
THE COMPATIBLES/600

CPB-1004

GE-635
Programming

Reference Manual

GE-635

PROGRAMMING

REFERENCE MANUAL

July 1964

GENERAL fl ELECTRIC
COMPUTER DEPARTMENT

@1964 by General Electric Company

PREFACE

The GE-635 Programming Reference Manual is the basic document for programming the GE-635.
It essentially describes programming-related GE-635 machine features, the instruction rep­
ertoire, and the symbolic machine language oriented Macro Assembler. The Assembler chapter
and the examples in Chapter IV describe how the programmer may write Processor instruc­
tions using a symbolic notation.

The Programming Reference Manual is one of a set of user publications for programming the
GE-635 computer. The others of the set, together with pertinent and necessary programming
information contained in each, are:

PUBLICATION

GE-635 FORTRAN IV
Reference Manual, CPB-1006

GE-635 COBOL
Reference Manual, CPB-1007

GE-635 File and Record Control
Reference Manual, CPB-1003

GE-635 General Comprehensive
Operating Supervisor Manual, CPB-1002

GE-635 General Loader

PROGRAMMING INFORMATION

FOR TRAN IV language specifications, coding
rules and restrictions, and compiler information
for the GE-635

COBOL-61 Extended language specifications,
coding rules and restrictions, and compiler
information for the GE-635

Standard input/ output coding by use of calling
sequences to software system input/ output
routines.

1. Descriptions and functions of the Compre­
hensive Operating Supervisor modules and
submodules

2. Use of Operating Supervisor control cards
3. Coding for information exchange between

the programmer and the Operating Super­
visor

4. Alternative coding techniques for input/out­
put operations

5. Preparation of the user program fault trans­
fer table

1. Use of Loader control cards
2. Use of the Loader debugging option and

program segment overlays
3. Descriptions of relocatable and absolute

decks and their loading

iii

GE-635 Sort/Merge Generator
Reference Manual, CPB-1005

1. Descriptions of the sort and merge pro­
grams

2. Use of the sort/ merge and supplemental
system MACROS

This reference manual is addressed to programmers experienced with coding in the environ­
ment of a large-scale computer installation. It assumes some knowledge and experience in the
use of address modification with indirection, hardware indicators, fault interrupts and recovery
routines, macro operations, pseudo-operations, and other features normally encountered in a
fast, large memory capacity computer with a very flexible instruction repertoire--under control
of a master executive program. It is also assumed that the programmer is familiar with the
2' s complement number system as used in a sign-number machine.

For required programming information not given in any of the relevant manuals, contact the
nearest General Electric Computer Department Field Sales Office or:

600- Line Product Sales
General Electric Computer Department
P. O. Drawer 270
Phoenix, Arizona 85001

iv

I. SUMMARY OF SYSTEM FEATURES

Computer Components

Basic System and Functions
Memory Module
Processor Module
Input/Output Controller Module
Peripheral Subsystems

Software System .

Objectives ..
Multiprogramming
On-Line Media Conversion .. .
Centralized Input/Output
Master/Slave Relationship . . .
Master Mode Entry
Mass Storage Orientation
Program File Orientation
Software Reference Documentation ..

II. GE-635 PROCESSOR

General Characteristics

Major Functional Units ...
Master /Slave Mode of Operation .
Operation Overlapping
Address Range Protection .
Execution of Interrupts
Interval Timer

Registers and Block Diagram

Program Accessible Registers
Program Nonaccessible Registers
Adders
Switches

Processor Indicators ..

General
Zero Indicator .. .
Negative Indicator .
Carry Indicator
Overflow Indicator ..
Exponent Overflow Indicator
Exponent Underflow Indicator
Overflow Mask Indicator

v

Page

I-1

I-1
I-1
I-2
I-3
I-3

I-4

I-4
I-4
I-5
I-6
1-6
1-7
1-7
1-7
1-8

11-1

11-1
11-1
11-3
II-3
11-3
11-5

11-5

11-5
11-7
11-8
11-8

11-8

11-8
11-9
11-9

11-10
11-10
11-10
11-10
11-10

Tally Runout Indicator
Parity Error Indicator .
Parity Mask Indicator .
Master Mode Indicator . .

Fault Traps

Trapping Procedure
Fault Categories

Instruction Generated Faults .
Program Generated Faults . .
Hardware Generated Faults .
Manually Generated Faults . .

Fault Priority
Fault Recognition
Instruction Counter (IC)

The Number System

Representation of Information

Position Numbering . .
The Machine Word ..
Alphanumeric Data . .
Binary Fixed-Point Numbers
Binary Floating-Point Numbers
Normalized Floating-Point Numbers
Decimal Numbers
Instructions

Address Translation and Modification .

Address Translation
Tag Field
Modification Types . .
Register Designator
Tally Designator
Address Modification Flow Charts ..

Explanation of Symbols Used on Flow Charts
Detailed Description of Flow Charts ..

Calculation of Instruction Execution Times .

The Instruction Repertoire

Instruction Descriptions--General Remarks .
The Description Format
Abbreviations and Symbols .. .
Memory Accessing
Floating-Point Arithmetic .. .

vi

Page

II-11
II-11
II-11
II-11

II-12

II-12
II-12
II-13
II-13
II-14
II-15
II-15
II-15
II-16

II-16

II-17

II-17
...... II-17

II-18
II-19
II-21
II-22
II-22
II-23

II-23

II-23
II-24
II-25
II-26
II-26
II-28
II-30
II-30

II-33

II-33a

II-34
II-34
II-35
II-36
II-37

Descriptions of the Machine Instructions .

Data Movement--Load
Data Movement- -Store
Data Movement- -Shift
Fixed-Point Arithmetic--Addition
Fixed-Point Arithmetic--Subtraction
Fixed-Point Arithmetic--Multiplication ..
Fixed-Point Arithmetic--Division
Fixed-Point Arithmetic--Negate
Boolean Operations--AND
Boolean Operations- -OR
Boolean Operations--EXCLUSIVE OR ..
Comparison--Compare
Comparison--Comparative AND .. .
Comparison--Comparative NOT .. .
Floating-Point--Load
Floating-Point--Store
Floating-Point- -Addition . .
Floating-Point- -Subtraction
Floating-Point- -Multiplication
Floating-Point--Division
Floating-Point--Negate .. .
Floating-Point- -Normalize .. .
Floating-Point--Compare
Transfer of Control--Transfer
Transfer of Control--Conditional Transfer ..
Miscellaneous Operations
Master Mode Operations--Master Mode
Master Mode Operations--Master Mode and Control Processor

III. SYMBOLIC MACRO ASSEMBLER--GEM

General Description

Relocatable and Absolute Assemblies .

· Language Features

Location Field
Operation Field
Variable Field .. .
Comments Field
Identification Field
Symbolic Card Format
Symbols

· Types of Symbols
Expressions in General .
Elements
Terms
Asterisk Used as an Element
Algebraic Expressions

vii

. r

Page

11-39

11-39
II-45
II-51
II-56
11-64
11-71
II-73
II-75
11-76
11-78
II-80
II-83
II-90
II-91
11-93
11-94
II-95
11-97
II-99

II-102
II-106
II-106
II-107
II-113
II-115
II-118
II-130
II-131

III-1

III-2

III-3

III-3
III-3
III-3
III-4
III-4
III-4
III-5
III-6
III-6
III-6
III-7
III-7
III-7

Evaluation of Algebraic Expressions
Boolean Expressions
Evaluation of Boolean Expressions ..
Relocatable and Absolute Expressions .
Literals
Decimal Literals
Octal Literals
Alphanumeric Literals ..
Instruction Literals
Variable Field Literals
Literals Modified by DU or DL

Operations and Operation Coding

Processor Instructions ...
Address Modification Features
Register (R) Modification
Register Then Indirect (RI) Modification
Indirect Then Register (IR) Modification
Indirect Then Tally (IT) Modification .

Indirect (T) = I Variation
Increment Address, Decrement Tally (T) = ID Variation
Decrement Address, Increment Tally (T) =DI Variation
Sequence Character (T) = SC Variation
Character From Indirect (T) =CI Variation
Add Delta (T) =AD Variation
Fault (T) = F Variation
Increment Address, Decrement Tally and Continue (T) = IDC Variation
Decrement Address, Increment Tally and Continue (T) = DIC Variation

Pseudo-Operations

Control Pseudo-Operations .
Location Counter Pseudo-Operations
Symbol-Defining Pseudo-Operations .
Data-Generating Pseudo-Operations .
Storage-Allocation Pseudo-Operations .
Conditional Pseudo-Operations ..
Special Word Formats
Address Tally Pseudo-Operations
Repeat Instruction Coding Formats

Macro Operations ..

Introduction . . .
Definition of the Prototype .
Using a Macro Operation
Pseudo-Operations Used Withing Prototypes
Notes and Examples on Defining a Prototype ...

Program Linkage Pseudo-Operations (Special System MACROS) .

CALL (Call--Subroutines)
SAVE (Save--Return Linkage Data) .. .
RETURN (Return--From Subroutines) .
ERLK (Error Linkage--to Subroutines) .

viii

Page

III-8
III-8
III-8
III-9

III-10
III-11
III-12
III-12
III-12
III-13
III-13

III-14

III-14
III-14
III-15
III-17
III-18
III-20
III-21
III-21
III-22
III-22
III-23
III-24
III-25
III-25
III-25

III-26

III-27
III-35
III-37
III-45
III-52
III-54
III-56
III-56
III-57

III-58

III-58
III-59
III-63
III-64
III-67

III-69

III-69
III-71
III-72
III-73

System (Built-In) MACROS and Symbols

Source Program Input ...

Subprogram Definition
Compressed Decks ..
Source Deck Corrections

Assembly Outputs

· ..

Binary Decks
Preface Card Format
Relocatable Card Format ;
Relocation Scheme
Absolute Card Format
Transfer Card Format
Assembly Listings
Full Listing Format
Preface Card Listing
BLANK COMMON Entry
Symbolic Reference Table ..
Error Codes ...

IV. CODING EXAMPLES

Preliminary . .

Examples ...

Fixed Point to Floating Point (Integer) . . .
Floating Point to Fixed Point (Integer) .
Real Logarithm
BCD Addition
Character Transliteration
Table Lookup
Binary to BCD

APPENDIX

GE-635 Instructions Listed by Functional Class with
Page References and Timings

GE-635 Mnemonics in Alphabetical Order with Page References
GE-635 Instruction Mnemonics Correlated with Their Operation Codes
Pseudo-Operations by Functional Class with Page References
Master Mode Entry, System Symbols, and Input/Output Operations .
GE-635 Standard Character Set
Conversion Table of Octal-Decimal Integers and Fractions ..
Table of Powers of Two and Binary-Decimal _Equivalents

Page

III-74

III-74

III-74
III-75
III-76

Ill-75
(

III-78
III-79
III-80
III-81
III-82
III-83
III-83
III-84
III-85
III-85
III-85
Ill-85

IV-1

IV-1

IV-1
IV-2
IV-3
IV-5
IV-7
IV-9

IV-11

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1 ..

@(ga(ID@@ ~~[ffi~~~----------
ix

Figure

II-1

II-2

II-3

II-4

II-5A

II-5B

III-1

Block Diagram of Principal Processor Registers

Table of Faults .

Ranges of Fixed-Point Numbers

Ranges of Floating-Point Numbers

Address Modification Flow Chart

Address Modification Flow Chart

GE-635 Macro Assembler Coding Form

x

Page

II-6

II-16

II-20

II-22

II-28

II-29

III-5

I. SUMMARY OF SYSTEM FEATURES

COMPUTER COMPONENTS

Basic System and Functions

The basic GE-635 computer system is made up of four principle hardware components:

1. The Memory module
2. The Processor module
3. The Input/ Output Controller module
4. Peripheral subsystems

Each of the items 1 through 4 per forms specialized functions to be elaborated upon under separate
headings that follow. For purposes of this discussion, we consider a basic computer system
comprised of items 1 through 3 and the following complement of peripheral devices:

A Magnetic Drum Storage Unit
A Dual-Channel Magnetic Tape Subsystem
A Card Reader
A Card Punch
Two Printers
An Operator Console with Typewriter

The basic system can be expanded in a variety of ways to develop multiprocessor and multi­
computer systems that are restricted in size only by practical application considerations. (The
computer system itself is theoretically capable of unlimited expansion; see the GE-635 System
Manual.}

Memory Module

The Memory module, unlike most computer systems which are processor-oriented, is the over­
all system control agency. It serves as a passive coordinating component that provides interim
information storage and general system communication control. The module comprises two
major functional units: the System Controller and the Magnetic Core Storage Unit. The principle
features of the module and the performing units are:

FEATURE

1. Control of the selection and enabling
of the eight or fewer channels between
the Memory and Processor or Input/
Output Controller modules

FUNCTIONAL UNIT

System Controller (eight priority-linked channel
control cells plus an associated mask register)

I-1

FEATURE

2. Recognition of program interrupts
within the multiprogram environ­
ment

3. Selection of the type of Core Storage
Unit memory cycle to be used--Read­
Restore, Clear-Write, or Read-Alter­
Rewrite

4. Control of information transfers to
and from the Core Storage Unit and
on the selected system communication
channel

5. Storage of information

6. Memory-based block protect
to give protection to any 1024-
word block is optionally available

Processor Module

FUNCTIONAL UNIT

System Controller (32 priority-related program
interrupt cells plus an associated mask register)

System Controller (control logic submit)

System Controller (control logic submit)

Magnetic Core Storage Unit

System Controller (memory file protection reg­
ister)

The Processor module is composed of two principle functional units: the Program Control
Unit and the Operations Unit. The chief features of the module and the performing units are:

1. Decoding of instructions and indirect
words with associated direction of the
Operations Unit

2. Development of effective addresses

3. Memory protection of all executive
routines and user programs not
currently under execution

4. Dynamic relocation of user and other
programs

5. Master and Slave Modes of operation
whereby in the Master Mode all
machine instructions can be executed
but in the Slave Mode the LEAR, LDT,
SMIC, RMCM, SMCM, and CIOC instruc­
tions cannot be executed

6. Performance of arithmetic, logical,
shifting, and other operations involving
fixed- and floating-point numbers in
single or double precision

Program Control Unit (operations decoder)

Program Control Unit (address modification reg­
isters, adder, location counter, and control cir­
cuitry)

Program Control Unit (Base Address register
and adder)

Program Control Unit (Base Address register
and adder)

Program Control Unit (Master Mode Indicator
and mode control circuitry)

Operations Unit (control logic submit, main and
exponent adders, and associated registers)

I-2

Input/ Output Controller Module

The Input/ Output Controller module is the coordinator of all input/ output data transfers between
the complement of peripheral subsystems and the Memory module. It is in fact a separate pro­
cessor which, when provided with certain required information from the Comprehensive Operating
Supervisor and the user program, works independently of the Processor module under control
of its own permanently-wired program.

The major functional units of the Input/Output Controller are (1) the Memory Interface, (2)
the Buffer Storage, (3) the Micro-Program Generator, (4) the I/O Processor, and (5) the PUB*
Interrupt Service. The main features of this module and the performing units are:

FEATURE

1. Transfer of characters and words
to and from memory

2. Transfer of characters only to and
from the programmer-designated
peripheral type and Comprehensive
Operating Supervisor selected physical
device

3. Memory protection of all executed
routines and user programs, not
currently involved in input/ output
operations, on all data transfers

4. Sensing and storing, in appropriate
input/ output queue lists of executive
system (protected) memory, the
status of every peripheral operation
and/ or device involved in input/ output
transfers

Peripheral Subsystems

FUNCTIONAL UNIT

Memory Interface (with the Buffer Storage as
controlled by the Micro-Program Generator and
I/ 0 Processor)

PUB Interrupt Service (with the Buffer Storage
as controlled by the Micro- Program Generator
and the I/ 0 Processor)

I/ 0 Processor (as controlled by the Micro­
Program Generator)

Micro-Program Generator and I/O Processor

Peripheral subsystems used with the GE-635 are described in the following manuals:

1. CR-20 Card Reader Reference Manual, CPB-1011
2. CP-10 Card Punch Reference Manual, CPB-1012
3. PR-20 Printer Reference Manual, CPB-1013
4. DS-20 Disc Storage Unit Reference Manual, CPB-1014
5. TS-20 Perforated Tape Reader/Punch Reference Manual, CPB-1015
6. MD-30 Magnetic Drum Reference Manual, CPB-1038
7. Magnetic Tape Subsystems Reference Manual, CPB-1044

*Peripheral Unit Buffer; that is, peripheral device channel

I-3

SOFTWARE SYSTEM

Objectives

The primary objectives of the GE-635 software system are:

1. To reduce user-program "turn around" time in large-scale installations (elapsed
time from program submission to the machine room up to return of program solutions).

2. To assure that accounting information is based only on such time as the user program
activity is worked upon by the Processor and peripheral devices

3. To increase the total "throughput" of the computer (the amount of work that may be
performed in any given hour)

4. To reduce computer operation "overhead" time in running the installation programs

5. To provide easy-to-use programmer and operator interfaces with the executive soft­
ware

The attainment of these objectives is achieved by the General Comprehensive Operating Super­
visor (GECOS), the overall manager of the software system, through efficient use of the hard­
ware features and the supervision of a multiprogramming environment that is the normal opera­
ting mode of the GE-635. The signific.ant features provided by the Operating Supervisor and
related to the several primary objectives above are summarized in the list following. These
features are implemented by modules and submodules within the Comprehensive Operating
Supervisor.

1. Scheduling and coordination of jobs

2. Memory allocation for data and programs

3. Assignment of input/ output peripherals

4. Input/ Output supervision on an interrupt-oriented basis

5. File-oriented programming (instead of device-oriented)

6. Fault detection with standard Operating Supervisor or optional programmer-supplied
corrective actions

7. Modular construction to simplify maintenance

8. Maximum system throughput via multiprogramming

9. Maximum efficiency of core memory by dynamic program relocation, and by system­
controlled subprogram overlays.

Multiprogramming

Although each user -programmer writes his job program as though he had exclusive use of the
computer, he is in fact generating a program that will reside concurrently in memory with other
user programs and will be executed in a time-shared manner; that is, any given program is
processed until it is held up (usually because of the need for some input/ output to be completed)

I-4

at which time the next most urgent program is processed. Transfer between programs under
multiprogram execution is performed by means of the hardware interrupt facility (in the System
Controller) working with the Dispatcher routines in the Input/Output Supervisor. The ways
by which a user program can be temporarily delayed in execution are:

DELAY TYPE

Roadblock

Relinquish

Forced Relinquish

REASON

Program cannot progress until all input/ output
requests have terminated

Program relinquishes control so that some other
program may be executed

Program was interrupted because a timer run­
out occurred.

Each time a program yields control to the Operating Supervisor by means of Roadblock,
Relinquish or by Forced Relinquish listed above, the Supervisor has the opportunity to give
control to another program in core which can make effective use of the Processor.

In giving such control, the Supervisor examines the following conditions:

1. Program urgency compared to other programs that reside in memory
2. Roadblock status involving completion of all input/ output
3. Completion of input/ output that was pending when the last Relinquish was given
4. Request present for use of the Processor

On-Line Media Conversion

Media conversions are of two basic types (1) bulk media conversion, whereby large volumes
of data in a single format and for a single purpose are processed and, (2) system media con­
version where low-volume sets of data--each with its own format and purpose--are processed.

Bulk media conversion is performed by a system routine which may be called into execution
by use of a control card. Other control cards will direct the routine as to where to find the
input and where to place the output.

On-line media conversions for both input and output are performed as a normal part of the
multiprogramming environment of the GE-635. Normal job input is carried out by input media
conversion, which reads card input from the card reader, scans the control cards for execution
information, and records the job on the input queue located on the system drum.

System media conversions of program output data are automatically performed by the Output
Media Conversion routine executed in protected memory. The programmer specifies that a
particular output file be written on the permanently assigned system output (SYSOUT) file by
use of the PRINT, PUNCH, or WTREC calling sequences described in the GE-635 File and
Record Control Reference Manual. Once on the SYSOUT file, the output is converted to hard
copy or punched cards by the Output Media Conversion routine, concurrently with other user
programs under execution in the multiprogramming environment.

I-5

Centralized Input/ Output

In the multiprogramming environment where several programs may concurrently request input/
output, a facility must be provided (1) for processing such multiple requests in terms of the
efficient use of the entire peripheral complement and, (2) for maintaining continuous processing
of the multiple programs in core storage. The Comprehensive Operating Supervisor module
that performs these general functions is the Input/ Output Supervisor.

The main functions of the Input/ Output Supervisor are to initiate an input/ output activity and
to respond to the termination of an input/output activity. In addition, the Input/Output Super­
visor provides the following functions:

1. File code to physical unit translation

2. File protection of user files

3. Pseudo-tape processing on disc/ drum

4. Supervision of all input/ output interrupts

5. Queueing of input/ output requests

6. Utilization of crossbarred magnetic tape channels

7. Maintenance of an awareness of the status of each peripheral

8. Accounting of time spent by the Processor and all peripheral for each program executed

When the Input/ Output Supervisor receives a request to perform an input/ output function, it
looks at the communication cells and issues a connect instruction. If the particular channel
is busy, the request is placed in a waiting queue. If the request queue is full or if the program
indicated that it should be roadblocked until all input/ output is complete, then control is given
to another program residing in memory.

When the input/ output operation terminates, control is given to the Input/ Output Supervisor to
perform all necessary termination functions. At this point, the request queue is examined and
if any requests for the channel are in queue, they will be executed.

Master/Slave Relationship

Each Processor has the capability of operating in the Slave Mode or in the Master Mode. Master
Mode is established for exclusive use by the Operating Supervisor. When executing a user
program, a Processor is in Slave Mode. The prime reason for the Master Mode of operation
is to protect the Operating Supervisor and user programs as well from modification by other
user programs. This feature is vital in the multiprogramming environment and is closely tied
in with memory protection, accounting determinations, multiprogram interrupt management,
intermodule communications control, and input/ output operations. Each of these functions is
implemented by a Processor instruction that requires the Master Mode. These are listed below.

All instructions available to the Processor in Slave Mode are available in Master Mode. The
following instructions can be executed only when the Processor is in Master Mode.

I-6

1. Load Base Address Register (LBAR)
2. Load Timer Register (LDT)
3. Set Memory Controller Interrupt Calls (SMIC)
4. Read Memory Controller Mask Registers (RMCM)
5. Set Memory Controller Mask Registers (SMCM)
6. Connect Input/Output Channel (CIOC)

The last of these instructions, Connect Input/ Output Channel, is the beginning of every peripheral
operation. Thus, all peripheral operations are reserved for execution in Master Mode, and in
particular by the Input/ Output Supervisor within the Comprehensive Operating Supervisor.

Master Mode Entry

Although Master Mode operation by the Processor is a primary safeguard for executive routines
and user programs in memory, the applications programmer can force the Processor into this
mode but only for accessing routines that are part of the Operating Supervisor. This is done
by use of the Master Mode Entry (MME) instruction and one of the system-symbol operands
listed in Appendix E and described fully in the General Comprehensive Operating Supervisor
Manual. Any other use of MME causes an abort of the user program. Thus, through the MME
instruction, the programmer can communicate with modules of the Operating Supervisor to
exchange any necessary information for the execution of his program.

Mass Storage Orientation

"Compute overhead" time is reduced and multiprogramming is enhanced through the use of an
external drum (mass) storage unit. The drum (and optionally a disc storage device) enables
optimized accessing of system routines and performs data transfers at higher rates than other
external storage media.

The drum and/ or disc is used primarily for the following purposes:

1. System storage area-- Least used submodules of the Operating Supervisor and all
system programs are stored on the drum. Included in this storage area are the As­
sembler, compilers (FORTRAN and COBOL), portions of the operating system, sub­
routine library, sort/merge, utility routines used by system routines, tables associated
with storage allocation and file/record assignments, operational statistics, hardware
diagnostics, and the General Loader with its debugging routines.

2. Temporary data storage- -Temporary data files used during a single activity can be
stored on the drum or disc for fast access.

3. Permanent user files--Permanent data files can be stored on the drum or disc and
accessed through the software system.

Program File Orientation

The software system is further described as file oriented because (1) the Comprehensive Opera­
ting Supervisor assigns peripheral devices to an activity and (2) it manages all assigned periph­
erals during input or output operations so that the programmer never deals directly with input/
output subsystems or devices. The programmer references all peripherals by use of file code
designators, two alphanumeric characters, that are referenced in two ways: (1) on file control
cards used by the Allocator in the Operating Supervisor to specify those files needed to execute

I-7

the activity and, (2) in communicating to the File and Record Control program or to the Input/
Output Supervisor. The file code designators and their assigned peripheral devices are main­
tained in the Peripheral Assignment Table (PAT) used by the Input/ Output Supervisor for pe­
ripheral identification.

Software Reference Documentation

The following manuals and documents contain detailed descriptions of items mentioned in this
chapter.

1. GE-635 Comprehensive -Operating Supervisor Reference Manual, CPB-1002
2. GE-635 File and Record Control Reference Manual, CPB-1003
3. GE-635 General Loader Reference Manual, CPB-1008
4. GE-635 FORTRAN IV Reference Manual, CPB-1006
5. GE-635 COBOL Reference Manual, CPB-1007
6. GE-635 Sort/Merge Generator Reference Manual, CPB-1005
7. GE-635 FORTRAN IV Mathematical Routine Library
8. GE-635 Operator's Reference Manual, CPB-1045

I-8

II. GE-635 PROCESSOR

GENERAL CHARACTERISTICS

Major Functional Units

The Processor comprises two relatively independent units: the Control Unit and the Operations
Unit.

The Control Unit provides Processor control functions and also serves as an interface between
the Operations Unit and memory. In addition, the Control Unit performs the following principal
functions:

1. Address modification
2. Address relocation
3. Memory protection for user and executive programs
4. Fault recognition
5. Interrupt recognition
6. Operation decoding

Since the Control Unit runs independently of the Memory module, a single Processor can be
connected to memories with different cycle times. The Processor is designed to eliminate
adverse interaction when memories with different cycle times are employed.

The Operations Unit performs all arithmetic and logical operations as directed by the Control
Unit. The Operations Unit contains most of the registers available to a user program. This
unit performs such functions as:

1. Fractional and integer divisions and multiplications
2. Automatic alignment of fixed-point numbers for additions and subtractions
3. Inverted divisions on floating-point numbers
4. Automatic normalization of floating-point resultants
5. Separate operations on the exponents and mantissas of floating-point numbers
6. Shifts
7. Indicator Register loading and storing
8. Base Address Register loading and storing
9. Timer Register loading and decrementing

Master/Slave Mode of Operation

To permit separation of control and object programs with corresponding protection of control
programs from undebugged object programs, two modes of operation, Master and Slave, are
provided in the Processor. Control programs will run in the Master Mode, and object programs
will run in the Slave Mode. Programs running in Master Mode have access to the entire memory,

II-1

may initiate peripheral and internal control functions, and do not have base address relocation
applied. Programs running in Slave Mode have access to a limited portion of the memory, cannot
generate peripheral control functions, and have the base address register added to all relative
memory addresses of the object program.

Master Mode operation is the state in which the Processor:

1. Presents an "unrelocated" address to the memory

2. Has an unbounded access to memory

3. Causes the memory to be in the unprotected state when accessed by the Processor

a. This permits access to protected areas of memory (protected by the File Protect
Register- -when provided) and setting of execute interrupt cells.

b. When this Processor is designated the "control" Processor by the memory, as
set by Memory module switches, this also permits generation of peripheral com­
mands, alteration of the File Protect Register (when installed) and interrupt masks,
and generation of execute interrupts.

4. Permits setting the timer and Base Address Register by the appropriate instructions
(Load Timer Register or Load Base Register, LDT and LBAR)

The Processor is in the Master Mode when any of the following exists:

1. The Master Mode Indicator is in the master condition
2. An execute interrupt is recognized
3. A fault is recognized

Slave Mode operation is the state in which the Processor:

1. Presents a relocated address to the memory, as specified by the Base Address Register

2. Restricts the effective address formed to the bounds specified by the Boundary Register

3. Causes the memory to be in the "protected" state when accessed by the Processor.

a. This prohibits access to protected areas of memory (controlled by the File Protect
Register).

b. This prohibits generation of peripheral commands, alteration of the File Protect
Register/ interrupt masks, or setting of execute interrupt cells, even if the Processor
is designated the control Processor by the Memory module.

4. Prohibits setting of the timer, and Base Address Register by the instructions LDT or
LBAR

The Processor is in the Slave Mode when the Master Mode Indicator is in the slave condition
or when the Transfer and Set Slave (TSS) instruction is being executed. (See page II-11.)

II-2

Operation Overlapping

Instruction words are fetched in pairs and sequentially transferred to the Control Unit of the
Processor where the instructions are directed to the primary and secondary instruction regis­
ters of the instruction decoder. If required, address modification is then performed using the
first of the two instructions.

As soon as this is accomplished, the operand specified by the first instruction is requested from
memory while the Control Unit concurrently performs any address modification required by the
second of the instruction pair.

When the operand called for by the first instruction is obtained, the Control Unit transfers the
operand to the Operations Unit, thus initiating the specified operation to be carried out. While
this operation is being carried out by the Operations Unit, the operand specified by the second
instruction is requested by the Control Unit. As soon as the second operand is received and
the Operations Unit has finished with the first operand, the Control Unit signals the Operations
Unit to carry out the second operation. Finally, while the second operation is being carried out,
the next instruction pair is requested from memory.

Address Range Protection

Any object program address to be used in a memory access request while the Processor is in
the Slave Mode is checked, just prior to the fetch, for being within the address range allocated
by the Comprehensive Operating Supervisor (GECOS) to the program for this execution. This
address range protection is commonly referred to as memory protection.

For the purpose of memory protection, the 18-bit Processor Base Address Register is loaded
by GECOS with an address range in bit positiOns 9-16. The check takes place only in the Slave
Mode. It consists of subtracting bit positions 0-7 of the program address from this address
range, using the boundary adder. When the result is zero or negative, then the program address
is out of range; and a Memory Fault Trap occurs. (Refer to page II-14.)

More specifically, the checking is actually based on nine bits, namely the Base Address Register
positions 9-17 and the bit positions 0-8 of the program address. This permits address range
allocation to job programs in multiples of 512 words. Because of a software requirement, bits
8 and 1 7 of the Base Address Register have been wired in such a way that they contain zeros
permanently and cannot be altered by the LBAR instruction. Thus, memory allocation and pro­
tection is performed in multiples of 1024 words.

In the Master Mode no checking takes place; thus, any memory location (in those Memory modules
that are connected to this Processor) can be accessed.

Execution of Interrupts

When an execute interrupt request present signal is received from a Memory module system
controller for which the Processor is the control Processor, the Processor carries out the
interrupt procedure as soon as an instruction from an odd memory location has been executed
that:

1. Did not have its interrupt inhibit bit position 28 set to a 1

II-3

2. Did not cause an actual transfer of control (A transfer of control is effected if the
instruction is an unconditional transfer, or a conditional transfer with the condition
satisfied.)

3. Was not an Execute or Execute Double (XEC or XED) instruction (Note that an XEC
or XED instruction and the one or two instructions carried out under its control are
regarded as a single instruction execution.)

The interrupt procedure consists of the following steps:

1. Enter the Master Mode (the Master Mode Indicator is not affected).

2. Return the transfer interrupt number command code to the system controller that sent
the interrupt request present signal,

3. Receive a five-bit interrupt code on the data lines from this Memory module (bit positions
12-16), specifying the number of the highest priority nonmasked interrupt cell that was
set to ON when the transfer interrupt number command code was recognized at the
System Controller.

4. Carry out an XED instruction (see p. II-120) with an effective address (Y) as shown below,
bits 0-17:

000 000 000

0

Memory
No.

8 9 11

Interrupt
Ce 11 No

12 16

0

17 18

Operation code, inhibit bit,
and tag fields

35

The memory number is determined by the position of the address reassignment switches
(A

0
A

1
A

2
) associate.j with the system controller causing the execute interrupt. The

switches are three--position toggles having the positions 0, 1, and EITHER. A switch
in the EITHER position is interpreted as a 0 in preparing the address for the instruction.

The cell number is determined by the highest priority unmasked interrupt cell (in the
system controller) causing the execute interrupt.

5. Return to the mode specified by the Master Mode Indicator (see below) and continue
with the instruction from the memory location specified by the Instruction Counter.

Each of the two instructions from the memory location Y-pair may affect the Master Mode
Indicator as follows:

1. If this instruction results in an actual transfer of control and is not the Transfer and
Set Slave instruction (TSS), then ON (that is, Master Mode).

2. If this instruction is either the Return instruction (RET) with bit 28 equal to 0 or the
TSS instruction, then OFF (that is, Slave Mode).

The first of the two instructions from the memory location Y must not alter the contents of the
location of the second instruction, and must not be an XED instruction. If the first of the two
instructions alters the contents of the Instruction Counter, then this transfer of control is effective
immediately; and the second of the two instructions is not executed.

II-4

Interval Timer

The Processor contains a timer which provides a program interrupt at the end of a variable
interval, The timer is loaded by GECOS and can be set to a maximum of approximately four
minutes total elapsed time. (See pages II-7 and II-13)

REGISTERS AND BLOCK DIAGRAM

The Processor block diagram (Figure II-1) shows the program accessible registers as well as
the major nonprogram accessible registers, adders, and switches. Only data and information
paths are shown. The block diagram also shows the division between the Operations Unit and
Control Unit.

Program Accessible Registers

The following table shows the registers accessible to the program.

Name Mnemonic Length

Accumulator Register AQ 72 bits

Eight Index Registers Xn 18 bits each
(n=O, ... , 7)

Exponent Register E 8 bits

Base Address Register BAR 18 bits

Indicator Register IR 18 bits

Timer Register TR 24 bits

Instruction Counter IC 18 bits

1. The AQ-register is used as follows:

a. In floating-point operations as a mantissa register for single and double precision

b. In fixed-point operations as an operand register for double precision

c. In fixed-point operations as operands for single precision where each AQ half
serves independently of the other, The halves then are called the A-register,

(namely AQ
0

_35) and the Q-register, (namely AQ
36

_
71

).

d. In address modification each half of A as well as of Q as an index register. These
halves then are called AU (namely A

0
_ 1

7
), AL (namely A

18
_
35

), QU (namely Q
0

..
17

),
and QL (namely Q

18
_
35

).

2. The Xn-registers are used as follows:

a. In fixed-point operations as operand registers for half precision

b. In address modification as index registers

3. The E-register supplements the AQ-register in floating-point operations, serving as
the exponent register.

II-5

OPERATIONS

UNIT

CONTROL

UNIT

DATA PROM

MEMORY

AQ

ADDRESS DATA TO

TO MEMORY MEMORY

Figure II-1. Block Diagram of Principal Processor Registers

II-6

4. The Base Address Register is used in address translation and memory protection. It
stores the base address and the number of 1024-word blocks assigned to the object
program being executed.

5. The Indicator Register is a generic term for all the program-accessible indicators
within the Processor. The name is used where the set of indicators appears as a
register, that is, as source or destination of data.

6. The Timer Register is decremented by one each 15.625 microseconds, and a Timer
Runout Fault Trap occurs whenever its contents reach zero. If Timer Runout occurs
in Master Mode, the trap does not occur until the Processor returns to Slave Mode;
but decrementation continues beyond zero.

7. The Instruction Counter holds the address of the next instruction to be executed.

Program Nonaccessible Registers

The following listed registers are used in Processor operations but are not referenced in machine
instructions.

Mnemonic Length

M 72 bits

H 72 bits

N 72 bits

D 8 bits

G 8 bits

ADR 18 bits

YE 18 bits

YO 18 bits

COE 18 bits

coo 18 bits

1. The M-register is an intermediate register used to buffer operands coming in from
memory.

2. The H- and N-registers are intermediate registers used to hold the operands which
are presented to the main, 72-bit (S) adder.

3. The D- register is used to hold the exponent of the operand from memory in floating­
point operations.

4. The G-register contains the number of shifts necessary in shifting, floating-point, and
fixed-point multiply and divide operations.

5. The ADR (Address) -register is used to hold the absolute address of memory cells
when making memory accesses.

6. The YE- and YO-registers contain the address portions of the even and odd instruction
respectively of an accessed instruction pair.

7. The COE- and COO-registers contain the lower half of each instruction word and include
the operation code and the tag field portions of the even and odd instructions respectively
of an instruction pair.

Il-7

Adders

The following table lists the Processor adders.

Name Le I'..&_ th

s 72 bits

YS 18 bits

ES 10 bits

BS 9 bits

RS 9 bits

1. The S-adder is the main adder in the Processor. It is used for fixed- and floating-point
additions, subtractions, multiplications, and divisions.

2. The YS-adder is used to compute the effective addresses of instructions and operands.

3. The ES-adder is the exponent adder; it is used for exponent operations in floating-point
operations.

4. The RS-adder is used to compute the absolute addresses of instructions and operands.

5. The BS-adder, although not implemented as a complete adder, is used to determine if
an effective address is out of the range allocated to the operating program (mHmory
protection).

Switches

The switches (rounded figures on the block diagram) control the flow of information between the
registers, adders, and the memory interface.

PROCESSOR INDICATORS

General

The indicators can be regarded as individual bit positions in an 18-bit half-word Indicator
Register (IR).

An indicator is set to the ON or OFF state by certain events in the Processor, or by certain
instructions. The ON state corresponds to a binary 1 in the respective bit position of the IR;
the OFF state corresponds to a 0.

The description of each machine instruction on pages II-39 through II-135 includes a statement
about (1) those indicators that may be affected by the instruction and (2) the condition under which
a setting of the indicators to a specific state occurs. If the conditions stated are not satisfied,
the status of this indicator remains unchanged.

II-8

The instruction set includes certain instructions which transfer data between the lower half of
a storage location and the Indicator Register. The following table lists the indicators that have
been implemented, their relation to the bit positions of the lower half of a memory location, and
the instructions directly affecting indicators.

Implementation Bit Position Indicator Indicator Instructions

18 Zero 1. Load Ind ic at ors (LDI)
19 Negative 2. Store Indicators (STI)
20 Carry
21 Overflow 3. Store Instruction Counter

Assigned 22 Exponent Overflow Plus 1 and Indicators (STCl)
23 Exponent Underflow 4. Return (RET)
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Master Mode

~ - - - - --i - - - - -t- - - - - - - - - - -- - - - - - -i

29
30
31 Must be

Unassigned 32 Zero
33
34
35

The following descriptions of the individual indicators are limited to general statements only.

Zero Indicator

The Zero Indicator is affected by instructions that change the contents of a Processor register
(A, Q, AQ, Xn, BR, IR, TR) or adder, and by comparison instructions.

The indicator is set ON when the new contents of the affected register or adder contains all
binary 0' s; otherwise the indicator is set OFF.

Negative Indicator

The Negative Indicator is affected by instructfons that change the contents of a Processor register
(A, Q, AQ, Xn, BAR, IR, TR) or adder, and by comparison instructions.

The indicator is set ON when the new contents of bit position 0 of this register or adder is a
binary 1; otherwise it is set OFF.

@~o@@@ ~~[ffi~~~----------
II-9

Carry Indicator

The Carry Indicator is affected by left shifts, additions, subtractions, and comparisons.

The indicator is set ON when a carry is generated out of bit position O; otherwise it is set OFF.

Overflow Indicator

The Overflow Indicator is affected by the arithmetic instructions, but not by compare instructions
and Add Logical (ADL(R)) or Subtract Logical (SBL(R)) instructions.

Exponent Overflow Indicator

The Exponent Overflow Indicator is affected by arithmetic operations with floating-point numbers
or with the exponent register (E).

The indicator is set ON when the exponent of the result is larger than +127 which is the upper
limit of the exponent range.

Since it is not automatically set to OFF otherwise, the Exponent Overflow Indicator reports any
exponent overflow that has happened since it was last set OFF by certain instructions (LDI,
RET, and Transfer on Exponent Overflow (TEO)).

Exponent Underflow Indicator

The Exponent Underflow Indicator is affected by arithmetic operations with floating-point numbers,
or with the exponent register (E).

The indicator is set ON when the exponent of the result is sma.ller than -128 which is the lower
limit of the exponent range.

Since it is not automatically set to OFF otherwise, the Exponent Underflow Indicator reports
any exponent underflow that has happened since it was last set OFF by certain instructions (LDI,
RET, and Transfer on Exponent Underflow (TEU)).

Overflow Mask Indicator

The Overflow Mask Indicator can be set ON or OFF only by the instructions LDI and RET.

When the Overflow Mask Indicator is ON, then the setting ON of the Overflow Indicator, Exponent
Overflow Indicator, or Exponent Underflow Indicator does not cause an Overflow Fault Trap to
occur. When the Overflow Mask Indicator is OFF, such a trap will occur.

Clearing of the Overflow Mask Indicator to the unmask state does not generate a fault from a
previously set Overflow Indicator, Exponent Overflow Indicator, or Exponent Underflow Indicator.
The status of the Overflow Mask Indicator does not affect the setting, testing, or storing of the
Overflow Indicator, Exponent Overflow Indicator, or Exponent Underflow Indicator.

II-10

Tally Runout Indicator

The Tally Runout Indicator is affected by the Indirect Then Tally (IT} address modification type
(all designators except Indirect and Fault) and by the Repeat, Repeat Double, and Repeat Link
instructions (RPT, RPD, and RPL).

The termination of a Repeat instruction because a specified termination condition is met sets
the Tally Runout Indicator to OFF.

The termination of a Repeat instruction because the tally count reaches 0 (and for RPL because
of a 0 link address) sets the Tally Runout Indicator to ON; the same is true for tally equal to O
in some of the IT address modifications.

Parity Error Indicator

The Parity Error Indicator is set to ON when a parity error is detected during the access of
one or both words of Y -pair from memory.

It may be set to OFF by the LDI or RET instruction.

Parity Mask Indicator

The Parity Mask Indicator can be set to ON or OFF only by the instructions LDI and RET.

When the Parity Mask Indicator is ON, the setting of the Parity Error Indicator does not cause
a Parity Error Fault Trap to occur. When the Parity Mask Indicator is OFF, such a trap will
occur.

Clearing of the Parity Mask Indicator to the unmasked state does not generate a fault from a
previm.isly set Parity Error Indicator. The status of the Parity Mask Indicator does not affect
the setting, testing, or storing of the Parity Error Indicator.

Master Mode Indicator

The Master Mode Iridicator can be changed only by an instruction. For a description of how the
indicator can be changed, refer to the following instruction descriptions:

Instruction

Master Mode Entry (M~VIE)
Return (RET)
Derail (DRL)
Transfer and Set Slave (TSS)

Raference

Page II-121
Page II-114
Page II-122
Page II-113

When the Master Mode Indicator is ON, the Processor is in the Master mode; however, the
converse is not necessarily true. (See the MME and DRL descriptions.)

II-11

FAULT TRAPS

Trapping Procedure

Sixteen types of faults and other events each have a fault trap assigned. Some of these events
have nothing to do with actual faults; they are included here because they are treated the same
as faults.

The fault trap procedure is similar to the interrupt procedure (page II-4) except that the
effective address is defined differently. The fault trap procedure consists of the following steps:

1. Autom3.tically enter the Master Mode (the Master Mode Indicator is not affected).

2. Carry out an Execute Double instruction (page II-120) with an effective address (Y)
as defined for bits 0-17 of a machine word as follows:

I ZEROS Constant Code ; 0

0 5 6 12 13 16 17

Constant: Set up by the fault switches in the Processor (also see the description of
the instructions Master Mode Entry (MMj~) and Derail (DRL)

The four-bit fault trap code which identifies the respective fault trap
(see Figure II- 2).

3. Return to the mode specified by the Master Mode Indicator, and continue with the instruc­
tion from the memory location specified by the Instruction Counter.

Ead1 of the two instructions from the memory location Y -pair may affect the Master Mode
Indicator as follows: If this instruction results in an actual transfer of control and is not the
Transfer and Set Slave instruction (TSS), then ON: if this instruction is either the Return instruc­
tion (RET) with bit 28 equal to 0 or the TSS instruction, then OFF.

The first of the two instructions from the memory location Y must not alter the contents of the
location of the second instruction, and must not be an Execute Double instruction (XED). If the
first of the two instructions alters the contents of the Instruction Counter, then this transfer of
control is effective immediately; and the second of the two instructions is not executed.

Fault Categories

There are four general categories of faults:

1. Instruction generated (by execution of instruction)
2. Program generated
3. Hardware generated
4. Manually generated

II-12

• Instruction Generated Faults. The Instruction generated faults are:

1. Master Mode Entry (MME)

The instruction Master Mode Entry has been executed (page II-121).

2. Derail (DRL)

The instruction Derail has been executed (page II-122).

3. Fault Tag

The address modifier I(T) where T=F has been recognized. The indirect cycle will not
be ma.de upon recognition of F, nor will the operation be completed.

4. Connect (CON)

The Processor has received a Connect from a Control Processor via a System Con­
troller.

5. Illegal OP Code (ZOP)

An operation code of all zeros has been executed.

• Program Generated Faults. Program generated faults are defined as:

1. The Arithmetic Faults

a. Overflow (FOFL)--An arithmetic overflow, exponent overflow, or exponent under­
flow has been generated. The generation of this fault is inhibited when the Overflow
Mask is in the mask state. Subsequent clearing of the Overflow Mask to the un­
masked state will not generate this fault from previously set indicators. The
Overflow Fault Mask state does not affect the setting, testing, or storing of indicators.

b. Divide Check (FDIV)--A divide check fault occurs when the actual division cannot
be carried out for one of the reasons specified with each divide instruction.

2. The Elapsed Time Interval Faults

a. Timer Runout (TROF)- -This fault is generated when the timer count reaches zero.
If the Processor is in Master Mode, recognition of this fault will be delayed until
the Processor returns to the Slave Mode; this delay does not inhibit the counting
in the Timer Register.

b. Lockup (LUF)--The Processor is in a program lockup which inhibits recognizing
an execute interrupt or interrupt type fault for greater than Oi milliseconds.
Examples of this condition are the. coding TRA * or the continuous use of inhibit bit.

c. Operation Not Completed (FONC)--This fault is generated due to one of the following:

1) No System Controller attached to the Processor for the address.

2) Operation Not Completed. (See Hardware Generated Faults, page II-14.)

II-13

3. The Memory Faults

a. Command (FCMD)--This fault is interpreted as an illegal request by the Processor
for action of the System Controller. These illegal requests are:

1) The Processor is not the control Processor, or is the control Processor in
the Slave Mode, and issues a CIOC, RMCM, RMFP, SMCM, SMFP, or SMIC.
The CIOC, SMCM, SMFP, and SMIC commands will not be executed. (Refer
to page A-7 for descriptions and references concerning these instruction mne­
monics.)

2) When the Processor has issued a connect to a channel that is masked off (by
program or switch).

b. Memory (FMEM)--This fault is generated when:

1) No physical memory existed for the address.

2) An address (in Slave Mode) is outside the program boundary or System Con­
troller protected memory.

3) The memory did not respond to a request within 1 to 2 milliseconds.

• Hardware-Generated Faults. The hardware-generated faults are defined as:

1. Operation Not Completed (FONC)--This fault is generated due to one of the following:

a. The Processor has not generated a memory operation within 1 to 2 milliseconds
and is not executing the Delay Until Interrupt Signal (DIS) instruction.

b. The System Controller closed out a double-precision or read-alter-rewrite cycle.

c. See Operation Not Completed under Program Generated Faults (page II-13).

2. Parity (FPAR)--This fault is generated when a parity error exists in a word which is
read from a core location:

a. Single- or double-instruction word fetch--if the odd instruction contains a parity
error, the instruction counter retains the location of the even instruction.

b. Indirect word fetch--if a parity error exists in an indirect and tally word in which
the word is normally altered and replaced, the contents of that memory location
are destroyed.

c. Operand fetch--when a single-precision operand, C(Y) is requested, the contents
of the memory pair located at Y, Y+l where Y is even, or Y-1, Y, where Y is odd
are read from memory. The System Controller will .!!Qi report a parity error
if it occurs in C(Y+l) or C(Y-1), but will restore the C(Y+l), C(Y-1) with a parity
bit equal to 1.

If a parity error occurs on any instruction for which the C(Y) are taken from a
core location (this includes "to storage" instructions, ASA, ANSA, etc., the Processor
operation is completed with the faulty operand before entering the fault routine.

II-14

The generation of this fault is inhibited when the Parity Mask Indicator is in the
mask state. Subsequent clearing of the Parity Mask to the unmasked state will
not generate this fault from a previously set Parity Error Indicator. The Parity
Mask does not effect the setting, testing, or storing of the Parity Indicator.

• Manually Generated Faults. Manually generated faults are:

1. Execute (EXF)

a. The EXECUTE pushbutton on the Processor maintenance panel has been activated.

b. An external frequency has been substituted for the EXECUTE pushbutton.

The above two are dependent on other switch positions on the Processor control panel.

2. The Power Turn On/ Off Faults

a. Startup (SUF)--A power turn-on has occurred.

b. Shutdown (SDF)--Power will be turned off in approximately 1 millisecond.

Fault Priority

The 16 faults are organized into five groups to establish priority for the recognition of a specific
fault when faults occur in more than one group. Group I has highest priority.

Only one fault within a priority group is allowed to be active at any one time. In the event that
two or more faults occur concurrently, only the fault which occurs first through normal program
sequence is permitted.

Fault Recognition

Fa:1lts in Groups I and II cause the operations in the Processor to abort unconditionally.

Faults in Groups III and IV cause the operations in the Processor to abort conditionally upon
the completion of the operation presently being executed.

Faults in Group V are recognized under the same conditions that Program Interrupts are recog­
nized. (See.page II-4 .) Faults in Group V have priority over Program Interrupts and are also
subject to being inhibited from recognition by use of the inhibit bit in the instruction word.

II-15

Instruction Counter (IC)

Upon recognition of a fault, the contents of the Instruction Counter (IC) are as shown in the
Table of Faults below.

Group
Fault No. Fault Name (Priority) IC Contents

llOO Startup I N+O,l, or 2
llll Execute I N+O, 1, or 2
lOll Operation Not Completed II N+O, 1, or 2
Olll Lockup II N+O, 1, or 2
lllO Divide Check III N (note 4)
llOl Overflow III N
1001 Parity IV N (note 2)
0101 Command IV N+l
0001 Memory IV N+l (note 4)
0010 Master Mode Entry IV N (note 4)
OllO Derail IV N (note 4)
OOll Fault Tag IV N (note 4)
1010 Illegal Op Code IV N
1000 Connect v N
0100 Timer Runout v N
0000 Shut Down v N

Notes:

1. N = Last operation completed.

2. If parity occurred on operand fetch, operation N+l was completed with faulty data.
If parity occurred on instruction fetch, operation N+l was not completed.
If parity occurred on IT, IT was not completed.

3. Number of IND cycles, and I Ts performed is unknown.

4. These operations are considered complete when the fault is recognized.

Figure II-2. Table of Faults

THE NUMBER SYSTEM

The binary system of notation is used throughout the GE-635 information processing system.

Many of the instructions, mainly additions, subtractions, and comparisons, can be used in two
ways: Either operands and results are regarded as signed binary numbers in the 2' s complement
form (the "arithmetic" case), or they are regarded as unsigned, positive binary numbers (the
"logic" case). The Zero and the Negative Indicators facilitate the general :interpretation of the
results in the arithmetic case; the Zero and the Carry Indicators, in the logic case. The instruc­
tion set contains instruction types "Add Logic" and "Subtract Logic" which particularly facilitate
arithmetic of the logic type with half-word, single-word, and double-word precision.

II-16

Subtractions are carried out internally by adding the 2' s complement of the subtrahend.* It is
a characteristic feature of the 2' s complement representation that a "no borrow" condition in
the case of true subtraction corresponds to a "carry" condition in the case of addition of the
2' s complement, and vice versa.

A statement on the assumed location of the binary point has significance only for multiplications
and divisions. These two operations are implemented for integer arithmetic as well as for
fractional arithmetic with numbers in 2' s complement form, "integer" meaning that the position
of the binary point may be assumed to the right of the least-significant bit position (that is,
to the right of bit position 35 or 71, depending on the precision of the respective number) and
"fractional" meaning that the position of the binary point may be assumed to the left of the most­
significant bit position (that is, between the bit positions 0 and 1).

REPRESENTATION OF INFORMATION

The Processor is fundamentally organized to deal with 36-bit groupings of information. Special
features are also included for ease in manipulating 6-bit groups, 18-bit groups, and 72-bit,
double-precision groups. These bit groupings are used by the hardware and software to repre­
sent a variety of forms of information.

Position Numbering

The numbering of bit positions, character positions, words, etc., increases in the direction
of conventional reading and writing: from the most- to the least-significant digit of a number,
and from left to right in conventional alphanumeric text.

Graphical presentations in this manual show registers and data with position numbers increasing
from left to right.

The Machine Word

The machine word consists of 36 bits arranged as follows:

0 17 I is
One Machine:Word

Upper Half
word

Lower Half
word

35

Data transfers between the Processor and memory are word orientated: 36 bits are transferred
at a time for single-precision data and two successive 36-bit word transfers for double-precision
data. When words are transferred to a Magnetic Core Storage Unit, this unit adds a parity bit

* When the subtrahend is zero, the algorithm for forming the 2' s complement is still carried
out. Thus, each bit of the subtrahend is complemented, and a 1 is added into the least-significant
position of the parallel adder.

Il-17

to each 36-bit word before storing it. When words are requested from a Magnetic Core Storage
Unit, this unit verifies theparitybitreadfrom the store and removes it from the word transferred
prior to sending each word to the Processor.

The Processor has many built-in features for transferring and processing pairs of words. In
transferring a pair of words to or from memory, a pair of memory locations is accessed; these
addresses are an even and the next-higher odd number.

0 35 I 36 71

J A Pair

Even Address Odd Address
I

In addressing such a pair of memory locations in an instruction that is intended for handling
pairs of machine words, either of the two addresses may be used as the effective address (Y).
Thus,

If Y is even, the pair of locations (Y, Y+l) is accessed. If Y is odd, the pair of locations
(Y-1, Y) is accessed. The term "Y-pair" is used for each such pair of addresses.

Alphanumeric Data

Alphanumeric data are represented by six-bit characters. A machine word contains six characters:

Character positions 0 1 2 3 4 5
within a word: 0 5,6 11, 12 17' 18 23,24 29, 30 35

Bit positions I a I within a character: 1 2 3 4 5

The character set used is the Coml1uter Department Standard Character Set, which is readily
convertible to and from the ASCII character set.

II-18

Binary Fixed-Point Numbers

The instruction set comprises instructions for binary fixed-point arithmetic with half-word, single­
word, and double-word precision.

PRECISION REPRESENTATION

Upper Half_ _____ ___.I_== = = =]
Half-word 0 17

Lower Half [~ ~ ~ _-_ -_, _______ _
18 35

Single-word

0 35

Doub le -word

0 35,36 71
Even Address Odd Address

Instructions can be divided into two groups according to the way in which the operand is interpreted:
the "logic" group and the "algebraic" group.

For the "logic" group, operands and results are regarded as unsigned, positive binary numbers.
In the case of addition and subtraction, the occurrence of any overflow is reflected by the carry
out of the most-significant (leftmost) bit position:

1. Addition

2. Subtraction

If the carry out of the leftmost bit position equals 1, then the result
is the above the range.

If the carry out of the leftmost bit position equals 0, then the result
is below the range.

In the case of comparisons, the Zero and Carry Indicators show the relation.

For the "algebraic" group, operands and results are regarded as signed, binary numbers, the
leftmost bit being used as a sign bit, (a 0 being plus and 1 minus). When the sign is positive all
the bits represent the absolute value of the number; and when the sign is negative, they represent
the 2's complement of the absolute value of the number.

In the case of addition and subtraction the occurrence of an overflow is reflected by the carries
into and out of the leftmost bit position (the sign position). If the carry into the leftmost bit
position does not equal the carry out of that position then overflow has occurred. If overflow
has been detected and if the sign bit equals 0, the resultant is below range; if with overflow, the
sign bit equals 1, the resultant is above range.

An explicit statement about the assumed location of the binary point is necessary only for multi­
plication and division; for addition, subtraction, and comparison it is sufficient to assume that
the binary points are "lined up."

II-19

In the GE-635 Processor, multiplication and division are implemented in two forms for 2's
complement numbers: integer and fractional.

In integer arithmetic, the location of the binary point is assumed to the right of the least­
significant bit position, that is, depending on the precision, to the right of bit position 35 or 71.
The general representation of a fixed-point integer is then:

where a is the sign bit. n

n n-1 n-2 1 0
-an2 +an_ 12 +an_22 + ... +a12 +a02

In fractional arithmetic, the location of the binary point is assumed to the left of the most­
significant bit position, that is, to the left of bit position 1. The general representation of a
fixed-point fraction is then:

The number ranges for the various cases of precision, interpretation, and arithmetic are listed
in Figure II- 3.

Precision

Inter-
Arithmetic

pretation Half-Word Single-Word Double-Word
(Xn, Y0 .. 17) (A,Q,Y) (AQ, Y-pair)

Algebraic Integral -217 ~ N $ (217 -1) -235 $ N ~ (235_1) -271 :;:; N :;:; (2 71 -1)

Fractional -1 :s; N ::; (1-2-17) -1 ": N ::; (1-2-35) -1 . N s (1-2- 71)

Logic Integral 0 :$ N :S (218_1) 0 s K s (236_1) 0 s N s: (2 72 -1)

Fractional 0 s: N s: (1-2-18) 0 s: N s: (1-2-36) 0 ::; N $ (1-2-72)

Figure II-3. Ranges of Fixed-Point Numbers

II-20

Binary Floating-Point Numbers

The instruction set contains instructions for binary floating-point arithemetic with numbers of
single-word and double-word precision. The upper 8 bits represent the integral exponent E in
the 2' s complement form, and the lower 28 or 64 bits represent the fractional mantissa M in
2' s complement form. The notation for a floating-point number Z is:

Single-Word
Precision:

Doub le -Word
Precision:

0 1

I s !
l.,__E

0 1

I s i
I•

E
Z(2) = M(2) x 2 (2).

7 8 9

Is !
.. I M

7 8 9

Is :
E __.j M

where S = Sign bit

35

I ... ,
71

I

Before doing floating-point additions or subtractions, the Processor aligns the number which has
the smaller positive exponent. To maintain accuracy, the lowest permissible exponent of -128
together with the mantissa equal to 0.00 0 has been defined as the machine representation of
the number zero (which has no unique floating-point representation). Whenever a floating-point
operation yields a resultant untruncated machine mantissa equal to zero (71 bits plus sign because
of extended precision), the exponent is automatically set to -128.

The general representation of the exponent for single and double precision is:

7 .,6 1 0
-e72 +e6"' + ... +e 12 +e02

where e
7

is the sign,

The general representations of single- and double-precision mantissas are:

0 -1 -2 -26 -27 Single Precision: -m02 +m12 +m22 + ... +m262 +m272

and

Double Precision: 20 2-1 2-2 2-62 2-63
-mo +ml +m2 + · · · +m52 +m53

where m
0

is the sign in both cases.

II-21

Normalized Floating-Point Numbers

For normalized floating-point numbers, the binary point is placed at the left of the most-significant
bit of the mantissa (to the right of the sign bit). Numbers are normalized by shifting the mantissa
(and correspondingly adjusting the exponent) until no leading zeros are present in the mantissa
for positive numbers, or until no leading ones are present in the mantissa for negative numbers.
Zeros fill in the vacated bit positions. With the exception of the number zero (represented as

O x 2 - 128), all normalized floating-point numbers will contain a binary 1 in the most-significant
bit position for positive numbers and a binary 0 in the most-significant bit position for negative
numbers. Some examples are:

Unnormalized positive number

Same number normalized

Unnormalized negative number

Same number normalized

(0:0001101)x2
7

s,
(011101000)x2

4

Sj
(111101011 l)x2-4

si
(1!o101110o)xr 6

Sj

The number ranges resulting from the various cases of precision, normalization, and sign are
listed in the table following:

Sign Single Precision Double Precision

Positive 2 -12 9 s: N -s (1-2-27)2127 -12 9
2 ~ N s: (1-2-63)2127

Normalized
-(1+2-62)2-129 ~-2127.

Negative -(1+2-26)2-129 ::>N,~- 2127 :}: N

Positive 2-155
:S: N::; (1-2-27)2127 2 -191 s: N =s:: (1-2-63)2127

Unnormalized

Negative -2
-155 ;::- N;;:. -212 7 -2

-191 2N;e-2127

NOTE: The floating-point number zero is not included in the table.

Figure II-4. Ranges of Floating-Point Numbers

Decimal Numbers

The instruction set does not comprise instructions for decimal arithmetic. The representation of
decimal numbers in the machine therefore depends entirely on the programs used for performing
the decimal arithmetic required.

II-22

The representation of the decimal digits as a subset of the character set is shown in Appendix E.

Instructions

Machine instructions have the following general format:

Where

0

y

Op Code

y Op Code I 0 I i I 0 I Tag

17,18 26,27,28,29,30 35

the address field; also used in some cases to augment the Op Code as in
shift operations where it specifies the number of shifts

the operation code, usually stated in the form of a 3-digit octal number

interrupt inhibit bit

Tag the tag field, generally used to control the address modification

0 the two bit positions 27 and 29 have no function at this time; however,
they must be zero for compatibility with other 600-line Processors.

The three repeat instructions, Repeat, Repeat Double, and Repeat Link (RPT, RPD, and RPL~
use a different instruction format. (See pages II-123, II-125. and II-127.)

Indirect words have the same general format as the instruction words; however, the fields are
used in a somewhat different way. (See page II-26 and following.)

ADDRESS TRANSLATION AND MODIFICATION

Address Translation

Any program address to be used in a memory access request while the Processor is in the
Slave Mode is first translated into an actual address and then submitted to the memory.

The term program address is used for the following addresses:

1. An instruction address which is the address used for fetching instructions

2. A tentative address which is the address used for fetching an indirect word

3. An effective address, which is the final address produced by the address modification pro­
cess, is the address used for obtaining an operand, for storing a result, or for other spe _
cial operations during which the memory is accessed using the effective address.

II-23

For the purpose of address translation, the Processor Base Address Register contains
in bit positions 0-7 a base address. The translation takes place only in the Slave Mode
of operation. It consists of adding this base address to bit positions 0-7 of the program
address, using the Relocation Adder (RS).

In the Master Mode no address translation takes place. Any program address to be used
in a memory access request while the Processor is in the Master Mode is used directly
as an actual address and submitted to the memory without any translation.

Address translation is actually based on nine bits, namely the Base Address Register
positions 0-8 and the bit positions 0-8 of the program address; this permits address
relocation by multiples of 512 words. Because of a software requirement, bit positions
8 and 17 of the Base Address Register have been wired in such a way that they contain
0 's permanently and cannot be altered by the Load Base Address Register (LBAR)
instruction. Thus, address relocation is performed in multiples of 1024.

Tag Field

Before the operation of an instruction is carried out, an address modification procedure generally
takes place as directed by the tag field of the instruction and possibly of indirect words. Only
the repeat mode instructions RPT, RPD, and RPL do not provide for an address modification.
(See pages II-123, II-125, and II-127.)

The tag field consists of two parts, tm and td, that are located within the instruction word as
follows:

I i ! i ! i I
30 35

... 14~t-~ .. 1-'4....--------.-1
m td

Where

t specifies one of the four possible modification types: Register (R), Register then Indirect
m (RI), Indirect then Register (IR), and Indirect then Tally (IT)

td specifies further the action for each modification type:

1. In the case of tm = R, RI, or IR, td is called the register designator and generally

specifies the register to be used in indexing.

2. In the case of t = IT, td is called the tally designator and specifies the tallying in
m detail.

II-24

Modification Types

The following table gives a general characterization of each of the four modification types.

t Binary Modification Type
m

R 00
Reg is ter

Indexing according to td as register designator and termination

of the address modification procedure.

RI 01
Register then Indirect

Indexing according to td as register designator, then substitution

and continuation of the modification procedure as directed by the
Tag field of this indirect word.

IR ll
Indirect then Register

Saving of td as final. register designator, then substitution and

continuation of the modification procedure as directed by the Tag
field of this indirect word.

IT 10
Indirect then Tally

Substitution, then use of this indirect word according to td as
tally designator.

II-25

Register Designator

Each of the three modification types R, RI, IR includes an indexing step which is further specified
by the register designator td. In most cases, td really specifies the register from which the index

is obtained. However, td may also specify a different action, namely that the effective address Y

is to be used directly as operand and not as address of an operand (DU, DL), or that nothing takes
place at all (N). Nevertheless, td is called "register designator" in these cases.

Register Designator
Action

Symbolic Binary

N 0000 y replaces Y

XO 1000

Xl 1001

y + C(Xn) replaces Y

X7 1111

AU 0001 Y + C(A)o ... 17 replaces y
AL 0101 Y + C(A)1s .. 35 replaces y

QU 0010 Y + c (Q)o ... 17 replaces y
QL 0110 Y + C (A) 18 .. 35 replaces y
IC 0100 y + C(IC) replaces Y

DU OOll y,00 ... 0 is the operand
DL 0111 00 ... O,y is the operand

Tally Designator

The modification type IT consists of a substitution and the use of this indirect word as specified
by the td of the instruction or previous indirect word as tally designator.

The format of the indirect word is:

y Tally Tag

0 17,18 29, 30 35

Where

y address field

Tally tally field

Tag tag field

II-26

Depending upon the prior tally designator, the tag field is used in one of three ways:

Where

t
m

td

cf

Delta

Tally Designator (Table Follows)

I, DI, ID, DIC,
IDC, F

CI, SC

AD

modifier

designator

character field

delta field

t
m

0

30

Tag Field

0 0

Delta

31 32 33 34 35

The following table gives the possible tally designators under IT type modification.

Tally Designator

Name
Symbolic Binary

I 1001 Indirect

DI llOO Decrement Address, Increment Tally

AD lOll Add Delta

ID lllO Increment Address, Decrement Tally

DIC llOl Decrement Address, Increment Tally, and Continue

IDC 1111 Increment Address, Decrement Tally, and Continue

CI 1000 Character from Indirect

SC 1010 Sequence Character

F 0000 Fault

II-27

Address Modification Flow Charts

All possible types and sequences of address modification are shown on the following two flow
charts.

Modification Type Flow Chart

R, IR, and RI address modification Figure II-5A

IT address modification Figure II-5B

See explanation of symbols and descriptions of modifications immediately following these figures.

= RI

y, modified
according to td 3

• y

y ,.Yi
__ F~£!!.Q_(XJ.)_ __ _

(y' tm. td) ~ y' 'm· td

= IT
('m) = ?

=IR

Ins true tion
containing
y,t,n,td

tm = ?

• RI

12: ~12t!"ctd1~~i~~
(td) o'J> (y)

(y) o'J> Yu
_ _!~c~~Qli_) __ _

5 ((y' 'm· td)) ~ (y' 'm· td)

• IT

See

ll Address Modification
Flow Chart

Figure II-5A. Address Modification Flow Chart

II-28

@)
m

a
(§2)
(§)
©
~
[fITT]
§§
~

m 1-rj

~
I-'•

~
to;
C'D
H
H
I

01

!II
>
0..
0..
to;
C'D
(/l

H
H

(/l

I
~ Nl

co 0
0..
I-'•
I-+>
I-'·
()

~
r+-c;·
~

1-rj
........
0
=El
(")
::r'
~
to;
r+-

4

(Tally) -1 , (Tally)

If (Tally) = 0, set

Tally Run Out Indicator

ON; else OFF

No

Store (y, Tally)

back into 20
Indirect Word

Original (y) 9 Y

Operation on

character is performed

according to Original

(Cf)

22

= CI

4

If (Tally) = O, set

Tally Run Out Indicator

ON; else OFF

Store (y, Tally)

into Indirect Word

Operation on

4

character is performed 31

according to (Cf)

4

(y) + (Delta) '°' (y)

(Tally) -1 ~ (Tally)

If (Tally) = 0, set

Tally Run Out Indicator

ON; else OFF

Store (y, Delta, Tally)

into Indirect Word

Original (y) =} Y

Original (y, t 111' td)

~ y 't!ll> td

(y) 9 Yu

Fetch C(Yu)

To @ on

R, IR, a~d RI Address
Modification Flow Chart

4

(y) +l =} (y)

(Tally) -1 ~ (Tally)

If (Tally) = 0, set

To 0 on
R, IR, and RI Address

Modification Flow Chart

F

4

(y) -1 =} (y)

(Tally) +l =} (Tally)

If (Tally) = 0, set

Tally Run Out Indicator

ON; else OFF

Store (y, Tally)

into Indirect Word

Cause

Fault Tag

Fault Trap

4

(y) +l =} (y)

(Tally) -1 =} (Tally)

21 Original (y) ~ Y

4

14

• Explanation of Symbols Used on Flow Charts

y, tm, td is the original address, tag modifier, and tag designator, respectively.

Cf, Tally, Delta is the value of the character field, tally field,and delta field of ah indirect
word.

~

C(---)

y

Y.
l

Y ..
11

(---)

((---))

t * d

Original

End

should be read "replaces."

should be read "the contents of ---."

is the final effective address to be used in carrying out an instruction
operation.

is the address of an indirect word which will be used for further modification.

is the address, obtained from another indirect word, of an indirect word
which will be used for further modification.

represents quantities obtained from the contents of an indirect word.

represents quantities obtained from the contents of an indirect word which
was obtained through another indirect word.

is the register designator to be used as a final register modifier under IR
modification.

Most indirect words which are used under IT modification utilize the read­
alter-rewrite (RAR) memory cycle. This RAR cycle must be completed
before another indirect cycle can occur. The word original refers to the
quantity contained in an indirect word before that quantity is incremented
(during the alter part of the RAR cycle). Omission of the word original
refers to the quantity after it is incremented or decremented during the
alter portion of the RAR cycle.

indicates that the modification procedure for that instruction has terminated
and the effective address Y, developed up to that point,is used to carry out
the instruction operation.

• Detailed Description of Flow Charts

©
©

©

The instruction word address field serves as the initial value of the tentative address y,
and its tag field supplies the initial modifier tm as well as initial designator td.

t is one of the four modification types: R, RI, IR, or IT. m

y modified by td replaces the former tentative address y. If td = DU or DL, DU or DL

is ignored and the modification proceeds as if td = N.

The tentative address y, developed up to that point, becomes the address Y. to be used
l

in accessing an indirect word which will be used for further modification. Using
Y. , the indirect word is fetched.

l

II-30

©

©

©
@
@

@
@

@
@

@

The address and tag fields of the last indirect word replace the tentative address and the
tag of the instruction.

The last designator t , becomes the final designator td *, to be used as a final register
modifier under IR mo&ification.

t , of the indirect word, designates one of the four modification types: R, RI, IR, or IT.
m

The address of the indirect word (y), modified by the final register modifier td *, replaces
the former tentative address.

The tentative indirect address (y), developed up to that point, is used as the effective
address Y for carrying out the instruction operation.

The designator of the indirect word (td) replaces the final register designator td *.

The tentative indirect address (y), developed up to that point becomes the address Y .. , to
11

be used in accessing another indirect word which will be used for further modification.
Using Y .. , the indirect word is fetched.

11

The address (y), contained in the indirect word and modified by the designator of the
indirect word (td), replaces the tentative indirect address (y).

y modified by td replaces the former tentative address y.

The tentative address y, developed up to that point, is used as the effective address Y for
carrying out the instruction's operation.

td is one of the nine tally designators: SC, CI, DIC, AD, IDC, F, DI, I, or ID.

A value one less than the value of the tally field loaded from the indirect word becomes
the new value of the tally field.

The Tally Runout Indicator is set to ON if the tally field equals zero after incrementation
or decrementation; the Indicator is set to OFF if the tally field does not equal zero after
incrementation or decrementation. --

A value one greater than the value of the character field loaded from the indirect word
becomes the new value of the character field.

If the value of the character field Cf equals six, the character field is set to zero; and
a value one greater than the value of the address field loaded from the indirect word
becomes the new value of the address field.

During the rewrite portion of the read-alter-rewrite cycle used for updating an indirect
word, the updated fields--(y), (Cf)' (Tally), (Delta), (tm)' (td), where applicable--are

returned to storage in memory.

The original value of the address field (y), as loaded from the indirect word before any
incrementation or decrementation, becomes the effective address Y which is used to
carry out the instruction operation.

The original value of the character field Cf, as loaded from the indirect word before

any incrementation (or setting to zero), is the value used in carrying out the instruction
operation. (See note at end of this listing.)

II-31

NOTE:

A value one less than the value of the address field loaded from the indirect word becomes
the new value of the address field.

A value one greater than the value of the tally field loaded from the indirect word becomes
the new value of the tally field.

Under IDC or DIC types of modification, the modifiers permitted within the indirect are:

t R td N m

t IR td N m

t RI td N m

t IT td any
m

t R effectively terminates the modification procedure while
m

t RI, IR, or IT seeks at least an additional level of modification.
m

The original value of the address field (y), as loaded from the indirect word before
incrementation, becomes the address Y .. to be used in accessing the next indirect word

11

which will be used for further modification.

The address and tag fields of Y.. replace the address and tag fields of the original
11

instruction, and modification proceeds as directed by the new tag field.

Occurs when tm = IT and td = F, or when Fault tag fault is initiated and no further

indirect addressing occurs.

A value one greater than the value of the address field loaded from the indirect word
becomes the new value of the address field.

A value equal to the value of the address field (loaded from the indirect word) plus Delta
(a constant also loaded from the indirect word) replaces the value of the address field.

The value of the character field Cf, after incrementation (or setting to zero), is used

in carrying out the instruction operation. (See the note at the end of this listing.)

The original value of the address field and the tag field of the last indirect word replace
the tentative address and tag of the instruction.

When the tally designator is CI or SC, the character field of the last indirect word is an
octal number which specifies the character position of the memory location Y to be used
in carrying out the instruction operation (the example uses a value of 3 in the character
field).

II-32

3. If a transfer of control instruction is located at an even memory location, then add 0. 5
microseconds.

4.

[

i

6.

7.

8.

If a transfer of control transfers to an instruction located at an odd memory location, then
add 0.8 microseconds.

If a store type instruction** is located at an even memory location, then subtract 0.5 micro­
seconds.

If located at an odd memory location, then add 0. 5 microseconds.

If a store type instruction** is followed by one or more store type instructions, then from
each such following instruction subtract 0. 5 microseconds.

If an overlap type instruction* is followed either by a store type instruction** from an odd
memory location, or by a transfer of control instruction, then (depending on the particular
instruction sequence) add 1.0 to 2.0 microseconds.

The instruction execution times of shift and floating-point operations are listed as "average"
times based on a number of five-shift steps. Note that a single-shift step may effect a shift by
one, four, or sixteen positions. Actual times for these instructions may vary by up to + 0.8
microseconds. Where unnormalized operands are used in normalizing floating-point operations,
worst case conditions can add as much as 1. 5 microseconds.

Address modifications do not require any time adjustments except in the following cases.

1. RI type: for the indirect cycle add 1. 7 microseconds.

2. IR type: for the indirect cycle add 1. 7 microseconds.

3. IT type: for the indirect cycle with restoring of the indirect word add 2. 5 microseconds.

4. IT type: for the indirect cycle with nonrestoring of the indirect word (CI and I) add
1. 7 microseconds.

5. Index designator DU or DL: subtract 0.5 microseconds, except when used with a first
modification of the R or RI type with the preceding instruction being an "overlap" type
instruction.

THE INSTRUCTION REPERTOIRE

The GE-635 instruction set described under this heading is arranged by functional class, as
listed in Appendix A. Appendix A, together with Appendix B which lists the instructions in alpha­
betical order by mnemonic, afford convenient page references to the instructions in this section.
Appendix C presents the instruction mnemonics grouped by operation code.

* Overlap type instructions
"loads" and "stores"

multiplications; divisions; shifts; floating point operations except

** Store type instructions = store; floating store; add and subtract stored; AND, OR, and
EXCLUSIVE OR to storage; etc.

II-33a

Operand from memory

Operand from memory: x x X I Char.: X x

0 0 0 0 0 !Char.

0 1 2 3 4 5

Operand for the operation

Result of the o eration

Result to memory: x x x x x

0 2 3 5

x x x x x

0 1 2 3 4 5

Result in memory

For operations in which the operand is taken from memory, the effective operand from memory
is presented as a single word with the specified character justified to character position 5;
positions 0-4 are presented as zero. For operations in which the resultant is placed in memory,
character 5 of the resultant replaces the specified character in memory location Y; the remaining
characters in memory location Y are not changed.

CALCULATION OF INSTRUCTION EXECUTION TIMES

The instruction execution times (Appendix A) are based on fetching of instructions in pairs from
memory, and in the case of overlap type instructions,* also on overlap between the operation
execution of the overlap type instruction and the fetching and address modification of the next
instruction.

Certain operations prevent the fetching of instructions in pairs or the overlapping; accordingly,
the following time adjustments should be made.

1. If an instruction from an even memory location alters a register, and the next instruction
(from the successive odd memory location) begins its address modification procedure with an
R or RI type of modification which uses this same register, then add 0.8 microseconds.

2. If an instruction from an even memory location alters the next instruction, then add 1. 7
microseconds.

* Overlap type instructions = multiplications; divisions; shifts; floating-point operations
except "loads" and "stores".

II-33

The Instruction Descriptions--General Remarks

For the description of the machine instructions thatfollow it is assumed that the reader is familiar
with the general structure of the Processor, the representation of information, the data formats,
and the method of address modifications, as presented in the preceding paragraphs of this
chapter.

The Description Format

A fixed format will be used for the description of each machine instruction; this is summarized
in the comments following~

Mnemonic Name of the Instruction Op Code (octal)

SUMMARY:

MODIFICATIONS:

INDICATORS :

NOTES:

Headline:

The headline identifies the instruction described.

Summary:

The change in the status of the information processing system effected by the execution of the
instructions operation is described in a short and generally symbolic form. If reference is made
here to the status of an indicator, then it is the status of this indicator before the operation is
executed.

Modifications:

Those designators are listed explicitly that shall not be used with this instruction either because
they are not permitted with this instruction or because their effect cannot be predicted from the
general address modification procedure.

II-34

Indicators:

Only those indicators are listed the status of which can be changed by the execution of this instruc­
tion. In most cases, a condition for setting ON as well as one for setting OFF is stated. If only
one of the two is stated, then this indicator remains unchanged otherwise. Unless explicitly
stated otherwise, the conditions refer to the contents of registers, etc., as existing after the
execution of the instruction's operation.

Notes:

This part of the description exists only in those cases where the SUMMARY is not sufficient for
an understanding of the operation.

Abbreviations and Symbols

The following abbreviations and symbols will be used for the description of the machine operations.

Registers:

A Accumulator Register (36 bits)
Q Quotient Register (36 bits)

AQ Combined Accumulator-Quotient Register (72 bits)
Xn Index Register n (n = 0, 1, ... , 7) (18 bits)

E Exponent Register (8 bits)
EA Combined Exponent-Accumulator Register (8 + 36 bits)

EAQ Combined Exponent-Accumulator-Quotient Register (8 + 72 bits)
BR Base Address Register (18 bits)
IC Instruction Counter (18 bits)
IR Indicator Register (18 bits, 11 of which are used at this time)

TR Timer Register (24 bits)
Z Temporary Pseudo-result of a non-store comparative Operation.

Effective Address and Memory Locations:

y
Y-pair

The effective address (18 bits) of the respective instruction.
A symbol denoting that the effective address Y designates a pair of memory
locations (72 bits) with successive addresses, the lower one being even. When
the effective address is even, then it designates the pair (Y, Y+l), and when it
is odd, then the pair (Y -1, Y). In any case the memory location with the lower
(even) address contains the more significant part of a double-precision number
or the first of a pair of instructions.

II-35

Register Positions and Contents:

("R" standing for any of the registers listed above as well as for a memory location or a pair
of memory locations.)

Ri
R· . 1, ••]
C(R)
C(R)i
C(R)· · =

1 ••• J

the ith position of R
the positions i through j of R
the contents of the full register R
the contents of the ith position of R
the contents of the positions i through j of R

When the description of an instruction states a change only for a part of a register or memory
location, then it is always understood that the part of the register or memory location which
is not mentioned remains unchanged.

Other Symbols:

~ replaces
compare with

AND the Boolean connective "AND" (symbol A)
OR the Boolean connective "OR" (symbol V)
¢ the Boolean connective NON-EQUIVALENCE (or EXCLUSIVE OR)

Memory Accessing

It is a characteristic feature of the GE-635 computer that an address translation takes place
with each memory access when the Processor operates in the Slave Mode.

{

During the execution of a program, a base address is contained in the bit positions 0-7 of the
Processor Base Address Register. With each memory access, this base address is added to
bit positions 0-7 of the program address supplied by this program in order to generate the
actual address used in accessing the memory. In this way, the address translation provides
complete independence of the program address range from the actual address range that is
used with a specific execution of this program.

Only when the Processor is in the Master Mode is the program address used directly as an
actual address; in this case, program addresses generally refer to the Comprehensive Operating
System which has allocated to it the actual address range beginning at zero.

The descriptions of the individual machine instructions in this chapter do not mention the address
translation. It is understood here that an address translation has to be performed immediately
prior to each memory access request (in the Slave Mode) regardless of whether:

1. The program address is an instruction address, and the memory is accessed for fetching
an instruction

2. The program address is a tentative address, and the memory is accessed for fetching
an indirect word

3. The program address is an effective address, and the memory is accessed for obtaining
an operand or for storing a result.

II-36

No address translations takes place for effective addresses which are used either as operands
directly or in other ways (for example, shifts).

Floating-Point Arithmetic

Numbers in floating-point representation are stored in memory as follows:

Integer Fractional
Exponent Mantissa

Single-word precision C(Y)0-7 C(Y)S-35

Double-word precision C(Y-pair)
0 -7

C(Y-pair)
8

_
71

When a floating-point number is held in the register EAQ, its mantissa length is allowed to
increase to the full length of the register AQ.

•-------Y --------1~1

0 7 8 35 36

/ /
27,28

63! 71

A
I I

Q

In storing a floating-point number, a truncation of the mantissa takes place. With single-word
precision store instructions, only C(AQ)

0
_27 will be stored as mantissa, and with double-word

precision store instructions, only C(AQ)
0

_
63

.

II-37

DESCRIPTIONS OF THE MACHINE INSTRUCTIONS

Data Movement- -Load

Mnemonic: Name of the Instruction: 0 Code octal

LOA Load A 235

SUMMARY: C(Y) => C(A)

MODIFICATIONS: All

INDICATORS· (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise 0 FF

Negative If C(A)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

LDQ Load Q I 236

SUMMARY: C(Y) => C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

LDAQ Load AQ 237

SUMMARY: C(Y -pair) => C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = o, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

II-39

Data Movement- -Load

Mnemonic: Name of the Instruction:

LDXn Load Xn (n= 0, 1, . . . , 7)

SUMMARY: C{Y)o ... 1 7 ~ C{Xn)

MODIFICATIONS: All except CI, SC

INDICATORS: {Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C{Xn)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

LCA Load Complement A

SUMMARY: - C{Y) :}> C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)O = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

NOTE: This instruction changes the number to its negative
(if -/: O) while moving it from the memory to A.
The operation is executed by forming the two 1 s com -
plement of the string of 36 bits.

II-40

Op Code (octal)

1 22n

Op Code (octal)

335 I

Mnemonic: Name of the Instruction:

LCQ Load Complement Q

SUMMARY: - C(Y) ~ C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

NOTE: This instruction changes the number to its negative
(if -/: O) while moving it from Y to Q. The operation
is executed by forming the two's complement of the
string of 36 bits.

Mnemonic: Name of the Instruction:

LCAQ Load Complement AQ

SUMMARY: - C(Y -pair) ~ C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Data Movement --Load

0 Code octal

336

0 Code octal

337

NOTE: This instruction changes the number to its negative (if -/: 0) while moving
it from Y-pair to AQ. The operation is executed by forming the two's
complement of the string of 72 bits.

II-41

Data Movement--Load

Mnemonic: Name of the Instruction: 0 Code octal

LCXn Load Complement Xn (n 0, 1, ... '7) 32n

SUMMARY: - C(Y)o ... l 7 => C(Xn)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = o, then ON; otherwise OFF

Negative If C(Xn)o = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

NOTE: This instruction changes the number to its negative (if ~ O) while moving
it from Yo 17 to Xn. The operation is executed by forming the two's
complemerif of the string of 18 bits.

Mnemonic: Name of the Instruction: 0 Code octal

EAA Effective Address to A 635

SUMMARY: y ~ C(A)o ... 17; 00 ... 0 => C(A)rn ... 35

MODIFICATIONS: All except DU, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF

NOTE: This instruction, and the instructions EAQ and EAXn, facilitate interregister
data movements; the data source is specified by the address modification,
and the data destination by the operation of the instruction.

II-42

Mnemonic: Name of the Instruction:

EAQ Effective Address to Q

SUMMARY: Y ~ c(Q)o ... 17 ; oo ... o => C(Q)1s ... 35

MODIFICATIONS: All except DU, DL

INDICATORS: _{Indicators not listed are not affectedl

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Data Movement- -Load

Op Code (octal)

636 =]

NOTE: This instruction, and the instructions EAA and EAXn, facilitate inter register
data movements; the data source is specified by the address modification,
and the data destination by the operation of the instruction.

Mnemonic: Name of the Instruction: 0 Code octal

EAXn Effective Address to Xn (n=0,1, ... ,7) 62n

SUMMARY: Y ~ C(Xn)

MODIFICATIONS: All except DU, DL

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

NOTE: This instruction, and the instructions EAA and EAQ facilitate interregister
data movements; the data source is speciaed by the address modification,
and the data destination by the operation of the instruction.

II-43

Data Movement- -Load

Mnemonic:

I LOI

Name of the Instruction:

I Load Indicator Reg~ster
op code (octS

1 634

SUMMARY: C(Y)18 ... 35 ~C(IR)

MODIFICATIONS: All except CI, SC

INDICATORS:

Master Mode

All other
Indicators

NOTE:

(Indicators not listed are not affectedj_

Not Affected:

If corresponding bit in C(Y) is ONE, then ON;
_Qtherwise_Q_FF

1. The relation between bit positions of C(Y) and the indicators is as follows:

Bit Position '

18
19
20
21
22
23
24
25
26
27
28

- -- -29
30
31
32
33
34
35

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used
at this
time

2. The Tally Runout Indicator will reflect C(Y)25 regardless of what address
modification is performed on the LDI instruction (for Tally Operations).

II-44

Data Movement- -Store

Mnemonic: Name of the Instruction: 0 Code octal

STA Store A 755

SUMMARY: C(A) ::;:. C(Y)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (octal)

STQ Store Q I 756 I
SUMMARY: C(Q) ~ C(Y)

MODIFICATIONS: All except DU, DL

INDICATORS: None affected

Mnemonic: Name of the Instruction: 0 Code octal

STAQ Store AQ 757

SUMMARY: C(AQ) => C(Y -pair)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction:

STXn Store Xn (n = 0, 1, ... , 7)

SUMMARY: C(Xn) => C(Y)o ... 17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

II-45

Data Movement--Store

Mnemonic:

STCA.

SUMMARY:

Name of the Instruction 0 Code octal

Store Character of A 751

Characters of C(A) =? corresponding characters of C(Y), the character
positions affected being specified in the Tag field.

MODIFICATIONS: No modification can take place

INDICATORS: (Indicators not listed are not affected)

NOTE:

0

0

Binary ones in the Tag field of this instruction specify the character positions
of A and Y that are affected by this instruction. The control relation is shown in
the diagram below.

17 18 26 30 35

Address
I
! Op Code I : 1

: I Structure of
'.O:i' 01 Tag this Instruction

o~)'5

23 24 29 30 35

Structure Char #0 : Char. #1
of A and Y ·

I I

Char. #2 : Char. #3 :
I

Char. #4 1 Char. #5
1

II-46

0

Data Movement- -Store

Mnemonic: Name of the Instruction: Op Code (octal

STCQ Store Character of Q 752

SUMMARY: Characters of C{Q) => corresponding characters of C(Y), the character
positions affected being specified by the Tag field.

MODIFICATIONS: No modification can take place
~-;:2._Y.::-:':~~~_:-·-~:_"_:,;- -:.-;_ -~--~=- :_.:::;- , <0:-_'~""~:.. :.,,.-_ -- :---"=-;;;;--~~k~ ~:c:~"'"""""~~;o-~--0_~~};:"~

INDICATORS: (Indicators not listed are not affected)

NOTE: Binary ones in the Tag field of this instruction specify the character
positions of Q and Y that are affected by this instruction. The control
relation is shown in the diagram below.

17 18 26

Address

30 35
Structure of
this Instruction:

Structure 1

of Q and y Char. #0 : Char. #1
I

I

Char. #2 1 Char. #3 Char. #4 Char. #5
I

II-47

Data Movement--Store

Mnemonic: Name of the Instruction: Op Code (octal)

STI Store Indicator Register I 754

SUMMARY: C(IR) => C(Y)l 8 ... 3 5

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

NOTE: 1. The relation between bit positions of C(Y) and the indicators is as follows:

Bit Position

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Indicators

Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used at this time;
these indicators appear always
as if being set OFF

2. The ON state corresponds to a ONE bit, the OFF state to a ZERO bit.

3. The C(Y)25 will contain the state of the Tally Runout Indicator prior
to address modification of the STI instruction (for Tally operations).

II-48

Data Movement--Store

Mnemonic: Name of the Instruction: 0 Code octal

STT Store Timer Register 454

SUMMARY: C(TR) ~ C(Y)o ... 23
00 ... 0 => C(Y)24 ... 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (octal)

SBAR Store Base Address Register I 550

SUMMARY: C(BR) ::o> C(Y)o ... l 7

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (octal)

STZ Store Zero I 450

SUMMARY: 00 ... 0 ~ C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

11-49

Data Movement--Store

Mnemonic:

STC1

SUMMARY:

Name of the Instruction:

Store Instruction Counter plus 1

C(IC) + 0 ... 01
C(IR)

=> C(Y)o ... 17
=> C(Y)18 ... 35

Op Code (octal

554

(Note the difference between STCl
and STC2~)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

NOTES:

Mnemonic:

STC2

SUMMARY:

1. The relation between bit positions of C(Y) and the indicators is as follows:

Bit Position
18
19
20
21
22
23
24
25
26
27
28

--29----
30
31
32
33
34
35

Indicators
Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used at this time;
these indicators appear always
as if being set OFF

2. The ON state corresponds to a ONE bit, the OFF state to a ZERO bit.

3. The C(Y)25 will contain the state of the Tally Runout Indicator prior to
address modification of the STCl instruction (for Tally operations).

Name of the Instruction: O Code octal

Store Instruction Counter plus 2 750

C(IC) + 0 ... 010 ~ C(Y)o ... 17 (Note the difference between STCl
and STC2~) .

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

II-50

Mnemonic: Name of the Instruction:

ARS A Right Shift

SUMMARY: Shift right C(A) by Y 11 17 positions; fill vacated
positions with C(A)0 · · ·

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

QRS Q Right Shift

SUMMARY: Shift right C(Q) by Y 11 ... 17 positions; fill vacated
positions with C (Q)o

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

LRS Long Right Shift

SUMMARY: Shift right C(AQ) by Y 11 ... 1 7 positions; fill vacated
positions with C(AQ)0

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)O = 1, then ON; otherwise OFF

II-51

Data Movement- -Shift

Op Code (octal

732

Op Code (octal)

I 733

Data Movement--Shift

Mnemonic: Name of the Instruction:

ALS A Left Shift

SUMMARY: Shift left C(A) by Y 11 ... 1 7 positions; fill vacated
positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

0 Code octal

735

Carry If C(A)0 ever changes during the shift, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

QLS Q Left Shift

SUMMARY: Shift left C(Q) by Y 11 ... 17 positions; fill vacated
positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affectedl

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

0 Code octal

736

Carry If C(Q)0 ever changes during the shift, then ON; otherwise OFF

Il-52

Mnemonic: Name of the Instruction:

LLS Long Left Shift

SUMMARY: Shift left C(AQ) by Y11 ... 17 positions; fill vacated
positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _(Indicators not listed are not affectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Data Movement--Shift

0 Code octal

737

Carry If C(AQ)0 ever changes during the shift, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

ARL A Right Logic

SUMMARY: Shift right C(A) by Y ll ... 17 positions; fill vacated
positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = o, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

QRL Q Right Logic

SUMMARY: Shift right C(Q) by Y 11 ... 17 positions; fill vacated
positions with zeros

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: l_Indicators not listed are not aff ectedl

Zero If C(Q) =O, then ON; otherwise OFF

Negative IfC(Q)
0

=1, then ON; otherwise OFF

II-53

0 Code octal

771

Op Code (octal)

1 772

Data Movement--Shift

Mnemonic: Name of the Instruction:

LRL Long Right Logic

SUMMARY: Shift right C(AQ) by Y 11 17 positions; fill vacated
positions with zeros · · ·

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ~ = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

ALR A Left Rotate

SUMMARY: Rotate C(A) by Y 11 ... 1 7 positions; enter each bit
leaving position 0 into position 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction:

QLR Q Left Rotate

SUMMARY: Rotate C(Q) by Y ll ... l 7 positions;
enter each bit leaving position 0 into position 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _(_Indicators not listed are not affectedl

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

II-54

Op Code (octal)

I 773

Op Code (octal)

I 775

Op Code (octal)

I 776

Data Movement- -Shift

Mnemonic: Name of the Instruction· O Code octal

LLR Long Left Rotate 777

SUMMARY: Rotate C(AQ) by Y 11 ... 17 positions;
enter each bit leaving position 0 into position 71

MODIF1CATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)
0 = 1, then ON; otherwise OFF

11-55

Fixed-Point Arithmetic--Addition

Mnemonic: Name of the Instruction: Op Code (octal)

ADA Add to A I 075

SUMMARY: C(A) + C(Y) ~ C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A
0

is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

ADQ Add to Q I 076

SUMMARY: C(Q) + C(Y) => C(Q)

MODIFICATIONS: All

INDICATORS: ilndicators not listed are not aff ectedl

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

II-56

Fixed-Point Arithmetic--Addition

Mnemonic: Name of the Instruction Op Code (octal)

ADAQ Add to AQ I 077 I
SUMMARY: C(AQ) + C(Y-pair) =-> C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Overflow If range of AQ exceeded, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction Op Code (octal

ADXn Add to Xn (n = 0, 1, ... , 7) 06n

SUMMARY: C(Xn) + C(Y)o ... 17 =-> C(Xn)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not aff ectedl

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)o = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded; then ON

I
Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

II-57

Fixed-Point Arithmetic- -Addition

Mnemonic: Name of the Instruction: 0 Code octal

ASA Add Stored to A 055

SUMMARY: C(A) + C(Y) ~ C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _(_Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y 0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

ASQ Add Stored to Q I 056

SUMMARY: C(Q) + C(Y) => C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) =0, then ON; otherwise OFF

Negative If C(Y)0 =1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y
0

is generated, then ON; otherwise OFF

II-58

Fixed-Point Arithmetic- -Addition

Mnemonic: Name of the Instruction: Op Code (octal

ASXn Add Stored to Xn 04n

SUMMARY: C(Xn) + C(Y)o ... 17 => C(Y)o ... 17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected]

Zero If C(Y)o ... 17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Yo ... 1 7 exceeded, then ON

Carry If a carry out of Y 0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

ADLA Add Logic to A 035

SUMMARY: C(A) + C(Y) ::;> C(A)

MODIFICATIONS: All

INDICATORS: J_lndicators not listed are not affectedl

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF

Overflow Not Affected !

Carry If a carry out of Ao is generated then ON, otherwise OFF

NOTE: This instruction is indentical to the ADA instruction with the exception
that the Overflow Indicator is not affected by this instruction.

II-59

/Fixed-Point Arithmetic--Addition

Mnemonic: Name of the Instruction: Op Code (octal)

ADLQ Add Logic to Q I 036

SUMMARY: C(Q) + C(Y) => C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow Not Affected !

Carry If a carry out of Q0 is generated then ON; otherwise OFF

NOTE: This instruction is identical to the ADQ instruction with the exception that
the Overflow Indicator is not affected by this instruction.

Mnemonic:

ADLAQ

SUMMARY:

Name of the Instruction

Add Logic to AQ

C(AQ) + C(Y -pair) ~ C(AQ)

Op Code (octal)

I 037

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow Not Affected ;

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADAQ instruction with the exception that
the Overflow Indicator is not affected by this instruction.

II-60

Fixed-Point Arithmetic- -Addition

Mnemonic: Name of the Instruction: 0 Code octal

ADLXn Add Logic to Xn (n = 0, 1, ... , 7) 02n

SUMMARY: C(Xn) + C(Y)o ... 17 => C(Xn)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)o = 1, then ON; otherwise OFF

Overflow Not Affected :

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADXn instruction with the exception that
the Overflow Indicator is not affected by this instruction.

Mnemonic: Name of the Instruction:

AWCA Add with Carry to A

SUMMARY: Carry Indicator OFF:
Carry Indicator ON;

C(A)
C(A)

+ C(Y)
+ C(Y)

Op Code (octal)

I 071

=> C(A)
+ 0 ... 01 => C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of Ao is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the ADA instruction with the exception that,
when the Carry Indicator is ON at the beginning of the instruction, then
a +1 is added to the least-significant position.

II-61

Fixed-Point Arithmetic--Addition

Mnemonic: Name of the Instruction: Op Code (octal)

AWCQ Add with Carry to Q I 072

SUMMARY: Carry Indocator OFF: C(Q) + C(Y) => C(Q)
Carry Indicator ON: C(Q) + C(Y) + O ••• 01 ~ C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If carry out of Q0 is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the A.DQ instruction with the exception that,
in case the Carry Indicator is ON at the beginning of the instruction, also
a + 1 is added to the least- significant position.

II-62

Fixed-Point Arithmetic- -Addition

Mnemonic: Name of the Instruction: Op Code (octal)

AOL Add Low to AQ I 033 I
SUMMARY: C(AQ) + C(Y), right adjusted, => C(AQ)

(See the description below.)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = o, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

DESCRIPTION: A 72-bit number is formed:

Mnemonic:

AOS

SUMMARY:

\C(Y o), C(Yo), ' C(Yo), C(Y).
--~~~~3-6-frm __ e_s~~~~~1

Its lower half (bits 36 - 71) is identical to C(Y), and each of the bits of its
upper half (bits 0 - 35) is identical to the sign bit of C(Y), i.e., to C(Y 0).

This number is added to the contents of the combined AQ-register, effecting
the addition of C(Y) to the lower half of the combined AQ-register, with a
possible carry out of the Q-part being passed on to the A-part.

Name of the Instruction: Op Code (octal)

Add One to Storage 1 054 1

C(Y) + O ••• 01 ~ C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = o, then ON; otherwise 0 FF

Negative If C(Y)o = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y
0

is generated, then ON; otherwise OFF

II-63

Fixed-Point Arithmetic- -Subtraction

Mnemonic: Name of the Instruction: Op Code (octal)

SBA Subtract from A I 175

SUMMARY: C(A) - C(Y) ~ C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF

Overflow If range of A is exceeded, then ON

Carry If a carry out of A0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

SBQ Subtract from Q 176 1

SUMMARY: C(Q) C(Y) => C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = o, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

Overflow If range of Q is exceeded, then ON

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

II-64

Fixed-Point Arithmetic- -Subtraction

Mnemonic: Name of the Instruction: Op Code (octal)

SBAQ Subtract from AQ I 177 I
SUMMARY: C(AQ) C(Y-pair) => C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = o, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow If range of AQ exceeded, then ON

Carry If carry out of AQ 0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

SBXn Subtract from Xn (n~0,1, ... ,7) I 16n I
SUMMARY: C(Xn) C(Y)o ... 17 => C(Xn)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = o, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise OFF

Overflow If range of Xn is exceeded, then ON

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

II-65

Fixed-Point Arithmetic- -Subtraction

Mnemonic: Name of the Instruction: Op Code (octal)

SSA Subtract Stored from A I 155

SUMMARY: C(A) C(Y) => C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y 0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

SSQ Subtract Stored from Q 156

SUMMARY: C(Q) - C(Y) => C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If C(Y) = o, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise 0 FF

Overflow If range of Y is exceeded, then ON

Carry If a carry out of Y 0 is generated, then ON; otherwise OFF

11-66

Fixed-Point Arithmetic- -Subtraction

Mnemonic: Name of the Instruction: Op Code (octal)

SSXn Subtract Stored from Xn I 14n

SUMMARY: C(Xn) C(Y)o ... 17 => C(Y)o ... 17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If C(Y)o ... 17 = 0, then ON, otherwise OFF

Negative If C(Y)o = 1, then ON, otherwise OFF

Overflow If range of Yo ... 1 7 exceeded, then ON

Carry If a carry out of Y 0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

SBLA Subtract Logic from A 1 135

SUMMARY: C(A) C(Y) ~ C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) :::: 0, then ON; otherwise OFF

Negative If C(A)0
:::: 1, then ON; otherwise OFF

Overflow Not Affected :

Carry If a carry out of A
0

is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBA instruction with the exception that
the Overflow Indicator is not affected by this instruction.

@[Eo(ID@@ ~~[ffi~[E~-----------
II-67

Fixed-Point Arithmetic--Subtraction

Mnemonic: Name of the Instruction Op Code (octal)

SBLQ Subtract Logic from Q I 136

SUMMARY: C(Q) C(Y) :::> C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Overflow Not Affected !

Carry If a carry out of Q0 is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBQ instruction with the exception that
the Overflow Indicator is not affected by this instruction.

Mnemonic: Name of the Instruction: O Code octal

SBLAQ Subtract Logic from AQ 137

SUMMARY: C(AQ) C(Y -pair) ~ C(AQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Overflow Not Affected !

Carry If a carry out of AQ
0

is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBAO instruction with the exception
that the Overflow Indicator is not affected by this instruction.

II-68

Fixed-Point Arithmetic- -Subtraction

Mnemonic: Name of the Instruction: Op Code (octal)

SBLXn Subtract Logic from Xn (n=O, 1, ... , 7) 12n

SUMMARY: C(Xn) C(Y)o ... 17 ::c> C(Xn)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON otherwise OFF

Overflow Not Affected :

Carry If a carry out of Xn0 is generated, then ON; otherwise OFF

NOTE: This instruction is identical to the SBXn instruction with the exception that
the Overflow Indicator is not affected by this instruction.

Mnemonic:

SWCA

SUMMARY:

Name of the Instruction

Subtract with Carry from A

Carry Indicator ON:
Carry Indicator OFF:

C(A)
C(A)

C(Y)
C(Y)

=> C(A)
0 ... 01 => C(A)

Op Code (octal)

I 171

MODIFICATIONS: All

INDICATORS:

Zero

Negative

Overflow

Carry

NOTE:

_{.Indicatior not listed are not aff ectedl

If C(A) = 0, then ON; otherwise OFF

If C(A)o = 1, then ON; otherwise OFF

If range of A is exceeded, then ON

If a carry out of A0 is generated, then ON; otherwise OFF

1. This instruction is identical to the SBA instruction with the exception that,
when the Carry Indicator is OFF at the beginning of the instruction, then
a +1 is subtracted from the least-significant position.

11-69

Fixed- Po int Arithmetic- -Subtraction

Mnemonic:

SWCQ

SUMMARY:

2. This instruction is used for multiple-word precision arithmetic. The
SUMMABY can also be worded as follows in order to show the intended use:

Carry Indicator ON: C(A) + 1 's complement of C(Y)
+ 0 ... 01 => C(A)

Carry Indicator OFF: C(A) + 1 's complement of C(Y)
=> C(A)

(The +1 which is added in the first case represents the carry from the
next lower part of the multiple-length subtraction.)

Name of the Instruction

Subtract with Carry from Q

Carry Indicator ON: C(A)
C(A)

C(Y)
C(Y)

Op Code (octal)

I 172

=> C(Q)
0 ... 01 => C(Q)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Overflow

Carry

NOTES:

If C(Q) = 0, then ON; otherwise 0 FF

If C(Q)0 = 1, then ON; otherwise 0 FF

If range of Q is exceeded, then ON

If carry out of Q0 is generated, then ON; otherwise OFF

1. This instruction is identical to the SBQ instruction with the exception that,
in case the Carry Indicator is OFF at the beginning of the instruction, also
a +l is subtracted from the least-significant position.

2. This instruction is used for multiple-word precision arithmetic. The
SUMMARY can also be worded as follows in order to show the intended use:

Carry Indicator ON: C(Q) + l's complement of C(Y)
+ 0 ... 01 => C(Q)

Carry Indicator OFF: C(Q) + l's complement of C(Y)
=> C(Q)

(The +l which is added in the first case represents the carry from the
next lower part of the multiple-length subtraction).

II-70

Fixed-Point Arithmetic--Multiplication

Mnemonic: Name of the Instruction Op Code (octal)

MPV Multiply Integer I 402

SUMMARY: C(Q) x C(Y) => C(AQ), right-adjusted

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

NOTES:

~

If C(AQ) = o, then ON; otherwise OFF

If C(AQ)o = 1, then ON; otherwise OFF

1. Two 36-bit integer factors (including sign) are multiplied to form a 71-bit
integer product (including sign), which is stored in AQ, right-adjusted.
Bit position AQ0 is filled with an "extended sign bit" .

0 1

Is:

....-.~~~~~--~~~-~3_,5 ~0~1;;;___~~-~~----~-3~5

.__. ________ -_-_-_-_-_-_-_-_----~-:.,! x l-81-:---- factor -------I factor

Q-register Memory Location Y

0 1 71

Is jsi product

Combined AQ-register

2. In the case of (-235) x (-235) = + 2 70, the position AQ1 is used to represent
this product without causing an overflow.

II-71

Fixed-Point Arithmetic- -Multiplication

MPF Multiply Fraction

Name of the Instruction: Op Code (octal
·~~~~~~~~--.-,---"--~40~1~--'--.

Mnemonic:

SUMMARY: C(A) x C(Y) => C(AQ), left-adjusted

MODIFICATIONS: All except CI, SC

INDICATORS:

Zero

Negative

Overflow

NOTES:

=9

_{_Indicators not listed are not affectedl

If C(AQ) = 0, then ON; otherwise OFF

If C(AQ)0 = 1, then ON; otherwise OFF

If range of AQ is exceeded, then ON

1. Two 36-bit franctional factors (including sign) are multiplied to form a
71-bit fractional product (including sign), which is stored in AQ, left­
adjusted. Bit position AQ 71 is filled with a zero bit.

0 1 35 0 1 35

1~: ::====-=--=--=--=--=--fa_c_t_o_r-=._-_-_-_-_-_-_-_-_---..... - _-..,, x t,....:: ~~~~~~~~~-f-a-ct_o_r __ -----_-_:_---~~:~~;

A-register Memory Location Y

0 1 70 71

1~: ~~-----------~----------product !O I
Combined AQ-register

2. An overflow can occur only in the case (-1) x (-1).

II-72

Fixed-Point Arithmetic- -Division

Mnemonic: Name of the Instruction: Op Code (octal)
.--~~~~~~-r-~~~~-

I 506 --=-] DIV Di vi de Integer

SUMMARY: C(Q) C(Y); integer quotient ::;;. C(Q)
fractional remainder => C(A)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

NOTES:

~

If di vision takes place: If no di vision takes place:

If C(Q) = 0, then ON; otherwise OFF If divisor = 0, then ON; otherwise OFF1

IfC(Q)o=l, then ON; otherwise OFF If dividend·'. 0, then ON; otherwise OFF

1. A 36-bit integer dividend (including sign) is divided by a 36-bit integer divisor
(including sign) to form a 36-bit integer quotient (including sign) and a 36-bit
fractional remainder (including sign). The remainder sign is equal to the
dividend sign unless the remainder is zero.

0 1 35 0 1 35

Is: dividend ~ 7 ls! divisor I
Q-register Memory Location Y

0 1 351 0 1 35

1~: remainder quotient ·I s:

A-register Q-register

2. If dividend= -235 and divisor = -1 or if divisor = 0, then the division itself
does not take place.

Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains
unchanged, C(Q) contains the dividend magnitude in absolute, and the
Negative Indicator reflects the dividend sign.

II-73

Fixed-Point Arithmetic--Division

Mnemonic:

DVF

SUMMARY:

Name of the Instruction:

Divide Fraction

C(AQ) C(Y); fractional quotient ~ C(A)
remainder ~ C(Q)

0 Code octal

507

MODIFICATION: All

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

NOTES:

If division takes place: If no division takes place:

If C(A) = o, then ON; otherwise OFF If divisor = 0, then ON; otherwise OFF

If C(A)o = 1, then ON; otherwise OFF If dividend<O, then ON; otherwise OFF

1. A 71-bit fractional dividend (including sign) is divided by a 36-bit fractional
divisor (including sign) to form a 36-bit fractional quotient (including sign)
and a 36-bit remainder (including sign), bit position 35 of the remainder
corresponding to bit position 70 of the dividend. The remainder sign is
equal to the dividend sign unless the remainder is zero.

0 1 70 71

(s: dividend !~I
Combined AQ-register Not used)

in division
0 1 35

..:.. Is~ divisor ~I
Memory Location Y

0 1 351 0 1
=} Is: quotient remainder

s•
I

A-register Q-register

2. If I dividend I ~ I divisor I or if divisor= 0, then the division itself
does not take place.

Instead, a Divide-Check Fault Trap occurs; the divisor C(Y) remains
unchanged, C(AQ) contains the dividend magnitude in absolute, and the
Negative Indicator reflects the dividend sign.

II-74

35

I

Fixed-Point Arithmetic--Negate

Mnemonic: Name of the Instruction: Op Code (octal)

NEG Negate A I 531 I
SUMMARY: - C(A) ~ C(A)

MODIFICATIONS: Are without any effect on the operation

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = o, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise 0 FF

Overflow If range of A is exceeded, then ON

NOTE: This instruction changes the number in A to its negative (if ~ 0). The
operation is executed by forming the two's complement of the string of
36 bits.

Mnemonic: Name of the Instruction: 0 Code octal

NEGL Negate Long 533

SUMMARY: - C(AQ) ~ C(AQ)

MODIFICATIONS: Are without any effect on the operation

INDICATORS: (Indciators not listed are not affectedl

Zero If C(AQ) == o, then ON; otherwise OFF

Negative If C(AQ)
0 = 1, then ON; otherwise OFF

Overflow If range of AQ is exceeded, then ON

NOTE: This instruction changes the number in AQ to its negative (if fa 0). The
operation is executed by forming the two's complement of the string of
7 2 bits.

II-75

Boolean Operations- -AND

Mnemonic: Name of the Instructi n ·

ANA AND to A

SUMMARY: C(Ah AND C(Y)i ~ C(A)i for all i = 0, 1, ... , 35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: O Code octal

ANQ AND to Q 376

SUMMARY: C(Q)i AND C(Y)i => C(Qh for all i = 0, 1, ... , 35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If C(Q) = o, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: O Code octal

ANAQ AND to AQ 377

SUMMARY: C(AQ)i AND C(Y-pair\ ~ C(AQh for all i = 0, 1, ... , 71

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _{_Indicators not listed are not aff ectedl

Zero If C(AQ) = o, then ON~ otherwise OFF

Negative If C(AQ~ = 1, then ON; otherwise OFF

II-76

Boolean Operations- -AND

Mnemonic: Name of the Instruction: 0 Code octal

ANXn AND to Xn (n=O, 1, ... , 7) 36n

SUMMARY: C(Xn)i AND C(Yh ~ C(Xnh for all i = 0, 1, ... , 1 7

MODIFICATIONS: All except CI, SC

INDICATORS: _(Indicators not listed are not aff ectedl

Zero If C(Xn) = o, then ON; otherwise OFF

Negative If C(Xn)0 = 1, then ON; otherwise 0 FF

Mnemonic: Name of the Instruction: 0 Code octal

ANSA AND to Storage A 355

SUMMARY: C(A)i AND C(Yh => C(Yh for all i = 0, 1, ... , 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _(Indicators not listed are not affectedl

Zero _If C(Y) = 0, then ON; otherwise 0 FF

Negative If C(Y)
0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

ANSQ AND to Storage Q 356

SUMMARY: C(Q). AND C(Y). => C(Y)
1
.

1 1
for all i = 0, 1, , 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affectedl

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

II-77

Boolean Operations--AND

Mnemonic: Name of the Instruction: Op Code (octal)

ANSXn AND to Storage Xn (n = 0, 1, ... , 7) I 3 4n I
SUMMARY: for all i = 0, 1, ... , 1 7

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not aff ecte42_

Zero If C(Y)o ... 17 = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Boolean Operations--OR

Mnemonic: Name of the Instruction: Op Code (octal)

ORA OR to A I 275

SUMMARY: for all i = 0, 1, ... , 35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not aff ectedl

Zero If C(A) = 0, then ON; otherwise 0 FF

Negative If C(A)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

ORQ I OR to Q I 276

SUMMARY: C(Q)i OR C(Y)i => C(Q)i for all i = 0, 1, ... , 3 5

MODIFICATIONS: All

INDICATORS· (Indicators not listed are not affected)

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)o = 1, then ON; otherwise OFF

II-78

Boolean Operations- -OR

Mnemonic: Name of the Instruction: 0 Code octal

ORAQ OR to AQ 277

SUMMARY: C(AQ)i OR C(Y -pair)i ~ C(AQ}i for all i = 0, 1, ... , 71

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affectedl

Go If C(AQ) = 0, then ON; otherwise OFF
~-at-i-ve~~--+--I-f-C-(A~Q-)o--=--l,--th_e_n_O_N __ ;_o_th_e_r_w-is_e_O __ F_F __ ~~~~--~--~~----------1

Mnemonic: Name of the Instruction: 0 Code octal

rc;-Rxn OR to Xn (n = 0, 1, ... , 7) 2 6n

SUMMARY: C(Xn)i OR C(Y}i =3> C(Xn)i for all i = 0, 1, ... , 1 7

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Xn) = 0, then ON; otherwise OFF

Negative If C(Xn)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

ORSA OR to Storage A 255

SUMMARY: for all i = 0, 1, ... , 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise 0 FF

Negative If C(Y)o = 1, then ON; otherwise 0 FF

II-79

Boolean Operations- -OR

Mnemonic: Name of the Instruction: Op Code (octal)

ORSQ OR to Storage Q I 256

SUMMARY: for all i = 0, 1, ... , 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

ORSXn OR to Storage Xn (n=0,1, ... ,7) I 24n I
SUMMARY: C(Xn)i OR C(Y)i => C(Yh for all i = 0, 1, ... , 17

MODIFICATIONS: For all except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not aff ectedl

Zero If C(Y)o ... 17 = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Boolean Operations--EXCLUSIVE OR

Mnemonic: Name of the Instruction: Op Code (octal)

ERA EXCLUSIVE OR to A I 675 ~

SUMMARY: for i = 0, 1, ... , 35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affectedl

Zero If C(A) = 0, then ON; otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF

II-80

Boolean Operations--EXCLUSIVE OR

Mnemonic: Name of the Instruction: Op Code (octal)

ERQ EXCLUSIVE OR to Q 1 676 -J
SUMMARY: for i = 0, 1, ... , 17

MODIFICATIONS: All

INDICATORS: J_Indicators not listed are not affected}

Zero If C(Q) = 0, then ON; otherwise OFF

Negative If C(Q)0 = 1, then ON; otherwise OFF

Mnemonic:

I ERAQ
I

Name of the Instruction:

EXCLUSIVE OR to AQ

Op Code (octal)

1
I 677

SUMMARY: C(AQ)i =/= C(Y -pair)i => C(AQ)i for all i = 0, 1, ... , 71

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _{_Indicators not listed are not aff ectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal

ERXn EXCLUSIVE OR to Xn (n = 0, 1, ... , 7) 66n

SUMMARY: for i = 0, 1, ... , 1 7

MODIFICATIONS: All except CI, SC

INDICATORS: J_Indicators not listed are not affectedl

r Zero If C(Xn) = 0, then ON; otherwise OFF

l Negative If C(Xn)0 = 1, then ON; otherwise OFF

II-81

Boolean Operations--EXCLUSIVE OR

Mnemonic: Name of the Instruction: Op Code (octal)

ERSA EXCLUSIVE OR to Storage A I 655

SUMMARY: C(A)i =j= C(Y)i ~ C(Y)i for i = 0, 1, ... , 35

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal

ERSQ EXCLUSIVE OR to Storage Q 656

SUMMARY: for i = 0, 1, ... , 35

MODIFICATIONS: All except DU, DL, Cl, SC

INDICATORS: (Indicators not listed are not affected_}

Zero If C(Y) = 0, then ON; otherwise OFF

Negative If C(Y)0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal

ERSXn EXCLUSIVE OR to Storage Xn (n = 0, 1, ... , 7) 64n

SUMMARY: for i = O, 1, ... , 17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affectedl

Zero If C(Y)o ... 17 = 0, then ON; otherwise OFF

Negative If C(Y)o = 1, then ON; otherwise 0 FF

11-82

Comparison- -Compare

Mnemonic: Name of the Instruction: Op Code (octal)

I CMPA Compare with A 115 I
SUMMARY: Comparison C(A) · · C(Y)

MODIFICATION: All

INDICATORS: (Indicators not listed are not affected)

(j)
Algebraic Comparison -~

.µ >·
0 crj ~
~ bJ) ~ Relation Sign (j) (j) crj

N z u
0 0 0 C(A) > C(Y) C(A)0 = 0, C(Y)0 = 1

0 0 1 C(A) ·. C(Y)

1 0 1 C(A) = C(Y) } C(A)o = C(Y)o

0 1 0 C(A) C(Y)

0 1 1 C(A) C(Y) C(A)o = 1, C(Y)o = 0

;;;.. Logic Comparison 0 ;....
~ ;....
(j) crj Relation N u
0 0 C(A) · C(Y)

1 1 C(A) = C(Y)

0 1 C(A) :. C(Y)

II-83

Comparison- -Compare

Mnemonic: Name of the Instruction: Op Code (octal)

CMPQ Compare with Q 116

SUMMARY: Comparison C(Q) · · C(Y)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)
Q.)
;::.. Algebraic Comparison .,...;

;::...., +-'
0 ro ::-i
H bJJ H
Q.) Q.) C\l Relation Sign
N z u

0 0 0 C(Q) > C(Y) C(Q)o = 0, C(Y)o = 1

0 0 1 C(Q) > C(Y)

1 0 1 C(Q) = C(Y) } C(Q)o = C(Y)o

0 1 0 C(Q). C(Y)

0 1 1 C(Q) C(Y) C(Q)o - 1, C(Y)o = 0

;::...., Logic Comparison 0 ::-i
H H

Relation Q.) C\l
N u
0 0 C(Q) C(Y)

1 1 C(Q) = C(Y)

0 1 C(Q) · C(Y)

II-84

Comparison- -Compare

Mnemonic: Name of the Instruction: Op Code (octal)

CMPAQ Compare with AQ 117 I
SUMMARY: Comparison C(AQ) : : C(Y -pair)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Q) Algebraic Comparison .~
~ :>-.

0 ro H
H on H Relation Sign Q) Q) ro
N z u
0 0 0 C(AQ) > C(Y-pair) C(AQ)o = 0) C(Y-pair)o = 1

0 0 1 C(AQ) > C(Y -pair)

} C(AQ)0 1 0 1 C(AQ) = C(Y -pair) = C(Y -pair)0

0 1 0 C(AQ) C(Y-pair)

0 1 1 C(AQ) - C(Y -pair) C(AQ)o = 1, C(Y-pair)o = 0

0
:>-.
H Logic Comparison

H H Relation Q) ro
N u
0 0 C(AQ) , C(Y-pair)

1 1 C(AQ) = C(Y -pair)

0 1 C(AQ) > C(Y -pair)

II-85

Comparison- -Compare

Mnemonic: Name of the Instruction: Op Code (octal)

CMPXn Compare with Xn (n 0, 1, ... , 7) lOn I

SUMMARY: Comparison C(Xn) · · C(Y)o ... 17

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Q.)

Algebraic Comparison -~
..µ ;.>-,

0 c'd 1--1
1--1 bf) 1--1 Relation Sign Q.) Q.) ro
N z u
0 0 0 C(Xn) > C(Y)o ... 17 C(Xn)0 = 0, C(Y)o = 1

0 0 1 C(Xn) > C(Y)o ... 17

} C(Xn)0 1 0 1 C(Xn) = C(Y)o ... 17 = C(Y)o

0 1 0 C(Xn) < C(Y)o ... 17

0 1 1 C(Xn) C(Y)o ... 17 C(Xn) 0 = 1, C(Y) 0 = 0

;.>-, Logic Comparison 0 1--1
1--1 ~ Relation CJ C\l
N u
0 0 C(Xn) C(Y)o ... 17

1 1 C(Xn)= C(Y)o ... 17

0 1 C(Xn) > C(Y)o ... 17

II-86

Mnemonic:

CWL

SUMMARY

MODIFICATIONS:

INDICATORS:

Zero

Q)

.~ ;:;.., ..j...)

C\l ~
bJl ~
Q) C\l
z u

0 0

0 1

1 0

1 1

Comparison--Compare

Name of the Instruction: Op Code (octal)

Compare with Limits I 111

Algebraic comparison of C(Y) with the closed interval [C(A); C(Q)
and also with the number C(Q)

All

(Indicators not listed are not affected)

If C(Y) is contained in the closed interval
[C(A); C(Q) J, i.e.,
either C(A) :;; C(Y) ~ C(Q)
or C(A) ~ C(Y) ~ C(Q),

then ON; otherwise OFF

Relation between Signs of
C(Q) and C(Y) C(Q) and C(Y)

C(Q) > C(Y) C(Q)0 = 0, C(Y)o =

C(Q) > C(Y)
} C(Q)o

--

= C(Y)o
C(Q) C(Y)

C(Q) C(Y) C(Q) 0 = 1, C(Y) 0 = 0

11-87

1

Comparison- -Compare

Mnemonic: Name of the Instruction Op Code (octal)

CMG Compare Magnitude 405 1

SUMMARY: Algebraic comparison

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Q.)

.~,
0 c1j
1--1 bil Relation Q.) Q.)

N z
0 0 I C(A) I > I C(Y) I
1 0 lc(A) I = IC(Y) I
0 1 lc(A) I :: lc(Y) I

Mnemonic: Name of the Instruction Op Code (octal)

SZN Set Zero and Negative Indicators from Memory 234

SUMMARY: Test the number C(Y)

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Q.)

.~,
0 c1j
1--1 bil Relation Q.) Q.)

N _Z_

0 0 Number C(Y) > 0

1 0 Number C(Y) = 0

0 1 Number C(Y) · 0

II-88

Comparison- -Compare

Mnemonic: Name of the Instruction: 0 Code octal

CMK Compare Masked 211

SUMMARY: C(Qh AND [C(A)i $ C(Y)i] for all i = 0, 1, ... , 35

MODIF1CATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

.Negative If Zo = 1, then ON; otherwise OFF

NOTE:· This instruction compares those corresponding bit positions of A and Y for
identity that are not masked by a 1 in the corresponding bit position
of Q.

The Zero Indicator is set ON, if the comparison is successful for all bit
positions; i.e. if for all i = 0, 1, ... , 35 there is

either C(A)i := C(Y)i or C(Q)i = 1

(identical) (masked)

Otherwise it is set OFF.

The Negative Indicator is set ON, if the comparison is unsuccessful for
bit position 0, i.e. if

C(A)o $. C(Y)o

(nonidentical)

Otherwise it is set OFF.

as well as

II-89

C(Q)o = 0

(nonmasked)

Comparison- -Comparative AND

Mnemonic: Name of the Instruction: Op Code (octal)

CANA Comparative AND with A I 315

SUMMARY: for all i = 0, 1, ... , 3 5

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

Negative If z0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

CANQ Comparative AND with Q 316

SUMMARY: Zi = C(Qh AND C(Y)i for all i = 0, 1 , . . . , 3 5

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

Negative If z0 = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

CANAQ Comparative AND with AQ 317

SUMMARY: Zi = C(AQ)i AND C(Y-pair)i for all i = 0, 1, ... , 71

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

II-90

Comparison--Comparative AND

CANXn
Name of the Instructi~o=n'----------------.--0;:;...p...._,C...,o~d e;....(...,,o_.c"""'ta l)....,

Comparative AND with Xn (n = O, 1, ... , 7) I 30n

Mnemonic:

SUMMARY: for all i = 0, 1, ... , 1 7

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

Negative If z0 = 1, then ON; otherwise OFF

Comparison- -Comparative NOT

Mnemonic: Name of the Instruction: Op Code (octal)

CNAA Comparative NOT with A I 215

SUMMARY: for all i = 0, 1, ... , 35

MODIFICATIONS: All

INDICATORS: (Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

Negative If Zo = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction Op Code (octal

CNAQ Comparative NOT with Q 216

SUMMARY: for all i = 0, 1, ... , 35

MODIFICATIONS: All

INDICATORS: _(Indicators not listed are not affected)

Zero If z = 0, then ON; otherwise OFF

Negative If z0 = 1, then ON; otherwise OFF

II-91

Comparison--Comparative NOT

Mnemonic: Name of the Instruction: - - I 217

Op Code (octal)

CNAAQ Comparative NOT with AQ

SUMMARY: Zi = C(AQ)i AND C(Y -pair h for all i = 0, 1, ... , 71

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicatcrs not listed are not affected)
-

Zero If z = 0, then ON; otherwise OFF

Negative If z 0 = 1, then ON; otherwise OFF

Mnemonic Name of the Instruction: Op Code (octal)

CNAXn Comparative NOT with Xn I 20n I
SUMMARY: zi = C(Xn)i AND C(Yh for all i = 0, 1, ... '17

MODIFICATIONS: All except CI, SC

INDICATORS: _{_Indicators not listed are not aff ectedl

Zero If z = 0, then ON; otherwise OFF

Negative If z 0 = 1, then ON; otherwise OFF

II-92

Floating Point- -Load

Mnemonic: Name of the Instruction: Op Code (octal)

FLD Floating Load 431 I

SUMMARY: C(Y), 00 ... 0 => C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS· (Indicators not listed are not affected)

Zero If C(AQ) = o, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

DFLD Double-Precision Floating Load 433

SUMMARY: C(Y-pair), 00 ... 0 ~ C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _(Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Mnbnonic: Name of the Instruction: O Code octal
IC~~·~_..;_-----r---L-o_a_d_E_xp~o-n_e_n_t_R_e_g-is-t~e-r----~------~----------~--.,.........;:;..i;...4~1~1~~.;;.;.;;~

SUMMARY: C(Y)o ... 7 ~ C(E)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected

Zero Set OFF

Negative Set OFF

II-93

Floating Point--Store

Mnemonic: Name of the Instruction: Op Code (octal)

FST Floating Store 455 I
SUMMARY: C(EAQ) => C(Y)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTE: This instruction is executed as follows:

C(E) ~ C(Y)o 7
C(A)o ... 27 ~ C(Y)s::: 35

Mnemonic: Name of the Instruction: Op Code (octal)

DFST Double-Precision Floating Store 457

SUMMARY: C(EAQ) => C(Y -pair)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTE: This instruction is executed as follows:

C(E) ='> C(Y-pair)o 7
C(AQ)0 ... 63 => C(Y-pair)8::: 71

Mnemonic: Name of the Instruction: 0 Code octal

STE Store Exponent Register 456

SUMMARY: C(E) => C(Y)o ... 7 oo ... o => c(Y)s ... 17

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

II-94

Floating Point- -Addition

Mnemonic: Name of the Instruction: Op Code (octal)

FAD Floating Add 475 I
SUMMARY: C(EAQ) + C(Y) normalized ::;:. C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: _(Indicators not listed are not aff ectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Exp. Overflow If Exponent above +127, then ON

Exp. Underflow If Exponent below -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal)

UFA Unnormalized Floating Add 435

SUMMARY: C{EAQ) + C(Y) not normalized ~ C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: _(Indicators not listed are not affectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON
~

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

II-95

Floating Point--Addition

Mnemonic: Name of the Instruction: 0 Code octal

DFAD Double -P rec is ion Floating Add 477

SUMMARY: C(EAQ) + C(Y-pair) normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: _{Indicators not listed are not aff ectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: Op Code (octal)

DUFA Double-Precision unnormalized Floating Add 437

SUMMARY: C(EAQ) + C(Y-pair) not normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not aff ectedl

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then O,N

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

II-96

Floating Point- -Addition

Mnemonic: Name of the Instruction: Op Code (octal)

ADE Add to Exponent Register 1 415

SUMMARY: C(E) + C(Y)o ... 7 => C(E)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero Set OFF

Negative Set OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Floating Point- -Subtraction

Mnemonic Name of the Instruction: 0 Code octal

FSB Floating Subtract 575

SUMMARY: C(EAQ) - C(Y) normalized => C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise 0 FF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

II-97

Floating Point- -Subtraction

Mnemonic: Name of the Instruction: 0 Code octal

UFS Unnormalized Floating Subtract 535

SUMMARY: C(EAQ) - C(Y) not normalized => C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = o, then ON; otherwise 0 FF

Negative If C(AQ)o = 1, then ON; otherwise 0 FF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQ0 is generated, then ON; otherwise OFF

Mnemonic: Name of the Instruction: 0 Code octal

DFSB Double-Precision Floating Subtract 577

SUMMARY: C(EAQ) C(Y -pair) normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise 0 FF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQ
0

is generated, then ON; otherwise OFF

II-98

Floating Point- -Subtraction

Mnemonic: Name of the Instruction: Op Code (octal)

DUFS Double-Precision unnormalized Floating Subtract 537

SUMMARY: C(EA~!) - C(Y-pair) not normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Carry If a carry out of AQ
0

is generated, then ON; otherwise OFF

Floating Point- -Multiplication

Mnemonic: :t.; ame of the Instruction: 0 Code octal

I FMP Floating Multiply 461

SUMMARY: C(EAQ) x C(Y) normalized => C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected) -
Zero If C(.AQ) = 0, then ON; otherwise OFF

·-·
Negative If C(AQ)o =1, then ON; otherwise OFF

·-----·---------
Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON I -·

NOTES: This multiplication is executed as follows:

1. C(E) + C(Y)o ... 7 => C(E)

2. C(AQ) x C(Y)s ... 35 results in a 98-bit product plus sign, the leading
71 bits plus sign of which ~ C(AQ)

3. C(EAQ) normalized => C(EAQ) .

II-99

Floating Point- -Multiplication

Mnemonic: Name of the Instruction: Op Code (octal)

UFM Unnormalized Floating Multiply 421

SUMMARY: C(EAQ) x C(Y) not normalized ~ C(EAQ)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTE: This multiplication is executed like the instruction FMP with the exception
that the final normalization is performed only in the case of both factor
mantissas being = - 1. 00· · · 0 .

Mnemonic: Name of the Instruction: 0 Code octal

DFMP Double-Precision Floating Multiply 463

SUMMARY: C(EAQ) x C(Y-pair) normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = o, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTE: This multiplication is executed as follows:

1. C(E) + C(Y-pair)o ... 7 => C(E)

2. C(AQ) x C(Y-pair)8 ... 71 results in a 134-bit product plus sign, the leading
71 bits plus sign of which => C(AQ)

3. C(EAQ) normalized => C(EAQ).

@~ o@@© ~[~ffi1 ~ ~~ -----------------
II-100

Floating Point- -Multiplication

Mnemonic: Name of the Instruction: Op Code (octal)

DUFM Double-Precision Unnormal Floating Multiply 423

SUMMARY: C(EAQ) x C(Y-pair) not normalized => C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)o = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTE: This multiplication is executed like the instruction D FMP, with the exception
that the final normalization is performed only in the case of both factor
mantissas being = - 1. 00 · · · 0 •

@~o(ID@@ ~~[ffi~~~-----------
II-101

Floating Point- -Division

Mnemonic: Name of the Instruction: Op Code (octal

FDV Floating Di vi de 565

SUMMARY: C(EAQ) C(Y) ~ C(EA) 00 ... 0 ~ C(Q)

MODIF1CATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

If di vision takes place: If no division takes place:

Zero If C(A) = 0, then ON; otherwise OFF If divisor mantissa = 0, then ON;
otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF If dividend < 0, then ON; otherwise
OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128 then ON

NOTES: 1. This division is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent C(E)
increased accordingly until

IC(AQ)o ... 27 I< IC(Y)s ... 35 j;

C(E) - C(Y)o ... 7 ~ C(E)

C(AQ) -;- C(Y)s ... 35 ~ C(A)

00 ... 0 =? C(Q)

2. If mantissa of divisor = 0, then the division itself does not take place. Instead,
a Divide-Check Fault Trap occursr and all the registers remain unchanged.

II-102

Floating Point--Divii;ion

Mnemonic Name of the Instruction: Op Code (oetal)

FDI Floating Divide Inverted 525 I
SUMMARY: C(Y) -;- C(EAQ) => C(EA) 00 ... 0 ~ C(Q)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Exp. Overflow

Exp. Underflow

NOTES:

If division takes place: If no division takes place:

If C(A) = 0, then ON; otherwise OFF If divisor mantissa = 0, then ON;
otherwise OFF

If C(A)o = 1, then ON; otherwise OFF If dividend < 0, then ON; otherwise
OFF

If exponent above +127, then ON

If exponent below -128, then ON

1. This division is executed as follows:

The dividend mantissa C(Y)s ... 35 is shifted right and the dividend exponent
C(Y)o ... 7 increased accordingly until I C(Y)s ... 35 I < IC(AQ)o ... 271

C(Y)o ... 7

C(Y)s ... 35

00 ... 0

C(E)

C(AQ)

=> C(E)

=? C(A)

~ C(Q)

2. If mantissa of divisor = 0, then the division itself does not take place.
Instead, a Divide-Check Fault Trap occurs; and all the registers remain
unchanged.

II-103

Floating Point- -Division

Mnemonic: Name of the Instruction: Op Code (octal)

DFDV Double-Precision Floating Divide 567

SUMMARY: C(EAQ) -;- C(Y-pair) ~ C(EAQ)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

If division takes place: If no division takes place:

Zero If C(AQ) = 0, then ON; otherwise OFF If divisor mantissa = 0, then ON;
otherwise 0 FF

Negative If C(AQ)0 = 1, then ON; otherwise OFF If dividend < 0, then ON; otherwise
OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTES: 1. This division is executed as follows:

The dividend mantissa C(AQ) is shifted right and the dividend exponent C(E)
increased accordingly until lc(AQ)o ... 63\ < IC(Y-pair)s ... 71(;

C(E) - C(Y-pair)o 7 => C(E)

C(AQ) -;- C(Y -pair)g ... 71 ~ C(AQ)o ... 63

00 ... 0 ~ C(AQ)64 ... 71 .

2. If mantissa of divisor = 0, then the division itself does not take place.
Instead, a Divide-Check Fault Trap occurs; and all the registers remain
unchanged.

II-104

Floating Point--Division

Mnemonic: Name of the Instruction: Op Code (octal)

DFDI Double-Precision Floating Divide Inverted 527

SUMMARY: C(Y-pair) C(EAQ) ~ C(EAQ

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Zero

Negative

Exp. Overflow

Exp. Underflow

NOTES:

If division takes place: If no division takes place:

If C(AQ) = 0, then ON; otherwise OFF If divisor mantissa = 0, then ON;
otherwise OFF

If C(AQ)0 = 1, then ON; otherwise OFF If dividend < 0, then ON; otherwisf1
OFF

If exponent above +127, then ON

If exponent below -128, then ON

1 . This di vision is executed as follows:

The dividend mantissa C(Y -pair)8 71 is shifted right and the dividend
exponent C(Y-pair)o ... 7 increasea·accordingly until f C(Y-pair)s ... n I

< IC(AQ)o ... 63 I
C(Y-pair)o ... 7 - C(E) .q C(E) ;

C(Y -pair)s ... 71 -;- C(AQ) ::} C(AQ)O ... 63

00 ... 0 ~ C(AQ)64 ... 71 ·

2. If mantissa of divisor = 0, then the division itself does not take place.
Instead, a Divide-Check Fault Trap occurs; and all the registers remain
unchanged.

11-105

Floating Point--Negate

Mnemonic: Name of the Instruction: Op Code (octal)

FNEG Floating Negate I 513 I
SUMMARY: - C(AQ) normalized ::;> C(AQ)

MODIFICATIONS: Are without any effect on the operation

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF
I---·

Negative If C(AQ)0 = 1, then ON; otherwise OFF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

NOTES: 1. This instruction changes the number in EAQ to its normalized negative (if
C(AQ) j=O). The operation is executed by first forming the two's complement
of C(AQ), and then normalizing C(EAQ).

2. Even if originally C(EAQ) were normalized, an exponent overflow can still
occur, namely when originally C(AQ) = -1. 00 ... 0 and C(E) = + 127.

Floating Point- -Normalize

Name of the Instruction: ~~~~~~....-~~~~- -~~~~~~~~~~-

Floating Normalize

Op Code (octal) c 573 l
Mnemonic:

FNO

SUMMARY: C(EAQ) normalized => C(EAQ)

MODIFICATIONS: Are without any effect on the operation

INDICATORS: (Indicators not listed are not affected)

Zero If C(AQ) = 0, then ON; otherwise OFF

Negative If C(AQ)0 = 1, then ON; otherwise 0 FF

Exp. Overflow If exponent above +127, then ON

Exp. Underflow If exponent below -128, then ON

Overflow Set OFF

II-106

NOTE:

Mnemonic:

FCMP

SUMMARY:

Floating Point- -Normalize

The instruction normalizes the number in EAQ.
If the Overflow Indicator is ON, then the number in EAQ is normalized one
place to the right; and then the sign bit C(AQ)o is inverted in order to
reconstitute the actual sign. Furthermore, the Overflow Indicator is set
OFF.

This instruction can be used to correct overflows that occurred with
fixed-point numbers.

Floating Point--Compare

Name of the Instruction: 0 Code (octal

Floating Compare 515

Algebraic comparison C(EAQ) · · C(Y)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

<!)
p.

........
0 ~
H b.O Relation <!) _Z N

0 0 C(EAQ) > C(Y)

1 0 C(EAQ) = C(Y)

0 1 C(EAQ) < C(Y)

NOTE: This comparison is executed as follows:

1. Compare C(E) :: C(Y) 0 ... 7 , select the number with the lower exponent,

and shift its mantissa right as many places as the difference of the
exponents.

2. Then compare the mantissas and set the indicators accordingly.

II-107

Floating Point--Compare

Mnemonic: Name of the Instruction: Op Code (octal)

FCMG Floating Compare Magnitude 425

SUMMARY: Algebraic comparison I C(EAQ) I · · j C(Y) I

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)
Cl)

-~ _....,
0 ro
i... on
Cl) _Z Relation
N

0 0 lc(EAQ) I > I C(Y) I

1 0 lc(EAQ) I = I C(Y) I
0 1 lc(EAQ) I < lc(Y) I

NOTE: This comparison is executed as follows:

1. Compare C(E) :: C(Y)o ... 7 , select the number with the lower exponent,
and shift its mantissa right as many places as the difference of the exponents.
Note the effective mantissa length for both numbers is 72 bits (including
the sign).

2. Then compare the absolute value of the mantissas and set the indicators
accordingly.

II-108

Floating Point- -Compare

Mnemonic: Name of the Instruction: 0 Code octal

DFCMP Double-Precision Floating Compare

SUMMARY: Algebraic comparison C(EAQ) C(Y-pair)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Q)

>
•.-1
.µ

0 C'il
~ bJ)
Q) Q)

N z Relation

0 0 C(EAQ) > C(Y-pair)

1 0 C(EAQ) = C(Y-pair)

0 1 C(EAQ) < C(Y-pair)

NOTE: This comparison is executed as follows:

1. Compare C(E) : : C(Y)0 ... 7 , select the number with the lower

exponent, and shift its mantissa right as many places as the
difference of the exponents.

2. Then compare the mantissas and set the indicators accordingly.

II-109

517

Floating Point--Compare

Mnemonic: Name of the Instruction: Op Code (octal

DFCMG Double-Precision Floating Compare Magnitude 427

SUMMARY: Algebraic comparison I C(EAQ) I ·· I C(Y-pair) I
MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Q)

>
•.-4

0 ~
i... bf)
Q) Q)

N z Relation

0 0 I C(EAQ) I > I C(Y-pair) I
1 0 I C(EAQ) I = I C(Y -pair) I
0 1 J C(EAQ) I < I C(Y -pair) I

NOTE: This comparison is executed as follows:

1. Compare C(E) :: C(Y)0 ... 7 , select the number with the lower exponent,

and shift its mantissa right as many places as the difference of the
exponents. Note the effective mantissa length for both numbers is 72
bits (including the sign).

2. Then compare the absolute value of the mantissas and set the
indicators accordingly.

II-110

Floating Point- -Compare

Mnemonic: Name of the Instruction: Op Code (octal)

FSZN Floating Set Zero and Negative Indicators from Memory 430

SUMMARY: Test the number C(Y)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affected)

Cl)

:>
•.-I
..µ

0 c\l bJ)
Cl) Cl)

N z Relation

0 0 Mantissa C(Y)s ... 35> 0

1 0 Mantissa C(Y)s ... 35= 0

0 1 Mantissa C(Y)s ... 35< 0

II- 111

Transfer of Control- -Transfer

Mnemonic: Name of the Instruction: Op Code (octal)

TRA Transfer Unconditionally 710 I

SUMMARY: Y => C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: 0 Code octal

TSXn Transfer and Set Xn (n = 0, 1, ... , 7) 70n

SUMMARY: C(IC) + 0 ... 01 => C(Xn); Y ?> C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: 0 Code octal

TSS Transfer and Set Slave 715

SUMMARY: Y ::::> C(IC)

MODIFICATIONS: All except DU. DL, CL SC

INDICATORS: (Indicators not listed are not affected)

Master Mode Set OFF

II-113

Transfer of Control- -Tranfer

Mnemonic: Name of the Instruction: 0 ct al

RET Return 630

SUMMARY: C(Y)o ... 17 => C(IC); C(Y)18 ... 35 => C(IR)

MODIFICATIONS: All except CI, SC, DU, CL

INDICATORS· (Indicators not listed are not affected)

Master Mode

All other
indi_c_ato_r_.s_

NOTES:

If corresponding bit in C(Y) is 1, then no change; otherwise OFF

If corresponding bit in C(Y) is 1, then ON; otherwise OFF

1. The relation between bit position of C(Y) and the indicators is as follows:

Bit Position
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Indicator
Zero
Negative
Carry
Overflow
Exponent Overflow
Exponent Underflow
Overflow Mask
Tally Runout
Parity Error
Parity Mask
Master Mode

Not used
at this
time

2. A possible change of the status of the Master Mode Indicator takes place
as the last part of the instruction execution.

3. The Tally Runout Indicator will reflect C(Y) 25 regardless of what address

modification is performed on the RET instruction (for tally operations).

II-114

Transfer of Control- -Conditional Transfer

Mnemonic: Name of the Instruction: 0 Code octal

TZE Transfer on Zero 600

SUMMARY: If Zero Indicator ON, then Y ~ C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: 0 Code octal

TNZ Transfer on Not Zero 601

SUMMARY: If Zero Indicator OFF, then Y :::;> C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (octal)

TMI Transfer on Minus 604 I
SUMMARY If Negative Indicator ON, then Y => C(IC)

MODIFICATIONS: All except DU, DL, CI. SC

INDICATORS: None affected

..--M_n_e_m_o_n~ic_: __ "T-N_ame of the Instructio_1_1: _______________ ~0......__.C._.o.__d_.e~o_.c_..ta l.-..,,

TPL Transfer on Plus 605

SUMMARY: If Negative Indicator OFF, then Y :::;> C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

II-115

Transfer of Control--Conditional Transfer

Mnemonic: Name of the Instruction: 0 Code octal

TRC Transfer on Carry 603

SUMMARY: If Carry Indicator ON, then Y ~ C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

,..._M_n_e_m_o_n_i_c_: ---.-N_a_m_e_of the Instruction: ______________ -,.........0.....,p.__C o_d_e_.(.... o c ta l.._)

Transfer on No Carry 602 I TNC

SUMMARY: If Carry Indicator OFF, then Y ~ C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (octal

TOV Transfer on Overflow 617

SUMMARY: If Overflow Indicator ON, then Y ~ C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

Overflow Set OFF

II-116

Transfer of Control- -Conditional Transfer

Mnemonic: Name of the Instruction: Op Code (octal)

TEO Transfer on Exponent Overflow 614 I
SUMMARY: If Exponent Overflow Indicator ON, then Y => C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: Indicators not listed are not affected

Exp. Overflow Set OFF

_M_n_e_m_o_n_i_c_: ___ N_a_m_e_o_f_t_h_e_I_n_s_truction: 0 Code octal

TEU Transfer on Exponent Underflow 615

SUMMARY: If Exponent Underflow Indicator ON, then Y => C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: Indicators not listed are not affected

Exp. Underflow Set OFF

Mnemonic: Name of the Instruction: 0 Code octal

TTF Transfer on Tally Runout Indicator OFF 607

SUMMARY: If Tally Runout Indicator OFF, then Y =;> C(IC)

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

II-117

Miscellaneous Operations

Mnemonic: Name of the Instruction: Op Code (octal)

NOP No Operation 011 I
SUMMARY: No operation takes place

MODIFICATIONS: Generally the modification DU or DL should be used (see the notes below)

INDICATORS: None affected

NOTES: 1. If any modification other than DU or DL is used, the effective address will be
used in a memory access request which could lead to memory faults.

2. The use of a modification ID, DI, IDC, DIC causes the respective changes in
the address and the tally.

Mnemonic: Name of the Instruction: Op Code (octal

DIS Delay Until Interrupt Signal 616

SUMMARY: No operation takes place, and the Processor does not continue with the next
instruction, but waits for a program interrupt signal

MODIFICATIONS: Are without any effect on the operation

INDICATORS: None affected

Mnemonic: Name of the Instruction: Op Code (octal)

BCD Binary to Binary-Coded-Decimal 505 I
SUMMARY: C(A)-:- C(Y) => 4-bit quotient and remainder.

Shift C(Q) left 6 positions; 4--bit quotient=· C(Q)68 ... 71
and remainder =· C(A). Shift C(A) left 3 positions

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affectedl

Zero If C(A) = 0, then ON

Negative If before execution C(A)0 = 1, then ON; otherwise OFF

II-118

NOTE:

Mnemonic:

GTB

SUMMARY:

Miscellaneous Operations

This instruction carries out one step in an algorithm for the conversion of a
number from the binary to the decimal system of notation, which requires the
repeated short di vision of the binary number or last remainder by certain
constants

Ci 8i x 10N-i (for i=l, 2, ...),

with N being defined by

N-1 I< N 10 ~ !number = 10 -1.

Name of the Instruction: O Code octal

Gray to Binary 774

C(A) converted from Gray Code to binary representation ~ C(A)

MODI FICA TIO NS: Are without any effect on the operation

INDICATORS: (Indicators not listed are not affected)

Zero If C(A) = o, then ON; otherwise OFF

Negative If C(A)o = 1, then ON; otherwise OFF

NOTE: This conversion is defined by the following algorithm, when Ri and Si denote

the contents of bit positions i of the A-register before and after the conversion:

Ro

(Ri AND Si-1) OR (Ri AND Si-1)
fori=i,2, ... ,35.

II-119

Miscellaneous Operations

Mnemonic: Name of the Instruction: 0 Code (octal

XEC Execute 716

SUMMARY: Obtain and execute the instruction stored at the memory location Y

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: (Indicators not listed are not affected)

NOTE:

Mnemonic:

XED

The XEC instruction itself does not affect any indicator. However, the
execution of the instruction from Y may affect indicators.

After the execution of the instruction obtained from location Y, the next
instruction to be executed is obtained from C(IC) + 1. This is the one
stored in memory right after this XEC instruction, unless the contents of
the Instruction Counter have been changed by the execution of the instruction
obtained from memory location Y.

Name of the Instruction: 0 Code octal

Execute Double 717

SUMMARY: Obtain and execute the two instructions stored at the memory location Y -pair

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS:

NOTES:

(Indicators not listed are not affected_l

The XED instruction itself does not affect any indicator. However, the
execution of the two instructions from Y -pair may affect indicators.

1. The first instruction obtained from Y -pair MUST NOT alter the memory
location from which the second instruction is obtained, and MUST NOT be
another XED instruction.

2. If the first instruction obtained from Y -pair alters the contents of the
Instruction Counter, then this transfer of control is effective immediately;
and the second instruction of the pair is not executed.

3. After the execution of the two instructions obtained from Y -pair, the next
instruction to be executed is obtained from C(IC) +1. This is the instruction
stored in memory right after this XED instruction unless the contents of the
Instruction Counter have been changed by the execution of the two instructions
obtained from the memory locations Y -pair.

@[o@@@ ~[~[ffi ~ ~~ ------------------

II-120

Mnemonic:

MME

SUMMARY:

Miscellaneous Operations

Name of the Instruction: 0 Code octal

Master Mode Entry 001

Causes a fault which obtains and executes, in the Master Mode, the two
instructions stored at the memory locations 4 + C and 5 + C (decimal)

MODIFICATIONS: Are without any effect on the operation.

IN DI CA TORS: (Indicators not listed are not affected)

The MME instruction itself does not affect any indicator. However, the
execution of the two instructions from 4 + C and 5 + C may affect indicators;
particularly, each one in turn will affect the Master Mode Indicator as
follows:

Master If the instruction obtained actually results in a transfer of control and is
Mode not the TSS instruction, then ON

If the instruction obtained is either the RET instruction with bit 28 = ZERO
or the TSS instruction, then OFF

NOTES: 1. The value of the constant C is set up in the FAULT switches.

2. During the execution of this MME instruction and the two instructions ob­
tained, the Processor is in the Master Mode, independent of the value of its
Master Indicator. The Processor will stay in the Master Mode, if the
Master Indicator is set ON after the execution of these three instructions.

3. The instruction from 4 + C MUST NOT alter the memory location 5 + C, and
MUST NOT be an XED instruction.

4. If the instruction from 4 + C alters the contents of the Instruction Counter,
then this transfer of control is effective immediately; and the instruction
from 5 + C is not executed.

5. After the execution of the two instructions obtained from Y -pair, the next
instruction to be executed is obtained from C(IC) + 1. This is the instruc -
tion stored in memory right after this MME instruction unless the contents
of the Instruction Counter have been changed by the execution of the two
instructions obtained from 4 + C and 5 + C.

II- 121

Miscellaneous Operations

Mnenionic: Nanie of the Inst~~tion:'--~~~~~~~~~~~~~~~..--o.;..i..._C~od_e__..._o_c_ta_l...__

DRL Derail 002

SUMMARY: Causes a fault which obtains and executes in the Master Mode the two
instructions stored at the nieniory locations 12 + C and 13 + C (decinial)

MODIFICATIONS: Are without any effect on the operation

INDICATORS: (Indicators not listed are not affected)

Master
Mode

NOTES:

The DRL instruction itself does not affect any indicator. However, the
execution of the two instructions froni 12 + C and 13 + C niay affect
indicators; particularly, each one in turn will affect the Master Mode
Indicator as follows:

If the instruction obtained actually results in a transfer of control and
is not the TSS instruction, then ON

If the instruction obtained is either the RET instruction with bit 28 = ZERO
or the TSS instruction, then OFF

1. The value of the constant C is set up in the FAULT switches.

2. During the execution of this DRL instruction and the two instructions ob­
tained} the Processor is in the Master Mode, independent of the value of
its Master Indicator. The Processor will stay in the Master Mode, if the
Master Indicator is ON after the execution of these three instructions.

3. The instruction froni 12 + C MUST NOT alter the nieniory location 13 + C, and
MUST NOT be an XED instruction.

4. If the instruction froni 12 + C alters the contents of the Instruction Counter,
then this transfer of control is effective ininiediately; and the instruction
froni 13 + C is not executed.

5. After the execution of the two instructions obtained froni Y -pair, the next
instruction to be executed is obtained froni C(IC) + 1. This is the instruction
stored in the nieniory right after this DRL instruction unless the contents of
the Instruction Counter have been changed by the execution of the two in­
structions obtained froni 12 + C and 13 + C.

II- 122

Miscellaneous Operations

Mnemonic: Name of the Instruction: Op Code (octal)

RPT Repeat 520 I
SUMMARY: Execute the next instruction a specified number of times or until a specified

Terminate Condition is met

MODIFICATIONS: No modification can take place
if'.~~E_-:,_"'£-_~=-:;-4'..'k.~"-~:";;C~~-~=--,.--=---~ ... ~"""~~"'°~~.-c~.;;-~~~....'.--~~

INDICATORS: (Indicators not listed are not affected)

Tally Runout

All other
indicators

NOTES:

If termination because of Tally = 0, then ON
If because Terminate Condition is met, then OFF

The RPT instruction itself does not affect any of the other indicators.
However, the execution of the repeated instruction may affect indicators.

~~-

1. This RPT instruction has the following format:

0 7 8 9 10 11 17 18 26 27 28 29 30

Tally 1 _1,~1 C'Term Cond • I I • • I Op Code I 0 I 1 Io: Delta
I

2. If C = 1, then bits 0 - 17 of the RPT instruction => XO.

3. In any case, the Terminate Condition and Tally from XO will control the
repetition loop for the instruction following this RPT instruction; initial
Tally = 0 will be interpreted as 256.

4. The repetition loop consists of the following steps:
a. Execute the repeated instruction,
b. C (XO)o ... 7-l = C(XO),

35

c. If Termination Condition met (see 7), then set Tally Runout Indicator OFF
and terminate,

d. If C(XO)o ... 7=0, then set Tally Runout Indicator ON and terminate:
e. Go to a.

5. All instructions can be used as repeated instructions except the following:
All transfer of control instructions
All miscellaneous instruction operations except NOP and BCD.

6. Address modification for the repeated instruction:

For the repeated instruction, only the modifiers R and RI are permitted, and
only the designators specifying Xl, ... , X7.

II-123

Miscellaneous Operations

The effective address Y (in the case of R) or the address Y of the indirect
word to be referenced (in the case of RI) will be:

a. For the first execution of the repeated instruction
Y + C(R) ~ Y, Y ~ C(R)

b. For any successive execution
Delta + C(R) ~ Y, Y ~ C(R).

In the case of RI, or1ly one indirect reference will be made per repeated
execution. The Tag portion of the indirect word will not be interpreted as
usual, but will be ignored; and instead the modifier R and the designator
R=N will be applied.

7. The Terminate Conditions:

The possible Terminate Conditions are the same for all three repeat
instructions-- RPT, RPD, RPL.

The bit configuration in bit positions 11 - 17 of the RPT instruction defines
the Terminate Conditions for which the repetition loop will be terminated
immediately. If more than one condition is specified, the repeat will termin­
ate if any of the specified conditions are met.

Bit 17 = 0 : any overflow is completely ignored, i.e., neither the
respective Overflow Indicator is set ON, nor an Overflow Trap
occurs.

Bit 16 =

Bit 15 =

Bit 14 =

Bit 13 =

Bit 12 =

Bit 11 =

1 : any overflow terminates the repetition loop, and it is treated
as usual; i.e., the respective Overflow Indicator is set ON, and if
the Overflow Mask Indicator is OFF, then an Overflow Fault Trap
occurs.

1 if Carry Indicator is OFF, then terminate the repetition loop.

1 if Carry Indicator is ON, then terminate the repetition loop.

1 if Negative Indicator is 0 FF, then terminate the repetition
loop.

1 if Negative Indicator is ON, then terminate the repetition loop.

1 if Zero Indicator is OFF, then terminate the repetition loop.

1 if Zero Indicator is ON, then terminate the repetition loop.

A 0 in both positions for one indicator will cause this indicator to be
ignored as a Termination Condition; a 1 in both positions will cause a ter­
mination after the first execution of the repeated instruction.

II-124

Mnemonic:

RPD

SUMMARY:

Miscellaneous Operations

8. At the time of termination:

xo0 .. 7 will contain the Tally Residue; i.e. , the number of repeats remaining
until a Tally Runout would have occurred, and also the Terminate Condition.

The Xn specified by the designator of the repeated instruction will contain the
effective address of the next operand or indirect word that would have been
secured (this is because of the overlap between an execution of the repeated
instruction and the address modification for the next execution of the repeated
instruction).

Name of the Instruction: 0 Code octal

Repeat Double 560

Execute the pair of instructions from the next location Y -pair a specified
number of times or u.ntil a specified Terminate Condition is met

MODIF1VATIONS:

INDICATORS: (Indicators not listed are not affected)

Tally Runout

All other
indicators

....
NOTE~

If termination because of Tally = 0, then ON.
If because Terminate Condition is met, then OFF.

The RPD instruction itself does not affect any of the other indicators.
However, the execution of the repeated instructions may affect indicators.

1. The RPD instruction must be stored in an odd memory location

2. This RPD instruction has the following format:

0 7 8 9 10 11 17 18 26 27 28 29 30

I Tally :A!B:c ~Term. Cond.: Op. Code i 0 : 1 : 0 ! Delta

3. If c = 1, then bits 0 - 1 7 of the RPD instruction ~ XO.

4. In any case, the Terminate Condition and Tally from XO will control the
repetition loop for the instruction following this RPD instruction; initial
Tally = 0 will be interpreted as 256.

5. The repetition cycle consists of the following steps:
a. Execute the pair of repeated instructions

35

I

b. C(XO)o.'. rl => C(XO)o ... 7
c. If Termination Condition met (see 8), then set Tally Runout Indicator OFF

and terminate
d. If C(XO)o ... 7=0, then set Tally Runout Indicator ON and terminate
e. Go to a.

II-125

Miscellaneous Operations

6. All instructions can be used as repeated instructions except the following:
a. Transfer of control instruction
b. All miscellaneous operations instructions except NOP and BCD

7. Address Modification for the pair of repeated instructions:

For each of the two repeated instructions, only the modifiers R and RI are
permitted, and only the designators specifying Xl, ... , X7.

The effective address Y (in the case of R) or the address Y of the indirect
word to be referenced (in the case of RI) will be:

a. For the first execution of each of the two repeated instructions

Y + C(R) ~ Y, Y ~ C(R)

b. For any successive execution of

The first of the two repeated instructions

if A 1, then Delta + C(R) ::? Y, Y ~ C(R) or
if A 0, then C(R) ;? Y

The second of the two repeated instructions

if B 1, then Delta + C(R) :;;. Y, Y =? C(R) or
if B 0, then C(R) ~ Y

(A and B being the contents of bit positions 8 and 9 of the RPD instruction)

In the case of RI, only one indirect reference will be made per repeated
execution. The Tag portion of the indirect word will not be interpreted as
usual, but will be ignored; and instead the modifier R and the designator
R=N will be applied.

8. The Terminate Conditions:

The possible Terminate Conditions are the same for all three repeat instruc­
tions - RPT, RPD, RPL.

The bit configuration in bit positions 11 - 1 7 of the RPT instruction defines the
Terminate Conditions for which the repetition loop will be terminated immedi­
ately. If more than one condition is specified, the repeat will terminate if any
of the specified conditions are met.

Bit 17 = O : any overflow is completely ignored, i.e., neither the
respective Overflow Indicator is set ON, nor an Overflow Trap
occurs.

1 : any overflow terminates the repetition loop, and it is treated
as usual; i.e., the respective Overflow Indicator is set ON, and if
the Overflow Mask is OFF, then also an Overflow Fault Trap occurs.

II--126

Mnemonic:

RPL

SUMMARY:

Miscellaneous Operations

Bit 16 = 1 if Carry Indicator is OFF, then terminate the repetition loop.

Bit 15 = 1 if Carry Indicator is ON, then terminate the repetition loop.

Bit 14 = 1 if Negative Indicator is OFF, then terminate the repetition
loop.

Bit 13 = 1 if Negative Indicator is ON, then terminate the repetition loop.

Bit 12 = 1 if Zero Indicator is OFF, then terminate the repetition loop.

Bit 11 = 1 if Zero Indicator is ON, then terminate the repetition loop.

9. At the time of termination:

xo0 1
will contain the Tally Residue, i.e., the number of repeats remain­

ing uilti a Tally Runout would have occurred, and also the Terminate
Condition.

The Xn specified by the designator of each of the two repeated instructions
will contain the effective address of the next operand or indirect word that
would have been secured (special provisions have been made that this state­
ment is true for both of the repeated instructions).

Name of the Instruction: Op Code (octal)

Repeat Link 500 1

Execute the next instruction a specified number of times. until a specified
Terminate Condition is met, or until a Link Address Zero is found.

INDICATORS: (Indicators not listed are not affected)

Tally Runout If termination because of Tally = 0 or Link Address = 0, then ON.
If because Terminate Condition is met, then OFF.

All other The RPL instruction itself does not affect any of the other indicators.
indicators However, the execution of the repeated instruction may affect indicators.

NOTES: 1. This RPL instruction has the following format:

0 7 8 9 10 11 17 18 26 27 28 29 30 35

Tally ,~,.--.., C: Term. Cond. : Op. Code

2. If C = 1, then bits 0 - 1 7 of the RPL instruction ~ XO.

II-127

Miscellaneous Operations

3. In any case, the Terminate Condition and Tally from XO will control the
repetition loop for the instruction following this RPL instruction; initial
Tally = 0 will be interpreted as 256.

4. The repetition loop consists of the following steps:
a. Execute the repeated instruction
b. C(Xn)o ... 7 -1 ~ C(Xn)
c. If Termination Condition met (see 7), then set Tally Runout Indicator OFF

and terminate
d. If the Tally C(Xn)o ... 7 O or the Link Address C(Y)o ... 17 = 0, then

set Tally Runout Indicator ON and terminate
e. Go to a.

5. All instructions can be used as repeated instructions except the following:

Instructions that could alter the Link Address C(Y)0 17
EAA, EAQ, EAX, NEG, NEGL · · ·
All miscellaneous operations instructions
All shift instructions
All transfer of control instructions.

6. Address modification for the repeated instruction:

For the repeated instruction, only the modifier R is permitted, and only the
designators specifying R = Xl, ... X7.

The effective address Y will be

For the first execution of the repeated instruction

Y + C(R) => Y, Y :? C(R)

For any successive execution of the repeated instruction

C(C(R))0 ... 17 ~ y' Y => C(R)

The effective address Y is the address of the next list word. The lower half
of this list word contains the operand to be used for this execution of the
repeated instruction; the operand is

oc ... 0'
~

18 times

C(Y)18 ... 35 ·

The upper half of the list word contains the Link Address, i.e., the address
of the next successive list word, and thus the effective address for the next
successive execution of the repeated instruction.

7. The Terminate Conditions:

The possible Terminate Conditions are the same for all three repeat instruc­
tions - RPT, RPD, RPL.

II-128

Miscellaneous Operations

The bit configuration in bit positions 11 - 1 7 of the RPL instruction defines the
Terminate Conditions for which the repetition loop will be terminated immedi­
ately. If more than one condition is specified, the repeat will terminate if any
of the specified conditions are met.

Bit 17 = O : any overflow is completely ignored; i.e., neither the respec-

Bit 16 =

Bit 15 =

Bit 14 =

Bit 13 =

Bit 12 =

Bit 11 =

tive Overflow Indicator is set ON, nor an Overflow Trap occurs;

1 : any overflow terminates the repetition loop, and it is treated
as usual; i. e. , the respective Overflow Indicator is set ON, and if
the Overflow Mask Indicator is OFF, then also an Overflow Fault
Trap occurs.

1 if Carry Indicator is OFF, then terminate the repetition loop.

1 if Carry Indicator is ON, then terminate the repetition loop.

1 if Negative Indicator is OFF, then terminate the repetition
loop.

1 if Negative Indicator is ON, then terminate the repetition loop.

1 if Zero Indicator is OFF, then terminate the repetition loop.

1 if Zero Indicator is ON, then terminate the repetition loop.

A 0 in both positions for one indicator will cause this indicator to be
ignored as a Termination Condition; a 1 in both positions will cause a ter­
mination after the first execution of the repeated instruction.

8. At the time of Termination:

xo0 7 will contain the Tally residue, i.e., the numbers of repeats remain-
ing unfil a Tally runout would have occurred, and also the Terminate Condi­
tion.
The Xn specified by the designator of this repeated instruction will contain the
address of the list word that contains
In its lower half: the operand used in the last execution of the repeated

instruction
In its upper half: the address of the next list word

(This is because there is no overlap between an execution of the repeated
instruction and the address modification for the next execution of the repeated
instruction.)

II-129

Master Mode Operations- -Master Mode

Mnemonic: Name of the Instruction: 0 Code octal

LBAR Load Base Address Register 230

SUMMARY: C(Y)0 _ .. 17 => C(BR)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not affectedl

Zero If C(BR) = 0, then ON; otherwise OFF

Negative If C(BR)o = 1, then ON; otherwise OFF

NOTE: This instruction can be used in the Master Mode only. If its use is attempted
in the Slave Mode, the instruction functions like the NOP instruction.

Mnemonic: Name of the Instruction: 0 Code octal

LDT Load Timer Register 637

SUMMARY: C(Y)O ... 23 ~ C(TR)

MODIFICATIONS: All except CI, SC

INDICATORS: (Indicators not listed are not aff ectedl

Zero If C(TR) = 0, then ON; otherwise OFF

Negative If C(TR)o = 1, then ON; otherwise OFF

NOTE: This instruction can be used in the Master Mode only. If its use is attempted
in the Slave Mode, the instruction functions like the NOP instruction.

Mnemonic: Name of the Instruction: 0 Code octal

SMIC Set Memory Controller Interrupt Cells 451

SUMMARY: C(A) is used to set selected Interrupt Cells ON

MODIFICATIONS: All except DU, DL, SC, and CI

INDICATQBS: None affected

@H~>®®® ~~rffi~~~ ----------
II-130

NOTES:

Mnemonic:

RMCM

SUMMARY:

Master Mode Operations--Master Mode

1. The effective address Y is used in selecting a Memory module as with a
normal memory access request. However, the selected module does not
store the data received in a memory location, but uses it to set selected
Interrupt Cells ON.

For i = 0, 1, ... , 15 AND C(A)35 = 0:

if C(A)i = 1, then set Interrupt Cell i ON

For i = 0, 1, ... , 15 AND C(A)35 = 1:

if C(A\ = 1, then set Interrupt Cell (16+i) ON.

2. This instruction can be used in the Master Mode only. If the use of this
instruction is attempted by aProcessor that is in the Slave Mode, a

Command Fault Trap will occur.

Master Mode Operations-­
Master Mode and Control Processor

Name of the Instruction: 0 Code octal

Read Memory Controller Mask Register 233

C (Memory Controller Interrupt Mask Register) J
C (Memory Controller Access Mask Register) ~ C(AQ)
of Memory Unit specified by Y 0_2

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS:

Zero

Negative

NOTES:

(Indicators not listed are not affected)

If C(AQ) = 0, then ON; otherwise OFF

If C(AQ)0 = 1, then ON; otherwise OFF

1. The effective address Y is used in selecting a Memory module as with a
normal memory access request. However, the selected module does not
transmit the contents of an addressed memory location, but the contents of
its Memory Controller Interrupt Mask Register and Memory Controller
Access Mask Register.

II-131

Master Mode Operations - -
Master Mode and Control Processor

Mnemonic:

RMFP

SUMMARY:

Interrupt Mask-----------------------Access Mfisk
Register \ 2

1

<:;: Register+

} } Zeros J I Zeros II
:o 15: :o 3116 31: ~
I

I
I

io
JJ : ll !1L: il ! ll iJli

15116 31! 32 35,36 51 !52 67168 711

Combined AQ-register

2. This instruction can be used in the Master Mode only, and only by the
Processor which has been designated the Control Processor for the accessed
Memory module. If the use of this instruction is attempted by a Processor
that is in the Slave Mode or that is not the Control Processor, a Command
Fault Trap will occur.

Name of the Instruction:

Read Memory File Protect Register

C (memory File Protect Register) ~ C(AQ)
Of Memory Unit specified by Y 0-2

0 Code octal

633

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS:

Zero

Negative

NOTES:

_{_Indicators not listed are not affectedl

If C(AQ) = 0, then ON; otherwise OFF

If C(AQ)o = 1, then ON; otherwise OFF

1. The effective address Y is used in selecting a Memory module as with a
normal memory access request. However, the selected module does not
transmit the contents of an addressed memory location, but the contents of
its Memory File Protect Register.

Memory File Protect Register

Combined AQ-register

II-132

Mnemonic:

SMCM

SUMMARY:

Master Mode Operations-­
Master Mode and Control Processor

2. This instruction can be used in the Master Mode only, and only by the
Processor which has been designated the Control Processor for the accessed
Memory module. If the use of this instruction is attempted by a Processor
that is in the Slave Mode or that is not the Control Processor, a Command
Fault Trap will occur.

Name of the Instruction: Op Code (octal

Set Memory Controller Mask Register 553

C(AQ) ~ c C (Memory Controller Interrupt Mask Register)
7 C (memory Controller Access Mask Register)

Of Memory Unit specified by Y 0 _2
MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTE: 1. The effective address Y is used in selecting a Memory module as with a
normal memory access request. However, the selected module does not
store the data received in a memory location, but in its Memory Controller
Interrupt Mask Register and Memory Controller Access Mask Register.

Combined AQ-register

15: :32 35,36 51: :68 J IQ
I n I : il: jJ

I
I lL: I I I I

I I I I
'o 151 i°lz 311 14 7 I

I I I /D
Interrupt Mask? Access Mask
Register Register

2. This instruction can be used in the Master Mode only, and only by the
Processor which has been designated the Control Processor for the accessed
Memory module. If the use of this instruction is attempted by a Processor
that is in the Slave Mode or that is not the Control Processor, a Command
Fault Trap will occur.

II-133

Master Mode Operations- -
Master Mode and Control Processor

Mnemonic: Name of the Instruction: ,----------------.....-0.......__C_o_d_e__._o_c_t_a_.l)_

SMFP Set Memory File Protect Register 453

SUMMARY: C(AQ) =5> C(Memory File Protect Register)
Of Memory Unit specified by Yo-2

MODIFICATIONS: All except DU, DL, CI, SC

INDICATORS: None affected

NOTES: 1. The effective address Y is used in selecting a Memory module as with a
normal memory access request. However, the selected module does not
store the data received in a memory location, but in its Memory File
Protect Register.

Combined AQ -register

67

I 11 I I il I I I
I I

1
1
0 ___________________ ~3~1~1 '~3~2"------------~3~5.._,

~-------~l~I ------~
Memory File Protect Register

2. This instruction can be used in the Master Mode only, and only by the
Processor which has been designated the Control Processor for the
accessed Memory module. If the use of this instruction is attempted by
a Processor that is in the Slave Mode or that is not the Control Processor,
a Command Fault Trap will occur.

II-134

Mnemonic:

CIOC

SUMMARY:

Master Mode Operations - -
Master Mode and Control Processor

Name of the Instruction

Connect 1/0 Channel

C(Y) are transferred from the Memory module via the
channel that is specified by C(Y)

0 Code (octal)

015

MODIFICATIONS: All except DU, DL, SC, and CI

INDICATORS: None affected

NOTES: 1. The effective address Y is used to access a memory location as usual.
However, the Memory module does not transmit the contents of this
location to the Processor that submitted the effective address; it uses
C(Y) 33 ... 35 to select one of its eight channels and transmits C(Y) on

the data lines to this unit.

2. This instruction can be used in the Master Mode only, and only by the
Processor which has been designated the Control Processor for the
accessed Memory module. If the use of this instruction is attempted
by a Processor that is in the Slave Mode or that is not the Control
Processor, a Command Fault Trap will occur.

II-135

III. SYMBOLIC MACRO ASSEMBLER--GEM

GENERAL.DESCRIPTION

The GE-635 macro assembly program is a program which will translate symbolic machine
language convenient for programmer use into absolute or relocatable binary machine instructions.
The symbolic language is sufficiently like machine language to permit the programmer to utilize
all the facilities of the computer which would be available to him if he were to code directly in
machine language.

An Assembler resembles a compiler in that it produces machine language programs. It differs
from a compiler in that the symbolic language used with an Assembler is closely related to the
language used by the computer, while the source language used with a compiler resembles the
technical language in which problems are stated by human beings.

Compilers have several advantages over Assemblers. The language used with the compiler is
easier to learn and is oriented toward the problem to be solved. The user of a compiler usually
does not need an intimate knowledge of the inner workings of the computer. Programming is
faster. Finally, the time required to obtain a finished, working program is greatly reduced
since there is less chance for the programmer to make mistakes. The Assembler compensates
for its disadvantages by offering those programmers, who need a great degree of flexibility in
writing their programs, that flexibility which is not currently found in compilers.

The GE-635 Macro Assembler is being provided to give the professional programmers some of
the conveniences of a compiler and the flexibility of an Assembler. The ability to design desired
MACROS in order to provide convenient shorthand notations plus the use of all GE-635 machine
instructions as well as a complete set of pseudo-operations provides the programmer with a very
powerful and flexible tool. The output options enable him to obtain binary text in relocatable as
well as absolute formats.

This Assembler is implemented in the classic format of Macro Assemblers with several variations.
There are two passes over the external text: the first pass allows for updating and/or merging
of an ALTER package to a previously prepared assembly input. The ALTER package consists of
changes to be made to the previous assembly under control of ALTER cards. During pass one,
all symbols are collected and assigned their absolute or relocatable values relative to the current
location counter. MACRO prototypes are processed and placed in the MACRO skeleton table
immediately ready for expansion. All MACRO calls, therefore, are expanded in pass one, allowing
the MACRO skeleton table to be destroyed prior to pass two.

Machine operation codes, pseudo-operations, and MACRO names are all carried in the operation
table during pass one.

III-1

This implies that all operation codes, machine or pseudo, along with MACROS are looked up
during pass one, and that the general operation table is destroyed at the end of pass one. The
literal pool is completely expanded during pass one, avoiding duplicates (except for V, M, and nH
literals where n is greater than 12), which are assigned unique locations in pass one and will be
later expanded in pass two. Double-precision numbers in the literal pool start at even locations.

At the end of pass one, the symbol table is sorted; and a complete readjustment of symbols by
their relative location counter is performed. The preface card is then punched.

All instructions are generated during pass two. This is accomplished by performing a scan over
the variable fields and address modifications. This information is then combined with the operation
code from pass one by using a Boolean OR function. Apparent errors are flagged.

The symbolic cross-reference table is created as the variable fields are scanned and expanded.
The final edit of the symbol table is done at the end of pass two. Generative pseudo-operations
are processed with the conversion being done in pass two. Pseudo-operations are available to
control punching of binary cards and printing images of source cards. Images of source cards
in error will be printed, regardless of control pseudo-operations. Multidefined symbols, undefined
symbols, and error conditions will be noted at the end of the printer listing.

The classic format of a variable field symbolic assembly program is used throughout the GE-635
Macro Assembler. Typically, a symbolic instruction consists of four major divisions; location
field, operation field, variable field, and comments field.

The location field normally contains a name by which other instructions may refer to the in­
struction named. The operation field contains the name of the machine operation or pseudo­
operation. The variable field normally contains the location of the operand. The comments
field exists solely for the convenience of the programmer and plays no part in the assembly
process. An identification field is provided to give a means of identifying the location of a card
within a deck.

RELOCATABLE AND ABSOLUTE ASSEMBLIES

The Macro Assembler program processes inputs of several types: (1) FORTRAN IV compilations
that have been translated into the Assembler language, (2) COBOL-61 compilations translated
into the Assembler language, (3) source programs written originally in the Assembler language,
(4) compressed source decks (COMDEK) for any of items (1) through (3) and (5) correction (ALTER)
cards for any of (1) through (3).

The normal operating mode of the Assembler in processing input subprograms of the types
indicated above is relocatable; that is, each subprogram in a job stream is handled individually
and is assigned memory locations nominally beginning with zero and extending to the upper limit
required for that subprogram. Since a job stream can contain many such subprograms, it is
apparent that they cannot all be loaded into a memory area starting with location zero; they must
be loaded into different memory areas. Furthermore, they must be movable (relocatable) among
the areas. Then for relocatable subprograms, the Assembler must provide (1) delimiters iden­
tifying each subprogram, (2) information specifying that the subprogram is relocatable, (3) the
length of the subprogram, and (4) relocation control bits for both the upper and lower 18 bits of
each assembled word.

III-2

Subprogram delimiters are the Assembler output cards $ OBJECT, heading the subprogram
assembly, and $ DKEND, ending the assembly. An assembly is designated as relocatable on a
card-to-card basis by a unique 3-bit Assembler punched code value in each binary output card.
(See descriptions of Binary Punched Cards, page III-78 and following.) The subprogram length
is punched in the preface card(s) which immediately follows the $ OBJECT card of each sub­
program. The relocation control bits are grouped together on the binary card and are referenced
by GELOAD while it is loading the subprogram into absolute memory locations.

The Assembler designates that the assembly output is absolute on a card-to-card basis by punch­
ing a unique 3-bit code value in each ca1~d. This value causes GELOAD to regard all addresses
on a card as actual (physical) memory addresses and to load accordingly. Each absolute sub­
program ass€mbly begins with a $ OBJECT card and terminates with the $ DKEND card,
as in the case of relocatable assemblies.

The normal AssemlJler operatinv mode is relocatable; it is set to the absolute mode by pro­
grammer use of ABS (page III-33).

LANGUAGE FEATURES

Location Field

In machine instruction or MACROS this location may contain a symbol or may be left blank, if
no reference is made to the instruction. (With certain pseudo-operations, this field has a
special use and is described later in this publication.) Associated with the location field is a
one-character field which allows the programmer to specify whether this generated machine word
should fall in an even or odd memory location. If this is left blank, then the instruction will be
located in the next available location. But, if there is an 0 in this field, the instruction will be
located at the next available odd location; if an E, then at the next available even location.

Operation Field

The operation field may contain from zero to six characters taken from the set 0-9 and A-Z.
The group of characters must be: (1) a legal GE-635 operation, (2) a Macro Assembler pseudo­
operation or a special MACRO call (CALL, SA VE, etc.) as described in this publication, or (3)
programmer macro operation code. The character group must begin in column eight (left­
justified) and must be followed by at least one blank.

A blank field or the special code ARG will be interpreted as a zero operation, and the operation
field will be all zeros in the assembly coding. Anything appearing in the operation field which
is not in (1), (2), or (3) above is an "illegal" operation and will result in an error flag in the
assembly listing.

Variable Field

The variable field contains one or more subfields that are separated by the programmer through
the use of commas placed between subfields. The number and type of subfields vary depending
upon the content of the operation field: (1) machine, instruction, (2) Macro Assembler pseudo­
operation, or (3) macro operation.

III-3

The subfields within the variable field of GE-635 instructions consist of the address and the tag
(modifier). The address may be any ligitimate expression or a literal. This is the first subfield
of the variable field and is separated from the tag by a comma. (See pagesIII-15 and following
for allowable tag mnemonics and their meanings.) Through address modification, as directed
by the tag, a program address is defined. This program address is either (1) an instruction
address used for fetching instructions, (2) a tentative address used for fetching an indirect word,
or (3) an effective address used for obtaining an operand or storing a result.

The subfields used with pseudo-operations vary considerably; they are described individually
in this publication under each pseudo-operation. Subfields used with macro operations are
substitutable arguments which, in themselves, may be instructions, operand addresses, modifier
tags, pseudo-operations, or other macro operations. All of these types of subfields are presented
in the discussion on macro operations.

The first character of the variable field must begin by column 16. The end of the variable field
is designated by the first blank character encountered in the variable field (except for the BCI
instruction and in the use of Hollerith literals). If any subfield is null (no entry given when one
is needed), it is interpreted to be zero.

Comments Field

The comments field exists solely for the convenience of the programmer; it plays no part in the
assembly process. Programmer comments follow the variable field and are separated from that
field by at least one blank column.

Identification Field

This field is used or not used according to programmer option. Its intended use is for instruction
identification and sequencing.

Symbolic Card Format

Symbolic instructions are punched one per card, each card representing one line of the coding
sheet (Figure III-1). The following is a breakdown of the card columns normally used.

Columns 1 - 6

Column 7

Columns 8 - 13

Columns 14 - 15

Columns 16 - Blank*

Column Blank - 72

Columns 73 - 80

Location field

Even/odd subfield

Operation field

Blank

Variable field

Comments field (separated from variable field by at least one blank)

Identification field

* First blank column encountered within an expression will terminate the processing of the
variable field.

III-4

GENERAL. ELECTRIC SYMBOLIC CODING FORMS

PROBLEM

PROGRAMMfi JDA_IE Ip A_G_E_ __Q£

LOCATION 12- OPERATION ADDRESS, MODIFIER CDMMENTS IDENTIFI-
CATION 0

1 2 6 1 8 1.ihs 16_ l32_ 72 73 .J2.

t---

I----

I----

I---

t---

!------

t--

t--

t--

t--

t--

I---

I---

-

I---

t----

!------

I---

!------

t--

t--

CE-108 (1~3)

Figure III-1. GE-635 Macro Assembler Coding Form

Symbols

A symbol is a string of from one to six nonblank characters, at least one of which is nonnumeric.
The characters must be taken from the set made up of 0-9, A-Z)the period (.), the left bracket
(C) , and the right bracket (:I) . Symbols can appear in the location and variable fields of the
Assembler coding form. (Symbols are also known as location symbols and symbolic addresses.)

III-5

Symbols are defined by:

1. Their appearance in the location field of an instruction, pseudo-operation, or MACRO.
2. Their use as the name of a subprogram in a CALL pseudo-operation.
3. Their appearance in the SYMREF pseudo-operation.

Every symbol used in a program must be defined exactly once, except for those symbols which
are initially defined and redefined by the SET pseudo-operation. An error will be indicated by the
Assembler if any symbol is used but never defined, or if any symbol is defined more than once
and with differing equivalences.

The following are examples of permissible symbols:

A
z
Bl
ERR

Types of Symbols

AlOOO
FIRST
ALOGlO
BEGIN

Symbols are classified into four types:

E1XP3
. XP3
ADD TO
ERROR

A ...•.
B.707
1234X
3.141P

1. Absolute--A symbol which refers to a specific number.

2. Common--A symbol which refers to a location in common storage. These locations
are defined by the use of the BLOCK pseudo-operation.

3. Relocatable--A symbol which appears in the location field of an instruction. Symbols
that appear in the location field of symbol defining pseudo-operations
are defined as the same type as the symbol in the variable field.

4. SYMREF--A symbol which appears in the variable field of a SYMREF pseudo­
operation; it is considered to be defined external to the subprogram being
assembled and is to be considered specially by the Loader.

Expressions in General

In writing symbolic instructions, the use of symbols only in the allowable subfields presents the
programmer with too restrictive a language and, in effect, impairs efficient use of the hardware.
Therefore, in the notation of subfields of machine instructions and in the variable fields of pseudo­
operations in accordance with the rules set forth in each specific case, the capability to use
expressions rather than just symbols is permitted. Before discussing expressions, it is necessary
to describe the building blocks used to construct them. These building blocks are elements, terms,
and operators.

Elements

The smallest component of a complete expression is an element. An element consists of a single

symbol or an integer less than 2
35

. (The asterisk may also be used as an element; see below.)

III-6

Terms

A term is a string composed of elements and operators. It may consist of one element or,
generally speaking, n elements separated by n - 1 operators of the type * and /where * indicates
multiplication and I indicates division. If a term does not begin with an element or enct with an
element, then a null element will be assumed. It is not permissible to write two operators in
succession or to write two elements in succession.

Examples of terms are:

M
436
START

MAN*T
BETA/3
4*AB/ROOT

Asterisk Used as an Element

7*Y
A*B*C/X*Y*Z
ONE*TWO/THREE

An asterisk (*) may be used as an element in addition to being used as an operator. When it is
used as an element, it refers to the location of the instruction in which it appears. For example,
the instruction

AlO TRA *+2

is equivalent to

AlO TRA A10+2

and represents a transfer to the second location following the transfer instruction. There is no
ambiguity between this usage of the asterisk as an element and its use as the operator for multi­
plication since the position of the asterisk always makes clear what is meant. Thus, **M means
"the location of this instruction multiplied by the element M" , and the ** means "the location
of this instruction times the null element" and would be equal to zero. The notation *- * means
"the location of this instruction minus the location of this instruction." (See description of+ and
- operators below.)

Algebraic Expressions

An algebraic expression is a string composed of terms separated by the operators + (addition)
- (subtraction). Therefore, an expression may consist of one term or, more generally speaking,
n terms separated by n - 1 operators of the type + and -. It is permissible to write two operators,
plus and minus, in succession and the Assembler will assume a null element between the two
operators. If no initial term or final term is stated, it will be assumed to be zero. An expression
may begin with the operator plus or minus. Examples of permissible algebraic expressions are:

A B+4 CX*DY+EX/FY-100

SINE 7 -EXP*FUNC/LOGX+XYZ/10-SINE

XYZ +99 -X/Y *+5*X (Note: the first asterisk refers to the
instruction location)

A-3 -88 X*Y -- (Note: equivalent to zero minus zero
minus zero)

III-7

Evaluation of Algebraic Expressions

An algebraic expression is evaluated as follows: first, each symbolic element is replaced by its
numerically-defined value; then, each term is computed from left-to-right in the order of its
occurrence. In division, the integral part of the quotient is retained; the remainder is immediately
discarded. For example, the value of the term 7/3 * 3 is 6. In the evaluation of an expression,
division by zero is equivalent to division by one and is not regarded as an error. After the
evaluation of terms, they are combined in a left-to-right order with the initial term of the
expression assumed to be zero followed by the plus operator. If there is no final term, a null
term will be used. At the completion of the expression evaluation, the Assembler reduces the
result by modulo 2n where n is the number of binary bits in the field being defined, 18 for address
field evaluations and variable according to specified field size for the VFD pseudo-operation.
Grouping by parentheses is not permitted, but this restriction may often be circumvented.

Boolean Expressions

A Boolean expression is defined similarly to an algebraic expression except that the operators
*, /, +, or - are interpreted as Boolean operators. The meaning of these operators is defined
below:

1. The expression that appears in the variable field of a BOOL pseudo-operation uses
Boolean operators.

2. The expression that appears in the octal subfield of the variable field of a VFD pseudo­
operation uses Boolean operators.

Evaluation of Boolean Expressions

A Boolean expression is evaluated following the same procedure used for an algebraic expression
except that the operators are interpreted as Boolean.

In a Boolean expression, the form operators +, - , *, and / have Boolean meanings, rather than
their normal arithmetic meanings, as follows:

Operator

+

*

I

Meaning

OR, INCLUSIVE OR,
union

EXCLUSIVE OR
symmetric difference

AND, intersection

1 's complement,
complement, NOT

III-8

Definition

0 + 0 0
0 + 1 1
1 + 0 1
1 + 1 1

0 - 0 0
0 - 1 1
1 - 0 1
1 - 1 0

0 * 0 0
0 * 1 0
1 * 0 0
1 * 1 1

/0 1
/1 0

Although I is a unary operation involving only one term, by convention A/Bis taken to mean /B;
and the A is ignored. This is not regarded as an error by the Assembler. Thus, the table for I
as a two-term operation is:

0/0 = 1
0/1 = 0

other conventions are:

+A A+= A

1/0 1
1/1 0

-A = A- = A
A = A = 0

(possible error--operand missing)

A/ = A/0 = 1

Relocatable and Absolute Expressions

Expression evaluation can result in either relocatable or absolute values. There are three types
of relocatable expressions; program relocatable (R), BLANK COMMON relocatable (C), and
LABELED COMMON relocatable (L). The rules by which the assembler determines the relocation
validity of an expression are of necessity a little complex, and the presence of multiple location
counters compounds the problem somewhat. Certain of the principle pseudo-operations impose
restriction as to type of expression that is permissible; these are described separately under each
of the affected pseudo-operations. These are:

EQU
SET
MIN

MAX
BOOL
BSS

BFS
ORG
BEGIN

The following ten rules summarize the conditions and restrictions governing the admissibility
of relocation:

1. The sum, difference, product, or quotient of two different types of relocatable elements
is not valid.

2. An absolute element is an absolute expression.

3. A relocatable element is a relocatable expression.

4. An expression containing only absolute terms is absolute.

5. The difference between two relocatable elements is an absolute expression.

6. The asterisk (*) symbol (implying current location counter) is a relocatable element.

7. The sum, product, or quotient of two relocatable elements is not valid for relocation.

8. The product or quotient of an absolute element and a relocatable element is not valid.

9. The complement of a relocatable element is not valid.

10. The sum or difference of a relocatable element and an absolute element is relocatable.

These ten rules are not a complete set of determinants but do serve as a basis for establishing a
method of defining relocation admissibility of an expression.

III-9

Let Rr denote a program .. text relocatable element, Rc denote a BLANK COMMON element, and

R1 denote a LABELED COMMON element. Next, take any expression and process it as follows:

1. Replace all absolute elements with their respective values.

2. Replace any relocatable element with the proper R., where i = r, c, or 1. This yields a
l

resulting expression involving only numbers and the terms R , R
1

, and R . r c

3. Discard all terms in which all elements are absolute.

4. Evaluate the resulting expression. If it is zero or numeric, the original expression is
absolute; if it is explicitly R , R , or R

1
, then the original expression is normal r c

relocatable, BLANK COMMON relocatable, or LABELED COMMON relocatable, re­
spectively.

5. If the resulting expression is not as given in 4 above, it is a relocation error and/or
an invalid expression.

In the illustrative examples following, assume ALPHA andBETA to be normal relocatable elements
(R), GAMMA and DELTA to be BLANK COMMON relocatable elements (R), and EPSILON and r c
ZETA to be LABELED COMMON relocatable elements (R

1
). Let N and K be absolutely equivalent

to 5 and 8, respectively.

1. 4*ALPHA-7-4*BETA
reduces to
4*R - 4*R = 0

r r '
thus indicating a valid absolute expression.

2. N*ALPHA+8*GAMMA+21 - K*DELTA
reduces to
5*R +8*R - 8*R = 5*R r c c r'
thus indicating an invalid expression.

3. EPSILON+N-ZETA
reduces to
R1+5-R1 =5,

thus indicating a valid absolute expression.

4. ALPHA-GAMMA+DELTA+7
reduces to
R -R +R =R , r c c r
thus indicating a valid relocatable expression.

Literals

A literal in a subfield is defined as being the data to be operated on rather than an expression
which points to a location containing the data.

III-10

A programmer frequently must refer to a memory location containing a program constant. For
example, if the constant 2 is to be added to the accumulator, the number 2 must be somewhere in
memory. Data generating pseudo-operations in the Macro Assembler enable the programmer to
introduce data words and constants into his program; but often the introduction is more directly
accomplished by the use of the literal that serves as the operand of a machine instruction. Thus,
the literal is data itself.

The Assembler retains source program literals by means of a table called a literal pool. When
a literal appears, the Assembler prepares a constant which is equivalent in value to the data in
the literal subfield. This constant is then placed in the literal pool, providing an identical constant
has not already been so entered. If the constant is placed in the literal pool, it is assigned an
address; and this address then replaces the data in the literal subfield, the constant being retained
in the pool. If the constant is already in the literal pool, the address of the identical constant
replaces the data in the literal subfield.

The Assembler processes five types of literals: decimal, octal, alphanumeric, instruction, and
variable field. The appearance of an equal sign (=) in column 16 of the variable field instructs
the Assembler that the subfield immediately following is a literal. The instruction and variable­
field literal are placed in the literal pool; because they cannot be evaluated until pass two of the
assembly, no attempt is made to check for duplicate entries into the pool.

Decimal Literals

1. Integers
A decimal integer is a signed or unsigned string of digits. It is unique from the other
decimal types by the absence of a decimal point, the letter B, the letter E, or the letter
D.

2. Single-Precision Floating-Point
A floating-point subfield consists of two parts: the principle and the exponent.

Principle part--is a signed or unsigned decimal number written with a decimal point.
The decimal point is mandatory unless the exponent field is present. The decimal point
may appear anywhere within the principle part. If absent, it is assumed to be at the
right-hand end.

Exponent part--if present, follows the principle part and consists of the letter E,
followed by a signed or unsigned decimal integer. The floating-point number is dis­
tinguished by the presence of an E, or a decimal point, or both.

3. Double-Precision Floating-Point

The format of the double-precision floating-point number is identical to the normal
single-precision format with two exceptions:

1. There must always be an exponent
2. The letter E must be replaced by the letter D

The Assembler will ensure that all double-precision numbers begin in even memory
locations. Ambiguity of storage assignment as to even or odd will always cause the Assembler
to force double-precision word pairs to even locations; it will then issue a warning in the printout
listing.

III-11

4. Fixed-Point
A fixed-point quantity possesses the same characteristics as the floating-point--with
one exception: it must have a third part present. This is the binary scale factor denoted
by the letter B, followed by a signed or unsigned integer. The binary point is initially
assumed at the left-hand end of the word. It is then adjusted by the binary scale factor,
designated with plus implying a shift to the right and with minus, a shift to the left.
Double-precision fixed-point follows the rules of double-precision floating-point with
addition of the binary scale factor.

Examples of decimal literals are:

=-10
=26.44167E-1
=1.27743675385DO
=22.5B5

Octal Literals

Integer
Single-precision floating-point
Double-precision floating-point
Fixed-point

The octal literal consists of the character 0 followed by a signed or unsigned octal integer. The
octal integer may be from one to twelve digits in length · plus the sign. The Assembler will
store it in a word, right-justified. The word will be stored in its realform and will not be com-
plemented if there is the presence of a minus sign. The sign applies to bit 0 only. ·

Examples of octal literals are:

=01257
=0- 3777777777 42

Alphanumeric Literals

The alphanumeric, or Hollerith, literal consists of the letters H or kH, where k is a character
count followed by the data. If there is no count specified, a literal of exactly six 6-bit characters
including blanks is assumed to follow the letter H. If a count exists, the k characters following
the character H are to be used as the literal. If the value k is not a multiple of six, the last
partial word will be left-justified and filled in with blanks. The value k can range from 1 through
53.

Examples of alphanumeric literals are:

=HALPHAl
=HGONE
=4HGONE1ID
= 7HTHE15END

Instruction Literals

(15 represents a blank)

The instruction literal consists of the character = followed by the letter, M. This is followed in
turn by an operation code, one blank, and a variable field.

III-12

Examples of instruction literals are:

=MARG BETA
=MLDA 5

Instructions containing instruction literals cannot make use of any of the forms of tag modifier.

Variable Field Literals

The variable field literal begins with the letter V. Reference should be made to the description
of the VFD pseudo-operation for the detailed description of using variable field data description.
The subfields of a variable field literal may be one of three types: Algebraic, Boolean, and
Alphanumeric.

Examples of variable field literals are:

= Vl0/895,5/37,H6/C,15/ ALPHA
=V18/ALPHA, ~12/235, 6/0

Instructions containing variable field literals cannot make use of any of the forms of a tag modifier.

Literals Modified by DU or DL

When a literal is used with the modifier variations DU or DL, the value of the literal is not
stored in the literal pool but is truncated to an 18-bit value, and is stored in the address field
of the machine instruction. Normally, a literal represents a 36-bit number. For the DU or DL
modifier variations, if the literal is a floating-point number or Hollerith, then bit 0-17 of the
literal will be stored in the address field. In the case of all other literals, bits 18-35 of the
literal will be stored in the address field.

Examples of literals modified by DU and DL are:

CODED LITERAL
=100, DL
=-1. 0, DU
=320., DU
=0. ,DU
=077,DU
=2B25, DU
=3HOOA, DL

RESULTANT ADDRESS FIELD (OCTAL)
000144
001000
014500
400000
000077
004000
000021

III-13

OPERATIONS AND OPERATION CODING

Processor Instructions

Processor instructions written for the Assembler consist of a symbol (or blanks) in the location
field, a 3- to 6-character alphanumeric code representing a GE-635 operation in the operation
field, and an operand address, (symbolic or numeric}, plus a possible modifier tag in the variable
field. (Legal symbols used in the location field and as operand addresses in the variable field
are described on page III-5 and following.)

Standard machine mnemonics are entered left-justified in the operation field. These are any
instruction mnemonic, as presented in the listings comprising Appendixes A and C.

Several Assembler pseudo-operations are closely related to machine instructions. These are:

1. OPSYN (operation synonym)--redefinition of a machine instruction by equating a new
mnemonic to one already existing in the Assembler operation table (page III-44).

2. OPD (operation definition)--definition of a new machine instruction to the Assembler
(page IIl-42).

3. MACRO (macro instruction definition}--define a mnemonic operation code to cause one
or more standard operations to be generated by the Assembler.

The operand address and modifier tag of most machine instructions comprise the subfield
entries of the variable field. The address portion may be any legitimate expression, described
earlier. The address is the first subfield in the variable field and begins in column 16. The
modifier tag subfield is separated from the address subfield by a comma. Coding of the modifier
tag subfield entries is described on the pages following.

Address Modification Features

• Summary. The GE-635 performs address modification in four basic ways: Register modification
(R), Register then Indirect modification (RI), Indirect then Register modification (IR), and Indirect
then Tally modification (IT). Each of these basic types has associated with it a number of vari­
ations in which selectable registers can be substituted for R in R, RI, and IR and in which various
tallying or other substitutions can be made for T in IT. I always indicates indirect address
modification and is represented by the asterisk * placed in the variable field of the Macro
Assembler coding sheet as *R or R* when IR or RI is specified. To indicate IT modification,
only the substitution for T appears in the coding sheet variable field; that is, the asterisk is not
used.

• Indirect Addressing. In indirect addressing, the contents of the instruction address y are
treated as another address, rather than as the operand of the instruction code. In the GE-635,
indirect address modification is handled automatically as a hardware function whenever called
for by program instruction. This form of modification precedes direct address modification for
IR and IT; for RI, it follows. When the I modification is called for by a program instruction, an
indirect word is always obtained from memory. This indirect word may call for continued I
modification, or it may specify the effective address Y to be used by the original instruction.
Indirect addressing for RI, IR, and IT is performed by the Processor whenever a binary 1
appears in either position of the t field (bit positions 30 and 31) of an instruction or an applicable

m
indirect word. The four basic modification types, their mnemonic substitutions as used in the

III-14

variable field of the coding sheet, and the binary forms presented to the Processor by the Assem­
bler are as follows:

MODIFICATION
TYPE

R

RI

IR

IT

CODING SHEET
MNEMONIC

BETA, (R)

BETA, (R)*

BETA, ·k(R)

BETA, (T)

BINARY
FORMS

30,31,32 35

30,31,32 35

30,31,32 35

30,31,32 35

tlJl-1 ~-r -
30,31,32 35

The parentheses in (R) and (T) indicate that substitutions are made by the programmer for R and
T; these are explained under the separate discussions of R, IR, RI, and IT modification. Binary
equivalents of the substitution are used in the td subfield.

Register (R) Modification

Simple R-type address modification is performed by the Processor whenever the programmer
codes an R-type variation (listed below and causes the Assembler to place binary zeros in both
positions of the modifier subfield t of the general instruction. Accordingly, one among 16

m
variations under R will be performed by the Processor, depending upon bit configurations gener­
ated by the Assembler and placed in the designator subfield (td) of the general instruction. The

16 variations, their mnemonic substitutions used on the Assembler coding sheet, the td field

binary forms presented to the Processor, and the effective addresses Y generated by the Pro­
cessor are indicated in the following table.

A special kind of address modification variation is provided under R modification. The use of
the instruction address field as the operand is referred to as direct operand address modification,
of which there are two types; (1) Direct Upper and (2) Direct Lower, With the Direct Upper vari­
ation, the address field of the instruction serves as bit positions 0-17 of the operand and zeros

III-15

serve as bit positions 18-35 of the operand. With the Direct Lower variation, the address field
of the instruction serves as bit positions 18-35 of the operand and zeros serve as bit positions
0-1 7 of the operand.

BINARY

MODIFICATION MNEMONIC FORM EFFECTIVE

VARIATION SUB ST !TUT ION (t d FIELD) ADDRESS

(R)=XO 0 1000 Y=y+C(X0)
0

_
17

=Xl 1 1001 Y=y+C(Xl)
0

_
17

=X2 2 1010 Y=y+C (X2) 0 _ 1
7

=X3 3 1011 Y=y+C (X3)
0

_ 1
7

=X4 4 1100 Y=y+C(X4)
0

_
17

=XS 5 1101 Y=y+C(X5)
0

_
17

=X6 6 1110 Y=y+C(X6)
0

_
17

=X7 7 1111 Y=y+C(X7)
0

_
17

=AR0-17 AU 0001 Y=y+C(AR)
0

_
17

=AR18-35 AL 0101 Y=y+C (AR) 18-35

=QR0-17 QU 0010 Y=y+C (QR) 0-17

=QR18-35 QL 0110 Y=y+C (QR) 18-35

=IC0-17 IC 0100 Y=y+C(IC)
0

_
17

=IR0-17 DU 0011 C(Y)0-17=y

=IR0-17 DL 0111 C (Y) 18-35=y

=None Blank or N 0000 Y=y

=Any symbolic Any defined
index register symbol*

* Symbol must be defined as 0-7 by use of an applicable pseudo-operation. (See discussion of
EQU and BOOL.)

III-16

The examples following show how R-type modification variations are entered in the variable field
and their resultant control effects upon Processor development of effective addresses.

LOCATION OPERATION VARIABLE FIELD COMMENTS
(ADDRESS, TAG) MODIFICATION EFFECTIVE

TYPE ADDRESS

1. B,0 (R) Y=B+C(XO)
2. C,AL (R) Y=C+C(AR)

18
_35

3. M,QU (R) Y=M+C(QR)
0

_
17

4. -2,IC (R) Y=C(IC)-2

5. *,DU (R) Operand0_ 1 7=IC

6. 1,7 (R) Y=l+C(X7)
7. 2,DL (R) Operand

18
_

35
=2

8. B (R) Y=B
9. B,N (R) Y=B

10. C,ALPHA (R) Y=C+C(X2)

ALPHA EQU 2

Register Then Indirect (RI) Modification

Register then Indirect address modification in the GE-635 is a combination type in which both
indexing (register modification) and indirect addressing are performed. For indexing modification
under RI, the mnemonic substitutions for R are the same as those given under the discussion of
Register (R) modification with the exception that DU or DL cannot be substituted for R. For
indirect addressing (I), the Processor treats the contents of the operand address associated with
the original instruction or with an indirect word as described on page III-14.

Under RI modification, the effective address Y is found by first performing the specified Register
modification on the operand address of the instruction; the result of this R modification under RI
obtains the address of an indirect word which is then retrieved.

After the indirect word has been accessed from memory and decoded, the Processor carries out
the address modification specified by this indirect word. If the indirect word specifies RI, IR, or
IT modification (any type specifying indirection), the indirect sequence is continued. When an
indirect word is found that specifies R modification, the Processor performs R modification,
using the register specified by the td field of this last encountered indirect word and the address

field of the same word, to form the effective address Y.

It should be observed again that the variations DU and DL of Register modification (R) cannot be
used with Register then Indirect modification (RI).

If the programmer desires to reference an indirect word from the instruction itself without
including Register modification, he specifies the "no modification" variation; under RI modification,
this is indicated on the coding form by an asterisk alone placed in the variable field tag position.

III-17

The examples below illustrate the use of R combined with RI modification, including the use of
(R) = N (no register modification). The asterisk (*) appearing in the modifier subfield is the
Assembler symbol for I (Indirect). The address subfield, single-symbol expressions shown are
not intended as realistic coding examples but rather to show the relation between operand ad­
dresses, indirect addressing, and register modification.

1.

2.

3.

LOCATION

Z+C(AR) 0_17

z

z
B+C(X5)
C+C(X3)

OPERATION VARIABLE FIELD
(ADDRESS, TAG)

Z,AU*
B, 1

z * '
B,QU

z * ' B, 5*
c, 3*
M

Indirect Then Register (IR) Modification

COMMENTS
MODIFICATION EFFECTIVE

TYPE ADDRESS

(R) *
(R)

(R) *
(R)

(R) *
(R)*
(R)*
(R)

Y=B+C(XRl)

Y=B+C(QR)0-17

Y=M

Indirect then Register address modification is a combination type in which both indirect addressing
and indexing (register modification) are performed. IR modification is not a simple inverse type
of RI; several important differences exist.

Under IR modification, the Processor first fetches an indirect word (obtained via I or IR) from
the core storage location specified by the address field y of the machine instruction; and the C(R)
of IR are safe-stored for use in making the final index modification to develop Y.

Next, the address modification, if any, specified by this first indirect word is carried out. If
this modification is again IR, another indirect word is retrieved from storage immediately;
and the new C(R) are safe-stored, replacing the previously safe-stored C(R). If an IR loop
develops, the above process continues, each new R replacing the previously safe-stored R, until
something other than IR is encountered in the indirect sequence--R, IT, or RI.

If the indirect sequence produces an RI indirect word, the R-type modification is performed
immediately to form another address; but the I of this RI treats the contents of the address as
an indirect word. The chain then continues with the R of the last IR still safe-stored, awaiting
final use. At this point the new indirect word might specify IR-type modification, possibly re­
newing the IR loop noted above; or it might initiate an RI loop. In the latter case, when this loop
is broken, the remaining modification types are R or IT.

III-18

When either R or IT is encountered, it is treated as type R where R is the last safe-stored C (R)
of an IR modification. At this point the safe-stored C(R) are combined with the y of the indirect
word that produced R or IT, and the effective address Y is developed.

If an indirect modification without Register modification is desired, the no-modification variation
(N) of Register modification should be specified in the instruction. This normally will be entered
on the coding sheet as *Nin the modifier part of the variable field. (The entry * alone is equivalent
to N* under RI modification and must be used in this way.) The mnemonic substitutions for (R)
are listed under the Register modification description.

The examples below illustrate the use of IR-type modification, intermixed with R and RI types,
under the several conditions noted above.

LOCATION OPERATION

1.

z

2.
z
B+C(X5)

3.

z
B
c

4.

z
B+C(X3)

5.

z

z

6.
z
B

7.
z
B

8.
z

VARIABLE FIELD
(ADDRESS, TAG)

Z, *QL

M

z, *3
B, 5*
C, IC

z, *3

B, *5
C, *QU
M,7

Z, *DL

B, 3*
M,QL

Z, *AL

B,AD
Z, *N
B, 3

Z, *N
B, *5
M,DU

z *
' B, *5

M,DU

Z, I
B, *5

III-19

COMMENTS
MODIFICATION EFFECTIVE

TYPE ADDRESS

*(R)
y ==M+C(QR) 18-35

(R)

*(R) Y==C+C(X3)
(R) *
(R)

*(R) Y==M+C(QR) 0_17
*(R)
*(R)
(R)

*(R)

(R)*
(R)

*(R) y ==B+C (AR) 18-35

(T)
*(R) Y==B
(R)

*(R) Y==M+C(X5)
*(R)
(R)

(R) * Y==M+C(X5)
*(R)
(R)

(T) Y==B
*(R)

Indirect Then Tally (IT) Modification

• Summary. Indirect then Tally address modification in the GE-635 is a combination type in
which both indirect addressing and indexing (register modification) are performed. In addition,
automatic incrementing/ decrementing of fields in the indirect word are done as hardware features,
thus relieving the programmer of these responsibilities. The automatic tallying and other functions
of the IT type modification greatly enhance the processing of tabular data in memory, provide
the means for working upon character data, and allow termination on programmer-selectable
numerical tally conditions. These features are explained in the nine subparagraphs to follow.
(Refer to the special word formats TALLY, TALLYD, and TALLYC for Assembler coding of the
indirect words used with IT.)

The nine variations under IT modification are summarized in the following table. It should be
noted that the mnemonic substitution for IT on the Macro Assembler coding sheet is simply (T};
the designator I for indirect addressing in IT is not represented. (Note that one of the substitutions
for Tis I.)

BINARY
NAME OF THE CODING FORM FORM EFFECT UPON THE

VARIATION SUBSTITUTION FOR I(T) (td FIELD) INDIRECT WORD

Indirect I 1001 None.

Increment address, ID 1110 Add one to the address;
Decrement tally subtract one from the tally.

Decrement address, DI 1100 Subtract one from the ad-
Increment tally dress; add one to the tally.

Sequence Character SC 1010 Add one to the character
position number; subtract
one from the tally; add one
to the address when the
character count crosses
a word boundary.

Character from Indirect CI 1000 None.

Add Delta AD 1011 Add an increment to the
address; decrement the
tally by one.

Fault F 0000 None; the Processor is
forced to a fault trap
starting at a predetermined,
fixed location

Increment address !DC 1111 Same as ID variation
Decrement tally, except that further address
and Continue modification can be

performed.

Decrement address, DIC 1101 Same as DI except that
Increment tally, further address modifica-
and Continue tion can be performed.

III-20

• Indirect (T) = I Variation. The Indirect (I) variation of IT modification is in effect a subset
of the ID and DI variations described below in that all three--!, ID, and DI--make use of one in­
direct word in order to reference the operand. The I variation is functionally unique, however,
in that the indirect word referenced by the program instruction remains unaltered--no increment­
ing/decrementing of the address field. Since the tm and td subfields of the indirect word under I

are not interrogated, this word will always terminate the indirect chain.

The following differences in the coding and effects of * , *N, and I should be observed:

1. RI modification is coded as R* for all cases, excluding R=N.

2. For R=N under RI, the modifier subfield can be written as N* or as * alone, according to
programmer preference.

3. When N* or just * is coded, the Assembler generates a machine word with 20 in positions
30-35; 20 causes the Processor to add 0 to the address y of the word containing the N*
or * and then to access the indirect word at memory location y of the N* or * word.

4. IR modification is coded as *R for all cases, including R=N.

5. For R=N under IR, the modifier subfield must be written as *N.

6. When *N is coded, the Assembler generates 60 in positions 30-35 of the associated
machine word; 60 causes the Processor to (1) retrieve the indirect word at location y of
the machine word, and (2) effectively safe-store zeros (for possible final index modification
of the last indirect word--to develop the effective address Y).

7. IT modification is coded using only a variation designator (I, ID, DI, SC, CI, AD, F, IDC,
DIC); that is, the asterisk(*) is not written (for I). Thus, a written IT address modification
appears as ALPHA, DI; BETA, AD; etc.

8. For the variation I under IT, the Assembler generates a machine word with 51 in bit
positions 30-35; 51 causes the Processor to perform one and only one indirect word
retrieved from memory location y (of the word with I specified) to obtain the effective
address Y.

• Increment Address, Decrement Tally (T) =ID Variation. The ID variation under IT modification
provides the programmer with automatic (hardware) incrementing/decrementing of an indirect
word that is best used for processing tabular operands (data located at consecutive memory
addresses). The indirect word/always terminates the indirect chain.

In the ID variation the effective address is the address field of the indirect word obtained via
the tentative operand address of the instruction or preceding indirect word, whichever specified
the ID variation. Each time such a reference is made to the indirect word, the address field of
the indirect word is incremented by one; the tally portion of the indirect word is decremented by
one. The incrementing and decrementing are done after the effective address is provided for the
instruction operation. When the tally reaches zero, the Tally Runout indicator is set.

III-21

The example following shows the effect of ID.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE

z
Z,ID
B

(T)

Assuming an initial tally of j, the tally runout indicator is
set on the jth reference.

B
B+l

B+n

1
2

n+l

• Decrement Address, Increment Tally (T) =DI Variation. The DI variation under IT modification
provides the programmer with automatic (hardware) incrementing/decrementing of an indirect
word that is best used for processing tabular operands {data located at consecutive memory
addresses). The indirect word always terminates the indirect chain.

In the DI variation the effective address is the address field minus one of the indirect word obtained
via the tentative operand address of the instruction or preceding indirect word, whichever one
specified the DI variation. Each time a reference is made to the indirect word, the address field
of the indirect word is decremented by one; and the tally portion is incremented by one. The
incrementing and decrementing is done prior to providing the effective address for the current
instruction operation.

The effect of DI when writing programs is shown in the example following.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE

Z, DI

Z B
Assuming an initial tally of 4096-j the tally runout is
set on the jth reference.

(T) B-1
B-2

B-n

1
2

n

• Sequence Character (T) = SC Variation. The Sequence Character (SC) variation is provided
for programmed operations on 6-bit characters that are accessed sequentially in memory.
Processor instructions that exclude character operations are so indicated in the individual in­
struction descriptions. For the SC variation, the effective operand address is the address field
of the indirect word obtained via the tentative operand address of the instruction or preceding
the indirect word that specified the SC variation.

III-22

Characters are operated on in sequence from left to right within the machine word. The character
position field of the indirect word is used to specify the character to be involved in the operation
and is intended for use only with those operations that involve the A- or Q-registers. The tally
runout indicator is set when the tally field of the indirect word reaches 0.

The tally field of the indirect word is used to count the number of times a reference is made to a
character. Each time an SC reference is made to the indirect word, the tally is decremented by
one; and the character position is incremented by one to specify the next character position.
When character position 5 is incremented, it is changed to position O; and the address field of
the indirect word is incremented by one. All incrementing and decrementing is done after the
effective address has been provided for the correct instruction execution.

The effect of SC is shown in the following example.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE

Effective Character
Address Position Reference

z,sc (T) B 0 1

z B B 1 2

B 5 6

An initial character position of 0 is assumed here. B+l 0 7
Assuming an initial tally of j, the tally runout indicator
is set on the jth reference.

B+n 0 6n+l

• Character From Indirect (T) = CI Variation. The Character from Indirect (CI) variation is
provided for programmed operations on 6-bit characters in any situation where repeated reference
to a single character in memory is required.

For this variation substitution, the effective address is the address field of the CI indirect word
obtained via the tentative operand address of the instruction or preceding indirect word that
specified the CI variation. The character position field of the indirect word is used to specify
the character to be involved in the operation and is intended for use only with the operations that
involve the A- or Q-register.

III-23

This variation is similar to the SC variation except that no incrementing or decrementing of the
address or character position is performed.

A Cl example is:

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE

Z,CI (T) Y=B

z B

• Add Delta (T) = AD Variation. The Add Delta (AD) variation is provided for programming
situations where tabular data to be processed is stored at equally spaced locations, such as
data words, each occupying two or more consecutive memory addresses. It functions in a manner
similar to the ID variation, but the incrementing (delta) of the address field is selectable by the
programmer.

Each time such a reference is made to the indirect word, the address field of the indirect word
is increased by delta and the tally portion of the indirect word is decremented by one. The addition
of delta and decrementing is done after the effective address is provided for the instruction
operation.

The example following shows the effect of AD.

COMMENTS
VARIABLE FIELD MODIFICATION EFFECTIVE

LOCATION OPERATION ADDRESS, TAG TYPE ADDRESS REFERENCE

Z,AD

z B

III-24

(T)

(R)

B+no

B 1

B+o 2

B+2o 3

n+l

• Fault (T) = F Variation. The fault variation enables the programmer to force program
transfers to General Comprehensive Operating Supervisor routines or to his own corrective
routines during the execution of an address modification sequence. (This will usually be an
indication of some abnormal condition against which the programmer wishes to protect himself.
For an explanation of how faults are handled in the GE-635, refer to the reference manual on the
Comprehensive Operating Supervisor.)

• Increment Address, Decrement Tally and Continue (T) = !DC Variation. The !DC variation
under IT modification functions in a manner similar to the ID variation except that, in addition
t-0 automatic incrementing/ decrementing, it permits the programmer to continue the indirect
chain in obtaining the instruction operand. Where the ID variation is useful for processing tabular
data, the IDC variation permits processing of scattered data by a table of indirect pointers. More
specifically, the ID portion of this variation gives the sequential stepping through a table; and
the C portion (continuation) allows indirection through the tabular items. The tabular items may
be data pointers, subroutine pointers or possibly a transfer vector.

The address and tally fields are used as described under the ID variation. The tag field uses
the set of GE-635 instruction address modification variations under the following restrictions:
No variation is permitted which requires an indexing modification in the IDC cycle since the
indexing adder is in use by the tally phase of the operation. Thus, permissible variations are
any form of I(T) or I(R); but if (R)I or (R) is used, R must equal N.

The effect of IDC is indicated in the following example:

COMMENTS
VARIABLE FIELD

ADDRESS, TAG
MODIFICATION EFFECTIVE

LOCATION OPERATION TYPE ADDRESS REFERENCE

Z,IDC

z B

Assuming an initial tally of j, the tally runout indicator
is set on the jth :;:-eference.

(T)

(R)

Effective Character Reference
Address Position

B 1

B+l 2

B+n n+l

• Decrement Address, Increment Tally, and Continue (T) = DIC Variation. The DIC variation
under IT modification works in much the same way as the DI variation except that in addition
to automatic decrementing/incrementing it allows the programmer to continue the indirect chain
in obtaining an instruction operand. The continuation function of DIC operates in the same
manner and under the same restrictions as !DC except that (1) it increments in the reverse
direction, and (2) decrementing/incrementing is done prior to obtaining the effective address
from the tally word. (Refer to the example under IDC; work from the bottom of the table to the top.)
DIC is especially useful in processing last-in, first-out lists.

III-25

LOCATION OPERATION

z

B-1

B-2

B-3

M+C(XR5)

D

VARIABLE FIELD
ADDRESS, TAG

Z,DIC

B, *3

C,QU

M,5*

D, *AU

A

Q

COMMENTS
MODIFICATION

TYPE

(T)

*(R)

(R)

(R) *

*(R)

(R)

(R)

EFFECTIVE
ADDRESS REFERENCE

C+C(X3) 1

A+C(X3) 2

Q+C(AR)o-17 3

Assuming an initial tally of 4096-j, the tally runout
indicator is set on the jth reference.

PSEUDO-OPERATIONS

Pseudo-operations are so-called because of their similarity to machine operations in an object
program. In general, however, machine operations are produced by computer instructions and
perform some task, or part of a task, directly concerned with solving the problem at hand.
Pseudo-operations work indirectly on the problem by performing machine conditioning functions,
such as memory allocating, and by directing the Macro Assembler in the preparation of machine
coding. A pseudo-operation affecting the Assembler may generate several, one, or no words in
the object program. The GE-635 Macro Assembler generative pseudo-operations are: OCT,
DEC, BCI, DUP, CALL, SAVE, RETURN, and VFD.

All pseudo-operations for the Macro Assembler are grouped according to function and described
(in this Chapter) as to composition and use. The pseudo-operation functional groups and their
uses are:

FUNCTIONAL GROUP

Control pseudo-operations

Location counter pseudo-operations

Symbol defining pseudo-operations

PRINCIPAL USES

Selection of printout options for the assembly
listing, direction of punchout of absolute/ re­
locatable binary program decks, selection of
format for the absolute binary deck.

Programmer control of single or multiple in­
struction counters.

Definition of Assembler source program symbols
by means other than appearance in the bcation
field of the coding form

III-26

FUNCTIONAL GROUP

Data generating pseudo-operations

Storage allocation pseudo-operations

Special pseudo-operations

MACRO pseudo-operations

Conditional pseudo-ope rations

Program linkage pseudo-operations

Address, tally pseudo-operations

Repeat mode coding formats

PRINCIPAL USES

Production of binary data words for the assembly
program.

Provision of programmer control for the use of
memory.

Generation of zero operation code instructions,
of binary words divided into two 18-bit fields,
and of continued subfields for selected pseudo­
operations.

Begin and end MACRO prototypes; Assembler
generation of MACRO-argument symbols; and
repeated substitution of arguments within MACRO
prototypes.

Conditional assembly of variable numbers of
input words based upon the subfield entries of
these pseudo-operations.

MACRO generation of standard system subroutine
calling sequences and return (exit) linkages

Control of automatic address, tally, and character
incrementing/ decrementing.

Control of the repeat mode of instruction ex­
ecution (coding of RPT, RPD, and RPL instruc­
tions)

The above pseudo-operation functional groups, together with their pseudo-operations, are given
as a complete listing with page references in Appendix D.

Control Pseudo-Operations

DETAIL ON/OFF (Detail Output Listing)

LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS ' 0
1 2 6 7 8 1A l.S16 132

Blanks !DETAIL ON Normal mode
l

Blanks !DETAIL OFF

~
-

III-27

Some pseudo-operations generate no binary words; however, several of them generate more than
one. The generative pseudo-operations are: OCT, DEC, BCI, DUP, CALL, SAVE, RETURN, and
VFD. The DETAIL pseudo-operation provides control over the amount of listing detail generated
by the generative pseudo-operations.

The use of the DETAIL OFF pseudo-operation causes the assembly listing to be abbreviated by
eliminating all but the first word generated by any of the above pseudo-operations. In the case
of the DUP pseudo-operation, only the first iteration will be listed. The DETAIL ON pseudo­
operation causes the Assembler to resume the listing which had been suspended by a DETAIL
OFF pseudo-operation.

If at the end of the listing the Assembler is in the DETAIL OFF mode, the literal pool will not be
printed, but a notation will be made as to its origin.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

EJECT (Restore Output Listing)

LOCATION 1-21 OPERATION ADDRESS, MODIFIER COMMENTS

' 0
1 2 6 7 8 M.15 116 132_

Blank~ EJECT Column 16 must be blank

I

' 1.- --

The EJECT pseudo-operation causes the Assembler to position the printer paper at the top of
the next page, to print the title(s), and then print the next line of output on the second line below
the title(s).

LIST ON/OFF (Control Output Listing)

LOCATION ~OPERATION ADDRESS, MODIFIER COMMENTS ,
0

1 2 6 7 8 H l5Jl6. 13.2.

Blanks LIST ON Normal mode J
Blanks LIST OFF I

~ -_...

The use of LIST in the operation field with OFF in the variable field causes the normal listing to
change as follows: the instruction LIST OFF will appear in the listing; thereafter, only instructions
which are flagged in error will appear. If the assembly ends in the LIST OFF mode, only the error
messages will appear.

III-28

The use of LIST in the operation field with ON in the variable field causes the normal listing,
which was suspended by a LIST OFF pseudo-operation, to be resumed. If the Assembler is
already in a specified ON/OFF mode, then the pseudo-operation requesting the same ON/OFF
mode is ignored.

REM (Remarks)

LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS l
0

1 2 6 7 8 JA. 1516 132.
Blanks REM Remarks and comments in the variable

~ or field start at column 12 or later

remarl{.s T
..... 7

-
The REM pseudo-operation causes the contents of this line of coding to be printed on the assembly
listing (just as the comments appear on the coding sheet). However, for purposes of neatness,
columns 8-10 are replaced by blanks before printing.

REM is provided for the convenience of the programmer; it has no other effect upon the assembly.

* (In Column One--Remarks)

LOCATION ~j OPERATION ADDRESS, MODIFIER COMMENTS
0

1 2 6 7 8 14J 1516 132._

* Remarks and comments in columns 2-80 .4

l
- -

A card containing an asterisk (*) in column 1 is taken as a remark card. The contents of columns
2-80 are printed on the assembly listing (just as they appear on the coding sheet); the asterisk
has no other effect on the assembly program.

LBL (Label)

LOCATION lZ OPERATION ADDRESS, MODIFIER COMMENTS l 0
1 2 6 7 8 Ml516 132..

Blanks LBL Blanks or u_n to 8 aill_habetic and numeric I
characters in the variable field ~

~

III-29

LBL causes the Assembler to serialize the binary cards using columns 73-80, except when
punching full binary cards by use of the FUL pseudo-operation. The LBL pseudo-operation
allows the programmer to specify a left-justified alphabetic label for the identification field and
begin serialization with some initial serial number other than zero.

The following conditions apply:

1. If the variable field is blank, the Assembler will discontinue serialization of the binary
deck.

2. If the variable field is not blank, serialization will begin with the characters appearing
in the variable field; the characters are left-justified and filled in with terminating zeros
up to the position(s) used for the sequence number. Serialization is incremented until
the rightmost nonnumeric character is encountered, at which time the sequence recycles
to zero.

3. If no LBL pseudo-operation appears in the symbolic deck, the Assembler will begin
serializing with 00000000.

PCC ON/OFF (Print Control Cards)

LOCATION iZ OPERATION ADDRESS, MODIFIER COMMENTS 1
0

1 2 6 7 8 l.! 151 16_ ll2_

Blanks IPCC ON

~
Blanks PCC OFF Normal mode /

~
- ~

The PCC pseudo-operation affects the listing of the following pseudo-operations:

DETAIL
EJECT
LBL

LIST
PCC
REF

TTL
TTLS
CRSM

PMC
PUNCH

I

PCC ON causes the affected pseudo-operations to be printed. PCC OFF causes the affected
pseudo-operations to be suppressed; this is the normal mode at the beginning of the assembly.
If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

REF ON/OFF (References)

LOCATION 0 OPERATION ADDRESS, MODIFIER COMMENTS .. ~
0

1 2 6 7 8 l.! l.S 16.. ll2_ J
Blanks REF ON Normal mode

Blanks REF OFF ~ -- --

III-30

The REF pseudo-operation controls the Assembler in making entries in the symbol reference
table.

REF ON causes the Assembler to beginmaking entries into the symbol reference table. REF OFF
causes the Assembler to suppress making entries into the symbol reference table.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

PMC ON/OFF (Print MACRO Expansion)

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS) 0
1 2 6 1 8 14!15 16 132.

Blanks PMC ON Normal mode I
Blanks IPMC OFF 7

-

The PMC pseudo-operation causes the Assembler to list or suppress all instructions generated
by a MACRO call.

PMC ON causes the Assembler to print all generated instructions. PMC OFF causes the
Assembler to suppress all but the initial generated instruction.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

TTL (Title)

LOCATION k? OPERATION ADDRESS, MODIFIER CDMMENTS l 0
1 2 6 7 8 14 1516 .la2.

Blanks TTL Title in the variable field ' or an ii
integer }

7
~ --

The TTL pseudo-operation causes the printing of a title at the top of each page of the assembly
listing. In addition, when the assembler encounters a TTL card, it will cause the output listing
to be restored to the top of the next page and the new title will be printed. The information punched
in columns 16-72 is interpreted as the title.

III-31

Redefining the title by repeated TTL pseudo-operations may be used as often as the programmer
desires. Deletion of the title may be accomplished by a TTL pseudo-operation with a blank
variable field. If a decimal integer appears in the location field, the page count will be re­
numbered beginning with the specified integer.

TTLS (Subtitle)

LOCATION k? OPERATION ADDRESS, MODIFIER COMMENTS \ 0
l 2 6 1 8 MJts 16_ J32_

!Blanks TTLS Subtitle in the variable field
,

or an I
~nte_g_er

....... ~ _........

The TTLS pseudo-operation is identical in function to the TTL pseudo-operation except that it
causes subtitling to occur. When a TTLS pseudo-operation is encountered, the subtitle provided
in columns 16-72 replaces the current subtitle; the output listing is restored to the top of the next
page. The title and new subtitle are then printed.

The maximum number of subtitles that may follow a title is one.

INHIB ON/OFF (Inhibit Interrupts)

LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS
0

l 2 6 1 8 lA 1_.sl16 13.2.. j Blanks !NHIB ON --- --- ,
~Hanks ~NHIB OFF Normal mode i

I,,,,,,,
--

The instruction INHIB ON causes the Assembler to set the program interrupt inhibit bit in bit
position 28 of all machine instructions which follow the pseudo-operation. The setting of the
instruction interrupt inhibit bit continues for the remainder of the assembly, unless the pseudo­
operation INHIB OFF is encountered.

The INHIB OFF causes the Assembler to stop setting the pseudo-operation inhibit bit in each in­
struction, if used when the Assembler is in the INHIB ON mode.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

III-32

ABS (Output Absolute Text)

LOCATION 0 OPERATION ADDRESS, MODIFIER COMMENTS ' 0
1 2 6 7 8 1411516 132..

Blanks ABS Column 16 must be blank

....4

-
The ABS pseudo-operation causes the Assembler to output absolute binary text.

The normal mode of the Assembler is relocatable; however, if absolute text is required for a
given assembly, the ABS pseudo-operation should appear in the deck before any instructions or
data. It may be preceded only by listing pseudo-operations. It may, however, appear repeatedly
in an assembly interspersed with the FUL pseudo-operation. It should be noted that the pseudo­
operations affecting relocation are considered errors in an absolute assembly.

Those pseudo-operations that will be in error if used in an absolute assembly are:

BLOCK
ERLK

SYMDEF
SYMREF

(Refer to the descriptions of binary punched card formats in this chapter for details of the absolute
binary text.)

FUL (Output Full Binary Text)

LOCATION t? OPERATION ADDRESS, MODIFIER COMMENTS J 0
1 2 6 7 8 14 l.516 132..
1manks ;FUL Column 16 must be blank 7
l Lt: """"""" -

The FUL pseudo-operation is used to specify absolute assembly and the FUL format for absolute
binary text.

The FUL pseudo-operation has the same effect and restrictions on the Assembler as ABS, except
for the format of the binary text output. The format of the text is of continuous information with
no address identification; that is, the absolute binary cards are punched with program instructions
in columns 1-78 (26 words). Such cards can be used in self-loading operations or other environ­
ments where control words are not required on the binary card.

III-33

TCD (Punch Transfer Card)

LOCATION e OPERATION ADDRESS, MODIFIER COMMENTS

0
1 2 6 7 8 l4Jl516 132..

Blanks TCD An ex..n.ression i..n. the _yariable field

or a -) symbo
~ _.....

In an absolute assembly, the binary transfer card, produced at the end of the deck as a result of
the end card, directs the loading program to cease loading and turn control over to the program
at the point specified by the transfer card. Sometimes it is desirable to cause a transfer card
to be produced before encountering the end of the deck. This is the purpose of the TCD pseudo­
operation. Thus, a binary transfer card is produced generating a transfer address equivalent to
the value of the expression in the variable field.

TCD is an error in the relocatable mode.

PUNCH ON/OFF (Control Card Output)

LOCATION 12- OPERATION ADDRESS, MODIFIER COMMENTS

t 0
1 2 6 7 8 1A l.5!16 [32

Blanks PUNCH ON Normal mode

Blanks PUNCH OFF
Ila.. - -

The normal mode of the Assembler is to punch binary cards. If PUNCH is used in the operation
field with OFF in the variable field, the binary deck will not be punched, beginning at the point
the Assembler encounters the pseudo-operation.

If PUNCH is used in the operation field with ON in the variable field, the punching of binary cards,
which was suspended by the PUNCH OFF pseudo-operation, will be resumed.

If the Assembler is already in a specified ON/OFF mode, then the pseudo-operation requesting
the same ON/OFF mode is ignored.

END (End of Assembly)

LOCATION ~OPERATION ADDRESS, MODIFIER COMMENTS
,

0
1 2 6 7 8 14 l.5!16 132_

Blanks END Blanks or an ex_Qression in the

or a variable field ~
-.s_y_mbo! ~
--

III-34

The END pseudo-operation signals the Assembler that it has reached the end of the symbolic input
deck; it must be present as the last physical card encountered by the Assembler.

If a symbol appears in the location field, it is assigned the next available location.

In a relocatable assembly, the variable field must be blank; in an absolute assembly, the variable
may contain an expression. In relocatable decks, the starting location of the program will be an
entry location and the location specified is given to the General Loader (GELOAD) by a special
control card used with the GELOAD. (Refer to the GELOAD manual.) Absolute programs require
a binary transfer card which is generated by the END pseudo-operation. The Transfer address
is obtained from the expression in the variable field of the end card.

Location Counter Pseudo-Operations

USE (Use Multiple Location Counters}

LOCATION ~ OPERATION ADDRESS, MODIFIER OOMMENTS
0

1 2 6 7 8 lA lS M 132.
Blanks USE A sin_gle symbol, blanks, or the word

PREVIOUS in the variable field ~
-

The Assembler provides the ability to employ multiple location counters via the USE pseudo­
operation. The location counters are established by the user and are usually originated with the
location value of their first appearance in the program. However, their initial value may be
specified by the BEGIN pseudo-operation.

The employment of this pseudo-operation causes the Assembler to place succeeding cards under
control of the location counter represented by the symbol in the variable field. Any location counter
in control at the appearance of USE is suspended at its current value and is preserved as the
PREVIOUS counter.

If the word PREVIOUS appears in the variable field, the Assembler reactivates the location counter
which appeared just before the present one. The normal mode of the Assembler is under the blank
location counter; that is, all instructions up to the first USE pseudo-operation are controlled by
the blank location counter.

BEGIN (Origin of a Location Counter)

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS ,
0

1 2 6 7 8 14. lS 16..].32_

Blanks BEGIN Two subfields in the variable field l

_)
...- - ~ -

111-35

The BEGIN pseudo-operation is used to specify to the Assembler the origin of a given location
counter if the location counter is to be other than the nominal (the blank counter).

The location counter symbol is specified in the first subfield and is given the value specified by
the expression found in the second subfield. Any symbol appearing in the second subfield must have
been previously defined and must appear under one location counter. The BEGIN pseudo-operation
may appear anywhere in the deck.

If BEGIN is not used to give the nth location counter (under USE) an origin, its initial value is
assigned as the first location not used by the (n-l)th location counter.

ORG (Origin Set by Programmer)

LOCATION k? OPERATION ADDRESS, MODIFIER OOMMENTS I
0 I 1 2 6 1 8 IA_ l.5116 132_

Blanks k2_RG An ex_Qression in the variable field
1 or a

symbol
I

j
-

The ORG pseudo-operation is used by the programmer to change the next value of a counter, nor­
mally assigned by the Assembler, to a desired value. If ORG is not used by the programmer,
the counter is initially set to zero.

All symbols appearing in the variable field must have been previously defined. If a symbol appears
in the location field, it is assigned the value of the variable field. If the result of the evaluation
of a variable field expression is absolute, the instruction counter will be reset to the specified
value relative to the current location counter. If an expression result is relocatable, the current
location counter will be changed to the value given by the expression in the variable field.

LOC (Location of Output Text)

LOCATION 121 OPERATION ADDRESS, MODIFIER OOMMEN TS l 0
1 2 6 1 8 1AJl516 132..

Blanks LOC An expression in the variable field • ' - -......... - -

The LOC pseudo-operation functions identically to the ORG pseudo-operation, with one exception;
it has no effect on the loading address when the Assembler is punching binary text. That is, the
value of the location counter will be changed to that given by the variable field expression, but the
loading will continue to be consecutive. This provides a means of assembling code in one area
of memory while its execution will occur at some other area of memory.

III-36

All symbols appearing in the variable field of this pseudo-operation must have been previously
defined.

The sole purpose of this pseudo-operation is to allow program coding to be loaded in one section
of memory and then to be subsequently moved to another section for execution.

Symbol-Defining Pseudo-Operation

Increased facility in program writing frequently can be realized by the ability to define symbols
to the Assembler by means other than their appearance in the location field of an instruction or by
using a generative pseudo-operation. Such a symbol definition capability is used for (1) equating
symbols, or (2) defining parameters used frequently by the program but which are subject to
change. The symbol-defining pseudo-operations serve these and other purposes.

It should be noted that they do not generate any machine instructions or data but are available
merely for the convenience of the programmer.

EQU (Equal To)

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS 1 0
1 2 6 1 8 14lS16 132

I
B_y_mbol EQU An exJ1ression in the variable field

' ~ ~ - -
The purpose of the EQU pseudo-operation is to define the symbol in the location field to have the
value of the expression appearing in the variable field. The symbol in the location field will assume
the same mode as that of the expression in the variable field, that is, absolute or relocatable.
(See Relocatable and Absolute Expressions, page III-9.)

All symbols appearing in the variable field must have been previously defined and must fall under
the same location counter, SYMDEF or SYMREF symbols cannot appear in the variable field.

If the asterisk (*) appears in the variable field denoting the current location counter value, it will
be given the value of the next sequential location not yet assigned by the Assembler with respect
to the unique location counter presently in effect.

BOOL (Boolean)

LOCATION p OPERATION ADDRESS, MODIFIER CDMMENTS l 0
1 2 6 1 8 lA lS 16 13.2

I ~ymbol BOOL A Boolean expression in the variable field

'- -)
- -

III-37

The BOOL pseudo-operation defines a constant of 18 bits and is similar to EQU except that the
evaluation of the expression in the variable field is done assuming Boolean operators. By
definition, all integral values are assumed in octal and are considered to be in error otherwise.
The symbol in the location field will always be absolute, and the presence of any expression other
than an absolute one in the variable field will be considered an error. (See Relocatable and Absolute
Expressions, page III-9.)

All symbols appearing in the variable field must have been previously defined.

SET (Symbol Redefinition)

LOCATION ~OPERATION ADDRESS, MODIFIER COMMENTS

0
1 2 6 1 8 lA l51 l6_ 132..
~ymbol SET An ex__.Q_ression in the variable field

1.- j
~ -

The SET pseudo-operation permits the redefinition of a symbol previously defined to the Assembler.
This ability is useful in MACRO expansions where it may be undesirable to use created symbols
(CRSM).

All symbols entered in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable field.

The symbol in the location field is given the value of the expression in the variable field. The
SET pseudo-operation may not be used to define or redefine a relocatable symbol. (See Re­
locatable and Absolute Expressions, page III-9.)

When the symbol occurring in the location field has been previously defined by a means other
than a previous SET, the current SET pseudo-operation will be ignored and flagged as an error.

The last value assigned to a symbol by SET affects only subsequent in-line coding instructions
using the redefined symbol.

MIN (Minimum)

LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS ~ 0
1 2 6 7 8 14. l.Si 16 [32_

Symbol MIN A sequence of expressions, separated by ' commas, in the variable field -- all of the

same type; that is, relocatable or absolute

j
~ -

III-38

The MIN pseudo-operation defines the symbol in the location field as having the minimum value
among the various values of all relocatable or all absolute expressions contained in the variable
field.

All symbols appearing in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable field.

MAX (Maximum)

The MAX pseudo-operation is coded in the same format as MIN above. It defines the symbol in
the location field as having the maximum value of the various expressions contained in the variable
field.

All symbols appearing in the variable field must have been previously defined and must fall under
the same location counter. SYMDEF or SYMREF symbols cannot be used in the variable field.

HEAD (Heading)

LOCATION 121 OPERATION ADDRESS, MODIFIER <DMMENTS ' 0 I
1 2 6 1 8 14 1516 132_

!Blanks HEAD From 1 to 7 subfields in the variable field..t

each containing a single, nons_.Q_ecial character

used as a heading character I

............ i
In programming, it is sometimes desirable to combine two programs, or sections of the same
program, that use the same symbols for different purposes. The HEAD pseudo-operation makes
such a combination possible by prefixing each symbol of five or fewer characters with a heading
character. This character must not be one of the special characters; that is, it must be one of
the characters A-Z or 0-9. Using different heading characters, in different program sections
later to be combined for assembly, removes any ambiguity as to the definition of a given symbol.

The effect of the HEAD pseudo-operation is to cause every symbol of five or less characters,
appearing in either the location field or the variable field, to be prefixed by the current HEAD
character. The current HEAD character applies to all symbols appearing after the current HEAD
pseudo-operation and before the next HEAD or END pseudo-operation.

Deheading is accomplished by a zero or blanks in the variable field. To understand more thoroughly
the operation of the heading function, it is necessary to know that the Assembler internally creates
a six-character symbol by right-justifying the characters of the symbol and filling in leading zeros.
Thus, if theAssembleriswithinaheadedprogram section and encounters a symbol of five c ":;wer
characters, it inserts the current HEAD character into the high-order, leftmost character pnsition
of the symbol. Each symbol, with its inserted HEAD character, then can be placed in the Assembler
symbol table as unique entries and assigned their respective location values.

III-39

It is also possible to head a program section with more than one character. This is done by using
the pseudo-operation HEAD in the operation field with from two to seven heading characters in the
variable field, separated by commas. The effect of a multiple heading is to define each symbol
of that section once for each heading character. Thus, for example, if the symbols SHEAR, SPEED,
and PRESS are headed by

nine unique symbols

XSHEAR
YSHEAR
ZSHEAR

HEAD

XSPEED
YSPEED
ZSPEED

X,Y,Z

XPRESS
YPRESS
ZPRESS

are generated and placed in the Assembler symbol table. This allows regions by HEADX, HEADY,
or HEADZ to obtain identical values for the symbols SHEAR, SPEED, and PRESS.

Cross-referencing among differently headed sections may be accompished by the use of six­
character symbols or by the use of the dollar sign ($). Six .. character symbols are immune to
HEAD; therefore, they provide a convenient method ofcross-referencing among differently headed
regions.

To allow the programmer more flexibility in cross-referencing, the Assembler language includes
the use of the dollar sign ($) to denote references to an alien-headed region.

If the programmer wishes to reference a symbol of less than six characters in another program
section, he merely prefixes the symbol by the HEAD character for that respective section,
separating the HEAD character from the body of the symbol by a dollar sign ($).

To reference from a headed region into a region that is not headed, the programmer may use
either the heading character zero (O) preceding the symbol or, if the symbol is the initial value
of the variable field, then the appearance of the leading dollar sign will cause the zero heading to
be attached to the symbol.

EXAMPLE OF HEAD PSEUDO-OPERATION

START LDA A Initial instruction (no heading)

TRA B$SUM Transfer to new headed section
A BSS 1

HEAD B
SUM LDA $A

Section headed B

TRA 0$START + 2
END

The LDA $A could have been written as LDA 0$A, as they both mean the same.

III-40

SYMDEF (Symbol Definition)

~-.·- .. -.,,..-_,,,,._.......,,,.....~_,,

\ LOCATION ~ OPERATION ADDRESS, MODIFIER CX>MMENTS
0

1 2 _i_JtJa JA l1s 116 [32._

Blanks SYMDEF Symbols se_garated by commas in the variable I
field /

1
- - - - - -

The SYMDEF pseudo-operation is used to identify symbols which ~tppear in the location field of a
subroutine when these symbols are referred to from outside the subroutine (by SYMREF). The
symbols used in the variable field of a SYMDEF instruction will be called SYMDEF symbols.

The appearance of a symbol in the variable field of a SYMDEF instruction indicates that:

1. The symbol must appear in the location field of only one of the instructions within the
subroutine in which SYMDEF occurs.

2. The Assembler will place each such SYMDEF symbol along with its relative address
in the preface card at assembly time.

3. At load time, the Loader will form a table of SYMDEF symbols to be used for linkage
with SYMREF symbols.

It is possible to classify SYMDEF symbols as primary and secondary. A secondary SYMDEF
symbol is denoted by a minus sign in front of the symbol. The Loader will provide linkage for a
secondary SYMDEF symbol only after linkage has been required to a primary SYMDEF within
the same subprogram. The use of secondary SYMDEF symbols is intended for programmers who
are specifically concerned with using the system subroutine library and generating routines for
accessing the library. Secondary SYMDEF symbols are normally thought of as secondary entries
to subroutines contained within a subprogram library package that will be used as an entire package.
(The use of primary and secondary SYMDEF symbols is further described in the General Loader
(GELOAD) manual.)

SYMREF (Symbol Reference)

LOCATION ~OPERATION

0

ADDRESS, MODIFIER COMMENTS
,

1 2 6 1 8]A_ 1516 lJ.2.
Blanks SYMREF A s~uence of symbols separated by commas

entered in the variable field I
'

.... ll - ~· - --
The SYMREF pseudo-operation is used to denote symbols which are used in the variable field
of a subroutine but are defined in a location field external to the subroutine. Symbols used in the
variable field of a SYMREF instruction will be called SYMREF symbols.

III-41

When a symbol appears in the variable field of a SYMREF instruction, the following items apply:

1. The symbol should occur in the variable field of at least one instruction within the
subroutine.

2. At assembly time the Assembler will enter the SYMREF symbol in the preface card of the
assembled deck and place a special entry number (page III-82) in the variable fields
of all instructions in the referenced subroutine which contain the symbol.

3. At load time the Loader will associate the SYMREF symbol with a corresponding SYMDEF
symbol and place the appropriate address in all instructions that have been given the
special entry number.

Symbols appearing in the variable field of a SYMREF instruction must not appear in the location
field of any instruction within the subroutine in which SYM REF is used.

EXAMPLE OF SYMDEF AND SYMREF PSEUDO-OPERATIONS

Base Program or Subprogram Referencing Subroutine

SYMDEF ATAN,ATAN2 SYMREF ATAN,ATAN2
ATAN2 STC2 IN DIC
ATANS SAVE 0,1

SZN IN DIC
TZE START POLYX FLD x

ATAN STZ IN DIC TSXl ATAN
TRA ATANS

TSX2 ATAN2

OPD (Operation Definition)

LOCATION IZ1 OPERATION ADDRESS, MODIFIER CDMMENTS ~
0

1 2 6 7 8 14J~ ~ 132

New OPD One or more subfields, separated by commas,

O_Q_er- in the variable field. The subfields define the

ti on bit configuration of the new operation code

code i.
""-

•

The OPD pseudo-operation may be used to define or redefine machine instructions to the Assem­
bler. This allows programmers to add operation codes to the Assembler table of operation codes
during the assembly process. This is extremely useful and powerful in defining new instructions
or special bit configurations, unique in a particular program, to the Assembler.

III-42

The variable field subfields are bit-oriented and have the same general form as described under
the VFD pseudo-operation. In addition, the variable field, considered in its entirety, requires
the use of either of two specific 36-bit formats for defining the operation.

1. The normal instruction format
2. The input/output operation format

The normal instruction-defining format and subfields are shown below:

op

11 12 17 18 28 2 9 33 35

op--new operation code (bits 0-11)
p--p=l, machine operation

p=O, pseudo-operation
z--must be zero

m--modifier tag type (O=allowed; l=not allowed)
m

1
: register modification (R)

m
2

: indirect addressing (*)

m 3: not used

m
4

: Direct Upper (DU)

m
5

: Direct Lower (DL)

m
6

: Sequence Character (SC) and Character from Indirect (CI)

a--address field conditions (O=not required; l=required)
a1: address required/not required

a 2 : address required even

a3 : address required absolute

l --octal assembly listing format (x represents one octal digit)
00: xx xxxx xxxxxx
01: xxxxxxxxxxxx
10: xxxxxx xxxxxx
11: xxxxxx xxxx xx

The assembly listing types 00, 01, 10, and 11 are used for input/output commands, data-generating
pseudo-operations (OCT, DEC, BCI, etc.), special word-generating pseudo-operations (such as
ZERO), and machine instructions.

To illustrate the use of OPD, assume one wished to define the extant machine instruction, Load
A (LDA). Using the preceding format and the octal notation (as described under the VFD pseudo­
ope ration), one could code OP D as

or
or

LDA
LDA
LDA

OPD
OPD
OPD

012/2350,6/,02/2,6/,03/4,5/,02/3
018/235000,02/2,6/,03/4,5/,02/3
036/235000401003

or in other forms, providing the bit positions of the instruction-defining format are individually
specified to the Assembler.

III-43

The input/output operation-defining format and subfields are as follows:

op
(bit positions 18-35)

op
1 1 (bit positions a 1 a 2 a

3 0-5)

0 17 18 19 20 25 26 27 28 2 9 30 31 33 34 35

op--new operation code for bit positions 18-35 and 0-5 (see Appendix E)
a--address field conditions (O=not required; !=required)

a
1

: address required/not required

a2: address required even

a3: address required absolute

i--type of input/output command (see Appendix E)
00: OP DA,CA KKDACAKKKKKK
01: OP NN,DA,~A KKDACAKKKKNN
10: OP CC,DA,~A KKDACAKKCCKK
11: OP A,C AAAAAAKKCCCC

1--see preceding normal instruction format

NOTE: Bit position 19 must be a binary 1 for input/output operations.

Input/output operation types 00, 01, and 10 are the formats for the com)llands; type 11 is the format
for a Data Control Word (DCW).

As an example of the use of OPD to generate an input/ output command (using the above format for
the variable field and defining the bits according to the rules for VFD), assume one wanted to
generate the extant command, Write Tape Binary (WTB--Appendix E). This could be written as

WTB OPD 18/,02/3,06/15,10/0

or in various other bit-oriented forms.

OPSYN (Operation Synonym)

LOCATION 12- OPERATION ADDRESS, MODIFIER COMMENTS 7
0 J 1 2 6 1 8 '!Al.SJ l6. 132

IA s_ym-
l

OPSYN A mnemonic o_p_eration code in the

JJol or variable field. ' ppera- 1
l

bon ' ~ode

- ~ -

III-44

The OPSYN pseudo-operation is used for equating either a newly defined symbol or a presently
defined operation to some operation code already in the operation table of the Assembler. The
operation code may have been defined by a prior OPD or OPSYN pseudo-operation; in any case,
it must be in the Assembler operation table.

Data Generating Pseudo-Operations

The Assembler language provides four pseudo-operations which can be used to generate data
in the program at the time of assembly. These are BCI, OCT, DEC, and VFD. The first three,
BCI, OCT, and DEC, are word-oriented while VFD is bit-oriented. There exists a fifth pseudo­
operation, DUP, which in itself does not generate data, but through its repeat capability causes
symbolic instruction and pseudo-operations to be iterated.

OCT (Octal)

LOCATION 0 OPERATION ADDRESS, MODIFIER COMMENTS l 0
1 2 6 7 8 'IA.~ ~ 132..

ISvmbol IOC_.T_ One or more subfields appearing in the
~

or variable field, each one containing a signed

!blanks or unsigned octal integer.

' - - ..,,,,,,,...,,. ---....... - - ~
~ - - - - -

The OCT pseudo-operation is used to introduce data in octal integer notation into an assembled
program. The OCT pseudo-operation causes the Assembler to generate in locations of OCT
data where the variable field contains n subfields (n-1 commas). Consecutive commas in the
variable field cause the generation of a zero data word, as does a comma followed by a terminal
blank. Up to 12 octal digits plus the leading sign may make up the octal number.

The OCT configuration is considered true and will not be complemented on negatively signed
number_s. The sign applies only to bit 0. All assembly program numbers are right-justified,
retaining the integer form.

EXAMPLE OF OCT PSEUDO-OPERATION

OCT 1,-4, 7701,+3,,-77731,04

III-45

If the current location counter were set at 506, the above would be printed out as follows (less the
column headings):

Location Contents Relocation

000506 000000000001 000 OCT 1,-4, 7701,+3,,-77731,04

000507 400000000004 000

000510 000000007701 000

000511 000000000003 000

000512 000000000000 000

000513 400000077731 000

000514 000000000004 000

DEC (Decimal)

LOCATION ~ OPERATION ADDRESS, MODIFIER CDMMENTS
,

0
1 2 6 7 8 14 15 16 132_

Symbo tDEC One or more subfields in the variable field,

or each containing a decimal entry I
blanks ~

l

']

- I - - - - -_,.. -"
The Assembler language provides four types of decimal information which the programmer may
specify for conversion to binary data to be assembled. The various types are uniquely defined by
the syntax of the individual subfields of the DEC pseudo-operation. The basic types are single­
precision, fixed-point numbers; single-precision, floating-point numbers; double-precision fixed­
point numbers; and double-precision floating-point numbers. All fixed-point numbers are
right-justified in the assembly binary words; floating-point numbers are left- justified to bit position
eight with the binary point between positions 0 and 1 of the mantissa. (The rules for forming these
numbers are described under Decimal Literals, page IIl-11)

EXAMPLES OF SINGLE-PRECISION DEC PSEUDO-OPERATION

GAMMA DEC 3,-1,6. ,.2El, 1B27 ,1. 2E1B32,-4

The above would print out the following data words (without column headings), assuming that
GAMMA equals 1041.

III-46

Location Contents Relocation

001041 000000000003 000 GAMMA DEC 3,-1,6. ,.2El,1B27,
1.2ElB32,-4

001042 777777777777 000

001043 006600000000 000

001044 004400000000 000

001045 000000000400 000

001046 000000000140 000

001047 777777777774 000

The presence of the decimal point and/or the E scale factor implies floating-point, while the
added B (binary scale) implies fixed-point binary numbers. The absence of all of these elements
implies integers. Several more examples follow:

DEC -lBl 7,-1.,1000

With the location counter at 1050, the above would generate:

Location Contents Relocation

001050 777777000000 000 DEC -lBl 7,-1. ,1000

001051 001000000000 000

001052 000000001750 000

EXAMPLE OF DOUBLE-PRECISION DEC PSEUDO-OPERATION

BETA DEC . 3DO, O.DO, 1. 2D 1B68, lD-1

The location counter is at the address BETA (1060); the above subfields generate the following
double-words:

Location Contents Relocation

001060 776463146314 000 BETA DEC .3DO,O.DO,
1.2D1B68,1D-1

001061 631463146314 000

001062 400000000000 ODO

001063 000000000000 000

III-47

Location Contents Relocation

001064 000000000000 000

001065 000000000140 000

001066 772631463146 000

001067 314631463146 000

BCI {Binary Coded Decimal Information)

LOCATION lZ OPERATION ADDRESS, MODIFIER CX>MMENTS 1~
0

1 2 6 1 8 1415 ~ 132.
S_y_mbaj BCI Two subfields in the variable field: a count

subfield and a data subfield
l

or

blanks

t -- - ~,,,. -......_... - ~ - -
The BCI pseudo-operation is used by the programmer to enter Binary-Coded Decimal (BCD)
character information into a program.

The first subfield is numeric and contains a count that determines the length of the data subfield.
The count specifies the number of 6-character machine words to be generated; thus, if the count
field contains n, then the data subfield contains 6n characters of data. The maximum value which
n can be is 9. The minimum value for n is 0. If n is 0, no words will be generated.

The second subfield contains the BCD characters, six per machine word.

EXAMPLE OF BCI PSEUDO-OPERATION

BET A BCI 3 ,NO ERROR CONDITION

Again assume the location counter set at 506 (location of BETA); the above would print out
(less column headings):

Location Contents Relocation

000506 454620255151 000 BET A BCI 3 ,NO ERROR CONDITION

000507 465120234645 000

000510 243163314645 000

III-48

VFD (Variable Field Definition)

LOCATION 0 OPERATION ADDRESS, MODIFIER CDMMENTS I 0
1 2 6 1 8 IAJts 16._ 13.2.

SY_mbol VFD One or more subfields in the variable field. 1

pr
) blanks

_L
l

i...i-... ~ ... -- - ._ - - - - -
The VFD pseudo-operation is used for generation of data where it is essential to define the data
word in terms of individual bits. It is used to specify by bit count certain information to be
packed into words.

In considering the definition of a subfield, it is understood that the unit of information is a single
bit (in contrast with the unit of information in the BCI pseudo-operation which is six bits). Each
VFD subfield is one of three types: an algebraic expression, a Boolean expression, or alpha­
numeric. Each subfield contains a conversion type indicator and a bit count, the maximum value
of which is 36. The bit count is an unsigned integer which defines the length of the subfield;
it is separated from the data subfield by a slash (/). If the bit count is immediately preceded
by an 0 or H, the variable-length data subfield is either Boolean or alphanumeric, respectively.
In the absence of both the type indicators, O and H, the data subfield is an algebraic field. A
Boolean subfield contains an expression that is evaluated using the Boolean operators (* , I,+, -) .

The data subfield is evaluated according to its form: algebraic, Boolean, or alphanumeric. A
36-bit field results. The low-order n bits of the algebraic or Boolean expression determine
the resultant field value; whereas for the alphanumeric subfield the high-order n bits are used.

If the required subfields cannot be contained on one card, they may be continued by the use of the
ETC pseudo-operation. This is done by terminating the variable field of the VFD pseudo-operation
with a comma. The next subfield is then given as the beginning expression in the variable field of
an ETC card. If necessary, subsequent subfields may be continued onto following ETC cards in
the same manner. The scanning of the variable field is terminated upon encountering the first
blank character.

The VFD may generate more than one machine word; if the sum of the bit counts is not a multiple
of a discrete machine word, the last partial string of bits will be left-justified and the word
completed with zeros.

EXAMPLES OF VFD PSEUDO-OPERATION

Assume one would like to have the address ALPHA packed in the first 18 bits of a word, octal 3
in the next 6 bits, the literal letter B in the next 6 bits, and an octal 77 in the last 6 bits. One
could easily define it as follows:

VFD 18/ ALPHA,6/3,H6/B,06/77

III-49

With the location counter at 1053 and the location 731 8 assigned for ALPHA, this would print out
(without column headings):

Location Contents Relocation

001053 000731032277 000 VFD 18/ ALPHA,6/3,H6/B,06/77

NOTE: Relocation digits 000 refer to binary code data for A, BC, and DE of the relocation
scheme. (Page III-81 and following of this chapter.)

If ALPHA had been a relocatable element, the relocation bits would have been 010; that is, the
relocation scheme would have specified the left half of the word as containing a relocatable
address. The relocation is only assigned if the programmer specifies a field width of 18 bits
and has it left- or right-justified; in all other cases the fields are considered absolute. The
total number of bits under a VFD need not be a multiple of full words nor is the total field (sum
of all subfields) restricted to one word. The total field width, however, for a single subfield is
36 bits.

Consider a program situation where one wishes to generate a three-word identifier for a table.
Assume n is the word length of the table and is equal to 12. You wish to place twice the length
of the table in the first 12 bits, the name of the table in the next 60 bits, the location of the table
(where TABLE is a relocatable symbol equal to 2351

8
) in the next 18 bits, zero in the next 8 bits,

and -1 in the next 6 bits--all in a three-word key.

With the location counter at 1054,

VFD 12/2*12,H36/PRESSU,H24/RE,18/TABLE,8/,6/-1

will generate

Location Contents Relocation

001054 003047512562 000

001055 626451252020 000

001056 002351001760 010

where 010 specifies the relocatability of TABLE.

III-50

VFD 12/2*12,H36/PRESSU,H24/RE,
18/TABLE,8/,6/-1

DUP (Duplicate Cards)

LOCATION ~ OPERATION ADDRESS, MODIFIER CD MM EN TS l
0 I

l 2 6 1 8 lAJts 16_ 132-

S_ymboJ DUP Two subfields in the variable field, separated I
or by a comma

blanks

J
1

~
_l

....... - _J - -

The DUP pseudo-operation provides the programmer with an easy means of generating tables and/
or data. It causes the Assembler to duplicate a sequence (range) of instructions or pseudo­
operations a specified number of times.

The first subfield in the variable field is an absolute expression which defines the count. The
value of the count field specifies the number of cards, following the DUP pseudo-operation,
that are included in the group to be duplicated. The value in the count field must be a decimal
integer less than or equal to ten.

The second subfield of the pseudo-operation is an absolute expression which specifies the number
of iterations. The value in the iteration field specifies the number of times the group of cards,
following the DUP pseudo-operation, is to be duplicated. This value can be any positive integer

18 less than 2 -1. The groups of duplicated cards appear in the assembled listing immediately
behind the original group.

If either the count field or the iteration field contains 0 (zero) or is null, the DUP pseudo-operation
will be ignored.

If a symbol appears in the location field of the pseudo-operation it is given the address of the
next location to be assigned by the Assembler.

If an odd/even address is specified for an instruction within the range of a DUP pseudo-operation,
the instruction will be placed in odd/ even address and a filler used when needed. The filler for a
nondata-generating instruction will be an NOP instruction. No filler for a data-generating in­
struction is needed.

All symbols appearing in the variable field of the DUP pseudo-operation must have been previously
defined. Any symbols appearing in the location field of these pseudo-operations are defined only
on the first iteration, thus avoiding multiply-defined symbols.

The only instructions or pseudo-operations which may not appear in the range of a DUP instruction
are END, MACRO, and DUP. ETC may not appear as the first card after the range of a DUP.

III-51

Storage Allocation Pseudo-Operations

These pseudo-operations are used to reserve specified core memory storage areas within the
coding sequence of a program for use as storage areas or work areas.

BSS {Block Started by Symbol)

LOCATION ia OPERATION ADDRESS, MODIFIER COMMENTS ~
0

1 2 6 7 8 1A. l.5J 16_ 132

5Y_mbol BSS A12ermissible ex_Q_ression in the variable
t or field defines the amount of storage to be _J

blanks reserved.
,
J

i... - - - ~ - - - - -·
The BSS pseudo-operation is used by the programmer to reserve an area of memory within his
assembled program for working and for data storage. The variable field contains an expression
that specifies the number of locations the Assembler must reserve in the program.

If a symbol is entered in the location field, it is assigned the value of the first location in the
block of reserved storage. If the expression in the variable field contains symbols, they must
have been previously defined and must fall under the same location counter. No binary cards
are generated by this pseudo-operation.

BFS (Block Followed by Symbol)

LOCATION 121 OPERATION ADDRESS, MODIFIER COMMENTS 1
0

1 2 6 7 8 lAJl5 l6_ 132_

S_y_mbo~ BFS A permissible e~_ression in the variable
or field defines the amount of storage to be 1
blanks reserved

- - - ..
The BFS pseudo-operation is identical to BSS with one exception. If a symbol appears in the
location field, it is assigned the value of the first location after the block of reserved storage
has been assigned; if the expression in the variable field contains symbols, they must have been
previously defined and must fall under the same location counter.

III-52

BLOCK (Block Common)

, LOCATION .,? OPERATION ADDRESS, MODIFIER COMMENTS
0

1 2 6 ltla JAJ1sl16 132_

16lanks BLOCK A s_ymbol in the variable field

- --- ~ ~

The purpose of the BLOCK pseudo-operation is to specify that program data following the BLOCK
entry is to be assembled in the LABELED COMMON region of the user program under the symbol
appearing in the variable field. BLOCK is, in effect, another location counter external to the
text of the program.

A BLOCK pseudo-operation continues in effect until another BLOCK is encountered, or until a
USE pseudo-operation appears (specifying return of control to the program located counter or
another counter), or until the END pseudo-operation occurs.

The symbol in the variable field specifies the label of the COMMON area to be assembled. If
the variable field is left blank, the normal FORTRAN BLANK COMMON is specified; and data
following the BLOCK pseudo-operation will be assembled in the unlabeled (BLANK COMMON)
memory area of the user program.

LIT (Literal Pool Origin)

LOCATION e OPERATION ADDRESS, MODIFIER CDMMENTS J 0
l 2 6 7 8 14 ~16 132_

S_ymboJ LIT Column 16 must be blank I
or ~
blanks !

~
1 - ...-. -]

~ -
The LIT pseudo-operation causes the Assembler to punch and printout at assembly time all the
previously developed literals. If the LIT instruction occurs in the middle of the program, the
literals up to that point are output and printed out starting with the first available location after
LIT; the literal pool is reinitialized as if the assembly had just begun.

If no LIT instruction is encountered by the Assembler, the origin of the literal pool will be one
location past the final word defined by the program.

III-53

Conditional Pseudo-Operations

The pseudo-operations INE, IFE, IFL, and IFG to follow are especially useful within MACRO
prototypes to gain additional flexibility in variable-length or conditional expansion of the MACRO
prototype. Their use, however, is not limited to MACROS: they can be employed elsewhere in
coding a subprogram to effect conditional assembly of segments of the program.

The programmer is responsible for avoiding noncomparable elements within these pseudo-oper­
ations. In addition, symbols used in the variable field must have been previously defined.

INE (If Not Equal)

LOCATION 121 OPERATION ADDRESS, MODIFIER COMMENTS

0
1 2 6 7 8 14.~ 16. 132..

Blanks INE Two or three subfields in the variable field I

'
l
I - - -

The INE pseudo-operation provides for conditional assembly of the next n instructions, depending
on the value of the first two subfields of the variable field.

The value of the expression in the first subfield is compared to the value of the expression in the
second subfield. If they are not equivalent, the next n cards are assembled, where n is specified
in the third subfield; otherwise, the next n cards are bypassed, resumption beginning at the (n+l)th
card. If the third subfield is not present, n is assumed to be one.

Two types of comparisons are possible in the subfields of the INE pseudo-operation. The first
is a straight numeric comparison after the expression has been evaluated. The second is alpha­
numeric comparison and the relation is the collating sequence. Alphanumeric literals in the
variable field of INE are denoted by placing the subfield within apostrophe marks. If either the
first or second subfield is designated as an alphanumeric literal, the other will automatically be
classified as such.

IFE (If Equal)

LOCATION 0 OPERATION ADDRESS, MODIFIER COMMENTS ~ 0
1 2 6 7 8 141516 132_

Blanks IFE Two or three subfields in the variable field

- -

III-54

The IFE pseudo-operation provides for conditional assembly of the next n cards depending on the
value of the first two subfields of the variable field. The next n cards are assembled if and only
if the expression or alphanumeric literal in the first subfield is equal to the expression or
alphanumeric literal in the second subfield. The n is specified in the third subfield and assumed
to be one if not present. If the compared subfields are not equal, the next n cards are bypassed.

Alphanumeric literals in the variable field of IFE are denoted by placing the subfield within apos­
trophe marks. If either the first or second subfield is designated as an alphanumeric literal,
the other will automatically be classified as such.

IFL (If Less Than)

LOCATION 0 OPERATION ADDRESS, MODIFIER COMMENTS ' 0
1 2 6 7 8 14.Jts 16_ 132.
!Blanks IFL Two or three subfields in the variable field l

~
I

j
~ _,

The IFL pseudo-operation provides for conditional assembly of the next n cards depending on the
value of the first two subfields of the variable field. The next n cards are assembled if the
expression or alphanumeric literal in the first subfield is algebraically less than the expression
or alphanumeric literal in the second subfield; otherwise, the next n cards are bypassed. The n
is specified in the third subfield and assumed to be one if not present. Alphanumeric literals in
the variable field of IFL are denoted by placing the subfield within apostrophe marks. If either
the first or second subfield is designated as an alphanumeric literal, the other will automatically
be classified as such.

IFG (If Greater Than)

LOCATION IZ OPERATION ADDRESS, MODIFIER COMMENTS)
0 i l 2 6 7 8 14- 151 16_ 132

Blanks IFG Two or three subfields in the variable field.,.

'
~

i.-.. :.:II -_.

The IFG pseudo-operation provides for conditional assembly of the next n cards depending on the
value of the first two subfields of the variable field. The next n cards are assembled if the
expression or alphanumeric literal in the first subfield is algebraically greater than the ex­
pression or alphanumeric literal in the second subfield; otherwise, the next n cards are by­
passed. Then is specified in the third subfield and assumed to be one if not present. Alphanumeric
literals in the variable field of IFG are denoted by placing the subfield within apostrophe marks.
If either the first or second subfield is designated as an alphanumeric literal, the other will
automatically be classified as such.

III-55

Special Word Formats

ARG A, M (Argument--Generate Zero Operation Code Computer Word)

LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS l
0

1 2 6 7 8 IA 15 16 lJ2._

Symbol ARG Two subfields in the variable field

~
•
... - ~_..

The use of ARG in the operation field causes the Assembler to generate a binary word with bit
configuration in the general instruction format. The operation code 000 is placed in the operation
field. The variable field is interpreted in the same manner as a standard machine instruction.

ZERO B, C (Generate One Word With Two Specified 18-bit Fields)

LOCATION ~ OPERATION ADDRESS, MODIFIER COMMENTS
I 0

1 2 6 7 8 14 15 16_ .132
Symbol ZERO Two subfields in the variable field

!or t
blanks

~

1

I
41.J

The pseudo-operation ZERO is provided primarily for the definition of values to be stored in
either or both the high- or low-order 18-bit halves of a word. The Assembler will generate
the binary word divided into the two 18-bit halves; bit positions 0-17 and 18-35. The equivalent
binary value of the expression in the first subfield will be in bit positions 0-17. The equivalent
binary value of the expression in the second subfield will be in bit positions 18-35.

Address Tally Pseudo-Operations

The Indirect then Tally (IT) type of address modification in several cases requires special word
formats which are not instructions and do not follow the standard word format. The following
pseudo-operations are for this purpose. (Refer to page III-20 and following.)

• TALLY A, T ,B, (Tally). Used for ID, DI, and SC type of tally modification. A is the address,
T is the tally count, and B is the character position. In ID and DI, the third subfield B is not
specified. Character from indirect (CI) may be denoted with tally by allowing T to be zero.

III-56

• TALL YD A, T,D, (Tally and Delta) Used for Add Delta (AD) modification. A is the address,
T the tally, and D the delta of incrementing.

• TALLYC A, T, mod (Tally and Continue) Used for Address, Tally, and Continue. A is the ad­
dress, T the tally count, and mod the address modification as specified under normal instructions.

Repeat Instruction Coding Formats

The machine instructions Repeat (RPT), Repeat Double (RPD), and Repeat Link (RPL) use special
formats and have special tally, terminate repeat, and other conditions associated with them.
(See page 11-123 and following.) The Assembler coding formats for the several RPT, RPD, and
RPL options follow.

• RPT N,I,kl,k2, ,kj The command generated by the Assembler from the above format
will cause the instruction immediately following the command to be iterated N times and the
increment value for each iteration set to I. The range for N is 0-255. If N=O, the instruction
will be iterated 256 times. The fields kl, k2 ,kj may or may not be present. They are con­
ditions for termination. These fields may contain the allowable codes of TOV, TNC, TRC, TMI,
TPL, TZE, and TNZ.

It is also possible to use an octal number rather than the special symbols to denote termination
conditions. Thus if field kl is found to be numeric, it will be interpreted as octal; the low-order
seven bits will be ORed into positions 11-17 of the instruction. The variable field scan will be
terminated with the octal field.

• RPTX ,I This instruction behaves just as the RPT instruction with the exception that N and
the conditions of termination will be found in index register zero instead of imbedded in the in­
struction.

• RPD N,I,kl,k2, ,kj The command generated by the Assembler from the above format will
cause the two instructions immediately following the RPD instruction to be iterated N times and
the increment value for each iteration set to I. The increment I will apply to both instructions
being repeated.

III-57

The variables kl, ,kj are identical to those explained in the RPT instruction. Since the double
repeat must fall in an odd location, the Assembler will force this condition and use an NOP
instruction for a filler when needed.

• RPDX ,I This instruction behaves just as the RPD instruction with the exception that N and
the conditions of termination will be found in index register zero instead of imbedded in the
instruction.

• RPDB N,I,kl,k2, ,kj This is the same as the RPD instruction except that only the address
of the second instruction following the RPDB instruction will be incremented by I on each iteration.

• RPL N,kl,k2, ,kj The instruction above will cause the instruction immediately following
it to be repeated N times or until one of the conditions specified in kl, ,kj are satisfied. The
relation of kl, ,kj is the same as in RPT. The address effectively used by the repeated in­
struction is the linked address (described on page II-127 and following).

• RPDA N,I,kl,k2, ,kj This is the same as the RPD instruction except that only the address
of the first instruction following the RPDA instruction will be incremented on each iteration by I.

• RPLX This instruction behaves just as the RPL instruction except that N and conditions of
termination will be found in index register zero instead of imbedded in the instruction.

MACRO OPERATIONS

Introduction

Programming applications frequently involve (1) the coding of a repeated pattern of instructions
that within themselves contain variable entries at each iteration of the pattern and (2) basic coding
patterns subject to conditional assembly at each occurrence. The macro operation gives the
programmer a shorthand notation for handling (1) and (2) through the use of a special type of
pseudo-operation referred to in the GE-635 Macro Assembler as a MACRO. Having once deter­
mined the iterated pattern, the programmer can, within the MACRO, designate selectable fields
of any instruction of the pattern as variable. Thereafter, by coding a single MACRO instruction,
he can use the entire pattern as many times as needed, substituting different parameters ~or the
selected subfields on each use.

III-58

When he defines the iterated pattern, the programmer gives it a name, and this name then
becomes the operation code of the MACRO instruction by which he subsequently uses the macro
operation.

As a generative operation, the macro operation causes n card images (where n is normally greater
than one) to be generated; these may have substitutable arguments. The MACRO is known as the
prototype or skeleton, and the card images that may be defined are relatively unrestricted as to
type.

They can be:

1. Any Processor instruction

2. Most Assembler pseudo-operations

3. Any previously defined macro operation

Card images of these types are subject to the same conditions and restrictions when generated by
the macro processor as though they had been produced directly by the programmer as in-line
coding.

To use the MACRO prototype, once named, the programmer enters the macro operation code in
the operation field and arguments in the variable field of the MACRO instruction. (The arguments
comprise variable field subfields and refer directly to the argument pointers specified in the
fields of the card images of the prototype.) By suitably selecting the arguments in relation to
their use in the prototype, the programmer causes the Assembler to produce in-line coding vari­
ations of the n card images defined within the prototype.

The effect of a macro operation is the same as an open subroutine in that it produces in-line
code to perform a predefined function. The in-line code is inserted in the normal flow of the
program so that the generated instructions are executed in-line with the rest of the program
each time the macro operation is used.

An important feature in specifying a prototype is the use of macro operations within a given pro­
totype. The Assembler processes such "nested" macro operations at expansion time only. The
nesting of one prototype within another prototype is not permitted. If macro operation codes are
arguments, they must be used in the operation field for recognition. Thus, the MACRO must be
defined before its appearance as an argument; that is, the prototype must be available to the
Assembler before encountering a demand for its usage.

Definition of the Prototype

The definition of a MACRO prototype is made up of three parts:

1. Creation of a heading card that assigns the prototype a name
2. Generation of the prototype body of n card images with their substitutable arguments
3. Creation of a prototype termination card

These parts are described in the following three subparagraphs.

III-59

MACRO (MACRO Identification) Pseudo-Operation

LOCATION ~OPERATION ADDRESS, MODIFIER COMMENTS l 0
1 2 6 1 8]A_ lsl 16- \32._ j

S_ymboJ
1

MACRO Blanks in the variable field ~

- - t - - - -
The MACRO pseudo-operation is used to define a macro operation by symbolic name. The
symbol in the location field can contain up to six allowable alphanumeric characters and defines
the name of a MACRO whose prototype is given on the next n lines. (The prototype definition
continues until the Assembler encounters the proper ENDM pseudo-operation.) The name of
the MACRO is a required entry. If the symbol is identical to an operation code already in the
table, then the macro operation will be used as a new definition for that operation code. It is
entered in the Assembler operation table with a reference to its associated prototype that is
entered in the MACRO skeleton table.

ENDM (End MACRO) Pseudo-Operation

LOCATION 0 OPERATION

0
12 618 ~l.Slk.

Blanks IENDM

-_.... -

ADDRESS, MODIFIER COMMENTS

A symbol in the variable field I

]
~ -

The symbol in the variable field is the symbolic name of the MACRO instruction as defined in the
location field of the corresponding MACRO heading card. Every MACRO prototype must contain
both the terminal ENDM pseudo-operation and the MACRO pseudo-operation.

Thus, every prototype will have the form

Heading card { OPNAME MACRO

Prototype body

Terminal card { ENDM OPNAME

where OPNAME represents the prototype name that is placed in the Assembler operation table.

III-60

• Prototype Body. The prototype body contains a sequence of standard source-card images
(of the types listed earlier) that otherwise would be repeated frequently in the source program.
Thus, for example, if the iterated coding pattern

LOCATION ~OPERATION ADDRESS, MODIFIER CX>MMENTS ~ 0
1 2 6 1 8 1A l~ 16 l32._

__:_

LDA 5,DL

LDQ [13 DL
CWL ALPHA,2 I
TZE FIRST

~

7
~ : \ LDA u

LDQ v
CWL BETA_,_4

TZE SCND
:

a
: ' LDA W+X

LDQ Y+Z 1
CWL GAMMA t !------

TZE NEXTl

.4
- ~ -- - - -

appeared in a subprogram, it could be represented by the following prototype body (preceded
by the required prototype name):

LOCATION ~ OPERATION ADDRESS, MODIFIER OOMMEN TS l 0
1 2 6 1 8 141516 l32._

¢MPAR MACRO MACRO prototype with substitutable I
LDA #1 arguments in the variable field ~
LDQ #2 7
CWL #3 ' TZE #4 1.
ENDM CMPAR ' j - - -- - --

III-61

Then the previous coding examples could be represented by the macro operation CMPAR as
follows:

CMPAR {5,DL),(13,DL),(ALPHA,2),FIRST

CMPAR U, V,(BETA,4) ,SCND

CMPAR W+X, Y+Z,GAMMA,NEXTl

The Assembler recognizes substitutable arguments by the presence of the number-sign identifier
(#). Having sensed this identifier, it examines the next one or two digits. (Sixty-three is the
maximum number of arguments usable in a single prototype.)

MACRO prototype arguments can appear in the location field, in the operation field, in the
variable field, and coincidentally in combinations of these fields within a single card image.
Substitutions that can be made in these fields are:

1. Location field--any permissible location symbol (see comments below)

2. Operation field--all machine instruction, all pseudo-operations (except the MACRO
pseudo-operation) and previously defined macro operations

3. Variable field--any allowable expression followed by an admissible modifier tag and
separated from the expression by a delimiting comma.

In general, anything appearing to the right of the first blank in the variable field will not be copied
into the generated card image. For example, a substitutable argument appearing in the comments
field of a card image--that is, separated from the variable field by one or more blanks--will not
be interpreted by the Assembler (except in the case of the BCI, REM, TTL, and TTLS pseudo­
operations). This means that only pertinent information in the location, operation, and variable
fields is recognized, that internal blanks are not allowed in these fields, and that the first blank
in these fields causes field termination.

When specifying a symbol in a location field of an instruction within a prototype the programmer
must be aware that this MACRO can be used only once since on the second use the same symbol
will be assigned a different location, causing a multiply-defined symbol. Consequently, the use
of location symbols within the prototype is discouraged. Alternatively, for cases where repeated
use of a prototype is necessary, two techniques are available: (1) use of Created Symbols and
(2) placement of substitutable argument in the location field and use of a unique symbol in the
argument of the macro operation each time the prototype is used. (These techniques are des­
cribed under Using a Macro Operation, page III-63.)

The location field, operation field, and variable field may contain text and arguments which can
be concatenated (linked together) by simply entering the substitutable argument (for example,
AB#3) directly in the text with no blanks or special symbols preceding or following the entry.
Concatenation is especially useful in the operation field and in the partial subfields of the variable
field. (Refer to the discussion of BCI, REM, TTL, and TTLS immediately following.) As an
example of the first use, consider a machine instruction such as LD(R) where R can assume the
designators A, Q, AQ, and XO-X7.

III-62

The prototype NAME

NAME MACRO

LD#2
A,#1

contains a partial operation field argument; and when the in-line coding is generated, LD#2
becomes LDA, LDQ, etc., as designated by the argument used in the macro operation.

The BCI, REM, TTL, and TTLS pseudo-operations used within the prototype are scanned in full
for substitutable arguments. The variable field of these pseudo-operations can contain blanks
and argument pointers. The following illustrates a typical use:

ALPHA MACRO

NOTE#l REM IGNORE15#2fl ERRORS150N-5#3

An asterisk (*) type comment card cannot appear in a MACRO prototype.

Using a Macro Operation

Use of a macro operation can be divided into two basic parts; definition of the prototype and
writing the macro operation. The first part has been described on the preceding pages; writing
the macro operation to call upon the prototype is the process of using the MACRO and is des­
cribed in the following paragraphs.

The macro operation card is made up of two basic fields; the operation field that contains the
name of the prototype being referenced and the variable field that contains subfield arguments
relating to the argument pointers of the prototype on a sequential, one-to-one basis. For example,
the defined prototype CMPAR, mentioned earlier, could be called for expansion by the MACRO
instruction

CMPAR U, V,(BETA,4),SCND

where the variable field arguments, separated by commas and taken left-to-right, correspond
with the prototype pointers #1 through #4. These arguments are then substituted in their cor­
responding positions of the prototype to produce a sequence of instructions using these arguments
in the assigned location, operation, and variable fields of the prototype body. (The above MACRO
instruction expands to the second piece of coding shown on page IIl-61.)

The maximum number of MACRO-call arguments is 63; arguments greater than 63 are treated
modulo 64. For example, the 70th argument is the same as the 6th argument and would be so
recognized by the Assembler. Each such argument can be a literal, a symbol, or an expression
(delimited by commas) that conforms to the restrictions imposed upon the field of the machine
instruction or pseudo-operation within the prototype where the argument will be inserted.

III-63

The following conditions and restrictions apply to the expansion of MACROS:

1. Anything appearing in the location field of a prototype card image, whether text or a
substitutable argument, causes generation to begin in column 1 for that text or argument.

2. Location field text generated from an argument pointer (in a prototype location field)
so as to produce a resultant field extending beyond column 8 causes the operation field
to begin in the next position after the generated text. Normally, the operation field
will begin in column 8.

3. Operation field text generated from an argument pointer (in a prototype operation field)
so as to produce a resultant field extending beyond column 16 causes the variable field
to start in the next position after the generated text. Normally, the variable field will
begin in column 16.

4. The variable field may begin after the first blank that terminates the operation field but
not later than column 16 in the absence of the condition in 3 above.

5. No generated card image can have more than 72 characters recorded; that is, the capac­
ity of one card image cannot be exceeded (columns 73-80 are not part of the card image).

6. No argument string of alphanumeric characters can exceed 57 characters.

7. Up to 63 levels of MACRO nesting are permitted.

An argument can also be declared null by the programmer when writing the MACRO instruction;
however, it must be declared explicitly null. Explicitly null arguments of the MACRO instruction
argument list can be specified L. either of two ways; by writing the delimiting commas in succes­
sion with no spaces between the delimiters or by terminating the argument list with a comma with
the next normal argument of the list omitted. (Refer to the CRSM description, following.) A
null argument means that no characters will be inserted in the generated card image wherever the
argument is referenced. When a macro operation argument relates to an argument pointer and
the pointer requires the argument to have multiple entries or contains blanks, the corresponding
argument must be enclosed within parentheses with the parenthetical argument set off by the
normal comma delimiters. The parenthetical argument can contain commas as separators.
Examples of prototype card images that require the use of parentheses in the MACRO call are
pseudo-operations such as IDRP, VFD, BCI, and REM, as well as the variable field of an in­
struction where the address and tag may be one argument.

It can happen that the argument list of a macro operation extends beyond the capacity of one
card. In this case, the ETC pseudo-operation is used to extend the list on to the next card. In
using ETC, the last argument entry of the macro operation is delimited by a following comma,
and the first entry of the ETC card is the next argument in the list. Within the prototype, as
many ETC cards as required can be used for internal MACROS or VFD pseudo-operations.

Pseudo-Operations Used Within Prototypes

• Need for Prototype Created Symbols. In case of a MACRO prototype in which an argument
pointer is used in the location field, the programmer must specify a new symbol each time the
prototype is called. In addition, for those cases where a nonsubstitutable symbol is used in a
prototype location field, the programmer can use the macro operation only once without in­
curring an Assembler error flag on the second and all subsequent calls to the prototype (mul­
tiply-defined symbol). Primarily to avoid the former task (having to repeatedly define new
symbols on using the macro operation) and to enable repeated use of a prototype with a location
field symbol (nonsubstitutable), the created symbol concept is provided.

III-64

• Use of Created Symbols. Created symbols are of the type [xxx] where xxx runs from 001
through 999, thus making possible up to 999 created symbols for an assembly. The brackets are
part of the symbol. The Assembler will generate a created symbol only if an argument in the
macro operation is implicitly null; that is, only if the macro operation defines fewer arguments
than given in the related MACRO prototype or if the designator# is used as an argument. Ex­
plicitly null arguments will not cause created symbols to be generated. The example given
clarifies these ideas.

Assume a MACRO prototype of the form

NAME MACRO
------- #l,#2

#4 ------- x
#5 ------- ALPHA,#3

------- #4
TMI #5
ENDM NAME

with five arguments, 1 through 5. The macro operation NAME in the form

NAME A,7,,,B

specifies the third and fourth arguments as explicitly null; consequently, no created symbols
would be provided. The expansion of the operation would be

------- A,7
------- x

B ------- ALPHA,

TMI B

The macro operation card

NAME A,7,

indicates the third argument is explicitly null, while arguments four and five are implicitly null.
Consequently, created symbols would be provided for arguments four and five but not for three.
This is shown in the expansion of the macro operation as follows:

------- A,7
[011 J ------- x
[012 J ------- ALPHA,

------- [011 J
TMI [012 J

A created symbol could be requested for argument three simply by omitting the last comma. The
programmer can conveniently change an explicitly null argument to an implicitly null one by
inserting the # designator in an explicitly null position. Thus, for the preceding example

NAME A,7,,#,B

the fourth argument becomes implicitly null and a created symbol will be generated.

III-65

CRSM ON/OFF (Created Symbols)

LOCATION !.? OPERATION ADDRESS, MODIFIER CDMMENTS I
0

1 2 6 7 8 l4Jls 16_ 132.
Blanks CRSM ON Normal mode

Blanks CRSM OFF

J - 7 - - -
Created symbols are generated only within MACRO prototypes. They can be generated for
argument pointers in the location, operation, and variable fields of instructions or pseudo­
operations that use symbols. Accordingly, the created symbols pseudo-operation affects only
such coding as is produced by the expansion of MACROS. CRSM ON causes the Assembler to
initiate or resume the creation of symbo~.s; CRSM OFF terminates the symbol creation if CRSM
ON was previously in effect. If the Assembler is already in the specified mode, the pseudo­
operation is ignore~

IDRP (Indefinite Repeat)

LOCATION i.? OPERATION ADDRESS, MODIFIER CDMMENTS ' 0
l 2 6 7 8 l! l.S l6.. 132.

Blanks IDRP #3 An argument number or blanks in the variable
field, depending on the IDRP of the IDRP pair

.7
~

- -

The purpose of the IDRP is to provide an iteration capability within the range of the MACRO
prototype by letting the number of grouped variables in an argument pointer determine the
iteration count.

The IDRP pseudo-operation must occur in pairs, thus delimiting the range of the iteration within
the MACRO prototype. The variable field of the first IDRP must contain the argument number
that points to the particular argument used to determine the iteration count and the variables to
be affected. The variable field of the second IDRP must be blank.

At expansion time, the programmer denotes the grouping of the variables (subarguments) of the
iteration by placing them, contained in parentheses, as the nth argument where n was the argument
value contained in the initial IDRP variable field entry.

IDRP is limited to use within the MACRO prototype, and nesting is not permitted. However,
as many disjoint IDRP pairs may occur in one MACRO as the programmer wishes.

III-66

For example, given the MACRO skeleton

NAME MACRO

IDRP
ADA
IDRP

ENDM

the MACRO call (with variables Xl,X2, and X3)

#2
#2

NAME

A NAME Q+2, (Xl, X2, X3), B

would generate

A

ADA
ADA
ADA

Xl
X2
X3

In the example, arguments # 1 and #3, Q+2, and B respectively, are used in the skeleton ahead
of and after the appearance of the IDRP, range-iteration pair.

Notes and Examples on Defining a Prototype

The examples following show some of the ways in which MACROS can be used.

• Field Substitution

Prototype definition:

ADD TO

Use:

MACRO
LDA
ADA
STA
ENDM

ADD TO

• Concatenation of Text and Arguments

Prototype definition:

INCX MACRO
ADLX#2
INE
TRA
ENDM

III-67

#1
#2
#3
ADD TO

A,(1,DL),B+5

#3,DU
#1,'*+l'
#1
INCX

Use:

INCX
or

INCX

• Argument in a BCI Pseudo-Operation

Prototype definition:

ERROR

Use:

MACRO
TSXl
ARG
BCI
ENDM

ERROR

• Macro Operation in a Prototype

Prototype definition:

TEST

Use:

• Indefinite Repeat

MACRO
LDA
CMPA
#3
ERROR
ENDM

TEST

LOCA,4,1

*+1,4,1

DIAG
#1
5, ERROR1'5#11'5CONDITION1'5 IGNORED
ERROR

5

#1
#2
#4
#5
TEST

A,B, TZE,ALPHA,3

Prototype definition (for generating a symbol table):

SYMGEN

#1

Use:

MACRO
IDRP
BCI
IDRP
ENDM

SYMGEN

III-68

#1
1,#1

SYMGEN

(LABEL, TEST ,ERROR,MACRO)

• Subroutine Call MACRO

Use:

Prototype definition:

DOO
K

K

MACRO
SET
IDRP
SET
IDRP
TSXl
TRA
IDRP
ARG
IDRP
ENDM

DOO

0
#2
K+l

#1
*+l+K
#2
#2

DOO

SRT, (ARG 1,ARG2,ARG3)

PROGRAM LINKAGE PSEUDO-OPERATIONS (SPECIAL SYSTEM MACROS)

The CALL, SAVE, RETURN and ERLK pseudo-operations are used in such a way that each
generates many lines of coding in the assembly program from a single instruction input to the
Assembler; they are therefore considered to be system MACROS.

CALL (Call--Subroutines)

LOCATION p OPERATION
0

ADDRESS, MODIFIER CX>MMENTS -, ~
1 2 6 1 8 14_ 1-5 l6_ 132

!symbol CALL Subfields in the variable field with

1 or contents and delimiters as
blanks described below

-- ...'11111 -
The CALL system MACRO is used to generate the standard subroutine calling sequence.

The first subfield in the variable field of the instruction is separated from the next n subfields
by a left parenthesis. This subfield contains the symbol which identifies the subroutine being
called. It is possible to modify this symbol by separating the symbol and the modifier with a
comma. (The symbol entered in this subfield is treated as if it were entered in the variable field
of a SYMREF instruction.)

The next n subfields are separated from the first subfield by a left parenthesis and from subfield
n+l by a right parenthesis. Thus the next n subfields are contained in parentheses and are sep­
arated from each other by commas. The contents of these subfields are arguments which will be
used in the subroutine being called.

III-69

)

The next m subfields are separated from the previous subfields by a right parenthesis and from
each other by commas. These subfields are used to define locations for error returns from the
subroutine. If no error returns are needed, then m=O.

The last subfield is used to contain an identifier for the instruction. This identifier is used when
a trace of the path of the program is made. The identifier must be a number contained in apos­
trophes. Thus the last subfield is separated from the previous subfields by an apostrophe. If
the last subfield is omitted, the assembly program will provide an identifier.

In the examples following, the calling sequences generated by the pseudo-operation are listed
below the CALL system MACRO. For clarification AAAAA defines the location of the CALL in­
struction; SUB is the name of the subroutine called; MOD is an address modifier; Al through An
are arguments; El through Em define error returns; E. I. is an identifier; and E. L. defines a
location where error linkage information is stored. The number sequences 1,2, ... ,n and 1,2, ... ,m
designate argument positions only.

AAAAA

AAAAA

CALL

TSXl
TRA
ZERO
ARG
ARG

SUB ,MOD (Al ,A2, ,An) El, E 2, , Em 'E. I.'

SUB,MOD
*+2+n+m
E.L.,E.L
Al
A2

ARG An
TRA Em

TRA E2
TRA El

The preceding example of instructions generated by the CALL system MACRO was in the relo­
catable mode. The following example is in the absolute mode.

AAAAA

AAAAA

CALL

TSXl
TRA
ZERO
ARG
ARG

SUB,MOD(Al,A2, ,An)El,E2, ,Em'E. I.'

SUB,MOD
*+2+n+m
O,E.I.
Al
A2

ARG An
TRA Em

TRA E2
TRA El

III-70

If the variable field of the CALL MACRO cannot be contained on a single line of the coding sheet,
it may be continued onto succeeding lines by use of the ETC pseudo-operation. (See page III-49 or
III-64.) This is done by terminating the variable field of the CALL instruction with a comma (,).
The next subfield is then placed as the first subfield of the ETC pseudo-operation. Subsequent
subfields may be continued onto following lines in the same manner.

SA VE (Save--Return Linkage Data)

LOCATION 12 OPERATION ADDRESS, MODIFIER CDMMENTS f 0
1 2 6 1 8 14115 16 132.

S...Y.m.boJ SAVE Blanks or subfields se_D_arated b_y
commas in the variable field- - t
as described below ~

~
_J

.i- - - -
The SA VE system MACRO is used to produce instructions necessary to save specified index
registers and the contents of the error linkage index register.

The symbol in the location field of the SA VE instruction is used for referencing by the RETURN
instruction. (This symbol is treated by the Assembler as if it had been coded in the variable
field of a SYMDEF instruction when the Assembler is in the relocatable mode.)

The subfields in the variable field, if present, will each contain an integer 0-7. Thus, each
subfield specifies one index register to be saved.

The instructions generated by the SA VE pseudo-operation are listed below. The argument
symbols i1 through in are integers 0-7. E.L. defines the location provided for the contents of

the error linkage register.

BBBBB is a symbol that must be present.

Example one is in the relocatable mode, and example two is in the absolute mode.

EXAMPLE ONE

BBBBB SAVE il ' i2 , ... in

SYMDEF BBBBB
BBBBB TRA *+2+n

LDX(i
1

) **,DU

LDX(i)
n **,DU

RET E. L.
STI E. L.
STXl E. L.
STX(i

1
) BBBBB+l

STX(i
2

) BBBBB+2

STX(i) BBBBB+n n

III-71

BBBBB

BBBBB

SAVE

TRA
ZERO
LDX(i

1
)

LDX(i
2

)

LDX(i)
n

RET
STI
STXl
STX(i

1
)

STX(i
2

)

STX(i)
n

EXAMPLE TWO

il ,i2 , ... ,in

*+3+n

**,DU

**,DU

**,DU

BBBBB+l
BBBBB+l
BBBBB+l
BBBBB+2

BBBBB+3

BBBBB+n+l

RETURN (Return--From Subroutines)

LOCATION 121 OPERATION ADDRESS, MODIFIER
0

1 2 6., 8 14.~ 16. 132._

~ymbol RETURN !One or two subfields in the

or jvariable field

Q_lanks

... -

CDMMENTS \
.l
~~ ,
J
~
~ -

The RETURN system MACRO is used for exit from a subroutine. The instructions generated by a
RETURN pseudo-operation must make reference to a SAVE instruction within the same sub­
routine. This is done by the first subfield of RETURN. The first subfield in the variable field
must always be present. This subfield must contain a symbol which is defined by its presence
in the location field of a SA VE instruction.

The second subfield is optional and, if present, specifies the particular error return to be made;
that is, if the second subfield contains the value k, then the return is made to the kth error return.

In the examples following, the assembled instructions generated by RETURN are listed below the
RETURN instruction. For both examples the group of instructions on the left are generated
when the Assembler is in the relocatable mode, and the instructions on the right when the Assem­
bler is in the absolute mode.

IIl-72

TRA

LDXl
SBXl
STXl
TRA

EXAMPLE ONE

RETURN

BBBBB+l } Generated
Instruction

BBBBB

TRA

EXAMPLE 1WO

RETURN

E. L.,* }
k,DU Generated
E. L. Instructions
BBBBB+l

BBBBB,k

LDXl
SBXl
STXl
TRA

ERLK (Error Linkage--to Subroutines)

LOCATION ~ OPERATION

0

ADDRESS, MODIFIER

l 2 6 7 8 14 1516 132

BBBBB+2 } Generated
Instruction

BBBBB+l,*}
k,DU Generated
BBBBB+l Instructions
BBBBB+2

COMMENTS)
Blanks ERLK Column 16 must be blank 1

I

""""1l1ffll \
The normal operation of the Assembler is to assign a location for error linkage information, as
shown in the examples of the CALL, SAVE, and RETURN pseudo-operations. However, if the
programmer wishes to specify the location for error linkage information, he can do so by using
ERLK. Thus, ERLK makes the location of the error linkage register known and available to the
programmer. The appearance of ERLK causes the Assembler to generate two words of the
following form:

E. L. ZERO
BCI 1,NAME

These words will be placed in the assembly at the point the Assembler encountered ERLK.

In the example, the location symbol NAME must appear under the coded SYMDEF pseudo­
operation (1) if ERLK is used within CALL, or (2) if not using CALL, the programmer generates
his own subroutine calling sequence. If ERLK appears within the SA VE system MACRO, SYMDEF
need not be coded since SA VE automatically generates a SYMDEF.

NAME, as generated by the Assembler, is the first symbol defined under the first SYMDEF of
the program containing ERLK.

III-73

SYSTEM (BUILT-IN) MACROS AND SYMBOLS

It is possible to include additional permanently defined system symbols and/ or system MACROS
in the Assembler. This is accomplished by a reassembly of the Macro Assembler and by placing
the proper information in the required tables. For information on reassembly (reprogramming)
of the GE-635 Macro Assembler refer to the Preface to this manual.

SOURCE PROGRAM INPUT

Subprogram Definition

The input job stream managed by the Comprehensive Operating Supervisor (GECOS, GEFLOW
module) can comprise assembled object programs, Macro Assembler language source programs,
and FORTRAN or COBOL compiler-language source programs. Such programs of a job are
referred to as activities or as subprograms. A source program input to the Assembler written
in the GE-635 machine language is an Assembler language input subprogram. Comments to
follow in this section pertain to this subprogram, as opposed to the others noted above.

The Assembler language subprogram is composed of the following parts, in order:

1. $ GEM control card (calls the Assembler into Memory from external storage and
provides Assembler output options; refer to the paragraph following)

2. Text of the subprogram (one instruction per card)

3. END pseudo-operation card (terminates the input subprogram)

The $ GEM control card is prepared as shown below:

Card Column

Symbolic Example

Actual Example

1

$

$

8

GEM
I
IGEM

16

I Option 1, Option 2,

I N DECK, LSTOU, NCOMDK

The operand field specifies the system options listed in any random order. When an option, or
its converse, does not appear in the operand field, there is a standard entry which is assumed.
(The standard entries are asterisked below.)

III-74

The options available with GEM are as follows:

LSTOU--A listing of the output will be prepared.*

NLSTOU--No listing of the output will be prepared.

DECK--A program deck will be prepared as part of the output of this processor.

NDECK--No program deck will be prepared.*

COMDK--A compressed version of the source program will be prepared.

NCOMDK--No compressed deck will be prepared.*

The content of columns 73-80 is used as an identifier to uniquely idontify the binary object programs
resulting from the assembly.

Compressed Decks

The Assembler program contains routines and tables for compressing source subprogram
cards from a one-instruction-per-card input to a multiple-instruction-per-card input. This
Assembler feature is provided primarily for reducing the size of input source decks as concerns
handling and correcting (altering) the input subprogram. (For details of the compression and the
compressed deck card format, refer to the next paragraph and the GE-635 File and Record
Control manual.)

The compressed deck (COMDK) option is specified in the operand field of the $ GEM control
card. The normal mode of Assembler operation is NCOMDK; that is, no compressed deck
is produced. To use the Assembler COMDK feature, the $ GEM control card would appear as

$ GEM COM DK

and be placed as the first card of the deck. When combined with the standard output options,
the above control card would cause the Assembler to produce:

1. An output listing containing in its format a complete listing of the source card images
(See the listing and symbolic reference table formats, page III-85.)

2. A compressed deck of the source card images, column-binary, alphanumeric.

The COMDEK format is produced by a procedure which compresses any Hollerith-coded card
image by removing sequences of 3 or more blanks and packing the information in standard column
binary form.

To accomplish the compression, the Hollerith card is considered as being made up of a series
of fields and strings. A field is defined as a segment of the card containing no sequences of more
than 3 blanks except at the beginning. A string is that portion of a field obtained by deleting any
leading blanks.

Each field specification starts with the octal value of A(O <A~ 67
8

) followed by the octal value of

B(O <A ~ 67
8

) followed by the B characters constituting the string. (A=the number of characters

in the field; B= the number of characters in the string.)

III-75

The size of A and B is limited, as indicated above, in order to reserve a set of codes to serve
as flags when found in a position in which a count had been expected. If a given length exceeds
the maximum length, it is segmented into separate fields. For example, given 70 (decimal)
consecutive nonblank characters, it is necessary to treat this as two fields with:

Field 1
Field 2

A= 67,
A= 17,

B = 67 (octal values)
B = 17 (octal values)

The field specifications (A,B,string) are packed sequentially on a binary card in the format
indicated below. A field specification maybe started on a COMDEK card (X) and may be completed
on the following card (X+l).

The following codes for A are used to designate specific conditions. The B character is not
present in such cases.

End of a compressed card; continue decoding on the next card

End of encoded string for a given Hollerith card image

End of the compressed deck segment

Available for extension

The COMDEK card layout consists of:

Word 1:

Words 2-24:
Words 25-27:

0-2 Column binary card type 5
3-8 Zeros
9-11 101 (7-9 punches)

12-35 Binary sequence number
Compressed card image
Hollerith-coded label or zeros

The binary sequence number is maintained when a COMDEK output is produced and is checked
when the deck is used as input. When a sequence error is found in an input COMDEK file, the
activity will be terminated.

The label words of the card are supplied in uncompressed form by the I/O Editor and give
identification data from columns 73-80 of the standard binary deck cards.

Source Deck Corrections

Corrections to an Assembler language source deck are made by the use of $ ALTER control
cards. A source program correction deck consists of the following parts, in order:

1. $ GEM control card

2. Text of the subprogram in either of two forms:

a. Standard one-instruction-per-card deck
b. Compressed deck

3. $ UPDATE control card (notifies the Comprehensive Operating Supervisor that the cards
to follow are to be placed on the A* (alter) file for use by the Assembler

IIl-76

4. ALTER cards (contain the updating delimiting information)

5. New source cards which are to be inserted into the source deck as additions or replace­
ment instructions

The operand field of the ALTER card uses alter numbers that are obtained from the previous
listing of the deck now being processed. (Page III-84 .) The format of the ALTER card is:

Card Column

Symbolic Example

Actual Example

1 8

I ALTER

I ALTER

16

I
n, m

I 01364,07464

The entries define whether the cards following are to be added or to replace cards in the primary
input file. These numbers are simply consecutive card numbers starting with 00001 and increasing
by one for each source input card.

When it is desired to insert cards into a deck, the m subfield is not used. In this case, the cards
following this ALTER card, up to but not including the next ALTER card, will be inserted just
prior to the card corresponding to alter number n.

When it is desired to delete and/ or replace one or more cards from a deck, the m subfield is
given as shown above. When n and m are equal, card n will be deleted. When m identifies a
card following n, all cards n through m will be deleted. In addition, any cards following this
ALTER card up to but not including the next ALTER card will be inserted in place of the deleted
cards.

The end of an alter file is designated by the normal end-of-file convention appropriate to the media
containing the file.

The$ UPDATE control card is prepared as indicated below.

Card Column 8 16

Symbolic Example

I:
: UPDATE

Actual Example I UPDATE

The UPDATE control card is used when supplying alter input to a compiler or the Assembler.
In the input sequence for a job, the $ UPDATE control card and associated ALTER card with
its alter statements must follow and be contiguous to the source program to which the alter
statements apply.

The operation field contains the word UPDATE; no further entries are made.

III-77

ASSEMBLY OUTPUTS

Binary Decks

When the $ GEM control card specifies the DECK option, the Assembler punches a binary
assembly output deck. Since the normal mode of the Assembler is relocatable, all addresses
punched in the output cards are normally relative to the blank location counter (relative to zero)
and the text is described as relocatable. Alternatively, still considering the DECK option, the
Assembler can operate in the absolute mode and punch only absolute addresses in the output
cards.

Relocatable or absolute addresses can be punched in four types of binary cards. These cards
and their uses are summarized below. GE-635 Loader functions performed by using the infor­
mation from these cards are described in the Loader manual. In addition, this manual describes
the memory map layouts applicable to each user subprogram. The user subprogram memory
map blocks are (1) the subprogram region, (2) the LABELED COMMON region, and (3) the BLANK
COMMON region.

CARD TYPE

Preface

Relocatable

Absolute

Transfer

USE

Provides the Loader with (1) the length of the subprogram
text region; (2) the length of the BLANK COMMON region;
(3) the total number of SYMDEF, SYMREF, and LABELED
COMMON symbols; (4) the type identification of each symbol
in (3); and (5) the relative entry value or the region length
for each symbol in (3).

Supplies the Loader with relocatable binary text by using
preface card information and relocation identifiers, where
the relocation identifiers specify whether the 18-bitfield refers
to a subprogram, LABELED COMMON, or BLANK COMMON
regions (of the assembly core-storage area) and will allow
the loader to relocate these fields by an appropriate value.

Provides the Loader with absolute binary text and the absolute
starting-location value for Loader use in assigning core-storage
addresses to all words on the card.

Can be generated only in an absolute assembly and causes the
Loader to transfer control to the routine at the location given
on the card. (The transfer card is generated automatically
as the last card of an absolute subprogram assembly by
the END pseudo-operation; however, use of the TCD pseudo­
operation can cause the card to appear anywhere in the
assembly.)

The formats in which the Assembler punches the above cards are described in the paragraphs
to follow.

III-78

Preface Card Format

Preface card symbolic entries are primary SYMDEF symbols, secondary SYMDEF symbols,
SY1V1REF symbols, LABELED COMMON symbols (from the BLOCK pseudo-operation), and the
[SYMT] LABELED COMMON symbol. These symbols appear on the card in a precise order.
All SYMDEF symbols appear before any other symbol. Following the SYMDEF symbols are any
LABELED COMMON symbols that may have relocatable binary data loaded into that region. The
SYMREF symbols are then recorded followed by the remaining LABELED COMMON symbols.

The format and content of the preface card are summarized as follows:

Word One: 100

2 3

Word Two:

Word Three:

101

8 9 11 12 17 18 35

n
1
--V is a value within the range 5 !5: V !5: 35 and represents the size

of the field within a special relocation entry needed to point the
specific preface card entry. Thus, V=log2N+l, where N is the number

of LABELED COMMON and SYMREF entries.

n
2
--Word count of the preface card text

n
3
--Length of the subprogram

Checksum of columns 1-3 and 7-72

A

17 18

N

35

The value A is the length of BLANK COMMON; and N is two times the total number of SYMDEFs,
SYMREFs, and LABELED COMMONs.

Words Four,
Five:

Words Six,
Seven:

III-79

Words 2n+2,
Symbol ;A K I Char. Char. Char. Char. Char. Char.

2n+3: 1 2 3 4 5 6
n n, n

0 5 6 11 12 17 18 23 24 29 30 35

A K

0 17 18 35

The even-numbered word contains the symbol in BCD. The value K defines the type symbol
in the even-numbered word; A is a value associated with K, as explained in the following list.

If K equals zero, then the symbol is a primary SYMDEF symbol; A is the entry value relative
to the subprogram region origin.

If K equals one, then the symbol is a secondary SYMDEF symbol; A is the entry value relative
to the subprogram region origin.

If K equals five, then the symbol is a SYMREF symbol; A is zero.

If K equals six, then the symbol is a LABELED COMMON symbol; A is the length of the
region.

If K equals seven, then the symbol is a [SYMTJ LABELED COMMON symbol; A is the
length of the region reserved for debug information.

NOTE: If preface continuation cards are necessary, word three will be repeated unchanged on
all continuation cards.

Relocatable Card Format

A relocatable assembly card has the format and contents summarized in the following comments.

Word One:

0 2 3

101

8 9 11 12 17 18 35

n1 --0 indicates that loading is within the subprogram region of the

user subprogram core-storage area

n2--Word count of the data words to be loaded using the origin and

relative address in this control word

n3--Loading address, relative to the subprogram region origin.

or for the alternative cases:

n1--i, where i;t'O indicates that the ith entry (beginning with the first

LABELED COMMON or SYMREF entry in the preface card text has
been used and that n3 is relative to the origin of that entry.

III-80

Word Two: Checksum of columns 1-3 and 7-72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Word One:

Three-

Five:

0 4 5 9 10 14 15 19 20 24 25 29 30 34 35

0 4 5 9 10 14 15 19 20 24 25 29 30 34 35

1

1 15 : I 16 17 A:B C lD E~~~ --~...;._~~.._~~~~ --~--:-~~~ 18 19 -0 4 5

Words Six­
Twenty-Four:

Relocation Scheme

9 10 14 15 19 20 24 35

Relocation data--words three and four comprise seven 5-bit relocation
identifiers, while word five holds 5 such identifiers. The five bits
of each identifier carry relocation scheme data for each of the card
words (7+7+5=19, or fewer). The identifiers are placed in bit positions
0-34 of words three and four and in 0-24 of word five. (Refer to the
Relocation Scheme description in the paragraph following.)

Instructions and data (up to 19 words per card). If the card is not
complete and at least two words are left vacant, then after the last
word entered, word one may be repeated with a new word count and
loading address. The loading is then continued with the new address,
and the relocation bits are continuously retrieved from words three
through five. This process may be repeated as often as necessary to
fill a card.

For each binary text word in a relocatable card, the five bits--A, BC, and DE--of each relocation
scheme identifier are interpreted by the Loader as follows:

Bit A--0 (reserved for future use)

Bits BC--Left half-word

Bits DE--Right half-word

III-81

To every 18-bit half-word one of four code values apply; these are:

CODE VALUE

xx= 00
01

10

11

MEANING

Absolute value that is not be to modified by the Loader.
Relocatable value that is to be added to the origin of the sub­
program region by the Loader.
BLANK COMMON, relative value that is to be added to the origin
of the BLANK COMMON region by the Loader.
Special entry value (to be interpreted as described in the next
paragraph}

apply where XX stands for BC or DE.

If special entry is required, the Loader decodes and processes the text and bits of the 18-bit
field (left/right half of each relocatable card word) as follows:

Bit 1

Bits 2-+V+l

Bits V+2-+18

--This is the sign of the addend; 0 implies a plus (+) and 1 implies
a minus (-).

--The value V that was specified in word 1 of the preface card dictates
the length of the field. The contents of the field is a relative number
which points to a LABELED COMMON region or a SYMREF that
appeared in the preface card. The value one in this field would point
to the first symbol entry after the last SYMDEF.

--The value in this field is the addend value that appeared in the
expression. If the field is all bits then the corresponding 18 bits
of the next data word are interpreted as the addend.

All references to each undefined symbol are chained together. When the symbol is defined, the
Loader can rapidly insert the proper value of the symbol in all relocatable fields that were
specified in the chain.

Absolute Card Format

The absolute binary text card appears as shown below.

Word One: 101

0 2 3 8 9 11 12 17 18 35

n1--o
n2--Word count of the card text

n
3

--Loading address relative to the absolute core-storage origin zero.

III-82

Word Two:

Words Three­
Twenty-Four:

Transfer Card Format

Checksum of columns 1-3 and 7-72

Instructions and text (22 words per card, maximum). If the card
is not complete and at least two words are left vacant, then after
the last word entered word one may be repeated with a new word
count and loading address.

The transfer card is generated by the Assembler only in an absolute assembly deck. Its format
and contents are:

Word One:

Words Two­
Twenty-Four:

Assembly Listings

2 3

n --0
1

n2--o

8 9

101

11 12 17 18

n3--Transfer address (in absolute only).

Not used

Each Assembler subprogram listing is made up of the following parts:

1. The sequence of instructions in order of input to the Assembler

35

2. The contents of all preface cards (primary SYMDEF symbols, secondary SYMDEF
symbols, SYMREF symbols, LABELED COMMON symbols (from the BLOCK pseudo­
operation), and the [SYMT] LABELED COMMON symbol)

3. The symbolic reference table

III-83

Full Listing Format

Each instruction word produced by the Assembler is individually printed on a 120-character line.
The line contains the following items for each such word of all symbolic cards:

1. Error flags--one character for each error type (see Error Codes page III-85.)

2. Octal location of the assembled word

3. Octal representation of the assembled word

4. Relocation bits for the assembled word (see the topic, Relocation Scheme, Loader
manual)

5. Reproduction of the symbolic card, including the comments and identification fields,
exactly as coded

The exact format of the full listing is shown below.

Fields A B c D E F G H

Print line
1-6 7-12 ,15-20 22-25 27, 28, columns 31-33 35-39

~ "' Machine Source Card
Instruction Image

A--Error flags
B--Relative/absolute location
C--Operand address
D--Operation code

E--Tag field modifier
F--Relocation bits
G--Alter statement number
H--Card image

Several variations appear for bit positions 15 through 28. (The six, four, two subfield groups
C, D, and E shown above is the octal configuration for machine instructions.) These are summa­
rized in the table below in which the X represents one octal digit.

Type of Machine Word

Processor instruction
and indirect address

Data

Data Control

Special 18-bit field data

Input/ output command

Listing Format

xxxxxx xxxx xx

xxxxxxxxxxxx

xxxxxx xx xxxx

xxxxxx xxxxxx

xx xxxx xxxxxx

III-84

Source Program Instruction

Processor instruction and
indirect address word

Data generating pseudo­
operations (OCT, DEC,
BCI, etc.)

Data Control Word (DCW)

ZERO pseudo-operation

Input/ output pseudo­
operation (See Appendix D.)

Error flags are summarized at the end of this section. The interpretation of the relocation bits
is described in the Loader manual.

Preface Card Listing

The contents of one or more preface cards are listed using a self-explanatory format. The
LABELED COMMON symbols are listed according to type in the same order as presented on
single or multiple cards: SYMDEFs, SYMREFs, LABELED COMMON, and [SYMT].

BLANK COMMON Entry

Following the LABELED COMMON symbols, the Assembler enters a statement of the amount
of BLANK COMMON storage requested by the subprogram. The statement format is self­
explanatory.

Symbolic Reference Table

The symbol table listing contains all symbols used, their octal values (normally, the location
value), and the alter numbers (used with the ALTER card, page) of all instructions that
referenced the symbol. The table format is as follows:

Definition Symbol Alter Numbers

00364 BETA 00103,00103,01027 ,01761,03767 ,07954

The above sample indicates that the symbol BETA has been assigned the value 3648 and is

referenced in five places: namely, at alter number positions 00103, 01027, 01761, 03767, and
07954 in the listing of instructions. The first alter number is the point in the instruction listing
where the symbol was defined. If an instruction contains a symbol twice, the alter number for
that point in the instruction listing is given twice. The alter numbers are assigned sequentially
in the subprogram listing, one per instruction. Because of this fact, it is easy for the program­
mer to locate in the listing those card images that referenced any particular symbol as well as
locate the card image that caused the symbol to be defined.

Error Codes

The following list comprises the error flags for individual instructions and pseudo-operations.

ERROR FLAG

Undefined u

M ultidefined M

Address A

CAUSE

Undefined symbol(s) appear in the variable
field.

Multiple-defined symbol(s) appear in the loca­
tion field and/ or the variable field.

Illegal value or variable appears in the vari­
able field. Also used to denote lack of a required
field.

III-85

ERROR FLAG

Index x

Relocation R

Phase p

Even E

Conversion c

Location L

Operation 0

Table T

CAUSE

Illegal index or address modification.

Relocation error; expression in the variable
field will produce a relocatable error upon
loading.

Phase error; this implies undetected machine
error or symbols becoming defined in Pass
Two which were undefined in Pass One.

Address in the variable field is odd, the current
instruction requires an even reference.

Error in conversion of either a literal constant
or a subfield of a data-generative pseudo-oper­
ation.

Error in the location field

Illegal operation

An assembly table overflowed not permitting
proper processing of this card completely. Table
overflow error information will appear at the
end of testing.

III-86

CODING EXAMPLES

PRELIMINARY

This chapter contains examples of coding techniques for performing typical program functions.
These examples:

1. Indicate how certain very efficient Processor instructions can be used

2. Illustrate the use of address modification variations for indexing, indirection and
automatic tallying

3. Demonstrate operations performed on characters

4. Show operations on fixed- and floating-point numbers

5. Present the use of the BCD instruction

The list of examples is by no means complete in that it does not present all of the processor
capabilities; however, the examples provided can serve as convenient references for program­
mers newly acquainted with the GE-635.

Each example is self-contained and self-explanatory. In most cases, questions that may be
raised can be answered by referring to the descriptions of particular instructions or pseudo­
operations. Convenient references are contained in Appendixes A through D.

EXAMPLES

Fixed Point to Floating Point (Integer)

The following example illustrates the conversion of a fixed-point integer to floating point (float
an integer). The integer to be converted is in the location M,

Step 01 resets the Overflow Indicator.

Step 02 places the binary integer to be converted in the accumulator.

Step 03 places zeros in the quotient register.

Step 04 sets the exponent register to 35 10.

Step 05 converts the number in the accumulator to floating point.

IV-1

For example, if the contents of M equal 000000000002 8, then the contents of the floating-point

register will be E = 2
10

, and AQ = 2000000000000000000000008 at the completion of step 05.

0 1
02
03
04
05

TOV
LDA
LDn
LDE
FNO

11 IC
M

1 DL
=35825,DU

Floating Point to Fixed Point (Integer)

FLOAT AN INTEGER M
C(AO) = M AT 835.
C(E) = 35.
NORMALIZE ~A

The following example illustrates the conversion of a double-precision, floating-point number
to a fixed-point number, binary point 71. The result will be only the integral part of the number.

The number to be converted must lie between -2 71 and 2 71-1 inclusive.

Step 01 loads the floating-point number to be converted into the floating-point register.

Step 02, an unnormalized floating add of zero (exponent of 71), causes the contents of AQ to be
shifted right a number of places equal to the difference between 71 and the exponent of the
number to be converted. This will leave in AQ the binary integer (binary point 71) equal to the
integral part of the floating-point number in X and X+l.

For example, if prior to executing step 02, the floating-point re!rister contained -2, that is, if
the exponent register contained 2

10
and AQ contained 4000000000000000000000008, then the re-

sult in AQ after the addition of zero (exponent 71) would be 7777777777777777777777768.

0 1 DFLD

02 UFA

x

=71825,DU

IV-2

COMPUTE THE T ~HEGEP PART OF
A FLOATING-POINT NUMBER CON­
TAINED TN X AND X+l,

FIX THE RESULT IN A0 1 BINARY
POINT 71.

Real Logarithm

Purpose:

Compute log X for ALOG(X} or ALOGlO(X} in an expression.

Method:

1.
I I

log
2

X = log
2

(2 *F) =I+ log2 F, where X=2 *F.

2. logeX = loge2(log2X} = (log
2

X} * (loge2), and similarly log
10

x = (log
2

X} * (log
10

2).

Use:

3. C ~
F-V2

log2X = Z* A+
2
B - 1 , where Z = 2 and

Z -C 2 F+\12
T

A 1.2920070987
B -2.6398577031
c 1.6567626301

4.
-129 127 100 . .

X and log X are real numbers, with values of X from 2 to 2 -2 mclus1ve.

5. log X is accurate to 8 decimal places.

Calling Sequence CALL ALOG(X) for log X e

CALL ALOGlO(X} for log
10

x

IV-3

SYMDEF
LOGS SAVE

FLD
FNO
TZE
TMI

BEGIN FCMP
TZE
STE
LOE
DFAD
DFST
DFSB
DFDV
DFST
DF~1P

DFSB
DF DI
DFAD
DFMP
DFST
LDA
LDO
LDE
FSB
DFAD

INDI C DFMr
RETURN

ERRl CALL
UNITY FLO

RETURt'J
ERR2 CALL

FNEG
TRA

ALOG10ESTC2
TRA
DEC

ALOG ESTC2
TRA
DEC

EALNl DEC
EALN2 DEC
A DEC
R DEC
c DEC
SRHLF DEC
SRHJO DEC
z BSS

END

ALOG10 1 ALOr,

2 I 1 ::

ERRl
EPR2
=1.0,ou
U~J I TY
I
o,ou
SRHLF
z
SP T\t/O
z
z
z
c
R
A
z
z
:: _ ::

/
DU

o,ou
=7825,DU
=0.5,DU
z ..
LOGS
.FXEM.(EALNI)
=o.o,Du
LOl;S
.FXEM,(EALN2)

BEl';IN

INDI C
LCH~ S
• 30102999GDO
INDI C
LOGS
6,93147180559D-1
9
10
,l2920070987Dl
-.2639857703101
,16567626301Dl
.707106781187DO
, 1411+21356237401
2

REAL LOr..APITHM FUNCTIONS
x = c 2 :t :: I) :: F = AR r. w~ nn

ERROR IF X=O
ERROR IF X NEGATIVE

LO!':(l) = 0
STORE I AT BINARY POINT 7
OBTAPJ F

Z = (F - SOPT(l/2))/(F + SOPT(l/2))
Z2
z2-c
B/CZ 2-C)
A+B/(Z2:_C)
Z(A+B/(z2-c)
Z = Z :: (A + R I Ci' :: :: 2 - C)) = L 0 G 2 (F) + 1 I 2

FLOAT I

LOf.2(X) = I + LOf.2(F)
CONVERT TO BASE 10 OR E

ERROR EXIT NUMBER 1 (X=O)

ERROR EXIT NUMBEP 2 (X IS NEGATIVE)

REAL COMMON LOr..ARITHM

REAL t'JATURAL LOGARITHM

SOUARE ROOT OF TWO DIVIDED BY TWO
SQUAPE ROOT OF TWO

IV-4

BCD Addition

The following example illustrates the addition of two words containing BCD integers. The
example limits the result to 999999.

Step 01 places the number in A into the accumulator.

Step 02 adds the number in B to the accumulator. Column Vin the table, following, shows the
possible results for any digit. It should be noted that there are 19 possible results, indicated
by lines 0-18.

Step 03 forces any carries into the units position of the next digit. Lines 10-18 of Column V
contain the sums that will carry into the next digit. Column W contains the 20 possible re­
sults for each digit position. The additional possibility (line 19} arises from the fact that there
can be a carry of one into a digit.

Step 04 stores the intermediate result in C.

Step 05 extracts an octal 60 from each non-carry digit. The results are indicated in column x.
The digits that did not force a carry (lines 0-9} result in an octal 60, the digits that had a carry
into the next digit (lines 10-18) result in 00.

Step 06 performs an exclusive OR of the contents of the accumulator with the contents of C.
This in effect subtracts octal 60 from each digit that did not have a carry {lines 0-9). The
results are indicated in column Y.

Step 07 shifts the octal 60s to the right three places.

Step 08 negates the contents of the accumulator.

Step 09 is an add to storage the contents of the accumulator to the contents of C. This in effect
subtracts a 06 from each digit that did not have a carry, the results of which are indicated in
Column Z.

01
02
03
04
05
06
07
08
09

LOA)
A.DU~

ADLA
STA
ANA
ERSA

ARL }
NE<;
ASA

A
B
=0666666666666
c
=0606060605060
c
3

c

{
TO ADD C = A+B IN BCD.
COMPUTE A+B
ADD OCTAL 66 TO EACH Dil';IT TO FORCE CARRIES

EXTRACT OCTAL 60 FPOM EACH NON-CARRY
SUBTRACT OCTAL 60 FPO~ EACH NON-CARRY

(

SUBTRACT OCTAL
06 FROM EACH
NOl\J-CAPRY

IV-5

ADDITION RESULTS

LINE v w x y z

0 00 66 60 6 00
1 01 67 60 7 01
2 02 70 60 10 02
3 03 71 60 11 03
4 04 72 60 12 04
5 05 73 60 13 05
6 06 75 60 14 06
7 07 75 60 15 07
8 10 76 60 16 10
9 11 77 60 17 11

10 12 00 00 0 00
11 13 01 00 1 01
12 14 02 00 2 02
13 15 03 00 3 03
14 16 04 00 4 04
15 17 05 00 5 05
16 20 06 00 6 06
17 21 07 00 7 07
18 22 10 00 10 10
19 - 11 00 11 11

BCD Subtraction

The following is an example of subtracting one BCD number from another BCD number. The
contents of A must be equal to or greater than the contents of B.

Step 01 loads the accumulator with the contents of A.

Step 02 subtracts the contents of B from the accumulator. The possible results for each digit
are indicated in Column W of the table that is included with this example.

Step 03 stores the intermediate result in C.

Step 04 extracts an octal 60 from each digit that required a borrow. This will leave an octal
60 in each digit position where there was a borrow. The possible results of this instruction
are indicated in Column X, lines 0-19 (10-19 refer to those which result in octal 60).

Step 05, an exclusive OR to storage, in effect subtracts the octal 60' s in the accumulator from
the corresponding digit in C. The possible results for each digit are displayed in Column Y.

Step 06 shifts the octal 60' s in the accumulator right three places.

Step 07 negates the contents of the accumulator.

Step 08, an add to storage, is in effect a subtraction of 06 from each digit that required a borrow,
the result being placed in C. Column Z of the table reflects the possible results for each digit.

IV-6

01
02
03
04
05
06
07
08

LDA }
SBLA
STA
ANA
ERSA

ARL)
NEG
ASA

A
B
c
=0606060606060
c
3

c

f TO SUBTRACT c = A-B IN BCD.
lcoMPUTE A-8

EXTRACT OCTAL 60 FROM EACH BORROW
SUBTRACT OCTAL 60 FROM EACH BORROW

(

SUBTRACT OCTAL
0 6 FROM EJ\CH
BORROW

SUBTRACTION RESULTS

LINE w x y z

0 11 0 11 11
1 10 0 10 10
2 07 0 07 07
3 06 0 06 06
4 05 0 05 05
5 05 0 04 04
6 03 0 03 03
7 06 0 02 02
8 01 0 01 01
9 00 0 00 00

10 77 60 17 11
11 76 60 16 10
12 75 60 15 07
13 74 60 14 06
14 73 60 13 05
15 72 60 12 04
16 71 60 11 03
17 70 60 10 02
18 67 60 7 01
19 66 60 6 00

Character Transliteration

The following example illustrates a method of transliterating each character of a card image that
has been punched in the FOR TRAN Character Set to the octal value of the corresponding character
in the General Electric Standard Character Set. There are 48 characters in the FORTRAN Set
and 64 characters in the General Electric Standard Character Set. Each character that is punched
invalidly (not a standard punch combination in the FOR TRAN Set) is converted to a blank. The
card is origined at IMAGE.

Steps 01 and 02 initialize the indirect word TALLY2.

Step 03 picks up the character to be transliterated by referencing the word TALLY2 with the
Character from Indirect (CI) modifier. This will place the character specified by bits 33-35
of TALLY2 from a location specified by bits 0-17 of TALLY2 into the accumulator, bits 29-35.
Bits 0-28 of the accumulator will be set to zero. Step 03 is forced even so as to place the four­
step loop (step 03-06) in two even/ odd pairs. This decreases run time.

Step 04 picks up the corresponding General Electric standard character from the address
TABLE modified by the contents of accumulator, bits 18-35.

Step 05 places the transliterated character back in the card image where it was originally picked
up. The Sequence Character (SC) modifier increments the character specified in bits 33-35
of the word TALL Y2.

IV-7

Each time the character position becomes greater than 5, it is reset to zero; and the address
specified in bits 0-17 of TALLY2 is incremented by one. The tally in bits 18-29 of the same word
is decremented by 1 with each SC reference. Whenever a tally reaches zero, the Tally Runout
Indicator is set ON. Otherwise, it is set OFF.

Step 06 tests the Tally Runout Indicator. If it is OFF, the program transfers to LOOP; if not,
the next sequential instruction is taken.

The table, TABLE, is 64 locations long. The character in each location is a General Electric
standard character that corresponds to a FOR TRAN character in the following manner. The
relative location of a particular character to the start of the table is equal to the binary value
of the corresponding FOR TRAN character. For example, an A punched in the FOR TRAN Char­
acter Set has the octal value 21(1710). The relative location 17 to TABLE contains an A in the

General Electric Standard Character Set. A 3-8 punch in the FORTRAN Set represents an=
character. The 3-8 punch would be read as an octal 13(1110). The relative location 11 to TABLE

contains an octal 75 (see line 21) which represents the = character in the General Electric
Standard Character Set.

0 1 LDA TALLY! INITIALIZE TALLY WORD
02 STA TALLY2
03 LOOP ELDA TALLY2 1 CI PICK UP CHARACTEP TO BE TRANS LI TEP.A.TED
04 LDC" TABLE,AL LOAD OR WITH TRANSLITERATED CHAPACTER
05 ST() TALLY2 1 SC STORE R.ACK ON CARD TMAl';E
06 TTF LOOP IF TALLY HAS NOT RUN OUT, CONTINUE LOOP

07 TALLY 1 TALLY IMAr,.E,80 1 0
08 TALLY2 ZERO
09 IMAGE BSS 14
10 T/\BLE OCT 0
11 OCT 1
12 OCT 2
13 OCT 3
14 OCT 4
15 OCT 5
16 OCT 6
17 OCT 7
18 OCT 10
19 0CT 11
20 OCT 20
21 OCT 75 3-8 PUf'.JCH rn F0RTRAN SET
22 OCT 57 4-8 PUNCH I IN FORTRAN SET
23 OCT 20
24 OCT 20
25 OCT 20
26 OCT 20
27 OCT 21
28 OCT 22
29 OCT 23
30 OCT 24
31 OCT 25
32 OCT 26
33 OCT 27

IV-8

34 OCT 30
35 OCT 31
36 OCT 60 12 PUNCH + IN FORTRAN SET
37 OCT 33 12-3-8 PUNCH IN FORTRAN SET
38 OCT 55 12-4-8 PUNCH) IN FORTRAN SET
39 OCT 20
40 OCT 20
41 OCT 20
42 OCT 20
43 OCT 41
44 OCT 42
45 OCT 43
46 OCT 44
47 OCT 45
48 OCT 46
49 OCT 47
50 OCT 50
51 OCT 5 I
52 OCT 52 11 PUNCH - IN FORTRAN SET
53 OCT 53 11-3-8 PUNCH $ IN FORTRAN SET
54 OCT 54 11-4-8 PUNCH .. IN FORTRAN SET
55 OCT 20
56 OCT 20
57 OCT 20
58 OCT 20
59 OCT 6 1 0-1 PUNCH I JN F0RTPAN SET
60 OCT 62
61 OCT f) 3
62 0CT 64
63 OCT 65
64 OCT 66
65 OCT 67
66 OCT 70
67 OCT 71
68 OCT 20
69 OCT 73 0-3-8 PUNCH IN F0PTRA'°'! SET ,
70 0CT 35 0-4-8 PUNCH (IN FORTRAN SET
71 OCT 20
72 ncT 20
73 0CT 20

Table Lookup

The following example illustrates a method of searching an unordered table for a value equal
to ,the value in the accumulator. Prior to entering the routine given below, the user must load
the accumulator with the search argument, load the quotient register with the size of the table to
be searched (the size should be scaled at binary point 25), and initialize index register 1 with the
first location of the table to be searched. The user enters the routine by executing a transfer
and set index register 2 (TSX2) to the symbolic location TLU (see step 05, below). Return from
the routine is to the instruction following the TSX2. The Zero Indicator will tell the user whether
or not a match has occurred.Zero Indicator ON indicates a match; Zero Indicator OFF indicates
no match. If a match was made, the contents of index register 1 will be W locations (W being
the increment specified in the RPTX command, step 15) higher than the location of the equal
argument.

IV-9

Steps 01-11 are comment cards.

Step 12 places the contents of the lower half (bits 18-35) of the quotient register plus 64, in
index register 0. The number 64, in effect, sets the TZE terminate repeat condition on. The
instruction also places the last 8 bits of the size of the table in index register 0, bits 0-7. Thus,
if the size of the table is a multiple of 256 words, zeros will be loaded into bits 0-7 of index
register 1. Zeros in those bit positions will cause the repeat to execute 256 times. If, however,
the size of the table to be searched is of the form 256n+m, where n > 0, and 0 < m < 256,
then m would be placed in bits 0-7 of index register 0. This will cause the repeat instruction to
be executed a maximum of m times on the first pass through.

Step 13 subtracts 1024 from the quotient register. This, in effect, subtracts 1 from the size
of the table to be searched. The subtracting of 1 becomes meaningful in two places: (1) it pro­
vides a test to be sure the table is not zero words long (see step 14) and (2) if the table is a mul­
tiple of 256 words long, it effectively subtracts 1 from bits 0-17 (a look-ahead to steps 18 and
19 points out the importance of this).

Step 14 causes the routine to return to the main program if the size of the table was zero.

Step 15, an RPTX, executes step 16 a number of times equal to the contents of index register 0,
bits 0-7, at the start of the instruction execution. Each time step 16 is executed, the contents
of the accumulator (the search argument) are compared with the contents of the location specified
by index register 1. At the same time, index register 1 is incremented by W as is specified in
the repeat instruction; and the contents of index register 0, bits 0-7, are decremented by 1.
The repeat sequence terminates when the compare causes the Zero Indicator to be set or when
bits 0-7 of index register 0 are set to zero.

Step 17 test the Zero Indicator and returns to the main program if it is set. It should be noted
that index register 1 will be set W locations higher than when the equal argurn ent was found
because of the sequence of events described above.

Step 18. If the Zero Indicator was not set by step 16, then step 18 will be executed. This instruc­
tion subtracts 1 from bits 0-17 of the quotient register. In effect, this is subtracting 2 56 from
the size of the table. The size of the table can be expressed in the form 256n+m. If m=O and
n=l, then the contents of the quotient register would also go zero at this point. This is because
step 13 would have caused a borrow of 1 from n when m equals zero. Further inspection of
these instructions will reveal that positive values of n and m, other than those expressed above,
will only cause the routine to loop until the contents of the quotient register are reduced to a
negative value.

Step 19 transfers control to step 15 if the contents of quotient register remained positive. If the
quotient register became negative, step 20 is executed and the routine returns to the main program.

IV-10

It should be noted that when control is transferred back to step 15, index register O, bits 0-7,
contains zeros (causes the repeat to be executed a maximum of 256 times); and index register
1 contains the address of the next location in the table that is to be searched.

0 1 .. CALLIN~ SEQUENCE IS
02 .. LDA ITEM SEAPCH ITEM •
03 .. LDO SIZE NUMBER OF TABLE ENTRIES--AT 825 •
04 .. LDXl FIRST,DU LOCATION OF FIRST SEARCH WORD IN TABLE •
05 .. TSX2 TLU CALL TABLE LOOKUP SUBROUTINE •
06 .. TZE FOUND TRANSFER IF SEARCH ITEM IS IN TABLE, OR
07 .. TNZ ABSENT TRANSFER IF SEARCH ITEM IS NOT IN TABLE •
08 .. USE ONE OF THE TWO INSTRUCTIONS IMMEDIATELY ABOVE •
09 .. IF IN TABLE, C(Xl)-W WILL BE THE LOCATION OF THE MATCHING SEARCH
10 .. WORD. OTHERWISE, C(Xl)-W WILL BE THE LOCATION OF THE LAST
11 .. SEARCH WORD IN THE TABLE. W IS THE NUMBER OF WORDS PER ENTRY •
12 TLU EAXO 64,QL PICKUP SIZE (MOD 256) AND TZE-BIT.
13 SBL0 1024,DL SIZE = SIZE-1.
14 TMI 1 2 EXIT IF SIZE WAS 0--EMPTY TABLE.
15 TLUl RPTX 1 W NOTE THAT 0 REPRESENTS 256 (MOD 256).
16 CMPA 1 1 PERFORM TABLE LOOKUP
17 TZE 1 2 EXIT IF SEARCH ITEM IS IN TABLE.
18 SBLO 11 DU SIZE = SIZE-256.
19 TPL TLUl CONTINUE TABLE LOOKUP IF MORE ENTRIES.
20 TRA 1 2 EXIT--SEARCH ITEM IS NOT IN TABLE.

Binary to BCD

The following example illustrates a method of converting a number from binary to BCD. The

example converts a number that is in the range of -106 +1 to +106-1, inclusive.

Step 01 places zeros in index register 2.

Step 02 loads the accumulator with the binary number that is to be converted.

Steps 03 and 04 perform the conversion of the binary number in the accumulator to the Binary­
Coded Decimal equivalent. Step 03 will repeat step 04 six times. It will also increment the con­
tents of index register 2 by one after each execution.

The BCD instruction, step 04, is designed to convert the magnitude of the contents of the accu­
mulator to the Binary-Coded Decimal equivalent. The method employed is to effectively divide a
constant into this number, place the result in bits 30-35 of the quotient register, and leave the
remainder in the accumulator. The execution of the BCD instruction will then allow the user to
convert a binary number to BCD, one digit at a time, with each digit coming from the high-order
part of the number. The address of the BCD instruction refers to a constant to be used in the
division, and a different constant would be needed for each digit. In the process of the conver­
sion, the number in the accumulator is shifted left three positions. The C(Q)0_35 are shifted
left 6 positions before the new digit is stored.

IV-11

In this example, the constants used for dividing are located at TAB, TAB+l, TAB+2, ... ,TAB+5.
If the value in X were 000000522241

8
, the quotient register would contain 010703020107

8
at the

completion of the repeat sequence. Step 05 stores the quotient register in Y.

The values in the table below are the conversion constants to be used with the Binary to BCD
instruction. Each vertical column represents the set of constants to be used depending on the
initial value of the binary number to be converted to its decimal equivalent. The instruction
is executed once per digit, using the constant appropriate to the conversion step with each
execution.

An alternate use of the table for conversion involves the use of the constants in the row cor­
responding to conversion step 1. If after each conversion, the contents of the accumulator are
shifted right 3 positions, the constants in the conversion step 1 row may be used one at a time
in order of decreasing value until the conversion is complete.

Conversion
Step

1
2
3
4
5
6
7
8
9

10

0 1

02

03

04

05

LDX2

LOA

RPT

BCD

srn

06TAB DEC

DEC

BINARY TO BCD CONVERSION CONSTANTS

o,ou PLACE ZEROS IN X2

x LOAD ACCUMULATOR VJ I TH VALUE
BE CONVEPTED

6, 1 REPEAT 6 T H~E S, INCREMENT BY

TAB 1 2 DIV IDE BY TA.B / TAB+l,

y STORE CONVERTED NU~B ER

800000, 640000, 512000, 409600, 327680,

261,144

IV-12

ETC

IN y

TO

APPENDIX A

GE-635 INSTRUCTIONS LISTED

BY

FUNCTIONAL CLASS

WITH

PAGE REFERENCES AND TIMINGS

Timing Reference
DATA MOVEMENT (µsec) (Page)

Load

LDA 235 Load A 1. 8 II-39
LDQ 236 Load Q 1. 8 39
LDAQ 237 Load AQ 1. 9 39
LDXn 22n Load Xn 1. 8 40

LCA 335 Load Complement A 1. 8 40
LCQ 336 Load Complement Q 1. 8 41
LCAQ 337 Load Complement AQ 1. 9 41
LCXn 32n Load Complement Xn 1. 8 42

EAA 635 Effective Address to A 1. 3 42
EAQ 636 Effective Address to Q 1. 3 43
EAXn 62n Effective Address to Xn 1. 3 43

LDI 634 Load Indicator Register 1. 8 44

Store

STA 755 Store A 2. 5 45
STQ 756 Store Q 2. 5 45
STAQ 757 Store AQ 3.0 45
STXn 74n Store Xn 2. 5 45

STCA 751 Store Character of A 2. 5 46
STCQ 752 Store Character of Q 2. 5 47

STI 754 Store Indicator Register 2.9 48
STT 454 Store Timer Register 2. 5 49
SBAR 550 Store Base Address Register 2.9 49
STZ 450 Store Zero 2.5 49
STC1 554 Store Instruction Counter plus 1 2.9 50
STC2 750 Store Instruction Counter plus 2 2.9 50

Shift

ARS 731 A Right Shift 1. 8 51
QRS 732 Q Right Shift 1. 8 51
LRS 733 Long Right Shift 1. 8 51

ALS 735 A Left Shift 1. 8 52
QLS 736 Q Left Shift 1. 8 52
LLS 737 Long Left Shift 1. 8 53

ARL 771 A Right Logic 1. 8 53
QRL 772 Q Right Logic 1. 8 53
LRL 773 Long Right Logic 1. 8 54

ALR 775 A Left Rotate 1. 8 54
QLR 776 Q Left Rotate 1. 8 54
LLR 777 Long Left Rotate 1. 8 55

A-1

Timing Reference
FIXED- POINT ARITHlVIE TIC (µsec) (Page)

Addition

ADA 075 Add to A 1. 8 II-56
ADQ 076 Add to Q 1. 8 56
ADAQ 077 Add to AQ 1. 9 57
ADXn 06n Add to Xn 1. 8 57

A.SA 055 Add Stored to A 2.8 58

ASQ 056 Add stored to Q 2.8 58

ASXn 04n Add Stored to Xn 2.8 59

ADLA 035 Add Logic to A 1. 8 59

ADLQ 036 Add Logic to Q 1. 8 60
ADLAQ 037 Add Logic to AQ 1. 9 60

ADLXn 02n Add Logic to Xn 1. 8 61

AWCA 071 Add with Carry to A 1. 8 61
AWCQ 072 Add with Carry to Q 1. 8 62

ADL 033 Add Low to AQ 1. 8 63

AOS 054 Add One to Storage 2.8 63

Subtraction

SBA 175 Subtract from A 1. 8 64

SBQ 176 Subtract from Q 1. 8 64

SBAQ 177 Subtract from AQ 1. 9 65

SBXn 16n Subtract from Xn 1. 8 65

SSA 155 Subtract Stored from A 2. 8 66

SSQ 156 Subtract Stored from Q 2.8 66

SSXn 14n Subtract Stored from Xn 2. 8 67

SBLA 135 Subtract Logic from A 1. 8 67
SBLQ 136 Subtract Logic from Q 1. 8 68
SBLAQ 137 Subtract Logic from AQ 1. 9 68
SBLXn 12n Subtract Logic from Xn '" 1. 8 69

SWCA 171 Subtract with Carry from A 1. 8 69
SWCQ 172 Subtract with Carry from Q 1. 8 70

Multiplication

MPY 402 Multiply Integer 7.0 71
MPF 401 Multiply Fraction 7.0 72

A-2

Timing Reference
Division (µsec) (Page)

DIV 506 Divide Integer 14.2* II-73
DVF 507 Divide Fraction 14.2* 74

Negate

NEG 531 Negate A 1. 3 75
NEGL 533 Negate Long 1. 3 75

*2. 5 µsec when actual division does not take place

BOOLEAN OPERATIONS

AND

ANA 375 AND to A 1. 8 76
ANQ 376 AND to Q 1. 8 76
ANAQ 377 AND to AQ 1. 9 76
ANXn 36n AND to Xn 1. 8 77

ANSA 355 AND to Storage A 2.8 77
ANSQ 356 AND to Storage Q 2.8 77
ANSXn 34n AND to Storage Xn 2.8 78

OR

ORA 275 OR to A 1. 8 78
ORQ 276 OR to Q 1. 8 78
ORAQ 277 OR to AQ 1. 9 79
ORXn 26n OR to Xn 1. 8 79

ORSA 255 OR to Storage A 2. 8 79
ORSQ 256 OR to Storage Q 2.8 80
ORSXn 24n OR to Storage Xn 2.8 80

EXCLUSIVE OR

ERA 675 EXCLUSIVE OR to A 1. 8 80
ERQ 676 EXCLUSIVE OR to Q 1. 8 81
ERAQ 677 EXCLUSIVE OR to AQ 1. 9 81
ERXn 66n EXCLUSIVE OR to Xn 1. 8 81

ERSA 655 EXCLUSIVE OR to Storage A 2.8 82
ERSQ 656 EXCLUSIVE OR to Storage Q 2.8 82
ERSXn 64n EXCLUSIVE OR to Storage Xn 2.8 82

A-3

Timing Reference
COMPARISON (µsec) (Page)

Compare

CMPA 115 Compare with A 1. 8 11-83
CMPQ 116 Compare with Q 1. 8 84
CMPAQ 117 Compare with AQ 1. 9 85
CMPXn lOn Compare with Xn 1. 8 86

CWL 111 Compare with Limits 2.2 87
CMG 405 Compare Magnitude 1. 8 88
SZN 234 Set Zero and Negative Indicators from Memory 1. 8 88
CMK 211 Compare Masked 2.2 89

Comparative AND

CANA 315 Comparative AND with A 1. 8 90
CANQ 316 Comparative AND with Q 1. 8 90
CANAQ 317 Comparative AND with AQ 1. 9 90
CANXn 30n Comparative AND with Xn 1. 8 91

Comparative NOT

CNAA 215 Comparative NOT with A 1. 8 91
CNAQ 216 Comparative NOT with Q 1. 8 91
CNAAQ 217 Comparative NOT with AQ 1. 9 92
CNAXn 20n Comparative NOT with Xn 1. 8 92

FLOATING POINT

Load

FLD 431 Floating Load 1. 8 93
DFLD 433 Double- Precision Floating Load 1. 9 93
LDE 411 Load Exponent Register 1. 8 93

Store

FST 455 Floating Store 2. 5 94
DFST 457 Double-Precision Floating Store 3.0 94
STE 456 Store Exponent Register 2. 5 94

Addition

FAD 475 Floating Add 2. 7 95
UFA 435 Unnormalized Floating Add 2. 5 95

A-4

Timing Reference
Addition (continued) (µsec) (Page)

DFAD 477 Double-Precision Floating Add 2.7 11-96
DUFA 437 Double-Precision Unnormalized Floating Add 2. 5 96
ADE 415 Add to Exponent Register 1. 8 97

Subtraction

FSB 575 Floating Subtract 2.7 97
UFS 535 Unnormalized Floating Subtract 2. 5 98
DFSB 577 Double- Precision Floating Subtract 2.7 98
DUFS 537 Double-Precision Unnormalized Floating Subtract 2. 5 99

Multiplication

FMP 461 Floating Multiply 5. 9 99
UFM 421 Unnormalized Floating Multiply 5. 7 100
DFMP 463 Double-Precision Floating Multiply 11. 7 100
DUFM 423 Double-Pree. Unnormal. Float. Multiply 11. 5 101

Division

FDV 565 Floating Divide 14.2* 102
FDI 525 Floating Divide Inverted 14.2* 103
DFDV 567 Double- Precision Floating Divide 23.2* 104
DFDI 527 Double- Pree. Float. Divide Inverted 23.2* 105

Negate, Normalize

FNEG 513 Floating Negate 2.3 106
FNO 573 Floating Normalize 2.3 106

Compare

FCMP 515 Floating Compare 2. 1 107
FCMG 425 Floating Compare Magnitude 2. 1 108
DFCMP 517 Double- Precision Floating Compare 2. 1 109
DFCMG 427 Double- Pree. Float. Compare Magnitude 2. 1 110
FSZN 430 Floating Set Zero and Negative Indicators from Memory 1. 8 111

*2. 5 µsec when actual division does not take place

A-5

Timing Reference
TRANSFER OF CONTROL (µsec) (Page)

Transfer

TRA 710 Transfer Unconditionally 1. 7 II-113
TSXn 70n Tran sf er and Set Xn 1. 8 113
TSS 715 Transfer and Set Slave Mode 1. 7 113
RET 630 Return 3.3 114

Conditional Transfer

TZE 600 Tran sf er on Zero 1. 7 115
TNZ 601 Transfer on Not Zero 1. 7 115

TMI 604 Transfer on Minus 1. 7 115
TPL 605 Transfer on Plus 1. 7 115

TRC 603 Transfer on Carry 1. 7 116
TNC 602 Transfer on No Carry 1. 7 116

TOV 617 Transfer on Overflow 1. 7 116
TEO 614 Transfer on Exponent Overflow 1. 7 117
TEU 615 Transfer on Exponent Underflow 1. 7 117

TTF 607 Transfer on Tally-Runout Indicator OFF 1. 7 117

MISCELLANEOUS OPERATIONS

NOP 011 No Operation 1. 1 118

DIS 616 Delay Until Interrupt Signal 1. 7 118

BCD 505 Binary to Binary-Coded-Decimal 3.4 118
GTB 774 Gray to Binary 8. 5 119

XEC 716 Execute 1. 7 120
XED 717 Execute Double 1. 7 120
MME 001 Master Mode Entry 2.3 121
DRL 022 Derail 2.3 122

RPT 520 Repeat 1. 3 123
RPD 560 Repeat Double 1. 3 125
RPL 500 Repeat Link 1. 3 127

A-6

Timing Reference
MASTER MODE OPERATIONS (µsec) (Page)

Master Mode

LBAR 230 Load Base Address Register 1. 8 11-130
LDT 637 Load Timer Register 1. 8 130

SMIC 451 Set Memory Controller Interrupt Cells 1. 8 130

Master Mode and Control Processor

RMCM 233 Read Memory Controller Mask Registers 1. 9 131
RMFP 633 Read Memory File Protect Register 1. 9 132

SMCM 553 Set Memory Controller Mask Registers 1. 8 133
SMFP 453 Set Memory File Protect Register 1. 8 134

CIOC 015 Connect 1/0 Channel 1. 8 135

A-7

APPENDIX B

GE-635 MNEMONICS

IN

ALPHABETICAL ORDER

WITH

PAGE REFERENCES

APPENDIX B

THE MNEMONICS IN ALPHABETICAL ORDER WITH PAGE REFERENCES

Mnemonic: Page: Mnemonic: Page: Mnemonic: Page: Mnemonic: Page:

ADA II-56 DFAD II-96 LCXn II-42 SBLQ II-68
ADAQ 57 DFCMG 110 LDA 39 SBLXn 69
ADE 97 DFCMP 109 LDAQ 39 SBQ 64
ADL 63 DFDI 105 LDE 93 SBXn 65
ADLA 59 DFDV 104 LDI 44 SMCM 133
ADLAQ 60 DFLD 93 LDT 130 SMFP 134
ADLQ 60 DFMP 100 LDQ 39 SMIC 130
ADLXn 61 DFSB 98 LDXn 40 SSA 66
ADQ 56 DFST 94 LLR 55 SSQ 66
ADXn 57 DIS 118 LLS 53 SSXn 67
ALR 54 DIV 73 LRL 53 STA 45
ALS 52 DRL 122 LRS 51 STAQ 45
ANA 76 DUFA 96 STCl 50
ANAQ 76 DUFM 101 MME 121 STC2 50
ANQ 76 DUFS 99 MPF 72 STCA 46
ANSA 77 DVF 74 MPY 71 STCQ 47
ANSQ 77 STE 94
ANSXn 78 EAA 42 NEG 75 STI 48
ANXn 77 EAQ 43 NEGL 75 STQ 45
AOS 63 EAXn 43 NOP 118 STT 49
ARL 53 ERA 80 STXn 45
ARS 51 ERAQ 81 ORA 78 STZ 49
ASA 58 ERQ 81 ORAQ 79 SWCA 69
ASQ 58 ERSA 82 ORQ 78 SWCQ 70
ASXn 59 ERSQ 82 ORSA 79 SZN 88
AWCA 61 ERSXn 82 ORSQ 80
AWCQ 62 ERXn 81 ORSXn 80 TEO 117

ORXn 79 TEU 117
BCD 118 FAD 95 TMI 115

FCMG 108 QLR 54 TNC 116
CANA 90 FCMP 107 QLS 52 TNZ 115
CANAQ 90 FDI 103 QRL 53 TOV 116
CANQ 90 FDV 102 QRS 51 TPL 115
CANXn 91 FLD 93 TRA 113
CIOC 135 FMP 99 RET 114 TRC 116
CMG 88 FNEG 106 RMCM 131 TSS 113
CMK 89 FNO 106 RMFP 132 TSXn 113
CMPA 83 FSB 97 RPD 125 TTF 117
CMPAQ 85 FST 94 RPL 127 TZE 115
CMPQ 84 FSZN 111 RPT 123
CMPXn 86 UFA 95
CNAA 91 GTB 119 SBA 64 UFM 100
CNAAQ 92 SBAQ 65 UFS 98
CNAQ 91 LBAR 130 SBAR 49
CNAXn 92 LCA 40 SBLA 67 XEC 120
CWL 87 LCAQ 41 SBLAQ 68 XED 120

LCQ 41

B-1

APPENDIX D

PSEUDO-OPERATIONS

BY

FUNCTIONAL CLASS

WITH

PAGE REFERENCES

PSEUDO-OPERATIONS

PSEUDO-OPERATION
MNEMONIC

CONTROL PSEUDO-OPERATIONS

DETAIL ON/OFF
EJECT
LIST ON/OFF
REM

*
LBL
PCC ON/OFF
REF ON/OFF
PMC ON/OFF
TTL
TTLS
INHIB ON/ OFF
ABS
FUL
TCD
PUNCH ON/OFF
END

FUNCTION

'(Detail output listing)
(Restore output listing)
(Control output listing)
(Remarks)
(* in column one -- remarks}
(Label)
(Print control cards}
(References)
(Print MACRO expansion)
(Title)
(Subtitle)
(Inhibit interrupts)
(Output absolute text)
(Output full binary text)
(Punch tr an sf er card)
(Control card output)
(End of assembly)

LOCATION COUNTER PSEUDO-OPERATIONS

USE
BEGIN
ORG
LOC

SYMBOL DEFINING PSEUDO-OPERATIONS

EQU
BOOL
SET
MIN
MAX
HEAD
SYMDEF
SYMREF
OPD
OP SYN

DATA GENERATING PSEUDO-OPERATIONS

OCT
DEC
BCI
VFD
DUP

(Use multiple location counters)
(Origin of a location counter)
(Origin set by programmer)
(Location of output text)

(Equal to)
(Boolean)
(Symbol redefinition)
(Minimum)
(Maximum)
(Heading)
(Symbol definition)
(Symbol reference)
(Operation definition)
(Operation synonym)

(Octal)
(Decimal)
(Binary Coded Decimal Information)
(Variable field definition)
(Duplicate cards)

D-1

PAGE
NUMBER

Ill-27
28
28
29
29
29
30
30
31
13
32
32
33
33
34
34
34

35
35
36
36

37
37
38
38
39
39
41
14
42
44

45
46
48
49
51

PSEUDO-OPERATIONS

PSEUDO-OPERATION
MNEMONIC FUNCTION

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS
BFS
BLOCK
LIT

CONDITIONAL PSEUDO-OPERATIONS

INE
IFE
IFL
IFG

SPECIAL WORD FORMATS

ARG

ZERO

ADDRESS TALLY PSEUDO-OPERATIONS

TALLY

TALL YD
TALLYC

REPEAT INSTRUCTION CODING FORMATS

RPT
RPTX
RPD
RPDX

RPDA

RPDB

RPL
RPLX

(Block started by symbol)
(Block followed by symbol)
(Block common)
(Literal Pool Origin)

(If not equal)
(If equal)
(If less than)
(If greater than)

(Argument - - generate zero
operation code computer word)

(Generate one word with two
specified 18-bit fields)

(Tally - - ID, DI, SC, and CI
variations)

(Tally and Delta)
(Tally and Continue)

(Repeat)
(Repeat using index register zero)
(Repeat Double)
(Repeat Double using index
register zero)

(Repeat Double using first
instruction only)

(Repeat Double using second
instruction only)

(Repeat Link)
(Repeat Link using index register
zero)

D-2

PAGE
NUMBER

111-52
52
53
53

54
54
55
55

56

56

56

57
57

57
57
57
58

58

58

58
58

PSEUDO-OPERATION
MNEMONIC

MACRO PSEUDO-OPERATIONS

MACRO
ENDM
CRSM ON/OFF
IDRP

PSEUDO-OPERATIONS

FUNCTION

(Begin MACRO prototype)
(End MACRO prototype)
(Create symbols)
(Indefinite repeat)

PROGRAM LINKAGE PSEUDO-OPERATIONS (SPECIAL SYSTEM MACROS)

CALL
SAVE
RETURN
ERLK

(Call -- subroutines)
(Save -- return linkage data)
(Return -- from subroutines)
(Error Linkage -- to subroutines)

D-3

PAGE
NUMBER

III-60
60
66
66

69
71
72
73

APPENDIX E

MASTER MODE ENTRY

SYSTEM SYMBOLS

AND

INPUT/OUTPUT OPERATIONS

SYSTEM SYMBOLS

The Assembler recognizes the following group of system symbols when the programmer enters
any of them in the variable field of the Master Mode Entry (MME) machine instruction. (See
Chapter IL) These MME instructions then serve as interfaces between the GEFLOW and GESERV
modules of the Comprehensive Operating Supervisor for special purposes (suggested in the mean­
ings in the list following).

The table below indicates the system mnemonic symbol, its meaning, and the associated decimal
value substituted in the MME address field by the Assembler.

SYMBOL

GE IN OS
GERO AD
GEFADD
GERE LS
GECHEK
GE LAPS
GE FINI
GEBORT
GEIMCV
GEFCON
GE FILS
GE SETS
GERE TS
GEENDC
GERE LC
GE SPEC
GE TIME
GE CALL
GESAVE
GERSTR
GEMREL
GEOUCT

MEANING

Input/ Output Initiation
Roadblock
Physical File Address Request
Component Release
Checkpoint
(Elapsed) Time Request
Terminal Tran sf er to Monitor
Aborting of Programs
Request for Input Media Conversion
File Control Block Request
File Switching Request
Set Switch Request
Reset Switch Request
Terminate Courtesy Call
Relinquish Control

DECIMAL VALUE

1
2
3
4
5
6
7
8
9

Special Interrupt Courtesy Call Request

10
11
12
13
14
15
16
17
18
19
20
21
22

Date and Time-of-Day Request
System Loader
Write File in System Format
Read File in System Format
Release Memory
Count SYSOUT Records

E-1

INPUT/OUTPUT COMMAND FORMATS

The following listing of input/ output commands are for use when coding directly to Input/ Output
Supervisor within the Comprehensive Operating Supervisor.

Designators used in the listing below are:

COMMAND
DESCRIPTION

Request Status
Re set Status
Read Card Binary
Read Card Decimal
Read Card Mixed
Write Card. Binary
Write Card Decimal

XXXX = 0000 for Slave Mode programs
XXXX =physical device code for Master Mode programs

DA = Device Address (Used only in Master Mode
programs; see input/ output select sequence
coding, Operating Supervisor reference manual.)

CA = Channel Address (Used only in Master Mode
programs; see input/ output select sequence
coding, Operating Supervisor reference manual.)

NN =number of records (01-63)
= 01 when subfield for NN is blank

CC = octal character to be used as file mark

PSEUDO- VARIABLE OCTAL
OPERATION FIELD REPRESENTATION

REQS DA, CA 40 xxxx 020001
RESS DA, CA 00 xxxx 020001
RCB DA, CA 01 xxxx 000000
RCD DA, CA 02 xxxx 000000
RCM DA, CA 03 xxxx 000000
WCB DA, CA 11 xxxx 040014
WCD DA, CA 12 xxxx 040014

Write Card Decimal Edited WCDE DA, CA 13 xxxx 040014
Write Printer WPR DA, CA 10 xxxx 000000
Write Printer Edited WPRE DA, CA 30 xxxx 000000
Read Tape Binary RTB DA, CA 05 xxxx 000000
Read Tape Decimal RTD DA, CA 04 xxxx 000000
Write Tape Binary WTB DA, CA 15 xxxx 000000
Write Tape Decimal WTD DA, CA 14 xxxx 000000
Write End-of-File WEF DA, CA 15 xxxx 101700
Write File Mark WFM CC, DA, CA 15 XXXX lOCCOO
Erase ERASE DA, CA 54 xxxx 020001
Backspace Record (s) BSR N, DA, CA 46 XXXX 0200NN
Backspace File BSF DA, CA 47 xxxx 020001
Forward Space Record (s) FSR N, DA, CA 44 XXXX 0200NN
Forward Space File FSF DA, CA 45 xxxx 020001
Rewind REW DA, CA 70 xxxx 020001

E-2

COMMAND PSEUDO- VARIABLE OCTAL
DESCRIPTION OPERATION FIELD REPRESENTATION

Rewind and Standby REWS DA, CA 72 xx::xx 020001
Set Low Density SLD DA, CA 61 xxxx 020001
Set High Density SHD DA, CA 60 xxxx 020001
Seek Disc Address SDIA DA, CA 34 x::xxx 000002
Read Disc Continuous RDIC DA, CA 2 5 xxxx 002400
Write Disc Continuous WDIC DA, CA 31 xxxx 002400
Write Disc Continuous and Verify WDICV DA, CA 33 x::xxx 002400
Select Drum Address SDRA DA, CA 34 xx::xx 000002
Read Drum RDR DA, CA 2 5 xxxx 000000
Write Drum WDR DA, CA 31 x::xxx 000000
Write Drum and Verify WDRV DA, CA 33 x::xxx 000000
Drum Compare and Verify DRCV DA, CA 11 x::xxx 000000
Read Perforated Tape RDPT DA, CA 02 xxxx 000000
Write Perforated Tape WPT DA, CA 11 xx::xx 000000
Write Perforated Tape Edited WPTE DA, CA 31 xx::xx 000000
Write Perforated Tape- -Single WPTSC DA, CA 16 xx::xx 000000

Character
Write Perforated Tape- -Double WP TDC DA, CA 13 xxxx 000000

Character
Read Typewriter RTYP DA, CA 03 xx::xx 000000
Write Typewriter WTYP DA, CA 13 xxxx 000000
Write Typewriter Alert WTYPA DA, CA 51 xxxx 020001
Read DATANET-30 RDN DA, CA 01 xx::xx 000000
Write DATANET-30 WDN DA, CA 10 xxxx 000000

E-3

DATA CONTROL WORD FORMATS

The Data Control Word format listing below contains designators as follows:

A = address of the data block
C = word count of data to be transferred per block

XXXX = ignored by the Assembler

DESCRIPTION

Transmit and Disconnect
Transmit and Proceed
Non-Transmit and Proceed
Transfer to Data Control Word

PSEUDO­
OPERATION

IOTD
IOTP
IONTP
TDCW

E-4

VARIABLE
FIELD

A, C
A, C
A, C
A

OCTAL
REPRESENTATION

AAAAAAOOCC CC
AAAAAAOlOCCC
AAAAAA03CCCC
AAAAAA02XXXX

APPENDIX F

GE-635 STANDARD CHARACTER SET

APPENDIX G

CONVERSION TABLE

OF

OCTAL - DECIMAL INTEGERS

AND

FRACTIONS

Octal

Decimal

Octal

0000
0010
0020
0030
0040
0050
0060
0070

0100
0110
0120
0130
0140
0150
0160
0170

0200
0210
0220
0230
0240
0250
0260
0270

0300
0310
0320
0330
0340
0350
0360
0370

Octal

0400
0410
0420
0430
0440
0450
0460
0470

0500
0510
0520
0530
0540
0550
0560
0570

0600
0610
0620
0630
0640
0650
0660
0670

0700
0710
0720
0730
0740
0750
0760
0770

OCTAL-DECIMAL INTEGER CONVERSION TABLE

Octal 10000 20000 30000 40000 50000 60000 70000

Decimal 4096 8192 12288 16384 20480 24576 28672

100000 200000 300000 400000 500000 600000 700000 1000000

32768 65536 98304

0

0000
0008
0016
0024
0032
0040
0048
0056

0064
0072
0080
0088
0096
0104
0112
0120

0128
0136
0144
0152
0160
0168
0176
0184

0192
0200
0208
0216
0224
0232
0240
0248

0

0256
0264
0272
0280
0288
0296
0304
0312

0320
0328
0336
0344
0352
0360
0368
0376

0384
0392
0400
0408
0416
0424
0432
0440

0448
0456
0464
0472
0480
0488
0496
0504

1 2 3 4 5

0001 0002 0003 0004 0005
0009 OOlCl 0011 0012 0013
0017 0018 0019 0020 0021
0025 0026 0027 0028 0029
0033 0034 0035 0036 0037
0041 0042 0043 0044 0045
0049 0050 0051 0052 0053
0057 0058 0059 0060 0061

0065 0066 0067 0068 0069
0073 0074 0075 0076 0077
0081 0082 0083 0084 0085
0089 0090 0091 0092 0093
0097 0098 0099 0100 0101
0105 0106 0107 0108 0109
0113 0114 0115 0116 0117
0121 0122 0123 0124 0125

0129 0130 0131 0132 0133
0137 0138 0139 0140 0141
0145 0146 0147 0148 0149
0153 0154 0155 0156 0157
0161 0162 0163 0164 0165
0169 0170 0171 0172 0173
0177 0178 0179 0180 0181
0185 0186 0187 0188 0189

0193 0194 0195 0196 0197
0201 0202 0203 0204 0205
0209 0210 0211 0212 0213
0217 0218 0219 0220 0221
0225 0226 0227 0228 0229
0233 0234 0235 0236 0237
0241 0242 0243 0244 0245
0249 0250 0251 0252 0253

Octal 0400 to 0777

Decimal 0256 to 0511

1 2 3 4 5

0257 0258 0259 0260 0261
0265 0266 0267 0268 0269
0273 0274 0275 0276 0277
0281 0282 0283 0284 0285
0289 0290 0291 0292 0293
0297 0298 0299 0300 0301
0305 0306 0307 0308 0309
0313 0314 0315 0316 0317

0321 0322 0323 0324 0325
0329 0330 0331 0332 0333
0337 0338 0339 0340 0341
0345 0346 0347 0348 0349
0353 0354 0355 0356 0357
0361 0362 0363 0364 0365
0369 0370 0371 0372 0373
0377 0378 0379 0380 0381

0385 0386 0387 0388 0389
0393 0394 0395 0396 0397
0401 0402 0403 0404 0405
0409 0410 0411 0412 0413
0417 0418 0419 0420 0421
0425 0426 0427 0428 0429
0433 0434 0435 0436 0437
0441 0442 0443 0444 0445

0449 0450 0451 0452 0453
0457 0458 0459 0460 0461
0465 0466 0467 0468 0469
0473 0474 0475 0476 0477
0481 0482 0483 0484 0485
0489 0490 0491 0492 0493
0497 0498 0499 0500 0501
0505 0506 0507 0508 0509

6 7

0006 0007
0014 0015
0022 0023
0030 0031
0038 0039
0046 0047
0054 0055
0062 0063

0070 0071
0078 0079
0086 0087
0094 0095
0102 0103
0110 0111
0118 0119
0126 0127

0134 0135
0142 0143
0150 0151
0158 0159
0166 0167
0174 0175
0182 0183
0190 0191

0198 0199
0206 0207
0214 0215
0222 0223
0230 0231
0238 0239
0246 0247
0254 0255

6 7

0262 0263
0270 0271
0278 0279
0286 0287
0294 0295
0302 0303
0310 0311
0318 0319

0326 0327
0334 0335
0342 0343
0350 0351
0358 0359
0366 0367
0374 0375
0382 0383

0390 0391
0398 0399
0406 0407
0414 0415
0422 0423
0430 0431
0438 0439
0446 0447

0454 0455
0462 0463
0470 0471
0478 0479
0486 0487
0494 0495
0502 0503
0510 0511

131072

G-1

16 3840 196608 229376 262144

Octal 0 1 2 3 4 5 6 7

1000 0512 0513 0514 0515 0516 0517 0518 0519
1010 0520 0521 0522 0523 0524 0525 0526 0527
1020 0528 0529 0530 0531 0532 0533 0534 0535
1030 0536 0537 0538 0539 0540 0541 0542 0543
1040 0544 0545 0546 0547 0548 0549 0550 0551
1050 0552 0553 0554 0555 0556 0557 0558 0559
1060 0560 0561 0562 0563 0564 0565 0566 0567
1070 0568 0569 0570 0571 0572 0573 0574 0575

1100 0576 0577 0578 0579 0580 0581 0582 0583
1110 0584 0585 0586 0587 0588 0589 0590 0591
1120 0592 0593 0594 0595 0596 0597 0598 0599
1130 0600 0601 0602 0603 0604 0605 0606 0607
1140 0608 0609 0610 0611 0612 0613 0614 0615
1150 0616 0617 0618 0619 0620 0621 0622 0623
1160 0624 0625 0626 0627 0628 0629 0630 0631
1170 0632 0633 0634 0635 0636 0637 0638 0639

1200 0640 0641 0642 0643 0644 0645 0646 0647
1210 0648 0149 0650 0651 0652 0653 0654 0655
1220 0656 0657 0658 0659 0660 0661 0662 0663
1230 0664 0665 0666 0667 0668 0669 0670 0671
1240 0672 0673 0674 0675 0676 0677 0678 0679
1250 0680 0681 0682 0683 0684 0685 0686 0687
1260 0688 0689 0690 0691 0692 0693 0694 0695
1270 0696 0697 0698 0699 0700 0701 0702 0703

1300 0704 0705 0706 0707 0708 0709 0710 0711
1310 0712 0713 0714 0715 0716 0717 0718 0719
1320 0720 0721 0722 0723 0724 0725 0726 0727
1330 0728 0729 0730 0731 0732 0733 0734 0735
1340 0736 0737 0738 0739 0740 0741 0742 0743
1350 0744 0745 0746 0747 0748 0749 0750 0751
1360 0752 0753 0754 0755 0756 0757 0758 0759
1370 0760 0761 0762 0763 0764 0765 0766 0767

Octal 1400 to 1777

Decimal 0768 to 1023

Octal 0 1 2 3 4 5 6 7

1400 0768 0769 0770 0771 0772 0773 0774 0775
1410 0776 0777 0778 0779 0780 0781 0782 0783
1420 0784 0785 0786 0787 0788 0789 0790 0791
1430 0792 0793 0794 0795 0796 0797 0798 0799
1440 0800 0801 0802 0803 0804 0805 0806 0807
1450 0808 0809 0810 0811 0812 0813 0814 0815
1460 0816 0817 0818 0819 0820 0821 0822 0823
1470 0824 0825 0826 0827 0828 0829 0830 0831

1500 0832 0833 0834 0835 0836 0837 0838 0839
1510 0840 0841 0842 0843 0844 0845 0846 0847
1520 0848 0849 0850 0851 0852 0853 0854 0855
1530 0856 0857 0858 0859 0860 0861 0862 0863
1540 0864 0865 0866 0867 0868 0869 0870 0871
1550 0872 0873 0874 0875 0876 0877 0878 0879
1560 0880 0881 0882 0883 0884 0885 0886 0887
1570 0888 0889 0890 0891 0892 0893 0894 0895

1600 0896 0897 0898 0899 0900 0901 0902 0903
1610 0904 0905 0906 0907 0908 0909 0910 0911
1620 0912 0913 0914 0915 0916 0917 0918 0919
1630 0920 0921 0922 0923 0924 0925 0926 0927
1640 0928 0929 0930 0931 0932 0933 0934 0935
1650 0936 0937 0938 0939 0940 0941 0942 0943
1660 0944 0945 0946 0947 0948 0949 0950 0951
1670 0952 0953 0954 0955 0956 0957 0958 0959

1700 0960 0961 0962 0963 0964 0965 0966 0967
1710 0968 0969 0970 0971 0972 0973 0974 0975
1720 0976 0977 0978 0979 0980 0981 0982 0983
1730 0984 0985 0986 0987 0988 0989 0990 0991
1740 0992 0993 0994 0995 0996 0997 0998 0999
1750 1000 1001 1002 1003 1004 1005 1006 1007
1760 1008 1009 1010 1011 1012 1013 1014 1015
1770 1016 1017 1018 1019 1020 1021 1022 1023

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

Octal 10000 20000 30000 40000 50000 60000 70000

Decimal 4096 8192 12288 16384 20480 24576 28672

Octal 100000 200000 300000 400000 500000 600000 700000 1000000

Decimal 32768 65536 98304 131072 163840 196608 229376 262144

Octal 0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7

2000 1024 1025 1026 1027 1028 1029 1030 1031 3000 1536 1537 1538 Ui39 1540 1541 1542 1543
2010 1032 1033 1034 1035 1036 1037 1038 1039 3010 1544 1545 1546 !M7 1548 1549 1550 1551
2020 1040 1041 1042 1043 1044 1045 1046 1047 3020 1552 1553 1554 1555 1556 1557 1558 1559
2030 1048 1049 1050 1051 1052 1053 1054 1055 3030 1560 1561 1562 1563 1564 1565 1566 1567
2040 1056 1057 1058 1059 1060 1061 1062 1063 3040 1568 1569 1570 1571 1572 1573 1574 1575
2050 1064 1065 1066 1067 1068 1069 1070 1071 3050 1576 1577 1578 1579 1580 1581 1582 1583
2060 1072 1073 1074 1075 1076 1077 1078 1079 3060 1584 1585 1586 1587 1588 1589 1590 1591
2070 1080 1081 1082 1083 1084 1085 1086 1087 3070 1592 1593 1594 1595 1596 1597 1598 1599

2100 1088 1089 1090 1091 1092 1093 1094 1095 3100 1600 1601 1602 1603 1604 1605 1606 1607
2110 1096 1097 1098 1099 1100 1101 1102 1103 3110 1608 1609 1610 1611 1612 1613 1614 1615
2120 1104 1105 1106 1107 1108 1109 1110 1111 3120 1616 1617 1618 1619 1620. 1621 1622 1623
2130 1112 1113 1114 1115 1116 1117 1118 1119 3130 1624 1625 1626 1627 1628 1629 1630 1631
2140 1120 1121 1122 1123 1124 1125 1126 1127 3140 1632 1633 1634 1635 1636 1637 1638 1639
2150 1128 1129 1130 1131 1132 1133 1134 1135 3150 1640 1641 1642 1643 1644 1645 1646 1647
2160 1136 1137 1138 1139 1140 1141 1142 1143 3160 1648 1649 1650 1651 1652 1653 1654 1655
2170 1144 1145 1146 1147 1148 1149 1150 1151 3170 1656 1657 1658 1659 Hi60 1661 1662 1663

2200 1152 1153 1154 1155 1156 1157 1158 1159 3200 1664 1665 1666 1667 1668 1669 1670 1671
2210 1160 1161 1162 1163 1164 1165 1166 1167 3210 1672 1673 1674 1675 1676 1677 1678 1679
2220 1168 1169 1170 1171 1172 1173 1174 1175 3220 1680 1681 1682 1683 1684 1685 1686 1687
2230 1176 1177 1178 1179 1180 1181 1182 1183 3230 1688 1689 1690 1691 1692 1693 1694 1695
2240 1184 1185 1186 1187 1188 1189 1190 1191 3240 1696 1697 1698 1699 1700 1701 1702 1703
2250 1192 1193 1194 1195 1196 1197 1198 1199 3250 1704 1705 1706 1707 1708 1709 1710 1711
2260 1200 1201 1202 1203 1204 1205 1206 1207 3260 1712 1713 1714 1715 1716 1717 1718 1719
2270 1208 1209 1210 1211 1212 1213 1214 1215 3270 1720 1721 1722 1723 1724 1725 1726 1727

2300 1216 1217 1218 1219 1220 1221 1222 1223 3300 1728 1729 1730 1731 1732 1733 1734 1735
2310 1224 1225 1226 1227 1228 1229 1230 1231 3310 1736 1737 1738 1739 1740 1741 1742 1743
2320 1232 1233 1234 1235 1236 1237 1238 1239 3320 1744 1745 1746 1747 1748 1749 1750 1751
2330 1240 1241 1242 1243 1244 1245 1246 1247 3330 1752 1753 1754 1755 1756 1757 1758 1759
2340 1248 1249 1250 1251 1252 1253 1254 1255 3340 1760 1761 1762 1763 1764 1765 1766 1767
2350 1256 1257 1258 1259 1260 1261 1262 1263 3350 1768 1769 1770 1771 1772 1773 1774 1775
2360 1264 1265 1266 1267 1268 1269 1270 1271 3360 1776 1777 1778 1779 1780 1781 1782 1783
2370 1272 1273 1274 1275 1276 1277 1278 1279 3370 1784 1785 1786 1787 1788 1789 1790 1791

Octal 2400 ta 2777 Octal 3400 to 3777

Decimal 1280 to 1535 Decimal 1792 to 2047

Octal 0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7

2400 1280 1281 1282 1283 1284 1285 1286 1287 3400 1792 1793 1794 1795 1796 1797 1798 1799
2410 1288 1289 1290 1291 1292 1293 1294 1295 3410 1800 1801 1802 1803 1804 1805 1806 1807
2420 1296 1297 1298 1299 1300 1301 1302 1303 3420 1808 1809 1810 1811 1812 1813 1814 1815
2430 1304 1305 1306 1307 1308 1309 1310 1311 3430 1816 1817 1818 1819 1820 1821 1822 1823
2440 1312 1313 1314 1315 1316 1317 1318 1319 3440 1824 1825 1826 1827 1828 1829 1830 1831
2450 1320 1321 1322 1323 1324 1325 1326 1327 3450 1832 1833 1834 1835 1836 1837 1838 1839
2460 1328 1329 1330 1331 1332 1333 1334 1335 3460 1840 1841 1842 1843 1844 1845 1846 1847
2470 1336 1337 1338 1339 1340 1341 1342 1343 3470 1848 1849 1850 1851 1852 1853 1854 1855

2500 1344 1345 1346 1347 1348 1349 1350 1351 3500 1856 1857 1858 1859 1860 1861 1862 1863
2510 1352 1353 1354 1355 1356 1357 1358 1359 3510 1864 1865 1866 1867 1868 1869 1870 1871
2520 1360 1361 1362 1363 1364 1365 1366 1367 3520 1872 1873 1874 1875 1876 1877 1878 1879
2530 1368 1369 1370 1371 1372 1373 1374 1375 3530 1880 1881 1882 1883 1884 1885 1886 1887
2540 1376 1377 1378 1379 1380 1381 1382 1383 3540 1888 1889 1890 1891 1892 1893 1894 1895
2550 1384 1385 1386 1387 1388 1389 1390 1391 3550 1896 1897 1898 1899 1900 1901 1902 1903
2560 1392 1393 1394 1395 1396 1397 1398 1399 3560 1904 1905 1906 1907 1908 1909 1910 1911
2570 1400 1401 1402 1403 1404 1405 1406 1407 3570 1912 1913 1914 1915 1916 1917 1918 1919

2600 1408 1409 1410 1411 1412 1413 1414 1415 3600 1920 1921 1922 1923 1924 1925 1926 1927
2610 1416 1417 1418 1419 1420 1421 1422 1423 3610 1928 1929 1930 1931 1932 1933 1934 1935
2620 1424 1425 1426 1427 1428 1429 1430 1431 3620 1936 1937 1938 1939 1940 1941 1942 1943
2630 1432 1433 1434 1435 1436 1437 1438 1439 3630 1944 1945 1946 1947 1948 1949 1950 1951
2640 1440 1441 1442 1443 1444 1445 1446 1447 3640 1952 1953 1954 1955 1956 1957 1958 1959
2650 1448 1449 1450 1451 1452 1453 1454 1455 3650 1960 1961 1962 1963 1964 1965 1966 1967
2660 1456 1457 1458 1459 1460 1461 1462 1463 3660 1968 1969 1970 1971 1972 1973 1974 1975
2670 1464 1465 1466 1467 1468 1469 1470 1471 3670 1976 1977 1978 1979 1980 1981 1982 1983

2700 1472 1473 1474 1475 1476 1477 1478 1479 3700 1984 1985 1986 1987 1988 1989 1990 1991
2710 1480 1481 1482 1483 1484 1485 1486 1487 3710 1992 1993 1994 1995 1996 1997 1998 1999
2720 1488 1489 1490 1491 1492 1493 1494 1495 3720 2000 2001 2002 2003 2004 2005 2006 2007
2730 1496 1497 1498 1499 1500 1501 1502 1503 3730 2008 2009 2010 2011 2012 2013 2014 2015
2740 1504 1505 1506 1507 1508 1509 1510 1511 3740 2016 2017 2018 2019 2020 2021 2022 2023
2750 1512 1513 1514 1515 1516 1517 1518 1519 3750 2024 2025 2026 2027 2028 2029 2030 2031
2760 1520 1521 1522 1523 1524 1525 1526 1527 3760 2032 2033 2034 2035 2036 2037 2038 2039
2770 1528 1529 1530 1531 1532 1533 1534 1535 3770 2040 2041 2042 2043 2044 2045 2046 2047

G-2

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

Octal 10000 20000 30000 40000 50000 60000 70000

Decimal 4096 8192 12288 16384 20480 24576 28672

Octal 100000 200000 300000 400000 500000 600000 700000 1000000

Decimal 32768 65536 98304 131072 163840 196608 229376 262144

Octal 0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7

4000 2048 2049 2050 2051 2052 2053 2054 2055 5000 2560 2561 2562 2563 2564 2565 2566 2567
4010 2056 2057 2058 2059 2060 2061 2062 2063 5010 2568 2569 2570 2571 2572 2573 2574 2575
4020 2064 2065 2066 2067 2068 2069 2070 2071 5020 2576 2577 2578 2579 2580 2581 2582 2583
4030 2072 2073 2074 2075 2076 2077 2078 2079 5030 2584 2585 2586 2587 2588 2589 2590 2591
4040 2080 2081 2082 2083 2084 2085 2086 2087 5040 2592 2593 2594 2595 2596 2597 2598 2599
4050 2088 2089 2090 2091 2092 2093 2094 2095 5050 2600 2601 2602 2603 2604 2605 2606 2607
4060 2096 2097 2098 2099 2100 2101 2102 2103 5060 2608 2609 2610 2611 2612 2613 2614 2615
4070 2104 2105 2106 2107 2108 2109 2110 2111 5070 2616 2617 2618 2619 2620 2621 2622 2623

4100 2112 2113 2114 2115 2116 2117 2118 2119 5100 2624 2625 2626 2627 2628 2629 2630 2631
4liO 2120 2121 2122 2123 2124 2125 2126 2127 5110 2632 2633 2634 2635 2636 2637 2638 2639
4120 2128 2129 2130 2131 2132 2133 2134 2135 5120 2640 2641 2642 2643 2644 2645 2646 2647
4130 2136 2137 2138 2139 2140 2141 2142 2143 5130 2648 2649 2650 2651 2652 2653 2654 2655
4140 2144 2145 2146 2147 2148 2149 2150 2151 5140 2656 2657 2658 2659 2660 2661 2662 2663
4150 2152 2153 2154 2155 2156 2157 2158 2159 5150 2664 2665 2666 2667 2668 2669 2670 2671
4160 2160 2161 2162 2163 2164 2165 2166 2167 5160 2672 2673 2674 2675 2676 2677 2678 2679
4170 2168 2169 2170 2171 2172 2173 2174 2175 5170 2680 2681 2682 2683 2684 2685 2686 2687

4200 2176 2177 2178 2179 2180 2181 2182 2183 5200 2688 2689 2690 2691 2692 2693 2694 2695
4210 2184 2185 2186 2187 2188 2189 2190 2191 5210 2696 2697 2698 2699 2700 2701 2702 2703
4220 2192 2193 2194 2195 2196 2197 2198 2199 5220 2704 2705 2706 2707 2708 2709 2710 2711
4230 2200 2201 2202 2203 2204 2205 2206 2207 5230 2712 2713 2714 2715 2716 2717 2718 2719
4240 2208 2209 2210 2211 2212 2213 2214 2215 5240 2720 2721 2722 2723 2724 2725 2726 2727
4250 2216 2217 2218 2219 2220 2221 2222 2223
4260 2224 2225 2226 2227 2228 2229 2230 2231

5250 2728 2729 2730 2731 2732 2733 2734 2735
5260 2736 2737 2738 2739 2740 2741 2742 2743

4270 2232 2233 2234 2235 2236 2237 2238 2239 5270 2744 2745 2746 2747 2748 2749 2750 2751

4300 2240 2241 2242 2243 2244 2245 2246 2247 5300 2752 2753 2754 2755 2756 2757 2758 2759
4310 2248 2249 2250 2251 2252 2253 2254 2255 5310 2760 2761 2762 2763 2764 2765 2766 2767
4320 2256 2257 2258 2259 2260 2261 2262 2263 5320 2768 2769 2770 2771 2772 2773 2774 2775
4330 2264 2265 2266 2267 2268 2269 2270 2271 5330 2776 2777 2778 2779 2780 2781 2782 2783
4340 2272 2273 2274 2275 2276 2277 2278 2279 5340 2784 2785 2786 2787 2788 2789 2790 2791
4350 2280 2281 2282 2283 2284 2285 2286 2287 5350 2792 2793 2794 2795 2796 2797 2798 2799
4360 2288 2289 2290 2291 2292 2293 2294 2295 5360 2800 2801 2802 2803 2804 2805 2806 2807
4370 2296 2297 2298 2299 2300 2301 2302 2303 5370 2808 2809 2810 2811 2812 2813 2814 2815

Octal 4400 to 4777 Octal 5400 to 5777

Decimal 2304 to 2559 Decimal 2816 to 3071

Octal 0 1 2 3 4 5 6 7 Octal 0 1 2 3 4 5 6 7

4400 2304 2305 2306 2307 2308 2309 2310 2311 5400 2816 2817 2818 2819 2820 2821 2822 2823
4410 2312 2313 2314 2315 2316 2317 2318 2319 5410 2824 2825 2826 2827 2828 2829 2830 2831
4420 2320 2321 2322 2323 2324 2325 2326 2327 5420 2832 2833 2834 2835 2836 2837 2838 2839
4430 2328 2329 2330 2331 2332 2333 2334 2335 5430 2840 2841 2842 2843 2844 2845 2846 2847
4440 2336 2337 2338 2339 2340 2341 2342 2343 5440 2848 2849 2850 2851 2852 2853 2854 2855
4450 2344 2345 2346 2347 2348 2349 2350 2351 5450 2856 2857 2858 2859 2860 2861 2862 2863
4460 2352 2353 2354 2355 2356 2357 2358 2359 5460 2864 2865 2866 2867 2868 2869 2870 2871
4470 2360 2361 2362 2363 2364 2365 2366 2367 5470 2872 2873 2874 2875 2876 2877 2878 2879

4500 2368 2369 2370 2371 2372 2373 2374 2375 5500 2880 2881 2882 2883 2884 2885 2886 2887
4510 2376 2377 2378 2379 2380 2381 2382 2383 5510 2888 2889 2890 2891 2892 2893 2894 2895
4520 2384 2385 2386 2387 2388 2389 2390 2391 5520 2896 2897 2898 2899 2900 2901 2902 2903
4530 2392 2393 2394 2395 2396 2397 2398 2399 5530 2904 2905 2906 2907 2908 2909 2910 2911
4540 2400 2401 2402 2403 2404 2405 2406 2407 5540 2912 2913 2914 2915 2916 2917 2918 2919
4550 2408 2409 2410 2411 2412 2413 2414 2415 5550 2920 2921 2922 2923 2924 2925 2926 2927
4560 2416 2417 2418 2419 2420 2421 2422 2423 5560 2928 2929 2930 2931 2932 2933 2934 2935
4570 2424 2425 2426 2427 2428 2429 2430 2431 5570 2936 2937 2938 2939 2940 2941 2942 2943

4600 2432 2433 2434 2435 2436 2437 2438 2439 5600 2944 2945 2946 2947 2948 2949 2950 2951
4610 2440 2441 2442 2443 2444 2445 2446 2447 5610 2952 2953 2954 2955 2956 2957 2958 2959
4620 2448 2449 2450 2451 2452 2453 2454 2455 5620 2960 2961 2962 2963 2964 2965 2966 2967
4630 2456 2457 2458 2459 2460 2461 2462 2463 5630 2968 2969 2970 2971 2972 2973 2974 2975
4640 2464 2465 2466 2467 !'468 2469 2470 2471
4650 2472 2473 2474 2475 2476 2477 2478 2479
4660 2480 2481 2482 2483 2484 2'185 2488 2487

5640 2976 2977 2978 2979 2980 2981 2982 2983
15650 2984 2985 2986 2987 2988 2989 2990 2991

5660 2992 2993 2994 2995 2996 2997 2998 2999
4670 2488 2489 2490 2491 2492 2493 2404 2495 5670 3000 3001 3002 3003 3004 3005 3006 3007

4700 2496 2497 2498 2499 2500 2501 2502 2503 5700 3008 3009 3010 3011 3012 3013 3014 3015
4710 2504 2505 2506 2507 2508 2509 2510 2511 5710 3016 3017 3018 3019 3020 3021 3022 3023
4720 2512 2513 2514 2515 2516 2517 2518 2519 5720 3024 3025 3026 3027 3028 3029 3030 3031
4730 2520 2521 2522 2523 2524 2525 2526 2527 5730 3032 3033 3034 3035 3036 3037 3038 3039
4740 2528 2529 2530 2531 2532 2533 2534 2535 5740 3040 3041 3042 3043 3044 3045 3046 3047
4750 2536 3537 2538 2539 2540 2541 2542 2543 5750 3048 3049 3050 3051 3052 3053 3054 3055
4760 2544' 2545 2546 2547 2548 2549 2550 2551 5760 3056 3057 3058 3059 3060 3061 3062 3063
4770 2552 2553 2554 2555 2556 2557 2558 2559 5770 3064 3065 3066 3067 3068 3069 3070 3071

G-3

OCTAL-DECIMAL INTEGER CONVERSION TABLE (Cont.)

Octal 10000 20000 30000 40000 50000 60000 70000

Decimal 4096 8192 12288 16384 20480 24576 28672

Octal 100000 200000 300000 400000 500000 600000 700000

Dec irnal 32768 65536 98304 131072 163840 196608 229376

Octal 0 1 2 3 4 5 6

6000 3072 3073 3074 3075 3076 3077 '3078
6010 3080 3081 3082 3083 3084 3085 3086
6020 3088 3089 3090 3091 3092 3093 3094
6030 3096 3097 3098 3099 3100 3101 3102
6040 3104 3105 3106 3107 3108 3109 3110
6050 3112 3113 3114 3115 3116 3117 3118
6060 3120 3121 3122 3123 3124 3125 3126
6070 3128 3129 3130 3131 3132 3133 3134

6100 3136 3137 3138 3139 3140 3141 3142
6110 3144 3145 3146 3147 3148 3149 3150
6120 3152 3153 3154 3155 3156 3157 3158
6130 3160 3161 3162 3163 3164 3165 3166
6140 3168 3169 3170 3171 3172 3173 3174
6150 3176 3177 3178 3179 3180 3181 3182
6160 3184 3185 3186 3187 3188 3189 3190
6170 3192 3193 3194 3195 3196 3197 3198

6200 3200 3201 3202 3203 3204 3205 3206
6210 3208 3209 3210 3211 3212 3213 3214
6220 3216 3217 3218 3219 3220 3221 3222
6230 3224 3225 3226 3227 3228 3229 3230
6240 3232 3233 3234 3235 3236 3237 3238
6250 3240 3241 3242 3243 3244 3245 3246
6260 3248 3249 3250 3251 3252 3253 2354
6270 3256 3257 3258 3259 3260 3261 3262

6300 3264 3265 3266 3267 3268 3269 3270
6310 3272 3273 3274 3275 3276 3277 3278
6320 3280 3281 3282 3283 3284 3285 3286
6330 3288 3289 3290 3291 3292 3293 3294
6340 3296 3297 3298 3299 3300 3301 3302
6350 3304 3305 3306 3307 3308 3309 3310
6360 3312 3313 3314 3315 3316 3317 3318
6370 3320 3321 3322 3323 3324 3325 3326

Octal 6400 to 6777

Decimal 3328 to 3583

Octal 0 1 2 3 4 5 6

6400 3328 3329 3330 3331 3332 3333 3334
6410 3336 3337 3338 3339 3340 3341 3342
6420 3344 3345 3346 3347 3348 3349 3350
6430 3352 3353 3354 3355 3356 3357 3358
6440 3360 3361 3362 3363 3364 3365 3366
6450 3368 3369 3370 3371 3372 3373 3374
6460 3376 3377 3378 3379 3380 3381 3382
6470 3384 3385 3386 3387 3388 3389 3390

6500 3392 3393 3394 3395 3396 3397 3398
6510 3400 3401 3402 3403 3404 3405 3406
6520 3408 3409 3410 3411 3412 3413 3414
6530 3416 3417 3418 3419 3420 3421 3422
6540 3424 3425 3426 3427 3428 3429 3430
6550 3432 3433 3434 3435 3436 3437 3438
6560 3440 3441 3442 3443 3444 3445 3446
6570 3448 3449 3450 3451 3452 3453 3454

6600 345fl 3457 3458 3459 3460 3461 3462
6610 3464 3465 3466 3467 3468 3469 3470
6620 3472 3473 3474 3475 3476 3477 3478
6630 3480 3481 3482 3483 3484 3485 3486
6640 3488 3489 3490 3491 349'2 3493 3494
6650 3496 3497 3498 3499 3500 3501 3502
6660 3504 3505 3506 3507 3508 3509 3510
6670 3512 3513 3514 3515 3516 3517 3518

6700 3520 3521 3522 3523 3524 3525 3526
6710 3528 3529 3530 3531 3532 3533 3534
6720 3536 3537 3538 3539 3540 3541 3542
6730 3544 3545 3546 3547 3548 3549 3550
6740 3552 3553 3554 3555 3556 3557 3558
6750 3560 3561 3562 3563 3564 3565 3566
6760 3568 3569 3570 3571 3572 3573 3574
6770 3576 3577 3578 3579 3580 3581 3582

7 Octal 0

3079 7000 3584
3087 7010 3592
3095 7020 3600
3103 7030 3608
3111 7040 3616
3119 7050 3624
3127 7060 3632
3135 7070 3640

3143 7100 3648
3151 7110 3656
3159 7120 3664
3167 7130 3672
3175 7140 3680
3183 7150 3688
3191 7160 3696
3199 7170 3704

3207 7200 3712
3215 7210 3720
3223 7220 3728
3231 7230 3736
3239 7240 3744
3247 7250 3752
3255 7260 3760
3263 7270 3768

3271 7300 3776
3279 7310 3784
3287 7320 3792
3295 7330 3800
3303 7340 3808
3311 7350 3816
3319 7360 3824
3327 7370 3832

7 Octal 0

3335 7400 3840
3343 7410 3848
3351 7420 3856
3359 7430 3864
3367 7440 3872
3375 7450 3880
3383 7460 3888
3391 7470 3896

3399 7500 3904
3407 7510 3912
3415 7520 3920
3423 7530 3928
3431 7540 3936
3439 7550 3944
3447 7560 3952
3455 7570 3960

3463 7600 3968
3471 7610 3976
3479 7620 3984
3487 7630 3992
3495 7640 4000
3503 7650 4008
3511 7660 4016
3519 7670 4024

3527 7700 4032
3535 7710 4040
3543 7720 4048
3551 7730 4056
3559 7740 4064
3567 7750 4072
3575 7760 4080
3583 7770 4088

G-4

1 2 3 4 5

3585 3586 3587 3588 3589
3593 3594 3595 3596 3597
3601 3602 3603 3604 3605
3609 3610 3611 3612 3613
3617 3618 3619 3620 3621
3625 3626 3627 3628 3629
3633 3634 3635 3636 3637
3641 3642 3643 3644 3645

3649 3650 3651 3652 3653
3657 3658 3659 3660 3661
3665 3666 3667 3668 3669
3673 3674 3675 3676 3677
3681 3682 3683 3684 3685
3689 3690 3691 3692 3693
3697 3698 3699 3700 3701
3705 3706 3707 3708 3709

3713 3714 3715 3716 3717
3721 3722 3723 3724 3725
3729 3730 3731 3732 3733
3737 3738 3739 3740 3741
3745 3746 3747 3748 3749
3753 3754 3755 3756 3757
3761 3762 3763 3764 3765
3769 3770 3771 3772 3773

3777 3778 3779 3780 3781
3785 3786 3787 3788 3789
3793 3794 3795 3796 3797
3801 3802 3803 3804 3805
3809 3810 3811 3812 3813
3817 3818 3819 3820 3821
3825 3826 3827 3828 3829
3833 3834 3835 3836 3837

Octal 7 400 lo 7777

Decimal 3840 to 4095

1 2 3 4 5

3841 3842 3843 3844 3845
3849 3850 3851 3852 3853
3857 3858 3859 3860 3861
3865 3866 3867 3868 3869
3873 3874 3875 3876 3877
3881 3882 3883 3884 3885
3889 3890 3891 3892 3893
3897 3898 3899 3900 3901

3905 3906 3907 3908 3909
3913 3914 3915 3916 3917
3921 3922 3923 3924 3925
3929 3930 3931 3932 3933
3937 3938 3939 3940 3941
3945 3946 3947 3948 3949
3953 3954 3955 3956 3957
3961 3962 3963 3964 3965

3969 3970 3971 3972 3973
3977 3978 3979 3980 3981
3985 3986 3987 3988 3989
3993 3994 3995 3996 3997
4001 4002 4003 4004 4005
4009 4010 4011 4012 4013
4017 4018 4019 4020 4021
4025 4026 4027 4028 4029

4033 4034 4035 4036 4037
4041 4042 4043 4044 4045
4049 4050 4051 4052 4053
4057 4058 4059 4060 4061
4065 4066 4067 4068 4069
4073 4074 4075 4076 4077
4081 4082 4083 4084 4085
4089 4090 4091 4092 4093

6

3590
3598
3606
3614
3622
3630
3638
3646

3654
3662
3670
3678
3686
3694
3702
3710

3718
3726
3734
3742
3750
3758
3766
3774

3782
3790
3798
3806
3814
3822
3830
3838

6

3846
3854
3862
3870
3878
3886
3894
3902

3910
3918
3926
3934
3942
3950
3958
3966

3974
3982
3990
3998
4006
4014
4022
4030

4038
4046
4054
4062
4070
4078
4086
4094

1000000

262144

7

3591
3599
3607
3615
3623
3631
3639
3647

3655
3663
3671
3679
3687
3695
3703
3711

3719
3727
3735
3743
3751
3759
3767
3775

3783
3791
3799
3807
3815
3823
3831
3839

7

3847
3855
3863
3871
3879
3887
3895
3903

3911
3919
3927
3935
3943
3951
3959
3967

3975
3983
3991
3999
4007
4015
4023
4031

4039
4047
4055
4063
4071
4079
4087
4095

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL

.000 .000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .201 .251953 .301 .376953

.002 .003906 .102 .128906 .202 .253906 .302 .378906

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 .257812 .304 .382812

.005 .009765 .105 .134765 .205 .259765 .305 .384765

.006 .011718 .106 .136718 .206 .261718 .306 .386718

.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .017578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 ..023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.017 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 ,035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .164062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .325 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .425781

.033 .052734 .133 .177734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.035 .056640 .135 .181640 .235 .306640 .335 .431640

.036 .058593 .136 .183593 .236 .308593 .336 .433593

.037 .060546 .137 .185546 .237 .310546 .337 .435546

.040 .062500 .140 .187500 .240 .312500 .340 .437500

.041 .064453 .141 .189453 .241 .314453 .341 .439453

.042 .066406 .142 .191406 .242 .316406 .342 .441406

.043 .068359 .143 .193359 .243 .318359 .343 .443359

.044 .070312 .144 .195312 .244 .320312 .344 .445312

.045 .072265 .145 .197265 .245 .322265 .345 .447265

.046 .074218 .146 .199218 .246 .324218 .346 .449218

.047 .076171 .147 .201171 .247 .326171 .347 .451171

.050 .078125 .150 .203125 .250 .328125 .350 .453125

.051 .080078 .151 .205078 .251 .330078 .351 .455078

.052 .082031 .152 .207031 .252 .332031 .352 .457031

.053 .083984 .153 .208984 .253 .333984 .353 .458984

.054 .085937 .154 .210937 .254 .335937 .354 .460937

.055 .087890 .155 .212890 .255 .337890 .355 .462890

.056 .089843 .156 .214843 .256 .339843 .356 .464843

.057 .091796 .157 .216796 .257 .341796 .357 .466796

.060 .093750 .160 .218750 .260 .343750 .360 .468750

.061 .095703 .161 .220703 .261 .345703 .361 .470703

.062 .097656 .162 .222656 .262 .347656 .362 .472656

.063 .099609 .163 .224609 .263 .349609 .363 .474609

.064 .101562 .164 .226562 .264 .351562 .364 .476562

.065 .103515 .165 .228515 .265 .353515 .365 .478515

.066 .105468 .166 .230468 .266 .355468 .366 .480468

.067 .107421 .167 .232421 .267 .357421 .367 .. 482421

.070 .109375 .170 .234375 .270 .359375 .370 .484375

.071 .111328 .171 .236328 .271 .361328 .371 .486328

.072 .113281 .172 .238281 .272 .363281 .372 .488281

.073 .115234 .173 .240234 .273 .365234 .373 .490234

.074 .117187 .174 .242187 .274 .367187 .374 .492187

.075 .119140 .175 .244140 .275 .369140 .375 .494140

.076 .121093 .176 .246093 .276 .371093 .376 .496093

.077 .123046 .177 .248046 .277 .373046 .377 .498046

G-5

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.)

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL

.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .000782

.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823
,000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827
.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831
.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839
.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843
.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846
.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850

.000040 ,000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000919

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957

.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968

.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

G-6

OCTAL-DECIMAL FRACTION CONVERSION TABLE (Cont.)

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL

.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708

.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712

.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716

.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720

.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724

.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728

.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731

.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735

.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739

.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743

.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747

.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750

.000414 :001022 .000514 .001266 .000614 .001510 .000714 .001754

.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758

.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762

.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766

.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770

.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773

.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777

.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781

.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785

.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789

.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792

.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796

.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800

.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804

.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808

.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811

.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815

.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819

.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823

.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831

.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834

.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838

.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842

.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846

.000445 .001117 .000545 .001361 .000645 .001605 .000745 .001850

.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853

.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857

.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861

.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865

.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869

.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873

.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876

.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880

.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884

.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892

.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907

.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911

.000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914

.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922

.000471 .001194 .000571 .001438 .000671 .001682 .000771 .001926

.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930

.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934

.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937

.000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941

.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945

.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949

G-7

APPENDIX H

TABLES OF POWERS OF TWO

AND

BINARY -DECIMAL EQUIVALENTS

BINARY AND DECIMAL EQUIVALENTS

Number
Maximum Decimal

Integral Value

of Number
Decimal of

Maximum Decimal Fractional Value

Digits Bits

1 1 . 5
3 2 . 75
7 3 .875

15 1 4 .9375
311----t--5--:96875
63 6 .984 375

127 2 7 .992 187 5
255 t---8- -t- ~96 09375

This chart provides the information nee ...
essary to determine;

511 9 .998046875
I 02_ - L - _l.Q_ _ ~999 _Q_2l_437 .2. a.
2047 11 .99951171875
4 095 12 .999 755 859 375
8 191 13 .999 877 929 687 5

.!i 38~ - !_ __ l!_ - _:J99 218_2_6_!..843 ..1.~
32 767 15 . 999 969 482 421 875 b.
65 535 16 . 999 984 741 210 937 5

131071 5 17 .99999237060546875
262i43 - - - -18 - -:°999996ls5302734 375

524287 19 .9999980926513671875
l 048 575 6 20 . 999 999 046 325 683 593 75
2097 w 1- - - -21- :999999523 162 841796875

c.

4 194 303 22 . 999 999 761 581 420 898 437 5
8 388 607 23 .999 999 880 790 710 449 218 75

16 777 215 7 24 • 999 999 940 395 355 244 609 375
33 554431+-- - ~ZS-_, -:-"°9999999101976776123046875
67 108 863 26 .999 999 985 098 838 806 152 343 75

134217727 8 27 .999999992549419403076171875
268435455'- -, 28-+ .999999996274 1097015380859375
536 870 911 29 . 999 999 998 137 354 850 769 042 968 75

The number of bits needed to
represent a given decimal
number. Use columns one and
three or four and three •

The number of bits needed to
represent a given number of
decimal digits (all nines).
Use columns two and three.

The maximum decimal value
represented by a giv~n
number of bits, use columns
one and three or three and
four.

J_O~ 741~2~ _ _L__, _l~-1-·i2.9_2_9_i_999 068_~?! .. _!22__3~521 484..11~
2 147 483 647t-- 31 .999 999 999 534 338 712 692 260 742 187 5
4 294 967 295 32 .999 999 999 767 169 356 346 130 371 093 75
8 589 934 ;91 33 .999 999 999 883 584 678 173 065 185 546 875

u !!_9 ~9_!_8~ ~ -1-~ _ .:.1JU91_2~9i.!... 792 fl.9_Q.8.§......?g_s92 I!.-3 ...Q7_2_
34 359 738 367 35 .999 999 999 970 896 169 543 266 296 386 718 75
68 719 476 735 36 .999 999 999 985 448 034 771 633 148 193 359 375

137 438 953 471 11 37 . 999 999 999 992 724 042 385 816 574 096 679 687 5
2148179Q6943J- - - -38-~.999999999 996 3620zil9z908281 04833984375
549 755 813 887 39 . 999 999 999 998 181 010 596 454 143 524 169 921 875

.!......£l~_5!.!.._627 1151-E _ 40,...:99912..9...2JU9.2 _ _G2.Q....5..Q2...298Jl?...Q7..! _ _7g_o84 960_2.n.2
2 199 023 255 551 41 .999 999 999 999 545 252 649 113 535 881 042 480 468 75
4 398 046 511 103 42 .999 999 999 999 772 626 324 556 767 940 521 240 234 375
8 796 093 022 207 43 .999 999 999 999 886 313 162 278 383 970 260 620 117 187 5

..!22.2_2~~~4!.?_ _12__ _ _i4_ .999_2.nJ~999 943J...?UB.!..1l .. 2 ... !1! 985_!lO_l_lQ...2~5..21. ~
35 184 372 088 831 45 ~999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46 . 999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5

140 _?_n_..!8~322... 3211-...!i- 1-i.?.... _ ...:..J.91-...999 9991.2.9.....2.91.....894 572~2......19§....:19_§ _ _1..i! MLJ~324 fl.8....l~
281 474 976 710 655 48

H-2

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033a
	2-033
	2-034
	2-035
	2-036
	2-037
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-00
	B-01
	D-00
	D-01
	D-02
	D-03
	E-00
	E-01
	E-02
	E-03
	E-04
	F-00
	G-00
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	H-01
	H-02

