
GE-625/635 GECOS-III
Time-Sharing FORTRAN

~ Information
~ Systems

Information Systems
Equipment

CPB-1S66

GE-625/635 GECOS-III
Time-Sharing FORTRAN

December 1968

INFORMATION SYSTEMS

GENERAL. ELECTRIC

Preface

The intent of this manual is to supply reference material
pertaining to the use of Time-Sharing FO~RAN, a system of
the GE-625/635 GECOS-III Time-Sharing System.

The manual is divided into two sections t~e-sharinq
system operation and FORTRAN language char.oteri.tics. The
former is concer.nea with communications with the
time-sharing system ana the storing and modification of
files. The latter describes the methods for writing computer
programs in the FO~RAN language for the t~e-sh.ring
system.

This manual includes new features implemented in Systems
Development Letter 1.

A portion of the material presented in this manual is
reprinted by pe~ssion fram IBM 7090/7094 Programming
S~temsl FORTRAN IV Language (Reference Manual C28-6274-1),
~ 1963 by International Business Machines Corporation.

This manual was produced using the General Electric Remote
Access Editing System (RAES). RAES is a time-shared
disc-resident storage and retrieval system with text-editing
and manuscript for.matting capabilities. The contents of the
manual were entered into RAES from a remote terminal
keyboard, edited using the system editing languag8, and
formatted by RAES on reproduction masters.

The index was produced usinq a computer-asaisted
access indexing system. This system produces an index
source strings delimited at manuscript input time.

remote
using

Suggestions and criticisms relative to fo~, content,
purpose, or use of this manual are invited. Comment. may be
sent on the Document Review Sheet in the back of this manual
or may be addreased directly to Documentation, 8-107,
Processor Equipment Department, General Electric Company,
13430 North Black Canyon Hiqhway, Phoenix, Arizona 85029.

~ 1964, 1965, 1966, 1968 by General Electric Company

(2.5M 12-68)

1.

2.

3.

GE-625/635 GECOS-III TSS FORTRAN

Contents

INTRODUCTION

SECTION I TIME-SHARING SYSTEM

TIME-SHARING SYSTEM OPERATION

GENERAL OPERATION • • • • • • • •
LOG-ON PROCEDURE. • • • • • • • •
ENTERING PROGRAM-STATEMENT INPUT.

• • • • • • • •
• • • • • • • •
• • • • • • • •

1

3

3
4
5

Format of Program-Statement Input. • • • • • 7
Correcting or Modifying a Program. • • • •• 10

COMMANDS. • 13

Definition of Current File • • • • • • • •• 15
Command Descriptions • • • • • • • • • • •• 15

DESCRIPTION OF FILES. • • • • • • • • • • • • • • 36

File Names • • • • • • • • • • • • • • • •• 36
categories of Files. • • • • • • • • • • •• 36
File-Access Types. • • • • • • • • • • • •• 36
File Modes • • • • • • • • • • • • • • • •• 38
Alternate Naming of Files. • • • • • • • •• 39

SUPPLYING DIRECT-MODE PROGRAM INPUT • • • •
EMERGENCY TERMINATION OF EXECUTION •••••
PAPER TAPE INPtJ'r. • • • • • • • • • • • • •

• • •
• • •
• • •

SECTION II TIME-SHARING FORTRAN

TIME-SH~NG FORTRAN LANGUAGE CHARACTERISTICS

STATEMENTS. • • • • • • • • • • • • • • • • • • •
GENERAL PROPERTIES OF FORTRAN SOURCE PROGRAMS • •

40
40
41

43

43
43

iii

4.

5.

6.

iv

GE-625/635 GECOS-III TSS FORTRAN

CONSTANTS, VARIABLES, SUBSCRIPTS, and
EXPBESSIONS

CONSTANTS • • • • • • • • • • • • • • • •

45

• • • • 45

Integer Constants. • • • • • • • • • • • •• 45
Real Constants • • • • • • • • • • • • • •• 46
Logical Constants. • • • • • • • • • • • •• 46
ASCII Constants. • • • • • • • • • • • • •• 47
Filename Constants • • • • • • • • • • • •• 47

VARIABLES •• • • • • • • • • • • • • • • • • • • 48

Variable Names • • • • • • • • • • • • • •• 48
Variable Type Specifications • • • • • • •• 49
Implicit Type Assignment • • • • • • • • •• 49
ASCII and Filename Variables • • • • • • •• 49
External Variables • • • • • • • • • • • •• 50

SUBSCRIPTS •• • • • • • • • • • • • • • • • • • • 50

Form of Subscripts • • • • • • • • • • • •• 51
Subscripted Variables. • • • • • • • • • •• 51
Arrangement of Arrays in Storage • • • • •• 52

EXPRESSIONS • • • • • • • • • • • • • • • • • • •

Arithmetic Expressions • • • • • • • • •
Logical Expressions •••••••••••

• •
• •

SPECIFICATION STATEMENTS

DIMENSION STA'l'EMENT • • • • • • • • • • • • • • •

Adjustable Dimensions. • • • • • • • • • • •

COMMON STATEMENT. • • ••
TYPE STATE~NTS • • • • •
DA'l'A STATEMENT. • • • • •

ARITHME'l'IC STATEMENTS

• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •

52

52
54

57

57

58

60
61
63

65

7.

8.

GE-625/635 GECOS-III TSS FORTRAN

CONTROL STATEMENTS 69

UNCONDITIONAL GO '1'0 STATEMENT • • • • • • • • •• 69
COMPUTED GO TO STATEMENT. • • • • • • • • • • •• 70
ASSIGNED GO '1'0 STATEMENT. • • • • • • • • • • •• 71
ASSIGN STATEMENT. • • • • • • • • • • • • • • •• 72
~'l'HMETIC IF STATEMENT • • • • • • • • • • • •• 73
LOGICAL IF STATEMENT. • • • • • • • • • • • • •• 74
DO STATEMENT. • • • • • • • • • • • • • • • • •• 75
CONTINUE STATEMENT. • • • • • • • • • • • • • •• 77
END STATEMENT • • • • • • • • • • • • • • • • •• 78
STOP STATEMENT. • • • • • • • • • • • • • • • •• 78

INPUT/OOTPUT STATEMENTS 79

LIST SPECIFICATIONS • • • • • • • • • • • • • •• 80
FREE-FIELD ASCII INPUT/OUTPUT STATEMENTS. • • •• 82
FORMA'l"1'ED ASCI I INPUT/OUTPUT STATEMEN'l'S • • • •• 84
FORMAT STATEMENT. • • • • • • • • • • • • • • •• 86

Alphameric Fields. • • • • • • • • • • • •• 89
A-Conversion • • • • • • • • • • • • • • •• 90
H-Conversion • • • • • • • • • • • • • • •• 90
Logical Pields • • • • • • • • • • • • • •• 91
Blank Fields -- X-Conversion • • • • • • •• 92
Repetition of Field Format • • • • • • • •• 92
Repetition of Groups • • • • • • • • • • •• 92
Scale Factors. • • • • • • • • • • • • • •• 93
Multiple - Record Formats. • • • • • • • •• 94
FORMAT Statements Read at Object Time. • •• 95
Data Input Referring to a FORMAT Statement. 96

MEMORY-TO-MEMORY DATA CONVERSION STATEMENTS • • •

ENCODE Statement • • • • • •
DECODE Statement • • • • • •

• • • • • • • •
• • • • • • • •

97

98
100

BINARY INPUT/OUTPUT STATEMEN'l'S. • • • • • • • •• 101
NAMELIS'l' INPUT/OUTPUT STATEMENTS. • • • • • • •• 102

NAMELIST Statement • • • • • • • • • •
Data Input Referring to a NAMELIST

statement • • • • • • • • • • • • •

• • •

• • •

MANIPULATIVE INPUT/OUTPUT STATEMENTS •• • • • • •

File Manipulation. • • • • •
Referencing a File • • • • •
END-OF-FILE Test and Branch.

• • • • • • • •
• • • • • • • •
• • • • • • • •

103

105

108

108
109
110

v

GE-625/635 GECOS-III TSS FORTRAN

9.

MODIFYING AN EXISTING FILE. •
FILE CONVENTIONS. • • • • • •

• • • • • • • • • •
• • • • • • • • • •

SUBROUTINE, FUNCTION, AND SUBPROGRAM STATEMENTS

N~NG SUBROUTINES ••
DEFINING SUBROUTINES.

• • • • • • • •
• • • • • • • •

• •
• •

• • • •
• • • •

111
111

113

113
114

Arithmetic Statement Functions • • • • • •• 115
Built-In Functions • • • • • • • • • • • •• 116
FUNCTION Subprogram. • • • • • • • • • • •• 118
SUBROUTINE Subprograms • • • • • • • • • •• 120
Normal Returns from Subprograms. • • • • •• 122
Nonstandard Returns from SUBROUTINE

Subprograms • • • • • • • • • • • • • •• 122
Subprogram Names as Arguments. • • • • • •• 125

CALL STATEMENT. • • • • • • • • • • • • •
MATHEMATICAL SUBROUTINES •••••••••

APPENDIX A

• • • •
• • • •

TIME-SHARING SYSTEM COMMAND LANGUAGE. • • • • • •

APPENDIX B
THE GEOOS FILE SYSTEM AND ACCESS •• • • • • • • •

APPENDIX C

126
127

129

147

TIME-SHABING FORTRAN and FORTRAN IV DIFFERENCES. 179

APPENDIX D
SAMPLE PROBLEMS • • • • • • • • • • • • • • • • • 181

APPENDIX E
BUILT-IN FUNCTION EXAMPLES. • • • • • • • • • • • 185

APPENDIX F
MATH~ICAL SUBROUTINE RESTRICTIONS. • • • • • • 187

APPENDIX G
GLOSSARY •••••• • • • • • • • • • • • • • • • 191

APPENDIX H
ASCII CHARACTER SET • • • • • • • • • • • • • • • 193

APPENDIX I
FORTRAN ERROR MESSAGES. • • • • • • • • • • • • • 197

INDEX. • 201

vi

GE-625/635 GECOS-III TSS FORTRAN

1. Introduction

Time-Sharing FORTRAN, a system of the GE-625/635
Comprehensive Operating Supervisor (GECOS-III) Time-Sharing
System, is an engineering and scientific language designed
for the solution of mathematical problems. Time-Sharing
FORTRAN is a version of FORTRAN IV; differences between
Time-Sharing FORTRAN and FORTRAN IV are listed in Appendix
C.

The time-sharing system enables a large number of
individuals to make use of ("time-share") a GE-625/635
Information System simultaneously. The user works directly
with the computer, whether it is within his sight or miles
away, with the belief that he has exclusive use of the
computer, even though many others are making simultaneous
use of the computer. The Time-Sharing FORTruu~ user submits
his program, controls its compilation and execution, and
upon request, supplies data input, all from a terminal
device.

Time-Sharing FORTRAN encompasses the file input/output
(e.g., disc and drum file) capabilities of a "batch-world"

FORTRAN processor, besides permitting direct, input/output
by the way of the user's terminal. The terminal device can
be one of a variety of units, but the assumption made for
the purpose of this manual is that the terminal is a
teletypewriter, with or without a paper tape reader/punch.
The information concerning the teletypewriter is generally
applicable to other types of terminals.

Time-Sharing FORTRAN makes use of the GECOS-III File System,
a system common to the three dimensions of GE-625/635
GECOS-III processing: batch, remote batch, and
time-sharing. A significant advantage of this commonality is
that the FORTRAN user can refer to and process collections
of data--in proper format--created and/or maintained in the
batch or remote batch environments. From the user's
standpoint, the file system is a device for readily storing
sets of information which may either be programs that
specify instructions to be executed by the computer or data
which is to be read or written by a user's programs. Such
sets of information are called files. These files, upon
request of the user, are stored permanently on a disc or
drum file and are always referred to by name. The name,

1

GE-625/635 GECOS·III TSS FORTRAN

size, and type of each user's files are maintained in a
user's master catalog identified by the user.

2

SECTION I

TIME-SHARING SYSTEM

GE-625/635 GECOS-III TSS FORTRAN

2. Time-Sharing-System Operation

GENERAL OPERATION

The standard means of communication with the GE-625/635
GECOS-III Time-Sharing System (TSS) is by way of a
teletypewriter used aa a remote te~inal. Other compatible
devices may also be used, but use of a teletypewriter is
assumed in this manual. The user may choose either the
keyboard/printer or paper-tape teletypewriter unit for
input/output, or combine both. In either case, the
information transmitted to ana from the system is displayed
on the ter.minal-printer. Keyboard input will be used for
purposes of description1 instructions for the use of paper
tape are given under ·Paper Tape Input· in this chapter.

The user ·controls· the time-sharing system primarily by
means of a command language, a language distinct from any of
the specialized programming languages that are recognized by
the individual time-sharing compilers/processors (e.g., the
Time-Sharing FO~RAN language, in this case). The command
language is, for the most part, the same for users of any
component of the time-sharing system, i.e., FO~RAN, BASIC,
Text Editor, etc. A few of the commands pertain to only one
or another of the component time-sharing systems, but the
majority of them al:e, in form and meaning, common to all
component systems.

The commands relate to the generation, modification, and
disposition of program and data files, and pxogram
compilation/execution requests. Commands that pertain
particularly to the use of Ttme-Sharinq FO~RAN are
described in this chapter. The complete time-sharing ccmmand
language is described in Appendix A, in reference for.m.

Once communication with the system has been established, any
question or request from the system must be answerea within
ten minutes, except for the initial requests for user
identification (user-ID) and sign-on password, which must be
given within one minute. If these time limits are exceeded,
the user's terminal will be disconnected.

3

GE-625/635 GECOS-III TSS FORTRAN

LOG-ON PROCEDURE

To initiate communication with the time-sharing system, the
user performs the following steps.

• Turns on the terminal unit
• Obtains a dial-tone
• Dials one of the numbers of his time-sharing center

The user will then receive either a high-pitched tone
indicating that his terminal has been connected to the
computer or a busy signal. The busy signal would indicate,
of course, that no free line is presently available.

Once the user's te~inal has been connected to the compute~,
the time-sharing system begins the log-on procedu~ by
transmitting the following message.

THIS IS THE GE-600 TSS SYSTEM ON(date)AT(time)CHANNEL(nnnn)

where time is given in hours and thousandths of hours
(hh.hhh), and nnnn is the user's line number.

Following this message, the system asks for the user'.
identification.

USER ID --

The user responds, on the same line, with the user-1D that
has been assigned to him by the time-sharing installation
management. This user-1D uniquely identifies a particular
user already known to the system, for the purposes of
locating his programs and files and accounting for his usage
of the time-sharing resources allocated to htm. An example
request and response might be.

USER ID -- J.P.JONES

Note

A carriage return must be given following any
complete response, command, or line of information
typed by the user.

(The user's response is underlined here for illustration.)
After the user responds with his user-1D, the system asks
for the sign-on password that was assigned to him along with
his user-1D, as followsr

PASSWORD

4

GE-625/635 GECOS-III TSS FORTRAN

The user types his password directly on the "strikeover"
mask provided below the request PASSWORD. The password is
used by the system as a check on the legitimacy of the named
user. The "strikeover" mask insures that the password, when
typed, cannot be read by another person. (In the event that
either the user-ID or password is twice given incorrectly,
the user's ter.minal is immediately disconnected from the
system.) At this point, if the accumulated charges for the
user's past time-sharing usage equals or slightly exceeds
100' of his current resource allocation, he will receive a
warning message. If his accumulated charges exceeds 110' of
his current resources, he receives the messagel

RESOURCES EXHAUSTED - CANNOT ACCEPT YOU

and his terminal is immediately disconnected. (The user may
also receive the following information message if his
situation warrants it:

*ALLO'l'TED FILE SPACE> 88' USED

This condition does not affect the log-on procedure.)

Assuming that the user has responded with a legitimate
user-ID and password and has not overextended his resources,
the time-sharing system then asks the user to select the
processing system that he wants to work with, this is called
the system-selection request. In this case, the user would
respond with FO~RANI

SYSTEM? FO~RAN

The user is then asked whether he now wants to enter a new
program (NEW) or if he wants to retrieve and work with a
previously entered and saved program (OLD), the request
message iSI

OLD OR NEW -

If the user wishes to start a new program (i.e., build a new
source file), he responds simply with.

NEW -
If, on the other hand, he wants to recall an old
source-program file, he responds with.

OLD filename

where filename is the name of the file on which the old
program was saved during a previous session at the terminal
(see the SAVE command).

5

GE-625/635 GECOS-III TSS FORTRAN

Following either response, the system types the message.

READY FOR INPtJT

returns the carriage, and prints an asterisk in the firet
character position of the next linel

READY FOR INPtJT

*
An example of a complete log-on procedure, up to the point
where the FO~RAN system is ready to accept program input or
control commands, might be AS follows.

THIS IS THE GE-600 TSS SYS~M ON 07/26/68 AT 14.768 CHANNEL 0012

USER ID - J.P.JONES
PASSWORD
XBEBK21K~ - (user's password is typed over the mask)
SYSTEM ··7 FORTRAN
OLD OR NEW - NEW - (NEW 1s shown arbitrarily for illustration)
READY FOR INPtJr"
* - (the user begins entering input on this line)

ENTERING PROGRAM-STATEMENT INPUT

After the messagel

READY FOR INPtJT

the system is in build-mode (as indicated by the initial
asterisk) and is ready to accept FO~RAN program-statement
input or contx-ol Qommands (see below for description of the
commands). All lines of input other than control commands
are accumulated on the user's current file. Normally the
current file will be the file that contains the program he
wants to compile and run at this session. If he is building
a new file (NEW response to OLD OR NEW--), his current file
will initially be empty. If he has recalled an old file (OLD
filename) the content of the named old file will initially
be on hIs current file, and any input typed by the u •• r -­
excepting control commands -- will be either added to,
merged into, or will replace lines in the current file,
depending upon the relative line numbering of the lines in
the file and the new input. (This process is explained under
the heading "Correcting or Modifyinq a Proqram,· below.)

6

GE-625/635 GECOS-III TSS FORTRAN

Following each line of nonoommand-language input ana the
ter.minating carriage response, the system will supply
another initial asterisk, indicating that it is ready to
accept more input.

Format of Program-Statement Input

A line of FORTRAN input as distinct from a control
command -- can contain one of the followings

a. One or more FORTRAN statements.

b. A partial statement containing at least a statement
identifier.

c. A continuation of a statement left incomplete in the
preceding line of input.

d. A comment (to be ingluded in the source-language program
listing).

e. A combination of (c) and (a) or (b), in that order.

A line of input must begin with a line-sequence number of
from one 'to eight numeric characters; this number may
optionally be preceded by one or more initial blanks. The
line-sequence number facilitates correction ana modification
of the source pzogram (described below), hereinafter, the
line-sequence number will be referred to simply as the "line
number." (Note that a line number is distinct from a
statement number; a statement number is a part of the
FORTRAN-languAge statement itself.)

The line number is always terminated (i.e., immediately
followed by) with a single control character which may be a
blank, an ampersand, an asterisk, or the letter C. The
control character merely serves to indicate what type
information is to follow (new statement, continuation, or
comment) and is not compiled as pert of the program.

The semicolon may be used to indicate the
complete PO~RAN statement and the beginning of
the same line of input. A carriage-return must,
be used to terminate a complete line of input.

end of one
another on
of course,

7

GE-625/635 GECOS-III TSS FORTRAN

The general format of • line of FO~RAN input is then as
follows (square brackets indicate optional portions of the
format):

nnnnnnnnc statement or continuation ~st.tement ••• ,statement]

or

nnnnnnnno cOllllllen t

where.

nnn ••• n is a one-to-eight character, numeric line
number ana

c is a single-character control character which may be
- a blank, an ampersand, an asterisk, or the letter C,

and must immediately follow the last digit of the
line number.

Significance of the Control Character. The control character
identifies the type of InformatIon that follows it.

8

~ (blank) -- if the character position immediately
following the last digit of the line number
contains a blank, the next nonblank character
is assumea to begin a new FORTRAN statement.
In this case, the next nonblank character may
begin a FORTRAN statement number (i.e., mm ••• m
statement-text).

& (ampersand) -- if an ampersand terminates the line
number, the next nonblank character is assumed
to be a continuation of the (last) statement
in the previous line of input. ~he effect of
"," is to suppress the previous carriage
return as an end-of-statement indicator.

* (asterisk)

or -
c if the line number is terminated with an

asterisk or the letter C, the infor.mation
following is assumed to be a comment. ~he
comment itself is terminated by a carriage
return.

GE-625/635 GECOS-III TSS FORTRAN

A semicolon within a noncomment line indicates both the end
of the preceding statement and that any significant
infor.mation (nonblank, noncarriag8 return) following it
begins a new statement. The new statement may include a
FORTRAN statement number, mm ••• m.

The for.mat of a statement, as typed in following a blank
control character, iSI

••• n~ ~ ••• ~ mm ••• m PORTRAN-language text

(The statement-fo~at portion is underlined.>

where,

~ ••• ~ are optional blanks, and

mm ••• m is an optional numeric statement number
(no practical limit on its size).

Blanks (or Spacing) Within a Line of Input. Initial,
imbedded, or traIling blanks In a l1ne of input have no
significance in its interpretation, excepting only that
blanks are illegal within the line number and that the
nonnumeric character (includinq~) immediately following the
line number is interpreted as a control character. Thus,
spacing can be used quite freely within a line of input in
the interests of legibility. (Blanks with ASCII/filename
constants and nH fields -- i.e., alphanumeric information -­
are meaningful, however, they are retained in the object
program coding.)

Note that the Time-Sharing I'OR'l'RAN language is, therefore -­
except for the relative position of the control character -­
completely free-form, or position independent.

9

GE-625/635 GECOS-III TSS FORTRAN

Correcting or Modifying a Program

Keyboard input is sent to the computer and written onto the
user's current file in units of complete lines. A line of
terminal input is terminated by a carriage return and no
part of the line is transmitted to the system until that
oarriage return is given. Therefore, corrections or
modifications can be done at the terminal at two distinct
levels:

• Correction of a line-in-progress (i.e., a partial
line not yet terminated) •

• Correction or modification of the program (i.e., the
contents of the user's current source file) by the
replacement or deletion of lines contained therein,
or the insertion of new lines.

The correction of a typing error that is perceived by the
user before the line is terminated can be done in one of two
ways. He may delete one or more characters from the end of
the partial line or he may cancel the incomplete line and
start over. The rules are as follows:

a. Use of the commercial "at" character (@) deletes from
the line the character preceding the @ character, use of
n consecutive @ characters deletes the n preceding
characters (including blanks.)

Examples:

*ABCDF@E would result in ABCDE being transmitted to the
program file.

*ABCMDfF@@@@DEF would result
transm tted. (The characters
underlined for illustration.)

in
to

ABCDEF being
be deleted are

b. Use of the CTRL (control) and X keys, depressed
simultaneously, causes all of the line to be deleted.
The characters DEL are printed to indicate deletion and
the carriage is automatically returned. For example:

*ACDEFG [CTRL/~ DEL (all characters deleted)

* (ready for new input)

10

GE-625/635 GECOS-III TSS FORTRAN

Corxection or modification of the current source file i.
done on the basis of line numbers and proceeds according to
the following rules:

a. Replacement. A numbered line will replace any
IdentIcallY numbered line that was previou8ly typed or
contained on the current file (i.e., the last entered
line numbered nnn will be the only line numbered nnn in
the file).

b. Deletion. A "line" consisting of only a line number
(i.e., nnn) will cause the deletion of any identically
numbered line that was previously typed or contained on
the current file.

c. Insertion. A line with a line-number value that falls
between the line-numbex values of two pre-existing lines
will be inserted in the file between those two lines.

At any point in the process of entering program-statement
input, the LIST command may be given, which results in a
"clean," up-to-date copy of the current file being printed.
In this way, the results of any previous corrections or
modifications can be verified visually. (The several for.ms
of the LIST command are described in detail below.)
Following the response (or command) OLD filename, the LIST
command can be used initially to inspect the contents of the
current source file (i.e., the "old" program).

A comprehensive example of program correction and
modification follows. Replies to the user from the system
are underlined herelin actual use, no unaerlininq i8 done.
Explanations are enclosed in parentheses, they are not part
of the printout.

11

GE-625/635 GECOS-III TSS FORTRAN

USER ID -ED.W
PASSWORD-­
XBCBUBltDXK
SYSTEM ? FO~RAN
f'LD 9JR NEW-NEW
READY PpJR INPUT
*AUT9JX - (enter automatic-line-number mode)
"'0010 READ:A,B,C
*b020 X1-A*B/C
'0030 X2~**2,B**2
'0040 ANS-X2/X1
'0050 PRINT 10,Xl,X2, ASN@@@ANS - (typing error correction)
'0060 10 F9JRMAT(lX,"Xl=",F6.S@2,"X2a ",P8.2,"ANS-",
'0070, P6. 2)
'0080 ST9lP
'0090 END
'olbO - (end automatic mode by carriage return)
'063d X2-A**2+B**2-C - (replacement of line 30)
"SAVE F9JR'l'Ol
~ATA SAVED--F@R'l'Ol

- (display corrected program)
READ:A,~,C
XlaA*B/C
X2-A**2+B**2-C
ANS-X2/X1

*LIS'l'
~010
0020
0030
0040
0050
0060 10
0070&
0080
0090

PRIN'l'10 ,X1,X2, ANS
F9JRMAT(lX,"Xl-",F6.2,"X2-",F8.2,"ANS=",
F6.2)
S'l'9JP
END

READY

!RUN - (run program)

- 3.2,10.5,2.2 - (type input data)
Xl- 15.27X2- 118.29ANS= 7.75 - (output - correct,

but poor for.mat)
P~GRAM S'l'IP AT 80 ! 60 16 ~RMAT(lx,"Xl=",F6.2,n X2-",F8.2," ANS-", - (correct

for.mat statement)
*RtJN .

:= 3.2,10.5,2.2
Xl- 15.27 X2- 118.29 ANS= 7.75 - (improved output format)
PIGRAM SIP AT 80
• Vi 'SiR 1
DATA SAVED--!l!R-l'01 - (corrected version of program saved)

*BYE - (finished)
Y*RES9JURCES USED $ 2.08, OSED T~ DATE $ 263.85= 27'
**TIME SHARING ~FF AT 15.421 ~ 10/10/68

12

GE-625/635 GECOS-III TSS FORTRAN

Since the program compilea correctly and returned valid
answers, the user ter.minates his connection with the
computer by typing BYE.

COMMANDS

The time-sharing system commands that are particularly
pertinent for use in control of the Time-Sharing FOR!RAN
system area

• RUN -- causes a source or object program to be
compiled and/or executed. A concatenation of several
program files or file segments may be specified as
program input. Saving of the resultant object
program may be requested.

• LIST -- causes the contents of either the current
file or specified permanent file to be listed at the
user's terminal. Portions of a file can be selected,
by means of line numbers. Several files or file
segments can be concatenated for listing.

• RESEQUENCE -- causes the existing line
the current file to be replaced by
arithmetic sequence of line numbers.
standard sequence (010,020,030, •••) or
sequence can be obtained.

numbers in
an ordered
Either the

a specified

• DELETE -- causes a specified portion of the current
file to be deleted, portion is specified by means of
line nwnbers.

• OLD -- causes the contents of a specified permanent
(saved) file to be copied to the current file. The
previous contents of the current file (if any exist)
are lost. Several per.manent files or file seqments
may be concatenated on the current file.

• NEW -- causes the current file to be reinitialized
(i.e., cleared). Previous contents of the current
file are lost.

• AUTOMATICX (or AUTOX) -- causes line numbers to be
generated by the system automatically at the time
the initial (build-mode) asterisk is printed. Either
the standard line number sequence or a specified
sequence can be obtained.

13

GE-625/635 GECOS-III TSS FORTRAN

• SAVE -- causes the contents of the current file to
be saved on a specified permanent file. Saving can
be done on a pre-existent (i.e., predefined) file or
a new permanent file can be implicitly created.

• GET causes specified permanent files to be
accessed (i.e., names placed in the user's available
file table (AFT» for later reference by the object
p~ogram (data files) or by other commands (generally
program files). The GET fUnction is analogous to the
"opening" of files in cert.in other contexts. (The
cu~rent file is not affected.)

• PERM -- causes a specified temporary file (generally
a data file created by the object program) to be
saved on a specified permanent file.

• REMOVE -- causes specified file names to be deleted
from the user's ~. The AFT is of finite length and
may become full unless unneeded file names are
removed.

• TAPE -- causes file-building input to be read from
paper tape.

• DONE -- causes an
control returns
(SYS'l'EM ?) •

exit from the FORTRAN system,
to the system-selection level

• BYE -- causes the user to be logged off of the
time-sharing systemJ usage charges are computed and
terminal is disconnected.

Most of the commands listed above have several forms. The
primary, or most-used, forms of these commanas are described
in detail in this section. The more sophisticated forms are
described in Appendix A. These forms are used for describing
catalog/file structures in the file system, as opposed to
file references simply by file name.

There are other, more general purpose, time-sharing commands
that may be used with the FORTRAN system, for example:
CATALOG, which requests a listing of a user's catalogs
and/or files in the file system. These general purpose
commands are also described in Appendix A.

14

GE-625/635 GECOS-III TSS FORTRAN

Definition of Current File

~he ter.m "current file," as used in this manual, denotes the
tempo~ary file implicitly refe~red to, and affecteQ by, the
OLD and NEW commands. It is also the file implicitly
referred to by the simplest (or only) forms of several other
commands (e.g., LIST, RESEQUENCE, DELETE).

The current file is automatically assigned to each user and
is the file on which all proqram-file building or
modification takes place. All buila-mode, statement input
from the terminal affects the current file.

In certain cases (as described below), the current file can
be explicitly referred to, in a list of file names, by the
name "*".

Command Descriptions

The commands are described below in alphabetical order. The
command "name" is given in its complete for.m. However, where
the command "name" is lonqer than four characters (e.g.,
RESEQUENCE), only the first four characters need be given
(e.g., RESE). (Note that AUTOX is a special case, as is
explained below.)

15

16

GE-625/635 GECOS-III TSS FORTRAN

• AUTOMA'l'ICX

Function

To initiate the automatic generation of line numbers
by the system (automatic mode), so that the user
need not type them htmself while entering a new
program via the terminal keyboard. The line numbers
appear on the terminal printer copy immediately
following each build-mode request for input (initial
*), and, unless aeleted, form part of the respective
line on the program file, just as though the user
had typed them.

Forms of the Command

(1) AO'l'OMA'l'ICX (or) AU'lOX

Causes the automatic creation of line numbers at the
point at which the automatio mode is entered (or
re-entered), with line numbers initially starting at
0010 and incrementing by 10. If automatic mode is
cancelled and then re-entered, the next line number
issued will be in sequence with the previous
automatically-generated numbers.

(2) AUTOMA'l'ICX n,m (or) AU'l'OX n,m

Causes the automatic creation of line numbers, as in
for.m (1), but starting with line number nand
incrementing by m. The user specifies in this form a
starting value (n) and the increment (m). The
parameters nand m must be positive decimal
integers.

Note

Using the for.ms given above, the
line numbers will be issued
without a ter.minatinq blank in
the control-character position.

GE-625/635 GECOS-III TSS FORTRAN

Usage

This command could be used before beginning to build
a new file (i.e., following the command NEW). It
might also be used following an OLD response or
command. The automatic mode is canceled by a
carriage return given by the user immediately
following a line number. (That line number i8 also
deleted from the file.) If the user wishes to
replace a preceding line or insert a line while in
automatic mode, he gives an immediate carriage
return following the next-issued line number and
performs his desired corrections in manual mode. He
may then re-enter automatic mode at the point at
which he canceled simply by giving AUTOX again. For
example.

READY FOR INPtJT
*AUTOX
*0010jllREAL •••
*0020JlSPRINT •••
*00 30JdPRIN'l' •••

•
•
•

*0170jllDO •••
*0180
*0030j6TOTAL
*0035li1READ
* AUTOX
*0180ldIF •••

•
•
•

*0340JIIEND
*0350

-(auto. mode canceled)
(corrections in manual mode)

-(auto. mode re-entered)

-(auto. mode canceled, end of input)

17

18

Additional example.

*AUTOX 300,5
*0300~lOO CONT •••
*030514200 MAT •••
*03l0jfSSIl'OP

•
•
•

*0425
•
•
•

*AU'l'OX
*0425

GE-625/635 GECOS-III TSS FORTRAN

-(auto. mode cancelled)

-(auto. mode re-entered)

When a line-number value of 9999 is
4-place format is replaced by an
(i.e., 00010000, etc.).

exceeded, the
a-place format

The line-number counters (current value and
increment) are reset only by a AUTO X n,m command.

Note that the -nor.mal" for.m of this command is
AUTOMATIC (or AUTO), which causes a ter.minatinq
blank to be issued following the line number (i.e.,
nnn~). But since this blank occupies the FORTRAN
control-character position (which may be blank, * or
C, or &), the form AU'l'OMA'l'ICX or AU'1'OX, which
suppresses the automatically-generated blank, is
preferred for FORTRAN usage. If, however, the user
does not intend to enter anythinq but complete
statements (no comments or continuation lines), he
may of course use the AUTO form, which will supply
the blank control character automatically.

GE-625/635 GECOS-III TSS FORTRAN

• BYE

Function

To compute and print the user's time-sharing usage
charges for this session at the ter.minal and his
total charges to date, and to disconnect the
ter.minal. If the user has any temporary nonsystem
files open (i.e., files created by his executed
program(s», he is given the option of saving them
individually, prior to the log-off message.

Form of the Command

BYE

The user gives the BYE command when he wishes to
terminate his use of the terminal. (See elso the
DONE command.) If the user has any temporary files
open at this point, the following message is issued
(prior to the log-off message) I

n TEMPORARY FILES CREATED

and then each temporary file name is printed, in
turn, followed by a question mark.

tempfile?

response

tempfile? (carriage return)

tempfile? NONE

tempfile? SAVE filedescr

meaning

Ignore (release) this file;
pass to the next file name.

Ignore (release) this and all
succeeding filesl exit from
system.

Save the temporary file
tempfile on the permanent file
specif1ed by filename.
(Filename and tempfiie may be
synonamous.) Pass to the next
file name.

See the PERM command descriptions for more detail
concerning the files tempfile ana filename.

19

20

GE-625/635 GECOS-III TSS FORTRAN

• DELETE

Function

~o celete one or more complete lines from the
current file, by line numbers.

Forms of the Command

(1) DELETE a

The line(s) numbered a is deleted from the
current file.

(2) DELETE a, h, 0, d •••

The lines numbered a, h, c, a, etc., are
deleted from the current file.

(3) DELETE a-b,e-d •••

All lines numbered a through h, c through d,
etc., are deleted from the current file.

(4) DELETE a,b,c-d,e,f-g •••

The lines numbered a, h, e through d, e, ana f
through g, etc., are deleted from the current
file.

A maximum of 12 comma-separated fields may be
given.

Usa<ae

This command is employed when the user wishes to
delete some, but not all, of the lines on the
current file.

If the current file was created via the OLD response
or command, the original ·old" permanent file is not
affected by the DELETE command. (The SAVE command
must be used to per.manently retain any such
moaifications).

GE-625/635 GECOS-III TSS FORTRAN

• DONE -
Function

To cause an exit from the FORrRAN
system-selection question, SYSTEM ?,
Any temporary files created under
retained, and all accessed files remain
names remain in AFT).

Fo~m of the Command

DONE

Usage

system. The
is reissued.

FORTRAN are
open (file

This command is employed when the user wishes to
terminate his use of FORTRAN and select another
system or subsystem (e.g_, SCAN or ACCESS). The
current file can be ncar~ied over" to a subsequent
system by responding SAME to the OLD OR NEW request.

21

22

GE-625/635 GECOS-III TSS FORTRAN

• GET -
Function

To access (i.e., open) one or more permanent files.
The name of the requested f1le(s) is entered in the
user's available file table (AFT). The user's
current file (if any exiet) is not affected. The GET
command is designed specifically for nonqu!ck-acces8
files, but any type of file may be accessed with it.
A number of files can be accessed with a single
command.

Any nonquick-access data files to be used during
execution of a FORrRAN program must be ope~ed
(entered in the user's available file table) pr10r
to compilation/execution. Since these aata files are
often common to several users, the GET command
simplifies the opening of such files. (See
·Categories of Files," in this chapter.)

Forms of the Command

(1) GET filename 1; filename'2; ••• ,filename'n

Causes the quick-access type file(s) saved
under the name(s) filename! to be accessed. (A
quick-access type file Is one that was created
with a SAVE command, by the sarne user.)

(2) GET filedescr
1
; filedescr

2
, ••• , filedescr

n

Causes any permanent file(s) described by
filedescr'tl to be accessed, where the general
form of f1ledescr is:

userID/catalog$password/ •••
/catalog$password/filename$password,
permission, ••• ,permission "altname"

Usage

If the file to be described emanates from the user's
own master catalog, the user-ID may be omitted and
the file description bequn with an initial slash:

/catalog$password/ •••
/filename$pas8word,permission ••••

GE-625/635 GECOS-III TSS FORTRAN

If the file is one of the user's own first-level
files (i.e., no catalog string describing it other
than the user's own user-ID), filedescr may be
further shortened to si:mply the fliename portion,
with no initial slash:

filename$pa88word,permission, ••• ,
permission ·altname"

In the simplest case, this reduces tOI

fi Ie name $ pas sword

if all permissions are desired ("locking" the file
out to other users), and no alternate name 1s
desired.

A permission can be one of the following:

READ (or R)

WRITE (or W)

APEND (or A)

EXECUTE (lor E)

The $password parameter must be given if a password
is attached to the file. The default interpretation
for permissions is READ, WRITE (i.e., if READ
permission only is desired, it must be specified).
Multiple "readers" of the same file are allowed by
the time-sharing system.

The al tname parameter, lenclosed in double quotes, 1s
given when the file fil~ename is to be referred to by
an alternate name durln9 the current session at the
terminal.

Note that if a file is accessed with a filedescr
form of this command, it may then be referred to
simply by its file name in further commands or in
the program.

23

24

GE-625/635 GECOS-III TSS FORTRAN

• LIST -
Punction

To list at the terminal all
file. Several files and/or
adjoined for listing.

Forms of the Command

(1) LIST

or part of a source
file segments can be

Causes the entire current file to be listed.

(2) LIST i,j (where i and j are line numbers)

Causes all lines of the current file whose line
numbers lie between the values i and j,
inclusive, to be listed. (Note that in the case
of concatenated files -- see OLD command
where no resequencing has been performed,
multiple sets of lines numbered between i and j
mayor may not be listed, depending upon their
sequence.)

Either the i or j parameter may be omitted,
line numbers land 99999999, respectively, will
be assumed. That is, LIST i implies "from line
i through end-of-file"; LIST, j implies "from
beginning of file through line j." Parameters
i and j must be positive decimal integers.

(3) LIST filename

Causes the entire permanent file saved under
filename to be listed. The current file is not
affected. Filename must include at least one
alpha character.

(4) LIST filename (i,j)

Causes the lines numbered i through j of the
permanent file saved under filename to be
listed. The rules for i and j gIven unaer for.m
(2) also apply here. The current file is not
affected. A file with an all-numeric filename
may be listed with this for-m; i.e., for the
entire file: LIST filename ().

(5)

GE-625/635 GECOS-III TSS FORTRAN

LIST filename (i,j)l' filename (i,j)2' ••• '
filename(!,j)

n

(Where the (1,j) line-number parameters are
optional.) Causes the specified permanent files
and/or file segments to be adjoined and listed,
in the order given. ~he current file is not
affected. The current file, or a segment
thereof, may be specified in the file list
under the name ft* ".

If the list of files exceeds one line in
length, it may be continued on the next line
proviaed that the last nonblank character on
the first line is a semicolon.

(6) LISTH

Causes the current file to be listed with a
date-and-time heading_ Forms (2) through (5) of
LIST may be employed with LISTH also.

(7) LISTS .,b,c,d, •••

Causes only the lines numbered a,b,c,d, etc.,
of the current file to be listed.

(8) LIST 99999999

Usage

Causes the highest-numbered line of the file to
be printed, provided that the parameter given
is either all nines or greater than the highest
line number in the file.

The file(s) implied or specified by the LIST command
are not altered in any way. In the cases where the
current file is implied, the latest corrections or
modifications are incorporated and shown.

Forms (3), (4), and (5) are for the user's own
quick-access permanent files, (those files createa
by himself simply by means of the SAVE filename
command). Files either (1) with passwords attached,
or (2) emanating from a catalog strin9, or (3)
created by another user may all be accessed first
with the GET command, or accessed and listed with
the filedescr forms of LIST described in Appendix A.

25

26

GE-625/635 GECOS-III TSS FORTRAN

• NEW -
Function

To enable the user to begin building a new proqram
(i.e., new current file) from the terminal keyboard
or paper tape reader at any point during his use of
Time-Sharinq FORTRAN. The current file is cleared of
its previous contents (if any exist).

Form of the Command

NEW

Usage

If the user wishes to enter a new program and also
wishes to retain the latest contents of current file
(i.e., the previous "new" program or "old" program
with modifications), he should employ the SAVE
command prior to giving the NEW command.

GE-625/635 GECOS-III TSS FORTRAN

• OLD -
Function

Allows the user to retrieve an "old- (previously
saved) program from the file system, and have a copy
of it placed on the current file. Several permanent
files, or portions thereof, can be concatenated on
the current file.

Forms of the Command

(1) OLD filename

The file saved under filename becomes the
current file.

(2) OLD filename (i,j)

Lines i through j of the file saved under
filename become the current file.

Filename must be a line-numbered file.

(3) OLD filename(i,j~'filename2i ••• ;filename(i,j)n

(Where the (i,j) line-numbers parameters are
optional.) The specified permanent files or
file segments are adjoined in the order listed
and become the current file. (The resulting
file is not resequenced.) If the file list is
too long for one line, it can be continued on
the next if a semicolon is the last nonblank
character on the first line before the carriage
return.

The permanent file(s) specified by the OLD command
are not themselves altered by any modifications
subsequently made to the current file. In order to
retain any such modifications, the SAVE command must
be used.

Forms (1), (2), and (3) are for the user's own
quick-access permanent files (those files created by
himself stmply by means of the SAVE filename
command). Files with passwords attached, emanatIng
from a catalog string, or created by another user
may all be accessed first with the GET command, or
accessed and copied with the filedescr forms of OLD
described in Appendix A.

27

28

GE-625/635 GECOS-III TSS FORTRAN

• PEBM -
Function

~o allow a user to save, by name, a temporary file
written by his FORTRAN program. This command differs
from the SAVE command, in that the temporary file is
specified explicitly, as well as the nama of the
permanent file on which it is to be saved. The
saving can be done on a pre-existent (i.e.,
predefined) permanent file or a new permanent file
can be implicitly created.

Form of the Command

PERM tempfile,filename

Causes the temporary file named by tempfile to be
copied onto the permanent file filename.

Usage

When a FORTRAN program in execution attempts to
write to a namea file which does not already exist
as a permanent file or cannot be accessed
automatically (i.e., requires pre-accessing), a
temporary file is created by that name. All
temporary files are released when the user
ter.minates his session at the terminal.

The temporary files that he wishes to retain may be
saved either via the PERM command during his use of
FORTRAN, or by means of the file-saving p~ocedure
provided by the BYE command when he is about to end
his time-sharing session. If the PERM command is
used, the temporary file is released immediately and
the corresponding permanent file name is placed in
his ~. In this way, the saved file can be referred
to by further commands. For example, the saved file
can then be removed from the AFT by the way of the
REMOVE command (if it is full or near full) or it
can then be specified in the SCAN subsystem.

PERM works like SAVE in that if the named permanent
file does not already exist, it will be created with
general READ pe~ission. To save on other than
quick-access type files, the filedescr for.m of the
PERM command, as described in Appendix A, can be
employed.

GE-625/635 GECOS-III TSS FORTRAN

• REMOVE

Function

Allows the user to delete file names from his
available file table (AFT) during his session at the
terminal. Since the AFT is limited in size, it may
become full during a session, and unneeded files
must then be removed to make room for others.
Permanent files removed from the AFT are not purged
from the file system. Temporary files are released.

Forms of the Command

(1) REMOVE filename

The name filename is deleted from the user's
AF'r.

(2) REMOVE filename 1; filename 2' • • • ; filename'n

The n specified filenames are deleted from the
AFT.

Usage

The names of all accessed files (all files referred
to by any other command except PURGE) and/or
referred to by the executed object program,
temporary or permanent, are entered and retained in
the user's AFT. For example, if one or more
permanent files (or file segments) are merely
listed, the file names remain in the AFT for the
duration of the user's time-sharing session, unless
explicitly removed.

Since an executing FORTRAN program may access or
create a number of temporary and/or intermediate
files, the user's AFT could become full in
mid-execution unless judicious use is made of the
REMOVE command. The user can obtain a list of the
files presently entered in his AFT with the command
STATUS (refer to Appendix A).

29

30

GE-625/635 GECOS-III TSS FORTRAN

• lmSEQUENCE

Function

To resequence, or ·clean up," the line numbers of
the current file. The existent line numbers are
replaced by either a standard sequence of line
numbers, beginning with 0010 and incrementing by 10,
or by an ordered sequence specified by the user.

Forms 0 f the COIl\Inl;lnd

(1) RESEQUENCE

Causes the complete current
resequenced, beginning with line
and incrementing by 10.

(2) RESEQUENCE n,m

file to be
number 0010

Causes the complete current file to be
resequenced, beginning with line number n, and
incrementing each successive line number by m.
Either the n or m parameter may be omitted.

Usage

In the debugging or modification of a sou~ce
program, insertion of new lines may "clog" the
original line-number sequence. If several "old"
files and/or file segments are concatenated on the
current file (see the OLD command), resequencing 1s
not automatically performed and the line numbers of
the resulting program are not likely to be in
rational order. In either case, the RESEQOENCE
command may be employed to obtain a new line-number
sequence.

GE-625/635 GECOS-III TSS FORTRAN

• RUN

Function

To compile and/or execute the implied or specified
program file. Either the current file or a permanent
program file can be compiled and/or executed. A
concatenation of files or file segments (including
all or part of the current file) may be specified as
the program file. The program to be "run" may be a
source or object program, or a combination of both.

The user does not specify whether or not a
or program segment is to be compiled.
processor identifies source segments and
them automatically. The object program
from a oompilation may be saved.

program
The RUN
compiles

resulting

A no-go option is available to inhibit execution.

Forms of the Command

(1) RUN

The current file is compiled and executed.

(2) RUN= (NOGO)

The current file is compiled but not executed.
(Useful for syntax-error checking, any errors
wi 11 be noted.)

(3) RUN=savefile

The current file is compiled and executed, and
the resultant object program is saved on the
permanent file specified by savefile. Example:
RUN=BINPROGl

(4) RUN=savefile(NOGO)

Combination of forms (2) and (3).

31

32

GE-625/635 GECOS-III TSS FORTRAN

(5) RUN file-list

Where file-list has the general for.m:

filename(i,j)1;filename(i,j)2 i •• '
f1iename(i,j) n

(The line-number parameters, (i,j), are
optional.) The permanent file, or concatenation
of files and/or file segments, specified by
file-list is compiled and/or executed.
compilation of source segments is automatic.
The current file can be included in the file
list by the name a.n.

Examples.

RUN SOURCEl - Compile and execute the (source)
program on file SOURCEl.

RUN BINPROGl -- execute the (object) program on
file BINPROG1.

RUN SOORCE1(lO,175),* -- concatenate segment of
SOURCEl with current file (*), compile and
execute.

RUN ·,BINPROG2 -- concatenate current file and
(object) program on BINPROG2, compile and
execute.

RUN *(300,575) compile and execute the
specified segment of the current file.

(6) RUN file-list = (NOGO)

Combination of forms (2) and (5).

GE-625/635 GECOS-III TSS FORTRAN

(7) RUN file-list=savefile

Combination of forms (3) and (5).

(8) RUN file-list=savefile(NOGO)

Combination of forms (4) and (5). (General
form)

Usage

The RUN command can be used to request a compilation
and execution of a source program, a compilation
only, or an execution only of an object program.
Where a concatenation of files and/or file segments
is specified for the program file, they may be a
mixture of object and source files. (A maximum of 32
object files may appear in the file list, plus any
number of source files.)

The =savefile option is the only means whereby an
object program can be saved. If the file specified
by savefile already exists, it must be a random
file. If it does not already exist, a one-link
random file will be created (for quick-access type
files only). In general, savefiles should be
predefined (e.g., with the ACCESS Create-File
function) except in the case of small FORTRAN
programs.

The filename forms of the command, shown above, are
specifically for the normal, quick-access type of
files. Other types of files can be specified, in
file-list and savefile, with the filedescr forms
described in Appendix A.

33

34

GE-625/635 GECOS-III TSS FORTRAN

• SAVE -
Function

To save the contents of the current file on a
specified permanent file. The permanent file may be
a pre-existent (i.e., predefined) file, or it may be
created by the use of this command. The current file
may be saved on more than one permanent file
simultaneously.

Forms of the Command

(1) SAVE filename

(2)

The content of the current file is written onto
the permanent file specified by filename. The
current file is not released.

SAVE filename ;filename
2
, •• ,filename

--------1 n
The content of the current file is written onto
each of the files specified. The current file
1s not released.

psage

The forms of the SAVE command given above are
designed to save on, or to implicitly create,
quick-access type files. These files emanate
directly from the user's master catalog (identified
by his user-ID), have no password attached, and have
general READ permission assigned.

Files other than the quick-access type may be
created and/or written to by use of other forms of
SAVE, described in Appendix B; use of a combination
of the GET and SAVE commands, and prior use of the
ACCESS time- sharing subsystem (see Appendix B) and
then the SAVE command. See ·Categories of Files,"
below, and Appendix B for a description of
nonquick-access files.

If the file specified by filename does not already
exist, it will be created automatically, as defined
above.

GE-625/635 GECOS-III TSS FORTRAN

• TAPE -
Function

'1'0 allow the user to build (or add to) the current
file with input from the paper-tape reader of his
terminal device.

Form of the Command

TAPE

Osage

The TAPE command is normally given following either
a NEW response or command. (It may also be used
following an OLD response or command, for
substantial additions to or modification of an "oldft
program.) Following a TAPE command, the system
responds with READY. The user must then position his
tape in the reader and start the device. (See ftPaper
Tape Input" in this chapter for further details.)

35

GE-625/635 GECOS-III TSS FORTRAN

DESCRIPTION OF FI LES

File Names

~he names of Time-Sharing FORTRAN files must conform to the
standard time-sharing system rules as follows:

a. A file name may be from one to eight characters in
length.

b. A file may be composed of any combination of
alphanumerics (A-Z and 0-9), periods, and minus-signs,
in any order.

(For cases where a batch-environment file with a
longer than eight characters is to be referenced,
"Alternate Naming of Files," below.)

Categories of Fi les

file name
refer to

In the time-sharing environment, distinctions are made
between permanent files on two separate bases:

a. File-access type, which is a general
file-system-usage distinction and is not
Time-Sharing FORTRAN; ana,

time-sharing,
exclusive to

b. File mode, which has primarily to do with the kinds of
files produced under the Time-Sharing FORTRAN system.
(Both of these categories of distinctions apply to all
files.)

File-Access Types

There are three types of files, according to the method of
creation ana subsequent accessing of the file:

1. Quick-access files -- those permanent files that were
automatically created (i.e., defined) by the system as
a result of use of a SAVE filename or PERM tempfile;
i.e., filename command as first reference to a
particular f11e name. This type of file has the
following characteristics:

36

GE-625/635 GECOS-III TSS FORTRAN

a. It can be accessed by its creator simply by the
filename form of commands, and, in the case of data
f11es (input or output), will be accessed
automatically upon execution of a program reference
to it -- i.e., it need not be pre-accessed by
command.

b. It has general READ permission assigned.
accessed with READ permission only by
user who can describe it completely
user-ID/filename).

It can be
any other
(creator's

2. Quick-access files with password attached -- those
permanent files that (nor.mally) were automatically
created (i.e., defined) by the system as a result of
use of a SAVE filename$tassword command as first
reference to a pa~tIcular l Ie name. This type of file
is the same as the simple, quick-access type described
above except that it has the specified password
attached. It has the following characteristics:

It can be accessed by its creator either by the
filename or the filename$password for.m of commands, in
the former case, il $passwoid Is omitted, the system
will explicitly ask for the password. Also, in the case
of data files, it will be accessed automatically upon
execution of a program reference to it, but the system
will explicitly ask for the password. The
filename$iassword for.m of the commands are described in
Appe~aIx •

3. Nonquick-access files -- those permanent files that
either do not "belong" to the user h~self (i.e., were
created by another user) or do not emanate directly
from user's master catalog_ In the latter case, the
file is not completely described by user-IO and
filename$taSSword (intermediate catalogs exist), and,
In genera , use was made of the ACCESS subsystem in
explicitly creating some or all of the catalog/file
string describing the file.

The nonquick-access type of file can be accessed either with
the GET command, or with stmi1ar extended forms of other
commands described in Appendix A. See Appendix B fo~ a
discussion of the possible characteristics of this type of
file.

37

GE-625/635 GECOS-III TSS FORTRAN

Note that quick-access files (with or without password) are
only quick-access type relative to the file's creator. That
is to say, a quick-access file for user A is by definition
not a quick-access file for any other user.

Note

Once a type of file is initially
accessed, whether by a GET or any other
command, it can thenceforward be
referred to simply by file name, unless
explicitly removed from the AFT.

Fil e Modes

Three modes of files may be produced under the FORTRAN
system.

Mode -----
ASCII

Binary

Random

Ch'aracteristics

A linked (sequential) file of
variable71ength records in ASCII character
code, ~.e., a file composed of 9-bit
character strings. (An ASCII-mode file is
equivalent to the standard text file.)

A linked (sequential) file of
variable-length records in binary.

A random file of fixed-length records in
binary.

FORTRAN object programs can produce ASCII-mode files as
output. ASCII is always the mode of source-program files.
The file-building facilities of FO~RAN (or any other
time-sharing system, e.g., EDITOR) always produce ASCII
files, and only ASCII mode is acceptable on the current
file.

FORTRAN object programs can produce linked binary~ode file.
as output.

FORTRAN object program can proQuce random-mode binary files
as output. Random is always the mode of object-program files
themselves. Saved compiler output is always in random mode.

38

GE-625/635 GECOS-III TSS FORTRAN

All files, of any mode, must ~e explicitly saved by use of
the SAVE or PERM commands 1n order to be retained as
permanent files. If the specified permanent file does not
already exist, it will be implicitly created with the
correct linked or random characteristic, as required by the
file mode. (Linked is the standard, or default, type of file
created.)

If, however, the specified permanent file was explicitly
created (predefined by the user, normally by use of the
Create-File function of the ACCESS subsystem), the user must
have been careful to create the file with the random (R)
specification if a random-mode file is to be saved or made
permanent. (See "Special Features" in Appendix B.) This is
true particularly for the file specified as savefile, in the
RUN statement, on which the compiler output 18 saved. If
this is a pre-existent file, it must have previously been
created -- implicitly or explicitly -- as a random file. See
Appendix B for a description of the ACCESS subsystem.

Alternate Naming of Files

Permanent files may be temporarily renamed, with the altname
capability of the time-sharing command language, when
necessary or desirable. Alternate naming is effective only
during the ter.minal session in which the altname is assigned
and the original file name in the file system is not
altered. TwO cases in which alternate naming would be
required are as follows:

• When a file created in the batch environment (e.g.,
a data file) with a name longer than eight
characters is to be referred to by a Time-Sharing
FORTRAN program, it must be given an alternate name
of eight characters or less.

• When two or more files with identical file names are
to be referred to in one time-sharing session,
whether by commands or by the FORTRAN program, one
or more must be differentiated by alternate names.
(If the user is working only with his own
quick-access files -- the "normal" case this
problem does not arise.)

Alternate naming may conveniently be employed in the case
where the file name used in a FORTRAN program and the name
of the actual permanent file to be referred to do not agree.
Here the file may be given an altname, rather than changing
the program reference. This case ~ght frequently arise when
working with common data files.

39

GE-625/635 GECOS-III TSS FORTRAN

An alternate name can be assigned with the GET command, when
·pre-accessing" data (or source) files, or can be assigned
with extended for.ms of most other commands, as described in
Appendix A. Briefly, the syntax of alternate naming is:

filename-altname"

(or)

filename$password"altname"

SUPPLYING DIRECT-MODE PROGRAM INPUT

During program execution, keyboard input may need to be
supplied to satisfy one or more READ statements in the
user's program. Each time input is required, the equal-sign
character, "=-, will be printed at the terminal. The user
begins typing the input immediately following the equal
sign.

If the user gives a carriage return before satisfying the
input-list requirements, the system will respond with
another equal sign. The first carriage return following
sufficient input to satisfy the list will cause program
execution to resume.

EMERGENCY TERMINATION OF EXECUTION

The use of the BREAK key will terminate program execution.
It will also terminate printing due to a LIST command.
However, the user is cautioned against indiscriminate use of
the BREAK key, since the results of its use (e.g., in regard
to status of files) is completely unpredictable. Control
will return to build-mode after the use of the BREAK key.

40

GE-625/635 GECOS-III TSS FORTRAN

PAPER TAPE INPUT

In order to supply build-mode input from paper tape, the
user gives the command TAPE. The system responds with READY.
At this point, the user should position his tape in the
reader and start the device. Input is terminated when either
the end-of-tape occurs, the user turns off the reader, an
X-OFF character is read by the paper tape reader, or a
jammed tape causes a delay of over one second between the
transmission of characters.

At present a maximum of 80 characters are permitted per line
of paper tape input. Excessive lines will be truncated at 80
characters with the remaining data placed in the next line.
A maximum of two disc links (7680 words) of paper tape input
will be collected during a single input procedure. All data
in excess of two disc links will be lost.

41

SECTION II

TIME-SHARING FORTRAN

GE-625/635 GECOS-III TSS FORTRAN

3. Time-Sharing FORTRAN Language Characteristics

STATEMENTS

The Time-Sharing FORTRAN language may be considered a
version of the FORTRAN IV language. Statements in this
language are classified as follows:

• Specification statements provide information
concernIng constants and variables used in a program
and information concerning storage allocation.

• Control statements -- govern flow of control in a
program.

•

•

statements provide
--~~-.--.---~~----~ rout~nes and formats required.

necessary

Arithmetic statements
calculations.

specify numerical or logical

• Subprogram statements -- enable programmer to define
and:use sUbprograms for segmentation capability.

GENERAL PROPERTIES OF FORTRAN SOURCE PROGRAMS

The order of source statements is subject to the following
rules:

1. The following statements, if present, must be the first
of a routine:

FUNCTION
SUBROUTINE

43

GE-625/635 GECOS-III TSS FORTRAN

2. The following statements can only be preceded by the
statements named in 1. If a variable in COMMON also
appears in another specification statement, the COMMON
statement must come first.

COMMON
DIMENSION
INTEGER
REAL
LOGICAL
FILENAME
ASCII
EXTERNAL

3. Arithmetic statement functions can only be preceded by
the statements named in 1. and 2.

4. If a NAMELIST list is used in an I/O statement, it must
be preceded by a NAMELIST statement definition.

S. The last statement of a program or routine must be END.

6. The statement immediately preceding the END statement
of a program must be a STOP or unconditional transfer.

Variables used in COMMON statements will be automatically
preset to zero.

None of the variables used in DIMENSION, DATA, or NAMELIST
statements will be automatically initialized. Except for
variables in COMMON statements, the user must define the
values of all of his variables, including every member of an
array.

Within a FORTRAN statement, spacing is not meaningful except
for ASCII and filename constants, and in nH fields.

44

GE-625/635 GEeOS-II' TSS FORTRAN

4. Constants, Variables, Subscripts, and Expressions

Time-Sharing FORTRAN provides a means of expressing
quantities specified in an arithmetic formula statement
through use of constants and variables.

CONSTANTS

Five types of constants are permitted:

integer
real
logical

Integer Constants

General Form

ASCII
filename

An integer constant consists of one to 11 decimal
digits written without a decimal point.

Examples:
3
528
8085

An integer constant may be as large as 235 _1, except when
used for the value of a subscript or as an index of a DO, or
a DO parameter, ins which case the value of the integer is
computed modulo 21 •

45

GE-625/635 GECOS-III TSS FORTRAN

Real Constants

General Form

A real constant consists of one of the following:

1. One to nine significant decimal digits written with
a decimal point.

2. A sequence of decimal digits written with a
point, followed by a decimal exponent written
letter E, followed by a signed or unsigned
constant.

Examples:

21 •
• 203

decimal
as the

interger

8.0067 3
5 • 0 E3 (me ans 5 • 0 x lO 13 i. e ., 5000.)
5.0 E-3 (means 5.0 x 10 2 ' i.e., .005)
4.lE+02 (means 4.1 x 10 ; i.e., 410.)

1. The magnitude of a re~R constan~must be between the
approximate limits of 10 and 10- ,or must be zero.

2. A real constant has precision to approximately eight
digits.

Logical Constants,

46

General Form

A logical constant may take either of the following
forms:

.TRUE •
• FALSE.

GE-625/635 GECOS-III TSS FORTRAN

ASCII Constants

General Form

An ASCII constant consists of one to four alphameric
characters, either enclosed in quotation marks or 1 to
4H followed by the literal constant. Embedded blanks
are retained.

Examples:

"ABC"
"1234"
"CALL"
"ANS·

4HKYVG
3HDEF
4HNAM2

If an ASCII constant is fewer than four characters in
length, it will be left-justified and filled with blanks.
ASCII constants are used for storing character-coded
information. An ASCII constant may be stored in a variable
name or used directly, enclosed in quotes. Semicolons may
not be used within an ASCII constant.

Filename Constants

General Form

A filename constant consists of one to eight alphameric
characters enclosed in quotation marks or 1 to 8H
followed by the literal constant. A filename constant
uses two words in storage. Filename constants must be
at least five characters long except when they are used
in input/output statements; then they may be shorter
than five characters. Embedded blanks are retained.

47

Examples:

"ABCDE"
"SAM"
"FILE 128"
"12381632"

GE-625/635 GECOS-III TSS FORTRAN

6HCASE1J1
8HPROTECTS
SHCODED

If a filename constant consists of fewer than eight
characters, it will be left-justified and filled with blanks
to complete the two words. Thus "SAM" is stored as SAMbbbbb.
A filename constant may be stored in a variable name or used
directly, enclosed in quotes.

VARIABLES

The mode of a variable is specified by its name or by a Type
statement. There are six types of variables:

integer
real
logical

filename
ASCII
external

Variable Names

General Form

A variable name consists of alphameric characters, the
first of which must be alphabetic.

Examples:

L5
JOBl
BETATS
COST
K

A variable name may be any length, but when part of a NAME
LIST input/output list or when it appears in an EXTERNAL
statement, only the first eight characters are considered
significant.

48

GE-625/635 GECOS-III TSS FORTRAN

Variable Type Specification

The type of a real variable or function name and an integer
variable or function name may be specified in one of two
ways: implicitly by name, or explicitly by a Type
statement. (See the sections "Type Statements" in Chapter 5
and "Naming Subroutines" in Chapter 9.) All other variables
must have their type specifiea by a Type statement. These
include ASCII, filename, logical, and external variables.

Implicit Type Assignment

Implicit type assignment pertains only to real and integer
variable and function names:

1. If the first character of the name is I,J,K,L,M, or N,
it is an integer name; e.g., MAX, JOB, IDIST, LESL.

2. If the first character of the name is not I,J,K,L,M, or
N, it is a real name; e.9., ALPHA, BMAX, Q, WHIT.

ASCII and Filename Variables

ASCII and filename variables
characters respectively of
information.

consist of four and eight
character-coded alphanumeric

Filename specifies that the variables that follow are either
the names of files or contain some type of alpha information
up to eight characters long. If less than eight characters
are used in the information, they are left-justified and the
remainaer filled with blanks. Filename variables may not be
dimensioned, so no more than eight characters will be
accepted. For more than eight characters, dimensioned ASCII
should be used.

49

GE-625/635 GECOS-III TSS FORTRAN

ASCII is used to type character-coded infor.mation formerly
classified as hollerith. Each variable name is dimensioned
according to the number of four-character words it uses. If
less than four characters are used, they are left-justified
and the remainder filled with blanks.

Examples: (These variables must first be typed as
ASCII or filename prior to their appearance elsewhere
in the program.)

ASCII

ARRAY2 (8)
BETA
TITLE (4)
SIZE(3)
ALPHA

FILENAME

PROJECTX
AVGAM'l'
XY
CASES
COM

External Variables

An external variable is the name of a subprogram that
appears in the calling sequence to another subprogram or
built-in function used as the name of a FUNCTION or
SUBROUTINE subprogram. An external variable may be any
length, but only the first eight characters are checked by
the system for identification. It must appear in an EXTERNAL
Type statement at the beginning of the source program.

SUBSCRIPTS

A variable may be made to represent any element of an array
containing from one to 63 dimensions by appending one, two,
three, ••• , or 63 subscripts, respectively, to the variable
name. The variable is then a subscripted variable. The
value of the subscripts determines the member of the array
to which reference is made.

50

GE-625/635 GECOS-III TSS FORTRAN

Form of Subscripts

General Form

A subscript may take the form of any legal FORTRAN
arithmetic expression.

Examples:

I MAS
J9
K2
N+3

8*IQUAN
5*L+7
4*M-3
7+2*K

9+J
B**2
6**A-(1-SQRT(3.14»/8

Note: The value of a subscript
expression must be greater than zero and
not greater than the corresponding array
dimension. The value of a subscript
expression containing real variables is
truncated to an integer after
evaluation.

Subscripted Variables

General Form

A subscripted variable consists of a variable name,
followed by parentheses, enclosing one to 63 subscripts
separated by commas.

Examples:

A(I)
K (3)
BETA (8*J+2, K-2, L)
MAX (K,J,K,L,M,N)

51

GE-625/635 GECOS-III TSS FORTRAN

1. During the execution, the subscript is evaluated so
that the subscripted variable refers to a specific
member of the array.

2. Each variable that appears in subscripted form must
have the size of the array specified. This must be done
by a DIMENSION statement or by a COMMON or Type
statement (except EXTERNAL) that contains dimension
information.

Arrangement of Arrays in Storage

Arrays are stored in column order in increasing storaqe
locations, with the first of their subscripts varying most
rapidly and the last varying least rapidly.

For example:

The 2-dimensional array A(m,n) is stored as
follows, from the lowest core storage location to
the highest:

A'2 1 ••• ,A, m m n

EXPRESSIONS

The FORTRAN language includes two kinds of expressions:

arithmetic
logical

Arithmetic Expressions

An arithmetic expression consists of certain sequences of
constants, subscripted and nonsubscripted variables, and
arithmetic function references separated by arithmetic
operation symbols, commas, and parentheses.

52

GE-625/635 GECOS-III TSS FORTRAN

The following arithmetic operation symbols denote addition,
subtraction, multiplication, division, and exponentiation,
respectively:

+

*
/
**

The following are the rules for constructing arithmetic
expressions:

1. Any expression may be enclosed in parentheses.

2. Expressions may be connected by the arithmetic
operation symbols to form other expressions, provided
that:

a. No two operators appear in sequence.

b. No operation symbol is assumed to be present.

For example:

(X) (Y) is invalid.

3. Preceding an expression by a plus or minus sign does
not affect the type of the expression.

4. In the hierarchy of operations, parentheses may be
used in arithmetic expressions to specify the order in
which operations are to be computed. Where parentheses
are omitted, the order is understood to be as follows
(from innermost operations to outer.most operations) :

a. Function Reference

b. **(exponentiation)

c. * and / (multiplication and division)

d. + and - (addition and subtraction)

Expressions are evaluated from left to right where
operators are on the same level except for
exponentiation, where they are evaluated from
right to left.

53

GE-625/635 GECOS-III TSS FORTRAN

Logical Expressions

A logical expression consists of certain sequences of
logical constants, logical variables, references to logical
functions, and arithmetic expressions separated by logical
operation symbols or relational operation symbols. A logical
expression always has the value:

.TRUE. or .FALSE.

The logical operation symbols (where a and b are logical
expressions) are:

Symbol

.NOT.a

a.AND.b

a.OR.b

Definition

This has the value .TRUE. only if a
is .FALSE.; it has the value • FALSE.
only if a is .TRUE.

This has the value .TRUE. only if a
and b are both .TRUE.; otherwise it
is • FALSE.

(Inclusive OR) This has the value
.TRUE. if either a or b is .TRUE.;
it has the value .FALSE. only if
both a and bare .FALSE.

The logical operators NOT, AND, and OR must always be
preceded and followed by a period.

The relational operation symbols are:

S~mbol Definition

.GT. greater than

.GE. greater than or equal to

.LT. less than

.LE. less than or equal to

.EO. equal to

.NE. not equal to

54

GE-625/635 GECOS-III TSS FORTRAN

The relational operators must always be preceded and
followed by a period. These are the only operation symbols
that work with ASCII. Filen~me variables or constants
cannot be used in logioal expressions.

The logical expression will have the value .TRUE. if the
condition expressed by the relational operator is met;
otherwise, the logical ex~ression will have the value
.FALSE •• Rules for construct1ng logical expressions are:

1. A logical expression may consist of a single logical
constant, a logical variable, or a reference to a
logical function.

2. The logical operator .NOT. must be followed by a
logical expression, and the logical operators .AND. and
.OR. must be preceded and followed by logical
expressions to form more complex logical expressions.

3. Any logical expression may be enclosed in parentheses I
however, the logical expression to which the .NOT.
applies must be enclosed in parentheses if it contains
two or more quantities.

4. In the hierarchy of operations, parentheses may be used
in logical expressions to specify the order in which
operations are to be computed. Where parentheses are
omitted, the order is understood to be as follows (from
innermost to outer.most operation) :

a. Function Reference
b. ** (exponentiation)
c. * and / (multiplication and division)
d. + and - (addition and subtraction)
e. .LT.,.LE.,.EQ.,.NE.,.GT.,.GE.
f. .NOT.
g. .AND.
h. .OR.

Examples:

• NOT • (A.EQ.B)
C .AND. D
(A.GT.B) .OR. (F.LT.E)
(L.EQ.M) .AND. (Q.NE.P)
K.OR. (W .LE. V)
.NOT. (M.AND.N)

55

GE-625/635 GECOS-III TSS FORTRAN

5. Specification Statements

Specification statements are nonexecutable statements which
provide the compiler with information about storage
allocation and about the constants and variables used in the
program.

DIMENSION STATEMENT

General Form

where:

1. Each v is an array variable.
n

2. Each in is composed of from
integer constants and/or integer
by commas. (Integer variables may
only when the DIMENSION statement
or SUBROUTINE subprogram) •

Examples:

DIMENSION A(1,2,3,4), B(lO)

DIMENSION C (2,2,3,3,4,4,5)

one to 63 unsigned
variables, separated
be components of in
appears in a FUNCTION

In the preceding examples, A,B, and C are declared to be
array variables with four, one, and seven dimensions,
respectively.

57

GE-625/635 GECOS-III TSS FORTRAN

The DIMENSION statement provides the information necessary
to allocate storage for arrays in the object program. The
DIMENSION statement defines the maximum size of arrays. An
array may be declared to have from one to 63 dimensions by
placing it in a DIMENSION statement with the appropriate
number of subscripts appended to the variable.

1. The DIMENSION statement must precede every statement in
the program and immediately follow the subprogram
defining statement in the case of a FUNCTION or
SUBROUTINE subprogram. For exceptions, see Chapter 3.

2. A single DIMENSION statement may specify the dimensions
of many arrays.

3. If a variable appears in a DIMENSION statement, it must
not be dimensioned elsewhere.

4. Dimensions may also be declared in a COMMON or a Type
statement. If this is done, then these statements are
subject to the rules for the DIMENSION statement.

Adjustable Dimensions

The name of an array and the constants that are its
dimensions may be passed as arguments in a subprogram call.
In this way, a subprogram may perform calculations on arrays
whose sizes are not determined until the subprogram is
called. Figure 1 illustrates the use of adjustable
dimensions.

1. Variables may be used as dimensions of an array only in
the DIMENSION statement of a FUNCTION or SUBROUTINE
subprogram. For any such array, the array name and all
the variables used as dimensions must appear as
arguments in the FUNCTION or SUBROUTINE statement.

58

SUBROUTINE MAMY(••• ,N,L,M, •••)
DIMENSION ••• ,N(L,M), •••

•
•
•

DO 100 I=I,L

Figure 1

GE-625/635 GECOS·III TSS FORTRAN

2. The adjustable dimensions may not be altered within the
subprogram.

3. The absolute dimensions must be specified in a
DIMENSION statement of the calling program.

4. The calling program passes the specific dimensions to
the subprogram. These specific dimensions are those
that appear in the DIMENSION statement of the calling
program. Variable dimension size may be passed through
more than one level of subprogram.

5. A FUNCTION or SUBROUTINE argument must be explicitly
declared as INTEGER, unless it is implicitly of integer
type.

Example:

DIMENSION K(4,5), J(2,3), C(lO)
•
•
•

CALL SETFLG (K,J,4,5,2,3)

•

SUBROUTINE SETFLG (K,J,I,L,M,N)
DIMENSION K(I,L) ,J(M,N)

•

•
DO 20 NO=l,I
DO 20 MO=l,L
K(NO,M» =0

20 CONTINUE
•
•

59

GE-625/635 GECOS-III TSS FORTRAN

COMMON STATEMENT

General Form

COMMON a,b,c, •••

where a,b,c, ••• are variables that may be dimensioned.

Examples:

COMMON A,B,K,LEP,VW,P
COMMON D(5,10,12) ,EF,N(20) ,XY(2,6) ,HT

Variables, including array names, appearing in a COMMON
statement may be shared by a program and its subprograms.

1. The COMMON statement may only be preceded by FUNCTION
or SUBROUTINE statements. (For details, see Chapter 3.)
If the variables appearing in a COMMON statement
contain dimension information, they must not be
dimensioned elsewhere.

2. The locations in the COMMON area are assigned in the
sequence in which the variables appear in the COMMON
statement, beginning with the first COMMON statement of
the program.

60

GE-625/635 GECOS-III TSS FORTRAN

TYPE STATEMENTS

The type of a variable or function may be specified by means
of one of the six Type statements.

General Form

INTEGER a(i 1),b(i2),c(i 3), •••

REAL a (i 1) , b (i2) , c (i 3) , • • •

LOGICAL a(i
1

) ,b(i 2) ,c(i
3

) I •••

EXTERNAL x,y,z, •••

FILENAME d,e,f, •••

where:

1. a,b,c, ••• are variable or function names appearing
within the program.

2. x,y,z, ••• are subprogram names appearing within the
program.

3. Each in is composed of from one to 63 integer
constants and/or integer variables. Subscripts may
be appended only to variable names appearing within
the program, not to function names.

4. Filename variables are the names of files used in
the program.

S. ASCII variables are dimensioned according to the
number of 4-character words they use.

Examples:

INTEGER
RFAL
LOGICAL
EXTERNAL­
FILENAME
ASCII

BIXF,X,QF,LSL
IMIN , LOG,GRN , KLW
A(lO,lO),B
SIN,MATMPY,INVTRY
AA,FG,VEC,POSITION
NAME (6) ,RAD(7)

61

GE-625/635 GECOS-III TSS FORTRAN

The variable or function names following the type (INTEGER,
REAL, etc.) in the Type statement are defined to be of that
type, and remain so throughout the program, the type may not
be changed. Note that LSL and GRN need not appear in their
respective Type statements since their type is implied by
their first characters.

1. The appearance of a name in any Type statement, except
EXTERNAL, overrides the implicit type assignment.

2. Variables that appear in EXTERNAL statements are
subprogram names. Subprogram names must appear in an
EXTERNAL statement if they are the arguments of other
subprograms or if they are the name of a built-in
function that is used as the name of a FUNCTION or
SUBROUTINE subprogram.

3. A name may appear in two Type statements only if one of
the statements is EXTERNAL.

4. The Type statements (except EXTERNAL) must precede the
first appearance of the variable(s) to which they refer
in any executable, N~LIST, or DATA statements in the
program.

S. The EXTERNAL statement may not be used to dimension
variables.

6. Any variable that is dimensioned by a Type statement
may not be dimensioned elsewhere; i.e., it may not
appear as a dimensioned variable in a COMMON or
DIMENSION statement.

7. A name declared to be of a given type may assume only
the values of a constant of the same type.

62

GE-625/635 GECOS-III TSS FORTRAN

DATA STATEMENT

Data may be compiled into the object program by means of the
DATA statement.

General Form

where:

1. List contains the names of the variables being
defined.

2. d is the data literal.

3. k is an integer constant.

Examples:

DATA R,Q/14.2,3HEND/,Z/07777777llII1/
DATA B(2),B(3),W,T/2.0,3.0,"STAR","TIME"/
LOGICAL LA,LB
DATA LA,LB/.TRUE.,.FALSE./

1. List. Subscripted variables may appear in the list.
Where a subscript symbol is used, it must be an integer
constant.

2. k. The letter k denotes an integer constant and may
appear before a d-field to indicate that the field is
to be repeated k times. An asterisk must follow the
constant k to separate it from the field to be
repeated.

63

GE-625/635 GECOS-III TSS FORTRAN

3. The data literals may take any of the four following
forms:

(a) Integer and real constants. They may be signed or
unsigned.

(b) A1Ihameric characters. The alphameric field is
wr tten as nH followed by n alphameric characters,
or the characters may be enclosed in quotes. Each
group of four or fewer alphameric characters forms
a word. n may be less than or equal to four, if the
word is an ASCII constant, or n may be five to
eight, if the word is a filename constant.

(c) Octal digits. The octal field
letter 0, followed by one to
digits.

is written as the
12 unsigned octal

(d) Logical constants. The logical field may be written
as either .TRUE. or .FALSE ••

4. There must be a one-to-one correspondence between the
list items and the data literals. Each data literal
(integer constant, real constant, alphameric constant,
logical constant, or octal constant) corresponds to one
undimensioned variable or subscripted array reference.

5. DATA defined variables that
execution will assume their new
the DATA statement.

are redefined during
values regardless of

6. Where data is to be compiled into an entire array, the
name of the array (with indexing information omitted)
can be placed in the list. The number of data literals
must be equal to the size of the array.

For example, the statements

DIMENSION B(25)
DATA A,B,C,/24*4.0,3.0,2.0,l.O/

define the values of A,S(l) , ••• ,B(23) to be 4.0 and the
values of B(24), B(25), and C to be 3.0,2.0 and 1.0,
respectively.

7. The DATA statement may not be used to enter data into
COMMON.

8. Implied DO loops may not be used in the list items to
define an array.

64

GE-625/635 GECOS-III TSS FORTRAN

6. The Arithmetic Statement

The arithmetic statement defines a numerical or logical
calculation. It consists of a variable name followed by an
equal sign, followed in turn by any desired expression. The
equal sign of the FORTRAN statement specifies replacement;
the expression may be single constant, a single variable, or
a complex combination of operations. In essence, the machine
computes the complete expression on the right of the equal
sign and assigns that computed value to the variable whose
name appears on the left of the equal sign. The form of the
statement is limited because only a single variable may
appear on the left of the equal sign.

General Form

a=b

where:

1. a is a subscripted or nonsubscripted variable.

2. b is an expression.

Examples:

Ql=K
A(l)=B(l)+SIN(C(l»
V=.'l'RUE.
E=C.GT.D.AND.F.LE.G

JOE=" SAM"
IARRAY(2)="FEB"
R="CALL'l'YP"
BEC="ABCDE"

Figure 2 indicates which type expressions may be equated to
which type of variable in an arithmetic statement. In Figure
2, Y indicates a valid statement and N indicates an invalid
statement.

65

Left
Side
Of
Equal
Sign

I'
Expression -

var~
Real
Integer
Logical
ASCII
Filename

Examples:

A=B

I=B

A=I

1=1+1

A=3*B

66

GE-625/635 GECOS-III TSS FORTRAN

Right Side Of Equal Sign

~

Real Integer Logical ASCII Filename

Y y N N N
y y N N N
N N Y N N
N N N y y
N N N Y Y

Figure 2

Replace A by the current value of B.

Truncate B to an integer, convert it to
an integer constant, and store it in I.

Convert I to a real variable and store
it in A.

Add 1 to I and store it in I.

This expression is mixed; it contains
both a real variable and an integer
constant. Multiply B by 3 and store it
in A.

LOGICAL G,H
G=.'l'RUE.
H=.NO'l'.G

LOGICAL H
H=I.GE.A

FILENAME JOE
JOE="PETE It

FILENAME BEC
BEC="ACCOUNTS"

ASCII R
R="CALLTYP"

ASCII IARRAY (12)
IARRAY (2)="FEB"

LOGICAL G,H,P
G=H. OR. (• NOT. P)

LOGICAL G
G=3 •• GT.B

GE-625/635 GECOS-III TSS FORTRAN

Store the logical constant .TRUE.
in G. IF G is .TRUE., store the
value .FALSE. in H, if G is • FALSE.
store the value • TRUE. in H.

H is .TRUE. If I is greater
than or equal to AI H is • FALSE.
otherwise.

PETE, an ASCII constant, is stored in
JOE.

ACCOUNTS, a filename
constant, is stored in BEC.

CALL'l'YP, a filename constant, is
stored in R as "CALL".

FEB, an ASCII constant, is stored in
IARRAY (2).

Two logical operators may appear in
sequence only if the second one is
.NO'l' ••

1 2 3 4
H P ~p Hv r-......./ P
'l' T F 'l'
'l' F '1' 'l'
F 'l' F F
F F T 'l'

In the above figure,~ implies .NOT.
and v implies .OR.. The chart is
interpreted as follows:

If column 1 and column 2 hold, then
column 3 and column 4.

G is .TRUE. if 3. is greater than B; G
is • FALSE. otherwise.

The last two examples illustrate the following rule. Two
decimal points may appear in succession only if 1) two
logical operators appear in sequence where the second one
must be .NO'l'. or 2) a constant with a decimal point
precedes or follows a relational operator.

67

GE-625/635 GECOS-III TSS FORTRAN

7. Control Statements

Control statements enable the programmer to control and
terminate the flow of his program.

UNCONDITIONAL GO TO STATEMENT

General Form

GO '1'0 n

where:

n is a statement number.

Example I

GO '1'0 25

'1'his statement causes control to be transferred to the
statement numbered n.

69

GE-625/635 GECOS-III TSS FORTRAN

COMPUTED GO TO STATEMENT

General Form

where:

1. n1 ,n2 , ••• ,nm are statement numbers.

2. i is a nonsubscripted integer variable.

Example:

GO TO (30,45,50,9),K

This statement causes control to be transferred to the
statement numbered n 1 ,n 2 , ••• n depending on whether the
value of i is 1,2,3, ••• ,m re~pect1vely, at the time of
execution. Thus, in the example, if K is 3 at the time of
execution, a transfer to the third statement number in the
list (i.e., statement 50) will occur. If the value of K is
greater than m or if K=O, the user will be given a message
ana aborted.

70

GE-625/635 GECOS-III TSS FORTRAN

ASSIGNED GO TO STATEMENT

General Form

where:

1. i is a nonsubscripted integer variable appearing in
a previously executed ASSIGN statement.

2. n 1 ,n2 , ••• ,n
m

are statement numbers.

Example:

GO TO J, (17,12,19)

This statement causes control to be transferred to the
statement number last assigned to i by an ASSIGN statement,
nl,n2' ••• '~ is a list of the m values that i may assume.

71

GE-625/635 GECOS-III TSS FORTRAN

ASSIGN STATEMENT

General Form

ASSIGN n '1'0 i

where:

1. n is a statement number.

2. i is a nonsubscripted integer variable that appears
in an assigned GO TO statement.

Examples:

ASSIGN 12 to K
ASSIGN 37 to JA

This statement causes a subsequent GO TO i, (n1 ,n2 , ••• nm) to
transfer control to the statement numbered n, where n is one
of the statement numbers included in the series
n1,n 2' • • • '~m·

72

GE-625/635 GECOS-III TSS FORTRAN

ARITHMETIC IF STATEMENT

General Form

where:

1. a is an arithmetic expression.

2. n l ,n2,n3 are statement numbers.

Examples:

IF (A(J,K)-B) 10,4,30
IF (D*E+BRN) 9,9,15

~his statement causes control to be transferred to
statement numbered n l , n2 , or n3 if the value of a is
than, equal to, or greater than zero, respectively. n3
always be included in the statement.

the
less
must

73

GE-625/635 GECOS-III TSS FORTRAN

LOGICAL IF STATEMENT

74

General Form

IF (t) s

where:

1. t is a logical expression.

2. s is any executable statement except DO or another
logical IF.

Examples: In these examples A,B,D, and Q are logical
variables.

IF (A.AND.B) F=SIN (R)
IF (16.GT.L) GO TO 24
IF (D.OR.X.LE.Y) GO TO (18,20),1
IF (Q) CALL SUB

1. If the logical expression t is true, statement s is
executed. Control is then transferred to the next
sequential statement unless s is a transfer
statement, in which case, control is transferred as
indicated.

2. If t is false, control is transferred to the next
sequential statement.

3. If t is true and s is a CALL statement, control is
transferrea to the next sequential statement upon
return from the subprogram.

GE-625i635 GECOS-III TSS FORTRAN

DO STATEMENT

Gene!;'.l Form

where:

1. n is a statement number which defines the range of
the DO.

2. i is a nonsubscripted integer vax'iable, called the
index.

3. ml-,m2,m3 are each either an. unsigned inteqer
constant or a nonsubscripted integer' variable; if m) is
not stated, it is taken to be 1.

Examples:

DO 30 I=1,M,2
DO 24 l=1,10

The DO statement is a command to execute repeatedly the
statements that follow, up to and includ.ing the statement
numbered n. The statements in the rang'e of the DO are
executed repeatedly with i equal to m'l' then i equal to
ml+m:3' then i equal to m,! +2m3 , etc., until i is equal to the
h ghest value in this sequence that does not exceed m2•
Regardless of the initial values of mIl m2 , and m'), tne
statements in the range of the DO will be executed at least
once. The value of m'l' m2' and 1n3 must be greater than zero
when the DO statement is executed.

1. The range of a DO is that set of sta,tements that will
be executed repeatedly, i.e., it is, the sequence of
consecutive statements immediately following the DO
statement, up to and including the statement numbered
n. After the last execution of the range, the DO is
said to be satisfied.

75

GE-625/635 GECOS-III TSS FORTRAN

2. The index of a DO is the integer variable i.
Throughout the range of the DO, the index is available
for computation, either as an ordinary integer variable
or as the variable of a subscript. Upon exiting from a
DO by satisfying the DO, the index i must be redefined
before it is used in computation. Upon exiting from a
DO by transferring out of the range of the DO, the
index i is available for computation and is equal to
the last value it attained.

3. Within the range of a DO statement may be other DO
statements, such a configuration is called a DO nest.
If the range of a DO includes another DO, then all of
the statements in the range of the latter must also be
in the range of the for.mer.

4. Transfer of Control and DO Statements. Control may not
be transferred into the range of a DO from outside its
range. Thus, in the configuration following, 1,2, and 3
are permitted transfers, but 4,5, and 6 are not.

2

5

76

GE-625/635 GECOS-III TSS FORTRAN

5. Restrictions on Statements in the Range of a DO.

(a) Any statement that redefines the index or any of
the indexing parameters is not permitted in the
range of a DO.

(b) The range of a DO cannot end with an arithmetic IF
or GO TO-type statement, with a nonexecutable
statement, or with a RETURN or STOP statement. The
range of a DO may end with a logical IF, in which
case, control is handled as follows:

IF (t)s
If the logical expression t is false, the DO
is reiterated; if the logical expression t is
true, statement s is executed and then the DO
is reiterated.

However, if t is true and s is an arithmetio IF or
transfer type statement, control is transferred as
indioated.

6. When a reference to a subprogram is executed in the
range of a DO, care must be taken that the oalled
subprogram does not alter the DO index or the indexing
parameters.

CONTINUE STATEMENT

General Form

CONTINUE

CONTINUE is a dummy statement that gives rise to no
instructions in the object program. It is most frequently
used as the last statement in the range of a DO to provide a
transfer address for IF and GO TO statements that are
intended to begin another repetition of the DO range.

."

GE-625/635 GECOS-1I1 TSS FORTRAN

END STATEMENT

General Form

END

1. The END statement terminates compilation of a
: program.
2. The END statement must be the last statement of the
program.

STOP STATEMENT

IGeneral Form

STOP

The STOP statement terminates the execution of any program
by returning control to the system.

78

GE-625/635 GECOS-III TSS FORTRAN

8. Input/Output Statements

The FORTRAN statements that specify transmission of
information to or from input/output devices may be qrouped
as follows:

• General Input/Output Statements

The statements READ, PRINT, and WRITE cause the
transmission of a specified list of quantities
between the program and an input/output device.

• Manipulative Input/Output Statements

The statements CLOSE FILE, BEGIN FILE, END FILE, and
BACKSPACE manipulate files.

• Nonexecutable Statements

Either of two nonexecutable statements (the FORMAT
statement or the NAMELIST statement) may be used
with the general input/output statements.

The FORMAT statement, which can be used with any
general input/output statement, specifies the
arrangement of data in the external input/output
medium. If the FORMAT statement is referred to by a
READ statement, the input data must meet the
specifications described in "Data Input Referring to
a FORMAT Statement" in this chapter.

The NAMELIST statement specifies an input/output
list of variables and arrays. Input/output of the
values associated with the list is effected by
reference to the list in a READ or WRITE statement.
If the NAMELIST statement is referred to by a READ
statement, the input data must meet the
specifications described in "Data Input Referring to
a NAMELIST Statement" in this chapter.

79

GE-625/635 GECOS-III TSS FORTRAN

LIST SPECIFICATIONS

When arrays or variables are transmitted, an oraered list of
the quantities to be transmitted must be included either in
the general input/output statement or the referenced
NAMELIST. The order of the input/output list must be the
same as the order in which the infor,mation exists in the
input/output medium.

1. An input/output list is a string of list items separated
by commas. A list item may be:

80

a. An expression (on output only)
b. An implied DO
c. An array name

An input/output list reads fram left to riqht with
repetition of variables enclosed in parentheses.

Examples: A, B, C*D**E,1.2,Z,SQRT (14.6),
D, G, (B (K), K = 1,4), COS (1.22),50

Consider the followinq input/output list:

A,B(3), (C(I), D(I,K), I = 1, 10),
«E(I,J), I - 1,10, 2),F(J,3),J = 1 , K)

This list implies that the information in the external
input/output medium is arranged as follows:

A,B(3), C(l), D(1,K), C(2), D(2,K), ••• ,
C(lO), D(lO,K), E{l,l), E(3,1), ••• ,
E{9,1), F(1,3), E(1,2), E(3,2), •••• ,
E(9,2), F(2,3), ••• , F(K,3)

GE-625/635 GECOS-III TSS FORTRAN

2. The execution of an input/output list is exactly that
of a DO loop, as though each left parenthesis (except
subscripting parentheses) were a DO, with indexing given
immediately before the matching right parenthesis, and
with the DO range extending up to that indexing
infor.mation. The order of the input/output list above
may be considered equivalent to the following program
statements.

A
B (3)
DO 5 I=l, 10 ~ (e(I), D(I,K), I~l, 10) C (I)

5 D(I,K)
DO 9 J-l, K
DO 8 I-l, 10, 2 } «E(I,J), I-1, 10,2),

8 E(I,J) F(J,3) , J=l,K)
9 F(J,3)

3. An implied DO is best defined by an example. In the
input/output list above, the list item (CCI),
D(I,K),I-l, 10) is an implied DO, it is evaluated as in
the above program.

The range of an implied DO must be clearly defined by
parentheses.

4. For a list of the for.m K, ACK), or K (A(I), I-1,K),
where the definition of an index or an indexing
parameter appears earlier in the list of an input
statement than its use, the indexing will be carried out
with the newly read-in value.

5. Any number of quantities may appear in a single list.
Essentially, it is the list that controls the quantity
of data read. If more quantities are to be transmitted
than are in the list, only the number of quantities
specified in the list are transmitted, and remaining
quantities are ignored. conversely, if a list contains
more quantities than are given in one ASCII record, more
records are read or blanks are supplied depending upon
the FORMAT statement, if a list contains more quantities
than are given in nonrandom binary record, reading 1s
ter.minated as an object program error.

81

GE-625/635 GECOS-III TSS FORTRAN

6. By specifying an array name in the list of an
input/output statement or a NAMELIST, an entire array
can be designated for transmission between core storage
and an input/output medium. Only the name of the array
need be given and the indexing infor.mation may be
omitted.

Example:

DIMENSION A (5,5)
•
•
READ:A

In the above example, the READ statement shown is
sufficient to read in the entire array, the array is
stored in column order in increasing storage locations,
with the first subscript varying most rapidly, and the
last varying least rapidly.

FREE-FIELD ASCII INPUT jOUTPUT STATEMENTS

The following input/output statements enable a user to
transmit a list of quantities without reference to a FORMAT
or NAMELIST statement. The type of each variable in the list
deter.mines the conversion to be used.

82

General Form

READ:list
PRIN'l':list
READ (f,n 1,END-n2) list
FOMA'I' (V)
WRITE(f,nl) list
FOllHAT(V)

GE-625/635 GECOS-III TSS FORTRAN

The READ.list statement causes the character - to be sent to
the user's teletype as a signal to input a line of data.
Successive - signs are sent until the list has been
satisfied. List items are deltmited by a comma, carriage
return (or EOM), or blanks in the absence of the other
delimiters. Leading and trailing-blanks are ignored. Each
line of data is terminated by a carriage return (or EOK).
Data lines ended with a comma followed by a carriage return
will result in a null field being supplied for the list item
following the one whose input was terminated by the comma.

The PRINT:list causes a printed line of ASCII output
preceded by a carriage return and line feed to be
transmitted to the teletype. Each printed line is 72 or
fewer characters in length, and the conversion formats used
are shown in the table below. The list may include
alphameric information enclosed in quotes in addition to the
other forms of list items.

The READ(f,nl,END=n2)list statement causes the elements of
the list to be read fram file f according to the conversion
formats shown in the table. n'l is a format statement number
for FORMAT (V) where V is constant and means a free-field
format. n2 is a statement number to which transfer is made
upon reaching an end-of-file. Normally, FORMAT (V.) i8 used
to read files created with FORMAT (V).

The WRITE(f,nl,)list statement causes the elements of the
list to be written on file facoording to the conversion
formats shown in the table. nl is a format statement number
for FORMAT (V) where V is constant and means a free-field
format.

Examples:

READ-. (A(I), I=l ,5), B, J ,X

When an • sign is transmitted to the teletype, the user
might input the following data to satisfy the list:

-3.22,4.1,5.3,67,80,1.14,51.6,12,1.7

PRINT:D, (L(K),K-1,2), "ANS,WER","DATE"

83

GE-625/635 GECOS-III TSS FORTRAN

The following line of output might result from this
print statement:

2.728l500E+02 205617 8l34ANSWERDATE

READ (nFlLEln,10,ENDa 55)SAM,MAP,B,C,P

10 FORMAT (V)

WRITE (nF1LEl n,35)SLP,TEK,L,M,N,J

35 FORMAT (V)

In the table below, w represents the number of characters in
the blank or comma-separated strings.

FREE-FIELD CONVERSION FORMATS

Type of
READ: PRINT: Variable

real E(or F)w.d lPE16.7
integer Iw 112
logical Lw L2
filename Aw A9
ASCII Aw AS

FORMATTED ASCII INPUT jOUTPUT STATEMENTS

The formatted ASCII input/output statements enable a user to
transmit a list of quantities by referencing a FORMAT
statement that describes the type of conversion to be
performed between the internal machine language and the
external notation for each quantity in the list. The forms
of these statements are given in the following table, where
f is a file name, nl is a FORMAT statement number, and n2 is
a statement number to which transfer is made upon reaching
an end of file.

84

GE-625/635 GECOS-III TSS FORTRAN

General Form

READ n.1, list
READ (f, nl., ENDen2) list
PRINT n1, list
WRITE (f,nl:)list

Examples I

READ 10, (C(I), 1=1,5)

Type of Input/Output

ASCII ter.minal input
ASCII file input
ASCII terminal output
ASCII file output

READ ("DICK",lO)A,B,(D(J), J=l,lO)

PRINT 20, A, (C(K), Kel,S), TAN(.83)

WRITE ("FILE", 10) D,G, (H(I), I e l,4),M**2

The READ n, list statement causes the character - to be sent
to the user's teletype as a signal to input a line of data.
Input data is converted according to the format specified in
statement n. Successive - signs are sent as determined by
the for.mat statement until the list has been satisfied.

The READ(f,n) list statement causes ASCII information to be
read from file f according to the for.mat specified in
statement n. The use of this statement with a null file name
is equivalent to READ n, list. A null file name is one
consisting of all blanks.

The PRINT n, list statement causes ASCII information to be
transmitted to the user's teletype according to the for.mat
specified in statement n.

The WRITE(f,n) list statement causes ASCII infor.mation to be
transmitted to file f according to the for.mat specified in
statement n. The use of this statement with a null file name
is equivalent to PRINT n, list.

The first character of each record supplied for the PRINT n,
list statement is considered a oarriage-control character
and is not printed.

85

GE-625/635 GECOS-1I1 TSS FORTRAN

FORMAT STATEMENT

The formatted ASCII input/output statements require, in
addition to a list of quantities to be transmitted,
reference to a FORMAT statement that describes the type of
conversion to be performed between the internal machine
language and the external notation for each quantity in the
list.

General Form

where

each field, S1" is a format specification.

Example.

FORMAT (I2/(E12.4,P10.2»

1. FORMAT statements are not executed; they may be placed
anywhere in the source program. Each FORMAT· statement
must be given a statement number.

2. The FORMAT statement indicates, among other things, the
maximum size of each record to be transmitted. In this
oonnection, it must be remembered that the PORMAT
statement is used in conjunction with the list of soma
particular input/output statement, except when a PORMAT
statement consists entirely of alphameric field8. In all
other cases, control in the object program switches back
and forth between the list, which specifies whether data
remains to be transmitted, and the PORMAT statement,
which gives the specifications for transmission of that
data.

3.- Slashes are used to specify unit records, which must be
one of the following.

a. A file record
b. A line to be read from or printed on the teletype

86

GE-625/635 GECOS-III TSS FORTRAN

'rhus, FORMAT (3F9.2,2F10.4/8E14.5) would specify recorda
in which the first, third, fifth, etc., have the for.mat
(3F9.2,2F10.4), and the second, fourth, sixth, etc.,
have the for,mat 8E14.5).

4. During input/output of data, the object program scans
the FORMAT statement to which the relevant input/output
statement refers. When a specification for a numerical
field is found and list items remain to be transmitted,
input/output takes place according to the
specifications, and scanning of the FORMAT statement
reswnes.

If no items remain, transmission ceases and execution of
that particular input/output statement is terminated.

Numeric Fields

Five types of conversion are available for numeric datal

Internal Conversion Code External

Floating point E Real with E exponent
Floating point F Real without exponent
Any G Appropriate type
Integer I Decimal Integer
Integer 0 Octal Integer

These types of conversion are specified, in the fo:ms Ew.d,
Fw.d, aw.d, Iw, OW, where.

1. E, F, G, I, and 0 represent the type of conversion.

2. w is an unsigned integer constant that represents the
field width for converted data, this field width may be
greater than required to provide spacing between
numbers.

3. d is an unsigned integer or zero that represents the
number of positions of the field that appear to the
right of the decimal point. For E-, F-, and G­
conversion, d will be made equal to eight if it should
be equal to nine.

87

GE-625/635 GECOS-III TSS FORTRAN

For example, the statement FORMAT (12, E12.4, 08, F10.4)
might cause the following line to be printeda

27~-0.932~025773427~~-0.0076
where ~ indicates a blank space.

The following are notes on E-, F-, G-, 1-, and 0-
conversion.

1. Specifications for successive fields are separated by
commas and/or slashes. (See "Multiple-Record Formats" in
this chapter.)

2. No format specification should be given that provides
for more characters than permitted for a relevant
input/output record. Thus, a format for a ASCII record
to be printed out on the teletype should not pzovide for
more characters than the capabilities of the printer on
that model.

3. 1nfor,mation to be transmitted with 0- and G- conversion
may have real or integer names, information to be
transmitted with E- and F- conversion must have real
names, information to be transmitted with I- conversion
must have integer names.

4. For G-conversion input values will be stored as floating
point numbers. G-conversion is output in F- or
E-conversion depending on the range.

5. The field width w, for E-, F-, and G-conversion, must
include a space for the decimal point and a space for
the sign. E- and G-conversion also require space for the
exponent. Thus, for E- conversion, w > d + 7 and for
F-conversion, w > d + 3.

6. The exponent, which may be used with E-conversion, is
the power of 10 to which the number must be raised to
obtain its true value. The exponent is written with an E
(for E-conversion) followed by a minus sign if the
exponent is negative, or a plus sign or a blank if the
exponent is positive, ana then followed by two numbers
that are the exponent. For example, the number .002 is
equivalent to the number .2E-02.

88

7.

8.

9.

GE-625/635 GECOS-III TSS FORTRAN

E- or F- conversion may be used for floating point
numbers whose absolute value is less than 227.
E-conversion must be used for numbers whose absolute
value is greater than or equal to 227 (134,217,728).

If a number converted by I-conversion requires more
spaces than are allowed by the field width w, the excess
on the high-order side is lost. If the number requires
fewer than w spaces, the leftmost spaces are filled with
blanks. If the number is negative, the space preceding
the leftmost digit will contain a minus sign if
sufficient spaces have been reserved.

If an output number that is converted by E-, F-, G-, or
I-conversion requires more spaces than are allowed by
the field width w, the most significant part of the
number is truncated to fit the field. If the number
requires fewer than w spaces, the leftmost spaces are
filled with blanks. The output field is filled with
blanks if the value of the output number is
+377777777777 (octal).

Alphameric Fields

In addition to ASCII and FILENAME provided by FORTRAN, there
are two ways by which alphameric infor.mation may be
transmitted, both specifications result in storing the
alphameric infor.mation internally in ASCII.

1. The specification Aw causes w characters to be read
into, or written from, a variable or array name.

2. The specification nH introduces alphameric infor.mation
into a FORMAT statement.

The basic difference between A- and H-conversion is that
information handled by A-conversion is given a variable name
or array name that can be referred to for processing and
modification, whereas, infor.mation handled by H-converaion
is not given a name and may not be referred to or
manipulated in storage in any way.

89

GE-625/635 GECOS-III TSS FORTRAN

A-Conversion

The variable name to be converted by A-conversion must
conform to the nor.mal rules for neming FO~RAN variables, it
may be any type of variable.

1. On input, nAw will be interpreted to mean that the next
n successive fields of w characters each are to be
stored as ASCII information. If w is greater than four,
the characters will be left-adjusted, and the word
filled out with blanks.

2. On output, nAw will be interpreted to mean that the next
n successive fields of w characters each are to be the
result of transmission from storage without conversion.
If w exceeds four, 'only four characters of output will
be transmitted, preceded by w-4 blanks. If w is less
than four, the w leftmost characters of the word will b~
transmitted.

3. If the variable involved is a filename, all above
references to four become eight.

H-Conversion

The specification DB is followed in the FORMAT statement by
n alphameric characters. For example:

31H~THIS~IS~ALPHAMERI~INFORMATION

Note that blanks are considered alphameric characters and
must be included as part of the count n. The effect of DB
depends on whether it is used with input or output.

1. On input, n characters are extracted from the input
record and replace the n characters included with the
source program FORMAT specification.

2. On output, the n characters following the specification,
or the characters that replace them, are written a8 part
of the output record.

90

GE-625/635 GECOS-III TSS FORTRAN

Figure 3 is an example of A- and H-conversion in a
FORMAT statement. The statement FORMAT (4HbXY=, F8.3,A4)
might produce the following lines, where ~ indicates a
blank character:

XY=JIS-93.210 mine
XY-9999.999 sees
xy=;.sJ628.768 hrs

Figure 3

3. Quotation ma~ks may be used in place of the nH
specification for alphameric characters. The first
example would then be writtenl

IITHIS IS ALPHAMERIC INFORMATION"

Logical Fields

Logical variables may be read or written by means of the
specification Lw, where L represents the logical type of
conversion and w is an integer constant that represents the
data field width.

1. On input, a value of .TRUE. will be stored if the field
of w characters is .TRUE. or if the first nonblank
character in the field is T. A value of .FALSE. will be
stored if the field of w characters is .FALSE., if the
first nonblank character in the field is an P, or if all
the characters are blank.

2. On output, a value of .TRUE. or • FALSE. in storage will
cause w-l blanks, followed by a T or an F, respectively,
to be written.

91

GE-625/635 GECOS-III TSS FORTRAN

Blank Fields -- X-Conversion

The specification nX introduces n blank characters into an
input/output record.

1. On input, nX causes n characters in the input record to
be skipped, regardless of what they are.

2. On output, nX causes n blanks to be introduced into the
output record.

Repetition of Field Format

It may be desired to print or read n successive fields in
the same format wi thin one record. This may be specified by
giving n, an unsigned integer, before E, F, G, I, L, 0, or
A. Thus, the field specification 3El2.4 is the same as
writing E12.4, El2.4, El2.4.

Repetition of Groups

A limited parenthetical expression 1s permitted to enable
repetition of data fields according to certain fo~at
specifications within a longer FORMAT statement. Thus,
FORMAT (2(FIO.6, E10.2),14) is equivalent to FORMAT (FlO.6,
ElO.2, FlO.6, ElO.2, 14). (See "Multiple-Record Formats·
below.)

92

GE-625j635 GECOS-III TSS FORTRAN

Scale Factors

To permit more general use of E-, F-, and G-conversion, a
scale factor followed by the letter P may precede the
specification. The magnitude of the scale factor must be
between -8 ana +8, inclusive. The scale factor is defined
for input as followsl

-scale factor
10 x external quantity c internal quantity

The scale factor is defined for output as follows.

scale factor
external quantity - internal quantity x 10

For input, scale factors have affect only on F-conversion.
For example, if input data is in the form xx.xxxx and it is
desired to use it internally in the for.m .xxxxxx, then the
FORMAT specification to effect this change is 2PF7.4. For
output, scale factors may be used with E-, F-, and
G-conversion.

For example, the statement FORMAT (I2, 3Fll.3) might give
the following printed line.

But the statement FORMAT (12, lP3Fll.3) used with the same
data would give the following line.

Whereas, the statement FORMAT (I2, -lP3Fll.3) would give the
followinq line.

93

GE-625/635 GECOS-III TSS FORTRAN

A positive scale factor used for output with E-conversion
increases the number and decreases the exponent. Thus, with
the same data, FORMAT (I2, IP3El2.4) would produce the
following line:

27~-9.3209E~Ol~-7.5804E-03~~5.5536E-Ol

The scale factor is assumed to be zero if no other value has
been given. However, once a value has been given, it will
hold for all E-, F-, an G-conversions following the scale
factor within the same FORMAT statement. This applies to
both single-record formats and multiple-record formats. Once
the scale factor has been given, a subsequent scale factor
of zero in the same FORMAT statement must be specified by
OPe For F-type conversion, output may not include numbers
whose absolute value is greater than or equal to 235 after
scaling. Such numbers will be output in E-conversion. Scale
factors have no affect on 1- and O-conversion.

Multiple-Record Formats

To deal with a block of more than one line of print, a
FORMAT specification may have several different one-line
formats separated by a slash to indicate the beginning of a
new blank line. Thus, FORMAT (3F9.2,2FlO.4/8E14.5) would
specify a multiline block of print in which lines 1, 3, 5,
format (3F9.2,2FIO.4), and lines 2,4,6, ••• have format
(8E14.5).

If multiple-line format is desired in which the first two
_lines are to be printed according to a special format and
a1.1 remaining lines according to another format, the last
line-specification should be enclosed in a second pair of
parentheses7e.g.,FORMAT(I2,3El2.4/2FlO.3,3F9.4/(lOF12.4)).
If data items remain to be transmitted after the format
specification has been completely ·usedw,the format repeats
from the last previous parenthesis, which is a zero or a
first-level parenthesis.

94

GE-625/635 GECOS-III TSS FORTRAN

FORMAT (3ElO.3, (I2,2 (F12.4 ,FlO .3» ,EIS .8)
o 1 2 21 0

The parentheses labeled 0 are O-level parentheses, those
labeled 1 are first-level parenthesis; and, those labeled 2
are second-level parentheses. If more items in the list are
to be transmitted after the format statement has been
completely used, the FORMAT repeats from the last
first-level left parenthesis; i.e., the parenthesis
preceding 12.

As these examples show, both the slash and the final right
parenthesis of the FORMAT statement indicate a termination
of a record.

Blank lines may be introduced into a multiline FORMAT
statement by listing consecutive slashes. When n+l
consecutive slashes appear at the end of the FORMAT, they
are treated as follows: for input, n+l records are skipped;
for output, n blank lines are written. When n+1 consecutive
slashes appear in the middle of the FORMAT, n records will
be skipped for input and n blank lines are written for
output.

FORMAT Statements Read at Object Time

FORTRAN accepts a variable FORMAT address. This permits
specifying a FORMAT for an input/output list at object time.

DIMENSION FMT (4)
I FORMAT. (4A4)

READ (FILEI,l) (FM'l'(I), 1=1,4)
READ (FlLEI,FMT) A, B, (C(J),J-I,5)

Figure 4

In Figure 4, A, B, and the array C are converted and stored
according to the FORMAT specifications read into the array
FMT at object time.

95

1.

2.

GE-625/635 GECOS-III TSS FORTRAN

The name of the variable FORMAT
appear in a statement with dimension
if the array size is only 1.

specification
information,

must
even

The format read in at object time must take the same
form as a source program FORMAT statement, except that
the word FORMAT is omitted, i.e., the variable format
begins with a left parenthesis.

Example: In Figure 4 above, the following format might be
read in for F~I

(2E14.6,5F6.2)

Then in the READ (FILE1, FMT) statement, A and B would have
the format E14.6 and the five values for C would have the
format 1'6.2.

Data Input Referring to a FORMAT Statement

Data input to the object program is typed or read from paper
tape according to the following- specifications:

1. The data must correspond in order, type, and field with
the field specifications in the FORMAT statement.

2. Plus signs may be omitted or indicated by a +.
signs must be indicated.

Minus

3. A blank in a numeric field is treated as a zero. A
numeric field containing all blanks is converted to
zero.

4. Numbers for E- and F-conversion may contain any number
of digits, but only the high-order eight -digits of
precision will be retained.

5. For input, numeric data must be situated at the extreme
right of its field (right-justified).

Certain relaxations in input data format are permitted.

96

GE-625/635 GECOS-III TSS FORTRAN

1. Numbers for E-conversion need not have four columns
devoted to the exponent field. The start of the exponent
field must be marked by an E or, if that is omitted, by
a plus or minus sign (not a blank). Thus, E2, E+2, +2,
and +02 are all permissible exponent fields.

2. Numbers for E-, and F-conversion need not have a decimal
point, the for.mat specification will supply it. For
example, the number -09321+2 with the specification
E12.4 will be treated as though the decimal point was
between the zero ana the nine. If the decimal point is
in the line of data, its position overrides the position
indicated in the FORMAT specification.

MEMORY-TO-MEMORY DATA CONVERSION, STATEMENTS

Two statements which are associated with for.matted READ and
WRITE statements are DECODE and ENCODE, respectively. In an
ENCODE/DECODE operation, no actual input/output takes place,
data conversion and transmission takes place between an
internal buffer area and the elements specified by a list.
This buffer area is designated by the programmer and is
usually an array. When multiple records are specified by the
FORMAT being used, records after the first record follow
each other in the buffer area.

97

GE-625/635 GECOS-III TSS FORTRAN

ENCODE Statement

General Form

ENCODE (a,n) list

where:

1. n is either the statement number or the array name
of the FORMAT statement describing the data being
encoded.

2. a is an array name which specifies the starting
location of the internal buffer.

3. List is as specified for a WRITE statement.

The ENCODE statement causes the data items specified by the
list to be converted to character strings, according to the
FORMAT specified by n, and placed in storage beginning at
location a.

The number of characters for a record caused to be generated
by the FORMAT statement and list should not be greater than
the size of the array a.

Example.

98

The following example of ENCODE will print A series of
squares made up of # signs. The number of squares
printed can be varied by changing the value of the
variable TIMES. By changing the contents of the list
items, STAR and CENTER, different designs could be
created. In this program, the squares are 16 f signs in
width and 9 # signs in length. The variables J and K
control the spacing between each printed line, and
LEDGE controls the width of the left-hand margin. The
data items in the list are stored in ARRAY, which is
then printed line by line to for.m the squares. A sample
square is shown.

GE-625/635 GECOS-III TSS FORTRAN

ASCII ARRAY(9),STAR(4),CENTER(4),J
INTEGER TIMES
STAR(l) = 4Hiiif
S'l'AR(2) = 4Hflll
STAR(3) == 4Hilii
STAR(4) - 4H.,.i
CENTER(l) - 4Hi~~
CENTER(2) - 4H~
CENTER(3) - 4H~~~
CENTER(4) = 4H~~i
LEDGE-5, LENGTH-7, J="-", K==2
TlMES-4
DO lSI Nal, TIMES
ENCODE (ARRAY,3S1)J,LEDGE,(STAR(I),I~1,4)
PRINT ARRAY
DO 2S1 M-l,LENG'l'H
ENCODE (ARRAY,3S1)K,LEDGE,(CENTER(L) ,L-l,4)
PRINT ARBAY

2S1 CONTINUE
ENCODE (ARRAY,3,)K,LEDGE,(STAR{I),I=1,4)
PRINT ARRAY

lSI CONTINUE
3, FORMAT (3H(lH,Al,lH,I2,5HX,16H,4A4,lH»

STOP
END

,fiif.fff,., ••• ,
I I
I I
I •
I •
I I
I I
I I ,I." ••••• ,.i.,.

99

GE-625/635 GECOS-III TSS FORTRAN

DECODE Statement

General Form

DECODE (a,n) list

where:

1. n is either the statement number or the array name
of the FORMAT statement describing the data being
decoded.

2. a is an array name which specifies the starting
location of the internal buffer.

3. List is as specified for a READ statement.

~--------------,--------------------------------------~

The DECODE statement causes the character string beginning
at loc& tion a t~o be converted to data items, according ttl
tile FORMAT specified by n, and stored in the elements of the
list. The character string in the array consists of 9-bit
ASCII characters.

The FORMAT statement and list should not require more
characters than are in the array a. A new record is begun
when specifically requested by the FORMAT.

Example.

100

Assume that a record has been read into contiguous
character positions in array R:

3
5

11
21

12
22

13
23

DECODE (R,5)J
FORMAT (11)
GO TO(11,12,13,14,15,16,17,18,19),J
DECODE (R,2l) (A(I), I-l,lO)
FORMAT (lX, 10F9.3)
GO TO 31
DECODE (R,22) Kl,K2,K3,K4
FOBMAT (lX,4I5)
GO TO 32
DECODE (R,23) X,Y,Z
FORMAT (lX,3E20.9)
etc.

•
•
•

GE-625/635 GECOS-III TSS FORTRAN

l::xplanation:

~hese statements illustrate a method of processing randomly
ordered input records of varying format and data content.
The type is identified by a digit from one to nine in the
first column. Statement 3 converts the digit from character
form to integer form. The GO TO then transfers to the
DECODE/FORMAT combination prepared to process the specified
format.

BINARY INPUT/OUTPUT STATEMENTS

The following table gives the for.ms of binary input/output
statements. In the examples given, f is a file name, r is an
integer expression or constant specifying the relative
record in random file f, and n2 is a statement number to
which transfer is made upon reaching the end-of-file. No
FORMAT statement is referenced and binary information
frequently consists of large groups of numeric data.

General Form

Rl:;AIJ (f,E~D =n2) list
.REAl.> (fir) list
WRITE (f) list
WRITE (fir) list

l:;xamples:

Type of Input/Output

Binary file input
Random file input
Binary file output
Random file output

READ (ABCDE,~ND - 50) (A(J),J a 1,10)
BEAD (-CHECK- I 92) ARRAY
WRITE (FILE) JLB,KN, (B(L),L = 1,8)
WRITE (MATRIX I 15) DET, TRANS, INVT

101

GE-625/635 GECOS-III TSS FORTRAN

The READ (f,END" n2) list statement causes binary
infoxmation to be read from file f. If the end-of-file is
reached, a transfer is made to statement n2.

The READ (f'r) list statement causes binary infor.mation to
be read from record r of random file f.

The WRITE (f) list statement causes binary information to be
written on file f.

The WRITE (f'r) list statement causes binary information to
be written on record r of random file f. A random file is
written as a fixed number of records with each record having
a fixed number of 4-character words.

In three of the examples given above the names of the files,
ABCDE, FILE, and MATRIX, are filenaJne variables. They must
be equated to filename constants enclosed in quotes before
they appear in an input/output statement. The constanta will
then be the actual names of files used in the READ or WRITE
statements. As an alternate method to this, the names of the
files may be enclosed in quotation marks in the input/output
statements. An example is given below where either method 1
or method 2 is valid.

1. WRITE ("MATRIX") list

2. FILENAME ARRAY
ARRAY - "MATRIX·
WRITE (ARRAY) list

NAMELIST INPUT jOUTPUT STATEMENTS

The four input/output statements which referenc:e a NAMELIST
name are given below.

102

General Form

READ x
READ (f,x,END .. n2)
PRIN'!' x
WRITE (f,x)

Type of Input/Output

ASCII terminal input
ASCII file input
ASCII terminal output
ASCII file output

GE-625/635 GECOS-III TSS FORTRAN

In the given forms f 1s a file name, x is the NAMELIST name,
and n2 is a statement number to which transfer is made upon
reaching the end-of-file.

Examples:

READ ("FILEl", NAMl,END = 45)
WRITE ("FILE2",NAM2)

The READ (f,x,END = n2) statement causes ASCII information
related to variables and arrays associated with the NAMELIST
name x to be read from file f. Transfer is made to statement
n 2 when the end-of-file is reached. END = n2 may be omitted
from the statement.

The WRITE (f,x) statement causes ASCII information related
to variables and arrays associated with the NAMELIST name x
to be written on file f.

NAMELIST Statement

The NAMELIST statement and the above forms of the READ and
WRITE statements provide for reading, writing, and
converting data without the use of an input/output list in
the input/output statement and without a reference to a
FORMAT statement.

General Form

NAMELIST /X/A,B ••• C/Y/D,E, •••• F/Z/G,H, ••• I

where:

1. X,Y,Z, ••• are NAMELIST names.

2. A,B,C,D, ••• are variable or array names.

Examples I

DIMENSION A(lO), I(5,5), L(10)
NAMELIST /NAM1/A,B,I,J,L/NAM2/A,C,J,K

103

GE-625/635 GECOS-III TSS FORTRAN

In the preceding examples, the arrays A, I, and L and the
variables Band J belong to the NAMELIST name NAMl, and the
array A and the variables C, J, and K belong to the NAMELIST
name, NAM2.

Each list that is mentioned in the NAMELIST statement is
given a NAMELIST name. Only the NAMELIST name is needed in
an input/output statement to refer to that list thereafter
in the program. The following rules apply to assigning and
using a NAMELIST namel

1. A NAMELIST name consists of one to eight alphameric
charactersl the first character must be alphabetic.

2. A NAHELIST name is enclosed in slashes when defined in a
NAMELIST statement.

The field of entries belonging to a NAMELIST name ends
either with a new NAMELIST name enclosed in slashes or with
the end of the NAMELIST statement.

104

3. A variable name or any array name may belong to one
or more NAMELIST names.

4. A NAMELIST name must not be the same as any other
name in the program.

5. A NAMELIST name may be defined only once by it.
appearance in a NAMELIST statement. After it has
been defined in the NAMELIST statement, the
NAMELIST name may appear· only in READ or WRITE
statements thereafter in the program.

6. A NAMELIST statement defining a NAMELIST name must
precede any appearance of the name in the program,
and must follow all the specification statements
such as COMMON, DIMENSION, etc.

7 • A dummy argument which appears in a FUNCTION or
SUBROUTINE statement cannot be used as a variable
in a NAMELIST statement.

S. If a NAMELIST statement contains a dimensioned
variable, the statement that contains the dimension
infor.mation defining the variable must precede the
NAMELIST statement.

GE-625/635 GECOS-III TSS FORTRAN

Data Input Referring to a NAMELIST Statement

When a READ statement refers to a N~LIST name, the
designated input device is prepared ana input of data is
begun. The first input data reoord is searched for a $ as
the first nonblank character, immediately followed by the
NAMELIST name, immediately followed by a comma or one or
more blank characters. When a successful match is made of
the NAMELIST name on a data record and the NAMELIST name
referred to in a READ statement, data items are converted
and placed in storage.

Any combination of four types of data items, described in
the following text, may be used in a data record. The data
items must be separated by commas. If more than one record
is needed for input data, the last item of each record,
except the last record, must be a constant followed by a
line feed or carriage return. The end of a group of data is
signaled by $ either in the same data record as the NAMELIST
name or anywhere in any succeeding records.

The form that data items may take iSI

1. Variable name - constant

where variable name may be an array element name or
a simple variable name.

2. Array name - set of constants (separated by commas)

where k* constant may be included to represent k
constants (k must be an unsigned integer).

3. Subscripted variable = set of constants (separated by
conunas)

where k* constant may be included to represent k
constants (k must be an unsigned integer). A data
item of this form results in the set of constants
being placed in consecutive array elements, starting
with the element designated by the subscripted
variable. The number of constants given cannot
exceed the number of elements in the array that are
included between the given element and the last
element in the array, inclusive.

105

GE-625/635 GECOS-III TSS FORTRAN

4. Variable l/Variable 2 - constant

where Variable 1 is a counter which is set aftar the
data has been input, indicating the number of
constants that have been stored for Variable 2.
Variable 1 1s a nondimensioned integer name and
Variable 2 is a dimensioned array name.

constants used in the data items may take any of the
following formsl

a. integers
b. real numbers
c. logical constants, which may be written as

and .FALSE. or T and F
d. ASCII constants
e. filename constants

.'l'RUE.

Logical constants may be associated only with logical
variables. 'l'he other types of constants may be associated
with the other variables and are converted in acoordance
with the type of variable. Blanks must not be embedded in a
constant or repeat constant field, but may be used freely
elsewhere within a data record.

Any selected set of variable or array names belonging to the
NAMELIS'l' name that is referred to by the READ statement may
be used as specified in the preceding description of data
items.

Examples.

First Data Record $NAMl I(2,3)=5,J=4.2, B=4
Second Data Record A(3)=7, 6.4, L=2, 3, 8*4.3$

or

$NAMl I(2,3)=5, J-4.2, B-4
=A(3)=7, 6.4, L=2, 3, 8*4.3$

If this data is input to be used with the NAMELIST statement
previously illustrated and with a READ statement, the
following actions take place. 'l'he input unit designated in
the READ statement is prepared and the first record is read.
The record is searched for a $, immediately followed by the
NAMELIST name, NAMl. Since the search is successful, data
items are converted ana placed in core storage.

106

GE-625/635 GECOS-III TSS FORTRAN

The integer constant 5 is placed in 1(2,3), the real
constant 4.2 is converted to an integer and placed in J, and
the integer constant 4 is converted to real and placed in B.
Since no data items remain in the record, the next input
record is read. ~he integer constant 7 is converted to real
and placed in A(3), and the real constant 6.4 is placed in
the next consecutive location of the array, A(4). Since L is
an array name not followed by a subscript, the entire array
is filled with the succeeding constants. Therefore, the
integer constants 2 and 3 are placed in L(l) and L(2),
respectively, and the real constant 4.3 is converted to an
integer and placed in L(3), L(4), ••• , L(lO). ~he $ signals
termination of the input for the READ operation.

If an array is not filled by the end of a line and the line
ends with a comma, a zero will be placed in the next
location of the array. To avoid this, the last comma should
be omitted. For example, if C is dimensioned 5, the
following line would make C(5) = 9:

C(1)=2.3,4.1,1.7,6.2,

To avoid this, the line should be as follows,

C(1)=2.3,4.1,l.7,6.2

107

GE-625/635 GECOS-III TSS FORTRAN

MANIPULATIVE INPUT/OUTPUT STATEMENTS

File Manipulation

General Form

BEGIN FILE f
END FILE f
CLOSE PILE f
BACKSPACE f
OPEN PILE f (password)

Examples I

BEGIN FILE test BACKSPACE quad
END FILE product CLOSE FILE joe
OPEN FILE sam ("george")

The BEGIN FILE f statement resets file f to the beginning of
the first record.

The END FILE f statement terminates file f with a logical
end-of-file. This statement can be used to truncate and then
append to, rather than replace records on, an existing file.

The BACKSPACE f stater-.ent backspaces file f one logical
record.

The CLOSE FILE f statement closes file f and releases its
buffer.

END FILE, BEGIN FILE, and BACKSPACE may not be used with
random files.

The OPEN PILE f (password) statement permits a user
automatically to supply the password for a passworded file.
The password given in parentheses is a filename variable or
constant (if the latter, enclose in quotes).

108

GE-625/635 GECOS-III TSS FORTRAN

Referencing a File

To reference a file for the first time, or to use a file
that was previously created, the user should list the name
of the file at the beginning of his program in a
Filename-Type statement. Once he has done this, the user may
write directly on the file, or may read it, or truncate it
with an END FILE statement and then add more records. In
place of a Filename-Type statement, it is also possible to
reference a file using a filename constant in quotation
marks. The following two examples illustrate these alternate
methods:

Filename Constant

WRITE ("JOE", 19)A,B,C*D

Filename Variable

FILENAME JOE
JOE = "BILL"
WRITE (JOE,l,)A,B,C*D

In the first case, JOE is a filename constant because it is
enclosed in quotes and used in an input/output statement.

Note

If the filename constant is used in quotes and in
a CALL statement, it must be at least five
characters long.

Example: CALL RSUBa ("SECOND" ,A,K)

In the second case, JOE is typed as a filename
Then it is replaced by the filename constant BILL,
at the time of the WRITE statement the file used
BILL rather than JOE.

variable.
so that
will be

In both cases the file names will be stored as two words:

JOEb bbbb or BILL bbbb.

109

GE-625/635 GECOS-III TSS FORTRAN

END-Of-fiLE Test and Branch

Testing and branching on end-of-file is accomplished by the
following READ statements:

for binary records
for ASCII records

READ (f, END = n2) list
READ (f,n,END - n2) list

In each case,n2 is the statement number to which transfer is
made upon reaching the end-of-file.

The end-of-file is logical rather than being a physical mark
or space. Hence, the following sequences of statements are
permitted:

END FILE JOE
BACKSPACE JOE
READ (JOE) etc.

These instructions will terminate and then read the
preceding record on the file.

Also

END FILE JOE
WRITE (JOE) etc.

which will truncate (e.g., an input file) and then append a
record to the file.

110

GE-625/635 GECOS-III TSS FORTRAN

MODIFYING AN EXISTING FILE

The input/output routines permit the user to replace
individual records of an existing file. All random file
WRITE statements are considered replacements. A linked file
WRITE statement which will modify one or more existing
records is also considered replacement and the record or
records being written must be the same length as the ones
which existed previously. If not, execution will be
terminated, the previously existing records mayor may not
have been modified, and the file can be subsequently
processed with a valid WRITE statement. The END FILE
statement can be used when it is desired to truncate an
existing file and add rather than replace infor.mation.

FILE CONVENTIONS

1. ASCII records do not have a fixed record length (e.g.,
72,80, 120, etc.). The record length is defined by the
FORMAT statement when used, and if not, by the I/O list.

2. A record on an existing file may be replaced by a WRITE
of a record of exactly the same size. If the record
being written is not the same size, the user will be
given a message and aborted.

3. A user may have from one to five program-I/O files open
at anyone time.

4. Data files created ~y an object program
automatically saved 1n the permanent file
(Either the PERM or BYE command may be used to
this.)

are not
system.
achieve

111

GE-625/635 GECOS-III TSS FORTRAN

9. Subroutine, Function, and Subprogram Statements

There are four classes of subroutines in FO~RAN.
arithmetic statement functions, built-in functions, FUNCTION
subprograms, and SUBROUTINE subprograms. The major
differences among the four classes of subroutines are as
follows:

1. The first three classes may be grouped as functions,
they differ from the SUBROU'l'INE subprograms in the
following respects:

a. The functions are always single-valued (i.e., they
return only a single result), the SUBROUTINE
subprogram may return more than one value.

b. A function is referred to by an arithmetic
expression containing its name, a SUBROUTINE
subprogram is referred to by a CALL statement.

2. The built-in function is an open subroutine, i.e., a
subroutine that is incorporated into the object program
each time it is referred to in the source program. The
three other FORrRAN subroutines are closed; i.e., they
appear only once in the object program.

NAMING SUBROUTINES

In the following text, the terms ·calling programn and
·called programn are used. The calling progr~ is the
program in which a subroutine is referred to or called. The
called program is the subroutine that is referred to or
called by the calling program.

113

GE-625/635 GECOS-III TSS FORTRAN

All four classes of subroutines are named in the same manner
as a FORTRAN variable (see "Variables", in Chapter 4).

1. A subroutine name may be any length, but only the first
eight characters are used for identification.

2. The type of function, which determines the type of the
result, may be defined as follows:

3.

a. The type of an arithmetic statement function may be
indicated by the name (if it is real or integer) of
the function or by placing the name in a Type
statement.

b. A FUNCTION subprogram is defined by placing its name
after the word FUNCTION in a Type statement. The
type of the FUNCTION is indicated by putting the
name in a Type statement immediately following the
FUNCTION definition. For example:

FUNCTION LOAN (C)
REAL LOAN

The type of a reference to a FUNCTION subprogram in
the Subroutine Library (the mathematics subroutines)
is automatically defined as shown in Figure 6.
Therefore, the subprogram need not be typed in the
calling program.

c. The type of a built-in function is indicated within
the FORTRAN processor and need not appear in a Type
statement (see column 6 of Figure 5).

The name of a subroutine subprogram has no type and
should not be defined, since the type of results
returned is dependent only on the type of the variable
names in the dummy argument list.

DEFINING SUBROUTINES

The method of defining each class of subroutines is
discussed below.

114

GE-625/635 GECOS-III TSS FORTRAN

Arithmetic Statement Functions

Arithmetic statement functions are defined by a
arithmetic statement and apply only to the source
containing the definition.

General Form

a = b

where:

single
program

1. a is a function name followed by parentheses
enclosing its arguments, which must be distinct,
nonstibscripted variables, separated by commas.

2. b is an expression that may involve subscripted
variables. Any arithmetic statement function
appearing in b must have been previously defined.

Examples:

FIRST (X) = A*X+B

JOB (X,B) - C*X+B

THIRD (D) = FIRST (E)/D

LOGFCT (A,C) ~ A**2.GE.C/D

MAX (A,l) = A**I-B-C

115

GE-625/635 GECOS-III TSS FORTRAN

1. As many as desired of the variables appearing in b may
be stated in a as the arguments of the function. Since
the argwnents are dummy variables, their names, which
indicate the type of the variable, may be the same as
names appearing elsewhere in the program of the same
type.

2. Those variables included in b that are not stated 8S
arguments to this arithmetic statement function are the
parameters of the function. They are ordinary variables.

3. All arithmetic statement function definitiona must
precede the first executable statement of the source
program.

4.

The only statements which may precede an arithmetic
statement function are the following.

FUNCTION
SUBROUTINE
COMMON
DIMENSION
INTEGER
REAL
LOGICAL
ASCII
FILENAME
EXTERNAL

The type of any arithmetic statement function
argwnent that differs from its implicit type
defined preceding its use in the arithmetic
function definition.

name or
must be

statement

Built-In Functions

Built-in functions are pre-defined subroutines that exist
within the FORTRAN processor. A list of all the available
built-in functions is given in Figure 5. An example of the
use of each of the built-in functions is given in Appendix
E.

116

GE-625/635 GECOS-III TSS FORTRAN

--r-- .----- --.. -

No.
, ,of Type of

Function Definition ~ Args. 'N-ame Argument Function
- r------- -

Absolute I Arg I 1 ABS Real Real
lABS Integer Integer

Trun- Sign of Arg 1 AI NT Real Real
cation times larrest INT Real Integer

integer < Arg I
Remain- Argl 2 AMOD Real Real
dering (mod Arg2) MOD Integer Integer

Choosing Max (Arg 1, >2 AMAXO Integer Real
largest Ar92' •••) AMAXl Real Real
value MAX 0 Integer Integer

MAX 1 Real Integer

Choosing Min (Ar91), ~2 AMINO Integer Real
smallest Arg 2, •••) AMINl Real Real
value MINO Integer Integer

MINl Real Integer

Float Coversion 1 FLOAT Integer Real
from integer
to real

Fix Covers ion 1 IFIX Real Integer
from real
to integer
with
truncation

Transfer Sign of 2 SIGN Real Real
Sign Arg 2

times I Arg11
ISIGN Integer Integer

Positive Ar91 - Min 2 DIM Real Real
differ- (Arg1 , Arg2) IDIM Integer Integer;

Figure 5

Note

The function MOD (Ar~1.1,Arg 2) is defined as Arg 1
-(Argl/Arq2)Arq2 where (Arg1/Arg2) is the truncated value of
that quotient.

117

GE-625/635 GECOS-III TSS FORTRAN

FUNCTION Subprograms

FUNCTION subprograms are defined by a special FORTRAN source
language program.

118

General Form

REAL name

where:

1. Name is the symbolic name of a single-valued
function.

2. The arguments al,a2, ••• ,au ' of which there must be
at least one, are nonsubscripted variable names or
the dummy name of a SUBROUTINE or FUNCTIO~~

subprogram.

3. The type of the function may be explicitly stated
following the FUNCTION aefinition, such as REAL
above.

Examples:

FUNCTION ARCSIN (RADIAN)

FUNCTION ROOT (A,B,C)

FUNCTION CaNST (NG,JG)
INTEGER CONST

FUNCTION IFTRU (D,E,F)
LOGICAL IFTRU

GE-625/635 GECOS-III TSS FORTRAN

1. The FUNCTION statement must be the first statement of a
FUNCTION subprogram.

2. The name of the function must appear at least once as a
variable on the left side of an arithmetic statement or
in an input statement. This name cannot be used in a
NAMELIST statement.

3. The last value of the function is one which is returned.

For example:

FUNCTIon CALC (A,B)

•
CALC = Z + B

•

RETURN

•

END

By this means, the output value of the function is
returned to the calling program.

4. 'llhe arguments may be considered dummy variable names
that are replaced at the time of execution by the actual
arguments supplied in the function reference in the
calling program. The actual arguments must correspond in
number, order, and type with the dummy arguments.

5. When a dummy argument is an array name, a statement with
dimeI\sion information must appear in the FUNCTION
subprogram; the corresponding actual argument must be a
dimensioned array name.

6. The FUNCTION subprogram must be logically terminated by
a RETURN statement (see "Normal Returns from
Subprograms", below).

119

GE-625/635 GECOS-III TSS FORTRAN

7. The FUNCTION subprogram may contain any FORTRAN
statements except SUBROUTINE or another FUNCTION
statement.

8. The actual arguments of a FUNCTION subprogram may be any
of the following:

a. Any type of constant.

b. Any type of subscripted or nonsubscripted variable.

c. An arithmetic or logical expression.

d. The name of a FUNCTION or SUBROUTINE subprogram.

9. A FUNCTION subprogram is referenced by using its name as
an operand in an arithmetic expression.

Those FUNCTION subprograms that are supplied with
FORTRAN are given in Figure 6.

SUBROUTINE Subprograms

SUBROUTINE subprograms are defined by a special FORTruul
source language program.

120

General Form

SUBROUTINE name (a 1 ,a2 , ••• ,8n) or SUBROUTINE name

where:

1. Name is the symbolic name of a subprogram.

2. Each argument, a, if any, is a nonstibscripted
variable name or the dummy name of a SUBROUTINE or
FUNCTION subprogram.

GE-625/635 GECOS-III TSS FORTRAN

Examples:

SUBROUTINE MATMPY (A, N, H, B, L, J)

SUBROUTINE QUADEQ (B, A, C, ROOT1, ROO'l'2)

SUBROUTINE OUTPUT

1. The SUBROUTINE statement must be the first
statement of a SUBROUTINE subprogram.

2. The SUBROUTINE subprogram may use one or more of
its arguments to return output. The arguments so
used must appear on the left side of an arithmetic
statement or in an input list within the
subprogram.

3. The arguments may be considered dummy variable
names that are replaced at the time of execution by
the actual arguments supplied in the CALL
statement, which refers to the SUBROUTINE
subprogram. The actual arguments must correspond in
number, order, and type with the dummy arguments.

4. When a dummy argument is an array name, a statement
containing dimension information must appear in the
SUBROUTINE subprogram; the corresponding actual
argument in the CALL statement must be a
dimensioned array name.

5. No argument in a SUBROUTINE statement may also be
included in COMMON.

6. The SUBROUTINE subprogram must be logically
terminated by a RETURN statement.

7. The SUBROUTINE subprogram may contain any FORTRAN
statements except FUNCTION or another SUBROUTINE
statement.

121

GE-625/635 GECOS-III TSS FORTRAN

Normal Returns from Subprograms

The normal exit from any subprogram is the RE~URN statement,
which returns control to the calling program. The RETURN
statement is the logical end of the program; there may be
any number of RETURN statements in the program.

General Form

RETURN

Nonstandard Returns From SUBROUTINE Subprograms

The nor.mal sequence of execution following the RETURN
statement of a SUBROUTINE subprogram is to the next
executable statement following the CALL statement in the
calling program. It is also possible to return to any
numbered executable statement in the calling program by
using a special return from the called subprogram. This
return may not violate the transfer rules for DO loops.

The following text describes the form of the FORTRAN
statements that is required to return from the subroutine to
a statement other than the next executable statement
following the CALL.

The general form of the CALL statement in the calling
program is:

122

GE-625/635 GECOS-III TSS FORTRAN

General Form

where:

1. Subr is the name of the SUBROUTINE subprogram being
called.

2. 8i is a dummy argument of the form described under
"CALL Statement", or is of the form:

$n

where n is a statement number, $ is the character
$.

The qeneral for.m of the SUBROUTINE statement in the called
program is:

General Form

SUBROUTINE subr (a
l
,a 2 , ••• ,an)

where:

1. Subr is the name of the subprogram.

2. Ai is a dummy argument of the form described under
"SUBROUTINE Subprogram", or is of the form:

*
where * is the character asterisk (*) and denotes a
nonstandard return.

123

GE-625/635 GECOS-III TSS FORTRAN

The general form of the RETURN statement in the called
program is:

124

General Form

RETURN i

where:

i is an integer constant or variable which denotes the
ith nonstandard return in the argument list, reading
from left to right.

Example:

Calling Program Called Program

• SUBROUTINE SUB (X,Y,Z,*,*)
•

• •
10 CALL SUB (A,B,C,$30,$40) •
20 100 IF (R) 200,300,400

• 200 RETURN
• 300 RETURNl

• 400 RETURN 2
30 --- END

•
•

40 ---
•
•
•

END

GE-625/635 GECOS-III TSS FORTRAN

In the preceding example, execution of statement 10 in the
calling program causes entry into subprogram SUB. If
statement 100 is executed, the return to the calling program
will be to statement 20, 30, or 40, if R is less than, equal
to, or greater than zero, respectively.

Nonstandara returns may be best understood by considering
that a CALL statement that uses the nonstandard return is
equivalent to a CALL ana a computed GO TO statement in
sequence.

For example:

CALL NAME (P,$20,Q,$35,R,$22)

is equivalent to

CALL NAME (P,Q,R,I)
GO TO (20,35,22),1

where I is set to the value of the integer in the
RETURN statement executed in the called subprogxam.
If the RETURN is blank or zero, a nor.mal (rather
than nonstandard) retuxn is made to the statement
immediately following the GO TO.

Similarly, the arguments in the associated
SUBROUTINE statement correspond to the arguments in
the CALL statement as follows:

SUBROUTINE NAME (S,*,T,*,U,*)

Subprogram Names As Arguments

FUNCTION and SUBBOUTINE subprogram names may be the actual
arguments of subprograms. To distinguish these subpxograma
names from ordinary variables when they appear in an
argument list, they must appear in an EXTERNAL statement.

EX'l'ERNAL SIN
CALL SUBR (Z,SIN,B)

125

GE-625/635 GECOS-III TSS FORTRAN

CALL STATEMENT

~he CALL statement
subprogram.

is used to refer to a SUBROUTINE

General Form

where:

1. Subr is the name of a SUBROU'l'INE subprogram.

2. a l,il
2

, ••• ,a'n are the n arguments.

Examples:

CALL MATMPY (X,5,lO,Y,7,2)
CALL QDR~IC (9.732,Q/4.536,R-S**2.0,Xl,X2)
CALL OU~PU'l'

The CALL statement transfers control to the subprogram and
presents it with the actual arguments.

The arguments may be any of the following:

1. Any type of constant.

2. Any type of subscripted or nonsubscripted variable.

3. An arithmetic or logical expression.

4. Alphameric characters. su~h arguments must be preceded
by nH (n < 8) where n 1.S the count of characters
included in the argument, e.g., 4HLIST. Note that blank
spaces and special characters are considered in the
character count when used in alphameric fields.
Alphameric characters may also be enclosed in quotation
marks.

5. The name of a FUNCTION or SUBROUTINE subprogram.

126

GE-625/635 GECOS-III TSS FORTRAN

The arguments presented by the ~. statement must agree in
number, order, type, and array size (except as explained
under the DIMENSION statement) with the corresponding
arguments in the SUBROUTINE statement of the called
subprogram.

MATHEMATICAL SUBROUTINES

Time-Sharing FORTRAN provides various commonly used
mathematical subroutines, defined as FUNCTION subprograms.
The names of all these subprograms are automatically typed
by the FORTRAN compiler; therefore, they need not appear in
Type statements.

Variables used as arguments of mathematical subroutines must
be typed, either explicitly or illlplicitly, in accordance
wi th the function in which they ap);)ear.

A list of the mathematical subrout:1.nes provided by FORTRAN
is given in Figure 6. The range 01: argument required for
each of these subroutines is given in Appendix F.

127

Function

Exponential

Natural
logarithm

Trigonometric

Trigonometric
cosine

Trigonometric
tangent

Trigonometric
cotangent

Arctangent

Arcsine

Arccosine

Hyperbolic
tangent

Square root

Definition

e
i

Arg

sin (Arg)

cos (Arg)

tan (Arg)

cot (Arg)

arctan (Arg)
arctan (Arg t/Ar92)

arcsine (Arg)

arccosine (Arg)

tanh (Arg)

1-
(Arg) 2

GE-625/635 GECOS-III TSS FORTRAN

Number
of Args. Name

1

1

1

1

1

1

1
2

1

1

1

1

EXP

ALOG

SIN

cos

TAN

COTAN

ATAN
ATAN2

ARSIN

ARCOS

TANH

SQRT

Arguments and functions for all subroutines are real.

Figure 6

128

GE-625/635 GECOS-III TSS FORTRAN

Appendix A. Time-Sharing System Command Language

INTRODUCTION

The Time-Sharing System user has a choice of systems with
which to solve his problems. The available systems arel

• BASIC an algebraic-language compiler/executor
designed for the casual user.

• FORTRAN - an algebraic-language compiler/loader with
extended capabilities for subprogramming, chain
overlays, peripheral I/O, etc., providing full
batch-type programming capabilities.

• Text EDITOR - a system for building and maintaining
text files of any description.

• CARDIN - a system for building batch-job files and
submitting them to the GECOS-III processor.

These systems are controlled by means of a command
language--a set of orders or instructions with which a user
requests functions to be perfor.med (e.g., LIST, RUN) and
manages the flow of control for his session at the ter.minal
(e.g., BYE, DONE).

The command language is conunon to the four sye tems of the
time-sharing system, but with some variations in the
applicability of a particular command to· one· or more of the
systems. These variations are listed in the table
"Applicability of Commands By System." Each command
activates an associated subsystem which performs the
function requested. The command subsystem activated will be
the same regardless of system selection with but one
exception--the RUN subsystem. But the initial selection of a
system sets proper indicators-to trigger. the required path
of control in the command a.ubayatem. and .. this. exception is
automatically compensated for.

129

GE-625/635 GECOS-III TSS FORTRAN

Commands can only be given while a system is in
-build-mode,- a mode in which the system is expecting input.
Build-mode is indicated by a system-supplied asterisk at the
beginning of each new input line.

DEFINITIONS

130

• Line Numbers

Line numbers are required by some systems for line
sequencing purposes. In the case of BASIC, line
numbers are also used as statement reference
numbers. A line number consists of one to eight
numeric characters, terminated by a nonnumeric, and
preceded on the line only by blanks (if any exist).

• Manual Mode

In manual mode, the user must provide (type) the
line numbers for each line.

• Automatic Mode

In automatic mode, the system provides the line
numbers. They are printed as the build-mode request
for input (asterisk) is issued. The number is
written onto the collector file as a part of the
statement.

• New File

A new file is a temporary file created for the user
when he responds NEW to any file request. It is
assumed the user will build a file which then may be
saved, thus creating an old file.

• Old File

An old file is a previously built and saved file
which the user selects by responding OLD to the file
request and naming the file. The old file is copied
onto the current file where it is available to the
user for processing or modification.

GE-625/635 GECOS-III TSS FORTRAN

• Current File

The current file is a temporary file assigned to the
user, on which a new file is built or on which the
selected old file is copied. Regardless of the
intervening commands or system selections, the
current file contains the last NEW or OLD selection,
with whatever modification may have been entered.

• Collector File

The collector file is a temporary file assigned to
each user when he logs on. All input which is not a
recognizable command is gathered onto this file--for
example, numbered statements. Then, when the file
becomes full or a command is typed, depending upon
the system, the collector file is merged with the
current file and the entire current file sorted by
line number. For example, when the commands RON,
LIST or SAVE are encountered in the BASIC system, if
data exists in the collector file, it is merged with
the current file in sort order. Note that the
original old file, if any, will not be altered until
a SAVE command naming that old file is executed.

• Available Pile Table

An available file table (AFT) is provided for each
time-s'haring system user. This table holds a finite
number of file names which are entered in the AFT
when the files are accessed (opened). The advantages
of the AFT are:

1. Files requiring passwords or long catalog/file
descriptions may be referenced by file name
alone once they have been entered in the table.

2. Files used repeatedly remain readily available,
thus reducing the overhead time and cost of
accessing the file each time.

131

GE-625/635 GECOS-III TSS FORTRAN

The following commands cause the named permanent
files to be placed in the AFW, if possible, and if
they are not already there.

RUN filename(s)

LIST filename(s)

OLD filename(s)

SAVE filename(s)

GET filename(s)

PRINT filename(s)

PERM tempfile, filename

Because the AFT 1s of a finite length, it can become
full. When this happens and a command is given which
requires a new filename to be placed in the AFT, the
command subsystem wIll print an error message
indicating that the APT is full. At this point, the
user must remove any unneeded files from the AFT in
order to continue. The STATUS command produces a
listing of all of the user's files in the AFT. The
REMOVE command can be used to remove specified files
from the AFT. The files are not purged or altered in
any way, only the name is removed from the APT and
the file is set not-busy.

FILE FORMATS

The designation of files in the following discussion of
commands will be in the following formatsl

a. filename

b. filedescr

132

where the file name only is required.

where the full file description may be
used, in any of the following for.matsl

GE-625/635 GECOS-III TSS FORTRAN

1. filename

2. filename$password

3. userid/catalog$password •••
/catalog$password/filename$password

If a required password is not given (1), the system will
explicitly ask for the password.

If a required password is omitted in the string format (3),
a REQUEST DENIED message will be issued.

For cases (1) and (2), &bovea If the file was previously
opened (e.g_, with a GET), only the filename (1) need be
given. If the requested file is not already open, it must
emanate directly from the user's master catalog
(quick-access type file).

Where desired-permissions and/or alternate-name are
applicable, they are specified in the following format.

where.

fl1edescr-altname-,permissions

(or, alternatively)

filedescr,permissions

!ermisSions may be anyone or
ollowing, separated by commas:

READ (or R)

WRITE (or W)

EXECUTE (or E)

APEND (or A)

combination of the

altname may be a valid file name (one to eight
characters), enclosed in double-quote signs.

Note that where a desired-permissions specification is
applicable, a null ~ermisSions field implies READ and WRITE
permissions, i.e., he default interpretation for desired
permissions is R,W.

133

GE-625/635 GECOS-III TSS FORTRAN

If a file-segment specification, of the for.m (i,j) where i
and j are line numbers, is given in addition to
desired-permissions .. and/or -.alternate ... nama., it must appear
last in the specification string, e.g.1

filedescr"altname", permissions(!,i)

or

filedescr, permissions(i,1)

Examples:

OLD FILl$GOGO,R

SAVE /CATlCAT2$MAYI/FILO$HERE

LIST FlLE2$HOHO

PURGE FIL3$~Z,FIL4,FIL5$SUN

GET JJONES/DATACAT/BATCHWRLDFIL"INFILE"

FILE NAMES« CATALOG NAMES« AND PASSWORDS

File names for time-sharing usage must be eight characters
or less in length, and may be composed of alphanumerics,
periods, and minus-signs. Catalog names and passwords may be
up to 12 characters in length, and composed of the same
characters as file names.

If a batch-world file with a name longer than eight
characters (maximum 12 characters) is to be accessed, it
must be given an alternate name ("altname") from one to
eight characters in length.

COMMANDS

Following is a description of the time-sharing system
commands. Although the command words are spelled out
completely in the following descriptions, in actual usage
those exceeding four characters may be shortened to four
characters (e.g., RESEquence).

134

GE-625/635 GECOS-III TSS FORTRAN

• NEW

A new file (empty current file) will be started.
(The system will be in manual mode.) The current
file is cleared of any prior contents.

• TAPE

The current file will be built or extended with
input from paper tape. Neither line feeds nor line
numbers are supplied by the time- sharing system.
(The command is #TAP when in the EDITOR system.)

• OLD

1) OLD filedescr (permissions and alt-name
applicable) File filedescr becomes the current
file.

2) OLD filedescr(i,j) (permissions and alt-name
applicable) Lines i through j of file filesdescr
become the current file. Filedescr must be a
line-numbered file.

3) OLD !(!,1>1 I!(i!1) 2 I •• • .!(i,i)n (permissions and
alt-name appr1cable) ¥he n files or file
segments are adjoined in the order listed and
become the current file, where f is a -filedescr.Adjoining of BASIC files should be done
w1th caution (sequence numbers are also
statement numbers).

Note that these file or segments are
concatenated on the current file and
resequencing may be required for satisfactory
operation in line-number dependent systems.
Sorting or resequencing is not automatic.

If the file list is too long for one line, the
OLD subsystem will request more input if a
delimiter is the last non-blank character before
the carriage return.

• LIB filename

File filename from the library becomes the current
file.

135

136

GE-625/635 GECOS-III TSS FORTRAN

• SAVE fi1edescr 1,filedeacr 2, ••• ,fileaescr
n

The current file is saved on the permanent file(s)
defined by filedescr. Sorting by line number is done
or not done, according to system requirements. An
alternate name (-altname-) parameter may not be
specified, but the .ltnamespecified for a permanent
file previously opened, (e.g., an OLD or GET) must
be used as the filename in the SAVE command. ~hat is
to say, if a file to be referred to in a SAVE
command requires an alternate name for the
reference, it must have been previously opened with
"altname- specified. If the file does not already
exIst, it will be created if possible and general
read permission assigned.

• PURGE filedescr 1,filedescr 2, ••• ;filedescrn

Delete the specified file(s) from the file system.

• REMOVE filename ,filename
2
, ••• ,filename --------1 n

Remove the specified file(s) from the AFT.

• PERM tempfile,filedescr

•

The temporary file tempfile is copied onto the
permanent file described by filedescr. If the file
does not already exist, it will be created with
general read permission. The temporary file name is
removed from the ~ and the permanent file accesaed
(name placed in AFT).

GET filedescr 1 ,filedescr~ , ••• ,filedescr
(permissions and alt-name appricable) n

The permanent fileCs) designated by filedescr will
be accessed and the filename(s), or alternate names,
if specified, placed in the AFT. This is a simple
means by which common data files emanating from
other user's master catalogs may be opened (using
FORTRAN) •

GE-625/635 GECOS-III TSS FORTRAN

• RUN

1) RUN

Execute the selected system. The source input is
the current file. (If BASIC is the system
selection and any variation of the RUN command
is given, only the current file will be
executed,i.e., any information appended after
the RUN command is ignored.)

2) RUN filedescr
applicable)

(permissions and alt-name

Under FORTRAN, compile and execute the file
specified by filedescr.Onder CARDIN, convert and
pass the specIfied fiie to GEIN.

3) RUN - filedescr(opt1, ••• ,opt n) (permissions and
alt-name applicable if file already exists.>

Under FORTRAN, compile and execute the current
file using the specified options. Save the
object program on the file specified by
flledescr. If this file does not already exist,
It wil! be created (with general- read
per.mission) but only if it was specified as a
quick-access file,i.e., emanating directly from
the user's master catalog. Maximum size will be
one link.

4) RUN filedescr 1 I fileaescr (i, j) 2
, ••• ,filedescrCl ,3) n =fl1edescr It (opt, ••• ,opt)
(per.mIss10ns and altname appliCab~e to already
existent files)

Under FORTRAN, the specified files or
file-segments are adjoined and compiled/executed
according to the options specified, and the
object program saved as file filedescr • The
compile options and saving of object file are
optional. The designated files may be object or
source files. (Object files must be random
files.)

The current file may be indicated by an asterisk
in the file list. Caution must be exercised to
ascertain that the current file contains that
which is expeoted.

137

138

GE-625/635 GECOS-III TSS FORTRAN

If a list is too long to be typed on one line,
the subsystem will request mora input if a
delimiter is the last nonblank character before
the carriage return.

• CATALOG

1) CATAlog

List all catalog and file nUles which emanate
from the user's own master catalog_

2) CATAlog 'LIB

List all file names in the library.

3) CATAlog filename

Print a list of the attributes of the file
specified. The file must emanate from the user's
catalog.

4) CATAlog /catalogl/catalog2

Print a list-of all-catalog and file names which
emanate from the specified catalog (catalog2 in
this case).

5) CATAlog /catalogl/catalog2*

Print a detailed list of catalog2's attributes.

Passwords need not be given in theae catalog
commands. However, CATALOG applies only to strings
which originate from the user's (own) master catalog
or the library (ILIB).

CATALOG may also be selected at system level.

GE-625/635 GECOS-III TSS FORTRAN

• PRINT

Under CARDIN, print at the terDdnal all or any part
of a source file, reformatting the file by use of
format-option and/or tab characters, if desired.

1) PRINT

The entire current file will be printed.

2) PRIm filedescr(i,1) 1
, ••• ,filedescr(i,l) -

------- - n

,filedescr(!,j,) 2

The specified files or file-segments defined by
filedescr will be adjoined, converted, and
prInted. The current file may be included in the
string of files by the name *. The current file,
however, will not be affected. If the list is
longer than one line in length, it may be
continued on the next line provided that the
last nonblank character of the line is a
(leading) delimiter.

After entrance to the PRINT subsystem, a series
of questions are asked of the terminal user.
Responses to CARD FORMAT? area

MOVE - implies line numbers are present and are
to be moved and printed

STRIP - implies line numbers are present ana are
not to be printed.

ASIS - implies line numbers are not present in
the file.

NORM - implies MOVE option and the standard set
of tab characters --

1,8,16,32,73.

If the response was not NORM, the question TAB
CHARACTER AND SETTINGS? is asked. Responses are NORM
or a series of tab characters and settings of the
form:

tab ,setting ,setting ••• ,tab ,setting ,setting •••

139

140

GE-625/635 GECOS-III TSS FORTRAN

• LIST

1) LIST

List the current file on the terminal.

2) LIST i,j

List all lines of the current file whose line
numbers are greater than or equal to i and less
than or equal to j. In the case of concatenated
files where no sort or resequence has been
perfor.med, multiple sets of lines numbered
between i and j mayor may not be listed if such
exist. Either i or j may be omitted. Line
numbers 1 or 99999999 respectively will be
assumed. If j is omitted, the comma may also be
omitted.

3) LIST filedescr
applicable.)

(permissions and aIt-name are

4)

List the file specified by filedescr on the
terminal, without altering the current file.
Filedescr must include at least one alpha
character if it consists of filename only.

LIST filedescr(i,1)1 i ••• ,filedescr(i,1')n
(Permissions and alt-name are applIcable.) -

Adjoin and list the specified files or
file-segments on the ter.minal. The current file
is not altered. The current file may be included
in the list under the name *. If the list is
greater than one line in length, it may be
continued on the next line provided the last
nonblank character on the first line is a
(leading) delimiter.

S) LIS'l'H

List the file with a header (date and time)
printed at the top of the listing. LIST for.mats
(1), (2), (3), or (4) may all use the LIS'l'H form
instead of LIST.

GE-625/635 GECOS·III TSS FORTRAN

6) LIS'l'Ennn

No intervening blanks allowed. List all lines to
be "broken" or "folded" at the character
position (nnn) specified. Listing of the line
will be continued on succeeding line(s). If nnn
is omitted, the value 72 is assumed. LIST
formats (2) through (4) may also use the
LISTEnnn for.m. Files containing overlength lines
(records) may be listed in this manner.

7) LISTS n ,n ,n , ••• ,n

List only the specified line(s) n
current file.

8) LIST 99999999

from the

If LIST is given with a line number greater than
the last line number on the current file, then
the last line number of the current file will be
printed.

• RESEQUENCE

1) lmSEquence

The line numbers of the current file are
resequenced. The resequencing begins with line
number 10 and continues in increments of 10. If
BASIC is the selected system, the file is
resequenced and statement number references in
the program are modified correspondingly (00'1'0,
GOStlB, IF). If FORTRAN or CARDIN was selected,
statement number references are not affected.

2) RESEquence n,m

The line numbers of the current file are
resequenced and modifications made according to
the system selection. The resequencing beqins
with line number n and continues in increments
of m.

• DELETE

1) DELEte a-b,c-d

All lines numbered a thxouqh band c through d
are deleted from the current ?ile. -

141

142

GE-625/635 GECOS-1I1 TSS FORTRAN

2) DELEte a

The line(s) numbered a is deleted from the
current file. -

3) DELEte a,b,c,d, •••

The lines numbered .,b,c,d, etc., are deleted
from the current fiTe7--

4) DELEte a,b,c-d,e,f-g, •••

The lines numbered a,b,c through d,e, and f
through ~ are aeletea Yrom the current-file. -

• EDIT

The Text EDITOR is called into use. Following the
READY message, the user may exercise any of the
text-editing capabilities available in the
Text-EDITOR system. The current file is the
recipient of any modification.

• SCAN filedescr
applicibie)

(permissions and alt-name are

The SCAN subsystem -- batch-output scanner -- is
initiated to scan the file described by fileaescr.
The desired functions are defined by the
question/answer sequence that follows the use of
this command. .

• AUTOMATIC

1) AU'l'Omatic

Causes the automatic creation of line numbers,
by the system, at the point at which the
automatic mode is entered (or re-entered), with
line numbers initially starting at 010 ana
incrementin9 by 10 (or, on re-entry, resuming
where the previous automatic numbering left
off). These line numbers appear in the terminal
copy, and are written in the file, just as
though the user had typed them.

2) AUTOmatic n,m

Causes the automatic creation of line numbers,
as above, but starting with line number nand
incrementing by m.

GE-625/635 GECOS-III TSS FORTRAN

Normally the line number will be followed by a
blank. Any nonblank,.nonnumeric character affixed to
the end of the command· AUTOmatic will cause the
blank to be suppressed. For example I AtJ'l'ONB or
AU'l'OMATICX.

No commands are recognized while in the automatic
mode. The automatic mode is cancelled by giving a
carriage return immediately following the issuance
of an aste~isk and line number by the system.

• S'lATUS

List the user's status as to prooassor time used,
number of file I/O's, and characters output to the
ter.minal, and list the files that are open.

STATUS is also recognized at system-seleotion
level,i.e., it may be typed in response to SYS'l'EM1

• DONE

Exit from the selected system to make a new system
selection.

• BYE

Causes the computation of the user's system-usage
charges during the session and disconnection of the
terminal.

Depending upon the selected system, the AFT may
first be scanned for user's temporary files. A
message is issued as to the number of temporary
files, then the user is queried as to the
disposition. Each filename is printed followed by a
question mark. The user may respond as follows:

143

144

GE-625/635 GECOS-III TSS FORTRAN

1) carriage return implies the file is to be
released; pass to next file.

2) NONE - implies all of the succeeding files are to be
released.

3) SAVE filedescr - specifies that the file is to be
saved on the permanent file described by filedescr.
(See PERM command).

BYE may also be given at the system-selection level.

• NEWUSER

Causes the computation of the user's system-usage
charges during the session and initiates a new
log-on sequence.

NEWUSER may also be given at the system-selection
level.

GE-625/635 GECOS-III TSS FORTRAN

Applicability of Commands by System

S:istem

BASIC FORTRAN CARDIN Text EDITOR

Conunand

NEW yes yes yes no

TAPE yes yes yes no

iTAPE no no no yes

OLD yes yes yes no

LIB yes yes yes no

SAVE yes yes yes yes·

PURGE yes yes yes yes·

REMOVE yes yes yes no

PERM no yes no no

GET yes yes yes no

RUN yes yes yes no

CATALOG yes yes yes no

PRINT no no yes no

LIST yes yes yes no

RESEQUENCE yes yes yes no

DELETE yes yes yes no

145

GE-625/635 GECOS-III TSS FORTRAN

EDIT yes yes yes no

SCAN no no yes no

AU'l'OMA'l'IC yes yes yes no

STATOS yes yes yes no

DONE yes yes yes yes·

NEWOSER yes yes yes no

BYE yes yes yes no

* ·command" in direct-mode.

146

GE-625/635 GECOS-III TSS FORTRAN

Appendix B. The GECOS File System and ACCESS

This appendix describes the function and use of the 600TSS
ACCESS subsystem in relationship to the GECOS File System.
If the user has referenced files only with the SAVE and OLD
commands, he does not have to be concerned with ACCESS.

THE GECOS FILE SYSTEM AND ACCESS

The GE-600 Time-Sharing System utilizes the capabilities of
the GECOS file system which is a logical mechanism for
storing and retrieving permanent files and is common to all
programs operating under the GE-600 Comprehensive Operating
Supervisor. Since a file system can store many files on some
external, "background" storage device, the user need not be
concerned with the device his file is on nor the
characteristics of the device.

Structure of the File System

The GECOS file system is described in detail in the
GECOS File S~stem manual, CPB-ISl3. However, the main
features of 1nterest to the user will be repeated here.

The GECOS file system represents a tree structure of
indefinite length whose origin is the system master catalog.
The primary nodes of the tree are user's master catalogs;
the lower-level nodes are subcatalogs created by the user.
The terminal points of the structure are the files
themselves. Figure 1 shows the file system's hierarchical
structure.

147

GE-625/635 GECOS-III TSS FORTRAN

Catalogs and Files

A catalog consists of a definition containing a catalog
name, password, and permissions. Since it contains no user
data, a catalog can be neither read nor written, but it is
constructed and maintained by the file system itself. The
ACCESS utility routine is provided, however, to make catalog
changes desired by a user.

A file known to the GECOS file system consists of a
definition containing file name, file size, password,
permissions, and a description of the physical file space.
The file definition is distinct from the physical file space
which may contain user data and can be read or written.

148

GE-625/635 GECOS-III TSS FORTRAN

r - - - _. --:':-~C:::=::==~~~~:==;:===i:...:~-::-= -:'L - _
/"----- '" ,.. (\
() \ }
,-----~ ~~----~

SUBCATALOG

Legend

~ Denotes a file

@ Denotes a quick-access file

All user-ID's must be unique within the system; all
subcataloq and file names are automatically qualified by the
user's master catalog name and the names of any intermediate
subcatalogs. The system master catalog cannot be accessed by
the normal user.

*Identified by the user-IDe

Figul~e 1.

Logical Structure of the File System

149

GE-625/635 GECOS-III TSS FORTRAN

Passwords

Passwords may be attached to any catalog or file. A password
simply allows a user to traverse a catalog/file string. A
user can get to a given catalog or file only if he can give
the passwords for all higher-level catalogs in the string.
(When traversing a string, a password must not be given if
none has been attached.) The originator of a given string
is required to give the necessary passwords when traversing
a string.

Permissions

Users permissions, both general and specific, can be
attached to any catalog or file. When permissions are
attached at the catalog level, they apply to all subordinate
catalogs and files. The originator of a catalog/file string
implicitly has all permissions for that string but must
give all applicable passwords.

The allowable permissions are:

READ - allows a file to be read
WRITE - allows a file to be written
APPEND - (presently treated as WRITE)
EXECUTE - (presently treated as READ)
PURGE - allows catalogs and/or files to be purged

from the system, but only with specific permission
MODIFY - allows catalog and/or file definitions to

be changed, but only with specific permission

SAVING AND RETRIEVING FILES IN 600TSS

When operating under the Time-Sharing System, each updated
copy of an OLD file or NEW file operated on by BASIC or
EDITOR is a temporary working file that will "disappear" at
the end of a user's session at the terminal, unless he saves
it. This temporary working file, or "scratch copy," allows
updates to be made and tested without destroying the
original OLD file.

150

GE-625/635 GECOS-III TSS FORTRAN

Files are stored with the command SAVE followed by a file
name. If the named file has not been previously created, the
system automatically creates a permanent, external file and
writes the contents of the working file onto it. These files
are referred to as quick-access. This means that the file
emanates directly from a user's master catalog without
intervening subcatalogs (see Figure 1.). Files created by
the command SAVE have, by default, general read permission,
and are protected against any other form of access, such as
write, append or purge.

If the file specified by the SAVE command has been created
previously, either by a prior SAVE or by the ACCESS
subsystem, the content of the working file is written onto
it. This file, if created through ACCESS, is not necessarily
of the quick-access type.

The creator of a quick-access file can retrieve it by
OLD and the file name. Therefore, for the user whose
are met by the characteristics of quick-access files,
provides a simple means for utilizing the file system.

ACCESS

Capabilities of the ACCESS Subsystem

using
needs

TSS

For users who wish to utilize some or all of the
capabilities of the file system, the ACCESS subsystem
provides the interface thus allowing the user to:

• Create hierarchical structures of subcatalogs and files

• Attach passwords to his subcatalogs and files

• Give general permission to all other users to access
his files in specified ways

• Give specific permissions, by user-ID

• Protect a given file or set of files against any mode
of access

• Gain the permitted types of access to other TSS user's
files

151

GE-625/635 GECOS-1I1 TSS FORTRAN

• Gain the permitted types of access to files created in
the batch-processing environment

• Modify catalog name, password, and/or permissions on an
existing catalog

• Modify file name, size, password, and/or permissions on
an existing file

• Purge an existing file or catalog/file string

• List all of the catalogs and files which emanate from a
given catalog

• Rename files temporarily for a given job

HOW TO USE ACCESS

ACCESS consists of ten functions, which together provide a
conversational facility for:

• Creating and purging catalogs and files

• Modifying catalog and file attributes (name, size,
password, permissions)

• Accessing and deaccessing files

• Listing catalogs and files

The operation of ACCESS consists of responses, via the
terminal, to a sequence of English-language questions. Each
function is characterized by a given sequence of questions.
All of the "standard vocabulary" associated with the user's
responses may be abbreviated for convenience in keying-in.

It should be remembered that ACCESS is not a means of
reading or writing permanent file content. OLD and SAVE
perform these functions. ACCESS is selected before
proceeding to a desired processing subsystem; it is used to
"create" or "access" the file, i.e., the file definition and
the file space, before the sUbstantive file is built or
modified under another subsystem. The OLD/NEW sequence and
the SAVE command of the succeeding subsystem(s) are still
applicable.

152

GE-625/635 GECOS-III TSS FORTRAN

Several general points need to be made in connection with
the use of ACCESS:

(1) The definition of a particular catalog or file must
include the names of all higher-level catalogs that
must be traversed to arrive at that point. The catalog
string would include at least the user's master
catalog. A file definition, then, is the complete
catalog string plus the file name.

It would be inconvenient to give the full file
definition each time a file were referred to, so the
processing subsystem through the use of the commands
OLD and SAVE requires a reference by file name only.
This file name is usually the actual one, i.e., the
same file name that terminates the full definition.
However, since this actual file name might not be
unique for all files to be used in one session at the
terminal, it is necessary that an alternate file name
be supplied for unusual situations. The ACCESS
specification of an alternate file name does not
change the file definition; it is a local and
temporary renaming for the duration of the user's
session at the terminal.

(2) Each user's master catalog must be created for him
before he can use the system. It has no password or
permissions associated with it, and is unalterable.
The installation usually controls the generation of
this catalog.

(3) The Time-Sharing System maintains an available file
table (AFT) for each user. This table is a list, by
file name, of the files that the user is going to use
during a session at his terminal. All files to be
referenced by the SAVE and OLD must either have been
placed in AFT by using ACCESS, or be of the
quick-access type. When quick-access files are
referenced by SAVE or OLD, they are placed in the AFT
automatically by the system.

(4) Specific permissions replace general permissions; they
do not add to them. That is, if all time-sharing users
are given READ permission (general), and users JDOE
and FSMITH are given specific WRITE and MODIFY
permissions only, for a given file, JDOE and FSMITH
cannot read the file. Therefore, in assigning specific
permissions, the assignor must specify all permissions
granted to the user.

153

GE·625/635 GECOS·III TSS FORTRAN

Functions

The initial communication from ACCESS, following system
selection, is a request for a choice of function, i.e.,
FUNCTION?

The functions that may be requested are:

(Abbrv.)

• CREATE CATALOG CC

• CREATE FILE CF

• ACCESS FILE AF

• DEACCESS FILE DF

• MODIFY CATALOG MC

• MODIFY FILE MF

• PURGE CATALOG PC

• PURGE FILE PF

• LIST CATALOG LC

• LIST SPECIFIC LS

The effect produced by each function is as follows:

CREATE CATALOG

CREATE FILE

ACCESS FILE

DEACCESS FILE

MODIFY CATALOG

1-54

- this function
subcatalog.

creates a

- this function defines file space
and attributes for a given file
name. It does not bring a file
into the available file table.

- this function brings a file into
the available file table.

- this function takes a file out of
the available file table.

- this function modifies the name,
password, and/or permissions
associated with a given catalog.

MODIFY FILE

PURGE FILE

PURGE CATALOG

LIST CATALOG

LIST SPECIFIC

GE-625/635 GECOS-III TSS FORTRAN

- this function modifies the
size, password,
permissions associated
given file.

name,
and/or

with a

- this function deletes a file from
the system.

- this function deletes
from the system along
catalogs and files
subordinate to it.

a catalog
with any

which are

- lists the names of the catalogs
and files which emanate from this
catalog.

- lists in detail the description
of the catalog or file specified.

Following the response to FUNCTION, ACCESS asks the user to
describe the catalog-string, catalog, or file. Each function
has a fixed set of questions with several of the questions
common to each set. Some of the questions do not logically
require a response, e.g., PASSWORD? (there may be none). If
no response is applicable, only a carriage return is given.

All the functions, except DEACCESS FILE, first request a
definition of the existing catalog-string. Then the n&~e of
the catalog or file to be processed is next, along with size
attributes in the case of a file. Passwords and permissions
are then requested, as appropriate.

Questions and Responses

The sets of questions associated with each function follow,
along with the general form of the response to each
question. The minimum required response, if any, is
underlined. Each set is followed by illustrative examples.

(1) FUNCTION? £REATE CATALOG ®
CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password ~

NEW CATALOG? cat-name @

155

GE-625/635 GECOS-1I1 TSS FORTRAN

PASSWORD? password @
GENERAL PERMISSIONS? access-type, ••• ,access-type ~

The access types are:

READ (or R)

WRITE (or W)

APPEND (or A)

EXECUTE (or E)

MODIFY (or M) (Specific permission only)

PURGE (or P) (Specific permission only)

SPECIFIC PERMISSIONS?

access-type, ••• ,access-type/user-ID/ ••• /user-ID ~

The access types are the same as for general permissions.

NOTE: If no response to the question SPECIFIC
PERMISSION? is given, i.e., only a
carriage-return, the catalog is created and the
question NEW CATALOG? is reissued.

Example Replies (user responses are underlined) :

FUNCTION? CREATE CATATOG @
CATALOG STRUCTURE TO WORKING LEVEL?

156

GE-625/635 GECOS-III TSS FORTRAN

JDOE/CATl$ABC ~

This response says that there is a subcatalog named
CATl that is concatenated directly to the user's master
catalog identified by the user-ID JDOE, and that it is
desired to create a new catalog from this level. The
password ABC was attached to catalog CATl when it was
created.

NEW CATALOG?

This response indicates the name of the catalog created
at this point.

PASSWORD? AOK @
This response associates the password AOK with this
catalog. A carriage-return alone would indicate that no
password is to be assigned.

GENERAL PERMISSIONS? @

The lack of a response here indicates that general
permission is not granted at this level for any type of
access to subsumed files. A response of READ, EXECUTE
indicates that any unspecified user has permission to
read and execute (if meaningful) any file that emanates
from this catalog.

SPECIFIC PERMISSIONS?

SPECIFIC PERMISSIONS?

READ/BJONES/ASMITH @

READ,WRITE,PURGE/ALLONG @

This combination of responses says that the users who
have logged onto the TSS system under the names BJONES
and ASMITH can pass through this level with read
permission for any files below, and that the user
ALLONG can pass through with read, write, and purge
permissions.

157

GE-625/635 GECOS-III TSS FORTRAN

SPECIFIC PERMISSION? ®
The carriage-return alone means
specific permissions are to be given;
now created and the question:

NEW CATALOG?

is reissued, allowing the user to
catalog at the same level, i.e., also
CATI.

that
the

no further
catalog is

create another
emanating from

Alternative forms of the response to CATALOG STRUCTURE
TO WORKING LEVEL? are as follows:

/CAT1$ABC @

Assuming the user to be JDOE, this response is
equivalent to the one given above, JDOE/CATl$ABC. The
initial slant indicates the user's own master catalog.

A response of simply a slant, i.e.:

indicates that the user desires to create directly from
his master catalog. This response is equivalent to his
user-ID alone.

(2) FUNCTION? CREATE FILE @

158

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password ~

GE-625/635 GECOS-III TSS FORTRAN

FILE NAME, SIZE, MAX SIZE?

file name, initial size (links), maximum size (links) ~

PASSWORD? password ®
GENERAL PERMISSIONS? access-types, ••• ,access-type ®
The access-types are:

READ (or R)

WRITE (or W)

APPEND (or A)

EXECUTE (or E)

MODIFY (or M) (Specific permission only)

PURGE (or P) (Specific permission only)

SPECIFIC PERMISSIONS?

access-type, ••• ,access-type/user-ID ••• /user-ID ~

Example Replies (responses are underlined) :

FUNCTION?

CATALOG STRUCTURE TO WORKING LEVEL?

/CATI$ABC/CAT2$AOK ~
This response defines user-ID/CATI/CAT2 as the
catalog-string from which the file is to emanate. The
initial slant indicates that the succeeding string is
concatenated to the user's own master catalog.

FILE NAME, SIZE, MAX SIZE? FILI,I(3 ~

This response asks for
initially, with a maximum
links, named FILl.

a file space
eventual size

of 1
limit

link,
of 3

159

GE-625/635 GECOS-III TSS FORTRAN

PASSWORD? @

No password is assigned to this individual file.

GENERAL PERMISSIONS? READ

SPECIFIC PERMISSIONS? @

None are granted at this level, but the ones granted at
the level of CAT2 (CREATE CATALOG in the previous
example), apply to this file.

The lack of a response means the end of the information
relevant to the creation of this file. The file is
created, and the question

FILE NAME, SIZE, MAX SIZE?

is reissued. This permits creation of other files at
the same level.

(3) FUNCTION? ACCESS FILE @

160

CATALOG STRUCTURE TO WORKING LEVEL?

user-IDLcat-name$password/ ••• /cat-name$password @

FILE NAME$PASSWORD? file name (alternate name) $password @

PERMISSIONS DESIRED?

access-t~re, ••• ,access-type ~

GE-625/635 GECOS-III TSS FORTRAN

The access types are:

• READ (or R)

• WRITE (or W)

• APPEND (or A)

• EXECUTE (or E)

Example Replies (responses are underlined) :

FUNCTION? ACCESS FILE @

CATALOG STRUCTURE TO WORKING LEVEL?

JDOE/CATl$ABCLCAT2$AOK @

The user in this case is not the creator of the file to
be accessed, so he must define the user's master
catalog (e.g., JDOE) from which the file emanates,
along with any required subcatalogs and password.

FILE NAME$PASSWORD? !!.!!!. @

If a password were required, it would
to the name with a dollar-sign ($),

PERMISSIONS DESIRED? ~ @

be concatenated
i.e., FIL1$ABC.

General read permissions was granted for this file.
(Several specific read permissions were also granted at
the level immediately above CAT2). Termination of this
response with only a carriage return causes the file to
be accessed and the request:

FILENAME$PASSWORD?

to be reissued.

161

GE-625/635 GECOS-III TSS FORTRAN

(4) FUNCTION? Q,EACCESS FILE @

FILE NAME? file name (or CLEARFILES) @

The response for this function is the name of the file
to be deaccessed. The name supplied is always the name
under which the file was accessed, whether this was the
actual name or a temporary alternate name. If
CLEARFILES is used, all of the user's available files
are deaccessed including his temporary files.

(5) FUNCTION? !:.URGE £ATALOG @
CATALOG STRUCTURE TO WORKING LEVEL?

user-IDLcat-name$password/ ••• /cat-name$password ~

CAT. TO BE PURGED? cat-name ®
PASSWORD? password @

Example Replies (responses are underlined) :

162

FUNCTION? PC @

CATALOG STRUCTURE TO WORKING LEVEL?

/CAT$ABC @
This response defines the subcatalog CATI concatenated
to the user's own master catalog.

CAT. TO BE PURGED? ~ @

PASSWORD? ~ @

GE-625/635 GECOS-III TSS FORTRAN

The dollar-sign is used only when the password is
concatenated directly to a file or catalog name. The
request

CAT. TO BE PURGED?

is reissued.

(6) FUNCTION? PURGE !,ILE @

CATALOG STRUCTURE TO WORKING LEVEL?

user-ID/cat-name$password/ ••• /cat-name$password @

FILE TO BE PURGED? file name €V
PASSWORD? password @

Example Replies (responses are underlined) :

FUNCTION? !:! @

CATALOG STRUCTURE TO WORKING LEVEL?

JDOE /CATI$ABC/CAT2$AOK ®
The user in this case is ALLONG, not the file creator.

163

FILE TO BE PURGED? FILl €V
PASSWORD? @

GE-625/635 GECOS-1I1 TSS FORTRAN

The user (ALLONG) was given specific purge permission
at the level of CAT2.

The request

FILE TO BE PURGED?

is reissued.

(7) FUNCTION? MODIFY £ATALOG @

164

CATALOG STRUCTURE INCLUDING CATALOG TO BE MODIFIED?

user-IDLcat-name$password, ••• ,cat-name$password ~

NEW NAME? new cat-name @

PASSWORD? {

new password"'\. @
DELETE j

~access-tYPe, ••• ,access-typ~
GENERAL PERMISSIONS? I.DELETE j@

{

access-type, ••• ,access-type}
user-ID ••• /user-ID

SPECIFIC PERMISSIONS? DELETE/user-ID/ ••• /user-ID @

GE-625/635 GECOS-III TSS FORTRAN

Example Replies (user responses are underlined) :

FUNCTION? !!£ @

CATALOG STRUCTURE INCLUDING CATALOG TO BE MODIFIED?

LCAT1$ABC/CAT2$AOK ®
NEW NAME? @

A carriage-return only response means that the catalog
name is to remain unchanged.

PASSWORD? ~ @

The original password AOK is replaced by XYZ.

GENERAL PERMISSIONS? ~ @

As originally created, general permissions were not
assigned at this level. This reponse replaces this null
set with READ permission.

SPECIFIC PERMISSIONS? R,W/BJONES @

This response replaces the original specific READ
permission for BJONES with READ and WRITE permission.

SPECIFIC PERMISSIONS? DELETELASMITH ~

This response cancels any permissions for ASMITH that
previously existed.

165

GE-625/635 GECOS-III TSS FORTRAN

SPECIFIC PERMISSIONS? RfW fP ,M/ALLONG @

This response replaces the original set of READ, WRITE
and PURGE permissions for ALLONG with READ, WRITE,
PURGE, and MODIFY.

SPECIFIC PERMISSIONS? @

The carriage-return above implies
modifications are to be made: the
processed and the question:

that no further
changes are now

CATALOG STRUCTURE INCLUDING CATALOG TO BE MODIFIED?

is reissued.

(8) FUNCTION? MODIFY !ILE ®

166

CATALOG STRUCTURE INCLUDING FILE TO BE MODIFIED?

user-IDLcat-name$password/ ••• / ~
cat-name$password/file-name$password ~

NEW NAME? new file name @

NEW NAX SIZE? new maximum size (in links) @

PASSWORD? {

new password"'\.

DELETE ~@

access-type, ••• ,access-type

GENERAL PERMISSIONS?

GE·625/635 GECOS-III TSS FORTRAN

{

access-type/user-ID/ ••• /user-I~ __

SPECIFIC PERMISSIONS? DELETE/user-ID/ ••• /user-ID ~

Example Replies (responses are underlined) :

FUNCTIONS? MF ®
CATALOG STRUCTURE INCLUDING FILE TO BE MODIFIED?

/CATl$ABCLCAT2$XYZLFILl @

NEW NAME? MASTERI @

NEW MAX SIZE? 2. @
This response increases the maximum file size to 5
links (originally 3).

PASSWORD? DEPT37 @

This response attaches the password DEPT37 to this file
(none originally assigned).

GENERAL PERMISSIONS? DELETE @

The original general READ permission is deleted.

SPECIFIC PERMISSIONS? P/BJONES ®
PURGE permissions for user BJONES is added at this
level. This permission applies to this file only, but
he also has READ and WRITE from the CAT2 level.

167

GE-625/635 GECOS-1I1 TSS FORTRAN

(9) FUNCTION? ~IST £,ATALOG @

CATALOG STRUCTURE INCLUDING CATALOG TO BE LISTED?

user-ID/cat-name, ••• ,cat-name @
Example Replies (user responses are underlined):

FUNCTION? !£ @
CATALOG STRUCTURE INCLUDING CATALOG TO BE LISTED?
/CATl

Passwords need not be given in the catalog structure. A
user is permitted to list only his own catalogs on the
LIBRARY catalog.

A list of the catalogs and files emanating from CATl
would now be output.

(10) FUNCTION? LIST SPECIFIC @

CATALOG STRUCTURE INCLUDING CATALOG OR FILE TO BE LISTED?

user-ID/cat-name, ••• ,cat-name(or) file-name .~

Example Replies (user responses are underlined):

168

FUNCTION? !![@

CATALOG STRUCTURE INCLUDING CATALOG OR FILE TO BE LISTED?

/CATl

Passwords need not be given in the catalog structure
and will not be included in the catalog or file
description which is output. A user can list only his
own catalogs or files.

GE-625/635 GECOS-III TSS FORTRAN

The description of CATl would now be output.

Identifiers and Delimiters in User Responses

User responses are composed of the following:

• Identifiers

• Keywords

• Word delimiters

• Line delimiters

Identifiers consist of file names, catalog names, user-IDs
and passwords. They can consist of alphabetics, numerics,
periods, and minus signs. Each identifier can be up to 12
characters in length except file names which are limited in
length to 8 characters.

In response to the question FILE NM1E$PASSWORD?, issued by
the Access File function, a file name of up to 12 characters
may be specified, i.e., the name of a batch-environment
file, if followed by an alternate name of 8 characters or
less, enclosed in parentheses. Also, in response to FILE TO
BE PURGED?, a file name of up to 12 characters could be
specified, if the file to be purged were not created in the
TSS environment.

Keywords consist of function names, access types
(permissions), and several file-type parameters, of limited
interest, that are described under "Special Features."
Keywords are used in responses to questions, and can always
be abbreviated to the initial character, or a two-character
acronym in the case of function name, e.g., R for READ
permission or CC for CREATE CATALOG function.

The file-size specification in the response to FILE NAME,
SIZE, ItAX SIZE? (Create File), is a decimal number denoting
the number of links required. This may be considered a
special case of keyword.

Worrl delimiters are used in user responses: the slant or
virgule (j), the dollar-sign ($), and the comma (,). Blanks
may be used freely in responses except within function
names; they are in no sense delimiters and are ignored.

169

GE-625/635 GECOS-III TSS FORTRAN

The use of the three delimiters is as follows:

The L delimiter has two functions:

(1) In catalog-strings a slant indicates that a subcatalog
name follows and is concatenated to the preceding
catalog in the string. An initial slant indicates that
the following subcatalog-string (if any) is
concatenated to the user's master catalog. A rel~~nse
to CATALOG STRUCTURE TO WORKING LEVEL? of / ~ is
equivalent to the user's own user-ID, i.e., it
positions the user to his own master catalog.

(2) In specific permissions a slant indicates that a
user-ID follows.

The $ is used only to concatenate a password to a
catarog or file name.

The L is used as a general separator for keywords,
i.e., for separating access-types and sizes, and
separating file names from the following keywords or
sizes.

The line delimiters are a carriage-return, an
plus carriage-return, or a double asterisk
carriage-return. Each of these serves to
response, but with a different effect.

asterisk (*)
(**) plus a
terminate a

(1) Carriage Return: A carriage-return following a

170

response generally signifies that the user wishes to
remain at the same catalog position (if relevant), and
proceed to the next question in logical sequence. This
may be the next question in a set, or the initial
question again.

When only a carriage-return is given, however, i.e., a
"null" response, it has several possible meanings:

• In response to the question CATALOG STRUCTURE TO
WORKING LEVEL? a carriage-return-only is
equivalent to the user's own user-ID or a slant,
i.e., / (cR\. Any of these responses requests that
the user ~positioned to his own master catalog.

GE-625/635 GECOS-III TSS FORTRAN

• A carriage-return-only following a question that
logically requires a response, e.g., NEW CATALOG?,
causes an immediate return to the question
FUNCTION?

• The question SPECIFIC PERMISSIONS? recurs each
time a response is given (delimited by a
carriage-return), since only one set of specific
permissions can be given in each. If only a
carriage-return is given, the information received
so far is processed, and the first question below
CATALOG STRUCTURE TO WORKING LEVEL? is reissued,
i.e., NEW CATALOG? or FILE NAME, SIZE, MAX SIZE?,
allowing a new catalog or file to be cre~ted at
the same catalog level.

• A carriage-return only response to FUNCTION?
returns the question SYSTEM?

(2) Single Asterisk Plus Carriage-Return: If a single
asterisk plus a carriage-return is given in reply to a
question, either with or without a substantive
response, ACCESS processes the information it has and
returns to the first question at the same catalog
level, e.g., to skip any further questions in the set.

(3) Double Asterisk Plus Carriage-Return: If a double
asterisk plus a carriage-return is given, either with
or without a substantive response, ACCESS processes the
information it has and returns to the question
"FUNCTION?". It implies that the user is finished with
the current function.

In addition to the changes in level of operation
produced by the several line delimiters, a response of
"DONE" to any question causes an exit from ACCESS. No
processing is performed and the question "SYSTEM?"
results.

171

GE-625/635 GECOS-III TSS FORTRAN

The line delimiters show that there are several ways of
either shortening the question-response sequence, or
terminating a function at any given point.

Examples of the effect of different response terminations:

172

FUNCTION? ££ @
CATALOG STRUCTURE TO WORKING LEVEL?

~ (The carriage-return only implies master catalog.)

NEW CATALOG? ~ @
(This indicates that passwords or permissions are not
wanted for this catalog and no further questions are
wanted.)

NEW CATALOG? .!!..!£ @

PASSWORD? PASS2** @

(This implies that no permissions are to be assigned to
this catalog, and that creating catalogs at this
posi tion is finished.)

FUNCTION? £!: @
CATALOG STRUCTURE TO WORKING LEVEL?

/002$PASS2 ®
FILE NAME, SIZE, MAX SIZE? 02.1,1,3 ~

GENERAL PERMISSIONS? READ @

SPECIFIC PERMISSIONS? W/RJJONES** ~

(This implies that creating files at this level has
been completed.)

GE-625/635 GECOS-\\\ TSS FORTRAN

FUNCTION? ® (or ~ @)

(finished with ACCESS)

SYSTEM?

General Usage Rules

The ability of a user to access files and otherwise
manipulate catalog/file structures, e.g., modifying and
purging, depends upon his knowing the necessary file
definitions. Beyond this, the file system has two file and
catalog protection features: passwords and permissions.

Permissions provide the file creator a positive protection
feature; if perm1ss1ons are not explicity granted, his
catalogs and files are completely protected by default. The
user must assign to others any degree of access he wishes
them to have. But, note that since specific permissions for
a given user do not add to, but replace, any general
permission that may have been given, specific permissions
may be used to exclude a given set of users from one or more
types of access.

Passwords provide an additional level
passwords are assigned by the creator
string they must be supplied in order to
string.

of protection. If
of a catalog/file

pass through the

The creator of a catalog/file string is exempt from any
access-mode restrictions he imposes, i.e., he implicitly has
all permissions for his catalogs and files, but he must give
all passwords. ---

The MODIFY permission, which allows another user to change
file names, catalog names, file size, passwords, and/or
permissions, also implies the ability of this other user to
create catalogs and/or files emanating from the master
catalog.

Special Features

Using the Create-File function, previously described, the
files created are not necessarily contiguous; i.e.,
successive links of a multi-link file are not necessarily in
physical sequence on the storage device. Furthermore, both

173

GE-625/635 GECOS-III TSS FORTRAN

the Create-File and Access-File functions assume that the
file will be treated as a linked file. For the standard
subsystems provided with 600TSS, these file characteristics
are suitable because linked files are required.

If, however, in the use of a given subsystem, it would be
advantageous to have contiguous files, this characteristic
can be specified in response to FILE NAME, SIZE, MAX SIZE?
The form of this response is:

file name,initial size C

The parameter "C" indicates, in Create File
contiguous file is desired. No maximum
specified.

only,
size

that
may

a
be

Similarly, if random treatment of files is required in a
given user-written subsystem, a file can either be created
as a random file or accessed as a random file. If created as
such, it is always treated by the GECOS I/O Supervisor as a
random file. If it is created as a linked file, it can be
accessed as a random file, but in that case, the random
treatment indication is temporary, i.e., it applies to that
access only.

The forms of the random specification are as follows:

174

For Create-File, the response to FILE NAME, SIZE, MAX
SIZE? is:

file-name, initial size,rnaxirnurn size,R
(or)

file name,initial sizeC,R

For Access-File, the response to FILE NAME$PASSWORD?
is:

file-name,R$password

In both responses, the parameter R (always preceded by a
comma) indicates that the named file is to be treated
as a random file.

GE-625/635 GECOS-III TSS FORTRAN

REQUEST DENIED MESSAGES

The following messages are printed following a complete
function request, and indicate that the request could not be
satisfied. The reason for denial is given in each case.

REQUEST DENIED-NEW NAME SAME AS AN EXISTING NAME

A new catalog or file name has been given that is the
same as an existing catalog or file name at the same
level.

REQUEST DENIED-FILE SPACE REQUESTED EXCEEDS ALLOWED

The user has requested file space exceeding the amount
that has been allotted to him in his System Master
Catalog entry.

REQUEST DENIED-NEW SIZE LESS THAN CURRENT SIZE

In MODIFY FILE, a new file size has been specified
which is less than that currently used by the file.

REQUEST DENIED-SYSTEM MALFUNCTION

An unrecoverable I/O error has occurred.

REQUEST DENIED-PERMISSION NOT GRANTED

The user does not possess the requested permission (s).

REQUEST DENIED-FILE BUSY

The requested file is currently busy to the type of
permission(s) requested.

REQUEST DENIED-INCORRECT CAT/FILE DESCRIPTION

This denial is given whenever required passwords are
not included or the catalog/file description is not
logically correct.

175

GE-625/635 GECOS-III TSS FORTRAN

REQUEST DENIED-SYSTEM LOADED

The requested file function cannot be completed because
there is temporarily no file space available.

REQUEST DENIED-YOUR AVAILABLE FILE TABLE IS FULL

The user has too many files accessed (open) at the same
time. This situation can be eliminated by deaccessing
some of the accessed files.

REQUEST DENIED-FILE NAME A DUPLICATE, MUST GIVE ALTERNATE NAME

An ACCESS FILE has been done where the file name is a
duplicate of a file which the user currently has open.
The alternate name capability can be used to avoid this
situation.

INPUT ERROR MESSAGES

The following messages are printed immediately following the
input in error, and the original question is repeated.

176

ERR-ILLEGAL CHARACTER

A character other than an alphabetic, numeric,
or dash has been included in an identifier. An
arrow (t' points at the character in error.

ERR-INVALID DELIMITER

period,
upward

An otherwise valid delimiter has been given out of
place. An upward arrow (t) points at the delimiter in
error.

ERR-XXXXXXXXXXXX-MUST BE LESS THAN 13 CHARACTERS

The designated identifier is limited to 12 characters.

ERR-XXXX-IS NOT A LEGITIMATE PERMISSION

Legitimate permissions are READ, WRITE, APPEND, and
EXECUTE, plus PURGE and MODIFY as specific permissions
only.

GE-625/635 GECOS-III TSS FORTRAN

ERR-XXXXXXXXXX-MUST BE LESS THAN 9 CHARACTERS

The designated identifier is limited to 8 characters.

ERR-XXXX-MUST BE ALL NUMERIC

A non-numeric character has been included in field
XXXX.

ERR-XXXXX-MUST BE LESS THAN 1000

The field is limited to three digits.

ERR-INPUT REQUIRED

A null response was given to a question which requires
input.

ERR-INITIAL SIZE GREATER THAN MAX SIZE

In defining the file size an initial size greater than
the maximum size was given.

177

GE-625/635 GECOS-III TSS FORTRAN

Appendix C.

Time-Sharing FORTRAN and FORTRAN IV Differences

Time-Sharing FORTRAN language differs from FORTRAN IV in
several important ways. In Time-Sharing FORTRAN:

1. Mixed modes are allowed in arithmetic expressions.

2. Quotation marks can be used in format statements in
place of a hollerith count.

3. File names are used in place of tape numbers.

4. ASCII and filename constants have been added to the
system.

5. A subscript may take the form of any legal FORTRAN
arithmetic expression.

6. The following input/output statements are allowed:

READ:
PRINT:
PRINT. ana (where n is any hollerith information)

Infor.mation enclosed in quotation marks may be included
in any list of variables associated with an output
statement. For example, the following statements are
both valid:

PRINT:ABC,Q*27.6,"ANSWERan ,XYZ
WRITE (NAME,999) PQR,nCLASS n

179

GE-625/635 GECOS-III TSS FORTRAN

In the first statement, "ANSWER=" 1s simply hollerith
information which will be printed out in front of the
answer. In the second statement, "CLASS" is defined as a
filename constant and will be written as two words. (See
Chapter 4 for a definition of filename constant.)

Character strings
PRINT: may be any
they are one or
Chapter 4 for
constants.)

within quotation marks used after
length desired, but in any other usage
two words long, blank-filled. (See

definition of ASCII and filename

7. Multiple entry points are not allowed in subroutine or
function Subprograms.

B. Labeled Common is not allowed.

9. Block data subprograms are not allowed.

10. Complex arithmetic is not allowed.

11. Double-precision arithmetic is not allowed.

12. Equivalence is not allowed at the present time.

13. Arithmetic statement functions and dimensioned variables
cannot be named FOlWAT.

14. Variable names may not be the same as subprogram or
arithmetic statement functions.

180

GE-625/635 GECOS-III TSS FORTRAN

Appendix D. Sample Problems

This appendix gives examples of how files are created,
edited, saved, and compiled. The examples illustrate the
time-sharing system log-on procedure, saving of the file,
checkout, and termination of the connection.

PROBLEM A

This exampli illustrates a method for solving the quadratic
equation ax +bx+c-O. Six different equations are solved, but
the number can be varied by changing the test of -COUNT-.
Each time a new equation is used, the problem calls for new
values of a , b, and c to be read in from the terminal.

THIS IS THE GE-600 TSS SYSTEM ON 08/01/68 AT 8.553 CHANNEL 0013

USER ID - WLJACKSON
PASSWORD-­
XXIQIKEBKxDK
SYSTEM ? FORTRAN
OLD OR NEW-NEW
READY FOR INPUT
*AU'l'OX

181

GE-625/635 GECOS-III TSS FORTRAN

0010 PROGRAM QUAD: QUADRATIC EQUATION SOLUTION
*0020 COUNT - 0
*0030 10 READ:I,J,K
*0040 COUNT = COUNT + 1
*0050 TEMP - J**2-4*I*K
*0060 IF (TEMP)30,40,40
*0070 40 Xl == (-J+SQRT(TEMP»/(I*2)
*0080 GO TO 90
*0090 30 A = J/(I*2)
*0100 V c: SQR'!' (-TEMP)
*0110 B - V/(I*2)
*0120 PRIm 50,A,B
*0130 50 FORMAT(lH9,"IMAGINARY ROOTS.REAL &: ",I3,
*0140& nlMAGc+ OR -",I2,"1·,/)
*0150 80 IF(COUNT -6)10,60,10
*0160 90 PRINT 70,Xl,X2
*0170 70 FORMAT(1X,·X1=",I3,·X2=",I3/)
*0180 GO '1'0 80 J 60 STOP
*0190 END
*0200

(In checking the listing, the user notes the lack of a means
for computing X2. He then inserts the required statement.)

*0075 X2=(-J-SQ~(TEMP)/(I*2)

*SAVE QUAD
DATA SAVED--QUAD

(With the source program saved, the user compiles and
executes the program via the RUN command.)
* RUN

-1,6,9
X1=072, X2=072
= 2,6,4
X1-048, X2=504
== 1,-4,-5
X1=488, X2 .. 048
c 2,4,4

IMAGINARY ROOTS aREAL = 728 lMAG=+ OR -201
II: 1,2,-15
X1=208, X2=744
I: 1,-7,-8
Xl=688,X2a 048

PROGBAM STOP AT 180
*BYE

**RESOURCES USED $ 1.22, USED TO DATE $ 927.43= 93%
**TIME SHARING OFF AT 8.647 ON 08/01/68

182

GE-625/635 GECOS-III TSS FORTRAN

PROBLEM B

This example shows a program for producing the mean and
standard deviation of each of n samples, each consisting of
exactly three data-points.

THIS IS THE GE-600 TSS SYSTEM ON 10/08/68 AT 13.878 CHANNEL 0013

SYSTEM ? FORTRAN
OLD OR NEW-NEW
READY FOR INPUT
* AUTO X
0010 MEAN AND STANDARD DEVIATION PROBLEM
*0020 DIMENSION A(3),TOTAL(3),SUMSQ(3) ,COUNT (3)
*0030 DO 10 I=1,3
*0040 TOTL@AL(I)=O.
*0050 SUMSQ(I) =0
*0060 COUNT (I) =0.
*0070 NUM=O
*0080 READ 3,K
*0090 60 IF(NUM-K)20,30,200@
*0100 20 READ I,A
*0110 NUM=NUM+l
*0120 DO 40 1=1,3
*0130 IF(A(I»40,40,SO
*0140 50 TOTAL(I)=TOTAL(I)+A(I)
*0150 SUMSQ(I)=SUMSQ(1)+A(1) **2
*0160 COUNT (I) =COUNT(I) +1
*0170 40 CONTINUE
*0180 GO TO 60
*0190 30 DO 70 1=1,3
*0200 XBAR=TOTAL(I)/cOUNT(I)
*0210 STDEV=SQRT«SOMSQ(I)-(TOTAL(I)/cOUNT(I»
*0220&**2)/(COUNT(I)-1»
*0230 70 PRINT 2,XBAR,STDEV
*0240 2 FORMAT (5X,2F12.4)
*0250 1 FORMAT(F5.2,2X,F5.2,2X,F5.2)
*0260 3 FORMAT (12)
*0270 STOP
*0280 END
*0290

183

*0060 10 COUNT (I) =0.
*SAVE S'l'DEV
DATA SAVED--S'l'DEV

GE-625/635 GECOS-III TSS FORTRAN

(In looking over the listing, the user sees that statement
number 10 to complete the first DO loop is missing. He
corrects the error before saving the source file.)

(With the source program saved, the user compiles and
executes the program via the RUN command.)

* RUN
I: 06
= 15.12 61.13 14.07
a 10.30 7.09 11.12
a 18.20 42.31 38.03
II: 5.55 24.16 21.03
r= 61.43 6.10 15.78
r:: 27.13 17.71 14.98

23.1217 30.5674
26.5833 34.0739
19.3350 21.4929

PROGRAM STOP AT 270
SYSTEM ?

(The user then typed in all his data. He gave 06 as the
value for K, followed by 6 groups of three numbers each. The
computer then executed the program, printed the mean and
standard deviation values, and returned control to the user
at the system selection level.)

184

GE-625/635 GECOS-II' TSS FORTRAN

Appendix E. Built-In Function Examples

FUNCTION EXAMPLE

Absolute value Y=ABS(-lOO.)
Y-lOO.

Truncation Y=AINT(-lOO.l)
Y--lOO.

Remaindering Y=AMOD (5.,2.)
Y=l.

Choosing largest value

Choosing smallest value

Float

Fix

Transfer of Sign

Positive difference

Y=AMAX1(10., 1., 100.,5.)
Y=lOO.

Y=AMINO (10., 1., 50.)
Y=l.

Y-FLOAT(lO)
Y=10.

I=IFIX(10.)
1=10

Y-=SIGN (10., -1.)
Y-=-lO.

Y-=DIM(5., 2.,)
Y=3.

185

~
CD
-...J

Mathematical FORTRAN
Expression Expression

1 J I**J

BJ B**J

Be B**C

Range of
Arguments Errors and Error Codes

1. I = 0, J = 0
EXPONENTIATION ERROR 0**0
SET RESULT = 0

2. I = 0, ''[< 0
EXPONENTIATION ERROR O**(-J)
SET RESULT = 0

1. B = 0, J = 0
EXPONENTIATION ERROR 0**0
SET RESULT = 0

2. B = 0, J < a
EXPONENTIATION ERROR 0** (-J)
SET RESULT = 0

1. B = 0, C = 0
EXPONENTIATION ERROR 0880
SET RESULT = 0

2. B = 0, C < a
EXPONENTIATION ERROR 088 (-C)
SET RESULT = 0

3. B < 0, C ~ 0
EXPONENTIATION ERROR (-B)**C
EVALUATE FOR +B

»
'"C
'"C
CD
::l
0-

X

"
s:
t\)
r-+
:::r
CD

3
t\)
r-+

0
t\)

(J)
C
0-
~

0
C
r-+ G)

FT1
::l
CD

0"1
N
(Jl

::0
CD

...........
0"1
w

(f) (Jl

r-+
~ G)

FT1
0 (")

r-+ 0

0
en

::l
(f) -l

en
en
""T'1
0
:::0
-l
:::0
»
z

I-'
CD
CD

Mathematical FORTRAN
Expression Expression

B e

l0geB

sinB
cosB

VB

EXP(B)

ALOG(B)

SIN(B)
COS (B)

SQRT(B)

Range of
Arguments

JBI < 88.028

B > 0

B < 227

B ~ 0

Errors and Error Codes

IBI > 88.028
EXP(B), B G~ THAN 88.028
NOT ALLOWED
SET RESULT = ARGUMEN'.r

1. B = 0
LOG(O) NOT ALLOWED
SET RESULT = 0

2. B < 0
LOG (-B) NOT ALLOWED
EVALUATE FOR +B

B ~ 227
SIN OR COS ARG GRT TH 2**27
NOT ALLOWED
SET RESULT = 0

B < 0
SQRT(-B) NOT ALLOWED
EVALUATEFO~ +B

G)
rn
~
N
U1

...........
~
w
U1

G)

rn
("')

o
en

-i
en
en
.."
o
:::0
-i
:::0
»
z

.....
00

""

Mathematical FORTRAN
Expression Expression

Range of
Arguments

ARCTANGENT X ATAN(X) any argument
-II/2~ATAN(X)~rI/2
ATAN2,(X,Y) (X,Y)F(O,O)
-II~ATAN2(X,Y)~II

ARCSINE ARSIN(X) IAI~ 1
ARCCOSINE -rI/2~ARSIN(X)$rI/2

ARCOS (X)
O~ARCOS(X).::n

TANGENT TAN (X)
COTANGENT COTAN(X)

erf (X) ERF (X) r (X) GAMMA (X)

log (r (X» ALGAMA(X)

J X I ~ 227

ERF (-X) =-ERF (X)
X cannot be 0 or
a negative integer

Errors and Error Codes

(X,y) = (0,0)
ATAN2(O.O) NOT ALLOWED
SET RESULT = 0

'AI> 1 I ARG I GREATER THAN 1.0
EVALUATE FOR ARG = 1

1. X > 227
TAN OR COT ARG GRT THE 2**27
NOT ALLOWED
SET RESULT = 0

2 • X < 2-! 26 IN COT ARGUMENT
OUT OF RANGE
SET RESULT = INFINITY G')

r'T'1

0'\
N
U'1

""'-
0'\
W
U'1

G')
r'T'1
()

o
(J)

--i
(J)
(J)

.."

o
:::0
--i
:::0
»
z

GE-625/635 GECOS-III TSS FORTRAN

Appendix G. Glossary

ASCII - An abbreviation for
defined by the American
Information !nterchange.

the character
Standard Code -

code
for

Binary - The term used to define a condition which
has two states or alternatives; more
generally used to refer to words consisting
of a number of binary bits. In the TSS
FORTRAN system, "binary" is used to specify
linked files of records transmitted by means
of a list that specifies words rather than
fields of characters.

BREAK key - A nonprinting character which when typed
will terminate execution. It is transmitted
by typing the key marked BREAR or INTERRUPT
on the te~inal. Should be used very
sparingly, as its effects are often
unpredictable, especially with regard to the
status of files.

Current File - A temporary file created by the system to
permit a user to create and/or reference,
modify and possibly execute a file without
permanently saving it. It is the file
presently being accessed by the user in the
sense that the user creates it either by NEW
or by specifying a file by name with an OLD
command and may subsequently operate on it
without specifying it by name.

Disc or - A storage device capable of storing large
Drum File quantities of information for individual

users and the system itself.

EFN - External formula number; same as statement
number.

191

Link

Linked file

Password

Random file

GE-625/635 GECOS-III TSS FORTRAN

- A fixed-length area relative to a specific
storage device. In the TSS system it is used
to refer to 3840-word area on the disc or
drum file.

- A file made
necessarily
serially.

up of links which
contiguous but are

are not
processed

- An optional code from one to 12 characters,
assigned by the user to protect his files
against unauthorized access by others.

- A file processed by direct addressing.

Time-Sharing - The simultaneous use of a computer by many
users.

User

User-ID

- That to which the system reacts.

- A code of from one to 12 characters that is
uniquely assigned to each user for purposes
of identification with regard to file
storage and billing.

User's Master - A table with an entry for each file (or
Catalog subcataloq) of a user. Each entry contains

the file (or catalog) name, the number of
links used, the date the file was last
accessed, the date it was last modified, the
mode, permissions, and the password, if any.

Variable

192

- A symbol which represents a quantity whose
value is assigned dynamically elsewhere in
the program.

- This character (equal sign), when
transmitted to the user, requests a reply in'
the form of data required by the program.

GE-625/635 GECOS-III TSS FORTRAN

Appendix H. ASCII Character Set

The 7-bit octal codes which require a parity bit of 1 are
underlined. Characters in memory do not have parity with
them. It is automatically deleted on input and subsequently
generated on output. 'c' designates the control key. 'cst
designates the control and shift keys together. The
non-printing control characters are (by 7-bit code), ~16,
~17, 929, ,22, and 924.

7-BIT ASCIIMODEL 33~35
CODE CHAR KEY 1tXR ASCII INTENT -- --
000 NUL 'CS'P Null or time fill character
001 SOH 'C'A Start of Heading
tr02 STX 'C'B Start of Text
-0'03 EXT 'c'c EOM End of Text
004 EOT 'C'D End of Transmission
lfos ENO 'C'E WRU Enquiry (who are you)
006 ACK 'C'F RU Acknowledge
007 BEL 'C'G Bell
11'10 BS 'C'H Backspace
tr11 HT 'C'I Horizontal Tabulation
012 LF LINE FEED Line Feed (or New Line)
013 VT 'C'K Vertical Tabulation
lf14 FF 'C'L Form Feed
015 CR RETURN Carriage Return
"tr16 SO "C'N Shift Out
lTl7 SI 'C'O Shift In
020 OLE 'C'P Data Link Escape
lT21 DC 'C'Q X-ON Device Control 1
022 DC 'C'R TAPE-AUX. ON Device Control 2
023 DC 'CiS X-OFF Device Control 3
1f24 DC 'C'T TAPE-AUX.OFF Device Control 4
025 NAK 'C·U ERROR Negative Acknowledge
11'26 SYN 'C·V Synchronous Idle
1f27 ETB 'c'w End of Transmission Blocks
030 CAN 'c'x Cancel
031 EM 'e'Y End of Medium
~32 SS 'c'z Special Sequence

193

GE-625/635 GECOS-III TSS FORTRAN

033 ESC 'CS'K Escape
034 FS 'CS'L File Separator
"'35 GS 'CS'M Group Separator
036 RS 'cs 'N Record Separator
037 US 'CS'O Unit Separator
1)40 SP Space
'D"4l ,

Exclamation Point •
042 " Quotation Marks
043 # Number Sign
lf44 $ Currency Symbol
045 % Percent
'D"46 & Ampersand
'tr47 'or I Apostrophe or Acute Accent
050 (Opening Parenthesis
051) Closing Parenthesis
lfS2 * Asterisk
1)53 + Plus
054 , Comma or Cedilla
'D"55 Hyphen or Minus
056 • Period or Decimal Point
057 / Slant
'tT60 0 Zero
061 1 One
'tr62 2 '!'wo
lf63 3 Three
064 4 Four
tr65 5 Five
066 6 Six
067 7 Seven
lT70 8 Eight
1f71 9 Nine
072 I Colon
073 · Semicolon I

"'74 < Less Than
075 == Equal
"'76 > Greater Than
tr77 ? Question Mark
100 \ @ Grave Accent
T01 A Capital Letter
102 B Capital Letter
103 C Capital Letter
T04 D Capital Letter
105 E Capital Letter
T06 F Capital Letter
T07 G Capital Letter
110 H Capital Letter
111 I Capital Letter
T12 J Capital Letter
T13 K Capital Letter
114 L Capital Letter
1'15 M Capital Letter

194

GE-625/635 GECOS-III TSS FORTRAN

116 N Capital Letter
117 0 Capital Letter
T20 P Capital Letter
121 Q Capital LetteE'
T22 R Capital Letter
T23 S Capital Letter
124 T Capital Letter
T2S U Capital Letter
126 V Capital Letter
127 w Capital Letter
T30 X Capital Letter
T31 y Capital Letter
132 Z Capital Letter
133 ['S'X Opening Bracket
T34 JI"'./ 'S'L \ Tilde
135 '] 'S'M Closing Bracket
T36 A t Circumflex
T37 ~ Undexline
140 'I Commercial "At"
141 a Lower case alphabetics
T42 b Lower case alphabetica
T43 c Lower ca.e alphabetica
144 d Lower ca.e alphabetics
r45 e Lower ca.e alphabetics
146 f Lower case alphabetics
147 9 Lower case alphabetic.
Tso h Lower case alphabetics
T51 i Lower case alphabetics
152 j Lower case alphabetics
153 k Lower case alphabetics
T54 1 Lower case alphabetics
155 m Lower case alphabetics
TS6 n Lower case alphabetics
1'57 0 Lower case alphabetics
160 p Lower ca.e alphabetios
T61 q Lower case alphabetics
162 r Lower case alphabetics
163 s Lower case alphabetic.
T64 t lower case alphabetics
16S u Lower ca.e alphabetics
T66 v Lower case alphabetics
T67 w Lower case alphabetics
170 x Lower case alphabetics
171 y Lower case alphabetics
T72 z Lower ca.e alphabeticB
1'73 < Opening Brace
174 'T Over line
T7s Closing Brace
176 I Vertical Line
177 DEL aUBOUT Delete -

195

GE-625/635 GECOS-III TSS FORTRAN

Appendix I. FORTRAN Error Messages

This listing of error measages includes only those that are
not self-explanatory.

COMPILER ERROR MESSAGES

1. EXPRESSION TYPE MISMATCHES -IF" TYPE

Logical-IF and arithmetic-IF statement
combined incorrectly -- examples.

IF(A-l.)F-COS(T) or IF(B.AND.C)lO,20,30 -
2. FILE NAMES CANNOT BE NUMERIC

elements

File references may not be unit numbers. File names may
only be either filename variables or filename
constants.

3. FILE REFERENCE IS NO'1' FILE NAME

The variable or constant in question is not type
filename.

4 • FORMATS MUST BE EFN' S OR ARRAYS

A fo~at reference in an input/output statement mU8t be
either a statement number of array name.

5. ILLEGAL ADJTJSTABLE DIMENSION VARIABLE

The array or dimension to be adjusted is not a fo~al
parameter to this subprogram.

6 • ILLEGAL USAGE OPERATOR

An operator other than + or - used illegally, e.g.,
A-=*C or X-/I+J.

197

GE-625/635 GECOS-III TSS FORTRAN

7. ILLEGAL USE OF $SN

The value following the $ sign is not a valid statement
number.

8 • LIS'l' LENGTHS DIFFER

In a DATA statement, the number of constants given does
not match the number of variables specified or implied.

9 • MACHINE OR COMPILER LOGIC ERROR

This type of error cannot be corrected by the user;
contact your AE representative.

10. MUST HAVE 0 .LT. INTEGER .LT. 2**18

The statement number indicated is out of the range of
permis.able values, i.e., is < 0 or > 218 •

11. ODD COMMON CELL FOR TWO-WORD LENGTH VARIABLE

The variable in question must start in an even cell,
move it to an even location in the COMMON list (in
source program).

12. OPTIONAL RETURN '1'00 BIG

In RETURN i, i exceeds the number of nonstandard
returns in the argument list.

13. PREVIOUSLY DIMENSION V~ABLE

The dtmension(s) of the variable in question were
previously specified.

14 • '1'00 MANY LIBRARY REQUESTS
TOO MUCH BINARY
TOO MUCH COMMON

An internal compiler table has overflowed.

198

GE-625/635 GECOS-III TSS FORTRAN

POR'l'MN LOADER MESSAGES

145 TSS FORTRAN LOADER ERROR, CODE-xx

where 145 is the message number in the HELP subsy.tam and !!
is as followsl

0-31 These codes (given in decimal) correspond to
status codes listed under ·Pe~anent File
Activity·, GE-625/635 GECOS-III TSS Programming
Reference Minual, cPB-iSii. .

32 Your SAVE-file is not large enough to contain the
whole object program.

33 Binary routine being saved is not in proper
for,mat. One or more object routines in the code
being saved was probably created by same means
other than 'lSS POR'l'MN (e. 9 • , GMAP) •
SYMREFS/SYMDEFS are not campatible for linking.

34 File being loaded contains too many subroutines

35

(present limit i8 64).

File being loaded is not
This file was probably
other than TSS FORTRAN.

in absolute format.
created by same means

36 Checksum error occurred in data blocks of file
being loaded.

37 Checksum error occurred in control blocks of file
being loaded.

38 Not used.

39 User's allotted file space has been exhausted.

40 Block count error while loading file. Data
blocks are out of order or have been destroyed.

41 A file requested for loading cannot be found ••
described.

199

GE-625/635 GECOS-III TSS FORTRAN

Index

ADJUSTABLE
Adjustable Dimensions

ALPHAMERIC
Alphameric Fields

ALTERNATE
Alternate Naming of Files

ARGUMENTS
Subprogram Names as Arguments

ARITHMETIC
Arithmetic Expressions
ARITHMETIC STATEMENTS
ARITHMETIC IF STATEMENT

ARITHMETIC STATEMENTS
Arithmetic Statement Functions

ARRANGEMENT OF
Arrangement of Arrays

ARRAYS
Arrangement of Arrays

ASCII
ASCII Constants
ASCII and Filename Variables
FREE-FIELD ASCII INPUT/OUTPUT STATEMENTS
FORMATTED ASCII INPUT/OUTPUT STATEMENTS
ASCII CHARACTER SET

ASSIGNED
ASSIGNED GO TO STATEMENT

ASSIGNED GO
ASSIGNED GO TO STATEMENT

58

89

39

125

52
65
73

115

52

52

47
49
82
84

193

71

71

201

ASSIGNMENT
implicit Type assignment

AUTOMATICX
AUTOMATICX

A-CONVERSION
A-Conversion

BINARY
BINARY INPUT/OUTPUT STATEMENTS

BLANK
Blank Fields -- X-Conversion

BRANCH
END-OF-FILE Test and Branch

BUILT-IN
Built-In Functions

BYE
BYE

CALL STATEMENT
CALL STATEMENT

CARRIAGE-RETURN
carriage-return

CHARACTER
control character
control character
ASCII CHARACTER SET

CLASSES
classes of subroutines

COMMAND
Command Descriptions

GE-625i635 GECOS-1I1 TSS FORTRAN

49

13

90

101

92

110

116

14

126

7

7
8

193

113

TIME-SHARING SYSTEM COMMAND LANGUAGE
15

129

COMMANDS
COMMANDS

COMMON
COMMON STATEMENT

202

13

60

GE-625/635 GECOS-III TSS FORTRAN

COMPILER
COMPILER ERROR MESSAGES

CONSTANTS
Integer Constants
CONSTANTS
Logical Constants
Real Constants
Filename Constants
ASCII Constants

CONTINUE
CONTINUE STATEMENT

CONTROL
control character
control character
Control statements
CONTROL STATEMENTS

CONVENTIONS
FILE CONVENTIONS

CONVERSION
FREE-FIELD CONVERSION FORMATS
MEMORY-TO-MEMORY DATA CONVERSION STATEMENTS

CORRECTING
Correcting or Modifying a Program

CURRENT
current source file
current file
Definition of Current File

DATA
data literals
MEMORY-TO-MEMORY DATA CONVERSION STATEMENTS

DECODE
DECODE Statement

DEFINING
DEFINING SUBROUTINES

DEFINITION
Definition of Current File

DEFINITIONS
DEFINITIONS

197

45
45
46
46
47
47

77

7
8

43
69

111

84
97

10

11
15
15

64
97

100

114

15

130

203

DELETE
DELETE

DESCRIPTION
DESCRIPTION OF FILES

DESCRIPTIONS
Command Descriptions

DIMENSION
DIMENSION STATEMENT

DIMENSIONS
Adjustable Dimensions

DONE
DONE

ENCODE
ENCODE Statement

END
END STATEMENT

END-OF-FILE
END-OF-FILE Test and Branch

ENTERING
ENTERING PROGRAM-STATEMENT INPUT

ERROR
FORTRAN ERROR MESSAGES
COMPILER ERROR MESSAGES

EXISTING
MODIFYING AN EXISTING FILE

EXPONENTIAL
Exponential

EXPRESSIONS
Arithmetic Expressions
EXPRESSIONS
Logical Expressions

EXTERNAL
External Variables

FACTORS
Scale Factors

204

GE-625/635 GECOS-III TSS FORTRAN

13

36

15

57

58

14

98

78

110

6

197
1~7

111

128

52
52
54

50

93

GE-625/635 GECOS-III TSS FORTRAN

FIELD
Repetition of Field Format

FIELDS
Numeric Fields
Alphameric Fields
Logical Fields
Blank Fields -- X-Conversion

FILE
current source file
Definition of Current File
current file
File Names
File Modes
FILE CONVENTIONS
MODIFYING AN EXISTING FILE
FILE FORMATS
FILE NAMES,CATALOG NAMES, AND PASSWORDS

FILENAME
Filename Constants
ASCII and Filename Variables

FILES
Quick-access files
DESCRIPTION OF FILES
Quick-access files
Nonquick-access files
Alternate Naming of Files

FILE-ACCESS
File-Access Types

FORM
Form of Subscripts

FORMAT
FORMAT STATEMENT
Repetition of Field Format

FORMATS
FREE-FIELD CONVERSION FORMATS
Multiple - Record Formats
FILE FORMATS

FORMATTED
FORMATTED ASCII INPUT/OUTPUT STATEMENTS

FORTRAN
FORTRAN statement number
FORTRAN ERROR MESSAGES
FORTRAN LOADER MESSAGES

92

87
89
91
92

11
15
15
36
38

III
III
132
134

47
49

36
36
37
37
39

36

51

86
92

84
94

132

84

9
197
199

205

GE-625/635 GECOS-III TSS FORTRAN

FREE-FIELD
FREE-FIELD ASCII INPUT/OUTPUT STATEMENTS 82
FREE-FIELD CONVERSION FORMATS 84

FUNCTION
SUBROUTINE, FUNCTION, AND SUBPROGRAM STATEMENTS 113
FUNCTION Subprogram 118

FUNCTIONS
Built-In Functions 116

GENERAL
GENERAL OPERATION 3
General Input/Output statements 79

GET
GET 14

GLOSSARY
GLOSSARY 191

GO
UNCONDITIONAL GO TO STATEMENT
ASSIGNED GO TO STATEMENT

GROUPS
Repetition of Groups

H-CONVERSION
H-Conversion

IDENTIFICATION

IF

user's identification

ARITHMETIC IF STATEMENT
LOGICAL IF STATEMENT

IMPLICIT
implicit Type assignment

INPUT
Keyboard input
ENTERING PROGRAM-STATEMENT INPUT
Program-Statement Input

INPUT/OUTPUT

206

Input/output statements
INPUT/OUTPUT STATEMENTS

69
71

92

90

4

73
74

49

3
6
7

43
79

GE-625/635 GECOS-III TSS FORTRAN

INPUT/OUTPUT (continued)
Manipulative Input/Output Statements
General Input/Output Statements
FREE-FIELD ASCII INPUT/OUTPUT STATEMEN'TS
FORMATTED ASCII INPUT/OUTPUT STATEMENTS
BINARY INPUT/OUTPUT STATEMENTS
NAMELIST INPUT/OUTPUT STATEMENTS
MANIPULATIVE INPUT/OUTPUT STATEMENTS

INTEGER
Integer Constants

KEYBOARD
Keyboard input

LANGUAGE
TIME-SHARING SYSTEM COMMAND LANGUAGE

LINE
line number

LINE-SEQUENCE
line-sequence number

LIST
LIST
LIST SPECIFICATIONS

LITERALS
data literals

LOADER
FORTRAN LOADER MESSAGES

LOGICAL
Logical Constants
logical operation symbols
Logical Expressions
LOGICAL IF STATEMENT
Logical Fields

LOG-ON
LOG-ON PROCEDURE

MANIPULATIVE
Manipulative Input/Output Statements
MANIPULATIVE INPUT/OUTPUT STATEMENTS

79
79
82
84

101
102
108

45

3

129

7

7

13
80

64

199

46
54
54
74
91

4

79
108

207

GE-625/635 GECOS-III TSS FORTRAN

MATHEMATICAL
Mathematical Subroutines

MEMO RY-TO-MEMO RY
MEMORY-To-MEMORY DATA CONVERSION STATEMENTS

MESSAGES
FORTRAN ERROR MESSAGES
COMPILER ERROR MESSAGES
FORTRAN LOADER MESSAGES

MODES
File Modes

MODIFYING
Correcting or Modifying a Program
MODIFYING AN EXISTING FILE

MULTIPLE
Multiple - Record Formats

NAMELIST
NAMELIST INPUT/OUTPUT STATEMENTS
NAMELIST Statement

NAMES
File Names
Variable Names
Subprogram Names as Arguments
FILE NAMES ,CATALOG NAMES, AND PASSWORDS

NAMES CATALOG
FILE NAMES ,CATALOG NAMES, AND PASSWORDS

NAMING
Alternate Naming of Files
NAMING SUBROUTINES

NEW
NEW

NONEXECUTABLE
Nonexecutable Statements

NONQUICK-ACCESS
Nonquick-access files

NUMBER

208

line number
line-sequence number
FORTRAN statement number

127

97

197
197
199

38

10
III

94

102
103

36
48

125
134

134

39
113

13

79

37

7
7
9

NUMERIC
Numeric Fields

OLD
OLD

OPERATION
GENERAL OPERATION
TIME-SHARING SYSTEM OPERATION
relational operation symbols
logical operation symbols

PAPER
paper tape

PASSWORD
password
password

PASSWORDS

GE-625/635 GECOS-III TSS FORTRAN

87

13

3
3

54
54

3

4
5

FILE NAMES ,CATALOG NAMES, AND PASSWORDS 134

PERM
PERM

PROCEDURE
LOG-ON PROCEDURE

PROGRAM
Correcting or Modifying a Program

PROGRAMS
SOURCE PROGRAMS

PROGRAM-STATEMENT
ENTERING PROGRAM-STATEMENT INPUT
Program-Statement Input

QUICK-ACCESS
Quick-access files
Quick-access files

REAL
Real Constants

RECORD
Multiple - Record Formats

14

4

10

43

6
7

36
37

46

94

209

RELATIONAL
relational operation symbols

REMOVE
REMOVE

REPETITION
Repetition of Field Format
Repetition of Groups

RESEQUENCE
RESEQUENCE

RETURNS
Returns from Subprograms

RUN
RUN

SAVE
SAVE

SCALE
Scale Factors

SET
ASCII CHARACTER SET

SOURCE
current source file
SOURCE PROGRAMS

SPECIFICATION
Specification statements
SPECIFICATION STATEMENTS

SPECIFICATIONS
LIST SPECIFICATIONS

STATEMENT
statement

210

FORTRAN statement number
DIMENSION STATEMENT
COMMON STATEMENT
UNCONDITIONAL GO TO STATEMENT
ASSIGNED GO TO STATEMENT
ARITHMETIC IF STATEMENT
LOGICAL IF STATEMENT
DO STATEMENT
CONTINUE STATEMENT
END STATEMENT
STOP STATEMENT
FORMAT STATEMENT

GE-625/635 GECOS-III TSS FORTRAN

54

14

92
92

13

122

13

14

93

193

11
43

43
57

80

9
9

57
60
69
71
73
74
75
77
78
78
86

GE-625/635 GECOS-III TSS FORTRAN

STATEMENT (continued)
ENCODE Statement 98
DECODE Statement 100
NAMELIST Stat~~ent 103

STATEMENTS
Control statements 43
ARITHMETIC STATEMENTS 65
Input/output statements 43
Specification statements 43
Subprogram statements 43
SPECIFICATION STATEMENTS 57
TYPE STATEMENTS 61
CONTROL STATEMENTS 69
Manipulative Input/Output Statements 79
INPUT/OUTPUT STATEMENTS 79
Nonexecutable Statements 79
General Input/Output Statements 79
FREE-FIELD ASCII INPUT/OUTPUT STATEMENTS 82
FORMATTED ASCII INPUT/OUTPUT STATEMENTS 84
MEMORY-TO-MEMORY DATA CONVERSION STATEMENTS 97
BINARY INPUT/OUTPUT STATEMENTS 101
NAMELIST INPUT/OUTPUT STATEMENTS 102
MANIPULATIVE INPUT/OUTPUT STATEMENTS 108
SUBROUTINE, FUNCTION, AND SUBPROGRAM STATEMENTS 113

STOP
STOP STATEMENT 78

SUBPROGRAM
Subprogram statements 43
SUBROUTINE, FUNCTION, AND SUBPROGRAM STATEMENTS 113
FUNCTION Subprogram 118
Subprogram Names as Arguments 125

SUBPROGRAMS
SUBROUTINE Subprograms 120
Returns from Subprograms 122

SUBROUTINE
SUBROUTINE, FUNCTION, AND SUBPROGRAM STATEMENTS 113
SUBROUTINE Subprograms 120

SUBROUTINES
NAMING SUBROUTINES 113
classes of subroutines 113
DEFINING SUBROUTINES 114
Mathematical Subroutines 127

SUBSCRIPTED
Subscripted Variables 51

211

GE-625/635 GECOS-III TSS FORTRAN

SUBSCRIPTS
SUBSCRIPTS
Form of Subscripts

SYMBOLS
relational operation symbols
logical operation symbols

SYSTEM
TIME-SHARING SYSTEM OPERATION
TIME-SHARING SYSTEM COMMAND LANGUAGE

TAPE
paper tape
TAPE

TELETYPEWRITER
teletypewriter

TEST
END-OF-FILE Test and Branch

TIME-SHARING

TO

TIME-SHARING SYSTEM OPERATION
TIME-SHARING SYSTEM COMMAND LANGUAGE

UNCONDITIONAL GO TO STATEMENT
ASSIGNED GO TO STATEMENT

TO STATEMENT
ASSIGNED GO TO STATEMENT

TYPE
implicit Type assignment
TYPE STATEMENTS

TYPES
File-Access Types

TYPE STATEMENTS
TYPE STATEMENTS

UNCONDITIONAL
UNCONDITIONAL GO TO STATEMENT

USER.'S
user's identification

212

50
51

54
54

3
129

3
14

3

110

3
129

69
71

71

49
61

36

61

69

4

VARIABLE
Variable Names

VARIABLES
VARIABLES
ASCII and Filename Variables
External Variables
Subscripted Variables

VARIABLE TYPE
Variable Type Specifications

X-CONVERSION
Blank Fields -- X-Conversion

GE-625/635 GECOS-III TSS FORTRAN

48

48
49
50
51

49

92

213

DOCUMENT REVIEW SHEET

TITLE: GE-625/635 GECOS-III Time-Sharing FORTRAN

CPB #: 156-....6 __ _

From:
Name: ____________________________________ __

Position:

Address:

Comments concerning this publication are solicited for use in improving future
editions. Please provide any recommended additions, deletions, corrections, or
other information you deem necessary for improving this manual. The following
space is provided for your comments.

u COMMENTS:
I:

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

=-TAPI E

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY
PROCESSOR EQUIPMENT DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA 85029

ATTENTION: DOCUMENTATION B-I07

FOLD

FIRST CLASS

PER MIT, No. 4332

PHOENIX, ARIZONA

GEIEIAL

