
THE COMPATIBLES/600

GIFT
General Internal

~YSTEM
~UPPORT
~ NFORMATION

FORTRAN

ABSTRACT

This document describes the Compatibles/600 General
Internal FORTRAN Translator (GIFT). Part I discusses
the differences between FORTRAN II and the GIFT trans­
lation to FORTRAN IV, and significant features of GIFT.
Part II discusses requirements for FORTRAN II programs
to be translated and how to use GIFT, including deck
setup and program options.

Translator

GENERAL. ELECT~HC

GIFT
General Internal

FORTRAN Translator

September 1964

GENERALe ELECTRIC
COMPUTER DEPARTMENT

PREFACE

This manual describes the General Internal FORTRAN Translator (GIFT) for use
with the Compatibles/600 computers. This program automatically translates
FORTRAN II source programs into FORTRAN IV language. The level of presen­
tation assumes reader familiarity with FORTRAN.

For additional information concerning FORTRAN IV for the Compatibles/600,
refer to the GE-635 FORTRAN IV Reference Manual, CPB-1006.

GIFT is the General Electric Computer Department version of the SHARE
Internal FORTRAN Translator (SIFT), described in the SHARE Internal FORTRAN
Translator Users Manua~, SHARE Distribution #1367 HS SIFT (PA), prepared by
members of the SHARE FORTRAN Project, September, 1962.

Address any comments or questions about this publication to Technical Writing,
General Electric Computer Department, Drawer 270, Phoenix, Arizona 85001.

f

\

CONTENTS

Page

1. PROGRAM FEATURES

Translations Effected by GIFT. 1
F Card . 1
Function Names . 1
Boolean Statements . 3
Double-Precision and Complex Staten1ents 4
COMMON Statements. 7
Arithmetic Statement Functions 9
DIMENSION Statements . 9
Hollerith Literals . 9
Implicit Multiplication. 10
Variables with Too Few Subscripts 10
DO statement Indexing Parameter 11

Modifications for Format Conforn1ity 12
READ/WRITE Statements. 12
Statements Concerning Internal Switches. 12
FORMAT Generator .. 13
RIT and WOT . 13
Characters in Column 1 . 14
FAP Programs 14
$ DATA Card. 14

2. PROGRAM REQUffiEMENTS AND USAGE

Requirements. 15
Characteristics of Subprograms to be Translated 15
Table Sizes . 16
Chain Jobs. 16
Double-Precision and Complex EQUIVALENCE Variables . . 17
Double-Precision and Complex COMMON Variables 18
Continuation Cards . 18

Usage '. 18
Deck Setup 18
Programmer Option Cards . 19

iii

(

•

1. PROGRAM FEATURES

The General Internal FORTRAN Translator (GIFT) automatically translates a
FORTRAN II source program into a FORTRAN IV source program. It eliminates
certain incompatibilities between the two languages and modifies certain
statements to conform with recommended or alternate fornlats. These changes
brought about by the program are discussed in this chapter.

TRANSLATIONS EFFECTED BY GIFT.

F Card

The F card, used to specify function or subroutine names which are arguments
to other functions or subroutines, is replaced by an EXTERNAL Type statement.
For example:

FORTRAN II GIFT Translation

F SIN, COS, FUNC EXTERNAL SIN, COS, FUNC

Function Names

o Elimination of Terminal F. Built-in, library, and arithmetic statement
functions are no longer identified by a terminal F. GIFT therefore removes
the terminal F from every function name. For example:

FORTRAN II GIFT Translation

x = Y + SINF (A) *ADFUNF (Z**2) x = Y + SIN (A) *ADFUN (Z**2)

o Fixed-Point Function Names. Fixed-point function names normally begin
with I, J, K, L, M, or N rather than X. GIFT therefore manufactures
INTEGER and REAL Type statements where appropriate. For example:

FORTRAN II

X = LASTF (Y)

I = XTRAF (1, K)

GIFT -1-

GIFT Translation

\.~REAL .. LAST
X = LAST (Y)

INTEGER XTRA
I = XTRA (1, K)

o ~hanged Function Names. Many of the function names have been changed.
GIFT replaces each of the FORTRAN II names listed below by the
FORTRAN IV equivalent shown.

FORTRAN II GIFT FORTRAN II GIFT
Name Translation Name Translation

XABSF JABS INTF AINT
XINTF INT MODF AMOD
XMODF MOD XMAX1F MAXl
XFIXF IF IX XSIGNF !SIGN
XDIMF IDIM MAXOF AMAXO
MAX1F AMAXl MINOF AMINO
MIN1F AMINl XMIN"OF MINO
XMIN1F MINl XMAXOF MAXO
LOGF ALOG

() 9ther New Function Name~. Many other new function names have been
created. Every tinle GIFT encounters a variable whose name is the sanle
as one of the new FORTRAN IV function names, it creates a name not used
in the program being translated. It uniformly replaces all occurrences of
the conflicting name with this created name, which is called an "insert
variable." The insert variable is chosen so that its first letter determines
the correct type for replacement.

The list below includes the new FORTRAN IV function names recognized
by GIFT:

SLITE SLITET SSWTCH OVERFL
DVCHK JABS AlNT INT
AMOD MOD AMAXO AMAXl
AMINO AMINl MINO MINl
MAXO MAXl IF IX !SIGN
IDIM ALOG CABS STORE
CSIGN PART CEXP CLOG
CSIN CCOS CSQRT OR
AND BOOL COMPL COM

GIFT -2-

However, names of subroutines and functions which conflict with new
FORTRAN IV names cannot be merely replaced by insert variables.
GIFT recognizes two degrees of severity of conflict:

1. Nonfatal example:

CALL ALOG (A,B)
CALL EXIT
END

ALOG conflicts with the FORTRAN IV subroutine of the same
name, but no usage of ALOG is constructed by the translator.

2. Fatal example:

CALL ALOG (A,B)
X = LOGF (A)

becomes
CALL ALOG (A,B) .
X = ALOG (A)

This is a definite and fatal error. The program must be
corrected by hand.

Boolean statements

o Arithmetic, IF, and CALL Statements.Arithmetic, IF, and CALL statements
'with a B in column 1 are modified so that the Boolean operators +, *,. and -
are replaced by OR, AND, and COMPL functions, respectively. For example:

FORTRAN II GIFT Translation

A = OR (C,D).

B F = G* (-H) F = AND (G, COMPL (H))

B IF (A *B) 10, 20, ~O. IF (BaaL (AND (A,B)))10, 20, 10

The call to BOOL is inserted to provide a zero-vs -nonzero test of all 36 bits
of the result. In the FORTRAN II program, a transfer of control to the
negative branch of the IF statement is impossible.

GIFT -3-

Q) Octal Constant~. Each octal constant is replaced by an insert variable nalue~
and a DATA statenlent is manufactured, specifying the variable and its
corresponding value. Thus:

FORTRAN II

B P = R*77777

GIFT Translation

DATA QOOOCT /077777/
P = AND (R, QOOOCT)

e Return statements. Since the AND, OR, and COMPL functions obtain argu­
nlents from and return results to the algebraic rather than the logical
accumulator, the Boolean RETURN statement is no longer meaningful.
Thus, for example:

FORTRAN II GIFT Translation
- -

B RETURN RETURN

Double-Precision and Complex Statements

o Alteration of Variable and Function Nanles. In FORTRAN IV, variable and
function names rather than statements are specified as double-precision or
complex. GIFT includes in an appropriate Type statement every variable
and function name which appears in a statenlent containing a D or an I in
column 1 and removes the D or 1. For example:

FORTRAN II

I DllvIENSION XI (2, 3), YI (5, 5, 5)

D ALPHA = BETA * GAMMA

GIFT Translation

DIMENSION XI (2,3), YI (5, 5, 5)

DOUBLE PRECISION ALPHA,
BETA, GAMMA

COMPLEX XI, YI

ALPHA = BETA * GAMMA

In FORTRAN N, every function name in a double-precision or complex
statement is prefixed by a D in double-precision statements and a C in
complex statements. In addition, the terminal F is removed as

GIFT -4-

/

\

explained on page 1; and the name is included in a Type statenlent, as
explained above. For example:

FORTRAN II

I Y = SINF (X)

GIFT Translation

COMPLEX Y, CSIN, X
Y = CSIN (X)

o References to Double-Precision and Complex Variables. GIFT handles
references to double-precision and complex variables in the following
manner:

GIFT

1. In statements not preceded by D or I--If a reference to a
double-precision or complex variable name appears in
an arithmetic expression in a statement without a D or an
I in column 1, that variable becomes an argument to the
function SNGL (or function REAL) if it is unsubscripted
or to the function PART if it is subscripted. The PART
function also contains as arguments the name of the
array and its length. At execution time, then, the
desired part of the double-precision or complex pair is
returned to the obj ect program.

If, however, the reference is an unsubscripted variable
name used as an explic it argument to a function reference
or a CALL statement, it is passed on unaltered.
For example:

FORTRAN II

I DIMENSION A (5, 5)
D B = C*D

BB = A (I, J)**2
IF (B) 5, 5, 10

5 CALL XYZ (A, B, C**2)
10 AB = C*D - A - SINF (A)

-5-

GIFT Translation

DIMENSION A (5, 5)
COMPLEX A
DOUBLE PRECISION B, C, D
BB = PART (A, A (I, J), 25}**2
IF (SNGL (B)) 5, 5, 10

5 CALL XYZ (A, B, SNGL (C}**2)
10 AB = SNGL (C) *SNGL (D) - REAL (A)

-SIN (A)

In construction of the PART function in the example above,
if J < 5, the arithmetic statement is equivalent to:

BB = REAL (A (I, J))**2

But if J > 5, it is equivalent to:

BB = IM:AG (A(I,J) -) :** 2

2. On left side of arithmetic statement--If a reference similar
to that described above occurs on the left side of an arithnletic
statement, then the statement specifies that a quantity be
stored in one part of the number pair. To accomplish this
operation in FORTRAN IV, GIFT replaces the arithmetic
statement by a call to the STORE subroutine.

The first three arguments are the same as in a call to PART,
and the fourth argument is the expression whose value is to
be stored. For example:

FORTRAN II GIFT Translation

I DIMENSION A (5, 5, 5) DIMENSION A (5,5,5)

COIvIPLEX A

CALL STORE (A, A (I, J, K), 125, B**2)

o _Floating-Point Constants. In double-precision statements all floating­
point constants are nlade double-precision by the use of a letter D
followed by an exponent. Thus, for example:

GIFT

FORTRAN II GIFT Translation

D A = 1567.0 E 15 * X+2. 4 DOUBLE PRECISION A, X

A = 1567.0 D 15*X+2. 4DO

-6-

C) Constants in Single-Precision Statements. In single-precision statements,
constants containing more than nine significant digits are truncated to nine
significant digits' so as not to be taken as double -prec ision in FORTRAN IV.
For example:

FORTRAN II GIFT Translation

x = 1234567895. x = .123456789 E + 10

o Floating-Point Constants Ended With Non-:-Numerics. All floating-point
constants whose last character is a non-numeric have a zero appended
when they are translated. For example:

FORTRAN II GIFT Translation

x = 2. 4E x = 2. 4EO

D Y = 2. 4E Y=2.4DO

COMMON STATEMENTS

o Manufactured COMMON Stateme'nts. Because EQUIVALENCE statements
no longer affect COMMON storage, GIFT manufactures a COMMON
statement, inserting dimensioned artificial variables where necessary,
to preserve the order of COMMON storage. For example:

FORTRAN II

COMMON A, B, C, D
EQUIVALENCE (B (2), E)

GIFT Translation

COMMON B, QOOOCM (1), A, C, D
EQUIVALENCE (B (2), E)

Note that the manufactured COMMON statenlent includes dimension
infornlation (but only for the artific ially inserted variables), as
allowed in FORTRAN IV.

GIFT -7-

o Addition of Undimensioned Artificial Variables. If in COMMON storage a
double-precision or conlplex COMMON variable would begin in an odd­
nunlbered luenlory location, an undimensioned artificial variable is inserted
in the COMMON statement to cause the variable to begin in an even-numbered
location. For exaluple:

FORTRAN II

COMMON R, S, T

D S=X+Y

GIFT Translation

DOUBLE PRECISION S, X, Y

COMMON R, Q001CM, S, T

A similar insertion is nlade, if possible, when a double-precision or complex
variable related to a COMMON variable through an EQUN ALENCE statement
would begin in an odd-numbered location. Ho\vever, certain cases of this
type cannot be translated. See page 17 for further details.

o Modification of EQUIVALENCE Statements. An EQUIVALENCE Statement
involving a double-pr"e·cision 01 complex array must be modified, since
subscripts in such equivalences are interpreted differently in FORTRAN II
and FORTRAN N. For exanlple, in FORTRAN II the following EQUNALENCE
statement specifies that E shares storage with the imaginary part of A,
assuming that A is not dinlensioned:

EQUNALENCE (A (2), E)

D A = B**2

In FORTRAN N, an EQUNALENCE reference to A (2) is interpreted as
referring to the first word of the second number pair. To achieve the same
storage allocation as the FORTRAN II program, GIFT (1) creates an insert
variable, (2) generates an EQUN ALENCE between the insert variable and the
double-precision or complex variable, and (3) replaces each occurrence of
the latter variable in an EQUN ALENCE statement by the insert variable.
Occurrences of the variable outside of EQUN ALENCE statements are not
altered. If, for example, the insert variable QOOOEQ is chosen to replace
A, GIFT translates the last example as follows:

DOUBLE PRECISION A, B
EQUIVALENCE (A, QOOOEQ)
EQUIVALENCE (QOOOEQ (2), E)
A = B**2

o Treatment of Repeated Variables. In FORTRAN II, a variable can appear
more than once in a COMMON statement. This situation is illegal in
FORTRAN N, and GIFT always reconstructs such COMMON statements.
For example:

FORTRAN II GIFT Translation

COMMON A, B, C, A, D, E COMMON A, B, C, D, E

GIFT -8-

)

Arithmetic Statement Functions

In FORTRAN II, argument variables to arithmetic statement functions are
dummies. No conflict arises if the san1e variable names appear as arguments
to arithn1etic statement functions and also as genuine variable names in the
body of the program. In FORTRAN IV, a conflict n1ay arise involving Type
statements. Consider the following FORTRAN II example:

D DIMENSION X (10, 10)
FIRSTF (X, I) = A + X**I

The variable X in the DII.\I1ENSION statement is a double -precision variable.
The variable X in the arithmetic statement function definition is a single­
precision dummy. However, in FORTRAN IV any Type statement applied to
X holds wherever X is used, even in a dummy argument. GIFT anticipates
this possible conflict by replacing all dun1my arguments in arithmetic
statement functions with insert variables. Thus, if the insert variable
QOOOFL is chosen to replace X, and KOOOFX is chosen to replace I, GIFT
translates the last example as follows:

DIMENSION X (10, 10)
DOUBLE PRECISION X
FIRST (QOOOFL, I(OOOFX)= A+QOOOFL**KOOOFX

DIlVIENSION Statements

.To ensure that every array is mentioned in a DIlVIENSION statement before
it appear s in an executable statement, every DIMENSION statement is
relocated near the beginning of the program.

Hollerith Literals

Each Hollerith literal in an arithmetic or IF statement is replaced by an
. artificial variable name; and a DATA statement is manufactured,
specifying the variable name and its corresponding value. For example
(where b denotes a blank):

FORTRAN II

WORD = 4HbEND

GIFT Translation

DATA QOOOHL/6HbENDbb/
WORD = QOOOHL

Hollerith arguments in CALL statements are not altered.

GIFT -9-

(v(')
vv · -r1-d r () v

(uv,",,-~,,.,~·· Ii /fJ (')
" . ,?tcC(. ~...(f"V-

1m 1· ·t M It· l' t· (11''''\ C)()
P IC I U lp lca Ion V

--~-------------. ~J

Certain cases of implicit multiplication are allowed in FORTRAN II. GIFT
inserts an * wherever necessary to renlove the ambiguity in accordance
with the rules for FORTRAN IV. For example:

FORTRAN II

x = (A + B) C + 3. D - (E + F) (G + H) 5. (U -V)
\' ,

GIFT Translation

x = (A + B) * C +3. *D - (E + F) * (G + H) *5. * (U -V)

Variables with Too Few Subscripts

The FORTRAN II compiler accepts singly-subscripted references to
multiply-dimensioned variables. When GIFT encounters such a
reference in statements other than EQUIVALENCE statements, it appends
sufficient trailing subscripts (with value 1) to make the number of
subscripts in the reference equal to the number of dimensions in the
DIMENSION statement. Trailing subscripts are also added to unsubscripted
references to dimensioned variables in arithmetic, IF, and CALL staternents,
except when they are explicit arguments to functions or to CALL statements.
For example:

FORTRAN II

DIMENSION X (10, 10, 5), Y (10, 10), Z (10, 10)
EQUIVALENCE (X (3),XX)
X (I) = Y (I) *Z-SINF (Y) - COSF (Y (3)) *SINF (Y**2)
CALL XYZ (X, Y (3), Z**2)

GIFT Translation

DIMENSION X (10, 10, 5), Y (10,10), Z (10,10)
EQUIVALENCE (X (3), XX)
X (1,1,1) = Y (1,1) *Z (1,1) - SIN (Y) - COS (Y (3,1))
CALL XYZ (X, Y (3, 1), Z (1, 1)**2)

Unsubscripted references to dimensioned variables are unchanged.

GIFT -10-

(

DO Staten1ent Indexing Parameter

Several incon1patibilities exist between FORTRAN II and FORTRAN IV in
regard to the indexing parameter of a DO statement or an implied DO in
input/output lists. These inconsistences, which cannot be resolved by
GIFT and must be corrected by hand, are listed below:

GIFT

1. In FORTRAN II, the name of the indexing parameter within
a DO loop may be the same as the name of a' dimensioned
fixed-point variable used outside the DO loop.

FORTRAN IV, however, objects to this and issues a level 3
error message which suppresses assembly. The following
is an example of this incompatibility:

DIIvlENSION J>'(10, 2)
"1 r

j, I'_.~
-'l' \ •

C1 '/iV'\ . . ." \.
\/l \ t./. , ... ,.l . P (v'r ,.~,.. (l'

DO 10 c!)= 5, 100, 5
LL = J

10 PRINT 35, LL

END

2. In FORTRAN II, if the program contains a storage location
having the same fixed-point variable name as the indexing
parameter of a DO (or an implied DO) statement, the
storage location is not affected ~fter a normal exit unless
the indexing parameter was used as a variable within the
DO range or it was used as a subscript in combination
with a relative constant whose value changes within the
range of the DO statement. In FORTRAN IV, however, the
storage location is always updated and (after a normal exit
from the DO range) contains the highest value of the
indexing parameter.

-11-

MODIFICATIONS FOR FORMAT CONFORMITY

READ/WRITE Staten1ents

READ/WRITE statements are modified according to the FORTRAN IV
specification. For example:

FORTRAN II GIFT Translation

READ INPUT TAPE IN, 100, A, B, C READ (IN, 100) A, B, C

WRITE TAPE lOUT, D, E, F WRITE (lOUT) D, E, F

At the option of the user, references to file numbers can be replaced
either by other variable names or by file constants by n1eans of an
*REPLACE card. (p. 22) If the replacements are variables, a
DATA statement is constructed assigning the proper values to the
variables, and INTEGER Type statements are manufactured for these
variable names if they begin with A through H or with 0 through Z.
For example:

FORTRAN II

*REPLACE (6, AOUT), (3,5)
WRITE OUTPUT TAPE 6, 120, G, H, I
REWIND 3

GIFT Translation

INTEGER AOUT
DATA AOUT/6/
WRITE (AOUT, 120), G, H, I
REWIND 5

READ DRUM/WRITE DRUM statements are flagged as errors and are
not translated by GIFT.

Double-precision and complex variables included in the list of input/
output statements are flagged by GIFT, but the statements are not
considered in error and are translated.

Statements Concerning Internal Switches

Each statement which sets or tests an internal switch (sense switch,
overflow indicator, etc.) is translated into a call to an appropriate
subroutine. This is followed, in the case of tests, by a computed

GIFT -12-
(

GO TO statenlent. For example, assume an insert variable with the
name KOOOFX. Then the following set of FORTRAN II statements is
translated as,shown:

FORTRAN II

100 SENSE LIGHT 3
110 IF (SENSE LIGHT 2) 111, 112
120 IF (SENSE SWITCH 5) 121, 122
130 IF DIVIDE CHECK 131, 132
140 IF ACCUMULATOR OVERFLOW 141, 142
150 IF QUOTIENT OVERFLOW 151, 152

GIFT Translation

100 CALL SLITE (3)
110 CALL SLITET (2, KOOOFX)

GO TO (111,112), KOOOFX
120 CALL SSWTCH (5, KOOOFX)

GO TO (121,122), KOOOFX
130 CALL DVCHK (KOOOF~)

GO TO (131, 132),KOOOFX
140 CALL OVERFL (KOOOFX

GO TO (141,142), KOOOFX
150 CALL OVERFL (KOOOFX)

GO TO (151,152), KOOOFX

FORMAT Generator

GIFT recognizes sets of FORMAT Generator cards and leaves
them unaltered.

RIT and WOT

GIFT recognizes RIT and WOT as equivalent to READ INPUT TAPE
and WRITE OUTPUT TAPE, respectively, and translates them as
expiained on p. 12 ..

GIFT -13-

Characters in Column 1

Except on FORMAT Generator cards, nonnumeric characters other than
*, $, and C are removed from column 1. Every * or $ is replaced by a
C, and all comment cards remain unchanged.

F AP Programs

Programs preceded by a *F AP card are ignored by the translator. The
end of the FAP program is recognized when the number of FAP END
car-ds encountered exceeds the number of MACRO and MOP cards
encountered. (ENDM is recognized as an END card for this purpose.)
Inclusion of FAP UPDATE decks in GIFT input causes errors if the
UPDATE decks do not contain the proper number of END cards.

$ DATA Card

GIFT recognizes a $ DATA card and considers all subsequent cards as
data until it encounters either a FORTRAN or a GECOS control card
($ in column 1). Data cards are listed as part of the input programs
but are ignored by the translator.

GIFT -14-

(

2. PROGRAM REQUIREMENTS AND USAGE

GIFT is a program written in FORTRAN IV and macro assembly
language that is designed to run under control of standard GE -635
software. The subprograms to be translated are considered data and are
placed behind a $ GIFT control card in the deck. When the job is run,
output is written on the SYSOUT file.

REQUIREMENTS

Characteristics of Subprograms to be Translated

A subprogram that is to be translated must fulfill the following
requirements:

·1. It must be programmed in the FORTRAN II language and be
capable of being compiled successfully by the IBM 7000 Series
FORTRAN II Compiler. GIFT does little diagnostic

GIFT

checking, and an incorrect translation may result for a
program which can not be compiled by the FORTRAN II
system.

2. It must terminate in the normal manner with the FORTRAN
END card.

3. If the first card in the input source deck has a C in
column 1, then columns 2-5 are punched in columns
73-76 of the output source program with zeros

. completing the field when necessary. If this comment
card is missing or card columns 2-5 are blank, the
subroutine name (or function name) will be used for a
subprogram and a zero field used for the main program.
The output source deck is sequenced by tens in columns
77-80, recycling to zero when the field reaches maximum
value.

All labeling and sequencing in the input source program
is replaced in the above manner.

-15-

Any $ control cards included before the first statement of the
FORTRAN II deck, however, are labeled with zeros in
columns 73 -79 and sequenced by 2 in column 80, starting with
1-9 and continuing from A through Z.

Table Sizes

The following table sizes are allowed:

1. GIFT allows for a total of 4000 COMMON, DIMENSION,
EQUIVALENCE, double-precision, and complex
variables in a single program or subprogram. Currently
FORTRAN II allows 2400 COMMON, 1160 DIMENSION,
6000 EQUIVALENCE (that is, literal appearances), and
550 double-precision and complex variables--a total of
10110. Thus, GIFT can handle 6110 fewer variables
than the maximum case.

2. GIFT allows for replacement of a maximum of 20
different variable names in anyone program under the
REPLACE option.

3. GIFT provides for a InaxinlUlll of 100 library, built-in,
and arithmetic statement function names beginning
with X or letter s from I through N.

4. GIFT allows a n1axin1um of 100 function names appearing
on F cards.

Chain Jobs

No attempt is made to translate chain jobs automatically. GIFT flags
the appearance of a CALL CHAIN statement by inserting a comment
card containing asterisks in columns 2-72.

GIFT -16-

Double-Precision and Complex EQUIVALENCE Variables

o Odd-Even Memory storage Inconsistencies. Because the most
significant part of a double-precision variable--or the real part
of a complex variable--must be stored in an even-numbered
memory location, certain EQUIVALENCE specifications may
result in odd-even inconsistencies. For example, consider
the following:

EQUIVALENCE (A, B), (A (6), C)

Clearly, the more significant parts of Band C cannot both begin
in an even-numbered memory location. In such cases, GIFT
prints out a diagnostic message. The inconsistency must be
resolved manually and the revised program retranslated.

o hnplied Synonym Relationships. FORTRAN II stores the
imaginary parts of a complex array--or the low-order parts of
a double-precision array--in a separate block, while FORTRAN
IV stores the two parts of each array element in consecutive
memory words. GIFT maintains the relative positions of arrays
linked through EQUIVALENCE statements, but it does not always
maintain implied synonym relationships. For example:

I DIMENSION A (5)

EQUIVALENCE (A (2), B)

This FORTRAN II expression spec ifies that B shares storage
with the second word of the 10-word block A. These statements
also imply that B shares storage with the rea~ part of the second
complex number in A. When the FORTRAN IV compiler
processes the GIFT/Translated version of this progranl, B still
shares storage with the second word of block A; but Balsa
inlplicitly shares storage with the imaginary part of the first
complex number in A.

GIFT -17-

Double-Precision and Complex COMMON Variables

An equivalence relationship implied through different COMMON
statements in two or more programs of a job may be destroyed if
one of the COMMON statements contains double -precision or
complex variables. For example:

I

SUBROUTINE SUB1
COMMON R, S, T
A = S**2

SUBROUTINE SUB2
. COMMON X, Y, Z
DIMENSION Y (2)

In th'is example, R is equivalent to X, S to Y, and T to Z. The
beginning of the GIFT/Translated version of SUB1 would be:

SUBROUTINE SUB1
COMMON R, QOOOCM, S, T
COMPLEX S,A
A = S**2

The artificial variable QOOOCM is inserted in COMMON to cause
the real part of the complex variable S to be stored in an even­
numbered location. The implicit equivalence relationship between
Sand Y and between T and Z is thus destroyed.

GIFT processes each subprogram of a job separately and ther.eiore
does not modify the COMMON statement of SUB2 in the above
example.

Continuation Cards

The GIFT/Translated version of certain statements is sometimes
longer thanJl1,e original statement. In such cases, GIFT generates
up to 19 continuation cards. If a statement requires more than
20 .such cards, a diagnostic message is written and the statement
is ignored.

USAGE

Deck setup

Any number of source programs can be translated during one run
of GIFT. Each such source program must be preceded by a $ GIFT
card and be followed by an END card.

GIFT -18-

FAP programs need not be deleted from FORTRAN II decks, since
the *FAP card causes such programs to be ignored by GIFT.

An end-of-file mark on the input file (automatically supplied)
signifies the end of the job and terminates GIFT execution.

If a programmer changes the input file by using a file control card
(such as a GECOS $ TAPE or $ DISC card), it must be placed
behind the $ GIFT card in the GIFT program; and the remainder of
the program must be placed on the input file specified.

Programmer Option Cards

For most translation jobs, no special options need be specified.
However, file control, *ASSIGN, and *REPLACE cards allow the
user to modify the GIFT file assignments, the insert variables,
and the existing variables in the source program.

o ;File Control Cards--Altering File Assignments. In addition to
required system files, GIFT requires the files listed below during
the translation of a subprogram:

F 1 --Input file
F 2 - -Output file

F 3' F 4' F 5--Intermediate or scratch files

Usually, any modification of file assignments is permanent and
is performed by an installation for its particular requirements.
The user can modify the assignment of specific physical devices
for files by means of file control cards as described in
Chapter III of the GE-635 General Comprehensive Operating
Supervisor Reference Manua~, CPB-1002. The *ASSIGN card
described below is used to define the logical files to be used
by GIFT.

o *ASSIGN Cards--Changing Insert Variable Names. During the
process of subprogram translation, it is sometimes necessary to
replace the names of variables and constants in the source
program with new ones and to insert dummy variables in

GIFT -19-

COMMON statement translations. For instance, the following
statement could appear in the source program:

READ INPUT TAPE 5, 20, A, B

This might then be translated into:

INTEGER QOOOTP
DATA QOOOTP/5/
READ (QOOOTP, 20) A, B

To make the insert variable names as unique as possible, the
following list is used by GIFT.

Insert Variable Name

QOOOTP
QOOOCM
QOOOHL

QOOOCT

QOOOFL

KOOOFX

QOOOEQ

QQOOOQ, ZOOOQQ" ZOOQOQ
ZOQOOQ, ZQOOOQ, KOOOZQ
QOOZOQ, QOZOOQ, QZOOOQ
QOOOQZ, KOOQOZ, QOQOOZ

QQOOOZ

Use

To replace numeric tape references
To use as dummy inserts in COMMON
To replace Hollerith literals in
arithmetic statements
To replace octal constants in Boolean
statements
To replace or insert a floating-point
variable '
To replace or insert a fixed-point
variable
To replace double-precision or
complex equivalences
Spares for all above

Numeric file references are not replaced by GIFT unless a file
variable replacement name was given as the first variable name
on the *ASSIGN card currently in effect. Individual file constants
may still be replaced by use of *REPLACE card.

The user who wishes to replace one or more of these variable
names by using an *ASSIGN card must be familiar with the method
used by GIFT when selecting an insert variable. This is best
described by an example.

GIFT -20-

Suppose that four octal constants in a Boolean statement must
be replaced by variable names. The names selected by GIFT
might be (in succession from left to right):

QOOOCT Q001CT Q002CT Q003CT

Construction of insert variables would continue in this manner
until Q999CT was reached. If more replacements were
necessary, one of the spares would be taken and the modification
procedure would begin anew.

Replacement names are aSSigned in the order of appearance of
the item to be replaced in the input source progranl. Therefore,
file constants, Hollerith literals, and octal constants may be
assigned different replacement names in different subprograms.

The following rules apply when changing insert variables in the
list:

1. If the new variable contains fewer than six characters, it
is left -adjusted and filled with trailing zeros.

2. The hew. variable should contain some numeric characters
so that incrementing of ·the characterscari occur.

3. If the Hollerith literal, octal constant, or floating-point
replacement is changed, it must not begin with any letter
from I through N.

4. If the fixed-point replacement is changed, it must begin
with any letter from I through N.

The *ASSIGN card--used for changing logical file assignments
and/or inserting variable names, as just discussed--should be
prepared and used in the following manner:

1. Fornlat:

Column 1 7

*

GIFT -21":

Where:

F l' F 2' . .. F 5 refer to the respective files listed

in the table on page 19.

V 1~ V 2' . · . V n refer to the respective insert variable

names listed in the table on page 20.

Blanks are ignored.

Example: To change the output file to file 11 and to change
the file constant and floating-point variable replacenlents:

* ASSIGN (, 11) KOOT AAX009

2. Placement: The *ASSIGN card must be the first card in
the source deck to be translated.

3. Persistence: An *ASSIGN card remains in effect until
changed by another * ASSIGN card. To return to the
original GIFT configuration, a blank * ASSIGN card may
be used.

o *REPLACE Card. The user may change the variable names used
in a source program by nleans of the *REPLACE card. Also, it
may be used to replace a file designator constant with a
variable or another constant.

For example, it may be desirable to change the name of a table
of fixed-point items from ITABLE to TABLE. If the replacement
is requested via the *REPLACE card, the translator generates
the statement INTEGER TABLE and changes all references of
ITABLE to TABLE. A maximum of 20 variable names may be
replaced.

The card should be prepared and used in the following manner:

1. Format:

. Column 1 7

*

GIFT -22-

(

Where:

AI' A2,··· An are the variable names or file
constants to be replaced and BI , B , ... B
are the replacen1ent names or consfants. n

Blanks are ignored.

Example: A *REP;r,.ACE card is punched as follows:

*REPLACE (S, T), (T, S)

This changes the statement S = T in the source
program to T = S in the translation.

2. Placement: *REPLACE cards must follow directly behind
the *ASSIGN card or be the first cards in the source
program if there is no * ASSIGN card.

3. Persistence: A *REPLACE card affects only a single
input program.

GIFT -23-

