reference), a relocatable assembly is indicated.

3.

. L . . ,\. . NN S S P R S . Lo ' 11
| P . EEMIENT, JTLMECAL ;. L.O 20 o
This example indicates that TIMECAL is to be used as the name of the
segment. Since the segment name is followed by a decimal value, an
absolute assembly is indicated.

AUTHOR Optional

The author's name may contain up to 30 BCD characters and should be
written starting in column 25.

TITLE Optional

The use of Title allows a heading line to be specified that will be printed
at the top of each page of the assembly listing. The print line is written
in columns 25-76.

2-13 12/6/63

IDEN Optional

IDEN allows the programmer to specify the identification (columns 77-80)
of the binary program cards. If used, the four identification characters
written in columns 25-28 of this entry will be placed in columns 77-80

of the output deck. If IDEN is not supplied, columns 77-80 of the outpu:
deck will be blank

EXAMPLE OF A TYPICAL IDENTIFICATION DIVISION

e ——
rrss
o
o
S i
! |
.

GRBES YAy -wRUTTEN C9°C - b3
CpLeimn s 8- 3.0 ‘ .

GO0 oo

—p

o inE e

.
o

P

2-14 12/6/63

V. ENVIRONMENT DIVISION

The Environment Division enables the programmer to indicate the char-
acteristics of the object computer and to specify the major control routines
required by the Extended Input/Output System for execution of the object
program. This division follows the Identification Division on the
GE-425/435 Macro Assembly Program Programming Form.

The environment division must begin with a line that contains
ENVIRONMENTADIVISION written in columns 8-27. The SRMETHOD
entry is required for every Macro Assembly Program. If the SRMETHOD
is not specified the CALL option will be assumed. All other entries in

the Environment Division are optional.

ENVIRONMENT DIVISION ENTRIES
The following list of entries may be included in the Environment Division:
SRMETHOD
MEMSIZE
DEFCHKPT
DEFOPEN
DEFCLOSE
DEFEOR
DEFSCHED
The name of the entry is written starting in column 17. Parameters for
the individual entries are written in the Operation Parameters columns

starting in column 25. A detailed description of the entries and allowable
parameters follows.

2-15 12/6/63

SRMETHOD Required

The SRMETHOD entry defines the method by which any non-generated
routine is to be incorporated in the object program. The parameters
ir the Operation Parameters columns are:

INCL Non-generated routines are incorporated by INCL.
Include Library Segment (INCL) indicates that the
required segments are supplied from the library tape
at assembly time.

INCS Non-generated routines are incorporated by INCS.
Include Symbolic Segment (INCS) will call routines
from the program library which are kept in symbolic
form and assemble them with the current segment.

CALL The required non-generated routines will be incor-
porated by the loading program at execution time.
If CALL was specified, the latest version of each non-
generated routine will be incorporated in the program
from the library tape when the program is loaded.

MEMSIZE Optional

The MEMSIZE entry specifies to the Macro Assembly Program the
amount of memory available for this segment in the object program.
Memory size should be written as a decimal number beginning in column
25.

DEFCHKPT Optional

The DEFCHKPT entry defines the checkpoint routine to be used. If this
entry is omitted, it indicates that no checkpoint is to be taken.

2-16 12/6/63

There are two parameters,separated by a semicolon, required for this
entry. The first parameter specifies the procedure to be performed
after writing the checkpoint; the second specifies a magnetic tape unit
upon which the checkpoint is to be written.

The entries for the first parameter are:
PROCEED Continue processing after writing the checkpoint .

HALT Halt immediately after writing the checkpoint. Pro-
cessing will be continued when the operator depresses
the "RUN' button. HALT is useful for programs that
process a large number of records on the card reader,
card punch, or document handler. It allows the oper-
ator to ''batch'' these records to facilitate re-start.

The entries for the second parameter are

Blanks Any checkpoints will be written on the standard dump
tape (logical device 0402,). With this option, the semi-
colon is not required following the first parameter.

04XX Where 04xxg is the logical device number of a magnetic
tape on which the checkpoints should be written.

FILENAME The name of magnetic tape data file on which the check-
points are written. FILENAME must be described
in the Data Division.

Any checkpoints written on data tapes are.automatically by-passed by
the Extended Input/Qutput System when those tapes are used as input.

DEFOPEN Optional

If the DEFOPEN entry is included, it will incorporate the OPEN routine
according to the SRMETHOD specified. NON~OVERLAY must be written
in the Operation Parameters field starting in column 25.

2-17 12/6/63

DEFCLOSE Optional

When the DEFCLOSE entry is supplied the Macro Assembly Program
will generate the INCL, INCS, or CALL for the CLOSE routine.
CLOSE1 must be written in the Operation Parameters field starting in
column 25.

DEFEOR Optional

If DEFEOR is supplied, the Macro Assembly Program will generate the
INCL, INCS, or CALL necessary to incorporate the end-of-file pro-

cessing routine. If the program is to process magnetic tape files, this entry

is necessary, and the parameter EOR1 must be written starting in
column 25.

"DEFSCHED Optional

The DEFSCHED entry defines the type of buffer processing and scheduling
routines to be incorporated in the object program. If DEFSCHED is
omitted, the buffer processing and scheduling routines will not be included
in the program. The parameters which may be used in the Operation
Parameters columns are

GENERATIVE If this option is specified, all of the buffer pro-
cessing routines and parts of the scheduling
routines will be generated. The generated
routines will be highly time efficient at the ex-
pense of memory.

INTERPRETIVE If the programmer desires core efficiency at
the expense of execution time, this option
should be selected. In this case, one interpre-
tive buffer processing routine and one interpre-
tive scheduling routine will be produced for the
program.

2-18 12/6/6€3

VI. DATA DIVISION
EXAMPLE OF A TYPICAL ENVIRONMENT DIVISION
The Data Division describes the input and output files to be processed

and allocates memory for input/output buffers, intermediate work areas,
tables, and constants. The data may be described either without regard

v REFERENCE svMBoL ePERATION CFERATION PARAMETERS to word boundaries, or the positioning of the fields within words may be
SEQUENCE c T F 9 T N controlled. All field characteristics of the items of data such as data
L J;J o OMTANAME wefur|e Y] a0 "az|) adfas Tlerune _ name, mode, size, and initial value, if any, must be supplied by the
— I b PSR VT SR T SN S T N SR T programmer,
N T WL T R 4,74, b L I i A 1 i 1 1 1 1 1 1 t t 1 ey
e e TR R - 1 Lt L——i——i-1 The Data Division consists of two sections; the File Section and the
P T VIR RV e : — * Working Storage Section. The File Section contains information about
f{ﬁ_‘f‘%ﬁil E_ £ N'V;:LLR J‘J'ZS_:N g\f ,\'X g S\E II ; é S i(g l\o[l 0. . "' the physical characteristics of input and output files, and descriptions
o090 . o TIsRmelTRedlinc.L. of the records which are contained in these files. The Working Storage
Q.0.0:1.0 0¢. Coree o IDEECIHIKIPITIPR. B C.EFED. ;. 4.0.6, . Section may contain descriptions of intermediate data which is developed
Dot 0d b . L D EE PNl INGN~ BV.ER.L.AY. . during the execution of the program, constants which are assigned initial
0o ‘QA-—gii-éAgws— 4o Eﬁ}'é z% SlE ggg? Leli vt st values, switches which may be required by the program logic, and infor-
%‘gidj_ki‘li;: 1:“ S Pi‘ﬁ FslemlERIINTE R PR e TTV g ™mation that may be used to format output Lines.
- [T N S . [ONNTEN SN NI J I B R Tt s L 1

WRITING THE DATA DIVISION

When writing a program in the macro assembly language, the Data Divi-
sion is the third division to appear on the programming form.

DATAA DIVISION, entered in columns 8-20, identifies this division on
the form. Conventions governing the entries which appear in the pro-
gramming form fields are presented in the following pages.

SEQUENCE (Cols. 1-6)

Purpose

The sequence number is provided as a convenient method for the pro-
grammer to maintain an order within his source deck.

Assembler Action

1f the sequence check option is specified on a language processor option
card, the sequence number assigned by the programmer will be checked,

2-19 12/6/63 2-21 12/6/63

using the GE-425/435 collating sequence. If any source program car'd
is detected with a sequence number equal to, or less than, the preceding
card, it will be flagged as a possible error in the program listing.

DATA NAME (Cols. 9-16)

Purpose
A data name is used to identify an entry in the Data Division.
Conventions

When writing a data name the following conventions must be observed.
Data names--

1. must be one to eight characters in length.

2. must be formed from the alphabetic characters A-Z, the
numerics 0-9, and the tilde (~).

3. must be defined only once in a program.
4. must contain at least one alphabetic character.
5. must not contain imbedded blanks.

Data names may be floated anywhere within the eight column field.

Any field that is to be referred to in the Procedure Division must have
a data name. If a field is to be used only as a filler in a record des-
cription or a print line in Working Storage, the data name columns may
be left blank,

Examples

PAYMASTR
PAYREC
PAY~NO
DCODE

A25

15B

2-22 12/6/63

LEVEL (Cols. 18-19)

Purpose

The Level numbers written in these columns define the relative struc-
ture of a logical record and indicate unrelated items in Working Storage,

Concept of Levels

There are a maximum of four levels, 01 through 04 with the leading
zero being optional. Level 01 indicates logical record entries in both
the File Section and Working Storage, and in addition is assigned to
items of data which are not a part of a logical record. This unrelated
data occurs only in the Working Storage Section, because all entries in
the File Section describe logical entries within the file.

Any data subordinate to another level carries a higher level number,
Therefore, a field within a record would be assigned a level 02, a sub-
field would be assigned an 03, and any item within a subfield would be
assigned an 04. Any data item which is not further subdivided is
referred to as an elementary level or item. Items further divided are
called groups.

Any item referred to as a group is assigned a data name at the group
level and is referred to by that name. The group includes all sub-
sequent groups and items until a level number less than or equal to the
level number assigned to the group is encountered.

Reference to a group data name by an operand in a macro-instruction
dictates that each item within the group is to be included. Thus, by
grouping data, the programmer may operate on several items of data
with one macro-instruction, instead of operating on each item indivi-
dually.

Note:

Any reference to a group refers only to a string of characters with no
editing.

2-23 12/6/63

Examplg
REFERENCE SYMBOL O.DERA‘VION OPERATION FARAMETERS
s

DATA NAME LEVEL VN UFE PICTURE
9 16 J17 |18 19] 20 Cl 22 2425
P‘P,J\/ F\"Cn “] b . B Y N S Lo a1
524 ~ MBS 0 2. L b L‘(Jﬁx) R S S ST S S I

T & o A i 4‘ S VO S G N T PO
™M 0 A L2 L 18.9. e et ot
b Ay oz P T T e T N L
YR SICHE SRR C O D e .
INA ME — 0% - AU _ N
ANIT 1AL S ez i e B
LS TINIT N A
LN Ly T ~4q E ‘
LA TNAME 03 A6

In the example just given , the logical record PAYREC is subdivided
into three major parts (PAY~NO, DATE, and NAME). Any reference
to PAYREC includes all of the items down through LASTNAME. DATE
is subdivided into MO, DAY, and YR and is, therefore, a group. Any
reference to DATE will include the three subfields. Since MO, DAY,
and YR are not further subdivided, they are elementary items. There-
fore, a reference to MO will apply only to that data item.

The employee's NAME is subdivided in the same manner, with 1STINIT,
2NDINIT, and LASTNAME as elementary data items, INITIALS is a
group which includes 1STINIT and 2NDINIT, and the group NAME in-
cludes INITIALS and LASTNAME,

Whenever the 01 level is introduced, it terminates any association with
the prior entries. Thus, unrelated items of data being written in the
Working Storage Section, such as constants, switches, index words,
temporary storage, should be introduced at an 01 level.

PICTURE (Cols. 25-40)

Purpose

An entry in the Picture columns describes the mode, size, decimal
point location, and editing characteristics of the field represented by
the data name. Picture is used in both File Section and Working
Storage Section.

2-24 12/6/63

Picture must be specified for each elementary item unless the usage is
Index or Switch., Picture can be specified only at the elementary item
level.

Two types of characters may be specified in Picture: characters
describing data and characters which specify editing of the data
field.

Non-Edit Characters

e Data Characters -- The following non-edit characters represent
data as indicated:

9 Numeric character (0,1,....9)
X Alphanumeric character (any character)
A Alphabetic character (A, B, Z and blank)

These characters are repeated as many times as necessary to
indicate the number of characters in an elementary item. Numeric
items must not exceed 16 digits. There is no restriction to the
size of alphanumeric or alphabetic items. The characters may be
written in either of the following ways:

99999 9(5)
XXXXXXX X(7)
AAAA A(4)

The decimal integer enclosed in parentheses following the picture
character indicates the number of consecutive occurrences of that
character.

e Operational Symbols -- The following Picture characters are
operational symbols and do not represent character positions in
the field:

S An S in the Picture columns means that the data field might
have a sign. The S must be the first character of the
Picture,

V An implied decimal point location is indicated by a V in the
appropriate position in the Picture columns.

Edit Characters
The characters which specify editing of a data field are described on

the following page.

2-25 12/6/63

e Zero Suppression Characters ~- The following Picture characters
represent leading numeric characters which are to be replaced
when zero:

Z Replace zero in corresponding data character with a
blank (A).

* Replace zero in corresponding data character with an
asterisk (*).

e Insertion Characters -- Each of the following Picture characters
indicates that said character is to be inserted in the corresponding
character position of an elementary item:

$ dollar sign (two or more adjacent $ characters indicate
floating dollar sign)

, comma

. decimal point

B blank

e Report Sign -- A''-" as the last Picture character indicates that a
minus sign is to be inserted in the last character position of a
negative field. If the field is positive, a blank is inserted in the
last character position.

Conventions

Reference to the examples which follow these conventions may help in
understanding them.

5. If any type of zero suppression is specified in the Picture, the
suppression also applies to leading commas.

6. No one of the Picture characters, Z, *, or § may appear to tha
right of a decimal point (.), unless every numeric character
position is represented by Z, *, or $, respectively.

7. If all data characters of an-item are represented by Z's, by
*'s, or by $'s, then the item is blanked when the value of the
data is zero. In such a case, all other editing is overriden.

8. The Picture characters $, comma (,),(.), S, and V can only be
used with a numeric field.

9. When an item whose Picture contains editing characters is
used as a source, it is treated as an alphanumeric item.

10. A Picture can have no more than 16 characters, including
editing characters; it cannot be continued onto a new lire.
However, the Picture may represent more than 16 characters
by using a decimal integer enclosed in parentheses to indicate
the number of occurrences. (See Convention 1.)

1. All characters, except the operational symbols S and V are
counted in the length of the item.

2. A picture cannot contain more than one decimal point (either
a V or a period(.)).

3. A Zor an * can be preceded in the Picture only by a single
leading $, a decimal point (V or .), or 2 comma (,).

4. An item whose Picture indicates zero suppression with a
floating dollar sign, must contain at least one more position
than the maximum number of significant digits to be stored
in it. A dollar sign replaces the least significant suppressed
zero indicated by a $ in the Picture. Every other suppressed
zero is replaced by a blank.

2-26 12/6/63

Examples
Non-Edited
Source Area Receiving Area
Picture Fieldas in Field will be Class
is: memory: used as: is:
99999 56789 56789 NUMERIC
9(3)v9(2) 56789 567.89 NUMERIC
$S999V99 5678R -567.89 NUMERIC
XXXXX ABCDE ABCDE ALPHANUMERIC
AAAAA BCDEF BCDEF ALPHABETIC
X(s) 12345 12345 ALPHANUMERIC
XXXXX AB67C AB67C ALPHANUMERIC
99X99 67.89 67.89 ALPHANUMERIC
99AA9 23FG4 23FG4 ALPHANUMERIC
A(2)X(3) BD2M3 BD2M3 ALPHANUMERIC
$9999 1234 1234 NUMERIC
$9999 123M -1234 NUMERIC
2-27 12/6/63

VALUE

(Cols. 45-76)

Edited
Source Area Receiving Area
Picture Field as in Picture Edited Field
memory:
 of
9(5) 5678 $22,229.99 $45,678.00
999V99 5678 $27,229.99 $ 456.78
999v99 C0067 $22,229.99 $ 0.67
999V99 06700 $22,229 $ 67
999v99 00004 $22,222.99 $.04
999v99 00000 $22,227.99 $.00
9(5) 00000 $22,222.72
v9(S) 12345 $22,229.99 $ 0.12
9(5) 12345 §¥% *%9 99 $12,345.00
9(5) 00123 Gk ok dk $**%123.00
9(5) 00000 §hk Hkde Kk
9(5) 67890 $5$$,$$9.99 $67,890.00
999v99 67890 9,$%9.99 $678.90
999v99 01234 $$$,$%9 $12
999v99 00000 $$$,$%9.99 $0.00
999v99 00000 $85,885.58
999v99 00001 $$$,$$5.6$8 $.01
v9(5) 67890 5,5%9.99 $0.67
S9(5) 0056P 22227.99- 567.00~
S9(5) 0056P 22227~ 567-
9(5) 56789 BBB99.99 89.00
9(5) 56789 BBB99 89
999V99 56789 999.BB 567.
999V99 56789 999.99 567.89
9(5) 00567 22227.99- 567.00
2-28 12/6/63

Purpose

The Value columns specify an initial value for data items in the Working
Storage Section.

Conventions

1.

The value may be written either as an alpharumeric or numeric
literal. However, it must agree with the class specified in the
Picture.

2. Alphanumeric or alphabetic values must be enclosed in quota-
tion marks. The length and mode of the data within the quota-
tion marks must agree with the Picture supplied for this item.

3. The length of a numeric value written in these columns must
be equal to, or less than the number of data characters speci-
fied in the Picture columns.

4. If a decimal point is included in a numeric value, it will be
treated as an implied decimal point and, therefore, must
correspond with the implied point location specified in the
Picture.

5. The sign of a numeric literal must be the left hand character
of the literal. Any unsigned literal will be assumed positive.

6. Value may only be specified at the elementary level. It may
not be stated in an item which contains an entry in the Occurs
columns or an item which is subordinate to an item containing
an Occurs entry,

Examples

Picture Value Contents of memory

X(5) ""12. 34" 12. 34

AAA "ABC" ABC

A(14) "PAYROLL RECORD' PAYROLL RECORD

X(8) "NET-PAY" %NET-PAY

9 1 1

2-29 12/6/63

Picture Value Contents of memory

S9V9 -1.5 15 _
S9(5) -25673 25673
V999 .123 123
$999 +345 345

The following examples illustrate what happens if the value is shorter
than the picture:

999 12 012

99V99 1.23 0123

99V99 12.3 1230

999Vv999 12. 34 012340

S999V999 -12.34 012340
SYNC (Synchronization) (Col. 21)
Purpose

The Sync entry indicates the format of an elementary item that exists
within an integral number of words. The entries which may be used
are:

A The item is not synchronized.

R The item is right justified within an integral number of
computer words.
The item is left justified within an integral number of
computer words.

Sync is used in both the File Section and the Working Storage Section.
Conventions

1. In the File Section, an R or L indicates the data item is con-
tained in an integral number of words and external format is
unpacked. Unpacked data is data that is so arranged that it
may be read directly into integral word lengths. The unused
character positions required to fill the computer words must
be zero.

2-30 12/6/63

In the Working Storage Section, an R or L specifies the internal
format of the item. The original contents of the synchronized
item are unpredictable unless a Value is specified.

When data is moved by a macro-instruction into an item in
Working Storage or in the File Section, the contents of the

character positions used tc fill an integral word will be set
to zero.

Whenever a synchronized item (R or L) is referenced in the
source program, the original size of the item as shown in the
Picture is used in determining any action which depends on
size, such as truncation.

Synchronization may be specified only at the elementary level.

Synchronization of numeric items (described with 9's in the
Picture) apply only to digits. The sign is carried in the sign
position of the right hand word of the field, rather than over
the units position of the data.

If a data item shares a given machine word with a second
item, each item is referred to as packed. The data must be
unpacked each time it is used.

Examples

The examples listed below are independent of each other. Assurne in
all examples that the previous field ended in the last -character of the
preceding word.

w»

Picture Sync Field in Memory

X

X000

X R 000X

118

A(5) AAAAA/

2-31 12/6/63

Picture SYNC Field in Memory

5. A(5) L |AAAA|Aooo|/
6. A(5) R]000A]AAAA|/
g 09 EEEY V4
AA
8. 99 L 9900[AA00O0
% L [F900EA0O 7
9 99 L 9900[00AA
5 L [500pUAA[/
10. 99 R 0099/00AA
% o [o0sspoaAl
TYPE (Col. 7)
Purpose

An entry used in the Type column describes the use of the line in which
it appears. The entries which may be used are:

* denoting a comment line

C denoting a continuation line

R denoting a redefinition of a previously defined area
Type is used in both the File Section and the Working Storage Section.
Comment Lines
An * denotes a comment line. The comment line is carried through to

the final listing for program documentation. There is no restriction on
the number of consecutive lines which may be used as comment lines.

2-32 12/6/63

Continuation Lines

A C denotes continuation of the Value columns. Whenever a Value,
including the delimiting quote marks, larger than the size of the Value
columns (45-76), is used, the value must be written out through
column 76 and continued in column 45 of the next line. The next line
must be identified as a continuation line by inserting a C in column 7.
On a continuation line, only the Sequence, Type, Value, and Iden.
columns may be used. All other columns should be left blank. From
one to four consecutive continuation lines may be used.

Example

Redefine Indication

An R denotes redefinition and signifies that a data item is to share its
storage area with the last item of the same level.

2-33 12/6/63

In the following example, three items are sharing the storage allocated

to data item AB,

Y I } OPERATION PARAMETFE®S
: i -
. . 'ls_ Pic
. i s s z] Bl 2afes
. [——— e o e
. ALE L 5ot S SRS EENY S NN S R I
R " L0 . T T f
5] . 1t G2 f ! ,9..4_343 [O Y T B
~ B, PR BRI N B ORI S R
N <p N D P B B e
« . R U LU U .- DS
D . ISR BRSNS C OV -P0 N
ROE i o ERRREE N E 2 JU
) ‘ ~ § .. N
1

Fields which are redefining the original area are assigned positions
starting in the leftmost character of the original area.

For the Data Division entries in the above example, memory will be
assigned as follows:

9999999 I
_

~—

A B

A 99999

(N ———

C D

lAlAIAlAIAIAIAI_I
| S

E

Words N & N+1 allocated for data item AB,

N & N+1 as redefined for data item CD.

N & N+1 as redefined for data item E.

2-34 12/6/63

Conventions

1. All redefinitions of an area must occur directly below the
original data item.

9. The number of characters in the redefining entry must not
exceed the size of the original data entry.

3. Redefinition ends when a level number less than or equal to
the level of the original data entry is encountered.

4, Entries redefining an area must not contain a value. Itis
permissible for the original data entry to contain an initial
value in the Working Storage Section.

5. Multiple redefinitions are permitted, provided they occur at
the same level, and there are no intervening entries.

USE (Usage) (Col. 23)

Purpose

An entry in the Use column specifies how a data item is to be used in
memory in either File Section or Working Storage Section. The
entries which may be used are:

A The field will be used as specified in the Sync and Picture

columns.

Data field is used as a switch.

Data field is used as an index word.

U This entry is restricted to the File Section. It indicates that
the data field should be unpacked and right justified as it is
read into memory or packed when written from memory. U
cannot be used with any fields which are involved in redefini-
tion.

=W

Conventions

1. The use of S (switch) and I (index) is restricted to Working
Storage and must be used at an 01 level.

2-35 12/6/63

If the data field is specified as a switch, it has an implied
Picture of 9(4) and may contain an initial value.

A data name specified as an index is established in the
standard fixed index word format. It may contain a signed
decimal integer as an initial value. The magnitude of the
integer may be from 0-32,767.

The Use column may be used only at the elementary level.

If a data item has been defined as synchronized (unpacked

L or R) on the external media, it is not necessary to insert
a U in the Use column. It will be brought in as an unpacked
item and retain the synchronization specified.

When several data items are defined between two entries
with a U in the Use column, they will also be read in or
written out right justified and unpacked.

Examples

These examples illustrate the function of the U. All examples assume
that the data on external media consists of --

Field No. Data Picture
1 111 999
2 B A
3 33333 9(5)
4 DD XX
5 5 9

The same set of Pictures is used in all examples. The data on the
external media is assumed to be a string of packed characters:

Use

111B33333DD5

Picture Data in Memory

999
A
9(5) l1118[33333DD5]
XX

9

2-36 12/6/63

ca

999
A

9(5)
XX

999

9(5)

999

9(5)

999
9(5)

999
9(5)
XX
999

9(5)

Picture

Data in Memory

lo111/000BJoo03[3333J00DDJooo0 s

[0111/000B[3333[3DD5|

lo111/000B|[3333[3DD5]

l1118Jo003[33330nD5|

looo1f11B3[3333J00nDJooos]

lo111]B333/33DDp00S5]

lo111Jo00BJoo0s[s3s3opDs]

-

2-37 12/6/63

Ny

Use Picture Data in Memory
9. U 999
A
95) ¢ |o111JooB3[333300DDJ000 S|
U XX
9
OCCURS (Cols. 41-44)
Purpose

The Occurs columns are used to indicate the number of times an item
is to be repeated in either the File Section or the Working Storage
Section. If a number is not supplied, the item is assumed to occur
only once.

Conventions

1. The Occurs entry must be a decimal integer, starting in
column 41,

2. Occurs may be used at any level other than 01,
3. If elementary items appear within a group which is to be re-
peated, the complete group will be repeated. Refer to data

names B and C in the second example shown.

4, All elementary items which occur more than once must be
synchronized.

Examples

In example 1, the data name to be repeated is an elementary item.

The storage will be assigned as follows:

10t91919|0|919|9!01919|910|9|9|9|019J9£|

C3 C4 G4

A

In example 2, the group item is to be repeated. In this case, the items
within the group must be synchronized.

OPERATION PARAMETERS

PICTURE o«
24f 25 at] 4

e L L i 1iL «

| ,9, \ i S S S S Y S S U S

4"”-3_1_3_;34__‘_4__..;._4 T S T N SN Y (. P——

The storage will be assigned as follows:

141

-

Mq&ﬂqqqqqq&ﬂqgﬂﬂpogﬂoggq

1717
A
Cy By C3

— / \ R

Ag As

The group item, A, is repeated three times.

IDEN (Identification) _

(Cols, 77-80)

N OPERATION PARAMETERS

__.,W,,
.o‘/ :
vees
LI

2-38 12/6/63

Conventions

The Iden entry associates a card with a source program deck.

Any four characters may be selected by the programmer,

2-39 12/6/63

2. The Identification is printed on the assembly listing, but is
not checked by the Macro Assembly Program.

DATA DIVISION SECTIONS

FILE SECTION

The File Section contains the programmer's descriptions of the
charactéristics of the file, which are:

e to specify the type of processing to be performed on the file.

e to describe the areas into which the files may be read, or from
which they may be written.

° to define the format of the records which are contained in the
files.

The File Section begins with a line that contains FILEASECTION in
columns 8-19. Following this, there must be a description of each
file that is to be used in the object program.

Each file description begins with the file name in the Data Name columns
and an FD entry in the Level columns. Immediately following the FD
will be a set of file parameters that specify the physical characteristics
of the file, the peripheral unit, and the type of processing to be used

for this file. A record description will follow the file parameters.

Example

The example on the opposite page illustrates the Data Division entries
necessary to describe a file of time cards to be read by the card
reader. No file parameter need be specified for any file which is not
referred to by some I/0 macro-instruction in this segment. In this
case the record description immediately follows the FD line.

2-40 12/6/63

. ‘ & i 1 ll OPERATILN R S

A TIETT B
. . Z) '.AM LN AME e "; ‘v'-;‘u‘:& le : I3 sal s FFCTURE
FitteasecTligy | -

g 1 v E»C.D 5 F D foen IS S ,‘,,x SRS N Y TN T R VORI

- N A Lt NS U SRS [N W [N [N S N SR W i
i o ' L F. / Ll ,,L:L; .iJ.v~L~4.__J_..L‘J‘LA_L,.A,

i . . £ 9.F.

T 3 ,

T I ME C.L O 1.

v Ry N & G2

LA T L S

N @& ia3

DA 53

YR oz

HES WKD Q2

File Parameters

File parameters are used to supply input/cutput information for a file
to the Macro Assembly Program. A special mnemonic, associated with
each parameter is written starting in coluran 17 of the form. The
eniries which are allowed for each parameter are written in the Opera-
ticn Parameters columns beginning in column 25. The standard set of
fil> parameters are listed on page 242, 43; on page 2-44 , the complete
list of file parameters is given.

The file parameters supplied for a given file must include DEVICE and
CCOCMMAND and must be written in the order prescribed in the File
Parameter list on pages 2-44 through 2-46 ., The DEVICE file
parameter is used to determine which additional parameters are re-
quired and to establish a standard set of file parameter entry options.
Any of the standard options can be overriden by supplying file para-
m¢ter name and the desired option,

Logical device codes are described in the Basic Input/Output System

write-up under the Logical-Device-to-Physical-Device Translation

Table. The logical device number has the following octal format:
XXYY

where XX is a device type code and YY is the number within this type

2-41 12/6/63

of the particular device in question. The device type codes have the
following meanings:

Code (in octal) Device
00 Typewriter
01 Card reader
02 Card punch
03 Printer
04 Magnetic tape
05 Disc storage unit
06 Macnetic reader/sorter
07 Perforated tape reader
10 Perforated tape punch

YY might be used for the number of a particular tape unit within a
magnetic tape subsystem. For example, 0401, 0402, etc.

If the first characters of the device code are 02 (card punch), no
additional file parameters are necessary. When the device code is 04
(magnetic tape), a FILETYPE parameter must be included to indicate
the input or output option, Finally, if the device code is 01 (card
reader), 03 (printer), or 04 (where magnetic tape is specified as
input) an EOFADDR parameter will be required. The following table
sets forth the required parameters:

Parameter Device

Magnetic Tape Card Reader Card Punch Printer

(04) (01) (02) (03)

DEVICE Required Requij i j
COMMAND Required Regtllilzl:gg gg Hgg ﬁg&{{gg
FILETYPE Required - -- --
EOFADDR Required if Required -~ Required

FILETYPE is

INPUT

The following table specifies the option the Macro Assembly Program
will assume for File Parameters that are not supplied.

2-42 12/6/63

DEVICE Code

Magnetic Tape

04XX

Card Reader

01XX

Card Punch Printer
02XX 03XX

If this parameter
is omitted

The Macro Assembly Program will use this set of options

AREADEF

IOMETHOD

FORMAT

RECFORM

RECINDEX

MODE

BUFCOUNT

EROPTION

SBOPTION

RWDLOCK

CLOSERWD

OPENRWD

BLKSIZE

ALTDEV

DENSITY

PRIORITY

TPMKPROC

LABELDEF

GENERATE

INCREMENT

UNPACKED

FS

*

BINARY

HALT

HALT

Device code
will be used

HIGH

0

HALT

NONE

GENERATE
INCREMENT
UNPACKED
F

*

BCD

HALT

HALT

GENERATE GENERATE
INCREMENT INCREMENT
UNPACKED UNPACKED
F F

* *

BCD EDITED

3 2

HALT HALT

4

NOT APPLICABLE

‘NOT APPLICAfKi{

N

2-43

12/6/63

If the programmer specifies AREADEF DEFINED, he must also expli-
citly supply and specify values for DCWLIST, BLKDWNO, RECDCWNO
and RECLNGTH.

A complete list of the file parameters and a detailed description of
their optional entries is included in the Extended Input/Output System
(EIOS) write-up. For readers’convenience, the file parameters are
listed below with all of their option entries.

File Parameter Option Entry

AREADEF GENERATE [refsym]
DEFINED
REMOTE

DEVICE NNNN
COMMAND XXXX
IOMETHOD INCREMENT
EXCHANGE
SHARE
FORMAT CONTIGUOUS

UNPACKED
SCATTERED

RECFORM F
FS
A%
Vs

RECINDEX *
X

FILETYPE INPUT
OUTPUT

MODE BINARY
BCD
MIXED
EDITED
UNEDITED

DCWLIST refsym

2-44 12/6/63

The

File Parameter

BUFCOUNT
RECDCWNO

EROPTION

RDBLKEXT

EOFADDR

SBOPTION

following are needed only for
EORCHKPT

RWDLOCK

CLOSERWD

OPENRWD

BLKSIZE
ALTDEV
RECLNGTH

DENSITY

BLKDCWNO
PRIORITY

EOREXIT

Option Entry
NNN

NNN

DUMP

TYPE

RETRY

HALT

refsym
refsym
refsym
DUMP

HALT

refsym

a magnetic tape file:
CHECKPOINT

YES
NO

YES
NO

YES
NO

NNNNN
NNNN
NNN

LOW
HIGH

NNN
N

refsym

2-45 12/6/863

File Parameter Option Entry

TPMKPROC HALT
IGNORE
refsym

LABELDEF NONE
STANDARD
refsym

One or more of the following is needed only when LABELDEF is
STANDARD

LABELOPT XXXX

LABELXTS Exit 1 address; Exit 2 address;

Exit 3 address; Exit 4 address
LABELCON 7ZZZZNNNNFILENAMEISSSY DDDXXXXFFFF

A list of File Parameter options for perforated tape, disc storage
units, and magnetic reader/sorter will be specified later.

Record Description

A description of the logical record(s) to be found in the file must be
included immediately following the file parameters.

Inherent in the structure of logical records is the concept of levels of

data, The programmer writing in a field-oriented language will find

it convenient to divide the items of data in the record into groups, and

to possibly further sub-divide the items of data within these groups.

This is made possible by assigning numeric levels to each item of

data within the record. Data described in a Macro Assembly Source Program
may be assigned levels 1 through 4. Using level 1 for a record name,

it is then possible to group data within the record into three levels
subordinate to the record level.

For additional details on record structure, refer to Concept of Levels,
page 2-23. The remaining columns Type, Data Name, Sync, Use,
Picture, and Occurs must be filled in as necessary. For specific
details about allowable entries and formats, refer to the particular
entry description.

2-46 12/6/63

I/0 Buffer Area Definition

In the Macro Assembly Program, the programmer may indicate whether
the buffer area(s) and DCW list(s) are to be generated by the program,
supplied by the programmer in this segment, or have been supplied in

a separate segment.

The AREADEF file parameter is used to indicate which of the options
is desired. This parameter has the following format:

AREADEF

‘GENERATE [;refsymbol }
DEFINED
REMOTE

The options are defined below:

GENERATE

refsymbol

DEFINED

The Macro Assembly Program will generate
the buffer area(s), DCW list(s), and the

file table from information supplied by the
file parameters. This option will be used

if the AREADEF parameter is omitted. If
the IOMETHOD option is SHARE, or if the
FORMAT option is SCATTERED, the GEN-
ERATE option cannot be used.

This is an optional entry which,if specified
will cause the program to assign the speci-
fied Reference Symbol to the first word of
the first buffer area generated for this

file.

The programmer must allocate the area(s)
required for buffer(s). The DCW's and BSS
pseudo-operations used to reserve the area
must be written in the Procedure Division.
The Macro Assembly Program will generate
the file table as defined by the file para-
meters,

2-47 12/6/63

REMOTE This indicates that the file parameters and

record description are for reference only in
this assembly. Memory will not be allocated
for the file table, DCW list(s), and buffer
area(s). The buffer area(s) for this file must
have been established in a separate segment.

FILE SECTION CONVENTIONS

The following conventions apply to files or logical records defined in
the File Section:

1.

The file name supplied with the FD parameter will be assigned
to the first word of the file table generated for this file.

All data items described within a logical record are assigned
addresses relative to the beginning of the record. Therefore,
reference to a given item within the record must be indexed.

The first word of the record will be assigned the relative
location 0. During the execution of the object program, the REC-
INDEX will cortam the bcation of the first word of the current
logical record. Any reference by a macro-instruction to a

data item defined in the File Section is automatically modified

by the index word (RECINDEX) assigned to the file.

If any macro-instruction refers to a data item within a logical
record, that item must be described in the Data Division.

If a data item within the record has not been described, all
references to that item must be written in the basic assembly
language. The references should be relative to the start of
the record and must be indexed. For example, if the following
record was described with a single entry at the 01 level,

Lot b baaad
N— N~

\\,.___/
PAY~NO ORG DATE
the following basic assembly language instructions would be

required to unpack the record to Working Storage. Assume
that fixed index word 4 has been assigned to the file,

2-48 12/6/63

Operation Operation Parameters
LDD 1, 4
SRDA 3

STD PAY NO
LDD 2, 4
SRDA 3

STS ORG
LDD 3, 4
SLDA 1

SRDA 2

STD DATE

5. Each buffer area generated by the Macro Assembly Program
will begin at a 0 mod 4 location. The generated buffers)will
overlay the loader program at object time.

6. For efficiency, if a packed data item is to be used several
times, it should be unpacked by moving it to a synchronized

data item in the Working Storage Section. Subsequent references

should then be made to the unpacked item.

7. The length of a logical record described in the File Section
should be a multiple of four characters. If the record is not
a multiple of four characters, the FORMAT file parameter
nmust specify UNPACKED and at least one data item within
the record must contain a U in the Use column,

8. If CONTIGUOUS is specified in the FORMAT file parameter,
it will override any U written in the Use column.

9. If UNPACKED is specified in the FORMAT file parameter, the
RECFORM must be F or FS, and a complete logical record
description must be supplied. One entry is necessary for
each field to be unpacked.

WORKING STORAGE SECTION

The programmer uses the Working Storage Section as follows:

to describe areas to be used for intermediate input,/output
processing

to build constants

2-49 12/6/63

e to define intermediate storage to be used as tables, work areas, and
temporary storage during execution of the object program

e to describe format lines with initial values to be used for output
records and print lines

The first line in this section must contain WORKINGASTORAGEASECTION

in columns 8-30. This will be followed by the entries required to des-
cribe the constants and data storage required by the source program.

Data items defined in Working Storage may be either unrelated elemen-
tary items or logical groups. The first entry to appear in the level
columns must be an 01 (or 1). If the entries are unrelated, this will be
followed by another 01 level. If it is followed by a level number higher
than level 01, the 01 level data item is a logical group. The group may
be further subdivided as indicated in Concept of Levels, page 2-23.

The following entries may be used to describe the data items:

Data Name
Sync

Use
Picture
Occurs
Value

WORKING STORAGE SECTION CONVENTIONS

The following conventions apply to items described in the Working
Storage Section:

1. Data items described in the Working Storage Section will be
assigned specific addresses. Therefore, reference to items
within this section need not be indexed. Indexing may be
used to address items used in a table.

2. The number of words moved to or from the Working Storage
Section with either a READA TO or WRITEZ FROM option is
equal to the size of the input or output record.

3. Unrelated numeric items in the Working Storage Section should
be right synchronized to produce more efficient object coding.

2-50 12/6/63

4, If an initial value is not specified, the initial content of the
item is unpredictable,

5. The only pseudo-operations allowed in the Working Storage
Section are DGR, DGRR, and DGRE. (See Common Data
Areas, page 2-101.)

Example

The following example illustrates a few of the various types of storage
areas, constants and print lines that may be described in the Working
Storage Section.

- |
e

e ae Wecamas Ll

|
BT e
= il
s -b
B
TN

poegpoob|
e Livh - O

T IwrtRMeviATE PARCA FAR CALC ULATIAN
N Srae . 3mM.
J

©

be T

o aPR> Ko, .

d- o

[P Y TeRess

4
[t S
s -

be ¢

[A T e
R e A A A
v oEze_zzozar

F

Adans”

50000 voppeloonEPOL—D
o e N V) et ot T

T A AP A A AN A
P P P e

Mlwiiiis fipm

o aavA Y -NG
CA2 B

' G0OEOoPPROob PO BO000D o
e0onCOgor I TEBORDOD B

R Y- N LS TR

2-51 12/6/63

MEMORY ALLOCATION

Data described in the Macro Assembly Program Data Division is assigned
memory positions, proceeding from left to right, If synchronization is
not specified, consecutive data items are assigned adjacent character
positions.

The following Data Division entries

REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
T s u,
CATA NAME bed v N SF PICTURE
9 2 AR wier | Qa2 24825
A; AP S G- | L 0 :L, [qlqlql 4 1 L t Il L 1 It I
.. S S S ‘,Q.Z,‘ SlqlqA H Loy R U S
C . - 200 A T - L .

will be assigned storage as indicated below:

+
[99999AAAAAAA |

R) S
A B C

When synchronization (R or L in the Sync column) is specified, the
Macro Assembly Program insures that the item is placed into an integral
number of words. This may be illustrated by modifying the first example
to-include an R in the Sync columns of data item B. This is shown in
the following example.

The following Data Division entries

. " . . 0 l,,,_‘ -~ ‘ S __1:..,,,,,,3 Jﬁ 4,3,4,_4 B T SUTS
B . oL R llsea T T T
C o o2 I L o o
I B I ‘J:if':f,;f._f;’_ LT

2-52 12/6/63

will result in the following assignment:

+
[9.9,9.0/0099]AAAAAAAD|
~~ A N—

A B C

Note that data item B is unpacked in an integral number of words and
that the assignment of positions to item C started at the first character
position of the word following the synchronized item. This would apply
even if item B included L in Sync rather than R:

+
19,9.9.019.900]A A A AJA A A
—~— N————7
A B C
Whenever the Macro Assembly Program encounters an 01 level, it will
start assigning positions in the first character position of the next word.
This is illustrated in the example below.

For the following Data Division entries

REFEREMCE SYMBO L OPERATION OPEFRATION PARAMETERS
N s u
DATA NAME e v E VN E PICTUREF
4 16 017 1 2 cl 22 2425
AJ [P NN U SR WY S T Q L,l,,;, . | qxq. L Y R SRS S S S R S N
4 LS S S T T ,,},Q q] 9| 1 1 1 1 t 1 I
C B -y I S G S ,_"_O_A_‘T_i_a q‘ q Il 1 1 i I 1 1 I
memory will be assigned as follows:
|919,O.O]9l 9, 0.0]0l 0‘9|9|
N N <
A B C
2-53 12/6/63

In the following examples, the data, as it appears on external media is
shown first, followed by the way it is desired to nave it appear in mem-
ory. The coding used to arrange for this memory allocation is given
last,

N
N » o
N NG
Examples e\b > e\b &
SRR
1. Data on the N S A
external media: 111B33333DD5
Data in memory: [111B3333[3DD5]|
Coding:
REFERENCE SYMBOL ’;‘;"i"?ATION OPERATION PARAMETERS
N CATA NAME . “L\:{vﬂj . S"Nc 22 USL— 2af 28 PICTURE
R.: . CiBd, R D oyl S U VN Y SN T S WY S S R W,
Foloe LD~ 0§ 0N, ?.9.9. . L L
[F I 8, L Dm0 : QJ,}L A P S S SO SR SO
F. I 6 LD~ 3 0.2 9. (.52 4 A L
FI S~ L D XX, 4 a1
FI1eLn~5, 02 | S N
mdieend —cd bt L S Y S SR N TR S S T
2 o
T
> & & Q&
Q’» QV Q,"‘ QN 2

2. Data on the AN e /\/?;
external media: 1118 5

ST Y B RN S U—" -

tﬂ. < 2.A.D. SR . N

FI L. D o N ; L

Folf kDo Dol P R W

€. E . L.Di~ad oLy I P
FIe.lDvy. oo ! .
zFrI.LL‘D 5 0 i L
P U R _é TGS WONS TR EUN T S W

2-54 12/6/63

Data on the
external media:

Data in memory:

k] W &
b;" % 0
& & o
0111000B000333330’0DD000?‘

N
§
2
2

f[o111joo0BJoo03[333300DDg005

Coding:
REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
DATA NAME LEVEL PVN ugE PICTURE
9 16§17 | 18 19} 20 22 24§ 2%
RAglc‘lq)lR‘D' i _;T;_D.Ll P 1 " L -
FI1.eL.D~t..] ip2. R ks P U
FoL.& L. D2 SR R A oo N SO
FolLE LD~ & 02 R Q.50
F.,ld_&,LJ._‘_D_L,":;H.-..,.r._E,,Q LZ., ; R i X Xi TE— Y S S — Lok
F.I1.6 LD~S8._ % o2 IR L W N : ..
SRR (S N VOO TR
N R W
¢ BAANG o R
> > A
2 PR S
N X ~ -2 ()
Data on th Y& 5 & &
ata on the P P

external media:

Data in memory:

1110B3333300DD>5

[t110/000Bj0003[3333J00DD|000S5

Coding:
RECHERD, | | e
Fl.&8 . D~ 0, L 39.9. . . Lt L
Fo1.é . D~ 2, L U AJ SRS T Lo T R P
B RO SN (V] QB2 NS
Fol.8.1 .2 R X Xe i, . N
F.I. &1 .D~.5, . v 19 N
_ " P S G L PR T T STIR
1 1 1 X 4 Il t 1 i I i 1 1 I U J_l__.,
1 1 4 i 1 . e i 1 i 1 " J
) 4 L 1 i i l 1 i i I H L]

2-55 12/6/63

VII. PROCEDURE DIVISION

The Procedure Division is that portion of the source program in which

the programmer writes the operations that process the data and control
the program flow. In the Macro Assembly Program, these operations
may be written as macro-instructions or basic assembly language symbol-
ic instructions and pseudo-operations.

The Macro Assembly Program will process all basic assembly language
symbolic instructions and pseudo-operations which are written in the
Procedure Division. For a complete description of the instruction for-
mats, Operation Parameter entries, and a listing of the GE-425/435
Instruction Repertoire, as well as a description of all pseudo-operations,
refer to the Basic Assembly Language section.

Macro-instructions allow the programmer to specify the operation to be
performed rather than supplying the detailed coding. A description of
the function, mnemonic operation code, and operation parameter format
for each macro-instruction available in the Macro Assembly Program
will follow a discussion on the Procedure Division entries and use of
the Operation Parameters.

WRITING THE PROCEDURE DIVISION

The Procedure Division is the fourth division to be written on the
GE-425/435 Macro Assembly Program Programming form. The first
line of this division must contain PROCEDUREADIVISION in columns
8-25. This is followed by the macro-instructions, symbolic instructions,
and pseudo-operations which describe the flow of the program. Finally,
the division must be terminated by a line that contains END or TCD in
the Operation columns.

Comment lines denoted by an * in column 7, may be interspersed through-
out the Procedure Division.

Since the same programming form is used for the Data Division, it con-

tains two sets of columnar headings. The headings that pertain to the
Procedure Division are discussed in the next several paragraphs.

2-57 12/6/63

SEQUENCE (Cols. 1-6)

Purpose

The sequence number is provided to aid in maintaining the correct order
of the source program deck.

Assembler Action

If the sequence check option is indicated in the Language Processor option
card, the sequence number assigned by the programmer will be checked
using the GE-425/435 collating sequence. Any source program card with
a sequence number equal to, or less than, the preceding card, will be
flagged as a possible error on the program listing.

TYPE (Col. .T)

Purpose

This column is used to indicate the use of the line in which it appears.
The entries which may be used are:

* denoting a comment line. The comment line is written on the
final listing for program documentation. There is no restric-
tion on the number of comment lines that may be included.

C denoting a continuation of the Operation Parameters columns.
If a list of parameters required by a macro-instruction is
larger than the Operation Parameters columns, the list may
be continued on the following line. The continuation of the
parameter list must begin in column 25. The Reference Symbol
and the Operation code should not be repeated on the continua-
tion line. The last parameter (literal, data name, reference
symbol, or file name) must not be split between the two cards
The line to be continued must terminate with a comma or a
semicolon.

2-58 12/6/63

Example

Type Ref.Sym. Operation Operation Par?meters
GOTO refsym~l;refsym2;...refsym38,
c refsym-9 DEPENDINGAON TC-NO
GOTO refsyml;...... sDEPENDINGAON TCANO,
c X8
* THE FOLLOWING EXAMPLE IS INCORRECT:
GOTO refsymol jrefsym2;......... ref
Cc sym~9 DEPENDINGAON TC--NO

Note: The refsym cannot be split between lines.

REFERENCE SYMBOL (Cols. 8-16)

Purpose

The Reference Symbol enables the programmer to assign symbols
to instructions and pseudo-operations written in the Procedure Division.

Conventions

The symbolic Reference Symbol entered in columns $-16 must follow
these conventions. Reference Symbols --

1. may be one to eight characters in length

2. may be formed from the alphabetic characters A-Z, the numer-
ics 0-9, and the tilde, written o

3. may be defined only once ina segment
4. must contain at least one alphabetic character
5. may be floated anywhere within the eight column field

6. must not contain imbedded blanks.

2-59 12/6/63

If a Reference Symbol is written in a macro-instruction, the symbol will
be attached to the first instruction produced by the macro-generator.

OPERATION (Cols. 17-24)

Purpose

The operation is a mnemonic code which represents a macro-instruction,
machine instruction, or a pseudo-operation.

Conventions

1. The operation may be written anywhere within the Operation
columns.

2. The mnemonic operation code must not contain imbedded
blanks.

OPERATION PARAMETERS (Cols. 25—7;3_)_

Purpose

The parameters necessary to complete the function indicated by the Op-
eration are written in the Operation Parameters columns.

Conventions

1. Parameters written in the Operation Parameters columns must
begin in column 25.

2. 1f the Operation code specifies a basic assembly language symbolic
instruction or pseudo-operation, the parameter may be a refererce
symbol, a data name, an absolute address, an expression, a
literal, or a value. The Operation Parameters columns of basic
assembly operations may not contain imbedded blanks. The for-
mat of these basic instructions and of the pseudo-cperations is
described in the Basic Assembly Language section of this manua.

2-60 12/6/63

3. With a macro-instruction, a parameter may be a reference
symbol, a data name, a file name, a literal, an expression,
or an absolute value, depending on the specific Operation being
usced. The parameters follow the rules set forth in Use of Op-
eration Parameters.

4, Any address modification will appear in the Operation Parameters
columns.

5. Comments may be included in the Operation Parameters columns,
providing that at least two blanks separate the comments from the
last parameter on the line.

6. The normal delimiter is a semicolon, however, in the description
of each macro-instruction it is specifically stated what the de-
limiters are.

IDEN (Identification) (Cols. 77-80)

Purpose
These columns are used to associate a card with a source program deck.
Conventions

1. Any four characters may be selected by the programmer.

2. The Identification is printed on the assembly listing but is not
checked by the Macro Assembly Program.

USE OF OPERATION PARAMETERS

The number and types of parameters vary depending on the operation
code. The description of the specific macro-instructions indicate which
type, or combination of types, may be used as parameters.

The following parameter types may be used in either macro-instructions
or basic assembly language instructions in the Procedure Division.

2-61 12/6/63

Reference Symbol

Reference Symbols may be assigned to macro-instructions, basic assem-
bly language instructions, and pseudo-operations defined in the Procedure
Division.

When a Reference Symbol is used as a parameter in a macro-instruction,
it may use address modification as specified in Macro-Instruction Address
M dification, page 2-64.-

A Reference Symbol used in a basic assembly language instruction or
pseudo-operation may be part of an expression a5 described in Calculated
E-itries, puge 1-16 of the Basic Assembly Languaye section.

D.ta Name
D:iita names are associated with data items and records described in the
Duta Division. Any reference by a macro-instruction to a data item
described in the File Section is automatically modified by the index word
(RECINDEX) assigned to the file unless a specified index is supplied.

If 4 macro-instruction references a data name, the description of the
item is used to generate the instructions specified by the operation;
address modification may be indicated as described in Macro-Instruction
Address Modification, page 2-64.

Wien a basic assembly language instruction or pseudo-operation refers
directly to data defined in the Data Division, the Macro Assembly Pro-
gram provides the address of the word which contains the least significant
character of the data. Anexpression and index may be specified for

40 iress modification.

Tte file name is defined with an FD entry in the File Section of the Data
Division. When a file name is referenced by a macro-instruction it
sp-cifies which file is to be operated upon; no address modification may
be indicated.

If he file namne is referenced by a basic assembly language instruction,
the Macro Assembly Program will provide the address of the first word
of the file table. Any word within the file table may be referenced by
pliicing a data name on the file parameter entry or an increment may be
apoended to the file name to address entries within the file table.

2-62 12/6/63

Literal Entries

A literal specifies the actual value of data to be operated on by a macro-
instruction. Literals are stored as unpacked values, synchronized left
or right depending on their use in the instruction. If a literal with the
same value and alignment has been previously defined, the assembler
uses the address of the original literal.

The literals described below are for use with macro-instructions only.
For a description of the basic assembly language literals, refer to
Literals, page 1-21 of the Basic Assembly Language section.

Two types of literals may be used in macro-instructions: numeric and
non-numeric.

e Numeric Literals -- A numeric literal may contain the numbers
0-9, the decimal point (.), the leading plus sign (+), or the leading
minus sign (-). A decimal point may be included anywhere within
the numeric literal except as the right hand character. The decimal
point will be treated as an implied decimal point by the assembler.
A numeric literal may contain only one decimal point and/or one
sign.

Examples

13602

3

1.2

-3.9

+4235. 06
The length of a numeric literal may be from 1-16 characters not
including the sign and/or decimal point. The sign, if included, is
carried internally in the standard sign position. It is not established

as a separate character.

Non-Numeric Literals -- Non-numeric literals must be enclosed by
quotation marks.

An alphanumeric literal consists of any combination of characters in
the GE-425/435 character set, except the quotation mark. An alpha-
betic literal consists entirely of alphabetic and blank characters. A
non-numeric literal may be from one to forty characters in length and
must not be split between two lines.

2-63 12/6/63

Examples
"GNET-PAY"

" END OF JOB"
"TOTAL TAX"
'"-16.83"

The ""-16. 83" is considered an alphanumeric literal because it is
enclosed in quotation marks. It is carried internally as

-16.83
and therefore may not be used in calculations.
If -16. 83 is needed in an arithmetic operation, it is entered as a
numeric literal (without quotation marks) and is carried internally
in one word as

1683

Absolute Entries

If a specific macro-instruction allows, a parameter may be a decimal
integer. This may specify either a fixed index word or a control count.
If used with a basic assembly language instruction, it may refer to any
fixed machine location or value.

Macro-Instruction Address Modification

° Using ndexes -- An index may be specified as a modifier to a data
name or a reference symbol used in the Operation Parameters of
a macro-instruction. The index may be a fixed index word or a
reference symbol and must immediately foilow the data name or
reference symbol. The index is separated from the data name by
a comma. As many as three indexes may he specified, separated
by commas. Literals may not be indexed. If any index is specified
in a macro-instruction, the specified index overrides the index
assigned to the file. If a data name which was described in the File
Section requires any index other than the index assigned to the file,
all necessary indexes (including the file's RECINDEX) must be
specified following the data name.

2-64 12/6/63

Therefore, prior to using a macro-instruction, the programmer must

Examples . B
E— make the following provisions:
Operation Operation Parameters
1. Insure that the accumulator is located at 0-3.
GOTO refsym, 4 .
2. Save the contents of location 0, 1, 2, 3, 6, and 12 through 15
LOAD data-name-1, ABLE if the contents will be needed following execution of the macro-
instruction.
LOAD data-name-1, ABLE, BAKER, 6 L
The use of the comparison indicatas will be indicated in the description
MOVE data-name-1, 4;data-name-2, 4 of the macro-instructions that may modify their settings.

Using Calcualted Addresses -- In macro-instructions, simple ex- Operation Parameters Format Notation

pression may be formed by following the reference symbol parameters
with an arithmetic operation (+ or -) and a decimal integer.

The notation shown in the chart below is used to describe the variable
format of the Operation Parameters columns.

It is difficult to predetermine the number of instructions that will be
generated by a macro-instruction. Therefore, calculated addresses

(i.e., *+2 or refsym-3) should never be used to refer past a macro- Operands indicated by lower case words. They
indicate the type of operands that a

instruction.
programmer may use.
data-name-"- associated with an entry in the Data
MACRO-INSTRUCTION DESCRIPTIONS Division.
file-name- defined with an FD entry in the File

Macro Assembly Source Language functions include 1
Section of the Data Division.

Input/ output , . . .
refsym- associated with an instruction or
Data movement pseudo-operation in the Procedure
Division.
Procedure control . .)
literal the literal must be specified as des-

Arithmetic operations. cribed in Literal Entries, page

Descriptions and usage of each of the macro-instructions in these four Choices are enclosed in braces gl} - One ent?y

categories are presented in this chapter. An alphabetic list of all macro- must be selected from those shown with-

instructions is given in Table A at the end of this section of the manual. in a set of braces.

Use of Hardware by Generated Coding Options are enclosed in brac.ketsg g Information
contained within the brackets may be in-

During execution of the object coding produced by a macro-instruction, cluded or omitted.

the contents of location0 arnd the fixed index words 1, 2, 3, and 6 plus
the hardware accumulator words 12 through 15 may be destroyed. This
is sometimes necessary to produce the most efficient object coding.

2-65 12/6/63 2-66 12/6/63

KEY WORDS

NOISE WORDS

are those which must be used in a macro-
instruction. They are indicated by under-
lined upper case words.

are those which may be used to clarify
(in English language) the meaning of a
macro-instruction on the programming
form. When used, they must be correct-
ly spelled. They are indicated by upper
case words.

are indicated in the macro-~instruction
formats and must be included on the
programming form.

2-67 12/6/63

INPUT/OUTPUT OPERATIONS

In the Macro Assembly Program, the programmer may include any of

the logical record macro-instructions and service macros made avail-
able by the Extended Input/Output System. For a general discussion of
the design objectives and operating philosophy (including label processing
and error recovery procedures) refer to the Extended Input/Output System
write-up.

To incorporate the Input/Qutput macros in a Macro Assembly Program,
the programmer must also provide

1. a description of each file to be used by the macro-instructions.
These files are defined in the File Section of the Data Division.

2. a list of the major input/output control routines to be included
with this segment. The routines are defined with System De-
finition Parameters in the Environment Division.

A description of Input/Output macro-instructions follows.

READ

Function: To obtain the next logical record from an input file.

Format:

Operation Operation Parameters

Option 1. READ file-name-1

Option 2. READ file-name-1ATO A ﬁata'"ame'h>
kefsym J

Notes:

1. In Option 1, READ causes the location of the first word of the
next logical record to be placed in the specified RECINDEX.
The records may then be processed in the input buffer by using
RECINDEX to modify all references to the logical record.

2-68 12/6/63

In Option 2, READ causes the location of the first word of the
next logical record to be placed in the specified RECINDEX
and, in addition moves the record into working storage or an
output file buffer area. The second parameter may specify the
reference symbol of a work area defined with a BSS in the Pro-
cedure Division, the data name of a logical record defined in
the Working Storage Section, or a file name. The length of the
record in file-name-1 determines the number of words to be
moved.

The data record last accessed by a READ macro continues to be
available in the input buffer via RECINDEX until the next READ
for that file has been issued. However, once the current input
data record has been released to an output file by a WRITE
macro, further modification of the record in the input file will
not be reflected in the output record. If the current input record
has been released to an output file by a WRITEX macro, any
further modification of the record in the input area, up to the
point that another WRITE or WRITEX is given to the same out-
put file, will be reflected in the output record.

Once a record has been obtained by a READ file-name, it cannot
be moved to Working Storage by a READ file-name TO refsym,
since the latter macro will access the next data record instead
of the record desired.

The contents of RECINDEX must not be changed by the object
program.

An OPEN macro-instruction for the file must have been executed
before executing the first READ macro-instruction for the file.

WRITE

Function:

To release a record to an output file.

2-69 12/6/63

Format:

Option 1.

Option 2.

NOji es:

1.

Operation Operation Parameters
refsym
WRITE file-name-1 FROM / data-name
file-name-2
WRITE file-name-1

In Option 1, the WRITE macro-instruction moves the data record
into the next available space in the current buffer area of file-
name-1. The second parameter specifies the source of the data
record to be moved to the output file buffer. The parameter may
specify the reference symbol of a work area defined with a BSS
in the Procedure Division, the data name of a logical record in
the Working Storage Section, or the file name of an input file
whose current record is to be moved. The programmer must
insure that the source record conforms with the record format
specified in the output file. If the output file is composed of F
or FS! form records, the length is specified in the RECLNGTH
entry in the file table. For V or VS2 records, the length will

be indicated in the record length word of the record to be moved.

The RECINDEX assigned to the file always references the first
word of the last record placed in the current output buffer. The
record remains available for processing in.the output buffer

via the RECINDEX until the next WRITE or WRITEX is issued
for this file.

For Option 2, the WRITE macro~instruction invelves no data
movement by the Extended Input/Output System. It is a request
for the next available space in the current buffer for file-name-1,
in which the object program may build an output record. The
location of the first word of the space made available will be in

Note: () F -- Fixed-Length Records. FS -- Fixed Length Record with Block

Serial Number. @V -- Variable-Length Records. VS -- Variable-
Length Records with Block Serial Number.

2-70 12/6/63

the named file's RECINDEX. The size of the space made avail- Notes:

able is determined by the contents of the RECLNGTH entry in the

file table, for both fixed and variable length records. For V or 1. The IOMETHOD indicated for file-name-1 and file-name-2,
VS, the programmer must set RECLNGTH in the file table to must be EXCHANGE.

the desired value before giving the WRITE.
2. A data record can be released to only one file by the WRITEX

In contrast to the normal method of placing records in an out- macro-instruction. If the user desires to place the same

put file with the first form of the WRITE macro-instruction data in more than one file, the WRITEX macro-instruction
(after processing of the record is completed), WRITE file-name-1 may only be used for one of the files. The records must be
must be issued before data is moved to the output area. This is physically moved into the other files * y the WRITE macro-

to insure the proper allocation of space and to avoid loss of data. instruction.

The programmer must be careful with this form of the WRITE

macro-instruction to avoid issuing a WRITE after the last out- 3. The WRITEX macro may only be used with form F or FS recoris.
put record of the file has been placed in the output area; a

WRITE at this time would reserve an extra record space, resulting ir 4. An OPEN macro must be executed for this file before the first
an additional output record of unknown content. Both forms of WRITEX is issued for this file.

the WRITE macro-instruction may be used within a program to

place records in the same output file. However, if both WRITE (See the GE-425/435 Extended Input/Output System Reference Manual
and WRITEX macro-instructions are used with the same output for details of WRITEX.)

file, the file parameter IOMETHOD must specify EXCHANGE.

3. The contents of RECINDEX must not be modified by the object
program. OPEN

4. An OPEN macro-instruction must have been executed for this
file before the first WRITE is issued for the file.
Function: To ready an input or output file for processing by Input/
Output macro-instructions.

WRITEX - Format:
Operation Operation Parameters
Function: To release a record without internal movement of the data OPEN file-name-1;file-name-2; ;file-name-n
record.
Notes:
Format:
1. An OPEN macro-instruction must be executed for a file before
Operation Operation Parameters any Input/Output macro-instruction is processed for that file.
WRITEX file-name-1AFROMAfile-name-2 2. This macro-instruction produces a call to the OPEN Subroutine

to ready the named files for processing. The Operation Para-
meters specify the file-names of all files to be opened at this
time.

2-71 12/6,63 2-72 12/6/63

The OPEN subroutine performs all necessary functions such as
initial rewind and header label processing of tape files. This
subroutine establishes the proper linkage and controls necessary
for the proper functioning of the Logical Record Macro Routines,
Buffer Control Routines, and the Scheduling System.

CLOSE
Function: To terminate the processing of input and ocutput files.
Format:

Operation Operation Parameters

CLOSE file-name-1;file-name-2;. ... ;file-name-n
Notes:

1. A CLOSE macro-instruction should be issued after completing
the logical processing of one or more files.

2. The macro-instruction produces a call to the CLOSE Subroutine.

3. The "closing" of a file allows the Extended Input/Output System
to write out any remaining blocks or partial blocks of records,
to perform designated trailer label processing of output files,
and to perform designated rewind procedures for both input and
output files. The closing of a file removes it from the "active"
list, and disengages it from the Scheduling System.

4. Files may be closed individually, or all at once. One advantage
to closing the files as soon as their processing is completed is
to allow the operator to stagger the physical work necessary to
remove that file from the computer system, thereby reducing
the time between jobs.

5. The user must avoid issuing any macro-instruction naming a

closed file, as the proper linkage and controls are not established.
If this situation occurs, the Extended Input, Output System types
an error message and halts the program.

2-13 12/6/63

TYPE
Function: To perform requested typewriter Input/OQutput operations.
Format:
Operation Operation Parameters
INPUT ALPHA frefsym, N
TYPE ; 3
OUTPUT()OCTAL ldata-name
Notes:

1. If a reference symbol is indicated, it must be assigned to a
DCWC which points to the word containing the first character
of the message to be typed. The number of DCWC'S in the list
beginning at refsym is specified by N. The DCWC's must be
written by the programmer in the Procedure Division.

2. If the third parameter specifies a data-name, the Macro Assem-

bly Program builds the required DCWC. The size of the field
defined by data-name determines the number of characters to
be typed.

_EXTENDED INPUT/OUTPUT SYSTEM SERVICE MACRO-INSTRUCTIONS

Fuanction: To provide the logical software equivalents of peripheral

‘E rrmat:

hardware functions necessary to maintain the logical
environment established by the Extended Input/Output
System.

The following Service Macro-Instructions may be used
in the source program:

2-74 12/6/63

Operation Operation Parameters (Meaning)

BKSPTM * file-name-1 [;(character)] (Backspace to tape mark)
RELEASE file-name-1

FDSPTM * file-name-1[; (character)] (Forward space to tape mark)
BKSPNBLK * file-name-1;N (Backspace N blocks)
REWIND * file-name-1

WRITETM * file-name-1[; (character)] (Write tape mark)

FORCE * file-name-1

RDLABEL file-name-1AINTQarefsym;N

WRLABEL file-name-1AFROMArefsym;N

CHKPT

For a complete description of the Service Macro-Instructions listed
above, refer to the Extended Input/Output System write-up.

* Precede with a RELEASE macro-instruction.

2-15 12/6/63

DATA MOVEMENT

MOVE
Function: To transfer data from one item to another conforming to
the description of the receiving item. The receiving field
picture determines the format of the data.
Format:
Operation Operation Parameters
data-name-1
MOVE ;data-name-2
literal
Notes:

1. If the receiving field is non-numeric (alphabetic or alphanumeric),
data is transferred left-justified with space fill or truncation
provided at the low order end as required.

2. If data is transterred to a numeric area, MOVE automatically
aligns decimal point position and provides truncation or zero fill
at either, or both ends as required. If the decimal point positicn
is not supplied, the data is right justified in the receiving area.

3. If the description of the receiving area specifies editing, move-
ment of data takes place as described above, the data is edited
according to the image of the receiving area (refer to Picture,
page 2-24).

4. If an numeric area is being moved to a data item defined as an
index, conversion from decimal to binary is performed; data
being moved from an index to a numeric item is converted from.
binary to decimal.

5. The contents of data-name-1 are not disturbed.

6. Table-1 indicates the types of moves that can be performed on

elementary items by the MOVE macro-instruction. An entry in
the table indicates a valid MOVE; the number in parentheses
gives the number of an example in Table-2 that shows the content
of the receiving field after the move.

2-717 12,6,63

Table 1. Types of moves Performed on Elementary Items by MOVE

)

[™——MOVE tu data-name-2 Numeric- { Numeric-|Numeric-| Alpha- | Alpha- | Alpha-
T— As sumed Integer | Edited | numeric|numeric | betic
\\\\\“\\\, Decimal Edited
MOVE from data-name-1 | Point

Numeric-Assumed Decimal Poindg (1) (2) 3)

Nuneric-Integer (4) (5) 6) ()] (8)
Numeric-Edited 9 (10)
Alphanumeric (11)* (12)* (13)* | (14) (15) (16)
Alphanumeric-Edited 17 (18) (19)
Alphabet ic) | @ | @ |

* The contents of the field being moved must be a positive numeric integer.

If any MOVE is attempted that is not indicated by an entry in Table-1, an error
message will be issued. Table-1 is also applicable to types of literals that may
be moved to data-name-2.

2-78 12/6/63

Table 2. Content of the Receiving Field after MOVE
EXAMPLE FROM: data-name-1 TO: data-name-2
NO. Picture Value Picture Value
1(a) 9v99 1v23 59V9 01v2
(b) 999Vv99 '123V45 99999799 00123V45
2(a) 9v99 1V23 999 001
(b) 999V99 123V45 999 123
3(a) 9v99 1v23 9.99 1.23
(b) 999V99 123V45 Z,22%.99 123.45
(c) 999v99 00000 2,222.99 .00
(d) 999v99 123V45 2,222 123
4(a) 999 123 9999v9 0123v0
5(a) 999 123 9(4) 0123
(b) 9(4) 1234 999 234
6 999 123 222.9¢ 123.00
7 999 123 X(4) 1238
8 999 123 XXBX 1253
9 9.99 1.23 X(4) 1.23
10 9.99 1.23 XXBX 1.A2
11 XXX 123 9V99 3V00
12 XXX 123 9(4) 0123
13 XXX 012 722 12
14 XXX 123 X(4) 123
15 XXX 123 XXBX 12p3
16 XXX ABC A(4) ABCA
17 XXBX ABpC X(5) ABACA
18 XXBX ABAC XXBX ABAM
19 XXBX ABAC A(D) ABACAA
20 AAA ABC X(4) ABCA
21 AaA ABC XXBX ABAC
22(a) A(5) ABCDE AAA ABC
(b) A(5) ABCDE A(7) ABCDEAA

When a group is being moved, it is treated as an alphanumeric to
alphanumeric MOVE (see Note 1).

2-19

12/6/63

LOAD

Function:

Format:

Notes:

1. Data-name-1 may not contain more than 16 characters.

2. The size of the accumulator is determined by data-name-1.
Transferred data is right justified in the accumulator, and
unused portions of the accumulator are set to zero.

3. Data-name-1 is not affected.

Examples:

To transfer the contents of the specified data area to the

standard accumulator (words 0-3).

Operation Operation Parameters

LOAD data-name-1

Source Field Accumulator
i After Execution

Picture Value Of Load

A(7) ABCDEFG | OABC | DEFG]
XX AB 10048|
99v999 12345 10001 {2345
9999v9 12345 L0001 |2345
A(4) 1234 11234
A A 000A
X(6) -12.34 [00-1]2.34
X(8) ABCD-123 |ABCD |-123

2-80

UNLOAD

Function: To transfer the contents of the standard accumulator
(words 0-3) to a data area.

Format:
Operation Operation Parameters
UNLOAD data-name-1

Notes:

1. Transferred data is right-justified in the receiving area.

2. Data is transferred beginning at the low order end of the
accumulator. The size of the receiving area determines
the number of characters which are transferred. The re-
maining working accumulator characters must be zero.

3. If the receiving area is greater in length than 16 characters,
all characters beyond the 16th character of the receiving area
are set to zero.

4. If the receiving area contains editing characters, the data from
the accumulator will be edited according to the edit image of
the receiving area. The accumulator is assumed to contain the
same number of characters and decimal places as appear in
the receiving area.

5. The contents and size of the accumulator may be changed by

this operation.

2-81 12/6/63

Example:

PROCEDURE CONTROL OPERATIONS

COMPARE
Accumulator Receiving Field
Before Unload Value
See Note 5 Picture After Unload Function: To compare the contents of two data areas and to transfer
001 | 2345 * Rk kK *%*123. 45 control to one of three specified reference symbols based
0001 123 \ ’ upon the result of that comparison. The possible results
0000 |0000] $*, KHx ok of the compare are:
0000 |0001| K ORRR kx| kkkokk ()] if data-name-1 is greater than data-name-2 transfer control
’ to refsym~1
{0000 0001 \ . .01
000 L 35, 393. 99 i if data-name-1 is equal to data-name-2 transfer control to
[0012 [3456 $3, $$$. $$ | $1, 234.56 refsym~ 2 -
0123 999 123 if data-name-1 is less than data-name-2 transfer control to
refsym~3
0012 999 012
Formal
00AB CDEF X(6) ABCDEF .)
Operation Operation Parameters
COMPARE data-name-1 data-name-2 ;refsym-1;refsym=-2;refsym-3
{literahl ’ literal-2 } > = <
Notes

2-82

1. The collating sequence of the Computer Department Standard
Character Set is the basis for all comparisons.

2. Comparison of numeric items. A numeric item may be com-
pared only to another numeric item. The comparison of numeric
items is based upon their algebraic values. The item length, in
terms of the number of digits, is not itself significant. Zero is
a unique value regardless of the length or sign of an item. A
numeric item used in a Compare instruction must not exceed
16 characters.

12/6/63 2-83 12/6/63

Comparison of non-numeric items.

The following descriptions are written as one would logically
think of comparing the two fields, not as it is being implemented
by the object program.

e Items of equal length. The relationship between two non-
numeric items is determined by comparing their corres-
ponding characters, beginning with the high order character
of each item.

e Items of unequal length. The relationship is determined as
described above. If the shorter item is exhausted, it is
considered to be less than the other item, unless the remain-
ing characters in the other item are spaces; in which case,
the two items are considered equal.

The reference symbol for a particular result may be omitted
by placing its delimiting semicolon immediately after the pre-
vious delimiting semicolon. If the reference symbol for a par-
ticular condition has been omitted and that condition is met, the
program proceeds to the next line of coding.

Example:

Operation Operation Parameters
COMPARE FLDI; FLD2;RS];RS2;RS3
COMPARE FLDI];FLD2;RSI;;RS3
COMPARE FLD];FLD2:;;RS3
COMPARE FLDI]; FLD2;;RS2
COMPARE FLD}; FLD2;RS1

The setting of the comparison indicators following the execution
of this macro-instruction is unpredicable.

2-84 12/6/63

IF
Function: To branch to a specified reference symbol or to continue
in-line coding based upon the existence of a specified
condition.
Format:
Option 1. Operation Operation Parameters
r_G—R A
1s
data-name-1 data-name-2 5 w
IF A | EQ
literal-1 literal -2 GGOTUAJ
NGR
NLS
NEQ
~ S
Option 2.
PLUS
IF data-name-1 A (MINUS ' refsym
AGOTOA
ZERO
Option 3.
ON H
IF sw-name- A refsym
OFF AGOTOA
Notes:
1. Option 1

IF, Option 1, follows the rules specified for COMPARE

2-85

12/6/63

)

refsym

2. Option 2. Format:

IE Option 2, operates only upon numeric items. Operation Operation Parameters
3. Option 3. ON ON ON
SETSW sw-name~- 1A s sw-name=-2A e+« .3;sw-name-10
IE Option 3, operates only upon items which have been described OFF OFF OFF
as switches. (See Use, page2-35.) A switch is off when it con-
tains zero and on when it contains any other value. Notes:
4. The word entries in the Operation Parameters must be separated 1. Any number of switches from one through ten may be set on or

from one another by a single space. off in any combination.

Examples 2. SETSW operates only upon items which have been described as
switches. (See Use, page 2-35.)
Operation Operation Parameters
3 "SETSW ON" sets the specified switch to a value of one;
IF PAY~NOAEQATCPAV~NO2GOTO»PROCESS "SETSW OFF" sets the specified switch to a value of zero.
IF PAY-NOAEQATCPAY~NO;PROCESS 4 The switch name must be separated from the specified condition
by a single space.
IF 99999AEQAPAY~NO;END
IF GROSSAMIN USAGOTOAERROR o
GOTC
IF SW1AONAGOTOARDTC - - — - [
IF SW1AOFF;READM
. . L . . Funct on: To transfer control to a specified reference symbol.
5. The setting of the comparison indicatars following the execution —
of this macro-instruction is unpredictable. Forinat:
Operation Operation Parameters
SETSW GOTO refsym
Notes
Function: To set a programmer-specified switch to an on or ott con- L. The GOTO results in an unconditional branch to the reference

dition. symbol specified in the Operation Parameters.

2. The reference symbol can be modified by cnly one index word.
This index must be a fixed index word.

2-86 12/6/63 2-87 12/6/63

Format:

GOTO... DEPEN}_)ING ON

Function: To transfer control to one of n specified reference symbols
T pased upon the value of a specified data name. Notes:
Format:
Operation Operation Parameters
GOTO refsym-1;...;refsym-100 ADEPENDINGAON Adata-name-1
Notes:

1. From one to 100 reference symbols may be specified as parameters.

Operation Operation Parameters

END OF PROGRAM

L]
HALT XXXX

HALT transfers control to the Basic Input/Output System Halt
Routine, which releases control to the operator, after typing
the message: HLTAXXXX. The operator may continue
processing by depressing the Run switch. Control will be
transferred to the instruction immediately following the HALT.
(See the Basic Input/Output System write-up, Halt Routine.)

2. Data-name-1 must be described as a numeric integer.

3. If the value of data-name-1 is less than one or greater than the]
number of specified reference symbols, the next "in-line' op- Function:
eration is executed.

Format:

4. Otherwise, control is transferred to the reference symbol whose
position within the macro-instruction corresponds to the value
of data-name-1. If data-name-1 equals one, a branch to refsym-1
is executed; if 15, a branch to refsym-15 is executed; etc.

5. Each reference symbol can be modified by only one index word. Notes:
This index must be a fixed index word. .

HALT R
Function: To halt the object program, after insuring that all critical

computer operations have terminated.

2-88 12/6/63

To terminate processing by the object program.

Operation Operation Parameters

EOJ

EOQJ transfers control to the Standard Job- Termination Routine,
which--

e insures that all I/O operations have terminated

e types a standard end-of-job message

e searches the system tape for the Program Monitor
e loads and transfers control to the Program Monitor.

2-89 12,6 6:

ARITHMETIC OPERATIONS

ABORT o —
T ADD AND ROUND ADDR
Function: To terminate processing by the object program under error
conditions. Function: To add two numeric items and place the rounded result
in the second item, or a third item, if specified.
Format:
Format:
Operation Operation Parameters ——
ABORT Operation Operation Parameters
B B -
Option 1. ADDR data-name-
Notes: {lit eral }; data-name-2 [;data-name-_é_]
1. . ABORT types a standard message, takps a memory dump, and Option 2. ADDR data-name-1;literal;data-name-3
transfers control to the Program Monitor.
e . Notes:
2. ABORT is provided as a standard, error-condition exit from the —==
object proxram. 1. Any data name used as a parameter must be defined as a

numeric elementary item in the Data Division.

2. Any data name used as parameter one or parameter two must
not contain editing characters and must not exceed 16 charac-
ters in length.

3. Any literal used as a parameter must be numeric and must
not exceed 16 digits.

4. The result of an addition may be sent to a third numeric item
specified as data-name-3. If the description of data-name-3
contains editing characters, editing takes place as described
in the MOVE (see page 2-1717.)

5. If a data~-name-3 is not specified, the result is placed in
data-name-2 (Option 1).

6. Required data conversion and decimal point alignment are
automatically provided and the result is rounded to the
description of the receiving item.

7. If the magnitude of the result exceeds that of the receiving
item, the excess high order characters are truncated.

2-90 12/6/63 2-91 12/6/63

8. If the second parameter is a literal (Option 2), then data-name-3
must be specified to receive the sum.

ADD AND TRUNCATE ADDT

Function: To add two numeric items and place the result in the
T second item or a third item, if specified.

Foumat:
Operation Operation Parameters
Option 1. ADDT {dgta—name-l}, data-name-2 [:data-name-3
literal ’ ’
Option 2. ADDT data-name-1;literal;data-name-3
Notes

The notes under ADDR also apply to ADDT, except that under
note 6, the result is truncated to the description of the
receiving area.

"SUBTRACT AND ROUND

Function: To subtract one numeric item from a second numeric
item and place the rounded result in the second item and/or
third iten,, if specified.

Format:

Operation Operation Parameters

Option 1. SUBR L;ii;:tf,;;—ar}ame- 1} ;data-name-2 (;data-name-3]

Option 2, SUBR data-name-1;literal,data-name-3

2-92 12/6/63

Notes:
1. Parameter one is subtracted from parameter two.

2. Any data name used as a parameter must be defined as a
numeric elementary iten. in the Data Division.

3. Any data name used as parameter one or parameter two must
not contain editing characters and must not exceed 16 charac-
ters in length.

4. Any literal used as a parameter must be numeric and must
not exceed 16 digits,

5. The result of a subtraction may be sent to a third numeric itera
specified as data-name-3. If the description of data-name-3
contains editing characters, editing takes place as described
in the MOVE (see page 2-77).

6, If data-name-3 is not specified, the result is placed in data-
name-2 (Option 1).

7. Required data conversion and decimal point alignment are
automatically provided and the result is rounded to the
description of the receiving area.

8. If the magnitude of the result exceeds that of the receiving
area, the excess high order characters are truncated.

9. If the second parameter is a literal (Option 2), then data-name-3
must be specified to receive the difference.

SUBTRACT AND TRUNCATE SUBT

Function: To subtruct one numeric item from a second numeric
item and place the result in the second item or a third
item, if specified,

2-93 12/6/63

Format:

Option 1.

Option 2.

Notes:

Operation Operation Parameters

s
SUBT data-name-1 .

tliter al ;data-name-2[;data-name-3]
SUBT data-name-1;literal;data-name-3

The notes under SUBR also apply to SUBT, except that under

note 7, the result is truncated to the description of the

receiving area.

MULTIPLY AND ROUND

MPYR

Func tiorg:

Format:

Option 1.

Option 2,
Notes:

1.

To multiply two numeric items and place the rounded
product in the second item or a third item, if specified.

Operation Operation Parameters
MPYR data-name-1\ . .

{literal ;data-name-2 [;data-name-3]
MPYR data-name-1;literal;data-name-3

Any data name used as a parameter must be defined as a
numeric elementary item in the Data Division.

Any data name used as parameter one or parameter two must
not contain editing characters and may not exceed eight
characters in length.

Any literal used as parameter must be numeric and must
not exceed eight digits.

2-94 12/6/63

The product may be sent to a third numeric item specified as
data-name-3. If the description of,the third item contains
editing characters, editing takes place as described in the
MOVE (see page 2-1T7).

If data-name-3 is not specified, the product is placed in
data-name-2 (Option 1).

Required data conversion and decimal point alignment are
automatically provided and the product is rounded to the
description of the receiving area.

If the magnitude of the product exceeds that of the receiving
area, the excess high order characters are truncated.

If the second parameter is a literal (Option 2), then
data-name-3 must be specified to receive the product.

MULTIPLY AND TRUNCATE |

MPYT

Function:

Format:

Option 1.

Option 2.

Not es:

To multiply two numeric items and place the product
in the second item or a third item, if specified.

Operation Operation Parameters

MPYT data-name-
literal

} data-name-2 [; data-name-3]

MPYT data-name-1;literal;data-name-3

The notes under MPYR also apply to MPYT except that under
note 6, the product is truncated to the description of the
receiving area.

2-95 12/6/63

DIVIDE AND ROUND DIVR

Function: 7o divide one numeric item by another and place the
rounded quotient in the second item or a third item, if
specified.

Format:
Operation Operation Parameters

Option 1. DIVR d.ata—name—l .data-name-2 [:data-name-3 J

literal ’ ’
Option 2. DIVR data-name-1;literal;data-name-3
Notes:
1. Parameter one is the divisor. Its data description may not

contain editing characters and must not exceed eight characters
in length.

Parameter two is the dividend. Its data description may not
contain editing characters and must not exceed sixteen
characters in length.

Any data name used as a parameter must be defined as a numeric
elementary item in the Data Division.

Any literal used as a parameter must be numeric.

The quotient may be only eight characters long. Because of
this, the divisor must be greater than any portion of the divi-
dend which occupies the two high-order words of the quadruple
accumulator, when the dividend has been right justified.

The following division is not allowed:

Dividend l[ooooloo12[3456]78909]

Divisor 00000005

This division would result in a nine-character quotient.

2-96 12/6/63

10.

The following division is allowed:

Dividend foooo0012[3456[7899

Divisor 0000/0050

This division would result in an eight character quotient.

The quotient may be sent to a third item specified as
data-name-3. If the description of data-name-3 contains
editing characters, editing takes place as described in the
MOVE (see page 2-77).

If data-name-3 is not specified, the quotient is placed in
data-name-2.

If the second parameter is a literal (Option 2), then
data-name-3 must be specified to receive the quotient.

Required data conversion and decimal point alignment are
automatically provided and the quotient is rounded to the
description of the receiving area.

If the number of characters in the quotient is smaller than
the number of characters in the receiving field, the quctient
will be placed in the receiving field according to the decimal
point alignment. Zeros will be filled in any vacant positions
of the receiving field. (See Picture, Page 2-24). If the
number of characters in the quotient exceeds that of the
receiving area, the excess high order characters are
truncated.

DIVIDE AND TRUNCATE B 7 DIVT

Function; To divide one numeric item by another and place the

truncated result in the second item or a third item, if
specified.

2-97 12/6/63

Format:

Operation
Option 1. DIVT
Option 2. DIVT
Notes:

Cperation Parameters

,,"data— name-
Lliteral

data-name-

1
}; data-name-2 [;data-name-3}

1:literal;data-name-3

The notes under DIVR also apply to DIVT except that under
note 9, the quotient is truncated to the description of the

receiving area.

2-98

12/6,63

Vill, SEGMENTED PROGRAMS

In the Macro Assembly Program, provisions are made to produce re-
locatable segments for use within the GE-425,/435 Operating System
environment, Each segment assembled must be identified by a name
punched on the output header card. The SEGMENT entry in the
Identification Division enables the programmer to supply this name and
to specify a relocatable or absolute assermbly. (See Chapter IV, Identi-
fication.)

Within a segmented environment, a method to indicate communication
between segments must also be provided. This is accomplished by
including basic assembly language pseudo-operations to indicate the
reference symbols that will be used for references between segments,

and to indicate the data descriptions that are common to the segments.
Ieference should be made to Chapter IV, Relocatable Segments and Chapter
VI, Pseudo-Operations in the Basic Assembly Language section of

this manual. A brief description of the pseudo-operations used for
segmented programs is included in this chapter.

INTERNAL AND EXTERNAL GLOBAL SYMBOLS
To indicate the symbols used to transfer from one segment to another,

the Macro Assembly Program utilizes two pseudo-operations which
are included in the Procedure Division: DIG and DXG.

DEFINE INTERNAL GLOBAL DIG

DiG is used to indicate the giobal reference symbols which are defined
i this segment, The names of these references are required at load
time to enable separately assembled segments to be linked.

.

Fornaat:

Operation Operation Parameters

DIG refsym-1,refsym-2,

.......

2-99 12/6/63

The Operation Parameters columns contain a list of internal global
references that are defined in the Reference Symbol columns of instruc-
tions or pseudo-operations written in this segment. The symbols,
separated by commas, must follow the conventions established for
reference symbols (see page 2-59).

Example:
Ref. Sym. Operation Operation Parameters
DIG PRTCHECK
DIG BONDED, TIME
BONDED MOVE DECODE; TEMP4
PRTCHECK IF PAY~NOAEQATCPAY~NOAGOTOAEXIT
TIME READ PAYMSTR
DEFINE EXTERNAL GLOBAL - DxG

DXG is used to indicate the global reference symbols which are defined
in other segments. The names of these references are required at
load time to enable separately assembled segments to be linked.
Format:

Operation Operation Parameters

DXG refsym-1,refsym-2,....

2-100 12/6/63

The Ope¢ . ation Parameters columns contain a list of external global
reference symbols that are referred to as Operation Parameters in
the Procedure Division of this segment. The reference symbols,
separated by commas, must follow the conventions established for
reference symbols (see page 2-59.)

Example:

Operation Operation Parameters

DXG BONDED, TIME
DXG PRTCHECK
PXB BONDED, 6
PXB TIME, 6

PXB PRTCHECK.6

COMMON DATA AREAS

If a file, record, or work area is referred to by macro-instructions in
several separately assembled segments, their descriptions must appear
in each segment. Repetition of this description is necessary in order
to provide the macro-generators with the characteristics of the data
during the assembly of each segment. These characteristics (i.e.,
mode, size, relative position within the word) determine the patterns

of instructions to be generated. Since it is only necessary to allocate
storage for the areas within one segment, the AREADEF file parameter
(see page 2-47) and the DGRR,DGRE, and DGR pseudo-operations
(see Basic Assembly Language section, Chapter VI, Pseudo-Operations)
are included in the macro assembly source language.

2-101 12/6/63

AREADEF

The AREADETF file parameter is used to indicate whether the buffer
area(s), DCW list(s), and File Table are to be generated by the Macro
Assembly Program, supplied by the programmer in this segment, or
have been supplied in a separate segment. This file parameter is
written in the file parameter list associated with each file described
in the File Section.

The parameter has the following format:
[GENERATE [frefsymbol] L
AREADEF ¢ DEFINED
REMOTE f

For a discussion of the options see page 2-47.

DEFINE GLOBAL REFERENCE REMOTE DGRR

The DGRR pseudo-operation is used to indicate a chain of common
data that has storage allocated in some other segment (see DGR).
The DGRR may not be used in the File Section.

Format:
Ref. Sym. Operation Operation Parameters
refsym-1 DGRR

Example:
Data-name Level Sync Use Picture
PAYREC DGRR
PAYDTL 01
PAY~NO 02 9(5)
ORG 02 9(4)
DATE 02 9(6)

2-102 12/6/63

(n the example, because of the DGRR, the assembly program will classify
its reference symbol as external. The characteristics of the items
will be saved for use by the macro-generators, All the data names
following PAYREC will be treated as relative to PAYREC until;

the assembler encounters another DGRR which reinitiates the
entire process with a new external global; or,

® the assembler encounters a DGRE (Define Global Reference Ends)
which’terminates the reference area; or,

® the Procedure Division line is encountered,

DEFINE GLOBAL REFERENCE ENDS DGRE

When the global reference is defined remotely, an indication must be
given when the definition is completed. This will resurae normal
assembly and allocate storage. DGRE performs this function. It may
not be used in the File Section.

Format:
Ref. Sym. Operation Operation Parameters
DGRE
DEFINE GLOBAL REFERENCE DGR

One segment of the program must allocate storage to the common data
areas that are referred to in other segments. The DGR pseudo-
operation is used to indicate the beginning of common storage in this
segment. This pseudo-operation may not be used in the File Section.

Format:
Ref. Sym. Operation Operation Parameters
refsym-1 DGR

2-103 12/6/63

Example:

Data-Name

PAYREC
PAYDTL
PAY~NO
ORG
DATE

Sync Use

Picture

9(5)
9(4)
9(6)

Because of the DGR, the assembly program indicates PAYREC is an

internal global reference.

Characteristics of the items are saved for

use by the macro-generators, and storage is allocated for the logical
record described following the DGR pseudo-operation. The first entry
following the DGR in the Working Storage Section must be assigned

level O1.

2-104

12/6/63

IX. SAMPLE PROBLEM

PAYROLL APPLICATION

FLOW CHART
Reap
PRAYMSTR
Yes
Enp-oP-FILE
~No MovVe
99999
o
PAY~ND
QID

Tl swi

oN

READ
TIMECDS

~NO
Ewvp-OoF - FILE

Yes

MOVE
9999

TO
TePAI~NE

| E—

o]

2-105

SET LP
ERROR MESS AGE
*) § TVPE

SET
Swit
ON

TYPE
EnD-oF JOB
MESSAGE

CLose AL FILES |
H

2)

S PANYSNG
¥ES
LESS THAW
TC OAY~ NG

~— .
No

GREATER THAN |VES

\s PRY~NE
TCPAY~ NG]

NO

sev up
ERROR MESSAGE
T 2 & Tire

SET UP OLTPLT
RECORDS
COMPUTE
GROSS
TA®
NET

WR\TE
DPAYMSTR

PAVCHELK

A

S"Hg‘b

“12/6/63

901-¢

€9/9/21

PAYROLL SAMPLE PROBLEM

FILE STRUCTURE

INPUT
PaYMASTER
hnv]wijni?e??]??99199'99]999919999‘]999919797]9%9q|w77|q~77@|ooq9hwﬂ
——I e O) —— —e A — AP el —
Nompre, MG (00 Ve eay N0 T TR TAR GRES NpTemy PAT Deodkd)
S T oo OATE Shoss PER DAmosT()

PAYMASTER Continuation
o0 991999910099 (9999 [0c92 [5999 [0099][99 99| 0699 9999 |RAAA [AanAJaRAR TRRRA]ARGE]
-3

R e — [L N—— [| ————) —~ — I WY
Dok lry beovE(s) DLODE (4) peove (s) DEODE (6) oo LAST NAME
DAMOUNT(2) DARounT £3) DAMEUITL4) DANGV{s) wm‘;:') v -
TiME CARD
999919999]19999]99 66|
NI S| W | V] W—
Pay MO DA YR ouRs
NUMOER L s saeeed WORKED
DATE
QuTpPuT
PaYMASTER SAME FORMAT AS INPUT PAYMASTER
ParcHECKS
BAANAG99[990A]a00]A-AA[- AAAJARAA [AA AA[AAAATAALNE99 -[79- 9[9an]A0NN]x- 00}
— (S UGS | W ~ e e DL L S S VPR | R | Wt —
| . | | DU [w | [
PSJ/ | \BER ‘LS"; ‘2‘:»3_ LAST NAME Mo DA YR NET PAY
LEGEND
L= LiteraL

G= GarBAGE

L01-2

£9/9/21

GE-425/435 PROGRAMMING FORM

GENERAL & ELECTRIC

Sample Problem Written in-
Macro Assembly Language

PROGRAM PROGRAMME R DATE PAGE oF
PAYROLL SAMPLE PROBLEM CHPRLIE BRowN l 12-6-463 4
v REFERENCF SYMBO L OPERATION OPERATION PARAMETERS
DATA NAME LEVE Y s PICTURE occurs | vaLuE
1 [N EE KR £ 16 17}18 19] 20 22 24828 40| 4t 44| an kXS b5 81
0.0,0. 0 Lo} | HDEN T For. LA Ty OIN iV S o L - Ny NP N e e e JPLAN L
10.0.0,0.2.0 e EosimleiniT] 1P0.ANy ~i0.0.1. e P P .
0£.0.0,0.3.0] U oS &' 11 P8 I L.&d_&;sm.@ ASJLMLL,L. _E,m.t.m*_.lﬂt,,; N PR S SR
ooo0 o040 b0 L JIDEN] [N s P U O S S VR
o.0.0.0.580] [Evv.i.RoeNMEINT.ADITIVIL 1.¢‘M Lot e i a1 . L L
5.0.0,060 AR S‘[R.M‘&TH?SDC‘RJ.L\ R b s . R
0,00 020} | DiEFSICIHIEIDITNT.LR _?L&‘L,T.z.v . R
0.0,0.0.80) b e |DIEIE HPIE NG IN@ N~ O OVYERLA Y e
0.0009%0) | L. . iDEFClLSlS LGS Eili v BT
0. 0.0 .00 o b o e e F e R L AERRL e e TR
0.0.0. 4. 1.0} . ettt FolHlk| P TP RG.C.EED, . L N
0.0.0.1.20] DlaT.aani.vi]s/r.eln b L e e o
0.0.0.1.3,0) IFlr.L.€. ST | Lt Coe
0.0.0.1.4.0} MQLIMJ,LL__ D, 1] P S NS S U S S S — N TR
0.0.0.1.5.0 et e o IDIEVYLT rfs PN T G S SOV S S S .
0. 0. 00058 b o L0 m}m AND R.T.B. T N P S By S N N R RS FE AR D teted Lo L SR U D S S R B SRR
10,0,0,1.6.0 T e Iemelringlnle X cHBNGEL o0 L O S U O U SR
10.0:0,1.2.04 covaeis JRIECITINIDIE IXRE. L R ST S R I S G S S G S SV HE S R
0.0.0,1.8.0 s FirLeriylPlElINP, TR PP A e e B B S S DR SRR
0,0:0.1.9.0 = . jeaF AIDIDIR P 7% YO T e B e
10.0.0.2.0.0 cew JRILKISITIZ S E SR UG ST S g . . P T S S O P
0.0,0,2:1.04 s oo PRI olRIITIVEL. . e el N T PR S G U U U S SO NN T S
0.040,2.2.0} . e e A8 EIDIEIFLS TA LD, m&p bt L Ll N— S S S S G U ST ba a1
o023l .o oo Ciiilage gl Tl L0000 0 s L . s s S S A
0.0.0.2.4.0 ,‘r.d,;.d‘,)L,,l,,LIA.R;fLCDNG‘.CDGG.LIPBYMSJ&L,,J_J_O_LM0000000400!“‘“ R T R B
0. 0.0.2.56.0f fPay.REec] lod P [S U DU SR C e Lo e L
b0 020l Ay ~ N)02 4 9 hL)LL S GO G Ve G S S S S S S S Doa s L
o 0,082,700 _JgRGE, . o) DR L Q. C. 4.0 N e b P T : o i e s
10,0,0.2.8:0] — AT E ‘_H._;L_Oﬂ‘f 1 T N O I G SISO S P S S U S A W S U S S U SO U SN S DS SV S . JE T P
0,0.02.9.0 Mg ;4,,,_‘,_0_13_3‘,,,1,‘,,,«4cLQ| P PR VR SO T SR Lo L,« P S DU S UL RN SO USSR U SRR & [ESE PO P .
o002 00 e, 63 by 4T 0 a - ; PR Y S S S SR SR S - . .
0.0, 031,00 WY R . . ;_4__;%7‘;,&41* L.J, B L VL SO, TV AU T S SOt L R T TS S B P O P It . .
[0,0.0.3.2 0} ‘r PAN R ATIE, | 10,2 I &;VJ&A&LL e N UV Gt PO L .
0.0.032 0} ¢ INg£ X,) 0.2 I A N i PR P U SR PO T RO . .
c.oo0xyef i IvTDT.AX .} io2 Lol CRITIC AV DU JRRPO P S S S S S S T R
0D 03S.0) Y IDGR .$.S.S5) 02! —Vj J12.9.99.v9.9 L e S L1 . Aol R I S U P SR W S Y R S
PNy I G 2 O B Y O G A K Y K. X e e N
0. ©,0.3.7.0 GR. @S 5. . Olf_‘ R I L B STRVAN S DU U R Uy S S S SRV S SRS SRS SEEEEEEESEEE P T P B) :
0.0, 0.%.8.:0 NET P AN 1} .02 9.99.v.9.9. DO) S S PR S S S S . -
0:0,0,39.0 ?.aY.PER. 1 _ ;KLL," 9.9, . L ek 1 n . B T U S S S GO T S SR S T U UL S T S PR S S
0,0,0.4.0.0 D.£.D . L NI P Lot L P~ ST SR F— b a L dd ae . [S L
0,0.0 4.1.0 pCegDE L o) 03 R 9.9, 4 o DU B Lo : . - T P S
0.0.0.49.2.0 DAMOUNT o3 R ... 193.v.a 9.
000430} {LSTINIT : 062 . A . L
(0. 0.0 44.0 2. NDINIT .. 02 v o . bALL

FORM

GE-425/435 PROGHAMM NG

Sample Problem Cont.

GENERAL D ELECTRIC

El A R Tl
o] 1 T i AR IR B
ol 2 B2l L Sl d - IR EER
ERE 1 R IEI I IR I I IR IR I IR EEEEEEEEEEe
s ”D.“. m - 1 ! W,,<." " “” wnf
B | B L JE L I I A
i M T R D T I SV N T [R B A
N i # i T o gadddi:
H LM. ‘4 ; .;.A"AJWJJ. 44 - .A*ihLLJMA 4= i
a ! ,‘ - P vxu- Alu-AW.,AW;
: | ! ! ! - PR B s
N 1 : R A ; [B
< - - SRR IE I I A IR IR T TS B I T IR EE IR I
N . H i i I . . i [i
- ; T R I I R I R R I I .
Pl I RSN EEEEE S R R R
= o T L S S i AA;,.L:.‘L_,AJ
; : I] S0] i T L W ! “
11 T I i g i
N 17 BEREREEEEERERENE RECERRRERRREREEE
' 4 4 nu Almlnl A,W.A,,,: B rrl.—xn.xln -
a 4 4 41 LLWAA“JA"LL,..,L”.W‘ Lﬁo.*w.* ..LL.»A.uxﬂ
! Lo v | I} ! |
: a8 BEERRERERREEREE HJAM- 1311171011
: <1 IERREREEREREERIEEEEEEEEEEEEEE 4711777171717
- BER EEEEEEEEEEEEEEEE EE R R RN 1317147
4 44 i FUN T S I P44 s B[S T S L A
; : [] B
EE N AR I A N N 7 AM‘L,.]
| i i P H
4 4 B R T I L I T i e R 44 I .
T e Lol lal ajlaliiil]
4 S I I I I | o
......p.b_.j.,._,\‘V..,.w..] =S R 4
IR INERLERREEEEEE
1] L lie 14 I A L I A B
T i e i e 1 d g
44 b R AR . ‘KM.JJ.,‘.kLL I :
4]]] A-,M_LL‘W_&@ IR Q 41414
! 1 ,,,”E_W,; H 2 2] 494
44 A||...‘,|.,.,,.‘¢4"¢,J,AJ,AAJW ‘T.. AL w;LL&‘ U,u‘ N
44 i 44444444 <4 41444 E IR 5
| |1 SRSRECSERRRRRRERRERERERRR RS SF Y
g A4 SRR I IR IR I IR N IS I I DA IR B I ! <4400
i 4 10 1 T s [O O b 19495 094 0
H : i . [I e e by F&. f Lk ,f:rfr ' [S UL SO =
: L - Lo
o g i i [R j i | i | P
Dol b b G -
,_”u_on,.¢4 AR R R N N N B A R B N R B B R 44 A&.‘A‘_A;*L;.“L.“
: N w L.__ %w
° 1] T 11111 11 10 1117 BERERE 1
R EEE R I I I SRR RREEEEEREEEE
41 ! S A O A B B
H : SEERREEEREERERES
14 IR EEEERER 111171 IRREREEE L,._H
- A 4 49 4 4444 4 49494 4+ 49494999+ 17 4 - 4+ 4 L,A,WAL 4 + 4 4 L_rﬁ !
1 EEEEEREEEREEER 114774 ;A‘ 1100
SRR R B EEEERERSREEEREEREREE
u S 44 g E 44444 1A A REE R R ca ke
: 514 R .QLD 44 IR I P4
: : Tidglal o o L] dlididg
s 1] IBBERERE s 12 o]
2 J i 44444489 1.9 ,L.-. 144 444
: > IBRRRRREERErE o Ask 1 113471111,
- AN 9 T | 2 o4 | AT A
411994 lu9z Jeddy | 1< SRERE w 1ol T o
A9 1342 el XA |y SR b R
5| @ % ¥y jdoded (A3 udEm o SSED cxxo |goaccaa
: EREED RE R
a0 Ao A DIQWPVET.CM .D&w L N “ B ;
i - 24q Iz E~N-Q 129 W _ P
v < U@y i o L= = —_—
cHIEE g SEFEEEE Hes < NENENEREE
Wi [@l dNdyguJdddgaEs Jv o Moot AN et
4 il o Gl “mb..‘ L LQ O d4dd9ddgaada
o R Mg gg49 FLQ'J.TJ_.HLTJ aq gdwmaa 19 qas
S s ladd [n;LJﬁJL o v HRERE
o T T == i - = L T LI
AR R RN R R R R R R AR R R EE R F R R R RS R EE R I
° M,m [in RS 2V Dadg ,L,lﬁul; 119 =
~s il 177 L.A..L,AAA,L,L. C 1 RN [Y 72 2 =
AR R = L I R B Ot SRS LA IE RN ST L I A R I R ,
IR EERP R NESgv.E - Do Y&, TZe 9 (g Y L o
P R AT] T DR o e mald > M aq
N N = I I AR K5 O I B A R o TC I BN T TS L i ‘;M‘af‘;‘_w‘,ﬁ
Mn °lvl | & .10“&(_Q,LlLL”‘L,LMLJﬁ,d,L,Vme_ JMAML:&LAB‘:Q 3
i I N N R R L R I Lm@m.pj@dw
w sld | Hens L s aed Wl g O J oy
, AR , R R ,
b . R Py e fo | [SR :
Elew - . LI . . b o]
g . 5emmonan@A@@onm@nooao@@ooaugg&o.mo&g&ogﬁm&&mo
N ¢ | el d A g @ e o 2 dr gud o o S dme e Jdag §i
D f [l VYS9 94 48 4 g S N o el e o of el o o
B 3 S odogddodgoadd 99990 gaauagadooogoagagaodsaaosa
2 . o o dojddddddddd o.oo.mmnooo.wmm&omg&mmemanﬁ&moﬁo@wﬁ
B o dololddddddddd OAOQJOQQQOODQOIVL&LD LODL dagog

601-C

£9/9/21

GE-425/435 PROGRAMMING FORM

GENERAL §D ELECTRIC

PROGRAM . PROGRAMMER DATE PAGE o
PAYROLL SAMDLE PRoOBLEM l 12 - 4- 63 4
: REFERENCE SYMBOL OPERATION OPERATION PARAMETERS
SEQUENCE : L " IDENT
DATA NAME LEVE YN ‘E PICTURE OCCURS VALUK

1 ef7 |a]e vef17{7a 1ela0) 22 24] 28 40 | 4t 44| az 1alvy 19
0.010,2.0 0 C.L.Aa,5 TN M 0.2 ACit b)Yy oy N P S S TP S S S S NPT ST T L a4 1 JPAY.,]
0.90,9,5.1.0 PR S S 0.2 ARBA .y o s L R N Y S S S VO S S S S S S S S S S E S S S P
0.0.0,9.2.0 CM@e 1o 02 2.9, . 5 . P A A PR S S VS SO S S S A ,]
0.0,0,9,3,0 L 0.2 X D R N N e e M e . R o]
0.0,0.9.4.0 CD.A D2 9.9, , . . T T R : P R PR S S S N S S ST VP S W S . N]
0.0.0.49.5.0 . e 0.2 Xo 0w o4 oa 4 PR I N e M N N i
0.0.0,9:b.0 CNR. 0 v 02 9.9, s e N R S N
0,0,0937.0 L PSR D12 8.8, . . R PRI LY A UV . WY WY WAL S ! N L4 T .]
0.0.0.G.8.0 lene T, 6.2 e e e, 9.9, e e o N PN T .]
0.0,0,99.b 4. XX v oo e IMNAANT . e N N L
0.0.1.0.0.0 MWl 0. S e] RS o FUN S S S P PR S S wde]
0.0,.1.0.1 06 R8s 0.l 1 Lo a T S e 0 L PR PR T U T W R S N _]
0,0, 1:0.,2.0 TEMP |, 0.1 R 9,9.9.9.v.9.9. T R P P S N T S S S S S S SO S SR -]
(SN SR U — 1 1 1 I 1 1 1 L 1 A L I 1 i 1 4 1 1 1 L i i 1 A e I 1 1 1 1 L 1 e i 1 4 4 L 4 e 1 U T SN T SURN SRR S 1 1 1 P B
0.0 1.o30) PRgCEDULREJIAD I VITISITIOING o 4 4 . . e e . . bs 4 P S S S S N . N A
0.0.1,0.4.0 START. « o j@PE pPAY Ms TR,y TIMELDS, ¢.«P.a& M.S.T.R,,:AP‘H.V_AC H.£C K, N e Lax SARUURURN P EPE
0.0, 1.,0.9.0 EARLDM L R.£.AD pA Y MS. TRy o0 PR WY S U R S S W | PRSI WU SN G S S S VR S S S R O s ot o
0.0 1 0b0) L JRea p T, L JIlF . Wl DN, CE T Pp TS T L e e b e e e R, A
Q0. o760} | DRI Lo ovow o JRIEAD TI. MECD.S N - N ! U U T U S N SR U VT SHIY SRR S Lo
0,0, 1.0.80¢ . JT.£.5.T, i fjogmelaRle] 1P Ay ~Ngs T CP AN ~N@S L TELSTu20 3 ERBB R, s Lot ST G Lo]
10.0,1,0.9.0 S P R, (RN T.C.PANY ~NG., ELRMSIG.2.4A . P el A S I P S SO T S b
0,0,1:1.0.0 e L TP E 20T, POT. AL PHIAY ERMS.GI. e aa b4 b R SN PN SN R
0.0, Lt .0 NN G ¢ T g RD.ToCo o oo o v v o L e e e e 4 e o
Q.0.1.1.2.0 SRR @R . gV £ P.A.Y.~N. & ., L RMSG.I.A . . PO L b AU USRI SRV B
oo 30l L b o LT YR tlgoT P OT AL HALERMSE L L0 R , S SUUDY W W RPU R SIS SR
0.0.1, 1.4.0] | AR F-3SW 21 (Y B8 O GO AT YN U R o S VUG S
oot 5.0l b 68 R O T —t P S L P - s PO ST SR SN SO S TN ST S T S SHN SN SR SHS WU S & N TR
.0 tidb.o) L lTE ST 2, 4 eTwsw] ke, @ FLF, PN s G S S S S U W N -
0.0 4 130 o e 1 I 1 lPAayY~No, £.06 .8 QIQ.ﬁli‘L_‘}__L_Lo_Jl. P T S : TS S S SN T SRR SO IR T VP N L
0,0 b0l b e s NIV e T.cD.ATEDAT.E, . P L . L PR S U S SO T A S - A S
0 11,940 e Py R Tl ey RO T L MRS kD GRG .S 1 o 1 e e N
o020 b oo MPYIR N @E X, 5103, 0,05 T EMPA] w0 wdeb e b e s e e e T
O 0, 1,2 .0 ?,774,,,1‘ PO SR T W.BIT e MP .4\ R GS N T L MP L, " " IR P S S Tt P YN N WA SUIT SENPUN U T S SURT S I
0,012 20f L} L s palPy R - YIS WG -1 VRN R T S S S R
o023l b L ;).;&AT TA X R .8 5.5 B M Pty | 4 v o e e e e T e e b b
010,10 4.0} e Ly . l]BeTh. . . : e , L N L - —t N G S e]
©,.0,1.2.5.0 PR [‘,'J ﬁ___1 AL PH A P RS T S P S VN S U S O SN S S T SN SN O Y ST S SH S S S | B PR S W S R I
0,0, ,2.6.0 PR S VT TR S TS A . O, TS W S S S S GO S S G S | L P S S S S R T S T S G ST T S S VORI T (1 " o N
10, 0,1.3.7:0 4 PR " ®e X.R. R, N PSR PR s ' N " P! PR Y S TR S) s - P
10,0, 1.2 B0 LopP, . . JTIF, D.CEDE 4. GR.B Z LR M GeTR, EXIT. P S S P - I P
0.0, 1.2 . 9.0 ‘..lLA.iuRT DAMAORT.) A XREGTEMPI L | 0 1]
0,0,1.3,0.0 1M I N o PR N . L v
0,00, %2, 1,0 P IR S T R [YR X R & . 4 PN ST I RO W [T S U SO VU WU VO N S TS YUY VS SRS ST ST SURD SN WMDY SHNN AU SN W S WS S | N I
(0.0, 1,320 s BIRC] X Y- A R N]
0,0, 1,2.3.90 P S R S L] P A LPH.A, U S S T P NS Loy P S Y U S SO SO SN SO S SN SN SE S S E S S) Ny]

Sample Problem Cont.

1.0

4.9.0

(15

SEQUENCE

PROGRAM

E T , u
44 4 4444 44 4 4444444444444 44444
S ESEEREE IEREEREEEREEE RN RN R RREED
L ST I o o o o s e e e s T I §
b - o
N < 4 4 4 < 4 4 4 4 4 4 4 4 4 4 4 4 44 4 4 44 4 4 4444444
4 4 4 4 4 4449949444444 444444 44 4 4 4 4444 +4 4 4 - 4 4444 4
T I R I N 1444444444449
3 IV I i 1313411111 13
«<
[y 4 4 4 4 4 <4 4 4 4 4 44 4 4 4 <4 4 4 4 4 4 4 4 4 4 4 4 4+ 4 4 4 4 4 -
R0 O A A A N A O R N T T 1 I A A S A B 114144
44444444 4444444444 4 44444 444444444 444444444+4
M 44 444444444444 4434444414444 444444 444444444
. N T N O 1 $ 44444444
N 44414114 1 4444441 ||.|Q.‘..AJ‘.n.nln..nn..annn
' 1411 44 144 44444444 14444444444 J 14 144414
I 5 T A I I O O
4444 A 44444444 4 i 1444144444114 444 11
w u.....»n.AA......; 4 4 4 4 4 4 4444+ 444444 4 4 444 44
< - 4 444421 4 u 4 4 44 4 4444444444444 4144444444 4 4 4 44
<
— > 4 1444 44 444 B 44 44 4494444444444 +494444 4 4 44 4 4
- 4 o 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 - 4 4 4 4 4 4 444 4 4 4 4 4
444444 4 4 4444444444445 4 4444 4 4 4 4444444444
p"
4 44444 4444 B 4 o4 4 - 479 A 44 44 444 4 4 4 4 q4 -4 4444444 4
J
d3d 4444444444 T4 44444444444 114444
4444444444 4 4 4 4 4 4 .L 4 4 4 4 +4 4 4 4 4444 4 4 4+ 4 4 4 44
4 4 4 4 4 4 A4 L# 4 4 4 4 <4 4 M 4 4 44 4 4 4 4 4 4 -+ 4 4 -+ 4 4 4 o 4 -
A.‘“.A.AJ..‘..J;‘.,lLILI....uA.. 4 44 4 1 1 “4 4 4 4 - 4
444 4 44 4 4 4 4 141144744 444444 44444444 14444
S O O A O O
s Ty I I T e I A i
m n 4..1;...‘|1AA.A 1|‘\—MA‘L..L;LJJ,“AA 4 4 4 4 4 4 44
r L
w - 4 4 4 4 - i 4 4 4 4 4 44 44 111111 119114191 444944144 4
© H I L1 o &
2z H] i T [> ! | !
= e b - L T B R) - 1 4 4+ 044 b EAEETEE. SN RN R I | - 4 A 4 - 4 4
Z s 2 i i44499 4 R N
g RS EREERr-ERR R RR AR ERRRRRRRRRRRRERRRED
] [I ...m:b._V»A,v_,_x.a_\,_,_,__.‘.‘_“.‘»._A.__,_,_mm,,_
g s iimeg =g e i i Iy i]y
-4 YrN“— #CP v v
o - 4441414 44444433 4 + 41244414 4141441+ 44414
K- 1= O I < S O A A I I O B A A I S O G I
8] .uaa&y.- gl 3 iyl dd il g iidi
N A8 JtHAg e i Yy P Pl iyl
] god [dvfdd || W [3] 1T 1T I it
hi T e W I L P S I A O A O O O O O S I R R R
8 u PRI LR R S A = S e " 1 (O A R O A O A O
H SluHEd b |] Jdeed 1 dd Jaepl L] I i
: i 27Q-HE g & e et LD D]
° g s Ko A X P OV NI o8 5 Lo 0 0 S I O O O
. 197123223 8Qex ool (9 I 11110 I
Al T H dd daldsigetdadalg [109« 1711111111111 11717
EESREEERYS mAasA&sxx.. L 10~ A O A O
Yot T 298 dugadordaygda | | e 1101]|] Jddl4d144]
HHAHal <A Pa Sod v o ol &l ﬁs 1
%E
g8 = >
b L u
wk Sldrrde W duy dH RS Y8 ye] oo h L
o] FlAGQAAAAA A AT A S H4q | |] T O O N O
o 2 80A989 88988 adddgddartddidady |
o Head P wwewu IcIs mjmaz _
o 1 T O R O I I I
2 S I I S 4 4.-.4._R B O I I
© =~ - 1 T T ™ O I O 0 O I A R O (O
= R
- ai | slE 4 A.AA.L.J..‘.%nﬁlu...“.#A‘-.‘ 1414
e A0 e I T2 2 D= - A S A O 0
) %“ o N I L O B I O N =S I =" U I A I O O
w 0 |y W W e ey , Ll
o - 1 B : =T
V'TYDE7 i lﬂﬂ ! “ : \i‘l? B 7T
a —el ,
— [a % - aqgda a A, i
< | I A I R I
w “M A # 1 | u
o RN Ji4 4444451
3
= h| 1 1
w J ; J
(L.} il |

0.0.1.4,0.0
1.4 .1
4.2
0.9.1.4.3.0
0.0,1.49:49.0
0.0,1.4.8.9] |

(0.0.,1.4.5.0

0.0,1.4.6.9

10.0,1,4,1.9

0.0, 1,34.0
10,0, 1.5. 0.0
N

Q0,1

12/6/63

Sample Problem Cont.

ALPHABETIC TABLE OF MACRO INSTRUCTIONS

SUBT -- Subtract and Truncate 2-93

TYPE . .. e 2-74

ABORT ..o tttiiit i 2-90 UNLOAD . o o o oo 281

ADDR -- Addand Round . ..o 2-91 WRITE ...ttt ettt e 2-68

ADDT -- Addand Truncate, 2-92 WRITEX .« o o o oo oo o 2-63
CLOSE . .ttt it e e e e e 2-173
COMPARE ittt e e e e 2-83
DIVR -- Divideand Round, 2-96
DIVT -- Divide and Truncate 2-97
EOJ o it e e e e e e 2-89

Extended Input/Output System Service Macro Instructions. . . . 2-74

GOTO ... e e e e e e 2-81
GOTO ...DEPENDING ON . « « « « v v vt et ie et ie e e i e 2-88
HALT . et et e e e e e i s e e e 2-88
IF e e e e e e e e 2-85
LOAD . .. it e e e e 2-80
MOVE e e e 2-71
MPYR -- Multiplyand Round oo 2-94
MPYT -- Multiply and Truncate 2-95
OPEN . . . e e e e 2-72
READ i i . 2-68
SE T SW . L e et e e e e e e e e e e 2-86
SUBR -- Subtract and Round 2-92

2-111 12/6/63 2-112 12/6/53

ASSEMBLY FUNCTIONS

SOURCE PROGRAM

To prepare any Macro Assembly Program source language program for

an assembly, the source deck must be organized in the following sequence:

END and/or TCD

card — - — Required

/

/ — — — —Required

Procedure
Division

Environment
Division
A

dentification
Division
Blank Card

—— — — —— — — — — —_Required

- - — — — — — — - —-Required

cessor 8ption
Cards

{MAP*Language |
Processor — = — — — — — — — — . _ _ Required

Control Card

*MAP - used here as an abbreviation for Macro Assembly Program

3-1 12/6/63

The Environment and Data Divisions are not required if the source
program contains only basic assembly language instructions.

Language Processor Control Cards

A language processor control card causes the Program Monitor to
search the systems tape, load, and transfer to the beginning of the
Macro Assembly Program.

Following this control card in the source deck will be the language
processor option cards. These cards, if present, specify deviations
from the standard assembly procedure. They may be used to specify:

e the source language deck is to be read from tape

e the object program decks are to be written on tape, or both cards
and tape

® a sequence check on the source language deck is to be performed

e the coding generated for the macro-instructions should not be
printed on the assembly listing.

The standard mode of assembly and the format of the language proces-
sor (LP) option cards will be specified at a later date.

A blank card must follow the last LP option card,

ASSEMBLER PROGRAM ORGANIZATION

The Macro Assembly Program is a multi-pass macro assembler
which processes a source program from punched card or magnetic
tape input. The nature of the instructions which appear in the source
program determines the number of passes required to produce an
object program. If the source program contains macro-instructions,
it is processed through the Translator, Selector, and Assembler
phases of the Macro Assembly Program. If the source program does
not contain macro-instructions, processing proceeds directly to the
Assembler phase, bypassing phases of the Macro Assembly Program
that are not essential to the assembly. See Figure 3-1.

3-2 12/6/63

Translator

The Translator reads and processes the source program. The following
functions are executed while processing the Data Division. The Trans-
lator --

° constructs a File Table for each file encountered in the File Section.

e constructs basic assembly language pseudo-operations to allocate
memory to and/or define constants for the data names encountered
in record descriptions

e constructs a Data Description Tuble which contains complete field
characteristics of each data name encountered in record descrip-
tions.

As the Translator processes the Procedure Division, a magnetic tape

is written which contains the basic assembly language symbolic instruc-
tions, pseudo-operations, and the macro-calls. A macro-call identifies
a macro-instruction and its parameters. When a parameter is a data
name, the macro-call includes the characteristics of the data name from
the Data Description Table.

Selector

The Selector controls the generation of basic assembly language sym-
bolic instructions, by linking the macro-calls with their required
generators. The generated basic assembly language instructions are
written to t ape along with the input instructions. Memory available
for generators is allocated by 4 method which takes into account fre-
quence of use and nesting of generators so that a minimum number of
passes of macro-calls is required.

Assembler
The basic assembly language instructions, both input and generated,

are then assembled. The assembly listing and object program card
deck are produced simultaneously.

3-3 12/6/63

Macro
Assembly
Language
Source
Program

Basic Assembly Language
Only

Basic
Assembly
Language
Source /
Program -

Intermixed Macro anc
Basic Assembly Languége

Translator
Phase

/
ibrary
of
Selector y Macro-
Phase \Sjiijator

Generated
and Input
Basic

Assembly
Language

|

Assembler

Assembly

Listing

—

//i;ject‘\y

\ Program

e

Figure 3-1. The GE-425/435 Macro Assembly Program

3-4

LOADING PROGRAM

Input to the loader consists of a relocatable binary deck for each seg-
ment to be loaded. These relocatable decks contain global symbols,
relative addresses, relocation indicators, instructions, and requests
for other segments. The loader's function is to combine these seg-
ments to form an operational program.

Card Types Produced by the Assembler

Seven card types are produced by the assembler and recognized and
processed by the loader.

Header card

Origin card

Internal global card
Instruction card
External global card
TCD card

END card

Any segment must contain a header card and an END or TCD card.
The following statements can be made for all card types.

1.

2.

All cards are binary and have a 7-9 punch in column 1.
Columns 74-80 are not examined by the loader.

An 8-punch in column 1 causes the checksum to be ignored.
This is indicated by an X on card forms.

Checksum includes columns 1 through 73.
Card type is located in the 12-3 row of column 1.
Column 2 is reserved for a folded checksum.

Column 4 contains a segment sequence number which is
checked by the loader.

3-5 12/6/63

The format for the seven types of cards produced by the assembler

follows:

Header Card Format

3-6 12/6/63

1 2 3 4 5 6 7 8 9 1011 12 13 68 69 70 71 72 73 74 75 76 77 78 79 80
1) 9
0 i g o a 3 2z
0|8 0ig = é I 2
o2 e - by = B
v | &% =l B o | BE =
olelE] g2 |4& 5. (2|27 &
+ 213 & 3 Z g z| o 8 a
alo iz (%] g [B) = g -
X3 =z & 3 P '<_x:J x = m | O
1|2 @ e Ko< S o o
: g le = « |¢——HOLLERITH——
Notes
1. In column 1 if Y = 0 the segment is not forced to origin at
0 mod 4
if Y =1 the segment is forced to origin at 0 mod 4.
2. Word count is the number of calls and includes on the card,
3. Column 73 contains the number of calls and includes for the
segment,
4. If more than 1 header card is needed for a segment colurans
5-8 and 73 are duplicated on the additional header cards.
5. Card type 40 or 41,

Origin Card Format

Internal Global Card Format

1 2 3 4 5 6 7 8 9 1011 12 73 74 75 76 77 78 79 80
0 | |
0 |)
0 : I) =
0 § g ! | E
1'% 8 1 a | E 5
1|0 |2 o ! 2 l¢———NOT USEDmmeo—y| HE)
T3 Bl @ = ! 2§ >
218 18] g 5 ® ! e z
A 2l 881 3) z8 8
}1(§ E E : © : € HOLLERTTH—
Notes
1. Columns 5 and 6 contain an absolute address to which the seg-
ment may be origined.
2, If a global symbol is in columns 7-10,its value will be added to
the value in columns 5 and 6 to form the origin,
3. The global must have been previously defined by the loader.
4, If 0 mod 4 was requested on the header, the origin is forced
to 0 mod 4.
5. Card type 3.

3-7 12/6/63

1 2 3 4 5 6 7 8 9 1011 70 71 72 73 74 75 76 77 78 79 80
0 X

0 Y

0 .

ol_ 101 £ g

= = —- W £
1@ = S <4
o). [V 2 g ~ £ 2
"3 5 =R g 8 .-lg = i &
0l® | & = — < %) = z
1B g%z 3 2ol 3E2 > |g@ &
BEENER | £ 5 |3 -
|9 1a| S| E 2 = =

O |2l = < =1

1= 21&l" - «——HOLLERITH >
Notes

1. Word count contains the number of internally defined globals
on this card.

2. If X=Y =7Z =0,the symbol is equated to the absolute value in
the associated address.

3., IfX=Y=0,Z =1 the symbol is equated to the address formed
by the addition of the address to the segment origin, i.e. the
symbol is relocatable.

4, IfX=0,Y=1, Z =0 the block associated with the symbol is
treated as a BSSL.

5., If X=0, Y =72 =1 the block associated with the symbol is
treated as an ARPL,

6, If X=1,Y =727 =0, the block associated with the symbol is
treated as an LSBL.

7. I X=Y =1, Z =0, the block associated with the symbol is
treated as a BPSL. .

3-8 12/6/63

Instruction Card Format

External Global Format

2,

3.

4,

5,
6.

7.

8.

mum of 30 instructions per card.

Y is a 3-bit flag associated with each instruction of the form

2 1 0
A-2°1B-27:C.2" where A is presently 0.
Flag bits immediately follow the last instruction on the card,

If B = 1,the associated instruction is to be treated as an abso-
lute increment for the loader P-counter.

If B = 0,the associated instruction is a true instruction.
If B =0, C =0 the associated instruction is absolute,

If B =0, C=1,relocate the address in the associated instruc-
tion by the segment origin,

Card type 4.

3-9 12/6/63

1 2 3 4 5 6 7 8 9 71 72 73 74 75 76 77 78 79 80
0 N
0 :;“ -
0 0o S
SERE g
0 § & E‘J’ 0Qa]
= ALL UNUSED COLUMNS Z & =
101 = =) Eg -
8 alelzl 87 8o ARE NOT PUNCHED & 2
Gl&la| ea| 849 awn =]
L 8 7] V| O =1 a
RAPNES 58| 28 < —
112 l RmE| 2= 3]
Blal&| & =
X| 3| = << [%2] %}
S| 82| = Z
1elz|g| ™ = «——HOLLERITH———
Notes
1. Word count is the number of instructions on the card. Maxi-

12 4 5 6 7 8 9 10 11 12 73 74 75 76 77 78 79 80
0 X
0 o~ Y
0 = Z
1 5 g 8
0B i - E g
1@ g a o 0 - S
g8 23 [Es 8y &
o g 2 2 = 38 =9 g
o © “l LB 2w ISH=4 § |
= Bl ad [T 8= =
EURELR: g 2
xlg = B2 <——HOLLERITH—————
1
Notes
1. A symbol must be contained in a card but reference address
can be continued on the next card.
2. The relative address is relative to the segment origin.
3. If X in the relative address is 0, the value of the symbol will
be added to the contents of the reference address. If Xis 1
the value of the symbol will be subtracted from the contents
of the reference address,
4. If Yis 1, an external symbol follows; if Y is 0 another rela-
tive address follows.
5. If Z is 1, this is the last item on this card; if Z is 0 at least
one more field follows.
6. More than one symbol may refer to the same relative address.
7. Card type 5.

3-10 12/6/63

TCD Card Format

End Card Format

n

W

4 5 6 7 8 91011

73 74 75 76 77 78 79 80

FOLDED CHECK SUM

|
|
[¢———NOT USED
|
|

NUMBER

—

SEQUENCE
IDENTIFICATION

CARD

ADDRESS L

BINARY SEQUENCE NO.
NUMERIC
GLOBAL

SYMBOL

«——HOLLERITH

>

123456‘7891011112 73 74 75 76 77 78 79 80
1
o || 1] |
4] m
0 2 5
0|5 m | | g
% 2 9 % ' 3 LH’
g8 | <—— NOT USED ——>| &
O E||&] a g5 =
Lisihel ogl g | 52 g
1|8 2l 28, 4 z | & =
x5 15| g2l g5 | E
18 2 2 | = | &2 __HOLLERITH — 3
Note
1. Columns 5 and 6 contain an absolute address to which the
loader may transfer control.
2. If a global symbol is in columns 7-10, its value will be added
to the value in columns 5 and 6 to form the transfer address.
3. The global must have been previously defined by the loader.
4, If X =1 in column 5, the numeric address in columns 5-6 will
be added to the segment origin.
5. There cannot be a TCD to absolute zero.
6. Card type 60.

3-11

12/6/63

Columns 5 and 6 contain an absolute address to which the
loader may transfer control,

If a global symbol is in columns 7-10, its value will be added
to the value in columns 5 and 6 to form the transfer address.

The global must have been previously defined by the loader.

If X =1 in column 5, the numeric address in columns 5-6 will
be added to the segment origin to form the transfer address.

Card type 70,

3-12 12/6/63

Octal Patch Card

The loader accepts and operates on octal cards which are inserted in a
segment before the segment TCD or END card, These cards are octal
corrections to the segment and these corrections may be absolute or
relocatable. A correction card is checked by the loader to insure that

it is octal and that an error message is typed if any non-octal characters
are found through column 20. Any hollerith information can exist after
column 20,

The octal patch card has the following format:

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
0 octal location Al B

where patch octal patch
is placed

where A =0 if columns 4-8 are an absolute address
=1 if columns 4-8 are relocatable and the segment origin is
to be added to form the location to be patched
B =0 if columns 16-20 are an absolute address
1 if columns 16-20 are relocatable and the segment origin
is to be added to form the desired address

All address calculations are modulo-15 bits,

Column 1 contains a 0.

3-13 12/6/63

Segment Deck Order

Each segment deck is sequenced in column 4. The cards within a
segment must not be shifted from their punched order. The order
for each format is given below with an asterisk indicating that the
format must be present.

* 1.,
2.

* 1,

Header card

Origin card

Internal global card
Instruction card
External global card
Octal patches

TCD or END card

For a more detailed discussion, see the GE-425/435 Loader write-up.

[+] OUTPUTS OF THE ASSEMBLER

(+' ASSEMBLY SOURCE LANGUAGE ERRORS AND REMEDIES

3-14 12/6/63

Frogress /s Ovr Most Important Product

GENERAL B3 ELECTRIC

COMPUTER DEPARTMENT » PHOENIX, ARIZONA

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-0001
	1-0002
	1-0003
	1-001
	1-003
	1-005
	1-007
	1-009
	1-011
	1-013
	1-015
	1-017
	1-019
	1-021
	1-023
	1-025
	1-027
	1-029
	1-030A
	1-032
	1-034
	1-036
	1-038
	1-040
	1-042
	1-044
	1-046
	1-048
	1-050
	1-052
	1-054
	1-056
	1-058
	1-060
	1-062
	1-064
	1-066
	1-068
	1-071
	1-073
	1-075
	1-077
	1-079
	1-081
	1-083
	1-085
	1-087
	1-089
	1-091
	1-093
	1-095
	1-097
	1-099
	1-101
	1-103
	1-105
	1-107
	1-109
	1-111
	1-113
	1-115
	1-117
	1-119
	1-121
	1-123
	1-125
	1-127
	1-129
	1-131
	1-133
	1-135
	1-137
	1-139
	1-141
	1-143
	1-145
	1-147
	1-149
	1-152
	1-154
	2-0001
	2-0002
	2-0003
	2-001
	2-003
	2-006
	2-008
	2-009
	2-011
	2-013
	2-015
	2-017
	2-019
	2-022
	2-024
	2-026
	2-028
	2-030
	2-032
	2-034
	2-036
	2-038
	2-040
	2-042
	2-044
	2-046
	2-048
	2-050
	2-052
	2-054
	2-057
	2-059
	2-061
	2-063
	2-065
	2-067
	2-069
	2-071
	2-073
	2-075
	2-078
	2-080
	2-082
	2-084
	2-086
	2-088
	2-090
	2-092
	2-094
	2-096
	2-098
	2-100
	2-102
	2-104
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	3-01
	3-03
	3-05
	3-07
	3-09
	3-11
	3-13
	xBack

