
! GE-625/635
! Programming
L Reference Manual ___ _

~ Information
'\f!..<g Systems

Information Systems
Equipment

-----------------~--

,--------,.,~

GENERAL. ELECTRIC

CPB·-1004F

For your convenience, the following Technical Information

Bulletins have been incorporated in this manual:

TIB No. 600-214
600-228
1004F-3

CP 8 100 4F

GE-625/635
Programming

Reference Manual

July 1964

Rev. April 1968

GENERAL. ELECTRIC

Rev. July 196')

o 1964, 1965, 1966, 1967, 1968, 1969 by General Electric Company

(3H 4-70)

CPB-1004F

PREFACE

The GE-625/635 Prorrrammin Reference Manual is the basic document for programming the
GE-625 635. It essentially describes programming-related GE-625/635 machine features, the
instruction repertoire, and the symbolic machine language oriented Macro Assembler. The
Assembler chapter and the examples in Chapter IV describe how the programmer may
write Processor instructions using a symbolic notation.

The Programming Reference Manual is one of a set of user publications for programming the
GE-625/635 computer. The others of the set, together with pertinent and necessary program­
ming information contained in each, are:

PUBLICATION

GE-625/635 FORTRAN IV
Reference Manual, CPB-1006

GE-625/635 COBOL
Reference Manual, CPB-1007

GE-625/635 File and Record Control
Reference Manual, CPB-1003
(GEFRC)

GE-625/635 Comprehensive Operating
Supervisor Reference Manual, CPB-
1195 (GECOS II)

GE-625/635 General Loader
Reference Manual, CPB-1008,
(GELOAD)

PROGRAMMING INFORMA TION

FORTRAN IV language specifications, coding
rules and restrictions, and compiler informa­
tion for the GE-625/635

COBOL-61 Extended language speCifications,
coding rules and restrictions, and compiler
information for the GE-625/635

standard input/output coding by use of calling
sequences to software system input/output
routines.

1. Descriptions and functions of the Compre­
hensive Operating Supervisor modules and
submodules

2. Use of Operating Supervisor control cards

3. Coding for information exchange between
the programmer and the Operating Super­
visor

4. Alternative coding techniques for input/
output operations

5. Preparation of the user program fault
transfer table

1. Use of Loader control cards
2. Use of the Loader debugging option and

program segment overlays
3. Descriptions of relocatable and absolute

decks and their loading

iii

CPB-I004F
Rev. October 1968

I

PUBLICATION

GE-625/635 Sort/Merge Program
Reference Manual, CPB-I005

GE-625/635 Bulk Media Conversion
Ji,eference Manual, CPB-I096

PROGRAMMING INFORMATION

1. Descriptions of the sort and merge pro­
grams

2. Use of the sort/merge and supplemental
system MACROS

Description of deck preparation for bulk media
conversion run

This reference manual is addressed to programmers experienced with coding in the
environment of a large-scale computer installation. It assumes some knowledge and
experience in the use of address modification with indirection, hardware indicators, fault
interrupts and recovery routines, macro operations, pseudo-operations, and other features
normally encountered in a fast, large memory capacity computer with a very flexible
instruction repertoire--under control of a master executive program. It is also assumed
that the programmer is familiar with the 2's complement number system as used in a
sign-number machine.

Suggestions and criticisms relative to form, content, purpose, or use of this manual are
invited. Comments may be sent on the Document Review Sheet in the back of this manual
or may be addressed directly to General Electric Company, Information Systems Equipment
Division, C-83, 13430 North Black Canyon Highway, Phoenix, Arizona 85029.

This manual includes features implemented
in Systems Development Letter 2.

iv

CPB-I004F
Rev. October 1968

CONTENTS

I. SUMMARY OF SYSTEM FEATURES

Computer Components
Basic System and Functions.
Memory Module.
Processor Module
Input/Output Controller Module.
Peripheral Subsystems

Software System
Objectives
Multiprogramming
On-Line Media Conversion .
C entraliz ed Input/Output
Master /Slave Relationship ..
Master Mode Entry
Mass Storage Orientation
Program File Orientation.
Software Reference Documentation

1

1
1
1
2
3
3
4
4
4
5
6
6
7
7
7
8

II. GE-635 PROCESSOR .. 9

General Characteristics
Major Functional Units
Master /Slave Mode of Operation
Operation Overlapping
Address Range Protection
Execution of Interrupts
Interval Timer

Registers
Program Accessible Registers .. .
Program Nonaccessible Registers
Adders

Processor Indicators
General
Zero Indicator ..
Negative Indicator .
Carry Indicator
Overflow Indicator
Exponent Overflow Indicator
Exponent Underflow Indicator .. '.
Overflow Mask Indicator
Tally Runout Indicator.
Parity Error Indicator
Parity Mask Indicator
Master Mode Indicator

9
9
9

10
11
11
12
13
13
15
16
16
16
17
17
18
18
18
18
18
19
19
19
19

CPB-1004F

v

Fault Traps ... 20
Trapping Procedure . 20
Fault Categories . 20

Instruction Generated Faults . 21
Program Generated Faults 21
Hardware Generated Faults. 22
Manually Generated Faults 23

Fault Priority . 23
Fault Recognition. 23
Instruction Counter (IC) 24

The Number System '. 24
Representation of Information .. 25

Position Numbering. 25
The Machine Word. 25
Alphanumeric Data 26
Binary Fixed-Point Numbers . 28
Binary Floating-Point Numbers . 30
Normalized Floating-Point Numbers. 31
Decimal Numbers 31
Instructions. 32

Address Translation and Modification. 32
Address Translation. 32
Tag Field ... 33
Modification Types 34
Register Designator. 35
Tally DeSignator . 35
Address Modification Flowcharts . 37

Explanation of Symbols Used on Flowcharts 39
Detailed Description of Flowcharts . 39

Calculation of Instruction Execution Times 42
The Instruction RepertOire 43

Format of Instruction Description 44
AbbreViations and Symbols 45
Effective Address and Memory Locations 45
Register POSitions and Contents 45
Memory Accessing 46
Floating-Point Arithmetic. 47

Descriptions of the Machine Instructions . 48
Data Movement--Load . 48
Data Movement--Store . 55
Data Movement--Shift 63
Fixed-Point Arithmetic--Addition. 68
Fixed-Point Arithmetic--Subtraction 76
Fixed-Point Arithmetic--Multiplication 83
Fixed-Point Arithmetic--Division. 85
Fixed-Point Arithmetic--Negate 87
Boolean Operations- -AND . 88
Boolean Operations--OR . 91
Boolean Operations--EXCLUSIVE OR . 92
Comparison--Compare 95
Comparison--Comparative AND. 102
Comparison--Comparative NOT. 104
Floating-Point--Load 105
Floating-Point--Store 106
Floating-Point- -Addition 107
Floating-Point--Subtraction 110
Floating-Point- -Multiplication . 111
Floating-Point--Division . 114
Floating-Point--Negate 118

CPB-1004F

vi

Floating-Point- -Normalize
Floating-Point--Compare
Transfer of Control- - Transfer
Transfer of Control- -Conditional Transfer
Miscellaneous Operations
Master Mode Operations •.•.•••.•.••••••••......

III. SYMBOLIC MACRO ASSEMBLER--GMAP

118
119
124
126
129
145

149

General Description . 149
Relocatable and Absolute Assemblies 150
Assembly Language Programming . 151

Location Field. 151
Operation Field. 151
Variable Field. 152
Comments Field .. 152
Identification Field 152
Symbolic Card Format. 153
Symbols. 153
Types of Symbols 154
Expressions in General 154
Elements . 154
Terms and Operators. 154
Asterisk Used as an Element. 155
Algebraic Expressions 155
Evaluation of Algebraic Expressions. 155
Boolean Expressions 156
Evaluation of Boolean Expressions . 156
Relocatable and Absolute Expressions. 157
Special Relocatable Expressions. 158
Literals 159
Decimal Literals . 160
Octal Literals 161
Alphanumeric Literals " . 161
Instruction Literals . 161
Variable Field Literals 162
Literals Modified by DU or DL 162

Operations and Operation Coding . 162
Processor Instructions . 162
Address Modification Features 163
Register (R) Modification . 164
Register Then Indirect (RI) Modification . 166
Indirect Then Register (IR) Modification . 167
Indirect Then Tally (IT) Modification. 169

Indirect (T) = I Variation 170
Increment Address, Decrement Tally (T) = ID Variation 170
Decrement Address, Increment Tally (T) = DI Variation 171
Sequence Character (T) = SC Variation . 171
Character From Indirect (T) = CI Variation 172
Add Delta (T) = AD Variation. 173
Subtract Delta (T) = SD Variation. 173
Fault (T) = F Variation 173
Increment Address, Decrement Tally and Continue (T) = IDC Variation 174
Decrement Address, Increment Tally and Continue (T) = DIC Variation 174

Pseudo-Operations 175
Control Pseudo-Operations . 176
Location Counter Pseudo-Operations 188
Symbol-Defining Pseudo-Operations 190

CPB-I004F

vii

Data-Generating Pseudo-Operations
Storage-Allocation Pseudo-Operations
Conditional Pseudo-Operations
Special Word Formats
Address Tally Pseudo-Operations
Repeat Instruction Coding Formats

Macro Operations .
Introduction
Definition of the Prototype
Using a Macro Operation
Pseudo-Operations Used Within Prototypes
Notes and Examples on Defining a Prototype

Program Linkage Pseudo-Operations
CALL (Call--Subroutines)
SAVE (Save- -Return Linkage Data)
RETURN (Return-From Subroutines)
ERLK (Error Linkage--to Subroutines)

System (Built-In) MACROS and Symbols.
Source Program Input

Activity Definition
Compressed Decks
Source Deck Corrections

Assembly "Outputs .
Binary Decks
Preface Card Format
Relocatable Card Format .
Relocation Scheme '.
Absolute Card Format
Transfer Card Format .
Assembly Listings
Full Listing Format .
Preface Card Listing
BLANK COMMON Entry .
Symbolic Reference Table
Error Codes .. .

IV. CODING EXAMPLES•...•........•....•.......•...

Preliminary .. .
Examples .. .

Fixed Point to Floating Point (Integer)
Floating Point to Fixed Point (Integer)
Real Logarithm
BCD Addition'......................
BCD Subtraction . '.
Character Transliteration' .
Table Lookup
Binary to BCD .. .

196
201
203
205
206
207
208
208
209
212
214
218
220
220
221
222
223
224
224
224
225
226
228
228
230
231
232
233
234
234
234
235
236
236

,237

239

239
239
239
240
241
243
244

1

245
247

; 249

CPB-1004F

viii

APPENDIXES

A. GE-625/635 Instructions Listed by Functional Class with
Page References and Timings 251

B. GE-625/635 Mnemonics in Alphabetical Order with Page References 259
C. GE-625/635 Instruction Mnemonics Correlated with Their Operation Codes. . . . 261
D. Pseudo-Operations by Functional Class with Page References. 263
E. Master Mode Entry, System Symbols, and Input/Output Operations 267
F. GE-625/635 Standard Character Set 271
G. Conversion Table of Octal-Decimal Integers and Fractions. 273
H. Tables of Powers of Two and Binary Decimal Equivalents 281
I. The Two's Complement Number System. 283

Figure

1

2

3

4

5A

5B

6

ILLUSTRATIONS

Block Diagram of Principal Processor Registers

Table of Faults .

Ranges of Fixed-Point Numbers

Ranges of Floating-Point Numbers

Address Modification Flowchart .

Address Modification Flowchart .

GE-625/635 Macro Assembler Coding Form

Page

14

24

29

31

37

38

153

CPB-1004F

ix

I. SUMMARY OF SYSTEM FEATURES

The GE-600 Information Systems provide processing and input/output capabilities across
a wide performance range. Systems are tailored to the specific workload and processing
environment of an installation through the selection of the appropriate system model and
by the configuration of central system modules and peripheral devices. The particular
system model is determined by the speed of the central system components, and include
the GE-615 and GE-635 systems. The Comprehensive Operating System, GECOS*, is the
same for all models and configurations and provides 3-dimensional processing capabilities
from the smallest to the largest system.

SYSTEM MODELS

System modules differ only in terms of their speed of operation, not in functional capability.
The primary characteristics which identify each model are summarized in the following
table:

System

615
635

Memory
Cycle Time

2 microseconds
1 microsecond

No. of Words
Per Memory Access

2
2

Instruction
Overlap

No
Yes

Comparative instruction execution times for each system model are shown in Appendix A.
Calculation of instruction execution time is shown on page 42.

COMPUTER COMPONENTS

Typical System and Functions

A typical GE-600 Line computer system offering the three dimensional processing capa­
bilities - batch, remote batch, and time-sharing --consists of the following components:

1. Memory module 128K, 1 microsecond
2. Processor module (GE-635)
3. The Input/Output Controller module
4. Peripheral subsystems

*GECOS - Trademark of General Electric Company, U.S.A.

1

CPB-I004F
Rev. July 1969

Each of the items perform specialized functions to be elaborated upon under separate
headings that follow. For purposes of this discussion, we consider the typical computer
system to be comprised of items 1 through 3 and the following complement of peripheral
devices:

A Disc Storage Subsystem (90M characters)
A Dual Magnetic Tape Subsystem
Two Printers
Communications Processor (DATANET ... 30*)
Card Punch
Two Card Readers
Operator's Console with Typewriter

This system can be expanded in a variety of ways to develop multiprocessor and multi­
computer systems that are restricted in size only by practical application considerations.
(The computer system itself is theoretically capable of unlimited expansion, see the GE-615/
635 Information Systems Manual, CPB ... 371).

Memory Module

The Memory module, unlike most computer systems which are processor-oriented, is the
overall system control agency. It serves as a passive coordinating component that provides
interim information storage and general system communication control. The module
comprises two major functional units: the System Controller and the Magnetic Core
Storage Unit. The prinCipal featurs of the module and the performing units are:

FEATURE FUNCTIONAL UNIT

1. Control of the selection and enabling System Controller (eightpriority-linked channel
of the eight or fewer channels between control cells plus an associated mask register)
the Memory and Processor or Input/
Output Controller modules

*DATANET, Registered Trademark of General Electric Company, U. S. A

1.1

CPB-I004F
Rev. July 1969

2.

3.

4.

5.

FEATURE

Recognition of program interrupts
within the multiprogram environ­
ment

Selection of the type of Core Storage
Unit memory cycle to be used--Read­
Restore, Clear-Write, or Read­
Alter-Rewrite

Control of information transfers to
and from the Core Storage Unit and
on the selected system communica­
tion channel

storage of information

Processor Module

FUNCTIONAL UNIT

System Controller (32 priority-relatedprogram
interrupt cells plus an associated mask register)

System Controller (control logic subunit)

System Controller (control logic subunit)

Magnetic Core Storage Unit

The Processor module is composed of two principal functional units: the Program Control
Unit and the Operations Unit. The chief features of the module and the performing units
are:

1.

2.

3.

4.

5.

6.

Decoding of instructions and indirect
words with associated directions of
the Operations Unit

Development of effective addresses

Memory protection of all executive
routines and user programs not
currently under execution

Dynamic relocation of user and
other programs

Master and Slave Modes of operation
whereby in the Master Mode all
machine instructions can be executed,
but in the Slave Mode the LBAR,
LDT, SMIC, RMCM, SMCM, and CIOC
instructions cannot be executed

Performance of arithmetic, logical,
shifting, and other operations involv­
ing fixed- and floating-point numbers
in single or double precision

Program Control Unit (operations decoder)

Program Control Unit (address modification
registers, adder, location counter, and control
circuitry)

Program Control Unit (Base Address register
and adder)

Program Control Unit (Base Address register
and adder)

Program Control Unit (Master Mode Indicator
and mode control circuitry)

Operations Unit (control logic subunit, main and
exponent adders, and associated registers)

CPB-I004F

2

Input/ Output Controller Module

The Input/Output Controller module is the coordinator of all input/output data transfers
between the complement of peripheral subsystems and the Memory module. It is in fact
a separate processor which, when provided with certain requi red information from the
Comprehensi ve Operating Supervisor and the user program, works independently of the
Processor module under control of its own permanently-wired program.

The major functional units of the Input/Output Controller are (1) the Memory Interface,
(2) the Buffer Storage, (3) the Micro-Program Generator, (4) the I/O Processor, and
(5) the PUB* Interrupt Service. The main features of this module and the performing units
are:

FEATURE

1. Transfer of characters and words
to and from memory

2. Transfer of characters only to and
from the programmer-designated
peripheral type and Comprehensive
Operating Supervisor selected
physical device

3. Memory protection of all executed
routines and user programs, not
currently involved in input/output
operations, on all data transfers

4. Sensing and storing, in appropriate
input/output queue lists of executive
system (protected) memory, the
status of every peripheral operation
and/or device involved in input/
output transfers

Peripheral Subsystems

FUNCTIONAL UNIT

Memory Interface (with the Buffer Storage as
controlled by the Micro-Program Generator and
I/O Processor)

PUB Interrupt Service (with the Buffer Storage
as controlled by the Micro-Program Generator
and the I/O Processor)

I/O Processor (as controlled by the Micro­
Program Generator)

Micro-Program Generator and I/O Processor

Peripheral subsystems used with the GE-625/635 are described in the following manuals:

1. GE-400/600 Series Punched Card Subsystems, CPB-1288
2. PRT201 Printer Reference Manual, CPB-1292
3. DSU200 Disc Storage Subsystem, CPB-4302
4. PTS200 Perforated Tape Subsystem, CPB-llOO
5. MDS200/201 Magnetic Drum Subsystem, CPB-1123
6. Ma netic Tape Subsystems, CPB-1044
7. Seven Nine Track Magnetic Tape Subsystems, CPB-1205

* Peripheral Unit Buffer; that is, peripheral device channel

CPB-1004F

3

SOF'IW ARE SYSTEM

Objectives

The primary objectives of the GE-635 software system are:

1. To reduce user-program "turn-around" time in large-scale installations (elapsed
time from program submission to the machine room up to return of program solu­
tions).

2. To assure that accounting information is based only on such time as the user
program activity is worked upon by the Processor and peripheral devices

3. To increase the total "throughput" of the computer (the amount of work that may
be performed in any given time)

4. To reduce computer operation "overhead" time in running the installation pro­
grams

5. To provide easy to-use programmer and operator interfaces with the executive
software

The attainment of these objectives is achieved by the General Comprehensive Operating
Supervisor (GECOS) (the overall manager of the software system) through efficient use of
the hardware features and the supervision of a multiprogramming environment (which is
the normal operating mode of the GE-625/635). The significant features provided by the
Operating Supervisor as related to the several primary objectives above are summarized
in the list following. These features are implemented by the modules and submodules within
the Comprehensive' Operating Supervisor.

1. Scheduling and coordination of jobs

2. Memory allocation for data and programs

3. Assignment of input/output peripherals

4. Input/Ouput supervision on an interrupt-oriented basis

5. File-oriented programming (instead of device-oriented)

6. Fault detection with standard Operating Supervisor or optional programmer­
supplied corrective actions

7. Modular construction to simplify maintenance

8. Maximum system throughput via multiprogramming

9. Maximum efficiency of core memory by dynamic program relocation, and by
system-controlled subprogram overlays

Multiprogramming

Although each user-programmer writes his job program as though he had exclusive use of
the computer, he is in fact generating a program that will reside concurrently in memory
with other user programs and will be executed in a time-shared manner; that is, any given
program is processed until it is held up (usually because of the need for some input/uutput

CPB-I004F

4

to be completed) at which time the next most urgent program is processed. Transfer between
programs under multiprogram execution is performed by means of the hardware interrupt
facility (in the System Controller) working with the Dispatcher routines in the Input/Output
Supervisor. The ways by which a user program can be temporarily delayed in execution
are:

DELAY TYPE

Roadblock

Relinquish

Forced Relinquish

REASON

Program cannot progress until all input/output
requests have terminated

Program relinquishes control so that some other
program may be executed

Program was interrupted because a timer
runout occurred.

Each time a program yields control to the Operating Supervisor by means of Roadblock,
Relinquish or by Forced Relinquish listed above, the Supervisor has the opportunity to
gi ve control to another program in core which can make effective use of the Processor.

In giving such control, the Supervisor examines the following conditions:

1. Program urgency compared to other programs that reside in memory
2. Roadblock status involving completion of all input/output
3. Completion of input/output that was pending when the last Relinquish was given
4. Request present for use of the Processor

On- Line Media Conversion

Media conversions are of two basic types (.1) bulk media conversion, whereby large volumes
of data in a single format and for a single purpose are processed and, (2) system media
conversion where low-volume sets of data--each with its own format and purpose--are
processed.

Bulk media conversion is performed by a system routine which may be called into execution
by use of a control card. Other control cards will direct the routine as to where to find
the input and where to place the output.

On-line media conversions for both input and output are performed as a normal part of the
multiprogramming environment of the GE-625/635. Normal job input is carried out by
input media conversion, which reads card input from the card reader, scans the control
cards for execution information, and records the job on the input queue located on the
system drum.

System media conversions of program output data are automatically performed by the
Output Media Conversion routine executed in protected memory. The programmer specifies
that a particular output file be written on the permanently assigned system output (SYSOUT)
file by use of the PRINT, PUNCH,orWTREC calling sequences described in the GE-625/635
File and Record Control Reference Manual. Once on the SYSOUT file, the output is converted
to hard copy or punched cards by the Output Media Conversion routine, concurrently with
other user programs under execution in the multiprogramming environment.

CPB-1004F

5

Centralized Input/Output

In the multiprogramming environment where several programs may concurrently request
input/output, a facility must be provided (1) for processing stich multiple requests in terms
of the efficient use of the entire peripheral complement and, (2) for maintaining continuous
processing of the multiple programs in core storage. The Comprehensive Operating
Supervisor module that performs these general functions is the Input/Output Supervisor.

The main functions of the Input/Output Supervisor are to initiate an input/output activity
and to respond to the termination of an input/output activity. In addition, the Input/Output
Supervisor provides the following functions:

1. File code to physical unit translation

2. File protection of user files

3. Pseudo-tape processing on disc/drum

4. Supervision of all input/output interrupts

5. Queueing of input/output requests

6. Utilization of crossbarred magnetic tape channels

7. Maintenance of an awareness of the status of each peripheral

8. Accounting of time spent by the Processor and all peripherals for each program
executed

When the Input/Output Supervisor receives a request to perform an input/output function,
it looks at the communication cells and issues a connect instruction. If the particular
channel is busy, the request is placed in a waiting queue. If the request queue is full or
if the program indicated that it should be roadblocked until all input/output is complete, then
control is given to another program residing in memory.

When the input/output operation terminates, control is given to the Input/Output Supervisor
to perform all necessary termination functions. At this point, the request queue is examined
and if any requests for the channel are in queue, they will be executed.

Master/Slave Relationship

Each Processor has the capability of operating in the Slave Mode or in the Master Mode.
Master Mode is established for exclusive use by the Operating Supervisor. When executing
a user program, a Processor is in Slave Mode. The prime reason for the Master Mode of
operation is to protect the Operating Supervisor and user programs as well from modifica­
tion by other user programs. This feature is vital in the multiprogramming environment
and is closely tied in with memory protection, accounting determinations, multiprogram
interrupt management, intermodule communications control, and input/output operations.
Each of these functions is implemented by a Processor instruction that requires the Master
Mode. These are listed below.

All instructions available to the Processor in Slave Mode are available in Master Mode.
The following instructions can be executed only when the Processor is in Master Mode.

CPB-1004F

6

1. Load Base Address Register (LBAR)
2. Load Timer Register (LDT)
3. Set Memory Controller Interrupt Cells (SMIC)
4. Read Memory Controller Mask Registers (RMCM)
5. Set Memory Controller Mask Registers (SMCM)
6. Connect Input/Output Channel (CIOC)

The last of these instructions, Connect Input/Output Channel, is the beginning of every
peripheral operation. Thus, all peripheral operations are reserved for execution in Master
Mode, and in particular by the Input/Output Supervisor within the Comprehensive Operat­
ing Supervisor.

Master Mode Entry

Although Master Mode operation by the Procesor is a primary safeguard for executive
routines and userprograms in memory, the applications programmer can force the Processor
into this mode but only for accessing routines that are part of the Operating Supervisor.
This is done by use of the Master Mode Entry (MME) instruction and one of the system­
symbol operands listed in Appendix E and described fully in the General Comprehensive
Operating Supervisor Manual. Any other use of MME causes an abort of the user program.
Thus, through the MME instruction, the programmer can communicate with modules of
the Operating Supervisor to exchange any necessary information for the execution of
his program.

Mass Storage Orientation

"Compute overhead" time is reduced and multiprogramming is enhanced through the use
of an external disc (mass) storage unit. The disc (and optionally a drum storage device) I
enables optimized accessing of system routines and performs data transfers at higher
rates than other external storage media.

The disc and/or drum is used primarily for the following purposes:

1. System storage area-- Least used submodules of the Operating Supervisor and all
system programs are stored on the disc. Included in this storage area are the I
Assembler, compilers (FORTRAN and COBOL), portions of the operating system,
subroutine library, sort/merge, utility routines used by system routines, tables
associated with storage allocation and file! record assignments, operational statis-
tics, hardware diagnostics, and the General Loader with its debugging routines.

2. Temporary data storage--Temporary data files used during a single activity can
be stored on the disc or drum for fast access.

3. Permanent user files--Permanent data files can be stored on the disc or drum
and accessed through the software system.

Program File Orientation

The software system is further described as file oriented because (1) the Comprehensive
Operating Supervisor assigns peripheral devices to an activity and (2) it manages all
assigned peripherals during input or output operations so that the programmer never
deals directly with input/output subsystems or devices. The programmer references
all peripherals by use of file code designators, two alphanumeric characters, that are

7

CPB-I004F
Rev. July 1969

referenced in two ways: (l) on file control cards used by the Allocator in the Operating
Supervisor to specify those files needed to execute the activity and, (2) in communicating
to the File and Record Control program or to the Input/Output Supervisor. The file code
designators and their assigned peripheral devices are maintained in the Peripheral Assign­
ment Table (PAT) used by the Input/Output Supervisor for peripheral identification.

Software Reference Documentation

The following manuals and documents contain detailed descriptions of items mentioned in
this chapter.

1. GE-625/635 Comprehensive Operating Supervisor Reference Manual, CPB-1195
2. GE-625/635 File and Record Control Reference Manual, CPB-1003
3. GE-625 635 General Loader Reference Manual, CPB-IOOB
4. GE-625 635 FORTRAN IV Reference Manual, CPB-1006
5. GE-625 635 COBOL Reference Manual, CPB-1007
6. GE-625!635 Sort/Merge Program Reference Manual, CPB-1005
7. GE-625/635 FORTRAN IV Mathematical Routine Library, CPB-10B3
B. GE-625!635 Operator's Reference Manua!, CPB-1045

8

CPB-1004F

II. GE-635 PROCESSOR

GENERAL CHARACTERISTICS

Major Functional Units

The Processor consists of two relatively independent units: the Control Unit and the
Operations Unit.

The Control Unit provides Processor control functions and also serves as an interface
between the Operations Unit and memory. In addition, the Control Unit performs the follow­
ing principal functions:

1. Address modification
2. Address relocation
3. Memory protection for user and executive programs
4. Fault recor;nition
5. Interrupt recognition
6. Operation decoding

Since the Control Unit runs independently of the Memory module, a single Processor can
be connected to memories with different cycle times. The Processor is designed to elimi­
nate adverse interaction when memories with different cycle times are employed.

The Operations Unit performs all arithmetic and logical operations as directed by the
Control Unit. The Operations Unit contains most of the registers available to a user pro­
gram. This unit performs such functions as:

1. Fractional and integer divisions and multiplications
2. Automatic alignment of fixed-point numbers for additions and subtractions
3. Inverted divisions on floating-point numbers
4. Automatic normalization of floating-point resultants
5. Separate operations on the exponents and mantissas of floating-point numbers
6. Shifts
7. Indicator Register loading and storing
8. Base Address Register loading and storing
9. Timer Register loading and decrementing

Master/Slave Mode of Operation

To permit separation of control and object programs with corresponding protection of
control programs from undebugged object programs, two modes of operation, Master and
Slave, are provided in the Processor. Control programs will run in the Master Mode,
and object programs will run in the Slave Mode. Programs running in Master Mode have

CPB-I004F

9

access to the entire memory, can initiate peripheral and internal control functions, and do
not have base address relocation applied. Programs running in Slave Mode have access to
a limited portion of the memory, cannot generate peripheral control functions, and have the
Base Address Register added to all relative memory addresses of the object program.

Master Mode operation is the state in which the Processor:

1. Presents an "unrelocated" address to the memory

2. Has an unbounded access to memory

3. Causes the memory to be in the unprotected state when accessed by the Processor

a. This permits setting of execute interrupt cells.

b. When this Processor is designated the "control" Processor by the memory,
as set by Memory module switches, this also permits generation of execute
interrupts.

4. Permits setting the timer and Base Address Register by the appropriate instructions
(Load Timer Register or Load Base Register, LDT and LBAR)

The Processor is in the Master Mode when any of the following exists:

1. The Master Mode Indicator is in the master condition
2. An execute interrupt is recognized
3. A fault is recognized

Slave Mode operation is the state in which the Processor:

1. Presents a relocated address to Memory as specified by bit positions 0-8 of the
Base Address Register.

2. Restricts the effective address formed to the bounds specified by bit positions
9-17 of the Base Address Register.

3. Causes the memory to be in the "protected" state when accessed by the Processor.
This prohibits generation of peripheral commands, interrupt masks, or setting of
execute interrupt cells, even if the Processor is designated the control Processor
by the Memory module.

4. Prohibits setting of the timer and Base Address Register by the instructions
LDT or LBAR.

The Processor is in the Slave Mode when the Master Mode Indicator is in the slave condition
or when the Transfer and Set Slave (TSS) instruction is being executed. (See page 19.)

Operation Overlapping

Instruction words are fetched in pairs and sequentially transferred to the Control Unit
of the Processor where the instructions are directed to the primary and secondary instruc­
tion registers of the instruction decoder. If required, address modification is then performed
using the first of the two instructions.

CPB-1004F

10

As soon as this is accomplished, the operand specified by the first instruction is requested
from memory while the Control Unit concurrently performs any address modification required
by the second of the instruction pair.

When the operand called for by the first instruction is obtained, the Control Unit transfers
the operand to the Operations Unit, thus initiating the specified operation to be carried out.
While this operation is being carried out by the Operations Unit, the operand specified by
the second instruction is requested by the Control Unit. As soon as the second operand
is received and the Operations Unit has finished with the first operand, the Control Unit
signals the Operations Unit to carry out the second operation. Finally, while the second
operation is being carried out, the next instruction pair is requested from memory.

Address Range Protection

Any object program address to be used in a memory access request while the Processor is
in the Slave Mode is checked, just prior to the fetch, for being within the address range
allocated by the Comprehensive Operating Supervisor (GECOS) to the program for this
execution. This address range protection is commonly referred to as memory protection.

For the purpose of memory protection, the 18-bit Processor Base Address Register is
loaded by GECOS with an address range in bit positions 9-16. The check takes place only
in the Slave Mode. It consists of subtracting bit positions 0-7 of the program address from
this address range, using the boundary comparator, when the result is zero or negative
then the program address is out of range; and a Memory Fault Trap occurs. (Refer to
page 22.)

More specifically, the checking is actually based on nine bits, namely the Base Address
Register positions 9-17 and the bit positions 0-8 of the program address. This permits
address range allocation to job programs in multiples of 512 words. Because of a software
requirement, bits 8 and 17 of the Base Address Register have been wired in such a way that
they contain zeros permanently and cannot be altered by the LBAR instruction. Thus,
memory allocation and protection is performed in multiples of 1024 words.

In the Master Mode no checking takes place; thus, any memory location (in those Memory
modules that are connected to this Processor) can be accessed.

Execution of Interrupts

When an execute interrupt request present sie;nal is received fronl a Memory module system
controller for which the Processor is the control Processor, the Processor carries out the
interrupt procedure as soon as an illstl'~Jction from an odd memory loeation has beell
executed that:

1. Did not have its interrupt inhibit bit position 28 set to a t

2. Did not cause an actual transfer of control (A transfer of control is effected if
the instruction is an unconditional transfer, a conditional transfer with the condition
satisfied, or a programmed fault sllch as ZOP, MME, DRL, Fault Tag, Connect).

CPB-lO04F

11

3. Was not an Execute or Execute Double (XEC or XED) instruction (Note than an
XEC or XED instruction and the one or two instructions carried out under its
control are regarded as a single instruction execution.)

4. Was accessed while in the repeat mode or the instruction following the termination
of the repeat mode.

The interrupt procedure consists of the following steps:

1. Enter the Master Mode (the Master Mode Indicator is not affected).

2. Return the Execute command code to the system controller that sent the interrupt
request present signal.

3. Receive a five-bit interrupt code on the data lines from this Memory module
(bit positions 12-16), specifying the number of the highest priority nonmasked
interrupt cell that was set to ON when the transfer interrupt number command
code was recognized at the system controller.

4. Carry out a "wired in" XED.

XED Y

y = 000 000 000 I Memory Interrupt
No. Cell No.

0 8 9 11 12 16 17

The cell number is determined by the highest priority unmasked interrupt cell (in
the system controller) causing the execute interrupt.

5. Return to the mode specified by the Master Mode Indicator (see below) and continue
with the instruction from the memory location specified by the Instruction Counter.

Each of the two instructions executed by the XED may affect the Master Mode Indicator
as follows:

1. If this instruction results in an actual transfer of control and is not the Transfer
and Set Slave instruction (TSS), then ON (that is, Master Mode).

2. If this instruction is either the Return instruction (RET) with bit 28 of the (RET)
operand equal to 0 or the TSS instruction, then OFF (Slave Mode).

The first of the two instructions from the memory location Y must not alter the contents
of the location of the second instruction, and must not be an XED instruction. If the first
of the two instructions alters the contents of the Instruction Counter, then this transfer of
control is effective immediately; and the second of the two instructions is not executed.

Interval Timer

The Processor contains a timer which provides a program interrupt at the end of a variable
interval. The timer is loaded by GECOS and can be set to a maximum of approximately
four minutes total elapsed time. (See pages 15 and. 21.)

CPB-1004F

12

REGISTERS

The Processor block diagram (Figure 1) shows the program accessible registers as well
as the major nonprogram accessible registers, adders, and switches. Only data and infor­
mation paths are shown. The block diagram also shows the division between the Operations
Unit and Control Unit.

The switches (rounded figures on the block diagram) control the flow of information between
the registers, adders, and the memory interface.

Program Accessible Registers

The following table shows the registers accessible to the program.

Name Mnemonic Length

Accumulator Register AQ 72 bits
Eight Index Registers Xn 18 bits each

(n=O, ... ,7)
Exponent Register E 8 bits
Base Address Register BAR 18 bits
Ind icator Register IR 18 bits
Timer Register TR 24 bits
Instruction Counter IC 18 bits

1. The AQ-register is used as follows:

a. In floating-point operations as a mantissa register for single and double
precision

b. In fixed-point operations as an operand register for double precision

c. In fixed-point operations as operands for single precision where each AQ
half serves independently of the other. The halves then are called the A-
register, (namely AQO_36) and the Q-register, (namely AQ:>S-71)'

d. In address modification each half of A as well as of Q is an index register.
These halves then are called AU (namely Ao - 17), AL(namelyA 1s _:16),
QU (namely QO-17)' and QL (namely Q1S-3fi)'

2. The Xn-registers are used as follows:

a. In fixed-point operations as operand registers for half precision

b. In address modification as index registers

3. The E-register supplements the AQ-register in floating-point operations, serving
as the exponent register.

CPB-I004F

13

OPERATIONS
UNIT

'---

CONTROL
UNIT

t

G H
Sw 7 -"

D8 G
8 H 721

i
ES >-Il S 7211
Sw

1--E\ Elf c= N 721 sw

[A
~ ~- r-.

~Bt \.

r-_t--____ TR 21"1--------........ 1

~L--M-l---------7-2j----~~~

>------------r------~~~lS

ADR ~-----4-----~_+--~

(ZY Sw

j t t
lYE lSjCOE 1SPO lS: CO£SJ

f --'
(ZI Sw)

;B-......-.JFA~TS 8~: rn~
& TAG

E DECODE
Sw 6

DATA FROM
MEIDRY

ADDRESS DATA TO
TO MEMORY MEMORY

Figure 1. Block Diagram of Principal Processor Registers

14

CPB-1004F
Rev. July 1969

4. The Base Address Register (BAR) is used in address translation and memory
protection. It stores the base address and the number of 1024-word blocks
assigned to the object program being executed.

5. The Indicator Register (IR) is a generic term for all the program-accessible
indicators within the Processor. The name is used where the set of indicators
appears as a register, that is, as source or destination of data.

6. The Timer Register (TR) is decremented by one each 15.625 microseconds, and
a Timer Runout Fault Trap occurs whenever its contents reach zero. If Timer
Runout occurs in Master Mode, the trap does not occur until the Processor
returns to Slave Mode; but dec rem entation continues beyond zero.

7. The Instruction Counter holds the address of the next instruction to be executed.

Program Nonaccessible Registers

The following listed registers are used in Processor operations but are not referenced
in machine instructions.

Mnemonic Length

M 72 bits

H 72 bits

N 72 bits

D 8 bits

G 8 bits

ADR 18 bits

YE 18 bits

YO 18 bits

CaE 18 bits

coo 18 bits

1. The M-register is an intermediate register used to buffer operands coming in
from memory.

2. The H- and N-registers are intermediate registers used to hold the operands
which are presented to the main, 72-bit (S) adder.

3. The D-register is used to hold the exponent of the operand from memory in floating­
point operations.

4. The G-register contains the number of shifts necessary in shifting, floating­
point, and fixed-point multiply and divide operations.

5. The ADR (Address)-register is used to hold the absolute address of memory
cells when making memory accesses.

6. The YE- and YO-registers contain the address portions of the even and odd
instruction respectively of an accessed instruction pair.

7. The COE- and COO- registers contain the lower half of each instruction word and
include the operation code and the tagfieldportions of the even and odd instructions
respectively of an instruction pair.

CPB ... I004F

15

I

I

Adders

The following table lists the Processor adders.

Name Length

S 72 bits

YS 18 bits

ES 10 bits

BC(Comparator) 9 bits

RS 9 bits

1. The S-adder is the main adder in the Processor. It is used for fixed- and floating­
point additions, subtractions, multiplications, and divisions.

2. The YS-adder is used to compute the effective addresses of instructions and
operands.

3. The ES-adder is the exponent adder; it is used for exponent operations in floating­
point operations.

4. The RS-adder is used to compute the absolute addresses of instructions and
operands.

5. The BC-adder, although not implemented as a complete adder, is used to determine
if an effective address is out of the range allocated to the operating program
(memory protection).

PROCESSOR INDICATORS

General

The indicators can be regarded as individual bit positions in an 18-bit half-word Indicator
Register (IR).

An indicator is set to the ON or OFF state by certain events in the Processor, or by certain
instructions. The ON state corresponds to a binary 1 in the respective bit position of the
IR; the OFF state corresponds to a O.

The description of each machine instruction on pages 39 through 148 includes a statement
about (1) those indicators that may be affected by the instruction and (2) the condition
under which a setting of the indicators to a specific state occurs. If the conditions stated
are not satisfied, the status of this indicator remains unchanged.

CPB .. I004F
Rev. July 1969

The instruction set includes certain instructions which transfer data between the lower half
of a storage location and the Indicator Register. The following table lists the indicators that
have been implemented, their relation to the bit positions of the lower half of a memory
location, and the instructions directly affecting indicators. (A detailed explanation of indicator
settings is given with each machine instruction.)

Implementation Bit Position Indicator Indicator Instructions

18 Zero 1. Load Indicators (LDI)
19 Negative 2. Store Indicators (STI) 20 Carry
21 Overflow 3. Store Instruction Counter

Assigned 22 Exponent Overflow Plus 1 and Indicators (STCl)
23 Exponent Underflow 4. Return (RET) 24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Master Mode

1------- ---- - --------- ---------
29 I",
30
31

Unassigned 32)~ust be
33 Zero
34
35

1,,;1

The following descriptions of the individual indicators are limited to general statements
only.

Zero Indicator

The Zero Indicator is affected by instructions that change the contents of a Processor
:register (A, Q, AQ, Xn, BAR, IR, TR) or adder, and by comparison instructions.

The indicator is set ON when the new contents of the affected register or adder contains
all binary O's; otherwise the indicator is set OFF.

Negative Indicator

The Negative Indicator is affected by instructions that change the contents of a Processor
register (A, Q, AQ, Xn, BAR, IR, TR) or adder, and by comparison instructions.

The indicator is set ON when the new contents of bit position 0 of this register or adder
is a binary 1; otherwise it is set OFF.

CPB-I004F

17

Carry Indicator

The Carry Indicator is affected by left shifts, additions, subtractions, and comparisons.

The indicator is set ON when a carry is generated out of bit position 0; otherwise it is
set OFF. If bit position 0 ever changes during the shift, set the indicator ON, otherwise OFF.

Overflow Indicator

The Overflow Indicator is affected by the arithmetic instructions, but not by compare
instructions and Add Logical (ADL(R)) or Subtract Logical (SBL(R)) instructions.

Exponent Overflow Indicator

The Exponent Overflow Indicator is affected by arithmetic operations with floating-point
numbers or with the exponent register (E).

The indicator is set ON when the exponent of the result is larger than +127 which is the
upper limit of the exponent range.

Since it is not automatically set to OFF otherwise, the Exponent Overflow Indicator reports
any exponent overflow that has happened since it was last set OFF by certain instructions
(LDI, RET, and Transfer on Exponent Overflow (TEO)).

Exponent Underflow Indicator

The Exponent Underflow Indicator is affected by arithmetic operations with floating-point
numbers, or with the exponent register (E).

The indicator is set ON when the exponent of the result is smaller than -128 which is the
lower limit of the exponent range.

Since it is not automatically set to OFF otherwise, the Exponent Underflow Indicator
reports any exponent underflow that has happened since it was last set OFF by certain
instructions (LDI, RET, and Transfer on Exponent Underflow (TEU)).

Overflow Mask Indicator

The Overflow Mask Indicator can be set ON or OFF only by the instructions LDI and RET.

When the Overflow Mask Indicator is ON, then the setting ON of the Overflow Indicator,
Exponent Overflow Indicator, or Exponent Underflow Indicator does not cause an Overflow
Fault Trap to occur. When the Overflow Mask. Indicator is OFF, such a trap will occur.

Clearing of the Overflow Mask Indicator to the unmask state does not generate a fault from
a previously set Overflow Indicator, Exponent Overflow Indicator, or Exponent Underflow
Indicator. The status of the Overflow Mask Indicator does not affect the setting, testing, or
storing of the Overflow Indicator, Exponent Overflow Indicator, or Exponent Underflow
Indicator.

CPB-1004F

18

Tally Runout Indicator

The Tally Runout Indicator is affected by the Indirect Then Tally (IT) address modification
type (all designators except Indirect and Fault) and by the Repeat, Repeat Double, and
Repeat Link instructions (RPT, RPD, and RPL).

The termination of a Repeat instruction because a specified termination condition is met
sets the Tally Runout Indicator to OFF.

The termination of a Repeat instruction because the tally count reaches 0 (and for RPL
because of a 0 link address) sets the Tally Runout Indicator to ON; the same is true for
tally equal to 0 in some of the IT address modifications.

Parity Error Indicator

The Parity Error Indicator is set to ON when a parity error is detected during the access
of one or both words of Y -pair from memory.

It may be set to OFF by the LDI or RET instruction.

Parity Mask Indicator

The Parity Mask Indicator can be set to ON or OFF only by the instructions LDI and RET.

When the Parity Mask Indicator is ON, the setting of the Parity Error Indicator does not
cause a Parity Error Fault Trap to occur. When the Parity Mask Indicator is OFF, such a
trap will occur.

Clearing of the Parity Mask Indicator to the unmasked state does not generate a fault from
a previously set Parity Error Indicator. The status of the Parity Mask Indicator does not
affect the setting, testing, or storing of the Parity Error Indicator.

Master Mode Indicator

The Master Mode Indicator can be changed only by an instruction. For a description of
how the indicator can be changed, refer to the following instruction descriptions:

InstructioQ.

Master Mode Entry (MME)
Return (RE T)
Derail (DRL)
Transfer and Set Slave (TSS)

Reference

Page 132
Page 125
Page 133
Page 124

When the Master Mode Indicator is ON, the Processor is in the Master mode; however,
the converse is not necessarily true. (See the MME and DRL descriptions.)

CPB-I004F

19

FAULT TRAPS

Trapping Procedure

Sixteen types of faults and other events each have a fault trap assigned. Some of these
events have nothing to do with actual faults; they are included here because they are treated
the same as faults.

The fault trap procedure is similar to the interrupt procedure (page 12) except that the
effective address is defined differently. The fault trap procedure consists of the following
steps:

1. Automatically enter the Master Mode (the Master Mode Indicator is not affected).

2. Carry out an Execute Double (XED) instruction (page 131) with an effective
address (Y) as defined for bits 0-17 of a machine word as follows:

L ZEROS-

056

Constant

12 13

Code I 0 I
16 17

Constant: Set up by the fault switches in the Processor (also see the descrip­
tion of the instructions Master Mode Entry (MME) and Derail (DRL).

Code: The four- bit fault trap code which identifies the respective fault
trap (see Figure 2).

3. Return to the mode specified by the Master Mode Indicator, and continue with the
instruction from the memory location specified by the Instruction Counter.

Each of the two instructions from the memory location Y -pair may affect the Master Mode
indicator as follows: If this instruction results in any actual transfer of control and is not
the Transfer and Set Slave instruction (TSS), then ON; If this instruction is either a return
instruction (RET) with bit 28 of the operand (RET) equal to 0 or the TSS instruction, then
OFF (Slave Mode).

The first of the two instructions from the memory location Y must not alter the contents
of the location of the second instruction, and must not be an Execute Double instruction
(XED). If the first of the two instructions alters the contents of the Instruction Counter,
then this transfer of control is effective immediately; and the second of the two instructions
is not executed.

Fault Categories

There are four general categories of faults:

1. Instruction generated (by execution of instruction)
2. Program generated
3. Hardware generated
4. Manually generated

CPB ... I004F

20

• Instruction Generated Faults. The Instruction generated faults are:

1. Master Mode Entry (MME)

The instruction Master Mode Entry has been executed (page 132).

2. Derail (DRL)

The instruction Derail has been executed (page 133).

3. Fault Tag

The address modifier IT where T=F has been recognized. The indirect cycle
will not be made upon recognition of F, nor will the operation be completed.

4. Connect (CON)

The Processor has received a Connect from a Control Processor via a System
Controller.

5. Illegal OP Code (ZOP)

An operation code of all zeros has been executed.

• Program Generated Faults. Program generated faults are defined as:

1. The Arithmetic Faults

a. Overflow (FOFL)--An arithmetic overflow, exponent overflow, or exponent
underflow has been generated. The generation of this fault is inhibited when
the Overflow Mask is in the mask state. Subsequent clearing of the Overflow
Mask to the unmasked state will not generate this fault from previously set
indicators. The Overflow Fault Mask state does not affect the setting, testing,
or storing of indicators.

b. Divide Check (FDIV)--A divide check fault occurs when the actual division
cannot be carried out for one of the reasons specified with each divide
instruction.

2. The Elapsed Time Interval Faults

a. Timer Runout (TROF)--This fault is generated when the timer count reaches
zero. If the Processor is in Master Mode, recognition of this fault will be
delayed until the Processor returns to the Slave Mode; this delay does not
inhibit the counting in the Timer Register.

b. Lockup (LUF)-- The Processor is in a program lockup which inhibits recogniz­
ing an execute interrupt or interrupt type fault for greater than 16 milli­
seconds. Examples of this condition are the coding TRA*, the continuous
use of inhibit bit, or Repeat Mode loops exceeding 16 milliseconds.

c. Operation Not Completed (FONC)--This fault is generated due to one of the
following:

1) No System Controller attached to the Processor for the address.

2) Operation Not Completed. (See Hardware Generator Faults, page 22.)

CPB-I004F

21

3. The Memory Faults

a. Command (FCMD)--This fault is interpreted as an illegal request by the
Processor for action of the System Controller. These illegal requests are:

1) The Processor is in the Slave Mode, and issues a CIOC, RMCM, SMCM,
or SMIC. The CIOC, SMCM, and SMIC commands will not be executed.
(Refer to page 257 for descriptions and references concerning these
instruction mnemonics.)

2) The Processor has issued a connect to a channel that is masked off (by
program or switch).

3) The Processor is in the Slave Mode and encounters a Delay until Interrupt
Signal (DIS) instruction.

b. Memory (FMEM)--This fault is generated when:

1) No physical memory existed for the address.

2) An address (in Slave Mode) is outside the program boundary .

• Hardware-Generated Faults. The hardware-generated faults are defined as:

1. Operation Not Completed (FONC)-- This fault is generated due to one of the following:

a. The Processor has not generated a memory operation within 1 to 2 milli­
seconds and is not executing the Delay Until Interrupt Signal (DIS) instruction.

b. The System Controller closed out a double-precision or read-alter-rewrite
cycle.

c. See Operation Not Completed under Program Generated Faults (page 21).

2. Parity (FPAR)--This fault is generated when a parity error exists in a word which
is read from a core location:

a. Single- or double-instruction word fetch--if the odd instruction contains a parity
error, the instruction counter retains the location of the even instruction.

b. Indirect word fetch--if a parity error exists in an indirect and tally word in
which the word is normally altered and replaced, the contents of that memory
location are destroyed.

c. Operand fetch--when a single-precision operand, C(Y) is requested, the
contents of the memory pair location at Y, Y+1 where Y is even, or Y-1, Y,
where Y is odd are read from memory. The System Controller will not report
a parity error if it occurs in C(Y+1) or C(Y-1), but will restore the C(Y+l) or
C(y··l) with its parity bit unchanged.

If a parity error occurs on any instruction for which the C(Y) are taken from
a core location (this includes "to storage" instructions, ASA, ANSA, etc. ,) the
Processor operation is completed with the faulty operand before entering the
fault routine.

CPB-I004F

22

The generation of this fault is inhibited when the Parity Mask Indicator is in
the mask state. Subsequent clearing of the Parity Mask to the unmasked state
will not generate this fault from a previously set Parity Error Indicator.
The Parity Mask does not affect the setting, testing, or storing of the Parity
Indicator .

• Manually Generated Faults. Manually generated faults are:

1. Execute (EXF)

a. The EXECUTE pushbutton on the Processor maintenance panel has been
activated.

2. The Power Turn OnlOff Faults

a. Startup (SUF)--A power turn-on has occurred.

b. Shutdown (SDF)--Power will be turned off in approximately 1 millisecond.

Fault Priority

The 16 faults are organized into five groups to establish priority for the recognition of a
specific fault when faults occur in more than one group. Group 1 has highest priority.

Only one fault wIthin a priority group is allowed to be active at anyone time. In the event
that two or more faults occur concurrently, only the fault which occurs first through
normal program sequence is permitted.

Fault Recognition

Faults in Groups I and II cause the operations in the Processor to abort unconditionally.

Faults in Groups III and IV cause the operations in the Processor to abort when the operation
currently being executed is completed.

Faults in Group V are recognized under the same conditions that Program interrupts
are recognized. (See page 12.) Faults in Group V have priority over Program Interrupts
and are also subject to being inhibited from recognition by use of the inhibit bit in the
instruction word.

CPB .. l004F

23

I

Instruction Counter (IC)

Upon recognition of a fault, the contents of the Instruction Counter (IC) are as shown in the
Table of Faults below.

. .. _----

Group
Fault Code Fault Name (Priority) IC Contents(l)

1100
1111
1011
0111
1110
1101
1001
0101
0001
0010
0110
0011
1010
1000
0100
0000

Notes:

(1)

(2)

(3)

Startup I N+O, +1, or +2
Execute I N+O, +1, or +2
Operation Not Completed II N+O, +1, or +2
Lockup II N+O, +1, or +2
Divide Check III N(3)
Overflow III N
Parity IV N(2)
Command IV N
Memory IV N(3)
Master Mode Entry IV N(3)
Derail IV N(3)
Fault Tag IV N(3)
Illegal Op Code IV N
Connect V N
Timer Runout V N
Shut Down V N

N = Last operation

If parity occurred on operand fetch, operation N+l was completed with faulty data.
If parity occurred on instruction fetch, operation N+l was not completed
If parity occurred on IT, IT was not completed.

These operations are considered complete when the fault is recognized.

Figure 2. Table of Faults

THE NUMBER SYSTEM

The binary system of notation is used throughout the GE-625/635 information processing
system.

Many of the instructions, mainly additions, subtractions, and comparisons, can be used in
two ways: either operands and results are regarded as signed binary numbers in the 2's
complement form (the llarithmetic" case), or they are regarded as unsigned, positive binary
numbers (the "logic" case). The Zero and the Negative Indicators facilitate the general
interpretation of the results in the arithmetic case; the Zero and the Carry Indicators, in
the logic case. The instruction set contains instruction types "Add Logic" and "Subtract
Logic" which particularly facilitate arithmetic of the logic type with half-word, Single-word,
and double-word precision. See Appendix I for a description of the two's complement
number system.

CPB-I004F

24

Subtractions are carried out internally by adding the 2' s complement of the subtrahend. * It
is a characteristic feature of the 2' s complement representation that a ((no borrow" condition
in the case of true subtraction corresponds to a ((carry" condition in the case of addition of
the 2's complement, and vice versa.

A statement on the assumed location of the binary point has significance only for multi­
plications and divisions. These two operations are implemented for integer arithmetic as
well as for fractional arithmetic with numbers in 2's complement form, ((integer" meaning
that the position of the binary point may be assumed to the right of the least- significant
bit position (that is, to the right of bit position 35 or 71, depending on the precision of the
respective number) and ((fractional" meaning that the position of the binary point may be
assumed to the left of the most-significant bit position (that is, between the bit positions
o and 1).

REPRESENTATION OF INFORMATION

The Processor is fundamentally organized to deal with 36-bit groupings of information.
Special features are also included for ease in manipulating 6-bit groups, 9-bit groups, 18-
bit groups, and 72-bit, double-precision groups. These bit groupings are used by the hard­
ware and software to represent a variety of forms of information.

Position Numbering

The numbering of bit positions, character positions, words, etc., increases in the direction
of conventional reading and writing: from the most- to the least-significant digit of a number,
and from left to right in conventional alphanumeric text.

Graphical presentations in this manual show registers and data with position numbers
increasing from left to right.

The Machine Word

The machine word consists of 36 bits arranged as follows:

o
One Machine i Word

Upper Half word Lower Half word

35

Data transfers between the Processor and memory are word oriented: 36 bits are trans­
ferred at a time for single-precision data and two successive 36-bit word transfers for
double-precision data. When words are transferred to a Magnetic Core Storage Unit, this
unit adds a parity bit to each 36-bit word before storing it. When words are requested

* When the subtrahend is zero, the algorithm for forming the 2's complement is still
carried out. Thus, each bit of the subtrahend is complemented, and a 1 is added into the
least-significant position of the parallel adder.

CPB-I004F

25

from a Magnetic Core Storage Unit, this unit verifies the parity bit read from the store and
removes it from the word transferred prior to sending each word to the Processor.

The Processor has many built-in features for transferring and processing pairs of words.
In transferring a pair of words to or from memory, a pair of memory locations is accessed;
these addresses are an even and the next-higher odd number.

o 35 :36 71 L A Pair of Mafhine Words
-----------------------------~

Even Address Odd Address

In addressing such a pair of memory locations in an instruction that is intended for handling
pairs of machine words, either of the two addresses may be used as the effective address (Y).
Thus,

If Y is even, the pair oflocations (Y, Y+1) is accessed. If Y is odd, the pair of locations
(Y -1, Y) is accessed. The term tty -pair" is used for each such pair of addresses.

Alphanumeric Data

Alphanumeric data are represented by six-bit or nine-bit characters. A machine word
contains either six or four characters:

Character positions I. _.L.-. _____ --I"---____ .L __________ -1-__________ .L-____ -..JI} six-bI.· t within a word: ~_ 1 2 3 4 5_

o 5,6 11,12 17,18 23,24 29,30 35

L,_O ~I_ _ ,[~ _2----L.1_ 3 ---Il}nine-bit
o 8,9 17,18 26,27 35

Bit positions ~~2
within a character: I 3 I 4 15 I} six-bit

GIl 121 3 14 15 I 6 I 7liJ} nine-bit

CPB-1004F

26

Operand from
memory:

Result to
memory:

o 1

Six-Bit Character

2 3

2 3 4

Nine-Bit Character

Operand from memory

.5

Operand for the operation

Result of the operation

5 o 1

Result in memory

2

2

3

3

For six-bit character operations in which the operand is taken from memory, the effective
operand from memory is presented as a single word with the specified character justified
to character position 5; pOSition 0-4 are presented as zero. For operations in which the
resultant is placed in memory, character 5 of the resultant replaces the specified character
in memory location Y; the remaining characters in memory location Yare not changed.

For nine-bit character operations in which the operand is taken from memory, the effective
operand from memory is presented as a single word with the specified character justified
to character pOSition 3; positions 0-2 are presented as zero. For operations in which the
resultant is placed in memory, character 3 of the resultant replaces the specified character
in memory location Y; the remaining characters in memory location Yare not changed.

The character set used is the Computer Equipment Department Standard Character Set,
which is readily convertible to and from the ASCII character set.

CPB-I004F

27

Binary Fixed-Point Numbers

The instruction set comprises instructions for binary fixed-point arithmetic with half­
word, single-word, and double-word precision.

PRECISION

Upper Half

Half-word
r- --
I

Lower Half L_ - -

Single-word

REPRESENTATION

)
- - --

'--------- - - - -
0 17

I]
18 35

0

- -,
I

--..I

35

Double-word [= 0 Even Address 35,36 Odd Address 71

Instructions can be divided into two groups according to the way in which the operand is
interpreted: the Illogic" group and the Il algebraic" group.

For the Illogic" group, operands and results are regarded as unsigned, positive binary
numbers. In the case of addition and subtraction, the occurrence of any overflow is reflected
by the carry out of the most-significant (leftmost) bit position:

1. Addition

2. Subtraction

If the carry out of the leftmost bi t position equals 1, then the result
is above the range.

If the carry out of the leftmost bit position equals 0, then the
result is below the range.

In the case of comparisons, the Zero and Carry Indicators show the relation.

For the "algebraic" group, operands and results are regarded as signed, binary numbers,
the leftmost bit being used as a sign bit, (a 0 being plus and 1 minus). When the sign is
positive all the bits represent the absolute value of the number; and when the sign is
negative, they represent the 2's complement of the absolute value of the number.

In the case of addition and subtraction the occurrence of an overflow is reflected by' the"
carries into and out of the leftmost bit position (the sign position). If the carry into the
leftmost bit position does not equal the carry out of that position then overflow has occurred.
If overflow has been detected and if the sign bit equals 0, the resultant is below range; if
with overflow, the sign bit equals 1, the resultant is above range.

An explicit statement about the assumed location of the binary point is necessary only for
multiplication and division; for addition, subtraction, and comparison it is sufficient to
assume that the binary pOints are Illined up. n

CPB-1004F

28

In the GE-625/635 Processor, multiplication and division are implemented in two forms for
2's complement numbers: integer and fractional.

In integer arithmetic, the location of the binary point is assumed to the right of the least­
significant bit position, that is, depending on the precision, to the right of bit position
35 or 71. The general representation of a fixed-point integer is then:

where a n is the sign bit.

In fractional arithmetic, the location of the binary point is assumed to the left of the most­
significant bit position, that is, to the left of bit position 1. The general representation of
a fixed-point fraction

The number ranges for the various cases of precision, interpretation, and arithmetic are
listed in Figure 3.

Precision

Inter- Arithmetic Half-Word pretation Single-Word Double-Word
(Xn, YO ... 17) (A,Q, Y) (AQ, Y-pair)

Algebraic Integral _2 17 $ N $ (2 17 _1) _2 35 $ N $ (2 35 _1) _2 71 $ N $ (2 71 _1)

Fractional -1 $ N $ (1_2- 17) -1 $ N $(1_2-35) -1 $ N $ (1-2- 71)

Logic Integral 0 $ N :s: (2 18_1) 0 $: N :s: (236 _1) 0 :s: N $ (2 72 _1)

Fractional 0 :s: N $ (1_2- 18) 0 ~~ N :s: (1_2- 36) 0 :s: N $ (1_2- 72)

Figure 3. Ranges of Fixed-Point Numbers

CPB-I004F

29

Binary Floating-Point Numbers

The instruction set contains instructions for binary floating-point arithmetic with numbers
of single-word and double-word precision. The upper 8 bits represent the integral exponent
E in the 2's complement form, and the lower 28 or 64 bits represent the fractional mantissa
M in 2's complement form. The notation for a floating-point number Z is:

Single-Word
0 1 789 35

Precision: I sl Is I I
l""- E "'1 4 M "'I
o 1 7 8 9 71

Double-Word

I sl Is
,

Precision: I
I ... E --I~ M --I

where S = Sign bit

Before doing floating-point additions or subtractions, the Processor aligns the number which
has the smaller positive exponent. To maintain accuracy, the lowest permissible exponent of
-128 together with the mantissa equal to 0.00 0 has been defined as the machine represen­
tationof the number zero (which has no unique floating-point representation). Whenever a
floating-point operation yields a resultant untruncated machine mantissa equal to zero (71
bits plus sign because of extended precision), the exponent is automatically set to -128.

The general representation of the exponent for single and double precision is:

where e 7 is the sign.

The general representations of single- and double-precision mantissas are:

Single Precision:

and

Double Precision:

where m 0 is the sign in both cases.

CPB-I004F

30

Normalized Floating-Point Numbers

For normalized floating-point numbers, the binary point is placed at the left of the most­
significant bit of the mantissa (to the right of the sign bit). Numbers are normalized by
shifting the mantissa (and correspondingly adjusting the exponent) until no leading zeros
are present in the mantissa for positive numbers, or until no leading ones are present
in the mantissa for negative numbers. Zeros fill in the vacated bit positions. With the
exception of the number zero (represented as 0 x 2 -128), all normalized floating-point
numbers will contain a binary 1 in the most-significant bit position for positive numbers
and a binary 0 in the most-significant bit position for negative numbers. Some examples
are:

Unnormalized positive number

Same number normalized

Unnormalized negative number

Same number normalized

1 7
(OIOOOllOl)x2
SI

(OI110lOOO)x2 4

sl
(11110lOlll)x2 -4
S ' (1: OlOlllOO)x2-6

SI

The number ranges resulting from the various cases of precision, normalization, and
sign are listed in the table following:

Sign Single Precision Double Precision

Positive 2- 129
$; N $; (1_2- 27) 2 127 2 -129

$; N $; (1-2 -63) 2 127

Normalized

Negative _(1+2- 26)2 -129 ~ N ~_2127 -(1+2 -62)2- 129 ~ N ~_2127

Positive 2- 155
$; N $; (1_2-27) 2 127 2-191 ~ N s (1_2-63)2127

Unnormalized

Negative _2- 155 ~ N ~ _2 127 _2- 191 ~ N ~ _2 127

NOTE: The floating-point number zero is not included in the table.

Figure 4. Ranges of Floating-Point Numbers

Decimal Numbers

The instruction set does not comprise instructions for decimal arithmetic. The representa­
tion of decimal numbers in the machine therefore depends entirely on the programs used
for performing the decimal arithmetic required.

CPB ... I004F

31

The representation of the decimal digits as a subset of the character set is shown in
Appendix F.

Instructions

Machine instructions have the following general format:

o

Where

y

Op Code

y Op Code Tag

17,18 26,27,28,29,30 35

= the address field; also used in some cases to augment the Op Code as
in shift operations where it specifies the number of shifts

= the operation code, usually stated in the form of a 3-digit octal number

= interrupt inhibit bit

Tag = the tag field, generally used to control the address modification

o = the two bit positions 27 and 29 have no function at this time; however,
they must be zero for compatibility with other 600-line Processors.

The three repeat instructions, Repeat, Repeat Double, and Repeat Link (RPT, RPD, and
RPL), use a different instruction format. (See pages 134, 137, and 141.)

Indirect words have the same general format as the instruction words; however, the fields
are used in a somewhat different way. (See page 35 and following.)

ADDRESS TRANSLATION AND MODIFICATION

Address Translation

Any program address to be used in a memory access request while the Processor is
in the Slave Mode is first translated into an actual address and then submitted to the memory.

The term "progra.m address" is used for the following addresses:

1. An instruction address which is the address used for fetching instructions

2. A tentative address which is the address used for fetching an indirect word

3. An effective address, which is the final address produced by the address modifica­
tion process, is the address used for obtaining an operand, for storing a result, or
for other special operations during which the memory is accessed using the
effecti ve address.

CPB-I004F

32

For the purpose of address translation, the Processor Base Address Register
contains a base address in bit positions 0-7. The translation takes place only in the
Slave Mode of operation. It consists of adding this base address to bit positions
0-7 of the program address, using the Relocation Adder (RS).

In the Master Mode no address translation takes place. Any program address to
be used in a memory access request while the Processor is in the Master Mode is
used directly as an actual address and submitted to the memory without any
translation.

Address translation is actually based on nine bits, namely the Base Address
Register positions 0-8 and the bit positions 0-8 of the program address; this
permits address relocation by multiples of 512 words. Because of a software
requirement, bit positions 8 and 17 of the Base Address Register have been wired
in such a way that they contain 0' s permanently and cannot be altered by the Load
Base Address Register (LBAR) instruction. Thus, address relocation is performed
in multiples of 1024.

Tag Field

Before the operation of an instruction is carried out, an address modification procedure
generally takes place as directed by the tag field of the instruction and of indirect words.
Only the repeat mode instructions (RPT, RPD,. RPL) and character store instructions
(STCA, STCQ, STBA, STBQ) do not provide for an address modification. (See pages 134,
127, 129, and 56-59 respectively.)

The tag field consists of two parts, t and t
d

, that are located within the instruction word m
as follows:

I : I ; r
I I
I I I I I
I I I , I

I I , I
I J r I : I

30 35

r --1'- ,
t td m

Where

t m specifies one of the four possible modification types: Register (R), Register then
Indirect (RI), Indirect then Register (IR), and Indirect then Tally (IT)

t d specifies further the action for each modification type:

1. In the case of tm R, RI, or IR, t d is called the register designator and generally
specifies the register to be used in indexing.

2. In the case of tm :::.: IT, td is called the tally designator and specifies the tallying
in detail.

CPB-1004F

33

Modification Types

The following table gives a general characterization of each of the four modification types.

t Binary Modification Type m

R 00 Register

Indexing according to td as register designator and termination of
the address modification procedure.

RI 01 Register then Indirect

Indexing according to td as register designator, then substitution
and continuation of the modification procedure as directed by the
Tag field of this indirect word.

IR 11
Indirect then Re~ister

Saving of td as final register designator, then substitution and
continuation of the modification procedure as directed by the Tag
field of this indirect word.

Indirect then Tally
IT 10

Substitution, then of this indirect word according to td as use
tally designator.

CPB-I004F

34

Register Designator

Each of the three modification types R, RI, IR includes an indexing step which is further
specified by the register designator t d' In most cases, t d really specifies the register from
which the index is obtained. However, td may also specify a different action, namely that the
effective address Y is to be used directly as operand and not as address of an operand
(DU,DL), or that nothing takes place at all (N). Nevertheless, t d is called "register
designator" in these cases.

Register Designator
Action

Symbolic Binary

N 0000 Y = Y

XO 1000
Xl 1001

y = y + C(Xn)

X7 1111

AU 0001 y = y + C(A)O •.• 17
AL 0101 y = y + C(A) 18 .. 35
QU 0010 y = y + C(Q)O ••. 17
QL 0110 y = y + C(Q)18 •• 35
IC 0100 y = y + C(IC)

DU 0011 y,OO ••• 0 is the operand
DL 0111 00 .•• O,y is the operand

-

Tally Designator

The modification type IT causes the word at Y to be fetched and used as an indirect word
as specified by the td of the word (instruction or previous indirect word) which contains Y.

The format of the indirect word is:

y Tally Tag
a 17,18 29,30 35

Where

y = address field

Tally = tally field

Tag = tag field

CPB-1004F

35

Depending upon the prior tally designator, the tag field is used in one of three ways:

Tally Designator (Table Follows) Tag Field

I, DI, ID, and F

DIC and IDC

CI, SC

AD, SD I[Delta

-----f--+-----+------I--+_____'

Where

t = modifier
m

t d = designator

tb = character size (0 = 6-bit, 1 = 9-bit)

C f = character field

Delta = delta field

30 31 32 33 34 35

The following table gives the possible tally designators under IT type modification.

Tally Designator

Symbolic Binary Name

I 1001 Indirect only

DI 1100 Decrement Address, Increment Tally

AD lOll Add Delta (to address field)

SD 0100 Subtract Delta (from address field)

ID 1110 Increment Address, Decrement Tally

DIC 1101 Decrement Address, Increment Tally, and Continue

IDC llll Increment Address, Decrement Tally, and Continue

CI 1000 Character from Indirect

SC 1010 Sequence Character

F 0000 Fault

CPB-I004F

36

Address Modification Flowcharts

All possible types and sequences of address modification are shown on the following two
flowcharts.

Modification Type

R, IR, and RI address modification
IT address modification

Flowchart

Figure 5A
Figure 5B

See explanation of symbols and descriptions of modifications immediately following these
figures.

y,
according

= y

,----,,(y) ~ J
= IR

= IT

See
IT Address

Modif~a~lPIOwchart

(y) = Y
ii

Fetch C (Yii)

(G~m-: t:»=(y-:t::t
d
)-

Figure 5A. Address Modification Flowchart

37

CPB ... I004F

Opera t ion on
character is performed
according [0 Original

(C
f
)

NOTE

Operation on ~
character is performed P­
according to (C

f
)

~ SD

Figure 5B. Address Modification Flowchart

• Explanation of Symbols Used on Flowcharts

is the original address, tag modifier, and tag designator, respectively.

Cf, Tally, Delta is the value of the character field, tally field, and delta field of an
indirect word.

C(---)

Y

Y
ii

(---)

((---))

t * d

Original

End

should be read "replaces."

should be read "the contents of---."

is the final effective address to be used in carrying out an instruction
operation.

is the address of an indirect word which will be used for further
modification.

is the address, obtained from another indirect word, of an indirect word
which will be used for further modification.

represents quantities obtained from the contents of an indirect word.

represents quantities obtained from the contents of an indirect word
which was obtained through another indirect word.

is the register designator to be used as a final register modifier under
IR modification.

Most indirect words which are used under IT modification utilize the
read-alter-rewrite (RAR) memory cycle. This RAR cycle must be
completed before another indirect cycle can occur. The word original
refers to the quantity contained in an indirect word before that quantity
is incremented (during the alter part of the RAR cycle). Omission
of the word original refers to the quantity after it is incremented or
decremented during the alter portion of the RAR cycle.

indicates that the modification procedure for that instruction has
terminated and the effective address Y, developed up to that point,
is used to carry out the instruction operation.

• Detailed Description of Flowcharts

The instruction word address field serves as the initial value of the tentative
address y, and its tag field supplies the initial modifier t m as well as initial
designator td'

tm is one of the four modification types: R, RI, IR, or IT.

y modified by td replaces the former tentative address y. If td = DU or DL, DU
or DL is ignored and the modification proceeds as if td = N.

The tentative address y, developed up to that point, becomes the address Y i to be
used in accessing an indirect word which will be used for further modification.
Using Y i' the indirect word is fetched.

CPB-I004F

39

CD
o
G)

o
o
@)
®

@

@
@

@
@

®

@

@

The address and tag fields of the last indirect word replace the tentative address
and the tag of the instruction.

The last designator t d' becomes the final designator t d*' to be used as a final
register modifier under IR modification.

The tm, of the indirect word, designates one of the four modification types: R, RI,
IR, or IT.

The address of the indirect word (y), modified by the final register modifier td*,
replaces the former tentative address.

The tentative indirect address (y), developed up to that point, is used as the effective
address Y for carrying out the instruction operation.

The designator of the indirect word (t d) replaces the final register designator td*'

The tentative indirect address (y), developed up to that point becomes the address
Yii , to be used in accessing another indirect word which will be used for further
modification. Using Yii , the indirect word is fetched.

The address (y), contained in the indirect word and modified by the designator of
the indirect word (t d)' replaces the tentative indirect address (y).

The y modified by t d replaces the former tentative address y.

The tentative address y, developed up to that point, is used as the effective address
Y for carrying out the instruction's operation.

The t d is one of the 10 tally designators: SC, CI, DIC, AD, IDC, F, DI, I, ID, or SD.

A value one less than or one greater than the value of the tally field loaded from the
indirect word becomes the new value of the tally field, depending on the use of the
AD or SD designator.

The Tally Runout Indicator is set to ON if the tally field equals zero after incremen­
tation or decrementation; the Indicator is set of OFF if the tally field does not equal
zero after incrementation or decrementation.

A value one greater than the value of the character field loaded from the indirect
word becomes the new value of the character field.

If the value of the character field C f equals six, the character field is set to zero;
and a value one greater than the value of the address field loaded from the indirect
word becomes the new value of the address field.

During the rewrite portion of the read-alter-rewrite cycle used for updating an
indirect word, the updated fields--(y), (C f), (Tally), (Delta), (t m), (t J, where
applicable--are returned to storage in memory.

The original value of the address field (y), as loaded from the indirect word before
any inc rem entation or decrementation, becomes the effective address Y which is
used to carry out the instruction operation.

CPB .. 1004F

40

NOTE:

The original value of the character field C. as loaded from the indirect word
before any incrementation (or setting to zero}, is the value used in carrying out
the instruction operation. (See note at end of this listing.)

A value one less than the value of the address field loaded from the indirect word
becomes the new value of the address field.

A value one greater than the value of the tally field loaded from the indirect word
becomes the new value of the tally field.

Under IDC or DIC types of modification, the modifiers permitted within the indirect
are:

t =R td =N m

tm =IR td = any

t = RI td =N m

t =IT t = any
m d

t m = R effectively terminates the modification procedure while

t m = RI, IR, or IT seeks at least an additional level of modification.

The original value of the address field (y), as loaded from the indirect word before
incrementation, becomes the address Yii to be used in accessing the next indirect
word which will be used for further modification.

The address and tag fields of Y .. replace the address and tag fields of the original
instruction, and modification prJJeeds.

Occurs when tm = IT and t d = F, or when Fault tag fault is initiated and no further
indirect addressing occurs.

A value one greater than the value of the address field loaded from the indirect
word becomes the new value of the address field.

A value equal to the value of the address field (loaded from the indirect word)
plus or minus Delta (a constant also loaded from the indirect word) replaces the
value of the address field. The constant is positive for the AD designator and
negative for the SD deSignator.

The value of the character field C f' after incrementation (or setting to zero), is
used in carrying out the instruction operation. (See the note at the end of this
listing.)

The original value of the address field and the tag field of the last indirect word
replace the tentative address and tag of the instruction.

When the tally designator is CI or SC, the character field of the last indirect word
is an octal number which specifies the character position of the memory location
Y to be used in carrying out the instruction operation (the example uses a value of
3 in the character field).

CPB-I004F

41

CALCULATION OF INSTRUCTION EXECUTION TIMES

The instruction execution times are based on fetching of instructions in pairs from storage,
and in the case of overlap type instructions* on overlap between the operation execution
of the overlap type instruction and the fetching and address modification of the next in­
struction.

Certain operations prevent the fetching of instructions in pairs and certain instructions
prevent overlapping. Under these conditions the following time adjustments should be made.

1. If an instruction from an
even storage location alters
a register, and the next
instruction (from the
successive odd location)
begins its address modi­
fication procedure with
an R or RI type of modi­
fication which uses this
same register, then

2. If an instruction from an
even storage location
alters the next instruction,
then

3. If a transfer of control
instruction is located
at an odd storage loca­
tion, then

4. If a transfer of control
transfers to an instruc­
tion located at an odd
storage location, then

5. If a store type** in­
struction located in an
odd storage location is
preceded by a nonstore
type instrUction, then

Single Precision Store
Read- Alter-Rewrite
Double Precision Store

Add 0 microseconds

Add 2.2 microseconds

Add 0.5 microsecond

Add 1. 3 microseconds

Add 0.6 microsecond
Add 0.6 microsecond
Add 0.9 microsecond

GE-635

Add 1. 8 microseconds

Add 2.7 microseconds

Add 0.5 microsecond

Add 0.8 microsecond

Add 1. 1 microseconds
Add 1.2 microseconds
Add 1. 2 microseconds

*Overlap type instructions include multiplications, divisions, shifts, and floating-point
operations except loads and stores.

**Store type instructions = store, floating store, add and subtract stored, AND, OR, and
EXCLUSIVE OR to storage, etc.

42

CPB-1004F
Rev. July 1969

GE-615 GE-635

6. If an overlap type in-
struction is followed either
by a store type instruc-
tion from an odd storage
location or by a trans-
fer of control instruction,
then (depending on the
particular instruction
sequence) Add 2-3 microseconds Add 1-2 microseconds

7. The instruction execution
times of shift and floating-
point operations are listed
as "average" times based
on a number of 4 shift steps.
Note that a single shift
step may effect a shift by
one, four, or sixteen po-
sitions. Actual times for
these instructions may
vary by up to + 0.8 micro-
second. Where unnormal-
ized operands are used
in normalizing floating-
point operations, worst
case conditions can add
as much as 1. 5 micro-
seconds.

8. Address modifications do not
require any time adjustments
except of the following cases:

RI - type, for the indirect
cycle Add 1. 7 microseconds Add 1. 7 microseconds

ffi- type, for the indirect
cycle Add 1. 7 microseconds Add 1. 7 microseconds

IT - type, for the indirect
cycle with restoring
of the indirect word

IT Even Add 3.3 microseconds Add 3.2 microseconds
IT Odd Add 3.3 microseconds Add 4.9 microseconds

IT - type, for the indirect
cycle with nonrestoring
of the indirect word
(CI and I) Add 1. 7 microseconds Add 1. 7 microseconds

Index designator DU or DL Subt 1.4 microseconds Subt 0.5 microsecond
except when used with
a first modification of
the R or RI type and the
preceding instruction
being an overlap type
instruction.

CPB-I004F
Rev. July 1969

43

THE INSTRUCTION REPERTOIRE

The GE-625/635 instruction set described under this heading is arranged by functional
class, as listed in Appendix A. Appendix A together with Appendix B, which lists the
instructions in alphabetical order by mnemonic, afford convenient page references to the
instructions in this section. Appendix C presents the instruction mnemonics grouped by
operation code.

43.1

CPB-1004F
Rev. July 1969

For the description of the machine instructions that follow it is assumed that the reader is
familiar with the general structure of the Processor, the representation of information,
the data formats, and the method of address modifications, as presented in the preceding
paragraphs of this chapter.

FORMAT OF INSTRUCTION DESCRIPTION

Each instruction in the repertoire is described in the following pages of this chapter. The
descriptions are presented in the standardized format shown below.

Mnemonic: Name of the Instruction: Op Code (Octal)

SUMMARY:

MODIFICATIONS:

INDICATORS:

I NOTES:

~------------,------ -----------------------
Line 1: Mnemonic, Name of the Instruction, Op Code (octal)

This line has three headings that appear over boxes containing the following:

1. Mnemonic--The mnemonic code for the Operation field of the programming
form.

2. Name of the Instruction--The name of the machine instruction from which
the Mnemonic was derived.

3. Op Code (octal}--The octal operation code for the instruction.

Line 2: SUMMARY

The change in the status of the information processing system effected by the
execution of the instructions operation is described in a short and generally
symbolic form. If reference is made here to the status of an indicator, then it
is the status of this indicator before the operation is executed.

Line 3: MODIFICATIONS

Those designators are listed explicitly that shall not be used with this instruction
either because they are not permitted with this instruction or because their effect
cannot be predicted from the general address modification procedure.

CPB .. l004F

44

Line 4: INDICATORS

Only those indicators are listed whose status can be changed by the execution of this
instruction. In most cases, a condition for setting ON as well as one for setting OFF is
stated. If only one of the two is stated, then this indicator remains unchanged. Unless
explicitly stated otherwise, the conditions refer to the contents of registers, etc., as
existing after the execution of the instruction's operation.

Line 5: NOTES

This part of the description exists only in those cases where the SUMMARY is not sufficient
for an understanding of the operation.

Abbreviations and Symbols

The following abbreviations and symbols will be used for the description of the machine
operations.

Registers:

A Accumulator Register (36 bits)
Q Quotient Register (36 bits)

AQ Combined Accumulator-Quotient Register (72 bits)
Xn Index Register n (n = 0, 1, ... ,7) (18 bits)

E Exponent Register (8 bitEl)
EA Combined Exponent-Accumulator Register (8 + 36 bits)

EAQ Combined Exponent-Accumulator-Quotient Register (8 + 72 bits)
BAR Base Address Register (18 bits)

IC Instruction Counter (18 bits)
IR Indicator Register (18 bits, 11 of which are used at this time)

TR Timer Register (24 bits)
Z Temporary Pseudo-result of a non-store comparative Operation.

Effecti ve Address and Memory Locations

Y
Y-pair

The effective address (18 bits) of the respective instruction.
A symbol denoting that the effective address Y designates a pair of
memory locations (72 bits) with successive addresses, the lower one
being even. When the effective address is even, then it designates the
pair (Y, Y+l), and when it is odd, then the pair (Y -1, Y). In any case the
memory location with the lower (even) address contains the more signifi­
cant part of a double-precision number or the first of a pair of instructions.

Register Positions and Contents:

(UR" standing for any of the registers listed above as well as for a memory location or a
pair of memory locations.)

Ri
R i.-"j
C(R)
C(R) i =
C(R)i'" . =

J

the ith position of R
the positions i through j of R
the contents of the full register R
the contents of the i th position of R
the contents of the positions i through j of R

45

CPB ... I004F

When the description of an instruction states a change only for a part of a register or memory
location, then it is always understood that the part of the register or memory location which
is not mentioned remains unchanged.

Other Symbols:

replaces

compare with

AND the Boolean connective AND (symbol A)

OR the Boolean connective OR (symbol V)

~ the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

Memory Accessing

It is a characteristic feature of the GE-625/635 computer that an address translation takes
place with each memory access when the Processor operates in the Slave Mode.

During the execution of a program a base address is contained in the bit positions 0-7
of the Processor Base Address Register. With each memory access, this base address
is added to bit positions 0-7 of the program address supplied by this program in order to
generate the actual address used in accessing thp. memory. In this way, the address trans­
lation provides complete independence of the program address range that is used with a
specific execution of this program.

Only when the Processor is in the Master Mode is the program address used directly as an
actual address; in this case, program addresses generally refer to the Comprehensive
Operating System which has allocated to it the actual address range beginning at zero.

The descriptions of the individual machine instructions in this chapter do not mention the
address translation. It is understood here that an address translation has to be performed
immediately prior to each memory access request (in the Slave Mode) regardless of whether:

1. The program add:L'ess is an instruction address, and the memory is accessed for
fetching an instruction.

2. The program address is a tentative address, and the memory is accessed for fetching
an indirect word

3. The program address is an effective address, and the memory is accessed for
obtaining an operand or for storing a result.

CPB .. I004F

46

No address translations take place for effective addresses which are used either as operands
directly or in other ways (for example, shifts).

Floating-Point Arithmetic

Numbers in floating-point representation are stored in memory as follows:

Integer Fractional
Exponent Mantissa

Single-word precision C(Y)O_7 C(Y)8 __ 35

Double-word precision C(Y-pair) 0 __ 7 C(Y-pair) 8 --71

When a floating-point number is held in the register EAQ, its mantissa length is allowed to
increase to the full length of the register AQ .

... -----------Y-pair -----------11 ...

..... ------ Y -------1-.11

8 35 36 71

o 7 0 27 63

E A 4 Q------I

In storing a floating-point number, a truncation of the mantissa takes place. With single­
word precision store instructions, only C(AQ) o-v will be stored as mantissa, and with
double-word precision store instructions, only C(AQ) 0-63'

CPB-I004F

47

DATA MOVEMENT]
LOAD

DESCRIPTIONS OF THE MACHINE INSTRUCTIONS

Mllemonic: Name of the Instruction:

I LDA I Load A

SUMMARY: C(Y) ~ C(A)

MODIF1CATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

I LDQ I Load Q

SUMMARY: C(y) =:) C(Q)

MODIF1CATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) "" 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

I LDAQ Load AQ

SUMMARY: C(Y -pair) =:) C(AQ)

MODIF1CATIONS: All except DU, DL, CI, se

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

48

Op Code (Octal)

235

Op Code (Octal)

236

Op Code (Octal)

237

CPB-I004F

Mnemonic: Name of the Instruction:

I LDXn I Load Xn from Upper (n=O, 1, ••. ,7)

SUMMARY: C(Y)O •.• 17 ~ C(Xn)

MODITICATIONS: All except CI, SC, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

I LXLn I Load Xn from Lower (n=O, 1, .•. ,7)

SUMMARY: C(Y)18 ..• 35 :=) C(Xn)

MODITICATIONS: All except DU, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

I LREG I Load Registers

SUMMARY: C(Y,Y+1, ...• Y+6) ~ C(XO,Xl, ••• X7,A,Q,E)

DATA MOVEMENT
LOAD

Op Code (Octal)

22n

Op Code (Octal)

72n

Op Code (Octal)

073

where Y15-17 = 000 for the first location only and increases by one for
each succeeding location.

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTE: C(Y)0_17 :=) C(XO) C(Y+3)0_17 :=) C(X6)

C(Y)18-35 :=) C(X1) C(Y+3)18_35 :=) C(X7)

C(Y+1)0_17 :=) C(X2) C(Y+4)0_35 :=) C(A)

C(Y +1) 18-35 :=) C(X3) C(Y+5)0_35 :=) C(Q)

C(Y+2)0_17 :=) C(X4) C(Y+6)0_7 ~ C(E)

C(Y +2) 18-35 :=) C(X5)

CPB-1004F

49

DATA MOVEMENT]
LOAD

Mnemonic:

LCA

Name of the Instruction:

Load Complement A

SUMMARY: - C(Y) ~ C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Op Code (Octal)

335

3if C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF
~------------ ~~~~--~--~~~~----------~
,--_o_v_e_rf_l_o_w.__ If range of A is exceeded, then ON; otherwise OFF

NOTE: This instruction changes the number to its negative
(if f 0) while moving it from the memory to A.
The operation is executed by forming the two's com­
plement of the string of 36 bits.

50

CPB-I004F

Mnemonic: Name of the Instruction:

LCQ Load Complement Q

SUMMARY: - C(Y) -,~ C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

NOTE:

Mnemonic:

LCAQ

SUMMARY:

If C(Q) = 0, then ON; otherwise OFF

If C(Q)O = 1, then ON; otherwise OFF

If range of Q is exceeded, then ON

This instruction changes the number to its negative
(if F 0) while moving it from Y to Q. The operation
is executed by forming the two's complement of the
string of 36 bits.

Name of the Instruction:

Load Complement AQ

- C(Y -pair) ~ C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

DATA MOVEMENT
LOAD

Op Code (Octal)

336

Op Code (Octal)

337

NOTE: This instruction changes the number to its negative (if F 0) while moving
it from Y -pair to AQ. The operation is executed by forming the two's
complement of the string of 72 bits.

CPB-I004F

51

[
DATA MOVEMENT]

LOAD

Mnemonic:

[LCXn

Name of the Instruction:

Load Complement Xn (n = 0,1, ... ,7)

SUMMARY: - C(Y)O ... 17 ~ C(Xn)

MODIFICATIONS: All except CI, SC, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF
-

Overflow If range of Xn is exceeded, then ON

Op Code (Octal)

32n

NOTE: This instruction changes the number to its negative (if F 0) while moving
it from YO .•. 17 to Xn. The operation is executed by forming the two's
complement of the string of IS bits.

Mnemonic: Name of the Instruction: Op Code (Octal)

EAA Effective Address to A 635

SUMMARY: y ~ C(A)O ..• 17; 00 .•. 0 ~ C(A)1S ••• 35

MODITICATIONS: All except DU, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

NOTE: 'This instruction, and the instructions EAQ and EAXn, facilitate
tnterregister data movements; the data source is specified by the
address modification, and the data destination by the operation
lCode of the instruction.

CPB-1004F

52

Mnemonic: Name of the Instruction:

EAQ Effecti ve Address to Q

SUMMARY: YO-} C(Q)O ..• 17; 00 ... 0 ~ C(Q)18 ..• 35

DATA MOVEMENT
LOAD

Op Code (Octal)

636

MODIFICATIONS: All except DU, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

NOTE: This instruction, and the instructions EAA and EAXn, facilitate
interregister data movements; the data source is specified by
the address modification, and the data destination by the operation
code of the instruction.

Mnemonic: Name of the Instruction: Op Code (Octal)

EAXn Effecti ve Address to Xn (n=O, 1, ..• ,7)

SUMMARY: Y =:> C(Xn)

MODIFICATIONS: All except DU, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O = 1, then ON; otherwise OFF

NOTE: This instruction, and the instructions EAA and EAQ facilitate
interregister data movements; the data source is speCified by

62n

the address modification, and the data destination by the operation
code of the instruction.

CPB-1004F

53

DATA MOVEMENT]
LOAD

Mnemonic: Name of the Instruction: Op Code (Octal)

LDI Load Indicator Register 634

SUMMARY: C(Y)18 .•. :m ~ C(IR)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Master Mode

All other
Indicators

NOTE:

Not Affected:

If corresponding bit in C(y) is ONE, then ON;
otherwise OFF

1.. The relation between bit positions of C(Y) and the indicators is as
follows:

Bit Position Indicators
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask

____ 2L ____ Master~ode __ _
29
30
31
32 00 ••• 0
33
34
35

2. The Tally Runout Indicator will reflect C(Y)25 regardless of
what address modification is performed on the LDI instruction
(for Tally Operations).

CPB-I004F

54

Mnemonic: Name of the Instruction:

STA Store A

SUMMARY: C(A) ~ C(Y)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonic: Name of the Instruction:

STQ Store Q

SUMMARY: C(Q) ~ C(y)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonic: Name of the Instruction:

STAQ Store AQ

SUMMARY: C(AQ) ::) C(Y -pair)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction:

STXn Store Xn into Upper

SUMMARY: C(Xn) ~ C(Y)O ... 17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

55

(n = 0,1. .. ,7)

DATA MOVEMENT
STORE

Op Code (Octal)

755

Op Code (Octal)

756

Op Code (Octal)

757

Op Code (Octal)

74n

CPB ... I004F

[
DATA MOVEMENT]

STORE

I

I

Mnemonic:

SXLn

SUMMARY:

Name of the Instruction: =-r Store Xn into Lower

C(Xn) ~ C(Y)18 ••• 35

MODIFICATIONS: All except DU, DL, CI, se

INDICATORS: None affected

Mnemonic: N arne of the Instruction:

SREG Store Registers

(n = 0, 1, ••• ,7)

Op Code (Octal)

44n

Op Code (Octal)

753

SUMMARY: C(XO,X1,X2, .••• X7,A,Q,E,TR) ~ C(Y,Y+1, •••• Y+7)
where Y15-17= 000 for the first location only and increases by one for
each succ eeding location

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: N one affected

NOTE: C(XO) ~ C(Y)0_17

C(X1) ~ C(Y)18_35

C(X2) ~ C(Y+1)0_17

C(X3) ~ C(Y+1)18_35

C(X4) => C(Y+2)0_17

C(X5) => C(Y+2)18_35

C(X6)

C(X7)

C(A)

C(Q)

C(E)

C(TR)

56

...
~

~

:=

:=

=>

C(Y+3)0_17

C(Y+3)18_35

C(Y+4)0_35

C(Y+5)0_35

C(Y +6)0_ 7; 00 •. 0 => C(Y +6) 8-35

C(Y +7)0-23; 00 .•• 0 => C(Y +7)24-35

CPB-1004F
Rev. July 1969

Mnemonic:

STCA

SUMMARY:

Name of the Instruction:

Store Character of A (Six Bit)

DATA MOVEMENT
STORE

Op Code (Octal)

751

Characters of C(A) ~ corresponding characters of C(Y), the character
positions ;;cffected being specified in the Tag field.

MODIFICATIONS: No modification can take place

INDICATORS: None affected

NOTE: Binary ones in the tag field of this instruction specify the character·
positions of A and Y that are affected by this instruction. The control
relation is shown in the diagram below.

,..0 _______ .r--::--:---______ -..;;.1...;..7,~1~8~=_ 26 30 35 Structure of
I Address : Op Code :0 :ilO: Tag this Instruction

..... 0'1'2'3'4'5

EXAMPLE: 1 8 16 32

I I STCA I LOC 07 I
The instruc~ion in this ehmpl~ moves the 6-bit characters #3, #4, and #5 from
C(A) to the corresponding character positions of memory location LOC. Character
positions #0, #1, and #2 of LOC are unaffected.

Mnemonic: Name of the Instruction: Op Code (Octal)

STCQ

SUMMARY:

Store Character of Q (Six Bit) 752

Characters of C(Q) ... corresponding characters of C(Y), the character
positions affected being specified by the Tag field.

MODIFICATIONS: No modification can take place

INDICATORS: None affected

NOTE: Binary ones in the Tag field of this instruction specify the character
positions of Q and Y that are affected by this instruction. See the
example for STCA. The control relation is shown in the diagram below.

o
Address

1
0 C d !O I, '0' T I Structure of

I poe I II, I ag th' Itt'
, , I ' , _ IS ns ruc Ion

0'112'3'415
Bit positions ~

within Tag field . ~~

17 18 26 30 35

Structure #2 Char. #3. Char. #41 Char. of Q and Y~ ____ -L-___ ---L ____ LI ____ --I-_____ L.-__ ~

CPB-I004 F

57

[
DATA MOVEMEN.;!

STORE ~

Mnemonic:

STBA

Name of the Instruction:

Store Character of A (Nine Bit)

SUMMARY: Characters of C(A) ~ corresponding characters of C(Y),

Op Code (Octal)
551

the character positions affected being specified in the Tag field.

MODIFICATIONS: No modification can take place

INDICATORS: None affected

NOTE: Binary ones in the Tag field of this instruction specify the character
positions of A and Y that are affected by this instruction. The control
relation is shown in the diagram below:

o 1 7 18 26 30 35

I Address : 0 C d iO:' :0 : T I Structure of
I poe i ;1, i ag this Instruction

L-----------------------------~-------~~~0~'1~2~'~3'~4'~5

Bit positions
within Tag field

Structure
of A and Y L-______ ~ __ . ____ ~~ ______ ~ ______ ~

EXAMPLE: 1 8 16 32

I 'STBA I LOC,04 I
The instruciion in this ekmple moves the low order 9-bit character #3 from
C(A) to the corresponding character- position of memory location LOC. Character
positions #0, #1, and #2 of LOC are unaffected.

I Bit positions 4 and 5 of the Tag field are ignored.

CPB-1004F

58

Mnemonic:

STBQ

SUMMARY:

Name of the Instruction:

Store Character of Q (Nine Bit)

DATA MOVEMENT
STORE

Op Code (Octal)

552

Characters of C(Q) -:> corresponding characters of C(Y), the character
positions affected being specified in the Tag field.

MODIFICATIONS: No modification can take place

INDICATORS: None affected

NOTE:

o

Binary ones in the Tag field of this instruction specify the character
positions of A and Y that are affected by this instruction. See the
example for STBA. The control relation is shown in the diagram
below:

Address

Structure
of A and Y

17 18 26
I
lOp Code

30
Structure of
this Instruction

Bit positions 4 and 5 of the Tag field are ignored.

CPB-I004·F

59

I

DATA MOVEMENT
STORE

Mnemonic:

STI

SUMMARY:

Name of the Instruction: Op Code (Octal)

Store Indicator Register 754

C(IR) ~ C(Y)18 ... 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTE: 1. The relation between bit positions of C(y) and the indicators
is as follows:

Bit Position
18
19
20
21
22
23
24
25
26
27
28 --"29--
30
31
32
33
34
35

Indicators
Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode --------

00 ... 0

2. The ON state corresponds to a ONE bit, the OFF state to a ZERO
bit.

3. The C(Y)25 will contain the state of the Tally Runout Indicator
prior to address modification of the STI instruction (for Tally
operations) •

60

CPB-1004F'
Rev. July 1969

Mnemonic: Name of the Instruction:

STT Store Timer Register

SUMMARY: C(TR) ~ C(Y)
OO .•• O~ C(Y)~4::~;5

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction:

I SBAR Store Base Address Register

SUMMARY: C(BAR) ~ C(Y}O .•• 17 C(Y) 18-35 Unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

DATA MOVEMENT
STORE

Op Code (Octal)

454

Op Code (Octal)

550

Mnemonic: Name of the Instruction: Op Code (Octal)

~_S_T_z __________ ~I __ S_t_o_r_e_z_e_r_o ____________________________ ~ ______ 4_5_0 __ ~
SUMMARY: 00 ••. 0 ~ C(y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

61

CPB ... 1004F
Rev. July 1969

I

DATA MOVEMENT
STORE

Mnemonic:

STC1

SUMMARY:

Name of the Instruction: Op Code (Octal)

Store Instruction Counter plus 1 554

C(IC) + O ... 01 ~ C(Y)O ..• 17

C(IR) ~ C(y) 18 ... 35

(Note the difference between STC1 and
STC2)

MODIFICATIONS: All except DU) DL, CI, SC

INDICATORS: None affected

NOTES:

Mnemonic:

I STC2

1. The relation between bit positions of C(Y) and the indicators is as
follows:

Bit Position Indicators

18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Master Mode --29------------
30
31
32 00 ... 0
33
34
35

2. The ON state corresponds to a ONE bit, the OFF state to a ZERO
bit.

3. The C(Y)25 will contain the state of the Tally Runout Indicator
prior to address modification of the STC1 instruction (for Tally
operations).

Name of the Instruction: Op Code (Octal)

I Store Instruction Counter plus 2 750

SUMMARY: C(IC) + O ... 0102 = C(Y)O 17 (Note the difference between STC1
. . . d STC2)

C(Y)18-35 remain unchanged an

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

CPB-1004F

62

Mnemonic: N arne of the Instruction:

ARS A Right Shift

DATA MOVEMENT
SHIFT

Op Code (Octal)

731

SUMMARY: Shift right C(A) by Y 11. •• 17 positions; fill vacated pOSitions with C(A)O

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Mnemonic: N arne of the Instruction: Op Code (Octal)

QRS Q Right Shift 732

SUMMARY: Shift right C(Q) by Y 11. .• 17 pOSitions; fill vacated positions with C(Q)O

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected) ----------------------------------

1
Zero If C(Q) = 0, then ON; otherwise OFF

r---------------~-----------------
Negative If C(Q)O = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

LRS Long Right Shift 733

SUMMARY: Shift right C(AQ) by Y 11. .. 17 pOSitions; fill vacated positions with C(AQ)O

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

CPB-I004F

63

DATA MOVEMENT]
SHIFT

Mnemonic:

ALS

Name of the Instruction: Op Code (Octal)

A Left Shift 735

SUMMARY: Shift left C(A) by Y 11. •• 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)
-

Zero If C(A) = 0, then ON; otherwise OFF
--f--

Negative If C(A)O =1, then ON; otherwise OFF

Carry If C(A)O ever changes during the shift, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

I Q Left Shift 736 QLS

SUMMARY: Shift left C(Q) by Y 11. •• 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF -- I--

Negative If C(Q)O = 1, then ON; otherwise OFF

Carry If C(Q)O ever changes during the shift, then ON; otherwise OFF

CPB ... 1004F

64

Mnemonic: Name of the Instruction:

LLS Long Left Shift

DATA MOVEMENT
SHIFT

Op Code (Octal)

737

SUMMARY: Shift left C(AQ) by Y 11. •• 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON z otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

Carry If C(AQ)O ever changes during the shift, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

ARL I A Right Logic 771

SUMMARY: Shift right C(A) by Y 11. •• 17 positions; fill vacated pOSitions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected) ----------------------------------,
Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O =1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

QRL Q Right Logic 772

SUMMARY: Shift right C(Q) by Y 11 ••• 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O =1, then ON; otherwise OFF

CPB-I004F

65

DATA MOVEMENT
SHIFT

Mnemonic:

LRL

Name of the Instruction: Op Code (Octal)

Long Right Logic 773

SUMMARY: Shift right C(AQ) by Y 11. •. 17 positions; fill vacated positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O =1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

ALR A Left Rotate 775

SUMMARY: Hot~t.e C(A) by Y11 ••. 17 positions; enter each bit leaving position 0 into
posItIon 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O =1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

QLR Q Left Rotate 776

SUMMARY: Rotate C(Q) by Y 11 17 positions; enter each bit leaving position 0 into
position 35 •••

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O = 1, then ON; otherwise OFF

CPB .. 1004F

66

Mnemonic: Name of the Instruction:

I LLR Long Left Rotate

DATA MOVEMENT
SHIFT

Op Code (Octal)

777

SUMMARY: Rot~t.e C(AQ) by Y 11 ••• 17 positions; enter each bit leaving position ° into
posItIon 71

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O =1, then ON; otherwise OFF

CPB-1004F

67

I

FIXED-POINT ARITHMETIC I
ADDITION

Mnemonic: Name of the Instruction:

ADA Add to A

SUMMARY: C(A) + C(Y) ~ C(A)

MODIF1CATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) =0, then ON; otherwise OFF

Negative If C(A)o =1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Op Code (Octal)

075

Carry If a carry out of AO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

ADQ I Add to Q 076

SUMMARY: C(Q) + C(y) ~ C(Q)

MODIF1CATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)O =1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of QO is generated, then ON; otherwise OFF

CPB-1004 F

68

Mnemonic: Name of the Instruction:

ADAQ Add to AQ

SUMMARY: C(AQ) + C(Y -pair) ~ C(AQ)

FIXED- POINT ARITHMETIC
ADDITION

Op Code (Octal)

077

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected}

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O =1, then ON; otherwise OFF

Overflow If range of AQ exceeded, then ON

Carry If a carry out of AQO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

ADXn I Add to Xn (n = 0, 1, .. 0, 7)1 06n

SUMMARY: C(Xn) + C(Y)Oo •• 17 ~ C(Xn)

MODIFICATIONS: All except CI, SC, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)O =1, then ON; otherwise OFF

Overflow If range of Xn is exceeded; then ON

Carry If a carry out of XnO is generated, then ON; otherwise OFF

CPB-I004F

69

FIXED-POINT ARITHMETIC
ADDITION

Mnemonic: Name of the Instruction:

ASA I Add to Storage from A

SUMMARY: C(A) + C(y) ~ C(y) C(A) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(y) = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Op Code (Octal)

055

Carry If a carry out of YO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

ASQ Add to Storage from Q 056

SUMMARY: C(Q) + C(y) ~ C(y) C(Q) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(y)O =1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

CPB-I004F

70

Mnemonic:

ASXn

SUMMARY:

Name of the Instruction:

Add to Storage from Xn

FIXED-POINT ARITHMETIC
ADDITION

Op Code (Octal)

04n

C(Xn) + C(Y)Oo .• 17 -~ C(Y)O ••• 17 C(Xn) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not list,ed are not affected)

Zero If C(Y)O .•• 17 = 0, then ON;. otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Overflow If range of YO ••• 17 exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

ADLA I Add Logic to A 035

SUMMARY: C(A) + C(y) ~ C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTE:

If C(A) = 0, then ON; otherwise OFF

If C(A)O = 1, then ON; otherwise OFF

Not Affected!

If a carry out of AO is generated then ON, otherwise OFF

This instruction is identical to the ADA instruction with the exception
that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See
page 28, 72, and 73.)

CPB .. I004F

71

FIXED- POINT ARITHMETIC
ADDITION

Mnemonic: Name of the Instruction: Op Code (Octal)

ADLQ Add Logic to Q 036

SUMMARY: C(Q) -I- C(Y) ~ C(Q)

MODIF1CATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTE:

If C(Q) = 0, then ON; otherwise OFF

If C(Q)O =1, then ON; otherwise OFF

Not Affected!

If a carry out of QO is generated then ON; otherwise OFF

This instruction is identical to the ADQ instruction with the exception that
the Overflow Indicator is not affected by this instruction. Operands and .
results are regarded as unsigned, positive binary integers. (See page 28.)

Mnemonic: Name of the Instruction: Op Code (Octal)

~_L_A_Q _________ ~_A_d_d_L_O_g_i_c_to __ A_Q ________________________ ~ ______ O_3_7 ____ ~
SUMMARY: C(AQ) + C(y -pair) ~ C(AQ)

MODIF1CATIONS: All except DU, DL, CI, SC

INDICATORS:

Zero

Negative

Overflow

Carry

NOTE:

(Indicators not listed are not affected)
If C(AQ) = 0, then ON; otherwise OFF

If C(AQ)O =1, then ON; otherwise OFF

Not Affected!

If a carry out of AQO is generated, then ON; otherwise OFF

This instruction is identical to the ADAQ instruction with the exception
that the Overflow Indicator is not affected by this instruction. Operands.
and results are regarded as unsigned, positive binary integers. (See
page 28.)

CPB-1004F

72

Mnemonic: Name of the Instruction:

ADLXn Add Logic to Xn

SUMMARY: C(Xn) + C(Y)O .•. 17 ~ C(Xn)

FIXED-POINT ARITHMETIC
ADDITION

Op Code (Octal)

(n=0,1, •. 0,7) 02n

MODIFICATIONS: All except CI, SC, DL

INDICATORS' (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTE:

Mnemonic:

AWCA

SUMMARY:

If C(Xn) = 0, then ON; otherwise OFF

If C(Xn)o = 1, then ON; otherwise OFF

Not Affected!

If a carry out of XnO is generated, then ON; otherwise OFF

This instruction is identical to the ADXn instruction with the exception
that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integerso (See
page 28.)

Name of the Instruction: Op Code (Octal)

Add with Carry to A 071

Carry Indicator OFF: C(A) + C(Y) ~ C(A)
Carry Indicator ON: C(A) + C(Y) + 0 •.• 01 ~ C(A)

MODIFICATIONS: All

INDICATORS:

Zero

Negative

Overflow

Carry

NOTE:

(Indicators not listed are not affected)

If C(A) = 0, then ON; otherwise OFF

If C(A)o = 1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of AO is generated, then ON; otherwise OFF

This instruction is identical to the ADA instruction with the exception
that, when the Carry Indicator is ON at the beginning of the instruction,
then a + 1 is added to the least-significant position.

CPB-I004F

73

FIXED-POINT ARITHMETIC I
ADDITION

Mnemonic: Name of the Instruction: Op Code (Octal)

AWCQ I Add with Carry to Q 072

SUMMARY: Carry Indicator OFF: C(Q) + C(Y) ~ C(Q)
Carry Indicator ON: C(Q) + C(Y) + 0 .•. 01 ~ C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTE:

If C(Q) = 0, then ON; otherwise OFF

If C(Q)O = 1, then ON; otherwise OFF

If range of Q is exceeded, then ON

If carry out of QO is generated, then ON; otherwise OFF

This instruction is identical to the ADQ instruction with the exception
that, in case the Carry Indicator is ON at the beginning of the instruction,
then a + 1 is added to the least-significant position.

CPB-1004F

74

Mnemonic:

ADL

SUMMARY:

Name of the Instruction:

Add Low to AQ

C(AQ) + C(Y), right adjusted, ~ C(AQ)
(See the description below.)

FIXED-POINT ARITHMETIC
ADDITION

Op Code (Octal)

033

MODIFICATIONS: All except CI, SC

INDICATORS:

Zero

Negative

Overflow

Carry

DESCRIPTION:

Mnemonic:

AOS

(Indicators not listed are not affected)

If C(AQ) = 0, then ON; otherwise OFF

If C(AQ)o = 1, then ON; otherwise OFF

If range of AQ is exceeded., then ON

If a carry out of AQO is generated, then ON; otherwise OFF

A 72-bit number is formed:

C(Yo), C(YO), ...• 0, C(YO), C(Y).

\ ,,"---.J
36 bits

Its lower half (bits 36-71) is identical to C(Y), and each of the bits
of its upper half (bits 0-35) is identical to the sign bit of C(Y),
L e., to C(Yo) 0

This number is added to the contents of the combined AQ-register,
effecting the addition of C(Y) to the lower half of the combined
AQ-register, with a possible carry out of the Q-part being passed
on to the A-part.

Name of the Instruction: Op Code (Octal)

I Add One to Storage 054

SUMMARY: C(Y) + 0 0 •• 01 ~ C(y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(y) = 0, then ON; otherwise OFF

Negative If C(Y)O = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

CPB-I004F

75

FIXED-POINT ARITHMETIC 1
SUBTRACTION

Mnemonic: Name of the Instruction:

SBA Subtract from A

SUMMARY: C(A) - C(Y) ~ C(A)

MODIF1CA TIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)Q = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Op Code (Octal)

175

Carry If a carry out of AO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

SBQ Subtract from Q 176

SUMMARY: C(Q) - C(y) ~ C(Q)

MODIF1CATIONS: All

INDICATORS: (IndIcators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Qo is generated, then ON; otherwise OFF

CPB-1004F

76

Mnemonic: Name of the Instruction:

SBAQ Subtract from AQ

SUMMARY: C(AQ) - C(Y-pair) ~ C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF
-

Negative If C(AQ)o = 1, then ON; otherwise OFF

FIXED-POINT ARITHMETIC
SUBTRACTION

Op Code (Octal)

177

Overflow If range of AQ is exceeded, then ON; otherwise OFF

Carry If carry out of AQO-iS generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

SBXn I Subtract from Xn (n = 0,1,.0. ,7) 16n

SUMMARY: C(Xn) - C(Y) 00 •• 17 ~ C(Xn)

MODIFICATIONS: All except CI, SC, DL

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

If C(Xn) = 0, then ON; otherwise OFF

If C(Xn)o = 1, then ON; otherwise OFF

If range of Xn is exceeded, then ON

If a carry out of XnO is generated, then ON; otherwise OFF

77

CPB-1004F
Rev. July 1969

I

FIXED-POINT ARITHMETIC I
SUBTRACTION

Mnemonic: Name of the Instruction:

SSA Subtract Stored from A

SUMMARY: C(A) - C(y) ~ C(Y) C(A) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) ::: 0, then ON; otherwise OFF

Negative If C(Y)O ::: 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Op Code (Octal)

155

Carry If a carry out of YO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

LSSQ =r Subtract Stored from Q 156

SUMMARY: C(Q) - C(y) ~ C(Y) C(Q) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) ::: 0, then ON; otherwise OFF

Negative If C(Y)O ::: 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

CPB .. 1004F

78

Mnemonic: Name of the Instruction:

SSXn I Subtract Stored from Xn

SUMMARY: C(Xn) - C(Y)O .•. 17 ~ C(Y)O ••. 17

FIXED- POINT ARITHMETIC
SUBTRACTION

Op Code (Octal)

14n

C(Xn) unchanged

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y)O ... 17 = 0, then ON, otherwise OFF

Negative If C(Y)O = 1, then ON, otherwise OFF

Overflow If range of YO ... 17 exceeded, then ON

Carry If a carry out of YO is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (Octal)

SBLA I Subtract Logic from A 135

SUMMARY: C(A) - C(Y) ~ C(A)

MODIFICATIONS: All

INDICATORS:

Zero

Negative

Overflow

Carry

NOTE:

(Indicators not listed are not affected)
If C(A) = 0, then ON; otherwise OFF

If C(A)O = 1, then ON; otherwise OFF

Not Affected!

If a carry out of AO is generated, then ON; otherwise OFF

This instruction is identical to the SBA instruction with the exception
that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See
page 28.)

CPB-I004F

79

FIXED-POINT ARITHMETIC I
SUBTRACTION

Mnemonic: Name of the Instruction: Op Code (Octal)

SBLQ Subtract Logic from Q 136

SUMMARY: C(Q) - C(Y) ~ C(Q)

MODIF1CATIONS: All

INDICATORS' (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTE:

Mnemonic:

SBLAQ

SUMMARY:

If C(Q) = 0, then ON; otherwise OFF

If C(Q)O = 1, then ON; otherwise OFF

Not Affected!

If a carry out of QO is generated, then ON; otherwise OFF

This instruction is identical to the SBQ instruction with tne exception
that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See
page 28.)

Name of the Instruction: Op Code (Octal)

Subtract Logic from AQ 137

C(AQ) - C(Y -pair) ~ C(AQ)

MODIF1 CATIONS: All except DU, DL, CI, SC

INDICATORS:

Zero

Negative

Overflow

Carry

NOTE:

(Indicators not listed are not affected)

If C(AQ) = 0, then ON; otherwise OFF

If C(AQ)O = 1, then ON; otherwise OFF

Not Affected!

If a carry out of AQO is generated, then ON; otherwise OFF

This instruction is identical to the SBAQ instruction with the exception
that the Overflow Indicator is not affected by this instructionQ Operands
and results are regarded as unsigned, positive binary integers. (See
page 28.)

CPB-1004F

80

Mnemonic: Name of the Instruction:

SBLXn I Subtract Logic from Xn

SUMMARY: C(Xn) - C(Y)0 ••. 17 ,..~ C(Xn)

[FIXED-POlliT ARITHMETIC
SUBTRACTION

Op Code (Octal)

(n = 0,1, ••• ,7) 12n

MODIFICATIONS: All except CI, SC, DL

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTE:

Mnemonic:

SWCA

SUMMARY:

If C(Xn) = 0, th.en ON; otherwise OFF

If C(Xn)o = 1, then ON;otherwise OFF

Not Affected!

If a carry out of XnO is generated, then ON; otherwise OFF

This instruction is identical to the SBXn instruction with the exception
that the Overflow Indicator is not affected by this instruction. Operands
and results are regarded as unsigned, positive binary integers. (See
page 28.)

Name of the Instruction: Op Code (Octal)

Subtract with Carry from A

Carry Indicator ON:
Carry Indicator OFF:

C(A) - C(Y) ~ C(A)
C(A) - C(y) - 0 ••• 01 ~ C(A)

171

MODIFICATIONS: All

INDICATORS:

Zero

Negative

Overflow

Carry

NOTE:

(Indicators not listed are not affected)

If C(A) = 0, then ON; otherwise OFF

If C(A)O = 1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of AO is generated, then ON; otherwise OFF

1. This instruction is identical to the SBA instruction with the exception
that, when the Carry Indicator is OFF at the beginning of the
instruction, then a + 1 is subtracted from the least-significant
position.

CPB-1004F

'81

FIXED- POINT ARITHMETIC
SUBTRACTION

Mnemonic:

SWCQ

SUMMARY:

2. This instruction is used for multiple-word precision arithmetic.
The SUMMARY can also be worded as follows i.n order to show
the intended use:

Carry Indicator ON: C(A) + l' s complement of C(Y)
+ 0 ••• 01 ~ C(A)

Carry Indicator OFF: C(A) + l' s complement of C(Y)
~ C(A)

(The +1 which is added in the first case represents the carry from
the next lower part of the multiple-length subtraction.)

Name of the Instruction:

Subtract with Carry from Q

Carry Indicator ON:
Carry Indicator OFF:

C(Q) - C(y) ~ C(Q)
C(Q) - C(y) - 0 ... 01 ~ C(Q)

Op Code (Octal)

172

MODIFICATIONS: All

INDICATORS:

Zero

Negative

Overflow

Carry

NOTES:

(Indicators not listed are not affected)
If C(Q) = 0, then ON; otherwise OFF

If C(Q)O = 1, then ON; otherwise OFF

If range of Q is exceeded, then ON

If carry out of Q
O

is generated, then ON; otherwise OFF

1. This instruction is identical to the SBQ instruction with the exception
that, in case the Carry Indicator is OFF at the beginning of the
instruction, then a +1 is subtracted from the least-significant
position.

2. This instruction is used for multiple-word precision arithmetic.
The SUM:MARY can also be worded as follows in order to show the
intended use:

Carry Indicator ON: C(Q) + l' s complement of C(y)
+ 0 ••• 0 1 ~ C(Q)

Carry Indicator OFF: C(Q) + 1 's complement of C(Y)
~ C(Q)

(The +1 which is added in the first case represents the carry from
the next lower part of the multiple-length subtraction).

CPB-1004F

82

Mnemonic: Name of the Instruction:

MPY Multiply Integer

SUMMARY: C(Q) x C(Y) ~ C(AQ), right-adjusted

FIXED-POINT ARITHMETIC
MULTIPLICATION

Op Code (Octal)

402

MODITICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

NOTES: 1. Two 36-bit integer factors (including sign) are multiplied to form a
71-bit integer product (including sign), which is stored in AQ, right­
adjusted. Bit position AQO is filled with an "extended sign bit".

o 1 35 0 1 35

I~~~:----------factor----------:] xl ~~~::~~~=====-f-a-ct-o-r--------------------~.:~I
Q-register Memory Location Y

o 1

~! s!"'~Fl------------------- product

Combined AQ-register

2. In the case of (_2 35) x (_2 35) = + 270, the position AQ
1

is used to
represent this product without causing an overflow.

71

CPB-I004F

83

FIXED-POINT ARITHMETIC I
MULTIPLICATION

Mnemonic: Name of the Instruction:

MPF Multiply Fraction

SUMMARY: C(A) x C(Y) ~ C(AQ), left-adjusted

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) =0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF
--'---

Overflow If range of AQ is exceeded, then ON

Op Code (Octal)

401

NOTES: 1. Two 36-bit fractional factors (including sign) are multiplied to form
a 71-bit fractional product (including sign), which is stored in AQ,
left-adjusted. Bit position AQ71 is filled with a zero bit.

o 1 35 o 1

I~ factor ;]x~ factor

A-register Memory Location Y

35

~I
o 1 70 71

~~! product ~!O I
Combined AQ-register

20 An overflow can occur only in the case (-1) x (-1)0

CPB ... 1004F

84

Mnemonic:

FIXED-POINT ARITHMETIC
DIVISION

Name of the Instruction: Op Code (Octal)

~ __ D_I_V ___________ ~ ____ D_i_v_id_e __ I_nt_e_g_e_r ________________________ ~ 506 ~
SUMMARY: C(Q) !- C(Y); integer quotient

integer remainder
4 C(Q)
~ C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

NOTES:

If division takes place: If no division takes place:

If C(Q) = 0, then ON; otherwise OFF If divisor = 0, then ON; otherwise OFF

If C(Q)O = 1, then ON; otherwise OFF If dividend < 0, then ON;otherwise OFF

1. A 36-bit integer dividend (including sign) is divided by a 36-bit
integer divisor (including sign) to form a 36-bit integer quotient
(including sign) and a 36-bit fractional remainder (including sign).
The remainder sign is equal to the dividend sign unless the
remainder is zero.

o 1 35 0 1 35

F _~~. ~~ ---------I
~~~:::::::::_d_iv_i_d_e_n_d ______ ~ ... ~II-_-- divisor _____ --1 ...... 

Q-register Memory Location Y 

o 1 35 0 1 35 

~I L. ... :~i;:::::::::::::::-_r_e......,m __ a_in_d_e_r::::::::::::::::::::_ ........ ~rlllls,_~i -:.-:.-:.-:.-:.-:.-:.-=_q_U_o_t_i_en_t __ -_-_-_-_-___ -_________ -: .. ~1 
A-register Q-register 

2. If dividend ~ _2 35 and divisor = -1 or if divisor = 0, then the division 
itself does not take place. 

Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains 
unchanged, C(Q) contains the dividend magnitude in absolute, and the 
Negative Indicator reflects the dividend sign. 

CPB-I004F 

85 



FIXED-POINT AillTHMETIC I 
DIVISION 

Mnemonic: Name of the Instruction: Op Code (Odal) 

DVF Divide Fraction 507 

SUMMARY: C(AQ) c;- C(Y); fractional quotient -=) C(A) 
remainder ~ C( Q) 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero 

Negative 

NOTES: 

If dIvision takes place: If no division takes place: 

If C(A) = 0, then ON; otherwise OFF If divisor = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise OFF If dividend <0, then ON;otherwise OFF 

1. A 71-bit fractional dividend (including sign) is divided by a 36-bit 
fractional di visor (including sign) to form a 3u-bit fractional 
quotient (including sign) and a 36-bit remainder (including sign), 
bit pOSition 35 of the remainder corresponding to bit position 70 
of the dividend. The remainder sign is equal to the dividend sign 
unless the remainder is zero. 

o 1 70 71 

ri dividend .. !~J 
Combined AQ-register Not used) 

in division o 1 35 

~i divisor .. I 
Memory Location Y 

o 1 35

1 

~ ,I 35 

-=) 1:'1 quotient remainder ~ .. ·1 
A-register Q-register 

20 If I dividend Ii;, divisor I or if divisor = 0, then the division itself 
does not take placeo 

Instead, a Divide-Check Fault Trap occurs; the divisor C(y) remains 
unChanged, C(AQ) contains the dividend magnitude in absolute, and 
the Negative Indicator reflects the dividend sign. 

CPB-I004F 

86 



Mnemonic: Name of the Instruction: 

NEG I Negate A 

SUMMARY: - C(A) -~ C(A) 

FIXED- POINT ARITHMETIC 
NEGATE 

Op Code (Octal) 

531 1 

MODIFICATIONS: Are without any effect on the operation 

INDICA TORS: (Indicators not listed are not affected) 

Zero 

Negative 

Overflow 

NOTE: 

Mnemonic: 

LNEGL 

SUMMARY: 

If C(A) = 0, then ON; otherwise OFF 

If C(A)O = 1, then ON; otherwise OFF 

If range of A is exceeded, then ON 

This instruction changes the number in A to its negative (if f 0). The 
operation is executed by forming the two's complement of the string of 
36 bitso 

Name of the Instruction: Op Code (Octal) 

Negate Long 533 

- C(AQ) ~ C(AQ) 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS: (Indicators not listed are not affected) 

Zero 

Negative 

Overflow 

NOTE: 

If C(AQ) = 0, then ON z otherwise OFF 

If C(AQ)O = 1, then ON; otherwise OFF 

If range of AQ is exceeded, then ON 

This instruction changes the number in AQ to its negative (if 1= 0). The 
operation is executed by forming the two's complement of the string of 
72 bits. 

CPB-1004F 

87 



BOOLEAN OPERATIONS 
AND 

Mnemonic: Name of the Instruction: 

ANA AND to A 

SUMMARY: C(A). AND C(Y). .e C(A). for all i = 0, 1, .. 0 ,35 
1 1 1 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(A) = 0, then ON; otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise OFF 

Mnemonic: N arne of the Instruction: 

ANQ AND to Q 

SUMMARY: C(Q). AND C(Y). ~ C(Q). for all i = 0, 1, •.• ,35 
1 1 1 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Q) = 0, then ON; otherwise OFF 

Negative If C(Q)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: 

ANAQ AND to AQ 

Op Code (Octal) 

375 

Op Code (Octal) 

376 

Op Code (Octal) 

377 

SUMMARY: C(AQ)i ANDC(Y-pair\ ~ C(AQ)i for all i =0,1, ••• ,71 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

CPB-I004F 

88 



Mnemonic: Name of the Instruction: 

ANXn AND to Xn (n = 0, 1,. 0.,7) 

BOOLEAN OPERATIONS 
AND 

Op Code (Octal) 

36n 

SUMMARY: C(Xn). AND C(Y). ~ C(Xn). 
1 1 1 

for all i = 0, 1, •.• ,17 

MODIFICATIONS: All except CI, SC, DL 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Xn) = 0, then ON; otherwise OFF 

Negative If C(Xn)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ANSA AND to Storage A 355 

SUMMARY: C(A). AND C(Y). ~ C(Y). 
1 1 1 

for all i = 0,1'000,35 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Y) = 0, then ON; otherwise OFF 

Negative If C(Y)o = 1, then ON; otherwise OFF 

Mnemonic: N arne of the Instruction: Op Code (Octal) 

ANSQ AND to Storage Q 356 

SUMMARY: C(Q). AND C(Y). ~ C(Y). 
1 1 1 

for all i = 0, 1)0 0 0 p35 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Y) = 0, then ON; otherwise OFF 

Negative If C(Y)O = 1, then ON; otherwise OFF 

CPB-1004F 

89 



BOOLEAN OPERATIONS I 
AND 

Mnemonic: Name of the Instruction: 

ANSXn AND to Storage Xn 

Op Code (Octal) 

(n = 0, 1, .•• ,7) 34n 

SUMMARY: C(Xn). AND C(Y). ~ C(Y). 
1 1 1 

for all i = 0, 1, ... ,17 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Y)O .• 017 = 0, then ON; otherwise OFF 

Negative If C(Y)O = 1, then ON; otherwise OFF 

BOOLEAN OPERATIONS I 
OR 

Mnemonic: Name of the Instruction: 

ORA OR to A 

Op Code (Octal) 

275 

SUMMARY: for all i = 0, 1, .•• ,35 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(A) = 0, then ON; otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ORQ OR to Q 276 

SUMMARY: for all i = 0, 1'.0. ,35 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Q) = 0, then ON; otherwise OFF 

Negative If C(Q)O = 1, then ON; otherwise OFF 

CPB-1004F 

90 



Mnemonic: Name of the Instruction: 

I ORAQ OR to AQ 

BOOLEAN OPERATIONS 
OR 

Op Code (Octal) 

277 

SUMMAHY: C(AQ). OR C(Y -pair). .~ C(AQ). 
1 1 1 

for all i = 0,1, ••• ,71 

MODIF1CATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

[ ORXn OR to Xn 

SUMMARY: C(Xn). OR C(Y). ~ C(Xn). 
111 

for all i = 0, 1,0 0 • ,17 

MODIF1CATIONS: All except CI, SC, DL 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Xn) = 0, then ON; otherwise OFF 

Negative If C(Xn)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ORSA OR to Storage A 255 

SUMMARY: for all i = 0, 1, •• 0,35 

MODIF1CATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(y) = 0, then ON; otherwise OFF 

Negative If C(Y)O = 1, then ON; otherwise OFF 

CPB-I004F 

91 



BOOLEAN OPERATIONS I 
OR 

Mnemonic: Name of the Instruction: 

ORSQ OR to Storage Q ~ 
Op Code (Octal) 

256 

SUMMARY: C( Q). OR C(Y). =? C(Y). 
1 1 1 

for all i = 0, 1,. 0 • ,35 

MODITICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(y) = 0, then ON; otherwise OFF 

Negative If C(y)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ORSXn OR to Storage Xn (n = 0,1,. 0.,7) I 24n 

SUMMARY: C(Xn). OR C(y). ~ C(y). 
1 1 1 

for all i = 0, 1, ••• ,17 

MODITICATIONS: For all except DU, DL, CI, HC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(y)O ••. 17 = 0, then ON; otherwise OFF 
--~----------------------------~ 

Negative If C(y)O = 1, then ON; otherwise OFF 

BOOLEAN OPERATIONS I 
EXCL USIVE OR 

Mnemonic: Name of the Instruction: 

ERA EXCL USIVE OR to A 

SUMMARY: 

MODITICATIONS: All 

for i = 0,1,0' .,35 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(A) = 0, then ON; otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise OFF 

92 

Op Code (Octal) 

675 

CPB-1004F 



Mnemonie: Name of the Instruction: 

ERQ EXCL USfVE OR to Q 

BOOLEAN OPERATIONS 
EXCL USIVE OR 

Op Code (Octal) 

676 

SUMMAHY: for i ::: 0,1, .. 0,35 

MODIFICATIONS: All 

INDICATOHS: (Indicators not listed are not affected) 

Zero If C(Q) ::: 0, then ON; otherwise OFF 

Negative If C(Q)O ::: 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ERAQ EXCL USIVE OR to AQ 677 

SUMMARY: for all i ::: 0,1,0 •. ,71 

MODIF1CATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) ::: 0, then ON; otherwise OFF 
------------------------------------~ 

Negative If C(AQ)O ::: 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ERXn EXCLUSIVE OR to Xn (n ::: 0,1, ... ,17) 66n 

SUMMARY: for i ::: 0, 1, ... 17 

MODIF1CATIONS: All except CI, SC, DL 

INDICATORS: (Indicators not listed are not affected) 

~ 
------------------------------------~ 

zer_o _____ I. If C(Xn) ::: 0, then ON: otherwise OFF 

NegatIve C"~f C(Xn)O ::: 1, then ON; otherwise OFF 
,------, 

CPB-I004F 

93 



BOOLEAN OPERATIONS I 
EXCLUSIVE OR 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ERSA EXCL USIVE OR to Storage A 655 

SUMMARY: C(A\ i C(Y\ ~ C(Y\ for i = 0, 1~ •• 0,35 

MODIF1CATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Y) = 0, then ON; otherwise OFF 

Negative If C(Y)O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ERSQ EXCLUSIVE OR to Storage Q 656 

SUMMARY: C(Q)i i C(Y}i ~ C(Y}i for i = 0, 1,.0. ,35 

MODIF1CATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(y} = 0, then ON; otherwise OFF 

Negative If C(Y}O = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

ERSXn EXCLUSIVE OR to Storage Xn (n =0,1, ••• ,7) 64n 

SUMMARY: C(Xn). i C(Y}. ~ C(Y}. 
1 1 1 for i = 0,1, .•• ,17 

MODIF1CATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(y}O • 17 = 0, then ON; otherwise OFF 
Negative If C(y}O = 1, then ON; otherwise OFF 

CPB-I004F 

94 



Mnemonic: 

CMPA 

SUMMARY: 

MODIFICATION: 

INDICATORS: 

Q) 

.~ :>. ...... 
0 cd ~ 
H b.O ~ 
Q) Q) cd 
N Z u 

0 0 0 

0 0 1 

1 0 1 

0 1 0 

0 1 1 

:>. 
0 ~ 
~ ~ 
Q) cd 
N U 

0 0 

1 1 

0 1 

COMPARISON 
COMPARE 

Name of the Instruction: Op Code (Octal) 

Comp.l.re with A 115 ~ 
Comparison C(A) :: C(Y) 

All 

(Indicators not listed are not affected) 

Algebraic (Signed Fixed-Point) Comparison 

Relation Sign 

C(A) > C(Y) C(A)O = 0, C(Y)O = 1 

C(A) > C(Y) 

}C(Alo C(A) = C(Y) = C(Y)o 

C(A) < C(Y) 

C(A) < C(Y) C(A)O = 1, C(y)O = 0 

-
Logic (Unsigned Fixed-Point) Comparison 

Relation 

C(A) < C(Y) 

C(A) = C(Y) 

C(A) > C(Y) 

CPB-1004F 

95 



COMPARISON 
COMPARE 

Mnemonic: 

CMPQ 

SUMMARY: 

MODIFICATION: 

INDICATORS: 

Q) 

> ...... » ... 
0 ro f-< 
f-< bJ) ~~ 
Q) Q) ro 
N Z U 

0 0 0 

0 0 1 

1 0 1 

0 1 0 

0 1 1 

;>, 
0 f-< 
f-< f-< 
Q) ro 
N U 

0 0 

1 1 

0 1 

Name of the Instruction: Op Code (Octal) 

Compare witn Q 1(6 

Comparison C( Q) : : C(Y) 

All 

(Indicators not listed are not affected) 

Algebraic (Signed Fixed- POint) Comparison 

Relation Sign 
-

C(Q) > C(Y) C(Q)O = 0, C(Y)O = 1 

C(Q) > C(Y) 

} C(Q)O = C(Y)O C(Q) = C(Y) 

C(Q) < C(Y) 

C(Q) < C(Y) C(Q)O = 1, C(Y)O = 0 

Logic (Unsigned Fixed-Point) Comparison 

Relation 
-

C{Q) < C{Y) 

C(Q) = C(y) 

C(Q) > C(y) 

CPB-I004F 

96 



Mnemonic: 

CMPAQ 

SUMMARY: 

MODIFICATION: 

INDICATORS: 

Q) 

.::= » ...... 
0 cd M 
M bJ) M 
Q) Q) cd 
N Z U 

0 0 0 

0 0 1 

1 0 1 

0 1 0 

0 1 1 

>. 
0 M 
M M 
Q) cd 
N U 

0 0 

1 1 

0 1 

Name of the Instruction: 

Compare with AQ 

Comparison C(AQ) :: C(Y -pair) 

All except DU, DL, CI, SC 

(Indicators not listed are not affected) 

Algebraic (Signed Fixed-Point) Comparison 

Relation Sign 

COMPARISON 
COMPARE 

Op Code (Octal) 

I 117 

C(AQ) > C(Y-pair) C(AQ)O = 0, C(Y-pair)O = 1 

C(AQ) >C(Y-pair) 

} C(AQ)O = C(Y-pair)O C(AQ) ;: C(Y -pair) 

C(AQ) < C(Y -pair) 

C(AQ) < C(Y-pair) C(AQ)O = 1, C(Y-pair)O = 0 

Logic (Unsigned Fixed-Point) Comparison 

Relation 

C(AQ) < C(Y -pair) 

C(AQ) = C(Y-pair) 

C(AQ) > C(Y-pair) 

CPB-1004F 

97 



COMPARISON 
COMPARE 

Mnemonic: Name of the Instruction: Op Code (Octal) 

CMPXn =r Compare with Xn (n = 0, 1, .•• ,7) I 10n 

SUMMARY: Comparison C(Xn) :: C(Y)O. 0 • 17 

MODIFICATION: All except CI, SC, DL 

INDICATORS: (Indicators not listed are not affected) 
,----"_. 

(]) 

"~ :>, Algebraic (Signed Fixed-Point) Comparison ~ 
0 ell f-i 
f-i till f-i 
(]) (]) ell 
N Z u Relation Sign 

0 0 0 C(Xn) > C(Y)O ... 17 C(Xn)O = 0, C(Y)O = 1 
---" 

0 0 1. C(Xn) > C(Y)O ..• 17 

} C(Xn)O = 1 0 1 C(Xn) = C(Y)O ••• 17 C(Y)O 

0 1 0 C(Xn) < C(Y)O ..• 17 
"-_. 

0 1 1. C(Xn) < C(Y)O ••• 17 C(Xn)O = 1, C(Y)O = 0 

--,...-" ---,-
;>, Logic (Unsigned Fixed-Point) Comparison 

0 f-i 
f-i f-i 

Relation (]) ~ 
N U 

0 0 C(Xn) < C(Y)O ••• 17 

1 1 C(Xn) = C(Y)O ••• 17 

0 1 C(Xn) > C(y)O ..• 17 

CPB-1004F 

98 



Mnemonic: Name of the Instruction: 

CWL Compare with Limits 

COMPARISON 
COMPARE 

Op Code (Octal) 

111 

SUMMARY: Algebraic comparison of C(Y) with the closed interval 
[ C(A); C(Q)] and also with the number C(Q) 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(Y) is contained in the closed interval 
[C(A) ; C(Q)]' Le., 
either C(A) ~ C(Y) ~ C(Q) 
or C(A) ~ C(Y) ~ C( Q), 

then ON; otherwise OFF 
L--_______ ~ ______ . _____ , ____________________ ~ 

-
Q) 

.f:: » Relation betw -l-> een Signs of 
ro H C(Q) and C(Y) bJ) H 
Q) ro 

C( Q) and C(Y) 
Z U 

'''-----" --.. _ .... .- .-
0 0 C(Q) > C(Y) C(Q)O = 0, C(Y)O = 1 

r-------.,- ---,._--_._ .. 
0 1 C(Q) ~ C(Y) _. 
1 0 C(Q) < C(Y) 

--- } C(Q)O = C(YlO 

--r-' 

1 1 C(Q) < C(Y) C(Q)O = 1, C(Y)O = 0 

CPB-I004F 

99 



COMPARISON ] 
COMPARE 

Mnemonie: 

CMG 

SUMMARY: 

MODIFICATION: 

INDICATORS' 

<J.) 

.::: 
0 

...., 
CI:l .... b.O 

<J.) Q) 

N Z 

0 0 

1 0 

0 1 

Mnemonic: 

Name of the Instruction: 

[ Compare Magnitude 

Comparison 

All 

(Indicators not listed are not affected) 
-----

Relation 

IC(A) I > I C(y)1 

IC(A) I = I C(y)1 

IC(A) I < I C(Y)I 

Name of the Instruction: 

SZN ~ Set Zero and Negative Indicators from Memory 

SUMMARY: Test the number C(Y) 

MODIFICATION: All 

INDICATORS: (Indicators not listed are not affected) 

<J.) 

.::: 
0 

...., 
CI:l .... b.O 

<J.) <J.) 

N Z Relation 

0 0 Number C{y) > 0 

1 0 Number C{y) = 0 

0 1 Number C{y) < 0 

100 

Op Code (Octal) 

I 405 

Op Code (Octal) 

I 234 ] 

-

CPB-I004F 



Mnemonic: Name of the Instruction: 

CMK Compare Masked 

SUMMARY: Z. ::: C(Q). AND [C(A). /: c(Y).J 
1 1 1 1 

COMPARISON 
COMPARE 

Op Code (Octal) 

211 

for all i = 0, 1, •.. ,35 

MODIFICATIONS: All 

INDICATORS: 

Negative 

NOTE: 

(Indicators not listed are not affected) 

If Z ::: 0, then ON; otherwise OFF 

If Z() = 1, then ON; otherwise OFF 

This instruction compares those corresponding bit positions of A and Y 
for identity that are not masked by a 1 in the corresponding bit position 
of Q 

The Zero Indicator is set ON, if the comparison is successful for bit 
positions; i. e. if for all i ::: 0, 1,"" ,35 there is 

either C(A). == C(Y). or C( Q). = 1 
111 

( identical) ( masked) 

Otherwise it is set OFF 

The Negative Indicator is set ON, if the comparison is unsuccessful 
for bit position 0, L e. if 

C(A)O I: C(Y)O as well as C(Q)O::: 0 

( nonidentical) ( nonmasked ) 

Otherwise it is set OFF. 

CODING EXAMPLE: 

In the following example, the comparison is equal after execution of CMK, and the TZE 
exit is taken. Only the l' s in NUMBER AND DATA are compared. 

H 16 
LDQ MASK 
LDA NUMBER 
CMK DATA 
TZE OUT 
Continue 

MASK OCT 777777777707 
NUMBER OCT 300333333316 
DATA OCT 666666666615 

CPB-1004 F 

101 

I 



COMPARISON J 
COMPARATIVE AND 

Mnemonic: Name of the Instruction: Op Code (Octal) 

CANA Comparative AND with A 315 

SUMMARY: Z. = C(A). AND C(Y). 
111 

for alii =0,1, ••• ,35 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If Z = 0, then ON; otherwise OFF 

Negative If Zo = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

CANQ Comparative AND with Q 316 

SUMMARY: Z. = C(Q). AND C(Y). 
111 

for all i = 0, 1, ••• ,35 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If Z = 0, then ON; otherwise OFF 

Negative If Zo = 1, then ON; otherwise OFF 

Mnemonic: Name of the Instruction: Op Code (Octal) 

CANAQ Comparative AND with AQ 317 

SUMMARY: Z. = C(AQ). AND C(Y-pair). for all i = 0,1,.0.,71 
1 1 1 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If Z = 0, then ON; otherwise OFF 

Negative If Zo = 1, then ON; otherwise OFF 

CPB-I004F 

102 



Mnemonic: Name of the Instruction: 

CANXn Comparative AND with Xn (n = 0,1,0 o. ,7) 

COMPARISON 
COMPARATIVE AND 

Op Code (Octal) 

30n 

SUMMARY: z. = C(Xn). AND C(Y). 
1 1 1 

foralli =0,1'000,17 

MODIFICATIONS: All except CI, SC, DL 

INDICATORS: (Indicators not listed are not affected) 

Zero If Z = 0, then ON; otherwise OFF 

Negative If Zo = 1, then ON; otherwise OFF 

COMPARISON 
COMPARATIVE NOT 

Mnemonic: Name of the Instruction: Op Code (Octal) 

CNAA I Comparative NOT with A 215 

SUMMARY: Z. ::: C(A). AND C(Y). 
1 1 1 

for all i =0,1,000,35 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) ------------.-------
Zero If Z ::: 0, then ON; otherwise OFF 

Negative If Zo = 1, then ON; otherwise OFF 

Mnemonic: N arne of the Instruction: Op Code (Octal) 

CNAQ Comparative NOT with Q 216 

SUMMARY: Z. ::: C(Q). AND C(Y). 
1 1 1 

foralli :::0,1'000,35 

MODIFICATIONS: All 

INDICATORS: (Indicators not listed are not affected) 

Zero If Z ::: 0, then ON; otherwise OFF 
------.--------------------------~ 

Negative If Zo = 1, then ON; otherwise OFF 

CPB-I004F 

103 



COMPARISON l 
COMPARATIVE NOTJ 

Mllcmonic: Name of the Instruction: Op Code (Octal) 

CNAAQ Comparative NOT with AQ 217 

SUMMARY: Z. = C(AQ). AND C(Y-pair). for all i = 0, 1,0.0,71 
1 1 1 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If Z = 0, then ON; otherwise OFF j 
t-----~----, 

Ncgative If Zo = 1, then ON; otherwise OFF _ 

Mnemonic: Name of the Instruction: Op Code (Octal) 

CNAXn Comparative NOT with Xn 20n 

SUMMARY: Z. = C(Xn). AND C(Y). 
1 1 1 

foralli =0,1,0.0,17 

MODIFICATIONS: All except CI, SC, DL 

INDICATORS: (Indicators not listed are not affected) 
--------------------------------~ 

Zero If Z = 0, then ON; otherwise OFF 

Negative If Zo = 1, then ON; otherwise OFF 

CPB-I004F 

104 



Mnemonic: Name of the Instruction: 

FLD Floating Load 

SUMMARY: C(Y), 00. 0 . 0 ~ C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C{AQ) :;:: 0, then ON; otherwise OFF 

Negative If C(AQ)O :;:: 1, then ON; otherwise OFF 

NOTE: C(y) ~ C(E) 

C(Y)~: : : ~5 ~ C(AQ)O. 0 .27 
00 ••• 0 => C(AQ)2S ••• 71 

Mnemonic: Name of the Instruction: 

DFLD Double-Precision Floating IJoad 

SUMMARY: C(Y-pair), 00 .•. 0 :::) C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) :;:: 0, then ON; otherwise OFF 

Negative If C(AQ)o - 1, then ON; otherwise OFF 

NOTE: C(Y-pair)0 7 => C(E) 
C(Y-pair)S···71 => C(AQ) 
00 ••• 0 . • • C(AQ)O •.. 63 = 64.0.71. 

Mnemonic: Name of the Instruction: 

LDE Load Exponent Register 

SUMMARY: C(Y)O. 0 • 7 => C(E) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero Set OFF 

Negative Set OFF 

105 

FLOATING POINT 
LOAD 

Op Code (Octal) 

431 

Op Code (Octal) 

433 

Op Code (Octal) 

411 

, CPB-1004F 



FLOATING POINT] 
STORE 

Mnemonic: Name of the Instruction: 

FST Floating Store 

SUMMARY: C(EAQ) ~ C(Y) 

MODITICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

NOTE: This instruction is executed as follows: 

C(E) ~ C(y) 
C(A) C( )0 .•• 7 

0.0.27 ~ Y 8 ••• 35 

Mnemonic: Name of the Instruction: 

DFST Double- Precision Floating Store 

SUMMARY: C(EAQ) == C(Y -pair) 

MODITICATIONS: All except DU, DL, CI, se 

INDICATORS: None affected 

NOTE: This instruction is executed as follows: 

C(E) ~ C(Y -pair)O 7 
C(AQ)O ••• 63 == C(Y-pair)8::: 71 

Mnemonic: Name of the Instruction: 

STE Store Exponent Register 

SUMMARY: C(E) = C(y)Oo 0.7 ; 00 ••• 0 ~ C(Y)8 ••• 17 

MODITICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

106 

Op Code (Octal) 

455 

Op Code (Octal) 

457 

Op Code (Octal) 

456 

CPB-1004F 



Mnemonic: Name of the Instruction: 

FSTR I Floating Store Rounded 

FLOATING POINT 
STORE 

Op Code (Octal) 

470 

SUMMARY: C(EAQ) rounded:::) C(Y) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

EXP. Overflow If exponent above +127, then ON 

NOTE: During single-precision floating point stores, this instruction rounds 
the number (positive or negative) as it is stored. 

The instruction is executed by adding a binary one to bit position 28 of AQ, 
truncating, then storing the contents of AQ. Steps in the execution are as 
follows: 

-28 
C(AQ)O ••• 71 + 2 ~ C(AQ)O ••. 27 

O ••• 0 ~ C(AQ)28 ••• 71 

C(E) ~ C(Y)O ••• 7 

C(A)O ••• 27 ~ C(Y)8 ••• 35 

Restore C(EAQ) to original values 

All registers remain unchanged. 

An exponent overflow occurs only if C(E) = +127 and C(AQ)O 28 = 0.111. •• 111 
before rounding. • • • 

I 

I 

If the original operand is a negative number [ C(AQ)O ••• 28 = 1.0111 ••• 111 and I 
C(AQ)29 ••• 71 = 0] , the number is rounded towards zero, not towards a more 

negative value, and the result becomes unnormalized. 

Normalization occurs only if the mantissa overflows when it is rounded. 

106.1 

CPB-I004F 
Rev. June 1968 



Mnemonic: Name of the Instruction 

FAD Floating Add 

SUMMARY: [C(EAQ) + C(Y) ] normalized ~ C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS' (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)o = 1, then ON; otherwise OFF 

Exp. Overflow If Exponent above +127, then ON 

Exp. Underflow If Exponent below -128, then ON 

FLOATING POINT 
ADDITION 

Op Code (Octal) 

475 

Carry If a carry out of AQo is ge~erated, then ON; otherwise OFF 

Mnemonic: Name of the Instruction Op Code (Octal) 

UFA Unnormalized Floating Add 435 

SUMMARY: [C(EAQ) + C(YU not normalized ~ C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS' (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON 2 otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of AQO is generated, then ON; otherwise OFF 

CPB-1004F 

107 



FLOATING POINT 
ADDITION 

Mnemonic: 

DFAD 

SUMMARY: 

Name of the Instruction 
---,--

Double- Precision Floating Add 

[C(EAQ) + C(Y-pair)] normalized ~ C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS' (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Op Code (Octal) 

477 ] 

Carry If a carry out of AQO is generated, then ON; otherwise OFF 

Mnemonic: Name of the Instruction Op Code (Octal) 

r---D-U-F-A------r---D-o-u-b-le---P-r-e-c-i-s-io-n-U'~normalized Floating Add I 437 ] 

SUMMARY: [C(EAQ) + C(Y -pair)] not normalized ~ C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of A~ is generated, then ON; otherwise OFF 

CPB·1004F 

108 



Mlwmonie: Name of the Instruction 

ADE Add to Exponent Register 

SUMMAHY: C(E) + C(Y)O. o. 7 ~ C(E) 

MODIFICATIONS: All except CI, SC 

INDICATORS' (Indicators not l1sted are not affected) 

Zero 

Negative 

Exp, Overflow 

Exp. Underflow 

FLOATING POINT 
SUBTRACTION 

Mnemonic: 

FSB 

Set OFF 

Set OFF 

If exponent above +127, then ON 

If exponent below -128, then ON 

Name of the Instruction 

Floating Subtract 

SUMMARY: [ C(EAQ) - C(y)] normalized ~ C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

FLOATING POINT 
ADDITION 

Op Code (Odal) 

415 

Op Code (Octal) 

575 

Carry If a carry out of AQO is generated, then ON; otherwise OFF 

CPB .. 1004F 

109 



FLOATING POINT 
SUBTRACTION 

Mnemonic: 

UFS 

Name of the Instruction 

Unnormalized Floating Subtract 

SUMMARY: [C(EAQ) - C(y)] not normalized ~ C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) -
Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Op Code (Octal) 

535 

Carry If a carry out of AQO is generated, then ON; otherwise OFF 

Mnemonic: Name of the Instruction Op Code (Octal) 

DFSB Double-Precision Floating Subtract 577 

SUMMARY: [C(EAQ) - C(Y-pair)] normalized :) C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Carry If a carry out of AQo is generated, then ON; otherwise OFF 

CPB-1004F 

110 



FLOATING POINT 
SUBTRACTION 

Mnemonic: Name of the Instruction Op Code (Octal) 

DUFS I Double-Precision Unnormalized Floating Subtract I 537 ] 

SUMMARY: [C(EAQ) - C(Y -pair)] not normalized c,\ C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS' (Indicators not listed are not affected) 

Zero If C(AQ) = O. then ON' otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below ··128, then ON 

Carry If a carry out of AQO is generated, then ON; otherwise OFF 

Mnemonic: Name of the Instruction 

FMP Floating Multiply 

SUMMARY: [C(EAQ) x C(Y)] normalized :) C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS' (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwi se OFF 

Negative If C(AQ)o = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below .. 128, then ON 

NOTES: This multiplication is executed as follows: 

1. C(E) + C(Y)O. o. 7 ~ C(E) 

FLOATING POINT 
MULTIPLICATION 

Op Code (Octal) 

461 

2. C(AQ) x C(Y)8 ••• 35 results in a 98-bit product plus sign, the leading 
71 bits plus sign of which ~ C(AQ) 

30 C(EAQ) normalized ~ C(EAQ) 0 

CPB ... 1004F 

111 



FLOATING POINT ] 
MULTIPLICATION 

Mnemonic: Name of the Instruction 

UFM ~ Unnormalized Floating Multiply 

SUMMARY: [C(EAQ) x C(Y)] not normalized ~ C(EAQ) 

MODIFICATIONS: All except CI, SC 

INDICATORS· (Indicators not listed are not affected) 

Zero If C(AQ) = 0 then ON· otherwise OFF 

Negative If C(AQ)O = 1, then ON, otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Op Code (Octal) 

421 

NOTE: This multiplication is executed like the instruction FMP with the exception 
that the final normalization is performed only in the case of both factor 
mantissas being = - 1.00· •• o. 

Mnemonic: Name of the Instruction Op Code (Octal) 

DFMP ==r= Double-Precision FIOating_. _M_U_I_ti_P_Iy _____ L..-___ 4_6_3 _____ l 
SUMMARY: [C(EAQ) x C(Y-pair)] normalized == C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, th,en ON 

NOTE: This multiplication is executed as follows: 

1. C(E) + C(Y -pair)O ••• 7 == C(E) 

2. C(AQ) x C(Y-pair)8 71 results in a 134-bit product plus Sign, the 
leading 71 bits plus Si'gn of which == C(AQ) 

3. C(EAQ) normalized == C(EAQ). 

CPB-1004F 

112 



Mnemonic: 

DUFM 

SUMMARY: 

FLOATING POINT 
MULTIPLICATION 

Name of the Instruction Op Code (Octal) 

Double-Precision Unnormalized Floating Multiply 423 

[C(EAQ) x X(Y -pair) ] not normalized ~ C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O =1, then ON; otherwise OFF 

Exp. 

Exp. 

NOTE: 

Overflow If exponent above +127, then ON 

Underflow If exponent below -128, then ON 

This multiplication is executed like the instruction DFMP, with the 
exception that the final normalization is performed only in the case of 
both factor mantissas being = - L 00.0.0 • 

CPB-I004F 

113 



FLOATING POINT ] 
DIVISION 

Mnemonic: Name of the Instruction Or Code (Octal) 

FDV I Floating Divide 565 

SUMMARY: C(EAQ) -;- C(Y) ~ C(EA) 00.0. 0 ~ C(Q) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

If division takes place: If no division takes place: 

Zero If C(A) = 0, then ON; otherwise If divisor mantissa = 0, then ON; 
OFF otherwise OFF 

If C(A)O = 1, then ON; otherwise If dividend < 0, tnen ON; other-
OFF wise OFF 

Negative 

1-. 

Exp. Overfl ow If exponent above +127, then ON 
.. 

Exp. Underf low If exponent below -128, then ON 
~-,---------------

NOTES: 1. This division is executed as follows: 

The dividend mantissa C(AQ) is shifted right and the dividend 
exponent C(E) increased accordingly until 

I C(AQ)O ... 27 I < I C(Y)8 ••• 351 ; 

C(E) - C(Y)O •.• 7 ~ C(E) 

C(AQ) + C(y) 8. 0 • 35 ~ C(A) 

00 •.. 0 :) C(Q) • 

2. If mantissa of divisor = 0, then the division itself does not take 
place. Instead, a Divide-Check Fault Trap occurs. The divisor 
C(y) remains unChanged, C(AQ) contains the dividend magnitude 
in absolute, and the Negative indicator reflects the dividend sign. 

CPB-1004F 

114 



Mnemonic: Name of the Instruction 

FDI Floating Divide Inverted 

FLOATING POINT 
DIVISION 

Op Code (Octal) 

525 

SUMMARY: C(Y) -;- C(EAQ) ~ C(EA) ; 00 ••• 0 ~ C(Q) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

If division takes place: If no division takes place: 
Zero IfC(A) = 0, then ON; otherwise If divisor mantissa = 0, then ON; 

OFF otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise If dividend < 0, then ON; other-

Exp. 

Exp. 

NOTES: 

OFF wise OFF 

Overflow If exponent above +127, then ON 

Underflow If exponent below -128, then ON 
-

10 This division is executed as follows: 

The dividend mantissa C(Y) 8 35 is shifted right and the dividend 
exponent C(y)O. 0 07 increasecfaccordingly until I C(Y)8 ••• 351 

< I C(AQ)Oo 0 0271 ; 

C(Y)O ••• 7 - C(E) ~ C(E) 

C(Y)80 0 .35 + C(AQ) ~ C(A) 

000.00 ~ C(Q) • 

2. If mantissa of divisor:: 0, the division itself does not take place. 
Instead, a Divide-Cheek Fault Trap occurs; and all the registers 
remain unchanged. 

CPB-1004F 

115 



FLOATING POINT 
DIVISION 

Mnemonic: 

DFDV 

Name of the Instruction Op Code (Octal) 

I Double-Precision Floating Divide 567 ] 

SUMMARY: C(EAQ),. C(Y-pair) ~ C(EAQ) 

MODIFICA TIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

If division takes place: If no division takes place: 

Zero If C(AQ) = 0, then ON; otherwise If divisor mantissa = 0, then ON; 
OFF otherwise OFF 

Negative If C(AQ) 0 = 1, then ON; otherwisE If dividend < 0, then ON; other-

Exp. 

Exp. 

NOTES: 

OFF wise OFF 

Overflow If exponent above +127, then ON 

Underflow If exponent below -128, then ON 

1. This division is executed as follows: 

The dividend mantissa C(AQ) is shifted right and the dividend exponent 
C(E) increased accordingly until I C(AQ)O ••• 631 < IC(Y -pair)8 ••• 711 

C(E) - C(Y-pair)O ... 7 "'" C(E) ; 

C(AQ) .;- C(Y-pair)8. 0.71 "'" C(AQ)O ..• 63 

00 ••. 0 ~ C(AQ)64 .•• 71 . 

2. If mantissa of divisor = 0, then the division itself does not take place. 
Instead, a Divide-Check Fault Trap occurs. The divisor C(y) remains 
unchanged, C(AQ) contains the dividend magnitude in absolute, and the 
Negative indicator reflects the dividend sign. 

CPB .. I004F 

116 



Mnemonic: Name of the Instruction 

DFDI Double-Precision Floating Divide Inverted 

FLOATING POINT 
DIVISION 

Op Code (Octal) 

527 

SUMMARY: C(Y-pair) 7 C(EAQ) := C(EAQ) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS' (Indicators not listed are not affected) 
If division takes place: If no division takes place: 

Zero Ii C(AQ) = 0, then ON; otherwise If divisor mantissa = 0, then ON; 
OFF otherwise OFF 

Negative If C(AQ) 0 ~ 1, then ON; otherwisE: If dividend < 0, then ON; otherwisE 

Exp. 

Exp. 

NOTES: 

OFF OFF 

Overflow If exponent above +127, then ON 

Underflow Ii exponent below -128, then ON 

10 This division is executed as follows: 

The dividend mantissa C(Y-pair)8o •• 71 is shifted right and the dividend 

exponent C(Y-pair)O 7 increased accordingly until I C(Y -pair)8 711 
< I C(AQ) I· . 0 ••• 

0 ... 63 

C(Y -pair)O •• 07 - C(E) => C(E) ; 

C(Y-pair)8 ••. 71 7 C(AQ) => C(AQ)O ••. 63 

00. 0 • 0 ~ C(AQ)64o 0 • 71 0 

2. Ii mantissa of divisor =: 0, then the division itself does not take place. 
Instead, a Divide-Check Fault Trap occurs; and all the registers 
remain unchanged. 

CPB-I004F 

117 



FLOATING POINT 
NEGATE 

Mnemonic: Name of the Instruction Op Code (Octal) 

FNEG =====r ___ F_lo_a_t_in_g __ N_e_g_at_e ________________________ ~ ______ 5_1_3 ______ ~ 
SUMMARY: - C(AQ) normalized ~ C(AQ) 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS' (Indicators not listed are not affected) 

Zero 
--I-' 

If C(AQ) = 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overf low If exponent above +127, then ON 

Exp. Under flow If exponent below -128, then ON 

NOTES: 10 This instruction changes the number in EAQ to its normalized 
negative (if C(AQ) f. 0). The operation is executed by first 
forming the two's complement of C(AQ), and then normalizing 
C(EAQ)o 

20 Even if originally C(EAQ) were normalized, an exponent over­
flow can still occur, namely when originally C(AQ) = -1000 •• 00 
and C(E) = +1270 

Mnemonic: Name of the Instruction 

FNO =r Floating Normalize 

SUMMARY: C(EAQ) normalized .. C(EAQ) 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS' (Indicators not listed are not affected) 

Zero If C(AQ) :;: 0, then ON; otherwise OFF 

Negative If C(AQ)O = 1, then ON; otherwise OFF 

Exp. Overflow If exponent above +127, then ON 

Exp. Underflow If exponent below -128, then ON 

Overflow Set OFF 

See NOTE on following page. 

118 

FLOATING POINT 
NORMALIZE 

Op Code (Octal) 

573 

CPB-I004F 



NOTE: 

FLOATING POINT 
COMPARE 

The instruction normalizes the number in EAQ. 

FLOATING POINT 
NORMALIZE 

If the Overflow Indicator is ON, then the number in EAQ is 
normalized one place to the right; and then the sign bit C(AQ)O 
is inverted in order to reconstitute the actual sign. Furthermore, 
the Overflow Indicator is set OFF·, 

Thi.s instruction can be used to correct overflows that occurred 
with fixed-point numberso 

Mnemonic: Name of the Instruction: Op Code (Octal) 

FCMP Floating Compare I 515 

SUMMARY: Algebraic comparison C [(E)(AQOo .• 27)J .. C(Y) 

MODIFICATION: All except CI, SC 

INDICATORS: 

<l) 

> ..... 
0 

~ 
cU 

~ bJ) 
<l) <l) 

N Z 

0 0 

1 0 

0 1 

NOTE: 

(Indicators not listed are not affected) 

Relation 

C [(E)(AQOo 0 027 )] > C(Y) 

C ~E)(AQO 027)] = C(Y) 

C [(E)(AQO .• 027 U <: C(Y) 

This comparison is executed as follows: 

1. Compare (C(E) :: C(Y)O 7' select the number with the lower 
exponent, and shift its m·antissa right as many places as the 
difference of the exponents. If the number of shifts equals or 
exceeds 72, the number with the lower exponent is defined as 
zero. 

2. Then compare the mantissas and set the indicators accordingly. 

CPB-I004F 

119 



I 

FLOATING POIN~ 
COMPARE ~ 

Mnemonic: Name of the Instruction: 

FCMG ~ Floating Compare Magnitude 

SUMMARY: Comparison I C [(E)(AQO ••. 27 B I 
MODI FICATION: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) --
Q) 

.::: 
0 

..., 
cd 

!-. bll 
Q) Q) 

N Z Relation 

0 0 I C [(E)(AQO •.. 27 ) ] I > IC(Y) I 
1 0 I C [(E)(AQOo •• 27 )J I = IC(Y) I 
0 1 I C [(E)(AQO 27)JI < IC(Y) I 

NOTE: This comparison is executed as follows: 

Op Code (Octal) 

I 425 

1. Compare C(E) :: C(Y)O ••• 7' select the number with the lower exponent, 
and shift its mantissa right as many places as the difference of the 
exponents. If the number of shifts equals or exceeds 72, the number 
with the lower exponent is defined as zero. 

2. Then compare the absolute value of the mantissas and set the indicators 
accordingly. 

CPB-I004F 

120 



FLOATING POINT 
COMPARE 

Mnemonic: Name of the Instruction: Op Code (Octal) 

DFCMP Double-Precision Floating Compare 517 

SUMMARY: Algebraic comparison C [(E) (AQO. 0 .63)J __ C(Y-pair) 

MODI FICATION: All except DU, DL, CI, se 

INDICATORS- (Indicators not listed are not affected) 

0 
f..t 
Q) 

N 

0 

1 

0 

NOTE: 

Q) 

.::: 
~ 

gh 
Q) 

Z Relation 

0 C [(E)(AQO ••. 63)J > C(Y-pair) 

0 C [(E)(AQO ... 63)] = C(Y-pair) 

1 C [(E)(AQO. o. 63)J < C(Y-pair) 

This comparison is executed as follows: 

1. Compare C(E) :: C(Y)O •.. 7, select the number with the lower exponent, 
and shift its mantissa right as many places as the difference of the 
exponents. If the number of shifts equals or exceeds 72, the number 
with the lower exponent is defined as zero. 

2. Then compare the mantissas and set the indicators accordingly. 

CPB-I004 F 

121 

I 



I 

FLOATING POINT 
COMPARE 

Mnemonic: 

DFCMG 

Name of the Instruction: Op Code (Octal) 

Double- Precision Floating Compare Magnitude 427 

SUMMARY: Comparison I C [(E)(AQO ••• 63)] I :: I C(Y -pair) 1 

MODIFICATION: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

0 
H 
(l) 

N 

0 

1 

0 

NOTE: 

(l) 

.~ 
-..... ro 
bD 
(l) 

Z Relation 

0 I C UE)(AQOi U U 63)JI > I C(Y-pair) I 
0 I C UE)(AQO •.. 63)JI = I C(Y-pair) I 
1 I C [(E)(AQOo •• 63)JI < I C(Y-pair) I 

This comparison is executed as follows: 

1. Compare C(E) :: C(Y)O .•• 7, select the number with the lower exponent, 
and shift its mantissa right as many places as the difference of the 
exponents. If the number of shifts equals or exceeds 72, the number 
with the lower exponent is defined as zero. 

2. Then compare the absolute value of the mantissas and set the 
indicator s accordingly. 

CPB-I004F 

122 



FLOATING POINT 
COMPARE 

Mnemonic: Name of the Instruction: Op Code (Octal) 

FSZN Floating Set Zero and Negative Indicators from Memory 430 

SUMMARY: Test the Number C(y) 

MODI FICATION: All exc ept CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Q) 
:>-..... ..... 

0 ro 
~ b.O 
Q) Q) 

N Z Relation 

0 0 Mantissa C(Y)8 ..• 35 :> 0 

1 0 Mantissa C(Y)8 ... 35 = 0 

0 1 Mantissa C(Y)8 •.• 35 < 0 

CPB-I004F 

123 



TRANSFER OF CONTROL I 
TRANSFER 

Mnemonic: Name of the Instruction: Op Code (Octal) 

TRA Transfer Unconditionally 710 

SUMMARY: Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, se 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: Op Code (Octal) 

TSXn Transfer and Set Xn (n = 0,1, ••• ,7) 70n 

SUMMARY: C(IC) + 0 ••• 01 ~ C(Xn); Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: Op Code (Octal) 

___ T_S_S ____ ,~ Transfer and Set Slave 715 

SUMMARY: Y = C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Master Mode Set OFF 

CPB-1004F 

124 



Mnemonic: Name of the Instruction: 

RET Return 

SUMMARY: 

TRANSFER OF CONTROL 
TRANSFER 

Op Code (Octal) 

630 

MODITICATIONS: All except CI, SC, DU, DL 

INDICATORS: 

Master Mode 

All other 
indicators 

NOTES: 

(Indicators not listed are not affected) 
------~----------------------.---, 

If C(Y)28 is 1, then no change; otherwise OFF 

If Corresponding bit in C(y) is 1, then ON; otherwise OFF 

1. The relation between bit position of C(Y) and the indicators is as 
follows: 

Bit Position 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 --29-- ---
30 
31 
32 
33 
34 
35 

Indicator 
Zero 
Negative 
Carry 
Overflow 
Exponent Overflow 
Exponent Underflow 
Overflow Mask 
Tally Runout 
Parity Error 
Parity Mask 

___ ..Afaste!..M..9d~ __ 

2. A possible change of the status of the Master Mode Indicator 
takes place as the last part of the instruction executiono 

3. The Tally Runout Indicator will reflect C(Y)25 regardless of 
what address modification is performed on the RET instruction 
(for tally operations). 

CPB-I004F 

125 



TRANSFER OF CONTROL I 
CONDITIONAL TRANSFER 

Mnemonic: Name of the Instruction: 

TZE Transfer on Zero 

SUMMARY: If Zero Indicator ON, then Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: 

TNZ Transfer on Not Zero 

SUMMARY: If Zero Indicator OFF, then Y = C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: 

TMI I Transfer on Minus 

SUMMARY: If Negative Indicator ON, then Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: 

TPL Transfer on Plus 

SUMMARY: If Negative Indicator OFF, then Y = C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

126 

Op Code (Octal) 

600 

Op Code (Octal) 

601 

Op Code (Octal) 

604 

Op Code (Octal) 

605 

CPB-1004F 



/ 

Mnemonic: Name of the Instruction: 

TRC Transfer on Carry 

SUMMARY: If Carry Indicator ON, then Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: 

TNC Transfer on No Carry 

SUMMARY: If Carry Indicator OFF, then Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, se 

INDICATORS: None affected 

Mnemonic: Name of the Instruction: 

TOV Transfer on Overflow 

SUMMARY: If Overflow Indicator ON, then Y = C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

[ Overflow I Set OFF 

127 

TRANSFER OF CONTROL 
CONDITIONAL TRANSFER 

Op Code (Octal) 

603 

Op Code (Octal) 

602 

Op Code (Octal) 

617 

CPB-1004F 



TRANSFER OF CONTROL I 
CONDITIONAL TRANSFER 

Mnemonic: Name of the Instruction: 
-,.--

TEO Transfer on Exponent Overflow 

SUMMARY: If Exponent Overflow Indicator ON, then Y ::) C(IC) 

MODLFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

I Exp. Overflow I Set OFF 

Mnemonic: Name of the Instruction: 

TEU Transfer on Exponent Underflow 

SUMMARY: If Exponent Underflow Indicator ON, then Y ~ C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Op Code (Octal) 

614 

Op Code (Octal) 

615 

I E.~~~~_s_e_t_O_F_F _______________________ ~ 

Mnemonic: 

TTF 

SUMMARY: 

Name of the Instruction: 

~ Transfer on Tally Runout Indicator OFF 

If Tally Runout Indicator OFF, then Y := C(IC) 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: None affected 

128 

Op Code (Octal) 

607 ,. 

CPB ... 1004F 



Mnemonic: Name of the Instruction: 

[ NOP No Operation 

SUMMARY: No operation takes place 

MISCELLANEOUS 
OPERATIONS 

Op Code (Octal) 

011 

MODIFICATIONS: Generally the only modification that should be used is DU or DL 
(see NOTES) 

INDICATORS: None affected 

NOTES: 

Mnemonic: 

BCD 

SUMMARY: 

1. The use of a modification ID, DI, IDC, DIC, SC causes the respective 
changes in the address and the tally. 

Name of the Instruction: Op Code (Octal) 

Binary to Binary·.Coded-Decimal 505 

Shift C(A) left 3 positions 

I C(A)L C(Y) ~ 4-bit quotient; C(A)-C(Y) x quotient ~ remainder 

Shift C(Q) left 6 positions; 4-bit quotient ~ C(Q)32 35 and remainder 
~ C(A)o 00. 

MODIFICATIONS: All except CI, Be 

INDICATORS: (Indicators not listed are not affected) 
,------~------------------------~ 

Zero If C(A) = 0, then ON; otherwise OFF 
,---------------------------------~ 

Negative If before execution C(A)O = 1, then ON; otherwise OFF 

Restrictions: 

1. The largest number which can be converted with the BCD instruction 
is that which is represented by 33 bits. 

2. One 6-bit character is produced each time the BCD instruction is 
executed. 

30 The character produced represents a decimal digit from 0 to 9. 

40 One full 36-bit word cannot be directly converted by the BCD 
instructions. 

129 

CPB ... 1004F 
Rev. July 1969 

I 



MISCELLANEOUS 
OPERATIONS 

NOTE: 

Mnemonic: 

[ GTB 

SUMMARY: 

This instruction carries out one step of an algorithm for the conversion 
of a binary number to the equivalent binary-coded decimal, which requires 
the repeated short division of the binary number or last remainder by a 
36-bit constant from store. 

i n -i ( . ci = 8 x 10 for 1=1, 2, ..• ), 

with n being defined by 

10 n-l ~I numberl ~ 10n_1. 

Name of the Instruction: Op Code (Octal) 

~ Gray to Binary 774 

C(A) converted from Gray Code to binary representation = C(A) 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(A) = 0, then ON; otherwise OFF 

Negative If C(A)O = 1, then ON; otherwise OFF 

NOTE: This conversion is defined by the following algorithm, when R. and S. 
1 1 

denote the contents of bit positions i of the A-register before and 
after the conversion: 

So = RO 

SI· = (R1· AND8.J.) OR (tr. AND S. 1) 
f . 1:- 2 35 1 l-or 1 = 1, , ••• , • 

CPB-I004F 

13C) 



Mnemonic: Name of the Instruction: 

XEC Execute 

MISCELLANEOUS 
OPERATIONS 

Op Code (Octal) 

716 

SUMMARY: Obtain and execute the instruction stored at the memory location Y 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

NOTES: 

Mnemonic: 

XED 

SUMMARY: 

----------------------------------~ 

The XEC instruction itself does not affect any indicator. However, 
the execution of the instruction from Y may affect indicators. 

10 After the execution of the instruction obtained from location Y, the 
next instruction to be executed is obtained from C(IC) + 1. This is 
the one stored in memory right after this XEC instruction, unless 
the contents of the Instruction Counter have been changed by the 
execution of the instruction obtained from memory location Yo 

2. To Execute (XEC) a Repeat Double (RPD) instruction, the XEC 
instruction must be in an odd location. Note that the instructions 
that are repeated are those which immediately follow the XEC 
instruction. 

Name of the Instruction: Op Code (Octal) 

Execute Double 717 

Obtain and execute the two instructions stored at the memory Y -pair 
locations 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

NOTES: 

The XED instruction itself does not affect any indicator. However, 
the execution of the two instructions from Y -pair may affect 
indicators. 

L The first instruction obtained from Y-pair MUST NOT alter 
the memory location from which the second instruction is 
obtained, and MUST NOT be another XED instruction. 

20 If the first instruction obtained from Y-pair alters the contents 
of the Instruction Counter, then this transfer of control is 
effective immediately; and the second instruction of the pair is 
not executed. 

3. After the execution of the two instructions obtained from Y-pair, 
the next instruction to be executed is obtained from C(IC) +1. 
This is the instruction stored in memory right after this XED 
instruction unless the contents of the Instruction Counter have 
been changed by the execution of the two instructions obtained 
from the memory locations Y-pair. 

4. To Execute Double (XED) a pair which has Repeat Double (RPD) 
as the odd instruction of the pair, XED must be located at the 
odd address. Note that the instructions that are repeated are those 
which immediately follow the XEC instruction. 

5. If RPD is specified anywhere within a sequence of XED's, the 
original and all subsequent XED's in the sequence must be in 
odd locations. 

CPB-I004F 

131 

I 

I 



MISCELLANEOUS 
OPERATIONS 

Mnemonic: 

MME 

SUMMARY: 

Name of the Instruction: Op Code (Octal) 

Master Mode Entry 001 

Causes a fault which obtains and executes, in the Master Mode, the two 
instructions stored at the memory locations 4 + C and 5 + C (decimal) 

MODIFICATIONS: Are without any effect on the operation. 

INDICATORS: (Indicators not listed are not affected) 

Master 
Mode 

NOTES: 

The MME instruction itself does not affect any indicator. However, 
the execution of the two instructions from 4 + C and 5 + C may 
affect indicators; particularly, each one in turn will affect the 
Master Mode Indicator as follows: 

If the instruction obtained actually results in a transfer of control 
and is not the TSS instruction, then ON 

If the instruction obtained is either the RET instruction with bit 
28 of the RET operand = ZERO or the TSS instruction, then OFF 

10 The value of the constant C is set up in the FAULT switches. 

2. During the execution of this MM:E instruction and the two instructions 
obtained, the Processor is in the Master Mode, independent of the 
value of its Master Indicator. The Processor will stay in the Master 
Mode if the Master Indicator is set ON after the execution of these 
three instructions. 

3. The instruction from 4 + C MUST NOT alter the memory location 
5 + C, and MUST NOT be an XED instruction. 

4. If the instruction from 4 + C alters the contents of the Instruction 
Counter, then this transfer of control is effective immediately; 
and the instruction from 5 + C is not executed. 

5. After the execution of the two instructions obtained from Y-pair, the 
next instruction to be executed is obtained from C(IC) + 1. This is 
the instruction stored in memory right after this MME instruction 
unless the contents of the Instruction Counter have been changed by 
the execution of the two instructions obtained from 4 + C and 5 + C. 

CPB-I004F 

132 



Mnemonic: 

DRL 

SUMMARY: 

Name of the Instruction: 

Derail 

MISCELLANEOUS 
OPERATIONS 

Op Code (Octal) 

002 

Causes a fault which obtains and executes in the Master Mode the two 
instructions stored at the memory locations 12 + C and 13 + C (decimal) 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS: (Indicators not listed are not affected) 

Master 
Mode 

NOTES: 

The DRL instruction itself does not affect any indicator 0 However 
the execution of the two instructions from 12 + C and 13 + C may 
affect indicators; particularly, each one in turn will affect the 
Master Mode Indicator as follows: 

If the instruction obtained actually results in a transfer of control 
and is not the TSS instruction, then ON 

If the instruction obtained is either the RET instruction with bit 
28 of the RET operand = ZERO or the TSS instruction, then OFF 

1. The value of the constant C is set up in the FAULT switches. 

2. During the execution of this DRL instruction and the two instructions 
obtained, the Processor is in the Master Mode, independent of the 
value of its Master Indicator. The Processor will stay in the Master 
Mode, if the Master Indicator is ON after the execution of these 
three instructions. 

3. The instruction from 12 + C MUST NOT alter the memory location 
13 + C, and MUST NOT be an XED instructiono 

4. If the instruction from 12 + C alters the contents of the Instruction 
Counter, then this transfer of control is effective immediately; and 
the instruction from 13 + C is not executedo 

5. After the execution of the two instructions obtained from Y - pair, the 
next instruction to be executed is obtained from C(IC) + 1. This is 
the instruction stored in the memory right after this DRL in­
struction unless the contents of the Instruction Counter have been 
changed by the execution of the two instructions obtained from 12 + 
C and 13 + C. 

CPB ... I004F 

133 



MISCELLANEOUS] 
OPERATIONS 

Mnemonic: 

RPT 

Name of the Instruction: Op Code (Octal) 

Repeat (See page 207 for coding format) 520 

SUMMARY: Execute the next instruction until an exit condition is met. 

MODIFICATIONS: No modifiers are allowedo 

INDICATORS: The RPT instruction itself does not affect any of the indicators; 
however, the execution of the repeated instruction may affect 
indicatorso 

NOTES: 1. The RPT instruction has the following format: 

o 7 8 9 10 11 17 18 26 27 28 29 30 35 

~.~l-__ i~~~!_C~i~_T_e_r~_m __ ._c_o_n_d_·~i _____ O __ p_c __ o_de ______ ~i~O~! __ I~i __ O~! ____ D __ el_t_a~ 
2. If C = 1, then bits 0-17 of the RPT instruction ~ XO. 

3. In the normal case, the Terminate Condition(s) and Tally 
from XO control the repetition loop for the instruction 
following the RPT instruction. Initial Tally = 0 is interpreted 
as 256. A fault also causes an exit from the loop. 

4. The repetition loop which does.!!2!. contain a fault consists of 
the following steps: 

(a) Execute the repeated instruction 

(b) C(XO)O ••• 7 -1 ~ C(XO) O ... 7 

(c) If a Termination Condition is met (see 7b), then set 
Tally Runout Indicator OFF and exit. 

(d) If C(XO)O •.• 7 = 0 and no Terminate Condition is met, then set 
Tally Runout Indicator ON and exit. 

(e) Go to (a) if (c) or (d) conditions are not met. 

5. The instructions which cannot be repeated are: 

(a) All transfer-of-control instructions 

(b) All miscellaneous instructions except BCD and GTB, 
which ~ permitted. 

(c) The instructions STCA, STCQ, STBA, STBQ, SREG, 
LREG, DIS, CIOC, 

6. Address modification for the repeated instruction: 

For the repeated instruction, only the modifiers Rand RI 
and only the designators specifying Xl, • 0 ., X7 are permitted. 

CPB-1004F 

134 



MISCELLANEOUS 
OPERATIONS 

The effective address Y (in the case of R) or the address yI of the 
indirect word to be referenced (in the case of RI) is: 

(a) For the first execution of the repeated instruction 

y + C(R) = Y 1 or yI1; Y 1 or yI1 ~ C(R) 

(b) For any successive execution 

Delta + C(R) = Y or yI ; Y or yI ,= C(R), where n > 1 n n n n 

In the case of Rl, only one indirect reference is made per repeated 
execution. The Tag portion of the indirect word is not interpreted 
as usual but is ignored. Instead the modifier R and the designator 
R = N are applied. 

7. The Exit Conditions: 

An exit is made from the repeat loop if one of the Terminate 
Conditions exists or if Tally = 0 after the execution of the repeated 
instruction. Also, an exit is made any time a fault occurs. 

The program-controlled exit conditions are: 

(a) Tally = 0 

(b) Terminate Conditions: 

The bit configuration in bit positions 11 - 17 of the RPT 
instruction defines the Terminate Conditions. If more than 
one condition is specified, the repeat terminates if anyone 
of them its met. 

The Carry, Negative, and Zero Indicators each use 2 bits, 
one for the OFF condition and one for ON. A zero in both 
positions for one indicator causes this indicator to be 
ignored as a Termination Condition. A one in both positions 
causes an exit after the first execution of the repeated 
instruction. 

Bit 17 = 0: any overflow is completely ignored, i. e., the 
respective Overflow Indicator is not set ON, and an Over-
flow Trap does not occur. -

Bit 17 = 1: any overflow is treated as usual. If the Overflow 
Mask is ON, then exit from the repetition loop. 

Bit 16 = 1: if Carry Indicator is OFF, then exit. 

Bit 15 = 1: if Carry Indicator is ON, then exit. 

Bit 14 = 1: if Negative Indicator is OFF, then exit. 

Bit 13 = 1: if Negative Indicator is ON, then exit. 

Bit 12 = 1: if Zero Indicator is OFF, then exit. 

Bit 11 = 1: if Zero Indicator is ON, then exit. 

CPB ... I004F 

135 



MISC ELLANEOUS 
OPERATIONS 

(c) Overflow Fault Trap; 

If bit 17 :: 1 and an overflow occurs with the Overflow Mask 
OFF, an Overflow Fault Trap occurs and an exit is made 
from the repetition loop upon completion of the fault 
instruction. 

A nonprogram-controlled exit from the repetition loop occurs if any 
Fault Trap other than Overflow occurs (i. e., Divide Check, Parity 
Error on indirect word or operand fetch, etc.). 

8. At the time of exit from the repetition loops: 

XOO ..• 7 contains the Tally Residue, i. e., the number of repeats 
remaining until a Tally Runout would have occurred. The Terminate 
Conditions in bits 11 - 17 remain unchanged. 

If the exit was due to Tally:: 0 or a Terminate Condition, the X 
specified by the designator of the repeated instruction will cont!hn 
the contents of the designated Xn after the last execution plus delta. 

If the exit was due to a Fault Trap, the Xn specified by the do3signator 
of the repeated instruction may contain either: 

(a) The contents of the designated Xn at the time the Fault Trap 
occurred, or 

(b) The contents of the designated Xn at the time the Fault Trap 
occurred plus delta. 

CPB-I004F 

136 



Mnemonic: 

RPD 

SUMMARY: 

Name of the Instruction: 

Repeat Double (See page 207 for coding format) 

MISCELLANEOUS 
OPERATIONS 

Op Code (Octal) 

560 

The instructions from the next Y -pair are fetched and saved in the 
processor and are executed repeatedly until an exit condition is met. 

MODIFICATIONS: No modifiers are allowed. 

INDICATORS: 

NOTES: 

o 

Tally 

The RPD instruction itself does not affect any of the indicators. 
However, the execution of the repeated instructions may affect 
indicators. 

1. The RPD instruction must be stored in an odd memory 
location except when accessed via the XEC instruction. In 
this case, the RPD instruction can be either even or odd, 
but the XEC instruction must be in an odd location. 

2. The RPD instruction has the following format: 

7 8 9 10 11 17 18 
I 

:A: B: C: Term. Condo ,: 
I I : : 

I 

Op Code 

26 27 28 29 30 
I 

:0 1 
I 
I 

0: 
I 
I 

3. If C = 1, then bits 0-17 of the RPD instruction ~ XO. 

Delta 

35 

4. In the normal case, the Terminate Condition(s) and Tally from 
XO control the repetition loop for the instructions following 
the RPD instruction. Initial Tally = 0 will be interpreted as 
256. A fault also causes an exit from the loop. 

5. The repetition loop which does not contain a fault consists 
of the following steps: -

(a) Execute the pair of repeated instructions 

(b) C(XO)O ••• 7 -1 ~ C(XO)Oo .• 7 

(c) If a Termination Condition is met (see 8b), then set the 
Tally Runout Indicator OFF and exit. 

(d) If C(XO)O ••• 7 = 0 and no Terminate Condition is met, 
then set Tally Runout Indicator ON and exit. 

(e) Go to (a) if conditions (c) or (d) are not met. 

6. The instructions which ~ be repeated are: 

(a) 

(b) 

(c) 

All transfer-of-control instructions 

All miscellaneous instructions except BCD and GTB, 
which ~ permitted. -- --

The instructions STCA, STCQ, STBA, STBQ, SREG, 
LREG, DIS, CIOC 

CPB-I004F 

137 



MISCELLANEOUS] 
OPERATIONS 

7. Address modification for the pair of repeated instructions: 

For each of the two repeated instructions, only the modifiers R 
and RI and only the designators specifying Xl, •. 0, X7 are per­
mitted. 

The effective address Y (in the case of R) or the address yI of 
the indirect word to be referenced (in the case of RI) is: 

(a) For the first execution of each of the two repeated 
instructions --

y + C(R) = Y 1 or yl1; Y1 or yU • C(R) 

(b) For any successive execution of 

the first of the two repeated instructions 
if A = 1, then Delta + C(R) = Y or yI ; 

Y or yI Q C(R) n n 
if A =~, thennC(R) = Y or yI , where n > 1 n n 

the second of the two repeated instructions 
if B = 1, then Delta + C(R) = Y or yI ; 

Y n or yIn == C(R) n n 
if B = 0, then C(R) = Y or yI , where n > 1 n n 

where A and B are the contents of bit positions 8 and 9 of 
Index Register Zero (XRO). 

In the case of RI, only one indirect reference is made per 
repeated execution. The Tag portion of the indirect word 
is not interpreted as usual but is ignored. Instead, the 
modifier R and the designator R = N are applied. 

8. The Exit Conditions: 

An exit is made from the repeat loop if one of the Terminate 
Conditions exists or if Tally = 0 after the execution of the odd 
instruction of the repeated pair. Also, an exit is made any time 
a fault occurs. 

The program-controlled exit conditions are: 

(a) Tally = 0 

(b) Terminate Conditions 

The bit configuration in bit positions 11-17 of the RPD 
instruction defines the Terminate Conditions. If more than 
one condition is specified, the repeat terminates if anyone of 
them is met. 

The Carry, Negative, and Zero Indicators each use two bits, 
one for the OFF condition and one for ON. A zero in both 
positions for one indicator causes this indicator to be ignored 
as a Terminate Condition. A one in both positions causes 
an exit after the first execution of the repeated instruction 
pair. 

CPB-1004F 

138 



MISCELLANEOUS 
OPERATIONS 

Bit 17 = 0: any overflow is completely ignored, i. e., the 
respective Overflow indicator is not set ON, and an Overflow 
Trap does no~ occur. -

Bit 17 = 1: any overflow is treated as usual. If the Overflow 
Mask is ON, then exit from the repetition loop. 

Bit 16 = 1: if Carry Indicator is OFF, then exit. 

Bit 15 = 1: if Carry Indicator is ON, then exit. 

Bit 14 = 1: if Negative Indicator is OFF, then exit. 

Bit 13 = 1: if Negative Indicator is ON, then exit. 

Bit 12 = 1: if Zero Indicator is OFF, then exit. 

Bit 11 = 1: if Zero Indicator is ON, then exit. 

(c) Overflow Fault Trap 

If bit 17 = 1 and an overflow occurs with the Overflow Mask 
OFF, an Overflow Fault Trap occurs and an exit is made 
from the repetition loop upon completion of the fault instruction. 

A nonprogram-controlled exit from the repetition loop occurs if any 
Fault Trap other than an Overflow occurs. Note that if any Fault 
Trap (i. e., Overflow, Divide Check, Parity Error on indirect word 
or operand fetch, etc.) occurs on the even instruction, the odd 
instruction will not be executed. 

9. At the time of exit from the repetition loop: 

XOO ... 7 contains the Tally Residue, i. e., the number of repeats 
remaining until a Tally Runout would have occurred. The Terminate 
Conditions in bits 11-17 remain unchanged. 

If the exit was due to Tally = 0 or a Terminate Condition, the X 
speCified by the designator of each of the two repeated instructfons 
will contain either: 

(a) The contents of the designated Xn after the last execution of 
the repeated pair plus the delta associated with each instruction 
A and B (bits 8 and 9 of XO) = 1, or 

(b) The contents of the designated Xn after the last execution of the 
repeated pair of Z and B = O. 

If the exit was due to a Fault Trap, the Xn specified by the designator 
of each of the two repeated instructions may contain either: 

(a) The contents of the designated Xn's at the time the Fault Trap 
occurred plus the delta associated with each instruction A and 
B = 1, or 

(b) The contents of the designated Xn's at the time the Fault Trap 
occurred. 

CPB-1004F 

139 



(b) The contents of the designated Xn' s at the time the Fault 
Trap occurred. 

10. A repeat double of instructions that have long execution times 
may cause a LUF, if the time involved is greater than 16 
milliseconds. 

CPB-I004F 

140 



Mnemonic: 

[ RPL 

SUMMARY: 

MISCELLANEOUS 
OPERATIONS 

Name of the Instruction: Op Code (Octal) 

Repeat Link (See page 207 for coding format) 500 

Execute the next instruction until an exit condition is met. 

MODIFICATIONS: No modifiers are allowed. 

INDICATORS: The RPL instruction itself does not affect any of the indicators. 
However, the execution of the repeated instructions may affect 
the indicators. 

1. The RPL instruction has the following format: NOTES: 

o 7 8 9 10 11 17 18 26 27 28 29 30 35 

Tally 
• , , I 

: "':'" : C : 
I • I I 

I I , 

I 

Term. Condo ; 
I 

Op Code 
I I I I 

10 I 1 I 0 : 
I I I I 

20 If C = 1, then bits 0-17 of the RPL instruction ~ XO. 

3. In the normal case, the Terminate Condition(s) and Tally 
from XO control the repetition loop for the instruction 
following the RPL instruction. Initial Tally = 0 will be 
interpreted as 256. A fault also causes an exit from the 
loop. 

4. The repetition loop that does not contain a fault consists of 
the following steps: -

(a) Execute the repeated instruction 

(b) C(XO)O ••• 7 -1 ~ (CXO) O ... 7 

(c) If a Termination Condition is met (see 7c), then set 
Tally Runout Indicator OFF and exit. 

(d) If the 'tally C(XO)O •• 7 = 0 or the Link Address 
C(Y)O ••• 17 = 0 ana no Termination Condition is 
met, then set Tally Runout Indicator ON and exit. 

(e) Go to (a) if conditions (c) or (d) are not met. 

5. The instructions which cannot be repeated are: 

(a) Instructions that could alter the Link Address of a 
linked word. 

Example -

1. LDX n type instruction with the same Xn 
specified as is specified in a modifying register 

2. STORES or HEAD-ALTER-REWRITE 's 

(b) The instructions EAA, EAQ, EAXn, NEG, NEGL, FNO,. 
FNEG, LREG, DIS, CIOC. 

CPB-I004F 

141 



MISCELLANEOUS 
OPERATIONS 

(c) All miscellaneous operations instructions. 

(d) All transfer-of-control instructions. 

(e) All shift instructions. 

Note: All instructions that would normally alter the 
contents of an index register (except (LXLn)) 
result in the specified register either being 
cleared to zero or remaining unchanged when 
in the RPL mode. This is because bits 0-17 
of the operand are zero. 

6. Address modification for the repeated instruction: 

For the repeated instruction, only the modifier R and the 
deSignators specifying H = Xl, ••• , X7 are permitted. The 
modifier is effective only for the first execution of the re­
peated instruction. 

The effective address Y is: 

(a) For the first execution of the repeated instruction 

Y1 = Y1 + C(R); Y1 = C(R) 

(b) For any successive execution of the repeated instruction 

Y2 = C(Y1) 0 .•• 17; Y2 ~ C(R) 

. 
Yn = C(Yn -1) 0 •• to 17; Yn .. C(R) if Yn (0 ... 17) 1= 0 

The effective address Y is the address of the next list word. 
The lower portion of the list word contains the operand to be 
used for this execution of the repeated instruction. The oper­
and is: 

~ {C(Y)18 ..• 35 for single precision 

bits 0-17 C(Y)18 •.• 71 for double precision 

The upper 18 bits of the list word contain the Link Address, 
i. e., the address of the next successive list word, and thus the 
effective address for the next successive execution of the 
repeated instruction. 

7. The Exit Conditions: 

An exit is made from the repeat loop if one of the Terminate 
Conditions exists or if Tally = 0 or Link Address = 0 after the 
execution of the instruction being repeated. Also an exit is 
made any time a fault occurs. 

CPB .. 1004F 

142 



The program-controlled exit conditions are: 

(a) Tally = 0 

(b) Link Address =: 0 

(c) Terminate Conditions 

MISCELLANEOUS 
OPERATIONS 

The bit configuration in bit positions 11-17 of the RPL 
instruction defines the Terminate Conditions. If more 
than one condition is specified, the repeat terminates 
if anyone of them is met. 

The Carry, Negative, and Zero Indicators each use two bits, 
one for the OFF condition and one for ON. A zero in both 
positions for one indicator causes this indicator to be 
ignored as a Termination Condition. A one in both positions 
causes an exit after the first execution of the repeated 
instruction 0 

Bit 17 = 0: any overflow is completely ignored, i. e., the 
respective Overflow Indicator is not set ON and the Over-
flow Trap does not occur. -

Bit 17 = 1: any overflow is treated as usual. If the Over­
flow Mask is ON, then exit from the repetition loop. 

Bit 16 = 1: if Carry Indicator is OFF, then exit. 

Bit 15 = 1: if Carry Indicator is ON, then exit. 

Bit 14 = 1: if Negative Indicator is OFF, then exit. 

Bit 13 = 1: if Negative Indicator is ON, then exit. 

Bit 12 = 1: if Zero Indicator is OFF, then exit. 

Bit 11 = 1: if Zero Indicator is ON, then exit. 

(d) Overflow Fault Trap 

If bit 17 = 1 and an overflow occurs with the Overflow 
Mask OFF, an Overflow Fault Trap occurs and an exit 
is made from the repetition loop upon completion of 
the fault instructions. 

A nonprogram-controlled exit from the repetition loop 
occurs if any Fault Trap other than Overflow occurs (i. e. , 
Divide Check, Parity Error on indirect word or operand fetch, 
etc.) • 

8. At the time of exit from the repetition loop: 

XOO ••• 7 contains the Tally Residue, i. e., the numbers of 
repeats remaining until a Tally Runout would have occurred. 
The Terminate Conditions in bits 11-17 remain unchanged. 

CPB-I004F 

143 



I MISCELLANEOUS 
OPERATIONS 

The X specified by the designator of the repeated instruction 
contaiRs the address of the list word that contains 

in its lower half: the operand used in the last execution of 
the repeated instruction 

in its upper half: the address of the next list word 

9. An exit will not occur if the effective address = 0 for the first 
execution of the linked instruction. This address specifies 
the location of the first word in the Link Table and is not 
interpreted as a Link Address. 

CPB-I004F 

144 



MASTER MODE OPERATIONS 

Mnemonic: Name of the Instruction: Op Code (Octal) 

DIS Delay Until Interrupt Signal 616 

SUMMARY: No operation takes place, and the Processor does not continue with the 
next instruction but waits for a program interrupt signal 

MODIFICATIONS: Are without any effect on the operation 

INDICATORS: None affected 

NOTE: This instruction can be used in the Master Mode only. If this instruction 
is attempted by a Processor that is in the Slave Mode, a Command Fault 
Trap occurs 0 

Mnemonic: Name of the Instruction: Op Code (Octal) 

LBAR Load Base Address Register 230 ] 

SUMMARY: C(Y)o •• 0 17 ~ C(BR) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(BR) = 0, then ON; otherwise OFF 

Negative If C(BR)O = 1, then ON; otherwise OFF 

NOTE: This instruction can be used in the Master Mode only 0 If its use is 
attempted in the Slave Mode, the instruction functions like the NOP 
instruction. 

Mnemonic: Name of the Instruction: Op Code (Octal) 

LDT Load Timer Register 637 ] 

SUMMARY: C(Y)Oo 0 • 23 ~ C(TR) 

MODIFICATIONS: All except CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero If C(TR) = 0, then ON; otherwise OFF 

Negative If C(TR)O = 1, then ON; otherwise OFF 

NOTE: This instruction can be used in the Master Mode only 0 If its use is 
attempted in the Slave Mode, the instruction functions like the NOP 
instructiono 

CPB ... 1004F 

145 



[:ASTF.1l MOllE OPEHATIONS I 

1\11H'I1HHlic: 

SMIC 

SllMMAHY: 

Na me of lhl' Inslruction: I Sel Memory ConlroUer Interrupt Cells 

O}> Code (Oda 1) 

451 

C(A) is llsed lo sel selected Inlerrupt Cells ON in the System Controller of 
lhe Memory unit selected by YO- 2 

MODIFICATIONS: All except nu, DL, SC, and CI 

INDICATOHS: None affecled 

NOTES: 

Mnemonic: 

RMCM 

SUMMARY: 

1. The effedive address Y is used in selecting a Memory module as with 
a normal memory access rcquesta However, the selected module does 
nol slore til(' data received ill a memory location, but uses it to set 
selected lilt errupl Cells ON" 

For i = 0, 1, ..... , ,15 AND C(A)35 = 0: 

if C(A). = 1, then set Interrupt Cell i ON 
1 

For i = 0, 1,,,",, ,15 AND C(A)35 = 1: 

if C(A). = 1, then set Interrupt Cell (16+i) ON. 
1 

2. This instruction can be used in the Master Mode only. H the use of 
this instruction is attempted by a Processor that is in the Slave Mode, 
a Command Fault Trap will occur. 

Name of the Instruction: Op Code (Octal) 

Read Memory Controller Mask Register 233 

C (Memory Controller Interrupt Mask Register) } 
C (Memory Controller Access Mask Register) > C(AQ) 
of Memory Unit speCified by Y 0-2 

MODIFICATIONS: All except DU, DL, CI, SC 

INDICATORS: (Indicators not listed are not affected) 

Zero H C(AQ) = 0, then ON; otherwise OFF 

Negative H C(AQ)O = 1, then ON; otherwise OFF 

NOTES: 1. The effective address Y is used in selecting a Memory module as with 
a normal memory access request. However, the selected module 
does not transmit the contents of an addressed memory location, but 
the contents of its Memory Controller Interrupt Mask Register and 
Memory Controller Access Mask Register 0 

CPB-I004F 

146 



Mnemonic: 

SMCM 

SUMMARY: 

MASTER MODE OPERATIONS 

Interrupt Mask 
Register \ 

Access Mfsk 

L 
:0 
I 
I 
I 

io 

¢:J,~ 
Register 

I Zeros I Zeros ~ 
15: I 1 31 : : 4 I 

JJ 1 II 1111 11 1 II : ill I I 1 1 1 : I I 

15116 3T2 35j36 51i52 67 168 711 

! ! I 

Combined AQ-register 

20 This instruction can be used in the Master Mode only 0 If the use 
of this instruction is attempted by a Processor that is i.n the Slave 
Mode, a Command Fault Trap will occur 0 

Name of the Instruction: Op Code (Octal) 

Set Memory Controller Mask Register 553 

C(AQ) ~ 
{ 

C (Memory Controller Interrupt Mask Register) 
C (Memory Controller Access Mask Register) 
of Memory Unit specified by YO- 2 

MODIFICATIONS: All except DU, DL, CI, se 

INDICATORS: None affected 

NOTE: 10 The effective address Y is used in selecting a Memory module as 
with a normal memory access requesto However, the selected· 
module does not store the data received in a memory location but 
in its Memory Controller Interrupt Mask Register and Memory 
Controller Access Mask Register 0 

Combined AQ-register 

~-----------~15~:---------------~:3~2~3~5~!3~6----------~5~J---------~l6~8~7J 
: n! I 1L : ~: i !l-i 
t _15_1 _____ IIO_~3\: 31

1 "ej 
Interrupt Mask.' _ Access Mask 
Register _______ Register 

2. This instruction can be used in the Master Mode only 0 If the use 
of this instruction is attempted by a Processor that is in the Slave 
Mode, a Command Fault Trap will occur 0 

CPB-I004F 

147 



MASTER MODE OPERATIONS I 

Mnemonic: 

CIOC 

SUMMARY: 

Name of the Instruction: Op Code (Octal) 

Connect 110 Channel 015 

C(Y) are transferred from the Memory module via the channel that is 
speCified by C(y) 

MODIFICATIONS: All except DU, DL, SC, and CI 

INDICATORS: None affected 

NOTES: 10 The effective address Y is used to access a memory location as' 
usuaL However, the Memory module does not transmit the contents 
of this location to the Processor that submitted the effective 
address; it uses C(Y)33. 0.35 to select one of its eight channels, 
sends a connect pulse to the unit on this channel, and transmits 
C(y) on the data lines to this unit 

2. This instruction can be used in the Master Mode only 0 If the use 
of this instruction is attempted by a Processor that is in the Slave 
Mode, a Command Fault Trap will occur. 

CPB-l004F 

148 



III. SYMBOLIC MACRO ASSEMBLER--GMAP 

GENERAL DESCRIPTION 

The GE-625/635 macro assembly program is a program which will translate symbolic 
machine language convenient for programmer use into absolute or relocatable binary machine 
instructions. The symbolic language is sufficiently like machine language to permit the pro­
grammer to utilize all the facilities of the computer which would be available to him if he 
were to code directly in machine language. 

An Assembler resembles a compiler in that it produces machine language programs. It 
differs from a compiler in that the symbolic language used with an Assembler is closely 
related to the language used by the computer, while the source language used with a compiler 
resembles the technical language in which problems are stated by human beings. 

Compilers have several advantages over Assemblers. The language used with the compiler is 
easier to learn and is oriented toward the problem to be solved. The user of a compiler 
usually does not need an intimate knowledge of the inner workings of the computer. Pro­
gramming is faster. Finally, the time required to obtain a finished, working program is 
greatly reduced since there is less chance for the programmer to make mistakes. The 
Assembler compensates for its disadvantages by offering those programmers, who need a. 
great degree of flexibility in writing their programs, that flexibility which is not currently 
found in compilers. 

The GE-625/635 Macro Assembler is being provided to give the professional programmers 
some of the conveniences of a compiler and the flexibility of an Assembler. The ability to 
design desired MACROs in order to provide convenient shorthand notations plus the use of 
all GE-625/635 machine instructions as well as a complete set of pseudo-operations provides 
the programmer with a very powerful and flexible tool. The output options enable him to 
obtain binary text in relocatable as well as absolute formats. 

This Assembler is implemented in the classic format of Macro Assemblers with several 
variations. There are two passes over the external text: the first pass allows for updating 
and/or merging of an ALTER package to a previously prepared assembly input. The ALTER 
package consists of changes to be made to the previous assembly under control of ALTER 
cards. During pass one, all symbols are collected and assigned their absolute or relocatable 
values relative to the current location counter. MACRO prototypes are processed and 
placed in the MACRO skeleton table immediately ready for expansion. All MACRO calls, 
therefore, are expanded inpass one, allowing the MACRO skeleton table to be destroyed prior 
to pass two. 

Machine operation codes, pseudo-operations, and MACRO names are all carried in the 
operation table during pass one. 

CPB-I004F 

149 



This implies that all operation codes, machine or pseudo, along with MACROs are looked 
up during pass one, and that the general operation table is destroyed at the end of pass one. 
The literal pool is completely expanded during pass one, avoiding duplicates (except for 
V, M, and nH literals where n is greater than 12), which are assigned unique locations in 
pass one and will be later expanded in pass two. Double-precision numbers in the literal 
pool start at even locations. 

At the end of pass one, the symbol table is sorted; and a complete readjustment of symbols 
by their relative location counter is performed. The preface card is then punched. 

All instructions are generated during pass two. This is accomplished by performing a 
scan over the variable fields and address modifications. This information is then combined 
with the operation code from pass one by using a Boolean OR function. Apparent errors 
are flagged. 

The symbolic cross- reference table is created as the variable fields are scanned and 
expanded. The final edit of the symbol table is done at the end of pass two. Generative 
pseudo-operations are processed with the conversion being done in pass two. Pseudo­
operations are available to control punching of binary cards and printing images of source 
cards. Images of source cards in error will be printed, regardless of control pseudo­
operations. Undefined symbols, and error conditions will be noted at the end of the printer 
listing. 

The classic format of a variable field symbolic assembly program is used throughout the 
GE-625/635 Macro Assembler. Typically, a symbolic instruction consists of four major 
di visions; location field, operation field, variable field, and comments field. 

The location field normally contains a name by which other instructions may refer to the 
instruction named. The operation field ,contains the name of the machine operation, pseudo­
operation or Macro. The variable field normally contains the location of the operand. 
The comments field exists solely for the convenience of the programmer and plays no part 
in the assembly process. An identification field is provided to give a means of identifying 
the location of a card within a deck. 

RELOCATABLE AND ABSOLUTE ASSEMBLIES 

The Macro Assembler program processes inputs of several types: (1) FORTRAN IV 
compilations that have been translated into the Assembler language, (2) COBOL-61 compila­
tions translated into the Assembler language, (3) source programs written originally in the 
Assembler language, (4) compressed source decks (COMDK) for any of items (1) through 
(3), and (5) correction (ALTER) cards for any of (1) through (3). 

The normal operating mode of the Assembler in processing input subprograms of the types 
indicated above is relocatable; that is, each subprogram in a job stream is handled individ­
ually and is assigned memory locations nominally beginning with zero and extending to the 
upper limit required for that subprogram. Since a job stream can contain many such 
subprograms, it is apparent that they cannot all be loaded into a memory area starting with 
location zero; they must be loaded into different memory areas. Furthermore, they must be 
movable (relocatable) among the areas. Then for relocatable subprograms, the Assembler 
must provide (1) delimiters identifying each subprogram, (2)information specifying that 
the subprogram is relocatable, (3) the length of the subprogram, and (4) relocation control 
bits for both the upper and lower 18 bits of each assembled word. 

CPB-I004F 

150 



Subprogram delimiters are the Assembler output cards $ OBJECT, heading the subprogram 
assembly, and $ DKEND, ending the assembly. An assembly is designated as relocatable 
on a card-to-card basis by a unique 3-bit Assembler punched code value in each binary 
output card. (See Binary Decks, page 228.) The subprogram length is punched in the 
preface card(s) which immediately follows the $ OBJECT card of each subprogram. The 
relocation control bits are grouped together on the binary card and are referenced by 
GELOAD while it is loading the subprogram into absolute memory locations. 

The Assembler designates that the assembly output is absolute on a card-to-card basis by 
punching a unique 3-bit code value in each card. This value causes GELOAD to regard 
all addresses on a card as actual (physical) memory address relative to the Base Address 
Register and to load accordingly. Each absolute subprogram assembly begins with a $ 
OBJECT card and terminates with the $ DKEND card, as in the case of relocatable 
assemblies. 

The normal Assembler operating mode is relocatable; it is set to the absolute mode by 
programmer use of ABS (page 183). 

ASSEMBLY LANGUAGE PROGRAMMING 

Location Field 

In machine instruction or MACROs this location may contain a symbol or may be left 
blank, if no reference is made to the instruction. (With certain pseudo-operations, this 
field has a special use and is described later in this publication.) Associated with the 
location field is a one-character field which allows the programmer to specify whether this 
generated machine word should fall in a special memory location. If this is left blank, then 
the instruction will be located in the next available location. But, if there is an 0 in this 
field, the instruction will be located at the next available odd location; if an E, then at the 
next available even location; if the number 8, then in the next location which is a multiple 
of eight. 

Operation Field 

The operation field may contain from zero to six characters taken from the set 0-9, A-Z, 
and the period (.). The group of characters must be: (1) a legaJ GE-625/635 operation,* 
(2) a Macro Assembler pseudo-operation or (3) programmer macro operation code. The 
character group must begin in column eight (left-justified) and must be followed by at least 
one blank. 

A blank field or the special code ARG will be interpreted as a zero operation, the opera­
tion field will be all zeros in the assembly coding. Anything appearing in the operation 
field which is not in (1), (2), or (3) above is an ((illegal" operation and will result in an 
error flag in the assembly listing. 

*All indexing instructions (LDX, STX, ADX, etc.) may be used without the index register 
number appended. In this case there are three subfields in the variable field. The first 
subfield is an expression which when evaluated will designate the proper index register. Thus, 

LDX 1~ 5, DU 
is equivalent to 

LDX1 51 DU 
also, the followj.ng is admissible: 

LDX B+A, 5, DU 

CPB-1004F 

151 



Variable Field 

The variable field contains one or more subfields that are separated by the programmer 
through the use of commas placed between subfields. The number and type of subfields 
vary depending upon the content of the operation field: (1) machine instruction, (2) Macro 
Assembler pseudo-operation, or (3) macro operation. 

The subfields within the variable field of GE-625/635 machine instructions consist of the 
address and the tag (modifier). The address may be any legitimate expression or a literal. 
This is the first subfield of the variable field and is separated from the tag by a comma, 
Through address modification, as directed by the tag, a program address is defined. This 
program address is either (1) an instruction address used for fetching instructions, (2) a 
tentative address used for fetching an indirect word, or (3) an effective address used for 
obtaining an operand or storing a result. 

The subfields used with pseudo-operations vary considerably; they are described individually 
in this publication under each pseudo-operation. Subfields used with macro operations are 
sUbstitutable arguments which, in themselves, may be instructions, operand addresses, 
modifer tags, pseudo-operations, or other macro operations. All of these types of subfields 
are presented in the discussion on macro operations. 

The first character of the variable field must begin by column 16. The end of the variable 
field is designated by the first blank character encountered in the variable field (except for 
the BCI instruction and in the use of Hollerith literals). If any subfield is null (no entry 
given when one is needed), it is interpreted to be zero. 

Comments Field 

The comments field exists solely for the convenience of the programmer; it plays no part 
in the assembly process. Programmer comments follow the variable field and are separated 
from that field by at least one blank column. 

Identification Field 

This field is used or not used according to programmer option. Its intended use is for 
instruction identification and sequencing. 

CPB-1004F 

152 



Symbolic Card Format 

Symbolic instructions are punched one per card, each card representing one line of the 
coding sheet (Figure 6). The following is a breakdown of the card columns normally used. 

Columns 1 - 6 Location field 
Column 7 Even/ odd/eight subfield 
Columns 8 - 13 Operation field (left justified) 
Column 14 - 15 Blank 
Columns 16 - Blank* Variable field 
Column Blank - 72 Comments field (separated from variable field by at least 

one blank) 
Columns 73 - 80 Identification field 

When columns 1~ 16 are all blank, the symbolic card is treated as a remarks card. The 
first blank column encountered within an expression terminates the processing of the 
variable field. 

SYMBOLIC CODING FORMS G ENE R A L • E LEe T R I ~ ____________________ _ 
-------- ----------------------------, 

PRO B L EM ______________________ -,--______________________________________ _ 

IDATE ______________ ~G.L OF _ P-P-,,-R,,-,O G,...,l Ru:>AJ!ljMM"'-,IE"--,,' R~_~,.--_______________ -,--__ 

LOCATION E OPERATION VARJ ABLE COMMENTS 

o 
12 6118 J II L--------------IJ2--------------------------------------

IDENTiFI­
CATION 

72 73_.Dl! 

f-- 1-----------1 ---------------~---- ----------- ------ - -------------- -- ------ -----

f--- \---------1 

f-- f--------- -------- - ----- -------------- ----------------------------- ----

f-----

Figure 6. GE-625/635 Macro Assembler Coding Form 

Symbols 

A symbol is a string of from one to six nonblank characters, at least one of which is non­
numeric, and the first of which is non-zero. The characters must be taken from the set 
made up of 0-9, A- Z and the period (.). Symbols can appear in the location and variable fields 
of the Assembler coding form. (Symbols are also known as location symbols and symbolic 
addresses. ) 

Symbols are defined by: 

1. Their appearance in the location field of an instruction, pseudo-operation, or 
MACRO. 

2. Their use as the name of a subprogram in a CALL pseudo-operation. 

3. Their appearance in the SYMREF pseudo-operation. 

CPB-I004 F 

153 

I 



Every symbol used in a program must be defined exactly once, except for those symbols 
which are initially defined and redefined by the SET pseudo-operation. An error will be 
indicated by the Assembler if any symbol is referenced but never defined, or if any symbol 
is defined more than once. 

The following are examples of permissible symbols: 

A 
Z 
BI 
ERR 

AIOOO 
FIRST 
ALOGIO 
BEGIN 

Types of Symbols 

EIXP3 
.XP3 
ADDTO 
ERROR 

Symhols are classified into four types: 

A ..... 
B.707 
1234X 
3.141P 

1. Absolute--A symbol which refers to a specific number. 

2. Common--A symbol which refers to a location in common storage. These locations 
are defined by the use of the BLOCK pseudo-operation. 

3. Relocatable--A symbol which appears in the location field of an instruction. 
Symbols that appear in the location field of symbol defining pseudo­
operations are defined as the same type as the symbol in the variable 
field. 

4. SYMREF--A symbol which appears in the variable field of a SYMREF pseudo­
operation; it is considered to be defined external to the subprogram being 
assembled and is to be considered specially by the Loader. 

Expressions In General 

In writing symbolic instructions, the use of symbols only in the allowable subfields pre­
sents the programmer with too restrictive a language. Therefore, in the notation of sub­
fields of machine instructions and in the variable fields of pseudo-operations (and by 
following specific rules), the use of expressions as well as symbols is permitted. Before 
discussing expressions, it is necessary to describe the building blocks used to construct 
them. These building blocks are elements, terms, and operators. 

Elements 

The smallest component of a complete expression is an element. An element consists of a 
single symbol or an integer less than 235 . (The asterisk may also be used as an element.) 

Terms and Operators 

A term is a string composed of elements and operators. It may consist of one element or, 
generally speaking, n elements separated by n - 1 operators of the type * and / where * 
indicates multiplication and / indicates division. If a term does not begin with an element or 
end with an element, then a null element will be assumed. It is not permiSSible to write two 
operators in succession or to write two elements in succession.--

CPB-I004F 

154 



Examples of terms are: 

M 
436 
START 

MAN*T 
BETA/3 
4*AB/ROOT 

Asterisk Used as an Element 

7*Y 
A*B*C/X*Y*Z 
ONE*TWO/THREE 

An asterisk (*) may be used as an element in addition to being used as an operator. When 
it is used as an element, it refers to the location of the instruction in which it appears. For 
example, the instruction 

AlO TRA *+2 
is equivalent to 

AlO TRA A10+2 

and represents a transfer to the second location following the transfer instruction. There 
is no ambiguity between this usage of the asterisk as an element and its use as the operator 
for multiplication since the position of the asterisk always makes clear what is meant. Thus, 
**M means Uthe location of this instruction multiplied by the element M", and the ** means 
Uthe location of this instruction times the null element" and would be equal to zero. The 
notation *-* means Uthe location of this instruction minus the location of this instruction." 
(See description of + and - operators below.) 
Algebraic Expressions 

An algebraic expression is a string composed of terms separated by the operators + 
(addition) and - (subtraction). Therefore, an expression may consist of one term or, 
more generally speaking, n terms separated by n - 1 operators of the type + and -. It 
is permissible to write two operators, plus and minus, in succession and the Assembler 
will assume a null element between the two operators. If no initial term or final term is 
stated, it will be assumed to be zero, except when the divisor is zero, in which case I 
the divisor is assumed to be 1. An expression may begin with the operator plus or minus 
but if not explicitly given + will be assumed. Examples of permissible algebraic expressions 
are: 

A Bt4 CX*DY+EX/FY -100 
SINE 7 -EXP*FUNC/LOGX+XYZ/IO-SINE 
XYZ +99 -X/Y *+5*X (Note: the first asterisk refers to the 

instruction location) 
A-3 -88 X*Y --(Note: equivalent to zero minus zero minus 

zero) 

Evaluation of Algebraic Expressions 

An algebriac expression is evaluated as follows: first, each symbolic element is replaced 
by its numerically-defined value; then, each term is computed from left-to-right in the order 
of its occurrence. In division, the integral part of the quotient is retained; the remainder 
is immediately discarded. For example, the value of the term 7/3 * 3 is 6. In the evaluation 
of an expression, division by zero is equivalent to division by one and is not regarded as an 
error. Mter the evaluation of terms, they are combined in a left-to-right order with the 
initial term of the expression assumed to be zero followed by a plus operator. If there is 
no final term, a null term will be used. At the completion of the expression evaluation, the 
Assembler reduces the result by modulo 2n where n is the number of binary bits in the field 
being defined, 18 for address field evaluations and variable according to specified field size 
for the VFD pseudo-operation, (page 199). Grouping by parentheses is not permitted, but 
this restriction may often be circumvented. 

155 



Boolean Expressions 

A Boolean expression is defined similarly to an algebraic expression except that the 
operators *, /, +, or - are interpreted as Boolean operators. The meaning of these operators 
is defined below: 

1. The expression that appears in the variable field of a BOOL pseudo-operation uses 
Boolean operators. 

2. The expression that appears in the octal subfield of the variable field of a VFD 
pseudo-operation uses Boolean operators. 

Evaluation of Boolean Expressions 

A Boolean expression is evaluated following the same procedure used for an algebraic 
expression except that the operators are interpreted as Boolean. 

In a Boolean expression, the form operators +, -, *, and / have Boolean meanings, rather 
than their normal arithmetic meanings, as follows: 

Operator 

+ 

* 

/ 

Meaning 

OR, INCLUSIVE OR, 
union 

EXCL USIVE OR 
symmetric difference 

AND, intersection 

l' s complement, 
complement, NOT 

Definition 

0+0=0 
0+1 = 1 
1+0=1 
1 + 1 = 1 

0-0=0 
o - 1 = 1 
1 - 0 = 1 
1 - 1 = 0 

0*0=0 
o * 1 = 0 
1 * 0 = 0 
1 * 1 = 1 

/0 
/1 

= 1 
=0 

Although / is a unary operation involving only one term, by convention A/B is taken to mean 
A*/B; and the A is ignored. This is not regarded as an error by the Assembler. Thus, the 
table for / as a two-term operation is: 

0/0 = 0 
0/1 = 0 

other conventions are: 

+A = A+= A 
-A = A- = A 
*A = A* = 0 
A/ = A/O = A 

1/0 = 1 
1/1 = 0 

(possible error- -operand miSSing) 

156 

CPB-1004F 



Relocatable and Absolute Expressions 

Expression evaluation can result in either relocatable or absolute values. There are three 
types of relocatable expressions; program relocatable (R), BLANK COMMON relocatable 
(C), and LABELED COMMON relocatable (L). The rules by which the Assembler determines 
the relocation validity of an expression are of necessity a little complex, and the presence 
of multiple location counters compounds the problem somewhat. Certain of the principal 
pseudo-operations impose restriction as to type of expression that is permissible; these are 
described separately under each of the affected pseudo-operations. These are: 

EQU 
SET 
MIN 

MAX 
BaaL 
BSS 

BFS 
ORG 
BEGIN 

DUP 
FEQU 

The following rules summarize the conditions and restrictions governing the admissibility 
of relocation: 

1. Division involving a relocatable element(s) is not valid. 

2. Multiplication of two relocatable elements is not valid. 

3. The asterisk(*) symbol (implying current location counter) is a relocatable element. 

4. When the result of the evaluation of an expression is an absolute element, the 
expression is absolute. 

5. When the result of the evaluation of an expression is a relocatable element, the 
expression is relocatable. 

6. When the result of the evaluation of an expression is the sum or difference of a 
relocatable element and an absolute element, the expression is relocatable. 

7. When the result of the evaluation of an expression is the differenee between two 
relocatable elements, the expression is absolute. 

As the ~ of the evaluation of an expression: 

1. The sum of two or more relocatable elements is not valid. 

2. The product of an absolute element and a relocatable element is not valid. 

3. A negative relocatable element is !!2!. valid. 

4. The difference of two different types of relocatable elements is not valid. 

These rules are not a complete set of determinants but do serve as a basis for establishing 
a method of defining relocation admissibility of an expression. 

CPB-I004F 

157 



Let Rr denote a program-text relocatable element, Rc denote a BLANK COMMON element, 
and R 1 denote a LABELED COMMON element. Next, take any expression and process it as 
follows: 

1. Replace all absolute elements with their respective values. 

2. Replace any relocatable element with the proper Ri' where i = r, c, or 1. This 
yields a resulting expression involving only numbers and the terms Rr,Rl , and Rc. 

3. Discard all terms in which all elements are absolute. 

4. Evaluate the resulting expression. If it is zero or numeric, the original expression 
is absolute; if it is explicitly Rr , Rc, or R 1, then the original exprsssion is normal 
relocatable. BLANK COMMON, relocatable, or LABELED COMMON reloctable, 
respectively. 

5. If the resulting expression is not as given in 4 above, it is a relocation error and/or 
an invalid expression. 

In the illustrative examples following, assume ALPHA and BETA to be normal relocatable 
elements (Rr ), GAMMA and DELTA to be BLANK COMMON relocatable elements (Rc), and 
EPSILON and ZETA to be LABELED COMMON relocatable elements (Rl). Let Nand K be 
absolutely equivalent to 5 and 8, respectively. 

1. 4*ALPHA-7-4*BETA 
reduces to 
4*R r - 4*R r =0, 
thus indicating a valid absolute expression. 

2. N*ALPHA+8*GAMMA+21 - K*DELTA 
reduces to 
5*Rr +8*H c -8*R c = 5Rl:" 
thus indicating an invalid expression. 

3. EPSILON+N- ZETA 
reduces to 
Rl +5-R 1 =5, 
tnus indl'cating a valid absolute expression. 

4. ALPHA-GAMMA+DELTA+7 
reduces to 
Rr-Rc+Hc=Rr' 
thus indicating a valid relocatable expression. 

Special Relocatable Expressions 

Since all symbols defined as other than equal to some number (A EQU 4), are defined 
relative to some explicit or implied location counter (USE, BLOCK), and are subject to 
adjustment at the end of pass 1, they are considered to be relocatable in pass 1, even in 
an absolute assembly. 

CPB-I004F 

158 



Thus, special action must be taken, if they are to be referenced and used in pass 1 by 
certain pseudo-operations--those which call for an expression evaluation for the deter­
mination of some count subfield, the result of which must be absolute. As an example, 
consider 

BCI 
DUP 

3,HOLLERITH TEXT 
59 2 

Normally, the count fields in the above are nonvariant and there is no problem. Consider 
however 

M BCI 
DUP 

N,HOLLERITH TEXT 
N,M-1 

The Assembler is equipped to handle expressions in these count fields, provided the result 
is absolute. But, since M in the above example is a location symbol, and its value relative 
to the origin of the USE is all that is known in pass 1, a relocation error would result. The 
solution to this problem is simply to define some symbol at the first available location of the 
counter in question. It has a value of zero relative to the origin of that counter and may be 
used as follows: 

USE 
FIRST NULL 

M BCI 
DUP 

CTR 

N, HOLLERITH TEXT 
N, M-FIRST-1 

The result of this expression is now absolute, and truly represents the pass 1 value of the 
symbol M (less 1). 

Literals 

A literal in a subfield is defined as being the data to be operated on rather than an expression 
which points to a location containing the data. 

A programmer must refer frequently to a memory location containing a program constant. 
For example, if the constant 2 is to be added to the accumUlator, the number 2 must be 
somewhere in memory. Data generating pseudo-operations in the Macro Assembler enable 
the programmer to introduce data words and constants into his program; but often the intro­
duction is more directly accomplished by the use of the literal that serves as the operand 
of a machine instruction. Thus, the literal is data itself. 

The Assembler retains source program literals by means of a table called a literal pool. 
When a literal appears, the Assembler prepares a constant which is equivalent in value to 
the data in the literal subfield. This constant is then placed in the literal pool, providing an 
identical constant has not already been so entered. If the constant is placed in the literal 
pool, it is assigned an address; and this address then replaces the data in the literal sub­
field, the constant being retained in the pool. If the constant is already in the literal pool, 
the address of the identical constant replaces the data in the literal subfield. 

CPB-1004F 

159 



The Assembler processes five types of literals: decimal, octal, alphanumeric, instruction
i and variable field. The appearance of an equal sign (=) in columns 16 of the variable field 

instructs the Assembler that the subfield immediately following is a literal. The instruction 
and variable-field literal are placed in the literal pool. Because they cannot be evaluated 
until pass two of the assembly, no attempt is made to check for duplicate entries into the pool. 
Literals on the CALL and TALLY pseudo-operation are restricted to decimal, octal, and 
alphanumeric where the character count is less than 13. 

Decimal Literals 

1. Integers 
A decimal integer is a signed or unsigned string of digits. It is differentiated 
from the other decimal types by the absence of a decimal point, the letter B, the 
letter E, and the letter D. 

2. Single-Precision Floating-Point 

A floating-point number is distinguished by the presence of an E, a decimal point, 
or both. A floating-point number consists of two parts: a principal part and an 
exponent. The presence of the exponent is optional. The principal part is a signed 
or unsigned decimal number with a decimal point in any position of the number or 
with an assumed decimal point at the right-hand end of the number. If there is no 
exponent part, the decimal point may not be assumed, but must be present. 

The exponent part follows the principal part and consists of the letter E followed 
by a signed or unsigned decimal integer. 

3. Double-Precision Floating-Point 

The format of the double-precision floating-point number is identical to the single­
preCision format with two exceptions: 

1. There must always be an exponent 
2. The letter E must be replaced by the letter D 

The Assembler will ensure that all double-precision numbers begin in even memory loca­
tions. Ambiguity of storage assignment as to even or odd will always cause the Assembler 
to force double-precision word pairs to even locations; it will then issue a warning in the 
printout listing. 

4. Fixed-Point 

A fixed-point quantity possesses the same characteristics as the floating-point-­
with one exception: it must have a third part present. This is the binary scale 
factor denoted by the letter B, followed by a signed or unsigned integer. The binary 
point is initially assumed at the left-hand endof the word between bit position 0 and 
1. It is then adjusted by the binary scale factor, designated with plus implying a shift 
to the right and with minus, a shift to the left. Double-precision fixed-point follows 
the rules of double-precision floating-point with addition of the binary scale factor. 

1 The equal sign preceding a literal may appear in any column (following the left parenthesis) 
of the variable field of a CALL pseudo-operation-:--This allows the specification in a CALL 
pseudo-operation of one or more literal arguments. 

CPB-1004F 

160 



Examples of decimal literals are: 

=-10 
=26.44167E-1 
=1. 27743675385DO 
=22.5B5 

Octal Literals 

Integer 
Single-precision floating-point 
Double-precision floating-point 
Fixed-point 

The octal literal consists of the character 0 followed by a signed or unsigned octal integer. 
The octal integer may be from one to twelve digits in length plus the sign. The Assembler 
will store it in a word, right-justified. The word will be stored in its real form and will 
not be complemented if there is the presence of a minus sign. The sign applies to bit 0 only. 

Examples of octal literals are: 

=01257 
=0-377777777742 

Alphanumeric Literals 

The alphanumeric, or Hollerith literal consists of the letters H or kH, where k is a char­
acter count followed by the data. If there is no count specified, a literal of exactly six 6-
bit characters including blanks is assumed to follow the letter H. If a count exists, the k 
characters following the character H are to be used as the literal. If the value k is not a 
multiple of six, the last partial word will be left-justified and filled in with blanks. The 
value k can range from 1 through 53. (Embedded blanks do not terminate scanning of the 
cards by the Assembler.) 

Examples of alphanumeric literals are: 

=HALPHA1 
=HGONE 
=4HGONE(bb 
=7HTHF;hEND 

Instruction Literals 

()) represents a blank} 

The instruction literal consists of the character = followed by the letter M. This is followed 
in turn by an operation code, one blank, and a variable field. (The embedded blank does not 
terminate scanning of the card in this instance.) Only the machine instructions and one 
pseudo-operation (ARG) are legal in an instruction literal. 

Examples of instruction literals are: 

=MARGbBETA 
=MLDl\b5,1 

Instructions containing instruction literals cannot make use of any of the forms of a tag 
modifier, since if a modifier is encountered it is assumed to be part of the instruction 
literal. 

CPB-1004F 

161 



Variable Field Literals 

The variable field literal begins with the letter V. Reference should be made to the descrip­
tion of the VFD pseudo-operation for the detailed description of using variable field data 
description. The subfields of a variable field literal may be one of three types: Algebraic, 
Boolean, and Alphanumeric. 

Examples of variable field literals are: 

=V10/895,5/37,H6/C,15/ ALPHA 
=V18/ ALPHA,012/235,6/0 

Instructions containing variable field literals cannot make use of any of the forms of a 
tag modifier. 

Literals Modified by DU or DL 

When a literal is used with the modifier variations DU or DL, the value of the literal is 
not stored in the literal pool but is truncated to an 18-bit value, and is stored in the address 
field of the machine instruction. Normally, a literal represents a 36-bit number. For the 
DU or DL modifier variations, if the literal is a floating-point number or Hollerith, then 
bits 0-17 of the literal will be stored in the address field. In the case of all other literals, 
bits 18-35 of the literal will be stored in the address field. 

Examples of literals modified by DU and DL are: 

CODED LITERAL 

=100,DL 
=-1.0,DU 
=320.,DU 
=O.,DU 
=077,DU 
=2B25,DU 
=3HOOA,DL 

RESULTANT ADDRESS FIELD (OCTAL) 

000144 
001000 
022500 
400000 
000077 
004000 
000021 

OPERATIONS AND OPERATION CODING 

Processor Instructions 

Processor instructions written for the Assembler consist of a symbol (or blanks) in the 
location field, a 3- to 6-character alphanumeric code representing a GE-625/635 operation 
in the operation field, and an operand address, (symbolic or numeric), plus a possible 
modifier tag in the variable field. (Legal symbols used in the location field and as operand 
addresses in the variable field are described on page 153 and following.) 

Standard machine mnemonics are entered left-justified in the operation field. These are 
any instruction mnemonic, as presented in the listings comprising Appendices A and C. 

CPB .. I004F 

162 



Several Assembler pseudo-operations are closely related to machine instructions. These are: 

1. OPSYN (operation synonym)--redefinition of a machine instruction by equating a 
new mnemonic to one already existing in the Assembler operation table. 

2. OPD (operation definition)--definitionof anew machine instruction to the Assembler. 

3. MACRO (macro instruction definition)--define a mnemonic operation code to cause 
one or more standard operations to be generated by the Assembler. 

The operand address and modifier tag of most machine instructions comprise the subfield 
entries of the variable field. The address portion may be any legitimate expression, 
described earlier. The address is the first subfield in the variable field and begins in column 
16. The modifier tag subfield is separated from the address subfield by a comma. Coding 
of the modifier tag subfield entries is described on the pages following. 

Address Modification Features 

• Summary. The GE-625/635 performs address modification in four basic ways: 
Register modification (R), Register then Indirect modification (RI), Indirect then Register 
modification (IR), and Indirect then Tally modification (IT). Each of these basic types has 
associated with it a number of variations in which selectable registers can be substituted 
for R in R, RI, and IR and in which various tallying or other substitutions can be made 
for T in IT. I always indicates indirect address modification and is represented by the 
asterisk * placed in the variable field of the Macro Assembler coding sheet as *R or R* when 
IR or RI is specified. To indicate IT modification, only the substitution for T appears in 
the coding sheet variable field; that is, the asterisk is not used. 

• Indirect Addressing. In indirect addressing, the contents of the instruction address y 
are treated as another address, rather than as the operand of the instruction code. In the 
GE-625/635, indirect address modification is handled automatically as a hardware function 
whenever called for by program instruction. This form of modification precedes directly 
address modification for IR and IT: for RI, it follows. When the I modification is called for 
by a program instruction, an indirect word is always obtained from memory. This indirect 
word may call for continued I modification, or it may specify the effective address Y to be 
used by the original instruction. Indirect addressing for RI, IR and IT is performed by the 
Processor whenever a binary 1 appears in either position of the tmfield (bit position 30 
and 31) of an instruction or an applicable indirect word. The four basic modification types, 
their mnemonic sUbstitutions as used in the variable field of the coding sheet, and the binary 
forms presented to the Processor by the Assembler are as follows: 

CPB-1004F 

163 



MODIFICATION CODING SHEET BINARY 
TYPE MNEMONIC FORMS 

l z I iU tm T td 

30,31,32 35 

? zliUO 
Tag 

R BETA, (R) 01 
30,31,32 35 

~ zlilzlo 
Tag 

RI BETA, (R) * 11 

30,31,32 35 

~ zU J 1 

Tag 

IR BETA, *(R) 11 
30,31,32 35 

1 J il J 
Tag 

IT BETA, (T) 1 01 
30,31,32 35 

The parentheses in (R) and (T) indicate that sUbstitutions are made by the programmer for 
Rand T; these are explained under the separate discussions of R, IR, RI, and IT modification. 
Binary equivalents of the substitution are used in the td subfield. 

Register (R) Modification 

Simple R-type address modification is performed by the Processor whenever the programmer 
codes an R-type variation (listed below) and causes the Assembler to place binary zeros 
in both positions of the modifier subfield tm of the general instruction. Accordingly, one 
among 16 variations under R will be performed by the Processor, depending upon bit 
configurations generated by the Assembler and placed in the designator subfield (td) of the 
general instruction. The 16 variations, their mnemonic substitutions used on the Assembler 
coding sheet, the td field binary forms presented to the Processor, and the effective address 
Y generated by the Processor are indicated in the following table. 

A special kind of address modification variation is provided under R modification. The 
use of the instruction address field as the operand is referred to as direct operand address 
modification, of which there are two types; (1) Direct Upper and (2) Direct Lower. With 
the Direct Upper variation, the address field of the instruction serves as bit positions 
0-17 of the operand and zeros serve as bit positions 18-35 of the operand. With the Direct 
Lower variation, the address field of the instruction serves as bit positions 18-35 of the 
operand and zeros serve as bit positions 0-17 of the operand. 

CPB-I004F 

164 



BINARY 
MODIFICATION MNEMONIC FORM EFFECTIVE 

VARIATION SUBSTITUTION (t d FIELD) ADDRESS 

(R)=XO 0 1000 Y=y+C(XO)0_17 

=X1 1 1001 Y=y+C(X1)0_17 

=X2 2 1010 Y=y+C(X2) 0-17 

=X3 3 1011 Y=y+C(X3)O_17 

=x4 4 1100 Y=y+C(X4) 0-17 

=X5 5 1101 Y=y+C(X5)0_17 

=X6 6 1110 Y-y+C(X6)0_17 

=X7 7 1111 Y=y+C(X7)0_17 

=AO- 17 
AU 0001 Y=y+C(A)0_17 

=A18 - 35 AL 0101 Y='y+C (A) 18 - 35 

=Q O- 17 
QU 0010 Y=y+C (Q) 0-17 

=Q18-35 QL OllO Y=y+C(Q)18-35 
=IC

O
_

17 
IC 0100 Y-y+C(IC)0_17 

=IR
O

_
17 

DU 0011 C(y) O-17=y 
=IR

O
_

17 DL 0111 C(y) 18-35=y 

=None Blank or N 0000 Y=y 

=Any symbolic Any defined 
index register symbo1* 

* Symbol must be defined as one of the index registers XO-X7 by use of an applicable pseudo­
operation. (See discussion of EQU, page 191, and BOOL, page 192.) 

The examples following show how R-type modification variations are entered in the variable 
field and their resultant control effects upon Processor development of effective addresses. 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

1.0. 

LOCA TION OPERA TION VARIABLE FIELD 

ALPHA EQU 

(ADDRESS, TAG) 

B,.o 
C,AL 
M,QU 
-2,IC 
*,DU 
1, rl 
2,DL 
B 
B,N 
C,ALPHA 
2 

165 

COMMENTS 
MODIFICATION EFFECTIVE 

TYPE ADDRESS 

(R) 
(R) 
(R) 
(R) 
(R) 
(R) 
(R) 
(R) 
(R) 
(R) 

Y=B+C(XO)O_17 
Y=C+C(A)18_35 
Y=M+C(Q~_17 
Y=C(IC)-2 
Operand 0_17=IC 
Y=1+C(X7) 
Operand18_35=2 
Y=B 
Y==B 
Y=C+C(X2) 

CPB-I004F 



Register Then Indirect (RI) Modification 

Register then Indirect address modification in the GE-625/635 is a combination type in which 
both indexing (register modification) and indirect addressing are performed. For indexing 
modification under RI, the mnemonic sUbstitutions for R are the same as those given under 
the discussion of Register (R) modification with the exception that DU or DL cannot be substi­
tuted for R. For indirect addressing (I), the Processor treats the contents of the operand 
address associated with the original instruction or with an indirect word as described on 
page 163. 

Under RI modification, the effective address Y is found by first performing the specified 
Register modification on the operand address of the instruction; the result of this R modi­
fication under HI obtains the address of an indirect word which is then retrieved. 

After the indirect word has been accessed from memory and decoded, the Processor 
carries out the address modification specified by this indirect word. If the indirect word 
specifies RI, IR, or IT modification (any type specifying indirection), the indirect sequence 
is continued. When an indirect word is found that specifies R modification, the Processor 
performs R modification, using the register specified by the td field of this last encountered 
indirect word and the address field of the same word, to form the effective address y, 

It should be observed again that the variations DU and DL of Register modification (R) 
cannot be used with Register then Indirect modification (RI). 

If the programmer desires to reference an indirect word from the instruction itself without 
including Register modification, he specifies the "no modification" variation; under RI 
modification, this is indicated on the coding form by an asterisk alone placed in the variable 
field tag position. 

The examples below illustrate the use of R combined with RI modification, including the use 
of (R) = N (no register modification). The asterisk (*) appearing in the modifier subfield 
is the Assembler symbol for I (Indirect). The address subfield, single-symbol expressions 
shown are not intended as realistic coding examples but rather to show the relation between 
operand addresses, indirect addreSSing, and register modification. 

LOCATION OPERATION VARIABLE FIELD COMMENTS 
(ADDRESS, TAG) MODIFICATION EFFECTIVE 

TYPE ADDRESS 

1. Z,AU* (R)* Y=B+C(X1)0_17 
Z+C(A)0_17 B,1 (R) 

2. Z * (R)* Y=B+C(Q)0_17 , 
Z B,QU (R) 

3. z* , (R)* Y=M 
Z B,5* (R)* 
B+C(X5) 0-17 C,3* (R)* 
C+C(X3) 0-1'1 M (R) 

CPB-1004F 

166 



Indirect Then Register (IR) Modification 

Indirect then Register address modification is a combination type in which both indirect 
addressing and indexing (register modification) are performed. IR modification is not a 
simple inverse type of RI; several important differences exist. 

Under IR modification, the Processor first fetches an indirect word (obtained via I or IR) 
from the core storage location specified by the address field y of the machine instruction; 
and the C(R) ofIR are safe-storedfor use in making the final index modification to develop Y. 

Next, the address modification, if any, specified by this first indirect word is carried out. 
If this modification is again IR, another indirect word is retrieved from storage immediately; 
and the new C(R) are safe-stored, replacing the previously safe-stored C(R). If an IR loop 
develops, the above process continues, each new R replacing the previously safe-stored R, 
until something other than IR is encountered in the indirect sequence- - R, IT, or RI. 

If the indirect sequence produces an RI indirect word, the R-type modification is performed 
immediately to form another address; but the I of this RI treats the contents of the address 
as an indirect word. The chain then continues with the R of the last IR still safe-stored, 
awaiting final use. At this point the new indirect word might specify IR-type modification, 
possibly renewing the IR loop noted above; or it might initiate an RI loop. In the latter case, 
when this loop is broken, the remaining modification types are R or IT. 

When either R or IT is encountered, it is treated as type R where R is the last safe-stored 
C(R) of an IR modification. At this point the safe-stored C(R) are combined with the y of 
the indirect word that produced R or IT, and the effective address Y is developed. 

If an indirect modification without Register modification is desired, the no-modification 
variation (N) of Register modification should be specified in the instruction. This normally 
will be entered on the coding sheets as *N in the modifier part of the variable field. (The 
entry * alone is equivalent to N* under RI modification and must be used in this way.) The 
mnemonic substitutions for (R) are listed under the Register modification description. 

CPB-I004F 

167 



The examples below illustrate the use of IR-type modification, intermixed with Rand RI 
types, under the several conditions noted above. 

QQMMENIS 
VARIABLE FIELD MODI FICA TION EFFECTIVE 

LOCATION OPERATION (ADDRESS, TAG) TYPE ADDRESS 

l. Z,*QL *(R) Y=M+C(Q)18-35 
Z M (R) 

2. Z, *3 *(R) Y=C+C(X3)O_17 
Z B,5* (R)* 
B+C(X5)O_17 -- C,IC (R) 

3. Z, *3 *(R) Y=M+C(Q)O_17 
Z B, *5 *(R) 
B C,*QU *(R) 
C M,7 (R) 

4. Z, *DL *(R) C(Y)18_35=M 
Z B, 3* (R)* 
B+C(X3)O_17 -- M, QL (R) 

5. Z, *AL *(R) Y=B+C(A)18_35 
Z B,AD (T) 

6. Z, *N *(R) Y=B 
Z B, 3 (R) 

7. Z, *N *(R) Y =M+C(X5)O_17 
Z B, *5 *(R) 
B M,DU (R) 

8. Z * (R)* Y=M+C(X5)O_17 , 
Z B, *5 *(R) 
B M,DU (R) 

GPB-I004F 

168 



Indirect Then Tally (IT) Modification 

• Summary. Indirect then Tally address modification in the GE-625/635 is a combination 
type in which both indirect addressing and indexing (register modification) are performed. 
In addition automatic incrementing/decrementing of fields in the indirect word are done as 
hardware features, thus relieving the programmer of these responsibilities. The automatic 
tallying and other functions of the IT type modification greatly enhance the processing of 
tabular data in memory, provide the means for working upon character data, and allow 
termination on programmer-selectable numerical tally conditions. (Refer to page 206 I 
for the special word formats TALLYB, TALLYD, and TALLYC for Assembler coding of 
the indirect words used with IT; and refer to Figure 5B for Tally Runout status.) 

The ten variations under IT modification are summarized in the following table. It should 
be noted that the mnemonic substitution for IT on the Macro Assembler coding sheet is 
simply (T); the designator I for indirect addressing in IT is not represented. (Note that 
one of the substitutions for T is I.) 

NAME OF THE 
VARIATION 

Indirect 

Increment address, 
Decrement tally 

Decrement address, 
Increment tally 

Sequence Character 

Character from Indirect 

Add Delta 

Subtract Delta 

Fault 

Increment address 
Decrement tally, 
and Continue 

Decrement address, 
Increment tally, 
and Continue 

CODING FORM 
SUBSTITUTION 

FOR I{T} 

I 

ID 

DI 

SC 

CI 

AD 

SD 

F 

IDC 

DIC 

169 

BINARY 
FORM 

Jtg FIELD) 

1001 

1110 

1100 

1010 

1000 

1011 

0100 

0000 

1111 

1101 

EFFECT UPON THE 
INDIRECT WORD 

None. 

Add one to the address; 
subtract one from the 
tally. 

Subtract one from the ad­
dress; add one to the tally. 

Add one to the character 
position number; subtract 
one from the tally; add one 
to the address when the 
character count crosses a 
word boundary. 

None. 

Add an increment to the 
address; decrement the 
tally by one. 

Subtract an increment 
from the address; in­
crease the tally by one. 

None; the Processor is 
forced to a fault trap 
starting at a predeter­
mined, fixed location 

Same as ID variation ex­
cept that furlheraddress 
modification can be per­
formed. 

Same as DI except that 
further address modifi­
cation can be performed. 

CPB-1004F 
Rev. July 1969 



• Indirect (T) = I Variation. The Indirect (I) variation of IT modification is in effect a 
subset of the 10 and 01 variations described below in that all three--I, ID, and DI--make use 
of one indirect word in order to reference the operand. The I variation is functionally unique, 
however, in that the indirect word referenced by the program instruction remains unaltered-­
no incrementing/decrementing of the address field. Since the tm and td subfields of the 
indirect word under I are not interrogated, this word will always terminate the indirect chain. 

The following differences in the coding and effects of *, *N, and I should be observed: 

1. RI modification is coded as R* for all cases, excluding R=N. 

For R=N under RI, the modifier subfield can be written as N* or as * alone, accord­
ing to programmer preference. 

When N* or just * is coded, the Assembler generates a machine word with 208 in 
positions 30-35; 20 causes the Processor to add 0 to the address y of the word 
containing the N* or * and then to access the indirect word at memory location y 
of the N* or * word. 

2. IR modification is coded as *R for all cases, including R=N. 

For R=N under IR, the modifier subfield must be written as *N. 

When *N is coded, the Assembler generates 608 in positions 30-35 of the associated 
machine word; 608 causes the Processor to (1) retrieve the indirect word at location 
y of the machine word, and (2) effectively safe-store zeros (for possible final index 
modification of the last indirect word--to develop the effective address Y). 

3. IT modification is coded using only a variation designator (I, ID, DI, SC, CI, AD, 
SD, F, IDC, DIC); that is, the asterisk (*) is not written (for I). Thus, a written 
IT address modification appears as ALPHA, DI; BETA, AD; etc. 

For the variation I under IT, the Assembler generates a machine word with 518 
in bit positions 30-35; 51 causes the Processor to perform one and only one 
indirect word retrieved from memory location y (of the word with I specified) 
to obtain the effective address Y. For example: 

LOCATION OPERATION 

z 

VARIABLE FIELD 
(ADDRESS, TAG) 

Z, I 
B, *5 

COMMENTS 
MODIFICATION EFFECTIVE 

TYPE ADDRESS 

(T) 
*(R) 

Y=B 

• Increment Address, Decrement TALLY (T) = ID Var.iation. The IDvariation under IT 
modification provides the programmer with automatic (hardware) incrementing/ decrementing 
of an indirect word that is best used for processing tabular operands (data located at con­
secutive memory addresses). The indirect word always terminates the indirect chain. 

In the 10 variation the effective address is the address field of the indirect word obtained via 
the tentative operand address of the instruction or preceding indirect word, whichever 
specified the ID variation. Each time such a reference is made to the indirect word, 
the address field of the indirect word is incremented by one; the tally portion of the indirect 
word is decremented by one. The incrementing and decrementing are done after the 
effective address is provided for the instruction operation. When the tally reaches zero, the 
Tally Runout indicator is set. 

CPB-1004F 

170 



The example following shows the effect of ID. 

COMMENTS 
VARIABLE FIELD MODIFICATION EFFECTIVE 

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE 

z 
Z,ID 
B 

(T) 

Assuming an initial tally of j, the tally runout indicator is 
set on the jth reference. 

1 
2 

• Decrement Address, Increment Tally (T) = DI Variation. The DI variation under IT 
modification provides the programmer with automatic (hardware) incrementing/ decrementing 
of an indirect word that is best used for processing tabular operands (data located at con­
secutive memory addresses). The indirect word always terminates the indirect chain. 

In the DI variation the effective address is the address field minus one of the indirect word 
obtained via the tentative operand address of the instruction or preceding indirect word, 
whichever one specified the DI variation. Each time a reference is made to the indirect 
word, the address field of the indirect word is decremented by one; and the tally portion is 
incremented by one. The incrementing and decrementing is done prior to providing the 
effective address for the current instruction operation. 

The effect of DI when writing programs is shown in the example following. 

COMMENTS 
VARIABLE FIELD MODIFICATION EFFECTIVE 

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE 

Z 
Z, DI 

B 

Assuming an initial tally of 4096- j the tally runout is 
set on the jth reference. 

(T) B-1 
B-2 

B-n 

1 
2 

n 

• Sequence Character (T) = SC Variation. The Sequence Character (SC) variation is 
provided for programmed operations involving 6-bit or 9 .. bit characters that are accessed 
sequentially in memory. Processor instructions that exclude character operations are 
indicated in the individual instruction description. For the SC variation, the effective 
operand address is the address field of the indirect word obtained by the tentative operand 
address of the instruction or preceding indirect word that specified the SC variation, 

171 

CPB-I004F 
Rev. July 1969 



Characters are operated on in sequence from left to right within the machine word. The 
character position field of the Tally indirect word is used to specify the character to be 
involved in the operation. This variation is intended for use only with those operations 
that involve the A-and Q-registers, The tally ... runout indicator is set when the tally field 
of the indirect word reaches zero. The following is an example of the coding sequence for 
the SC variation: 

ADDl 
ADDR 

or ADDR 

LDA 
TALLY 
TALLYB 
TTF 

ADDR, SC 
ADD,l2,3 
ADD,l2,3 
ADDl 

6-bit characters 
9 ... bit characters 

The effective address is ADD. The character in character position 3 is loaded into the A­
register in position 5 for 6-bit characters and position 3 for 9-bit characters. 

The tally field of the indirect word is used to count the number of times a reference is 
made to a character in the tally indirect word. Each time an SC reference is made to the 
tally indirect word, the tally is decremented by one and the character position is in­
cremented by one to show the next character position. When C:::5 (or 3 for 9 .. bit characters), 
it is changed to zero and the address field of the tally indirect word is incremented by 
one. All incrementing and decrementing is done after the effective address has been pro .. 
vided for the instruction execution. --

• Character From Indirect (T) = CI Variation. The Character from Indirect (CI) variation 
is provided for programmer operations on 6-bit or 9-bit characters in any situation where 
repeated reference to a single character in memory is required, 

For this variation substitution, the effective address is the address field of the CI indirect 
word obtained via the tentative operand address of the instruction or preceding indirect word 
that specified the CI variation. The character position field of the indirect word is used to 
specify the character to be involved in the operation and is intended for use only with the 
operations that involve the A .. or Q-register. 

This variation is similar to the SC variation except that no incrementing or decrementing of 
the address or character position is performed. 

172 

CPB-I004F 
Rev. July 1969 



A CI example is: 

COMMENTS 
VARIABLE FIELD MODIFICATION EFFECTIVE 

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE 

Z 
Z, CI 
B 

(T) 

• Add Delta (T) = AD Variation. The Add Delta (AD) variation is provided for pro­
gramming situations where tabular data to be processed is stored at equally spaced locations, 
such as data words, each occupying two or more consecutive memory addresses. It functions 
in a manner similar to the ID variation, but the incrementing (delta) of the address field 
is selectable by the programmer. 

Each time such a reference is made to the indirect word, the address field of the indirect 
word is increased by delta and the tally portion of the indirect word is decremented by one. 
The addition of delta and decrementing is done after the effective address is provided for 
the instruction operation. --

The example following shows the effect of AD. 

COMMENTS 
VARIABLE FIELD MODIFICATION EFFECTIVE 

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE 

Z 
Z,AD 
B 

(T) 
(R) 

B 
B+o 
B+26 

B+no 

Assuming an initial tally of j, the tally runout is set on the jth reference. 

1 
2 
3 

• Subtract Delta (T) = SD Variation. The Subtract Delta (SD) variation is useful in 
processing tabular data in a manner similar to the AD variation except that the table can 
easily be scanned from back to front using a programmer specified increment. The 
effective address from the indirect word is decreased by delta and the tally is increased 
by one each time the indirect word is used. This applies to the first reference to the 
indirect word, making the SD variation analogous to the DI variation. 

• Fault (T) = F Variation. The fault variation enables the programmer to force program 
transfers to Comprehensive Ope'rating Supervisor routines or to his own corrective routines 
during the execution of an address modification sequence. (This will usually be an indication 
of some abnormal condition against which the programmer wishes to protect himself. For 
an explanation of how faults are handled in the GE-625/635, refer to the reference manual 
on the Comprehensive Operating Supervisor.) 

CPB-I004F 

173 

I 



• Increment Address, Decrement Tally and Continue (T) = IDC Variation. The IDC 
variation under IT modification functions in a manner similar to the ID variation except 
that, in addition to automatic incrementing/decrementing, it permits the programmer to 
continue the indirect chain in obtaining the instruction operand. Where the ID variation is 
useful for processing tabular data, the IDC variation permits processing of scattered 
data by a table of indirect pOinters. More specifically, the ID portion of this variation 
gives the sequential stepping through a table; and the C portion (continuation) allows 
indirection through the tabular items. The tabular items may be data pointers, subroutine 
pointers or possibly a transfer vector. 

The address and tally fields are used as described under the ID variation. The tag field uses 
the set of GE-625/635 instruction address modification variations under the following 
restrictions: No variation is permitted which requires an indexing modification in the IDC 
cycle since the indexing adder is in use by the tally phase of the operation. Thus, permissible 
variations are any form of I(T) or I(H); but if (H)I or (R) is used, H must equal N. 

The effect of IDC is indicated in the following example: 

COMMENTS 
VARIABLE FIELD 

ADDRESS. TAG 
MODIFICATION EFFECTIVE 

LOCATION OPERATION TYPE ADDRESS REFERENCE 

z 
Z,IDC 
B 

(T) 
(R) 

Assuming an initial tally of j, the tally runout indicator 
is set on the jth reference. 

Effective 
Address 

B 
&1 

&n 

Character 
Position 

1 
2 

n+l 

• Decrement Address, Increment Tally, and Continue (T) = DIC Variation. The DIe 
variation under IT modification works in much the same way as the DI variation except 
that in addition to automatic decrementing/incrementing it allows the programmer to 
continue the indirect chain in obtaining an instruction operand. The continuation function 
of DIe operates in the same manner and under the same restrictions as IDe except that 
(1) it increments in the reverse direction, and (2) decrementing/incrementing is done prior 
to obtaining the effective address from the tally word. (Hefer to the example under IDe; 
work from the bottom of the table to the top.) DIe is especially useful in processing last­
in, first-out lists. 

CPB-I004F 

174 



COMMENTS 
VARIABLE FIELD MODIFICATION EFFECTIVE 

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE 

Z, DIC (T) 
Z B, *3 *(R) C+C(X3) 1 
B-1 C,QU (R) A+C(X3) 2 
B-2 M,5* (R)* Q+C(AR) 0-17 3 
B-3 D,*AU *(R) 

M+C(X5)O-17 ~ A (R) 
D Q (R) 

Assuming an initial tally of 4096-j, the tally runout 
indicator is set on the jth reference. 

PSEUDO-OPERATIONS 

Pseudo-operations are so-called because of their similarity to machine operations in an 
object program. In general, however, machine operations are produced by computer instruc­
tions and perform some task, or part of a task, directly concerned with solving the problem 
at hand. Pseudo-operations work indirectly on the problem by performing machine condition­
ing functions, such as memory allocating, and by directing the Macro Assembler in the 
preparation of machine coding. A pseudo-operation affecting the Assembler may generate 
several, one, or no words in the object program. 

All pseudo-operations for the Macro Assembler are grouped according to function and 
described (in this chapter) as to composition and use. The pseudo-operation functional 
groups and their uses are: 

FUNCTIONAL GROUP 

Control pseudo-operations 

. Location counter pseudo-operations 

Symbol defining pseudo-operations 

Data generating pseudo-operations 

Storage allocation pseudo-operations 

PRINCIP AL USES 

Selection of printout options for the assembly 
listing, direction of punchout of absolute/ re­
locatable binary program decks, selection of 
format for the absolute binary deck. 

Programmer control of single or multiple 
instruction counters. 

Definition of Assembler source program 
symbols by means other than appearance in the 
location field of the coding form 

Production of binary data words for the assem­
bly program. 

Provision of programmer control for the use of 
memory. 

CPB-I004F 

175 



FUNCTIONAL GROUP 

Special pseudo-operations 

MACRO pseudo-operations 

Conditional pseudo-operations 

Program linkage pseudo-operations 

Address, tally pseudo-operations 

Repeat mode coding formats 

PRINCIP AL USES 

Generation of zero operation code instructions, 
of binary words divided into two l8-bit fields, 
and of continued subfields for selected pseudo­
operations. 

Begin and end MACRO prototypes; Assembler 
generation of MACRO-argument symbols; and 
repeated substitution of arguments within 
MACRO prototypes. 

Conditional assembly of variable numbers of 
input words based upon the subfield entries of 
these pseudo-operations. 

Generation of standard system subroutine calling 
sequences and return (exit) linkages. 

Control of automatic address, tally, andcharac­
ter incrementing/decrementing. 

Control of the repeat mode of instruction ex­
ecution (coding of RPT, RPD, and RPL instruc­
tions). 

The above pseudo-operation functional groups, together with their pseudo-operations, are 
given as a complete listing with page references in Appendix D. 

Control Pseudo-Operations 

The On/Off switch type pseudo-operation 

The subset of the control pseudo-operations consisting of those operations which may best 
be described as switches (which current state may be ton' or toff') are comprised of the 
following: 

DETAIL, LIST, PCC, REF, PMC, INHIB, PUNCH, EDITP, CRSM 

Provisions have been made to allow the user to treat these switches in a push-down pull­
up manner so that he may recallprior states of a switch and retrieve that state at some later 
point. The depth to which this may be accomplished is 35; a switch may therefore have a 
current state plus 35 ttremembered" states. 

The mnemonic representing the push-down feature is SAVE; pull-up or retrieve prior is 
designated by the mnemonic RESTORE. The mnemonic for turning the current state of a 
switch ori is ON; its counterpart is OFF. If a switch alteration is implied but not explicitly 
given, its current state will be alternated (i. 6., if off, turn on); if alteration is not implied, its 
current state will be unchanged (see example 4 on the following page). 

CPB-I004F 

1'16 



The eight possible variable field representations are: 

1. CRSM* ON 
2. CRSM* OFF 
3. CRSM* 
4. CRSM* SAVE 

5. CRSM* SAVE, ON 
6. CRSM* SAVE, OFF 
7. CHSi\1* SAVE, 
8. CRSM* RESTORE 

(turn switch on) 
(turn swi tch off) 
(alternate current status of switch) 
(push down--remember current state and leave 
unchanged) 
(push down, and set switch on) 
(push down, and set switch off) 
(push down, and alternate current switch setting) 
(pull up prior state of switch) 

*CRSM is used for illustrative purposes only. 

The Assembler has been preset with a 'current' state for each switch, and 35 remembered 
states which are the same. Restores past this point will pull up an ON state for all switches. 
The initial setting is given in the discussion of each of the pseudo-operations in question, 
and corresponds to normal mode of operation. 

DETAIL ON/OFF (Detail Output Listing) 

12 8 16 
I 
I Blanks 

: Blanks 

I 

I 
I DETAIL 

: DETAIL 

I 

ON 

OFF 

32 

I Normal mode 
I 
I 
I 

Some pseudo-operations generate no binary words; however, several of them generate more 
than one. The generative pseudo-operations are; OCT, DEC, BCI, DUP, CALL, SAVE, 
RETURN, ERLK, LIT, and VFD. The DETAIL pseudo-operation provides control over the 
amount of listing detail generated by the generative pseudo-operations. 

The use of the DETAIL OFF pseudo-operation causes the assembly listing to be abbreviated 
by eliminating all but the first word generated by any of the above pseudo-operations. In the 
case of the DUP pseudo-operation, only the first iteration will be listed. The DETAIL ON 
pseudo-operation causes the Assembler to resume the listing which had been suspended by 
a DETAIL OFF pseudo-operation. 

If at the end of the listing the Assembler is in the DETAIL OFF mode, the literal pool will 
not be printed, but a notation will be made as to its presence. 

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation request­
ing the same ON/OFF mode is ignored. 

LIST ON/OFF (Control Output Listing) 
12 8 16 

I 
I Blanks 

I 
I 
I 

I LIST 
I 
I 
I 

ON 

177 

32 
I 
I Normal mode 
I 
I 
I 

CPB .. I004F 



The use of LIST in the operation field with OFF in the variable field causes the normal 
listing to change as follows: the instruction LIST OFF will appear in the listing; thereafter, 
only instructions which are flagged in error will appear. If the assembly ends in the LIST 
OFF mode, only the error messages will appear. 

The use of LIST in the operation field with ON in the variable field causes the normal 
listing, which was suspended by a LIST OFF pseudo-operation, to be resumed. If the 
Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting 
the same ON/OFF mode is ignored. 

PCC ON/OFF (Print Control Cards) 
1 8 16 

Blanks I pce 
I 
I 
I 

I 
I OFF 
I 
I 
I 

32 

I I Normal Mode 

I 
I 
I 

The PCC pseudo-operation affects the listing of the following pseudo-operations: 

DETAIL 
EJECT 
*LBL 
INE 

LIST 

REF 
IFE 

*TTL 
*TTLS 
CRSM 
IFG 

PMC 
PUNCH 
IDRP 
IFL 

PCC ON causes the affected pseudo-operations to be printed. PCC OFF causes the affected 
pseudo-operations to be suppressed; this is the normal mode at the beginning of the assembly. 
If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation request­
ing the same ON/OFF mode is ignored. 

REF ON/OFF (References) 
1 8 16 32 

Blanks 
I 
I REF 

I 
I ON 

I 
I Normal mode 

I I I 
I I I 
I I I 

The REF pseudo-operation controls the Assembler in making entries into the symbol 
reference table and controls the listing of nonreferenced symbols. REF ON (the normal 
mode) causes the Assembler to begin making entries into the symbol reference table. 
REF OFF causes the Assembler to suppress making entries into the symbol reference 
table. If the Assembler is already in a specified ON/OFF mode, another request for the 
same mode is ignored. 

The entry LNRSM (list nonreferenced symbols) can also be used as a subfield of the variable 
field, to cause listing of nonreferenced symbols when the Assembler is in the REF ON mode. 
The variable field scan is terminated when either an ON, OFF or RESTORE subfield is en­
countered. Therefore, these entries should always be last when used in a series of subfields. 

EXAMPLES: REF ON or the absence of a REF pseudo-operation causes a listing of only 
referenced symbols and references to those symbols. 

REF LNRSM,ON or REF LNRSM causes listing of all symbols and references. 

REF OFF causes listing of all symbols, but no references. (REF LNRSM, 
OFF has the same effect because the LNRSM entry is only effective when the 
assembler is in the REF ON mode.) 

* Not affected if alter number is three or less (1, 2, or 3). 

CPB-I004F 

178 



PMC ON/OFF (Print MACRO Expansion) 

1 8 16 

Blanks IPMC 
I 
I 
I 

I 
I OFF 
I 
I 
I 

32 
I 
I Normal mode 
I 
I 
I 

The PMC pseudo-operation causes the Assembler to list or suppress all instructions 
generated by a MACRO call. 

PMC ON causes the Assembler to print all generated instructions. PMC OFF causes the 
Assembler to suppress all but the MACRO call. 

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation request­
ing the same ON/OFF mode is ignored. 

INHIB ON/OFF (Inhibit Interrupts) 

1 8 16 

Blanks : INHIB OFF 

I 
I 
I 

32 

I Normal mode 

I 
I 

The instruction INHIB ON causes the Assembler to set the program interrupt inhibit bit 
in bit position 28 of all machine instructions which follow the pseudo-operation. The setting 
of the instruction interrupt inhibit bit continues for the remainder of the assembly, unless 
the pseudo-operation INHIB OFF is encountered. 

The INHIB OFF causes the Assembler to stop setting the inhibit bit in each instruction, if 
used when the Assembler is in the INHtB ON mode. 

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation 
requesting the same ON/OFF mode is ignored. 

PUNCH ON/OFF (Control Card Output) 
1 8 16 

Blanks I PUNCH 
I 
I 
I 
I 

ON 

32 

Normal mode 

Subject to the DECK/NDECK option of the GMAP call card, the normal mode of the Assemb­
ler is to punch binary cards for everything it assembles. If PUNCH is used in the operation 
field with OFF in the variable field, the binary deck will not be punched, beginning at the 
point the Assembler encounters the pseudo-operation. 

CPB-1004F 

179 



These conventions hold true for both the output binary deck, and the load file counterpart, 
in the case of assemble and execute activities. 

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation 
requesting the same ON/OFF mode is ignored. 

EDITP (Edit Print Lines) 
1 8 16 32 

EDITP OFF 
I 
I Normal mode 

I 
I 
I 

This pseudo-operation has a special application. It is for the program which includes the 
character ? (17) and/or! (77) punched somewhere on a symbolic card. In normal operation 
these characters have special meaning to the printer subsystem and may cause character 
shifting, line suppression, slewing, or buffer overflow. As such, an EDITP ON instruction, 
causes the output routine to issue printer commands which will treat these as non-special 
characters. The Assembler will then remain in this mode until an EDITP OFF instruction 
is encountered. 

EJECT (Restore Output Listing) 
1 8 16 32 

--~I~---------------------'-----------------------------

Blanks EJECT I : Column 16 must be blank 

I I 
I I 
I I 

The EJECT pseudo-operation causes the Assembler to position the printer paper at the top 
of the next page, to print the title(s), and then print the next line of output on the second line 
below the title(s}. 

REM (Remarks) 

1 8 
I 

Blanks I REM 
or I 

remarks I 

I 

16 32 
I 
I Remarks and comments in the variable 
I field start at column 12 or later 
I 
I 

The REM pseudo-operation causes the contents of this line of coding to be printed on the 
assembly listing (just as the comments appear on the coding sheet). However, for purposes 
of neatness, columns 8-10 are replaced by blanks before printing. 

HEM is provided for the convenience of the programmer; it has no other effect upon the 
assembly. 

CPB-I004F 

180 



* (In Column One--Remarks) 

1 8 ______ ~1~6--____ --_-------~~32~-------------------------------

iTl : I Remarks and comments tn columns 2-80 
I I I 
I I I 
I I I 

A card containing an asterisk (*) in column 1 is taken as a remark card. The contents of 
columns 2-80 are printed on the assembly listing (just as they appear on the coding sheet); 
the asterisk has no other effect on the assembly program. 

LBL (Label) 

1 

Blanks 

8 

I LBL 
I 
I 
I 
I 

16 

X,Y 

32 

X=null or up to 8 alphabetic and 
: numeric characters. Y=null or up 
I to 42 alphabetic and numeric 
characters. 

I 

LBL causes the Assembler to serialize the binary cards using columns 73-80, except when 
punching full binary cards by use of the FUL pseudo-operation. The LBL pseudo-operation 
allows the programmer to specify a left-justified alphabetic label for the identification 
field and begin serialization with some initial serial number other than zero. The LBL 
pseudo-operation also allows the programmer to specify up to 42 characters of comments on 
the $ OBJECT card of the binary deck. The comment, if present, begins in column 16 of 
the $ OBJECT card. The following conditions apply: 

1. If the first sub-field is null, the Assembler discontinues serialization of the binary 
deck. 

2. If the first sub-field is not blank, serialization begins with the characters appearing 
in the first sub-field; the characters are left-justified and filled in with terminating 
zeros up to the position(s) used for the sequence number. Serialization is incre­
mented until the rightmost nonnumeric character is encountered, at which time the 
sequence recycles to zero. 

3. If no LBL pseudo-operation appears in the symbolic deck, the Assembler begins 
serializing with 00000000. 

4. If the second sub-field is blank, the Assembler inserts blanks in the variable field 
of the $ OBJECT card. 

5. If the second sub-field is not blank, the characters in this sub-field are inserted on 
the $ OBJECT card in column 16 through column 57. 

CPB ... I004F 

181 



TTL (Title) 

1 8 16 32 

r 

Blanks I TTL 
or an I 

integer I 
I 
I 

--------~------.--~.-.----------------,---

I Title in the variable field 

The TTL pseudo-operation causes the printing of a title at the top of each page of the 
assembly listing. In addition, when the Assembler encounters a TTL card, it causes the 
output listing to be restored to the top of the next page and the new title to be printed. The 
information punched in columns 16-,72 is interpreted as the title. 

The title may be redefined by use of repeated TTL pseudo-operations as often as the 
programmer desires. The title may be deleted by a TTL pseudo-operation with a blank 
variable field. If a decimal integer appears in the location field, the page count is re­
numbered beginning with the specified integer . 

.:.rTLS (SubtitleL 

1 

Blanks 
or an 

integer 

8 

: TTLS 

I 
I 
I 

16 32 

: Subtitle in the variable field 

I 
I 
I 

The TTLS pseudo-operation is identical in function to the TTL pseudo-operation except that 
it causes subtitling to occur. When a TTLS pseudo-operation is encountered, the subtitle 
provided in columns 16-72 replaces the current subtitle; the output listing is restored to 
the top of the next page. The title and new subtitle are then printed. 

The maximum number of subtitles that may follow a title is one. 

!JA TE (Current Datel 

1 8 16 32 
I 

Blanks I DATE Column 16 must be blank 

I 
I 
I 

The DATE pseudo-operation is used to enter the current date into a program. The 6- char­
acter current date in the form mmddyy is inserted into an assembled program at this point. 

~xample: 

Location Contents Relocation 

001021 000601050607 000 DATE 

This example shows the results of a DATE pseudo-operation assembled on 6/15/67. 

CPB-1004F 

182 



ABS (Output Absolute Text) 
1 8 16 

Blanks lABS 

I 
I 
I 

32 

I Column 16 must be blank 
I 
I 
I 
I 

The ABS pseudo-operation causes the Assembler to produce an output of absolute binary text. 

The normal mode of the Assembler is relocatable; however, if absolute text is required for a 
given assembly, the ABS pseudo-operation should appear in the deck before any instructions 
or data. It may be preceded only by listing pseudo-operations. It may, however, appear 
repeatedly in an assembly interspersed with the FUL pseudo-operation. It should be noted 
that the pseudo-operations affecting relocation are considered errors in an absolute assembly. 

Pseudo-operations that will be in error if used in an absolute assembly are: 

BLOCK 
ERLK 

SYMDEF 
SYMREF 

(Refer to the descriptions of binary punched card formats in this chapter for details of 
the absolute binary text.) 

FUL (OUTPUT Full Binary Text) 
1 8 16 32 ------------------------------------

Blanks I FUL I 
I I 

I 
I Column 16 must be blank 

I I I 
I I I 
I I I 

The FUL pseudo-operation is used to specify absolute assembly and the FUL format for 
absolute binary text. 

The FUL pseudo-operation has the same effect and restrictions on the Assembler as ABS, 
except for the format of the binary text output. The format of the text is of continuous 
information with no address identification; that is, the absolute binary cards are punched with 
program instructions in columns 1-78 (26 words). Such cards can be used in self-loading 
operations or other environments where control words are not required on the binary card. 

TeD (Punch Transfer Card) 
1 8 16 

Blanks 
or a 
symbol 

I TCD 
I 
I 
I 

32 
I 
I An expression in the variable field 
I 
I 
I 

In an absolute assembly, the binary transfer card, produced at the end of the deck as a 
result of the END card, directs the loading program to cease loading and turn control 
over to the program at the point specified by the transfer card. Sometimes it is desirable 
to cause a transfer card to be produced before encountering the end of the deck. This is the 
purpose of the TCD pseudo-operation. Thus, a binary transfer card is produced generating 
a transfer address equivalent to the value of the expression in the variable field. 

TCD is an error in the relocatable mode. 

CPB-1004F 

183 



HEAD (Heading) 

1 8 

ilHEAD 

16 32 

: From 1 to 7 subfields in the variable field, 
each containing a single, nonspecial char­

I acter used as a heading character 
I 

In programming, it is sometimes desirable to combine two programs, or sections of the 
same program, that use the same symbols for different purposes. The HEAD pseudo­
operation makes such a combination possible by prefixing each symbol of five or fewer 
characters with a heading character. This character must not be one of the special charac­
ters; that is, it must be one of the characters A- Z, 0-9, or the period(.). Using different 
heading characters, in different program sections later to be combined for assembly, 
removes any ambiguity as to the definition of a given symbol. 

The effect of the HEADpseudo-operation is to cause every symbol of five or less characters, 
appearing in either the location field or the variable field, to be prefixed by the current HEAD 
character. The current HEAD character applies to all symbols appearing after the current 
HEAD pseudo-operation and before the next HEAD or END pseudo-operation. 

Deheading is accomplished by a zero or blanks in the variable field. To understand more 
thoroughly the operation of the heading function, it is necessary to know that the Assembler 
internally creates a six-character symbol by right-justifying the characters of the symbol 
and filling in leading zeros. Thus, if the Assembler is within a headed program section 
and encounters a symbol of five or fewer characters, it inserts the current HEAD character 
into the high-order, leftmost character position of the symbol. Each symbol, with its 
inserted HEAD character, then can be placed in the Assembler symbol table as unique 
entries and aSSigned their respective location values. 

It is also possible to head a program section with more than one character. This is done 
by using the pseudo-operation HEAD in the operation field with from two to seven heading 
characters in the variable field, separated by commas. The effect of a multiple heading 
is to define each symbol of that section once for each heading character. Thus, for example, 
if the symbols SH.EAR, SPEED, and PRESS are headed by 

nine unique symbols 

XSHEAR 
YSHEAR 
ZSHEAR 

HEAD 

XSPEED 
YSPEED 
ZSPEED 

X,Y,Z 

XPRESS 
YPRESS 
ZPRESS 

are generated and placed in the Assembler symbol table. This allows regions by HEADX, 
HEADY, or HEADZ to obtain identical values for the symbols SHEAR, SPEED, and PRESS. 

Cross-referencing among differently headed sections may be accomplished by the use of 
six-character symbols or by the use of the dollar sign ($). Six character symbols are 
immune to HEAD; therefore, they provide a convenient method of cross- referencing among 
differently headed regions. 

CPB-I004F 

184 



When a symbol within a headed section is also to be a SYMDEF symbol, it must be a six­
character symbol (immune to HEAD). 

To allow the programmer more flexibility to cross-referencing, the Assembler language 
includes the use of the dollar sign ($) to denote references to an alien-headed region. 

If the programmer wishes to reference a symbol of less than six characters in another 
program section, he merely prefixes the symbol by the HEAD character for that respective 
section, separating the HEAD character from the body of the symbol by a dollar sign ($). 

To reference from a headed region into a region that is not headed (zero heading), the 
programmer can use either the heading character zero and the dollar sign (0$) preceding 
the symbol; or, if the symbol is the initi.al value of the variable field, then the appearance 
of only the leading dollar sign will cause the zero heading to be attached to the symbol. 

EXAMPLE OF HEAD PSEUDO-OPERATION 

START LDA A Initial i.nstruction (no heading) 

TRA B$SUM Transfer to new headed section 
A BSS 1 

HEAD B 
SUM LDA $A 

Section headed B 
TRA O$START + 2 
END 

The LDA $A could have been written as LOA O$A, as they both mean the same. 

DCARD (Punch BCD Card) 
1 8 16 32 

I 
Blanks :DCARD N, M ITwo subfields in the variable field 

I 
I 
I 

I 
I 
I 

The first subfield contains a decimal integer N (limited only by the size of available 
memory), and the second subfield (M) contains a single BCD character used as a decimal 
data identifier. The Assembler punches the next N cards after the DCARD instruction 
with the specified BCD identifier in column one of each of these N cards and with the BCD 
information taken from the corresponding source cards on a one-for-one basis. 

There are no restrictions on the BCD information that can be placed in columns 2-72 of 
the source cards. (One of the significant uses of DCARD is to generate Operating Supervisor 
(GECOS) $ control cards.) 

The DCARD has the further effect of suppressing the normal automatic generation of a 
$ OBJECT and $ DKEND card. 

CPB-1004.F 

185 



END (End of Assembly) 

1 

Blanks 
or a 
symbol 

8 

:END 
I 
I 
I 

16 32 

:Blanks or an expression in the 
I variable field 

I 
I 

The END pseudo-operation signals the Assembler that it has reached the end of the symbolic 
input deck; it must be present as the last physical card encountered by the Assembler. 

If a symbol appears in the location field, it is assigned the next available location. 

In a relocatable assembly, the variable field must be blank; in an absolute assembly, the 
variable may contain an expression. In relocatable decks, the starting location of the pro­
gram will be an entry location and the location specified is given to the General Loader 
(GELOAD) by a special control card used with the GELOAD. (Refer to the GELOAD 
manual.) Absolute programs require a binary transfer card which is generated by the 
END pseudo-operation. The Transfer address is obtained from the expression in the 
variable field of the END card. 

OPD (Operation Definition) 

1 

New 
oper­
ation 
code 

8 

10PD 

I 
I 
I 

16 32 

lOne or more subfields, separated by commas, 
lin the variable field. The subfields define 
Ithe bit configuration of the new operation 
Icode 
I 

The OPD pseudo-operation may be used to define or redefine machine instructions to the 
Assembler. This allows programmers to add operation codes to the Assembler table of 
operation codes during the assembly process. This is extremely useful and powerful in 
defining new instructions or special bit configurations, unique in a particular program, to 
the Assembler. 

The variable field subfields are bit-oriented and have the same general form as described 
under the VFD pseudo-operation. In addition, the variable field, considered in its entirety, 
requires the use of either of two specific 36-bit formats for defining the operation. 

1. The normal instruction format 

2. The input/output operation format 

CPB-I004F 

186 



The normal instruction-defining format and subfields are shown below: 

op 

o 26 30 31 32 33 34 35 

op--new operation code (bits 18 through 29 of instruction) 
m--modifier tag type (O=allowed; l=not allowed) 

ml: register modification (R) 
m2: indirect addressing (*) 
m 3: indirect and tally (T) 
m4: Direct Upper (DU) 
m 5: Direct Lower (DL) 
m6: Sequence Character (SC) and Character from Indirect (CI) 
rl: instruction(s) in a repeat loop 

a--acfdress field conditions (O=not required; 1=required) 
a1: address required/not required 
a2: address required even 
a 3: address required absolute 
a4: symbolic index required 
a 5: 2 -octal digit tag field required 
a6: address required mod 8 

p--octal assembly listing format (x represents one octal digit) 
00: xx xxxx xxxxxx 
01: xxxxxxxxxxxx 
10: xxxxxx xxxxxx 
11: xxxxxx xxxx xx 

The assembly listing types 00, 01, 10, and 11 are used for input/output commands, data­
generating pseudo-operations (OCT, DEC, BCI, etc.), special word-generating pseudo­
operations (such as ZERO), and machine instructions. 

To illustrate the use of OPD, assume one wished to define the current machine instruction, 
Load A (LDA). Using the preceding format and the octal notation (as described under the 
VFD pseudo-operation), one could code OPD as 

or 
LDA 
LDA 
LDA 

OPD 
OPD 
OPD 

012/2350,6/,02/2,6/,03/4,5/,02/3 
018/235000,02/2,6/,03/4,5/,02/3 
036/235000401003 

or in other forms, providing the bit positions of the instruction-defining format are 
individually specified to the Assembler. 

The input/output operation defining format and subfields for types 00, 01, and 10 are as follows: 

op 
(bit positions 18-35) 

o 17 18 19 20 

op 
(bits 0~5) i 

25 26 27 28 29 30 31 33 34 35 

The input/output operation-defining format and subfields for type 11 are as follows: 

l_------- zeros op 
al B:3 a3 

ts 18-23) 

o 
17 18 19 20 25 26 27 28 31 33 34 35 

CPB-1004F 

187 



op--new operation code for bit positions 18-35 and 0-5 (or bit positions 18-23 for type 
11), see Appendix E 

a--address field conditions (O=not required; l=required) 
a 1: address required/not required 
a2: address required even 
a3: address required absolute 

i--type of input/output command (see Appendix E, I/O Command Formats) 
00: OP da, ca kkdacakkkkkk 
01: OP nn, da, ca kkdacakkkknn 
10: OP cc, da, ca kkdacakkcckk 
11: OP a, c aaaaaakkcccc 

p--see preceding normal instruction format 

Input/output operation types 00, 01, and 10 are the formats for the commands; type 11 is 
the format for a Data Control Word (DCW). 

As an example of the use of OPD to generate an input/output command (using the above 
format for the variable field and defining the bits according to the rules for VFD), assume 
one wanted to generate the extant command, Write Tape Binary (WTB--Appendix E). This 
could be written as 

WTB OPD 18/ ,02/3,06/15,10/0 

or in various other bit-oriented forms. 

OPSYN (Operation Synonym) 

1 

A sym­
bolor 
opera­
tion 
code 

8 

10PSYN 
I 
I 
I 
I 

16 32 

: A mnemonic operation code in the 
I variable field. 

I 
I 

The OPSYN pseudo-operation is used for equating either a newly defined symbol or a 
presently defined operation to some operation code already in the operation table of the 
Assembler. The operation code may have been defined by a prior OPD or OPSYN pseudo­
operation; in any case, it must be in the Assembler operation table. The new symbol to 
be defined is entered in the location field and the operation code that must be in the 
Assembler operation table is entered in the variable field. The new symbol must be 
defined (and so entered into the operation table) by the OPSYN pseudo-operation code before 
it is used as an operation code. 

REFMA ON/OFF (Reference Macros) 

1 2 
I 
: Blanks 
I 

8 
I 

IREFMA 
I 

, 
I 

16 

: OFF 
I 

32 

Normal Mode 

The use of the REFMA ON psuedo-operation causes the Assembler to create a separate 
symbol reference table for MACRO's. Each entry of this table consists of a MACRO 
name and the alter number(s) at which the name is referenced. If a MACRO is present 
but not referenced, it will not appear in the table. 

188 

CPB-I004F' 
Rev. July 1969 



For a MACRO to be referenced, REFMA ON must be specified prior to defining the MACRO. 
However, s.ince the GMAP MACRO's are loaded automatically by the Assembler before this 
pseudo-operation appears, the LODM pseudo-operation must be used to load these MACRO's 
again if it is required to reference them. REFMA OFF causes the Assembler to stop refer­
encing MACRO's. 

Examples 

1. To reference GECOS System MACROS: 

REFMA 
LODM 

ON 
.G3MAC 

All MACRO's under the name . G3MAC will be referenced until REFMA OFF is 
encountered. 

2. To reference GMAP System MACROS: 

REFMA 
LODM 

-'ON 
.JMAC 

All MACRO's under the name .JMAC (GMAP MACRO's) will be referenced until 
REFMA OFF is encountered. 

3. To reference program MACROS: 

REFMA ON 
SPLL MACRO 

#1 1,DU 
STA #3 
LDQ O,DU 
ENDM 

The symbolic name of the macro (in the location field of the MACRO identification) must 
be unique for the program in which the REFMA pseudo-operation is used. The use of this 
name in the location field at any other instruction, pseudo-operation, or macro-operation 
will result in a multidefined symbol error. 

Location Counter Pseudo-Operations 

USE (Use Multiple Location Counters) 
1 8 16 32 

Blanks I USE: I A single symbol, blanks, or the word 
I I I PRE VIOUS in the variable field 
I I I 

The Assembt'er provides the ability to employ multiple location counters via the USE pseudo-
operation. The use of this pseudo-operation causes the Assembler to place succeeding 
instructions under control of the location counter represented by the symbol in the variable 

188.1 

CPB-1004F 
Rev. July 1969 



field. Each location counter begins with the value of zero, and its size is determined as 
being the highest value assumed by it (that is, occupied by some instruction assembled 
under it). This is not always the last instruction under the USE, as an ORG may have 
occurred within it. At the completion of the first pass through the symbolic program, the 
length of each USE will be a known value, and the order of their memory allocation will be 
implied by the order of their first presentation to the Assembler. Thus, the origin of each 
location counter may be computed based on the origin and size of the one preceding it. There 
is an assumed location counter, called the blank USE, implied in all assemblies, which has 
a natural origin of zero. 

Automatic determination of a counter ongm may be overridden with the BEGIN pseudo­
operation. In this case, the chain of location counters will be made, completely ignoring 
those counters which had an associated BEGIN. In more general terms, then, the origin 
of a non-begin location counter is taken as one more than the highest value taken by the 
next prior non-begin counter. The first of these non-begin counters has an origin of zero, 
by definition. The location counter which is in control at the time that a USE is encountered 
is suspended at its current value and is preserved as the PREVIOUS counter. It may be 
called back into operation at any later point in the program without confusion as to its 
current state, and will begin counting at the address which is one higher than the last 
location used under it. 

If the word PREVIOUS appears in the variable field, the Assembler reactivates the location 
counter which appeared just before the present one. It is not possible to go back more than 
one level via the USE PREVIOUS command, as the one in control when the USE PREVIOUS 
is encountered is made previous. 

BEGIN (Origin of a Location Counter) 
1 8 16 

Blanks : BE GIN 

I 
I 
I 

32 

: Two subfields in the variable field 

I 
I 

The BEGIN pseudo-operation is used to arbitarily specify the origin of a given location 
counter. As such, it will not be tied into the chain of location counters as described in 
USE. Its origin, however, may be an expression involving some symbol or symbols defined 
under another location counter, in which case it will be linked to the chain at the specified 
point. The user must beware of overlaying code with this pseudo-operation. It is primarily 
intended for the more sophisticated user. Under normal programming circumstances its 
power is not needed. 

The location counter symbol is specified in the first subfield and is given the value specified 
by the expression found in the second subfield. Any symbol appearing in the second subfield 
must have been previously defined and must appear under one loc~tion counter. The BEGIN 
pseudo-operation may appear anywhere in the deck. It does not invoke the counter, however. 
A USE must be given to bring a location counter into effect. 

CPB-I004F 

189 



ORG (Origin Set by Programmer) 

8 16 

Blanks ORG 
I 
I 

or a I symbol 
I 
I 

32 

: An expression in the variable field 

I 
I 
I 

The ORG pseudo-operation is used by the programmer to change the next value of a counter, 
normally assigned by the Assembler, to a desired value. If ORG is not used by the pro­
grammer, the counter is initially set to zero. 

All symbols appearing in the variable field must have been previously defined. If a symbol 
appears in the location field, it is assigned the value of the variable field. If the result of 
the evaluation of a variable field expression is absolute, the instruction counter will be 
reset to the specified value relative to the current location counter. If an expression result 
is relocatable, the current location counter will be suspended, and the counter to which 
the expression is relocated will be invoked with the value given by the expression. 

LOC (Location of Output Text) 
1 8 16 

Blanks I LOC 
I 
I 
I 
I 

32 

An expression in the variable field 

The LOC pseudo-operation functions identically to the ORG pseudo-operation, with one 
exception; it has no effect on the loading address when the Assembler is punching binary 
text. That is, the value of the location counter will be changed to that given by the variable 
field expression, but the loading will continue to be consecutive. This provides a means of 
assembling code in one area of memory while its execution will occur at some other area 
of memory. 

All symbols appearing in the variable field of this pseudo-operation must have been pre­
viously defined. 

The sole purpose of this pseudo-operation is to allow program coding to be loaded in one 
section of memory and then to be subsequently moved to another section for execution. 

Symbol-Defining Pseudo-Operations 

Increased facility in program writing frequently can be realized by the ability to define 
symbols to the Assembler by means other than their appearance in the location field of an 
instruction or by using a generative pseudo-operation. Such a symbol definition capability 
is used for (1) equating symbols, or (2) defining parameters used frequently by the program 
but which are subject to change. The symbol-defining pseudo-operations serve these and 
other purposes. 

It should be noted that they do not generate any machine instructions or data but are available 
merely for the convenience of the programmer. 

CPB-I004F 

190 



EQU (Equal To) 

1 8 16 32 

Symbol EQU 
, 
I An expression in the variable field 

I 
I 
I 

The purpose of the EQU pseudo-operation is to define the symbol in the location field to 
have the value of the expression appearing in the variable field. The symbol in the location 
field will assume the same mode as that of the expression in the variable field, that is, 
absolute or relocatable. (See Relocatable and Absolute Expressions.) 

All symbols appearing in the variable field must have been previously defined and must fall 
under the same location counter. SYMDEF or SYMREF symbols cannot appear in the 
variable field. 

If the asterisk (*) appears in the variable field denoting the current location counter value, 
it will be given the value of the next sequential location not yet assigned by the Assembler 
with respect to the unique location counter presently in effect. 

FEQU (Special FORTRAN Equivalence) 

1 8 16 32 
~------~I--------·I---------------~'· .----------------

Symbol I FEQU I I A symbol in the variable field 
I I I 
I I I 
I I I 

The purpose of the FEQU pseudo-operation is to equate the symbol in the location field with 
the symbol in the variable field, the latter of which is as yet undefined. It was initially imple­
mented to allow the FORTRAN IV compiler of the GE-600 Series software to generate more 
efficient code in certain cases where the value of a certain symbol was not immediately 
known. It was known that it would be defined before the compilation was complete, and as 
such, offers one advantage over the EQUpseudo-operations though it does carry restrictions 
as well. 

The most stringent restriction is that the variable field may not contain an expression. 
Secondly, the symbol in the variable field may not subsequently appear in either field of 
another FEQU pseudo-operation. A third restriction is that if HEAD characters are in 
effect, both symbols (or neither symbol) must be able to be headed. 

As implemented, both symbols are essentially held in abeyance until the variable field 
symbol is defined. At that point, both symbols take on the same value and characteristics, 
and are available for normal functions. 

It should be noted that the symbol in the variable field does not have to be undefined. Nor 
does it have to be a symbol. It could be a number, or the current location counter value 
symbol (*). However, in these cases FEQU acts just as EQU, and the location symbol will 
be immediately defined with the indicated value. 

CPB ... I004F 

191 



BOOL (Boolean) 

1 8 

Symbol BOOL 

16 32 
I 
I A Boolean expression in the variable field 
I 
I 
I 

The BOOL pseudo-operation defines a constant of 18 bits and is similar to EQU except 
that the evaluation of the expression in the variable field is done assuming Boolean operators. 
By definition, all integral values are assumed in octal and are considered to be in error 
otherwise. The symbol in the location field will always be absolute, and the presence of any 
expression other than an absolute one in the variable field will be considered an error. 
(See Relocatable and Absolute Expressions.) 

All symbols appearing in the variable field must have been previously defined. 

SET (Symbol RedElfinition) 

1 8 16 32 
I 

Symbol I SET 
I 
I An expression in the variable field 

I I 
I I 
I I 

The SET pseudo·-operation permits the redefinition of a symbol previously defined to the 
Assembler. This ability is useful in Macro expansions where it may be undesirable to use 
created symbols (CRSM). 

All symbols entered in the variable field must have been previously defined and must fall 
under the same location counter. SYMDEF or SYMREF symbols cannot be used in the 
variable field. 

The symbol in the location field is given the value of the expression in the variable field. 
The SET pseudo-operation may not be used to define or redefine a relocatable symbol. 
(See Relocatable and Absolute Expressions.) 

When the symbol occurring in the location field has been previously defined by a means 
other than a previous SET, the current SET pseudo-operation will be ignored and flagged 
as an error. 

The last value assigned to a symbol by SET affects only subsequent in-line coding instruc­
tions using the redefined symbol. 

CPB-I004F 

192 



MIN (Minimum) 

1 8 

Symbol: MIN 

I 
I 
I 

16 32 

A sequence of expre ssions, separated by 
commas, in the variable field -- all of the 
same type; that is, relocatable or absolute 

The MIN pseudo-operation defines the symbol in the location field as having the minimum 
value among the various values of all relocatable or all absolute expressions contained in 
the variable field. 

All symbols appearing in the variable field must have been previously defined and must 
fall under the same location counter. SYMDEF or SYMREF symbols cannot be used in the 
variable field. 

MAX (Maximum) 

The MAX pseudo-operation is coded in the same format as MIN above. It defines the symbol 
in the location field as having the maximum value of the various expressions contained in 
the variable field. 

All symbols appearing in the variable field must have been previously defined and must 
fall under the same location counter. SYMDEF or SYMREF symbols cannot be used in the 
variable field. 

SYMDEF (Symbol Definition) 
1 8 16 

Blanks SYMDEF 

32 
I ,--------------
I Symbols separated by commas in the 
I variable field 

I 
I 

The SYMDE F pseudo-operation is used to identify symbols which appear in the location 
field of a subprogram when these symbols are referred to from outside the subprogram (by 
SYMREF). Also, the programmer must provide a unique SYMDEF for use by the Loader to 
denote each subprogram entry point for the loading operations. The symbols used in the 
variable field of a SYMDEF instruction will be called SYMDEF symbols. Multiple defined 
SYMDEF symbols cannot occur since the Assembler ignores the current definition if it 
finds the same symbol previously entered in the SYMDEF table. 

The appearance of a symbol in the variable field of a SYMDEF instruction indicates that: 

1. The symbol must appear in the location field of only one of the instructions within 
the subroutine in which SYMDEF occurs. 

2. The Assembler will place each such SYMDEF symbol along with its relative 
address in the preface card. 

3. At load time, the Loader will form a table of SYMDEF symbols to be used for 
linkage with SYMRE F symbols. 

CPB ... I004F 

193 



It is possible to classify SYMDEF symbols as primary and secondary. A secondary SYMDEF 
symbol is denoted by a minus sign in front of the symbol. The Loader will provide linkage 
for a secondary SYMDEF symbol only after linkage has been required to a primary SYMDEF 
within the same subprogram. The use of secondary SYMDEF symbols is intended for pro­
grammers who are specifically concerned with using the system subroutine library and 
generating routines for accessing the library. Secondary SYMDEF symbols are normally 
thought of as secondary entries to subroutines contained within a subprogram library package 
that will be used as an entire package. (The use of primary and secondary SYMDEF symbols 
is further described in the General Loader--GELOAD--manual.) 

SYMREF (Symbol Reference) 

1 8 16 
I 

Blanks SYMRE F J 

I 
I 
J 

32 

J 
I A sequence of symbols separated by commas 
I entered in the variable field 

I 
J 

The SYMREF pseudo-operation is used to denote symbols which are used in the variable 
field of a subprogram but are defined in a location field external to the subprogram. Symbols 
used in the variable field of a SYMREF instruction will be called SYMREF symbols. 

When a symbol appears in the variable field of a SYMRE F instruction, the following items 
apply: 

1. The symbol should occur in the variable field of at least one instruction within the 
subroutine. 

2. At assembly time the Assembler will enter the SYMREF symbol in the preface card 
of the assembled deck and place a special entry number (page 230) in the variable 
fields of all instructions in the referenced subroutine which contain the symbol. 

3. At load time the Loader will associate the SYMREF symbol with a corresponding 
SYMDEF symbol and place the appropriate address in all instructions that have been 
given the special entry number. 

Symbols appearing in the variable field of a SYMDEF instruction must not appear in the loca­
tion field of any instruction within the subroutine in which SYMREF is used. 

EXAMPLE OF SYMDEF AND SYMREF PSEUDO-OPERATIONS 

Base Program or SubErogram Referencing Subprogram 

SYMDEF ATAN,ATAN2 SYMREF ATAN,ATAN2 
ATAN2 STC2 INDIC 
ATANS SAVE 0,1 

SZN INDIC 
TZE START POLYX FLD X 

ATAN STZ INDIC TSXl ATAN 
TRA ATANS 

TSXl ATAN2 

CPB-I004F 

194 



NULL (Null) 

1 8 16 32 
r-------~I--------~I----------------~I ------------------------------

Symbol I NULL I I The variable field is not interpreted. 
I I I 
I I I 
I I I 

The NULL pseudo-operation acts as an Nap machine instruction to the Assembler in that 
no actual words are assembled. A symbol on a NULL will be defined as current value of 
the location counter. 

EVEN (Force Location Counter Even) 

1 8 16 
I 

Symbol I EVEN I 
or I I 
blanks I I 

I I 

32 
I 
I The variable field is not interpreted 
I 
I 
I 

The EVEN pseudo-operation accomplishes the same end result as the .E.,.in column 7. 
If the location counter is odd, a Nap i.s generated, thereby making it even. If there is a 
symbol in the location field it will be defined at the even address. 

anD (Force Location Counter Odd) 

1 

or 
blanks 

'

Symbol 

8 

'onD I 
I 
I 
I 

16 
I 

I 
1 
I 
I 

32 

: The variable field is not interpreted 

I 
I , 

The ODn pseudo-operation acts as if an.Q. has been punched in column 7. If the location 
counter is even, a Nap is generated, thereby making it odd. If there is a symbol in the 
location field it will be defined at the odd address. 

CPB-I004F' 

195 



I 

EIGHT (Force Location Counter to a Multiple of 8) 

1 8 l6 32 
J 

Symbol 
or 
blanks 

: EIGHT 

I 

I The variable field is not interpreted 

I 
I 

I 
I 
I 

The EIGHT pseudo-operation behaves as an J!. punched in column 7. If the location counter 
is not a multiple of 8, a TRA *+n is generated, where the value of *+n is the next location 
which is a multiple of 8, and the location counter is bumped by n. If there is a symbol in 
the location field it will be defined at the mod-8 address. 

NOTE: In each of the 3 pseudo-operations, (EVEN, ODD, and EIGHT) the origin of the 
location counter will also be forced to a related address. For EVEN and ODD, it will be 
forced even, and for EIGHT, it will be forced to a multiple of eight. 

Data Generating Pseudo-Operations 

The Assembler language provides six pseudo-operations which can be used to generate 
data in the program at the time of assembly. These are BCI, OCT, DEC, ASCII, UASCI 
and VFD. The first five, BCI, OCT, ASCII, UASCI and DEC, are word-oriented while VFD 
is bit-oriented. There exists a fifth pseudo-operation, DUP, Which in itself does not generate 
data, but through its repeat capability causes symbolic instruction and pseudo-operations 
to be iterated. 

OCT (Octal) 

1 8 16 32 
~--------~--------~I------------------~I' --------------.-------------------

Symbol I OCT I lOne or more subflelds separated by 
or I I I com mas appearing in the variable field, 
blanks I I I each one containing a signed or unsigned 

I ~ I octal integer. 

The OCT pseudo-operation is used to introduce data in octal integer notation into an 
assembled program. The OCT pseudo-operation causes the Assembler to generate n 
locations of OCT data where the variable field contains n subfields (n-1 commas). Con­
secutive commas in the variable field cause the generation of a zero data word, as does a 
comma followed by a terminal blank. Up to 12 octal digits plus the leading sign may make 
up the octal number. 

The OCT configuration is considered true and will not be complemented on negatively signed 
numbers. The sign applies only to bit O. All assembly program numbers are right- justified, 
retaining the integer form. 

196 

CPB ... I004F 
Rev. July 1969 



EXAMPLE OF OCT PSEUDO-OPERATION 

OCT 1,-4,7701,+3,,-77731,04 

If the current location counter were set at 506, the above would be printed out as follows 
(less the column headings): 

Location Contents 

000506 000000000001 
000507 400000000004 
000510 000000007701 
000511 000000000003 
000512 000000000000 
000513 400000077731 
000514 000000000004 

DEC (Decimal) 

1 8 16 

Symbol DEC 
or 
blanks 

Relocation 

000 OCT 1,-4,7701,+3, ,-77731,OL1 
000 
000 
000 
000 
000 
000 

32 

: One or more subfields in th8 variable 
I field, separated by com mas, each 
I containing a decimal entry. 

I 

The Assembler language provides four types of decimal information which the programmer 
may specify for conversion to binary data to be assembled. The various types are uniquely 
defined by the syntax of the individual subfields of the DEC pseudo-operation. The basic types 
are single-precision, fixed-point numbers; single-precision, floating-point numbers; double­
precision fixed point number. All fix,ed-point numbers are right-justified in the assembly 
binary words; floating-point numbers are left-justified to bit position eight with the binary 
point between pOSitions 0 and 1 of the mantissa. (The rules for forming these numbers 
are described under Decimal Literals, page 160.) 

EXAMPLES OF SINGLE-PRECISION DEC PSEUDO-OPERATION 

GAMMA DEC 3,-,1,6. ,.2E1, 1B27, 1.2E1B32,-4 

The above would print out the following data words (without column headings), assuming 
that GAMMA is located at 1041. 

Location 

001041 

001042 
001043 
001044 
001045 
001046 
001047 

Contents 

000000000003 

777777777777 
006600000000 
004400000000 
000000000400 
000000000140 
777777777774 

Relocation 

197 

000 

000 
000 
000 
000 
000 
000 

GAMMA DEC 3, -1, 6., • 2E1, 1B27, 
1. 2El 832, -4 

CPB-I004F 



The presence of the decimal point and/or the E scale factor implies floating-point, while the 
added B (binary scale) implies fixed-point binary numbers. The absence of all of these ele­
ments implies integers. Several more examples follow (see decimal literals for further 
explanation) : 

DEC -lB17,-1.,1000 

With the location counter at 1050, the above would generate: 

Location 

001050 
001051 
001052 

Contents 

777777000000 
001000000000 
000000001750 

Relocation 

000 
000 
000 

DEC -1B17,-1.,1000 

J~XAMPLE OF DOUBLE-PRECISION DEC PSEUDO-OPERATION 

BETA DEC . 3DO,0. DO, 1. 2D1B68, 10-1 

The location counter is at the address BETA (1060); the above subfields generate the follow­
ing double words: 

Location 
001060 

001061 
001062 
001063 
001064 
001065 
001066 
001067 

Contents 
776463146314 

631463146314 
400000000000 
000000000000 
000000000000 
000000000140 
'772631463146 
314631463146 

BCI (Binary Coded Decimal Information) 

1 8 16 

Symbol I Bel 
, 

I , 
or I , 
blanks I I , I 

Relocation 
000 

000 
000 
000 
000 
000 
000 
000 

32 

BETA DEC .300,0.00, 
1. 2D1B68, 10-1 

----------------------------------
: Two subfields in the variable field: a 
I count subfield and a data subfield , 
I 

The BCI pseudo-operation is used by the programmer to enter binary-coded decimal (BCD) 
character information into a program. 

The first subfield is numeric and contains a count that determines the length of the data 
subfield. The count specifies the number of 6-character machine words to be generated; thus, 
if the count field contains n, the data subfield contains 6n characters of data. The maximum 
value which n can be is 9. The minimum value for n is 1. 

The second subfield contains the BCD characters, six per machine word. 

CPB-I004F 

198 



EXAMPLE OF BCI PSEUDO-OPERATION 

BETA BCI 3,NO ERROR CONDITION 

Again assume the location counter set at 506 (location of BETA); the above would print 
out (less column headings): 

Location Contents 

000506 454620255151 

000507 465120234645 

000510 243163314645 

Relocation 

000 

000 

000 

BETA BCI 3,NO ERROR 
CONDITION 

ASCII, UASCI (ASCII Coded Information) 

1 8 
t 

Symbol I ASCII 
or • or 

Blanks ~ U ASCI 
t 

16 32 

Two subfields in the variable field: a 
count subfield and a data subfield. 

The ASCII and UASCI pseudo-operations are used by the programmer to enter lower case 
(ASCII pseudo-operation) and upper case ASCII character information into a program. 

Appendix F contains the standard GE-625/635 conversion character set and the code gen­
erated by these pseudo-operations. 

The first subfield is numeric and contains a count that determines the length of the data 
subfield. This count specifies the number of 4-character machine words to be generated. 
If the count is n, the data field contains 4 n characters. The maximum value for n is 14 
and the minimum is 1. 

The second subfield contains the ASCII characters, four per machine word. 

EXAMPLE OF ASCII PSEUDO-OP.ERATION 

BET A ASCII 2, NO ERROR 

Again assume the location counter set at 506 (location of BETA); the above would print out 
(less column headlings): 

Location 

000506 
000507 

Contents 

156157040145 
162162157162 

199 

Relocation 

000 
000 

BETA ASCII 2, 
NO ERROR 

CPB-I004 F 
Rev. October 1968 



VFD (Variable Field Definition) 

1 8 16 

Symbol VFD 
I 
I or I blanks I 
I 

32 

lOne or more subfields in the variable 
I field separated by commas. 

I 
I 

The VFD pseudo .. operation is used for generation of data where it is essential to define the 
data word in terms of individual bits. It is used to specify by bit count certain information 
to be packed into words. 

In considering the definition of a subfield, it is understood that the unit of information is a 
single bit (in contrast with the unit of information in the BCI pseudo-operation which is 
six bits). Each VFD subfield is one of three types: an algebraic expression, a Boolean 
expression, or alphanumeric (H or R). Each subfield contains a conversion type indicator 
and a bit count, the maximum value of which is 36. The bit count is an unsigned integer 
which defines the length of the subfield; it is separated from the data subfield by a slash 
(/). If the bit count is immediately preceded by an 0 or H, the variable-length data subfield 
is either Boolean or alphanumeric, respectively. In the absence of both the type indicators, 
o and H, the data subfield is an algebraic field. A Boolean subfield contains an expression 
that is evaluated using the Boolean operators (*,/,+,-). 

R is an alphanumeric indicator which specifies right adjustment of the argument. Unused 
bit positions are zero filled. R can be used only in a VFD pseudo operation. 

The data subfield is evaluated according to its form: algebraic, Boolean, or alphanumeric. 
A 36-bit field results. The low-order n bits of the algebraic or Boolean expression deter­
mine the resultant field value; whereas for the alphanumeric subfield the high-order n 
bits are used for H, and low-order n bits are used for R. 

If the required subfields cannot be contained on one card, they must be continued by the use 
of the ETC pseudo-operation. This is done by terminating the variable field of the VFD 
pseudo-operation with a comma. The next subfield is then given as the beginning expression 
in the variable field of an ETC card. If necessary, subsequent subfields may be continued 
onto following ETC cards in the same manner. Except for the H type alphanumeric, the I 
scanning of the variable field is terminated upon encountering the first blank character. 

199.1 CPB-1004 F 
Rev. July 1969 



The VFD may generate more than one machine word; if the sum of the bit counts is not a 
multiple of a discrete machine word, the last partial string of bits will be left-justified and 
the word completed with zeros. 

EXAMPLES OF VFD PSEUDO-OPERATION 

Assume one would like to have the address ALPHA packed in the first 18 bits of a word, 
decimal 3 in the next 6 bits, the literal letter B in the next 6 bits, and an octal 77 in the 
last 6 bits. One could easily define it as follows: 

VFD 18/ ALPHA,6/3,H6/B,06/77 

With the location countt::r at 1053 and the location 7318 assigned for ALPHA, this would 
print out (without column headings): 

Location Contents Relocation 

001053 000731032277 000 VFD 18/ ALPHA,6/3,H6/B,06/77 

NOTE: Relocation digits 000 refer to binary code data for A, BC, and DE of the relocation 
scheme. (Page 229 . ) 

If ALPHA had been a program relocatable element, the relocation bits would have been 
010; that is, the relocation scheme would have specified the left half of the word as contain­
ing a relocatable address. The relocation is only assigned if the programmer specifies 
a field width of 18 bits and has it left- or right-justified; III all other cases the fields are 
considered absolute. The total number of bits under a VF D need not be a multiple of full 
words nor is the total field (sum of all subfields) restricted to one word. The total field 
width, however, for a single subfield is 36 bits. 

Consider a program situation where one wishes to generate a three-word identifier for a 
table. Assume n is the word length of the table and is equal to 12. You wish to place twice 
the length of the table in the first 12 bits, the name of the table in the next 60 bits, the 
location of the table (where TABLE is a program relocatable symbol equal to 23518) in the 
next 18 bits, zero in the next 8 bits, and -1 in the next 6 bits--all in a three-word key. 

With the location counter at 1054. 

VFD 12/2*12,H36/PRESSU,H24/RE, 18/TABLE,8/ ,6/-1 

will generate 

Location Contents Relocation 

001054 003047512562 000 

001055 626451252020 000 

001056 002351001760 010 

where 010 specifies the relocatability of TABLE. 

200 

VFD 12/2*12,H36/PRESSU,H24 
/RE,18/TABLE,8/,6/-1 

CPB ... I004F 



DUP (Duplicate Cards) 

1 

Symbol 
or 
blanks 

8 
I 
I DUP 
I 
I 
I 

16 32 

: Two subfields in the variable field, 
I separated by a com rna 

I 

The DUP pseudo-operation provides the programmer with an easy means of generating 
tables and/or data. It causes the Assembler to duplicate a sequence (range) of instructions 
or pseudo-operations a specified number of times. 

The first subfield in the variable field is an absolute expression which defines the count. The 
value of the count field specifies the number of cards, following the DUP pseudo-operation, 
that are included in the group to be duplicated. The value in the count field must be a 
decimal integer less than or equal to ten. 

The second subfield of the pseudo-operation is an absolute expression which specifies the 
number of iterations. The value in the iteration field specifies the number of times the 
group of cards, following the DUP pseudo-operation, is to be duplicated. This value can 
be any positive integer less than 218_1. The groups of duplicated cards appear in the 
assembled listing immediately behind the original group. 

If either the count field or the iteration field contains 0 (zero) or is null, the DUP pseudo­
operation will be ignored. 

If a symbol appears in the location field of the pseudo-operation, it is given the address of 
the next location to be assigned by the Assembler. 

If an odd/even address is specified for an instruction within the range of a DUP pseudo­
operation, the instruction will be placed in odd/even address and a filler used when needed. 
The filler will be an NOP instruction. 

All symbols appearing in the variable field of the DUP pseudo-operation must have been 
previously defined. Any symbols appearing in the location field of the instructions being 
duplicated are defined only on the first iteration, thus avoiding multiply-defined symbols. 
SET would of course be the exception to this rule. 

The only instructions or pseudo-operations which may not appear in the range of a DUP 
instruction are END, MACRO, and DUP. ETC may not appear as the first card after the 
range of a DUP. 

Storage Allocation Pseudo-Operations 

These pseudo-operations are used to reserve specified core memory storage areas within 
the coding sequence of a program for use as storage areas or work areas. 

CPB .. I004F 

201 



BSS (Block Started by Symbol) 

1 

Symbol 
or 
blanks 

8 

I BSS 
I 
I 
I 
I 

16 32 
I 
I A permissible expression in the variable 
I field defines the amount of storage to be 
I reserved. 

I 

The BSS pseudo-operation is used by the programmer to reserve an area of memory within 
his assembled program for working and for data storage. The variable field contains an 
expression that specifies the number of locations the Assembler must reserve in the program. 

If a symbol is entered in the location field, it is assigned the value of the first location in the 
block of reserved storage. If the expression in the variable field contains symbols, they must 
have been previously defined and must yield an absolute result. No binary cards are gener­
ated by this pseudo-operation. 

BFS (Block Followed by Symbol) 

1 8 16 

Symbol BFS 
I 
I or I blanks 
I 
I 

32 

: A permissible expression in the variable 
I field defines the amount of storage to be 
I reserved 

I 

The BFS pseudo-operation is identical to BSS with one exception. If a symbol appears in the 
location field, it is assigned the value of the first location after the block of reserved storage 
has been assigned. 

BLOCK (Block Common) 
1 8 16 

I 
Blanks BLOCK I 

I 
I 
I 

32 

: A symbol in the variable field 

I 
I 
I 

The purpose of the BLOCK pseudo-operation is to specify that program data following 
the BLOCK entry is to be assembled in the LABELED COMMON region of the user program 
under the symbol appearing in the variable field. BLOCK is, in effect, another location 
counter external to the text of the program. 

The symbol in the variable field specifies the label of the COMMON area to be assembled. 
If the variable field is left blank, the normal FORTRAN BLANK COMMON is specified; and 
data following the BLOCK pseudo-operation will be assembled relative to the unlabeled 
(BLANK COMMON) memory area of the user program. It is not possible to assemble data 
or instructions into BLANK COMMON. Storage labeling and reservation is all that is 
permitted. 

CPB-I004F 

202 



The pseudo-operations which take the program out of BLOCK mode and into some other 
mode are: 

1. BLOCK (for some other LABELED COMMON) 
2. USE 
3. ORG/LOC, where the value of the expression is relocatable 
4. END 

It should be noted that BLOCK does not cause the Assembler to make the current USE 
location counter PREVIOUS. As such, a USE PREVIOUS following a BLOCK will cause the 
location counter which was in effect prior to the last USE to be invoked. A maximum of 63 I 
labeled commons are permitted in a program. 

LIT (Literal Pool Origin) 

1 

Symbol 
or 
blanks 

8 
I 
I LIT 
I 
I 
I 

16 32 
I 
J Column 16 must be blank 
I 
I 
I 

The LIT pseudo-operation causes the Assembler to punch and print out all the previously 
developed literals. If the LIT instruction occurs in the middle of the program, the literals 
up to that point are output and printed out starting with the first available location after 
LIT; the literal pool is reinitialized as if the assembly had just begun. 

If there are literals remaining in the pool when the END card is encountered, the origin of 
the literal pool will be one location past the final word defined by the program. The maximum 
number of LIT pseudo-operations that can occur in a program is 63. 

Conditional Pseudo-Operations 

The pseudo-operations INE, IFE, IFL, and IFG, which follow, are useful within MACRO 
prototypes to add flexibility to variable-length or conditional expansions of the MACRO 
prototype. When used within a MACRO, the conditional pseudo-operation can only be used 
to affect cards within the MACRO itself. The use of these pseudo-operations, however, 
is not limited to MACRO's; they can be used elsewhere in coding a subprogram to effect 
conditional assembly of segments of the program. 

The programmer must avoid using noncomparable elements within these pseudo-operations. 
He must remember that the first comma encountered in the variable field is considered 
as separating the first subfield from the second subfield (the fields to be compared). 
Symbols used in the variable field will normally have been previously defined. On the other 
hand, one of the primary uses of conditionals is to test whether or not a symbol has been 
defined at a given point in an assembly. Consequently, undefined symbols within a condi­
tional are not flagged in the left margin of the listing. If the symbol is never defined 
within the assembly, the symbol will be listed as undefined at the end of the listing; if the 
symbol is defined later in the assembly, it is not listed as undefined 

203 

CPB .. I004F 
Rev. October 1968 



INE (If Not Equal) 

1 8 

Blanks INE 

16 
I 
I X, Y, n 

I 
I 
I 

32 
I 
I Two or three subfields in the variable 
I field 
I 
I 

The INE pseudo-operation provides for conditional assembly of the next n cards depending 
on the relationship of the first two subfields of the variable field. The value of the ex­
pression in the first subfield is compared to the value of the expression in the second 
subfield. If they are not equivalent, the next n cards are assembled, where n is specified 
in the third subfield; otherWise, the next n cards are bypassed, resumption beginning at 
the (n+1)th card. If the third subfield is not present, n is assumed to be one. 

Two types of comparisons are possible in the subfields of the INE pseudo-operation. The 
first is an algebraic comparison after the expression has been evaluated The second 
is alphanumeric comparison and the relation is the collating sequence. Alphanumeric 
strings in the variable field of INE are denoted by placing the subfield within apostrophe 
marks. If either the first or second subfield is designated as an alphanumeric string, the 
other will automatically be classified as such. Each alphanumeric subfield is right justified 
(with zero fill) within a 12-character field before comparison is made. 

IFE (If Equal) 

1 8 
I 

Blanks I IFE 
I 
I , 

16 
I 
I X, Y, n 
1 
I 
I 

32 

: Two or three subfields in the variable 
I field 

I 

The IFE pseudo-operation provides for conditional assembly of the next n cards depending 
on the relationship of the first two subfields of the variable field The next n cards are 
assembled if and only if the expression or alphanumeric string in the first subfield is equal 
to the expression or alphanumeric string in the second subfield. If the compared subfields 
are not equal, the next n cards are bypassed. Resumption begins at card n+1. The n is 
specified in the third subfield and is assumed to be one if not present. 

Two types of comparisons are possible in the subfields of the IFE pseudo-operation. The 
first is an algebraic comparison after the expression has been evaluated. The second is an 
alphanumeric comparison and the relation is the collating sequence. Alphanumeric strings 
in the variable field of IFE are denoted by placing the subfield within apostrophe marks. 
If either the first .or the second sUbfield is designated as an alphanumeric string, the other 
is automatically classified as such. Each alphanumeric subfield is right justified (with 
zero fill) within a 12- character field before comparison is made. 

IFL (If Less Than) 

1 8 

Blanks I IFL 
I 
I 
I 
I 

16 

X, Y, n 

32 

Two or three subfields in the variable field 

CPB-1004F 

204 



The IFL pseudo-operation provides for conditional assembly of the next n cards, depending 
on the value of the first two subfields of the variable field. The next n cards are assembled 
if and only if the expression or alphanumeric string in the first subfield is less than the 
expression or alphanumeric string in the second subfield. If the first subfield is not 
less, the next n cards are bypassed. Resumption begins at card n+1. The n is specified 
in the third subfield and is assumed to be one if not present. 

Two types of comparisons are possible in the subfields of the IFL pseudo-operation. The 
first is a straight numeric comparison after the expression has been evaluated. The second 
is an alphanumeric comparison, using the relation of the collating sequence. Alphanumeric 
strings in the variable field of IFL are denoted by placing the subfield within apostrophe 
marks. If either the first or second subfield is designated as an alphanumeric string, 
the other is automatically classified as such. Each alphanumeric subfield is right justified 
(with zero fill) within a 12- character field before comparison is made. 

IFG (If Greater Than) 
1 8 16 32 

Blanks IFG I I X, Y, n 
I 
I Two or three subfields in the variable field 

I I 
I I 

The IFG pseudo-operation provides for conditional assembly of the next n cards, depending 
on the value of the first two subfields of the variable field. The next n cards are assembled 
if and only if the expression or alphanumeric string in the first subfield is greater than 
the expression or alphanumeric string in the second subfield. If the first subfield is not 
greater, the next n cards are bypassed Resumption begins at card n+1. The n is specified 
in the third subfield and is assumed to be one if not present. 

Two types of comparisons are possible in the subfields of the IFG pseudo-operation. The 
first is a straight numeric comparison after the expression has been evaluated. The second 
is an alphanumeric comparison, using the relation of the collating sequence. Alphanumeric 
strings in the variable field of the IFG are denoted by placing the subfield within apostrophe 
marks. If either the first or the second subfield is deSignated as an alphanumeric string, 
the other is automatically classified as such. Each alphanumeric subfield is right justified 
(with zero fill) within a 12- character field before comparison is made. 

Special Word Formats 

ARG A, M (Argument--Generate Zero Operation Code Computer Word) 
1 8 16 32 

Symbol ARG 
I 
I Two subfields in the vari.able field 
I 
I 
I 

The use of ARG in the operation field causes the Assembler to generate a binary word with 
bit configuration in the general instruction format. The operation code 000 is placed in the 
operation field. The variable field is interpreted in the same manner as a standard machine 
instruction. 

NONOP (Undefined Operation) 

When an undefined operation is encountered, NONOP is looked up in the operation table and 
used in place of the undefined operation. NONOP is initially set as an error routine, but 
the programmer through the use of OPD, OPSYN OR MACRO may redefine NONOP to his 
own purpose. For example, NONOP could be redefined by the use of a MACRO to be a 
MME to GECHEK with a dump sequence, or it could be made equivalent to the ARG pseudo­
operation. 

CPB-I004F 

205 



ZERO B, C (Generate One Word With Two Specified 18-bit Fields) 

1 8 

Symbol ZERO 
or 
blanks 

16 32 

: Two subfields in the variable field 

I 
I 
I 

The pseudo-operation ZERO is provided primarily for the definition of values to be stored in 
either or both the high- or low-order 18-bit halves of a word. The Assembler will generate 
the binary word divided into the two 18-bit halves; bit positions 0-17 and 18-35. The equiv­
alent binary value of the expression in the first subfield will be in bit positions 0-17. The 
equivalent binary value of the expression in the second subfield will be in bit positions 
18-35. Literals are not allowed in the variable field of the ZERO pseudo-operation. 

MAXSZ (Maximum Size of Assembly) 

1 8 16 
I 

Blank MAXSZ I 
I 
I 
I 

32 
I 
I A decimal number in the variable field 
I 
I 
I 

The decimal number represents the programmer's estimate of the largest number of 
assembled instructions and data in his program or subprogram. The variable field number 
is evaluated, saved, and printed out at the end of the assembly listing. It can then be com­
pared with the actual size of the assembly. 

MAXSZ is provided as aprogrammer convenience and can be inserted anywhere in his coding. 

Address Tally Pseudo-Operations 

The Indirect then Tally (IT) type of address modification in several cases requires special 
word formats which are not instructions and do not follow the standard word format. The 
following pseudo-operations are for this purpose. (Refer to page 169 and following.) 

• TALLY A, T,C (Tally) Used for ID, DI, SC, and CI type of tally modification, where SC 
and CI are for 6 bit characters. The first subfield is the address for the indirect reference, 
T is the tally count, and C is the character position (0 s: C s: 5). When used with the CI 
modifier the contents of the tally count subfield (T) is not interpreted. 

• TALLYB A, T,B (Tally Byte) Used for SC and CI type of tally modification, where 9 
bit bytes (characters) are desired. A and T are the same as for TALLY and B indicates 
the byte position (0 s: B s: 3). 

• TALLYD A, T,D, (Tally and Delta) Used for Add Delta (AD) and Subtract Delta (SD) 
modification. A is the address, T the tally, and D the delta of incrementing. 

• TALLYC A, T,mod (Tally and Continue) Used for Address, Tally, and Continue. A is the 
address, T the tally count, and mod the address modification as specified under normal 
instructions. 

CPB-1004F 

206 



Repeat Instruction Coding Formats 

The Repeat (RPT), Repeat Double (RPD), and Repeat Link (RPL) machine instructions and 
variations of these instructions use special formats and have special tally, terminate 
repeat, and other conditions associated with them. The machine instructions describing 
these conditions appear on pages 134 through 1.44. There is no address modification for 
the repeat instructions (see pages 134 through 144), Address modifications for the repeated 
instructions are limited to Rand RI with designators specifying Xl, 0 • 0 .,X7, Index register 
zero is used to control terminate conditions and tally. The coding formats for this family 
of instructions are as follows: 

RPT N, I, kI, ka,o 0 0, k? The command generated by the Assembler from this format will 
cause the instruction immediately following the command to be iterated N times and that 
instruction's effective address to be incremented by the value I for each of N iterations. 
The range for N is 0-225. If N=O, the instruction will be iterated 256 times. If N is greater I 
than 256, the instruction will cause an error flag (A) to be produced in the assembly listing. 
The fields kl, ka, ... , k7 mayor may not be present. They represent conditions for termina-
tion which, when needed, are declared by the conditional transfer symbols TOV, TNC, 
TRC, TMI, TPL, TZE, and TNZ. These symbols affect the termination condition bits in 
positions 11 through 17 of the repeat instruction. 

It is also possible to use an octal number rather than the special symbols to denote termina­
tion conditions. Thus, if the field for kI, k 2 ,o 0 0, k? is found to be numeric, it will be 
interpreted as octal and the low order seven bits will be ORed into bit positions 11 through 
17 of the repeat instruction. The variable field scan will be terminated with the octal field. 

RPTX ,I This instruction behaves just as the RPT instruction with the exception that N 
and the conditions for termination are loaded by the programmer into bit positions 0 through 
7 and 11 through 17, respectively, ormdex register zero (mstead of embedded in the in­
struction). 

RPD N, I, kI, ka,. 0 ., k? The command generated by the Assembler from this format will 
cause the two instructions immediately following the RPD instruction to be iterated N 
times and the effective address of those two instructions to be incremented by the value 
I for each of N iterations. The meaning of kI, k2, • 0 ., k7 is the same as for the RPT 
instruction. Since the double repeat must fall in an odd location, the Assembler will force 
this condition and use a NOP instruction for a filler when needed. 

RPDX ,I This instruction behaves just as the RP D instruction with the exception that N 
and the conditions for termination are loaded by the programmer into the index register zero. 

RPDA N. I, kI, k2 ••• 0, k7 This instruction behaves just as the RPD instruction with the 
exception that only the effective address of the first instruction following the RPDA instruc­
tion will be incremented by the value of I for each of N iterations. 

RPDB N, I, kI, k a, •• o,k? This instruction behaves just as the RPD instruction with the 
excephon that only the effective address of the second instruction following the RPDB 
instruction will be incremented by the value I for each of N iterations. 

RPL N, kI, ka, 0 •• , k7 This format will cause the instruction immediately following it 
to be repeated N times or until one of the conditions specified in k 1, 0 • 0, k 7 is satisfied 
The address effectively used by the repeated instruction is the linked address described 
on pages 141 through 144. 

~ This instruction behaves just as the RPL instruction with the exception that Nand 
the conditions for termination are loaded by the programmer into index register zero. 

207 

CPB-I004F 
Rev. July 1969 



MACRO-OP ERATIONS 

Introduction 

Programming applications frequently involve (1) the coding of a repeated pattern of instruc­
tions that within themselves contain variable entries at each iteration of the pattern and (2) 
basic coding patterns subject to conditional assembly at each occurrence. The macro­
operation gives the programmer a shorthand notation for handling (1) and (2) through the use 
of a special type of pseudo-operation referred to in the GE-625/635 Macro Assembler as a 
MACRO. Having once determined the iterated pattern, the programmer can, within the 
MACRO, designate selectable fields of any instruction of the pattern as variable. Thereafter, 
by coding a single MACRO instruction, he can use the entire pattern as many times as needed, 
substituting different parameters for the selected subfields on each use. 

When he defines the iterated pattern, the programmer gives it a name, and this name then 
becomes the operation code of the MACRO instruction by which he subsequently uses the 
macro-operation. 

As a generative operation, the macro-operation causes n card images (where n is normally 
greater than one) to be generated; these may have substitutable arguments. The MACRO 
is known as the prototype or skeleton, and the card images that may be defined are relatively 
unrestricted as to type. 

They can be: 

1. Any Processor Instruction 
2. Almost any Assembler pseudo-operations 
3. Any previously defined macro-operation 

Card images of these types are subj ect to the same conditions and restrictions when generated 
by the macro processor as though they had been produced directly by the programmer as in­
line coding. 

To use the MACRO prototype, once named, the programmer enters the macro-operation code 
in the operation field and arguments in the variable field of the MACRO instruction. (The 
arguments comprise variable field subfields and refer directly to the argument pointers 
specified in the fields of the card images of the prototype.) By suitably selecting the argu­
ments in relation to their use in the prototype, the programmer causes the Assembler to pro­
duce in-line coding variations of the n card images defined within the prototype. 

The effect of a macro-operation is the same as an open subroutine in that it produces in­
line code to perform a predefined function. The in-line code is inserted in the normal flow 
of the program so that the generated instructions are executed in-line with the rest of the 
program each time the macro-operation is used. 

An important feature in specifying a prototype is the use of macro-operations within a given 
prototype. The Assembler processes such llnested" macro-operations at expansion time only. 
The nesting of one macro definition within another prototype is not permitted. If macro­
operation codes are arguments, they must be used in the operation field for recognition. 
Thus, the MACRO must be defined before its appearance as an argument; that is, the pro­
totype must be available to the Assembler before encountering a demand for its usage. 

CPB-l004F 

208 



Definition of the Prototype 

The definition of a MACRO prototype is made up of three parts: 

1. Creation of a heading card that assigns the prototype a name 
2. Generation of the prototype body ofn card images with their substitutable arguments 
3. Creation of a prototype termination card 

These parts are described in the following three paragraphs. 

MACRO (MACRO Identification) 
1 8 16 

Symbol : MACRO 

I 
I 
I 

32 

I Blanks in the variable field 

I 
I 

The MACRO pseudo-operation code is used to define a macro-operation by symbolic name. 
The symbol in the location field conforms to standard symbol formation rules and defines the 
name of a MACRO whose prototype is given on the next n lines. (The prototype definition 
continues until the Assembler encounters the proper ENDMpseudo-operation.) The name of 
the MACRO is a required entry. Ii the symbol is identical to an operation code already in 
the table, the macro-operation will be used as a new definition for that operation code. 
It is entered in the Assembler operation table with a pointer to its associated prototype that 
is entered in the MACRO prototype table. 

ENDM (End MACRO) 
1 8 

Blanks I E NDM 
I 
I 
I 

16 32 
I 
I A symbol in the variable field 
I 
I 
I 

The symbol in the variable field is the symbolic name of the MACRO instruction as defined 
in the location field of the corresponding MACRO heading card. Every MACRO prototype 
must contain both the terminal ENDM pseudo-operation and the MACRO pseudo-operation. 

Thus, every prototype will have the form 

Heading card { OPNAME MACRO 

Prototype body 

Terminal card ENDM OPNAME 

where OPNAME represents the prototype name that is placed in the Assembler operation 
table. 

CPB-I004F 

209 



• Prototype Body. The prototype body contains a sequence of standard source-card 
images (of the types listed earlier) that otherwise would be repeated frequently in the source 
program. Thus, for example, if the iterated coding pattern 

--r-r---

I LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS 
0 

1 2 618 _.-M ~~- 132 

: 
LDA 5,DL 
LDQ 13, DL 
~-----

CWL ALPHA, 2 

TZE FIRST 

: l 
: , 

1-------- 1---

1-------

LDA U 
1---.----

LDQ V 

CWL BETA, 4 J 
TZE SCND 

r 
~.----

: 
: 

LDA W+X 

LDQ Y+Z 

1----
CWL GAMMA 
TZE NEXTl ....... - - ..........I - -- - - -

appeared in a subprogram, it could be represented by the following prototype body (preceded 
by the required prototype name): 

1 8 16 
~-----:-

CMPAR: MACRO : 
I LDA I 

LDQ 
I CWL I 
I TZE I 

ENDM 

#1 
#2 
#3 
#4 
CMPAR-

32 ------------------------------
: MACRO prototype with substitutable 
I arguments in the variable field 

I 
I 

CPB-1004F 

210 

I 



Then the previous coding examples could be represented by the macro-operation CMPAR as 
follows: 

CMPAR (5, DL), (13, DL), (ALPHA, 2), FIRST 

CMPAR U, V,(BETA,4),SCND 

CMPAR W+X, Y+Z,GAMMA,NEXT1 

The Assembler recognizes substitutable arguments by the presence of the number-sign 
identifer (#). Having sensed this identifier, it examines the next one or two digits. (Sixty­
three is the maximum number of arguments usable in a single prototype.) 

MACRO prototype arguments can appear in the location field, in the operation field, in the 
variable field, and coincidentally in combinations of these fields within a single card image. 
Substitutions that can be made in these fields are: 

1. Location field--any permissible location symbol (see comments below) 

2. Operation field--all machine instructions, all pseudo-operations (except the MACRO 
pseudo-operation) and previously defined macro operations 

3. Variable field--any allowable expression followed by an admissible modifier tag and 
separated from the expression by a delimiting comma. 

In general, anything appearing to the right of the first blank in the variable field will not be 
copied into the generated card image. For example, a substitutable argument appearing in the 
comments field of a card image--that is, separated from the variable field by one or more I 
blanks--willnotbe interpreted by the Assembler (exceptin the case of the ASCII, BCI, REM, 
TTL, TTLS, and UASCI pseudo-operations). This means that only pertinent information 
in the location, operation and variable fields is recognized, that internal blanks are not 
allowed in these fields, and that the first blank in these fields causes field termination. 

When specifying a symbol in a location field of an instruction within a prototype the pro­
grammer must be aware that this MACRO can be used only once since on the second use the 
same symbol will be redefined, causing a multiple-defined symbol. Consequently, the use of 
location symbols within the prototype is discouraged. Alternatively, for cases where repeated 
use of a prototype is necessary, two techniques are available: (1) use of Created Symbols and 
(2) placement of substitutable argument in the location field and use of a unique symbol in 
the argument of the macro operation each time the prototype is used. These techniques are 
described under Using a MACRO operation, on the following page. 

The location field, operation field, and variable field may contain text and arguments which 
can be linked by simply entering the substitutable argument (for example, AB#3) directly in 
the text with no blanks or special symbols preceding or following the entry. Linking is 
especially useful in the operation field and in the partial subfields of the variable field. 
(Refer to the discussion of ASCII, BCI, REM, TTL, TTLS, and UASel immediately following.) I 
As an example of the first use, consider a machine instruction such as LD(R) where R 
can assume the deSignators A, Q, AQ, and XO-X7. 

211 

CPB-1004F 
Rev. October 1968 



The prototype NAME 

NAME MACRO 

LD#2 
A,#l 

ENDM NAME 

contains a partial operation field argument; and when the in-line coding is generated, LD#2 
becomes LDA, LDQ, etc., as designated by the argument used in the macro operation. 

I The ASCII, BCI, REM, TTL, TTLS, and UASCI pseudo-operations used within the prototype 
are scanned in full for substitutable arguments. The variable field of these pseudo­
operations can contain blanks and argument pointers. The following illustrates a typical use: 

ALPHA MACRO 

NOTE#l REM IGNOREb #~ERRORSbO~3 

ENDM ALPHA 

I An asterisk (*) type comment card cannot appear in a MACRO prototype. 

Using a MACRO Operation 

Use of a MACRO operation can be divided into two basic parts; definition of the prototype 
and writing the MACRO operation. The first part has been described on the preceding pages; 
writing the macro operation to call upon the prototype is the process of using the MACRO 
and is described in the following paragraphs. 

The macro operation card is made up of two basic fields; the operation field that contains 
the name of the prototype being referenced and the variable field that contains subfield 
arguments relating to the argument pointers of the prototype on a sequential, one-to-one 
basis. For example, the defined prototype CMP AR, mentioned earlier, could be called for 
expansion by the MACRO instruction 

CMPAR U, V,(BETA,4),SCND 

where the variable field arguments, separated by commas and taken left-to-right, correspond 
with the prototype pointers # 1 through #4. These arguments are then substituted in their 
corresponding positions of the prototype to produce a sequence of instructions using these 
arguments in the assigned location, operation, and variable fields of the prototype body. 
(The above MACRO instruction expands to the coding shown on page 210.) 

The maximum number of MACRO call arguments is 63; arguments greater than 63 are 
treated modulo 64. For example, the 70th argument is the same as the 6th argument and 
would be so recognized by the Assembler. Each such argument can be a literal, a symbol, 
or an expression (delimited by commas) that conforms to the restrictions imposed upon the 
field of the machine instruction or pseudo-operation within the prototype where the argument 
will be inserted. 

212 

CPB-1004F 
Rev. October 1968 



The following conditions and restrictions apply to the expansion of MACROs: 

1. Anything appearing in the location field of a prototype card image, whether text 
or a substitutable argument, causes generation to begin in column 1 for that 
text or argument. 

2. Location field text generated from an argument pointer (in a prototype location 
field) so as to produce a resultant field extending beyond column 8 causes the 
operation field to begin in the next position after the generated text. Normally, 
the operation field will begin in column 8. 

3. Operation field text generated from an argument pointer (in a prototype operation 
field) so as to produce a resultant field extending beyond column 16 causes the 
variable field to start in the next position after the generated text. Normally, the 
variable field will begin in column 16. 

4. The variable field may begin after the first blank that terminates the operation 
field but not later than column 16 in the absence of the condition in 3 above. 

5. No generated card image can have more than 72 characters recorded; that is, the 
capacity of one card image cannot be exceeded (columns 73-80 are not part of the 
card image). 

6. No argument string of alphanumeric characters can exceed 57 characters. 

7. Up to 63 levels of MACRO nesting are permitted. 

An argument can also be declared null by the programmer when writing the MACRO instruc­
tion; however, it must be declared explicitly null. Explicitly null arguments of the MACRO 
instruction argument list can be specified in either of two ways; by writing the delimiting 
commas in succession with no spaces between the delimiters or by terminating the argument 
list with a comma with the next normal argument of the list omitted. (Refer to the CRSM 
description, following.) A null argument means that no characters will be inserted in the 
generated card image wherever the argument is referenced. When a macro operation 
argument relates to an argument pointer and the pointer requires the argument to have 
multiple entries or contains blanks, the corresponding argument must be enclosed within 
parentheses with the parenthetical argument set off by the normal comma delimiters. 
The parenthetical argument can contain commas as separators. Examples of prototype 
card images that require the use of parentheses in the MACRO call are pseudo-operations 
such as IDRP, VFD, BCI, and REM, as well as the variable field of an instruction where the 
address and tag may be one argumEmt. In these cases the elements of the arguments con­
tained within the parentheses are called subarguments. 

It is also possible to enclose an argument within brackets, making them subarguments, in 
which case blanks are ignored as part of the argument. For example the MACRO call or 
the MACRO named ABC can be written as 

ABC [A, 
ETC 24, 
ETC 2*D] 

and is equivalent to 

ABC (A, 24, 2*D) 

213 

CPB-I004F 
Rev. October 1968 

I 



I 

even though numerous blanks occur after the arguments A, and 24,. Thus, the Assembler 
packs everything it finds within brackets and suppresses all blanks therein. The above 
manner of writing the MACRO call permits the programmer additional flexibility in placing 
one subargument per card by means of using ETC, the blanks no longer being significant. 

It can happen that the argument list of a macro operation extends beyond the capacity of 
one card. In this case, the ETC pseudo-operation is used to extend the list on to the next 
card. In using ETC, the last argument entry of the macro operation is delimited by a 
following comma, and the first entry of the ETC card is the next argument in the list. 
Within the prototype, as many ETC cards as required can be used for internal MACROs or 
VFD pseudo-operations. 

Pseudo-Operations Used Within Prototypes 

• Need for Prototype Created Symbols. In case of a MACRO prototype in which an ar­
gument pOinter is used in the location field, the programmer must specify a new symbol 
each time the prototype is called. In addition, for those cases where a nonsubstittitable 
symbol is used in a prototype location field, the programmer can use the macro operation 
only once without incurring an Assembler error flag on the second and all subsequent 
calls to the prototype (multiply-defined symbol). Primarily to avoid the former task 
(having to repeatedly define new symbols on using the macro operation) and to enable 
repeated use of a prototype with a location field symbol (nonsubstitutable), the created 
symbol concept is provided. 

• Use of Created Symbols. Created symbols are of the type . xxx. where xxx runs from 
001 through 999, thus making possible up to 999 created symbols for an assembly. The 
periods are part of the symbol. The Assembler will generate a created symbol only if 
an argument in the macro operation is implicitly null; that is, only if the macro operation 
defines fewer arguments than given in the related MACRO prototype or if the designator 
# is used as an argument. ExpliCitly null arguments will not cause created symbols to be 
generated. The example given clarifies these ideas. 

Assume a MACRO prototype of the form 

NAME MACRO 
------- #1,#2 

#4 ------- X 
#5 ------- ALPHA,#3 

------- #4 
TMI #5 
ENDM NAME 

with five arguments, 1 through 5. The macro operation NAME in the form 

NAME A,7",B 

specifies the third and fourth arguments as explicitly null; consequently, no created sym­
bols would be provided. The expansion of the operation would be 

B 

TMI 

The macro operation card 

NAME A,7, 

A,7 
X 
ALPHA, 

B 

(Unless a specified modification is given, 
X 0 will be assumed.) 

indicates the third argument is explicitly null, while arguments four and five are implicitly 

214 

CPB-I004F 
Rev. October 1968 



null. Consequently, created symbols would be provided for arguments four and five but not 
for three. This is shown in the expansion of the macro operation as follows: 

.011. 

.012. 

TMI 

A,7 
X 
ALPHA, 
.011. 
.012 

(Unless a specified modification is given, 
XRO will be assumed.) 

A created symbol could be requested for argument three simply by omitting the last comma. 
The programmer can conveniently change an explicitly null argument to an implicitly null one 
by inserting the # designator in an explicitly null position. Thus, for the preceding example 

I 

NAME A,7,,#,B 

the fourth argument becomes implicitly null and a created symbol will be generated. 

CRSM ON/OFF (Created Symbols) 
1 8 16 

Blanks I CRSM : ON 

I I 
I I 
I I 

32 

I Normal mode 
I 
I 
I 

Created symbols are generated only within MACRO prototypes. They can be generated for 
argument pointers in the location, operation, and variable fields of instructions or pseudo­
operations that use symbols. Accordingly, the created symbols pseudo-operation affects 
only such coding as is produced by the expansion of MACROs. CRSM ON causes the Assem­
bler to initiate or resume the creation of symbols; CRSM OFF terminates the symbol 
creation if CRSM ON was previously in effect. If the Assembler is already in the specified 
mode, the pseudo-operation is ignored. 

ORGCSM (Origin Created Symbols) 

1 8 16 
I 

Blanks I ORGCSM 

I 
I 
I 

32 

lOne expression in the variable field. 

I 
I 
I 

The variable field is evaluated and becomes the new starting value between the decimal 
points of the created symbols. 

IDRP (Indefinite Repeat) 
1 8 16 

Blanks I IDRP #3 
I 
I 
I 
I 

32 

An argument number or blanks in the 
variable field, depending on the IDRP of 
the IDRP pair 

The purpose of the IDRP is to provide an iteration capability within the range of the MACRO 
prototype by letting the number of grouped variables in an argument pointer determine 
the iteration count. 

CPB-I004F 

215 



The IDRP pseudo-operation must occur in pairs, thus delimiting the range of the iteration 
within the MACRO prototype. The variable field of the first IDRP must contain the argu­
ment number that points to the particular argument used to determine the iteration count 
and the variables to be affected. The variable field of the second IDRP must be blank. 

At expansion time, the programmer denotes the grouping of the variables (subarguments) 
of the iteration by placing them, contained in parentheses, as the nth argument where n 
was the argument value contained in the initial IDRP variable field entry. 

IDRP is limited to use within the MACRO prototype, and nesting is not permitted. However, 
as many disjoint IDRP pairs may occur in one MACRO as the programmer wishes. 

For example, given the MACRO skeleton 

NAME MACRO 

IDRP 
ADA 
IDRP 

ENDM 

#2 
#2 

NAME 

the MACRO call (with variables Xl, X2, and X3) 

A NAME Q+2, (Xl, X2, X3), B 

would generate 

A 

ADA Xl 
ADA X2 
ADA X3 

In the example, arguments #1 and #3, Q+2, and B respectively, are used in the skeleton 
ahead of and after the appearance of the IDRP, range-iteration pair. 

DELM (Delete MACRO) 

1 8 

Symbol DELM 
or 
Blanks 

16 32 
I I A symbol in the variable field 

I 
I 
I 

CPB-1004F 

216 



The function of this pseudo-operation is to delete the MACRO named in the variable field 
from the MACRO prototype area, and disable its corresponding operation table entry. 
Through the use of this pseudo-operation, systems which require many, or large MACRO 
prototypes, or which have minimal storage allocation at assembly time, can re-use storage 
in the prototype area for redefining or defining new MACROs. Redefinition of a deleted 
MACRO will not produce an M multiple defined flag on the assembly listing. 

Implementation of System MACRO's 

GMAP can load a unique set (or sets) of MACRO's under control of a pseudo-operation. 
This permits the various langauge processors to uniquely identify the standard system 
MACRO's required for the assembly of their generated code. 

GMAP itself has a set of system MACRO's which it loads as part of its initialization 
procedures. This includes FILCB, the GEFRC File Control Block MACRO (see GE-625!635 
File and Record Control, CPB-I003), SORT and MERGE (see GE-625!635 Sort Mer e Pro­
gram, CPB-I005) and the DEBUG Symbol Table MACRO's VTAB and LTAB (see GE-625 
63'5General Loader, CPB-I008). Loading of these MACRO's is dependent upon the elected 
option on the $ GMAP control card. The option GMAC!NGMAC instructs GMAP to load or 
not load its own system MACRO's in initializing for assembly. The absence of either 
option is equivalent to having elected GMAC, hence the normal user of GMAP does not need 
to be aware of the fact that GMAP MACRO's are optionally loaded. 

System MACRO's are, by definition, located on the System File on the high speed drum. They 
are put there by the System Editor, in System Loadable Format, as a freestanding system 
program. Their catalog name is that which is to be used by GMAP in the loading operation. 
For proper implementation, the MASTER option of the System Editor parameters card must 
be elected. It may be in absolute or relocatable System Loadable Format. 

This implementation technique permits any unit, or functionally related group of users of 
GMAP to define and implement a unique set of System MACRO's; or on a larger scale, it 
allows various GE-600 installations to install local standard sets of MACRO's, without chang­
ing the Assembler. 

PUNM (Punch MACRO Prototypes and Controls) 
1 8 16 32 

~--------~--------~--------------.------- ---------------------------.--------
Blanks PUNM : The variable field is not examined 

I 
I 
I 

This pseudo-operation causes the Assembler, in pass one, to scan the operation table for 
all MACRO's defined. It then appends their definitions to the end of the prototype table 
and constructs a control word specifying the length of this area and the number of MACRO's 
defined therein. 

At the beginning of pass two, this information is punched onto relocatable binary instruction 
cards, along with $ OBJECT, preface, and $ DKEND cards. The primary SYMDEF of this 
deck will arbitrarily be .MACR .. 

CPB-I004F 

217 



In the normal preparation of System MACRO's, it would not be desirable to include the GMAP 
System MACRO's. For this reason, the assembly of a set of System MACRO's should have 
NGMAC elected on its $ GMAP card. 

LODM (Load System MACROs) 

1 8 16 32 

Blanks I LOOM I I I 
I 
I A symbol in the variable field 

I I I 
I I I 
I I I 

This pseudo-operation causes the Assembler to issue an MME GECALL for a set of System 
MACROs. The name used in the GECALL sequence is the symbol taken from the variable 
field of the LODM pseudo-operation. MACROs thus loaded will be appended to (not overlay) 
the MACRO prototype table. They will be defined and made available for immediate use. 
If a MACRO is redefined by this operation the LOOM instruction will be flagged with an M. 

Notes and Examples on Defining a Prototype 

The examples following show some of the ways in which MACROs can be used. 

• Field Substitution 

Prototype definition: 

ADOTO 

Use: 

MACRO 
LDA 
ADA 
STA 
ENDM 

ADDTO 

• Linkage of Text and Arguments 

Prototype definition: 

INCX MACRO 
ADLX#2 
INE 
TRA 
ENDM 

Use: 
INCX 

or 
INCX 

218 

#1 
#2 
#3 
ADDTO 

A,(1,DL),B+5 

#3,DU 
#1,'*+1' 
#1 
INCX 

LOCA,4,1 

*+1,4,1 

CPB-1004F 



• Argument in a BCI Pseudo-Operation 

Prototype definition: 

ERROR 

Use: 

MACRO 
TSX1 
ARG 
BCI 
ENDM 

ERROR 

• MACRO Operation in a Prototype 

Prototype definition: 

TEST 

Use: 

• Indefinite Repeat 

MACRO 
LDA 
CMPA 
#3 
ERROR 
ENDM 

TEST 

DIAG 
#1 
5, ERROR):) # lbCONDITIOmIGNORED 
ERROR 

5 

#1 
#2 
#4 
#5 
TEST 

A,B, TZE,ALPHA,3 

Prototype definition (for generating a symbol table): 

SYMGEN 

#1 

Use: 

MACRO 
IDRP 
BCI 
IDRP 
ENDM 

SYMGEN 

• Subroutine Call MACRO 

Use: 

Prototype definition: 

DOO 
K 

K 

MACRO 
SET 
IDRP 
SET 
IDRP 
TSX1 
TRA 
IDRP 
ARG 
IDRP 
ENDM 

DOO 

#1 
1,#1 

SYMGEN 

(LABEL, TEST,ERROR,MACRO) 

o 
#2 
K+1 

DOO 

SRT,(ARG1,ARG2,ARG3) 

219 

CPB ... 1004F 



PROGRAM LINKAGE PSEUDO-OPERATIONS 

CALL (Call--Subroutines) 

1 8 16 
I 

Symbol CALL I 
or I 

blanks I 
I 

32 
I 
I Subfields in the variable field with 
I contents and delimiters as described 
I below 

I 

The CALL pseudo-operation is used to generate the standard subroutine calling sequence. 

The first subfield in the variable field of the instruction is separated from the next n sub­
fields by a left parenthesis. This subfield contains the symbol which identifies the subroutine 
being called. It is possible to modify this symbol by separating the symbol and the modifier 
with a comma. (In a Relocatable Assembly the symbol entered in this subfield is treated as 
if it were entered in the variable field of a SYMREF instruction.) 

The next n subfields are separated from the first subfield by a left parenthesis and from 
subfield n+1 by a right parenthesis. Thus the next n subfields are contained in parentheses 
and are separated from each other by commas. The contents of these subfields are argu­
ments which will be used in the subroutine being called. 

The next m subfields are separated from the previous subfields by a right parenthesis and 
from each other by commas. These subfields are used to define locations for error returns 
from the subroutine. If no error returns are needed, then m=O. 

The last subfield is used to contain an identifier for the instruction. This identifier is used 
when a trace of the path of the program is made. The identifier may be an expression 
contained in apostrophes. Thus the last subfield is separated from the previous subfields 
by an apostrophe. If the last subfield is omitted, the assembly program will provide an 
identifier which is the assigned alter number of the CALL pseudo-operation itself. 

In the examples following, the calling sequences generated by the pseudo-operation are listed 
below the CALL pseudo-operation. For clarification AAAAA defines the location the CALL 
instruction; SUB is the name of the subroutine called; MOD is an address modifier; A1 
through An are arguments; E1 through Em define error returns; E.I. is an identifier; and 
. E. L.. defines a location where error linkage information is stored. The number sequences 
1,2, ... ,n and 1,2, ... ,m designate argument positions only. 

AAAAA 

AAAAA 

CALL SUB,MOD(A1,A2, .... ,An)E1,E2, ......... Em'E.I.' 

TSX1 
TRA 
ZERO 
ARG 
ARG 

SUB, MOD 
*+2+n+m 
.E.L .. ,E.I. 
A1 
A2 

ARG An 
TRA Em 

TRA E2 
TRA E1 

220 

CPB .. 1004F 



The preceding example of instructions generated by the CALL pseudo-operation was in the 
relocatable mode. The following example is in the absolute mode. 

AAAAA 

AAAAA 

CALL 

TSXl 
TRA 
ZERO 
ARG 
ARG 

SUB,MOD(Al,A2, .... ,An)El,E2, ..... ,Em'E.I.' 

SUB,MOD 
*+2+n+m 
O,E.I. 
Al 
A2 

ARG An 
TRA Em 

TRA E2 
TRA El 

If the variable field of the CALL cannot be contained on a single line of the coding sheet, 
it may be continued onto succeeding lines by use of the ETC pseudo-operation. This is done 
by terminating the variable field of the CALL instruction with a comma (,). The next 
subfield is then placed as the first subfield of the ETC pseudo-operation. Subsequent sub­
fields may be continued onto following lines in the same manner. 

When a CALL to an external subprogram appears within a headed section, the external sub­
program must be identified by a six-character symbol (immune to HEAD). 

If a CALL is being used to access an internally defined subroutine, the subroutine must be 
placed ahead of the CALL in the program deck. Also, a SYMDEF pseudo-operation with the 
symbol identifying the subroutine in its variable field must be placed ahead of the CALL in 
the program deck. Starting the subroutine with a SAVE pseudo-operation automatically 
provides the SYMDEF. 

SAVE (Save--Return Linkage Data) 

1 8 16 
I 

Symbol I SAVE 
I 
I , 

32 
I 
I Blanks or subfields separated by commas 
I in the variable field--as described below 

I 

The SAVE pseudo-operation is used to produce instructions neccessar.y to save specified 
index registers and the contents of the error linkage index register. 

The symbol in the location field of the SAVE instruction is used for referencing by the 
RETURN instruction. (This symbol is treated by the Assembler as if it had been coded in 
the variable field of a SYMDEF instruction when the Assembler is in the relocatable mode.) 

CPB-I004F 

221 



The subfields in the variable field, if present, will each contain an integer 0-7. Thus each 
subfield specifies one index register to be saved. 

When the SAVE variable field is blank, the following coding is generated: 

NAME TRA 
RET 
STI 
ST.Xl 

*+2 
.E.L .. 
.E.L. . 
.E.L .. 

The instructions generated by the SAVE pseudo-operation are listed below. The symbols il 
through in are integers 0-7 .. E.L .• definesthe location provided for the contents of the error 
linkage registe r . 

BBBBB is a symbol that must be present; it is always a primary SYMDEF. 

Example one is in the relocatable mode, and example two is in the absolute mode. 

BBBBB 

BBBBB 

EXAMPLE ONE 

SAVE 

TRA 
LDX(il) 

LDX(in) 
RET 
STI 
STXl 
ST.X(il) 
STX(i2) 

*+2+n 
**,DU 

**,DU 
.E.L .. 
.E.L .. 
.E.L .. 
BBBBB+l 
BBBBB+2 

BBBBB+n 

RETURN (Return--From Subroutines) 

1 8 16 

Symbol : RETURN 
or 

I blanks 
I 
I 

BBBBB 

BBBBB 

EXAMPLE TWO 

SAVE 

TRA 
ZERO 
LDX(il) 
LDX(i2) 

LDX(in) 
RET 
STl 
ST.Xl 
STX(il) 
ST.X(i2) 

**,DU 
**,DU 

**,DU 
BBBBB+l 
BBBBB+l 
BBBBB+l 
BBBBB+2 
BBBBB+3 

BBBBB+n+l 

222 

32 
I 
lOne or two subfields in the 
I variable field 

I 
I 

CPB-I004F 



The RETURN pseudo-operation is used for exit from a subroutine. The instructions gen­
erated by a RETURN pseudo-operation must make reference to a SAVE instruction within 
the same subroutine. This is done by the first subfield of RETURN. The first subfield in 
the variable field must always be present. This subfield must contain a symbol which 
is defined by its presence in the location field of a SAVE pseudo-operation. 

The second subfield is optional and, if present, specifies the particular error return to 
be made; that is, if the second subfield contains the value k, then the return is made to the 
kth error return. 

In the examples following, the assembled instructions generated by RETURN are listed 
below the RETURN instruction. For both examples the group of instructions on the left are 
generated when the Assembler is in the relocatable mode, and the instructions on the right 
when the Assembler is in the absolute mode. 

EXAMPLE ONE 

RETURN 

TRA } 
Generated 

BBBBB+ 1 Instructions 

BBB:=B~B~ ________________________ __ 

~ BBBBB+2 } 
Generated 
Instructions 

EXAMPLE 'IWO 

LDX1 
SBX1 
STX1 
TRA 

RETURN 

.E.L .. ,* } 
k, DU Generated 
. E. L.. Instructions 
BBBBB+1 

ERLK (Error Linkage--to Subroutines) 

1 8 16 

Blanks I E RLK 
I 
I 
I 

1
1::::B

'k 
SBX1 
STX1 
TRA 

32 
I 

BBBBB+1,* } 
k,DU Generated 
BBBBB+ 1 Instructions 
BBBBB+2 

I Column 16 must be blank 
I 
I 
I 

The normal operation of the Assembler is to assign a location for er ror linkage information, 
as referenced by .E.L .. in the examples of the CALL, SAVE, and RETURN pseudo-operations. 
If the programmer wishes to specify the location for error linkage information, he must do 
so by using ERLK since the symbol .E.L .. may 110t appear to the right of an EQU pseudo­
operation. The appearance of ERLK causes the Assembler to generate two words of the 
following form: 

.E.L .. ZERO 
BCI 1,NAME 

These words will be placed in the assembly at the point the Assembler encowltered ERLK. 
Note that if the programmer has placed all program data under the BLOCK pseudo-operation, 
he must use ERLK since in this case automatic error linkage is suppressed. 

CPB-1004F 

223 



NAME, as selected by the Assembler, will be the first SYMDEF defined in the routine. 
This may have been accomplished explicitly through use of the SYMDEF pseudo-operation, 
or implicitly through SAVE. 

Error linkage will be generated for all relocatable assemblies, except in the case mentioned 
above, where all assembling has been relative to BLOCK counters. 

SYSTEM (BUILT-IN) SYMBOLS 

It is possible to include additional permanently defined system symbols in the Assembler. 
This is done by a reassembly of the Macro Assembler and by placing the proper information 
in the required tables. 

SOURCE PROGRAM INPUT 

Activity Definition 

The input job stream managed by the Comprehensive Operating Supervisor (GECOS) can 
comprise assembled object programs, Macro Assembler language source programs, 
and FORTRAN or COBOL compiler-language source programs. Such programs of a job 
are referred to as activities. Comments to follow in this section pertain to an Assembler 
language input activity. 

The Assembler language activity is composed of the following parts, in order: 

1. $ GMAP control card (calls the Assembler into Memory from external storage and 
provides Assembler output options) 

2. Text of the subprogram 

3. END pseudo-operation card (terminates the input subprogram) 

The $ GMAP control card is prepared as shown below: 

Card Column 1 8 16 32 

$ 
I 

Option 2, •. : Symbolic Example I GMAP I Option 1, 

Actual Example $ IGMAP I NDECK, LSTOU, NCOMDK 
I I I 
I I I 

The operand field specifies the system options which may be listed in any random order. 
When an option, or its converse, does not appear in the operand field, the standard option 
is assumed. (The standard entries are underlined.) 

CPB-1004F 

224 



The options available with GMAP are as follows: 

LSTOU 
NLSTOU 

DECK 
NDECK 

COMDK 
NCOMDK 

GMAC 
NGMAC 

DUMP 
NDUMP 

NXEC 

SYMTAB 

ON5 

Prepare a listing of the GMAP output 
Do not prepare a listing of the GMAP output 

Prepare a program deck as part of the output of this processor 
Do not prepare a program deck as part of the output of this processor 

Prepare a compressed deck of the source program 
No not prepare a compressed deck of the source program 

Use GMAP System Macros for this assembly 
Dl not use GMAP System Macros for this assembly 

Dump all of slave core if a GMAP activity terminates abnormally 
Dump only program registers if a GMAP activity terminates abnormally 

Turn off the execution. bit (bit 5) in the Program Switch Word if any 
fatal errors are encountered in the assembly. 

Prepare a listing of the Symbol Reference Table (if one has been built) 
even though NLSTOU is specified. 

Print all source images regardless of any pseudo-operations that might 
otherwise result in their not being printed. 

The contents of columns 73-80 are used as an identifier to uniquely identify the binary 
object programs resulting from the assembly. 

Compressed Decks 

The Assembler program contains routines and tables for compressing source subprogram 
cards from a one-instruction.-per-card input to a multiple-instruction-per-card input. 
This Assembler feature is provided primarily for reducing the size of input source decks 
as concerns handling and correcting (altering) the input subprogram. (For details of the 
compression and the compressed deck card format, refer to the next paragraph and the 
GE-625/635 File and Record Control reference manual, CPB-I003.) 

The compressed deck (COMDK) option is specified in the operand field of the $ GMAP control 
card. The normal mode of Assembler operation is NCOMDK; that is, no compressed deck is 
produced. To use the Assembler COMDK feature, the $ GMAP control card would appear as 

$ GMAP COMDK 

and be placed as the first card of the deck. When combined with the standard output options, 
the above control card would cause the Assembler to produce: 

1. An output listing containing in its format a complete listing of the source card 
image (See the listing and symbolic reference table formats, page 236.) 

2. A compressed deck of the source card images, column-binary, alphanumeric. 

CPB .... I004F 

225 

I 



The COMDEK format is produced by a procedure which compresses any Hollerith-coded 
card image by removing sequences of 3 or more blanks and packing the information in 
standard column binary form. 

To accomplish the compression, the Hollerith card is considered as being made up of a 
series of fields and strings. A field is defined as a segment of the card containing no 
sequences of more than 2 blanks except at the beginning. A string is that portion of a field 
obtained by deleting any leading blanks. 

Each field specification starts with the octal value of A(O<A-:;;67S) followed by the octal value 
of B(O<A-:;;67S) followed by the B characters constituting the string. (A=the number of 
characters in the field; B=the number of characters in the string.) 

CPB-I004F 

225.1 



The size of A and B is limited, as indicated above, in order to reserve a set of codes to 
serve as flags when found in a position in which a count had been expected. If a given length 
exceeds the maximum length, it is segmented into separate fields. For example, given 
70 (decimal) consecutive nonblank characters, itis necessary to treat this as two fields with: 

Field 1 
Field 2 

A = 67 1 

A = 17, 
B = 67 (octal values) 
B = 17 (octal values) 

The field specifications (A,B,string) are packed sequentially on a binary card in the format 
indicated below. A field specification may be started on a COMDEK card (X) and may be 
completed on the following card (X+1). 

The following codes for A are used to designate specific conditions. The B character is 
not present in such cases. 

A=O 

A = 778 

A = 768 

A = 708 

End of a compressed card; continue decoding on the next card 

End of encoded string for a given Hollerith card image 

End of the compressed deck segment 

Available for extension 

The COMDEK card layout consists of: 

Word 1: 

Word 2: 
Words 3-24: 
Words 25-27: 

0-2 
3-8 
9-11 

12-35 

Column binary card type 5 
Zeros 
101 (7-9 punches) 
Binary sequence number 
Checksum of word 1 or words 3-24 
Compressed card image 
Hollerith-coded label or zeros 

The binary sequence number is maintained when a COMDEK output is produced and is 
checked when the deck is used as input. When a sequence error is found in an input COMDEK 
file, the activity will be terminated. 

The label words of the card are supplied in uncompressed form by the I/O Editor and give 
identification data from columns 73-80 of the standard binary deck cards. 

Source Deck Corrections 

Corrections to an Assembler language source deck are made by the use of $ ALTER control 
cards. A source program correction deck consists of the following parts in order: 

1. $ GMAP control card 

2. Text of the subprogram in either of two forms: 

a. Standard one-instruction-per-card deck 
b. Compressed deck 

CPB ... I004 F 



3. $ UP DATE control card (notifies the Comprehensive Operating Supervisor that the 
cards to follow are to be placed on the A* (alter) file for use by the Assembler 

4. ALTER Information 

a. ALTER cards (contain the updating delimiting information) 

b. New source cards which are to be inserted into the source deck as additions 
or replacement instructions 

The operand field of the ALTER card uses alter numbers that are obtained from the previous 
assembly listing of the deck now being processed. (See page 235.) The format of the 
ALTER card is: 

Card Column 1 8 16 32 

$ : ALTER 
I I 

Symbolic Example I n, m I 

Actual Example $ I ALTER I 07364,07464 I 
I I I 
I I I 

The entries define whether the cards following are to be added or to replace cards in the 
primary input file. These numbers are simply consecutive card numbers starting with 
00001 and increasing by one for each source input card. 

When it is desired to insert cards into a deck the m subfield is not used. In this case, the 
cards following this ALTER card, up to but not including the next ALTER card will be inserted 
just prior to the card corresponding to alter number n. 

When it is desired to delete and/or replace one or more cards from a deck, the m subfield 
is given as shown above. When nand m are equal card n will be deleted. When m identifies 
a card following n all cards n through m will be deleted. In addition, any cards following this 
ALTER card up to but not including the next ALTER card will be inserted in place of the 
deleted cards. 

The end of an alter file is designated by the normal end-of-file convention appropriate to 
the media containing the file. 

The $ UPDATE control card is prepared as indicated below. 

Card Column 1 8 16 32 

$ I I 
Symbolic Example I UPDATE I List Option I 

$ I UPDATE I I 
Actual Example I I I 

I I I 

CPB ... I004F 

227 



The UPDATE control card is used when supplying alter input to a compiler or the Assembler. 
In the input sequence for a job the $ UPDATE control card and associated ALTER card with 
its alter statements must follow and be contiguous to the source program to which the alter 
statements apply. 

The operation field contains the word UPDATE. The variable field may contain the word 
LIST, in which case a listing of the Alter input will be included with the output. 

ASSEMBLY OUTPUTS 

Binary Decks 

When the $ GMAP control card specifies the DECK option, the Assembler punches a binary 
assembly output deck. Since the normal mode of the Assembler is relocatable or is implied 
as a standard option, all addresses punched in the output cards are relative to zero. Alter­
natively, still considering the DECK option the Assembler can operate in the absolute mode 
and punch only absolute addresses in the output cards. 

The first card generated by GMAP for every subprogram object deck is a $ OBJECT card. 
The format of the $ OBJECT card is as follows: 

1 8 16 59 60 61 66 67 72 73 

I IOBJECT 
i I i i I Optional Comment, I Time of I Date I Optional 

I I Sequence Option I Assembly lof I Label 
I I t 

I I Assembly 
I I I I I 

Source Identification 

The Optional Comment and Sequence Option subfield (columns 16-59) are either a product 
of the second subfield of the LBLpseudo-operationor they can be added by the programmer. 
When a sequence checking option is not specified, the Optional Label subfield of all cards 
in a $ OBJECT deck will be sequence checked and the activity deleted in case of an error. 
When an error is detected, a message will be printed on the execution report. The following 
sequence checking options may be specified. The standard option, SEQ, is assuined if no 
option is specified. 

SEQ 

CKSEQ 

NSEQ 

Check sequence and delete the activity if an error occurs. 

Sequence check and flag errors but do not delete the activity. 

No sequence check. 

228 

CPB-1004F 
Rev. October 1968 



Source Identification is the source of the object deck as follows: 

A = ALGOL 
C = COBOL 
F = FORTRAN 
G = GMAP 
I = IDS 

Time of Assembl~ in columns 61-66 is in hours and thousandths of hours (thousandths are 
in columns 64-6) in the form XX.XXX. Thls time appears in the page heading of the 
associated listing. 

Date of Assembly in columns 67-72 is of the form mm dd yy. 

The source identification, time and date of assembly are provided by the system. 

The Optional Label in columns 73-80 is a product of the first subfield of the LBL pseudo­
operation. It is an alphanumeric identification number designating the object program or 
subprogram. If not specified, it is produced as starting at 00000000. 

This binary information may be represented on four types of binary cards. These cards and 
their uses are summarized below. GE-625/635 Loader functions performed by using the 
information from these cards are described in the Loader Manual. In addition, that manual 
describes the memory map layouts applicable to each user subprogram. The user sub­
program memory map blocks are (1) the subprogram region (2) the LABELED COMMON 
region and (3) the BLANK COMMON region. -

228.1 

CPB-I004F 
Rev. October 1968 



CARD TYPE 

Preface 

Relocatable 
Binary Text 

Absolute 
Binary Text 

Transfer 

USE 

Provides the Loader with (1) the length of the subprogram 
text region; (2) the length of the BLANK COMMON region; 
(3) the total number of SYMDEF, SYMREF, and LABELED 
COMMON symbols; (4) the type identification of each symbol 
in (3); and (5) the relative entry value or the region length 
for each symbol in (3). 

Supplies the Loader with relocatable binary text by using 
preface card information and relocation identifiers where the 
relocation identifiers specify whether the 18-bit field refers 
to a subprogram, LABELED COMMON, or BLANK COMMON 
regions (of the assembly core-storage area) and will allow 
the loader to relocate these fields by an appropriate value. 

Provides the Loader with absolute binary text and the absolute 
starting-location value for Loader use in assigning core­
storage addresses to all words on the card. 

Can be generated only in an absolute assembly and causes the 
Loader to transfer control to the routine at the location given 
on the card. (The transfer card is generated automatically 
as the last card of an absolute subprogram assembly by the 
END pseudo-operation; however, use of the TCD pseudo­
operation can cause the card to appear anywhere in the 
assembly.) 

The formats in which the Assembler punches the above cards are described in the paragraphs 
to follow. 

CPB-I004F 

229 



Preface Card Format 

Preface card symbolic entries are primary SYMDEF symbols secondary SYMDEF symbols, 
SYMREF symbols, LABELED COMMON symbols (from the BLOCK pseudo-operation), and 
the .SYMT. LABELED COMMON symbol. These symbols appear on the card in a precise 
order. All SYMDEF symbols appear before any other symbol. Following the SYMDEF 
symbols are any LABELED COMMON symbols. The SYMREF symbols are then recorded. 

The format and content of the preface card are summarized as follows: 

Word One: ~oo 1"1 I 101 "2 

o 2 3 8 9 11 12 17 18 35 

Word Two: 

n 1- - V is a value within the range 5< V'5.. 17 and represents the 
size of the field within a special relocation entry needed to 
point to the specific preface card entry. Thus, V=log 2N+l, 
where N is the number of LABELED COMMON and SYMREF 
entries. 

n 2--Word count of the preface card text 

n3--Length of the subprogram 

Checksum of columns 1-3 and 7-72 

Word Three: [ A 1M I 
a --------·--------------~1~7~18~1~~9-------------------------------~35 

N 

The value A is the length of BLANK COMMON; and N is two times the total number of 
SYMDEFs, SYMREFs, and LABELED COMMONs. The M bit indicates, when set to 1, that 
the subprogram must be loaded beginning at a location which is a multiple of eight. 

Words Four, 
Five: 

Words Six, 
Seven: Symbol 2; A 2' K2 

CPB-I004F 

230 



Words 2n+2, 
2n+3 

Symbol ;A K I Char. Char. Char. Char. Char. Char. 
1 2 3 4 5 6 

n n, n 

0 5 6 11 12 17 18 23 24 29 30 35 

I A K 

0 17 18 35 

The even-numbered word contains the symbol in BCD. The value K defines the type symbol 
in the even-numbered word; A is a value associated with K as explained in the following list. 

If K equals zero, then the symbol is a primary SYMDEF symbol; A is the entry value 
relative to the subprogram region origin. 

If K equals one, then the symbol is a secondary SYMDEF symbol; A is the entry value 
relative to the subprogram region origin. 

If K equals five, then the symbol is a SYMREF symbol; A is zero. 

If K equals six, then the symbol is a LABELED COMMON symbol; A is the length 
of the region. 

If K equals seven, then the symbol is a .SYMT. LABELED COMMON symbol; A is the 
length of the region reserved for debug information. 

NOTE: If preface continuation cards are necessary, word three will be repeated unchanged 
on all continuation cards. 

Relocatable Card Format 

A relocatable assembly card has the format and contents summarized in the following 
comments. 

Word One: 

o 2 3 

1101 ; 
8 9 11 12 17 18 35 

n 1--0 indicates that loading is within the subprogram region 
of the user subprogram core-storage area 

n 2--Word count of the data words to be loaded using the 
origin and relative address in this control word 

n 3--Loading address, relative to the subprogram region 
origin. 

CPB-I004F 

231 



or for the alternative cases: 

Word Two: 

Three -
I IT Five: I 1 I 

AIBCIDE ~ 

i ! I 
0 4 5 

'S'T9 
AIBCIDE .. 

! : I 
0 4 5 

o 4 5 

Words Six­
Twenty-Four: 

Relocation Scheme 

n C-i, where Vo indicates that the ith entry (beginning with 
the first LABELED COMMON entry in the preface card text) 
has been used and that n3 is relative to the origin of that entry. 

Checksum of columns 1-3 and 7-72 

~ I 3 5 6 7 .. I .. .. .. ... 
9 10 14 15 19 20 24 25 29 30 34 35 

10 111 12 13 

I 1~1 ~ .. I .. .. 
9 10 14 15 19 20 24 25 29 30 34 35 

17 IS 

9 10 14 15 19 20 24 35 

Relocation data--words three and four comprise seven 5-bit 
relocation identifiers, while word five holds 5 such identi­
fiers. The five bits of each identifier carry relocation 
scheme data for each of the card words (7+7+5:19, or fewer). 
The identifiers are placed in bit positions 0-34 of words 
three and four and in 0- 24 of word five. (Refer to the 
Relocation Scheme description in the paragraph following.) 

Instructions and data (up to 19 words per card). If the card 
is not complete and at least two words are left vacant, then 
after the last word entered, word one may be repeated with 
a new word count and loading address. The loading is then 
continued with the new address, and the relocation bits are 
continuously retrieved from words three through five. This 
process may be repeated as often as necessary to fill a card. 

For each binary text word in a relocatable ca.rd, the five bits--A, BC, and DE--of each 
relocation scheme identifier are interpreted by the Loader as follows: 

Bit A--O (reserved for future use) 

Bits BC--Left half-word 

Bits DE--Right half-word 

CPB-I004F 

232 



To every 18-bit half-word one of four code values apply; these are: 

CODE VALUE 

xx 00 
01 

10 

11 

MEANING 

Absolute value that is not to be modified by the Loader. 
Relocatable value that is to be added to the origin of the 
subprogram region by the Loader. 
BLANK COMMON, relative value that is to be added to the 
origin of the BLANK COMMON region by the Loader. 
Special entry value (to be interpreted as described in the 
next paragraph. 

apply where xx stands for BC or DE. 

If special entry is required, the Loader decodes and processes the text and bits of the 18-bit 
field (left/right half of each relocatable card word) as follows: 

Bit 1 

Bits 2->V+1 

Bits V+2 -> 18 

--This is the sign of the addend; 0 implies a plus (+) and 1 
implies a minus (-). 

--The value V that was specified in word 1 of the preface 
card dictates the length of the field. The contents of the 
field is a relative number which points to a LABE LED 
COMMON region or a SYMRE F that appeared in the preface 
card. The value one in this field would point to the first 
symbol entry after the last SYMDEF. 

--The value in this field is the addend value that appeared in 
the expression. If the field is all bits then the corresponding 
18 bits of the next data word are interpreted as the addend. 
In this speeial case there will be no relocation bits for the 
addend word. 

All references to each undefined special symbol are chained together. When the symbol is 
defined, the Loader can rapidly insert the proper value of the symbol in all relocatable 
fields that were specified in the chain. 

Absolute Card Format 

The absolute binary text card appears as shown below. 

Word One: 

o 2 3 

101 

8 9 11 12 17 18 

n2--Word count of the card text 

n 
3 

35 

n3--Loading address relative to the absolute core-storage 
origin zero (of allocated memory). 

CPB-1004F 

233 



I 

Word Two: 

Words Three­
Twenty- Four: 

Transfer Card Format 

Checksum of columns 1-3 and 7-72 

Instructions and text (22 words per card, maximum). If the 
card is not complete and at least two words are left vacant, 
then after the last word entered, word one may be repeated 
with a new word count and loading address. 

The transfer card is generated by the Assembler only in an absolute assembly deck. Its 
format and contents are: 

Word One: 

~ ,~1_1_01~ __ n2 __ ,~ ______ n_3 ______ ~ 
o 2 3 

Words Two­
Twenty- Four: 

Assembly Listing 

8 9 11 12 17 18 

n2 --O 

n3--Transfer address (in absolute only). 

Not used 

Each Assembler subprogram listing is made up of the following parts: 

35 

1. Execution Report (See GE-625/635 Comprehensive Operating Supervisor Reference 
Manual) 

2. The contents of all preface cards (primary SYMDE F symbols, secondary SYMDE F 
symbols, SYMREF symbols, LABELED COMMON symbols--from the BLOCK 
pseudo-operation--and the .SYMT. LABELED COMMON symbol). This section 
is omitted from an absolute assembly. 

3. The sequence of instructions in order of input to the Assembler. 

4. The symbolic reference table. 

Full Listing Format 

Each instruction word produced by the Assembler is individually printed on a l20-character 
line. The line contains the following items for each such word of all symbolic cards: 

1. Error flags--one character for each error type (see "Error Codes" page 237). 

2. Octal location of the assembled word. 

234 

CP~ .. 1004F 
Rev. July 1969 



3. Octal representation of the assembled word 

4. Relocation bits for the assembled word (see the topic, Relocation Scheme, Loader 
manual) 

5. Reproduction of the symbolic card, including the comments and identification fields, 
exactly as coded 

The exact format of the full listing is as follows: 

Ficlds A B 

Print line 1-6 7-12 
ColuPlOS \. 

A--Error flags 
B--RelatLve/absolute location 
C--Operand address 
D--Operation code 

C D E F 

15-20 22-25 27,28 31-33 
) ....,. 

Machine 
Instr.l1ction 

E--Tag field modifier 
F--Relocacion bits 
G--Alter statemel-,t number 
H--Card image 

G H 

35-39 41-120 

~ 
Source Card 

Image 

Several variations appear for bit positions 15 through 28. (The six, four, two subfield 
groups C, D, and .E shown above is the octal configuration for machine instructions.) These 
are summarized in the table below in which the X represents one octal digit. 

Type of Machine Word 

1. Processor instruction 
and indirect address 

2. Data 

3. Data Control 

4. Special l8-bit field data 

5 . Input/output command 

Listing Format 

xxxxxx xxxx xx 

xxxxxxxxxxxx 

xxxxxx xx xxxx 

xxxxxx xxxxxx 

xx xxxx xxxxxx 

Source Program Instruction 

Processor instruction and 
indirect address word 

Data generating pseudo­
operations (OCT, DEC, 
BCI, etc.) 

Data Control Word (DCW) 

ZERO pseudo-operation 

Input/ output pseudo­
operation (See Appendix E.) 

Error flags are summarized at the end of this section. The interpretation of the relocation 
bits is described in the Loader manual. That field (F) will be blank in an absolute assembly. 

Preface Card Listing 

The listing of the preface information is in a self-explanatory format, with each major 
subdivision of preface symbols preceded by a heading. The order is the same as that of 
the card(s) produced. 

235 

CPB-l004F 
Rev. July 1969 

I 



Primary SYMDEFs, secondary SYMDEFs, LABELED COMMON, and SYMREFs. The 
LABELED COMMONs and SYMREFs are numbered sequentially 1 through n, where this 
number represents the special relocation entry number employed in referencing these 
special symbols. 

BLANK COMMON Entry 

Prior to the listing of the special symbols, the Assembler enters a statement of the amount 
of BLANK COMMON storage requested by the subprogram. The statement format is self­
explanatory. 

Symbolic Reference Table 

The symbol table' listing contains all symbols used, their octal values (normally, the location 
value), and the alter numbers of all instructions that referenced the symbol. The table format 
is as follows: 

OCTAL 

364 

SYMBOL 

BETA 

REFERENCES BY ALTER NO, 

103 103 1027 1761 3767 7954 

The above sample indicates that the symbol BET A has been assigned the value 3648 and is 
referenced in five places: namely, at alter number positions 103, 1027, 1761, 3767, and 
7954 in the listing of instructions. The first alter number is the point in the instruction 
listing where the symbol was defined. If an instruction contains a symbol twice, the alter 
number for that point in the instruction listing is given twice. The alter numbers are 
assigned sequentially in the subprogram listing, one per instruction. Because of this fact, 
it is easy for the programmer to locate in the listing those card images that referenced any 
particular symbol as well as locate the card image that caused the symbol to be defined. 

The symbolic reference table will contain symbols referenced in the DUP pseudo-operation. 

A separate symbolic reference table is generated for MACRO's (when the REFMA ON 
pseudo-operation is specified) that contains an entry of the MACRO name and alter number 
for each MACRO reference. 

236 

CPB-100'4F 
Rev. July 1969 



Error Codes 

The following list comprises the error flags for individual instructions and pseudo-operations. 

ERROR 

Undefined 

M ul tidefined 

Address 

Index 

Relocation 

Phase 

Even 

Conversion 

Location 

Operation 

Table 

FLAG 

U 

M 

A 

X 

R 

P 

E 

C 

L 

o 

T 

CAUSE 

Undefined symbol(s) appear in the variable field. 

Multiple-defined symbol(s) appear in the location 
field and/or the variable field. 

Illegal value or symbol appears in the variable 
fie ld. Also used to denote lack of a reqUired fie ld. 

Illegal index or address modification. 

Relocation error; expression in the variable field 
will produce a relocatable error upon loading. 

Phase error; this implies undetected machine 
error or symbols becoming defined in Pass two 
with a different value from Pass one. 

Inappropriate character in column 7. 

Error in conversion of either a literal constant 
or a subfield of a data-generative pseudo­
operation. Illegal character. 

Error in the location field. 

Illegal operation. 

An assembly table overflowed not permitting 
proper proceSSing of this card completely. Table 
overflow error information will appear at the end 
of listing. 

GMAP also prints out the following error messages which are self explanatory: 

Symbol Table Overflow 

Macro Expansion Table Overflow 

Macro Prototype Table Overflow 

No END Card on Input File 

Symbol Reference Table Overflow 

Execution not Possible, no SYMDEFS. 

Too Many Cards to be Duplicated 

Operation Table Overflow 

Unexpected EOF on Intermediate File 

NXEC Option Specified. Fatal Errors ... Execution Deleted 

Not Enough Cards to be Skipped 

237 

CPB-I004F 
Rev. July 1969 

I 





IV. CODING EXAMPLES 

PRE LIMINARY 

This chapter contains examples of coding techniques for performing typical program 
functions. These examples: 

1. Indicate how certain very efficient Processor instructions can be used 

2. Illustrate the use of address modification variations for indexing, indirection and 
automatic tallying 

3. Demonstrate operations performed on characters 

4. Show operations on fixed- and floating-point numbers 

5. Present the use of the BCD instruction 

The list of examples is by no means complete in that it does not present all of the processor 
capabilities; however, the examples provided can serve as convenient references for 
programmers newly acquainted with the GE625/635. 

Each example is self-contained and self-explanatory. In most cases, questions that may be 
raised can be answered by referring to the descriptions of particular instruction or pseudo­
operations. Convenient references are contained in Appendixes A through D. 

EXAMPLES 

Fixed Point to Floating Point (Integer) 

The following example illustrates the conversion of a fixed-point integer to floating point 
(float an integer). The integer to be converted is in the location M. 

Step 01 resets the Overflow Indicator. 

Step 02 places the binary integer to be converted in the accumUlator. 

Step 03 places zeros in the quotient register. 

Step 04 sets the exponent register to 35 10. 

Step 05 converts the number in the accumulator to floating point. 

239 

CPB-I004F 



For example, if the contents of M equal 0000000000028, then the contents of the floating­
point register will be E = 210 , and AQ = 200000000000000000000000 8 at the completion of 
step 05. 

01 
02 
03 
04 
05 

TOV 
LDA 
LDQ 
LDE 
FNO 

1,IC 
M 
,DL 
=35B25,DU 

Floating Point to Fixed Point (Integer) 

FLOAT AN INTEGER M 
C(AQ) = M AT B35. 
C(E) = 35. 
NORMALIZE M 

The following example illustrates the conversion of a double-precision, floating-point 
number to a fixed-point number, binary point 71. The result will be only the integral part 
of the number. The number to be converted must lie between -2 71 and 271 -1 inclusive. 

Step 01 loads the floating-point number to be converted into the floating-point register. 

Step 02, an unnormalized floating add of zero (exponent of 71), causes the contents of AQ 
to be shifted right a number of places equal to the difference between 71 and the exponent of 
the number to be converted. This will leave in AQ the binary integer (binary point 71) 
equal to the integral part of the floating-point number in X and X+ 1. 

For example, if prior to executing step 02, the floating-point register contained -2, that 
is, if the exponent register contained 210 and AQ contained 600000000000000000000000 s, then 
the result in AQ after the addition of zero (exponent 71) would be 777777777777777777777776 8' 

01 DFLD x 

02 UFA =71B25,DU 

240 

COMPUTE THE INTEGER PART OF 
A FLOATING-POINT NUMBER CON­
TAINED IN X AND X+l. 

FIX THE RESULT IN AQ, BINARY 
POINT 71. 

CPBw1004F 



Real Logarithm 

Purpose: 

Compute log X for ALOG(X) or ALOGIO(X) in an expression. 

Method: 

Use: 

1. 

2. 

3. 

4. 

5. 

log2X r;;: log2 (2I~'(F) '" I + log2F, where X .. 2I "'(F. 

10ge
X 

- 10ge2~~g2X).(log2X)_\\ (10g02), and similarly ;O~lt~)( 10
g2X:_ ~(7~;Og102). 

10g2
X 

"Z* \ + )-c)) " 10g2F+~, where Z " F + (i) ~ 0+_707 

A "" 1. 2920070987 
B .. -2.63985"17031 
C .. 1. 6567626301 

X and log X are real numbers, with values of X from 2-
129

to 2127 _2
100 

inclusive. 

log X is accurate to 8 decimal places. 

Calling Sequence -- CALL ALOG(X) for log X 
e 

CALL ALOGIO(X) for log lOX 

CPB-I004F 

241 



SYMDEF 
LOGS SAVE 

FLD 
FNO 
TZE 
TMI 

BEGIN FCMP 
TZE 
STE 
LDE 
DFAD 
DFST 
DFSB 
DFDV 
DFST· 
DFMP 
DFSB 
DFDI 
DFAD 
DFMP 
DFST 

I LDA 
LDQ 
LDE 
FSB 
DFAD 

INDIC DFMP 
RETURN 

ERR1 CALL 
UNITY FLD 

RETURN 
ERR2 CALL 

FNEG 
TRA 

ALOGlOESTC2 
TRA 
DEC 

ALOG ESTC2 
TRA 
DEC 

EALN1 DEC 
EALN2 DEC 
A DEC 
B DEC 
C DEC 
SRHLF DEC 
SRTWO DEC 
Z BSS 

END 

ALOG 10 , ALOG 

2,1* 

ERR1 
ERR2 
=l.O,DU 
UNITY 
I 
O,DU 
SRHLF 
Z 
SRTWO 
Z 
Z 
Z 
C 
B 
A 
Z 
Z 
*-*,DU 
O,DU 
=7B25,DU 
=0.5,DU 
Z 
i< 

LOGS 
• FXEM. (EALN1) 
=O.O,DU 
LOGS 
.FXEM. (EALN2) 

BEGIN 

INDIC 
LOGS 
.301029996DO 
INDIC 
LOGS 
6.93147180559D-1 
9 
10 
. 12920070987D1 
-.26398577031D1 
• 16567626301D1 
.707106781187DO 
• 1414213562374D1 
2 

REAL LOGARITHM FUNCTIONS 
X = (2**1) * F = ARGUMENT 

ERROR IF X=O 
ERROR IF X NEGATIVE 

LOG(l) = 0 
STORE I AT BINARY POINT 7 
OBTAIN F 

Z = (F - SQRT(1/2»/(F + SQRT(1/2» 
Z2 
Z2_C 
B/ (Z2-C) 
A+B/ (Z2-C) 
Z(A+B/ (Z2_C» 
Z = Z*(A + B/(Z**2-C» LOG2(F) + 1/2 

FLOAT I 

LOG2(X) = I + LOG2(F) 
CONVERT TO BASE 10 OR E 

ERROR EXIT NUMBER 1 (X=O) 

ERROR EXIT NUMBER 2 (X IS NEGATIVE) 

REAL COMMON LOGARITHM 

REAL NATURAL LOGARITHM 

SQUARE ROOT OF TWO DIVIDED BY TWO 
SQUARE ROOT OF TWO 

242 

CPB-I004F 



BCD Addition 

The following example illustrates the addition of two words containing BCD integers. The 
example limits the result to 999999. 

Step 01 places the number in A into the accumulator. 

Step 02 adds the number in B to the accumulator. Column V in the table, following, 
shows the possible results for any digit. It should be noted that there are 19 possible 
results, indicated by lines 0-18. 

Step 03 forces any carries into the units position of the next digit. Lines 10-18 of Column 
V contain the sums that will carry into the next digit. Column W contains the 20 possible 
results for each digit position. The additional possibility (line 19) arises from the fact that 
there can be a carry of one into a digit. 

Step 04 stores the intermediate result in C. 

Step 05 extracts an octal 60 from each non-carry digit. The results are indicated in column 
X. The digits that did not force a carry (lines 0-9) result in an octal 60, the digits that had 
a carry into the next digit (lines 10-18) result in 00. 

Step 06 performs an exclusive OR of the contents of the accumulator with the contents of 
C. This in effect subtracts octal 60 from each digit that did not have a carry (lines 0-9). 
The results are indicated in Column Y. 

Step 07 shifts the octal 60s to the right three places. 

Step 08 negates the contents of the accumulator. 

Step 09 is an add to storage the contents of the accumulator to the contents of C. This in 
effect subtracts a 06 from each digit that did not have a carry, the results of which are 
indicated in Column Z. 

01 LDA ] A {TO ADD C = A+B IN BCD. 
02 AD LA B COMPUTE A+B 
03 ADLA =0666666666666 ADD OCTAL 66 TO EACH DIGIT TO FORCE CARRIES 
04 STA C 
05 ANA =0606060606060 EXTRACT OCTAL 60 FROM EACH NON-CARRY 
06 ERSA C SUBTRACT OCTAL 60 FROM EACH NON-CARRY 
07 ARL ) 3 ( SlffiTRACT OCTAL 
08 NEG 06 FROM EACH 
09 ASA C NON-CARRY 

CPB ... 1004F 

243 



ADDITION RESULTS 

LINE v w x y z 

0 00 66 60 6 00 
1 01 67 60 7 01 
2 02 70 60 10 02 
3 03 71 60 11 03 
4 04 72 60 12 04 
5 05 73 60 13 05 
6 06 75 60 14 06 
7 07 75 60 15 07 
8 10 76 60 16 10 
9 11 77 60 17 11 

10 12 00 00 0 00 
11 13 01 00 1 01 
12 14 02 00 2 02 
13 15 03 00 3 03 
14 16 04 00 4 04 
15 17 05 00 5 05 
16 20 06 00 6 06 
17 21 07 00 7 07 
18 22 10 00 10 10 
19 - 11 00 11 11 

BCD Subtraction 

The following is an example of subtracting one BCD number from another BCD number. 
The contents of A must be equal to or greater than the contents of B. 

Step 01 loads the accumulator with the contents of A. 

Step 02 subtracts the contents of B from the accumulator. The possible results for each 
digit are indicated in Column W of the table that is included with this example. 

Step 03 stores the intermediate result in C. 

Step 04 extracts an octal 60 from each digit that required a borrow. This will leave an 
octal 60 in each digit position where there was a borrow. The possible results of this 
instruction are indicated in Column X, lines 0-19 (10-19 refer to those which result in 
octal 60,) 

Step 05, an exclusive OR to storage, in effect subtracts the octal 60's in the accumulator from 
the corresponding digit in C. The possible results for each digit are displayed in Column Y. 

Step 06 shifts the octal 60's in the accumulator right three places. 

Step 07 negates the contents of the accumulator. 

Step 08, an add to storage, is in effect a subtraction of 06 from each digit that required a 
borrow, the result being placed in C. Column Z of the table reflects the possible results 
for each digit. 

CPB-1004F 

244 



01 LDA J A t TO SUBTRACT C == A-B IN BCD. 
02 SBLA B COMPUTE A-B 
03 STA C 
04 ANA ==0606060606060 EXTRACT OCTAL 60 FROM EACH BORROW 
05 ERSA C SUBTRACT OCTAL 60 FROM EACH BORROW 
06 ARL } 3 { SUBTRACT OCTAL 
07 NEG 06 FROM EACH 
08 ASA C BORROW 

SUBTRACTION RESULTS 

LINE W X y z 

0 11 0 11 11 
1 10 0 10 10 
2 07 0 07 07 
3 06 0 06 06 
4 05 0 05 05 
5 05 0 04 04 
6 03 0 03 03 
7 06 0 02 02 
8 01 0 01 01 
9 00 0 00 100 

10 77 60 17 11 
11 76 60 16 10 
12 75 60 15 07 
13 74 60 14 06 
14 73 60 13 05 
15 72 60 12 04 
16 71 60 11 03 
17 70 60 10 02 
18 67 60 7 01 
19 66 60 6 00 

Character Transliteration 

The following example illustrates a method of transliterating each character of a card 
image that has been punched in the FORTRAN Character Set to the octal value of the 
corresponding character in the General Electric Standard Character Set. There are 
48 characters in the FORTRAN Set and 64 characters in the General Electric Standard 
Character Set. Each character that is punched invalidly (not a standard punch combination 
in the FORTRAN Set) is converted to a blank. The card is origined at IMAGE. 

Steps 01 and 02 initialize the indirect word TALLY2. 

Step 03 picks up the character to be transliterated by referencing the word TALLY2 with 
the Character from Indirect (CI) modifier. This will place the character specified by bits 
33-35 of TALLY2 from a location specified by bits 0-17 of TALLY2 into the accumulator, bits 
29-35. Bits 0-28 of the accumulator will be set to zero. Step 03 is forced even so as to 
place the four-step loop (step 03-06) in two even/odd pairs. This decreases run time. 

Step 04 picks up the corresponding General Electric standard character from the address 
T ABLE modified by the contents of accumulator, bits 18-35. 

Step 05 places the transliterated character back in the card image where it was originally 
picked up. The Sequence Character (SC) modifier increments the character specified in 
bits 33-35 of the word TALLY2. 

CPB-I004F 

245 



Each time the character position becomes greater than 5, it is reset to zero; and the address 
specified in bits 0-17 of T ALLY2 is incremented by one. The tally in bits 18-29 of the same 
word is decremented by 1 with each SC reference. Whenever a tally reaches zero, the Tally 
Runout Indicator is set ON. Otherwise, it is set OFF. 

Step 06 tests the Tally Runout Indicator. If it is OFF, the program transfers to LOOP; if 
not, the next sequential instruction is taken. 

The table, TABLE, is 64 locations long. The character in each location is a General Electric 
standard character that corresponds to a FORTRAN character in the following manner. The 
relative location of a particular character to the start of the table is equal to the binary value 
of the corresponding FORTRAN character. For example, an A punched in the FORTRAN 
Character Set has the octal value 21(1710 ). The relative location 17 to TABLE contains an A 
in the General Electric Standard Character Set. A 3-8 punch in the FORTRAN Set represents 
an = character. The 3-8 punch would be read as an octal 13(ll lC). The relative location 11 
to TABLE contains an octal 75 (see line 21) which represents the = character in the General 
Electric Standard Character Set. 

01 LDA TALLY 1 INITIALIZE TALLY WORD 
02 STA TALLY2 
03 LOOP EI.DA TALLY2,CI PICK UP CHARACTER TO BE TRANSLITERATED 
04 LDQ TABLE,AL LOAD OR WITH TRANSLITERATED CHARACTER 
05 STQ TALLY2,SC STORE BACK ON CARD IMAGE 
06 TTF LOOP IF TALLY HAS NOT RUN OUT CONTINUE LOOP 

07 TALLY 1 TALLY IMAGE,80,0 
08 TALLY2 ZERO 
09 IMAGE BSS 14 
10 TABLE OCT 0 
11 OCT 1 
12 OCT 2 
13 OCT 3 
14 OCT l~ 

15 OCT 5 
16 OCT 6 
17 OCT 7 
18 OCT 10 
19 OCT 11 
20 OCT 20 
21 OCT 75 3-8 PUNCH = IN FORTRAN SET 
22 OCT 57 4-8 PUNCH I IN FORTRAN SET 
23 OCT 20 
24 OCT 20 
25 OCT 20 
26 OCT 20 
27 OCT 21 
28 OCT 22 
29 OCT 23 
30 OCT 24 
31 OCT 25 
32 OCT 26 
33 OCT 27 

CPB-I004F 

246 



34 OCT 30 
35 OCT 31 
36 OCT 60 12 PUNCH + IN FORTRAN SET 
37 OCT 33 12-3-8 PUNCH . IN FORTRAN SET 
38 OCT 55 12-4-8 PUNCH ) IN FORTRAN SET 
39 OCT 20 
40 OCT 20 
41 OCT 20 
42 OCT 20 
43 OCT 41 
44 OCT 42 
45 OCT 43 
46 OCT 44 
47 OCT 45 
48 OCT 46 
49 OCT 47 
50 OCT 50 
51 OCT 51 
52 OCT 52 11 PUNCH - IN FORTRAN SET 
53 OCT 53 11-3-8 PUNCH $ IN FORTRAN SET 
54 OCT 54 11-4-8 PUNCH * IN FORTRAN SET 
55 OCT 20 
56 OCT 20 
57 OCT 20 
58 OCT 20 
59 OCT 61 0-1 PUNCH I IN FORTRAN SET 
60 OCT 62 
61 OCT 63 
62 OCT 64 
63 OCT 65 
64 OCT 66 
65 OCT 67 
66 OCT 70 
67 OCT 71 
68 OCT 20 
69 OCT 73 0-3-8 PUNCH IN FORTRAN SET 
70 OCT 35 0-4-8 PUNCH IN FORTRAN SET 
71 OCT 20 
72 OCT 20 
73 OCT 20 

Table Lookup 

The following example illustrates a method of searching an unordered table for a value equal 
to the value in the accumulator. Prior to entering the routine given below, the user must 
load the accumulator with the search argument, load the quotient register with the size of 
the table to be searched (the size should be scaled at binary point 25), and initialize index 
register 1 with the first location of the table to be searched. The user enters the routine 
by executing a transfer and set index register 2 (TSX2) to the symbolic location TLU (see 
step 05, below). Return from the routine is to the instruction following the TSX2. The 
Zero Indicator will tell the user whether or not a match has occurred. Zero Indicator 
ON indicates a match; Zero Indicator OFF indicates no match. If a match was made, the 
contents of index register 1 will be W locations (W being the increment specified in the 
RPTX command, step 15) higher than the location of the equal argument. 

CPB-I004F 

247 



Steps 01-11 are comment cards. 

Step 12 places the contents of the lower half (bits 18-35) of the quotient register plus 64, 
in index register O. The number 64, in effect, set the TZE terminate repeat condition on. 
The instruction also places the last 8 bits of the size of the table in index register 0, bits 
0-7. Thus, if the size of the table is a multiple of 256 words, zeros will be loaded into bits 
0-7 of index register 1. Zeros in those bit positions will cause the repeat to execute 256 
times. If, however, the size of the table to be searched is of the form 256n+m, where n2 0, 
and 0 < m< 256, then m would be placed in bits 0-7 of index register O. This will cause the 
repeat instruction to be executed a maximum of m times on the first pass through. 

Step 13 subtracts 1024 from the quotient register. This, in effect, subtracts 1 from the 
size of the table to be searched. The subtracting of 1 becomes meaningful in two places: 
(I) it provides a test to be sure the table is not zero words long (see step 14) and (2) if 
the table is a multiple of 256 words long, it effectively subtracts 1 from bits 0-17 (a 
look-ahead to steps 18 and 19 points out the importance of this). 

Step 14 causes the routine to return to the main program if the size of the table was zero. 

Step 15, an RPTX, executes step 16 a number of times equal to the contents of index register 
0, bits 0-7, at the start of the instruction execution. Each time step 16 is executed, the 
contents of the accumulator (the search argument) are compared with the contents of the 
location specified by index register 1. At the same time, index register 1 is incremented by 
W as is specified in the repeat instruction; and the contents of index register 0, bits 0-7, 
are decremented by 1. The repeat sequence terminates when the compare causes the Zero 
Indicator to be set or when bits 0-7 of index register 0 are set to zero. 

Step 17 tests the Zero Indicator and returns to the main program if it is set. It should be 
noted that index register 1 will be set W locations higher than when the equal argument was 
found because of the sequence of events described above. 

Step 18. If the Zero Indicator was not set by step 16, then step 18 will be executed. This 
instruction subtracts 1 from bits 0-17 of the quotient register. In effect, this is subtracting 
256 from the size of the table. The size of the table can be expressed in the form 256n+m. 
If m=O and n=l, then the contents of the quotient register would also go zero at this point. 
This is because step 13 would have caused a borrow of 1 from n when m equals zero. 
Further inspection of these instructions will reveal that positive values of n and m, other 
than those expressed above, will only cause the routine to loop until the contents of the 
quotient register are reduced to a negative value. 

Step 19 transfers control to step 15 if the contents of quotient register remained positive. 
If the quotient register became negative, step 20 is executed and the routine returns to the 
main program. 

CPB-I004F 

248 



It should be noted that when control is transferred back to step 15, index register 0, bits 0-7, 
contains zeros (causes the repeat to be executed a maximum of 256 times); and index 
register 1 contains the address of the next location in the table that is to be searched. 

01 "!( CALLING SEQUENCE IS 
02 ~'( LDA ITEM SEARCH ITEM. 
03 "/( LDQ SIZE NUMBER OF TABLE ENTRIES--AT B25. 
04 .,'( LDXl FIRST,DU LOCATION OF FIRST SEARCH WORD IN TABLE. 
05 ~'( TSX2 TLU CALL TABLE LOOKUP SUBROUTINE. 
06 ~'( TZE FOUND TRANSFER IF SEARCH ITEM IS IN TABLE, OR 
07 ~'( TNZ ABSENT TRANSFER IF SEARCH ITEM IS NOT IN TABLE. 
08 ~'( USE ONE OF THE TWO INSTRUCTIONS IMMEDIATELY ABOVE. 
09 ~'( IF IN TABLE, C(Xl)-W WILL BE THE LOCATION OF THE MATCHING SEARCH 
10 ~'( WORD. OTHERWISE, C(Xl)-W WILL BE THE LOCATION OF THE LAST 
11 ~'( SEARCH WORD IN THE TABLE. W IS THE NUMBER OF WORDS PER ENTRY. 
12 TLU EAXO 64,QL PICKUP SIZE (MOD 256) AND TZE-BIT 
13 SBLQ 1024, DL SIZE = SIZE-I. 
14 TMI ,2 EXIT IF SIZE WAS O--EMPTY TABLE. 
15 TLUl RPTX ,W NOTE THAT 0 REPRESENTS 256 (MOD 256). 
16 CMPA ,1 PERFORM TABLE LOOKUP 
17 TZE ,2 EXIT IF SEARCH ITEM IS IN TABLE. 
18 SBLQ I,DU SIZE = SIZE-256. 
19 TPL TLUI CONTINUE TABLE LOOKUP IF MORE ENTRIES. 
20 TRA ,2 EXIT--SEARCH ITEM IS NOT IN TABLE. 

Binary to BCD 

The following example illustrates a method of converting a number from binary to BCD. 
The example converts a number that is in the range of -10 6+1 to +106 -1, inclusive. 

Step 01 places zeros in index register 2. 

Step 02 loads the accumulator with the binary number that is to be converted. 

Steps 03 and 04 perform the conversion of the binary number in the accumulator to the 
Binary-Coded Decimal equivalent. Step 03 will repeat step 04 six times. It will also 
increment the contents of index register 2 by one after each execution. 

The BCD instruction, step 04, is designed to convert the magnitude of the contents of the 
accumulator to the Binary-Coded Decimal equivalent. The method employed is to effectively 
divide this number by a constant, place the result in bits 30-35 of the quotient register 
and leave the remainder in the accumulator. The execution of the BCD instruction allows 
the user to convert a binary number to BCD, one digit at a time, with each digit coming 
from the high-order part of the number. The address of the BCD instruction refers to a 
constant to be used in the division; a different constant is needed for each digit. In the 
process of the conversion, the number in the accumulator is shifted left three positions. 
The C(Q)O_35 are shifted left 6 positions before the new digit is stored. 

CPB-I004F 

249 



In this example, the constants used for dividing are located at TAB, TAB+l, TAB+2, ... , 
TAB+5. If the value in X were 0000005222418, the quotient register would contain 
0107030201078 at the completion of the repeat sequence. Step 05 stores the quotient 
register in Y. 

The values in the table below are the conversion constants to be used with the Binary to 
BCD instruction. Each vertical column represents the set of constants to be used depending 
on the initial value of the binary number to be converted to its decimal equivalent. The 
instruction is executed once per digit, using the constant appropriate to the conversion step 
with each execution. 

An alternate use of the table for conversion involves the use of the constants in the row 
corresponding to conversion step 1. If after each conversion, the contents of the accumulator 
are shifted right 3 positions, the constants in the conversion step 1 row may be used one 
at a time in order of decreasing value lUltil the conversion is complete. 

Conversion 
Step 

2 82x108 

3 83x10 7 

4 84x106 

5 85x105 

6 8
6
x104 

7 87x103 

8 88x10 2 

9 8
9 x10 1 

10 810 

01 LDX2 

02 LDA 

03 RPr 

04 BCD 

05 STQ 

06TAB DEC 

DEC 

BINARY TO BCD CONVERSION CONSTANTS 

82x107 82x106 82x105 82x104 82x10 3 82x10 2 82x101 82 

83x106 83x105 83x104 83x10 3 83x10 2 83x10 1 
83 

84x105 84x104 84x103 S4x102 84x101 84 

85x104 s5x103 85x10 2 S5x10 1 S5 

S6x10 3 86x10 2 86x10 1 86 

87x102 87 x10 1 
8

7 

88x10 1 8S 

89 

O,DU PLACE ZEROS IN X2 

X LOAD ACCUMULATOR WITH VALUE TO BE CONVERTED 

6,1 REPEAT 6 TIMES, INCREMENT BY 
TAB,2 DIVIDE BY TAB, TAB+1, ETC. 
Y STORE CONVERTED NUMBER IN Y 

800000, 640000, 512000, 409600, 327680 

262144 

250 

1 

CPB-I004F 



APPENDIX A. GE-615/635 INSTRUCTIONS LISTED BY 
FUNCTIONAL CLASS WITH PAGE REFERENCES AND TIMINGS 

GE-615 GE-635 
DATA MOVEMENT Timing Timing 
Load (flSec) I- (flsec)1-

LDA 235 Load A 4.0 1.9 
LDQ 236 Load Q 4.0 1.9 
LDAQ 237 Load AQ 4.3 1.9 
LDXn 22n Load Xn from Upper 4.3 1.9 
LXLn 72n Load Xn from Lower 4.0 1.9 
LREG 073 Load Registers 14.3 6.7 
LCA 335 Load Complement A 4.0 1.9 
LCQ 336 Load Complement Q 4.0 1.9 
LCAQ 337 Load Complement AQ 4.3 1.9 
LCXn 32n Load Complement Xn 4.0 1.9 
EAA 635 Effective Address to A 2.6 1.6 
EAQ 636 Effective Address to Q 2.6 1.6 
EAXn 62n Effective Address to Xn 2.6 1.6 

LDI 634 Load Indicator Register 4.0 1.9 

Store 

STA 755 Store A 3.2 2.1 
STQ 756 Store Q 3.2 2.1 
STAQ 757 Store AQ 4.2 3.0 
STXn 74n Store Xn into Upper 3.2 2. 1 
SXLn 44n Store Xn into Lower 3.2 2.1 
SREG 753 Store Register 14.2 9.5 
STCA 751 Store Character of A (6 Bit) 3.2 2.1 
STCQ 752 Store Character of Q (6 Bit) 3.2 2.1 
STBA 551 Store Character of A (9 Bit) 3.2 2.1 
STBQ 552 Store Character of (~ (9 Bit) 3.2 2.1 
STI 754 Store Indicator Register 3.5 2.5 
STT 454 Store Timer Register 3.0 2.1 
SBAR 550 Store Base Address Register 3.5 2.5 
STZ 450 Store Zero 3.5 2.5 
STC1 554 Store Instruction Counter plus 1 3.5 2.5 
STC2 750 Store Instruction Counter plus 2 3.5 2.5 

Shift 

ARS 731 A Right Shift 6.5 2.1 
QRS 732 Q Right Shift 6.5 2.1 
LRS 733 Long Right Shift 6.5 2.1 

I-See Calculation of Instruction Execution Times, page 42. 

251 

Reference 
(Page) 

48 
48 
48 
49 
49 
49 
50 
51 
51 
52 
52 
53 
53 

54 

55 
55 
55 
55 
56 
56 
57 
57 
58 
59 
60 
61 
61 
61 
62 
62 

63 
63 
63 

CPB ... 1004F 
Rev. July 1969 



DATA MOVEMENT 
Shift 

ALS 735 A Left Shift 
QLS 736 Q Left Shift 
LLS 737 Long Left Shift 

ARL 771 A Right Logic 
QRL 772 Q Right Logic 
LRL 773 Long Right Logic 

ALR 775 A Left Rotate 
QLR 776 Q Left Rotate 
LLR 777 Long Left Rotate 

FIXED-POINT ARITHMETIC 

Addition 

ADA 075 Add to A 
ADQ 076 Add to Q 
ADAQ 077 Add to AQ 
ADXn 06n Add to Xn 

ASA 055 Add Stored to A 
ASQ 056 Add Stored to Q 
ASXn 04n Add Stored to Xn 

ADLA 035 Add Logic to A 
ADLQ 036 Add Logic to Q 
ADLAQ 037 Add Logic to AQ 
ADLXn 02n Add Logic to Xn 

AWCA 071 Add with Carry to A 
AWCQ 072 Add with Carry to Q 

ADL 033 Add Low to AQ 

AOS 054 Add One to Storage 

Subtraction 

SBA 175 Subtract from A 
SBQ 176 Subtract from Q 
SBAQ 177 Subtract from AQ 
SBXn 16n Subtract from Xn 

SSA 155 Subtract Stored from A 
SSQ 156 Subtract Stored from Q 
SSXn 14n Subtract Stored from Xn 

rf See Calculation of Instruction Execution Times, page 42. 

252 

GE-615 
Timing 
(flsec)rf 

6.5 
6.5 
6.5 

6.5 
6.5 
6.5 

6.5 
6.5 
6.5 

4.0 
4.0 
4.3 
4.0 

4.0 
4.9 
4.9 

4.0 
4.0 
4.0 
4.0 

4.0 
4.0 

4.0 

4.9 

4.0 
4.0 
4.0 
4.0 

4.9 
4.9 
4.9 

GE-635 
Timing Reference 
(flsec)rf (Page) 

2.1 64 
2.1 64 
2.1 65 

2.1 65 
2.1 65 
2.1 66 

2.1 66 
2.1 66 
2.1 67 

1.9 68 
1.9 68 
1.9 69 
1.9 69 

1.9 70 
3.3 70 
3.3 71 

1.9 71 
1.9 72 
1.9 72 
1.9 73 

1.9 73 
1.9 74 

1.9 75 

3.3 75 

1.9 76 
1.9 76 
1.9 77 
1.9 77 

3.3 78 
3.3 78 
3.3 79 

CPB .. I004F 
Rev. July 1969 



GE-615 GE-635 
FIXED- POINT ARITHMETIC Timing Timing Reference 

(jJ.sec)1- (fJ,sec)1- (Page) 

Subtraction 

SBLA 135 Subtract Logic from A 4.0 1.9 79 
SBLQ 136 Subtract Logic from Q 4.0 1.9 80 
SBLAQ 137 Subtract Logic from AQ 4.0 1.9 80 
SBLXn 12n Subtract Logic from Xn 4.0 1.9 81 

SWCA 171 Subtract with Carry from A 4.0 1.9 81 
SWCQ 172 Subtract with Carry from Q 4.0 1.9 82 

Multiplication 

MPY 402 Multiply Integer 19.2 7.6 83 
MPF 401 Multiply Fraction 19.2 7.6 84 

Division 

DIV 506 Divide Integer 29.4 15.1 85 
DVF 507 Di vide Fraction 29.4 15.1 86 

Negate 

NEG 531 Negate A 2.6 1.6 87 
NEGL 533 Negate Long 2.6 1.6 87 

BOOLEAN OPERATIONS 

AND 

ANA 375 AND to A 4.0 1.9 88 
ANQ 376 AND to Q 4.0 1.9 88 
ANAQ 377 AND to AQ 4.0 1.9 88 
ANXn 36n AND to Xn 4.0 1.9 89 

ANSA 355 AND to Storage A 4.9 3.3 89 
ANSQ 356 AND to Storage Q 4.9 3.3 89 
ANSXn 34n AND to Storage Xn 4.9 3.3 90 

Jlli.. 

ORA 275 OR to A 4.0 1.9 90 
ORQ 276 OR to Q 4.0 1.9 90 
ORAQ 277 OR to AQ 4.0 1.9 91 
ORXn 26n OR to Xn 4.0 1.9 91 

ORSA 255 OR to Storage A 4.9 3.3 91 
ORSQ 256 OR to Storage Q 4.9 3.3 92 
ORSXn 24n OR to Storage Xn 4.9 3.3 92 

I- See Calculation of Instruction Executiion Times, page 42. 

CPB-I004F 
Rev. July 1969 

253 



BOOLEAN OPERATIONS 

EXCLUSIVE OR 

ERA 675 
ERQ 676 
ERAQ 677 
ERXn 66n 

ERSA 655 
ERSQ 656 
ERSXn 64n 

COMPARISON 

Compare 

CMPA 115 
CMPQ 116 
CMPAQ 117 
CMPXn 10n 

CWL 111 
CMG 405 
SZN 234 

CMK 211 

Comparative AND 

CANA 315 
CANQ 316 
CANAQ 317 
CANXn 30n 

Comparative NOT 

CNAA 215 
CNAQ 216 
CNAAQ 217 
CNAXn 20n 

FLOATING POINT 

Load 

FLD 
DFLD 
LDE 

431 
433 
411 

EXCLUSIVE OR to A 
EXCLUSIVE OR to Q 
EXCLUSIVE OR to AQ 
EXCLUSIVE OR to Xn 

EXCLUSIVE OR to Storage A 
EXCLUSIVE OR to Storage Q 
EXCLUSIVE OR to Storage Xn 

Compare with A 
Compare with Q 
Compare with AQ 
Compare with Xn 

Compare with Limits 
Compare Magnitude 
Set Zero and Negative Indicators 

from Memory 
Compare Masked 

Comparative AND with A 
Comparative AND with Q 
Comparative AND with AQ 
Comparative AND with Xn 

Comparative NOT with A 
Comparative NOT with Q 
Comparative NOT with AQ 
Comparative NOT with Xn 

Floating Load 
Double-Precision Floating Load 
Load Exponent Register 

f See Calculation of Instruction Execution Times, page 42. 

254 

GE-615 
Timing 
(JJ.sec)f 

4.0 
4.0 
4.0 
4.0 

4.9 
4.9 
4.9 

4.0 
4.0 
4.0 
4.0 

4.8 
4.0 

4.0 
4.8 

4.0 
4.0 
4.0 
4.3 

4.0 
4.0 
4.0 
4.3 

4.0 
4.3 
4.0 

GE-635 
Timing 
(JJ.sec)f 

1.9 
1.9 
1.9 
1.9 

3.3 
3.3 
3.3 

1.9 
1.9 
1.9 
1.9 

1.9 
1.9 

1.9 
1.9 

1.9 
1.9 
1.9 
1.9 

1.9 
1.9 
1.9 
1.9 

1.9 
1.9 
1.9 

Reference 
(Page) 

92 
93 
93 
93 

94 
94 
94 

95 
96 
97 
98 

99 
100 

100 
101 

102 
102 
102 
103 

103 
103 
104 
104 

105 
105 
105 

CPB-I004F 
Rev. July 1969 



GE-615 GE-635 
FLOATING POINT Timing Timing Reference 

(flSec)f (flSec)f (Page) 
Store 

FST 455 Floating Store 3.2 2.1 106 
DFST 457 Double-Precision Floating Store 4.2 3.0 106 
STE 456 Store Exponent Register 3.2 2.1 106 
FSTR* 470 Floating Store Rounded 4.8 2.9 106.1 
Addition 

FAD 475 Floating Add 6.5 2.8 107 
UFA 435 Unnormalized Floating Add 6.5 2.8 107 
DFAD 477 Double-Precision Floating Add 6.2 2.8 108 
DUFA 437 Double-Precision Unnormalized 

Floating Add 6.2 2.8 108 
ADE 415 Add to Exponent Register 4.0 1.9 109 

Subtraction 

FSB 575 Floating Subtract 6.5 2.8 109 
UFS 535 Unnormalized Floating Subtract 6.5 2.8 110 
DFSB 577 Double-Precision Floating Subtract 6.5 2.8 110 
DUFS 537 Double-Precision Unnormalized 

Floating Subtract 6.5 2.8 111 

Multiplication 

FMP 461 Floating Multiply 16.2 6.5 111 
UFM 421 Unnormalized Floating Multiply 16.0 6.3 112 
DFMP 463 Double-Precision Floating Multiply 31.0 12.7 112 
DUFM 423 Double-Prec. Unnormal. Floating 

Multiply 31.0 12.4 113 

Division 

FDV 565 Floating Divide 31.0 15.6 114 
FDI 525 Floating Divide Inverted 31.0 15.1 115 
DFDV 567 Double-Precision Floating Divide 48.0 25.1 116 
DFDI 527 Double-Precision Floating Divide 

Inverted 47.0 24.7 117 

Negate, Normalize 

FNEG 513 Floating Negate 3.4 2.3 118 
FNO 573 Floating Normalize 3.4 1.9 118 

f See Calculation of Instruction Execution Times, page 42. 

*When normalization does not take place, subtract 0.3 microsecond from the listed time. 

255 

CPB-I004F 
Rev. July 1969 



FLOATING POINT 

Compare 

FCMP 515 Floating Compare 
FCMG 425 Floating Compare Magnitude 
DFCMP 517 Double-Precision Floating Compare 
DFCMG 427 Double--Precision Floating Compare 

Magnitude 
FSZN 430 Floating Set Zero and Negative 

Indicators from Memory 

TRANSFER OF CONTROL 

Transfer 

I 
TRA 710 Transfer Unconditionally 
TSXn 70n Transfer and Set Xn 
TSS 715 Transfer and Set Slave Mode 
RET 630 Return 

Conditional Transfer 

TZE 600 Transfer on Zero 
TNZ 601 Transfer on Not Zero 

TMI 604 Transfer on Minus 
TPL 605 Transfer on Plus 

TRC 603 Transfer on Carry 
TNC 602 Transfer on No Carry 

TOV 617 Transfer on Overflow 
TEO 614 Transfer on Exponent Overflow 
TEU 615 Transfer on Exponent Underflow 

TTF 607 Transfer on Tally -Runout Indicator 
OFF 

MISCELLANEOUS OPERATIONS 

I NOP 011 No Operation 

BCD 505 Binary to Binary-Coded Decimal 
GTB 774 Gray to Binary 

XEC 716 Execute 
XED 717 Execute Double 
MME 001 Master Mode Entry 
DRL 022 Derail 

;6 See Calculation of Instruction Execution Times, page 42. 

I *Operations unit execution time only 

256 

GE-615 
Timing 
(fJ,sec) ;6 

5.1 
5.1 
5.1 

4.0 

4.0 

2.0 
3.0 
2.0 
4.0 

2.0 
2.0 

2.0 
2.0 

2.0 
2.0 

2.0 
2.0 
2.0 

2.0 

2.0 

9.5 
31.3 

2.0 
2.0 
3.0 
3.0 

GE-635 
Timing Reference 
(fJ,sec);6 (Page) 

2.1 119 
2.1 120 
2.1 121 

1.9 122 

1.9 123 

1.7 124 
1.7 124 
1.7 124 
3.3 125 

1.7 126 
1.7 126 

1.7 126 
1.7 126 

1.7 127 
1.7 127 

1.7 127 
1.7 128 
1.7 128 

1.7 128 

1.4 129 

4.1 129 
11.2* 130 

1.7 131 
1.7 131 
2.3 132 
2.3 133 

CPB-1004F 
Rev. July 1969 



GE-615 GE-635 
MISCELLANEOUS OPERATIONS Timing Timing Reference 

(flsec)f. (flsec)f. (Page) 

RPT 520 Repeat 4.0 1.6 134 
RPD 560 Repeat Double 4.0 1.6 137 
RPL 500 Repeat Link 4.0 1.6 141 

MASTER MODE OPERATIONS 

Master Mode 

DIS** 616 Delay Until Interrupt Signal Indefinite 145 
LBAR* 230 Load Base Address Register 4.1 1.9 145 
LDT** 637 Load Timer Register 4.1 2.5 145 

SMIC* 451 Set Memory Controller Interrupt Cells 4.0 1.9 146 

Master Mode and Control Processor 

RMCM* 233 Read Memory Controller Mask 
Registers 

SMCM* 553 Set Memory Controller Mask 
Registers 

CIOC* 015 Connect I/O Channel 

f. See Calculation of Instruction Execution Times, page 42. 
* Functions as NOP in slave mode 
**Covers command fault if executed in slave mode 

257 

4.1 1.9 

4.0 3.0 
4.0 2.5 

146 

147 
148 

CPB-1004F 
Rev. July 1969 

I 





APPENDIX B. GE-625/635 MNEMONICS 
IN ALPHABETICAL ORDER WITH PAGE REFERENCES 

Mnemonic: Page: Mnemonic: Page: Mnemonic: Page: Mnemonic: Page: 

ADA 68 DFCMG 122 LDAQ 48 SBXn 77 
ADAQ 69 DFCMP 121 LDE 105 SMCM 147 
ADE 109 DFDI 117 LDI 54 SMIC 146 
ADL 75 DFDV 116 LDT 145 SREG 56 
ADLA 71 DFLD 105 LDQ 48 SSA 78 
ADLAQ 72 DFMP 112 LDXn 49 SSQ 78 
ADLQ 72 DFSB 110 LLR 67 SSXn 79 
ADLXn 73 DFST 106 LLS 65 STA 55 
ADQ 68 DIS 145 LREG 49 STAQ 55 
ADXn 69 DIV 85 LRL 66 STBA 58 
ALR 66 DRL 133 LRS 63 STBQ 59 
ALS 64 DUFA 108 LXLn 49 STC1 62 
ANA 88 DUFM 113 STC2 62 
ANAQ 88 DUFS 111 MME 132 STCA 57 
ANQ 88 DVF 86 MPF 84 STCQ 57 
ANSA 89 MPY 83 STE 106 
ANSQ 89 EAA 52 STI 60 
ANSXn 90 EAQ 53 NEG 87 STQ 55 
ANXn 89 EAXn 53 NEGL 87 STT 61 
AOO 75 ERA 92 NOP 129 STXn 55 
ARL 65 ERAQ 93 STZ 61 
ARS 63 ERQ 93 ORA 90 SWCA 81 
ASA 70 ERSA 94 ORAQ 91 SWCQ 82 
ASQ 70 ERSQ 94 ORQ 90 SXLn 56 
ASXn 71 ERSXn 94 ORSA 91 SZN 100 
AWCA 73 ERXn 93 ORSQ 92 
AWCQ 74 ORSXn 92 TEO 128 

FAD 107 ORXn 91 TEU 128 
BCD 129 FCMG 120 TMI 126 

FCMP 119 QLR 66 TNC 127 
CANA 102 FDI 115 QLS 64 TNZ 126 
CANAQ 102 FDV 114 QRL 65 TOV 127 
CANQ 102 FLD 105 QRS 63 TPL 126 
CANXn 103 FMP 111 TRA 124 
CIOC 148 FNEG 118 RET 125 TRC 127 
CMG 100 FNO 118 RMCM 146 TSS 124 
CMK 101 FSB 109 RPD 137 TSXn 124 
CMPA 95 FST 106 RPL 141 TTF 128 
CMPAQ 97 FSTR 106.1 RPT 134 TZE 126 
CMPQ 96 FSZN 123 
CMPXn 98 . GTB 130 SBA 76 UFA 107 
CNAA 103 SBAQ 77 UFM 112 
CNAAQ 104 LBAR 145 SBAR 61 UFS 110 
CNAQ 103 LCA 50 SBLA 79 
CNAXn 104 LCAQ 51 SBLAQ 80 XEC 131 
CWL 99 LCQ 51 SBLQ 80 XED 131 

LCXn 52 SBLXn 81 
DFAD 108 LDA 48 SBQ 76 

CPB-1004F 

259 





APPENDIX C. GE-625/635 INSTRUCTION MNEMONICS 
CORRELATED WITH THEIR OPERATION CODES 

GE-625/635 Mnemonics and Operation Codes GENERAL" ELECTRIC 

O()O 00 L OOl (l()'j (lO!, lHlS 006 007 010 01L 012 013 OUf OlS OI6 017 

()O() MME DRL NOP CHlJc 
OZO ADLXO ADLXl ADLX2 i\DLXJ .\IlLXi, AllLXS ADLX6 ADLX7 ADL ADLA ADLQ ADLAQ 
OLiO ASXO ASXl ASX2 ASX] ,\SX!, ,\SXS ,\SX6 ASX7 AOS ASA ASQ 
()bO ADXO ADXl ADX2 ·\DX3 i\IlXL, ADX5 AIlX6 AIlX7 AWCA AWCQ LREG ADA ADQ ADAQ 

[00 CMPXO CMPXl CMPX2 CMPX3 CHPX!, CMPXS CMPX6 CHPX7 CWL CMPA CMPQ CMPAQ 
UO SBLXO SBLX[ SBLX2 SBLXJ SBLXL, SBLX5 SBLX6 SBLX7 SBLA SBLQ SBLAQ 

140 SSXO SSXL SSX2 SSX3 SSX!, SSX5 SSX6 SSX7 SSA SSQ 
160 SBXO SBXl SBX2 SBX3 SBX4 SBX5 SBX6 SBX7 SWCA SWCQ SBA SBQ SBAQ 

200 CNAXO CNAXl CNAX2 CNAX3 CNAXL, CNAX5 CNAX6 CNAX7 CM!< CNAA CNAQ CNAAQ 

220 LOXO LDXl LDX2 LDX3 LDXL, LDX5 LDX6 LOX7 LBAR RMCM SZN LDA LDQ LDAQ 

240 ¢RSXO ¢RSXl I'IRSX2 £lRsx3 0RSXL, ¢RSX5 ¢RSX6 ¢RSX7 RjRSA RjRSQ 
260 fJ'RXO 0RXl 0RX2 0RX3 0RXL, ¢RX5 0RX6 0RX7 0RA 0RQ 0RAQ 

300 CANXO CANX1 CANX2 CANX3 CANX4 CANXS CANX6 CANX7 CANA CANQ CANAQ 
320 LCXO LCX1 LCX2 LCX3 LCX4 LCX5 LCX6 LCX7 LeA LCQ LCAQ 
]L,O ANSXO ANSXl ANSX2 ANSX3 ANSX4 ANSX5 ANSX6 ANSX7 ANSA ANSQ 
360 ANXO ANXI ANX2 ANX3 ANX4 ANX5 ANX6 ANX7 ANA ANQ ANAQ 

400 MPF MPY CMG LDE ADE 
420 UFM Dl1FM FCMG DFCHG FSZN FLD DFLD llFA DUFA 
!,40 SXLO SXLI SXL2 SXL3 SXL4 SXL5 SXL6 SXL7 STZ SHIC STT FST STE DFST 
L,60 FMP DFHP FSTR FAD DFAD 

500 RPL BCD DIV DVF FNEG FCMP DFCMP 
520 RPT FDI DFDI NEG NEGL UFS DUFS 
5,,0 SBAR STBA STBQ SMCM STCI 
560 RPD FDV DFDV FN¢ FSB DFSB 

600 TZE TNZ TNC TRC TMI TPL TTF TE¢ TEll DIS T(i1V 
620 EAXO EAXI EAX2 EAX3 EAX4 EAXS EAXG EAX7 RET LDI EAA EAQ LDT 
640 ERSXO ERSXl ERSX2 ERSX3 ERSXLf ERSX5 ERSX6 ERSX7 ERSA ERSQ 
660 ERXO ERXl ERX2 ERX3 ERX4 ERXS ERX6 ERX7 ERA ERQ ERAQ 

700 TSXO TSXl TSX2 TSX3 TSX'f TSX5 TSX6 TSX7 TRA TSS XEC XED 
720 LXLO LXLl LXL2 LXL3 LXL4 LXL5 LXL6 LXL7 ARS QRS LRS ALS QLS LLS 
740 STXO STXl STX2 STX3 STXL, STX5 STX6 STX7 STC2 STCA STCQ SREG STI STA STQ STAQ 
760 ARL QRL LRL GTB ALR QLR LLR 

000 00 L 002 003 OOt, 005 006 007 010 all 012 Ol3 014 015 016 017 

CPB-1004F 

261 





APPENDIX D. PSEUDO-OPERATIONS 
BY FUNCTIONAL CLASS WITH PAGE REFERENCES 

PSEUDO-OPERATIONS 

PSEUDO-OPERATION 
MNEMONIC 

CONTROL PSEUDO-OPERATIONS 

FUNCTIONS 

DETAIL ON/OFF (Detail output listing) 
LIST ON/OFF (Control output listing) 
PCC ON/OFF (Print control cards) 
INHIB ON/OFF (Inhibit interrupts) 
PMC ON/OFF (Print MACRO expansion) 
REF ON/OFF (References) 
PUNCH ON/OFF (Control card output) 
EDITP (Edit Print Lines) 
EJECT (Restore output listing) 
REM (Remarks) 
* (* in column one -- remarks) 
LBL (Label) 
TTL (Title) 
TTLS (Subtitle) 
DATE (Current date) 
ABS (Output absolute text) 
FUL (Output full binary text) 
TCD (Punch transfer card) 
Bm (~~~ 
DCARD (Punch BCD Card) 
END (End of assembly) 
OPD (Operation definition) 
OPSYN (Operation synonym) 
REFMA ON/OFF (Reference Macros) 

LOCATION COUNTER PSEUDO-OPERATIONS 

USE 
BEGIN 
ORG 
LOC 

SYMBOL DEFINING PSEUDO-OPERATIONS 

EQU 
FEQU 
BOOL 
SET 
MIN 
MAX 
SYMDEF 
SYMREF 
NULL 
EVEN 
ODD 
EIGHT 

(Use multiple location counters) 
(Origin of a location counter) 
(Origin set by programmer) 
(Location of output text) 

(Equal to) 
(Equal to symbol as yet undefined) 
(Boolean) 
(Symbol redefinition) 
(Minimum) 
(Maximum) 
(Symbol definition) 
(Symbol reference) 
(Symbol EQU*) 
(Force Location Counter Even) 
(Force Location Counter Odd) 
(Force Location Counter to Multiple of 

PAGE 

177 
177 
178 
179 
179 
178 
179 
180 
180 
180 
181 
181 
182 
182 
182 
183 
183 
183 
184 
185 
186 
186 
188 
188 

188 
189 
190 
190 

191 
191 
192 
192 
193 
193 
193 
194 
195 
195 
195 
196 

CPB-1004F 
Rev. July 1969 

263 

I 



I 

PSEUDO-OPERATIONS 

PSEUDO-OPERATION 
MNEMONIC FUNCTION 

PAGE 
NUMBER 

DATA GENERATING PSEUDO-OPERATIONS 

OCT 
DEC 
BCI 
ASCII, UASCI 
VFD 
DUP 

(Octal) 
(Decimal) 
(Binary Coded Decimal Information) 
(ASCII Coded Information) 
(Variable field definition) 
(Duplicate cards) 

196 
197 
198 
199 
199.1 
201 

STORAGE ALLOCATION PSEUDO-OPERATIONS 

BSS 
BFS 
BLOCK 
LIT 

CONDITIONAL PSEUDO-OPERATIONS 

INE 
IFE 
IFL 
IFG 

SPECIAL WORD FORMATS 

ARG 

NONOP 
ZERO 

MAXSZ 

ADDRESS TALLY PSEUDO-OPERATIONS 

TALLY 

TALLYB 
TALLYD 
TALLYC 

REPEAT INSTRUCTION CODING FORMATS 

RPT 
RPTX 
RPD 
RPDX 
RPDA 
RPDB 

RPL 
RPLX 

(Block started by symbol) 
(Block followed by symbol) 
(Block common) 
(Literal Pool Origin) 

(If not equal) 
(If equal) 
(If less than) 
(If greater than) 

(Argument- -generate zero 
operation code computer word) 

(Undefined Operation) 
(Generate one word with two 
specified l8-bit fields) 

(Maxi.mum size of assembly) 

(Tally--ID, DI, SC, and CI 
variations) 

(Tally--SC and CI for 9 bit bytes) 
(Tally and Delta) 
(Tally and Continue) 

202 
202 
202 
203 

204 
204 
204 
205 

205 
205 

206 
206 

206 
206 
206 
206 

(Repeat) 207 
(Repeat using index register zero) 207 
(Repeat Double) 207 
(Repeat Double using index register zero) 207 
(Repeat Double using first instruction only) 207 
(Repeat Double using second instruction 
only) 207 

(Repeat Link) 207 
(Repeat Link using index register zero) 207 

CPB-1004F 
Rev. October 1968 

264 



PSEUDO-OPERATIONS 

PSEUDO-OPERATION 
MNEMONIC 

MACRO PSEUDO-OPERATIONS 

MACRO 
ENDM 
CRSM ON/OFF 
ORGCSM 
IDRP 
DELM 
PUNM 
LODM 

PROGRAM LINKAGE PSEUDO-OPERATIONS 

CALL . 
SAVE 
RETURN 
ERLK 

MISCE LLANEOUS 

ETC 

265 

FUNCTION 

(Begin MACRO prototype) 
(End MACRO prototype) 
(Create symbols) 
(Origin Created Symbols) 
(Indefinite repeat) 
(Delete a MACRO) 
(Punch MACRO Prototypes) 
(Load MACRO Prototypes) 

PAGE 
NUMBER 

209 
209 
215 
215 
215 
216 
217 
218 

(Call--subroutines) 220 
(Subroutine entry point) 221 
(Return--from subroutines) 222 
-(Error Linkage--between subroutines) 223 

(Extend Argument List) 199, 214, 221 

CPB-1004F 





APPENDIX E. MASTER MODE ENTRY 
SYSTEM SYMBOLS AND INPUT/OUTPUT OPERATIONS 

SYSTEM SYMBOLS 

The Assembler recognizes the ,following group of system symbols when the programmer 
enters any of them in the variable field of the Master Mode Entry (MME) machine instruc­
tion. (See Chapter II.) These MME instructions then serve as interfaces between the user 
and modules of the Comprehensive Operating Supervisor for special purposes (suggested 
in the meanings in the list following). 

The table below indicates the system mnemonic symbol, its meaning, and the associated 
decimal value substituted in the MME address field by the Assembler. 

SYMBOL 

GEINOS 
GEROAD 
GEFADD 
GERELS 
GESNAP 
GELAPS 
GEFINI 
GEBORT 
GEMORE 
GEFCON 
GEFILS 
GESETS 
GERETS 
GEENDC 
GERELC 
GESPEC 
GETIME 
GECALL 
GESAVE 
GERSTR 
GEMREL 
GESYOT 
GECHEK 
GEROUT 
GEROLL 
GEUSER 
GELOOP 
GEWAKE 
GEIDSE 
.EMM 
GELBAR 
GEFRCE 
GEFSYE 
GEPRIO 
GENEWS 

MEANING 

Input/ Output Initiation 
Roadblock 
Physical File Address Request 
Component Release 
Snapshot Dump 
(Elapsed) Time Request 
Terminal Transfer to Monitor 
Aborting of Programs 
Additional Memory of Peripherals 
File Control Block Request 
File Switching Hequest 
Set Switch Request 
Reset Switch Request 
Terminate Courtesy Call 
Relinquish Control 
Special Interrupt Courtesy Call Request 
Date and Time-of-Day Request 
System Loader 
Write File in System Format 
Read File In System Format 
Release Memory 
Write on SYSOUT 
Check Point 
Output to Remote Terminal 
Reinitiate or Rollback Program 
User-Supplied MME 
Loop Protection 
Call Me Later 
J ournalization and SUbfile Page Range 
Enter Master Mode 
Load Base Address Register 
GEFRC Entry 
File System Entry Point 
I/O Priority 
Spawn New .Job 

267 

DECIMAL VALUE 

1 
2 
3 
4 
5 
6 
'7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
1'7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

CPB-I004F 
Rev. July 1969 

I 



INPUT/OUTPUT COMMAND FORMATS 

The following listing of mput/ output commands is for use when coding directly to the Input; 
Output Supervisor within the Comprehensive Operating Supervisor. 

Designators used in the listing below are: 

COMMAND 
DESCRIPTION 

Request Status 
Reset Status 
Read Card Binary 
Read Card Binary 

Continuous 
Read Card Decimal 
Read Card Decimal 

Continuous 
Read Card Mixed 
Read Card Mixed 

Continuous 
Write Card Binary 
Write Card Binary 

Continuous 
Write Card Decimal 
Write Card Decimal 

Continuous 
Write Card Decimal 

Edited 
Write Card Decimal 

Edited Continuous 
Write Printer 
Write Printer 

Continuous 
Write Printer Edited 
Write Printer 

Edited Continuous 

xxxx = 0000 for Slave Mode programs 
xxxx = physical device code for Master Mode programs 

da = Device Address (Used only in Master Mode 
programs; see input/output select sequence 
coding, Operating Supervisor reference manual.) 

ca = Channel Address (used only in Master Mode 
progrdms; see input/output select sequence 
coding, Operating Supervisor reference manual.) 

nn = number of records (01-63) 
= 01 when subfield for nn is blank 

cc = octdl character to be used as file mark 

PSEUDO- VARIABLE OCTAL 
OPERATION FIELD REPRESENTATION 

REQS da, ca 00 xxxx 020001 
RESS da, ca 40 xxxx 020001 
RCB da, ca 01 xxxx 000000 

RCBC nn, da, ca 01 xxxx 0600nn 
RCD da, ca 02 xxxx 000000 

RCDC nn, da, ca 02 xxxx 0600nn 
RCM da, ca 03 xxxx 000000 

RCMC nn, da, ca 03 xxxx 0600nn 
WCB da, ca 11 xxxx 040014 

WCBC nn, da, ca 11 xxxx 0600nn 
WCD da, ca 12 xxxx 040014 

WCDC nn, da, ca 12 xxxx 0600nn 

WCDE da, ca 13 xxxx 040014 

WCDEC nn, da, ca 13 xxxx 0600nn 
WPR da, ca 10 xxxx 000000 

WPRC nn, da, ca 10 xxxx 0600nn 
WPRE da, ca 30 xxxx 000000 

WPREC nn, da, ca 30 xxxx 0600nn 

CPB-1004F 
Rev. October 1968 

268 



COMMAND PSEUDO- VARIABLE OCTAL 
DESCRIPTION OPERATION FIELD REPRESENTATION 

Read Tape Binary RTB da, ca 05 xxxx 000000 
Re-Read Tape Binary RRTB da, ca 07 xxxx 000000 
Read Tape Decimal RTD da, ca 04 xxxx 000000 
Re-Read Tape Decimal RRTD da, ca 06 xxxx 000000 
Read Tape 9 Channel RT9 da, ca 03 xx:xx 000000 
Write Tape 9 Channel WT9 da, ca 13 xxxx 000000 
Wr ite Tape Binary WTB da, ca 15 xxxx 000000 
Write Tape Decimal WTD da, ca 14 xxxx 000000 
Write End-of-File WEF da, ca 55 xxxx 101700 
Write File Mark WFM cc, da, ca 15 xxxx tOccOO 
Write File Mark Decimal WFMD cc, da, ca 14 xxxx tOccoa 
Erase ERASE da, ca 54 xxxx 020001 
Backspace Record(s) BSR nn, da, ca 46 xxxx 0200nn 
Backspace File BSF da, ca 47 xxxx 020001 

CPB-I004F 

268.1 



COMMAND PSEUDO- VARIABLE OCTAL 
DESCRIPTION OPERATION FIELD REPRESENTA TION 

Forward Space Record(s) FSR nn, da, ca 44 x xxx 0200nn 
Forward Space File FSF da, ca 45 xxxx 020001 
Rewind REW da, ca 70 xxxx 020001 
Rewind and Standby REWS da, ca 72 xxxx 020001 
Set Low Density SLD da, ca 61 xxxx 020001 
Set High Density SHD da, ca 60 xxxx 020001 
Seek Disc Address SDIA da, ca 34 xxxx 000002 
Read Disc Continuous RDIC da, ca 25 xxxx 002400 
Write Disc Continuous WDIC da, ca 31 xxxx 002400 
Write Disc Continuous and 

Verify WDrCV da, ca 33 xxxx 002400 
Select Drum Address SDRA da, ca 34 xxxx 000002 
Read Drum RDR da, ca 25 xxxx 000000 
Write Drum WDR da, ca 31 xxxx 000000 
Write Drum and Verify WDRV da, ca 33 xxxx 000000 
Drum Compare and Verify DRCV da, ca 11 xxxx 000000 
Read Perforated Tape RDPT da, ca 02 xxxx 000000 
Write Perforated Tape WPT da, ca 11 xxxx 000000 
Write Perforated Tape Edited WPTE da, ca 31 xxxx 000000 
Write Perforated Tape--Single WPTSC da, ca 16 xxxx 000000 

Character 
Write Perforated Tape- -Double WPTDC da, ca 13 xxxx 000000 

Character 
Read Typewriter RTYP da, ca 03 xxxx 000000 
Write Typewriter WTYP da, ca 13 xxxx 000000 
Write Typewriter and Return WTYPR da, ca 13 xxxx 000002 

to Read 
Read DATANET-30 RDN da, ca 01 xxxx 000000 
Write DATANET-30 WDN da, ca 10 xxxx 000000 

CPB-I004F 

269 



DATA CONTROL WORD FORMATS 

The Data Control Word format listing below contains designators as follows: 

DESCRIPTION 

Transmit and Disconnect 
Transmit and Proceed 
Non-Transmit and Proceed 
Transfer to Data Control Word 

a = address of the data block 
c = word count of data to be transferred per block 

XXXX = ignored by the Assembler 

PSEUDO- VARIABLE OCTAL 
OPERATION FIELD REPRESENTATION 

IOTD a, c aaaaaaOOcccc 
IOTP a, c aaaaaaOlcccc 
IONTP a, c aaaaaa03cccc 
TDCW a aaaaaa02xxxx 

CPB-I004F 

270 



STANDARD 
CHARACTER 

SET 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
[ 
41 
@ 

: 

> 
? 

15 
A 
B 
C 
D 
E 
F 
G 
H 
I 
& 

~ 
< 
\ 
t 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
-
$ 

* 
) 
; 
I 

+ 
/ 
S 
T 
U 
V 
W 
X 
y 
z 
<-

, 
% 
= 
" 
! 

APPENDIX F. GE-615/635 STANDARD CHARACTER SET 

GE-INTERNAL HOLLERITH ASCII 
MACHINE OCTAL CARD CODE 

CODE CODE 

000000 00 0 060 
000001 01 1 061 
000010 02 2 062 
000011 03 3 063 
000100 04 4 064 
000101 05 5 065 
000110 06 6 066 
000111 07 7 067 
001000 10 8 070 
001001 11 9 071 
001010 12 2-8 133 
001011 13 3-8 043 
001100 14 4·-8 100 
001101 15 5-8 072 
001110 16 6-8 076 
001111 17 7-8 on 
010000 20 (blank) 040 
010001 21 12-1 141 
010010 22 12-2 142 
010011 23 12-3 143 
010100 24 12-4 144 
010101 25 12-5 145 
010110 26 12-6 146 
010111 27 12-7 147 
011000 30 12-8 150 
011001 31 12-9 151 
011010 32 12 046 
011011 33 12-3-8 056 
011100 34 12-4-8 135 
011101 35 12-5-8 050 
011110 36 12-6-8 074 
011111 37 12-7-8 134 
100000 40 11-0 136 
100001 41 11-1 152 
100010 42 11-2 153 
100011 43 11-3 154 
100100 44 11-4 155 
100101 45 11-5 156 
100110 46 11-6 157 
100111 47 11-7 160 
101000 50 11-8 161 
101001 51 11-9 162 
101010 52 11 055 
101011 53 11-3-8 044 
101100 54 U-4-8 052 
101101 55 11-5-8 051 
101110 56 11-6-8 073 
101111 57 11-7-8 047 
110000 60 12-0 053 
110001 61 0-1 057 
110010 62 0-2 163 
110011 63 0-3 164 
110100 64 0-4 165 
110101 65 0-5 166 
110110 66 0·,6 167 
110111 67 0-7 170 
111000 70 0-8 171 
111001 71 0-9 172 
111010 72 0-2-8 137 
111011 73 0-3-8 054 
111100 74 0-4-8 045 
111101 75 0·'5-8 075 
111110 76 0-6-8 042 
111111 17 0-7-8 041 

271 

UASCI 
CODE 

060 
061 
062 
063 
064 
065 
066 
067 
070 
071 
133 
043 
100 
072 
076 
077 
040 
101 
102 
103 
104 
105 
106 
107 
110 
111 
046 
056 
135 
050 
074 
134 
136 
112 
113 
114 
115 
116 
117 
120 
121 
122 
055 
044 
052 
051 
073 
047 
053 
057 
123 
124 
125 
126 
127 
130 
131 
132 
137 
054 
045 
075 
042 
041 

CPB-1004F 
Rev. July 1969 

I 

I 





Octal 

Decimal 

Octal 

0000 
0010 
0020 
0030 
0040 
0050 
0060 
0070 

0100 
0110 
0120 
0130 
0140 
0150 
0160 
0170 

0200 
0210 
0220 
0230 

. 0240 
0250 
0260 
0270 

0300 
0310 
0320 
0330 
0340 
0350 
0360 
0370 

Octal 

0400 
0410 
0420 
0430 
0440 
0450 
0460 
0470 

0500 
0510 
0520 
0530 
0540 
0550 
0560 
0570 

0600 
0610 
0620 
0630 
0640 
0650 
0660 
0670 

0700 
0710 
0720 
0730 
0740 
0750 
0760 
0770 

APPENDIX G. CONVERSION TABLE 

OCTAL-DECIMAL INTEGERS AND FRACTIONS 

Octal 10000 20000 30000 40000 50000 60000 70000 
-- -------f------ ---.----._------

Decimal 4096 8192 12288 16384 20480 24576 28672 

100000 200000 300000 400000 500000 600000 700000 1000000 
------~------

32768 65536 98304 131072 163840 196608 229376 262144 

0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7 

0000 0001 0002 0003 0004 0005 0006 0007 1000 0512 0513 0514 0515 0516 0517 0518 051D 
0008 0009 0010 0011 0012 0013 0014 0015 1010 0520 0521 0522 0523 0524 0525 0526 052"' 
0016 0017 0018 0019 0020 0021 0022 0023 1020 0528 0529 0530 0531 0532 0533 0534 0535 
0024 0025 0026 0027 0028 0029 0030 0031 1030 0536 0537 0538 0539 0540 0541 0542 0543 
0032 0033 0034 0035 0036 0037 0038 0039 1040 0544 0545 0546 0547 0548 0549 0550 0551 
0040 0041 0042 0043 0044 0045 0046 0047 1050 0552 0553 0554 0555 0556 0557 0558 0559 
0048 0049 0050 0051 0052 0053 0054 0055 1060 0560 0561 0562 0563 0564 0565 0566 0567 
0056 0057 0058 0059 0060 0061 0062 0063 1070 0568 0569 0570 0571 0572 0573 0574 0575 

0064 0065 0066 0067 0068 0069 0070 0071 1100 0576 0577 0578 0579 0580 0581 0582 0583 
0072 0073 0074 0075 0076 0077 0078 0079 1110 0584 0585 0586 0587 0588 0589 0590 0591 
0080 0081 0082 0083 0084 0085 0086 0087 1120 0592 0593 0594 0595 0596 0597 0598 0599 
0088 0089 0090 0091 0092 0093 0094 0095 1130 0600 0601 0602 0603 0604 0605 0606 0607 
0096 0097 0098 0099 0100 0101 0102 0103 1140 0608 0609 0610 0611 0612 0613 0614 0615 
0104 0105 0106 0107 0108 0109 0110 0111 1150 0616 0617 0618 0619 0620 0621 0622 0623 
0112 0113 0114 0115 0116 0117 0118 0119 1160 0624 0625 0626 0627 0628 0629 0630 0631 
0120 0121 0122 0123 0124 0125 0126 0127 1170 0632 0633 0634 0635 0636 0037 0638 0639 

0128 0129 0130 0131 0132 0133 0134 0135 1200 0640 0641 0642 0643 0644 0645 0646 0647 
0136 0137 0138 0139 0140 0141 0142 0143 1210 0648 0149 0650 0651 ()652 0653 0654 0655 
0144 0145 0146 0147 0148 0149 0150 0151 1220 0656 0657 0658 0659 0660 0661 0662 0663 
0152 0153 0154 0155 0156 0157 0158 0159 1230 0664 0665 0666 0667 0668 0669 0670 0671 
0160 0161 0162 0163 0164 0165 0166 0167 1240 0672 0673 0674 0675 0676 0677 OG78 06'/9 
0168 0169 0170 0171 0172 0173 0174 0175 1250 0680 0681 0682 0683 0684 0685 0686 0687 
0176 0177 0178 0179 0180 0181 0182 0183 1260 0688 0689 0690 0691 0692 0693 0694 0695 
0184 0185 0186 0187 0188 0189 0190 0191 1270 0696 0697 0698 0699 0700 0701 0702 0703 

0192 0193 0194 0195 0196 0197 0198 0199 1300 0704 0705 0706 0707 0708 0709 0710 0711 
0200 0201 0202 0203 0204 0205 0206 0207 1310 0712 0713 0714 0715 0716 0717 0718 0719 
0208 0209 0210 0211 0212 0213 0214 0215 1320 0720 0721 0722 0723 0724 0725 0726 0727 
0216 0217 0218 0219 0220 0221 0222 0223 1330 0728 0729 0730 0731 0732 0733 0734 0735 
0224 0225 0226 0227 0228 0229 0230 0231 1340 0736 0737 0738 0739 0740 0741 0742 0743 
0232 0233 0234 0235 0236 0237 0238 0239 1350 0744 0745 0746 0747 0748 0749 0750 0751 
0240 0241 0242 0243 0244 0245 0246 0247 1360 0752 0753 0754 0755 0756 0757 0758 0759 
0248 0249 0250 0251 0252 0253 0254 0255 1370 0760 0761 0762 0763 0764 0765 0766 0767 

1 Oclal 10400 10 07771 I 0(10111400 10 17771 

1 Decimal! 0256 10 05111 I Decimal I 0768 10 10231 

0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7 
--

0256 0257 0258 0259 0260 0261 0262 0263 1400 0768 0769 0770 0771 0772 0773 0774 0775 
0264 0265 0266 0267 0268 0269 0270 0271 1410 0776 0777 0778 0779 0780 0781 0782 0783 
0272 0273 0274 0275 0276 0277 0278 0279 1420 0784 0785 0786 0787 0788 0789 0790 0791 
0280 0281 0282 0283 0284 0285 0286 0287 1430 0792 0793 0794 0795 0796 0797 0798 0799 
0288 0289 0290 0291 0292 0293 0294 0295 1440 0800 0801 0802 0803 0804 0805 0806 0807 
0296 0297 0298 0299 0300 0301 0302 0303 1450 0808 0809 0810 0811 0812 0813 0814 0815 
0304 0305 0306 0307 0308 G309 0310 0311 1460 0816 0817 0818 0819 0820 0821 0822 0623 
0312 0313 0314 0315 0316 0317 0318 0319 1470 0824 0825 0826 0827 0828 0829 0830 0831 

0320 0321 0322 0323 0324 0325 0326 0327 1500 0832 0833 0834 0835 0836 0837 0838 0839 
0328 0329 0330 0331 0332 0333 0334 0335 1510 0840 0841 0842 0843 0844 0845 0846 0847 
0336 0337 0338 0339 0340 0341 0342 0343 1520 0848 0849 0850 0851 0852 0853 0854 0855 
0344 0345 0346 0347 0348 0349 0350 0351 1530 0856 0857 0858 0859 0860 0861 0862 0863 
0352 0353 0354 0355 0356 0357 0358 0359 1540 0864 0865 0866 0867 0868 0869 0870 0871 
0360 0361 0362 0363 0364 0365 0366 0367 1550 0872 0873 0874 0875 0876 0877 0878 0879 
0368 0369 0370 0371 0372 0373 0374 0375 1560 0880 0881 0882 0883 0884 0885 0886 0887 
0376 0377 0378 0379 0380 0381 0382 0383 1570 0888 0889 0890 0891 0892 0893 0894 0895 

0384 0385 0386 0387 0388 0389 0390 0391 1600 0896 0897 0898 0899 0900 0901 0902 0903 
0392 0393 0394 0395 0396 0397 0398 0399 1610 0904 0905 0906 0907 0908 0909 0910 0911 
0400 0401 0402 0403 0404 0405 0406 0407 1620 0912 0913 0914 0915 0916 0917 0918 0919 
0408 0409 0410 0411 0412 0413 0414 0415 1630 0920 0921 0922 0923 0924 0925 0926 0927 
0416 0417 0418 0419 0420 0421 0422 0423 1640 0928 0929 0930 0931 0932 0933 0934 0935 
0424 0425 0426 0427 0428 0429 0430 0431 
0'432 0433 0434 0435 0436 0437 0438 0439 

1650 0936 0937 0938 0939 0940 0941 0942 0943 
1660 0944 0945 0946 0947 0948 0949 0950 0951 

0440 0441 0442 0443 0444 0445 0446 0447 1670 0952 0953 0954 0955 0956 0957 0958 0959 

0448 0449 0450 0451 0452 0453 0454 0455 1700 0960 0961 0962 0963 0964 0965 0966 0967 
0456 0457 0458 0459 0460 0461 0462 0463 1710 0968 0969 0970 0971 0972 0973 0974 0975 
0464 0465 0466 0467 0468 0469 0470 0471 1720 0976 0977 0978 0979 0980 0981 0982 0983 
0472 0473 0474 0475 0476 0477 0478 0479 1730 0984 0985 0986 0987 0988 0989 0990 0991 
0480 0481 0482 0483 0484 0485 0486 0487 1'740 0992 0993 0994 0995 0996 0997 0998 0999 
0488 0489 0490 0491 0492 0493 0494 0495 1750 1000 1001 1002 1003 1004 1005 1006 100'1 
0496 0497 0498 0499 0500 0501 0502 0503 1760 1008 1009 1010 1011 1012 1013 1014 1015 
0504 0505 0506 0507 0508 0509 0510 0511 1770 1016 1017 1018 1019 1020 1021 1022 1023 

273 

CPB-1004F 



Octal 

Decimal 

Octal 

2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 

2100 
2110 
2120 
2130 
2140 
2150 
2160 
2170 

2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 

2300 
2310 
2320 
2330 
2340 
2350 
2360 
2370 

Octal 

2400 
2410 
2420 
2430 
2440 
2450 
2460 
2470 

2500 
2510 
2520 
2530 
2540 
2550 
2560 
2570 

2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 

2700 
2710 
2720 
2730 
2740 
2750 
2760 
2770 

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.) 

cLal 
--
cima1 

100000 

0 

1024 
1032 
1040 
1048 
1056 
1064 
1072 
1080 

1088 
1096 
1104 
1112 
1120 
1128 
1136 
1144 

1152 
1160 
1168 
1176 
1184 
1192 
1200 
1208 

1216 
1224 
1232 
1240 
1248 
1256 
1264 
1272 

0 

1280 
1288 
1296 
1304 
1312 
1320 
1328 
1336 

1344 
1352 
1360 
1368 
1376 
1384 
1392 
1400 

1408 
1416 
1424 
1432 
1440 
1448 
1456 
1464 

1472 
1480 
1488 
1496 
1504 
1512 
1520 
1528 

32768 

1 025 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 

033 
041 
049 
057 
065 
073 
081 

089 
097 
105 
113 
121 
129 
137 
145 

153 
161 
169 
177 
185 
193 
201 
209 

217 
225 
233 
241 
249 
257 
265 
273 

281 
289 
297 
305 
313 
321 
329 
337 

345 
353 
361 
369 
377 
385 
393 
401 

409 
417 
425 
433 
441 
449 
457 
465 

473 
481 
489 
497 
505 
513 
521 
529 

1026 
1034 
1042 
1050 
1058 
1066 
1074 
1082 

1090 
1098 
1106 
1114 
1122 
1130 
1138 
1146 

1154 
1162 
1170 
1178 
1186 
1194 
1202 
1210 

1218 
1226 
1234 
1242 
1250 
1258 
1266 
1274 

1282 
1290 
1298 
1306 
1314 
1322 
1330 
1338 

1346 
1354 
1362 
1370 
1378 
1386 
1394 
1402 

1410 
1418 
1426 
1434 
1442 
1450 
1458 
1466 

1474 
1482 
1490 
1498 
1506 
1514 
1522 
1530 

10000 

4096 

200000 

65536 

1027 1028 
1035 1036 
1043 1044 
1051 1052 
1059 1060 
1067 1068 
1075 1076 
1083 1il84 

1091 1092 
1099 1100 
1107 1108 
1115 1116 
1123 1124 
1131 1132 
1139 1140 
1147 1148 

1155 1156 
1163 1164 
1171 1172 
1179 1180 
1187 1188 
1195 1196 
1203 1204 
1211 1212 

1219 1220 
1227 1228 
1235 1236 
1243 1244 
1251 1252 
1259 1260 
1267 1268 
1275 1276 

1283 1284 
1291 1292 
1299 1300 
1307 1308 
1315 1316 
1323 1324 
1331 1332 
1339 1340 

1347 1348 
1355 1356 
1363 1364 
1371 1372 
1379 1380 
1387 1388 
1395 1396 
1403 1404 

1411 1412 
1419 1420 
1427 1428 
1435 1436 
1443 1444 
1451 1452 
1459 1460 
1467 1468 

1475 1476 
1483 1484 
1491 1492 
1499 1500 
1507 1508 
1515 1516 
1523 1524 
1531 1532 

20000 30000 
--~-

8192 12288 

300000 400000 

98304 131072 

1029 1030 1031 
1037 1038 1039 
1045 1046 1047 
1053 1054 1055 
1061 1062 1063 
1069 1070 1071 
1077 1078 1079 
1085 1086 1087 

1093 1094 1095 
1101 1102 1103 
1109 1110 1111 
1117 1118 1119 
1125 1126 1127 
1133 1134 1135 
1141 1142 1143 
1149 1150 1151 

1157 1158 1159 
1165 1166 1167 
1173 1174 1175 
1181 1182 1183 
1189 1190 1191 
1197 1198 1199 
1205 1206 1207 
1213 1214 1215 

1221 1222 1223 
1229 1230 1231 
1237 1238 1239 
1245 1246 1247 
1253 1254 1255 
1261 1262 1263 
1269 1270 1271 
1277 1278 1279 

1285 1286 1287 
1293 1294 1295 
1301 1302 1303 
1309 1310 1311 
1317 1318 1319 
1325 1326 1327 
1333 1334 1335 
1341 1342 1343 

1349 1350 1351 
1357 1358 1359 
1365 1366 1367 
1373 1374 1375 
1381 1382 1383 
1389 1390 1391 
1397 1398 1399 
1405 1406 1407 

1413 1414 1415 
1421 1422 1423 
1429 1430 1431 
1437 1438 1439 
1445 1446 1447 
1453 1454 1455 
1461 1462 1463 
1469 1470 1471 

1477 1478 1479 
1485 1486 1487 
1493 1494 1495 
1501 1502 1503 
1509 1510 1511 
1517 1518 1519 
1525 1526 1527 
1533 1534 1535 

274 

40000 50000 60000 70000 

16384 20480 24576 28672 

500000 600000 700000 

163840 196608 229376 

Oclal 0 1 2 3 4 5 6 

3000 1536 1537 1538 1.539 1540 1541 1542 
3010 1544 1545 1546 1547 1548 1549 1550 
3020 1552 1553 1554 1555 1556 1557 1558 
3030 1560 1561 1562 1563 1564 1565 1566 
3040 1568 1569 1570 1571 1572 1573 1574 
3050 1576 1577 1578 1579 1580 1581 1582 
3060 1584 1585 1586 1587 1588 1589 1590 
3070 1592 1593 1594 1595 1596 1597 1598 

3100 1600 1601 1602 1603 1604 1605 1606 
3110 1608 1609 1610 1611 1612 1613 1614 
3120 1616 1617 1618 1619 1620. 1621 1622 
3130 1624 1625 1626 1627 1628 1629 1630 
3140 1632 1633 1634 1635 1636 1637 1638 
3150 1640 1641 1642 1643 1644 1645 1646 
3160 1648 1649 1650 1651 1652 1653 1654 
3170 1656 1657 1658 1659 1660 1661 1662 

3200 1664 1665 1666 1667 1668 1669 1670 
3210 1672 1673 1674 1675 1676 1677 1678 
3220 1680 1681 1682 1683 1684 1685 1686 
3230 1688 1689 1690 1691 1692 1693 1694 
3240 1696 1697 1698 1699 1700 1701 1702 
3250 1704 1705 1706 1707 1708 1709 1710 
3260 1712 1713 1714 1715 1716 1717 1718 
3270 1720 1721 1722 1723 1724 1725 1726 

3300 1728 1729 1730 1731 1732 1733 1734 
3310 1736 1737 1738 1739 1740 1741 1742 
3320 1744 1745 1746 1747 1748 1749 1750 
3330 1752 1753 1754 1755 1756 1757 1758 
3340 1760 1761 1762 1763 1764 1765 1766 
3350 1768 1769 1770 1771 1772 1773 1774 
3360 1776 1777 1778 1779 1780 1781 1782 
3370 1784 1785 1786 1787 1788 1789 1790 

Octal 0 1 2 3 4 5 6 

3400 1792 1793 1794 1795 1796 1797 1798 
3410 1800 1801 1802 1803 1804 1805 1806 
3420 1808 1809 1810 1811 1812 1813 1814 
3430 1816 1817 1818 1819 1820 1821 1822 
3440 1824 1825 1826 1827 1828 1829 1830 
3450 1832 1833 1834 1835 1836 1837 1838 
3460 1840 1841 1842 1843 1844 1845 1846 
3470 1848 1849 1850 1851 1852 1853 1854 

3500 1856 1857 1858 1859 1860 1861 1862 
3510 1864 1865 1866 1867 1868 1869 1870 
3520 1872 1873 1874 1875 1876 1877 1878 
3530 1880 1881 1882 1883 1884 1885 1886 
3540 1888 1889 1890 1891 1892 1893 1894 
3550 1896 1897 1898 1899 1900 1901 1902 
3560 1904 1905 1906 1907 1908 1909 1910 
3570 1912 1913 1914 1915 1916 1917 1918 

3600 1920 1921 1922 1923 1924 1925 1926 
3610 1928 1929 1930 1931 1932 1933 1934 
3620 1936 1937 1938 1939 1940 1941 1942 
3630 1944 1945 1946 1947 1948 1949 1950 
3640 1952 1953 1954 1955 1956 1957 1958 
3650 1960 1961 1962 1963 1964 1965 1966 
3660 1968 1969 1970 1971 1972 1973 1974 
3670 1976 1977 1978 1979 1980 1981 1982 

3700 1984 1985 1986 1987 1988 1989 1990 
3710 1992 1993 1994 1995 1996 1997 1998 
3720 2000 2001 2002 2003 2004 2005 2006 
3730 2008 2009 2010 2011 2012 2013 2014 
3740 2016 2017 2018 2019 2020 2021 2022 
3750 2024 2025 2026 2027 2028 2029 2030 
3760 2032 2033 2034 2035 2036 2037 2038 
3770 2040 2041 2042 2043 2044 2045 2046 

1000000 

262144 

7 

1543 
1551 
1559 
1567 
1575 
1583 
1591 
1599 

1607 
1615 
1623 
1631 
1639 
1647 
1655 
1663 

1671 
1679 
1687 
1695 
1703 
1711 
1719 
1727 

1735 
1743 
1751 
1759 
1767 
1775 
1783 
1791 

7 

1799 
1807 
1815 
1823 
1831 
1839 
1847 
1855 

1863 
1871 
1879 
1887 
1895 
1903 
1911 
1919 

1927 
1935 
1943 
1951 
1959 
1967 
1975 
1983 

1991 
1999 
2007 
2015 
2023 
2031 
2039 
2047 

CPB-1004F 



OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont. ) 

Octal 10000 20000 30000 40000 50000 60000 70000 

Decimal 4096 8192 12288 16384 20480 24576 28672 

Octal 100000 200000 300000 400000 500000 600000 700000 1000000 

Decimal 32768 65536 98304 131072 163840 196608 229376 262144 

Octal 0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7 

4000 2048 2049 2050 2051 2052 2053 2054 2055 5000 2560 2561 2562 2563 2564 2565 2566 2567 
4010 2056 2057 2058 2059 2060 2061 2062 2063 5010 2568 2569 2570 2571 2572 2573 2574 2575 
4020 2064 2065 2066 2067 2068 2069 2070 2071 5020 2576 2577 2578 2579 2580 2581 2582 2583 
4030 2072 2073 2074 2075 2076 2077 2078 2079 5030 2584 2585 2586 2587 2588 2589 2590 2591 
4040 2080 2081 2082 2083 2084 2085 2086 2087 5040 2592 2593 2594 2595 2596 2597 2598 2599 
4050 2088 2089 2090 2091 2092 2093 2094 2095 5050 2600 2601 2602 2603 2604 2605 2606 2607 
4060 2096 :l097 2098 2099 2100 2101 2102 2103 5060 2608 2609 2610 2611 2612 2613 2614 2615 
4070 2104 2105 2106 2107 2108 2109 2110 2111 5070 2616 2617 2618 2619 2620 2621 2622 2623 

4100 2112 2113 2114 2115 2116 2117 2118 2119 5100 2624 2625 2626 2627 2628 2629 2630 2631 
4110 2120 2121 2122 2123 2124 2125 2126 2127 5110 2632 2633 2634 2635 2636 2637 2638 2639 
4120 2128 2129 2130 2131 2132 2133 2134 2135 5120 2640 2641 2642 2643 2644 2645 2646 2647 
4130 2136 2137 2138 2139 2140 2141 2142 2143 5130 2648 2649 2650 2651 2652 2653 2654 2655 
4140 2144 2145 2146 2147 2148 2149 2150 2151 5140 2656 2657 2658 2659 2660 2661 2662 2663 
4150 2152 2153 2154 2155 2156 2157 2158 2159 5150 2664 2665 2666 2667 2668 2669 2670 2671 
4150 2160 2161 2162 2163 2164 2165 2166 2167 5160 2672 2673 2674 2675 2676 2677 2678 2679 
4170 2168 2169 2170 2171 2172 2173 2174 2175 5170 2680 2681 2682 2683 2684 2685 2686 2687 

4200 2176 2177 2178 2179 2180 2181 2182 2183 5200 2688 2689 2690 2691 2692 2693 2694 2695 
4210 2184 2185 2186 2187 2188 2189 2190 2191 5210 2696 2697 2698 2699 2700 2701 2702 2703 
4220 2192 2193 2194 2195 2196 2197 2198 2199 5220 2704 2705 2706 2707 2708 2709 2710 2711 
4230 2200 2201 2202 2203 2204 2205 2206 2207 5230 2712 2713 2714 2715 2716 2717 2718 2719 
4240 2208 2209 2210 2211 2212 2213 2214 2215 5240 2720 2721 2722 2723 2724 2725 2726 2727 
4250 2216 2217 2218 2219 2220 2221 2222 2223 5250 2728 2729 2730 2731 2732 2733 2734 2735 
4260 2224 2225 2226 2227 2228 2229 2230 2231 5260 2736 2737 2738 2739 2740 2741 2742 2743 
4270 2232 2233 2234 2235 2236 2237 2238 2239 5270 2744 2745 2746 2747 2748 2749 2750 2751 

4300 2240 2241 2242 2243 2244 2245 2246 2247 5300 2752 2753 2754 2755 2756 2757 2758 2759 
4310 2248 2249 2250 2251 2252 2253 2254 2255 5310 2760 2761 2762 2763 2764 2765 2766 2767 
4320 2256 2257 2258 2259 2260 2261 2262 2263 5320 2768 2769 2770 2771 2772 2773 2774 2775 
4330 2264 2265 2266 2267 2268 2269 2270 2271 5330 2776 2777 2778 2779 2780 2781 2782 2783 
4340 2272 2273 2274 2275 2276 2277 2278 2279 5340 2784 2785 2786 2787 2788 2789 2790 2791 
4350 2280 2281 2282 2283 2284 2285 2286 2287 5350 2792 2793 2794 2795 2796 2797 2798 2799 
4360 2288 2289 2290 2291 2292 2293 2294 2295 5360 2800 2801 2802 2803 2804 2805 2806 2807 
4370 2296 2297 2298 2299 2300 2301 2302 2303 5370 2808 2809 2810 2811 2812 2813 2814 2815 

Octal 0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7 

4400 2304 2305 2306 2307 2308 2309 2310 2311 5400 2816 2817 2818 2819 2820 2821 2822 2823 
4410 2312 2313 2314 2315 2316 2317 2318 2319 5410 2824 2825 2826 2827 2828 2829 2830 2831 
4420 2320 2321 2322 2323 2324 2325 2326 2327 5420 2832 2833 2834 2835 2836 2837 2838 2839 
4430 2328 2329 2330 2331 2332 2333 2334 2335 5430 2840 2841 2842 2843 2844 2845 2846 2847 
4440 2336 2337 2338 2339 2340 2341 2342 2343 5440 2848 2849 2850 2851 2852 2853 2854 2855 
4450 2344 2345 2346 2347 2348 2349 2350 2351 5450 2856 2857 2858 2859 2860 2861 2862 2863 
4460 2352 2353 2354 2355 2356 2357 2358 2359 5460 2864 2865 2866 2867 2868 2869 2870 2871 
4470 2360 2361 2362 2363 2364 2365 2366 2367 5470 2872 2873 2874 2875 2876 2877 2878 2879 

4500 2368 2369 2370 2371 2372 2373 2374 2375 5500 2880 2881 2882 2883 2884 2885 2886 2887 
4510 2376 2377 2378 2379 2380 2381 2382 2383 5510 2888 2889 2890 2891 2892 2893 2894 2895 
4520 2384 2385 2386 2387 2388 2389 2390 2391 5520 2896 2897 2898 2899 2900 2901 2902 2903 
4530 2392 2393 2394 2395 2396 2397 2398 2399 5530 2904 2905 2906 2907 2908 2909 2910 2911 
4540 2400 2401 2402 2403 2404 2405 2406 2407 5540 2912 2913 2914 2915 2916 2917 2918 2919 
4550 2408 2409 2410 2411 2412 2413 2414 2415 5550 2920 2921 2922 2923 2924 2925 2926 2927 
4560 2416 2417 2418 2419 2420 2421 2422 2423 5560 2928 2929 2930 2931 2932 2933 2934 2935 
4570 2424 2425 2426 2427 2428 2429 2430 2431 5570 2936 2937 2938 2939 2940 2941 2942 2943 

4600 2432 2433 2434 2435 2436 2437 2438 2439 5600 2944 2945 2946 2947 1948 2949 2950 2951 
4610 2440 2441 2442 2443 2444 2445 2446 2447 5610 2952 2953 2954 2955 2956 2957 2958 2959 
4620 2448 2449 2450 2451 2452 2453 2454 2455 5620 2960 2961 2962 2963 2964 2965 2966 2967 
4630 2456 2457 2458 2459 2460 2461 2462 2463 5630 2968 2969 2970 2971 2972 2973 2974 2975 
4640 2464 2465 2466 2467 2468 2469 2470 2471 5640 2976 2977 2978 2979 2980 2981 2982 2983 
4650 2472 2473 2474 2475 2476 2477 2478 2479 5650 2984 2985 2986 2987 2988 2989 2990 2991 
4660 2480 2481 2482 2483 2484. 2485 2486 2487 5660 2992 2993 2994 2995 2996 2997 2998 2999 
4670 2488 2489 2490 2491 2492 2493 24D4 2495 5670 3000 3001 3002 3003 3004 3005 3006 3007 

4700 2496 2497 2498 2499 2500 2501 2502 2503 5700 3008 3009 3010 3011 3012 3013 3014 3015 
4710 2504 2505 2506 2507 2508 2509 2510 2511 5710 3016 3017 3018 3019 3020 3021 3022 3023 
4720 2512 2513 2514 2515 2516 2517 2518 2519 5720 3024 3025 3026 3027 3028 3029 3030 3031 
4730 2520 2521 2522 2523 2524 2525 2526 2527 5730 3032 3033 3034 3035 3036 3037 3038 3039 
4740 2528 2529 2530 2531 2532 2533 2534 2535 5740 3040 3041 3042 3043 J044 3045 3046 3047 
4750 2536 3537 2538 2539 2540 2541 2542 2543 5750 3048 3049 3050 3051 3052 3053 3054 3055 
4760 2544' 2545 2546 2547 2548 2549 2550 2551 5760 3056 3057 3058 3059 3060 3061 3062 3063 
4770 2552 2553 2554 2555 2556 2557 2558 2559 5770 3064 3065 3066 3067 3068 3069 3070 3071 

CPB-1004F 

275 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.) 

_. 
Octal 10000 20000 30000 40000 50000 60000 70000 

Decimal 4096 8192 12288 16384 20480 24576 28672 
io-. 

Octal 100000 200000 300000 400000 500000 600000 700000 1000000 

Decimal 32768 65536 98304 131072 163840 196608 229376 262144 

Octal 0 1 2 3 Octal 0 1 2 3 4 5 6 7 

6000 3072 3073 3074 3075 3076 3077 3078 3079 7000 3584 3585 3586 3587 3588 3589 3590 3591 
6010 3080 3081 3082 3083 3084 3085 3086 3087 7010 3592 3593 3594 3595 3596 3597 3598 3599 
6020 3088 3089 3090 3091 3092 3093 3094 3095 7020 3600 3601 3602 3603 3604 3605 3606 3607 
6030 3096 3097 3098 3099 3100 3101 3102 3103 7030 3608 3609 3610 3611 3612 3613 3614 3615 
6040 3104 3105 3106 3107 3108 3109 3110 3111 7040 3616 3617 3618 3619 3620 3621 3622 3623 
6050 3112 3113 3114 3115 3116 3117 3118 3119 7050 3624 3625 3626 3627 3628 3629 3630 3631 
6060 3120 3121 3122 3123 3124 3125 3126 3127 7060 3632 3633 3634 3635 3636 3637 3638 3639 
6070 3128 3129 3130 3131 3132 3133 3134 3135 7070 3640 3641 3642 3643 3644 3645 3646 3647 

6100 3136 3137 3138 3139 3140 3141 3142 3143 7100 3648 3649 3650 3651 3652 3653 3654 3655 
6110 3144 3145 3146 3147 3148 3149 3150 3151 7110 3656 3657 3658 3659 3660 3661 3662 3663 
6120 3152 3153 3154 3155 3156 3157 3158 3159 7120 3664 3665 3666 3667 3668 3669 3670 3671 
6130 3160 3161 3162 3163 3164 3165 3166 3167 7130 3672 3673 3674 3675 3676 3677 3678 3679 
6140 3168 3169 3170 3171 3172 3173 3174 3175 7140 3680 3681 3682 3683 3684 3685 3686 3687 
6150 3176 3177 3178 3179 3180 3181 3182 3183 7150 3688 3689 3690 3691 3692 3693 3694 3695 
6160 3184 3185 3186 3187 3188 3189 3190 3191 7160 3696 3697 3698 3699 3700 3701 3702 3703 
6170 3192 3193 3194 3195 3196 3197 3198 3199 7170 3704 3705 3706 3707 3708 3709 3710 3711 

6200 3200 3201 3202 3203 3204 3205 3206 3207 7200 3712 3713 3714 3715 3716 3717 3718 3719 
6210 3208 3209 3210 3211 3212 3213 3214 3215 7210 3720 3721 3722 3723 3724 3725 3726 3727 
6220 3216 3217 3218 3219 3220 3221 3222 3<!23 7220 3728 3729 3730 3731 3732 3733 3734 3735 
6230 3224 3225 3226 3227 3228 3229 3230 3231 7230 3736 3737 3738 3739 3740 3741 3742 3743 
6240 3232 3233 3234 3235 3236 3237 3238 3239 7240 3744 3745 3746 3747 3748 3749 3750 3751 
6250 3240 3241 3242 3243 3244 3245 3246 3247 7250 3752 3753 37.54 3755 3756 3757 3758 3759 
6260 3248 3249 3250 3251 3252 3253 2354 3255 7260 3760 3761 3762 3763 3764 3765 3766 3767 
6270 3256 3257 3258 3259 3260 3261 3262 3263 7270 3768 3769 3770 3771 3772 3773 3774 3775 

6300 3264 3265 3266 3267 3268 3269 3270 3271 7300 3776 3777 3778 3779 3780 3781 3782 3783 
6310 3272 3273 3274 3275 3276 3277 3278 3279 7310 3784 3785 3786 3787 3788 3789 3790 3791 
6320 3280 3281 3282 3283 3284 3285 3286 3287 7320 3792 3793 3794 3795 3796 3797 3798 3799 
6330 3288 3289 3290 3291 3292 3293 3294 3295 7330 3800 3801 3802 3803 3804 3805 3806 3807 
6340 3296 3297 3298 3299 3300 3301 3302 3303 7340 3808 3809 3810 3811 3812 3813 3814 3815 
6350 3304 3305 3306 3307 3308 3309 3310 3311 7350 3816 3817 3818 3819 3820 3821 3822 3823 
6360 3312 3313 3314 3315 3316 3317 3318 3319 7360 3824 3825 3826 3827 3828 3829 3830 3831 
6370 3320 3321 3322 3323 3324 3325 3326 3327 7370 3832 3833 3834 3835 3836 3837 3838 3839 

[i;ctal 16400 to 67771 

Decimal13328 to 35831 

1 Octal 17400 to 77771 

L DecimalJ 3840 to 40951 

Octal 0 1 2 3 4 5 6 7 Octol 0 1 2 3 4 5 6 7 
f--f------------------
6400 3328 3329 3330 3331 3332 3333 3334 3335 7400 3840 3841 3842 3843 3844 3845 3846 3847 
6410 3336 3337 3338 3339 3340 3341 3342 3343 7410 3848 3849 3850 3851 3852 3853 3854 3855 
6420 3344 3345 3346 3347 3348 3349 3350 3351 7420 3856 3857 3858 3859 3860 3861 3862 3863 
6430 3352 3353 3354 3355 3356 3357 3358 3359 7430 3864 3865 3866 3867 3868 3869 3870 3871 
6440 3360 3361 3362 3363 3364 3365 3366 3367 7440 3872 3873 3874 3875 3876 3877 3878 3879 
6450 3368 3369 3370 3371 3372 3373 3374 3375 7450 3880 3881 3882 3883 3884 3885 3886 3887 
6460 3376 3377 3378 3379 3380 3381 3382 3383 7460 3888 3889 3890 3891 3892 3893 3894 3895 
6470 3384 3385 3386 3387 3388 3389 3390 3391 7470 3896 3897 3898 3899 3900 3901 3902 3903 

6500 3392 3393 3394 3395 3396 3397 3398 3399 7500 3904 3905 3906 3907 3908 3909 3910 3911 
6510 3400 3401 3402 3403 3404 3405 3406 3407 7510 3912 3913 3914 3915 3916 3917 3918 3919 
6520 3408 3409 3410 3411 3412 3413 3414 3415 7520 3920 3921 3922 3923 3924 3925 3926 3927 
6530 3416 3417 3418 3419 3420 3421 3422 3423 7530 3928 3929 3930 3931 3932 3933 3934 3935 
6540 3424 3425 3426 3427 3428 3429 3430 3431 7540 3936 3937 3938 3939 3940 3941 3942 3943 
6550 3432 3433 3434 3435 3436 3437 3438 3439 7550 3944 3945 3946 3947 3948 3949 3950 3951 
6560 3440 3441 3442 3443 3444 3445 3446 3447 7560 3952 3953 3954 3955 3956 3957 3958 3959 
6570 3448 3449 3450 3451 3452 3453 3454 3455 7570 3960 3961 3962 3963 3964 3965 3966 3967 

6600 3451) 3457 3458 3459 3460 3461 3462 3463 7600 3968 3969 3970 3971 3972 3973 3974 3975 
6610 3464 3465 3466 3467 3468 3469 3470 3471 7610 3976 3977 3978 3979 3980 3981 3982 3983 
6620 3472 3473 3474 3475 3476 3477 3478 3479 7620 3984 3985 3986 3987 3988 3989 3990 3991 
6630 3480 3481 3482 3483 3484 3485 3486 3487 7630 3992 3993 3994 3995 3996 3997 3998 3999 
6640 3488 3489 3490 3491 3492 3493 34()1 34115 7640 4000 4001 4002 4003 4004 4005 4006 4007 
6650 3496 3497 3498 3499 3500 3501 3502 3503 7650 4008 4009 4010 4011 4012 4013 4014 4015 
6660 3504 3505 3506 3507 3508 3509 3510 3511 7660 4016 4017 4018 4019 4020 4021 4022 4023 
6670 3512 3513 3514 3515 3516 3517 3518 3519 7670 4024 4025 4026 4027 4028 4029 4030 4031 

6700 3520 3521 3522 3523 3524 3525 3526 3527 7700 4032 4033 4034 4035 4036 4037 4038 4039 
6710 3528 3529 3530 3531 3532 3533 3534 3535 7710 4040 4041 4042 4043 4044 4045 4046 4047 
6720 3536 3537 3538 3539 3540 3541 3542 3543 7720 4048 4049 4050 4051 4052 4053 4054 4055 
6730 3544 3545 3546 3547 3548 3549 3550 3551 7730 4056 4057 4058 4059 4060 4061 4062 4063 
6740 3552 3553 3554 3555 3556 3557 3558 3559 7740 4064 4065 4066 4067 4068 4069 4070 4071 
6750 3560 3561 3562 3563 3564 3565 3566 3567 7750 4072 4073 4074 4075 4076 4077 4078 4079 
6760 3568 3569 3570 3571 3572 3573 3574 3575 7760 4080 4081 4082 4083 4084 4085 4086 4087 
6770 3576 3577 3578 3579 3580 3581 3582 3583 7770 4088 4089 4090 4091 4092 4093 4094 4095 

CPB-1004F 

276 



OCTAL-DECIMAL FRACTION CONVERSION TABLE 

~-

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL 

.000 .000000 .100 .125000 .200 .250000 .300 .375000 

.001 .001953 .101 .126953 .201 .251953 .301 .376953 

.002 .003906 .102 .128906 .202 .253906 .302 .378906 

.003 .005859 .103 .130859 .203 .255859 .303 .380859 

.004 .007812 .104 .132812 .204 .257812 .304 .382812 

.005 .009765 .105 .134765 .205 .259765 .305 .384765 

.006 .011718 .106 .136718 .206 .261718 .306 .386718 

.007 .013671 .107 .138671 .207 .263671 .307 .388671 

.010 .015625 .110 .140625 .210 .265625 .310 .390625 

.011 .017578 .111 .142578 .211 .267578 .311 .392578 

.012 .019531 .112 .144531 .212 .269531 .312 .394531 

.013 .021484 .113 .146484 .213 .271484 .313 .396484 

.014 .023437 .114 .148437 .214 .273437 .314 .398437 

.015 .025390 .115 .150390 .215 .275390 .315 .400390 

.016 .027343 .116 .152343 .216 .277343 .316 .402343 

.017 .029296 .117 .154296 .217 .279296 .317 .404296 

.020 .031250 .120 .156250 .220 .281250 .320 .406250 

.021 .033203 .121 .158203 .221 .283203 .321 .408203 

.022 .035156 .122 .160156 .222 .285156 .322 .410156 

.023 .037109 .123 .162109 .223 .287109 .323 .412109 

.024 .039062 .124 .164062 .224 .289062 .324 .414062 

.025 .041015 .125 .166015 .225 .291015 .325 .416015 

.026 .042968 .126 .167968 .226 .292968 .326 .417968 

.027 .044921 .127 .169921 .227 .294921 .327 .419921 

.030 .046875 .130 .171875 .230 .296875 .330 .421875 

.031 .048828 .131 .173828 .231 .298828 .331 .423828 

.032 .050781 .132 .175781 .232 .300781 .332 .425781 

.033 .052734 .133 .177734 .233 .302734 .333 .427734 

.034 .054687 .134 .179687 .234 .304687 .334 .429687 

.035 .056640 .135 .181640 .235 .306640 .335 .431640 

.036 .058593 .136 .183593 .236 .308593 .336 .433593 

.037 .060546 .137 .185546 .237 .310546 .337 .435546 

.040 .062500 .140 .187500 .240 .312500 .340 .437500 

.041 .064453 .141 .189453 .241 .314453 .341 .439453 

.042 .066406 .142 .191406 .242 .316406 .342 .441406 

.043 .068359 .143 .193359 .243 .318359 .343 .443359 

.044 .070312 .144 .195312 .244 .320312 .344 .445312 

.045 .072265 .145 .197265 .245 .322265 .345 .447265 

.046 .074218 .146 .199218 .246 .324218 .346 .449218 

.047 .076171 .147 .201171 .247 .326171 .347 .451171 

.050 .078125 .150 .203125 .250 .328125 .350 .453125 

.051 .080078 .151 .205078 .251 .330078 .351 .455078 

.052 .082031 .152 .207031 .252 .332031 .352 .457031 

.053 .083984 .153 .208984 .253 .333984 .353 .458984 

.054 .085937 .154 .210937 .254 .335937 .354 .460937 

.055 .087890 .155 .212890 .255 .337890 .355 .462890 

.056 .089843 .156 .214843 .256 .339843 .356 .464843 

.057 .091796 .157 .216796 .257 .341796 .357 .466796 

.060 .093750 .160 .218750 .260 .343750 .360 .468750 

.061 .095703 .161 .220703 .261 .345703 .• 361 .470703 

.062 .097656 .162 .222656 .262 .347656 .362 .472656 

.063 .099609 .163 .224609 .263 .349609 .363 .474609 

.064 .101562 .164 .226562 .264 .351562 .364 .476562 

.065 .103515 .165 .228515 .265 .353515 .365 .478515 

.066 .105468 .166 .230468 .266 .355468 .366 .480468 

.067 .107421 .167 .232421 .267 .357421 .367 •. 482421 

.070 .109375 .170 .234375 .270 .359375 .370 .484375 

.071 .111328 .171 .236328 .271 .361328 .371 .486328 

.072 .113281 .172 .238281 .272 .363281 .372 .488281 

.073 .115234 .173 .240234 .273 .365234 .3'13 .490234 

.074 .117187 .174 .242187 .274 .367187 .374 .492187 

.075 .119140 .175 .244140 .275 .369140 .375 .494140 

.076 .121093 .176 .246093 .276 .371093 .376 .496093 

.077 .123046 .177 .248046 .277 .373046 .377 .498046 

CPB-1004F 

277 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.) 

_. --
OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL 

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732 

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736 

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740 

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743 

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747 

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751 

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755 

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759 

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762 

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766 

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770 

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774 

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778 

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782 

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785 

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789 
-. 

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793 

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797 

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801 

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805 

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808 

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812 

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816 

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820 
- .. 

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823 

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827 

.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831 

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835 

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839 

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843 

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846 

.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850 

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854 

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858 

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862 

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865 

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869 

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873 

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877 

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881 

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885 

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888 

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892 

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896 

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900 

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904 

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907 

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .OOU911 
--

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915 

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919 

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923 

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926 

.000064 .000198 .000164 .000442 .. 000264 .000686 .000364 .000930 

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934 

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938 

.000067 .000209 .000167 .000453 .OU0267 .000698 .000367 .000942 

.000070 .000:113 .000170 .000457 .. 000270 .000701 .000370 .000946 

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000919 

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953 

.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957 

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961 

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965 

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968 

.000077 .000240 .000177 .000484 .. 000277 .000728 .000377 .000972 

CPB-I004F 

278 



OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.) 

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL 

.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708 

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712 

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716 

.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720 

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724 

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728 

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731 

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735 
1---

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739 

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743 

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747 

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750 

.000414 ;{)01022 .000514 .001266 .000614 .001510 .000714 .001754 

.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758 

.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762 

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766 

.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770 

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773 

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777 

.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781 

.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785 

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789 

.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792 

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796 
--

.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800 

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804 

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808 

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811 

.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815 

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819 

.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823 

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827 
f---

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831 

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834 

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838 

.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842 

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846 

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850 

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853 

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857 

.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861 

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865 

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869 

.000453 .001140 .000553 .001384 _000653 .001628 .000753 .001873 

.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876 

.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880 

.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884 

.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888 

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892 

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895 

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899 

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903 

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907 

.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911 

.000466 .001182 .G00566 .001426 .000666 .001670 .000766 .001914 

.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918 

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922 

.000471 .001194 .000571 .001438 .000671 .001682 .000771 .001926 

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930 

.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934 

.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937 

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941 

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945 

.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949 

CPB-1004F 

279 





APPENDIX H. TABLES OF POWERS OF TWO AND BINARY DECIMAL EQUIVALENTS 

2n n 2-n 

1 0 1.0 TABLE OF POWERS OF 2 

2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
32 5 0.031 25 
64 6 0.015 625 

128 7 0.007 812 5 
256 8 0.003 906 25 
512 9 0.001 953 125 

1 024 10 0.000 976 562 5 
2 048 11 0.000 488 281 25 
4096 12 0.000 244 140 625 

8 192 13 0.000 122 070 312 5 
16384 14 0.000 061 035 156 25 
32 76'8 15 0.000 030 517 578 125 

65 536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000 003 814 697 265 625 

524 288 19 0.000 001 907 348 632 812 5 
1 048 576 20 0.000 000 953 674 316 406 25 
2 097 152 21 0.000 000 476 837 158 203 125 

4 194 304 22 0.000 000 238 418 579 101 562 5 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16 777 216 24 0.000 000 059 604 644 775 390 625 

33 554 432 25 0.000 000 029 802 322 387 695 312 5 
67 108 864 26 0.000 000 014 901 161 193 847 656 25 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 

2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5 
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 

17179869184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 

CPB-I004F 

281 



BINARY AND DECIMAL EQUIVALENTS 

Number 
Maximum Decimal 

Integral Value 

of Number 
Decimal of 

Maximum Decimal Fractional Value 

Digits Bits 

1 1.5 
3 2 .75 
7 3 .875 

.!2 I--l.. _ 4 . 937 5 
31 f- -5- ~968i5 
63 6 .984375 

127 2 7 .992 187 5 
255 f--8- - -:996 09375 

This chart provides the information nec­
essary to determine: 

511 9 .998046875 
1 023 3 10 .999023 437 5 
Z047f-- - - -11- --:-99951171s75 

a. 

4 095 12 .999 755 859 375 
8 191 13 .999 877 929 687 5 

~l.!l~ 4 14 .99993896484375 
32 767 - - - -15 - -:999 969482421875 b. 
65 535 16.999 984 741 210 937 5 

12~?.!. _l.. __ 1.2.._ .999992 370 60546875 
262 i43 18 -:999996Ts530z734 375 
524287 19 .9999980926513671875 

1-048 5751-_ ~ __ 22-_ .999999046 3Z5 68359375 
2 097 151 21 :999999523 16Z 841796875 

c. 

4 194 303 22 .999999 761 581 420898437 5 
8388607 23 .99999988079071044921875 

16777 215 7 ~ ~_ .999999940 395 355 244 609 375 
33 554431-1-- - 25 -:999999970197"6776lZ3046875 
67 108 863 26.999 999 985 098 838 806 152 343 75 

.!1..4~12...?~ _..!. _ ......l-Z- _ .999999 992 549 419 403 076 171 875 
268435455 28 .9999999962747097015380859F5 
536870911 29 .999999998 137 35485076904296875 

The number of bits needed to 
represent a given decimal 
number. Use columns one and 
three or four and three. 

The number of bits needed to 
represent a given number of 
decimal digits (all nines). 
Use columns two and three. 

The maximum dec ima1 value 
represented by a given 
number of bits. use columns 
one and three or three and 
four. 

1 073 741 823 9 -2~ __ .999.....2.91-999 068.EU22.).~!.521 48421L 
2147 483647

r - - - 31 .999 999 999 534 338 71Z 692 260 742 187 5 
4 294 967 295 32 .999999999 767 169 356 346 130 371 093 75 
8 589 934,;>91 33.999 999 999 883 584 678 173 065 185 546 875 

17 179 869 183 10 34 .999999999941 792 339086 532 592 773 437 5 
34 3597383671-' - - r- 35 - :999999999970 896 169543266"296 3867187s 
6~ 719 476 735 36 .999 999 999 985448034 771 633 148 193 359 375 

137438953471 11 37 .999999999992724042385816574 096 679687 5 
274877--9069431-- - - -3S-- r .999999999 996 362021192908287 04833984375 
5497')5813887 39 .999999999998 181 010596454 143 524 169921 875 

1 099 511 627 775 12 40 .999 999 999 999 090 505 298 U7 071 762 084 960 937 5 
2199-023255551 -- - 41- r-:999 99999999954s25264911353588l042 48046875 
4 398 046 511 103 42 .999 999 999 999 772 626 324 556767 940 521 240 234 375 
8 796 093 022 207 43. 9~9 999 999 999 886 313 162 278 383 970 Z60 620 117 187 5 

.!2212~~4.i....4!2 __ Il... _ 44 .999999999999943 156 581 139 191 985 130 310058 593 75 
35184372 088 831 45 ~999999999999 97157829"0569595 992565155029i96875 
70 368 744 177 663 46.999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5 

.!.i.0 ..2.n_.i8!....3~ 327 f-li _ r-fl.. _ -:..29.2..,999 999 .219...2,.91-894 572~2-19U9~1..il..f.§UU.3Z4 118..1~ 
281 474 976 710 655 48 

CPB-1004F 

282 



APPENDIX I. THE TWO'S COMPLEMENT NUMBER SYSTEM 

Let us first consider a simple example of two's complement numbers, namely integers of 
three bits each, numbering the bits 0, 1, and 2, respectively, from left to right. Then the 
integer ((xyz" represents the decimal quantity ((-4x+2y+z": 

hence 011 represents +3 
010 represents +2 
001 represents +1 
000 represents +0 
111 represents -1 
110 represents -2 
101 represents -3 

and 100 represents -4 

Thus each decimal integer from -4 to 3 has a unique representation as a two's complement 
number. Bit 0 also serves as the sign-bit, since it is 0 for all positive numbers and 1 for 
all negative numbers. Note that ((000" is a positive number. 

We perform the addition ((abc+xyz" as though ((abc" and ((xyz" were signless binary integers 
from 0 to 7, ignoring any carry out of bit 0 of the sum. If the true sum is not an integer 
from -4 to 3, then we have an overflow. We observe that the carry out of bit 0 = the carry 
out of bit 1 if, and only if, there is no overflow. In the case when a =1= x, we cannot have an 
overflow, since the sum ranges from -4 to 2. It follows that a + x =1 and that the carries 
must be equal, since we have 0+1 = 1 with carry 0 and 1+1 = 0 with carry 1. In the case 
when a = x, we have no overflow if, and only if, bit 0 of the sum = x. We have this equality 
if, and only if, the carries are equal, since we have 0+0+0 = 0 with carry 0 and 1+1+1 = 1 
with carry 1. We conclude that our overflow test is a valid one. The following examples 
are illustrations of two's complement addition: 

CARRIES 00 11 00 01 11 10 
abc 110=-2 110=-2 010=+2 010=+2 110=-2 110=-2 
xyz 001=+1 011=+3 001=+1 011=+3 111=-1 101=-3 

abc+xyz 111=-1 001=+1 011=+3 101=-3 101=-3 011=+3 
REMARKS NO OVF. NO OVF. NO OVF. OVF. NO OVF. OVF. 

We say that {(uvw" is the one's complement of ((xyz" (and vice versa) if uvw+xyz = 111. 
Hence u+x = v+y = w+x = 1. We say that the quantity uuvw+001" is the two's complement 
of ((xyz", observing that its decimal value is: 

-4u+2v+w+1 = -4(1-x)+2(1-y)+(1-z)+1 
= -(-4x+2y+z), 

or minus the value of ((xyz". For this reason we call ((xyz" a two's complement number. 
We perform the subtraction Uabc-xyz" by the triple addition ((abc+uvw+001" (in effect, by 

CPB-1004F 

283 



adding ((abc" and ((uvw" with a forced carry of 1 into the low order bit 2). We use the same 
overflow test as for addition. Note that 000-000 := 000 (no overflow) and that 000-100 = 100 
(overflow). Hence ((000" is its own two's complement, and ((100" does not have a proper 
two's complement. We note the conspicuous absence of a -0 from the two's complement 
system on the previous page. 

We may generalize the above discussion to include two's complement integers of N bits 
each. The integer "XOx1x2 ·· .x

N
-

2
X

N
-

1 
" represents the decimal quantity below: 

The same rules as above hold for addition, overflow, complementation, and subtraction. 
In the GE-600 hardware, we may have several choices for N: 

N=8 for exponent fields, 
N=18 for address fields, 
N=36 for single-precision integers, 

and N=72 for double-precision integers. 

The use of two's complement numbers offers many advantages: 

1. It eliminates housekeeping before and after addition and subtraction in the computer 
hardware. 

2. It permits addition and subtraction modulo 2N
, since we may always consider a 

number to be signless. 

3. It permits addition of a quantity to a field of a word, without any need to worry 
about the sign-bit. (In the sign-magnitude system, one would add the quantity if 
the sign were positive, and subtract. the quantity if the sign were negative.) 

4. It makes zero a unique positive number. 

5. It is compatible with index register arithmetic. 

Of course, the GE-600 programmer must always be aware of the fact that the computer 
is a two's complement machine, especially when converting programs that were originally 
written for a machine with sign-magnitude or one's complement arithmetic. For example, 
the sign magnitude convention of "changing sign" corresponds to the two's complement 
convention of "negation" (or "complementation"). In FORTRAN systems, the quantity -0 
often indicates a blank card field. There is no such quantity in the GE-600 system, whether 
in fixed or floating point. 

A two's complement floating point number in the Floating Point Register consists of two 
parts: 

1. An integral exponent field of eight bits. 

2. A fractional mantissa field of seventy-two bits. The mantissa "xOx 1x2 •· .x71 " 
represents the decimal quantity below: 

-1 -2 -71 
-Xo+2 X1+2 X2+·· .+2 X71 

CPB-1004F 

284 



We say that a floating point number is normalized if either: 

1. The exponent field is 10000000 and the mantissa field is zero, or 

2. The first two mantissa bits are different: Xo f. xl 

The value of a floating point number is mantissa *2 exponent . Hence the normal form of +1 
is exponent 00000001 and mantissa 0100 ... 0, and the normal form of -1 is exponent 00000000 
and mantissa 1000 ... 0. If "fn is a floating point number that is not a power of two, however, 
then both +f and -f have the same exponent fields in normal form, and their mantissa fields 
are two's complements of each other. For f=10, the normal form of +f is exponent 00000100 
and mantissa 010100 ... 0. The normal form of -f is exponent 00000100 and mantissa 
101100 ... 0. Note that the first bit of the mantissa is the sign-bit of the number. 

ignoring the remainder, the GE-600 hardware retains the value of bit 0 during each right 
shift cycle prior to a floating point addition or subtraction. For the same reason, there is 
a numeric right shift as well as a logical right shift for A, Q, and AQ. 

The representation of mixed numbers illustrates a feature of the two's complement number 
system. Consider the case of f=1.25.Then the normal form of +f is exponent 00000001 and 
mantissa 010100 ... 0. The normal form of -f is exponent 00000001 and mantissa 101100 ... 0. 
The integral part of +f is +1, and the fractional part of +f is +.25. The integral part of -f 
is -2, and the fractional part of -f is +.75., Hence the integral parts are one's complements 
of each other, and the fractional parts are two's complements of each other. In general, 
this condition holds whenever we divide a two's complement number into a pair of disjoint 
fields, where the right field is not zero. The reason for the condition is that the sign-bit 
of a two's complement number is the only bit with a negative value. The condition is desirable 
in some mathematical applications where we wish to compute the greatest integer less 
than or equal to a given number. However, the condition raises a compatibility problem 
when converting programs originally coded on sign-magnitude or one's complement machines. 
The solution to the problem is the addition of +1 to the integral part of nonwhole negative 
numbers. The problem arises noticeably in the implementation of FORTRAN built-in 
functions. 

CPB-I004F 

285 





KEYWORD INDEX 

This Keyword Index is formed by permuting - that is, by shifting the nornal sequence of - the words 
appearing in equipment and program titles, chapter and paragraph heading~, figure titles, significant 
words, and descriptive phrases found in this manual. 

Each keyword appears in the index position in the center of the page, and the other words associated 
with it in the title, heading, or phrase appear on either side of the index word position. Thus, 
the desired keyword is first located in the center index position by the user of the manual; the 
nature of the context in which the keyword appears on the page shown is lhen given by the explanatory 
words appearing on either side of the keyword. 

When a phrase is too long to be printed at the left of the keyword, a tluncated portion is placed at 
the right, preceded by an asterisk. Information is occasionally added ill brackets to amplify the 
meaning of the phrase. 

ANA AND TO A 
AWCA ADD WITH CARRY TO A 

ASA ADD STORED TO A 
ANSA AND TO STORAGE A 

SBLA SUBTRACT LOGIC FROM A 
SSA SUBTRACT STORED FROM A 

ADLA ADD LOGIC TO A 
NEGATE A 

ORA OR TO A 
SUBTRACT WITH CARRY FROM A 

SBA SUBTRACT FROM A 
ADA ADD TO A 

STA STORE A 
LCA LOAD COMPLEMENT A 

EAA EFFECTIVE ADDRESS TO A 
LDA LOAD A 

EXCLUSIVE OR TO STORAGE A 
CMPA COMPARE WITH A 

ORSA OR TO STORAGE A 
CNAA COMPARATIVE NOT WITH A 
CANA COMPARATIVE AND WITH A 

ERA EXCLUSIVE OR TO A 

Keyword 

ASSEMBLY LISTING ABBREVIATED 
ABBREVIATIONS AND SYMBOLS FOR MACHINE OPERATIONS 
ABS OUTPUT ABSOLUTE TEXT 

RELOCATABLE AND ABSOLUTE ASSEMBLIES 
OPERATIONS IN ERROR IN AN ABSOLUTE ASSEMBLY 

OUTPUT ABSOLUTE BINARY TEXT 
ABSOLUTE BINARY TEXT CARD TYPE 
ABSOLUTE CARD FORMAT 

RELOCATABLE AND ABSOLUTE EXPRESSIONS 
RELOCATABLE OR ABSOLUTE EXPRESSIONS 

ABSOLUTE SUBPROGRAM ASSEMBLY 

INDEX 1 

Page 

88 
73 
70 
89 
79 
78 
71 
87 
90 
81 
76 
68 
55 
50 
52 
48 
94 
95 
91 

103 
102 

92 
177 

45 
183 
150 
183 
183 
229 
223 
157 
193 
151 

CPB-I004F 



ABSOLUTE SYMBOL 154 
ABS OUTPUT ABSOLUTE TEXT 183 

MEMORY ACCESS REQUEST 33 
PROGRAM ACCESSIBLE INDICATORS 15 
PROGRAM ACCESSIBLE REGISTERS 13 

NONPROGRAM ACCESSIBLE REGISTERS, ADDERS, AND SWITCHES 13 
MEMORY ACCESSING 46 

ASSEMBLER LANGUAGE ACTIVITY 224 
ACTIVITY DEFINITION 224 

EFFECT OF AD VARIATION 173 
ADA ADD TO A 68 
ADAQ ADD TO AQ 69 

DOUBLE-PRECISION FLOATING ADD 108 
UFA UNNORMALIZED FLOATING ADD 107 

FAD FLOATING ADD 107 
UNNORMALIZED FLOATING ADD ~'<DOUBLE PRECISION 108 

ADD DELTA T = AD VARIATION 173 
ADLA ADD LOGIC TO A 71 

ADLAQ ADD LOGIC TO AQ 72 
ADLQ ADD LOGIC TO Q 72 

ADLXN ADD LOGIC TO XN 73 
ADL ADD LOW TO AQ 75 
AOS ADD ONE TO STORAGE 75 
ASA ADD STORED TO A 70 
ASQ ADD STORED TO Q 70 

ASXN ADD STORED TO XN 71 
ADA ADD TO A 68 

ADAQ ADD TO AQ 69 
ADE ADD TO EXPONENT REGISTER 109 
A~ ADD TO Q 68 

ADXN ADD TO XN 69 
AWCA ADD WITH CARRY TO A 73 
AWCQ ADD WITH CARRY TO Q 74 

RS ADDER 16 
YS ADDER 16 

SADDER 16 
BS ADDER 16 
ES ADDER 16 

RELOCATION ADDER - RS 33 
PROCESSOR ADDERS 16 

ACCESSIBLE REGISTERS, ADDERS, AND SWITCHES 13 
BCD ADDITION 243 

FLOATING-POINT ADDITIONS OR SUBTRACTIONS 30 
INSTRUCTION ADDRESS 32 

TENTATIVE ADDRESS 32 
PROGRAM ADDRESS 32 

EFFECTIVE ADDRESS 26 
EFFECTIVE ADDRESS (DEFINITION) 32 
EFFECTIVE ADDRESS AND MEMORY LOCATIONS 45 

DIRECT OPERAND ADDRESS MODIFICATION 164 
ADDRESS MODIFICATION (TAG FIELD) 33 
ADDRESS MODIFICATION FEATURES 163 
ADDRESS MODIFICATION FLOWCHARTS 37 
ADDRESS RANGE PROTECTION 11 
ADDRESS REASSIGNMENT SWITCHES 12 

LBAR LOAD BASE ADDRESS REGISTER 145 
PROCESSOR BASE ADDRESS REGISTER 46 

SBAR STORE BASE ADDRESS REGISTER 61 
PROCESSOR BASE ADDRESS REGISTER 10 
PROCESSOR BASE ADDRESS REGISTER 33 

BASE ADDRESS REGISTER - BAR 15 
LOAD BASE ADDRESS REGISTER - LBAR 7 
LOAD BASE ADDRESS REGISTER - LBAR 33 

BASE ADDRESS REGISTER LOADING AND STORING 9 

CPB-I004F 

INDEX 2 



ADDRESS RELOCATION 
ADDRESS TALLY PSEUDO-OPERATIONS 
ADDRESS TALLY PSEUDO-OPERATIONS 

EAA EFFECTIVE ADDRESS TO A 
EAQ EFFECTIVE ADDRESS TO Q 

EAXN EFFECTIVE ADDRESS TO XN 
ADDRESS TRANSLATION AND MODIFICATION 
ADDRESS TRANSLATION WITH EACH MEMORY ACCESS 

INCREMENT ADDRESS, DECREMENT TALLY AND CONTINUE 
INCREMENT ADDRESS, DECREMENT TALLY T = ID VARIATION 
DECREMENT ADDRESS, INCREMENT TALLY T = DI VARIATION 
DECREMENT ADDRESS, INCREMENT TALLY, AND CONTINUE 

INDIRECT ADDRESSING 
ADE ADD TO EXPONENT REGISTER 
ADL ADD LOW TO AQ 
ADLA ADD LOGIC TO A 
ADLAQ ADD LOGIC TO AQ 
ADLQ ADD LOGIC TO Q 
ADLXN ADD LOGIC TO XN 

RELOCATION ADMISSIBILITY OF AN EXPRESSION 
ADQ ADD TO Q 
ADR ADDRESS REGISTER 
ADXN ADD TO XN 

OVER-ALL SYSTEM CONTROL AGENCY 
EVALUATION OF ALGEBRAIC EXPRESSIONS 

ALGEBRAIC EXPRESSIONS 
ALGEBRAIC GROUP 
ALIEN-HEADED REGION 
ALIGNMENT OF FIXED-POINT NUMBERS 

STORAGE ALLOCATION PSEUDO-OPERATIONS 
STORAGE ALLOCATION PSEUDO-OPERATIONS 

ALPHANUMERIC DATA 
ALPHANUMERIC LITERALS 
ALR A LEFT ROTATE SHIFT 
ALS A LEFT SHIFT 

FORMAT OF THE $ ALTER CARD 
ALTER CARDS 

$ ALTER CONTROL CARDS 
ALTER INFORMATION 
ALTER INPUT TO A COMPILER OR THE ASSEMBLER 
ALTER PACKAGE 
ANA AND TO A 
ANAQ AND TO AQ 

BOOLEAN OPERATIONS AND 
ANA AND TO A 

ANAQ AND TO AQ 
ANQ AND TO Q 

ANSA AND TO STORAGE A 
ANSQ AND TO STORAGE Q 

ANSXN AND TO STORAGE XN 
ANXN AND TO XN 

CANA COMPARATIVE AND WITH A 
CANAQ COMPARATIVE AND WITH AQ 

CANQ COMPARATIVE AND WITH Q 
CANXN COMPARATIVE AND WITH XN 

ANQ AND TO Q 
ANSA AND TO STORAGE A 
ANSQ AND TO STORAGE Q 
ANSXN AND TO STORAGE XN 
ANXN AND TO XN 
AOS ADD ONE TO STORAGE 

PSEUDO-OPERATION SPECIAL APPLICATION 
ANAQ AND TO AQ 

ADLAQ ADD LOGIC TO AQ 

INDEX 3 

9 
206 
264 

52 
53 
53 
32 
46 

174 
170 
171 
174 
163 
109 

75 
71 
72 
72 
73 

157 
68 
15 
69 

1 
155 
155 

28 
184 

9 
264 
201 

26 
161 

66 
64 

227 
149 
226 
227 
227 
149 
88 
88 
88 
88 
88 
88 
89 
89 
90 
89 

102 
102 
102 
103 
88 
89 
89 
90 
89 
75 

175 
88 
72 

CPB-1004F 



ADAQ ADD TO AQ 
SBAQ SUBTRACT FROM AQ 

ERAQ EXCLUSIVE OR TO AQ 
ADL ADD LOW TO AQ 

ORAQ OR TO AQ 
SBLAQ SUBTRACT LOGIC FROM AQ 

LCAQ LOAD COMPLEMENT AQ 
STAG STORE AQ 

LDAQ LOAD AQ 
CNAAQ COMPARATIVE NOT WITH AQ 

COMPAQ COMPARE WITH AQ 
CANAQ COMPARATIVE AND WITH AQ 

AQ REGISTER USE 
SYSTEM STORAGE AREA 

RESERVE AREA OF MEMORY WITHIN ASSEMBLED PROGRAM 
SPECIAL CODE ARG 

ARG A , M ARGUMENT-GENERATE ZERO OPERATION 
ARGUMENT IN A BCI PSEUDO-OPERATION 

ARG A , M ARGUMENT-GENERATE ZERO OPERATION CODE 
MACRO PROTOTYPE ARGUMENTS 

LINKING OF TEXT AND ARGUMENTS 
FLOATING-POINT ARITHMETIC 

FIXED-POINT ARITHMETIC 
FRACTIONAL ARITHMETIC 

INTEGER ARITHMETIC 
FRACTIONAL ARITHMETIC 

INTEGER ARITHMETIC 
BINARY FIXED-POINT ARITHMETIC 

ARITHMETIC AND LOGICAL OPERATIONS 
FIXED··POINT ARITHMETIC DIVISION 

PROGRAM GENERATED FAULTS ARITHMETIC FAULTS 
FIXED··POINT ARITHMETIC MULTIPLICATION 
FIXED-POINT ARITHMETIC NEGATE 

NUMBER SYSTEM ARITHMETIC CASE 
ARL A RIGHT LOGIC SHIFT 
ARS A RIGHT SHIFT 
ASA ADD STORED TO A 
ASCII CHARACTER SET 
ASQ ADD STORED TO Q 

FOLLOWING BLOCK ENTRY IS ASSEMBLED IN LABELED COMMON 
LARGEST NUMBER OF ASSEMBLED INSTRUCTIONS AND DATA 

AREA OF MEMORY 1rJITHIN ASSEMBLED PROGRAM 
INPUT TO A COMPILER OR THE ASSEMBLER 

INSTRUCTIONS TO THE ASSEMBLER 
MACRO ASSEMBLER CODING FORM 

ASSEMBLER COMDK FEATURE 
ASSEMBLER DESCRIPTION 

SYMBOLIC MACRO ASSEMBLER - GMAP 
ASSEMBLER LANGUAGE ACTIVITY 

NORMAL ASSEMBLER OPERATING MODE 
SUBPROGRAM DELIMITERS ARE ASSEMBLER OUTPUT CARDS 

ASSEMBLER REACTIVATES THE LOCATION COUNTER 
RELOCATABLE AND ABSOLUTE ASSEMBLIES 

MAXSZ MAXIMUM SIZE OF ASSEMBLY 
OBJECT HEAD THE SUBPROGRAM ASSEMBLY 

$ DKEND END THE ASSEMBLY 
ABSOLUTE SUBPROGRAM ASSEMBLY 

CONDITIONAL ASSEMBLY 
ERROR IN AN ABSOLUTE ASSEMBLY 

END OF ASSEMBLY 
ABSOLUTE ASSEMBLY 

AN ELEMENT ASSEMBLY LANGUAGE 
ASSEMBLY LANGUAGE PROGRAMMING 

LINE PRINTED ON ASSEMBLY LISTING 

INDEX 4 

69 
77 
93 
75 
91 
80 
51 
55 
48 

104 
96 

102 
l3 

7 
201 
151 
205 
219 
205 
212 
218 

47 
1 

29 
25 
25 
29 
28 

9 
85 
21 
83 
87 
24 
65 
63 
70 
27 
70 

202 
206 
201 

83 
187 
153 
225 
149 
149 
224 
151 
151 
188 
150 
206 
151 
151 
151 
208 
183 
186 
183 
154 
151 

32 

CPB-I004F 



ASSEMBLY LISTING ABBREVIATED 
ASSEMBLY LISTINGS. 
ASSEMBLY OUTPUTS 

CONDITIONAL ASSEMBLY OF NEXT N CARDS 
CONDITIONAL ASSEMBLY OF NEXT N INSTRUCTIONS 

PERIPHERAL ASSIGNMENT TABLE - PAT 
ASTERISK IN COLUMN I-REMARKS 
ASTERISK USED AS AN ELEMENT ASSEMBLY LANGUAGE 
ASXN ADD STORED TO XN 

BASE ADDRESS 

AWCA ADD WITH CARRY TO A 
AWCQ ADD WITH CARRY TO Q 

REGISTER - BAR 
LBAR LOAD BASE ADDRESS REGISTER 
PROCESSOR BASE ADDRESS REGISTER 

SBAR STORE BASE ADDRESS REGISTER 
PROCESSOR BASE ADDRESS REGISTER 
PROCESSOR BASE ADDRESS REGISTER 

BASE ADDRESS REGISTER - BAR 
LOAD BASE ADDRESS REGISTER - LBAR 
LOAD BASE ADDRESS REGISTER - LBAR 

BASE ADDRESS REGISTER LOADING AND 
BASIC CODING PATTERNS 
BASIC SYSTEM FUNCTIONS 

BINARY TO BCD 
BCD ADDITION 
BCD BINARY TO BINARY-CODED-DEClMAL 

DCARD PUNCH BCD CARD 
ENTER BINARY-CODED DECIMAL BCD CHARACTER INFORMATION 

BCD SUBTRACTION 

STORING 

BCI BINARY-CODED DECIMAL INFORMATION 
ARGUMENT IN A BCI PSEUDO-OPERATION 

BCI PSEUDO-OPERATION 
BEGIN ORIGIN OF A LOCATION COUNTER 
BFS BLOCK FOLLOWED BY SYMBOL 

GTB GRAY TO BINARY 
BINARY AND DECIMAL EQUIVALENTS 

FOUR TYPES OF BINARY CARDS 
SERIALIZE THE BINARY CARDS 

PUNCH BINARY CARDS 
FOR CONVERSION TO BINARY DATA 

BINARY DECKS 
BINARY FIXED-POINT ARITHMETIC 
BINARY FIXED-POINT NUMBERS 
BINARY FLOATING-POINT NllM.BERS 

ABSOLUTE BINARY TEXT 
FUL OUTPUT FULL BINARY TEXT 
OUTPUT ABSOLUTE BINARY TEXT 

ABSOLUTE BINARY TEXT CARD TYPE 
RELOCATABLE BINARY TEXT CARD TYPE 

BINARY TO BCD 
BCD BINARY TO BINARY-CODED-DEClMAL 

BINARY TRANSFER CARD 
GENERATE A BINARY WORD FOR GENERAL INSTRUCTION 

BINARY SYSTEM OF NOTATION 
ENTER BINARY-CODED DECIMAL BCD CHARACTER INFORMATION 

BCI BINARY-CODED DECIMAL INFORMATION 
BCD BINARY TO BINARY-CODED-DEClMAL 

STOP SETTING THE INHIBIT BIT 
PROGRAM INTERRUPT INHIBIT BIT 

BIT POSITIONS WITHIN A CHARACTER 
BLANK COMMON ENTRY 
BLOCK COMMON 

DATA FOLLOWING BLOCK ENTRY IS ASSEMBLED IN LABELED COMMON 

INDEX 5 

177 
234 
228 
205 
204 

8 
181 
155 

71 
73 
74 

15 
145 
46 
61 
10 
33 
15 

7 
33 

9 
63 

1 
249 
243 
129 
185 

52 
244 
198 
219 
198 
189 
202 
130 
282 
228 
181 
179 
197 
228 

28 
28 
30 

183 
183 
183 
229 
229 
249 
129 
183 
205 

24 
198 
198 
129 
179 
179 
26 

236 
202 
202 

CPB-I004F 



BFS BLOCK FOLLOWED BY SYMBOL 
BSS BLOCK STARTED BY SYMBOL 

BOOL BOOLEAN 
HOOL BOOLEAN 

BOOLEAN CONNECTIVE 
EVALUATION OF BOOLEAN EXPRESSIONS 

BOOLEAN EXPRESSIONS 
BOOLEAN OPERATIONS 
BOOLEAN OPERATIONS AND 
BOOLEAN OPERATIONS EXCLUSIVE OR 
BOOLEAN OPERATIONS OR 
BS ADDER 
BSS BLOCK STARTED BY SYMBOL 

PERIPHERAL UNIT BUFFER 
BUFFER STORAGE 

SYSTEM BUILT-IN SYMBOLS 
BULK MEDIA CONVERSION 

TALLYB A , T , B TALLY BYTE 

CALCULATION OF INSTRUCTION EXECUTION TIMES 
GENERATED BY MACRO CALL 

SUBROUTINE CALL MACRO 
CALL SUBROUTINES 

THE STANDARD SUBROUTINE CALLING SEQUENCE 
CANA COMPARATIVE AND WITH A 
CANAQ COMPARATIVE AND WITH AQ 
CANQ COMPARATIVE AND WITH Q 
CANXN COMPARATIVE AND WITH XN 

ITERATION CAPABILITY WITHIN RANGE OF MACRO PROTOTYPE 
FORMAT OF THE $ OBJECT CARD 

FORMAT OF THE $ ALTER CARD 
$ UPDATE CONTROL CARD 

BINARY TRANSFER CARD 
DCARD PUNCH BCD CARD 

REMARK CARD 
$ OBJECT AND $ DKEND CARD 

TCD PUNCH TRANSFER CARD 
SYMBOLIC CARD FORMAT 

PREFACE CARD FORMAT 
RELOCATABLE CARD FORMAT 

ABSOLUTE CARD FORMAT 
TRANSFER CARD FORMAT 

COMDEK CARD LAYOUT 
PREFACE CARD LISTING 

PUNCH ON/OFF CONTROL CARD OUTPUT 
PREFACE CARD TYPE 

RELOCATABLE BINARY TEXT CARD TYPE 
ABSOLUTE BINARY TEXT CARD TYPE 

TRANSFER CARD TYPE 
ASSEMBLER OUTPUT CARDS 

ALTER CARDS 
FOUR TYPES OF BINARY CARDS 

$ ALTER CONTROL CARDS 
PUNCH BINARY CARDS 

SERIALIZE THE BINARY CARDS 
PCC ON/OFF PRINT CONTROL CARDS 

SUPERVISOR GECOS $ CONTROL CARDS 
DUP DUPLICATE CARDS 

ASSEMBLY OF NfXT N CARDS 
INC TRANSFER ON NO CARRY 

IRC TRANSFER ON CARRY 
SWCA SUBTRACT WITH CARRY FROM A 
SWCQ SUBTRACT WITH CARRY FROM Q 

CARRY INDICATOR (USE) 

INDEX 6 

202 
201 
192 
192 
46 

156 
156 
253 

88 
92 
90 
16 

201 
3 
3 

224 
5 

206 

42 
179 
219 
220 
220 
102 
102 
102 
103 
80 

228 
227 
227 
183 
185 
181 
185 
183 
153 
230 
231 
230 
234 
226 
235 
179 
229 
229 
229 
229 
151 
149 
228 
226 
179 
181 
178 
185 
201 
204 
127 
127 

81 
82 
18 

CPB-I004F 



AWCA ADD WITH CARRY TO A 
AWCQ ADD WITH CARRY TO Q 

FAULT CATEGORIES 
NONMASKED INTERRUPT CELL 

CONTROLLER INTERRUPT CELLS 
CONTROLLER INTERRUPT CELLS - SMIC 

CENTRALIZED INPUT/OUTPUT 
CIOC CONNECT I/O CHANNEL 

CONNECT INPUT/OUTPUT CHANNEL - CIOC 
BIT POSITIONS WITHIN A CHARACTER 

CHARACTER FROM INDIRECT T -- CI VARIATION 
STBA STORE CHARACTER OF A (N~NE-BIT) 
STCA STORE CHARACTER OF A (SIX-BIT) 
STBQ STORE CHARACTER OF Q (NINE-BIT) 
STCQ STORE CHARACTER OF Q (SIX-BIT) 

SIX-BIT CHARACTER OPERATIONS 
NINE-BIT CHARACTER OPERATIONS 

CHARACTER POSITIONS WITHIN A WORD 
SEQUENCE CHARACTER T = SC VARIATION 

CHARACTER TRANSLITERATION 
BINARY-CODED DECIMAL BCD CHARACTER INFORMATION 

STANDARD CHARACTER SET 
ASCII CHARACTER SET 

DEPARTMENT STANDARD CHARACTER SET 
GENERATED FAULTS DIVIDE CHECK - FDIV 

FROM INDIRECT T CI VARIATION 
INPUT/OUTPUT CHANNEL - CIOC 

CIOC CONNECT I/O CHANNEL 
OPERATIONS BY FUNCTIONAL CLASS 

CMG COMPARE MAGNITUDE 
CMK COMPARE MASKED 
COMPA COMPARE WITH A 
CMPAQ COMPARE WITH AQ 
CMPQ COMPARE WITH Q 
CMPXN COMPARE WITH XN 
CNAA COMPARATIVE NOT WITH A 
CNAAQ COMPARATIVE NOT WITH AQ 
CNAQ COMPARATIVE NOT WITH Q 
CNAXN COMPARATIVE NOT WITH XN 

INTERRUPT NUMBER COMMAND CODE 
RECEIVE FIVE-BIT INTERRUPT CODE 

SPECIAL CODE ARG 
GENERATE ZERO OPERATION CODE COMPUTER WORD 

FAULTS ILLEGAL OP CODE - ZOP 
ERROR CODES 

MNEMONICS AND OPERATION CODES 
OPERATIONS AND OPERATION CODING 

CODING AND EFFECTS OF *,*N, AND I 
CODING EXAMPLES 

MACRO ASSEMBLER CODING FORM 
REPEAT INSTRUCTION CODING FORMATS 
REPEAT INSTRUCTION CODING FORMATS 

BASIC CODING PATTERNS 
CODING REPEATED PATTERN OF INSTRUCTIONS 

CORE MEMORY STORAGE WITHIN CODING SEQUENCE 
COE REGISTER 

* IN COLUMN 1 - REMARKS 
E IN COLUMN 7 
D IN COLUMN 7 
8 IN COLUMN 7 

COMDEK CARD LAYOUT 
COMDEK FORMAT 
COMDK 

ASSEMBLER COMDK FEATURE 

INDEX 7 

73 
74 
20 
12 

1{~5 

7 
6 

148 
7 

26 
172 
58 
57 
59 
57 
27 
27 
26 

171 
245 
198 
271 

26 
26 
21 

172 
7 

148 
263 
100 
101 

95 
97 
96 
98 

103 
104 
103 
104 

12 
12 

151 
205 

21 
237 
261 
162 
170 
239 
153 
207 
264 
208 
208 
201 

15 
181 
195 
195 
196 
226 
225 
225 
225 

CPB-I004F 



TRANSFER INTERRUPT NUMBER COMMAND CODE 
INPUT/OUTPUT COMMAND FORMATS 

PROGRAM GENERATED FAULTS COMMAND - FCMD 
COMMENTS FIELD 

IS ASSEMBLED IN LABELED COMMON 
BLOCK COMMON 
BLANK COMMON ENTRY 

COMMON SYMBOL 
GENERAL SYSTEM COMMUNICATION CONTROL 

COMPARISON COMPARATIVE AND 
CANA COMPARATIVE AND WITH A 

CANAQ COMPARATIVE AND WITH AQ 
CANQ COMPARATIVE AND WITH Q 

CANXN COMPARATIVE AND WITH XN 
COMPARISON COMPARATIVE NOT 

CNAA COMPARATIVE NOT WITH A 
CNAAQ COMPARATIVE NOT WITH AQ 

CNAQ COMPARATIVE NOT WITH Q 
CNAXN COMPARATIVE NOT WITH XN 

COMPARISON COMPARE 
DOUBLE-PRECISION FLOATING COMPARE 

FCMP FLOATING COMPARE 
FLOATING-POINT COMPARE 

CMG COMPARE MAGNITUDE 
DOUBLE-PRECISION FLOATING COMPARE MAGNITUDE 

FCMG FLOATING COMPARE MAGNITUDE 
CMK COMPARE MASKED 

CMPA COMPARE WITH A 
COMPAQ COMPARE WITH AQ 

CWL COMPARE WITH LIMITS 
CMPQ COMPARE WITH Q 

COMPXN COMPARE WITH XN 
COMPARISON 
COMPARISON COMPARATIVE AND 
COMPARISON COMPARATIVE NOT 
COMPARISON COMPARE 
COMPILER DESCRIPTION 

ALTER INPUT TO A COMPILER OR THE ASSEMBLER 
LCA LOAD CCMPLEMENT A 

LCAQ LOAD COMPLEMENT AQ 
TWO S COMPLEMENT NUMBER SYSTEM 

LCQ LOAD COMPLEMENT Q 
LCSN LOAD COMPLEMENT XN 

FAULTS OPERATION NOT COMPLETED - FONC 
FAULTS OPERATION NOT COMPLETED - FONC 
PASSIVE COORDINATING CCMPONENT 

COMPUTER CCMPONENTS 
HARDWARE COMPONENTS 

COMPREHENSIVE OPERATING SUPERVISOR 
COMPRESSED DECKS 
COMPUTER COMPONENTS 

ZERO OPERATION CODE COMPUTER WORD 
COMPUTER DEPARTMENT STANDARD CHARACTER SET 

CONNECT - CON 
CONDITIONAL ASSEMBLY 
CONDITIONAL ASSEMBLY OF NEXT N INSTRUCTIONS 
CONDITIONAL ASSEMBLY OF NEXT N CARDS 
CONDITIONAL PSEUDO-OPERATIONS 
CONDITIONAL PSEUDO-OPERATIONS 

TRANSFER OF CONTROL CONDITIONAL TRANSFER 
CONDITIONAL TRANSFER 
CONDITIONS AND RESTRICTIONS OF MACROS 
CONDITIONS AND RESTRICTIONS OF RELOCATION 
CONNECT INPUT/OUTPUT CHANNEL - CIOC 

INDEX 8 

12 
268 

22 
152 
202 
202 
236 
154 

1 
102 
102 
102 
102 
103 
103 
103 
104 
103 
104 

95 
121 
119 
119 
100 
122 
120 
101 

95 
97 
99 
96 
98 

254 
102 
103 

95 
149 
227 

50 
51 

1 
51 
52 
22 
21 

1 
1 
1 
7 

225 
1 

205 
26 
21 

208 
204 
204 
264 
203 
126 

12 
213 
157 

7 

CPB-I004F 



ClOC CONNECT I/O CHANNEL 
CONNECT - CON 

BOOLEAN CONNECTIVE 
DEFINES A CONSTANT OF 18 BITS 

REGISTER POSITIONS AND CONTENTS 
CONTENTS OF LINE PRINTED ON ASSEMBLY LIST 

, T , MOD TALLY AND CONTINUE 
INCRI<:MENT TALLY, AND CONTINUE T = DIC VARIATION 

DECREHr::NT TALLY AND CONTINUE T = IDC VARIATION 
CONTINUOUS PROCESSING OF NULTlPLE PROGRAMS 

TRANSFER OF CONTROL 
SYSTEM COHl'lUNICATION CONTROL 

OVE:R-ALL SYSTEM CONTROL AGENCY 
$ UPDATE CONTROL CARD 

PUNCH ON/OFF CONTROL CARD OUTPUT 
$ ALTER CONTROL CARDS 

SUPERVISOR GECOS $ CONTROL CARDS 
PCC ON/OFF PRINT CONTROL CARDS 

TRANSFER OF CONTROL CONDITIONAL TRANSFER 
INSTRUCTIONS UNDER CONTROL OF LOCATION COUNTER 

LIST ON/OFF CONTROL OUTPUT LISTING 
SUBSET OF CONTROL PSEUDO-OPERATIONS 

CONTROL PSEUDO-OPERATIONS 
TRANSFER OF CONTROL TRANSFER 

PROCESSOR CONTROL UNIT 
PROGRAM CONTROL UNIT 

DATA CONTROL WORD FORMATS 
MEMORY MODULE SYSTEM CONTROLLER 

SYSTEM CONTROLLER 
SYSTEM CONTROLLER 

SMIC SET MEMORY CONTROLLER INTERRUPT CELLS 
SET MEMORY CONTROLLER INTERRUPT CELLS - SMIC 

SMCM SET MEMORY CONTROLLER MASK REGISTER 
RMCM READ MEMORY CONTROLLER MASK REGISTER 

READ MEMORY CONTROLLER MASK REGISTERS - RMCM 
SET MEMORY CONTROLLER MASK REGISTERS - SMCM 

INPUT/OUTPUT CONTROLLER MODULE 
FEATURES OF I/O CONTROLLER MODULE AND PERFORMING UNITS 

PUNCH MACRO PROTOTYPES AND CONTROLS 
ON-LINE MEDIA CONVERSION 

BULK MEDIA CONVERSION 
SYSTEM MEDIA CONVERSION 
OUTPUT MEDIA CONVERSION ROUTINE 

OCTAL-DECIMAL FRACTION CONVERSION TABLE 
CONVERSION TABLE OF OCTAL-DECIMAL INTEGERS 

DECIMAL INFOR}u\TION FOR CONVERSION TO BINARY DATA 
COE AND COO REGISTERS 
PASSIVE COORDINATING COMPONENT 

RESERVE SPECIFIED CORE MEMORY STORAGE WITHIN CODING SEQUENCE 
MAGNETIC CORE STORAGE UNIT (FUNCTION) 
MAGNETIC CORE STORAGE UNIT 

SOURCE DECK CORRECTIONS 
INSTRUCTION COUNTER 

UNDER CONTROL OF LOCATION COUNTER 
ORIGIN OF A GIVEN LOCATION COUNTER 
CHANGE THE NEXT VALUE OF A COUNTER 

REACTIVATES THE LOCATION COUNTER 
BEGIN ORIGIN OF A LOCATION COUNTER 

EVEN FORCE LOCATION COUNTER EVEN 
INSTRUCTION COUNTER - IC 

ODD FORCE LOCATION COUNTER ODD 
LOCATION COUNTER PSEUDO-OPERATIONS (LIST) 
LOCATION COUNTER PSEUDO-OPERATIONS 

EIGHT FORCE LOCATION COUNTER TO A MULTIPLE OF 8 

INDEX 9 

148 
21 
Lf 6 

192 
Lf 6 

180 
206 
17'3 
174 

6 
256 

1 
1 

227 
179 
226 
185 
178 
126 
188 
177 
176 
263 
124 

9 
2 

270 
11 

2 
1 

145 
7 

147 
146 

7 
7 
3 
3 

217 
5 
5 
5 
5 

277 
273 
197 

79 
1 

201 
1 

26 
226 

15 
188 
190 
190 
189 
189 
195 

2Lf 

195 
263 
188 
196 

CPB-I004F 



STCI STORE INSTRUCTION COUNTER PLUS 1 
STC2 STORE INSTRUCTION COUNTER PLUS 2 

USE MULTIPLE LOCATION COUNTERS 
NEED FOR PROTOTYPE CREATED SYMBOLS 

USE OF CREATED SYMBOLS 
CRSM ON/OFF CREATED SYMBOLS 

ORGCSM ORIGIN CREATED SYMBOLS 
BETWEEN DECIMAL POINTS OF CREATED SYMBOLS 

SYMBOLIC CROSS-REFERENCE TABLE 
CROSS-REFERENCING AMONG DIFFERENTLY HEADED 
CRSM ON/OFF CREATED SYMBOLS 
CWL COMPARE WITH LIMITS 

D REGISTER 
ASSEMBLED INSTRUCTIONS AND DATA 

SAVE RETURN LINKAGE DATA 
ALPHANUMERIC DATA 

CONVERSION TO BINARY DATA 
GENERATING TABLES AND/OR DATA 

DATA CONTROL WORD FORMATS 
DATA FOLLOWING BLOCK ENTRY IS ASSEMBLED 
DATA GENERATING PSEUDO-OPERATIONS 
DATA GENERATING PSEUDO-OPERATIONS 

INTRODUCE DATA IN OCTAL INTEGER NOTATION 
DATA MOVEMENT 
DATA MOVEMENT LOAD 
DATA MOVEMENT SHIFT 

TEMPORARY DATA STORAGE 
WHERE ESSENTIAL TO DEFINE DATA WORD IN INDIVIDUAL BITS 

GENERATING DATA WHERE ESSENTIAL TO DEFINE DATA WORD 
DCARD PUNCH BCD CARD 
DEC DECIMAL 

DOUBLE-PRECISION DEC PSEUDO-OPERATION 
SINGLE-PRECISION DEC PSEUDO-OPERATION 

DEC DECIMAL 
ENTER BINARY-CODED DECIMAL BCD CHARACTER INFORMATION 

BINARY AND DECIMAL EQUIVALENTS 
DECIMAL LITERAL DOUBLE-PRECISION FLOATING 
DECIMAL LITERAL FIXED-POINT 
DECIMAL LITERAL INTEGER 
DECIMAL LITERAL SINGLE-PRECISION FLOATING 
DECIMAL NUMBERS 

BCI BINARY-CODED DECIMAL INFORMATION 
DECIMAL INFORMATION FOR CONVERSION TO BINARY 
DECK OPTION 

COMPRESSED DECKS 
BINARY DECKS 

OPERATION DECODING 
DECREMENT ADDRESS, INCREMENT TALLY T = DI 
DECREMENT ADDRESS, INCREMENT TALLY, AND CONTINUE 

INCREMENT ADDRESS, DECREMENT TALLY AND CONTINUE T = IDC 
INCREMENT ADDRESS, DECREMENT TALLY T = ID VARIATION 

TIMER REGISTER LOADING AND DECREMENTING 
DEFINE A MACRO OPERATION BY SYMBOLIC NAME 

DATA WHERE ESSENTIAL TO DEFINE DATA WORD IN INDIVIDUAL BITS 
DEFINE OR REDEFINE MACHINE INSTRUCTIONS 

SYMBOLS DEFINED 
OPERATION TABLE FOR MACROS DEFINED 

SYMBOL OR PRESENTLY DEFINED OPERATION 
EQUATING NEWLY DEFINED SYMBOL OR PRESENTLY DEFINED OPERATION 

DEFINES A CONSTANT OF 18 BITS 
NORMAL INSTRUCTION - DEFINING FORMAT 

INPUT/OUTPUT OPERATION - DEFINING FORMAT 
DEFINING PARAMETERS 

INDEX 10 

62 
62 

188 
214 
214 
215 
215 
215 
150 
184 
215 

99 

15 
206 
221 

26 
197 
201 
270 
202 
264 
196 
196 
251 

48 
63 

7 
199 
199 
185 
197 
198 
197 
197 
198 
282 
160 
160 
160 
160 
171 
198 
197 
228 
225 
228 

9 
171 
174 
174 
170 

9 
209 
199 
186 
153 
217 
188 
188 
192 
187 
187 
190 

CPB-1004F 



SYMBOL DEFINING PSEUDO-OPERATIONS 
ACTIVITY DEFINITION 

OPD - OPERATION DEFINITION 
MACRO INSTRUCTION DEFINITION 

OPD OPERATION DEFINITION 
SYMDEF SYMBOL DEFINITION 

VFD VARIABLE FIELD DEFINITION 
DEFINITION OF MACRO PROTOTYPE: 
DEHEADING 

DIS DELAY UNTIL INTERRUPT SIGNAL 
DELM DELETE MACRO 

DELETE MACRO NAMED IN VARIABLE FIELD 
SUBPROGRAM DELIMITERS ARE ASSEMBLER OUTPUT CARDS 

DELM DELETE MACRO 
A , T , D , TALLY AND DELTA 

ADD DELTA T = AD VARIATION 
SUBTRACT DELTA T = SD VARIATION 

DRL DETAIL 
GENERATED FAULTS DERAIL - DRL 

ASSEMBLER DESCRIPTION 
COMPILER DESCRIPTION 

INSTRUCTION DESCRIPTION FORMAT 
DESCRIPTION OF FLOWCHARTS 

REGISTER DESIGNATOR 
REGISTER DESIGNATOR 

TALLY DESIGNATOR 
TALLY DESIGNATOR 

DETAIL ON/OFF DETAIL OUTPUT LISTING 
DETAIL ON/OFF DETAIL OUTPUT LISTING 

PUNCH AND PRINT PREVIOUSLY DEVELOPED LITERALS 

INCREMENT TALLY T 
TALLY, AND CONTINUE T 

DFAD DOUBLE-PRECISION FLOATING ADD 
DFCMG DOUBLE-PRECISION FLOATING COMPARE 
DFCMP DOUBLE-PRECISION FLOATING COMPARE 
DFDI DOUBLE-PRECISION FLOATING DIVIDE-INVERT 
DFDV DOUBLE-PRECISION FLOATING DIVIDE 
DFLD DOUBLE-PRECISION FLOATING LOAD 
DFMP DOUBLE-PRECISION FLOATING MULTIPLY 
DFSB DOUBLE-PRECISION FLOATING SUBTRACT 
DFST DOUBLE-PRECISION FLOATING STORE 
DI VARIATION 
DIC VARIATION 
DIRECT OPERAND ADDRESS MODIFICATION 
DIS DELAY UNTIL INTERRUPT SIGNAL 
DISPATCHER ROUTINES 
DIV DIVIDE INTEGER 

FDV FLOATING DIVIDE 
DOUBLE-PRECISION FLOATING DIVIDE 

PROGRAM GENERATED FAULTS DIVIDE CHECK - FDIV 
DVF DIVIDE FRACTION 
DIV DIVIDE INTEGER 

FDI FLOATING DIVIDE INVERTED 
DOUBLE-PRECISION FLOATING DIVIDE-INVERTED 

FIXED-POINT ARITHMETIC DIVISION 
FLOATING-POINT DIVISION 

MULTIPLICATION AND DIVISION 
FRACTIONAL AND INTEGER DIVISIONS AND MULTIPLICATIONS 

INVERTED DIVISIONS ON FLOATING-POINT NUMBERS 
A $ OBJECT AND $ DKEND CARD 

$ DKEND END THE ASSEMBLY 
LITERALS MODIFIED BY DU OR DL 

RPD REPEAT DOUBLE 
XED EXECUTE DOUBLE 

EXECUTE DOUBLE 
EXECUTE DOUBLE INSTRUCTION - XED 

INDEX 11 

263 
221f 
163 
163 
186 
193 
200 
209 
184 
145 
216 
217 
151 
216 
206 
173 
173 
133 

21 
149 
149 
44 
39 
35 
33 
33 
35 

177 
177 
203 
108 
122 
121 
117 
116 
105 
112 
110 
106 
171 
174 
164 
145 

5 
85 

114 
116 

21 
86 
85 

115 
117 
85 

114 
29 

9 
9 

185 
151 
162 
137 
131 

12 
20 

CPB-1004F 



EXPONENT FOR SINGLE AND DOUBLE PRECISION 
DOUBLE WORD PRECISION 
DOUBLE-PRECISION DEC PSEUDO-OPERATION 

DFAD DOUBLE-PRECISION FLOATING ADD 
DFSB DOUBLE-PRECISION FLOATING SUBTRACT 
DFLD DOUBLE-PRECISION FLOATING LOAD 
BFST DOUBLE-PRECISION FLOATING STORE 

DFCMP DOUBLE-PRECISION FLOATING COMPARE 
DFDV DOUBLE-PRECISION FLOATING DIVIDE 
DFMP DOUBLE-PRECISION FLOATING MULTIPLY 
DFDI DOUBLE-PRECISION FLOATING DIVIDE-INVERTED 

DFCMG DOUBLE-PRECISION FLOATING COMPARE MAGNITUDE 
DECIMAL LITERAL DOUBLE-PRECISION FLOATING-POINT 

SINGLE AND DOUBLE-PRECISION MANTISSAS 
DUFM DOUBLE-PRECISION UNNORMAL FLOATING MULTIPLY 
DUFA DOUBLE-PRECISION UNNORMALIZED FLOATING ADD 
DUFS DOUBLE-PRECISION UNNORMALIZED FLOATING SUBTRACT 

DOUBLE-WORD PRECISION 
GENERATED FAULTS DERAIL - DRL 

DRL DERAIL 
LITERALS MODIFIED BY DU OR DL 

DUFA DOUBLE-PRECISION UNNORMALIZED FLOATING ADD 
DUFM DOUBLE-PRECISION UNNO~\L FLOATING MULTIPLY 
DUFS DOUBLE-PRECISION UNNO~\LIZED FLOATING SUBTRACT 
DUP DUPLICATE CARDS 

DUP DUPLICATE CARDS 
DVF DIVIDE FRACTION 

E IN COLUMN 7 
E REGISTER 
EAA EFFECTIVE ADDRESS TO A 
EAQ EFFECTIVE ADDRESS TO Q 
EAXN EFFECTIVE ADDRESS TO XN 

EDITP EDIT PRINT LINES 
EDITP EDIT PRINT LINES 
EFFECTIVE ADDRESS (DEFINITION) 
EFFECTIVE ADDRESS 
EFFECTIVE ADDRESS AND MEMORY LOCATIONS 

EAA EFFECTIVE ADDRESS TO A 
EAQ EFFECTIVE ADDRESS TO Q 

EAXN EFFECTIVE ADDRESS TO XN 
CODING AND EFFECTS OF *,*N, AND I 

EIGHT FORCE LOCATION COUNTER TO A MULTIPLE OF 8 
EIGHT IN COLUMN 7 
EJECT RESTORE OUTPUT LISTING 

PROGRAM GENERATED FAULTS ELAPSED TIME INTERVAL FAULTS 
ELEMENTS 

ENDM END MACRO 
END OF ASSEMBLY 

PROGRAM INTERRUPT AT END OF VARIABLE INTERVAL 
$ DKEND END THE ASSEMBLY 

ENDM END MACRO 
ENTER BINARY-CODED DECIMAL BCD CHARACTER 
ENTER THE MASTER MODE 

SUPPRESS MAKING ENTRIES INTO THE SYMBOL REFERENCE TABLE 
MAKING ENTRIES INTO THE SYMBOL REFERENCE TABLE 

MME MASTER MODE ENTRY 
BLANK COMMON ENTRY 

MASTER MODE ENTRY 
DATA FOLLOWING BLOCK ENTRY IS ASSEMBLED IN LABELED COMMON 

FAULTS MASTER MODE ENTRY - MME 
MASTER MODE ENTRY MME 

EQU EQUAL TO 
INE IF NOT EQUAL 

INDEX 12 

30 
30 

198 
108 
110 
105 
106 
121 
ll6 
ll2 
ll7 
122 
160 

30 
ll3 
108 
III 
47 
21 

133 
162 
108 
ll3 
III 
201 
201 

86 

195 
13 
52 
53 
53 

180 
180 

32 
26 
45 
52 
53 
53 

170 
196 
196 
180 

21 
154 
209 
186 

13 
151 
209 
198 

12 
178 
178 
132 
236 
267 
202 

21 
7 

191 
204 

CPB-I004F 



IFE IF EQUAL 
EQU EQUAL TO 

EQUATE SYMBOL IN LOCATION FIELD WITH SYMBOL 
EQUATING SYMBOLS 
EQUATING NEWLY DEFINED SYMBOL 

FEQU SPECIAL FORTRAN EQUIVALENCE 
BINARY AND DECIMAL EQUIVALENTS 

ERA EXCLUSIVE OR TO A 
ERAQ EXCLUSIVE OR TO AQ 
ERLK ERROR LINKAGE TO SUBROUTINES 
ERQ EXCLUSIVE OR TO Q 
ERROR CODES 
ERROR CONDITIONS 

PARITY ERROR FAULT TRAP 
PSEUDO-OPERATIONS IN ERROR IN AN ABSOLUTE ASSEMBLY 

PARITY ERROR INDICATOR 
ERLK ERROR LINKAGE TO SUBROUTINES 

LOCATION FOR ERROR LINKAGE INFORMATION 

FORCE LOCATION COUNTER 
CODING 

BOOLEAN OPERATIONS 
ERA 

ERAQ 
ERQ 

ERSA 
ERSQ 

ERSXN 

ERSA EXCLUSIVE OR TO STORAGE A 
ERSQ EXCLUSIVE OR TO STORAGE Q 
ERSXN EXCLUSIVE OR TO STORAGE XN 
ERXN EXCLUSIVE OR TO XN 
ES ADDER 
EVALUATION OF ALGEBRAIC EXPRESSIONS 
EVALUATION OF BOOLEAN EXPRESSIONS 
EVEN 
EXAMPLES 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 
EXCLUSIVE 

OR 
OR TO A 
OR TO AQ 
OR TO Q 

ERXN EXCLUSIVE 
XEC EXECUTE 

OR TO STORAGE A 
OR TO STORAGE Q 
OR TO STORAGE XN 
OR TO XN 

XED EXECUTE DOUBLE 
EXECUTE DOUBLE 
EXECUTE DOUBLE INSTRUCTION - XED 
EXECUTE INTERRUPT 
EXECUTE INTERRUPT REQUEST PRESENT SIGNAL 

MANUALLY GENERATED FAULTS EXECUTE - EXF 
MULTIPROGRAM EXECUTION 

PERIPHERAL OPERATION EXECUTION IN MASTER MODE 
EXECUTION OF INTERRUPTS 

CALCULATION OF INSTRUCTION EXECUTION TIMES 
GENERATED FAULTS EXECUTE - EXF 

EXIT FROM A SUBROUTINE 
PMC ON/OFF PRINT MACRO EXPANSION 

LOWEST PERMISSIBLE EXPONENT 
EXPONENT FOR SINGLE AND DOUBLE PRECISION 

TEO TRANSFER ON EXPONENT OVERFLOW 
EXPONENT OVERFLOW INDICATOR 

LDE LOAD EXPONENT REGISTER 
ADE ADD TO EXPONENT REGISTER 

STE STORE EXPONENT REGISTER 
EXPONENT REGISTER 

TEU TRANSFER ON EXPONENT UNDERFLOW 
EXPONENT UNDERFLOW INDICATOR 
EXPONENTS AND MANTISSAS 

ADMISSIBILITY OF AN EXPRESSION 
BOOLEAN EXPRESSIONS 

SPECIAL RELOCATABLE EXPRESSIONS 
ALGEBRAIC EXPRESSIONS 

INDEX 13 

204 
191 
191 
191 
188 
191 
281 

92 
93 

223 
93 

237 
150 

19 
183 

19 
223 
223 

94 
94 
94 
93 
16 

155 
156 
195 
239 

92 
92 
93 
93 
94 
94 
94 
93 

131 
131 

12 
20 
12 
11 
23 

5 
7 

11 
42 
23 

223 
179 

30 
30 

128 
18 

105 
109 
106 

13 
128 

18 
9 

157 
156 
158 
155 

CPB-I004F 



RELOCATABLE AND ABSOLUTE EXPRESSIONS 
EVALUATION OF ALGEBRAIC EXPRESSIONS 

EVALUATION OF BOOLEAN EXPRESSIONS 
RELOCATABLE OR ABSOLUTE EXPRESSIONS 

EXPRESSIONS IN GENERAL 
MAXIMUM VALUE OF EXPRESSIONS CONTAINED IN VARIABLE FIELD 

FAULT T ~ F VARIATION 
FAD FLOATING ADD 
FAULT CATEGORIES 
FAULT PRIORITY 
FAULT RECOGNITION 
FAULT RECOGNITION 
FAULT T = F VARIATION 

GENERATED FAULTS FAULT TAG 
MEMORY FAULT TRAP 

OVERFLOW FAULT TRAP 
TIMER RUN OUT FAULT TRAP 
PARITY ERROR FAULT TRAP 

FAULT TRAPS 
FAULTS ARITHMETIC FAULTS 
PROGRAM GENERATED FAULTS 

GENERATED FAULTS MEMORY FAULTS 
ELAPSED TIME INTERVAL FAULTS 

POWER TURN ON/OFF FAULTS 
TABLE OF FAULTS 

PROGRAM GENERATED FAULTS ARITHMETIC FAULTS 
PROGRAM GENERATED FAULTS COMMAND - FCMD 

INSTRUCTION GENERATED FAULTS CONNECT - CON 
INSTRUCTION GENERATED FAULTS DERAIL - DRL 

PROGRAM GENERATED FAULTS DIVIDE CHECK - FDIV 
PROGRAM GENERATED FAULTS ELAPSED TIME INTERVAL FAULTS 

MANUALLY GENERATED FAULTS EXECUTE - EXF 
INSTRUCTION GENERATED FAULTS FAULT TAG 
INSTRUCTION GENERATED FAULTS ILLEGAL OP CODE - ZOP 

PROGRAM GENERATED FAULTS LOCKUP - LUF 
INSTRUCTION GENERATED FAULTS MASTER MODE ENTRY - MME 

PROGRAM GENERATED FAULTS MEMORY FAULTS 
PROGRAM GENERATED FAULTS MEMORY - FMEM 

HARDWARE GENERATED FAULTS OPERATION NOT COMPLETED - FONC 
PROGRAM GENERATED FAULTS OPERATION NOT COMPLETED - FONC 
PROGRAM GENERATED FAULTS OVERFLOW - FOFL 

HARDWARE GENERATED FAULTS PARITY - FPAR 
MANUALLY GENERATED FAULTS POWER TURN ON/OFF FAULTS 

PROGRAM GENERATED FAULTS TIMER RUNOUT - TROF 
GENERATED FAULTS COMMAND - FCMD 

FCMG FLOATING COMPARE MAGNITUDE 
FCMP FLOATING COMPARE 
PDI FLOATING DIVIDE INVERTED 

FAULTS DIVIDE CHECK - FDIV 
FDV FLOATING DIVIDE 

ADDRESS MODIFICATION FEATURES 
FEQU SPECIAL FORTRAN EQUIVALENCE 
FETCHING INSTRUCTIONS IN PAIRS 

LOCATION FIELD 
IDENTIFICATION FIELD 

VARIABLE FIELD 
COMMENTS FIELD 

FIELDS WITHIN THE VARIABLE FIELD 
OPERATION FIELD 

TAG FIELD 
TAG FIELD 

SYMBOL IN VARIABLE FIELD 
VFD VARIABLE FIELD DEFINITION 

INDEX 14 

lS7 
155 
lS6 
193 
lS4 
193 

173 
107 
20 
23 

9 
23 

173 
21 
II 
18 
IS 
19 
20 
21 
21 
22 
21 
23 
24 
21 
22 
21 
21 
21 
21 
23 
21 
21 
21 
21 
22 
22 
22 
21 
21 
22 
23 
21 
22 

120 
ll9 
llS 
21 

ll4 
163 
191 
42 

lSI 
lS2 
lS2 
lS2 
lS2 
lSI 
36 
33 
S2 
62 

CPB-I004F 



MACRO NAMED IN VARIABLE FIELD FROM MACRO PROTOTYPE AREA 
VARIABLE FIELD LITERALS 

SYMBOLS IN THI~ VARIABLE FII~LD OF A SUBROUTINE 
VARIABLE FIELD REPRESENTATIONS 

FIELD SUBSTITUTION 
EQUATE SYMBOL IN LOCATION FIELD WITH SYMBOL IN VARIABLE FIELD 

FIELDS OF INSTRUCTIONS OR PSEUDO-OPEru\TIONS 
SYSTEM OUTPUT FILE 

SYSOUT FILE 
PROGRAM FILE ORIENTATION 

PERMANENT USER FILES 
RECEIVE FIVE-BIT INTERRUPT CODE 

DECIMAL LITERAL FIXED-POINT 
FIXED-POINT ARITHMETIC 

BINARY FIXED-POINT ARITHMETIC 
FIXED-POINT ARITHMETIC DIVISION 
FIXED-POINT ARITHMETIC MULTIPLICATION 
FIXED-POINT ARITHMETIC NEGATE 

FLOATING-POINT TO FIXED-POINT INTEGER 
ALIGNMENT OF FIXED-POINT NUMBERS 

BINARY FIXED-POINT NUMBERS 
RANGES OF FIXED-POINT NUMBERS 

FIXED-POINT TO FLOATING-POINT INTEGER 
INSTRUCTIONS FlAGGED IN ERROR 

FLD FLOATING LOAD 
DFAD DOUBLE-PRECISION FLOATING ADD 

FAD FLOATING ADD 
UFA UNNORMALIZED FLOATING ADD 

UNNORMALIZED FLOATING ADD 
DFCMP DOUBLE-PRECISION FLOATING COMPARE 

FCMP FLOATING COMPARE 
DFCMG DOUBLE-PRECISION FLOATING COMPARE MAGNITUDE 

FCMG FLOATING COMPARE MAGNITUDE 
FDV FLOATING DIVIDE 

DFDV DOUBLE-PRECISION FLOATING DIVIDE 
FDI FLOATING DIVIDE INVERTED 

DFDI DOUBLE-PRECISION FLOATING DIVIDE-INVERTED 
FLD FLOATING LOAD 

DFLD DOUBLE-PRECISION FLOATING LOAD 
DFMP DOUBLE-PRECISION FLOATING MULTIPLY 

FMP FLOATING MULTIPLY 
DOUBLE-PRECISION UNNORMAL FLOATING MULTIPLY 

UFM UNNORMALIZED FLOATING MULTIPLY 
FNEG FLOATING NEGATE 

FNO FLOATING NORMALIZE 
FSZN FLOATING SET ZERO AND NEGATIVE INDICATORS 

DFST DOUBLE-PRECISION FLOATING STORE 
FST FLOATING STORE 
FSB FLOATING SUBTRACT 

UNNORMALIZED FLOATING SUBTRACT 
UFS UNNORMALIZED FLOATING SUBTRACT 

DFSB DOUBLE-PRECISION FLOATING SUBTRACT 
LITERAL SINGLE-PRECISION FLOATING-POINT 
LITERAL DOUBLE-PRECISION FLOATING-POINT 

FLOATING-POINT ADDITIONS OR SUBTRACTIONS 
FLOATING-POINT ARITHMETIC 
FLOATING-POINT COMPARE 
FLOATING-POINT DIVISION 

FIXED-POINT TO FLOATING-POINT INTEGER 
FLOATING-POINT LOAD 
FLOATING-POINT MULTIPLICATION 
FLOATING-POINT NEGATE 
FLOATING-POINT NORMALIZE 

INVERTED DIVISIONS ON FLOATING-POINT NUMBERS 

INDEX 15 

217 
162 
19l~ 

177 
218 
191 
215 

5 
5 
7 
7 

12 
161 
251 

28 
85 
83 
87 

240 
9 

28 
29 

239 
177 
105 
108 
107 
107 
108 
121 
119 
122 
120 
114 
116 
105 
117 
105 
105 
112 
111 
113 
112 
118 
118 
123 
106 
106 
109 
112 
111 
111 
161 
161 

30 
47 

119 
114 
239 
105 
III 
118 
118 

9 

CPB-1004t 



NORMALIZED FLOATING-POINT NUMBERS 
BINARY FLOATING-POINT NUMBERS 

RANGES OF FLOATING-POINT NUMBERS 
NORMALIZATION OF FLOATING-POINT RESULTANTS 

FLOATING-POINT STORE 
FLOATING-POINT SUBTRACTION 
FLOATING-POINT TO FIXED-POINT INTEGER 
FLOWCHART SYMBOLS 

DESCRIPTION OF FLOWCHARTS 
ADDRESS MODIFICATION FLOWCHARTS 

GENERATED FAULTS MEMORY - FMEM 
FMP FLOATING MULTIPLY 
FNEG FLOATING NEGATE 
FNO FLOATING NORMALIZE 

FAULTS OVERFLOW - FOFL 
BFS BLOCK FOLLOWED BY SYMBOL 

DATA FOLLOWING BLOCK ENTRY IS ASSEMBLED 
OPERATION NOT COMPLETED - FONC 
OPERATION NOT COMPLETED - FONC 

EVEN FORCE LOCATION COUNTER EVEN 
ODD FORCE LOCATION COUNTER ODD 

EIGHT FORCE LOCATION COUNTER TO A MULTIPLE OF 8 
FORCED RELINQUISH 

MACRO ASSEMBLER CODING FORM 
SYMBOLIC CARD FO&~T 

FULL LISTING FORMAT 
PREFACE CARD FORMAT 

RELOCATABLE CARD FORMAT 
COMDEK FORMAT 

TRANSFER CARD FORMAT 
ABSOLUTE CARD FORMAT 

INSTRUCTION GENERAL FORMAT 
INSTRUCTION DESCRIPTION FORMAT 

INDIRECT WORD FORMAT 
INSTRUCTION - DEFINING FORMAT 

OPERATION - DEFINING FORMAT 
FORMAT OF THE $ ALTER CARD 
FORMAT OF THE $ OBJECT CARD 

REPEAT INSTRUCTION CODING FORMATS 
SPECIAL WORD FORMATS 

REPEAT INSTRUCTION CODING FORMATS 
INPUT/OUTPUT COMMAND FORMATS 

DATA CONTROL WORD FORMATS 
SPECIAL WORD FORMATS 
FEQU SPECIAL FORTRAN EQUIVALENCE 

FOUR TYPES OF BINARY CARDS 
GENERATED FAULTS PARITY - FPAR 

MPF MULTIPLY FRACTION 
DVF DIVIDE FRACTION 

OCTAL-DECIMAL FRACTION CONVERSION TABLE 
FRACTIONAL AND INTEGER DIVISIONS 
FRACTIONAL ARITHMETIC 
FRACTIONAL ARITHMETIC 
FSB FLOATING SUBTRACT 
FST FLOATING STORE 
FSTR FLOATING STORE ROUNDED 
FSZN FLOATING SET ZERO AND NEGATIVE IND 
FUL OUTPUT FULL BINARY TEXT 

FUL OUTPUT FULL BINARY TEXT 
FULL LISTING FORMAT 

PSEUDO-OPERATIONS BY FUNCTIONAL CLASS 
PSEUDO-OPERATION FUNCTIONAL GROUPS 

INSTRUCTIONS LISTED BY FUNCTIONAL CLASS 
BASIC SYSTEM FUNCTIONS 

INPUT/OUTPUT SUPERVISOR FUNCTIONS 
FUNCTIONS OF INPUT/OUTPUT SUPERVISOR 

INDEX 16 

31 
30 
31 

9 
106 
109 
240 

39 
39 
37 
22 

111 
118 
118 

21 
201 
202 

21 
22 

195 
195 
196 

5 
153 
153 
234 
230 
231 
225 
234 
233 

32 
44 
35 

187 
187 
227 
228 
207 
264 
264 
268 
270 
205 
191 
228 

22 
84 
86 

277 
9 

25 
29 

109 
106 
106.1 
123 
183 
183 
234 
263 
175 
251 

1 
6 
6 

CPB-1004F 



G REGISTER 
ISSUE MME GECALL FOR A SET OF SYSTEM MACROS 

OPERATING SUPERVISOR GECOS $ CONTROL CARDS 
GE-635 PROCESSOR 

GENERATE A BINARY WORD FOR GENERAL INSTRUCTION 
GENERAL SYSTEM COMMUNICATION CONTROL 

ZERO B , C GENERATE ONE WORD 
GENERATE OPERATING SUPERVISOR GECOS $ 
GENERATE THE STANDARD SUBROUTINE CALLING SEQUENCE 

SUPPRESS INSTRUCTIONS GENERATED BY MACRO CALL 
PROGRAM GENERATED FAULTS 
PROGRAM GENERATED FAULTS ARITllliETIC FAULTS 
PROGRAM GENERATED FAULTS COMMAND - FCMD 

INSTRUCTION GENERATED FAULTS CONNECT - CON 
INSTRUCTION GENERATED FAULTS DERAIL - DRL 

PROGRAM GENERATED FAULTS DIVIDE CHECK - FDIV 
PROGRAM GENERATED FAULTS ELAPSED TIME INTERVAL FAULT 

MANUALLY GENERATED FAULTS EXECUTE - EXF 
INSTRUCTION GENERATED FAULTS FAULT TAG 
INSTRUCTION GENERATED FAULTS ILLEGAL OP CODE - ZOP 

PROGRAM GENERATED FAULTS LOCKUP - LUF 
INSTRUCTION GENERATED FAULTS MASTER MODE ENTRY - MME 

PROGRAM GENERATED FAULTS MEMORY FAULTS 
PROGRAM GENERATED FAULTS MEMORY - FMEM 

HARDWARE GENERATED FAULTS OPERATION NOT COMPLETED 
PROGRAM GENERATED FAULTS OPERATION NOT COMPLETED 
PROGRAM GENERATED FAULTS OVERFLOW - FOFL 

HARDWARE GENERATED FAULTS PARITY - FPAR 
MANUALLY GENERATED FAULTS POWER TURN ON/OFF FAULTS 

PROGRAM GENERATED FAULTS TIMER RUNOUT - TROF 
GENERATE A BINARY WORD 
GENERATING DATA 

DATA GENERATING PSEUDO-OPERATIONS 
DATA GENERATING PSEUDO-OPERATIONS 

GENERATING TABLES AND/OR DATA 
SUPPRESSING GENERATION OF A $ OBJECT AND $ DKEND CARD 

GENERATIVE PSEUDO-OPERATIONS 
MICRO-PROGRAM GENERATOR 

GMAC (GMAP OPTION) 
SYMBOLIC MACRO ASSEMBLER - GMAP 

OPTIONS AVAILABLE WITH GMAP 
GTB GRAY TO BINARY 

IFG IF GREATER THAN 
GTB GRAY TO BINARY 

H REGISTER 
HARDWARE COMPONENTS 
HARDWARE GENERATED FAULTS PARITY - FPAR 
HARDWARE GENERATED FAULTS OPERATION NOT COMPLETED 
HEAD HEADING 
HEAD PSEUDO-OPERATION 

$ OBJECT HEAD THE SUBPROGRAM ASSEMBLY 
DIFFERENTLY HEADED SECTIONS 

HEAD m:ADING 
HIGHEST PRIORITY NONMASKED INTERRUPT CELL 

VALUES STORED IN HIGH- OR LOW-ORDER la-BIT HALVES OF A WORD 

INDIRECT T = I VARIATION 
INSTRUCTION COUNTER - IC 

EFFECT OF ID 
DECREMENT TALLY T = ID VARIATION 

EFFECT OF IDC 
TALLY AND CONTINUE T = IDC VARIATION 

IDRP IDEFINITE REPEAT 
MACRO IDENTIFICATION 

INDEX 17 

15 
218 
185 

9 
205 

1 
206 
185 
220 
179 

21 
21 
22 
21 
21 
21 
21 
23 
21 
21 
21 
21 
22 
22 
22 
21 
21 
22 
23 
21 

205 
199 
263 
196 
201 
185 
150 

3 
225 
149 
225 
l30 
205 
l30 

15 
1 

22 
22 
44 

185 
151 
184 
183 

12 
70 

170 
24 

171 
170 
174 
174 
215 
209 

CPB-I004F 



IDENTIFICATION FIELD 
IDRP IDEFINITE REPEAT 

IFE IF EQUAL 
IFG IF GREATER THAN 
IFL IF LESS THAN 
INE IF NOT EQUAL 

IFE IF EQUAL 
IFG IF GREATER THAN 
IFL IF LESS THAN 

GENERATED FAULTS ILLEGAL OP CODE - ZOP 
ILLEGAL OPERATION 
IMPLEMENTATION OF SYSTEM MACROS 
INCREMENT ADDRESS, DECREMENT TALLY AND CON 
INCREMENT ADDRESS, DECREMENT TALLY T = ID 

DECREMENT ADDRESS, INCREMENT TALLY T = DI VARIATION 
DECREMENT ADDRESS, INCREMENT TALLY, AND CONTINUE T = DIC VAR 

INDEFINITE REPEAT 
SAVE SPECIFIED INDEX REGISTERS 

INDEXING INSTRUCTIONS 
MASTER MODE INDICATOR 

CARRY INDICATOR 
OVERFLOW INDICATOR 

ZERO INDICATOR 
TALLY RUNOUT INDICATOR 

NEGATIVE INDICATOR 
CARRY INDICATOR 

MASTER MODE INDICATOR 
PARITY ERROR INDICATOR 

EXPONENT OVERFLOW INDICATOR 
EXPONENT UNDERFLOW INDICATOR 

PARITY MASK INDICATOR 
OVERFLOW MASK INDICATOR 

NEGATIVE INDICATOR 
ZERO INDICATOR 

INDICATOR INSTRUCTIONS 
TRANSFER ON TALLY RUNOUT INDICATOR OFF 

LDI LOAD INDICATOR REGISTER 
STI STORE INDICATOR REGISTER 

INDICATOR REGISTER - IR 
INDICATOR REGISTER LOADING AND STORING 

PROCESSOR INDICATORS 
PROGRAM ACCESSIBLE INDICATORS 

SZN SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 
SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 

RI REGISTER THEN INDIRECT 
INDIRECT ADDRESSING 

REGISTER THEN INDIRECT RI MODIFICATION 
CHARACTER FROM INDIRECT T = CI VARIATION 

INDIRECT T = I VARIATION 
INDIRECT WORD FORMAT 
INDIRECT WORDS 

IR INDIRECT THEN REGISTER 
INDIRECT THEN REGISTER IR MODIFICATION 

IT INDIRECT THEN TALLY 
INDIRECT THEN TALLY IT MODIFICATION 
INE IF NOT EQUAL 

ALTER INFORMATION 
INTERIM INFORMATION STORAGE 

INHIB ON/OFF INHIBIT INTERRUPTS 
SET PROGRAM INTERRUPT INHIBIT BIT 

STOP SETTING THE INHIBIT BIT 
INHIB ON/OFF INHIBIT INTERRUPTS 

INTERRUPT INHIBIT BIT 
SOURCE PROGRAM INPUT 

INDEX 18 

152 
215 
204 
205 
204 
204 
204 
205 
204 

21 
151 
217 
174 
170 
171 
174 
219 
221 
151 

12 
24 
18 
17 
19 
17 
18 
19 
19 
18 
18 
19 
18 
24 
24 
17 

128 
54 
60 
15 

9 
16 
15 

100 
123 

34 
163 
165 
172 
170 

35 
32 
34 

167 
34 

169 
204 
227 

1 
179 
179 
179 
179 

11 
224 

CPB-I004F 



ALTER INPUT TO A COMPILER OR THE ASSEMBLER 
CENTRALIZED INPUT/OUTPUT 

CONNECT INPUT/OUTPUT CHANNEL - CIOC 
INPUT/OUTPUT COMMAND FORMATS 
INPUT/OUTPUT CONTROLLER MODULE 
INPUT/OUTPUT OPERATION - DEFINING FOID--IAT 
INPUT/OUTPUT SUPERVISOR 

FUNCTIONS OF INPUT/OUTPUT SUPERVISOR 
XED INSTRUCTION 

TRANSFER AND SET SLAVE INSTRUCTION 
XEC INSTRUCTION 
TSS INSTRUCTION 

LBAR INSTRUCTION 
A BINARY WORD FOR GENERAL INSTRUCTION 

INSTRUCTION ADDRESS 
REPEAT INSTRUCTION CODING FORMATS 
REPEAT INSTRUCTION CODING FORMATS 

INSTRUCTION COUNTER 
INSTRUCTION COUNTER - IC 

STCI STORE INSTRUCTION COUNTER PLUS 1 
STC2 STORE INSTRUCTION COUNTER PLUS 2 

MACRO INSTRUCTION DEFINITION 
INSTRUCTION DESCRIPTION FORMAT 

CALCULATION OF INSTRUCTION EXECUTION TIMES 
INSTRUCTION GENERATED FAULTS FAULT TAG 
INSTRUCTION GENERATED FAULTS DERAIL - DRL 
INSTRUCTION GENERATED FAULTS MASTER MODE 
INSTRUCTION GENERATED FAULTS CONNECT - CON 
INSTRUCTION GENERATED FAULTS ILLEGAL OP CODE 

NORMAL INSTRUCTION - DEFINING FORMAT 
RETURN INSTRUCTION - RET 

EXECUTE DOUBLE INSTRUCTION - XED 
INSTRUCTION LITERALS 
INSTRUCTION MNEMONICS CORRELATED 

PRIMARY AND SECONDARY INSTRUCTION REGISTERS 
INSTRUCTION REPERTOIRE 
INSTRUCTION WORDS IN PAIRS 

MACHINE INSTRUCTION GENERAL FORMAT 
INDEXING INSTRUCTIONS 

CODING REPEATED PATTERN OF INSTRUCTIONS 
PROCESSOR INSTRUCTIONS 
INDICATOR INSTRUCTIONS 

REPEAT INSTRUCTIONS 
MACHINE INSTRUCTIONS 

REPEAT MODE INSTRUCTIONS 
NOP MACHINE INSTRUCTIONS 

ASSEMBLY OF NEXT N INSTRUCTIONS 
NUMBER OF ASSEMBLED INSTRUCTIONS AND DATA 

INSTRUCTIONS FLAGGED IN ERROR 
LIST OR SUPPRESS INSTRUCTIONS GENERATED BY MACRO CALL 

FETCHING INSTRUCTIONS IN PAIRS OR THE OVERLAPPING 
FIELDS OF INSTRUCTIONS OR PSEUDO-OPERATIONS 

DEFINE OR REDEFINE MACHINE INSTRUCTIONS TO THE ASSEMBLER 
INSTRUCTIONS LISTED BY FUNCTIONAL CLASS 

SUCCEEDING INSTRUCTIONS UNDER CONTROL OF LOCATION COUNTER 
MPY MULTIPLY INTEGER 

DIV DIVIDE INTEGER 
DECIMAL LITERAL INTEGER 

FIXED-POINT INTEGER 
FLOATING-POINT INTEGER 

INTEGER ARITHMETIC 
INTEGER ARITHMETIC 

FRACTIONAL AND INTEGER DIVISIONS AND MULTIPLICATIONS 
TABLE OF OCTAL-DECIMAL INTEGERS 

INDEX 19 

227 
6 
7 

268 
3 

187 
7 
6 

12 
12 
12 
12 
11 

205 
32 

207 
264 

15 
24 
62 
62 

163 
44 
42 
21 
21 
21 
21 
21 

187 
12 
20 

161 
261 

11 
43 
11 
32 

151 
208 
162 

17 
32 
48 
33 

195 
204 
206 
177 
179 

42 
215 
186 
251 
188 

83 
85 

160 
240 
239 

25 
29 

9 
273 

CPB-I004F 



MEMORY INTERFACE 
INTERIM INFORMATION STORAGE 

EXECUTE INTERRUPT 
PROGRAM INTERRUPT AT END OF VARIABLE INTERVAL 

HIGHEST PRIORITY NONMASKED INTERRUPT CELL 
SMIC SET MEMORY CONTROLLER INTERRUPT CELLS 

SET MEMORY CONTROLLER INTERRUPT CELLS - SMIC 
RECEIVE FIVE-BIT INTERRUPT CODE 

SET PROGRAM INTERRUPT INHIBIT BIT 
INTERRUPT INHIBIT BIT 

RETURN THE TRANSFER INTERRUPT NUMBER COMMAND CODE 
INTERRUPT RECOGNITION 

EXECUTE INTERRUPT REQUEST PRESENT SIGNAL 
DIS DELAY UNTIL INTERRUPT SIGNAL 

PUB INTERRUPT SERVICE 
EXECUTION OF INTERRUPTS 

INHIB ON/OFF INHIBIT INTERRUPTS 
AT END OF VARIABLE INTERVAL 

FAULTS ELAPSED TIME INTERVAL FAULTS 
INTERVAL TIMER 

SUPPRESS MAKING EN1RIES INTO THE SYMBOL REFERENCE TABLE 
INTRODUCE DATA IN OCTAL INTEGER NOTATION 

FDI FLOATING DIVIDE INVERTED 
INVERTED DIVISIONS ON FLOATING-POINT NUMBERS 

INDICATOR REGISTER - IR 
IR INDIRECT THEN REGISTER 

INDIRECT THEN REGISTER IR MODIFICATION 
IR TYPE MODIFICATION 

CIOC CONNECT I/O CHANNEL 
FEATURES OF I/O CONTROLLER MODULE AND PERFORMING UNITS 

I/O PROCESSOR 
ISSUE MME GECALL FOR A SET OF SYSTEM MACROS 
IT INDIRECT THEN TALLY 

VARIATIONS UNDER IT MODIFICATION 
INDIRECT THEN TALLY IT MODIFICATION 

IT TYPE MODIFICATION 
ITERATION CAPABILITY WITHIN RANGE OF MACRO 

LBL LABEL 
ENTRY IS ASSEMBLED IN LABELED COMMON 

OPTIONAL COMMENT AND LABEL. 
ASSEMBLER LANGUAGE ACTIVITY 

ASSllliBLY LANGUAGE PROGRAMMING 
LARGEST NUMBER OF ASSEMBLED INSTRUCTIONS 

COMDEK CARD LAYOUT 
BASE ADDRESS REGISTER - LBAR 
BASE ADDRESS REGISTER - LBAR 

LBAR INSTRUCTION 
LBAR LOAD BASE ADDRESS REGISTER 
LBL LABEL 
LBL PSEUDO-OPERATION 
LCA LOAD COMPLEMENT A 
LCAQ LOAD COMPLEMENT AQ 
LCQ LOAD CrnPLEMENT Q 
LCSN LOAD COMPLEMENT XN 
LDA LOAD A 
LDAQ LOAD AQ 
LDE LOAD EXPONENT REGISTER 
LDI LOAD INDICATOR REGISTER 
LDQ LOAD Q 

LOAD TIMER REGISTER - LDT 
LDT LOAD TIMER REGISTER 
LDXN LOAD XN FROM UPPER 

LLR LONG LEFT ROTATE SHIFT 

INDEX 20 

3 
1 

12 
12 
12 

145 
7 

12 
179 

11 
12 

9 
11 

145 
3 

11 
179 

12 
21 
12 

178 
196 
115 

9 
15 
34 

167 
168 
148 

3 
3 

218 
34 

169 
169 

36 
215 

181 
202 
228 
224 
151 
206 
226 

7 
33 
11 

145 
181 
228 

50 
51 
51 
52 
48 
48 

105 
54 
48 

7 
145 
49 
67 

CPB-I004F 



ALR A LEFT ROTATE SHIFT 
QLR Q LEFT ROTATE SHIFT 
QLS Q LEFT SHIFT 

LLS LONG LEFT SHIFT 
ALS A LEFT SHIFT 

IFL IF LESS THAN 
CWL COMPARE WITH LIMITS 

CONTENTS OF LINE PRINTED ON ASSEMBLY LISTING 
EDITP EDIT PRINT LINES 

RPL REPEAT LINK 
SAVE RETURN LINKAGE DATA 

PROGRAM LINKAGE PSEUDO-OPERATION 
PROGRAM LINKAGE PSEUDO-OPERATIONS 

ERLK ERROR LINKAGE TO SUBROUTINES 
LOCATION FOR ERROR LINKAGE INFORMATION 

LINKING OF TEXT AND ARGUMENTS 
LIST ON/OFF CONTROL OUTPUT LISTING 
LIST OR SUPPRESS INSTRUCTIONS GENERATED 

PREFACE CARD LISTING 
ON/OFF DETAIL OUTPUT LISTING 
EJECT RESTORE OUTPUT LISTING 

LINE PRINTED ON ASSEMBLY LISTING 
LIST ON/OFF CONTROL OUTPUT LISTING 

ASSEMBLY LISTING ABBREVIATED 
FULL LISTING FORMAT 

ASSEMBLY LISTINGS. 
LIT LITERAL POOL ORIGIN 

DECIMAL LITERAL DOUBLE-PRECISION FLOATING-POINT 
DECIMAL LITERAL FIXED-POINT 

LITERAL IN A SUBFIELD 
DECIMAL LITERAL INTEGER 

LITERAL POOL 
LITERAL POOL 
LITERAL POOL IS REINITIALIZED 
LITERAL POOL NOT PRINTED 

LIT LITERAL POOL ORIGIN 
DECIMAL LITERAL SINGLE-PRECISION FLOATING-POINT 

OCTAL LITERALS 
ALPHANUMERIC LITERALS 

VARIABLE FIELD LITERALS 
DECIMAL LITERALS 

SOURCE PROGRAM LITERALS 
INSTRUCTION LITERALS 

PRINT PREVIOUSLY DEVELOPED LITERALS 
LITERALS MODIFIED BY DU OR DL 
LLR LONG LEFT ROTATE SHIFT 
LLS LONG LEFT SHIFT 

FLOATING-POINT LOAD 
FLD FLOATING LOAD 

DOUBLE-PRECISION FLOATING LOAD 
DATA MOVEMENT LOAD 

LDA LOAD A 
LDAQ LOAD AQ 
LBAR LOAD BASE ADDRESS REGISTER 

LOAD BASE ADDRESS REGISTER - LBAR 
LCA LOAD COMPLEMENT A 

LCAQ LOAD COMPLEMENT AQ 
LCQ LOAD COMPLEMENT Q 

LCSN LOAD COMPLEMENT XN 
LDE LOAD EXPONENT REGISTER 
LDI LOAD INDICATOR REGISTER 
LDQ LOAD Q 

LREG LOAD REGISTERS 
LODM LOAD SYSTEM MACROS 

INDEX 21 

66 
66 
64 
65 
64 

204 
99 

180 
180 
141 
221 
220 
265 
223 
223 
218 
177 
179 
235 
177 
180 
180 
177 
177 
234 
234 
203 
161 
161 
159 
161 
150 
159 
203 
177 
203 
161 
161 
161 
162 
160 
159 
161 
203 
162 
67 
65 

105 
105 
105 

48 
48 
48 

145 
33 
50 
51 
51 
52 

105 
54 
48 
49 

218 

CPB-1004F 



LDI LOAD TIMER REGISTER 
LOAD TIMER REGISTER - LDT 

LXLN LOAD XN FROM LOWER 
LDXN LOAD XN FROM UPPER 

TIMER REGISTER LOADING AND DECREMENTING 
BASE ADDRESS REGISTER LOADING AND STORING 

INDICATOR REGISTER LOADING AND STORING 
LOC LOCATION OF OUTPUT TEXT 

ORIGIN OF A GIVEN LOCATION COUNTER 
UNDER CONTROL OF LOCATION COUNTER 

BEGIN ORIGIN OF A LOCATION COUNTER 
ASSEMBLER REACTIVATES THE LOCATION COUNTER 

EVEN FORCE LOCATION COUNTER EVEN 
ODD FORCE LOCATION COUNTER ODD 

LOCATION COUNTER PSEUDO-OPE&;TIONS (LIST) 
LOCATION COUNTER P-SEUDO-OPERATIONS 

EIGHT FORCE LOCATION COUNTER TO A MULTIPLE OF 8 
USE MULTIPLE LOCATION COUNTERS 

LOCATION FIELD 
EQUATE SYMBOL IN LOCATION FIELD WITH SYMBOL IN VARIABLE FIELD 

LOCATION FOR ERROR LINKAGE INFORMATION 
LOC LOCATION OF OUTPUT TEXT 

SYMBOLS IN LOCATION FIELD OF A SUBROUTINE 
ADDRESS AND MEMORY LOCATIONS 

PROGRAM GENERATED FAULTS LOCKUP - LUF 
LODM LOAD SYSTEM MACROS 

REAL LOGARITHM 
SBLA SUBTRACT LOGIC FROM A 

SBLAQ SUBTRACT LOGIC FROM AQ 
SBLQ SUBTRACT LOGIC FROM Q 

SBLXN SUBTRACT LOGIC FROM XN 
LOGIC GROUP 

ARL A RIGHT LOGIC SHIFT 
LRL LONG RIGHT LOGIC SHIFT 

QRL Q RIGHT LOGIC SHIFT 
ADLA ADD LOGIC TO A 

ADLAQ ADD LOGIC TO AQ 
ADLQ ADD LOGIC TO Q 

ADLXN ADD LOGIC TO XN 
ARITHMETIC AND LOGICAL OPERATIONS 

NUMBER SYSTEM LOGIC CASE 
TABLE LOOKUP 

ADL ADD LOW TO AQ 
LOWEST PERMISSIBLE EXPONENT 

VALUES STORED IN HIGH- OR LOW-ORDER l8-BIT HALVES OF A WORD 
LREG LOAD REGISTERS 
LRL LONG RIGHT LOGIC SHIFT 
LRS LONG RIGHT SHIFT 
LSTOU 

GENERATED FAULTS LOCKUP - LUF 
LXLN LOAD XN FROM LOWER 

M REGISTER 
MACHINE INSTRUCTION GENERAL FORMAT 
MACHINE INSTRUCTIONS 

NOP MACHINE INSTRUCTIONS 
DEFINE OR REDEFINE MACHINE INSTRUCTIONS TO THE ASSEMBLER 

MACHINE MANTISSA EQUAL TO ZERO 
SYMBOLS FOR MACHINE OPERATIONS 

MACHINE WORD 
DELM DELETE MACRO 

SUBROUTINE CALL MACRO 
ENDM END MACRO 

MACRO ASSEMBLER CODING FORM 

INDEX 22 

145 
7 

49 
49 

9 
9 
9 

190 
190 
188 
189 
189 
195 
195 
263 
188 
196 
188 
151 
191 
223 
190 
193 
45 
21 

218 
241 

79 
80 
80 
81 
28 
65 
66 
65 
71 
72 
72 
73 

9 
24 

247 
75 
30 

206 
49 
66 
63 

225 
21 
49 

15 
32 
48 

195 
186 

30 
45 
25 

216 
219 
209 
153 

CPB-1004F 



SYMBOLIC MACRO ASSEMBLER - GMAP 
INSTRUCTIONS GENERATED BY MACRO CALL 

PMC ON/OFF PRINT MACRO EXPANSION 
MACRO IDENTIFICATION 
MACRO INSTRUCTION DEFINITION 

USING A MACRO OPERATION 
DEFINE A MACRO OPERATION BY SYMBOLIC NAME 

MACRO OPERATION IN A PROTOTYPE 
MACRO OPERATIONS 

NESTED MACRO OPERATIONS 
MACRO PROTOTYPE 

DEFINITION OF MACRO PROTOTYPE 
CAPABILITY WITHIN RANGE OF MACRO PROTOTYPE 

MACRO PROTOTYPE ARGUMENTS 
VARIABLE FIELD FROM MACRO PROTOTYPE AREA 

PUNM PUNCH MACRO PROTOTYPES AND CONTROLS 
MACRO PSEUDO-OPERATIONS 

DELETE MACRO NAMED IN VARIABLE FIELD 
IMPLEMENTATION OF SYSTEM MACROS 

GECALL FOR A SET OF SYSTEM MACROS 
LODM LOAD SYSTEM MACROS 

REFMA REFERENCE MACROS 
RESTRICTIONS OF MACROS 

OPERATION TABLE FOR MACROS DEFINED 
MAGNETIC CORE STORAGE UNIT 
MAGNETIC CORE STORAGE UNIT 

CMG COMPARE MAGNITUDE 
PRECISION FLOATING COMPARE MAGNITUDE 

FCMG FLOATING COMPARE MAGNITUDE 
MACHINE MANTISSA EQUAL TO ZERO 

EXPONENTS AND MANTISSAS 
DOUBLE-PRECISION MANTISSAS 

MANUALLY GENERATED FAULTS EXECUTE - EXF 
MANUALLY GENERATED FAULTS POWER TURN ON/OFF 

PARITY MASK INDICATOR 
OVERFLOW MASK INDICATOR 

MCM READ MEMORY CONTROLLER MASK REGISTER 
SMCM SET MEMORY CONTROLLER MASK REGISTER 

READ MEMORY CONTROLLER MASK REGISTERS - RMCM 
SET MEMORY CONTROLLER MASK REGISTERS - SMCM 

CMK COMPARE MASKED 
MASS STORAGE ORIENTATION 

PROCESSOR IN MASTER MODE 
ENTER THE MASTER MODE 

MASTER MODE OPERATIONS MASTER MODE 
EXECUTION IN MASTER MODE 

MASTER MODE ENTRY 
MME MASTER MODE ENTRY 

GENERATED FAULTS MASTER MODE ENTRY - MME 
MASTER MODE ENTRY MME 
MASTER MODE INDICATOR 
MASTER MODE INDICATOR 
MASTER MODE OPERATION 
MASTER MODE OPERATIONS 
MASTER MODE OPERATIONS 
MASTER MODE OPERATIONS MASTER MODE 
MASTER / SLAVE MODE OF OPERATION 
MASTER / SLAVE RELATIONSHIP 
MAX MAXIMUM 

MAXSZ MAXIMUM SIZE OF ASSEMBLY 
MAXIMUM VALUE OF EXPRESSIONS 
MAXSZ MAXIMUM SIZE OF ASSEMBLY 

SYSTEM MEDIA CONVERSION 
ON-LINE MEDIA CONVERSION 

BULK MEDIA CONVERSION 

INDEX 23 

149 
179 
179 
209 

14 
212 
209 
219 
208 
208 
208 
209 
215 
211 
217 
217 
265 
217 
217 
218 
218 
188 
213 
217 

1 
26 

100 
122 
120 

30 
9 

30 
23 
23 
19 
18 

146 
147 

7 
7 

101 
7 

10 
12 

145 
7 

267 
132 

21 
7 

12 
19 
10 

146 
7 

257 
9 
6 

193 
206 
193 
206 

CPB-I004F 
Rev. July 1969 

5 
5 
5 

I 



OUTPUT MEDIA CONVERSION ROUTINE 
NEGATIVE INDICATORS FROM MEMORY 
NEGATIVE INDICATORS FROM MEMORY 

PROTECTED MEMORY 
TRANSLATION WITH EACH MEMORY ACCESS 

MEMORY ACCESS REQUEST 
MEMORY ACCESSING 

SMIC SET MEMORY CONTROLLER INTERRUPT CELLS 
SET MEMORY CONTROLLER INTERRUPT CELLS - SMIC 

SMCM SET MEMORY CONTROLLER MASK REGISTER 
RMCM READ MEMORY CONTROLLER MASK REGISTER 

READ MEMORY CONTROLLER MASK REGISTERS - RMCM 
SET MEMORY CONTROLLER MASK REGISTERS - SMCM 

MEMORY FAULT TRAP 
PROGRAM GENERATED FAULTS MEMORY FAULTS 

MEMORY INTERFACE 
PROGRAM GENERATED FAULTS MEMORY - FMEM 

EFFECTIVE ADDRESS AND MEMORY LOCATIONS 
MEMORY MODULE 

FEATURES OF MEMORY MODULE AND PERFORMING UNITS 
MEMORY MODULE SYSTEM CONTROLLER 
MEMORY PROTECTION 
MEMORY PROTECTION 

RESERVE SPECIFIED CORE MEMORY STORAGE WITHIN CODING SEQUENCE 
RESERVE AREA OF MEMORY WITHIN ASSEMBLED PROGRAM 

MICRO-PROGRAM GENERATOR 
MIN MINIMUM 
MINIMUM VALUE AMONG VALUES OF RELOCATABLE 

TMI TRANSFER ON MINUS 
MISCELLANEOUS OPERATIONS (LIST) 
MISCELLANEOUS OPERATIONS 

MASTER MODE ENTRY MME 
FAULTS MASTER MODE ENTRY - MME 

ISSUE MME GECALL FOR A SET OF SYSTEM MACROS 
MME MASTER MODE ENTRY 
MNEMONICS IN ALPHABETICAL ORDER 

INSTRUCTION MNEMONICS CORRELATED WITH THEIR OPERATION CODES 
NORMAL ASSEMBLER OPERATING MODE 

PROCESSOR IN ~~STER MODE 
PROCESSOR IN SLAVE MODE 

ENTER THE MASTER MODE 
PROCESSOR IN SLAVE MODE 

OPERATIONS MASTER MODE 
EXECUTION IN MASTER MODE 

MASTER MODE ENTRY 
MME MASTER MODE ENTRY 

ON GENERATED FAULTS MASTER MODE ENTRY - MME 
MASTER MODE ENTRY MME 
MASTER MODE INDICATOR 
M~STER MODE INDICATOR 
REPEAT MODE INSTRUCTIONS 

MASTER / SLAVE MODE OF OPERATION 
MASTER MODE OPERATION 

SLAVE MODE OPERATION 
MASTER MODE OPERATIONS 
MASTER MODE OPERATIONS MASTER MODE 

DIRECT OPERAND ADDRESS MODIFICATION 
ADDRESS MODIFICATION 

INDIRECT THEN REGISTER IR MODIFICATION 
R COMBINED WITH RI MODIFICATION 

IR TYPE MODIFICATION 
INDIRECT THEN TALLY IT MODIFICATION 

VARIATIONS UNDER IT MODIFICATION 
REGISTER THEN INDIRECT RI MODIFICATION 

INDEX 24 

5 
100 
123 

5 
46 
33 
46 

145 
7 

147 
146 

7 
7 

11 
22 
3 

22 
45 

1 
1 

11 
11 

9 
201 
201 

3 
193 
193 
126 
257 
129 

7 
21 

218 
132 
259 
261 
151 

10 
10 
12 
11 

145 
7 

267 
132 
21 

7 
12 
19 
33 

9 
10 
10 

257 
145 
164 

9 
167 
167 
168 
169 
169 
166 

CPB-1004F 



IT 1YPE MODIFICATION 
ADDRESS MODIFICATION 

ADDRESS TRANSLATION AND MODIFICATION 
ADDRESS MODIFICATION FEATURES 
ADDRESS MODIFICATION FLOWCHARTS 

R-TYPE MODIFICATION VARIATIONS 
MODIFICATION TYPES 

REGISTER R MODIFICATIONS 
LITERALS MODIFIED BY DU OR DL 

INPUT/OUTPUT CONTROLLER MODULE 
PROCESSOR MODULE 

MEMORY MODULE 
FEATURES OF MEMORY MODULE AND PERFORMING UNITS 

FEATURES OF I/O CONTROLLER MODULE AND PERFORMING UNITS 
FEATURES OF PROCESSOR MODULE AND PERFORMING UNITS 

MEMORY MODULE SYSTEM CONTROLLER 
DATA MOVEMENT (LIST OF INSTRUCTIONS) 
DATA MOVEMENT LOAD 
DATA MOVEMENT SHIFT 

MPF MULTIPLY FRACTION 
MPY MULTIPLY INTEGER 

USE MULTIPLE LOCATION COUNTERS 
LOCATION COUNTER TO A MULTIPLE OF 8 

CONTINUOUS PROCESSING OF MULTIPLE PROGRAMS 
PROCESSING MULTIPLE REQUESTS 

FIXED-POINT ARITHMETIC MULTIPLICATION 
FLOATING-POINT MULTIPLICATION 

MULTIPLICATION AND DIVISION 
INTEGER DIVISIONS AND MULTIPLICATIONS 

DOUBLE-PRECISION FLOATING MULTIPLY 
UFM UNNORMALIZED FLOATING MULTIPLY 

UNNORMAL FLOATING MULTIPLY 
FMP FLOATING MULTIPLY 

MPF MULTIPLY FRACTION 
MPY MULTIPLY INTEGER 

PROGRAMS UNDER MULTIPROGRAM EXECUTION 
MULTIPROGRAMMING 

N REGISTER 
OPERATION BY SYMBOLIC NAME 

NCOMDK 
NDECK 

FIXED-POINT ARITHMETIC NEGATE 
FNEG FLOATING NEGATE 

FLOATING-POINT NEGATE 
NEGATE A 

NEGL NEGATE LONG 
NEGATIVE INDICATOR 
NEGATIVE INDICATOR 

SZN SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 
FSZN FLOATING SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 

UNNORMALIZED NEGATIVE NUMBER 
NEGL NEGATE LONG 
NESTED MACRO OPERATIONS 
NEW STARTING VALUE BETWEEN DECIMAL POINTS 
NGMAC 
NINE-BIT CHARACTER OPERATIONS 
NLSTOU 

NOP NO OPERATION 
PROGRAM NONACCESSIBLE REGISTERS 

HIGHEST PRIORITY NONMASKED INTERRUPT CELL 
NONOP UNDEFINED OPERATION 
NONPROGRAM ACCESSIBLE REGISTERS, ADDERS, 
NOP MACHINE INSTRUCTIONS 

INDEX 25 

36 
33 
32 

163 
37 

165 
34 

164 
162 

3 
2 
1 
1 
3 
2 

11 
251 

48 
63 
84 
83 

188 
196 

6 
6 

83 
111 

29 
1 

112 
112 
113 
111 

84 
83 

5 
4 

15 
209 
225 
225 

87 
118 
118 

87 
87 
17 
24 

100 
123 

31 
87 

208 
215 
225 

27 
225 
129 

15 
12 

205 
13 

195 

CPB-I004F 



NOP NO OPERATION 
NORMAL ASSEMBLER OPERATING MODE 
NORMAL INSTRUCTION - DEFINING FORMAT 
NORMALIZATION OF FLOATING-POINT RESULTANTS 

FNO FLOATING NORMALIZE 
FLOATING-POINT NORMALIZE 

NORMALIZED FLOATING-POINT NUMBERS 
COMPARISON COMPARATIVE NOT 

INE IF NOT EQUAL 
LITERAL POOL NOT PRINTED 

CNAA COMPARATIVE NOT WITH A 
CNAAQ COMPARATIVE NOT WITH AQ 

CNAQ COMPARATIVE NOT WITH Q 
CNAXN COMPARATIVE NOT WITH XN 

TNZ TRANSFER ON NOT ZERO 
BINARY SYSTEM OF NOTATION 

NULL 
UNNORMALIZED POSITIVE NUMBER 
UNNORMALIZED NEGATIVE NUMBER 

TRANSFER INTERRUPT NUMBER COMMAND CODE 
LARGEST NUMBER OF ASSEMBLED INSTRUCTIONS AND DATA 

POSITION NUMBERING 
TWO S COMPLEMENT NUMBER SYSTEM 

NUMBER SYSTEM 
NUMBER SYSTEM ARITHMETIC CASE 
NUMBER SYSTEM LOGIC CASE 
NUMBER SYSTEM SUBTRACTION 

ALIGNMENT OF FIXED-POINT NUMBERS 
FLOATING-POINT NUMBERS 

BINARY FIXED-POINT NUMBERS 
RANGES OF FIXED-POINT NUMBERS 
BINARY FLOATING-POINT NUMBERS 

DECIMAL NUMBERS 
NORMALIZED FLOATING-POINT NUMBERS 

RANGES OF FLOATING-POINT NUMBERS 

o IN COLUMN 7 
GENERATION OF A $ OBJECT AND $ DKEND CARD 

FORMAT OF THE $ OBJECT CARD 
$ OBJECT HEAD THE SUBPROGRAM ASSEMBLY 

SOFTWARE SYSTEM OBJECTIVES 
OCT OCTAL 
OCTAL LITERALS 

INTRODUCE DATA IN OCTAL INTEGER NOTATION 
OCTAL-DECIMAL FRACTION CONVERSION TABLE 

CONVERSION TABLE OF OCTAL-DECIMAL INTEGERS 
ODD FORCE LOCATION COUNTER ODD 

ON TALLY RUNOUT INDICATOR OFF 
AOS ADD ONE TO STORAGE 

ZERO B , C GENERATE ONE WORD WITH TWO SPECIFIED 18-BIT FIELDS 
ON-LINE MEDIA CONVERSION 

PUNCH ON/OFF CONTROL CARD OUTPUT 
LIST ON/OFF CONTROL OUTPUT LISTING 
CRSM ON/OFF CREATED SYMBOLS 

DETAIL ON/OFF DETAIL OUTPUT LISTING 
POWER TURN ON/OFF FAULTS 

INHIB ON/OFF INHIBIT INTERRUPTS 
PCC ON/OFF PRINT CONTROL CARDS 
PMC ON/OFF PRINT MACRO EXPANSION 
REF ON/OFF REFERENCES 

ON/OFF SWITCH TYPE PSEUDO-OPERATION 
GENERATED FAULTS ILLEGAL OP CODE - ZOP 

OPD - OPERATION DEFINITION 
OPD OPERATION DEFINITION 

INDEX 26 

129 
151 
187 

9 
118 
118 

31 
103 
204 
177 
103 
104 
103 
104 
126 
24 

195 
31 
31 
12 

206 
25 

1 
24 
24 
24 
25 

9 
9 

28 
29 
30 
31 
31 
31 

195 
185 
228 
151 

4 
196 
161 
196 
277 
273 
195 
128 

75 
206 
283 
179 
177 
215 
177 

15 
179 
178 
179 
178 
176 

21 
163 
186 

CPB-I004F 



DIRECT OPERAND ADDRESS MODIFICATION 
NORMAL ASSEMBLER OPERATING MODE 

FEATll{ES PROVIDED BY THE OPERATING SUPERVISOR 
COMPREHENSIVE OPERATING SUPERVISOR 

GENERATE OPERATING SUPERVISOR GECOS $ CONTROL CARDS 
ILLEGAL OPERATION 

USING A MACRO OPERATION 
SLAVE MODE OPERATION 

MASTER MODE OPERATION 
MASTER / SLAVE MODE OF OPERATION 

NOP NO OPERATION 
PRESENTLY DEFINED OPERATION 

NONOP UNDEFINED OPERATION 
UNDEFINED OPERATION 

DEFINE A MACRO OPERATION BY SYMBOLIC NAME 
GENERATE ZERO OPERATION CODE COMPUTER WORD 

CORRELATED WITH THEIR OPERATION CODES 
OPERATIONS AND OPERATION CODING 

OPERATION DECODING 
OPD - OPERATION DEFINITION 

OPD OPERATION DEFINITION 
PERIPHERAL OPERATION EXECUTION IN MASTER MODE 

OPERATION FIELD 
MACRO OPERATION IN A PROTOTYPE 

INPUT/OUTPUT OPERATION - DEFINING FORMAT 
PROGRAM GENERATED FAULTS OPERATION NOT COMPLETED - FONC 

HARDWARE GENERATED FAULTS OPERATION NOT COMPLETED - FONC 
OPERATION OVERLAPPING 

OPSYN - OPERATION SYNONYM 
OPSYN OPERATION SYNONYM 

OPERATION TABLE 
SCAN THE OPERATION TABLE FOR MACROS DEFINED 

MACRO OPERATIONS 
NESTED MACRO OPERATIONS 

MISCELLANEOUS OPERATIONS 
BOOLEAN OPERATIONS 

MASTER MODE OPERATIONS 
MISCELLANEOUS OPERATIONS 

MASTER MODE OPERATIONS 
ARITHMETIC AND LOGICAL OPERATIONS 

SYMBOLS FOR MACHINE OPERATIONS 
SIX-BIT CHARACTER OPERATIONS 

NINE-BIT CHARACTER OPERATIONS 
OPERATIONS AND OPERATION CODING 

BOOLEAN OPERATIONS AND 
BOOLEAN OPERATIONS EXCLUSIVE OR 

MASTER MODE OPERATIONS MASTER MODE 
BOOLEAN OPERATIONS OR 

PROCESSOR OPERATIONS UNIT 
OPERA TIONS UNIT 
OPSYN - OPERATION SYNONYM 
OPSYN OPERATION SYNONYM 

DECK OPTION 
PSEUDO-OPERATION PROVIDES OPTIONAL COMMENT AND LABEL. 

OPTIONS AVAILABLE WITH GMAP 
EXCLUSIVE OR 

BOOLEAN OPERATIONS OR 
VALUES OF RELOCATABLE OR ABSOLUTE EXPRESSIONS 

ERA EXCLUSIVE OR TO A 
ORA OR TO A 

ERAQ EXCLUSIVE OR TO AQ 
ORAQ OR TO AQ 

ERQ EXCLUSIVE OR TO Q 
ORQ OR TO Q 

INDEX 27 

164 
151 

4 
7 

185 
151 
212 

10 
10 

9 
129 
188 
205 
205 
209 
205 
261 
162 

9 
163 
186 

7 
151 
219 
187 
21 
22 
10 

163 
188 
149 
217 
208 
208 
257 
253 
257 
129 
146 

9 
45 
27 
27 

162 
88 
92 

145 
90 

9 
2 

163 
188 
228 
228 
225 

92 
90 

193 
92 
90 
93 
91 
93 
90 

CPB-1004F 



ORSA OR TO STORAGE A 
ERSA EXCLUSIVE OR TO STORAGE A 
ERSQ EXCLUSIVE OR TO STORAGE Q 

ORSQ OR TO STORAGE Q 
ERSXN EXCLUSIVE OR TO STORAGE XN 

ORSXN OR TO STORAGE XN 
ORXN OR TO XN 

ERXN EXCLUSIVE OR TO XN 
ORA OR TO A 
ORAQ OR TO AQ 
ORG ORIGIN SET BY PROGRAMMER 
ORGCSM ORIGIN CREATED SYMBOLS 

PROGRAM FILE ORIENTATION 
MASS STORAGE ORIENTATION 

LIT LITERAL POOL ORIGIN 
ORGCSM ORIGIN CREATED SYMBOLS 

BEGIN ORIGIN OF A LOCATION COUNTER 
ORIGIN OF A GIVEN LOCATION COUNTER 

ORG ORIGIN SET BY PROGRAMMER 
ORQ OR TO Q 
ORSA OR TO STORAGE A 
ORSQ OR TO STORAGE Q 
ORSXN OR TO STORAGE XN 
ORXN OR TO XN 

PUNCH ON/OFF CONTROL CARD OUTPUT 
OUTPUT ABSOLUTE BINARY TEXT 

ABS OUTPUT ABSOLUTE TEXT 
DELIMITERS ARE ASSEMBLER OUTPUT CARDS 

SYSTEM OUTPUT FILE 
FUL OUTPUT FULL BINARY TEXT 

DETAIL ON/OFF DETAIL OUTPUT LISTING 
EJECT RESTORE OUTPUT LISTING 

LIST ON/OFF CONTROL OUTPUT LISTING 
OUTPUT MEDIA CONVERSION ROUTINE 

LOC LOCATION OF OUTPUT TEXT 
ASSEMBLY OUTPUTS 

TEO TRANSFER ON EXPONENT OVERFLOW 
TOV TRANSFER ON OVERFLOW 

OVERFLOW FAULT TRAP 
OVERFLOW INDICATOR 

EXPONENT OVERFLOW INDICATOR 
PROGRAM GENERATED FAULTS OVERFLOW - FOFL 

OVERFLOW MASK INDICATOR 
OVER-ALL SYSTEM CONTROL AGENCY 

OPERATION OVERLAPPING 
THE OVERLAPPING 

INSTRUCTION WORDS IN PAIRS 
PAIRS OF WORDS 

FETCHING INSTRUCTIONS IN PAIRS OR THE OVERLAPPING 
POSITION THE PRINTER PAPER 

DEFINING PARAMETERS 
PARITY ERROR FAULT TRAP 
PARITY ERROR INDICATOR 

HARDWARE GENERATED FAULTS PARITY - FPAR 
PARITY MASK INDICATOR 
PASSIVE COORDINATING COMPONENT 

ASSIGNMENT TABLE - PAT 
CODING REPEATED PATTERN OF INSTRUCTIONS 

BASIC CODING PATTERNS 
PCC ON/OFF PRINT CONTROL CARDS 

MEMORY MODULE AND PERFORMING UNITS 
PROCESSOR MODULE AND PERFORMING UNITS 

I/O CONTROLLER M.ODULE AND PERFORMING UNITS 

INDEX 28 

91 
94 
94 
92 
94 
92 
91 
93 
90 
91 

190 
215 

7 
7 

203 
215 
189 
190 
190 

90 
91 
92 
92 
91 

179 
183 
183 
151 

5 
183 
177 
180 
177 

5 
190 
228 
128 
127 

18 
18 
18 
21 
18 

1 
10 
42 

10 
26 
42 

180 
190 

19 
19 
22 
19 

1 
8 

208 
208 
178 

1 
2 
3 

CPB ... I004F 



PERIPHERAL ASSIGNMENT TABLE - PAT 
PERIPHERAL OPERATION EXECUTION 
PERIPHERAL SUBSYSTEM.8 
PERIPHERAL UNIT BUFFER 
PERMANENT USER FILES 

LOWEST PERMISSIBLE EXPONENT 
TPL TRANSFER ON PLUS 

PMC ON/OFF PRINT MACRO EXPANSION 
LITERAL POOL 
LITERAL POOL 
LITERAL POOL IS REINITIALIZED 
LITERAL POOL NOT PRINTED 

LIT LITERAL POOL ORIGIN 
POSITION NUMBERING 
POSITION THE PRINTER PAPER 

REGISTER POSITIONS AND CONTENTS 
BIT POSITIONS WITHIN A CHARACTER 

CHARACTER POSITIONS WITHIN A ~vORD 
UNNORMALIZED POSITIVE NUMBER 

MANUALLY GENERATED FAULTS POWER TURN ON/OFF FAULTS 
TABLES OF POWERS OF TWO 

DOUBLE WORD PRECISION 
SINGLE AND DOUBLE PRECISION 

SINGLE WORD PRECISION 
DOUBLE-WORD PRECISION 
SINGLE-WORD PRECISION 

PREFACE CARD FORMAT 
PREFACE CARD LISTING 
PREFACE CARD TYPE 

PUNCH AND PRINT PREVIOUSLY DEVELOPED LITERALS 
PRIMARY AND SECONDARY INSTRUCTION REGISTERS 
PRIMARY SYMDEF 
PRINCIPAL PROCESSOR REGISTERS-DIAGRAM 

PCC ON/OFF PRINT CONTROL CARDS 
EDITP EDIT PRINT LINES 
PMC ON/OFF PRINT MACRO EXPANSION 

PUNCH AND PRINT PREVIOUSLY DEVELOPED LITERALS 
LITERAL POOL NOT PRINTED 

PSEUDO-OPERATIONS PRINTED 
CONTENTS OF LINE PRINTED ON ASSEMBLY LISTING 

POSITION THE PRINTER PAPER 
PRINTING TITLE AT TOP OF PAGE 

FAULT PRIORITY 
HIGHEST PRIORITY NONMASKED INTERRUPT CELL 

PROCESSING MULTIPLE REQUESTS 
CONTINUOUS PROCESSING OF MULTIPLE PROGRAMS 

I/O PROCESSOR 
GE-635 PROCESSOR 

PROCESSOR ADDERS 
PROCESSOR BASE ADDRESS REGISTER 
PROCESSOR BASE ADDRESS REGISTER 
PROCESSOR BASE ADDRESS REGISTER 
PROCESSOR CONTROL UNIT 
PROCESSOR IN MASTER MODE 
PROCESSOR IN SLAVE MODE 
PROCESSOR INDICATORS 
PROCESSOR INSTRUCTIONS 
PROCESSOR MODULE 

FEATURES OF PROCESSOR MODULE AND PERFORMING UNITS 
PROCESSOR OPERATIONS UNIT 

PRINCIPAL PROCESSOR REGISTERS-DIAGRAM 
MEMORY WITHIN ASSEMBLED PROGRAM 

PROGRAM ACCESSIBLE INDICATORS 
PROGRAM ACCESSIBLE REGISTERS 

INDEX 29 

8 
7 
3 
3 
7 

30 
126 
179 
159 
150 
203 
177 
203 

25 
180 
46 
26 
26 
31 
23 

281 
30 
30 
30 
L~7 

L~ 7 
230 
235 
229 
203 

10 
194 

14 
178 
18n 
179 
203 
177 
178 
180 
180 
182 
23 
12 

6 
6 
3 
9 

16 
11 
11 
33 

9 
10 
10 
16 

162 
2 
2 
9 

14 
201 

15 
13 

CPB-I004F 



PROGRAM ADDRESS 
PROGRAM CONTROL UNIT 
PROGRAM FILE ORIENTATION 
PROGRAM GENERATED FAULTS 
PROGRAM GENERATED FAULTS ARITHMETIC FAULTS 
PROGRAM GENERATED FAULTS COMMAND - FCMD 
PROGRAM GENERATED FAULTS DIVIDE CHECK - FDIV 
PROGRAM GENERATED FAULTS ELAPSED TIME INTERVAL 
PROGRAM GENERATED FAULTS LOCKUP - LUF 
PROGRAM GENERATED FAULTS MEMORY FAULTS 
PROGRAM GENERATED FAULTS MEMORY - FMEM 
PROGRAM GENERATED FAULTS OVERFLOW - FOFL 
PROGRAM GENERATED FAULTS OPERATION NOT COMPLETE 
PROGRAM GENERATED FAULTS TIMER RUN OUT - TROF 

SOURCE PROGRAM INPUT 
PROGRAM INTERRUPT AT END OF VARIABLE INTERVAL 

SET PROGRAM INTERRUPT INHIBIT BIT 
PROGRAM LINKAGE PSEUDO-OPERATION 
PROGRAM LINKAGE PSEUDO-OPERATIONS 

SOURCE PROGRAM LITERALS 
PROGRAM NONACCESSIBLE REGISTERS 

ORG ORIGIN SET BY PROGRAMMER 
ASSEMBLY LANGUAGE PROGRAMMING 

PROCESSING OF MULTIPLE PROGRAMS 
TRANSFER BETWEEN PROGRAMS UNDER MULTIPROGRAM EXECUTION 

PROTECTED MEMORY 
ADDRESS RANGE PROTECTION 

MEMORY PROTECTION 
MEMORY PROTECTION 

RANGE OF MACRO PROTOTYPE 
MACRO PROTOTYPE 

DEFINITION OF MACRO PROTOTYPE 
MACRO OPERATION IN A PROTOTYPE 

MACRO PROTOTYPE ARGUMENTS 
NEED FOR PROTOTYPE CREATED SYMBOLS 

VARIABLE FIELD FROM MACRO PROTOTYPE AREA 
PROTOTYPE BODY 

OPERATIONS USED WITIIIN PROTOTYPES 
PUNM PUNCH MACRO PROTOTYPES AND CONTROLS 

SET PSEUDO-OPERATION 
ARGUMENT IN A BCI PSEUDO-OPERATION 

PROGRAM LINKAGE PSEUDO-OPERATION 
ON/OFF SWITCH TYPE PSEUDO-OPERATION 

DOUBLE-PRECISION DEC PSEUDO-OPERATION 
SINGLE-PRECISION DEC PSEUDO-OPERATION 

HEAD PSEUDO-OPERATION 
BCI PSEUDO-OPERATION 
VFD PSEUDO-OPERATION 

PSEUDO-OPERATION FUNCTIONAL GROUPS 
PSEUDO-OPERATION SPECIAL APPLICATION 

LBL PSEUDO-OPERATION PROVIDES OPTIONAL COMMENT 
GENERATIVE PSEUDO-OPERATIONS 

SUBFIELDS USED WITH PSEUDO-OPERATIONS 
FI8LDS OF INSTRUCTIONS OR PSEUDO-OPERATIONS 

ADDRESS TALLY PSEUDO-OPERATIONS 
LOCATION COUNTER PSEUDO-OPERATIONS 

STORAGE ALLOCATION PSEUDO-OPERATIONS 
DATA GENERATING PSEUDO-OPERATIONS 
PROGRAM LINKAGE PSEUDO-OPERATIONS 

CONDITIONAL PSEUDO-OPERATIONS 
MACRO PSEUDO-OPERATIONS 

CONTROL PSEUDO-OPERATIONS 
SYMBOL DEFINING PSEUDO-OPERATIONS 

PSEUDO-OPERATIONS 

INDEX 30 

32 
2 
7 

21 
21 
22 
21 
21 
21 
22 
22 
21 
21 
21 

224 
13 

179 
220 
265 
159 

15 
190 
151 

6 
5 
5 

11 
11 

9 
215 
208 
209 
219 
211 
214 
217 
210 
214 
217 
154 
218 
220 
176 
198 
197 
185 
198 
199 
175 
180 
228 
150 
152 
215 
264 
263 
264 
264 
265 
264 
265 
263 
263 
175 

CPB-I004F 



CONTROL PSEUDO-OPERATIONS 
SYMBOL-DEFINING PSEUDO-OPERA'l'IONS 

LOCATION COUNTER PSEUDO-OPERATIONS 
DATA GENERATING PSEUDO-OPERATIONS 

SYMDEF AND SYMREF PSEUDO-OPERATIONS 
STORAGE ALLOCATION PSEUDO-OPERATIONS 

ADDRESS TALLY PSEUDO-OPERATIONS 
CONDITIONAL PSEUDO-OPERATIONS 

PSEUDO-OPERATIONS BY FUNCTIONAL CLASS 
PSEUDO-OPERATIONS IN ERROR 
PSEUDO-OPERATIONS PRINTED 
PSEUDO-OPERATIONS SUPPRESSED 
PSEUDO-OPERATIONS USED WITHIN PROTOTYPES 
PUB INTERRUPT SERVICE 
PUNCH AND PRINT PREVIOUSLY DEVELOPED LITERAL 

DCARD PUNCH BCD CARD 
PUNCH BINARY CARDS 

PUNM PUNCH MACRO PROTOTYPES AND CONTROLS 
PUNCH ON/OFF CONTROL CARD OUTPUT 

TCD PUNCH TRANSFER CARD 
PUNM PUNCH MACRO PROTOTYPES AND CONTROLS 

SBLQ SUBTRACT LOGIC FROM Q 
ORSQ OR TO STORAGE Q 

CMPQ COMPARE WITH Q 
SUBTRACT WITH CARRY FROM Q 
SSQ SUBTRACT STORED FROM Q 

CNAQ COMPARATIVE NOT WITH Q 
CANQ COMPARATIVE AND WITH Q 

EXCLUSIVE OR TO STORAGE Q 
ERQ EXCLUSIVE OR TO Q 

ANQ AND TO Q 
ANSQ AND TO STORAGE Q 

ORQ OR TO Q 
SBQ SUBTRACT FROM Q 
ASQ ADD STORED TO Q 

ADQ ADD TO Q 
AWCQ ADD WITH CARRY TO Q 

ADLQ ADD LOGIC TO Q 
STQ STORE Q 

LCQ LOAD COMPLEMENT Q 
EAQ EFFECTIVE ADDRESS TO Q 

LDQ LOAD Q 
QLR Q LEFT ROTATE SHIFT 
QLS Q LEFT SHIFT 
QRL Q RIGHT LOGIC SHIFT 
QRS Q RIGHT SHIFT 

STBQ STORE CHARACTER OF Q (NINE-BIT) 
STCQ STORE CHARACTER OF Q (SIX-BIT) 

QLR Q LEFT ROTATE SHIFT 
QLS Q LEFT SHIFT 
QRL Q RIGHT LOGIC SHIFT 
QRS Q RIGHT SHIFT 

REQUEST QUEUE 
WAITING QUEUE 

~'cSWCQ 

R COMBINED WITH RI MODIFICATION 
REGISTER R MODIFICATIONS 

R REGISTER 
CAPABILITY WITHIN RANGE OF MACRO PROTOTYPE 

ADDRESS RANGE PROTECTION 
RANGES OF FIXED-POINT NUMBERS 
RANGES OF FLOATING-POINT NUMBERS 

RMCM READ MEMORY CONTROLLER MASK REGISTER 

INDEX 31 

176 
190 
188 
196 
194 
201 
206 
203 
263 
183 
178 
178 
214 

3 
203 
185 
179 
217 
179 
183 
217 

80 
92 
96 
82 
78 
94 
93 
94 
93 
88 
89 
90 
76 
70 
68 
74 
72 
55 
51 
53 
48 
66 
64 
65 
63 
59 
57 
66 
64 
65 
63 

6 
6 

167 
164 

34 
215 

11 
29 
31 

146 

CPB-1004F 



I 

READ MEMORY CONTROLLER MASK REGISTERS - RMCM 
REAL LOGARITHM 

ADDRESS REASSIGNMENT SWITCHES 
RECEIVE FIVE-BIT INTERRUPT CODE 

FAULT RECOGNITION 
INTERRUPT RECOGNITION 

FAULT RECOGNITION 
DEFINE OR REDEFINE MACHINE INSTRUCTIONS 

SET SYMBOL REDEFINITION 
REDEFINITION OF A SYMBOL PREVIOUSLY DEFINED 
REF ON/OFF REFERENCES 

SYMREF SYMBOL REFERENCE 
SYMBOLIC REFERENCE TABLE 

ENTRIES INTO THE SYMBOL REFERENCE TABLE 
REF ON/OFF REFERENCES 

REFMA REFERENCE MACROS 
ALIEN-HEADED REGION 

LDE LOAD EXPONENT REGISTER 
STE STORE EXPONENT REGISTER 

ADE ADD TO EXPONENT REGISTER 
SBAR STORE BASE ADDRESS REGISTER 

STT STORE TIMER REGISTER 
STl STORE INDICATOR REGISTER 

COE REGISTER 
YO REGISTER 
YE REGISTER 

H REGISTER 
EXPONENT REGISTER 

PROCESSOR BASE ADDRESS REGISTER 
ADR ADDRESS REGISTER 

G REGISTER 
E REGISTER 
N REGISTER 
D REGISTER 
M REGISTER 

MEMORY CONTROLLER MASK REGISTER 
LBAR LOAD BASE ADDRESS REGISTER 

SET MEMORY CONTROLLER MASK REGISTER 
LDT LOAD TIMER REGISTER 

R REGISTER 
LDI LOAD INDICATOR REGISTER 

PROCESSOR BASE ADDRESS REGISTER 
PROCESSOR BASE ADDRESS REGISTER 

IR INDIRECT THEN REGISTER 
REGISTER DESIGNATOR 
REGISTER DESIGNATOR 

INDIRECT THEN REGISTER IR MODIFICATION 
BASE ADDRESS REGISTER - BAR 

INDICATOR REGISTER - IR 
INDICATOR REGISTER - IR 

LOAD BASE ADDRESS REGISTER - LBAR 
LOAD BASE ADDRESS REGISTER - LBAR 

LOAD TIMER REGISTER - LDT 
TIMER REGISTER - TR 
TIMER REGISTER LOADING AND DECREMENTING 

BASE ADDRESS REGISTER LOADING AND STORING 
INDICATOR REGISTER LOADING AND STORING 

REGISTER POSITIONS AND CONTENTS 
REGISTER R MODIFICATIONS 

RI REGISTER THEN INDIRECT 
REGISTER THEN INDIRECT RI MODIFICATION 

XN REGISTER USE 
AQ REGISTER USE 

SAVE SPECIFIED INDEX REGISTERS 

INDEX 32 

7 
241 

12 
12 

9 
9 

23 
186 
192 
192 
178 
194 
236 

30 
178 
188 
184 
105 
106 
109 

61 
62 
60 
15 
15 
15 
15 
13 
11 
15 
15 
13 
15 
15 
15 

146 
145 
147 
145 
34 
54 
46 
33 
34 
35 
33 

167 
15 
15 
16 

7 
33 

7 
15 

9 
9 
9 

46 
164 

34 
166 

13 
13 

221 

CPB-I004F 
Rev. July 1969 



SECONDARY INSTRUCTION REGISTERS 
PROGRAM NONACCESSIBLE REGISTERS 

PROGRAM ACCESSIBLE REGISTERS 
COO REGISTERS 

LREG LOAD REGISTERS 
SREG STORE REGISTERS 

MEMORY CONTROLLER MASK REGISTERS - RMCM 
SET MEMORY CONTROLLER MASK REGISTERS - SMCM 

PRINCIPAL PROCESSOR REGISTERS-DIAGRAM 
NONPROGRAM ACCESSIBLE REGISTERS, ADDERS, AND SWITCHES 

LITERAL POOL IS REINITIALIZED 
MASTER / SLAVE RELATIONSHIP 

RELINQUISH 
FORCED RELINQUISH 

RELOCATABLE AND ABSOLUTE ASSEMBLIES 
RELOCATABLE AND ABSOLUTE EXPRESSIONS 
RELOCATABLE BINARY TEXT CARD TYPE 
RELOCATABLE CARD FORMAT 

SPECIAL RELOCATABLE EXPRESSIONS 
VALUES OF RELOCATABLE OR ABSOLUTE EXPRESSIONS 

RELOCATABLE SYMBOL 
RESTRICTIONS OF RELOCATION 

ADDRESS RELOCATION 
RELOCATION ADDER - RS 
RELOCATION ADMISSIBILITY OF AN EXPRESSION 
RELOCATION SCHEME 
REM REMARKS 
REMARK CARD 

* IN COLUMN 1 - REMARKS 
REM REMARKS 

INDEFINITE REPEAT 
IDRP IDEFINITE REPEAT 

RPT REPEAT 
RPD REPEAT DOUBLE 

REPEAT INSTRUCTION CODING FORMATS 
REPEAT INSTRUCTION CODING FORMATS 
REPEAT INSTRUCTIONS 

RPL REPEAT LINK 
REPEAT MODE INSTRUCTIONS 

CODING REPEATED PATTERN OF INSTRUCTIONS 
INSTRUCTION REPERTOIRE 

REPRESENTATION OF INFORMATION 
VARIABLE FIELD REPRESENTATIONS 

MEMORY ACCESS REQUEST 
REQUEST QUEUE 

EXECUTE INTERRUPT REQUEST PRESENT SIGNAL 
PROCESSING MULTIPLE REQUESTS 

RESERVE AREA OF MEMORY 
RESERVE SPECIFIED CORE MEMORY STORAGE 

EJECT RESTORE OUTPUT LISTING 
CONDITIONS AND RESTRICTIONS OF MACROS 
CONDITIONS AND RESTRICTIONS OF RELOCATION 
FLOATING-POINT RESULTANTS 

RETURN INSTRUCTION - RET 
RET RETURN 

RET RETURN 
RETURN FROM SUBROUTINES 
RETURN INSTRUCTION .. RET 

SAVE RETURN LINKAGE DATA 
RETURN THE TRANSFER INTERRUPT NUMBER COMMAND 

R COMBINED WITH RI MODIFICATION 
REGISTER THEN INDIRECT RI MODIFICATION 

RI REGISTER THEN INDIRECT 
QRL Q RIGHT LOGIC SHIFT 

INDEX 33 

10 
15 
13 
15 
49 
56 

7 
7 

14 
13 

203 
6 
5 
5 

150 
157 
229 
231 
158 
193 
154 
157 

9 
33 

157 
232 
180 
181 
181 
180 
219 
215 
134 
137 
264 
207 

32 
141 
33 

208 
43 
25 

177 
33 

6 
11 

6 
201 
201 
180 
213 
157 

9 
12 

125 
129 
222 

12 
221 

12 
167 
166 

34 
65 

CPB-I004F 



LRL LONG RIGHT LOGIC SHIFT 
ARL A RIGHT LOGIC SHIFT 

LRS LONG RIGHT SHIFT 
ARS A RIGHT SHIFT 
QRS Q RIGHT SHIFT 

R-TYPE MODIFICATION VARIATIONS 
MASK REGISTERS - RMCM 

RMCM READ MEMORY CONTROLLER MASK REGISTER 
ROADBLOCK 

ALR A LEFT ROTATE SHIFT 
LLR LONG LEFT ROTATE SHIFT 

QLR Q LEFT ROTATE SHIFT 
OUTPUT MEDIA CONVERSION ROUTINE 

DISPATCHER ROUTINES 
RPD 
RPD REPEAT DOUBLE· 
RPDA 
RPDB 
RPDX 
RPL 
RPL REPEAT LINK 
RPLX 
RPT 
RPT REPEAT 
RPTX 

RELOCATION ADDER - RS 
RS ADDER 

Tll1ER RUNOUT FAULT TRAP 
TALLY RUNOUT INDICATOR 

TTF TRANSFER ON TALLY RUNOUT INDICATOR OFF 
GENERATED FAULTS Tll1ER RUNOUT - TROF 

FORMAT OF THE $ ALTER CARD 
$ ALTER CONTROL CARDS 

OPERATING SUPERVISOR GECOS $ CONTROL CARDS 
A $ OBJECT AND $ DKEND CARD 

$ DKEND END THE ASSEMBLY 
GENERATION OF A $ OBJECT AND $ DKEND CARD 

FORMAT OF THE $ OBJECT CARD 
$ OBJECT HEAD THE SUBPROGRAM ASSEMBLY 
$ UPDATE CONTROL CARD 

* IN COLUMN 1 - REMARKS 
CODING AND EFFECTS OF *,*N, AND I 

SADDER 
SAVE RETURN LINKAGE DATA 
SAVE SPECIFIED INDEX REGISTERS 
SEA SUBTRACT FROM A 
SBAQ SUBTRACT FROM AQ 
SBAR STORE BASE ADDRESS REGISTER 
SBLA SUBTRACT LOGIC FROM A 
SBLAQ SUBTRACT LOGIC FROM AQ 
SBLQ SUBTRACT LOGIC FROM Q 
SBLXN SUBTRACT LOGIC FROM XN 
SBQ SUBTRACT FROM Q 
SBXN SUBTRACT FROM XN 

EFFECT OF SC 
SEQUENCE CHARACTER T = SC VARIATION 

SCAN THE OPERATION TABLE FOR MACROS DEFINED 
SUBTRACT DELTA T = SD VARIATION 

PRll1ARY AND SECONDARY INSTRUCTION REGISTERS 
SECONDARY SYMDEF SYMBOL 

SUBROUTINE CALLING SEQUENCE 

INDEX 34 

66 
65 
64 
64 
64 

165 
7 

146 
5 

66 
67 
66 

5 
5 

71 
137 
207 
207 
207 
207 
141 
207 
207 
134 
207 

33 
16 
15 
19 

128 
21 

227 
226 
185 
185 
112 
185 
228 
151 
227 

181 
170 

16 
221 
221 

76 
77 
61 
79 
80 
80 
81 
76 
77 

172 
171 
217 
173 

10 
194 
220 

CPB-I004F 



STORAGE WITHIN CODING SEQUENCE 
SEQUENCE CHARACTER T = SC VARIATION 
SERIALIZE THE BINARY CARDS 

SMIC SET MEMORY CONTROLLER INTERRUPT CELLS 
SET MEMORY CONTROLLER INTERRUPT CELLS - SMIC 

SMCM SET MEMORY CONTROLLER MASK REGISTER 
SET MEMORY CONTROLLER MASK REGISTERS - SMCM 

ISSUE MME GECALL FOR A SET OF SYSTEM. MACROS 
SET PROGRAM INTERRUPT INHIBIT BIT 
SET PSEUDO-OPERATION 

TSS TRANSFER AND SET SLAVE 
TRANSFER AND SET SLAVE INSTRUCTION 
TRANSFER AND SET SLAVE - TSS 

SET SYMBOL REDEFINITION 
TSXN TRANSFER AND SET XN 

SZN SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 
FSZN FLOATING SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 

STOP SETTING THE INHIBIT BIT 
QLS Q LEFT SHIFT 

ARS A RIGHT SHIFT 
DATA MOVEMENT SHIFT 
LLS LONG LEFT SHIFT 

QRL Q RIGHT LOGIC SHIFT 
ALR A LEFT ROTATE SHIFT 

QRS Q RIGHT SHIFT 
ALS A LEFT SHIFT 

LLR LONG LEFT ROTATE SHIFT 
QLR Q LEFT ROTATE SHIFT 

LRL LONG RIGHT LOGIC SHIFT 
ARL A RIGHT LOGIC SHIFT 

LRS LONG RIGHT SHIFT 
SINGLE SHIFT STEP 

SHIFTS 
INTERRUPT REQUEST PRESENT SIGNAL 
DIS DELAY UNTIL INTERRUPT SIGNAL 

EXPONENT FOR SINGLE AND DOUBLE PRECISION 
SINGLE AND DOUBLE-PRECISION MANTISSAS 
SINGLE SHIFT STEP 
SINGLE WORD PRECISION 
SINGLE-PRECISION DEC PSEUDO-OPERATION 

DECIMAL LITERAL SINGLE-PRECISION FLOATING-POINT 
SINGLE-WORD PRECISION 
SIX-BIT CHARACTER OPERATIONS 

MAXSZ MAXIMUM SIZE OF ASSEMBLY 
TSS TRANSFER AND SET SLAVE 

TRANSFER AND SET SLAVE INSTRUCTION 
TRANSFER AND SET SLAVE - TSS 

PROCESSOR IN SLAVE MODE 
PROCESSOR IN SLAVE MODE 

MASTER / SLAVE MODE OF OPERATION 
SLAVE MODE OPERATION 

MASTER SLAVE RELATIONSHIP 
MASK REGISTERS - SMCM 

SMCM SET MEMORY CONTROLLER MASK REGISTER 
INTERRUPT CELLS - SMIC 

SMIC SET MEMORY CONTROLLER INTERRUPT CELLS 
SOFTWARE SYSTEM OBJECTIVES 
SOURCE PROGRAM INPUT 
SOURCE PROGRAM LITERALS 
SOURCE DECK CORRECTIONS 

PSEUDO-OPERATION SPECIAL APPLICATION 
SPECIAL CODE ARG 

FEQU SPECIAL FORTRAN EQUIVALENCE 
SPECIAL RELOCATABLE EXPRESSIONS 

INDEX 35 

201 
171 
181 
145 

7 
147 

7 
218 
179 
154 
124 

12 
10 

192 
124 
100 
123 
179 

64 
63 
63 
65 
65 
66 
63 
64 
67 
66 
66 
65 
63 
42 

9 
11 

145 
30 
30 
42 
30 

197 
161 
47 
27 

206 
124 

12 
10 
11 
10 

9 
10 

6 
7 

147 
7 

145 
4 

224 
159 
226 
180 
151 
191 
158 

CPB-I004F 



SPECIAL WORD FORMATS 
SPECIAL WORD FORMATS 

GENERATE ONE WORD WITH TWO SPECIFIED I8-BIT FIELDS 
RESERVE SPECIFIED CORE MEMORY STORAGE WITHIN CODING 

SAVE SPECIFIED INDEX REGISTERS 
SREG STORE REGISTERS 
SSA SUBTRACT STORED FROM A 
SSQ SUBTRACT STORED FROM Q 
SSXN SUBTRACT STORED FROM XN 
STA STORE A 
STAG STORE AQ 
STANDARD CHARACTER SET 

COMPUTER DEPARTMENT STANDARD CHARACTER SET 
GENERATE THE STANDARD SUBROUTINE CALLING SEQUENCE 

BSS BLOCK STARTED BY SYMBOL 
NEW STARTING VALUE BETWEEN DECIMAL POINTS 

STBA STORE CHARACTER OF A (NINE-BIT) 
STBQ STORE CHARACTER OF Q (NINE-BIT) 
STCI STORE INSTRUCTION COUNTER PLUS 1 
STC2 STORE INSTRUCTION COUNTER PLUS 2 
STCA STORE CHARACTER OF A (SIX-BIT) 
STCQ STORE CHARACTER OF Q (SIX-BIT) 
STE STORE EXPONENT REGISTER 
STI STORE INDICATOR REGISTER 
STOP SETTING THE INHIBIT BIT 

BUFFER STORAGE 
INTERIM INFORMATION STORAGE 

AOS ADD ONE TO STORAGE 
TEMPORARY DATA STORAGE 

ANSA AND TO STORAGE A 
ERSA EXCLUSIVE OR TO STORAGE A 

ORSA OR TO STORAGE A 
STORAGE ALLOCATION PSEUDO-OPERATIONS 
STORAGE ALLOCATION PSEUDO-OPERATIONS 

SYSTEM STORAGE AREA 
MASS STORAGE ORIENTATION 

ORSQ OR TO STORAGE Q 
ERSQ EXCLUSIVE OR TO STORAGE Q 

ANSQ AND TO STORAGE Q 
MAGNETIC CORE STORAGE UNIT 
MAGNETIC CORE STORAGE UNIT 

ANSXN AND TO STORAGE XN 
ERSXN EXCLUSIVE OR TO STORAGE XN 

ORSXN OR TO STORAGE XN 
SPECIFIED CORE MEMORY STORAGE WITHIN CODING SEQUENCE 

FLOATING-POINT STORE 
FST FLOATING STORE 

DOUBLE-PRECISION FLOATING STORE 
STA STORE A 

STAG STORE AQ 
SBAR STORE BASE ADDRESS REGISTER 
STBA STORE CHARACTER OF A (NINE-BIT) 
STCA STORE CHARACTER OF A (SIX-BIT) 
STBQ STORE CHARACTER OF Q (NINE-BIT) 
STCQ STORE CHARACTER OF Q (SIX-BIT) 

STE STORE EXPONENT REGISTER 
STI STORE INDICATOR REGISTER 

STC2 STORE INSTRUCTION COUNTER PLUS 2 
STCI STORE INSTRUCTION COUNTER PLUS 1 

STQ STORE Q 
SREG STORE REGISTERS 

STT STORE TIMER REGISTER 
SXLN' STORE XN INTO LOWER 
STXN STORE XN INTO UPPER 

INDEX 36 

264 
205 
206 
201 
221 

56 
78 
78 
79 
55 
55 

271 
26 

220 
201 
215 

58 
59 
62 
62 
57 
57 

106 
60 

179 
3 
1 

75 
7 

89 
94 
91 

264 
201 

7 
7 

92 
94 
89 

1 
26 
90 
94 
92 

201 
106 
106 
106 
55 
55 
61 
58 
57 
59 
57 

106 
60 
62 
62 
55 
56 
61 
56 
55 

CPB-I004F 



STZ STORE ZERO 
SSA SUBTRACT STORED FROM A 
SSQ SUBTRACT STORED FROM Q 

SSXN SUBTRACT STORED FROM XN 
VALUES STORED IN HIGH- OR LOW-ORDER 18-BIT HALVES 

ASA ADD STORED TO A 
ASQ ADD STORED TO Q 

ASXN ADD STORED TO XN 
REGISTER LOADING AND STORING 

STQ STORE Q 
STT STORE TIMER REGISTER 
STXN STORE XN INTO UPPER 
STZ STORE ZERO 

LITERAL IN A SUBFIELD 
SUBFIELDS USED WITH PSEUDO-OPERATIONS 
SUBFIELDS WITHIN THE VARIABLE FIELD 

ABSOLUTE SUBPROGRAM ASSEMBLY 
$ OBJECT HEAD THE SUBPROGRAM ASSEMBLY 

SUBPROGRAM DELIMITERS ARE ASSEMBLER OUTPUT 
EXIT FROM A SUBROUTINE 

VARIABLE FIELD OF A SUBROUTINE 
LOCATION FIELD OF A SUBROUTINE 

SUBROUTINE CALL MACRO 
GENERATE THE STANDARD SUBROUTINE CALLING SEQUENCE 

RETURN FROM SUBROUTINES 
CALL SUBROUTINES 

ERLK ERROR LINKAGE TO SUBROUTINES 
FIELD SUBSTITUTION 

PERIPHERAL SUBSYSTEMS 
TTLS SUBTITLE 

SUBTITLING 
FSB FLOATING SUBTRACT 

DOUBLE-PRECISION FLOATING SUBTRACT 
UNNORMALIZED FLOATING SUBTRACT 

UFS UNNORMALIZED FLOATING SUBTRACT 
SUBTRACT DELTA T SD VARIATION 

SBA SUBTRACT FROM A 
SBAQ SUBTRACT FROM AQ 

SBQ SUBTRACT FROM Q 
SBXN SUBTRACT FROM XN 
SBLA SUBTRACT LOGIC FROM A 

SBLAQ SUBTRACT LOGIC FROM AQ 
SBLQ SUBTRACT LOGIC FROM Q 

SBLXN SUBTRACT LOGIC FROM XN 
SSA SUBTRACT STORED FROM A 
SSQ SUBTRACT STORED FROM Q 

SSXN SUBTRACT STORED FROM XN 
SWCA SUBTRACT WITH CARRY FROM A 
SWCQ SUBTRACT WITH CARRY FROM Q 

FLOATING-POINT SUBTRACTION 
BCD SUBTRACTION 

NUMBER SYSTEM SUBTRACTION 
ADDITIONS OR SUBTRACTIONS 

SUCCEEDING INSTRUCTIONS 
FUNCTIONS OF INPUT/OUTPUT SUPERVISOR 
PROVIDED BY THE OPERATING SUPERVISOR 

INPUT/OUTPUT SUPERVISOR 
COMPREHENSIVE OPERATING SUPERVISOR 

INPUT/OUTPUT SUPERVISOR FUNCTIONS 
GENERATE OPERATING SUPERVISOR GECOS $ CONTROL CARDS 

LIST OR SUPPRESS INSTRUCTIONS 
SUPPRESS MAKING ENTRIES INTO THE SYMBOL REF 

PSEUDO-OPERATIONS SUPPRESSED 

INDEX 37 

61 
78 
78 
79 

206 
70 
70 
71 

9 
55 
61 
55 
61 

159 
152 
152 
151 
151 
151 
223 
194 
193 
219 
220 
222 
220 
223 
218 

3 
182 
182 
109 
110 
111 
110 
173 

76 
77 
76 
77 
79 
80 
80 
81 
78 
78 
79 
81 
82 

109 
244 

25 
30 

188 
6 
4 
7 
7 
6 

185 
179 
178 
178 

CPB-I004F 



SUPPRESSING GENERATION OF A $ OBJECT 
SWCA SUBTRACT WITH CARRY FROM A 
SWCQ SUBTRACT WITH CARRY FROM Q 

ADDRESS REASSIGNMENT SWITCHES 
REGISTERS, ADDERS, AND SWITCHES 

ON/OFF SWITCH TYPE PSEUDO-OPERATION 
SXLN STORE XN INTO LOWER 

COMMON SYMBOL 
ABSOLUTE SYMBOL 

RELOCATABLE SYMBOL 
SYMREF SYMBOL 

SECONDARY SYMDEF SYMBOL 
BSS BLOCK STARTED BY SYMBOL 

BFS BLOCK FOLLOWED BY SYMBOL 
SYMBOL DEFINING PSEUDO-OPERATIONS 

SYMDEF SYMBOL DEFINITION 
EQUATE SYMBOL IN LOCATION FIELD WITH SYMBOL IN VAR 

LOCATION FIELD WITH SYMBOL IN VARIABLE FIELD 
SET SYMBOL REDEFINITION 

SYMREF SYMBOL REFERENCE 
MAKING ENTRIES INTO THE SYMBOL REFERENCE TABLE 

SYMBOL TABLE 
SYMBOLIC CARD FORMAT 
SYMBOLIC CROSS-REFERENCE TABLE 
SYMBOLIC MACRO ASSEMBLER - GMAP 

MACRO OPERATION BY SYMBOLIC NAME 
SYMBOLIC REFERENCE TABLE 

EQUATING NEWLY DEFINED SYMBOL OR PRESENTLY DEFINED OPERATION 
REDEFINITION OF A SYMBOL PREVIOUSLY DEFINED 

SYMBOL-DEFINING PSEUDO-OPERATIONS 
UNDEFINED SYMBOLS 

TYPES OF SYMBOLS 
SYSTEM BUILT-IN SYMBOLS 

NEED FOR PROTOTYPE CREATED SYMBOLS 
USE OF CREATED SYMBOLS 

CRSM ON/OFF CREATED SYMBOLS 
ORGCSM ORIGIN CREATED SYMBOLS 

DECIHAL POINTS OF CREATED SYMBOLS 
SYSTEM SYMBOLS 

FLOWCHART SYMBOLS 
EQUATING SYMBOLS 

SYMBOLS DEFINED 
ABBREVIATIONS AND SYMBOLS FOR MACHINE OPERATIONS 

SYMBOLS IN LOCATION FIELD OF A SUBROUTINE 
SYMBOLS IN THE VARIABLE FIELD OF A SUB 

PRIMARY SYMDEF 
SYMDEF AND SYMREF PSEUDO-OPERATIONS 

SECONDARY SYMDEF SYMBOL 
SYMDEF SYMBOL DEFINITION 

SYHDEF AND SYMREF PSEUDO-OPERATIONS 
SYMREF SYMBOL 
SYMREF SYMBOL REFERENCE 

OPSYN - OPERATION SYNONYM 
OPSYN OPERATION SYNONYM 

SYSOUT FILE 
SYSTEM BUILT-IN SYMBOLS 

GENERAL SYSTEM COMHUNICATION CONTROL 
OVER-ALL SYSTEM CONTROL AGENCY 

SYSTEM CONTROLLER 
SYSTEM CONTROLLER 

MEMORY MODULE SYSTEM CONTROLLER 
SYSTEM FEATURES 

INDEX 38 

185 
81 
82 
12 
13 

176 
57 

154 
154 
154 
154 
194 
201 
202 
263 
194 
190 
190 
192 
194 
178 
150 
153 
150 
149 
209 
236 
188 
192 
190 
150 
154 
224 
214 
214 
215 
215 
215 
267 

39 
190 
153 
45 

193 
194 
194 
194 
194 
193 
194 
154 
194 
163 
163 

5 
224 

1 
1 
1 
2 

11 
1 

CPB-I004F 



BASIC SYSTEM FUNCTIONS 
IMPLEMENTATION OF SYSTEM MACROS 

LODM LOAD SYSTEM MACROS 
MME GECALL FOR A SET OF SYSTEM MACROS 

SYSTEM MEDIA CONVERSION 
SOFTWARE SYSTEM OBJECTIVES 

SYSTEM OUTPUT FILE 
SYSTEM STORAGE AREA 
SYSTEM SYMBOLS 
SZN SET ZERO AND NEGATIVE INDICATORS 

SYMBOLIC REFERENCE TABLE 
CONVERSION TABLE 

OPERATION TABLE 
SYMBOL TABLE 

SYMBOLIC CROSS-REFERENCE TABLE 
THE SYMBOL REFERENCE TABLE 

SCAN THE OPERATION TABLE FOR MACROS DEFINED 
PERIPHERAL ASSIGNMENT TABLE - PAT 

TABLE LOOKUP 
TABLE OF FAULTS 

CONVERSION TABLE OF OCTAL-DECIMAL INTEGERS 
TABLES OF POWERS OF TWO 

GENERATING TABLES AND/OR DATA 
GENERATED FAULTS FAULT TAG 

TAG FIELD 
TAG FIELD 

IT INDIRECT THEN TALLY 
TALLY A , T , C 

TALLYC A , T , MOD TALLY AND CONTINUE 
DECREMENT TALLY AND CONTINUE T IDC VARIATION 

TALLYD A , T , D , TALLY AND DELTA 
TALLYB A , T , B TALLY BYTE 

TALLY DESIGNATOR 
TALLY DESIGNATOR 

INDIRECT THEN TALLY IT MODIFICATION 
ADDRESS TALLY PSEUDO-OPERATIONS 
ADDRESS TALLY PSEUDO-OPERATIONS 

TALLY RUNOUT INDICATOR 
TTF TRANSFER ON TALLY RUNOUT INDICATOR OFF 

INCREMENT TALLY T = DI VARIATION 
DECREMENT TALLY T = ID VARIATION 

TALLYB A , T , B TALLY BYTE 
TALLYC A , T , MOD TALLY AND CONTINUE 
TALLYD A , T , D , TALLY AND DELTA 

INCREMENT TALLY, AND CONTINUE T = DIC VARIATION 
TCD PUNCH TRANSFER CARD 
TEMPORARY DATA STORAGE 
TENTATIVE ADDRESS 
TEO TRANSFER ON EXPONENT OVERFLOW 
TERMS 
TEU TRANSFER ON EXPONENT UNDERFLOW 

FUL OUTPUT FULL BINARY TEXT 
ABS OUTPUT ABSOLUTE TEXT 

ABSOLUTE BINARY TEXT 
OUTPUT ABSOLUTE BINARY TEXT 
LOC LOCATION OF OUTPUT TEXT 

LINKING OF TEXT AND ARGUMENTS 
RELOCATABLE BINARY TEXT CARD TYPE 

ABSOLUTE BINARY TEXT CARD TYPE 
GENERATED FAULTS ELAPSED TIME INTERVAL FAULTS 

INTERVAL TIMER 
LDT LOAD TIMER REGISTER 

INDEX 39 

1 
217 
218 
218 

5 
4 
5 
7 

267 
100 

236 
277 
149 
150 
150 
178 
217 

8 
247 

24 
273 
281 
201 

21 
33 
36 
34 

206 
206 
174 
206 
206 

33 
35 

169 
264 
206 

19 
128 
171 
170 
206 
206 
206 
174 
183 

7 
32 

128 
154 
128 
183 
183 
183 
183 
190 
218 
229 
229 

21 
13 

145 

CPB-1004F 



STT STORE TIMER REGISTER 
LOAD TIMER REGISTER - LDT 

TIMER REGISTER - TR 
TIMER REGISTER LOADING AND DECREMENTING 
TIMER RUNOUT FAULT TRAP 

PROGRAM GENERATED FAULTS TIMER RUNOUT - TROF 
INSTRUCTION EXECUTION TruES 

TTL TITLE 
PRINTING TITLE AT TOP OF PAGE 

TMI TRANSFER ON MINUS 
TNC TRANSFER ON NO CARRY 
TNZ TRANSFER ON NOT ZERO 

MACHINE MANTISSA EQUAL TO ZERO 
PRINTING TITLE AT TOP OF PAGE 

TOV TRANSFER ON OVERFLOW 
TPL TRANSFER ON PLUS 

TIMER REGISTER - TR 
TRA TRANSFER UNCONDITIONALLY 

CONDITIONAL TRANSFER 
UNCONDITIONAL TRANSFER 

lRANSFER OF CONTROL TRANSFER 
CONTROL CONDITIONAL TRANSFER 

TSS TRANSFER AND SET SLAVE 
TRANSFER AND SET SLAVE INSTRUCTION 
TRANSFER AND SET SLAVE - TSS 

TSXN TRANSFER AND SET XN 
TCD PUNCH TRANSFER CARD 

BINARY TRANSFER CARD 
TRANSFER CARD FORMAT 
TRANSFER CARD TYPE 

RETURN THE TRANSFER INTERRUPT NUMBER COMMAND CODE 
TRANSFER OF CONTROL 
TRANSFER OF CONTROL 
TRANSFER OF CONTROL CONDITIONAL TRANSFER 
TRANSFER OF CONTROL TRANSFER 

TRC TRANSFER ON CARRY 
TEO TRANSFER ON EXPONENT OVERFLOW 
TEU TRANSFER ON EXPONENT UNDERFLOW 
TMI TRANSFER ON MINUS 
TNC TRANSFER ON NO CARRY 
TNZ TRANSFER ON NOT ZERO 
TOV TRANSFER ON OVERFLOW 
TPL TRANSFER ON PLUS 
TTF TRANSFER ON TALLY RUNOUT INDICATOR OFF 
TZE TRANSFER ON ZERO 
TRA TRANSFER UNCONDITIONALLY 

TRANSFER BETWEEN PROGRAMS UNDER MULTIPROGRAM 
ADDRESS TRANSLATION AND MODIFICATION 
ADDRESS TRANSLATION WITH EACH MEMORY ACCESS 

CHARACTER TRANSLITERATION 
OVERFLOW FAULT TRAP 

PARITY ERROR FAULT TRAP 
TIMER RUNOUT FAULT TRAP 

MEMORY FAULT TRAP 
TRAPPING PROCEDURE 

FAULT TRAPS 
TRC TRANSFER ON CARRY 

FAUL TS TruER RUNOUT - TROF 
TRANSFER AND SET SLAVE - TSS 

TSS INSTRUCTION 
TSS TRANSFER AND SET SLAVE 
TSXN TRANSFER AND SET XN 
TTF TRANSFER ON TALLY RUNOUT INDICATOR OFF 
TTL TITLE 
TTLS SUBTITLE 

INDEX 40 

61 
7 

15 
9 

15 
21 
42 

182 
182 
126 
127 
126 

30 
182 
127 
126 

15 
124 

12 
12 

124 
126 
124 

12 
10 

124 
183 
183 
234 
229 

12 
256 

12 
126 
124 
127 
128 
128 
126 
127 
126 
127 
126 
128 
126 
124 

5 
32 
46 

245 
18 
19 
15 
11 
20 
20 

127 
21 
10 
12 

124 
124 
128 
182 
182 

CPB-I004F 



GENERATED FAULTS POWER TURN ON/OFF FAULTS 
TABLES OF POWERS OF TWO 

GENERATE ONE WORD WITH TWO SPECIFIED 18-BIT FIELDS 
TWO S COMPLEMENT NUMBER SYSTEM 

IT TYPE MODIFICATION 
FOUR TYPES OF BINARY CARDS 

TYPES OF SYMBOLS 
TZE TRANSFER ON ZERO 

UFA UNNORMALIZED FLOATING ADD 
UFM UNNORMALIZED FLOATING MULTIPLY 
UFS UNNORMALIZED FLOATING SUBTRACT 
UNCONDITIONAL TRANSFER 

TRA TRANSFER UNCONDITIONALLY 
NONOP UNDEFINED OPERATION 

UNDEFINED OPERATION 
UNDEFINED SYMBOLS 

TEU TRANSFER ON EXPONENT UNDERFLOW 
EXPONENT UNDERFLOW INDICATOR 

DUFM DOUBLE-PRECISION UNNORMAL FLOATING MULTIPLY 
DUFA DOUBLE-PRECISION UNNORMALIZED FLOATING ADD 

UFA UNNORMALIZED FLOATING ADD 
UFM UNNORMALIZED FLOATING MULTIPLY 
UFS UNNORMALIZED FLOATING SUBTRACT 

DUFS DOUBLE-PRECISION UNNORMALIZED FLOATING SUBTRACT 
UNNORMALIZED NEGATIVE NUMBER 
UNNORMALIZED POSITIVE NUMBER 

$ UPDATE CONTROL CARD 
PERMANENT USER FILES 

USING A MACRO OPERATION 

MAXIMUM VALUE OF EXPRESSIONS 
MINIMUM VALUE AMONG VALUES OF RELOCATABLE OR ABSOLUTE 

NEW STARTING VALUE BETWEEN DECIMAL POINTS OF CREATED SYMBOL 
CHANGE THE NEXT VALUE OF A COUNTER 

VALUES STORED IN HIGH- OR LOW-ORDER 18-BIT 
VARIABLE FIELD 

SUBFIELDS WITHIN THE VARIABLE FIELD 
FIELD WITH SYMBOL IN VARIABLE FIELD 

VFD VARIABLE FIELD DEFINITION 
DELETE MACRO NAMED IN VARIABLE FIELD FROM MACRO PROTOTYPE AREA 

VARIABLE FIELD LITERALS 
SYMBOLS IN THE VARIABLE FIELD OF A SUBROUTINE 

VARIABLE FIELD REPRESENTATIONS 
INTERRUPT AT END OF VARIABLE INTERVAL 

EXPRESSIONS CONTAINED IN VARIABLE FIELD 
INCREMENT TALLY T = DI VARIATION· 

INDIRECT T = I VARIATION 
FAULT T = F VARIATION 

INDIRECT T = CI VARIATION 
DECREMENT TALLY T = ID VARIATION 

SUBTRACT DELTA T = SD VARIATION 
ADD DELTA T = AD VARIATION 

SEQUENCE CHARACTER T = SC VARIATION 
TALLY AND CONTINUE T = IDC VARIATION 

CONTINUE T = DIC VARIATION 
R-TYPE MODIFICATION VARIATIONS 

VARIATIONS UNDER IT MODIFICATION 
VFD PSEUDO-OPERATION 
VFD VARIABLE FIELD DEFINITION 

WAITING QUEUE 
MNEMONICS CORRELATED WITH THEIR OPERATION CODES 

MACHINE WORD 

INDEX 41 

23 
281 
205 
283 

36 
228 
154 
126 

107 
112 
110 

12 
124 
205 
205 
150 
128 

18 
113 
108 
107 
112 
110 
111 
31 
31 

227 
7 

212 

193 
193 
215 
190 
206 
152 
152 
191 
200 
216 
162 
194 
177 

13 
193 
171 
170 
173 
172 
170 
173 
173 
171 
174 
174 
165 
169 
200 
199 

6 
261 

25 

CPB-I004F 



POSITIONS WITHIN A WORD 
OPERATION CODE COMPUTER WORD 

GENERATE A BINARY WORD FOR GENERAL INSTRUCTION 
INDIRECT WORD FORMAT 

SPECIAL WORD FORMATS 
DATA CONTROL WORD FORMATS 

SPECIAL WORD FORMATS 
SINGLE WORD PRECISION 
DOUBLE WORD PRECISION 

ZERO B , C GENERATE ONE WORD WITH TWO SPECIFIED 18-BIT FIELDS 
DEFINE DATA WORD IN INDIVIDUAL BITS 

INDIRECT WORDS 
PAIRS OF WORDS 

INSTRUCTION WORDS IN PAIRS 

XEC EXECUTE 
XEC INSTRUCTION 

DOUBLE INSTRUCTION - XED 
XED EXECUTE DOUBLE 
XED INSTRUCTION 

ANSXN AND TO STORAGE XN 
CNAXN COMPARATIVE NOT WITH XN 

ORSXN OR TO STORAGE XN 
CANXN COMPARATIVE AND WITH XN 

ERXN EXCLUSIVE OR TO XN 
COMPXN COMPARE WITH XN 

ORXN OR TO XN 
EXCLUSIVE OR TO STORAGE XN 

ANXN AND TO XN 
ASXN ADD STORED TO XN 

ADXN ADD TO XN 
SBXN SUBTRACT FROM XN 

SBLXN SUBTRACT LOGIC FROM XN 
SSXN SUBTRACT STORED FROM XN 

ADLXN ADD LOGIC TO XN 
TSXN TRANSFER AND SET XN 

EAXN EFFECTIVE ADDRESS TO XN 
LCSN LOAD COMPLEMENT XN 

LXLN LOAD XN FROM LOWER 
LDXN LOAD XN FROM UPPER 

SXLN STORE XN INTO LOWER 
SXLN STORE XN INTO LOWER 

XN REGISTER USE 
STXN STORE XN INTO UPPER 

YE REGISTER 
YO REGISTER 
YS ADDER 

TNZ TRANSFER ON NOT ZERO 
TZE TRANSFER ON ZERO 

STZ STORE ZERO 

*ERSXN 

SZN SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 
FSZN FLOATING SET ZERO AND NEGATIVE INDICATORS FROM MEMORY 

ZERO B , C GENERATE ONE WORD 
ZERO INDICATOR 
ZERO INDICATOR 

M ARGUMENT-GENERATE ZERO OPERATION CODE COMPUTER WORD 
FAULTS ILLEGAL OP CODE - ZOP 

INDEX 42 

26 
205 
205 

35 
264 
270 
205 

30 
30 

206 
199 

32 
26 
10 

131 
12 
20 

131 
12 
90 

104 
92 

103 
93 
98 
91 
94 
89 
71 
69 
77 
81 
79 
73 

124 
53 
52 
49 
49 
57 
57 
13 
55 

15 
15 
16 

126 
126 

61 
100 
123 
206 

17 
24 

206 
21 

CPB-I004F 



DOCUMENT REVIEW SHEET 

TITLE: GE-625/635 Progrannning Reference Nanua1 

C P B #: _1 O_O_4_F __ _ 

From: 
Name: __________________________________ __ 
Po siti 0 n: _____________________ _ 
Address: _____________________________ _ 

Comments concerning this publication are solicited for use in improving future 
editions. Please provide any recommended additions, deletions, corrections, or 
other information you deem necessary for improving this manual. The following 
space is provided for your comments. 

.. COMMENTS: 
I: 

en 
..c: -
-::I 
U .. 
en ... .. 
A. 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 
Fold on two lines shown on reverse 

side, staple, and mail. 



STAPLE 

FOLD 

BUSINESS REPLY MAIL 
NO .-oaTAel aTAMP NICla.AIIY '" MAl LID IN TIt. UNITID aTAT.a 

POSTAGE WILL BE PAID BV 

eENERAL ELECTRIC COMPANY 

INFORMATION SYSTEMS EQUIPMENT DIVISION 
13430 NORTH BLACK CANYON HIGHWAY 

PHOENIX, ARIZONA 85029 

ATTENTION:DOCUMENTATION, LARGE SYSTEMS DEPARTMENT, C-77 

FOLD 

STAPLE 

FIRST CLASS 

PERMIT, No. 4332 

PHOENIX, ARIZONA 



INFORMATION SYSTEMS 

GENERAL" ELECTRIC 

LITHO U. S. A. 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001.0
	001.1
	0010
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043.0
	043.1
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106.0
	106.1
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188.0
	188.1
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199.0
	199.1
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225.0
	225.1
	226
	227
	228.0
	228.1
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268.0
	268.1
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	index-20
	index-21
	index-22
	index-23
	index-24
	index-25
	index-26
	index-27
	index-28
	index-29
	index-30
	index-31
	index-32
	index-33
	index-34
	index-35
	index-36
	index-37
	index-38
	index-39
	index-40
	index-41
	index-42
	replyA
	replyB
	xBack

