
GENERAL ELECTRIC

COMPUTERS

~YSTEM
~UPPORT
~ NFORMATION

GE-625/635
GMAP

Implementation

ABSTRACT

This manual describes the inner workings of GMAP, the
General Macro Assembly Program for the GE-625/635.
It presumes a familiarity with GMAP usage on the part
of the reader.

GENERAL. ELECTRIC

CPB-10788

GE-625/635

GMAP

IMP LEM E.NTATION

May 1965

Rev. August 1966

INFORMATION SYSTEMS DIVISION

PREFACE

This publication has been prepared for the system programmers who will be maintaining
and modifying GMAP. It presents a detailed breakdown of Pass 1 and Pass 2 control logic,
a complete description of all pseudo-operations, and a bit-by-bit description of all GMAP
control words and tables. It is assumed the programmer is familiar with the GE-625/635
Comprehensive Operating Supervisor (GECOS) Manual, CPB-1002.

Suggestions and criticisms relative to form, content, purpose, or use of this manual are
invited. Comments may be sent on the Document Review Sheet in the back of this manual
or may be addressed directly to Engineering Publications Standards, B-90, Computer
Equipment Department, General Electric Company, 13430 North Black Canyon Highway,
Phoenix, Arizona 85029.

© 1965, 1966 by General Electric Company

GMAP

1.

2.

3.

4.

Page

INTRODUCTION 1

Pass 1 . 2
Pass 2 . 2
Pass 1 Control Logic . 3
Pass 2 Logic . 3

TABLE FORMATS 5 '

Operation Table . 5
Pseudo-Operation . 5
Machine Instruction . 5

Symbol Table . 7
Symbolic Reference Table . 8
USE Tables . 9
BLOCK Tables . 9
Intermediate File . 10

GECOS INTERFACE

PSEUDO-OPERATIONS

ABS · · ·. · · · · · · · · · · · · ·
ASCII
ASCIIC ~
BCI
BEGIN
BFS
BSS
BLOCK
BOOL .. .
CALL .. .
CRSM .. .
DC ARD .. .
DEC · ·
DELM
DETAIL
DUP .. .
EDITP .. .
EIGHT .. .
EJECT .. .
END .. .
ENDM .. .

iii

11

13

13
13
13
14
14
14
14
15
15
15
17
17
18
18
18
18
19
19
19
19
20

5.

EQU ·
ERLK
EVEN
FEQU · .. · · · · · · · · · · · · · · · ·
FUL
HEAD
IDRP · · · · · · · · · · · · ·
IFE, IFG, !FL, !NE ·
INHIB

LBL ... ·
LIST
LIT · .. ·
LOC ·
LODM .. .
MACRO

Macro Call
Macro Expansion .

MAX, MIN
MAXSZ
NON OP
NULL
OCT · · · · · · · · · · · · · · · ·
ODD .. .
OPD .. .
OP SYN .. .
ORG
ORGCSM '
PCC, PMC .. .
PUNCH .. .
PUNM
REF .. .
REM · · · · · · · · · · · · · · · · · · ·
RETURN
SAVE
SET .. .
SYMDEF ;
SYMREF
TALLY,TALLYB,TALLYC,TALLYD
TCD .. .
TTL .. .
TTLS
USE
VFD
ZERO

.. ·

LITERALS

Literals Evaluated in Pass 1 and Entered in
the Literal Pool .
Other Literals .

iv

Page

20
20
21
21
21
21
22
22
22
23
23
23
23
24
24
25
26
27
27
28
28
28
28
29
29
29
29
30
30
30
30
31
31
31
31
32
32
32
33
33
33
33
34
34

35

35
36

Page

6. MAJO~ SUBROUTINES 37

Functions of Routines Common to Both Passes 37
Evaluate an Expression . 37
Evaluate a VFD Expression . 38
Decimal to Binary (Integer) . 39
Octal to Binary . 39
General Decimal to Binary . 39
General Octal to Binary . 39
Assemble an Element . 40
Get Next Character . 40
Store USE Data . 40
Set USE Data . 40
Operation Table Search . 41
Sort Symbol Table . 41
Card Initialization . 41
Evaluate Switch Alteration for On/Off Type

Pseudo-Operations . 41
Functions of Pass 1 Routines . 42

Pass 1 Symbol Table Search . 42
Define a Symbol . 42
Define Operation . 42
Load Macro Prototypes . 43

Functions of Pass 2 Routines . 43
Symbol Table Search . 43
Pseudo-Variable Field Scan . 43
Binary Card Entry . 44
Punch Binary Card" . 44
Initialize Binary Card . 44
Set Binary Word Storing Controls . 44
Enter Binary Word into Card Image ·. 45
Punch Macro Prototype Table . 45
Print a Line· . 45
List Machine Instruction . . • . 45
Evaluate Tag Field . 46
Evaluate Address Field . 46
Set Relocation Bits . 46
Check for Phase Error . 46

APPENDIX

PSEUDO-OPERATIONS BY FUNCTIONAL CLASS ••••••••• o •••• • • • 47

@~c®@® ~~ooa~~ _________ a_MAP

v

1. INTRODUCTION

The General Macro Assembly Program (GMAP) for the GE-625/635 produces an object ll
program (and printouts) by processing the symbolic coding of the source program. The
latter may be a GMAP symbolic program or may have been produced by COBOL or
FORTRAN.

GMAP operates in two passes. Pass 1 processes the input file, forms the symbol table,
and writes an intermediate file. Pass 2 processes the intermediate file and forms the
output files, including the listing and binary information.

The following is a summary of Pass 1 and Pass 2 functions. Figure 1 shows core memory
allocation for GMAP Pass 1 and 2.

Pass 1 Pass 2 Overlay

Storage and subroutines
corrnnon to both Pass 1 and

Pass 2

Pass 1 Subroutines Pass 2 Subroutines

Pass 1 Pass 2

Pseudo-Operation Processors Pseudo-Operation Processors

Operation Table Symbolic Reference
Table

Macro Prototypes
and Expansions !

'I... y

" ·""'

i i
Sorted

Symbol Table Symbole Table

SYMDEF Table SYMDEF Table

Literal Pool Literal Pool

Figure 1. Core Memory Allocation for GMAP
1

@j~c(ID(Q)@ ~~[ffiO~~ _________ G_MAP

-1-

PASS 1

1. Location symbols are placed in the symbol table along with their definitions.

2. The operation code is looked up in the operation table and the operation control
word passed on to Pass 2. Pseudo-operations requiring Pass 1 processing
are processed.

3. Literals that can be evaluated in Pass 1 are converted to binary and placed
in the literal pool. Literals M, V, and nH, where n > 12, are not processed
until Pass 2.

4. Macro definitions are entered in the macro prototype table.

5. Card images required by DUP and macro expansions are produced.

6. Tables are formed from information supplied by certain pseudo-operations
(USE, BEGIN, SYMDEF, BLOCK, LIT).

Housekeeping at End of Pass 1:

7. The USE tables are processed in conjunction with the BEGIN information to
determine the origin of each USE.

8. The location of the literal pool, the error linkage, and the program break are
computed.

9. The symbol table is sorted; the symbols are given their true definitions based
on the origin of their associated USE; and the table is checked for multi­
defined symbols which are flagged.

10. The LIT table is processed to set the origins of each literal pool based on the
origin of the USE under which the LIT occurred.

11. The values for the preface are computed.

12. Pass 2 is called.

PASS 2

1. The preface is punched and listed for relocatable programs.

2. The binary deck and listing are produced using information from the inter­
mediate file and the tables built by Pass 1.

3. The symbolic reference table is formed.

@j~o(ID©)@ ~~(RiO~~---------GMA_P

-2-

PASS 1 CONTROL LOGIC

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Initialize GMAP table locations and I/O routines. Read GMAP system macros.
/"

Read a record; go to step 9. (6 x·)

If not in DUP mode, go to step 7.

If not the first time through the range of the DUP, go to step 6.

Save record for succeeding times through DUP range. Strip location symbol
if not a SET and go to step 7.

Write intermediate file, retrieve next record from those previously saved,
and go to step 10.

Write intermediate file. G,.,l)
If expanding a macro, get next record from macro processor and go to step
10.

Move record into working storage and read next record.

If any records are to be skipped, reduce count and go to step 9.

Set up controls for processing the record.

If processing a macro prototype, pack record in prototype storage and go to
step 3.

Look up operation c~de and, if a pseudo-operation, go to appropriate processor.

Enter location symbol in the symbol table.

Increase location counter, process literal if it exists, and go to step 3.

PASS 2 LOGIC

1. Punch system macros, if required. (0tdJ> rvy.:t-•v\JS /lv-l-j)

2. List and punch preface, if required. (_ P ~ ./ C ..ff)
3. Read a record from the intermediate file. (I: I)
4. If not a BCD card to be punched by the DCARD pseudo-operation, go to step 6.

5. Punch and list BCD card and go to step 3.

6. If pseudo-operation, go to appropriate processor.

7. Check location symbol for phase error.

8. If a literal is present, get address and go to step 12.

@(go(ID@@ ~~[ffi~~~ _________ c_MAP

-3-

9. If I/ 0-typ e instruction, go to step 17.

10. Evaluate symbolic index, if required.

11. Evaluate address field, if present.

12. Assemble operation code.

13. Evaluate tag field, if present.

14. List and punch instruction; increase location counter.

15. If literal is not to be assembled at this point, go to step 3.

16. Assemble required literal and go to step 3 .

. 17. Assemble 1/0-type instruction word and go to step 14.

@j~o(ID@@ ~~lffia~~---------GMA_P
-4-

2. TABLE FORMATS

OPERATION TABLE

Pseudo-Operation

Word 1

Word 2

0

0

Word 1.

o Word 2.

BCD Operation Mnemonic

Pass 1 address J q_ J Pass 2 TV pas.

17181920

Left-adjusted and filled with blanks

Bits

0-17 Address of Pass 1 pseudo-operation processor

18 0 indicates this is a pseudo-operation

19 O, but is set to 1 if the operation is redefined

35

20-35 Position· in the transfer vector giving the addresses of
Pass 2 pseudo-operation processors

Machine Instruction

Word 1

Word 2

0 Word 1.

0 Word 2.

0

BCD Operation Mnemonic

11 171819.

Left-adjusted and filled with blanks

Word 2 has two formats, depending on bit 19.

A) If bit 19 is 0 {machine instruction):

Bits

0-11 Binary machine code

12-17 Unused

35

@~o®@® ~~[ffill~~---------G-MAP
-5-

Bits (Cont'd)

18 1 indicates machine instruction

19 0 format indicator

20-25 0 indicates yes, 1 indicates no

20 Register modification allowed

21 Indirect addressing allowed

22 Indirect and tally allowed

23 DU allowed

24 DL allowed

25 SC and CI allowed

26-30 1 indicates yes, 0 indicates no

26 Address required

27 Address required even

28 Address required absolute

29 Symbolic index required

30 Octal tag field required

31-33 Not used

34-35 Listing format for binary word

00 xx xxxx xxxxxx

01 xxxxxxxxxxxx

10 xxxxxx xxxxxx

11 xxxxxx xxxx xx

B) If bit 19 is 1 (I/ 0 command):

Bits

0-17

18

19

20-25

26-28

Bits 18-35 of cornmand

1 indicates machine instruction

1 format indicator

Bits 0-5 of command

Same as machine instruction

@~a@@® ~~[ffi0~$3---------G-MAP
-6-

SYMBOL TABLE

Word 1

Word 2

0

0 Word 1.

o Word 2.

Bits ~Cont'd)

29-30 1/0 type

Type Variable Field Binary Word

00 DA,CA XXDACAXXXXXX

01 NN,DA,CA XXDACAXXXXNN

10 CC, DA, CA XXDACAXXCCXX

11 A,C AAAAAAXXCCCC

31-33 Not used

34-35 00 Listing type 0

BCD name (leading zeros)

relative address l control information

1718 35

BCD symbol, right-adjusted with leading O's

Bits

0-17 Relative address

18 Pass 1 0

Pass 2 1 if a reference has been made (see symbolic
reference table)

19 To be defined (see FEQU pseudo-operation)

20 Defined by SET pseudo-operation

21-23 Relocation type

000

001

010

011

100

Absolute

Relocatable

Blank common

Block

SYMREF

-7-

Bits (Cont'd)

24 Multidefined

25-26 Not used

27 0 USE

1 BLOCK

28-35 USE or BLOCK number

SYMBOLIC REFERENCE TABLE

0 1718 35

First entry

I

A

fro1 symbol
B

I

for symbol
Word 2 table

c

A Address of next reference; or 0 if last reference

B Alter number of reference

c Alter number of definition

Second and 0 1718 35
succeeding

A B entries

A, B Same as above

When the first reference to a symbol is made, word 2 of the symbol table is replaced by
a word with the following format:

0 171819 35

D E

D Address of first entry in reference table for this symbol

E Address in the reference table of word 2 of the symbol table

@j~ a(ID@@ ~~[ffi~ ~~ _________ a_MAP

-8-

USE TABLES

USE 1
0

0 (blank USE)
BCD name 1
BCD name 2

BLOCK TABLES

BLK 1

0

0 (conunon)
BCD name 1
BCD name 2

USE 2 USE 3
35 0 1718 35 0 1718 19 2021

AO BO DO EO FO GO
Al Bl Dl El Fl Gl
A2 B2 D2 E2 F2 G2

Next location available for this counter

Pass 1--largest location used by this counter

Pass 2- -origin of this counter

Relative address of BEGIN for this counter

0 no BEGIN for.this counter

1 BEGIN occurred for this counter

00 counter may begin in any location

10 counter must begin in even location

01 counter must begin at a multiple of eight

USE number under which relative address of BEGIN is defined

35 0

BLK2

1718 35

Next available location of this block

Total length of this block

0 counter may begin in any location

1 c~mnter must begin at a multiple of eight

,_9_

BLK 3

20

35

INTERMEDIATE FILE

This file carries the original or generated source card image (84 columns) on to Pass 2
for further scanning and printing. The records are extended by four words which contain
the information peculiar to the source statement learned in PASS 1. The contents of
these four words, of course, varies depending on the type of operation code and type of
variable field. In general, however, they contain the following types of information:

OP:

FLAGS:

LVAL:

P2ADD:

Operation definition from operation table

All error flags, plus miscellaneous control flags (for example,
generated datum, ETC follows, type of literal)

Literal value for DU, DL literals; count required by some pseudo­
operations (BCI, BSS); result of expression evaluation for some
pseudo-operations (BOOL, DUP); in general, unique usage de­
pending on the pseudo-operation used.

Address in literal pool for literal referenced in this operation.
Occasionally used for second piece of data related to pseudo­
operation.

@[ga(ID@@ ~~[ffi~~~ ---------G-MAP
-10-

GMAP interfaces indirectly with GECOS in the allocation, reading, and writing of files,
and directly in the requesting of elected options, loading overlays, and loading system
macros.

To begin running, GMAP must have at least three files allocated to it: the symbolic input
file (G*), the intermediate file (* 1), and the output listing file (P*). Optional files are as
follows: output binary deck for punching (C*) if a deck is requested, output binary deck
for loading (B*) if execution is to follow, input alter file for symbolic updating (A*), and
output file for new compressed deck (K*). ·

Determination of elected options is made via the program switch word and the Master
Mode Entry, GESETS. The option and corresponding bit switch word setting is as follows:

Bit 5
Bit 7
Bit 8
Bit 10

Bit 11
Bit 13

Execution activity follows
Produce binary deck for punching
Produce output listing
Print skipped cards following the conditional
pseudo-operations {i.e., IFE, INE, IFL, and IFG):
Load GMAP system macros
GMAP interface

1 =Yes
1 =Yes
1 =Yes

1 =Yes
1 =Yes
1 =Yes

I

Upon completion of the assembly process, the status of bit 13 of the switch word is exam­
·--ine. If it is ~er.o {normal), the assembler will issue a MME GE FINI to terminate. If bit

13 is on·e (iL -GIV~AP-will load-the-Q-registe.:r. ... ~i!~ tJ:i~ file ?ode *Z (~00000005471 e), an~ ,,,.., _ :_-;,>

transfe~-~~~~c:t10n 26 {32 e) of the slave fault vector. '---'<~_::t_lt~.~ ~" .,,c,lf t~I.- ,Vv;:__(c~_:nl/!
/ti.ri-tA Clj<J:-Q,,,.>\ i:'.-c:'r;,.in.---

The Alter and Comdeck options are determined as a function of the GEFRC input/output
package.

All input/output is performed through GEFRC (and in turn through GECOS) via the
standard CALL linkage. -------~---------------------~----------.. -·- ., ..•.. ------·-·-------··-------~-----------__ _____

........ ...-J_ - .. ~~-

. ----------------------
Loading .. of--overlays and system macros is normally made via the Master Mode Entry,
GE8ALL. However;'handles''are there for using GERSTR instead, so that GMAP or' new

./-8ystem macros may be run and debugged under control of the_ General Loader {GELOAD). ·
In this case a special entry has been provided {GMAPD) which will alter all MME GECALL's
related to loading GMAP to become MME GERSTR's. An exception is the MME GECALL
for system macros. If this is to be made a MME GERSTR it must be patched to such.
Thus, running under G ELOAD, one may use the system macros from the system file
or load a set with GMAP as a free-standing LINK, and load it from the Overlay file (H*)
built by G ELOAD. /

,.....--, __.../""',,,..

,,--·-----· _ __.

~~®®®-l~RR~~---------~~~-------------~~-~-p
-11-

4. PSEUDO-OPERATIONS

ABS

Pass 1

Set ABSFLG nonzero.

Pass 2

If in the FUL mode, punch what is there and terminate FUL mode.

ASCII

Pass 1

Define location symbol. Evaluate first field for number of words, same for Pass 2, and
increase the location counter by that number.

Pass 2

Check location symbol for phase error. Transliterate each character of the second field
into ASCII code. List and punch the number of words determined in Pass 1.

ASCllC

Pass 1

Same as ASCII

Pass 2

Check location symbol for phase error. Evaluate second field as a 9-bit character and
insert it as the first character of the generated information. Transliterate each char­
acter of the third field into ASCII code and insert into the next character position of the
generated information. List and punch the number of words determined in Pass 1.

-13-

SCI

Pass 1

Define location symbol. Evaluate first field for number of words, save for Pass 2, and
increase the location counter by that number.

Pass 2

Check location symbol for phase error, list, and punch the number of words determined in
Pass 1.

BEGIN

Pass 1

The BEGIN flag and relative value are set in the USE tables for the USE determined by the
first field.

Pass 2

List card with address.

BFS

Pass 1

Evaluate length of the table and save for Pass 2. Increase the location counter and define
location symbol at next location.

Pass 2

Increase location counter by value from Pass 1. Check location symbol for phase error.
Reset card punching controls, if value from Pass 1 is nonzero.

SSS

Pass 1

Define location symbol. Evaluate length of the table and save for Pass 2. Increase location
counter.

Pass 2

Check location for phase error. Increase location counter by value from Pass 1. Reset
card punching controls, if value is nonzero.

-14-

BLOCK

Pass 1

The BLOCK name is assembled from the variable field. If it is not already in the BLOCK
tables, it is entered along with its initial value. The status of the current USE or BLOCK
is stored in the appropriate table. The program counter is set to count in this BLOCK.

Pass 2

The status of the current USE or BLOCK is stored. The new values are set from the
BLOCK tables. The card punching controls and program counter are reset.

BOOL

Pass 1

The variable field is evaluated as a Boolean expression, and the location symbol is defined
as that value.

Pass 2

The location symbol is checked for phase error.

CALL

Pass 1

1. Define location symbol.

2. If absolute assembly, go to step 4.

3. Enter called program name in ·symbol table as SYMREF if not already in
SYMDEF table.

4. Start at the beginning of the argument list.

5. Set word count to step 3.

6. Skip to next break character.

7. Determine which break character is present.

B. Transfer to associated routine (steps 9, 15, 16, 19, or 20).

9. [comma] Add one to word count and if the next character is not a blank, go to
step 6.

10. If next card is ETC, return to Pass 1 control sequence; if not, go to step 19.

@~o(ID@@ ~~[ffi~~~ ---------G-MAP
-15-

I

11. [Re-entry on ETC card] Skip next character if it is a left parenthesis (().

12. If next character is an apostrophe (') , go to step 20.

13. If next character is not an equal sign (=), go to step 6.

14. Evaluate literal. Get break character and go to step 7.

15. [Left parenthesisl Set error flag and go to step 6.

16. [Right parenthesis] If next character is an apostrophe, go to step 20.

1 7. If next character is not blank, go to step 9.

18. If next card is ETC, add one to word count and return to Pass 1 control
sequence.

19. [Blank J Add one to word count.

20. [Apostrophe] Increase location counter by the word count and return to Pass 1
control sequence.

Pass 2

1. Check location symbol for phase error.

2. Evaluate subprogram address.

3. Evaluate modifier, if it exists, and publish TSXl.

4. Add 2 to the location counter and set the argument and error return counts to
zero.

5. If break character is a blank, go to step 14.

6. If break character is a left parenthesis and is followed by a right parenthesis,
skip over the right parenthesis.

7. If the end of the variable field has been reached, go to step 21.

8. If next character is an apostrophe, go to step 22.

9. Evaluate a subfield as an argument. (If it is a literal, get literal address.)

10. Increase argument count and location counter~

11. Store argument in save table for later use.

12. If break character is not a comma, go to step 16.

13. If next character is not a blank, go to step 17.

14. If next card is not ETC, go to step 7.

15. List card and return to Pass 2 control sequence.

@~c(ID@@ ~~000~~ ---------G-MAP
-16-

16. If break character is not a right parenthesis, go to step 20.

17. Store argument count as beginning of error return count.

18. If next character is not a blank, go to step 20.

19. If next character is ETC, go to 15; otherwise, go to step 21.

20. If apostrophe, go to 22; otherwise, go to step 7.

21. Pick up alter number for E.I. and go to step 23.

22. Evaluate E.I.

23. Pick up current location for TRA address.

24. Reset location counter to the address of the TSXl plus 1.

25. Publish TRA.

26. Assembly and publish error linkage word.

27. Retrieve and publish arguments in the order in which they were saved.

28. Retrieve and publish error returns in the reverse order.

29. Return to Pass 2 control sequence.

CRSM

Pass 1

The created symbol flag is set according to the variable field.

Pass 2

No processing required.

DCARD

Pass 1

The number of cards to be punched in BCD is obtained from the first field and passed on
to Pass 2 along with that number of cards following the DCARD pseudo-operation.

@~a(ID@@ ~~[ffi~~~ ---------G-MAP
I

-17-

Pass 2

The cards following the DCARD are punched in BCD. Column 1 of the punched cards is
set to the character specified by the second field on the DCARD.

DEC

Pass 1

The location symbol is defined. The subfields are counted, and the location counter
increased by that number.

Pass 2

The location symbol is checked for phase error. The subfields are converted, and the
location counter increased by one for each subfield.

DELM

Pass 1

The location symbol is defined. The symbol is assembled from the variable field and
looked up in operation table. It must be a macro name. Control word is disabled so that
if macro is called again, an illegal operation code results. Prototype is located and
deleted from memory. If any are above it, they are pushed down.

Pass 2

Location symbol is checked for phase error.

DETAIL

Pass 1

No processing required.

Pass 2

The DETAIL flag is set according to the variable field.

DUP

Pass 1

The location symbol is defined. The number of cards to be duplicated and the number of
times they are to be duplicat~d are obtained, and these controls are set in the Pass 1
control sequence.

GMAP

-18-

Pass 2

The location symbol is checked for phase error.

EDITP

Pass 1

No processing required.

Pass 2

Set Special Edit Mode Print flag according to the variable field.

EIGHT

Pass 1

If the location counter is not a multiple of 8, it is increased to such. The location symbol
is defined. The current USE or BLOCK tables are set to reflect that the counter must
also begin modulo 8.

Pass 2

If the counter is not a multiple of 8, a TRA *+n is generated. The location symbol is
. checked for phase error.

EJECT

Pass 1

No processing required.

Pass 2

The control is set to list the next line at the top of the next page.

END

Pass 1

Define location symbol. Store current USE or BLOCK data. Ignoring any USE that had
a BEGIN, set the initial location of each to the sum of the lengths of all the USE' s appearing
before it in the USE table. Set the initial locations of the USE' s having BEGIN' s to their
appropriate addresses. Retain the largest location used as the program break. If an ERLK
pseudo-operation has not occurred, define the symbol .E.L .. at the program break and

-19-

0

increase the program break by 2. Sort the symbol table. Sweep through the symbol table,
redefining symbols (as required) from the data in the USE tables and flagging multidefined
symbols. Compute word 3 for preface cards, if not in the ABS mode. Increase the program
break by the number of remaining literals. Set the literal pool origins in the LIT tables
for any LIT pseudo-operation that occurred. Close and rewind the input and the inter­
mediate files. Call in Pass 2.

Pass 2

Assemble error linkage, if ERLK has not occurred. List and punch any remaining literals.
If in the ABS mode, punch transfer card. Left-adjust the symbols in the symbol table and
pad with blanks. Sort the symbol table again, list the symbolic reference table, list the
undefined symbols, close out the 1/0, and return to the monitor.

ENDM

Pass 1

See MACRO.

Pass 2

No processing required.

EQU

Pass 1

Evaluate variable field and define the location symbol as that value.

Pass 2

Scan variable field for symbolic references.

ERLK

Pass 1

Define . E. L. . at this location. Increase counter by 2.

Pass 2

Check location counter for phase error. Assemble error linkage cells at next two locations.

-20-

EVEN

Pass 1

If the location counter is odd, it is bumped by 1. The location symbol is defined. The
"must begin even" bit is set in the USE table for the current use.

Pass 2

If the location counter is odd, an NOP is generated. The location symbol is checked for
phase error.

FEQU

Pass 1

Assemble symbol from variable field. Look up in symbol table. If defined, treat this as
normal EQU. If not, enter symbol in table with "as yet undefined" bit set. Value for table
is pointer. to next entry in table. Location symbol is entered in symbol table next. It has
a value of 0 and the "as yet undefined" bit set. Counter of the number of undefined symbols
in symbol table is increased by 2.

Pass 2

Check that location symbol is defined. Check for phase error. Check variable field for
undefined symbols and references.

FUL

Pass 1

No processing required.

Pass 2

Punch any incomplete cards. Set FUL mode flag. Set card punching controls for FUL
punching.

HEAD

Pass 1

Set up to 10 single-character subfields in the head table.

Pass 2

Set first character of the variable field as the current head character. Move head char­
acter{s) to subtitle image for display.

@~c®@® ~~[ffi~~~ ---------G-MAP
-21-

I

IDRP

Pass 1

If this is the first of the pair of IDRP' s:

1. The current position in the prototype is saved,and the IDRP operative flag is
set.

2. A tally word is set up to get the first subargument of the argument string
corresponding to the argument number which controls the IDRP.

If this is the second IDRP of the pair:

1. If this was the last time through the range, the IDRP flag is reset and the
macro expansion continues normally.

2. If this is not the last time, the position in the prototype is reset to the saved
position and the subargument tally is set to the next subargument.

Pass 2

No processing required.

IFE, IFG, IFL, INE

Pass 1

The test switch is set for the appropriate conditional. The first two subfields are evaluated
and compared. The number of cards following the conditional (specified by the third
subfield) were skipped if the test fails. The ON5 option is tested. If it is present, enable
skipped cards of main sequence to be printed by inserting an asterisk(*) in col. 84.

Pass 2

If the variable field contains no apostrophes, it is scanned for symbolic references. The
alter number is adjusted if the following cards were not generated.

INHIB

Pass 1

No processing required.

Pass 2

Set INHIB flag according to the variable field.

@~ c(ID@@ ~~lffiO ~~ _________ a_MAP

-22-

LBL

If this is in the first card group, set label from the variable field.

Pass 2

Ignore if the first card group; otherwise, punch any incomplete card and set card punching
controls to new card with label from the variable field.

LIST

Pass 1

No processing required.

Pass 2

If not in NLSTOU mode, set LIST flag according to. the variable field.

LIT

Pass 1

If any double-precision literals have occurred, set the current USE to 11 must begin even. 11

Set flag to write literals on the intermediate file following the LIT pseudo-operation.
Set the current location, the current USE:, and the literal counts in the LIT tables and reset
controls to begin a new literal pool. Increase the location counter by the length of the
pool.

Pass 2

Read in the literal pool. Punch and list it, increasing the location counter by 1 for each
word assembled. Reset the literal controls from the next values in the LIT tables. Increase
the location counter by the number of abnormal (=V, M, nH) literals which have been
previously assembled.

LOC

Pass 1

Same as ORG.

Pass 2

Same as ORG except that the load address of the binary card is not changed.

@j~c(ID@@ ~~00~~~ ---------G-MAP

-23-

LOOM

Pass 1

Assemble symbol from variable field and call Load System Macros subroutine.

Pass 2

No processing required.

MACRO

Pass 1

1. A two-word entry is made in the operation table.

Word 1:

Word 2:

The location symbol, left-adjusted and filled with blanks.

0-17 Address of the macro call processor~

18 0

19-35 Relative location in the macro prototype table of the first
word of the macro definition.

If word 1 was already in the operation table, it is flagged as multidefined and
the second word is stored over the original word 2.

2. The macro prototype switch is set in the Pass 1 control sequence to transfer
to the routine which stores the prototype.

I

3. The cards following the MACRO pseudo-operation are packed into the proto-
type until an ENDM pseudo-operation is encountered. Control characters
(6 bits) are included in the packing to control the expansion. They are:

00 End of record (00 00 indicates end of macro)

01 Operation field follows

02 Variable field follows

03 Argument number follows

04 String of characters follows

05 Next card is a generated ETC

Types 01, 02, and 04 are followed by a character (6 bits) giving the number
of characters that follow.

Type 03 is followed by one character giving the argument number.

@~c(ID(Q)@ ~~ffiiO~~---------GMA_P
-24-

In general, packing ends with the first blank in the variable field.

Exceptions are:

a. REM--The entire card is packed.

b. TTL, TTLS, BCI, or the occurrence of a literal--The entire
variable field is packed.

c. A left parenthesis is packed--Everything is packed until a closing
right parenthesis is packed.

d. ENDM--A second 00 control character is packed, indicating the
end of the macro prototype.

Example:

L LDA B,#2 would be packed -

p 040143010420 (note packing of column 7)

P+l 432421020222

P+2 73030200XX--

The next card would be packed, starting at XX. It should be noted that the
operation field is considered to start in column 7 in order that even/ odd
indications may be carried.

4. When the ENDM pseudo-operation is encountered, the largest argument
number detected is stored in the first word of the prototype. (The actual
prototype that will be expanded begins in the second word.) The macro
prototype switch in the Pass 1 control sequence is reset for normal processing
and control is returned to it.

o Macro Call

1. When a macro call is made, the macro call processor sets up a table of
arguments from the macro call card and any ETC cards that follow.

2. The arguments are stored as a sequence of characters, each argument
beginning in a new word.

3. Commas normally delimit arguments. The exceptions are:

a. When a left parenthesis is encountered, it is not stored, but every
character up to {but not including) the closing right parenthesis
is stored as one argument.

b. If an argument is enclosed in brackets, everything is stored as
one argument except the brackets and any enclosed blanks.

4. Created symbols are produced in two ways:

a. If the number of arguments provided on the macro call is
less than that required by the prototype, the remaining arguments
each become a created symbol.

@~a®@@ ~~rmm~~ _________ G_MAP

-25-

b. If the symbol# appears as an argument, a symbol is created for
that argument.

5. A list of argument control words is appended to the end of the argument
table. The control words are of the form:

0-17. Address of the argument's first word

18 0 normal argument

1 created symbol

19-23 Not used

24-35 Number of characters in the argument sequence

Example:

Assume the macro ABC required three arguments and was called as follows:

L2 ABC (ADLA PUT,6),10

The argument table and control list would be:

L 212443212047

L+l 646373060000

L+2 010000000000

L+3 330000013300

L+4 L)000012

L+5 (L+2)000002

L+6 (L+3)400005

6. The macro expansion switch in the Pass 1 control sequence is set to send
control to the macro expansion routine instead of getting input records
from the input file.

7. If the macro call had .been generated by another macro, the latter's control
words would have been saved in a table until completion of the expansion
of the presently called macro.

e Macro Expansion

1. The card image is set to blanks.

2. Characters are set into the card image according to the controls from the
prototype as follows:

00 (End of record.) The card is complete and control is
returned to the Pass 1 control sequence to process the
generated card.

-26-

Pass 2

01 (Operation field starts.) The tally word for storing
characters is set to start storing in column 7.

02 (Variable field starts.) The tally word is set to column
16.

03 (Argument number follows.) The tally word for picking up
characters is set to the correct argument. If this
argument is under control of IDRP, the tally is set for
the current subargument number.

04 (Characters follow.) The next n characters from the
prototype are stored in sequence in the card image.

05 (Programmer ETC flag.) The ETC mode flag is set.

3. When the end of the prototype is reached, the level of the macro is
checked to see if it is a nested macro call. If it is, the controls for the
previous macro are restored and macro expansion continues. If not,
the macro expansion switch in the Pass 1 control sequence is reset for
normal processing and control returned thereto.

No processing required.

MAX, MIN

Pass 1

The location symbol is defined as the value of the appropriate subfield of the variable field.

Pass 2

The variable field is scanned for symbolic references.

MAXSZ

Pass 1

No processing required.

Pass 2

The variable field is evaluated, and the result saved for printing at the end of the listing.

@~a®@® ~~rma~~ _________ G_MAP

-27-

NONOP

Pass 1

Defined as an undefined machine instruction.

Pass 2

No processing required.

NULL

Pass 1

The location symbol is defined as this location.

Pass 2

The location symbol is checked for phase error.

OCT

Pass 1

The location symbol is defined and the location counter increased by the number of subfields.

Pass 2

The location symbol is checked for phase error. Each subfield is assembled as one octal
word.

ODD

Pass 1

lithe location counter is even, it is bumped by 1. The location symbol is defined. The
"must begin even" bit is set in the USE tables for the current use.

Pass 2

If the location counter is even, an NOP is generated.

@j~a@@@ ~(E[ffi0~~ ---------G-MAP
-28-

OPD

Pass 1

The location symbol is entered into the operation table as a machine operation with its
definition. The 36-bit definition is formed from the variable field (assumed to be in
VFD format) with the machine instruction flag bit ORed into it. If the operation code is
already in the table, only the new definition is entered.

Pass 2

The variable field is scanned for symbolic references.

OPSYN

Pass 1

Same as OPD except that the definition comes from looking up the symbol from the
variable field in the operation table.

Pass 2

No processing required.

ORG

Pass 1

The variable field is evaluated. If the variable is defined under a different USE or BLOCK
than the one currently in effect, the current USE or BLOCK data are stored and the data
for the USE or BLOCK of the variable field are brought into effect (just as if a USE or
BLOCK pseudo-operation had occurred). The location counter is set to the value of the
variable field and the location symbol is defined. The value of the location counter and
its respective USE or BLOCK numbers are saved for Pass 2.

Pass 2

The variable field is scanned for symbolic references. If the USE or BLOCK of the ORG
is different from the current USE or BLOCK, the current USE or BLOCK data are stored
and the new USE or BLOCK data are brought into effect. The location counter and card
punching controls are reset to reflect the variable field value. The location symbol is
checked for phase error.

ORGCSM

Pass 1

The numeric portion of the cr_eated symbols is reset to the value of the variable field.

-29-

Pass 2

The variable field is scanned for symbolic references.

PCC, PMC

Pass 1

No processing required.

Pass 2

The respective switch is set according to the variable field.

PUNCH

Pass 1

No processing required.

Pass 2

The new setting for the punch switch is determined and compared with its current state.
The current status of the PUNCH flag is examined. If the two are the same, no further
processing is required. If the new state is ON, the card punch controls are reinitialized;
if OFF, the current card is wrapped up and moved to the output buffer; the PUNCH flag is
reset to its new state.

PUNM

Pass 1

The length of the prototype area is determined and saved. The operation table is searched
foi:..!!!3macs~ Their names and definitions are saved in the next available prototype
storage. Tlfecount of the number of macros is saved. A flag is set for the punching of
these prototypes along with their definitions at the beginning of Pass 2.

Pass 2

No processing required.

REF

No processing required.

@~a(ID@@ ~~[ffi~~~ ---------G-MAP
-30-

Pass 2

The reference list flag is set according to the variable field.

REM

Pass 1

No processing required.

Pass 2

The operation code is reset to blanks for listing.

RETURN

Pass 1

The location symbol is defined. The number of locations required for the RETURN is
computed and added to the location counter.

Pass 2

The location is checked for phase error. The RETURN sequence is assembled,
increasing the location counter one for each word assembled.

SAVE

Pass 1

The location symbol is defined and also entered in the SYMDEF table. The number of
locations required for the SA VE is computed and added to. the location counter.

Pass 2

The location symbol is checked for phase error. The SA VE sequence is assembled,
increasing the location counter by 1 for each word assembled.

SET

Pass 1

The location symbol is looked up in the symbol table. If it is not there, it is defined as
the value of the variable field. If it is there, it is redefined.

@J~c®@® ~~ooa~~ _________ G_MAP

-31-

Pass 2

The value of the location symbol is reset to the value of the variable field.

SYMDEF

Pass 1

The symbols in the variable field are entered in the SYMDEF table with their primary
or secondary flags.

Pass 2

The variable field is scanned for symbolic references.

SYMREF

Pass 1

If the symbols in the variable field have not been entered in the SYMDEF table and are
nonnumeric, they are defined as SYMREF' s.

Pass 2

The variable field is scanned for symbolic references.

TALLY, TALLYB,TALLYC, TALLYD

Pass 1

Processed the same as a machine operation, except that the address error flag is set
if an abnormal literal is given as the first subfield.

Pass 2

For all four pseudo-operations, the first two subfields are evaluated in the same manner.
The first subfield may be an expression or a simple literal and is assembled into bits
0-17 of the machine word. The second subfield may also be an expression. It is assem­
bled into bits 18-29 of the machine word. The third subfield will be assembled into bits
30-35 and is examined differently for each of the pseudo-operations.

1. TALLYC--Third subfield is assembled as a normal modifier.

2. TALLYD--Third subfield may be any expression.

3. TALLY--Third subfield may be an expression with the value 0 ::;.x ~ 5.

4. TALLYB--Third subfield may be an expression with the value 0 ~x !5..3.
Bit 30 is set to 1.

@~a@@@ ~(E[ffi0(E~ ---------G-MAP
-32-

TCD

Pass 1

No processing required.

Pass 2

Any incomplete binary card is punched. If in a relocatable assembly, nothing else is done;
otherwise, the FUL mode flag is reset to normal absolute, and the variable field is evaluated
and used as the address on the transfer card which is punched.

TTL

Pass 1

If it appears in the first card group and no other TTL' s have occurred, it is retained as
the initial page header. The next card is checked, and a flag passed on to Pass 2 if it is
a TTLS pseudo-operation.

Pass 2

If it is in the first card group and the first TTL, no processing is required; otherwise,
it becomes the new page header. The flag from Pass 1 is checked, and the list control is
set to list the next line at the top of the page if the TTL is not followed by a TTLS.

TTLS

Pass 1

If it appears in the first card group and no other TTLS' s have occurred, it is retained as
the initial page subheader; otherwise, no processing is required.

Pass 2

If it is in the first card group and the first TTLS, no processing is required; otherwise,
it becomes the new page subheader and the list control is set to list the next line at the
top of the page.

USE

The symbol in the variable field is checked for PREVIOUS. If it is not PREVIOUS, it is
looked up in the USE table. If it is not in the table, it is entered and its controls initialized
(set to zero). The current USE or BLOCK data are stored. The new USE controls are
brought into effect (if this was USE PREVIOUS, the previous USE controls are used).

@J~o(ID@@ $)~lffill~$3 ---------G-MAP
-33-

Pass 2

The current USE or BLOCK data are stored. The new USE data are brought into effect.
The card punching controls are reset. If this is the first occurrence of this USE, the lo­
cation counter is odd, and if this USE must begin even, an NOP is assembled. Similarly,
if the counter must begin modulo 8, a TRA *+n is generated and the counter set to that
value.

VFD

Pass 1

The location symbol is defined. The total of the count fields on the VFD and any ETC' s is
computed, and the number of words required is added to the location counter.

Pass 2

The location symbol is checked for phase error. The subfields of the VFD are packed
into succeeding words, the location counter being increased by 1 for each word assembled.

ZERO

Pass 1

Processed the same as a machine instruction, except that the address error flag is set
if a literal is given as the first subfield.

Pass 2

The location symbol is checked for phase error. The two subfields are assembled as
if they were 18-bit addresses.

@(go@®® ~~(ffi~~~ ---------G-MAP
-34-

5. LITERALS

LITERAL EVALUATED IN PASS 1 AND ENTERED
IN THE LITERAL POOL

(Decimal, octal, and Hollerith of less than 13 characters.)

Pass 1

1. The literal is converted to binary, then:

a. If it is followed by a DL or DU modifier, the converted literal is passed
on to Pass 2.

b. If it is not followed by a DL or DU modifier, it is entered in the literal
pool a~d the relative address in the pool is passed on to Pass 2.

2. Control bits are passed on to Pass 2, giving the type of literal and, in the case
of Hollerith literals, the character count also is passed along.

Pass 2

1. The control bits from Pass 1 are interpreted and:

a. If the literal is followed by a DL or DU modifier, the literal itself is
used as the address of the instruction.

b. If the literal is not followed by a DL or DU modifier, the address is
computed from the relative location in the pool and the pool's assembled
address. The literal portion of the variable is skipped and the modifier
evaluated.

Note: In each of the above cases a full 36-bit literal is formed. If DU or DL is indicated,
however, only 18 bits are carried. For Decimal and Octal this will be the low­
order 18 bits of the 36-bit literal, whereas for floating point and Hollerith it will
be the high-order 18 bits. Hollerith literals will be blank filled to the right.

GMAP

...;35-

OTHER LITERALS

(=V, =M, and =nH where n > 12)

Pass 1

1. The control bits for type are set.

2. The number of words required for the literal are computed.

3. The relative address in a phantom pool is passed on to Pass 2.

4. In the case of the machine instruction literal, the operation code is looked up
in Pass 1, and word 2 of the operation table entry is passed on.

Pass 2

1.

2.

3.

Note:

The phantom pool is given an origin immediately after the normal literal pool.

The address of the literal,then, is relative to that origin.

The literal itself is assembled immediately after the instruction using it. It
therefore appears directly in line in the listing, but with the correct address
of where the literal would have been if it had been in the normal literal pool.

There is no actual pooling of literals of this type. That is, a given literal
(for example 13H ...) will appear as many times in the phantom pool as it is
referenced.

GMAP

-36-

6. MAJOR SUBROUTINES

FUNCTION OF ROUTINES COMMON TO BOTH PASSES

Evaluate an Expression

o Calling Sequence is:

L TSXl SCAN

L+l Null expression

L+2 Normal return

o Remarks. This function evaluates one expression of the variable field and sets
error flags.

To evaluate the expression, SCAN:

1. Set the initial values of the term and expression to zero.

2. Return control, if the field is blank.

3. Set the previous operation to+.

4. Reset the first character and Boolean complement flags; pick up current head
character and go to 6.

5. Pick up a new head character if.a$ was encountered.

6. store as head character to be used for this element.

7. Set the initial values of the element to zero and go to 9.

8. Set Boolean complement flag.

9. Assemble the next element and transfer to the routine which is designated by
the operator following the element. If there is no operator, the "end of ex­
pression" flag is set and control is transferred to evaluate the element just
assembled. The first two instructions of each routine for the operators are a
TSX:l to evaluate the element and a TRA to the corresponding routine for Boolean
evaluations. The routine that evaluates the element always returns to the
previous operator and sets the operator just encountered as the previous oper­
ator. After processing, each operator routine transfers to 10.

@j~c(ID@@ ~~(ffi~~~ ---------G-MAP
-37-

The operator routines

a. (+ and -) The term is combined with the expression and the element
(complement for -) is set as the initial value of the next term.

b. (*and/) The element and the term are combined if they form an allow­
able combination.

c. (+, -, *,and/ in the Boolean) The Boolean counterparts of the operations
are performed in like manner.

10. A test is made for the end of the e}...'}Jression and control is tr an sf erred to 4,
if it is not the end.

11. The last term is combined with the expression.

12. The final number of relocatable units is checked for validity to determine if the
expression was one of the allowable combinations of elements and terms.

13. Control is returned to the controlling routine with the value of the expression
in the A-register. If there were any errors encountered in the SCAN,a flag
(EXPRR) is set and a value of 0 is returned.

To evaluate an element:

1. If the element is symbolic, the head character is appended and the value of the
symbol retrieved from the symbol table.

2. If the element is numeric, it is converted from decimal to binary or, if in the
Boolean mode, from octal to binary.

3. If the element is *, it is assumed to be the current value of the location counter.

4. The control words (type, value, etc.) are set according to their evaluation.

Rules for determining the legality of the relocatability of an expression are given in the
GMAP section of GE-625/635 Programming Reference Manual (CPB-1004).

Evaluate a VFD Expression

o Calling Sequence is:

L TSXl CVFD

L+l Normal return

o Remarks. This function evaluates one VFD-type expression and leaves the result
left-adjusted in the Q-register. Expressions are evaluated in the same manner for
VFD as for normal expressions except that all operators are Boolean.

-38-

Decimal to Binary (Integer)

o Calling Sequence is:

L TSXl CTDEC

L+l Normal return

o Remarks. This function converts the BCD element in SYMB2 and SYMB to binary
and returns the result in the Q-register.

Octal to Binary

o Calling Sequence is:

L TSXl CT OCT

L+l Normal return

o Remarks. This function converts the BCD element in SYMB2 and SYMB to binary
and returns the result in the Q-register.

General Decimal to Binary

o Calling Sequence is:

L TSXl DTB

L+l Normal return.

o Remarks. This function converts.one field of the variable field from decimal to
binary according to the DEC pseudo...:operation specifications. Result in the
AQ-register.

General Octal to Binary

o Calling Sequence is:

L TSXl OCT CV

L+l Normal return

o Remarks. This function converts one field of the variable field to binary according
to the OCT pseudo-operation specification. Result is in the Q-register.

@~a(ID@@ ~~000~~ ---------GMA_P
-39-

Assemble an Element

• Calling Sequence is:

L TSX4 ASYM

L+l Null field

L+2 Normal return

• Remarks. This function assembles an element (right-adjusted) in SYMB2 and SYMB
until a break character is encountered. Leading characters are zeros.

Get Next Character

• Calling Sequence is:

L TSXl C0190

L+l Normal return

• Remarks. This function returns the next character to be processed in the low 6 bits
of the A-register.

Store USE Data

• Calling Sequence is:

L TSXO ST USE

L+l Normal return

• Remarks. This function stores the current USE or BLOCK data in their respective
tables.

Set USE Data

• Calling Sequence is:

L TSXO SETUS

L+l Normal return

• Remarks. This function retrieves the new data for the USE or BLOCK being called
from the USE or BLOCK tables.

@~a®@® ~~[ffi~~~---------GMA_P

-40-

Operation Table Search

o Calling Sequence is:

L TSX4 OPCD

L+l Undefined operation

L+2 Normal return

o Remarks. This function looks up in the operation table the symbol contained in the
A-register and returns the second word of the entry in the Q-register.

Sort Symbol Table

o Calling Sequence is:

L TSXl SORT

L+l Normal return

o Remarks. This function sorts the symbol table.

Card Initialization

o Calling Sequence is:

L TSXl INI

L+l Asterisk in Column 1 or 84 (FORTRAN comment)

L+2 Normal return

o Remarks. This function initializes card SCAN parameters. It assembles the location
symbol; sets C0190 so that the next character to be picked up is the first one of the
variable field; forms the BCD operation code; and sets the odd or even flag as
indicated by column 7.

Evaluate Switch Alteration for On/Off Type Pseudo-Operations

o Calling Sequence is:

L-1 LDA SWITCH

L TSX2 ON OFF

L+l Normal return with updated switch status in A-register.

@~a(ID@@ $)~000~$)---------G-MAP
-41-

o Remarks. All of the following pseudo-operations may have their status saved and/or
turned on, off, inverted or restored to the prior state. The current status may be
pushed down to 35 levels deep. The function of this routine is to adjust the status
of a switch based on the variable field of the pseudo-operation involved. Those
which call this subroutine are:

Pass 1 CRSM

Pass 2 DETAIL, LIST, PCC, REF, PMC, INHIB, PUNCH, EDITP

FUNCTIONS OF PASS 1 ROUTINES

Pass 1 Symbol Table Search

o Calling Sequence is:

L TSXl SYMBT

L+l Normal return

o Remarks. This function makes a linear search of the symbol for the value of the
symbol in SYMB and returns value in the A-register. If the symbol is undefined, a
value of zero is returned and the expression error flag (EXPRR) is set.

Define a Symbol

• Calling Sequence is:

L TSXl DSYM

L+l Normal return

o Remarks. This function enters the symbol in LSYMB into the symbol table, along
with its definition from ADDRS. If the symbol is already in the symbol table as an
"as yet undefined" symbol, it is given its proper definition, and the symbol to which
it points is given the same definition.

Define Operation

e Calling Sequence is:

L TSXl ENT OP

L+l Normal return

o Remarks. This function enters the symbol in LSYMB into the operation table, along
with its definition from LVAL. If the symbol is already in, the definition is changed
to that of LVAL and the multiple-defined flag is set.

@~a@@@ ~~[ffiU~~ _________ a_MAP

-42-

Load Macro Prototypes

o Calling Sequence is:

L TSXl LMAC

L+l Normal return

o Remarks. This function issues a MME GECALL for the system macros named in
LSYMB. It is called at the beginning of Pass 1 to load the GMAP systems macros,
and it may be called by the LODM pseudo-operation to append the macro prototype
tables with another set of macros. Using the control word loaded as the first word
from the system file, it locates the macro definitions (also loaded) and enters them
into the operation table. They are, of course, redefined so that the prototype pointers
are adjusted relative to the load origin, and the address of the Macro Call processor
is set.

FUNCTIONS OF PASS 2 ROUTINES

Symbol Table Search

o Calling Sequence is:

L TSXl SYMBT

L+l Normal return

o Remarks. This function retrieves definition of the symbol in SYMB from the symbol
table and makes appropriate entries in the symbolic reference table. It does a
binary lookup in the now-sorted symbol table.

Pseudo-Variable Field Scan

o Calling Sequence is:

L TSXl DSC AN

L+l Normal return

o Remarks. This function scans one field of the variable field of pseudo-operations
whose variable field was processed in Pass 1 to make symbolic reference table
entries.

@~c®@® ~~000~~ _________ GMA_P

-43-

Bi nary Card Entry

o Calling Sequence is:

L TSXl STAQ

L+l Normal return

• Remarks. This function enters the A- and Q-register contents into the current binary
card image. If the card becomes full, it starts a new card.

Punch Binary Card

• Calling Sequence is:

L TSXl BUNCH

L+l Normal return

• Remarks. This function computes the checksum and punches the current binary card.

Initialize Binary Card

• Calling Sequence is:

L TSXl INCRD

L+l Normal return

o Remarks. This function clears the card image and resets· storing of binary words to
the beginning of the card.

Set Binary Word Storing Controls

e Calling Sequence is:

L TSXl SETWC

L+l Normal return

e Remarks. This function enters the address and word count for the previous binary
words and sets up for the next words to be stored. Accomplishes multiple origining
of binary instruction cards.

@~a@@@ ~~lffiO~~ _________ a_MAP

-44-

Enter Binary Word Into Card Image

o Calling Sequence is:

L TS:Xl BIN RY

L+l Normal return

o Remarks. This function enters BWORD into the binary card image; if NWORD is
nonzero, it is also entered. If the card becomes full, appropriate routines are
called to punch it and set controls for the next binary card.

Punch Macro Prototype Table

o Calling Sequence is:

L TSXl PMAC

L+l Normal return

o Remarks. This function punches the macro prototype table on relocatable binary
cards. The size of the prototype area to be punched and the number of macros
defined there was determined in Pass 1 by the PUNM pseduo-operation. This deck
will be given unique $ OBJECT and $ DKEND cards, and will require the addition
of editing control cards only, for editing.

Print a Line

o Calling Sequence is:

L TSXl WROUT

L+l Normal return

o Remarks. This function checks listing control flags and prints one line as required.

List Machine Instruction

o Calling Sequence is:

L TSXl MOUT

L+l Normal return

o Remarks. This function sets up a line to be listed in the format for the machine
operation specified by its list control flags in the operation table.

@~a®@® ~~000~~ _________ GMA_P

-45-

Evaluate Tag Field

• Calling Sequence is:

L TSXl TAG

L+l Normal return

Remarks. This function evaluates the tag field of an instruction and places it in
the proper position in BWORD.

Evaluate Address Field

e Calling Sequence is:

L TSXl EVALA

L+l Normal return

o Remarks. This function evaluates the address field of an instruction and places it in
the proper position in BWORD. It determines the relocation and sets NWORD if a
second word is required to handle the relocation. ·

Set Relocation Bits

o Calling Sequence is:

L TSXl ST REL

L+l Normal return

o Remarks. Based on the result of evaluating an expression, a relocation bit will be
defined as absolute or relocatable relative to the program origin, blank COMMON,
LABELED COMMON or some SYMREF. The function of this routine is to translate
the established type of relocation, for each half-word of BWORD into the 5-bit code
for the card and shift these in. Relocation bits are not carried for NWORD as it, by
definition, contains absolute adders.

Checks for Phase Error

o Calling Sequence is:

L TSXl CHEK

L+l Normal return

o Remarks. If a location symbol exists, its definition from the symbol table is checked
against the current value of the location counter to ensure that they are the same.

@~c®@® ~~ooa~~ _________ G_MAP

-46-

APPENDIX

PSEUDO-OPERATIONS BY FUNCTIONAL CLASS

PSEUDO-OPERATION
MNEMONIC

CONTROL PSEUDO-OPERATIONS

DETAIL
EJECT
LIST
REM
LBL
PCC
REF
PMC
TTL
TTLS
INHIB
ABS
FUL
TCD
PUNCH
DC ARD
END
HEAD
OPD
OP SYN

FUNCTION

(Detail output listing)
(Restore output listing)
(Control output listing)
(Remarks)
(Label)
(Print control cards)
(References)
(Print MACRO expansion)
(Title)
(Subtitle)
(Inhibit interrupts)
(Output absolute text)
(Output full binary text)
(Punch transfer card)
(Control card output)
(Punch BCD card)
(End of Assembly)
(Heading)
(Operation definition)
(Operation synonym)

LOCATION COUNTER PSEUDO-OPERATIONS

USE
BEGIN
ORG
LOC

(Use multiple location counters)
(Origin of a location counter)
(Origin set by programmer)
(Location of output text)

SYMBOL DEFINING PSEUDO-OPERATIONS

EQU
FEQU
BOOL
SET

(Equal to)
(Equal to symbol as yet undefined)
(Boolean)
(Symbol redefinition)

PAGE
NUMBER

18
19
23
31
23
30
30
30
33
33
22
13
21
33
30
17
19
21
29
29

33
14
29
23

20
21
15
31

@~al@@@ ~~rma~~ _________ G_MAP

-47-

PSEUDO-OPERATION
MNEMONIC

MIN
MAX
SYMDEF
SYMREF
NULL
EVEN

ODD

EIGHT

FUNCTION

(Minimum)
(Maximum)
(Symbol definition)
(Symbol reference)
(Symbol EQU *)
(Force Counter even before defining
symbol)

(Force Counter odd before defining
symbol)

(Force Counter to multiple of 8
before defining symbol)

DATA GENERATING PSEUDO-OPERATIONS

OCT
DEC
BCI
VFD
DUP

(Octal)
(Decimal)
(Binary Coded Decimal Information)
(Variable field definition)
(Duplicate cards)

STORAGE ALLOCATION PSEUDO-OPERATIONS

BSS
BFS
BLOCK
LIT

CONDITIONAL PSEUDO-OPERATIONS

INE
IFE
IFL
IFG

SPECIAL WORD FORMATS

NO NOP
MAXSZ
ZERO

(Block started by symbol)
(Block followed by symbol)
(Block common)
(Literal Pool Origin)

(If not equal)
(If equal)
(If less than)
(If greater than)

(Undefined operation)
(Maximum size of assembly)
(Generate one word with two
specified 18-bit fields)

PAGE
NUMBER

27
27
32
32
28
21

28

19

28
18
14
34
18

14
14
15
23

22
22
22
22

28
27
34

@~a®@® ~~oom~~ _________ G_MAP

-48-

PSEUDO-OPERATION
MNEMONIC FUNCTION

ADDRESS TALLY PSEUDO-OPERATIONS

TALLY

TALL YB
TALL YD
TALLYC

MACRO PSEUDO-OPERATIONS

MACRO
ENDM
CRSM
IDRP
ORGCSM
PUNM
LODM
DELM

(Tally--ID, DI, SC, and CI
variations)

(Tally--S9 and CI, 9 bit bytes)
(Tally and Delta)
(Tally and Continue)

(Begin MACRO prototype)
(End MACRO prototype)
(Create symbols)
(Indefinite repeat)
(Origin Created Symbols)
(Punch MACRO prototype)
(Load MACRO prototype)
(Delete a MACRO)

PROGRAM LINKAGE PSEUDO-OPERATIONS

CALL
SAVE
RETURN
ERLK

(Call external subroutine)
(Enter subroutine)
(Return to calling routine)
(Error linkage)

. -49-

PAGE
NUMBER

32

32
32
32

24
20
17
22
29
30
24
18

15
31
31
20

I
1 ·

I
I
I
I
I
I
I
I
I
I

Q)

I c:

CJ) I .r:.

O> I c:
0
(ij I
::::J

I u

Q)
CJ)

I ro
Q)

a:
I
I
I
I
I
I
I

DOCUMENT REVIEW SHEET

TITLE: GE-625/635 GMAP Implementation

CPB #: __ 1_0.-.7 8;;...B __

FROM:

Name:

Position:

Address:

Connnents concerning this publication are solicited for use in
improving future editions. Please provide any recommended
additions, deletions, corrections, or other information you
deem necessary for improving this manual. The following
space is provided for your comments.

NO POSTAGE NECESSARY IF MAILED IN U.S.A.
Fold on two lines shown on reverse

side, staple, and mail.

FOLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

GENERAL ELECTRIC COMPANY
COMPUTER EQUIPMENT DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY

PHOENIX, ARIZONA - 85029

ATTENTION: ENGINEERING PU BL I CATIONS STANDARDS 8•90

FOLD

FIRST CLASS

PERMIT, No. 4332

PHOENIX, ARIZONA

\

ltogress Is Ovr Mosf lmporl11nf 'Protlvcf

GENERAL. ELECTRIC
INFORMATION SYSTEMS DIVISION

LITHO U.S.A.

