
:J G.[-625/635
General Loader

I~l

CP8-t008E

~ Information
~~ Sy~tems

Information Systems
Equipment

GENERAL. ELECTRIC

E 133 (8/66)

.-~.

DATE

GENERAL. ELECTRIC GrE-600 SERIES Oct. 1968
INFORMATION SYSTEMS DIVISION NO.

COMPUTER EQUIPMENT DEPARTMENT TECHNICAL INFORMATION BULLETIN 600-222
SUBJECT: REF.

Changes to GE-625/635 General Loader Reference Manual CPB-1008E

This TIB includes features implemented in GECOS-III System Development
Letter 1.

Replace old pages in GE-625/635 General Loader reference manual, CPB-1008E,
with attached new pages as follows:

Old New
15, 16 14.1, 15, 16
17-20 17, 18, 18.1, 19, 20
23-27 23-27
35, 36 35, 36
39, 40 39, 40
53, 54 53, 54

Vertical bars in the margins of these new pages indicate changes or
additions to the existing text. This new information and any changes
it makes in the index will be included in the next edition of the
manual 0

Place this sheet in the front of your manual to show that the contents
of this TIB have been incorporated.

This is at present the only TIB applying to CPB-1008E.

CPB-1008E

GE-625/635
General Loader

REFERENCE MANUAL

PROGRAM NUMBER

CD600Bl.OOO

September 1964

Rev. May 1968

INFORMATION SYSTEMS

Preface

The GE-625/635 General Loader (GELOAD) is an essential element of the
integrated programming system. GELOAD's most extensive use is in the
loading of relocatable subprograms from various sources and tying them
together such that the subprograms execute as a whole. GELOAD's
recognition of debug cards causes GELOAD to set up tables and additional
linkages for printouts of intermediate results during execution in
relation to the arguments on these cards. Other documents which will be
of interest to programmers using GELOAD,are:

CPB-1195

This manual has been revised to the extent that the majority
have been affected. The manual is issued, therefore, as a new
without change bars to indicate the changes.

of pages
document,

This manual was produced using the General Electric Remote Access
Editing System (RAES). RAES is a time-shared disc-resident storage and
retrieval system with text-editing and manuscript formatting
capabilities. The contents of the manual were entered into RAES from a
remote terminal keyboard, edited using the system editing language, and
formatted by RAES on reproduction masters.

The index was produced using a computer-assisted remote access indexing
system. This system produces an index using source strings delimited at
manuscript input time.

Suggestions ,and criticisms relative to form, content, purpose, or use of
this manual are invited. Comments may be'sent on the Document Review
Sheet in the back of this manual or may Le addressed directly to
DocumeLtatioI. St andards and Publications, C-78, Processor Equipment
Departr.lent_, General Electric Company, ,13430 North Black Canyon Highway,
Phot~ni>;, 1~ri2oni:; 85029.

~ 1964, 1965, 1966, 1968 by Generai Electric Company

(1.5M 5-68)

1.

2.

3.

4.

5.

6.

GE-625/635 GENERAL LOADER

Contents

INTRODUCTION ~ ,/.'--1 1"./ ,(\"
I.."

,,(\1 (.: .. :t\-~'\
GENERAL PROCEDURES FOR LOADING~:;) {; i,~, I, 'P/i,~.,}~!.2,,:~,,~_
Normal Loading ••
Low Loading •••••••••••••••••••••••••••••.•••••••••••••••••••

INPUT TO GELOAD

Page

1

3

3
4

7

Relocatable Object Deck Description......................... 7
Preface Cards ••• '. 7
Relocatable Text Cards................................. 9
Relocation Scheme...................................... 11

Absolute Object Deck Description............................ 11
Absolute Text Card..................................... 11
T-ransfer Card.. 12

Control Card Descriptions................................... 12

LOADING RELOCATABLE OBJECT DECKS 29

Interpreting the Preface Card............................... 29
SYMDEF •••••••••••••••••• • " • 29
Labeled Common •••••••••••• ~ •••••••••••••••••••• ". • • • • • • • 3 0
SYMREF. • • • • .. • 30

Loading Reloca table Text Cards •••••••••• ~ • • • • • •. • • • • • • • • • • • • • 30

USE OF LIBRARIES 35

"Library Files... 35
Primary and Secondary SYMDEF Symbols........................ 35

LOADING ABSOLUTE OBJECT DECKS 37

Processing the Absolute Text Card........................... 37
Processing the Transfer Card................................ 37

iii

7.

8.

9.

10.

11.

12.

GE-625/635 GENERAL LOADER

Page

LINK/OVERLAY PROCESSING 39

Use of the $ LINK Control Card.............................. 39
Referencing Between Links................................... 39
Link Manipulation at Execution Time......................... 40
Example of a Linked Program................................. 41

USING THE DEBUG FEATURE AT LOAD TIME 45

Debug Feature... 45
Debug Symbol Table .SMYT. •••••••••••••••••••••••••••••••••• 45
Debug S ta temen t. •.• • • • 47
Processing of Debug Cards................................... 50
Example Deck Setup.. 52

MEMORY MAP PRINTOUT 53

ERROR MESSAGES ' 55

FILE CONTROL BLOCK GENERATION 59

OCTAL CORRECTION CARDS 61

REFERENCES 63

1.
2.
3.
4.
5.
6.

7.
8.

iv

III ustrations

High-Loaded Memory Layout for Relocatable Subprograms •••••••
Low-Loaded Memory Layout for Relocatable Subprograms ••••••••
Types of Relocation ••••••••••••••••••••••••••••••••••••.•••••
Layout of 5l20-Word Segment of Memory •••••••••••••••••••••••
Deck Setup for a Linked Program •••••••••••••••••••••••••••••
Memory Layout Resulting from Loading Linked

Program of Figure 5 ••••••••••••••••••••••••••••••••••••••
Memory Map Printout •••
List of Error Messages ••••••••••••••••••••••••••••••••••••••

5
6

32
34
42

43
54
55

GE-625/635 GENERAL LOADER

1. Introduction

The GE-625/635 General Loader (GELOAD), one program of the GE-625/635
software system, is a general purpose loader whose primary function is
to initiate an execution activity. Although GELOAD will load absolute as
well as relocatable subprograms, its most extensive usage is in the
loading of relocatable subprograms from various sources and tying them
together in a rational fashion such that the subprograms execute as a
whole.

A relocatable subprogram is a binary object deck usually having a
distinct but dependent function. Included within the subprogram are the
necessary interfaces to link it to other subprograms which complement
its function to the extent of achieving a desired goal. GELOAD completes
these linkages, reserves storage for required data regions, calls in
additional subprograms from established libraries, and, if desired,
segments the program into reloadable overlays.

Additional features, included optionally within GELOAD, are the creation
and linkage of file control blocks which may be required for execution
of the user program. GELOAD, in conjunction with the FORTRAN I/O
library, provides an extensive debugging aid for the user. The
recognition by GELOAD of debug cards causes GELOAD to set up tables and
additional linkages for printouts of intermediate results during
execution in relation to the arguments on these cards.

The manuals listed under "References" contain supplementary information
concerning the use of GELOADand should be used in conjunction with this
manual.

1

(

)

GE-625/635 GENERAL LOADER

2. General Procedures for Loading GlI:()ATr~:.--
... ,' ,

The GE-625/635 General Loader (GELOAD) is called by the Comprehensive
Operating Supervisor (GECOS) whenever a $ EXECUTE control card is
encountered. GELOAD will load all object decks provided by the user or
generated by the compilers and assemblers. Before loading is initiated,
GECOS allocates sla~~,._memory requirements. plus a required amount for
GELOAD (unlessV,'slave memory' 'or-:-a portIon "O,f) :i"t. may be shared with memory
requirements for GELOAD). The relative address of the lower and upper
limits of memory allocated to the object programs are placed in location
378 of the slave program prefix.

o 17 18 35

LO~;:ionl ~ ~------------------------~i ________________________ ~I
Relative address of first word
of memory' >.~llocated

"Jr:i e~

Relative address of last word
of memor~;\allocated

'~"i~j "'c:.. '~:.-~''-
i-.. r~A._

The addresses of the first and last words are not absolute, but are
relative to the base address as set for GELOAD.

NORMAL LOADING
SCI e·)'(! ()~'::ii? ill/)

The normal~loading procedure, from the high end of activity-allocated
memory, is as follows:

1. Assign and reset contents of the amount of memory indicated by
the program break on the object deck preface card.

2. Load the first subprogram in order of increasing addresses
into allocated memory.

3.

4.

Assign below the first subprogram any Labeled
requested by the first subprogram.

Assign and load the next subprogram below the
regions (if present), followed by its Labeled
(if present).

Common regions

Labeled Common
Common regions

5. Continue this procedure until all of the subprograms have been
loaded.

3

4

GE-625/635 GENERAL LOADER

The largest amount of Blank Common that may have been requested by any
of the subprograms loaded will be assigned to a region at the low end of
the allocated memory immediately following the 64-word slave program
prefix. Figure I illustrates the memory layout for high-loaded
relocatable subprograms.

LOW LOA D I N~" _;:::/; iD.ce,! J~r\Wl~-l(1 '1'.j.?
When a $ LOWLOAD c·ontroi card is encountered by GELOAD, assignment and
loading~egins from the low end of activity-allocated memory following
the 64-word slave program prefix. Succeeding subprograms are assigned to
ascending memory locations. The $ LOWLOAD control card format is
discussed in Chapter 3 of this manual. Figure 2 illustrates memory
layout for low-loaded relocatable subprograms.

)

GE-625/635 GENERAL LOADER

High Address
Limit for
Activity }

--a>.------.
Debug Tables for Activity (if required)

Subprogram 1

Labeled Common Region(s) (if defined in Subprogram 1)

Subprogram 2

New Labeled Common Region(s)
(if defined in Subprogram 2)

Subprograms and Labeled Common
in Region(s) in Order Of Input,

and System Subroutines

File Control Blocks and Logical Unit Table

I/O Buffers (if created)

Blank Common (if required)

Low Address 64-Word Slave Program Prefix-User GECOS ASSigned}

Limit for --i> r-- - - - - - - - - - -
Activity

Reference Table - Pointers for
Current Preface Symbols

Load Table - Contains All Symbols
and Their Assigned Values

GELOAD

Low
Address
Limit

}

64-Word Slave Program Prefix-GELOAD

~~--------'

Figure 1. High-Loaded Memory Layout for Relocatable Subprograms

5

High Address
Limit for
Activity

GECOS Assigned 1
Low Address Limit ~-­
for Activity j

Low
Address
Limit } -

GE-625/635 GENERAL LOADER

I/O Buffers (if required)

Logical Unit Table and File Control Blocks
(if required)

SubprogramS and Labeled Common Regions in Order
of Input, and System Subroutines

New Labeled Common Region(s)
(if defined in Subprogram 2)

Subprogram 2

Labeled Common Region(s)
(if defined in Subprogram 1)

Subprogram 1

Debug Tables for Activity (if required)

Blank Common (if required)

2-Word Link Vector (if required)

64-Word Slave Program Prefix-User

- -- - - - - - - - - - --

Reference Table - Pointers for
Current Preface Symbols

Load Table - Contains All Symbols and Their
Assigned Values

GELOAD

64-Word Slave Program
Prefix-GELOAD

F:_gure 2. Low-Loaded Memory Layout for Relocatable Subprograms

6

(

..
\
I

,/

\
/

GE-625/635 GENERAL LOADER

3. Input to GELOAD

Input to GELOAD consists of control cards and object decks (in either
relocatable or absolute form) such as those produced as output from the
GE-625/635 GMAP Assembler. Each object deck is itself enclosed between
t\,lO control cards, the $ OBJECT and the $ DKEND cards.

RELOCATABLE OBJECT DECK DESCRIPTION

Relocatable object decks may be further defined as being made up of two
types of cards, those containing preface information and those
containing text.

Preface Cards

The preface card(s) provides GELOAD with all pertinent size and linkage
information, such as the following:

1. The length of the subprogram text region.

2. The length of Blank Common required, if any.

3. The total number of SYMDEF, SYHREF, and Labeled Common
symbols, as well as the symbols themselves.

4. The relative entry value or the region length for each
respective symbol.

5. In the special case of a preface card read from a random
subroutine library containing a directory, the SYHREF entries
contain the address of the record on the random device which
contains the subprogram satisfying that particular SYMREF.

The specific content of each word on the preface card is as follows:

Word 1:

o 2 3 8 9 11 12 17 18 35

101 n2

7

GE-625/635 GENERAL LOADER

Bits 0-2 and 9-11 define the card as a binary preface
card.

Field nl (V count bits), describes
required to express the total number
SYMREF symbols referenced within the
used to calculate this value is nl =
N is the count of the symbols.

the number of bits
of Labeled Common and
subprogram. A formula
log2 (N + 1), where

Field n2 is the count of words on the preface
beginning with word 3, which includes word 3 but not
checksum word.

Field n3 is the length of the subprogram text.

card
the

Word 2: Checksum of columns 1-3, 7-72.

Word 3: Bits 0-17 define the length of Blank Common required by
this subprogram.

Word 4-23:

Word n

0

Cl

Word n+l

0

Bit 18, if set, indicates loading
should start at the next available
multiple of eight.

Bits 19-35 indicate twice the number

of this subprogram
address which is a

of SY~1DEF , SYHREF,
and Labeled Common symbols contained on the preface
card(s).

Pairs of entries.

5 6 11 12 17 18 .35

C2 C3 C4 C5 C6

17 18 19 32 33 35

A I~ I B K

The first word of each pair is a symbol. The second word describes
symbol completely as to its usage by the subprogram being loaded.
value of K (bits 33-35) defines the type of symbol and thus
following implied meaning of the other fields involved:

that
The
the

8

K = 0 The symbol is a primary SYHDEF. Field A is a value equal
to the position of the symbol relative to the beginning of
the subprogram. Bit 18 and field B are not used.

K = 1 The symbol is a secondary SYHDEF. Usage of the remaining
fields of word n+l is the same as for a primary Syr1DEF.

/
\
\

I
f

\

)

GE-625/635 GENERAL LOADER

K = 3 The symbol is a constant which has special usage by
subprograms generated by certain compilers. Field A
contains the value of that constant. The remaining fields
of word n+l are not used.

K = 5 The symbol is a SYMREF. Field A must be zero and bit 18 is
not used. When the preface card ~ontaining this pair has
been read from a library file containing a directory on a
random device, field B may contain an address pointing to
the deck which satisfies this SYMREF. The use of field B
is contingent on whether the satisfying deck appears
anywhere on this particular library file. If used, the
format of this address (bits 19-32) is:

19 22 23 32

CARD BLOCK

CARD is the relative card number within the particular
block.

BLOCK is the relative block address within the random
file.

K = 6 The symbol is the name of a Labeled Common region. Field A
contains the length of the region which may not be equal
to zero and if bit 18 is on, indicates that the region is
to be assigned, beginning at the next available address
which is a multiple of eight.

K = 7 The symbol is .SYMT., a special form of Labeled Cornmon.
This region contains data tables such as those generated by
the FORTRAN IV compiler (refer to GE-625/635 FORTRAN IV,
CPB-I006) for use by the debug feature of GELOAD. Its data
will be loaded at the next available area beyond that
already designated for use by the text and Labeled Cornmon
regions associated with this subprogram. This data is
temporary and will be overlayed by the next subprogram to
be loaded by GELOAD. The fields in word n+l conform to the
rules of Labeled Common.

If the count in word 3 is greater than 20, then additional preface cards
are required. On each additional preface card, word 3 will be repeated
unchanged.

Relocatable Text Cards

The text cards carry information, assembled or compiled, required to
execute the desired function. This information is formatted in such a
way as to give GELOAD the necessary handles to form a useful block of
data or executable instructions in memory.

9

GE-625/635 GENERAL LOADER

The specific content of a relocatable text card is as follows:

10

Word 1:

o 2 3 8 9 11 12 17 18 3S

101 nz

Bits 0-2 and 9-11 define the card as a column binary
relocatable text card.

Field nlindicates the symbol (obtained from the preface
card) relative to which this text is to be loaded. If nl
is zero, the text is loaded relative to the primary
program region. When 1 ~ n 1 ~ number of Labeled Common
symbols on the preface, nl then signifies the symbolic
addresses relative to which the text is to be relocated.

Field n2 is a count of the number of instructions
associated with this control word. The count does not
include the three words of relocation data and is not
necessarily a count of the words on the card.

Field n3 is the relative loading address under the load
counter specified by field n 1 •

Word 2: Checksum of columns 1-3, 7-72.

Word 3-5: Relocation data. Words 3 and 4 each hold seven 5-bit
relocation identifiers, while word 5 holds five such
identifiers. The five bits of each identifier carry
relocation information for each instruction or data word
in the text of the card. (Refer to "Relocation Scheme"
below.)

Word 6-24: Instructions and data (maximum of 19 words per card). If
the number of available instructions or data words on the
card are not completely used up by the n specified by the
control word (word 1) and at least two words are left
vacant on the card, then a new control word (see format of
word 1) may appear after the last utilized word,
indicating a new word count n and new loading address n •
The loading is then continued with the new address and
with the relocation data continuously retrieved from words
3-5. The new control word does not have relocation bits
associated with it. This process may be repeated as often
as is necessary to fill the card.

(

"'.)

GE-625/635 GENERAL LOADER

Relocation Scheme

The five bits (A, BC, DE) of each relocation identifier (in words 3-5 of
relocatable text cards) are interpreted by GELOAD as follows:

A = zero (reserved for future use by GELOAD)

BC = left half-word relocation identifier (bits 0-17)

DE = right half-word relocation identifier (bits 18-35)

For either half-word, four values apply (where XX stands for BC and DE)

XX = 00 Absolute - no relocation is applied

= 01 Relocatable
subprogram

relative to the load address of the

= 10 Blank Common - relative to the beginning of the Blank
Common region

= 11 Special relocation - relocate relative to the preface entry
encoded in the half-word (SYHREF or Labeled Common)

ABSOLUTE OBJECT DECK DESCRIPTION

An absolute object deck consists of one or more absolute text cards and
a transfer card. Absolute text cards provide GELOAD with binary text and
the absolute starting-location value for GELOAD to use in assigning core
locations to the contents of the card.

Absolute Text Card

The absolute text card format is as follows:

Word 1:

0 2 3

1
001

Word 2:

Word 3-24:

8 9 11 12 17 18 35

n1 101 n2 n3

Field n 1 = zero.

Field n 2 word count.

Field n3 = absolute address.

Checksum of columns 1-3, 7-72_

Instructions and text (22 words per card, maximum). If
number of instructions or data words is not complete
at least two words are available, then word 1 may
repeated after the last word with a new word count n 2
a new loading address n 3 •

the
and

be
and

11

GE-625/635 GENERAL LOADER

Transfer Card

The transfer card is generated automatically as the last card of an
absolute subprogram assembly by the END pseudo-operation. The transfer
card specifies to GELOAD the entry location for the program.

The transfer card can be used only with an absolute object deck. Its
format is as follows:

Word 1:

0 2 3 8 9 11 12 17 18 35

1
000 nl 101 I n2 n3

Field n 1 = zero.

Field n 2 = zero.

Field n3 = transfer address.

Word 2-24: Not used.

CONTROL CARD DESCRIPTIONS

The programmer, through the proper use of control cards, instructs GECOS
and GELOAD in the execution of the individual activities of his job. The
general rule for the placement of control cards is as follows: all
control cards pertaining to a procedure must immediately precede that
procedure, with the control card defining the procedure being the first
card.

All control cards are identified by a $ symbol in column 1. Except for
the $, columns 1-6 must be blank. The control card name begins in column
8 with delimiting blanks in columns 7 and 15. Variables, when present,
begin in column 16 and are separated by commas. No embedded blanks are
permitted. (A blank in the operand field terminates the field
definition.) The operand field must not go beyond column 72.

The control cards used to instruct GECOS and GELOAD are the following:

12

., $ OPTION
v$ DUMP
"""$ USE >$ EQUATE
""-$ OBJECT
.... $ DKEND

- $ LOWLOAD

.'

\,,,-$ LINK
\,--$ LIBRARY
",$ EN,TRY

"---$ EXECUTE
...-$ RELCOM
"$ NOLIB

,....--$ FFILE

(

GE-625/635 GENERAL LOADER

$ OPTION

A $ OPTION control card is used to alter GELOAD options during loading.
This card may contain, in any order., one or more fields as described
below, separated by commas. The relative positions of these cards in the
deck being loaded depend on the options being requested by the user. The
format for the $ OPTION card is as follows:

1 8

:OPTION

I
I
I

16

:< Optim (8) >

I
I
I

If $ OPTION cards are not used, the options underlined below are
considered standard and will be used.

The options are as follows:

1. Memory map:

MAP

NOMAP

2. Execute:

CONGO

GO

NOGO

3. Set memory:

SET/n/

Produces a memory map.

No memory map is produced.

Executes the job regardless of any nonfatal errors
detected during loading.

Executes the job only if no errors occurred during
loading.

Loading proceeds to completion but no execution of
loaded subprogram takes place. All execution
pointers and indicators are set for wrapup. No dump
is taken.

Sets unused allocated memory from 100 0 (Blank
Common) to lowest relocatable address, to octal
pattern specified by n. If not specified, these
areas are set to zero. The number n can be any octal
pattern up to 12 octal digits (n will be
right-justified with leading zeros).

4. Set maximum error count:

ERCNT/n/ Sets a limit n on the number of fatal and nonfatal
error messages which may be printed before loading
~s aborted. This count is normally set at 150. Refer
to Chapter 10 for list of error messages.

13

14

GE-625/635 GENERAL LOADER

5. Symbol references:

SYMREF

NOSREF

SYMREF's used in each subprogram are printed
the memory map. This option may be set or reset
any time during loading.

No SYMREF's are.printed.

with
at

6. Low Common loading:

LOCOMN

7. Setup:

NOSETU

All Labeled Common is assigned below Blank Common.
This option must be set before any Blank Common is
assigned. The origin of Blank Common is readjusted
upward.

Entry is made directly into the user's program,
omitting the setup subroutine (.SETU.). Normal entry
to the user program is through a setup routine which
does certain initialization functions.

8. File Control Block (FCB) generation:

FCB Sets switches to generate FCB's for the activity as
determined by control cards.

NOFCB Inhibits generation of FCB's.

9. Compiler generated program options:

ALGOL

COBOL

FORTRAN

JOVIAL

Required when loading programs generated by the
ALGOL compiler. The request of this option sets all
options required for the loading of an ALGOL program
(i.e., FCB, LOWLOAD, and replace .SETU. with .ASETU,
the ALGOL setup subroutine).

Required when loading programs generated by the
COBOL compiler. The request of this option sets all
options required for the loading of a COBOL program
(i.e., NOFCB, LO~7LOAD, and replace .SETU. with
.CSETU, the COBOL setup subroutine).

Required when loading programs generated by the
FORTRAN compiler. Sets FCB optio"n, in addition to
standard options.

Required when loading programs generated by JOVIAL
compiler. Sets FCB option, in addition to standard
options.

10. SAVE:

SAVE

SAVOLD

)

GE-625/635 GENERAL LOADER

Gives user ability to save a nonlink program on an
H* file with a unique name such that it may be
called and. executed at a later date. The option is
requested by:

17 24 36

OPTION SAVE/name

where "name" represents °a
which is used in the
retrieval of the program.

unique 6-character
~1ME GERSTR sequence

name
for

If the FCB option is in effect when the program is
saved, the generated FCB's may be retrieved by using
the name saved with the program but with an asterisk
(*) placed in front of the name. For example:

1

$

8

I
OPTION

16

SAVE/SAVTES,FORTRAN

would save two text records on an H* file. The first
would be called by SAVTES and the FCB's would be
called by *SAVTE.

Gives user ability to save additional nonlink
programs on an already existing H* file. This option
complements the SAVE option and is requested by:

1

$

8

I OPTION
I

16

SAVOLD/name

where "name" represents the unique 6-character (or
less) identifier used in the ~~E GERSTR sequence for
retrieving the program. The name is added to the
catalog record of the H* file, and the program is
appended to the current file.

Rev. October 1968

14.1

(

)
/

11. NOMSUB:

NOMSUB

GE-625/635 GENERAL LOADER

Eliminates printout of message "NON FATAL ERROR
MISSING ROUTINE XXXXXX". In large link jobs, the
message might appear many times with each link, thus
raising the error count and increasing the size of
the load map. The.message "NON FATAL ERROR MISSING
ROUTINE MME GEBORT INSERTED .AT . REFERENCES " will
still be printed as it would be under normal
conditions.

An example of the use of a $ OPTION. card. is.as follows:

1 8 16
I

$ I OPTION i ~'SYMREF'SET/400000000000/

will be executed

I

FORTRAN option

SYMREF's will be printed with memory map

Unused allocated memory will be set to 4000000000008

Rev. October 1968

15

GE-625/635 GENERAL LOADER

$ DUMP

The format for a $ DUMP card is as follows:

1 8 16

I $

I i , DUMP .. subprogram name> ,
I

I I ,
I

This control card must be the first card preceding a set of debug cards.
The subprogram name to be debugged is equivalent to the first primary
SYMDEF of that subprogram. If the $ DUMP card is used, it must precede
all other cards of the program or link except the $ LOWLOAD card. At
least one debug card must follow the $ DUMP card. (Refer to Chapter 8
for information pertaining to the use of debug cards.)

1

$ USE

8
i
'DUMP ,
I ,

16
i :LTAR

I .
I Subprogram START will

be debugged

The format for the $ USE card is as follows:

I 8 16

$ 'USE I<name/size/ ,names>
I I
I I
I I

This control card permits the user to instruct GELOAD to enter a
symbolic name into its symbol table to represent a Labeled Common region
or SYMREF. A numeric size (enclosed in slants) following the name
defines a Labeled Common region and designates the amount of storage to
be set aside at that point of loading. If size is not given, the name is
considered as a SYMREF. If size is terminated by the character L (i.e.,
/200L/), only that Labeled Common region name is handled as if under the
LOCOMN option described under $ OPTION control card. All other Labeled
Common regions are handled normally.

Example 1

1

$

16

8

USE

16

: Lel/500/" PROGl

1
PROG2 I

I PROG1 and PROG2 are entered
I into load table as SYMREF's

Defines a Labeled Common
""-------region called LCI which is

500 words long

Exam!2le 2

1 8

$ I USE
I
I
I

$ EQUATE

16

C

GE-625/635 GENERAL LOADER

~
~The Blank Common loading counter (starting

address) is incremented by this amount

Labeled Common region LCI is defined as a
'----- 200-word region located immediately after

the Slave Program Prefix (below Blank Common)

The format for the $ EQUATE card is as follows:

1

$

8

I EQUATE
I
I
I

16

fpreviously defined SYMDEF (subscript)/
I NEW SYMDEF>

I
I

This control card permits defining of new SYMDEF's by SYMDEF's
previously defined, defining new SYMDEF's relative. to previously defined
SYMDEF's, and equating Labeled Common regions relative to Blank Common.

Example 1

1

$

8

I EQUATE
I
I
I

16

INAMEl/NAME2,NAME3/,NAME4/NAMES/
I
I
I

Defines NAME2 and NAME3 as SYMDEF's with the equivalent location of
NAME1. A fatal error results if NAMEl is undefined. If NAME 2 or NAME 3
have been previously defined, they are redefined, and a nonfatal error
message is printed. When more than one set of EQUATE's are to be
included on a single card, they are separated by commas. NAMES SYMDEF is
defined as having a location equivalent to that of NAME4.

Exam!2le 2

1 8 16

1$

i I
I EQUATE I NAME (10) /NAMED/
I I
I I
I I

A new SYMDEF may be defined relative to a previously defined SYMDEF by
enclosing the increment in parentheses. NAMED is defined as the location
NAME+10.

17

GE-625/635 GENERAL LOADER

Example 3

1 8 16

$ I EQUATE
I
I
I

I .CMN. ILC11 , • CMN 0 (100)/LC2 I
I
I
I

The .CMN. is a standard GELOAD symbol which is synonymous with the
beginning of Blank Common. The Labeled Common regions (LCl and LC2) are
equated to the respective positions of Blank Common. Labeled Common
region LC2 is assigned an address equal to the beginning of Blank Common
plus 100. The length of Blank Common is adjusted acoordingly.

Example 4

1 8
i
I EQUATE
I
I
I

16

: LCOM1 ILCOM2 I
I
I
I

A Labeled Common symbol maybe equated to a previously defined Labeled
Common region. The Labeled Common region LCOM2 assumes all of the
properties (i.e., size, location) of the previously defined region
LCOM1.

$ OBJECT

The format for the $ OBJECT card is as follows:

1 8 16 57 6061 66 67 72 73 80

$ I OBJECT I Remark I X I Time of, Date of Program
I I I IAssemb1y .Assemb1y Identification
I I I Number
I I 'j I I

Source ID

This control card must precede every absolute or relocatable subprogram
object deck. The control card is produced by the assembler as the first
card of all assembled sUbprograms.

Remark is an optional comment (a product of the second subfield of
the LBL pseudo-operation) not exceeding 42 alphanumeric characters.

Source ID is the source of the object deck (C for COBOL, F for
FORTRAN, G for GMAP, etc.).

Time of Assembly is the time of day of the current assembly. This
1nformation 1S supplied by the assembler.

Date of Assembly is the date of the current assembly. This
information 1s supplied by the assembler.

Rev. October 1968

18

I'
\.,

,GE-625/635 GENERAL LOADER

Program Identification Number is alphanumeric, designating the
program or sUbprogram. If LBL pseudo-op is not used, zeros will
in this field.

Example

1

$

8 16 57 60 61 66 67 72 73 80

10ruECT ! ~lJ17'789:
Source: GMAP

Time of Assembly: 17.789 hours
Date of Assembly: 10/12/67 ____ ---oJ

Program ID: LP30000 ____________ ---J

object
appear

Rev. October 1968

18.1

$ DKEND

The format for the $ DKEND card is as follows:

1

$

8

IDKEND
I
I
I

16

INormally, not used
I (see examples for
I exceptions)
I

GE-625/635 GENERAL LOADER

73 - 80

This control card must be at the end of every absolute or relocatable
subprogram deck. This card is always produced by the assembler as the
last card of each assembled subprogram. Columns 76-80 contain the
natural sequence number of'the card.' Examples land 2 show special cases
of the use of the $ DKEND card. Example 1 would be generated in cases
where the job involves ,batch compilation. Example 2 is generated only by
the ALGOL compiler and instructs GELOAD to do certain maintenance
functions during loading.

Example 1

1 8 16

I $

i I
I DKEND I CONTINUE
I I
I I
I I

Example 2

1 8 16

I $

i I
I DKEND I.ALODR
I I
I I
I I

Rev. October 1968

19

GE-625/635 GENERAL LOADER

$ LOWLOAD

The format for the $ LOWLOAD card is as follows:

1 8 16

$ I LOWLOAD I<decimal number (or blank»
I I
I I
I I

This control card causes the activity-allocated memory to be loaded from
its low end, and must appear before any $ DUMP card and its associated
debug statements, subprograms, $ OPTION control cards, or $ USE control
cards are encountered. If any subprograms being loaded include Blank
Common, a decimal number must be entered in the variable field of the $
LOWLOAD card. The decimal number represents (1) the largest amount of
Blank Common appearing on any preface card of the object decks to be
loaded plus (2) any Labeled Common assigned below or to Blank Common and
extending above the top of Blank Common. If a number is present in the
variable field, the loading address will be incremented by that number.
If the variable field is left blank, loading will start immediately
above the slave program prefix (and the 2-word link vector).

Example

1 8

LOWLOAD

16
I
I 1000

!~Initial
will be

loading address
incremented by 1000

For a compile and execute, a $ LOWLOAD control card
immediately following the $ IDENT of the compile activity
binary deck(s) and system subroutines will be low-loaded.

Example

$ IDENT
$ LOWLOAD
$ GMAP
$ EXECUTE

$ LINK

The format for the $ LINK card is as follows:

1 8 16

$ ILrnK I<name, origin, option>
I I
I I
I I

20

must appear
so that the

(

)

GE-625/635 GENERAL LOADER

This control card specifies the beginning of a link section. The name (a
maximum of 6 characters) is the unique identifier of the link to be
loaded. The origin is the identifier of a previously created link at
which the link being loaded is to be originated. The only option
available is NOPAC, used only when references to SYMDEF's of the link(s)
being overlayed are not to be purged from the load table. (Refer to
Chapter 7 for details of link/overlay processing.)

Example 1

1 8 16

I $

LINK LINKA

The subprograms following this card and preceding another $ LINK or $
EXECUTE card will be loaded and contained in an area defined as LINKA.
The loading addresses for these subprograms would be the next available
sequential addresses as in the loading of any set of subprograms.

Example 2

1 8 16
I

LINK I LINKB,LINKA

I

The subprograms following this card and preceding another $ LINK or a $
EXECUTE card will be loaded and contained in an area defined as LINKB.
The loading addresses for these subprograms would begin relative to the
address assigned to LINKA at the time of its loading. LINKA must have
been defined on a previous $ LINK card as a name. The subprograms
contained in LINKA are written in system loadable format onto an H*
file. All SYMDEF's within these subprograms are purged from the GELOAD
load table~ no future references to these symbols are allowed.

Example 3

1 8
i
I LINK
I
I

16
I
I LINKB,LINKA,NOPAC
I
I

The subprograms following this $ LINK card are handled exactly as in
Example 2 except that the SYMDEF's used within LINKA are not purged from
the GELOAD load table.

21

GE-625/635 GENERAL LOADER

$ LIBRARY

The format for the $ LIBRARY card is as follows:

1

$

8

I LIBRARY
I
I
I

16

l<fi1e code (,s»
I

I
I

This control card indicates to GELOAD that user libraries are present.
The variable field contains one or more 2-character field codes which
must be further described on file control cards included in the activity
deck. The libraries are searched in the order in which the file codes
appear on this card and are followed by a system subroutine library
search. When the file codes represent tape files, these files must be
labeled. A maximum of 10 different file codes is allowed per job.

Example

1 8 16 I $: LIBRARY I Al A2

The user Iibr~ry Al WiII~~
be searched

Next, the user library A
will be searched

$ ENTRY

Both of these searches will be made
prior to the system subroutine
library search.

The format for the $ ENTRY card is as follows:

1 8 16

I $

I I
I ENTRY I <name >
I I
I I

In this control card, the name is the desired primary or secondary
SYMDEF entry point to the program. If this card is not present, the
entry is made at symbolic location ••• (if ••• has been defined in loading
as a primary SYMDEF) or at the first defined primary SYMDEF of the first
subprogram loaded. During linking operations, this card refers to an
entry point of a subprogram in the current link.

Example

1 8 16

$ ENTRY ~L--C_l __ _
- Entry will be made at LOCI ! in the program or subprogram

22

(

GE-625/635 GENERAL LOADER

$ EXECUTE

The format for the $ EXECUTE card is as follows:

1 8 16
I

$ EXECUTE I < option (s) >
I
I

This control card is. used to .. request the loading of object programs or
subprograms. This card must appear. after all subprograms to be executed,
but before their data. Effective.ly, the EXECUTE control card requests
GECOS to call GELOAD,. which then loads. all subprograms of. the activity.
The entries in the variable f.ield are used by GECOS for. activating sense
swi tches 1 through .. 6 (which may be sensed during program execution by
interrogating the Program Switch Word) and. for electing the abort jump
option. The options. may appear in any order.

options are as follows:

1. Sense switches

ONI - sense switch 1 on (Program Switch Word,. bit 6 1)
ON2 - sense switch 2 .on (Program Switch Word, bit 7 = 1)
ON3 - sense switch 3 on (Program Switch Word, bit 8 = 1)
ON4 - sense switch 4 on (program Switch Word, bit 9 = 1)
ONS - sense switch S on (Program Switch Word, bit 10 1)
ON6 - sense switch 6 on (Program Switch Word, bit 11 = 1)

2. Dump option

DUMP Slave core dump will be given if activity terminates
abnormally (Program Switch Word bit 0 = 1).

~ Only program registers will be dumped if activity
terminates abnormally.

3. Blank Sense switches off and NDUMP implied (Program Switch
Word bits 6 - 11 and bit 0 = 0).

Example

1 8 16

$

Sense

Sense

Rev. October 1968

23

I

GE-625/635 GENERAL LOADER

$ RELCOM

The format for the $ RELCOM card is as follows:

1 8

$ RELCOM

16

: < decimal number>

I

This control ¢ar<t causes the Blank ,Common loading counter. tq be
incremented by the amount specified .in the variable field. The Blank
Common loaq.ing counter and its reference symbol .CHN. are normally set
to the address just above the slave program prefix (cell laOs).. This
control,card must precede any object deck(s), and compiler/assembler
activities. .' . ". ','

ExamEle

1 8 16

I $
RELCOM 1000

$ NOLIB

The format for the $ NOLIB card is as follows:

1 8 16

I $

I
NOLIB. I<file codes (or blanks) >

I

This control card prevents a library search from being made for the
current activity or link being loaded. The control is. only in effect
during the loading of the link in which it appears. If· the variable
field is blank, no search is made. If the variable field contains a file
of L*, all file codes specified on the $ NOLIB card must have been
previously specified on a $ LIBRARY card.

Example

1 8
I
I NOLIB

I

24

16
I
lAB
I

)

GE-625/635 GENERAL LOADER

$ FFILE

The format for the $ FFILE card is as follows:

1

$

8

I FFILE
I .

I
I

16

IFi1e Code, Fieldl, Field2, ..•
(:.continuation of fields>

I
I

This control card is used to describe nonstandard file control blocks to
be generated as a result of the FCB option and must be located after the
$ EXECUTE card. One file control block will be created for each $ FFILE
card found in the deck. The first field (beginning in column 16) must be
the 2-character file code as-specified in a GECOS file control card. The
comma-separated fields (described below) following the file code are
used to produce the nonstandard entries in the file control block to be
generated. The fields need not appear in any specific order.

Field

STDLBL

NSTDLB

NBUFFS/n

BUFSIZ/nnn

LGU/ (II,JJ •••)

RETPER/nnn

MLTFIL

MODBCD

FIXLING/nn

NOSRLS

LODENS

Word and Bit Positions'
Altered in FCB

Word -S Bit 24

Word -5 Bit 24

Word -5 Bit 24

Word +4 Bits 0-17

Not FCB

Word -8 Bits 0-17

Word -5 Bit. 25

Word 0 Bits 20,21

Word 0 Bits 18,19
Word +1 Bits 0-17

Word -5 Bit 23

Word 0 Bit 22

Function

Create or verify standard
labels. Unless NSTDLB is
~pecified~ the STDLBL will
be assumed.

Do not create or .verify
standard labels.

Assign. "n" (0,1, or 2)
buffers.

Set buffer size = nnn,
where nnn is a decimal
number.

Logical files II, JJ, •••
(as many as desired) are
on the same device as
logical file FC, where II,
JJ, etc. are 2-digit
numerics :::; 43 •

Set retention period = nnn,
where nnn is a decimal
number:::; 999.

This is 'a multifile device.

Set recording mode to BCD.

The records are a fixed
length of nn, where nn is
a decimal number.

Donat use block serial
numbers.

Set device to low density
(magnetic tapes only).

25

Field

IGNORE

PREHEAD/SYMDEF

POSHED/SYMDEF

PRETRL/SYMDEF

POSTRL/SYMDEF

ERRXIT/SYMDEF

MIXLNG/SYMDEF

NOS LEW

PTMODS

PTMODD

PTMODE

MODMIX

Word and Bit Positions
Altered in FeB

Not FeB

Word -14 Bits 0-17
Word -8 Bit 18

Word -13 Bits 0-17
Word -8 Bit 18

Word -12 Bits 0-17
Word -8 Bit 18

Word -11 Bits 0-17
Word -8 Bit 18

Word -5 Bits 0-17

Word 0 Bits 18,19
Word +5 Bits 0-17

Word -6 . ·Bit 23

Word 0 Bits 20,21

Word 0 Bits 20,21

Word 0 Bits 20,21

Word 0 Bits 20,21

Rev. October 1968

26

GE-625/635 GENERAL LOADER

Function

The user wishes to specify
his own FCB. GELOAD will not
create an FCB for this file
code.

SYMDEF is the entry to a
preheader label checking
routine supplied by user.

SYl-lDEF is the entry to a
postheader label checking
routine supplied by user.

SYMDEF is the entry to a
pretrailer label checking
routine supplied by user.

SYNDEF is the entry to a
post-trailer label checking
routine supplied by user.

SYMDEF' is the entry to a
user-supplied error
handling routine.

SYl-lDEF is the entry to a
user-supplied routine to
determine length of records
being read. Bits in word 0
are set to indicate mixed
length records.

When set, indicates· no
automatic slewing is,to be
done by the FORTRAN I/O
library subroutines. Slew
characters coded as part
of the format are passed
with the line.

Set recording mode for
single-character paper tape.

Set recording mode for
double-character paper tape.

Set recording mode for
paper tape edit.

Set recording mode for
mixed binary 'and'BCDcard
files.

(
\

GE-625/635 GENERAL LOADER

Field
Word and Bit positions

Altered in FCB

ASA9 Word 0 Bits 20,21

DSTCOD/(Printer,
IvlTAPE, •••) Not FCB

Fields recognized .. wi th DSTCOD:

Device

Printer
Card Reader (Binary)
Card Reader (BCD)
Card Reader-Mixed
Card Punch (Binary)
Card Punch (BCD)
Magnetic Tape
(standard or ASA 7-track)
Magnetic Tape
(ASA . 9-track)
Disc
Drum
Paper Tape-Single Character
Paper Tape-Double Character
Paper Tape-Edit

Function

Set recording mode for
9-channe1 tape commands.

Final destination codes for
each of the logical units
specified in LUG/(•••)
field. These are used only
with programs generated by
the ALGOL compi1eF.

r.1nemonic

PRNTR
BCRDR
DCRDR
MODMIX
BCPNCH
DCPNCH

MTAPE

ASA9
DISC
DRUIvl
PTMODS
PTr.10DD
PT1-10DE

The following. example shows the use of the $ FFILE card:

1

$
$
$

8

EXECUTE
TAPE
FFILE

16

17,X1R",,0001,MYFILE
17,NSTDLB,NOSRLS

Rev. October 1968

27

GE-625/635 GENERAL LOADER

4. Loading Relocatable Object Decks

To load a relocatable object deck, the cards comprising the subprogram
deck must be arranged in the following order:

$ OBJECT control card
Preface card(s)
Relocatable text card(s)
$ DKEND control card

The loading of the relocatable subprogram deck begins with the
recognition of a $ OBJECT control card. If the card contains the date on
which the deck was originally produced, the date information will be
saved so that it may be printed subsequently as part of the memory map.

INTERPRETING THE PREFACE CARD

The card following the $ OBJECT card
recognizable by a 12-7-9 punch pattern in
alternative would be an absolute text card.
details concerning absolute text cards.)

must
column

(Refer

be
1.
to

a preface
The only

Chapter

card,
legal

6 for

The various fields of the preface card supply all size information and
such linkage details as the relative entry points to the subprogram
(SYMDEF's) and which subprograms and data regions (SYMREF's and Labeled
Cornman) are required for execution of the relocatable subprogram. There
are three considerations made by GELOAD to determine if enough memory is
available to load the subprogram -- the length of the subprogram being
loaded, the length of Blank Cornman region required, and the number of
preface symbols contained on the preface card(s). This latter
consideration is used in determining if the increase in the size of the
load table (calculated as 5 times the number of preface symbols) caused
by the addition of these symbols to the table will result in an overlap
with the subprograms previously loaded into memory. GELOAD then proceeds
to pick up and process each of the respective preface entries. All SYMDEF
symbols appear first, followed by all Labeled Cornman and SYMREF symbols.
Because of field size, up to 63 Labeled Cornman regions is the limit that
may be referenced by one subprogram.

SYMDEF

When a SYMDEF (primary or secondary) is encountered, GELOAD searches the
load table to determine if the symbol has been previously defined. If
such is the case, the symbol is ignored; otherwise, the symbol, with its

29

GE-625/635 GENERAL LOADER

definitions calculated as the sum of the beginning address of the
subprogram and the relative entry value taken from the preface, is
entered into the load table. (The symbol may appear in the load table
undefined as yet. In this case, only the defining address is added to
the table.) If all SYMDEF entries on the preface card(s) have been
previously defined, the scanning of the preface card is terminated and
the subprogram is bypassed. A nonfatal message·will be printed on the
memory map when this occurs while reading from the B* and R* files.

Labeled Common

When a Labeled Cornman symbol is encountered, GELOAD searches the load
table for its definition. If not previously defined, it is assigned
storage at the next available memory location, according to its
requirements as stated on the preface card. An entry is then made in the
load table stating the defining address and also the size when defined.
When it is found that a Labeled Common symbol has been previously
defined, the size from the preface card is compared to that of the
definition. If the size in the definition is greater than or equal to
that on the new preface card, loading continues~ otherwise, a nonfatal
type error message is printed.

When the symbol has satisfied the requirements of the
pointer to this location in the load table is placed in
reference table.

SYMREF

load
the

table, a
temporary

When a SYMREF is encountered, GELOAD searches the load table to
determine if it has been previously defined. If such is the case, a
pointer to·this definition in the load table is entered in the temporary
reference table. If the SYMREF has not appeared previously, or is yet
undefined, it is entered in the load table as undefined. Again, a
pointer to this entry is entered in the temporary reference table.

When the subprogram being loaded has been read from a library file
containing a directory, bits 19-32 of the control word may contain the
address of the block in the file containing the defining subprogram for
this SYHREF. In cases where the defining subprogram does not appear on
the same library file, this will not be true. When this address is
present, it is moved to a table of similar addresses of subprograms
required from this library for the current execution activity.

LOADING RELOCATABLE TEXT CARDS

Each text word is picked, in turn, from its position in the relocation
text.card image. Relocation is applied to the respective half-words
(18-bit fields) as designated by the encoded relocation scheme in words
3-5 of the card. The following is a description of what takes place as a
result of each type of half-word relocation before the word is stored
into memory. The digits in parentheses are the binary bit pattern
signifying this type relocation.

30

GE-625/635 GENERAL LOADER

Absolute COO)

The l8-bit field is an absolute value and must not be modified.

SubErogram Relocatable (Ol)

The l8-bit field is relocated by the value assigned to the beginning
location of the subprogram.

Blank Common (lO)

The l8-bit field is relocated by the value assigned to the beginning
location of Blank Common.

Special Relocation (II)

Special relocation implies that the l8-bit field is a reference to a
word in an external subprogram or data region. Although the following
example of special relocation uses bits 0-17, it should be noted that
special relocation is available in bits 18-35 when required.

I

o 1 (V) i (V+1) 17

where:

Ko is the sign of the addend; a implies plus and 1 implies minus.

Kl is a variable-length field (V count bits) dependent on the
number of bits required to express the total number of Labeled
Conunon and SYHREF symbols appearing on the preface card. The
value Kl indicates which of the preface symbols is being
referenced; for example, K = 1 implies the first Labeled Common
appearing on the preface card{s). V is variable terminal bit
position of field.

K2 is the addend to be added to (Ko=O) or subtracted from (Ko=l),
the address associated with the referenced symbol. If this
field, because of the size of Kl, is not large enough to
express the entire addend, then all bits of the field K2 are
set to l's. This implies that the next word in the card image
contains the complete addend in the same relative half-word
position. When a second word is used in this manner, no bits of
the relocation scheme (words 3-5) are used to describe it.

When a special relocation reference is made to a symbol yet
an address chain is used to link all references until
containing the symbol is loaded. Later in the wrap-up phase of

undefined,
the deck

loading,

31

GE-6?5/635 GENERAL LOADER

all address chains are filled in with their definitions or with an abort
procedure such that during execution, when these cells are referenced,
an abort will occur. It should be noted that if, by means of octal
patching (see Chapter 12), one of these address chains is broken,
numerous undetectable errors could occur. Thus, any form of patching is
illegal when applied to words containing SYMREF's.

Figure 3 shows an example of printed output from the GMAP Assembler
utilizing the various types of relocation. The information may be read
from left to right as: location (octal), octal equivalent of
instructions or data to be loaded, relocation scheme, alter number of
card, and the card image. A further description of the output format may
be found in GE-625/635 GMAP Implementation, CPB-l078.

04660 1 06-02-66

000000 010005 2350 00 030 1 EXI LOA A2
000001 000001 0750 07 000 2 ADA 1,OL
000002 000000 7550 00 020 3 STA COMMON

4 ,'.
5 ,~

6 ,~

7 ,'.
8 SYMOEF EXI

000003 000000 000000 001 9 EX2 ZERO O,EXI
000000 10 BLOCK DATA
000000 11 Al BSS 5
000005 12 A2 BSS 5
000000 13 BLOCK
000000 14 COMMON BSS 100

ERROR LINKAGE

000004 000000000000 000
000005 256701202020 000

15 END
6 IS THE NEXT AVAILABLE LOCATION,

THERE WERE NO WARNING FLAGS IN THE ABOVE ASSEMBLY, AID 042766

Figure 3. Types of Relocation

All four types of relocation are illustrated in Figure 3. The numerics
used to express the relocation scheme (i.e., the field 030 associated
with alter number 1) are not octal characters but are made up of the
five bits described earlier under "Relocation Scheme" in Chapter 3. For
example, taking the field 030, the first character (0) may be ignored,
the second character (3) implies special relocation to the left-most 18
bits and the third character (0) implies absolute or no relocation to
the right-most 18 bits of the word being loaded. A discussion of Figure
3 by alter number follows:

Alter 1

32

The left-most 18 bits of this word require special
relocation while the remaining 18 bits are an absolute
field. Although symbol A2 is within the Labeled Cornmon
region named DATA (assembled with this subprogram),
the contents of this region are maintained under a
separate location counter and look to GELOAD as data

Alter 2

GE-625/635 GENERAL LOADER

assembled into a separate subprogram; therefore,
special relocation must be used to reference it. The
left-most 18 bits, when analyzed in the light of the
above description of special relocation, result in:

bit 0 (Ko) = 0

bits 1-5 (K 1) = 1

(sign of addend is plus)

(assuming V count of 5, use
first non-SYHDEF entry in
preface)

bits 6-17 (K 2) = 5 (apply addend of 5 to
address resulting from
lookup of symbol determined
by Kl)

The relocation scheme indicates that both l8-bit
fields are absolute.

Alter 3 The relocation scheme associated with the left-most 18
bits indicate this field is an address relative to the
origin of Blank Common.

Alter 9 The 18 right-most bits of this word contain an address
relative to the origin of the subprogram.

Alter 10-12 This is a string of coding which does not produce any
loadable text but does define the size and the
symbolic names which make up the Labeled Common block
named DATA. GELOAD obtains this information via the
preface card.

Alter 13-14 This is a string of coding which does not produce any
loadable text but does define the size of Blank Common
used by this subprogram. GELOAD obtains this
information via the preface card.

Figure 4 illustrates the layout of a 5l20-word segment of memory after
the coding shown in Figure 3 is loaded. Previous to loading this coding,
the last cell used was 10300 8 • The load address for the subprogram is
determined by subtracting the size of the subprogram (6), taken from the
preface card, from the last address used by the previous subprogram.
Thus the address assigned to symbol EXI is 10272 8• The SYHDEF EXI is
placed in the load table with the defined value of 102728 • The origin
of the Labeled Common region DATA is calculated in the same manner as
above; thus its origin is 102728-128 = 10260 8 • This value is also
entered in the load table with the respective Labeled Common
description. The Blank Common region (100 words) is assigned directly
above the slave program prefix (cells 0-778) and extends to 243 8 • The
yet unused portion of memory (cells 2448 -10257 8) is available for
additional loading of subprograms and data or for working storage during
execution. This information is stored in slave program prefix at
location 378 •

33

34

Relative
Octal

Location

011777
I

010300

010277

010272

010271

I
010265
010264

I
010260

010257

I
000244

000243

I
000100

000077

I
000000

-

--

GE-625/635 GENERAL LOADER

User
Memory

Previously
Loaded Subprograms

256701
000000
000000

-
000100
000001
010265

202020
000000
010272

-

- -

755000
075007
235000

Labeled Array A2
__ Common - - -

"Data" Array Al

Blank Common

Slave Program Prefix

Words
Decimal

Size

5

--
5

100

64

Assembler
Instructions

EX2 Zero O,EXI

STA Common
ADA 1,DL

EXI LDA A2

Block Data

A2 BSS 5

Al BSS 5

Block
Common BSS 100

Figure 4. Layout of 5120-Word Segment of Memory

)

GE-625/635 GENERAL LOADER

5. Use of Libraries

LIBRARY FILES

During the loading. process, GELOAD .. builds a load table containing all
SYMDEF, SYMREF,. and Labeled Common symbols with related information used
in their definitions .•. It is .. very likely that not. all symbols. encountered
as SYMREF's will have. been. defined whenthe.end of the input stream ($'
EXECUTE on system file R~) to GELOAD .. is .. reached. Thissi tuation triggers
GELOAD to search_Iibrary.files available. to. it for subprograms that have
SYMDEF symbols ... whi.ch satis£y the unde£ined SYMREF.' s .. in .. the load table.

The system subroutine .lihr.ary. file. (file code L*) is always available to
GELOAD. It should .contain all high-use subprograms required for
executing major software packages. Because of the space requirements of
these and other subprograms added at certain user installations, a
secondary system subroutine library (file code *L) may be used. When
this secondary library is used, it is scanned before the primary file
(L*). To allow more efficient use of high-speed storage, it is generally
assumed that the secondary library contains the less frequently used
subprograms and resides on a slower device.

Besides the system library files described above, the user may create
his own library files using the Object File Editor (refer to GE-625/635
System Editor, CPB-1138) containing additional subprograms conforming
specifically to his needs. Such a user library file is recognized by
GELOAD when its file code is encountered on a $ LIBRARY co~trol card
(see Chapter 3) located in the input stream. If the card is present,
user library files are searched in the order in which they are
encountered and before the system subroutine library fileL*.

PRIMARY AND SECONDARY SYMDEF SYMBOLS

A primary SYMDEF is any symbol appearing on a preface card and used as
an entry point to the subprogram. A secondary SYMDEF follows all the
rules associated with primary SYMDEF symbols, with the additional
qualification that the segment of coding for which it is an entry point
appears elsewhere on the library file as a freestanding subprogram
(primary SYMDEF). The following example may clarify the usefulness of
secondary SYMDEF symbols.

Rev. October 1968

35

GE-625/635 GENERAL LOADER

Assume that subroutine A on the library file contains within itself
another subroutine B. The advantages of this are in linkage efficiency
and conservation of storage, assuming logic of A and B use the same
temporary working storage. This deck then contains a primary SYMDEF A
and a secondary SYMDEF B. Further along on the library file the
subroutine B exists as a freestanding subprogram for which B is a
primary SYMDEF.

In searching a library file, only primary SYMDEF symbols are scanned
when looking for subprograms to satisfy undefined (SYMREF) symbols in
the load table. Assume a SYMREF for subprogram A had been entered in the
load table. In reading A from the library file, B is brought in as part
of it. Had a SYMREF for subprogram B been in the load table instead of
A, the subprogram having the primary SYMDEF B would have been loaded
instead. Thus, only the matching of a SYMREF symbol and a primary SYMDEF
symbol causes a particular subprogram to be loaded from a libra~y file.
During the loading sequence, all SYMDEF symbols, whether primary or
secondary, are defined and are used in turn to define the value of
undefined SYMREF symbols.

Rev. October 1968

36

(

)

)

GE-625/635 GENERAL LOADER

6. Loading Absolute Object Decks

Although GELOAD is primarily designed to load relocatable
it can load absolute subprograms as well. Absolute binary
between the $ OBJECT and $ DKEND control cards.

PROCESSING THE ABSOLUTE TEXT CARD

subprograms,
cards appear

After the $ OBJECT control card is read, GELOAD will encounter an
absolute text card. An absolute text card is recognized when a binary
card is read having a bit pattern of 001 in bit positions 0-2 of word 1.
(Refer to Chapter 3 for description of absolute text card format.)

GELOAD obtains the word count and the absolute address from word 1. The
data word in word 3 of the card is loaded into the initial address, and
each word thereafter is loaded upward in consecutive memory addresses
until the count is exhausted. If the word count is less than 20, it is
possible that the word directly after the last word loaded is another
control word like that in word 1. If so, loading continues into the new
load address, starting with the word directly after the control word.
The checksum of all the words on the card, excluding the checksum word,
is found in word 2.

PROCESSING THE TRANSFER CARD

If GELOAD encounters a binary card after the $ OBJECT control card but
prior to the $ DKEND control card and the card has a bit pattern of 000
in positions 0-2 of the first word, it interprets it as an absolute
transfer card. (Refer to Chapter 3 for description of absolute transfer
card format.)

GELOAD obtains the absolute transfer address and saves it to be used at
the entry point when the end of the input file is reached.

Pseudo-operations SYMDEF and SYMREF cannot be used in subprograms. which
will be loaded absolute.

37

(

GE-625/635 GENERAL LOADER

7. Li n k lOve rlay Processi ng

Because· of size and complexity, it may. be beneficia.l to segment a
program in order. to, make ,more efficient use of,. memory and available
storage media. Each of these segments. may be referred to as a "link."
When, using links" the ,programmer must organize his program in, such a way
as to retain the more cornrnonly used, subprograms in the, links which will
reside in memory, and the lesser. used subprograms in links which will be
used as temporary overlays. All of the subprograms, loaded which precede
the first $.LINK control card and all, subprograms, loaded as a result of
the first library search are ,commonly referred to as being in the "main
link. " As this, first link. has no identifier by means of a $ LINK
control card, it ~s assigned the standard "main ,link" identification of
IIIIII when it is ,written on an H* file.

USE OF THE $ LINK CONTROL CARD

The $ LINK control. card is used to specify the positions in the input
stream at which segmentation is to take place. When this control card is
encountered,. all requested library files are searched to satisfy any
undefined references (SYMREF's) in the link being. terminated. The $ LINK
control card specifies, in its first variable field, a unique identifier
for the new link. When variable field 2 is present on the card, it
indicates that the new link is to overlay a previously loaded link(s)
whose identifier appear,s in field 2. In this situation, the new link
assumes the origin of the link specified in field 2. All links which are
to be overlayed by the new link are written in system loadable format
(refer to GE-625/635 System Editor, CPB-1138) onto the file having the
file code H*.

When the $ EXECUTE control card is encountered, much of the same
procedure as described for $ LINK control cards is followed in order to
wrap up the linking process. If file control blocks are to be generated
by GELOAD (see Chapter 11), an additional utility link is created and
written onto the H* file having identifier 111111.

,REFERENCING BETWEEN LINKS

The amount of cross-reference between the various subprograms which
comprise the link program dictate the desired segmentation. The main
link, as defined above should contain all high-usage subprograms because
of its permanent status in memory throughout the execution. Subprograms
contained in any other link may always reference subprograms in the main
link.

Rev. October 1968

39

GE-625/635 GENERAL LOADER

As all cross-references between subprograms are established during
loading by GELOAD, only those subprograms contained in links which
reside in memory at the same time may reference each other. (The usage
of the word "subprograms" is meant here to also include data areas.)
This is to say, if link B is loaded as an overlay of link A (i.e., $
LINK B,A) then subprograms of link B cannot reference subprograms of
link A. The optional third variable field (NOPAC) of the $ LINK control
card may be used discreetly to override the above rule of references
between links. Consider an example having three links, A, B, and C,
which are loaded using the following control cards:

$ LINK A
$ LINK B
$ LINK C,A

Under normal conditions of loading, no references may be made between
link C and link B, for when link C overlays link A it may possibly
overlap into link B and~ thus destroy some subprograms of link B.
However, if the size of link C is smaller than or equal to the size of
link A, the user may increase his referencing capabilities by adding
NOPAC to the card defining link C. The example now becomes:

$ LINK A
$ LINK B
$ LINK C,A,NOPAC

This now allows references between subprograms of link A and link B
while link A is in memory, and between link C and link B when link C is
in memory.

LINK MANIPULATION AT EXECUTION TIME

As described above, GELOAD builds file H* containing the links defined
by the input stream. During execution of the program, it is necessary to
reload these links in the order required to achieve the function of the
program. To do this, a subprogram is supplied on the system subroutine
library (L*) which has two entries, LINK and LLINK. The entry LINK may
be called to load a particular link and transfer control to a
predesignated SYMDEF within that link. This SYr1DEF must have been
designated to GELOAD by means of a $ ENTRY control card when the link
was originally created on the H* file. The subprogram entry LLINK may be
called to load a particular link and return control to the point in the
program at which LLINK has been called. Thus, the two respective calling
sequences are as follows:

1. To load a link and transfer control to it:
CALL LINK (ARG)

2. To load a lir.k and return to the calling:
CALL LLINK (ARG)

In both sequences, AJG could be defined in a GMAP program as:

ARG BCI 1, Link Identifier

40

GE-625/635 GENERAL LOADER

Two additional SYMDEF's are included in the LINK subroutine: LENTRY
IDLINK. The LENTRY enables a user to find his link entry point
issuing an LLINK call.

and
when

In the Linear Programming language (to cite one example in the use of
LENTRY), there is a provision of patch agenda at execution time.
Therefore, when using this provision, the link to be patched must be
loaded and then modified before entering. Hence, the entry point must be
known; therefore, the LENTRY SYMDEF is used.

The other SYMDEF, IDLINK, points to the last previously loaded link and
is useful in debugging a core dump. A detailed discussion of these
routines may be found in GE-625/635 FORTRAN IV I/O Library,CPB-113h

EXAMPLE OF A LINKED PROGRAM

Figure 5 illustrates a sample deck setup utilizing the $ LINK
card to create a linked program. Figure 6 illustrates the memory
that results from loading the linked program.

control
layout

This example consists of four links, a main link, and Blank Common
available as storage, accessible to all of the links.

GELOAD loads the subprograms compr~s~ng the main link until the first $
LINK control card is recognized. At this point, GELOAD has already read
the $ ENTRY control card and established LOCI as the entry location of
the main link. The $ USE control card defines a IOO-word Labeled Common
region to be created and called VCLI. If there are any undefined SYMREF
symbols, a search of the system subroutine library will now be made in
an attempt to define these symbols.

Since the $ LINK control card and defining link A have no origin (none
may appear on the first $ LINK control card), GELOAD will load decks and
assign storage for link A directly below the main link. When the next $
LINK control card is encountered, another system subroutine library
search will be made if again there are any undefined symbols. The next $
LINK control card indicates that link B will have its origin at link A.
As no $ ENTRY control card was read during the processing of link A it
is assumed that a call to the LLINK subprogram will be used to restore
this segment during execution. Link A is then written onto file H* and
all symbols associated with link A are purged from the GELOAD symbol
table. The decks which comprise link B are loaded and entry location is
set according to the definition of the symbol appearing on the $ ENTRY
control card. The decks making up link C are loaded below link B. The
next $ LINK control card indicates link D will overlay link C and
initiates the same procedure as that initiated for the loading of link
B.

41

GE-625/635 GENERAL LOADER

The $ EXECUTE control card indicates to GELOAD that it has reached the
end of the loadable input stream. (If the FCB option has been set, the
utility link (/////1) would be created at this time.) The remaining
links are now written onto the H* file in the order in which they appear
in the GELOAD symbol table (i.e., the main link, link B, and finally
link D). Control is then transferred to the specified entry point of the
main link (LOCI) for execution. The main link (as well as link Band
link D) does not need to be restored into memory since it still resides
there from loadings.

.-- $ ENDJOB

I!~ }4- DATA

~ $ LIMITS

~ $ EXECUTE

~~ Decks Comprising Link D

4 $ ENTRY LOC3

~ $ LINK D,C,

~~ Decks Comprising Link C

.. $ LINK C
I
~~ Decks Comprising Link B

... $ ENTRY LOC2

~~~~~~1~~4t--- $ LINK B,A 

Decks Comprising Link A 

.... ---$ LINK A 

...... .._--$ USE VCLI/IOO/ 

.. $ ENTRY LOCI 

_Main Link (/ / / / / /) 

One or more decks 

~ $ IDENT 
'--_____ -'4- $ SNUMB 

Figure 5. Deck Setup For A Linked Program 

42 



GE-625/635 GENERAL LOADER 

Upper r 
Memory 
Limit 

Memory At Memory At rMemory At 
~ Link A ~ -<I-- Link C --I> Link D ___ 

Time Time Time 

~ 
Main Main Main (l1111f) 
VCL1 VCL1 VCL1 

A B B f 

Unused C D 

f 
Unused 

Blank Blank Blank 
Common Common Common (I I I I 11) 

Slave Program Slave Program Slave Program 

~ Prefix Prefix Prefix Lower } 
Memory --c. 
Limit 

Figure 6. Memory Layout Resulting From Loading Linked Program Of Figure 5. 

43 



( 



) 

GE-625/635 GENERAL LOADER 

8. Using The Debug Feature At Load Time 

DEBUG FEATURE 

The debug feature included in GELOAD is similar to debug as provided in 
the FORTRAN compiler. Dumping of specified memory locations in selected 
formats during execution of a program is accomplished by cards presented 
to GELOAD at load time. Thus, the debug feature may either be used or 
not used, depending on the presence of these cards at load time. 

Usage of the GELOAD debug feature requires different procedures by the 
programmer when running with subprograms compiled by FORTRAN than with 
subprograms generated by other means (GHAP and other compilers). In 
FORTRAN, the programmer specifies in the $ FORTRAN control card, by 
means of the STAB option, that the compiler generate a Debug Symbol 
Table containing all symbols and pertinent information describing them. 
The programmer then need only concern himself with the contents of his 
GELOAD debug cards. 

When the debug feature is used with subprograms generated by software 
other than FORTRAN, the symbols used to indicate the positions in the 
subprogram at which dumps are to be taken and the areas which are to be 
dumped may be any SYMDEF or Labeled Common symbol defined in the load 
table. The programmer may gain additional debug capabilities by 
generating a Debug Symbol Table similar to that produced by FORTRAN. 
This table takes the form of a special Labeled Common region (.SYMT.). 

DEBUG SYMBOL TABLE .SMYT. 

A Debug Symbol Table (e.g., such as that produced by FORTRAN 
compilations) may be created by using macros and pseudo-operations 
supplied by the GHAP Assembler. The name .SYrIT., when used with the 
BLOCK pseudo-op, is recognized by Gr1AP as being a special Labeled Common 
region and indicated as such on the preface card of the subprogram. When 
GELOAD encounters this preface entry, switches are set to assign space 
for the loading of this special Labeled Common such that it ,.,ill be 
overlayed by the next subprogram loaded. This table contains, when 
loaded, relocated values for the symbols used within the subprogram. 
Thus, once the information is used to fill in unknown addresses 
specified on the debug control cards, this table is no longer needed and 
may be overlayed. 

45 



GE-625/635 GENERAL LOADER 

When the STAB option is taken, FORTRAN generates a symbol table by use 
of VTAB and LTAB macros. A VTAB mac~o is generated for each variable 
named. An LTAB macro is generated for each external formula number--the 
number which is the FORTRAN statement number. 

The system macro VTAB, supplied by GMAP, is used to generate the Debug 
Symbol Table within the region .SYMT •• The structure of the table may be 
best defined by examining the prototype of the VTAB macro, as follows: 

VTAB MACRO 
IDRP 
BCI 
VFD 
IDRP 
ENDM 

#2 
1,#2 
18/#2,12/0,06/#1 

VTAB 

The first argument to the macro is an octal value indicating the type 
code for the symbol list which appears as argument two. The legal octal 
values for type designation ar~ listed belo~: 

Type 

20 
21 
22 
23 
24 
26 
77 

Internal Format 

Binary 
Binary Integer 
Real (floating point) 
Double Precision Real 
Complex 
Logical 
Instruction; this code 
is used to indicate 
where debug is to take 
place. 

Output Format 

Octal 
Single Precision Integer 
Single Precision Exponential (L) 
Double Precision Exponential (D) 
Two Exponential Fields (E) 
Characters T or F 
Octal 

Example of use of VTAB macro: 

BLOCK 
VTAB 
VTAB 
VTAB 

.SYHT. 
22, (A,B,C,D) 
77, (X,Y,Z) 
21, E 

Variables A,B,C, and D are entered in the Debug Symbol 
Table (.SYMT.) as real variables and variable E is entered 
as a binary integer. 

Symbols X, Y, and Z indicate locatic;ns of instructions used 
to indicate where debug is to take place (relative 
addressing cannot be used with these symbols'). 

The following is the prototype of the system macro LTAB, supplied by 
GMAP: 

46 

LTAB MACRO 
BCI 
VFD 
ENDH 

1,#1 
18/#2,12/0,06/77 
LTAB 

#1 is the external formula number and #2 is the internal 
(GMAP) formula number. 



"'\ 

) 

GE-625/635 GENERAL LOADER 

DEBUG STATEMENT 

The information which comprises a debug statement may be placed into 
three catagories. The first category is a symbolic location, necessary 
to determine where the debug is to take place. If debugging is to be 
conditional on data at execution time, the conditions are listed as the 
second category. The list of variables to be dumped when conditions for 
the debug are met is the third category. The format of the debug 
statement is as follows: 

6 7 72 
I 

:DEBUG (Arguments) 

The DEBUG statement does not have a dollar sign ($) punch in column 1. 
The word DEBUG may begin in column 7 and the arguments may start in' any 
column following the word DEBUG (blank columns are ignored). If the 
arguments continue to a second card, a continuation punch (any non-blank 
character) must be placed in column 6 of the subsequent card. All 
symbols punchecLJ.~the DEBUG statement must be defined either by means 
of the VTAB ,Ot\LTAB,mpcro in the subprogram being debugged or by the 
existence of SYMDEF-~or Labeled Common symbols defined in the load table. 

DEBUG statements may take any of the following five syntactical forms: 

1. DEBUG m/(List) 

2. DEBUG m/FOR n l , n 2, n 3/(List) 

3. DEBUG m/IF (al ± a 2 ) KlI KU K3/ (List) 

4. DEBUG m/FOR nl,n 2,n3/IF (a 1 ±. a2) Kl I K21 K3/ (List) 

5. DEBUG m/IF (a l ±. a 2) K l , K2, K3/FOR nl , n2' n 3/(List) 

Explanation of the symbols used in the formats are as follows: 

m Specifies the symbolic location at which DEBUG is to take 
place. This would be the statement number when debugging 
a subprogram compiled by FORTRAN or a symbolic reference 
(±. addend) in a non-FORTRAN subprogram. 

n l ,n2,n 3 Specifies limits and increment to be used with the FOR 
clause. The values of nl,n2 ,n3 are integers used to 
control debugging of iterations of control through the 
FOR clause of the DEBUG statement. Taken literally, the 
variables indicate that debugging should occur, beginning 
on the n l iteration and every n3 iteration thereafter 
until n2 iterations have been made. If n3 is null, it is 
assumed to be 1. If n~ and n3 are null, the debug is done 
only on the nl iterat~on. 

47 



48 

GE-625/635 GENERAL LOADER 

Specifies a relationship on which the IF clause depends. 
The symbols used are restricted to nonsubscripted 
variables or subscripted variables where the subscript is 
a constant. The variable a2 may be a constant but al may 
not. Some examples of this relationship are: (A-3.4), 
(B+C) , (TIME-TIMED), (TEMP (5)-4.1). The mode of the 
relationship is determined by the mode of the argument 
al· 

Kl ,K 2,K 3 Each may assume one of four literals (NO, YES, EXIT, or 
DUMP) to specify the disposition of the IF statement as 
shown as a result of the relationship (al+a2). The action 
taken results from the definition of eaCh literal. NO 
means do not debug here; YES means condition is satisfied 
so debugging may proceed; EXIT means transfer control to 
the EXIT subroutine which is to be loaded from the system 
subroutine library (L*)1 and DUMP means control is 
transferred to the DilliP subroutine which is to be loaded 
from the system subroutine library. In cases where the 
literals EXIT or DUMP are specified, GELOAD enters these 
symbols in its load table as SYMREF's. 

(List) 

The value of the relationship (al ~ a 2) determines if th~ 
procedure assQciated with the literal used for K l , K 2, or 
K3 is to be involved. For the values of negative, zero, 
or positive the debug will respond, respectively, to the 
request of Kl , K2 or K3• If any of these literals are 
explicitly null, they are assumed to be NO. 

Specifies those variables which the programmer wishes to 
dump when all conditions of the statement have been 
satisfied. Each variable, array or directive is separated 
by a comma and the entire list must be enclosed in 
parentheses. If a Debug Symbol Table (.SYMT.) was created 
for the subprogram being debugged, the variable type 
associated with each symbol dictates the format in which 
the data will be dumped. If the symbol can not be found 
in .SYMT., or if one does not exist, it is looked up in 
the load table (SYMDEF or Labeled Common) and dumped in 
octal format. 

If the symbol can not be found in either of these two 
tables, the list statement is in error. The list 
statement may include any combination of the following: 

Single-celled variable--for example, A, 
(5). Any nonsubscripted variable 
single-dimensioned constant subscripted 
an array. 

G, I, FAD 
or any 

element of 

• Arrays (subscripting starts at l}--for example, D 
(I I-I 2, 1 3) where III 1 2, and 13 are integers and 
implies array D is to be dumped from elements D (I l ) 
to D (I2) in increments of 1 3• If written as D 
(II-I2) the increment is assumed to be 1. 

( 



) 

GE-625/635 GENERAL LOADER 

o Special--for example, OCTAL DUMP (II 12 ). This 
requests an octal dump of memory from location II to 
loca tion I 2 , where II ,and I 2 may be any 
single-celled variable, or any symbol appearing ~n 
either the .SYMT. table or the load table (SYMDEF's 
and Labeled Common regions). 

The following are examples of the various types of DEBUG statements with 
respective explanations. They are not intended to be used together as 
listed but are examples of the individual types. 

$ DUMP PROG 
DEBUG LOCl/(A,B,C) 
DEBUG 10/FOR 1,10,2/(A,B,C) 
DEBUG ENI/IF (A-IO.2) NO DUMP,YES/(A) 
DEBUG Ll/FOR 1,SO/IF(VALUE)DUMP,NO,YES/(VALUE) 
DEBUG LS+2/IF(D)YES"YES/FOR 1,10/(OCTAL DUMP (ALPHA-BETA» 

$ DUMP PROG 

The $ DUMP control card must precede the DEBUG statement cards for each 
subprogram being debugged. In this particular example, PROG is assumed 
to be the first primary SYMDEF of a subprogram. 

DEBUG LOCl/(A,B,C) 

This example shows the simples,t form of a DEBUG statement. It calls for 
an unconditional print of the current values of variables A, B, and C in 
the format specified in the VTAB macro each time symbolic location LOCI 
is executed. 

DEBUG 10/FOR 1,10,2/ (A,B,C) 

This is an example of a conditional debug called for at FORTRAN 
statement 10. The conditions indicate that on the first, third, fifth, 
seventh, and ninth iterations through statement 10, the values of A, B, 
and C will be printed. The FORTRAN compiler indicates via the .SYMT. 
table that the variables are type real. The STAB option must have been 
specified on the $ FORTRAN control card when compiling the activity. 

DEBUG ENI/IF (A-IO.2) NO,DUMP,YES/(A) 

Another example of a conditional debug, this time using an IF clause. On 
each iteration through symbolic location ENI the current value of 
variable A is used to evaluate the simple expression (A-lO.2). If the 
result of the evaluation of the expression is negative, processing of 
the subprogram continues immediately. When the value of A is 10.2, all 
slave memory is dumped in octal format and the activity terminates 
normally. When the result of the evaluation of the expression is 
positive, the value of A is printed in the format specified in the VTAB 
macro and the execution continues. 

49 



GE-625/635 GENERAL LOADER 

DEBUG Ll/FOR 1, 50/IF(VALUE)DUMP,NO,YES/(VALUE) 

This example shows the use of compound conditions. It may be noted that 
an IF and FOR clause may be used together in a statement in either order 
but neither two IF's nor two FOR's may be used together. The effect of 
this statement is that for the first 50 iterations through symbolic 
location Ll, the current value of variable VALUE is tested. If negative, 
a dump of slave memory terminates the run. All positive values of VALUE 
are printed in the format specified in the VTAB macr01 zero is not 
printed. 

DEBUG L5+2/IF(D)YES"YES/FOR 1,10/(OCTAL DUMP (ALPHA-BETA» 

This example shows how it is possible to use the debug feature at a 
location not flagged with a symbol. Symbol L5 must have been either 
specified in a VTAB macro or have been a defined SYMDEF, but the 
location at which debug will take place is two cells beyond L5. The 
statement will result in an octal dump of the memory inclusively between 
symbols ALPHA and BETA on each of the first 10 iterations when the value 
of variable D is nonzero. (Refer to nprocessing of DEBUG Cards" below 
for instructions which cannot be used at debug location symbols.) 

PROCESSING OF DEBUG CARDS 

When requesting debug at load time, all DEBUG cards must be placed in 
front of the first object deck of the program or link. The first card of 
a set of DEBUG cards to be used for a given subprogram is a $ DUMP 
control card which specifies the deck name (first primary STI1DEF) of the 
subprogram being debugged. As many DEBUG statement cards follow each $ 
DUMP control card as are needed to define the conditions for dumping. 

As each DEBUG statement card is encountered, it is scanned and reduced 
into tabular form, still retaining all symbolic information. These 
tables are generated in the high-address end of memory. If the LOWLOAD 
option is in effect, the tables are moved to a respective position in 
the low-address end of the user's memory, just above Blank Common and 
the slave prefix. The size of the generated tables and the additional 
conversion subprograms requested from the system subroutine library may 
cause the user's program to exceed the limits he has requested on a $ 
LIMITS control card for running the program without debug. A general way 
of estimating the size of debug tables follows: 

50 

Transfer vector (one per program or link) 
FOR clause 
IF clause one argument (al) 

two arguments (al+a2) 
Debug location (one per statement) 
List entries: 

Single cell variable 

3 wards 
3 words 
3 words 
5 words 
5 words 

Single cell variable without subscript 
Array 

2 words 
3 words 
3 words 
3 words Octal dump 



,) 

GE-625/635 GENERAL LOADER 

As each subprogram to be debugged (name on $ DUMP cards) is loaded by 
GELOAD, the symbolic information in the debug table is replaced by the 
corresponding addresses found from either the .SYMT. table loaded with 
the subprogram or the load table if the symbols are either SYMDEF or 
Labeled Common. When a location symbol is encountered in 
GELOAD-generated debug tables, this implies that, during execution, the 
subprogram must be interrupted at this point in order to accomplish the 
debugging. To do this, the instruction corresponding to the location 
symbol is picked up by GELOAD and the operation code (bits 18-26) is 
saved in the debug table. The instruction is restored to memory with the 
operation code replaced by a Derail Instruction (DRL). 

When executed, the DRL causes a fault to occur which will transfer 
control to the system library subroutine DEBUG. The DEBUG subprogram 
then tests to determine if all conditions of the statement have been 
satisfied and, if so, accomplishes the debug. There are certain 
instructions which cannot be used as debug location symbols because, at 
execution time, following the debug, the replaced operation codes are 
executed by the DEBUG subprogram in an interpretive mode. These 
instructions are: 

I RPD STC2 DIS 
RPT XEC Any instruction with IC modification 

:~l ~ 

GELOAD tests for any of these instructions before inserting the DRL 
operation and, if found, prints the following message on the memory map: 

AT DEBUG XXXXXX INSTRUCTION NOT LEGAL 
where: XXXXXX is the location symbol. 

All programs should terminate via a CALL EXIT or a CALL DUMP in order to 
have the debug file print out onto p* as part of the system output 
during wrapup. If a MME GEBORT/GEFINI termination is taken, wrapup must 
be indicated or else the dump file will be lost. 

51 



GE-625/635 GENERAL LOADER 

EXAMPLE DECK SETUP 

An example of a 2-subprogram input deck follows. The $ DUMP control card 
contains the first SYMDEF of each subprogram. 

52 

$ SNUMB 
$ IDENT 

Note: If the subprograms are to be low-loaded, insert a $ LOWLOAD 
control card here. This is the only control card permitted before 
the $ DUMP control card. 

$ DUMP NAMEl 
DEBUG 
DEBUG 

$ DUMP NAME 2 
DEBUG 
DEBUG 

$ OPTION FCB or 
$ OBJECT 

NAMEl 

$ DKEND 

$ OBJECT 

$ DKEND 

NAME 2 

$ 
$ 

EXECUTE 
LIMITS 

\ 
$ ENDJOB 

FORTRAN 

---------------------

( 



) 

GE-625/635 GENERAL LOADER 

9. Memory Map Printout 

The GELOAD option to print a memory map of the subprograms being loaded 
is considered the normal mode of operation. If no memory map printout is 
required, the NOMAP option on the $ OPTION control card must be 
specified. 

The memory map printout (Figure 7) includes the following: 

• Origin and name of the subprograms 
• Origin and name of all primary SYMDEF's 
• Origin and name of all Labeled Common regions 
o All $ control cards used by GELOAD 
• Error messages from GELOAD 
• List of all subprograms obtained from the user's library 
• List of all subroutines obtained from the" system subroutine 

library (L*) 
• Optional list of all SYMREF's by routine 
• Estima te of optimum amount of memory "requIred to run I 

the job. 

Rev. October 1968 

53 



U1 ~ 
~ CD 

~ . 
0 
0 
rt 
0 
tr 
CD 
Ii 

I-' 
1..0 
C"\ 
00 

88861 a2_0j-26.68 09.06.1· 

_~ O_~101 N _~~!.146J1. __ ~.TRJ __ 10CA.!1 ON __ ._l~~~! _~!'CA!.tnN f.N!R(.L.OJ~~ rJ O~ 

SUBPROG~A~S_ ~N,CLU_D~D_ tN ,nEC~:_ 

~mp~ ®092ur-$-hir 7 OPT O~--~~-M"EF".Lt.q.B----- .. -.-., 

,- .- {!l~i~Mi~;;91!& i;i-' ~37474_ --,- --~-gj! ,D~t~3~ -- ~ ,.-,--

SU8P~QJ~~.'!S _fJBT~J~EIl.EROM S'l'sn:l1_.UeBA~Y, . 

, @ .. -O-J!J·~i~~~n5~!~En~;I.?·~~' -,---
. 037346, ~CLU~ .. _, ,,[.L.!PR O:l!S~' _ .. _ 

-- -RANGE 
. ___ ._,_ ... @ ~Lh9~AT~~_._~~~ .... ,~~~Q-.!~R~ .n3'!'!!. 

OBJEcT PROGRAM 
R&LOCATABlE 03734. THRU n37777 

@ ••• -NovrllAL ERROR. ,.lSsl~G-ROUTtNIl--WVZ .. 

--- '@'CB AND BUHl!;f'"'JPACE-

-nll: 
.D~~~OO 

eoo"!" 

. _PAG.E ______ -1. 

ENTRV_,.h.O~~ T! O,N ___ "§~!B~~Q.I1.A_T,~ ___ _ 

_. ----_ .. --_._- ---_ .. _-- ---

-'--'---,--- --A-A1LiBL-E ---nnn'l~RUiiJYm--
,lLI ~TQL DLKS ~37Zi. THRU e3;s4. 

·ol7cU-" -----.. -.---------
60il131 

3 

4 

6 

- - ----'----'HixtMurB'BT'CR IPA-C-,CREQUtRiifi--- -OOi2ll0- -

--.. -------.@, 21(~' frf~JNfMUIl4 HEloIo'Ry iijlOUJ"Eo--,OifTHiS-JOB - wUH'ALLrl&:~"EN ----

--·---~'EXECITTION' Plf~A"-ENTEREb 'AT" '--037m-' -- ... - _. ..- .--------------

@' THEREWERc---oOG001 WARNJNG nAriS IN 'T~i: ,BOVe lC'iD' . ---... -----

Heading line 

Ansembly date of this 
version of GELOAD 

Control card printout 

Subprogram load origin 

Ansembly date of subprogram 
being loaded 

HIlDIe of subprogram being 
loaded (SYKDEP') 

Addrel8 of SYHDEF 
within subprogram 

8 Indicates assignment of 
Labeled COllIIIOn regions 
assigned for this subprogram 

9 Labeled Coumon region name 

10 Labeled Coumon region assigned 
address 

11 Indicates loaded subprogram 
references another subprogram 
(printout due to use of SYHREF option) 

12 Hame of subprogram referenced 

13 SUlllllary of core memory used in 
loading subprograms 

Figure 7. Memory Map Printout 

14 Error diagnostic; indicates 
routine XYZ not fO\D1d 

15 Summary of core memory used for 
file control blocks and IiUffers 

16 Indicates opti_ core memory limits 
for this activity. (If no additional 
memory required for running, this 
number may be placed on $ LDflTS card 
for opti_ nul efficiency.) 

17 Address where activity execution 
begins 

18 SUIIIIIIlry count of diagnostic messages 
issued for this load 

G) 
f'T1 

en 
I'\.) 

01 
......... 
en 
w 
01 

G) 
f'T1 
:z 
f'T1 
::0 
» 
r 

r 
o 
» 
o 
f'T1 
::0 



GE·625/635 GENERAL LOADER 

10. Error Messages 

Errors within GELOAD are of two types--fatal (F) and nonfatal (N). 
Execution is inhibited by the occurrence of any fatal error. A nonfatal 
error does not halt execution under normal conditions. However, if the 
programmer wishes to execute his program only if no errors occur, he 
must specify the GO option on the $ OPTION control card. Figure 8 lists 
all the errors recognized by GELOAD, the actions taken to correct them, 
and the messages printed out on the user's execution report, following 
the memory map with which they are associated. 

NOTES: 
1. If an error is caused by an illegal binary-coded decimal (BCD) 

card, the contents of the card are printed with the message. 

2. If an error is caused by a binary card, only the contents of 
card columns 73-80 are added to the message printout. 

TYPE MESSAGE 

N AT DEBUG XXXXXX IF NOT IN 
DICTIONARY 

N ILLEGAL BINARY CARD 

N CONTINUATION NOT EXPECTED 

F $ ENTRY NAME NOT LOADED 

F ARGUMENT 1 NOT DEFINED 

N ARGUMENT 2 DEFINED 
PREVIOUSLY 

F ORIGIN ILLEGAL ON FIRST 
$ LINK CARD 

F FIELD DEFINED PREVIOUSLY 

N INCONSISTENT FIELD-PREFACE 
CARD 

F ILLEGAL LOAD ADDRESS 

CAUSE ACTION 

IF variable undefined Statement ignored 

Illegal card type Deck ignored 
encountered 

New debug card expected Card ignored 
--col. 6 not blank 

Name on $ ENTRY card 
undefined 

Immediate return 

$ EQUATE Namel 
undefined 

$ EQUATE Name2 
undefined 

monitor 

Remainder 
ignored 

Remainder 
ignored 

of card 

of card 

to 

First $ LINK card has 
a second field 

Second field ignored 

Field of $ USE card 
previously defined 

Labeled Common without 
size or SYMREF with 
size specified 

Attempting to load 
above program 

Field ignored - scan 
continues 

Deck ignored 

Deck ignored 

Figure 8. List of Error Messages 

55 



GE-625/635 GENERAL LOADER 

TYPE MESSAGE CAUSE ACTION 

56 

F 

N 

N 

F 

F 

F 

F 

N 

N 

N 

N 

N 

N 

N 

N 

N 

ORIGIN ILLEGAL 

ILLEGAL CHECKSUM 

MISSING ROUTINE XXXXXX-MME 
INSERTED AT REFERENCES 

END-OF-FILE READING 
CONTROL CARD 

END-OF-FILE READING 
BINARY 

LOAD TABLE AND PROGRAM 
OVERLAP 

COMMON AND PROGRAM 
OVERLAP 

Origin on LINK card 
currently undefined 

Checksum incorrect 

Undefined name 

Premature EOF on input 
file 

Premature EOF on input 
file 

Insufficient Memory 
available 

Insufficient Memory 
available 

No origin assumed 

Card loaded 

*Name undefined for this 
segment of load 

Immediate return to 
monitor 

Immediate return to 
monitor 

Immediate return to 
monitor 

Loading continues when 
loading from a library 
file 

LOADER SKIPPING TO 
BCD CARD 

NEXT Binary card out of place Read and ignore cards 
until a BCD card is 
encountered 

NONLOADER CONTROL CARD 
IGNORED 

PREVIOUS DEBUG CARD 
TERMINATED INCORRECTLY 

ILLEGAL IF CLAUSE 

ILLEGAL FOR CLAUSE 

ILLEGAL LIST CLAUSE 

ILLEGAL CLAUSE 

AT DEBUG XXXXXX SYMBOLIC 
REFERENCE NOT IN 
DICTIONARY 

BCD card without $ in 
column 1 

Continuation card 
expected 

Illegal character in 
clause 

Illegal character in 
clause 

Illegal character in 
clause 

Illegal delimiter 
encountered 

Location of debug 
request undefined 

AT DEBUG XXXXXX INSTRUCTIO~ The instruction at 
XXXXXX cannot be 
simulated by the DEBUG 
subroutine 

Card ignored -­
processing continues 

Previous DEBUG list 
deleted 

Card ignored 

Card ignored 

Card ignored 

Remainder of card 
ignored 

Statement ignored 

Request ignored 

N LABELED COMMON XXXXXX Labeled Common defined 
previously with smaller 
size 

Initial size retained 

F 

\ SIZE INCONSISTENT 

PROGRAM HAS EXCEEDED TOP 
OF MEMORY 

Insufficient memory 
available under LOWLOAD 

Return to monitor 

* A TSX7 X is placed at all references. IR7 in the panel dump points to the 
instruction having the undefined SYMREF. The two instructions at S are 
LDQ = 3HOLl,DL and MME GEBORT. 

Figure 8. List of Error Messages (cant.) 



TYPE 

N 

N 

N 

N 

N 

N 

F 

N 

F 

" 
\, 
I 

N 

N 

N 

N 

N 

F 

MESSAGE 

ILLEGAL CONTROL CARD 

MAXIMUM NUMBER OF 
LIBRARIES 

ENTRY NAME NOT LOADED 

COMMON ALREADY ASSIGNED 

XXXXXX ILLEGAL IN ALGOL 
TABLE 

ETC ONLY LEGAL FOLLOWING 
FFILE 

TOO MANY FILE CODES 

FILE CODE USED MORE 
THAN ONCE 

FFILE TABLE OVERFLOW 

FILE CODE XX NOT DEFINED 

TWO LGU FIELDS 

RECORD LENGTH REDEFINED 
MIXED 

RECORD LENGTH REDEFINED 
FIXED 

ILLEGAL FFILE FIELD 

LGU TABLE OVERFLOW 

GE-625/635 GENERAL LOADER 

CAUSE 

Non-Loader control card 
appearing before 
$ EXECUTE 

ACTION 

Read next card 

More than 10 Library Terminate table and 
File Codes on $ LIBRARY continue 
cards 

Link or program ENTRY 
cannot be found in 
Load Table 

Use of LOCOMN option 
after assignment of 
BLANK COMMON 

Continue using no entry 
with link 

Assign as Labeled 
Common 

Name xxxxxx is not Continue table scan 
defined to ALGOL 

ETC card out of sequence Ignore card and 
continue 

Number of file codes Return to monitor 
exceeds 30 

Same file code used on 
more than one FFILE card 

Table used for encoding 
of $ FFILE cards too 
small 

File code XX appeared 
on an $ FFILE card 
followed by IGNORE but 
did not appear on a 
FILE card previously 

LGU field redefined 

Record length field 
previously defined 

Record length field 
previously defined 

Illegal clause on 
$ FFILE card 

Too many logical 
units have been 
specified 

Ignore first reference 
to file code 

Return to monitor 

Continue processing 
file cards 

Ignore 2nd field 

Redefine as mixed 
length records 

Redefine as fixed 
length records 

Ignore field 

Return to monitor 

Figure 8. List of Error Messages (cont.) 

57 



( 

( 



) 

GE-625/635 GENERAL LOADER 

11. File Control Block Generation 

GELOAD may be requested to generate file control blocks (FCB) for the 
user by listing the FCB option on the $ OPTION control card. (This 
option is automatically set by listing either the FORTRAN or the ALGOL 
options on the $ OPTION control card). 

When this option is set, normal loading takes place until the $ EXECUTE 
control card is encountered on R* (GELOAD system input file). At this 
time, the file control block generator overlay of GELOAD is called and 
executed. First, any GECOS file control cards or $ FFILE control cards 
following the $ EXECUTE control card are scanned and the information 
tabulated. File control blocks will only be generated for GECOS file 
control cards containing numeric file codes with values less that 44 for 
all $ FFILE specified file codes, and for files I* (Input) and p* 
(Output). Only one file control block will be generated wh~n the same 
file code appears on a GECOS file control card and a $ FFILE control 
card. When all control cards following the $ EXECUTE have been scanned, 
file control block generation begins. Beginning at the next available 
load address, an area of memory (currently set at 22 words but variable 
on reassembly of GELOAD) is set aside as the Logical Unit Table (LGU). 
This area is used during execution by FORTRAN, ALGOL, and JOVIAL I/O 
library subprograms and contains pointers to all generated file control 
blocks. Each file control block is generated following this table from 
the encoded data taken from the file cards. Twenty-two words are used to 
form each block; 20 words comprise a standard file control block and 2 
words are used as control by the I/O library subprograms. A standard 
file control block is generated (see description of standard file 
control block in GE-625/635 File and Record Control, CPB-1003) unless 
the files are described by $ FFILE control card. For descriptions of the 
pointer (location 25 ) to the LGU table, the structure of the LGU table, 
and the relationship of numeric file codes to system files, refer to 
GE-625/635 FORTRAN IV I/O Library, CPB-ll37 and GE-625/635 FORTRAN IV, 
CPB-1006. 

59 



( 



) 

GE-625/635 GENERAL LOADER 

12. Octal Correction Cards 

GELOAD has the capability of processing octal corrections to a 
relocatable object subprogram deck when supplied according to the 
conditions and formats given in the following paragraphs. Corrections 
are made in memory by the use of one or more octal correction cards. 
These cards are inserted in the object deck immediately preceding the $ 
DKEND control card. 

The use of octal corrections is restricted in that they may not be used 
to overlay words in the object subprogram which contain undefined 
SYMREF's. Until an undefined reference (SYMREF) is defined by an object 
subprogram containing its respective SYMDEF, an address chain is 
maintained through all memory locations which reference the given 
symbol. The contents of a correction card over one of these chained 
addresses causes a break in the chain at that point. Thus, when the 
symbol is defined and the definition is being stored at each of the 
referencing locations, all those references appearing after the point of 
the corrective patch will not be filled in with the correct address. 

The octal correction card has the following format: 

Columns 

1-6 

7 

8-12 

13-15 

16-72 

Contents 

Address in octal this address is 
beginning of the subprogram and may be 
in the field. Non-numeric characters in 
ignored. 

Blank 

The word OCTAL 

Blank 

relative to the 
punched anywhere 
this field are 

The corrections in the form of one or more subfields are 
as follows: 

If only one subfield is specified, it will replace 
the contents of the word whose address is specified 
in columns 1-6. Multiple subfields, which must be 
separated by commas, replace successive words 
starting at the address specified. 

61 



62 

GE-625/635 GENERAL LOADER 

A subfield may contain up to twelve octal digits. If 
less than twelve are specified, they will be 
right-justified, with leading zeros inserted. A null 
field (,,) constitutes one word containing zeros. 

Each subfield may be prefixed and/or suffixed by the 
letter R. Prefix R will cause the left-most 18 bits 
of the word to be modified relative to the program 
load point. Suffix R results in the equivalent 
modification to ~he right-most 18 bits. Absence of 
the letter R will imply no modification to the 
respective l8-bit field. 

GELOAD terminates the scan of subfields of octal 
correction cards when either a blank column or 
column 72 is encountered. Following the terminal 
blank column, comments may be added. 



I 
I 

,/ 

GE-625/635 GENERAL LOADER 

References 

GE-625/635 GMAP Implementation, Slstem Support Information, CPB-1078 

...;;G;.,;;,E~-,...;6-=2-=5-,::/,....,:6,..;;3....;;5_-.;;C....;;o..;.;m ... p..;;;r....;;e..;.;h;..;;e..;.;n;..;;s;..;;i;..;.v....;;e_-.;;0..".p....;;e;.;;;r...;.a;...;;t;.;;;i;.;..;n;;.."jg_---.;...S...;.u .. p~e..;;;r...;.v_i;.;;;s...;..o..;..;r..L, Ref erence Manua l, 
CPB-ll95 

GE-625/635 File and Record Control, Reference Manual, CPB-l003 

GE-625/635 FORTRAN IV I/O Library, System Support Information, CPB-ll37 

GE-625/635 FORTRAN IV, Reference Manual, CPB-l006 

GE-625/635 System Editor, Reference Manual, CPB-ll38 

GE-625/635 General Loader, System Support Information, CPB-ll27 

63 



( 



Index 

ABSOLUTE 
ABSOLUTE OBJECT DECK DESCRIPTION 
Absolute Text Card 
LOADING ABSOLUTE OBJECT DECKS 
PROCESSING THE ABSOLUTE TEXT CARD 

ADDRESS 
relative block address 

ADDRESSES 
chained addresses 

ALGOL 
ALGOL 

ALTER 
alter number 

BLANKS 
embedded blanks 

BLOCK 
relative block address 
File Control Block (FCB) generation 
standard file control block 

BLOCKS 
nonstandard file control blocks 
generate file control blocks 

CARD 
relative card number 
Absolute Text Card 
Transfer Card 
CONTROL CARD DESCRIPTIONS 
OPTION card 
$ DUMP card 
$ USE card 
$ OBJECT card 
$ DKEND card 
$ LOWLOAD card 
$ LINK card 
$ LIBRARY card 
$ ENTRY card 
$ EXECUTE card 
$ RELCOM card 
$ NOLIB card 
$ FFILE card 
INTERPRETING THE PRErACE CARD 
PROCESSING THE ABSOLUTE TEXT CARD 
PROCESSING THE TRANSFER CARD 
USE OF THE $ LINK CONTROL CARD 

GE-625/635 GENERAL LOADER 

11 
11 
37 
37 

9 

61 

14 

32 

12 

9 
14 
59 

25 
59 

9 
11 
12 
12 
13 
16 
16 
18 
19 
20 
20 
22 
22 
23 
24 
24 
25 
29 
37 
37 
39 

65 



66 

CARDS 
Preface Cards 
Relocatable Text Cards 
set of debug cards 
LOADING RELOCATABLE TEXT CARDS 
GELOAD debug cards 
debug control cards 
PROCESSING OF DEBUG CARDS 
OCTAL CORRECTION CARDS 

CHAINED 
chained addresses 

COBOL 
COBOL 

CODES 
file codes 

COMMON 
Low Common loading 
Labeled Conunon 

COMPILE 
compile and execute 

COMPILER 
Compiler generated program options 

CONGO 
CONGO 

CONTROL 
CONTROL CARD DESCRIPTIONS 
File Control Block (FCB) generation 
nonstandard file control blocks 
USE OF THE $ LINK CONTROL CARD 
debug control cards 
generate file control blocks 
standard file control block 

CORRECTION 
OCTAL CORRECTION CARDS 

COUNT 
Set maximum error count 

DEBUG 
set of debug cards 
DEBUG FEATURE AT LOAD TIHE 
DEBUG FEATURE 
GELOAD debug feature 
GELOAD debug cards 
DEBUG SYMBOL TABLE .SMYT. 
debug control cards 
DEBUG STATEMENT 
PROCESSING OF DEBUG CARDS 

DLCK 
RELOCATABLL OBJECT DECK DESCRIPTION 
ABSOLUTE OBJECT DECK DESCRIPTION 

GE-625/635 GENERAL LOADER 

7 
9 

16 
30 
45 
45 
50 
61 

61 

14 

22 

14 
30 

20 

14 

13 

12 
14 
25 
39 
45 
59 
59 

61 

13 

16 
45 
45 
45 
45 
45 
45 
47 
50 

7 
11 



'" ) 

DECKS 
LOADING RELOCATABLE OBJECT DECKS 
LOADING ABSOLUTE OBJECT DECKS 

DESCRIPTION 
RELOCATABLE OBJECT DECK DESCRIPTION 
ABSOLUTE OBJECT DECK DESCRIPTION 

DESCRIPTIONS 
CONTROL CARD DESCRIPTIONS 

DKEND 
$ DKEND card 

DUMP 
$ DUMP card 
Dump option 
DUMP 

EMBEDDED 
embedded blanks 

ENTRY 
entry location for the program 
$, ENTRY card 

ERCNT/N/ 
ERCNT/n/ 

ERROR 
Set maximum error count 
ERROR MESSAGES 

ERRORS 
errors recognized by GELOAD 

EXECUTE 
Execute 
compile and execute 
$ EXECUTE card 

EXECUTION 

FCB 

LINK MANIPULATION AT EXECUTION TIHE 

File Control Block (FCB) generation 
FCB 

FEATURE 
DEBUG FEATURE AT LOAD TIME 
DEBUG FEATURE 
GELOAD debug feature 

FFILE 
$ FFILE card 

FIELD 
operand field 

GE-625/635 GENERAL LOADER 

29 
37 

7 
11 

12 

19 

16 
23 
23 

12 

12 
22 

13 

13 
55 

55 

13 
20 
23 

40 

14 
14 

45 
45 
45 

25 

12 

67 



68 

FILE 
File Control Block (FCB) generation 
file codes 
nonstandard file control blocks 
library file L 
searching a library file 
H* file 
generate file control blocks 
GELOAD system input file 
standard file control bloc'k 

FILES 
LIBRARY FILES 
library files 

FORTRAN 
FORTRAN 

GELOAD 
LOADING GELOAD 
Input to GELOAD 
GELOAD options 
GELOAD debug feature 
GELOAD debug cards 
errors recognized by GELOAD 
GELOAD system input file 

GENERATE 
generate file control blocks 

GENERATED 
Compiler generated program options 

GENERATION 
File Control Block (FCB) generation 

Hl1.LF-WORD 
half-word relocation 

HIGH-LOADED 
high-loaded relocatable subprograms 

H* 
H* file 

IDENTIFICATIon 
Program Identification Number 

IDENTIFIER 
relocation identifier 

IDLINK 
IDLINK 

IlIPUT 
Input to GELOAD 
GELOAD system input file 

GE-625/635 GENERAL LOADER 

14 
22 
25 
35 
36 
39 
59 
59 
59 

35 
35 

14 

3 
7 

13 
45 
45 
55 
59 

59 

14 

14 

30 

4 

39 

18 

11 

41 

7 
59 

( 



) 
JOVIAL 

JOVIAL 

L 
library file L 

LABELED 
Labeled Common 

LENTRY 
LENTRY 

LIBRARIES 
user libraries 
USE OF LIBRARIES 

LIBRARY 
$ LIBRARY card 
library search 
LIBRARY FILES 
library files 
library file L 
searching a library file 

LINK 
$ LINK card 
link section 
USE OF THE $ LINK CONTROL CARD 
link program 
main link 
LINK MANIPULATION AT EXECUTION TIr-m 

LINKED 
LINKFD PROGRAM 

LINKS 
REFERENCING BETWEEN LINKS 

LINK/OVERLAY 
LINK/OVERLAY PROCESSING 

LLINK 
LLINK 

LOAD 
load table 
DEBUG FEATURE AT LOAD TIME 

LOADING 
LOADING GELOAD 
normal loading procedure 
Low Common loading 
LOADING RELOCATABLE OBJECT DECKS 
LOADING RELOCATABLE TEXT CARDS 
LOADING ABSOLUTE OBJECT DECKS 

LOCATION 
entry location for the program 

GE-625/635 GENERAL LOADER 

14 

35 

30 

41 

22 
35 

22 
24 
35 
35 
35 
36 

20 
21 
39 
39 
39 
40 

41 

39 

39 

41 

35 
45 

3 
3 

14 
29 
30 
37 

12 

69 



70 

LOCOMN 
LOCOMN 

LOW 
Low Common loading 

LOWLOAD 
$ LOWLOAD card 

LOW-LOADED 
low-loaded relocatable subprograms 

MAIN 
main link 

MANIPULATION 

MAP 

LINK MANIPULATION AT EXECUTION TIHE 

Memory map 
MAP 
MEMORY MAP PRINTOUT 

MAXIMUM 
Set maximum error count 

MEMORY 
Hemory map 
Set memory 
MEMORY MAP PRINTOUT 

r.mSSAGES 
ERROR MESSAGES 

NDUMP 
NDUMP 

NOFCB 
NOFCB 

NOGO 
NOGO 

NOLIB 
$ NOLIB card 

NOMAP 
NOHAP 

NOr.1SUB 
NOMSUB 

NONLINK 
save a nonlink program 

NONsrrANDAR[j 
nonstandard file control blocks 

GE-625/635 GENERAL LOADER 

14 

14 

20 

4 

39 

40 

13 
13 
53 

13 

13 
13 
53 

55 

23 

14 

13 

24 

13 

15 

15 

25 



) 

NORMAL 
normal loading procedure 

NOSETU 
NOSETU 

NOS REF 
NOS REF 

NUHBER 
relative card number 
Program Identification Number 
alter number 

OBJECT 
RELOCATABLE OBJECT DECK DESCRIPTION 
ABSOLUTE OBJECT DECK DESCRIPTION 
$ OBJECT card 
LOADING RELOCATABLE ODJECT DECKS 
LOADING ABSOLUTE OBJECT DECKS 

OCTAL 
OCTAL CORRECTION CARDS 

OPERAND 
operand field 

OPTION 
OPTION card 
Dump option 

OPTIONS 
GELOAD options 
Compiler generated program options 

PREFACE 
Preface Cards 
INTERPRETING THE PREFACE CARD 

PREFIX 
slave program prefix 

PRI~1ARY 

SYMDEF (primary or secondary) 
PRD1ARY AND SECONDARY SYHDEF SYr·mOLS 

PRINTOUT 
r.1EMORY HAP PRINTOUT 

PROCEDURE 
normal loading procedure 

PROCESSING 
PROCESSING THE ABSOLUTE TEXT CARD 
PROCESSING THE TRANSFER CARD 
LINK/OVERLAY PROCESSING 
PROCESSING OF DEBUG CARDS 

GE-625/635 GENERAL LOADER 

3 

14 

14 

9 
18 
32 

7 
11 
18 
29 
37 

61 

12 

13 
23 

13 
14 

7 
29 

3 

29 
35 

53 

3 

37 
37 
39 
50 

71 



72 

PROGRAM 
slave program prefix 
entry location for the program 
Compiler generated program options 
save a nonlink program 
Program Identification Number 
segment a program 
link program 
LINKED PROGRAM 

PSEUDO-OPERATIONS 
Pseudo-operations SYMDEF and SYMREF 

REFERENCES 
Symbol references 

REFERENCING 
REFERENCING BETWEEN LINKS 

RELATIVE 
relative card number 
relative block address 

RELCOM 
$ RELCOM card 

RELOCATABLE 
high-loaded relocatable subprograms 
low-loaded relocatable subprograms 
RELOCATABLE OBJECT DECK DESCRIPTION 
Relocatable Text Cards 
LOADING RELOCATABLE OBJECT DECKS 
LOADING RELOCATABLE TEXT CARDS 

Rl:LOCATION 
Relocation Scheme 
relocation identifier 
half-word relocation 
Special relocation 
types of relocation 

Sl~VE 
SAVE 
save a nonlink program 

SCHEr-IE 
Relocation Scheme 

SEARCH 
library search 

SEARCHIIIG 
searching a library file 

SECOHDAlI:Y 
SYMDEF (primary or secondary) 
PP IMl'.RY AND SECONDARY SYMDEF SYHBOLS 

GE-625/635 GENERAL LOADER 

3 
12 
14 
15 
18 
39 
39 
41 

37 

14 

39 

9 
9 

24 

4 
4 
7 
9 

29 
30 

11 
11 
30 
31 
32 

15 
15 

11 

24 

36 

29 
35 

( 
I, 



) 

SECTION 
link section 

SEGMENT 
segment a program 

SENSE 

SET 

Sense switches 

Set memory 
Set maximum error count 
set of debug cards 

SETUP 
Setup 

SET/N/ 
SET/n/ 

SLAVE 
slave program prefix 

SUBPROGRAMS 
high-loaded relocatable subprograms 
low-loaded relocatable subprograms 

SWITCHES 
Sense switches 

SYMBOL 
$ symbol 
Symbol references 
DEBUG SYrIBOL TABLE .SHYT. 

SYHBOLS 
PRIr.1ARY Arm SECONDARY SYHDBF SYHBOLS 

SYHDEF 
SYHDEF (primary or secondary) 
PRIMARY AND SECONDARY SYMDEF SYHBOLS 
Pseudo-opera tions SYlmEF and SYHREF 

SYMREF 
SYl-iREF 
SY~1REF 

Pseudo-operations SYMDEF and SYMREF 

TABLE 
load table 
DEBUG SYl-1BOL TABLE • StITT. 

TEXT 
Relocatable Text Cards 
Absolute Text Card 
LOADING RELOCATABLE TEXT CARDS 
PROCESSING THE ABSOLUTE TEXT CARD 

TRANSFER 
Transfer Card 
PR9CESSING THE TRANSFER CARD 

GE-625/635 GENERAL LOADER 

21 

39 

23 

13 
13 
16 

14 

13 

3 

4 
4 

23 

12 
14 
45 

35 

29 
35 
37 

14 
30 
37 

35 
45 

9 
11 
30 
37 

12 
37 

73 



74 

TYPES 
types of relocation 

USE 
$ USE card 
USE OF LIBRARIES 
USE OF THE $ LINK CONTROL CARD 

VARIABLES 
Variables 

$ 
$ symbol 
$ DUHP card 
$ USE card 
$ OBJECT card 
$ DKEND card 
$ LOWLOAD card 
$ LINK card 
$ LIBRARY card 
$ ENTRY card 
$ EXECUTE card 
$ RELCOM card 
$ NOLIB card 
$ FFILE card 
USE OF THE $ LINK CONTROL CARD 

.SMYT. 
DEBUG SYHBOL TABLE .SMYT. 

GE-625/635 GENERAL LOADER 

32 

16 
35 
39 

12 

12 
16 
16 
18 
19 
20 
20 
22 
22 
23 
24 
24 
25 
39 

45 



DOCUMENT REVIEW SHEET 

TITLE: __ ~G~E_-_6_25~/~6_3_5 __ G_en_e_r_a_l __ L_oa_d_e_r __________________ _ 

C P B #: __ 1_O_O_8E __ 

From: 
Name: ____________________________________ _ 

Position: _____________________ _ 
Address: __________________________ __ 

Comments concerning this publication are solicited for use in improving future 
editions. Please provide any recommended additions, deletions, corrections, or 
other information you deem necessary for improving this manual. The following 
space is provided for your comments. 

CD COMMENTS: 
&: 

1-
).~ 

) 

-= ..... 

NO POSTAGE NECESSARY IF MAILED IN U.S.A. 
Fold on two lines shown on reverse 

side, staple, and mail. 



STAPLE 

FOLD 

BUSINESS REPLY MAIL 
NO POIITAGE IITAMP.NECEIIIIAftY I" MAILED IN THE UNITED IITATEII 

POSTAGE WILL BE PAID BY 

GENERAL ELECTRIC COMPANY 
PROCESSOR EQUIPMENT DEPARTMENT 

13430 NORTH BLACK CANYON HIGHWAY 

PHOENIX, ARIZONA 85029 

ATTENTION: Program Documentation C-78 
Systems and Processors Operation 

FOLD 

STAPLE 

FIRST CLASS 

PERMIT, No. 4332 

PHOENIX, ARIZONA 

Ni'E,l,! •• 

i,' h . ' 
i ,., 

, ! db '¥ Ii rit §fl'k t, , 

'iL aee"".' ••• 

II"", Mi.' 
'FAa E 

'''" .. 

( 



INFORMATION SYSTEMS 

GENERAL. ELECTRIC 

'.' L-__________________________ ----' 

-, . 

LITHO U.S.A. 




