
GE-PAC® 30/3010
COMPUTER SYSTEMS

REFERENCE
MANUAL

GENERAL fj ELECTRIC

GET-6047

GE-PAC® 30/3010
COMPUTER SYSTEMS

REFERENCE
MANUAL

General Electric reserves the right
to make changes in the equipment or
software, and its characteristics or
functions, at any time without notice.

Copyright @ 1971 by General Electric Co.

GET-6047
7 /71 (lM)

$7.00

The GE-PAC 30/3010 Reference Manual, GET-6047,
obsoletes and replaces the GE-PAC 30-2E Reference
Manual, PCP-207.

TABLE OF CONTENTS
SECTION 1 SYSTEM ARCHITECTURE

1. 1 INTRODUCTION • • . • • 1-1

1. 2 ELEMENTS OF THE SYSTEM . 1-2

1. 2.1 Processor • . 1-2

1.2.2 Memory•......•......•.......••.........................•....•...... 1-3

1. 2. 3 Input/Output . • • . 1-3

1. 2. 4 Hexadecimal Notation . 1-4

1. 3 PROCESSOR OPERATION • • • • • • • 1-4

1. 3. 1 Program Status Words . . • • • • . 1-4

1. 3. 2 Instruction Execution ; . • • 1-5

1.3.3 Core Memory Allocation .•...•... 1-5

1. 4 INSTRUCTIONS • • . • . • 1-5

1. 4. 1 Instruction Format . . • . • • . • 1-5

1.4.2 General Register Usage•............ 1-9

1. 4. 3 Storage Addressing • • • • . 1-10

1 . 5 DAT A . .. • . • • 1 -11
'

1. 5.1 Fixed-Point Data • . 1-11

1. 5. 2 Floating-Point Data . 1-11

1.5.3 Logical Data•......................••.....•..................... 1-12

SECTION 2 INTERRUPT SYSTEM

2.1 INTERRUPT PROCEDURE

2, 2 INTERNAL INTERRUPTS .•.....•..•..•.••••.•......•..........•....•.•.......•..

2. 2. 1 Fixed-Point Divide Fault Interrupt .•...............•..................•.....

2. 2. 2 Floating-Point Arithmetic Fault Interrupt•...•....•...

2. 2. 3 Machine Malfunction Interrupt

2. 2. 4 Illegal Instruction•....•.....................................

2. 2. 5 Protect Mode violation ..•.................•......•........•..............•.

2-1

2-1

2-1

2-1

2-1

2-2

2-2

2. 2. 6 Supervisor Call (SVC) • . • . • • . • • • • . • • . • . . • • • • . • • . 2-2

2. 3 INPUT/OUTPUT CONTROL INTERRUPTS••...••..•••............••......•.. 2-2

2. 3. 1 External Interrupt•..•.•.....•......•.........................•..•..•

2. 3. 2 Immediate Interrupt ...•.••••...••.•.•.••...•••...••...••...•.•..••....••..

2. 3. 3 I/O Termination Interrupt :•...........................

2. 3. 4 . Termination Queue Overflow Interrupt•.••.•...•......•.......•...

2. 4 SPECIAL INTERRUPTS

2. 4. 1 Console Interrupt

2. 4. 2 Memory Protect Interrupt

SECTION 3 INPUT/OUTPUT

2-2

2-2

2-3

2-3

2-3

2-3

2-3

3. 1 INTRODUCTION • • • • . . . • . • 3-1

3. 2 PROGRAM-CONTROLLED I/O•...............•...........•.......••... , . . . 3-1

3. 3 INTERRUPT-DRIVEN I/O•..•.•... , . . • • • . • • . . . • . . . 3-1

3.4 BLOCK I/0•.....................••...•.•.•..••........ : 3-2

3.5

3, 6

3.7

3.8

AUTOMATIC I/O PROGRAMMING ..
3, 5. 1 Service Pointer Table

3. 5. 2 Interrupt Service Block

3. 5. 3 1/0 Termination Queue

...
..

e e e e e e e e e e e e e e e e I e • e e e e e e e e e e e e ~ e

3-2

3-2

3-2

3-2

3. 5. 4 General Operation . . • • • . . . • • • • • • • • • • • . • • • • • • • . . • . . . • . . • • . • . • • . . 3-2

ISB FUNCTION WORD

3. 6. 1 Initialization•.•..•...•.•.. , •..........•.........

3-4

3-4

3. 6. 2 I/O Operations ...•..•.•.... "... 3-4

3. 6. 3 Termination•.....•.......•.•........••.•..•.....•..••.•.••.••.••...•....

EXAMPLE OF AUTOM.A.TIC I/O PROGRAMMING
SELECTOR CHANNEL I/O ..

3-5

3-6

3-6

3. 8. 1 Introduction . • • • • • • • • • . • . • • . • • . • • • . • . . . 3-6

3. 8. 2· Operation .•....•..•.••..•.•.•...•.•.••..••.••••..•••.•.••.•.•.••.•••••.•.•..

3, 8. 3 Address Set-Up

3. 8. 4 Termination ...•.......••....•••.•.••••.•••.•.••••••...••....••.•...••••••.•

3. 8. 5 Reading the Final Address

3-7

3-9

3-9

3-10

SECTION 4 INSTRUCTION REPERTOIRE

4.1

4.2

4,3

4.4

4.5

INTRODUCTION .. • ..
FIXED-POINT LOAD/STORE INSTRUCTIONS

4, 2, 1 Load Halfword

4. 2. 2 Load Multiple

4, 2, 3 Store Halfword

4. 2. 4 Store Multiple

FIXED-POINT ARITHMETIC INSTRUCTIONS

4. 3, l Add Halfword

4, 3, 2 Add with Carry Halfword

4. 3, 3 Subtract Halfword ...

4-1

4-2

4-2

4-3

4-3

4-3

4-3

4-4

4-4

4-5

4. 3. 4 Subtract with Carry Hal.fw'ord • • • • • • . • . . • . • • . . • . . . • • . . • . • • • • 4-5

4. 3. 5 Compare Logical Halfword . . • • • • • • . . • . . • • • • • • . . • • • • • . . . • . • • . • • . • • . . • • • . . • . • . • 4-6

4, 3. 6 Compare Halfword

4. 3, 7 Multiply Halfword

4. 3. 8 Multiply Halfword Unsigned

4. 3. 9 Divide Halfword

LOGICAL INST.RUCTIONS ..••••.•••••.••••• " ••.•.••••.•.••••. • .••.••••••••...••.•..

4. 4. 1 AND Halfword

4. 4. 2 OR Halfword

4-6

4-7

4-7

4-7

4-7

4-8

4-8

4. 4. 3 Exclusive OR Halfw-0rd . . . • . . • • . . . • . • . . • . • • . • • 4-9

4. 4. 4 Test Halfword Immediate

BYTE HANDLING INSTRUCTIONS

4. 5. 1 Load Byte

4. 5. 2 Store Byte

4. 5. 3 Exchange Byte•........•.••...•.•..•...••....•...•••.......•

4. 5. 4 Compare Logical Byte•.......•••.•.•••••••.•.•.••.•.•.....

ii

4-9

4-9

4-9

4-10

4-10

4-10

4. 6 FLOATING-POINT INSTRUCTIONS . • • . . . • • • . • . • • . . 4-10

4. 6. 1 Floating- Point Load . . • • • • • • . • • • . • . . • • • • . . • . • • • . • . • • • • • • . • • • • . • . • • 4-11

4. 6. 2 Floating-Point Store . • • • . . • . . • . . • . • • . . . • . . • • • • • . . • . . . • • • • • . . • . . . • • . • . • • . • • • . 4-11

4. 6. 3 Floating- Point Add . • . • . • . . • . . . • • . • • • • . . • . . • . . • . • • . . • • • • . • . . • • • • • . • • . • • 4- 11

4. 6. 4 Floating-Point Subtract•.•..•.••..••••••••.••••••••.••.•••..•.. , •.....• , 4-12

4. 6. 5 Floating-Point Compare . • • • • • • • • • • • • • • . . • • • . . • . • . . • . • . • • • . • • • • • • . • . • • • • . • . . • 4-12

4. 6. 6 Floating- Point Multiply • • . . • • • • • • • • • . • • • • • • • • • • . • • • • • . . • • • • • . • • . • • . • • • • . • • • • • 4-13

4. 6. 7 Floating-Point Divide . • . • . • . • • • • • • • • • • • • • • • • • . • • • • . • • . • • • • • . . • • . • . . • • . • • • • . • . 4-13

4. 7 SHIFT/ROTATE INSTRUCTIONS . • • . • • • . • • • . • • • . • • . . . • • . . • • . . • . . . • . • • • • . • • • . • • 4-14

4. 7. 1 Shift Left Logical . . . • . • • • • . • • . • . . • • • . • • . . • • • • . • . • . . • • • • • . • • • . . • • . . • • • . • • 4-14

4. 7. 2 Shift Right Logical • • • . . • • . • • . . • • • • • • • • • • . • • • • . • • . • • . • . • • . • . • . • • • . . . • . • • • 4-14

4.7.3 Rotate Left Logical... 4-15

4. 7. 4 Rotate Right Logical • . . . • • • . • • . • . • . • • • • . • . • • • • . • . . • • • . • • • • 4-15

4. 7. 5 Shift Left Arithmetic 4-16

4. 7. 6 Shift Right Arithmetic . • . . • . • • • • . • • . . . • • • • . • • • • • • • • • • . • • • • • . • • . • . • • • . • • • • • • • • 4-16

4. 8 BRANCH INSTRUCTIONS • • • • • . • • . . • . . . • • . • . • . . . • . • . • • . • • • • . • . • • . • • . • • . • . 4-17

4. 8. 1 Branch on True Condition . • • • • • • • • • • • . • . • • • • • • • . • • • . . • • • • 4-1 7

4. 8. 2 Branch on False Condition . • • • • • . • • • • • • • . • • • • . • . . . • • • • • • • • • • • • . • . • . • • • • • • 4-18

4. 8. 3 Branch on Index

4. 8. 4 Branch and Link

4-18

4-19

4. 9 LIST INSTRUCTIONS . • . . . • • . • • • • • • • . . • • • . • • • • . • • . • • • • • • • • . • • • . • • • • • • . . • . • . . • • . • . • 4-19

4. 9. 1 Add to Top/Bottom of List . . • . . . • • • . • • • • . . • . • • . • • • • • • • • . . • . • • • . . • • • . . • • • • • • • . 4-20

4. 9. 2 Remove From Top/Bottom of List • • • • • • . . • . • . • • . . • • • • • • • • • . • • • . • . . . • • . . . • • • . . 4-20

4.10 INPUT/OUTPUT INSTRUCTIONS . • • • • . . • . • • • • • . • • . • • • • • • . • . • • . . • • • • . . • . • • • • • • • . 4-21

4. 10. 1 Acknowledge Interrupt . . • • • • • • • • • • • • • • . • • • • • . • • • • • • • • • • • • • • . • • • • • • • • . . . • • . • . 4-21

4. 1 0. 2 Sense Status • • • • • • . • . . • . • • • • . • . • • • • . • . • • • • • • • • • . . . • • • • . • • . • • . • • . . • 4- 2 2

4. 10. 3 Output Command . • . . • . • . . . • . • • • • • • • • • . • . • • • . . . • • • • . • . • • • • • • . • . • • • • • . • • 4-22

4. 10. 4 Read Data • • • • • • . . • • • • • • • • . . • • • • • . • • • . • • • • . . • • • • . • . • • . • • • • • • • • • . . • . . • . . • . • . 4-22

4, 10. 5 Write Data

4.10.6 Read Block

4-23

4-23

4. 10. 7 Write Block • • • . • • . . • • • . . • • • • • • • • . . • • • . • • • . • . . . • • . • • • • • . • • • • • • • • • • • • • . 4-23

4. 10. 8 Read Halfword . • . • • • . . • • • • • • . . • • • . • . • . • • • • . • • . . • • • • • • • • • . . • . • . . . • • • . • • • • • . . 4-24

4. 10. 9 Write Halfword • . . . • • • . • • • • • • . . • • • . • • • . . • • • • • • • . • . • • . . . • • • . • . . • • . • • . • . . 4-24

4.10. 10 Autoload . . • . • . • . . . • • • . • • . • • . . • . • • . • • • • • • • • • . • . • • . . • . • • . • . • • • • . • • 4-24

4. 11 SYSTEM CONTROL INSTRUCTIONS . . • • . . • • • • • . • • • • • • • • • • • . • • . . • • • • • • • • • . • • • • • . • • • • 4-25

4. 11. 1 Load Program Status Word • • • • • • • • . • • • • • • • • • • • • • • • • • • • . • • • • . • • . • • . . . • • • • . • . 4-25

4. 11. 2 Exchange Program Status . • • • • • • • • • . • • . • • • • • • • . • . • • . • • . • • • . • • • . . • • • • • • • • • • . • 4-25

4.11, 3 Simulate Interrupt . • • • . • • • • • • • • • • • • • • . . • • • • • • • • • . • . • . • . . . • . • . • • . • • • • • . • • • • • . 4-25

4.11. 4 Supervisor Call ...••.•.•.•.......••••.•••..••••••.••••••.•..•••••..••.•.•.• ·4-26

SECTION 5 CONSOLE OPERATING PROCEDURES

5. 1 INTRODUCTION • . . • . . . • . • • • • • • . . • • • . . • . • • . • . • . . . • • . . . • • • • • • • • . • • • . • . • • • • . • • • • 5-1

5. 2 CONTROL SWITCHES . • . • . • . • • • • • . • . • • • • . • . . . • . • . • • • . • . • • • . • • . • • . . . • . . • . . . • . . • . • • • 5-1

iii

5. 3 MODE CONTROL . • • • . . . • • . • • • • • • • • • . • • • . • . . • . . • . . • • • . . . • • • • . • . . • • . • . • • 5-2

5. 4 DISPLAY REGISTERS • • • • • • • . • • • . • • • • • • • • • • • • • • • • • • . • • • • . • • • • • . . • • • • • • • • • • • • • • • • • • 5-2

5. 5 OPERATING PROCEDURES .••••.•.•• , •••••••••••••••••••.•• , •• , •••. , • • . . • • • • . . • • . . 5-3

5. 5. 1 Initialization ••••••••••.••.••••••••.••.• , • •.,, .•••• ,,., ••••.•• , .• , .•.••• ,,... 5-3

5. 5. 2 Program Loading .•..•• , •••••••••• , •••• , ••••.•••• , • , ••••••• , •• , .•• , • • • • • • • . . 5-4

5. 5. 3 Program Execution .••.•••••.•••.••..• , , , • , • , ••• , ••••.••.•... ,• , ...•.• , , • 5- 5

5. 6 PROGRAMMING CONSIDERATIONS .••••••••••••.•••• , ••.••• , .•••••..•• , ...•• , , . . • . . 5-6

5. 6. 1 Display Panel I/O

5. 6. 2 Console Interrupt

5-6

5-7

5. 6. 3 Wait State , • . • • 5-7 . "
5. 6, 4 Power Fail • , , •. , , , •• , ••••••••••••••••••••••••. , ••• , .•••••.•••••••.• , • , , ••. , 5-7

APPENDIX 1 INSTRUCTION SUMMARY - ALPHABETICAL

APPENDIX 2 INSTRUCTION SUMMARY - NUMERICAL

APPENDIX 3 EXTENDED BRANCH MNEMONICS

APPENDIX 4 OP CODE MAP

APPENDIX 5 INSTRUCTION EXECUTION TIMES

APPENDIX 6 ARITHMETIC REFERENCES

APPENDIX 7 AUTOMATIC I/O OPERATION AND TIMING DATA

APPENDIX 8 I/O REFERENCES

iv

SECTION l
SYSTEM ARCHITECTURE

1.1 INTRODUCTION

The elements of the GE-PAC* 30-2E are the Proces­
sor, Memory, I/O Facilities, and Peripheral
Devices, as shown in Fig. 1. 1.

The GE-PAC 30-2E offers a comprehensive set of 113
instructions as standard equipment which makes the
system both easy to program and efficient to operate.
The instruction set includes Floating Point and Fixed
Point Arithmetic, Logical, Byte Handling, Status Con­
trol, and List Handling instructions.

Memory is addressable and alterable to the 8-bit byte
level. Memory is expandable from the basic 8, 192
bytes to 65, 536 bytes. All memory is directly address­
able with the primary instructions, no paging or indi­
rect addressing is required.

Sixteen 16-bit General Registers can be used as accu­
mulators or Index Registers. Register-to-Register
instructions permit operations between any two of the
sixteen General Registers, eliminating redundant
loads and stores.

The Protect Mode of the GE-PAC 30-2E enables
Memory Protection and detection of Privileged in­
structions, and can be activated under program con­
trol. The protect mode is invaluable in process

control, data communication, and time-sharing
operations to guarantee that a running program can­
not interfere, for any reason, with the integrity of
the system.

The GE-PAC 30-2E also provides a flexible input/out­
put system in addition to conventional means of pro­
grammed I/ 0. In the Automatic I/ 0 Service Mode,
the Processor acknowledges all I/O Interrupts and
automatically performs much of the overhead prior to
activating the Interrupt Service Routine. In conjunc­
tion with the Automatic I/O Service, an Interrupt
Service Block can perform data transfers and signal
counting without interrupting the running program at
all until the specified sequence is completed.

GE-PAC 30-2E System Summary

Instruction Set: 113 instructions, including

A complete set of Floating- Point Instructions

A complete set of Arithmetic and Logical
Instructions

Byte Processing Instructions

Both Single-Word and Double-Word Shift
Instructions.

CORE MEMORY MODULES

READ-ONLY
MEMORY

PROCESSOR

MULTIPLEXER BUS

MEMORY BUS

GENERAL
REGISTERS

ADDITIONAL PROCESSOR,
PERIPHERAL AND

INTERFACE MODULES
.--~ ~~~ r~~~._~~-.

SELECTOR
CHANNEL

SELECTOR BUS

UP TO 25

LINE
PRINTER

HIGH SPEED DEVICES

STANDARD MEMOR
BUS INTERFACE

(SMBI)

SPECIAL
DEVICE

(HALFWORD)

MINI
DISC

Fig. 1. 1 GE-PAC 30- 2E Block Diagram

··Registered Trademark of General Electric CompC1ny

1-1

List Processing Instructions,

Short Branch Instructions for 1 ocal branches
in addition to Normal Branch Instructions
which address any location in memory.

Single-Byte, Double-Byte, and Block 1/0
Instructions.

Simulate Interrupt Instruction, for
sophisticated I/ 0 control.

Supervisor Call Instruction, for communica­
tion with an operating system.

Instruction Compatibility;
GE-PAC 30-1 and 30-2

Instruction Word Lengths;
16-bit, 32-bit

Data Word Lengths;
8-bit, 16-bit, 32-bit

User Registers;
Sixteen 16-bit General Registers. Fifteen
General Registers can be used as Index Reg­
isters. Eight 32-bit Floating-Point
Registers.

Memory Addressing;
Direct addressing to 64K bytes.

Protect Mode;
Provides memory protection, plus Privileged
instruction detection.'

Core Memory;
1 microsecond cycle time. Basic size 8, 192
bytes. Expandable to 65, 536 bytes.

Interrupts;
Identification of up to 256 levels with Automa­
tic Service Mode for rapid interrupt response
and minimum program overhead.

Input/Output;
Multiplexor Bus for up to 256 devices included
in the Processor with request/response 1/0
Logic. Selector Channels for high speed
direct-to-memory transfers operating on a
cycle-stealing basis (optional). Automatic 1/0
for signal counting and data transfers without
program interrupts.

Display panel programmable as an 1/0 Device.
A full range of peripheral devices and inter­
face modules available for inclusion in the
system.

1.2 ELEMENTS OF THE SYSTEM

1.2.1 Processor

The various elements of the system are organized
around the Processor, See Fig. 1. 1. The Processor
contains facilities for:

1-2

1. Sequencing of instructions in the required
order.

2. Arithmetic and logical processing of data.

3. Initiating or controlling communications with
external devices.

4. Changing states in response to interrupts.

The basic elements of the Processor are a set of 16
General Registers, an Arithmetic and Logic unit, a
Control unit, and connections to the Memory and 1/0
Bus, See Fig. 1. 2.

The Processor operates under the direction of the
Control unit which has a pre-wired micro-program
contained in a Read-Only-Memory (ROM). The Micro­
program is a sequence of micro-operations which
fetches the Processor instructions, decodes them, and
processes the operands located in the General Regis­
ters and Core Memory locations. In GE-PAC 30
publications, such micro-programs are often referred
to as Firmware.

The instruction set of the GE-PAC 30-2E is described
in Section 4. All memory is directly addressable with
the primary instruction word; no paging or indirect
addressing is required. The sixteen-bit General Reg­
isters can be used as fixed-point accumulators, link
registers for subroutine returns, or pointei:-s for pro­
gram branching. Fifteen of the 16 Genera'l Registers
can be used as index registers for address modifi­
cation.

The Protect Mode is enabled in the Processor under
program control. In this mode, the Memory Pro­
tect is activated, and Privileged instructions are
detected and their execution is prevented. Privi­
leged instructions are I/O instructions and any Con­
trol instructions whose execution could change the
status of the system. Privileged instructions are
discussed in detail in Chapter 4. In the Protect
Mode, the execution of any Privileged instruction
causes an Illegal Instruction Interrupt.

In general, fixed-point operations are performed upon
one operand in a General Register with the other oper­
and in either a General Register or a core memory
location.

Multiple-precision arithmetic operations are possible
using two's complement representation, and by recog­
nition of the carry/borrow from one operation to
another.

The Floating-Point instructions manipulate floating­
point data using unique Floating- Point Registers which
are resident in core memory.

The GE-PAC 30 format for single-precision, floating­
point data is identical to that used in the IBM System/
360. This for:!J.fgt represents numbers in the range
from 5.4X 10 to 7.2X1075 , with six digits of
precision.

" Ai:'C'FIESS DATA

;1-~Mo·- --, ~' ~r·-;:j- -- ... ·r·-·-----
,.. l. .·H • I-' ;'V 1"'-~·.. . ,,_,. ___ ,.. '

. .
---~ .. --.J _____ ...t , __,.._, ______ .. _._~ .. --,

---------··----·--·---·-···~~-~,2f~r-'3lJS ·--··"--···--· ---·-~-_J

STATUS

PROGRAM
' S~".ATVS WORD I ---··--.. ·-··--·--·

' L__- CONTROL HARDWARE

INH.RRUPT

5E.Rlt(.E. BLOC!\

0

.. -----·--·----, i
·~....---~-------,---' I

! ! i
: o .L .. _1!':i

') M.6GN: 1 -·01
FIXED F·O!~'
RE;.:;1~.YEF'(~; I

FLOATING POINT
REGISTERS

(8)

(16)

i A'llT!1Mt:TJC

i l.;)GIC

j .__,....__JN--.1 T ...-

Cd"ERAND BU:. !

v?i::RAND BUS 2

MULT!Peo:::o J.iO SU$ UP TO 256 DEVICES

GARO READER HSPTRP TTY OISP1.AY PANEL

Fig. 1. 2 System Block Diagram

1.2.2 Memory

The GE-PAC 30-2E system can have from 8K to 64K
bytes of core memory, where a byte refers to 8 bits.
The byte designation is used to describe GE-PAC 30
memory size since the memory reference instructions
address memory at the byte level. The hardware
memory modules are actually 16-bit oriented, and
each read or write operation with the memory trans­
fers 16 bits in one memory cycle. The maximum
memory size, therefore, is 65, 536/ 8-bit bytes or
32, 768/16-bit halfwords.

When executing instructions, all 16-bit instructions
and 16-bit data is handled in a single memory cycle.
Multiple halfword data requires an additional memory
cycle for each 16-bit halfword. Byte operations are
performed by selectively manipulating the right or
left 8 bits of the 16-bit halfword.

The Memory Write Control can be subdivided into
two types. The two types have meaningful differences
when used in conjuction with the Memory Protect.
The first type is Standard Memory Write, the per­
formance of which is subject to Memory Protect.
That is, if the Processor is in the Protect Mode,
any memory write into a protected area is inhibited,
and a Memory Protect Controller Interrupt is gen­
erated. Memory, in this case is not altered. This
type of memory write is used by all standard instruc-

tions which store data of any kind into memory. In
Chapter 4, all instructions of this type are noted as
being "subject to Memory Protect". Note that the
Memory Protect does not affect reading from memory.

The other type of Memory Write Control, referred to
as Privileged Write, overrides the Memory Protect
circuitry. This type of control is used by various
internal Processor functions which must be allowed
to write into Core Memory, even in the Protect mode.
Examples of this operation are Processor access of
dedicated registers in low core, and the register
save sequence which is used on Power Fail. Other
privileged write operations are noted where applicable
in this manual.

With systems that are equipped with less than 64K
bytes of memory, it is possible to address memory at
an address greater than that of last actual memory
location. In this case, memory read operations
cause all zero data to be read, and write operations
proceed normally, but the data is lost.

1.2.3 Input/Output

The principal means of input/output with the GE-PAC
30-2E is the Multiplexor Bus, which connects to the
Processor. This Multiplexor Bus, has facility for
connecting and addressing up to 256 devices. All com­
munications,between the Processor and the Multiplexor

1-3

Bus are on a request/response basis. Using the Mul­
tiplexor Bus, programs can initiate and control I/O
operations in a number of ways. Using normal pro­
grammed I/O, a program can interrogate the status of
any device, and control the transfer of data to or from
a device when the device indicates it is ready.

The Multiplexor Bus provides, in addition, an interrupt
facility with which any device can indicate device condi­
tions to the Processor by interrupting the running pro­
gram. Interrupt Acknowledgements are achieved
using "daisy chain" hardware logic, which a voids any
programmed device polling to determine which device
interrupted. Interrupt programming, therefore, can
efficiently transfer data to or from multiple devices
simultaneously.

Interrupt programming is simplified in the GE-PAC
30-2E by an Automatic I/O Service Mode, in which the
Processor performs much of the overhead associated
with each interrupt. This Automatic I/O Service lVIode
can be disabled under program control, which then
makes the GE-PAC 30- 2E I/ 0 compatible with the
GE-PAC 30-1 and -2. With the Automatic I/O Service
in use, the Interrupt Service Block (ISB) capability of
the GE-.PAC 30-2E also can be used. The ISB, per­
forms signal counting and data transfers without inter­
rupting the running program. When the ISB completes
a specified sequence, a variety of command chaining
and interrupt queuing operations can take place.

The Selector Channel is an optional hardware expan­
sion for the GE-PAC 30-2E. Using this option,
devices can perform high speed byte-oriented data
transfers directly into the GE-PAC 30-2E memory.
Once a Selector Channel transfer is initiated, the data
is transferred into or out of the memory on a cycle­
stealing basis, but the Processor itself is not involved
in the operation. Such transfers are initiated under
program control by setting up the Selector Channel
with starting and final memory addresses over the
Multiplexor Bus, and commanding it to start. The
transfer then proceeds independently until the block is

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 OllO G

7 0111 7

completed, or the device terminates prematurely. An
interrupt is generated on termination.

Details on all I/O operations with the GE-PAC 30-2E
are found in Section 3.

1.2.4 Hexadecimal Notation

In this manual, binary information is expressed using
Hexadecimal Notation (base 16). Four binary bits of
information are conveniently expressed by a single
hexadecimal digit. Thus, byte information is ex­
pressed by two hexadecimal digits, halfword informa­
tion by four hex digits, and fullword information by
eight hexadecimal digits. Table 1. 1 lists hexadecimal,
binary and decimal equivalents.

1.3 PROCESSOR OPERATION

1.3.1 Program Status Words

The focal point of control for the Processor is the
Current Program Status Word (PSW). This 32-bit
register contains the information required to direct
program execution: a 12-bit status field, a 4 bit
condition code field, and a 16-bit Location Counter,
See Fig. 1. 3.

PSW

I°
11 12 15 16 31 I cc I LOCATION COUNTER I STATUS

Fig. 1. 3 Program Status Word Format

The left half of the PSW defines Program Status, the
right half is the Location Counter. The Current PSW
controls instruction sequencing, and maintains the
status of the system in relation to the program cur­
rently being executed. A program can change the
Processor status by loading a New PSW. This is ac­
complished by executing a Load Program Status Word
(LPSW) or Exchange Program Status Register (EPSR)
instruction. These instructions are described in
Section 4.

Hexadecimal Binary Decimal

8 1000 8

9 1001 9

A 1010 10

B lOll ll

c 1100 12

D 1101 13

E 1110 14

F 1111 15

Table 1. 1 Hexadecimal Notation

1-4

The interrupt mechanism of the GE-PAC 30-2E also
involves the PSW. A program interrupt is achieved
by storing the Current PSW into a reserved area of
core memory, referred to as an Old PSW. The Cur­
rent PSW is then replaced by a new 32-bit quantity
appropriate for that interrupt called a New PSW. For
example, when an illegal instruction is executed by
the GE-PAC 30-2E, an Illegal Instruction Interrupt
occurs by storing the Current PSW into memory at
location X'0030', and loading the Current PSW with a
new value from location X'0034'. The reserved core
locations for Old and New PSW s for all interrupts
are defined in Section 1. 3. 3.

The meaning of each bit in the left half of the PSW is
explained in Table 1. 2, and shown in Fig. 1. 4. The
particular meaning or function of each bit applies
when the bit is a 111 ".

0 234567

WT EI MM OF AS FP llT PM

Fig. 1. 4 Program Status Bit Format

1.3.2 lnstrudion Execution

The 16-bit Location Counter field of the Program
Status Word specifies the location of the next instruc­
tion to be fetched and processed. The sixteen bit
address field has the capability of directly addressing
the maximum core memory of 64K bytes or 32K
halfwords.

Note that since instructions are aligned on halfword
boundaries the value of the Location Counter must be
even. That is, bit 15 of the Location Counter must be

~·

During normal processing of a program, instructions
are fetched from the location specified by the Location
Counter, the instruction is executed, the Location
Counter, is adjusted, and another fetch and execute
cycle begins. After instruction execution, (except for
Branch or Control instructions) the Location Counter
is incremented by 2 if the executed instruction is of
the halfword (RR or SF) format, or by 4 if the executed
instruction is of the fullword (RX or RS) format.

Following Branch Instructions or System Control in­
structions, the Location Counter is adjusted as a func­
tion of the particular instruction. See Section 4. 8 for
a summary of Branch Instructions, and Section 4. 11
for a summary of System Control instructions.

The sequencing of instructions during program execu­
tion is also changed if an interrupt occurs. In this
case, the PSW swap procedure saves the Current PSW
in core memory so that, after an interrupt is processed,
execution can resume at the correct location.

1.3.3 Core Memory Allocation

The GE-PAC 30-2E Processor requires certain loca­
tions in core memory for Floating-Point Registers,
register save areas, and interrupt processing. These
locations are defined in Table 1. 3 and discussed below.

Floating-Point Registers - These registers are used
by the Floating-Point Instructions.

Power - Fail Locations - The Register Save Pointer
at 22 points to the first of 16 consecutive halfword lo­
cations in memory where the General Registers are
saved in the event of power failure. When power is
restored, the General Registers are restored automat­
ically from these locations. The Current PSW is
saved and restored in similar fashion from location
24-27.

Interrupt PSWs - These locations are reserved for
the Old and New PSWs for the various internal and
external interrupts. These are discussed further in
Section 2.

I/O Termination Parameters - The locations are
used in conjunction with termination interrupts from
an ISB operation. Refer to Section 3 for details.

Supervisor Call Parameters - These locations are
used for the PSW exchange associated with the Super­
visor Call (SVC) instruction. This instruction is
described in Section 4. 11. 4.

Service Pointer Table - The table of 256 halfwords is
used in the Automatic I/O Service Mode of operation.
The Processor uses this table to uniquely service each
interrupting device. See Section 3.

1.4 INSTRUCTIONS

1.4.1 Instruction Format

GE-PAC 30-2E instructions have four formats:

1. Register to Register - RR

2. Short Format - SF

3. Register to Indexed Memory - RX

4. Register to Storage - RS

In general, each format specifies three things: The
operation to be performed, the address of the first
operand, and the address of the second operand. The
first operand is normally the contents of a General
Register. The second operand is normally the con­
tents of another General Register, the contents of a
core memory location, or a data constant from the
instruction word itself.

A 16-bit halfword format is used for Register-to­
Register and Short Format instructions. The Short

1-5

Bit

1-6

0

2

3

4

5

6

7

8-11

12

13

14

15

WT

EI

MM

DF

AS

FP

QT

PM

c
v
G

L

Name

Wait State

External

Interrupt Enable

Machine

Malfunction

Interrupt Enable

Fixed Point Divide

Fault Interrupt

Enable

Automatic Input/

Output Service

Enable

Floating- Point

Arithmetic Fault

Interrupt Enable

Queue Termination

Interrupt Enable

Protect Mode

Unused

Carry /Borrow

Overflow

Greater than Zero

Less than Zero

Comments

The WAIT Bit is set to halt program execution. When

this bit is set in the Current PSW, no program execu­

tion takes place, but the Processor will respond to all

I/O and Machine Malfunction Interrupts, if they are

enabled.

The External Interrupt Enable bit is set to make the

Processor responsive to interrupt signals from the

Multiplexor Bus. External Interrupts are discussed

in detail in Section 2.

The Machine Malfunction Enable bit allows an inter­

rupt to occur if the machine is equipped with the

Memory Parity Option and a Memory Parity fail

occurs. See Section 2.

The Divide Fault Interrupt Enable bit allows the

Processor to interrupt when a Fixed-Point Divide

instruction is attempted and the result cannot be

expressed in 16 bits. See Section 2.

The Automatic 1/0 Service Enable bit allows the

Processor to acknowledge 1/0 Interrupts and service

them a\ltomatically as described in Section 3.

The Floating- Point Arithmetic Fault Interrupt

Enable bit allows the Processor to interrupt if ex­

ponent overflow or underflow occurs during any

floating-point operation. See Section 2.

Queue Termi!)ation Interrupt Enable pertains to the

ISB, which can be used in conjuction with the Auto­

matic I/O Service as described in Section 3.

The Protect Mode bit enables Memory Protect and

detection of Privileged instructions. When the Pro­

tect Mode is not enabled, the Processor is in the

Supervisor Mode.

Must be zero.

The Condition Code Bits are set or adjusted after the

execution of instructions by the Processor. See

Section 4 for details.

Table 1. 2 Program Status

FUNCTION

Floating- Point
Registers

Power-Fail
Locations

Interrupt PSWs

I/O Termination
Parameters

Supervisor Call
Parameters

Service Pointer
Table

HEXADECIMAL
MEMORY ADDRESS

00-03
04-07
08-0B
OC-OF
10-13
14-17
18-lB
lC-lF

20-21
22-23
24-27

28-2B
2C-2F
30-33
34-37
38-3B
3C-3F
40-43
44-47
48-4B
4C-4F

80-81
82-85
86-89
8A-8B
8C-8F
90-93

94-95
96-99
9A-9B
9C-9D
9E-9F
AO-Al
A2-A3
A4-A5
A6-A7
AB-A9
AA-AB
AC-AD
AE-AF
BO-Bl
B2-B3
B4-B5
B6-B7
B8-B9
BA-BB
BC-CF

DO-Dl
D2-D3
D4-D5

2CC-2CD
2CE-2CF

Table 1. 3

ASSIGNMENT

Floating-Point Register, RO
Floating-Point Register, R2
Floating-Point Register, R4
Floating-Point Register, R6
Floating-Point Register, RB
Floating-Point Register, R 10
Floating-Point Register, Rl2
Floating-Point Register, R 14

Unassigned
Register Save Pointer
Current PSW Save Area

Old PSW FLPT Arithmetic Fault Interrupt
New PSW FLPT Arithmetic Fault Interrupt
Old PSW Illegal Instruction Interrupt
New PSW Illegal Instruction Interrupt
Old PSW Machine Malfunction Interrupt
New PSW Machine Malfunction Interrupt
Old PSW External Interrupt
New PSW External Interrupt
Old PSW Fixed- Point Divide Fault Interrupt
New PSW Fixed-Point Divide Fault Interrupt

Termination Q.ueue Pointer
Old PSW 1/0 Termination Interrupt
New PSW I/O Termination Interrupt
Overflow Termination Pointer
Old PSW Termination Queue Overflow Interrupt
New PSW Termination Queue Overflow Interrupt

Supervisor Call Argument Pointer
Old PSW Supervisor Call
New PSW (Status and Condition Code) Supervisor Call
New PSW (Location Counter) Supervisor Call 0
New PSW (Location Counter) Supervisor Call 1
New PSW (Location Counter) Supervisor Call 2
New PSW (Location Counter) Supervisor Call 3
New PSW (Location Counter) Supervisor Call 4
New PSW (Location Counter) Supervisor Call 5
New PSW (Location Counter) Supervisor Call 6
New PSW (Location Counter) Supervisor Call 7
New PSW (Location Counter) Supervisor Call 8
New PSW (Location Counter) Supervisor Call 9
New PSW (Location Counter) Supervisor Call 10
New PSW (Location Counter) Supervisor Call 11
New PSW (Location Counter) Supervisor Call 12
New PSW (Location Counter) Supervisor Call 13
New PSW (Location Counter) Supervisor Call 14
New PSW (Location Counter) Supervisor Call 15
Reserved

Service Pointer, Device 0
Service Pointer, Device 1
Service Pointer, Device 2

Service Pointer, Device 254
Service Pointer, Device 255

Core Memory Allocation

1-7

16 BIT HALFWORD

[RR] lo OP 7r RI
111'2

R2
151

REGISTER TO REGISTER

I° 1("(15

[sF] OP RI DATA I
SHORT FORMAT

3 2 BIT REGISTER
0 7r 11112 15, 16 311

[Rx] I OP ~I X2 A

REGISTER TO INDEXED MEMORY

0 718 ''1 '2 151'6 311
[Rs] I OP RI X2 A

REGISTER TO STORAGE

Fig. 1. 5 Instruction Word Formats

Format instructions may be used to manipulate small
quantities or execute short branches relative to the
present location counter. A 32-bit fullword format is
used for the register to indexed memory, and the
register to storage formats. The specific formats
are shown on Fig. 1. 5.

The 8-bit OP field in all formats specifies the machine
operation to be performed. Operation codes are
represented as two hexadecimal characters.

The 4-bit Rl field in the instruction formats specifies
the address of the first operand. The Rl field is
normally the address of a General Register.

The 4-bit R2 field in the RR instruction format speci­
fies the address of the second operand, which is
normally a register address.

The 4-bit data field of the SF instructions supplies
data in the case of F:ixed Point Arithmetic instr:uctions
or a displacement from the current location counter in
the case of Branch lnstructions.

A non-zero X2 field in the RX and RS formats specifies
a General Register whose contents is used as an index
value. The index value (X2) may be positive or nega­
tive. If X2 is zero, no address modification takes
place. General Registers 1through15 can optionally
be used for indexing, and General Register 0 can
never be used for indexing.

The 16-bit A field specifies a memory address in the
RX format, or contains a value to be used as an im­
mediate operand in the RS format.

The RR instructions are used for operations between
two registers. The first operand is the contents of
the register specified by the Rl field of the instruction
word. The second operand is the contents of the
register specified by the R2 field.

The RX instructions are used for operations between
register and memory with the option of indexing. The

1-8

first operand is the register specified by the Rl field
of the instruction word. The second operand is the
contents of the memory location specified by the A
field of the instruction word or the sum of the A field
and the contents of the General Register specified by
the X2 field if indexing is specified.

Table 1. 4 summarizes the first and second operand
designations for each instruction format.

In the RS instructions, the first operand is the con­
tents of the General Register specified by the Rl field
of the instruction word. The second operand is the
number contained in the A field of the instruction, or
the sum of the A field and the contents of the General
Register specified by the X2 field if indexing is
specified. The second operand of an RS instruction
specifies the number of bit positions in Shift Instruc­
tions, or forms the second operand in Immediate
Instructions.

The SF instructions are used for short immediates, in
which the data field specifies a 4-bit data value, short
shifts in which the data field specifies the shift count,
and short branches in which the data field specifies a
displacement (in halfwords) from the current instruc­
tion address.

There are some exceptions to the first operand-second
operand nomenclature used above. For example, with·
Branch on Condition instructions, the Rl field of the
instruction is a 4-bit mask which is ANDed.with the
condition code in the Current PSW. These instruc­
tions are discussed in Section 4. 8. For all input/ out­
put instructions, the contents of the register specified
by Rl specifies the device number for the I/O opera­
tion. These instructions are described in Section
4. 10. For the Supervisor Call instruction, the Rl
field specifies 1 out of 16 possible types of supervisor
call. With the Load Program Status Word (LPSW),
Simulate Interrupt (SINT) and Auto Load (AL) instruc­
tions, the Rl field must be zero.

First The contents of RR, RX, HS
Operand: the register specified and SF

by the R1 Field (Rl).

The Ml Field RR, RX, and
SF Branch on
Condition

The actual value of
the Rl Field. SVC

Second The contents of RR
Operand: the register specified

by the R2 Field (R2).

The contents of RX
the address derived
by adding the A field
and the contents of
the General Register
specified by the X2
Field. [A + (X2) J
The A field plus the RS
contents of the General
Register specified by the
X2 Field A+ (X2)

The actual value of the SF
R2 Fielrl

Table 1. 4 Designations for First and Second Operands

l.4.2 General Register Usage field must specify an even numbered General
Register. See Sections 4. 3 and 4. 7.

The Sixteen General Registers function as accumula­
tors or Index Registers in all arithmetic and logical
operations. Each General Register is a 16-bit half­
word consisting of two 8-bit bytes. For arithmetic
operations, bit zero (leftmost position) is considered
the sign bit using two's complement representation.

The General Registers are numbered from zero to
fifteen (decimal), written in hexadecimal notation as 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
The General Registers have not been given specific
functional assignments. However, the following opera­
tional restrictions should be noted:

1. It is not possible to use General Register
zero as an Index Register. In the RX and RS
instruction formats, a zero entry in the X2
field indicates that no indexing is to take place.

2. For Fixed-Point Multiply, Divide, and full­
word Shift and Rotate instructions. The Rl

3. For Branch on Index instructions, the Rl field
specifies the first of 3 consecutive General
Registers, and the value of the Rl therefore,
should be equal or less than 13. See Section
4. 8.

4. For Floating- Point instructions the Rl field
must be an even value and specify one of the
Floating-Point Registers rather than one of
the General Registers.

5. With any RR type instruction, the Rl field and
the R2 field can specify the same register,
but special attention should be given to note
what the instruction will do. For example,
with the EPSR instruction, if the Rl field
equals the R2 field, the program status is
stored in a General Register, but the program
status is unchanged.

1-9

BYTE

HALFWORD

FULLWORD

15116 23, 24

Fig. 1. 6 Data Word Formats

1.4.3 Storage Addressing

The GE-PAC 30 Instruction Set manipulates data of
three different word lengths: 8-bit bytes, 16-bit half­
words, or 32-bit fullwords. In each case, the bits
are numbered from left to right, starting with the
number zero. The format for each word length is
shown in Fig. 1. 6.

Core Memory locations are numbered consecutively,
beginning at 0000, for each 8-bit byte. Operands in
memory are addressed by the RX-type instructions.
Since the address portion (A) of RX instruction is 16
bits wide, it is possible to directly address 65, 535
bytes.

The GE-PAC 30-2E transfers binary information be­
tween memory and the Processor as 16-bit halfwords.
The instruction being performed determines if the
address specified is that of a byte, a halfword or a
fullword. If a byte of information is desired, either
the left or right byte of the halfword read from mem­
ory is manipulated as determined by the specific ad­
dress. If a halfword of information is desired the
entire 16 bits read from memory are used. If a full­
word is desired, a second 16 bits are read from
memory and combined with the original halfword.

Bytes of information are addressed by their specific
hexadecimal address. A group of bytes combined to

form a halfword or a fullword are addressed by the
leftmost byte in the group. Halfword or fullword
operands must be positioned at an: address which is a
multiple of 2. Table 1. 5 illustrates the addressing
scheme.

For example, if the address referenced is 005015,
then:

A Byte-Oriented instruction would extract the
value 0116 as an operand.

A Halfword-Oriented instruction would extract
the value 0123 16 as an operand.

A Fullword instruction would extract the value
01234567 16 as an operand.

Note that if an instruction specified a halfword or
fullword operand whose address is not an even number
the next lower address is used. For example, if the
address referenced is 005516• then:

1. A Byte-Oriented instruction would extract
the value AB16 as an operand.

2. A Halfword-Oriented instruction would extract
the value 89AB16 as an operand.

3. A Fullword-Oriented instruction would extract
the value 89ABCDEF16 as an operand.

Hexadecimal Address

Hexadecimal 0050 00!11 0052 0053 0054 0055 OO!iG 0057
Contents 01 23 45 G7 89 AB CD EF

Byte By;te Byte Byte Byte Byte Byte Byte

~\'ord Length I---Halfword Halfword Halfword Halfword-
Positions Fullword Fullword

Table 1. 5 Memory Address Data

1-10

HALFWORD

,~ 1' INTEGER
151

,~ 1' INDEX QUANTITY
151

FULLWORD

l ~I' INTEGER PRODUCT
311

0 I

Isl INTEGER DIVIDEND
311

Fig. 1. 7 Fixed-Point Word Formats

1.5 DATA

1.5.1 Fixed-Point Data

The basic Fixed-Point Arithmetic operand is the 16-
bit halfword. In multiply and divide operations, 32-
bit fullwords are manipulated. See Fig. 1. 7.

Fixed-point data is treated as signed, 15-bit integers
in the halfword format, or as signed, 31-bit integers
in the fullword format. Positive numbers are ex­
pressed in true binary form with a sign bit of zero.
Negative numbers are represented in two's comple­
ment form with a sign bit of one. The numeric value
of zero is always represented with all bits zero.
Table 1. 6 shows several examples of the fixed-point
number representation used in GE-PAC 30 Systems.

The Halfword Arithmetic operand matches the address
field of an instruction, permitting Fixed- Point Arith­
metic instructions to be used for address arithmetic.
Logical, and shift instructions can also be used for
address manipulation or computation.

Number Decimal

15
2 -1 327137 0111

20 1 0000

0 0 0000

-20 -1 1111

-2
15

-32768 1000

For details on manipulating fixed-point quantities,
refer to Section 4. 3.

1.5.2 Floating-Point Data

A Floating-Point number consists of a signed exponent
and a signed fraction. The quantity expressed by this
number is the product of the fraction and the number 16
raised to the power of the exponent. Each Floating­
Point value requires two halfwords. The Floating:­
Point format is shown in Fig. 1. 8.

1:1 ·" x '!' Fl ·r F2 "I F4 F5 F6

Fig. 1. 8 Floating-Point Word Format

Sign and magnitude representation is used, in which
the sign bit S is zero for positive values, and one for

Binary

I

1111 1111 1111

0000 0000 0001

0000 0000 0000

1111 1111 1111

0000 0000 0000

Table 1. 6 Examples of .Fixed-Point Representation

1-11

negative values. The exponent Xis expressed in
excess 64 binary notation; that is, field X contains the
true value of the exrionent +64.

The fraction contains six hexadecimal digits Fl-F6.
The value of a floating-point fraction can be ex­
pressed as follows:

A normalized floating-point number has a non-zero
high-order hexadecimal fraction digit (F1). If the high­
order hexadecimal fraction digit (F 1) is zero, the
number is said to be unnormalized. The range of the
magnitude (M) of a normalized floating-point number is:

or approximately

All floating point numbers are assumed to be normal­
ized prior to their use as operands. No pre-normal­
ization is performed, all results are post-normalized.
The Floating-Point Load instruction will normalize
unnormalized floating-point numbers.

Exponent overflow is defined as a resultant exponent
greater than 63. Exponent underflow is defined as a
resultant exponent less than -64. The Overflow Flag
is set whenever e·xponent overflow or underflow is

Value

1. 0 0100
0000

-1. 0 1100
0000

9.5 0100
0000

-0.5 1100
0000

-6
-(1-16).16

63
1111
1111

-16
-65

1000
0000

-6
0.1 + 16 0100

1001

detected. The Greater Than flag is set on positive
overflow, the Less Than flag is set on negative over­
flow, and both flags are reset on underflow. If over­
flow, the exponent and fraction of the result are set to
all ones. The sign of the result is not affected by the
overflow. If underflow, the sign, .exponent and frac­
tion of the sum are set to zero.

The floating-point value in which all data bits are zero
is called true zero. A true zero may arise as the
result of an arithmetic operation because of exponent
underflow or when a result fraction is zero because of
loss of significance. In general, zero values partici­
pate as normal numbers in all arithmetic operations.

There are eight 32-bit Floating-Point Registers,
which are addressed with the even numbers 0, 2, 4,
•••• , 14. The Floating-Point Registers are separate
from the General Registers and are addressable only
by the Floating-Point instructions, which are de­
scribed in Section 4. 6.

1. 5. 3 Logical Data

Logical operations in the GE-PAC 30-2E, manipulate
8-bit bytes, 16-bit halfwords, and 32-bit fullwords.
All bits participate in logical operations. The data
words have the format shown in Fig. 1. 9.

For upward compatibility with future machines,
boundry conventions for halfwords and fullwords
should be observed.

Binary

0001 0001 0000
0000 0000 0000

0001 0001 0000
0000 0000 0000

. 0001 1001 1000
0000 0000 0000

0000 1000 0000
0000 0000 0000

1111 1111 1111
1111 1111 1111

0000 0001 0000
0000 0000 0000

0000 0001 1001
1001 1001 1010

Table 1. 7 Examples of Floating-Point Representation

1-12

I° 7 • LOGICAL DATA I

I° LOGICAL DATA
151

I° LOGICAL DATA
311

Fig. 1. 9 Logical Data Word Formats

1-13

SECTION 2
INTERRUPT SYSTEM

2.1 INTERRUPT PROCEDURE

The Interrupt structure of the GE-PAC 30-2E provides
rapid response to external and internal events that re­
quire service by special software routines. In the
interrupt response procedure, the Processor preserves
the current state of the machine, and branches to the
required service routine. The service routine may
optionally restore the previous machine state upon
completion of its service. The several types of inter­
rupts in the GE-PAC 30-2E are listed in Table 2.1
along with their associated enable/disable PSW bits.
Interrupts without a controlling PSW bit are always
enabled.

Interrupts can occur at various times during process­
ing. The Arithmetic Fault Interrupts occur during
execution of user instructions. The Illegal Instruction
and Protect Mode Interrupts occur as soon as the of­
fending instruction is recognized. The Supervisor
Call Interrupt occurs as part of the execution of the
Supervisor Call instruction. The Machine Malfunction
and I/O Service Interrupts occur following instruction
execution. The I/O Termination Interrupt can also
occur during a Load Program Status Word or Ex­
change Program Status instruction.

The Interrupt Procedure of the GE-PAC 30-2E is
based on the concepts of Old, Current, and New Pro­
gram Status Words. The Current PSW, contained in a
hardware register, defines the operating status of the
machine. When this status must be interrupted, the
Current PSW becomes an Old PSW and is stored in a
core location dedicated to the type of interrupt that has
occurred. The New PSW becomes the Current PSW by
being loaded from a dedicated core location into the
hardware PSW Register. The status portion of the
Current PSW now contains the operating status for the

INTERRUPT PSW CONTROL BIT

External 1

Machine Malfunction 2

Fixed-Point Divide Fault 3

Automatic I/O Service 4

Floating- Point Arithmetic
Fault 5

I/ 0 Termination 6

Protect Mode 7

Illegal Instruction

Termination Queue
Overflow

Supervisor Call

Table 2. 1 Interrupts

interrupt service routine, and the location counter
points to the first instruction in the service routine.
New Program Status Words for interrupts controlled
by PSW bits should disable interrupts of their own
class. Interrupts controlled by bits 1 and 6 must dis­
able interrupts of their own class to prevent the
Processor from going into an endless loop. The in­
dicated core locations for Old and New Program
Status Words are shown in Section 1. The Program
Status Word exchange procedure does not change the
contents of the New PSW location, and subsequent in­
terrupts of the same type are treated in the same way.

2.2 INTERNAL INTERRUPTS
The GE-PAC 30-2E can generate six Internal Interrupts.
Of these the Illegal Instruction and the Supervisor Call
cannot be inhibited. Inhibited Internal Interrupts are
not queued.

2.2.l Fixed-Point Divide Fault Interrupt

The Fixed-Point Divide Fault Interrupt, enabled by bit
3 of the Program Status Word, is indicative of division
by zero or quotient overflow. Quotient overflow is
defined as quotient magnitude greater than 215. The
interrupt takes place before modification of the oper­
and registers. After a Fixed-Point Divide Fault
Interrupt, the Old PSW location counter points to the
next instruction following the Divide instruction.

2.2.2 Floating-Point Arithmetic Fault Interrupt

The Floating-Point Arithmetic Fault Interrupt enabled
by bit 5 of the Current PSW, occurs on exponent over­
flow or underflow as well as on division by zero. In
the case of division by zero, the interrupt takes place
prior to alteration of the operand register. An expo­
nent overflow sets the result to _:!::X'7FFF FFFF'. An
exponent underflow sets the result to X'OOOO 0000'.
The location counter of the Old PSW points to the next
instruction. Refer to Section 4. 6 for more explanation
of floating-point instructions.

2.2.3 Machine Malfunction Interrupt

Bit two of the Current Program Status Word controls
the Machine Malfunction Interrupt. This error can
occur on either a memory parity error or during the
restart process following a power down. If the mem­
ory is equipped with the Parity Option, the parity bit
of each memory byte is set to maintain odd parity.
This bit is recomputed during each memory read; if
the computed bit is not equal to the transferred bit,
and if bit two of the current PSW is set, the Current
Program Status Word is stored at the Machine Malfunc­
tion Old PSW location, and the Current PSW is loaded
from the Machine Malfunction New PSW location. It is
not possible to guarantee programmed recovery from a
parity error.

In a power fail situation, the GE-PAC 30-2E Proces­
sor stores the Current Program Status Word in

2-1

locations X'0024' through X'0027 1 and the General
Registers in the consecutive locations starting at the
address contained in location X'0022 '. When power
returns, the registers are reloaded and the Current
PSW is restored from locations X'0024 1 through
X'0027 1• Ifbittwoofthis (Machine Malfunction) PSW
is set, the Processor makes a PSW exchange from
the Machine Malfunction location. The software ser­
vice routine for the Machine Malfunction Interrupt can
differentiate between memory parity error and power
failure by comparing the location counter of the Ma­
chine Malfunction Old PSW with the contents of loca­
tions X'0026 1 and X'0027' (Power Fail PSW save area).
If they are equal, a power failure has occurred.
Pressing the Initialize switch on the console causes
the Processor to clear device interrupts and go through
the power fail and restart sequence.

2.2.4 Illegal Instruction

The Illegal Instruction Interrupt is not represented by
an enabling bit in the PSW, and is therefore always
operative. An Illegal Instruction is defined as an
operation code that cannot be decoded into a legal
operation for processing. No attempt is made to exe­
cute the Illegal Instruction, nor is the Location
Counter of the Current PSW incremented. The Old
PSW stored as a result of an Illegal Instruction Inter­
rupt points to the address of the Illegal Instruction.

2.2.5 Protect Mode Violation

The Protect Mode Violation Interrupt is enabled when
Bit 7 of the Current PSW is set, which puts the Pro­
cessor in the Protect Mode. The interrupt occurs,
in this mode, when an attempt is made to execute a
privileged instruction. Privileged instructions are
all I/O instructions, and System Control instructions:
Load Program Status Word, Exchange Program Status,
and Simulate Interrupt which are described in Chapter
4. When such an instruction is attempted in this mode,
the instruction is not executed, and the Illegal Instruc -
tion Interrupt procedure takes place, as described
above. The Location Counter is not incremented,
and the Old PSW then points to the Privileged instruc­
tion that caused the interrupt.

2.2.6 Supervisor Call (SVC)

This interrupt occurs as the result of an SVC Instruc­
tion, which is used to communicate between running
programs and operating systems. When an SVC In­
struction is executed, the following action takes place:

2-2

1. Current PSW is stored at the Supervisor Call
Old PSW location.

2. The effective address from the SVC Instruc­
tion is $tored at the Supervisor Call argument
pointer, location X '0094 1•

3. The status portion of the current PSW is
loaded from the Supervisor Call New Status
location, location X'009A '·

4. The Current Location Counter is loaded from
one of the Supervisor Call New instruction
address locations. The Supervisor Call
Interrupt is not Inhibitable.

2.3 INPUT /OUTPUT CONTROL
INTERRUPTS

If individually enabled by the program, a peripheral
device is allowed to request Processor service when
the device itself is ready to transfer data. The
Processor may respond to this signal in several ways
depending on the setting of certain bits in the Program
Status Word. The GE-PAC 30-2E has two classes of
interrupts directly related to peripheral device hand­
ling. These are External Interrupt and the Immediate
Interrupt. Two other classes, the I/O Termination
Interrupt and the Termination Q.ueue Overflow Inter-·
rupt can occur upon termination of an Interrupt Ser­
vice Block sequence. PSW Bits 1 and 4 in combination
control the External and Immediate Interrupts.

If Bit 1 is reset, I/O Device Interrupt signals are
ignored. The signal remains pending, however, until
PSW Bit 1 is set and the signal is acknowledged, Bit 6
of PSW controls the I/O Termination Interrupt. The
Termination Queue Overflow Interrupt is always
enabled.

2.3.1 External Interrupt

If Bit 1 of the Current PSW is set, and if Bit 4 is reset,
an I/O Device Interrupt signal results in the following
action: The Current PSW is stored at the Input/Output
Interrupt Old PSW location. The Current PSW is
loaded from the Input/Output New PSW location. From
this point, software must acknowledge the interrupt,
identify the device, and take appropriate action. Note
that the New PSW for External Interrupts must have
Bit 1 reset.

2.3.2 Immediate Interrupt

ff both Bit 1 and Bit 4 of the Current PSW are set, an
interrupt signal from a peripheral device results in
the following Automatic I/O Service, The signal is
automatically acknowledged and the device number
returned is used to index into the Service Pointer
Table in locations X'OODO' to X'02CF', see Section
3. The Service Pointer obtained is the address of
either an Old PSW save area or a Function Word of
an Interrupt Service Block. If Bit 15 of the service
pointer is reset, the address contained is that of an
area of core defined as follows:

ADDRESS

(Service Pointer)

(Service Pointer) +2

CONTENTS

"Old" PSW Status and
Condition Code.

"Old" PSW Location
Counter.

(Service Pointer) +4 "New" PSW Status and
Condition Code.

(Service Pointer) +6 First Instruction in
Interrupt Service
Subroutine.

The Current PSW is stored in the fullword location
whose address is contained in the Service Pointer
Table. The halfword whose address is the contents of
the Service Pointer Table plus four contains the New
PSW Status and Condition Code fields. The Location
Counter is set to a value equal to the contents of the
Service Pointer Table plus six and instruction execu­
tion resumes.

Current PSW (0:31) - ((SERVICE POINTER))
PSW (0: 15) - ((SERVICE POINTER)+4)
PSW (16:31)- (SERVICE POINTER)+6

Through this Immediate Interrupt mechanism, a unique
service routine for any device number can be automat­
ically entered. Exit from the routine is made by
executing a Load Program Status Word instruction
specifying the Old PSW location at the origin of the
subroutine.

If Bit 15 of the Service Pointer is set, the address
contained is that of an Interrupt Service Block imply­
ing that Automatic I/O service is required. This
Processor activity is described in Section 3.

2.3.3 1/0 Termination Interrupt

The termination of an Interrupt Service Block (ISB)
operation may result in the storing of a termination
pointer in the circular list located at the address
specified by the Queue Pointer Location. If at this
time, Bit 6 of the Current PSW is set, the Current
PSW is stored at the I/O Termination Old PSW location
and the Current PSW is loaded from the I/O Termina­
tion New PSW location. In this way, the control soft­
ware is notified of the completion of an ISB operation.
Whenever the Processor executes a Load Program
Status Word instruction or an Exchange Program
Status instruction, it checks Bit 6 of the newly loaded

PSW. If Bit 6 of loaded PSW is set, and there is an
entry in the queue, this interrupt is taken. This is
described in more detail in Section 3.

2.3.4 Termination Queue Overflow Interrupt

If the Processor attempts to enter an I/O Termination
pointer in the Termination Queue and the queue is al­
ready full, it stores the termination pointer at loca­
tion X'008A', the Overflow Termination Pointer Lo­
cation; stores the Current PSW in the Queue Over­
flow Old PSW location; and loads the Current PSW
from the Queue Overflow New PSW location. This
interrupt cannot be disabled.

2.4 SPECIAL INTERRUPTS
The GE-PAC 30-2E Processor provides one special
interrupt. This is the Console Interrupt.

2.4.1 Console Interrupt
The GE- PAC 30-2E provides for operator interven­
tion in the following manner. If Bit 4 of the Current
PSW is set, the Register Display switch in the OFF
position (no registers selected), and the Mode Control
switch in RUN, depressing the EXECUTE switch
causes an Interrupt signal from Device 01. Servicing
this signal can be accomplished through the Immediate
Interrupt or the Interrupt Service Block.

2.4.2 Memory Protect Interrupt

If Bit 7 (Protect Mode) of the Current PSW is set, the
Processor is said to be in the Protect Mode. Should
the user at this time attempt to store into a protected
core area (as defined by the mask in the Memory Pro­
tect Controller), an Interrupt signal is generated by
the Memory Protect Controller. Furthermore, if
Bit 1 (External Interrupt Enable) of the Current PSW
is set, this interrupt is recognized and appropriate
action can be taken. Refer to Appendix 8 for details
on the Memory Protect Controller. Note that if the
External Interrupt is disabled, the Memory Protect
Interrupt cannot occur, however, the store operation
is ignored and execution resumes at the next instruc­
tion.

2-3

SECTION 3
INPUT/OUTPUT

3.1 INTRODUCTION

The input/output structure of the GE-PAC 30-2E pro­
vides a high degree of flexibility in controlling and
communicating with peripheral devices. It can per­
form data transfers in any of several ways. The
choice of which input/output method to use depends on
the particular application and on the characteristics of
the external devices. The primary methods of data
transfer between the Processor and peripheral devices
on the Multiplexor Bus are:

1. One byte or one halfword to or from any of
the General Registers.

2. One byte or one halfword to or from core
memory.

3. A block of data to or from core memory under .
direct Processor Control.

4. A block of data to or from core memory
under control of an Interrupt Service Block
(ISB).

5. A block of data to or from core memory
under control of the Selector Channel.

Up to 256 devices or device controllers can be con­
nected to the Multiplexor Bus. In general, GE-PAC 30
standard device controllers expect a predetermined
sequence of commands to effect data transfers. These
commands address the device, put it in the correct
mode, cause data to be transferred, and in some
cases, deactivate the device. The proper sequence of
commands for any device can be initiated through Pro­
gram Controlled I/O or ISB programming techniques.
For details on any particular device, refer to the Pro­
gramming Specifications or manual for the device.

3.2 PROGRAM-CONTROLLED 1/0

Programmed-Controlled I/O makes use of programmed
instructions to transmit a proper sequence of com­
mands to device controllers. The exact order of
instructions depends on the nature of the device in use.
There are two types of operations for program-con­
trolled I/O: status monitoring and interrupt drive.
Status monitoring I/O operates with the I/O Interrupt
enable bit (bit 1) of the Current Program Status Word
in the disabled state. The program repeatedly tests
device status, waiting for the device controller to be
ready to accept commands. The following steps de­
scribe a general approach to this type of programming:

l. An Output Command instruction addresses the
device and sets the proper mode.

2. A Sense Status instruction tests the state of
the device; i.e.; busy, device unavailable, etc.

3. A Conditional Branch instruction loops back
to the Sense Status instruction until the
device is ready to transfer data.

4. When the device is ready, a Read or Write
instruction causes the data transfer to take
place.

All Input/Output instructions are described in Section
4. 10. The I/O instructions to devices on the Multi­
plexor Bus address the device and perform the speci­
fied operation in a request/response fashion. If a
non-existent device is addressed, or if the device fails
to respond in time, the instruction "times out", and
indicates this action to the program in the Condition
Code. This time-out feature assures that a program
can never "hang up" due to an I/O programming error
or a device failure.

Note that all I/0 Instructions are privileged and pro­
gram-controlled I/O can be performed only with the
Processor in the Supervisor Mode.

3.3 INTERRUPT-DRIVEN 1/0

Interrupt Driven I/O takes advantage of the interrupt
structure of the GE-PAC 30-2E to overlap data trans­
fers with program execution. Two types of I/O Inter­
rupts can be used:

l. The External Interrupt, which is enabled if
bit l of the Current PSW is set and bit 4 of
the PSW is reset, this is compatible with the
GE-PAC 30-1 and 30-2.

2. The Immediate Interrupt, which is enabled if
bit 1 and bit 4 of the Current PSW are set,
and is unique to the GE-PAC 30-2E.

These interrupts are described in Section 2. The pro­
gramming techniques for both are similar. Both
require that before I/ 0 transfer is initialized, the
device be initialized with the Output Command instruc­
tion. Both require that the programs overlapped with
data transfers run with the I/O Interrupt bit (bit 1) of
the Current Program Status Word in the enabled state.

When an External Interrupt occurs, the New PSW at
X 10044 1 must have bit 1 reset, and the interrupt ser­
vice routine must acknowledge the- interrupt with an

3-1

Acknowledge Interrupt Instruction. This instruction
returns the address of the interrupting device which
the program uses to vector the appropriate routine
for data transfer. The program exits by executing a
Load Program Status Word instruction specifying the
old External Interrupt location at 0040.

When an Immediate Interrupt occurs, the Processor
has already acknowledged the interrupt condition,
obtained the device number, stored the Current PSW
at the origin of the interrupt service routine, and
loaded the New Program Status Word from next sequen­
tial location. The program can service the device
without further identification and exit by executing a
Load Program Status Word Instruction specifying its
own origin as the load location.

In general, Interrupt Driven 1/0 takes more program
steps to set up the appropriate pointers, and New
PSWs, but much less processor execution time is re­
quired. This is because programs can avoid using
Sense Status instruction loops to determine the condi­
tions of a peripheral device, which is normally very
slow compared to the execution rate of the Processor._

3.4 BLOCK 1/0

The Read Block (RB or RBR) and Write Block (WB or
WBR) instructions are appropriate for record-oriented
devices which operate at moderate to high speed,
which is approximately 20K-150K bytes per second.
For data transfers at this .rate, Interrupt-Driven I/O
is not appropriate since all the Processor time would
be consumed servicing interrupts.

The Read Block and Write Block instructions greatly
simplify programming in this case. A single instruc­
tion causes information to be transferred between a
device and sequential location in core memory. Trans­
fer is terminated when a predetermined location is
reached, or when an unusual device status is
encountered.

Prior to block transfer, Output Command and Sense
Status instructions are used to specify the function
and test the status of the device. The block transfer
instruction can then perform all remaining steps of
input/ output. Note that the complete attention of the
Processor is given to the data block transfer and
that normal processing will not resume until com­
pletion of this instruction. Also, this instruction is
non-interruptable. An alternate method of handling
block transfers is to use the Interrupt Service Block
as described in the next section. For very high speed
devices, up to 500K bytes per second, the Selector
Channel is required, see Section 3. 8.

3.5 AUTOMATIC 1/0 PROGRAMMING

The GE-PAC 30-2E Automatic 1/0 controls the activi­
ties of peripheral devices. The execution of the

3-2

Automatic I/O takes place in between the execution of
user instructions and results in a program delay
rather than a program interrupt with an exchange of
Program Status Words. The Automatic 1/0 may gen­
erate an interrupt because of abnormal conditions or
because of the occurrance of an event for which the
software had requested an interrupt. Bits 1 and 4 of
the Current Program Status Word control the opera­
tion of the Automatic I/O. Both of these bits must be
set to permit Automatic I/O operations. Operation
also depends on the Service Pointer Table, and the
Interrupt Service Block with its associated Function
Word, and the I/O Termination Queue, see Fig. 3. 1.

3.5.1 Service Pointer Table

The Service Pointer Table starts at location X'OODO '·
It contains a halfword entry for each of the 256 possi­
ble peripheral device addresses. If bit 15 of the entry
in this table is reset, then the entry is the address of
an Immediate Interrupt PSW exchange location as
described in Section 2. If bit 15 of the entry is set,
then the entry minus one is the address of an ISB
Function Word.

3.5.2 Interrupt Service Block

The Interrupt Service Block contains the ISB Function
Word plus the storage locations and data required for
the operation. The ISB Function Word is a bit en­
coded command that completely describes the Auto­
matic I/O Operation. Note that it is the address of
the Function Word plus one that is entered in the
Service Pointer Table. A complete Interrupt Service
Block is shown in Fig. 3. 2.

3.5.3 1/0 Termination Queue

The I/O Termination Queue is a circular list identical
to those described in Section 4 under "list instructions'~
The queue may be set up at any convenient core loca­
tion. The maximum size of the queue allows for 255
entries, but any convenient length may be used. The
address of the queue must be stored at location X'0080'
prior to starting any ISB function. The GE-PAC 30-2E
uses the queue to indicate termination of an ISB
operation.

3.5.4 General Operation

When the Processor detects the presence of an inter­
rupt signal from a peripheral device, it automatically
acknowledges the signal and obtains the address of the
device. It uses the device address times two to index

BIT I or CUPilENT
PS I'/ ~;f. T

BIT <'\ OF curmENT
x'oo40['

·-·---··----·-------
''SW flESET

EXTrntrnL
iNTElmUPT PSW

EXCHANGE

IMMEDlf,TE
£_\<0,..--"' RRUPT PSW

'i: EXCHANGE

x'oooo'f.?__" . -11 £>'~
. IMMEDIATE llHERRUPT LOCATION~ O 15

- \\'I Q\~ !------------------·-~ c1»r>- ,· 1ol'l
, --------- \fF\h'·\~ CHAIN VALUE

[]
fi;,-rnr:JP:- $Er.VICE 8LOCK LOC,HION ~'7" DEVICE NUMBER 1 ·.-__ S_T_A_T_U_S_
----·-- t::o-::-:-.fS 1---- .

lJ,:;ls FUNCTION WORD
!---------------~--·! Otvr:: ----··--------------!

X'OOBO'C-A(QUEU_E_l_

INTERRUPT SERVICE
BLOCK

0

A(!SB)
t---~·---~

I/O TERMINATION
QUEUE

15

Fig. 3. 1 Automatic I/O Operation Block Diagram

into the Service Pointer Table to the entry reserved
for the device. If bit 15 of the entry is reset, the
Processor takes an Immediate Interrupt. If bit 15 is
set, the Processor activates the Automatic I/O. The
Automatic I/O uses the entry minus one to locate the
ISB Function Word. It decodes the function word and
performs the required service, using the data entries
in the Interrupt Service Block as necessary. If the
operation for this device is not yet complete, the
Automatic I/O returns control to the Processor. The
Processor now checks for pending interrupt signals.
If none are present, it continues program execution.
If any are present, it services them before returning
to program execution.

If it is determined that the operation for this device is
complete, it terminates the operation by storing the
device address and final status in the ISB, and for
data transfers by changing the Function Word to a "no
operation". This causes subsequent interrupt signals
from the device coming to this Interrupt Service Block
to be ignored. At this point, the ISB can take any or
all of the following actions:

1. Make an entry in the I/O Termination Queue.

2. Chain to another Interrupt Service Block.

3. Generate an Immediate Interrupt.

3-3

0 15

CHAIN VALUE I- R::OUI RED IF CHAINING
SPECIF! ED

FILLED IN BY ROM _..,. DEViCE NUt,w<:R T FIN/l.L STATUS I- FILLED IN BY ROM

HlNCTIOf~ V/ORD
..

~ START ADDRESS 01-t COUNT r-BUFFER START FOR DATA
TRANSFERS
BUFFER END FOFi DATA --- END ADDRESS

COUiff REQUIRED FOR
DECREMENT MEMORY AND
TEST

Tf!ANSFERS
OUTPUT COMMAND BYT
FOR JNJrJA LIZATION

E --o COMMAND BYTE I lERMltJf•L CHAR/\CTER +- REQUIRED IF TERMINAL
CHARACTER CHECKING
SPECIFIED FOR DATA TRANSFERS

Fig. 3. 2 Interrupt Service Block

The action taken by the !SB depends on the bit con­
figuration of the Function Word. Fig. 3. 1 shows the
ISB Operation in block diagram form. Appendix 7
contains complete flow charts of the operation.

In the queuing operation, a Queue Overflow Interrupt
is generated if the queue is full when an ISB attempts
to make an entry. This interrupt is described in
Section 2.

3.6 ISB FUNCTION WORD

There are three phases involved in ISB operations.
These are:

1. Initialization

2. 1/0 Operation

3. Termination

All three phases are controlled by the bit configuration
of the Function Word. A single Function Word can be
encoded to perform all three types of operation. The
bit assignments for Function Word is shown in Fig.
3. 3.

INT.T
NOP

READ

WRITE

DMT

NULL

0 I 2 3 4 5 6 7 0 9 10 II 12 13 14 15

I 0

I

0 0

0 0

0 I

0 I

0

I

0

I

''--""T-_ _,/
L BYTES PER

INTERRUPT
SIGNAL

I CONTINUE

I l --CHAIN l I ·UNASSIGNED MUST BE ZERO

L - OUTPUT COMMAND

HI/LO

QUEUE

TERMINAL CHARACTER

UN-ASSIGNED MUST BE ZERO

Fig. 3. 3 Bit Configuration for ISB Function Word

3-4

3.6.1 Initialization

Bits 0 (!NIT) and 8 (Output Command) of the Function
Word control the initialize phase of channel operations.
If bit 0 (!NIT) is set when the ROM decodes the com­
mand word, it resets bit 0 (INIT) and checks bit 8
(Output Command). If bit 8 is set, the ROM issues the
output command located at the start of the Interrupt
Service Block plus ten and returns control to the Pro­
cessor. Operations with the device resume when an
interrupt signal occurs from the device. Since the
ROM resets bit zero, it can pass through the initialize
phase only once. This phase is optional. The soft­
ware may initialize the device by Output Command
instructions prior to starting the I/ 0 operation. The
bit configurations of the Function Word for the Initiali­
zation phase are illustrated in Fig. 3. 4.

BIT 1 o , 2 3 4 5 6 7 8 9 1,o I " 12 13 f rl
_ 1 I I I I I I I 1°1 .. I I _J__

BIT

ISB FUNCTION WORD FOR INITIALIZE WITHOUT
OUTPUT COMMAND

O I 2 3 4 5 6 7 f< 9 10 11 12 13 14 15

I 1 I I I I I I I I 1 I I I I I I I I
ISB FUNCTION WORD FOR INITIALIZE AND
OUTPUT COMMAND

Fig. 3. 4 Function Word for Initialize

and Output Command

3.6.2 1/0 Operations

There are five distinct types of I/O operations the
GE-PAC 30-2E can perform. These are:

1. Read

2. Write

3. Decrement Memory Test

4. No Operation

5. Null

The ISB configurations for these operations are illus­
trated in Fig. 3. 5.

The ROM decodes bits 1, 2, and 3 of the Function
Word to determine which of these operations to per -
form. It uses bit 5 and bits 12 through 15 for addi -
tional information on Read/Write operation.

For all Read/Write operations, bits 12 through 15
must contain the number of bytes to be transferred
on each interrupt signal. All zeroes in these posi­
tions indicate that sixteen bytes are to be transferred
on each interrupt signal. The two halfwords following
the Function Word in the Interrupt Service Block must
contain the starting address of the I/O Buffer and the
ending address of the I/O Buffer. After the number
of bytes specified for each interrupt signal have been
transferred, the starting address is incremented by
the appropriate amount and compared to the ending
address. If it is greater, the termination phase is
entered. If it is not greater, control returns to the
Processor for program execution. Bit 5 of the

t° I~ I~ I~ (I~ 161718191'°((:I:: 14:151
READ N BYTES PER INTERRUPT SIGNAL

Io I ~l~I~ i41~ 16171819 ((f2:1~ :14:151
READ N BYTES PER INTERRUPT SIGNAL -

TERMINATE ON TER Ml NAL CHARACTER

Io I~ I~ I ~i4 I~ i6 I 7 l8 l9j'o(1'2:1~:14:15 1
WR!TE N BYTES PER INTERRUPT SIGNAL

Io I~ I~ I~ (I~ I 6 I 7 I 8 I 9 llo ((:1~ :14 :15 I
WRITE N BYTES PER INTERRUPT SIGNAL -

TERMINATE ON TERMINAL CHARACTER

0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t I 0 I 1 I 0 I I I I I I I I I I I I I
DECREMENT MEMORY Jl.ND TEST

W> OPERAT!ON

NULL

Fig. 3. 5 Function Words for I/O Operation

Function Word controls the optional terminal charac­
ter data transfer. When this bit is set, the transfer
proceeds as described above with the exception that
the last byte transferred on each interrupt signal is
compared with the terminal character byte located at
Interrupt Service Block plus eleven. If these two
bytes match, the termination phase is entered. In
this way, termination can be terminated because the
buffer exhausted or a terminal character has been
found in the data stream.

Before starting a data transfer, the GE-PAC 30-2E
checks the device status. Any non-zero status condi­
tion will stop the transfer and cause the termination
phase to be entered. Before entering the termination
phase, the Initial (INIT) Bit and No Operation bit is
set in the Function Word, the Queue bit is set to force
an entry in the I/O Termination Queue, and the Chain
bit and Continue bit are reset to prevent chaining.

The Decrement Memory and Test Operation causes
the value contained in the halfword immediately follow­
ing the Function Word to be decremented by one for
each interrupt signal. The new value is compared to
zero. If greater than zero, control returns to the
Processor for program execution. If equal to zero,
the termination phase is entered without changing the
Function Word to a "no operation". Subsequent inter­
rupt signals from the device will cause the count field
to increase negatively.

The No Operation code in the Function Word indicates
that the ROM is to ignore any interrupt signal from
the associated device. The ROM itself sets this code
in the function word on completion of data transfers,
The software can use this code to ignore unsolicited
interrupt signals. The Service Pointer Table should
contain pointers to "no operation'.' control words for
all non-existent devices.

The Null Operation differs from the No Operation in
that while no I/O function is performed, the termina­
tion phase is entered without setting the No Operation
code.

3.6.3 Termination

The GE-PAC 30-2E enters the termination phase upon
completion of a data transfer, when the count field of
a Decrement Memory and Test operation has reached
zero, or when the Null Operation is decoded. All of
the operations in the termination phase are optional.
If none are specified, control returns to the Processor.
The two termination functions are Queue and Chain.
The Function Word bit configuration for Queuing and
chaining is shown in Fig. 3. 6. Bit 6 of the Function
Word controls queuing. If this bit is set, the ROM on
entering the termination phase stores the address of
the Function Word in the I/O Termination Queue. The
condition of bit 7 of the Function Word controls posi­
tioning within the queue. If bit 7 is set, the entry is
made at the bottom of the queue. If bit 7 is reset, the
entry is made at the top of the queue.

3-5

C.,UEUE AT DOTTOM

1°1 ' 1 2 1 3-e-r-r~·ra1_m~~n~m
QUEUE AT TOP

rrrf·1 4j~ffj~J 9 !'~1~1grrf1
CHAIN

CHAIN AND CONTINUE

Fig. 3. 6 Function Words for Termination

Bit 10 of the Function Word controls chaining. In this
operation, the ROM stores the first halfword of the
Interrupt Service Block in the appropriate location in
the Service Pointer Table for this device. This chain
value may be either the address of another Function
Word or the address of a PSW exchange location for
the Immediate Interrupt. Subsequent interrupt sig­
nals will be handled as indicated by this value. If the
chain bit and the continue bit (bit 11) are both set, the
ROM checks the new value placed in the Service
Pointer Table and takes appropriate action before re­
turning control to the Processor. In this way, depend­
ing on the new value stored in the Service Pointer
Table, the ROM can either generate an Immediate
Interrupt or start another I/O operation.

3.7 EXAMPLE OF AUTOMATIC
1/0 PROGRAMMING

This example of Automatic I/O Programming assumes
a teletypewriter located at physical address X'02 '.
The program is set up to:

1. Issue an Output Command to start the device.

2. Write 72 bytes from core memory to the
device, one byte per interrupt signal.

3. On completion of the transfer, make an entry
at the bottom of the I/O Termination Queue
and chain to a second Interrupt Service Block
without specifying Continue.

4. The second Interrupt Service Block writes an
additional 72 bytes to the device and termi­
nates by chaining to an Immediate Interrupt
and causing the interrupt to occur.

The first Interrupt Service Block is shown in Fig.
3. 7A. The Chain value is set to point to the second
Interrupt Service Block. The Status Byte and Device

3-6

Number are set to zero. The Function Word is set
for Initialize, Write, Queue, Queue Low, Output
Command, Chain, and transfer one byte per interrupt
signal,. The next two halfwords point to the beginning
and end of the 72 byte buffer. The Output Command
byte is set to enable and write. The user program
stores the address of this Interrupt Service Block in
location X'OOD4 ', the Service Pointer Table entry for
device X'02 '· It issues a Simulate Interrupt instruc­
tion specifying device X'02' to get the operation
started. On execution of the Simulate Interrupt in­
struction, the ROM issues the Output Command and
resets the Initialize bit. It gives control to the Pro­
cessor for the execution of normal instruction. As
each subsequent interrupt signal is received from the
device, the ROM outputs one byte until it has output
the entire buffer of 72 characters. In between each
interrupt signal it returns control to the Processor.
After the last byte has been transferred, it sets the
No Operation bit in the Funcfion Word, and puts the
address of the Function Word at the bottom of the I/O
Termination Queue located at the address specified by
the contents of X'0080', Termination Queue Pointer.
It stores the chain value (the address of the second
Function Word) in location X'OOD4 ', Service Pointer
Table entry for device X 102 '·

On the next and on each subsequent interrupt signal the
ROM is directed to the second Interrupt Service Block.
This block is illustrated in Fig. 3. 7B. The Chain
value points to an Immediate Interrupt location. The
status and device number are set to zero. The Func­
tion Word specifies Write, Chain, and Continue. The
ROM outputs the data as described above .until the last
byte is written. It then sets the No Operation bit,
stores the Immediate Interrupt address in the Service
Pointer Table loaction for device X 102 1, and generates
an interrupt allowing software to take over servicing
this device. If, during the data transfers, the ROM
had received an unsatisfactory status from the device,
it would have terminated the operation by setting the
Initialize and No Operation bits (bad status indicators)
in the Function Word, suppressed Chaining, and forced
an entry at the top of the I/O Termination Queue. Set­
ting the Continue bit in the second Function Word,
which causes the ROM to generate the Immediate Inter­
rupt on the same interrupt signal that caused output of
the last data byte. If this bit were reset, the next
interrupt signal from the device would generate the
Immediate Interrupt.

3.8 SELECTOR CHANNEL 1/0

3.8.1 Introduction

The Selector Channel controls the transfer of data be­
tween I/ 0 devices and core memory at rates of up to
500K bytes per second. Up to 25 I/O devices can be
connected to the Selector Channel, but only one device
can transfer data at a time. More than one Selector

ilEVICE NUMElER----!

OUTPUT COMMAND-·--!

INITIALIZE

0

DEVICE NUMBER -

0 -
ADDRESS OF SECOND ISB + 1

x 'oo' I x 'oo'

X 0 93Al 0

ADDRESS OF BUFFER START

ADDRESS OF DUFFER START +71

x '50' I

15

t--· -CHAIN VALlif

-STATUS ~-

- FUNCTION WORD i--

1--TERMINAL CHARACTER
(NOT USED)

5 6 7 8 9 10 II 12 13 14 15

0 0 I 0 0

WRITE

I 0 0 0 0 FUNCTION WORD

CHAIN

OUTPUT COMMAND

'----QUEUE LOW

..__--QUEUE

PER INTERRUPT SIGNAL

(A) First Interrupt Service Block

15

ADDRESS OF IMMEDIATE INTERRUPT ROUT. i-- CHAIN VALUE

STATUS

FUNCTION WORD

x'oo' l x'oo' I---
x'1031' 14-

ADDRESS OF BUFFER START

ADDRESS OF BUFFER START+ 71

T
OUTPUT COMMAND - ' -TERMINAL CHARACTER
(NOT USED, NOT REQ0D)'----- - -~ - ------' (NOT USED, NOT REQ 0D)

0 I 2 3 4 5 6 7 B 9 10 13 14 15

0 0 0 I 0 0 0 0 0 0 I 0 0 I FUNCTION WORD

~ I
LONE BYTE PER INTERRUPT SIGNAL

WRITE CONTINUE
CHAIN

(B) Second Interrupt Service Block

Fig. 3. 7 First/Second Interrupt Service Blocks

Channel can be incorporated in the system. The advan­
tage gained in using the Selector Channel is that other
program processing can occur simultaneously with the
transfer of data between the I/O device and core.

Fig. 3. 8 is a block diagram which shows the incorpo­
ration of the Selector Channel into the GE-PAC 30-2E
system.

This is accomplished by allowing the Selector Channel
and the Processor to access memory on a cycle­
stealing basis. In some instances, the execution time
of the program in process is affected, while in others,
the effect is negligible. This depends upon the rate at
which the Selecto_r Channel and Processor both com­
pete for access to memory.

3.8.2 Operation

Programming a device on the Selector Channel con­
sists of setting up the device, setting up the Selector
Channel, and sending a GO command to the Selector

3-7

I M~~~~y]

__ fl~-
,,;\..._..._, _____ ,

(HIGH SPEED MEMOHY BUSIHALFWORD)
~-----..------....----ll

SE..ECfOR
•.:HANNEL SMBI

· ;~ROCESSO'l

MuL. "'."IPLEXOR
, \.rlt.NNEL
\...- --...----

1---{
! ·~-~-~-

~"f;io~;:XOR BUS ~BYTE 1

~ f .
I

* DEVICE
CONTROLLER

DEVICE

DEVICE
CONTROLLER

DEVICE

DEVICE
CONTROLLER

Fig. 3. 8 Systems Interface Block Diagram

Channel. When all devices on the Selector Channel
are idle, the Selector Bus becomes a part of the Multi­
plexor Bus. This provides the path to set up the de­
vice and the Selector Channel. The last device ad­
dressed prior to sending the GO command is the
device the Selector Channel controls, assuming that
the device is connected. to the Selector Channel. The
program must, therefore, send the GO command be­
fore addressing any other devices.

During the data transfer, the Selector Channel pro­
vides a direct data path between the device and core
memory. Until the transfer is completed, no I/O
instructions can be issued to any device on the Selec­
tor Channel, including the device transferring data.

If devices on the Selector Channel are referenced
while the Channel is busy, the False Sync (V condition
code) bit is set. The setting up or the initialization of
the device is accomplished by executing an Output
Command (OC or OCR) instruction. Refer to the Pro­
gramming Manual for the device to be controlled for
the bit configuration of the Output Command. Note
that the Selector Channel has a unique device number
just as all other I/O devices. Output Commands, as
with all Input/Output instructions, affect only the
device addressed.

3-8

The Selector Channel has a 16-bit incrementing ad­
dress register and a 16-bit final address register.
The user program loads the starting core address into
the incrementing register and the final core address
into the final address register. Transfer is completed
when the incrementing address register matches the
final address register. The address limits are ex­
pressed inclusively; transfers begin and end on the
addresses placed in the starting and final address
registers.

Core memory in the GE-PAC 30-2E Processors is
addressed on halfword boundaries; that is, each time
memory is accessed two bytes or a halfword are ob­
tained. A 16-bit address register is used, with the
least significant bit, bit 15, being used to determine
the byte desired. See Fig. 3. 9.

Each time the Selector Channel accesses core mem­
ory, two bytes (a halfword) are transmitted. It is
mandatory that data transfers begin on a halfword
boundary. The following results if data transfers are
ended on byte boundaries:

1. Write Mode (Core to Device) ending on byte
boundary (bit 15 = 1) has no effect.

CORE MEMORY

HALFWOflD -------

0 7 8 15

EVEN SYTE ODD BYTE

BYTE BYTE

BYTE BYTE

BIT 15 = 0 BIT 15 = I

l~0~-~--~~~~------~-'4-t-1-15 BIT 15
_ MEMORY ADDRESS REGISTER I)-sPECIFIES ODD
-----------------_. ___ .,,_ OR EVEN BYTE

Fig. 3. 9 Memory Address

2. Read Mode (Device to Core) ending on byte
boundary (bit 15 = 1) causes the previous
contents of the last odd byte in core to be
written into the current odd byte in core,
see Fig. 3. 10.

The user program specifies the mode, either Read or
Write, and gives the GO command. The following
sections provide details for programming the Selector
Channel.

NOTE

When executing programs that in­
volve the use of the Selector Channel,
the Processor may not be run in the
Variable Mode.

3.8.3 Address Set-Up

An Output Command stop should be issued prior to
starting any operation on the Selector Channel. Four
successive bytes are required to specify the starting
and final addresses. Either the Write Data (WD or
WDR), Write Block (WB or WBR), or Write Halfword

NEXT TO LAST
HALF WORD

LAST HALF WOR D
0

2

0

EVEN BYTE

BYTE

7 8

(WH or WHR) Instructions may be used to send the
starting and final addresses to the Selector Channel
Controller. Fig. 3. 11 illustrates the meaning of
four bytes used for addressing. In addition it illus­
trates the meaning of Data Bytes when setting Start
and Final Address.

1. Starting Address High (bits 0-7)

2. Starting Address Low (bits 8-15)

3. Final Address High (bits 0-7)

4. Final Address Low (bits 8-15)

Fig. 3.11 Selector Channel Controller

3.8.4 Termination

Data transmission between the Selector Channel and
the device presently connected to it is halted if any of
the following conditions occur:

1. The starting address matches the final ad­
dress. This would be considered a normal
termination.

2. The starting (incrementing) address goes
from all ones to zero (maximum count). In
this case, no match occurred and this would
be considered an abnormal termination.

3. Any of the DU, EOM, or EX status bits of the
device presently connected to the Selector
Channel changes to a ONE. This is also an
abnormal termination.

15

ODD BYTE -

BYTE ~ BOTH BYTES HAVE
SAME VALUE

~ A T y I L S B TE SPEC FIED

Fig. 3. 10 Core Memory Configuration

3-9

4. A STOP Command is sent to the Selector
Channel Controller via a user program.

The termination condition is determined one of two
ways: by a status loop, or by the interrupt method.
An Output Command STOP, should be issued to the
Selector Channel following its termination.

3.8.5 Reading the Final Address

After Selector Channel termination, the last processor
core location either written into or read from may be
determined by executing a pair of Read Data (RD or
RDR) instructions or a Read Block (RB or RBR) or a
Read Halfword (RH or RHR) instruction. This infor­
mation permits a user program to verify a successful

3-10

data transmission or determine at what address
termination occurred.

Fig. 3.12 illustrates the meaning of the order in which
the data is read into the Processor, and the order in
which Read Data Instructions are executed.

1. Final Address High (Bits 0-7).

2. Final Address Low (Bits 8-15).

FINAL --10-HIGH-718-Low-151
ADDRESS I 2

Fig. 3. 12 Read Data Instructions
Configurations

SECTIOt:J 4
INSTRUCTION REPERTOIRE

4.1 INTRODUCTION

The instruction repertoire has been grouped by func­
tion in this Section. The use and operation of each
instruction is presented in the following format:

1. Instruction word chart for each instruction includ­
ing: mqemonic operation code, and first and sec­
ond operand designations in the correct assembler
format. The format type is designated by f RR],
[RX], [RSl, or [SF]. An instruction diag~am
with hexadecimal operation code and the locations
of all fields is also provided.

NHR Rl, R2 [RR]

I° 04
718 11112 151

RI R2

NH Rl,A(X2) [RX]

lo
44

718
Rl

11
1
12 X

2
15

1
16

A
311

NHI Rl,A(X2) [Rs]

lo
C4

718 11112 15i16
RI X2 A

311

2. A d0scription of instruction operation.

The logical product of the 16-bit second operand
and the content of the General Register specified
by Rl replaces the content of Rl. The 16-bit
product is formed on a bit-by-bit basis.

3. A diagrammatic representation of instruction
operation.

NHR:

NH:

NH!:

(Rl)- (Rl) AND (R2)

(Rl)- (Rl) AND [A + (X2)

(Rl)- (Rl) AND A + (X2)

4. A chart illustrating the possible variations of the
condition code in the Current Program Status
Word as a result of performing the instruction.
A l indicates set, a zero indicates reset. It is
important to note that any instruction which
changes the condition code can change all four
bits. The conditions listed on the chart are only
those conditions which are meaningful after a
particular instruction. Other bits may be changed,
but their condition is not meaningful.

Resulting Condition Code:

I.! 13 14 15

0 0 L0,1 ICAL PRODUCT IS ZERO

0 I }' LOGICAL. PRODUCT IS NOT ZERO
I Q

5. A programming note to provide additional perti­
nent or clarifying information. All privileged
instructions and those instructions which may
cause a memory protect violation are so noted.

Programming Note:

The AND HALFWORD IMMEDIATE (NHI) instruc­
tion produces a value which is the logical product
of the address field itself plus the content of a
General Register index (X2) with the first operand
General Register (Rl).

The truth table for the AND function is:

0 AND 0 0

0 AND 0

AND 0 0

AND i

The symbols and abbreviations used in the instruction
diagrams are defined as follows:

()

[1 -
A

Parentheses or Brackets. Read as
"the content of ... ".

Arrow. Read as "is replaced by
or "replacrs ... ".

I

The 16-bit halfword address which is
a part of the RX and RS instructions.

II

Rl The address of a General Register the
content of which is the first operand.

Ml

R2

Mask of 4 bits specifying Branch or
Condition testing.

The address of a General Register
the content of which is the second
operand of an RR instruction.

4-1

x·)

D

(0:7)

(8: 15)
(16:31)

PSW

cc

c

v

G

L

+

*

The address of a General Register
the content of which is used as an
index value.

The 4-bit second operand used with
Short Format immediate instructions.

The 4-bit displacement value used with
Short Format branch instructions.

A bit grouping within a byte, a half­
word, or a fullword. Read as "O thru
7 inclusive".
"bits 8 thru 15 inclusive", etc.

Program Status Word of 32 bits con­
taining the Status, Condition Code,
and current instruction address.

Condition Code of 4 bits contained in
the PSW.

Carry Bit contained in the condition
code (bit 12 of PSW).

Overflow Bit contained in the condition
code (bit 13 of PSW).

Greater Than Bit contained in the
condition code (bit 14 of PSW).

Less Than Bit contained in the condi­
tion code (bit 15 of PSW).

Arithmetic operations - Add,
Subtract,
Multiply,
and Divide respectively.

Logical comparison.

4.2 FIXED-POINT LOAD/STORE
INSTRUCTIONS

The Fixed-Point Load/Store Instructions are used to
transfer data between the General Registers and core
memory. The instructions described in this section
are:

LIS Load Immediate Short

LCS Load Complement Short

LHR Load Halfword RR

LH Load Halfword

LHI Load Halfword Immediate

LM Load Multiple

STH Store)Olalfword

STM Store Multiple

4-2

4.2.l Load Halfword

LIS Rl,N

lo 24 7 i8 Rl 11112 N 151

LCS Rl,N (SF]

lo
25

718 Rl 11112 N 151

LHR Rl,R2 [RR]

I° 08
71' Rl

11
1
12 R

2
15

1

LH Rl,A(X2)

lo
48

71' Rl 11112 X2 15 r6
A

LHI Rl,A(X2)

I° cs
718 Rl 11 112 X2 15 r6

A

The second operand is loa.ded into the General
Register specified by Rl.

LIS: (Rl) N
LCS: (Rl) -N
LHR: (Rl) (R2)
LH: (Rl) [A + (X2)]
LHI: (Rl)-A + (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

OPERAND IS ZERO

OPERAND IS LESS THAN ZERO

OPERAND IS GREATER THAN ZERO

. Programming Note:

Load Immediate Short (LIS) causes the 4-bit sec­
ond operand to be expanded to a 16-bit halfword
with high order bits set to zero. This halfword is
loaded into the General Register specified by Rl.

Load Complement Short (LCS) causes the 4-bit
second operand to be expanded to a 16-bit half­
word with high order bits set to zero. The two's
complement of this halfword is loaded into the
General Register specified by Rl.

These instructions may be used to preset a regis­
ter with an index value, load a register with the
first operand for a supplemental Arithmetic opera­
tion (e.g. Add, Multiply), or set the Condition

Code for supplemental testing by a Branch or
Condition Instructions.

The Load Immediate Short (LIS) and Load Comple­
ment Short (LCS) instructions are unique to the
GE-PAC 30-2E.

4. 2. 2 Load Multiple

LM Rl,A(X2) [RX]

I° 01
718 11112 15116

Rl X2 A
311

Sequential halfwords from memory are loaded into
successive General Registers, beginning with the
General Register specified by the Rl field. The first
halfword is defined by A + (X2). The operation is
terminated when R15 is loaded from memory.

Note that any number of sequential General Registers
can be loaded in this manner.

1. (Rl)--- [A + (X2)]

2. Rl: X'F'
if Rl = X'F', the instruction is finished
if Rl 7 X'F', then:

3. Rl Rl + 1

4. A A + 2, return to step 1

Resulting Condition Code:

Unchanged.

4.2.3 Store Halfword

STH

Rl 11
1
12 X

2
15

1
16

A

The 16-bit first operand is stored in the core memory
location specified by the second operand. The first
operand is unchanged.

(Rl) [A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

4.2.4 Store Multiple

STM Rl,A(X2)

I° DO 718 Rl 11112 X2 15116
A

[RX]
31 I

Successive General Registers are stored sequentially
into memory, beginning with the General Register
specified by the Rl field. The first storage address
is determined by A + (X2) . The operation is termi­
nated when Rl 5 is stored in memory. Note that any
number of sequential General Registers can be trans­
ferred in this manner.

1. (Rl) [A + (X2))

2. Rl: X'F'
if Rl = X'F', then instruction is finished
if Rl 7 X'F', then:

3. Rl Rl + 1

4. A ----- A + 2, return to step 1

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is subject to Memory Protect.

The Store Multiple Instruction in conjunction with
the Load Multiple Instruction is an aid to subrou­
tine execution. They permit the easy saving and
restoring of the registers required by the subrou­
tine. The Store Multiple Instruction can be used
upon entering the subroutine and the Load Multiple
would be the last instruction executed before
returning from the subroutine.

4.3 FIXED-POINT ARITHMETIC
INSTRUCTIONS

The Fixed- Point Arithmetic Instructions provide for
addition, subtraction, multiplication and division of
Fixed-Point data contained in the General Registers
and/ or core memory. Also included are logical and
Arithmetic compare operations. The instructions
described in this section are:

AIS Add Immediate Short

AHR Add Halfword RR

AH Add Halfword

AHI Add Halfword Immediate

AHM Add Halfword to Memory

ACHR Add with Carry Halfword RR

ACH Add with Carry Halfword

SIS Subtract Immediate Short

SHR Subtract Halfword RR

SH Subtract Halfword

SHI Subtract Halfword I~mediate

4-3

SCHR Subtract with Carry Halfword RR

SCH Subtract with Carry Halfword

CLHR Compare Logical Halfword RR

CLH Compare Logical Halfword

CLHI Compare Logical Halfword Immediate

CHR Compare Halfword RR

CH Compare Halfword

CHI Compare Halfword Immediate

MHR Multiply Halfword RR

MH Multiply Halfword

MHUR Multiply Halfword Unsigned RR

MHU Multiply Halfword Unsigned

DHR Divide Halfword RR

DH Divide Halfword

4.3.1 Add Halfword

AIS Rl,N

I° 26 7r RI 11112 N 151

AHR Rl,R2 [RR]

I° OA
718 11 r2 15

1 RI R2

AH Rl,A(X2)

lo 4A
718 RI 11112 X2 15r6

A

AHI Rl,A(X2)

I° CA
718 RI 11112 X2 15r6

A

AHM Rl,A(X2)

I° .61 . 718 RI 11 112 X2 15 r6
A

The second operand is algebraically added to the con­
tents of the General Register specified by Rl.

AIS: (Rl)----(Rl) + N
AHR: (Rl) (Rl) + (R2)
AH: (Rl) (Rl) + [A + (X2)]
AHI: (Rl) (Rl) + A + (X2)
AHM: [A + (X2)]-(Rl) + [A + (X2)]

4-4

Resulting Condition Code:

12 13 14 '5 ..
c v G L

0 0

0 i

I 0

I

I

SUM IS ZERO

SUM IS LESS THAN ZERO

SUM IS GREATER THAN ZERO

ARITHMETIC OVERFLOW

CARRY

Programming Note:

Add Immediate Short (AIS) causes the 4-bit second
operand (N) to be added to the contents of the Gen­
eral Register specified by Rl. The result re­
places the contents of Rl.

Add Halfword Immediate (AHI) produces a value
which is the algebraic sum of the address field it­
self plus the content of a General Register index
(X2), plus the first operand General Register (Rl).

Add Halfword to Memory (AHM) causes the second
operand [A + (X2)] to be added to the contents
of the General Register specified by Rl. The
result of the additio~ does not replace the contents
of Rl but instead is stored in core memory at the
address specified by A + (X2). The first operand
(Rl) remains unchanged. This instruction effec­
tively permits every location in core memory to
be used as a counter. This instruction is subject 1

to Memory Protect.

The Add Immediate Short (AIS) and Add Halfword
to Memory (AHM) instructions are unique to the
GE-PAC 30-2E.

4.3.2 Add with Carry Halfword

ACHR Rl,R2

I° OE 718

ACH

lo
Rl,A(X2)

~E . 7r

[RR]

A

The 16-bit second operand and the carry bit of the
condition code are algebraically added to the General
Register specified by Rl. The resulting sum is con­
tained in Rl, the second operand is unchanged.

ACHR: (Rl) ----(Rl) + (R2) + C
ACH: (R 1) (R 1) + [A + (X2)] + C

Resulting Condition Code:

SuM !S ..:F.RO

:OU'!. !.$:.ESS THAN ZERO

SUM !S GREATER THAN ZERO

MilTHMETIC OVERFLOW

CARRY

Programming Note:

Multiple precision addition operations require a
carry forward from the least significant operands
to the most significant. To accomplish this, the
locations containing the least significant portions
of the two operands are summed using the Add
Halfword instruction. A carry forward, if it
occurs, is retained in the carry bit position of
the codition code (PSW 12).

The locations containing the next least significant
portions of the two operands are then summed
using the Add With Carry Halfword instruction.
The carry bit contained in the condition code (set
from the previous addition) participates in this
sum; the carry bit position is then set to reflect
the new result.

The Add With Carry Halfword instruction is used
on succeeding pairs of operands until the most
significant operands of the multiple precision
words have been summed. The resulting condi­
tion code is valid for testing the multiple preci­
sion word.

4. 3. 3 Subtract Halfword

SIS Rl,N

I° 27 7r Rl
11

1
12 N 15

1

SHR Rl,R2

I° OB
718 11 r2 15

1 Rl R2

SH Rl,A(X2)

I° 4B 7r Rl 11 112 X2 15 r6
A

SHI Rl,A(X2)

I° CB
718 Rl 11 112 X2 15116

A

The second operand is subtracted from the General
Register specified by Rl. The difference is contained
in Rl, the second operand is unchanged.

SIS: (Rl)---- (Rl) - N
SHR: (Rl) (Rl) - (R2)
SH:
SHI:

(Rl) (Rl) - [A + (X2) 1
(Rl) (Rl) - A + (X2)

Resulting Condition Code:

12 13 14115

. c Y G L

01')
0 I

I 0

I

I

DIFFERENCE IS ZEJ• .. ;

DIFFERENCE IS LES$ THAN ZERO

DIFFERENCE IS GREATER THAN ZERO

ARITHMETIC OVERFLOW

BORROW

Programming Note:

The Subtract Immediate Short (SIS) instruction
causes the 4-bit second operand N to be sub­
tracted from the contents of the General Register
specified by Rl. This instruction is useful for
decrementing a register by a small value (e.g.
X'2').

The Subtract Halfword Immediate (SHI) instruc­
tion produces a value which is the difference be­
tween the first operand General Register (Rl)
less the sum of the address field itself and the
content of a General Register index (X2).

The Subtract Immediate Short (SIS) instruction is
unique to the GE-PAC 30-2E.

4.3.4 Subtract with Carry Halfword

SCHR Rl,R2

I° OF
7 r

SCH Rl,A(X2)

4F
7r

11112 15,16
Rl X2 A

The 16-bit second operand with the carry (borrow) bit
is subtracted from the General Register specified by
Rl. The difference is contained in Rl, the second
Gperand is unchanged.

SCHR: (Rl) (Rl) - (R2) - C

SCH: (Rl)- (Rl) - [A + (X2)] -C

4-5

Resulting Condition Code:

12 13 4 15 I

c v G L

0 0

0 I

I 0

I

I

DIFFERENCE IS ZERO

DIFFERENCE IS LESS THAN ZERO

DIFFERENCE IS GREATER THAN ZERO

ARITHMETIC OVERFLOW

BORROW

Programming Note:

See Add with Carry Halfword.

4.3.5 Compare Logical Halfword

CLHR Rl,R2 [RR]

OS
718 RI ll 112 R2 151

CLH Rl,A(X2)

45 A

CLHI Rl,A(X2) [RS]
31 I I° cs A

The first operand specified by Rl is compared logi­
cally to the 16-bit second operand. The result is
indicated by the setting of the condition code (PSW
12:15); both operands remain unchanged.

4-6

CLHR:
CLH:
CLHI:

(Rl)
(Rl)
(Rl)

(R2)
[A + (X2)]
A + (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

I

~L_._

FIRST OPERAND EQUAL TO SECOND OPERAND

} :~RESJAN~PERAND NOT EQUA-L-TOSECOND

FIRST OPERAND LESS THAN SECOND OPERAND

FIRST OPERAND EQUAL TO OR GREATER THAN
SECOND OPERAND.

Programming Note:

The logical comparison is performed by subtrac­
ting the second operand from the first operand.

The result is in the condition code setting, the
operands are not modified.

The Compare Logical Halfword Immediate (CLHI)
instruction produces a value which is the logical
comparison of the address field itself plus the
content of a General Register index (X2) with the
first operand General Register (Rl).

4.3.6 Compare Halfword

[RR]

CH Rl,A(X2)

lo
49

718 RI ll 112 X
2

15
1
16

A

CHI Rl, A(X2)

I° C9
718 Rl 11

1
12 X

2
15

1
16

A

The first operand specified by Rl is compared to the
sixteen-bit second operand. The comparison is alge­
braic, taking into account the sign and magnitude of
each number. The result is indicated by the setting
of the Condition Code (PSW 12:15)). Both operands
remain unchanged.

CHR:
CH:
CHI:

(Rl)
(Rl)
(Rl)

(R2)
[A + (X2l]
A + (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

I

0

FIRST OPERAND EQUAL TO SECOND OPERAND

FIRST OPERAND LESS THAN SECOND OPERAND

FIRST OPERAND GREATER THAN SECOND OPERAND

FIRST OPERAND LESS THAN SECOND OPERAND

FIRST OPERAND EQUAL TO OR GREATER THAN
SECOND OPERAND

Programming Note:

The Compare Halfword Instructions permit arith­
metic comparison of signed two's complement
sixteen-bit integers. They facilitate fast compari­
sons for DO loop and IF statement processing in
FORTRAN.

The Compare Halfword Instructions are unique to
the GE-PAC 30-2E.

4.3.7 Multiply Halfword

MHR Rl,R2 [RR]
lo oc 7r 11112 151

Rl R2

MH Rl,A{X2)

I° 4C
718

Rl
11

1
12 X

2
15, 16

A

The 16-bit second operand is multiplied by the con­
tents of the General Register specified by Rl + 1.
The Rl field of the instruction must specify an even
numbered register. The resulting 32-bit product is
contained in Rl and Rl + 1, an even-odd pair; the
second operand is unchanged. The sign of the product
is determined by the rules of algebra.

MHR: {Rl, Rl + 1)-(Rl + l)*(R2)
MH: (Rl, Rl + 1)-{Rl + l)*[A + {X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

After multiplication, the most significant 15 bits
with sign are contained in Rl. The least signifi­
cant 16 bits are contained in Rl + 1.

4.3.8 Multiply Halfword Unsigned

MHUR Rl,R2 [u]

9C

MHU Rl,A(X2)

DC
718

A

The 16-bit second operand is multiplied by the con­
tents of the General Register specified by Rl + 1.
All sixteen bits of both operands are considered to be
magnitude. The resulting 32-bit product is contained
in Rl and Rl + 1, the second operand is unchanged.
The Rl field of the instruction must specify an even
numbered register.

MHUR: {Rl, Rl + 1)-(Rl + l)*{R2)
MHU: (Rl, Rl + 1)-(Rl + l)'~(A + (X2)]

Resulting Condition Code:

Unchanged.

Programming Note:

This instruction is most useful in applications
requiring multiple precision multiply capability.
Typically, a multiply halfword instruction would
be used with the most significant halfwords of the
two operands after the least significant parts of
the two operands were multiplied using the Multi­
ply Halfword Unsigned instruction. The partial
products could then be summed.

The Multiply Halfword Unsigned instructions are
unique to the GE-PAC 30-2E.

4.3.9 Divide Halfword

DHR Rl,R2 [u]

I° OD 7r Rl

11
1
12 R

2
15

1

DH Rl,A(X2)

I° 4D
718 Rl 11112 X2 15 r6

A

The 16-bit second operand is divided into the 32-bit
dividend contained in the General Register specified
by Rl and Rl + 1. The first operand, Rl, must
specify an even numbered register. The resulting
15-bit quotient with sign is contained in Rl + 1; a
15-bit remainder with sign is contained in Rl, the
second operand is unchanged. The sign of the result
is determined by the rules of algebra; the sign of the
remainder is the same as the sign of the dividend.

DHR: {Rl + 1)-(Rl, Rl + 1)/(R2)
(Rl) -----Remainder

DH: (Rl + 1)-(Rl, Rl + 1)/(A + {X2)]
(Rl) Remainder

Resulting Condition Code:

Unchanged.

Programming Note:

Attempted division by zero or a quotient which
would be greater than X'8000 1 causes a Fixed­
Point Divide Fault Interrupt is enabled by bit 3 of
the Program Status Word. The operands remain
unchanged.

4.4 LOGICAL INSTRUCTIONS

The Logical instructions combine each bit of the first
operand with the corresponding bit in the second oper­
and. The instructions described in this section are:

NHR AND Halfword RR

NH AND Halfword

4-7

NHI AND Halfword Immediate

OHR OR Halfword RR

OH OR Halfword

OHI OR Halfword Immediate

XHR Exclusive OR Halfword RR

XH Exclusive OR Halfword

XHI Exclusive OR Halfword Immediate

THI Test Halfword Immediate

4.4.1 AND Halfword

NHR Rl,R2

r 04 71' RI 11 112 R2 151

NH Rl,A(X2)

I° 44
71' RI 11 r2 X2 15 r6

A

NHI Rl,A(X2)

I° C4
718 RI 11 r2 X2 15 r6 A

The logical product of the 16-bit second operand and
the content of the General Register specified by Rl
replaces the content of Rl. The 16-bit product is
formed on a bit-by-bit basis.

4-8

NHR:
MH:
NHI:

(Rl)-----(Rl) AND (R2)
(Rl)-(Rl) AND (A + (X2)]
(Rl) ____.:.. (Rl) AND A + (X2)

Resulting Condition Code:

12 13 14

C V G
-

0

0

I

15

L

0

I

0

LOGICAL PROOlJC-:- :<;ZERO.

}LOGICAL PROOIJCT 15 NOT ZERO.

Programming Note:

The AND Halfword Immediate (NHI) instruction
produces a value which is the logical product of
the address field itself plus the content of a Gen­
eral Register index (X2) with the first operand
General Register (Rl).

The truth table for the AND function is:

0 AND 0 0
0 AND 1 0
1 AND 0 0
1 AND 1 1

4.4.2 OR Halfword

OHR Rl,R2

lo 06 71' RI 11 r2. R2 151

OH Rl,A(X2)

I° 46
71' RI 11 r2 X2 15 r6

A

OH! Rl,A(X2)

I° C6 71' RI 11 r2 X2 15r6
A

The logical sum of the 16-bit second operand and the
content of the General Register specified by Rl re­
places the content of R 1. The 16-bit sum is formed
on a bit-by-bit basis.

OHR: (Rl)-(Rl) OR (R2)
(Rl)-(Rl) OR (A + (X2)]
(Rl)- (Rl) OR A + (X2)

OH:
OHI:

Resulting Condition Code:

12 13 14 15

c V G L

0 0 LOGICAL SUM IS ZERO

0 I

I 0
} LOGICAL SUM IS NOT ZERO

Programming Note:

The OR Halfword Immediate (OHI) instruction
produces a value which is the logical sum of the
address field itself plus the content of the General
Register index (X2) with the first operand General
Register (Rl).

The truth table for the OR function is:

0 OR 0
0 OR 1
1 OR 0
1 OR 1

0
1
1
1

4.4.3 Exclusive OR Halfword

XHR Rl,R2 [RR]

I° 07 718 Rl 11112.R2 151

XH Rl,A(X2)

I° 47 71' Rl 11112 X215r6
A

XHI Rl,A(X2)

I° C7 718 Rl 11 r2 X2 15 r6
A

The logical difference of the 16-bit second operand
and the General Register specified by Rl replaces
the content of Rl. The 16-bit difference is formed
on a bit-by-bit basis.

XHR: (Rl)---(Rl) XOR (R2)
XH: (Rl) (Rl) XOR [A + (X2)]
XHI: (Rl) (Rl) XOR A + (X2)

Resulting Condition Code:

12 13 14 15

c V G L

0 0 LOGICAL. DIFFERENCE IS ZERO

0 I

I 0
} LOGICAL DIFFERENCE IS NOT ZERO

Programming Note:

The Exclusive OR Halfword Immediate (XHI) in­
struction produces a value which is the logical
difference of the address field itself plus the
content of the General Register index (X2) with
the first operand General Register (Rl).

The truth table for the Exclusive OR function is:

0 XOR 0
0 XOR 1
1 XOR 0
1 XOR 1

0
1
1
0

4.4.4 Test Halfword Immediate

THI Rl,A(X2)

C3 71' A

Each bit in the 16-bit second ope rand is logically
ANDed with the corresponding bit in the General
Register specified by Rl. The contents of Rl and
the second operand remain unchanged.

THI (Rl) AND A + (X2)

Resulting Condition Code:

12. 13 14 15

c v G L

0 0 NONE OF THE BITS OF THE RESULT SET

0 I BIT 0 OF THE RESULT SET

I 0 ONE OR MORE OF BITS 1-15 OF THE RESULT
SET AND BIT 0 1'1 SET

Programming Note:

The Test Halfword Immediate (THI) instruction
can be used to test the state of individual bits or
combinations of bits in a General Register. For
example, to test the state of bit 6 in register 3,
use THI 3, X'0200 1•

4.5 BYTE HANDLING INSTRUCTIONS

The Byte Handling Instructions provide for transferring
bytes between core memory and the General Registers.
Compare Logical Byte is useful for testing a particular
byte within memory. The instructions described in
this section are:

LBR Load Byte RR

LB Load Byte

STBR Store Byte RR

STB Store Byte

EXBR Exchange Byte RR

CLB Compare Logical Byte

4.5.1 Load Byte

LBR Rl,R2\

I° 71 ~) 11 112 151
- 93 - \11 - . '2 .

LB Rl,A(X2)

03
718 Rl 11 112 X2 15 116

A

4-9

The 8- bit second operand is loaded into the rightmost
(least significant) 8 bits of the General Register speci­
fied by R 1. The left-most (most significant) 8 bits of
R 1 are set to zero. The second operand is unchanged.

LBR: Rl (8:15)
Rl (0:7)
Rl (8:15)
Rl (0:7)

--- [R2 (8:15)]
Zero

LB: ----- [A + (X2)]
Zero

Resulting Condition Code:

Unchanged.

4. 5. 2 Store Byte

STER Rl,R2 [RR]

lo 92 718

STE Rl,A(X2)

02
7 i8

A

The rightmost (least significant) 8-bit byte of the
first operand is stored in the General Register or core
memory location specified by the second operand. The
first operand is unchanged.

STER:
STE:

Rl (8:15)] - R2 (8:15)
Rl (8:15)] -A + (X2)

Resulting Condition Code:

Unchanged.

Programming Note:

In the register-to-register (RR) form of this
instruction the leftmost byte, R2 (0:7), is
unchanged.

The RX Store Byte (STE) instruction is subject
to memory protect.

4.5.3 Exchange Byte

EXBR Rl, R2

94

The two eight-bit bytes of the second operand are ex­
changed and loaded into the General Register specified
by Rl.

EXBR:

4-10

Rl (0:7) ------R2 (8:15)
Rl (8:15)----R2 (0:7)

Resulting Condition Code:

Unchanged.

Programming Note:

Rl and R2 may specify the same General Register.

The Exchange Byte Instruction is unique to the
GE-PAC 30-2E.

4.5.4 Compare Logical Byte

CLE Rl,A(X2)

04
718 Rl 11

1
12 X

2
15

1
16

A

The least significant eight-bit byte of the first oper­
and is logically compared to the eight-bit second
operand. The result is indicated by the setting of the
Condition Code (PSW 12:15). Neither operand is
changed.

CLE (Rl) [A + (X2)]

Resulting Condition Code:

12

c

0

I

13 14 15

v G L

0 0

0 I

I 0

i

l I ~
j_

~"

FIRST OPERAND EQUALS SECOND OPERAND

}
FIRST OPERAND DOES NOT EQUAL SECOND
OPERAND

FIRST OPERAND IS EQUAL TO OR
GRIATA THAN SECOND OPERAND
FIRST OPERAND IS LESS THAN SECOND
OPERAND

4.6 FLOATING-POINT INSTRUCTIONS

The Floating- Point Instructions provide for loading,
storing, adding, subtracting, multiplying, dividing,
and comparing of Floating-Point operands. The
Arithmetic Instructions assume normalized floating­
point operands and produce a normalized result. The
Floating- Point Load Instruction normalizes an unnor­
malized floating-point number. The data format for
the Floating- Point Instructions is identical to that
of the IBM 360 single-precision floating-point number,
see Section 1. 5. 2. The Rl and R2 fields of the
Floating-Point Instructions must specify even Floating­
Point Registers (0, 2, 4, 6, etc.). Note that the
floating-point registers are separate from the General
Registers. Quantities in floating-point registers can
be manipulated only with floating-point instructions.
The instructions described in this section are:

LER Floating- Point Load RR

LE Floating-Point Load

STE Floating- Point Store

~.\ER Floating- Point Add RR

AE Floating-Point Add

SER Floating.- Point Subtract RR

SE Flo a ting- Point Subtract

CER Floating-Point Compare RR

CE Floating-Point Compare

MER Floating- Point Multiply RR

ME Floating- Point Multiply

DER Floating- Point Divide RR

DE Floating- Point Divide

4.6.1 Floating-Point Load

LER Rl, R2 [RR]

lo 28 7r 11 r2 15 1 RI R2

LE Rl,A(X2)

I° 68
718

RI
11 112 X

2
15 r6

A

The Floating- Point second operand is normalized and
placed in the Floating- Point Register specified as the
first operand. During normalization, the fraction is
shifted left hexadecimally (4 bits at a time) until the
most significant hexadecimal .digit is not zero. The
exponent is decremented by one for each hexadecimal
shift required. Zeros are shifted into the least sig­
nificant hexadecimal digit of the fraction. The second
operand is unchanged.

If the normalization causes exponent underflow, the
entire floating-point result is set to zero and the over­
flow flag is set.

LER:
LE:

(Rl)
(Rl)

----(R2)

---- (A + (X2))

Resulting Condition Code:

c

ZERO

LESS THAN ZERO.

GREATER THAN ZERO.

lXPONENT UNDERFLOW

Programming Note:

In the event of underflow, the Floating-Point
Arithmetic Fault Interrupt is caused, if enabled
by bit 5 of the PSW.

4.6.2 Floating-Point Store

STE Rl,A(X2)

60 A

The Floating-Point first operand is placed in the core
memory location specified by A + (X2). The first
operand is unchanged,

STE: (Rl) ___ .,.

Resulting Condition Code:

Unchanged.

Programming Note:

[A + (X2))

This instruction is subject to Memory Protect.

4.6.3 Floating-Point Add

AER Rl, R2

I° 2A
71' 11112 151

RI . R2

AE Rl,A(X2)

I° 6A
71'

RI
11

1
12 X

2
15 r6

A

[RR]

[RX]
311

The exponents of the two operands are compared. If
the exponents differ, the fraction with the smaller
exponent is right shifted hexadecimally (4 bits at a
time) and its exponent is incremented by one for each
hexadecimal shift until the two exponents agree. The
fractions are then algebraically added and if a carry
results, the exponent of the sum is incremented by one
and the fraction (result) is shifted right one hexadeci­
mal position (4 bits). The carry is shifted back into
the most significant hexadecimal digit of the fraction.
If an exponent overflow results, the exponent and
fraction of the result are set to all ones and the Over­
flow flag is set. The sign of the result is not affected
by the overflow.

If no carry results from the addition of fractions, the
sum is normalized. During normalization, the frac­
tion is shifted left hexadecimally (4 bits at a time)
until the most significant hexadecimal digit is not zero.
The exponent is decremented by one for each hexadeci­
mal shift required. Zeros are shifted into the least
significant hexadecimal digit of the fraction.

If the normalization causes exponent underflow, the
sign, exponent and fraction of the sum are set to zero

4-11

and the Overflow flag is set. If a zero sum is gener­
ated from adding two equal magnitudes with unlike
signs, the entire floating-point result is zeroed.

AER: (Rl) ---- (Rl) + (R2)
AE: (Rl) (Rl) + A + (X2)

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

I x x
I 0 0

SUM IS ZERO

SUM !S LESS THAN ZERO

SUM IS GREATER THAN ZERO

EXPONENT OVERFLOW

EXPONENT UNDERFLOW

Programming Note:

In the event of overflow or underflow, the Floating­
Point Arithmetic Fault Interrupt is caused if en­
abled by Bit 5 of the PSW.

4.6.4 Floating-Point Subtract

SER Rl,R2
[RR]

I° 28
718

Rl

11
1
12 R

2
15

1

SE Rl,A(X2)

lo
68

718
Rl

11 r2 x2 15 r6
A

The exponents of the two operands are compared. If
the exponents differ, the fraction with the smaller
exponent is right shifted hexadecimally (4 bits at a
time) and its exponent is incremented by one for each
hexadecimal shift until the two exponents agree. The
fractions are then algebraically subtracted. If a
carry results, the exponent of the difference is incre­
mented by one and the fraction (result) is shifted
right one hexadecimal position (4 bits). The carry is
shifted into the most significant hexadecimal digit of
the fraction. If an exponent overflow occurs, the ex­
ponent and fraction of the result are set to all ones
and the Overflow flag is set. The sign of the result is
not affected by the overflow.

If no carry results from the subtraction of fractions,
the difference is normalized by shifting the fraction
left hexadecimally (4 bits at a time) until the most
significant hexadecimal digit is not zero. The expo­
nent is decremented by one for each hexadecimal
shift required. Zeros are shifted into the least sig­
nificant hexadecimal digit of the fraction.

4-12

If the normalization causes exponent underflow, the
entire floating-point result is set to zero and the Over­
flow flag is set.

SER:
SE:

(Rl)
(Rl)

(Rl) - (R2)
(Rl) - (A + (X2)]

Resulting Condition Code:

12 3 14

c v G

0

0

I

I x

I 0

15

L

0

I

0

x

0

DIFFERENCE IS ZE!'10

DIFFERENCE IS LESS THAN ZERO

DIFFERENCE IS GREATER THAN ZERO

EXPONENT OVERFLOW

EXPONENT UNDERFLOW

4.6.5 Floating-Point Compare

[RR] CER Rl,R2

I° 718 11
1
12 R

2
15

1 29 Rl

CE Rl,A(X2)

lo
69

718
Rl

11
1
12 X

2
15 , 16

A

The first operand is compared to the second operand.
Comparison is algebraic, taking into account the sign,
fraction, and exponent of each number. The result is
indicated by the setting of the condition code (PSW
12:15). Both operands remain unchanged.

CER:
CE:

(Rl)
(Rl)

(R2)
(A + (X2)]

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

0

0

!

FIRST OPERAND EQUALS SECOND OPERAND

FIRST OPERAND IS LESS THAN THE SECOND
OPERAND
FIRST OPERAND IS GREATER THAN THE
SECOND OPERAND
FIRST OPERAND IS LESS THAN OR EQUAL TO
THE SECOND OPERAND
FIRST OPERAND IS GREATER THAN OR EQUAL
TO THE SECOND OPERAND
FIRST OPERAND JS LESS THAN THE SECOND
OPERAND

4.6.6 Floating-Point Multiply

MER Rl, R2

I° 2C
7

1
8

ME Rl,A(X2)

6C
718

A

The exponents of the two operands are added to produce
the exponent of the result. The resultant exponent is
readjusted to excess 64 notation. If an exponent over­
flow occurs, the exponent and fraction of the product.
are set to ones and the Overflow flag is set. The sign
of the product is determined by the rules of algebra.
If an exponent underflow occurs, the entire floating­
point result is set to zero and the Overflow flag is set.
In either event, the Floating-Point Arithmetic Fault
Interrupt is caused if enabled by bit 5 in the PSW.

If an exponent overflow or underflow does not occur,
the multiplication takes place. If the product is zero,
the entire floating-point result is zero. If the result
is not zero, normalization may occur. During normal­
ization, the fraction is shifted left hexadecimally (4
bits at a time) until the most significant hexadecimal
digit is not zero. The exponent of the result is decre­
mented by one for each hexadecimal shift required.
After normalization, the product is rounded to 24 bits.

If normalization causes the exponent to underflow, the
entire floating-point result is set to zero and the Over­
flow flag is set.

MER: (Rl) --- (Rl)*(R2)
ME: (RI) (Rl)* A + (X2)

Resulting Condition Code:

:;~ '3 '4 ~5

c v G L

0 () PRODUCT 1 S ZERO

I
0 I

i 0

: x x
I

PRODUCT IS LESS THAN ZERO

PRODUCT IS GREATER THAN ZERO

EXPONENT OVERFLOW

I I 0 0 EXPONENT UNDERFLOW ,_

4.6.7 Floating-Point Divide

DER Rl, R2 [RR]

I° 20
718

Rl

11
1
12 R2 15

1

DE Rl,A(X2) [RX]

I° 60
7 i8

Rl
11 r2 X2 15 r6

A
311

The exponents of the two operands are subtracted to
produce the exponent of the result. The resultant
exponent is readjusted to excess 64 notation. If an
exponent overflow occurs, the exponent and fraction
of the quotient are set to all ones and the Overflow
flag is set. The sign of the quotient is determined by
the rules of algebra. If an exponent underflow occurs,
the entire floating-point result is set to zero and the
Overflow flag is set. If the divisor (the second oper­
and) is zero, the operands are unchanged. In the
event of exponent overflow, underflow, or division by
zero, the Floating-: Point Arithmetic Fault Interrupt
is caused if enabled by bit 5 of the PSW.

If the exponent overflow or underflow does not occur,
and if the divisor is not. zero, the second operand is
divided into the first operand. Division continues until
the quotient is normalized, adjusting the exponent for
each additional division required. If an exponent un­
derflow occurs, the entire floating-point result is set
to zero and the Overflow flag is set.

No remainder is returned to the user; The quotient is
rounded to compensate for the loss of the remainder.

DER: (Rl) ---- (Rl)/(R2)
DE: (Rl) (Rl)/(A + (X2))

Resulting Condition Code:

12 13 14

c v G

0

0

I

0 I x
0 I 0

I I 0

15

L

0

I

0

x
0

0

QUOTIENT IS ZERO

QUOTIENT IS LESS THAN ZERO

QUOTIENT IS GREATER THAN ZERO

EXPONENT OVERFLOW

EXPONENT UNDERFLOW

DIVISOR EQUAL TO ZERO

Programming Note:

Division by zero, overflow, or underflow cause a
Floating-Point Arithmetic Fault Interrupt if en­
abled by bit 5 of the PSW. Inspection of the Con­
dition Code of the Old PSW indicates the actual
cause of the interrupt. If the carry flag is set,
then the divisor was zero. If the carry flag is not
set, then either overflow or underflow caused the
interrupt. In this case, if the G or L flag is set,
the interrupt was caused by an overflow. If the
G or L flags are reset, the interrupt was caused
by an underflow.

4-13

4.7 SHIFT /ROTATE INSTRUCTIONS

The Shift/Rotate Instructions provide for arithmetic
and logical manipulation of information contained in
the General Registers. Bits shifted out of the high
or low order end of a General Register are passed
through the carry bit position of the condition code
(PSW 12). After execution of a shift instruction, the
last bit which was shifted out is contained in the carry
position.

A shift of zero positions causes the condition code to
be set properly with no alteration to the information
contained in the General Register. The instructions
described in this section are:

SLLS Shift Left Logical Short

SLHL Shift Left Halfword Logical

SLL Shift Left Logical

SRLS Shift Right Logical Short

SRHL Shift Right Halfword Logical

SRL Shift Right Logical

RLL Rotate Left Logical

RRL Rotate Right Logical

SLHA Shift Left Halfword Arithmetic

SLA Shift Left Arithmetic

SRHA Shift Right Halfword Arithmetic

SRA Shift Right Arithmetic

4.7.1 Shift Left Logical

SLLS Rl,N [SF]

91

SLHL Rl, A(X2) [RS]

I° CD
718 Rl 11112 X2 15r6

A
311

SLL Rl,A(X2) [RS]

I° ED
718 11

1
12 15r6

Rl · X2 A
311

The content of the first operand is shifted left the num­
ber of positions specified by the second operand. High
order bits shifted out of position 0 are shifted thru the
carry bit of the PSW and then lost. Zeros are shifted
into the low order bit position.

4-14

l°s r
(Cl

1: r
{C)

(RI)

151

SLLS ANO SLHL

(RI) (RI +I)

15116 311

SLL

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

0

I

RESULT IS ZERO

RESULT IS LESS THAN ZERO

RESULT IS GREATER THAN ZERO

LAST BIT THAT WAS SHIFTED OUT WAS A
ZERO
LAST BIT THAT WA$ SHIFTED OUT WAS A
ONE

Programming Note:

For the Shift Left Logical Short (SLLS) instruction
the N field (bits 12 through 15) of the instruction
specified the number of positions the content of
Rl is to be shifted.

For the Shift Left Halfword Logical (SLHL) in­
struction only the low order 4-bits (12 through 15)
of A + (X2) are used for the shift count.

The Shift Left Logical and Shift Left Logical Short
instructions are unique to the GE-PAC 30-2E.

The Shift Left Logical (SLL) instruction shifts
registers Rl and Rl + 1, an even odd pair. The
Rl field of the instruction must specify an even
register. The shift count is specified by the low
order 5-bits (11 through 15) of the value A + (X2).
The carry is formed by the output of Rl.

4.7.2 Shift Right Logical

SRLS Rl,N [sF]

I°
718 RI 11 r2 N 151 90

SRHL Rl,A(X2) (RS]

I° cc
718 11

1
12 15r6

Rl X2 A
311

SRL Rl,A(X2) [RS]

I° EC
718 Rl 11

1
12 X2 15 116

A
311

The content of the first operand is shifted right the
number of bit positions specified by the second operand.
Low order bits shifted out of position 15 are shifted
thru the carry bit of the PSW and then lost. Zeros are
shifted into position zero.

(RI)

151

SRLS AND SRHL (C)

(Rll (RI +I)

15r6 311

SRL ONLY (Cl

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

0

I V

RESULT IS ZERO

RESULT IS LESS THAN ZERO

RESULT IS GREATER THAN ZERO

LAST BIT THAT WAS SHIFTED OUT WAS A
ZERO
LAST SIT THAT WAS SHIFTED OUT WAS A
ONE

Programming Note:

The programming notes on 4-14 for Shift Left
Logical Instructions apply to these instructions
as well.

The Shift Right Logical and Shift Right Logical
Short instructions are unique to the GE-PAC
30-2E.

4.7.3 Rotate Left Logical

RLL Rl,A(X2)

EB 71'
A

The 32-bit first operand specified by Rl is shifted left,
end around, the number of positions specified by the
low order five bits of the value A + (X2). All 32
bits of the fullword are shifted. Bits shifted out of
position 0 are shifted into position 31. A shift specifi­
cation of sixteen bits interchanges the two halves (Rl,
Rl + 1) of the first operand.

RI
15116

RI+ I

Resulting Condition Code:

l2 13 14 15

c V G L

0 0

I 0

0 I

RESULT IS ZERO.

RESULT IS GREATER THAN ZERO.

RESULT IS LESS THAN ZERO.

Programming Note:

The Rotate Left Logical instruction is unique to the
GE-PAC 30-2E.

4.7.4 Rotate Right Logical

RRL R1,A(X2)

I° EA
7 18 RI 11

1
12 X2 15, 16

A

The 32-bit first operand specified by Rl is shifted
right, end around, the number of positions specified
by the low order five bits of the value A + (X2). All
32 bits of the fullword are shifted. Bits shifted out of
position 31 are shifted into position 0. A shift specifi­
cation of sixteen places interchanges the two halves
(Rl, Rl + 1) of the first operand.

~

I°
I

Rl
15116

Rl +I

Resulting Condition Code:

12 13 14 15

c v G L

0 0

I 0

0 I

RESULT IS ZERO

RESULT IS GREATER THAN ZERO

RESULT IS LESS THAN ZERO

311

·I

4-15

Programming Note:_

The Rotate Right Logical instruction is unique to
the GE-PAC 30-2E.

4.7.5 Shift Left Arithmetic

SLHA Rl. A(X2) [RS]

I° CF
718 RI 11

1
12 X2 15

1
16

A
311

SLA Rl,A(X2) [RS]

I° EF
,r RI 11 112 X2 15 r6

A
311

The content of the first operand is shifted left the num­
ber of bit positions specified by the second operand.
The sign bit is unchanged. High order bits shifted out
of position 1 are shifted thru the carry bit of the PSW
and then lost. Zeros are shifted into the low order bit
position.

1: r

RI
151

+ I
(C) SLHA

1: 11

RI
15116

RI+ I
31 I

(C) SLA

4-16

Resulting Condition Code:

12 13 14 15

c v G L

0 0

0 I

I 0

0

I

RESULT IS ZERO

RESULT IS LESS THAN ZERO

RESULT IS GREATER THAN ZERO

LAST BIT THAT WAS SHIFTED OUT WAS A
ZERO
LAST BIT THAT WAS SHIFTED OUT WAS A
ONE

Programming Note:

For the Shift Left Halfword Arithmetic (SLHA)
instruction the shift count is specified by the low
order 4 bits (12 through 15) of the value of
A + (X2).

The Shift Left Arithmetic (SLA) instruction shifts
Registers Rl and Rl + 1, an even odd pair. Rl
must specify an even register. The shift count
is specified by the low order 5-bits (11 through
15)ofthevalueofA + (X2).

The Shift Left Arithmetic instruction is unique to
the GE-PAC 30-2E.

4.7.6 Shift Right Arithmetic

SRHA Rl,A(X2) [RS]

I° CE
718 RI 11 112 X2 15116

A
31 I

SRA Rl,A(X2) [RS]

I° EE
718 RI 11 112 X2 15 r6

A
31 I

The content of the first operand is shifted right the
number of bit positions specified by the second oper­
and. The sign bit, Bit 0, of Rl is µnchanged and is
shifted right into Bit 1, therefore Bit 0 is propagated
right as many positions as specified by the second
operand. Low order bits of the first operand are
shifted through' the carry bit of the PSW and then lost.

l°s 11

1: 1
1

RI
151

SRHA (Cl

Rl
15116

Rl +1
311

SRA (Cl

Resulting Condition Code:

12 '3 14 15 I

c v 3 L

0 0

0 I

I' v
0

ti

RESUi..T IS ZERO

RESULT IS LESS THAN ZERO

RESULT IS GREATER THAN ZERO

LAST BIT THAT WAS SHIF1'EC OUT W/j.C. A
ZEPO
LAST BIT THAT WAS SHll'TEC OUT WAS A
ONE

Programming Note:

For the Shift Right Halfword Arithmetic (SRHA)
instruction the shift count is specified by the low
order 4 bits (12 through 15) of the value of
A + (X2).

The Shift Right Arithmetic (SRA) instruction shifts
Registers Rl and Rl + l, an even-odd pair.
Rl must specify an even register. The shift
count is specified by the low order 5-bits (11
through 15) of the value of A + (X2). The Carry
is formed by the output of Rl + 1 instead of Rl.

The Shift Right Arithmetic instruction is unique
to the GE-PAC 30-2E.

4.8 BRANCH INSTRUCTIONS

Branch Instructions are programmed decisions pro­
viding entry to subprograms, as well as testing the
result of arithmetic, logical, or indexing operations.

Many Processor operations result in setting of the
Condition Code in the Program Status Word (PSW
(12:15)}. The Branch on Condition Instructions imple­
ment the testing of the Condition Code through use of
a mask field contained in the instruction itself (Ml
field).

The 4-bit Ml field is not a register address, but
rather an image of the condition code to be tested.
The instructions described in this section are:

BTBS Branch on True Backward Short

BTFS Branch on True Forward Short

BTCR Branch on True Condition RR

BTC Branch on True Condition

BFBS Branch on False Backward Short

BFFS Branch on False Forward Short

BFCR Branch on False Condition RR

BFC Branch on False Condition

BXH Branch on Index High

BXLE Branch on Index Low or Equal

BALR Branch and Link RR

BAL Branch and Link

4.8.l Branch on True Condition

BTBS Ml,D

lo 20 7r M!
11112

D
151

BTFS Ml, D

lo 21 71' Ml
11112

n
151

BTCR M1,R2 [RR]

I° 02
718

~.t:j
11 r2 R2 151

BTC Ml,A(X2)

I° 42 7r Ml

11
1
12 X

2
15

1
16

A

The condition code field of 'the Program Status Word
PSW (12:15) is tested for the condition specified by the
m~sk field (Ml). If any of the conditions tested are
found to be true, a Branch is executed to the 16-bit
address specified by the second operand. If none of
the conditions tested are found to be true ·the next
sequential instruction is executed.

Tested Condition True:

BTBS:
BTFS:
BTCR:
BTC:

(PSW (16:31)]-(PSW (16:31)] -2D
(PSW (16:31)] .,___ (PSW (16:31)] + 2D
(PSW (16:31)]-(R2)

. (PSW (16:31)]-A + (X2)

Tested Condition False:

BTBS:}
BTFS:
BTCR:
BTC:

(PSW (16:31)]-(PSW (16:31)] + 2

(PSW (16:31)]-[PSW (16:31)] +4

Programming Note:

A logical AND is performed between each bit in
the condition code and its corresponding bit in
the Ml field. If any resultant bit is a one, the
branch will occur. The condition code (PSW
(12:15)) is not changed. For example, if the con­
dition code is 1010 and the Ml held is 1000, the
branch occurs with Branch on true instructions.

The Branch on True Backward Short (BTBS) in­
struction causes a Branch to an address relative
to the present location counter when the tested
condition is true. The displacement is specified
by the D field (bits 12 through 15) of the instruc­
tion. The D field (times 2) is subtracted from
the present location counter to generate the ad­
dress of the next instruction.

4-17

The Branch on True Forward Short (BTFS) in­
struction causes a branch to an address relative
to the present location counter when the tested
condition is true. The displacement is specified
by the D field (bits 12 through 15) of the instruc­
tion. The D field (times 2) is added to the pres­
ent location counter to generate the address of
the next instruction.

The Short Branch instructions (e.g. BTBS) are
core economical for branches which specify
small displacements from the present location
counter. For example in sense status loops used
for program controlled I/ 0.

Branch on true condition with a mask of 0 is a no­
operation.

The Branch on True Backward Short and the
Branch on True Forward Short instructions are
unique for the GE-PAC 30-2E.

4.8.2 Branch on False Condition

BFBS Ml,D

I° 22 718

BFFS Ml,D

I° 23 7 r

BFCR Ml,R2

I° 7r 03 -

BFC Ml,A(X2)

lo 43
718

Ml 11r2 0 151

Ml 11 r2 0 151

11112 151
Ml R2

11112 15116
Ml X2 A

[SF]

[RX]
311

The condition code_ field of the Program Status Word
[PSW (12:15)] is tested for the condition specified by
the mask field (Ml). If all conditions tested are found
to be false, a Branch is executed to the 16-bit address
specified by the second operand. If any of the condi­
tions tested are found to be true the next sequential
instruction is executed.

4-18

Tested Condition False

BFBS:
BFFS:
BFCR:
BFC:

PSW (16:31)-[PSW (16:31)]
PSW (16:31)-[PSW (16:31)]
PSW (16:31) (RR)
PSW (16:31) A + (X2)

-2D
+2D

Tested Condition True

EFES:}
BFFS:
BFCR:
BFC:

PSW (16:31)-[PSW (16:31)] +2

PSW (16:31)--[PSW (16:31)] + 4

Programming Note:

A logical AND is performed between each bit in
the condition code and its corresponding bit in the
Ml field. If any resultant bit is a one, the Branch
will not occur. The condition code (PSW (12: 15))
is not changed. For example, if the condition
code is 1010 and the Ml field is 1100, the Branch
does not occur with Branch on False instruction.

The Branch on False Backward Short (EFES) in­
struction causes a Branch to an address relative
to the present location counter when the tested
condition is false. The displacement is specified
by the D field (bits 12 through 15) of the Instruc­
tion. The D field (times 2) is subtracted from the
present location counter to generate the address of
the next instruction.

The Branch on False Forward Short (BFFS) in­
struction causes a branch to an address relative
to the present location counter when the tested
condition is false. The displacement is specified
by the D field (bits 12 through 15) of the instruc­
tion. The D field (times 2) is added to the pres­
ent location counter to generate the a.ddress of
the next instruction.

Branch on false condition with a mask of 0 is an
unconditional Branch.

The Branch on False Condition Backward and the
Branch on False Condition Forward instructions
are unique to the GE-PAC 30-2E.

4.8.3 Branch on Index

BXH Rl,A(X2) [RS]

l~o~~-c_o~~-1~l8~1_1_1_1~l1_2_x_2_,_5~i1-6~~~~~A~~~~~·
BXLE Rl, A(X2)

Cl
718

A

[RS]
311

Prior to execution of this instruction, the General
Register specified by the first operand (Rl) must con­
tain a 16-bit starting count value, Rl + 1 must con­
tain a 16-bit increment value, and R 1 + 2 must con­
tain a 16-bit comparand (limit or final value). All
values may be signed.

Execution of this instruction causes the count (Rl) to
be incremented by (Rl + 1) and logically compared
to the index limit, (Rl + 2).

BXH: (Rl) (Rl) + (Rl + 1)
(Rl) : (Rl + 2)

if (Rl) > (Rl + 2)
f PSW (16:31)] -A + (X2)

if (Rl) < (Rl + 2);
[PSW (16:301- PSW (16:31) +4

BXLE: (Rl) (Rl) + (Rl + 1)
(Rl) (Rl + 2)

if (Rl) < (Rl + 2)
[PSW (16:31)]-A + cX2)

if (Rl) > (Rl + 2);
[PSW (16:31)]-PSW (16:31) +4

Resulting Condition Code:

Unchanged.

Programming Note:

For the Branch on Index High (BXH) instruction,
the contents of Rl + 1 should be negative. As
long as the count (Rl) is greater than the limit
(Rl + 2), the 16-bit address specified by the
second operand is transferred to the instruction
address field of the Program Status Word PSW
(16:31). The next instruction executed will be ac­
cessed from the location specified by the new in­
struction address. When the count is not greater
than the index limit, the instruction following
Branch on Index High will be executed.

For the Branch on Index Low or Equal (BXLE)
instruction the contents of Rl + 1 should be posi­
tive. As long as the count (Rl) is equal to or less
than the limit (Rl + 2), the 16-bit address speci­
fied by the second operand is transferred to the
instruction address field of the Program Status
Word [PSW (16:31)]. The next instruction exe~
cuted will be accessed from the location specified
by the new instruction address. When the count
is greater than the limit, the instruction following
Branch on Index Low will be executed. ·

The Branch on Index High and Branch on Index
Low instructions are appropriate for rapid loop
control, particularly when one or more of the
instructions in the loop is indexed.

4.8.4 Branch and Link

BALR Rl, R2 [RR]

lo 01 7r ll I 12 15 I
Rl R2

BAL Rl,A(X2)

lo
41

718 Rl II 112 X2 15 r6
A

The Branch and Link instruction is executed in two
phases. The instruction address field of the Program
Status Word [PSW (16:31)] is incremented and trans­
ferred to the General Register specified by the first
operand (Rl). Then the second operand is loaded into
the instruction address field [PSW (16:31)]. The next
instruction executed will be accessed from the loca -
tion specified by the new instruction address.

BALR: (Rl) . (PSW (16:31)] +2
PSW (16:31)- (R2)
(Rl) [PSW (16:31)] +4
PSW (16:31)-A + (X2)

BAL:

Condition Code:

Unchanged.

Programming Note:

The Branch and Link instruction may be used for
entry to sub-programs. It differs from the
Branch Unconditional instruction in that the cur­
rent instruction address field is preserved in a
specified General Register to be used as the sub­
program exit address. Exit from the sub-program
is effected by a Branch Unconditional instruction
through the General Register in which the exit
address has been maintained.

4.9 LIST INSTRUCTIONS

The List Instructions manipulate a circular list
defined as follows:

0 7 8 15

NUMBER OF SLOTS NUMBER OF SLOTS
IN THE LIST USED

CURRENT TOP NEXT BOTTOM

SLOT 0

SLOT I

,..(., ,.(,,

r
The first two halfwords contain the list parameters.
Immediately following the parameter block is the list
itself. The first halfword in the list is designated
Slot 0. The remaining slots are designated 1, 2, 3,
etc. up to a maximum slot number which is equal to
the number in the list minus one. An absolute maxi­
mum of 255 halfword slots is specifiable. (Maximum
slot designation equal to X'FE '·)

4-19

The first parameter byte indicates the number of slots
(halfwords) in the entire list. The second parameter
byte indicates the current number of slots being used.
When this byte equals zero, the list is empty; when this
byte equals the number of slots in the list, the list is
full. Once initialized, this byte_ is maintained automati­
cally. It is incremented when elements are added to the
list and decremented when elements are removed.

The third and fourth bytes of the list parameters speci­
fy the current top of the list and the next bottom of the
list respectively. These pointers are also updated
automatically. See Fig. 4. 1.

The instructions described in this section are:

ATL Add to Top of List

ABL Add to Bottom of List

RTL Remove from Top of List

RBL Remove from Bottom of List

CURRE!liT TCP __ _J__ ___ .
1 !., ___,..

I i-~----1

c~~E:.:~;~;;';..o i
I

I ___________ \.---~

Fig. 4. 1 Circular List

4.9.1 Add to Top/Bottom of List

ATL Rl,A(X2)

lo
64

718 RI 11 112 X
2

15
1
16

A

ABL Rl,A(X2)

I° 65
718

Rl
11 112 X

2
15 r6

A

The General Register specified by Rl contains the ele­
ment to be added to the list. The second operand,
A + (X2), specifies the address of the list. The num­
ber of slots used tally is compared to the number of
slots in the list as specified by the first byte of the list.

4-20

If the number of slots used tally is greater than the
number of slots in the list an overflow condition exists.
The element is not added to the list and the instruction
terminates with the V flag set in the PSW. If the num­
ber of slots used tally is less than or equal to the num­
ber of slots in the list, it is incremented by one, the
appropriate pointer is changed, the element is added to
the list and the instruction terminates with a condition
code of zero.

Resulting Condition Code:

12 13· 14• i5

c v G L

0 I 0 0 l..!ST OVERFLOW

0 0 0 0

Programming Note:

The Add to Top of List (ATL) instruction manipu­
lates the Current Top Pointer in the list. If no
overflow occurred, the Current Top Pointer, which
points to the last element added to the top of the
list, is decremented by one (1) and the element is
inserted in the slot pointed to by the new Current
Top Pointer. If the Current Top Pointer was zero
on entering this instruction the Current Top Pointer
is set to the maximum slot number in the list.
This condition is referred to as list wrap.

The Add to Top/ Bottom of List instruction is
unique to the GE-PAC 30-2E.

The Add to Bottom of List (ABL) instruction
manipulates the Next Bottom Pointer. If no over­
flow occurred, the element is inse.~rted in the slot
pointed to by the Next Bottom Pointer, and the
Next Bottom Pointer is incremented by one (1).
If the incremented Next Bottom Pointer is greater
than the maximum slot number in the list, the
Next Bottom Pointer is set to zero. This condi­
tion is referred to as list wrap.

These instructions are subject to Memory Pro­
tect.

4.9.2 Remove From Top/Bottom of List

RTL Rl,A(X2)

I° 66
7

1
8

RI 11
1
12 X

2
15

1
16

A

RBL Rl,A(X2)

67 7r A

The element removed from the list is placed in the
General Register specified by Rl. The second oper­
and, A + (X2), specifies the address of the list. If,
on entering the instruction the number of slots used
tally zero, the list is already empty and the instruction
terminates with V flag set in the PSW. This condition
is referred to as list underflow. If underflow does not
occur the number of slots used tally is decremented
by one, the appropriate pointer is changed and the ele­
ment is extracted and placed in Rl. The instruction
terminates with the condition code equal to zero if the
list is now empty or with the G flag set if the list is
not yet empty.

Resulting Condition Code:

12 13 ;4 :5

C V G L

0 0 0 '-; S: \YA::: A1..... ::;- :.;_ -\ '.iY 2:.M P7 \

0 0 -·' s -~

() 0

Programming Note:

The Remove from Top of List (RTL) instruction
manipulates the Current Top Pointer. If no un­
derflow occurred, the Current Top Pointer points
to the element to be extracted. The element is
extracted and placed in Rl. The Current Top
Pointer is incremented and compared to the maxi­
mum slot number. If the Current Top Pointer is
greater than the maximum slot number, the Cur­
rent Top Pointer is set to zero. This condition
is referred to as list wrap.

The Remove from Top/Bottom of List instructions
are unique to the GE-PAC 30-2E.

The Remove from Bottom of List (REL) instruc­
tion manipulates the Next Bottom Pointer. If no
underflow occurred, and the Next Bottom Pointer
is zero it is set to the maximum slot number (list
wrap); otherwise it is decremented by oµe and the
element now pointed to is extracted and placed in
Rl.

These instructions are subject to Memory Pro­
tect.

4.10 INPUT /OUTPUT INSTRUCTIONS

The I/O instructions provide for the transfer of data
between the Processor and the peripheral devices on
the Multiplexor bus. All of the instructions described
in this section are privileged and, if executed with the
Processor in the Protect Mode (PSW Bit 7 set), result
in an Illegal Instruction Interrupt.

Following most I/O instructions, the V flag in the Con­
dition Code indicates an instruction time-out. That is,
due to an improper device response - either the ad­
dressed device does not exist, or it did not respond

correctly - the specified 1/0 operation was not per­
formed. Following Sense Status or Acknowledge
Interrupt instructions, the Condition Code (CVGL)
also reflects bits 4 through 7 of the device status.
With standard GE-PAC 30 device controllers, bit 5 of
the status byte, which is reflected in the V flag in the
condition code, is defined as Examine Status. This
means that status byte should be examined. Following
sense status and Acknowledge Interrupt instructions,
therefore, the occurrence of the V flag with status
bits 0 through 3 equal zero indicates instruction time­
out. For a complete defintion of the bits in either
command bytes, or status bytes, refer to documenta­
tion on the device in question.

The instructions described in this section are:

AIR Acknowledge Interrupt RR

AI Acknowledge Interrupt

SSR Sense Status RR

SS Sense Status

OCR Output Command RR

oc Output Command

RDR Read Data RR

RD Read Data

WDR Write Data RR

WD Write Data

RBR Read Block RR

RB Read Block

WBR Write Block RR

WB Write Block

RHR Read Halfword RR

RH Read Halfword

WHR Write Halfword RR

WH Write Halfword

AL Autoload

4.10.1 Acknowledge Interrupt

AIR Rl, R2

I° 9F
,r llll2 151

RI R2

AI Rl,A(X2)

I° OF
718 ll 112 15 r6

RI X2 A

4-21

The address of the interrupting device replaces the
content of the 16-bit General Register specified by the
first operand (Rl). The 8-bit device status byte re­
places the content of the location specified by the sec­
ond operand. The Condition Code is set equal to the
right-most four bits in the device status byte. The
device interrupt condition is then cleared.

AIR: [Rl (8:15)] ----Device address
[Rl (0:7)] Zero
[R2 (8:15)] Status byte
[R2 (0:7)] zero
[PSW (12:15)] Status byte (4:7)

AI: [Rl (8:15)] Device number
[Rl (0:7)]-----Zero
[A + (X2)] Status byte
[PSW (12:15)] Status byte (4:7)

Resulting Condition Code:

12 13 i4 '5
'

c v G L

I

I

I

I

DEVICE BUSY (BSY)

EXAMINE STATUS (EX} OR TIME OUT

END OF MEDIUM (EOM)

DEVICE UN AVA IL ASL E : DU)

Programming Note:

These instructions are privileg~d. The RX
form (AI) is subject to Memory Protect.

4.10.2 Sense Status

SSR Rl,R2 [RR]

lo 9D 7 r RI II r2 R2 151

SS Rl,A(X2)

I° DD
718 11112 15116

RI X2· A

The 16-bit General Register specified by the first
operand (Rl) contains the device address. The device
is addressed and the 8-bit device status byte replaces
the content of the location specified by the second
operand. The Condition Code is set equal to the right­
most four bits of the device status byte. The first
operand is unchanged.

SSR: [R2 (8:15)]----Status byte
[R2 (0:7)] Zero
[PSW (12:15)] Status byte (4:7)

SS: [A .+ (X2)]----Status byte
(PSW (12:15)] Status byte (4:7)

4-22

Resulting Condition Code:

12 13 14 15

c v G L

I

I

DEVICE BUSY (BS")

EXAMINE STATUS (EX) OR TIME OUT

END OF MEDIUM (EOM}

DEVICE UNAVAILABLE (OU}

Programming Note:

These instructions are privileged. The RX form
(SS) is subject to Memory Protect.

4.10.3 Output Command

OCR Rl,R2

I° 9E 7r RI llr2.R2151

oc

A

The 16-bit General Register specified by the first
operand (Rl) contains the device address. The device
is addressed and the 8-bit device <;:ommand byte speci­
fied by the second operand is transmitte.d to the
addressed device. Both operands remain unchanged.

OCR:

OC:

Device -----[R2 (8:15)]

Device ----[A + (X2)]

Resulting Condition Code:

•

2131415

L

INSTRUCTION TIME OUT

Programming Note:

The Examine Status bit is set if the device cannot
complete the command action.

These instructions are privileged.

4.10.4 Read Data

RDR Rl,R2 [RR]

I° 7r II f 2 15 1 9& RI R2

RD Rl,A(X2) (RX)

I° DB 7r RI 11112 X2 15r6
A

311

The 16-bit General Register specified by the first
operand (Rl) contains the device address. The device
is addressed and a single 8-bit data byte is trans­
mitted from the device replacing the content of the
location specified by the second operand.

RDR: [R2 (8:15)]----Data byte
[R2 (0:7)] Zero

RD: [A + (X2)] Data byte

Resulting Condition Code:

~ m:IJ INSTRUCTION TIME OUT

Programming Note:

These instructions are privileged. The RX form
{RD) is subject to Memory Protect.

4.10.5 Write Data

WDR Rl,R2

lo 9A 7r RI
11112 R2 151

WD Rl,A(X2)

lo DA
7r RI

11
1
12 X

2
15

1
16

A

The 16-bit General Register specified by the first
operand (Rl) contains the device address. The device
is addressed and a single 8-bit data byte is trans­
mitted to the device. Both operands remain unchanged.

WDR:

WD:

[R2 (8:15)] --- (Device)

[A + (X2)] ---•(Device)

Resulting Condition Code:

Programming Note:

These instructions are privileged.

4.10.6 Read Block
RBR R1,R2

lo 91
718

RI
11112 R2 151

RB Rl,A+{X2)

I° 07
7r

RI
11112 X215 r6

A

[11]

The 16-bit General Register specified by the first
operand (Rl) contains the device address. The 16-bit
second operand location, (R2) or [A + (X2)] con­
tains the starting address of the data buffer to be
transferred. The next sequential halfword, (R2 + 1)
or [A + (X2) + 2] contains the ending address of
the data buffer. The starting address must be equal
to, or less than, the ending address. Data transfer
is inclusive of the buffer limits.

The Read Block instruction causes transfer of 8-bit
data bytes from a device to consecutive memory loca­
tions. No other instructions are executed during
transfer of the data block.

The condition code portion of the Program Status
Word [PSW (12:15)] will be set to zero after a
normal transfer. In the event of an abnormal block
data transfer, the condition code will not be zero.

Resulting Condition Code:

I~ 13 14 15 ' c v G L

c 0 0 0

l

11

11 I

BLOCK DATA TRANSFER COMPLETED
CORRECTLY
OEV!CE BUSY (BSY)

EXAMINE STATUS (EX) OR TIM!'.: OUT

ENO OF MEDIUM (EOMl

DEVICE UNAVAILABLE (DU)

Programming Note:

These instructions are privileged. These
instructions are subject to Memory Protect.

4.10.7 Write Block

WBR Rl,R2

I° 96 7r 11112 151
RI R2

WB Rl.,A(X2)

I° 06
718 RI 11 r2 X2 15 1'6

A

[11]

The 16-bit General Register specified by the first
operand (Rl) contains the device address. The 16-bit
second operand location, (R2) or [A + (X2)] con­
tains the starting address of the data buffer to be
transferred. The next sequential halfword, (R2 + 1)
or [A + (X2) + 2] contains the ending address of
the data buffer. The starting address must be equal
to, or less than, the ending address. Data transfer is
inclusive of the buffer limits.

The Write Block instruction causes transfer of 8-bit
data bytes from consecutive memory locations to a
device. No other instructions are executed during
transfer of the data block. The condition code portion

4-:23

of the Program Status Word [PSW (12:15)] will be set
to zero after a normal transfer. In the event of an ab­
normal block data transfer, the condition code will not
be zero.

Resulting Condition Code:

'2 I~ 14 15 !

c v G L

0 0 0 0

i

I

I

I

BLOCK DATA fRANSFER COMPLETE'.
GORRECT:..)
OEViCE SUSY lBSY)

EXAMINE STATUS (EX l OR TIME OUT

END OF MEDIUM ; EOM l

DEVICE UNAVA!LABLt:: (OU)

Programming Note:

These instructions are privileged.

4.10.8 Read Halfword
RHR Rl,R2 [RR]

I° 99 718 11 r2 15
1 Rl R2

RH Rl,A(X2) [1x]

I° 09 71' Rl 11112 X2 15 r6
A

311

The 16-bit General Register specified by R 1 contains
the device address. The device is addressed and two
eight- bit bytes are received from the device replacing
the contents of the second operand.

RHR: R2 (0:7)-------First Data Byte
R2 (8:15) Second Data Byte
r A + (X2)] First Data Byte
(A + (X2) + 1] Second Data Byte

RH:

Resulting Condition Code:

m ONSTRUCTION nME OUT

Programming Note:

These instructions are privileged, The RX form
(RH) is subject to Memory Protect.

4.10.9 Write Halfword

WHR Rl,R2 [RR]

lo 98 71' Rl

11
1
12

12
15

1

WH Rl,A(X2) [R>t]
0 718 Rl 11 112 X2 15 r6 311 Loa A

4-24

The 16-bit General Register specified by R 1 contains
the device address. The device is addressed and two
eight- bit bytes are transmitted to the device from the
location specified by the second operand.

WHR: [R2 (0:7)] -----•Device
[R2 (8:15)] Device
[A + (X2)] Device
[A + (X2) + 1] Device

WH:

Resulting Condition Code:

~
[[i]]] INSTRUCTION TIME OUT

Programming Note:

The Read Halfword and Write Halfword instruc­
tions are useful with devices requiring two bytes
per transfer. Since the transfer is accomplished
with one instruction instead of two, both time and
core are saved. Some examples of devices with
which these instructions can be used are Halfword
I/O Module, sixteen-line Interrupt Module, con­
version equipment (i.e. D/A and A/D Converters),
card reader, and display panel.

These instructions are privileged.

4.10.10 Autoload

AL A(X2)

05
7 r

0
11

1
12 X

2
15

1
16

A

The Autoload instruction loads memory with a block of
data from a byte oriented input device (e.g. Teletype,
photo-electric Paper Tape Reader, Magnetic Tape,
etc.). The data is read a byte at a time and stored in
successive memory locations starting with location
X'80'. The last byte is loaded into the memory loca­
tion specified by the address of the second operand,
A + (X2). Any blank or zero bytes that are input
prior to the first non zero byte are considered to be
leader and are therefore ignored; all other zero bytes
are stored as data. The input device is specified by
memory location X'78 1• The device command code is
specified by memory location X'79'.

1. (X 180' n O) byte #n

2. n n + 1

3. (X'80' + n) byte #n

4. If A + (X2) = X 180' + n, instruction is
finished, otherwise return to equation 2.

Resulting Condition Code:

•12. ;;) i4 15

c v G L

0 0 0 0

I L•EV1GE 9US'r' <BSY I

I

i

EXAM i NE 5 r AT US (EX i CR : ~':;.

E!'IO 0F MEDIUM ! EOM)

I DEVICE UNAVAiLABU.' (GJ'

Programming Note:

This instruction is privileged. This instruction
is subject to Memory Protect. The Rl field
must contain 0.

4.11 SYSTEM CONTROL INSTRUCTIONS
The set of System Control instructions provide a
means for the program to set the Program Status
Word, swap PSWs, trigger special interrupt handling,
and communicate with a supervisor program. Some
of these instructions are privileged and may be exe­
cuted only with the Processor in the Supervisor Mode
(i.e., Bit 7 of the PSW reset). The instructions de­
scribed in this section are:

LPSW Load Program Status Word

EPSR Exchange Program Status

SINT Simulate Interrupt

SVC Supervisor Call

4.11.1 Load Program Status Word

LPSW A(X2)

I° C2
7

1
8

A

A 32-bit operand is loaded into the Current Program
Status Word. The second operand is unchanged.

(PSW (0:31))---(A + (X2)]

Resulting Condition Code:

Determined by PSW loaded by the instruction.

Programming Note:

This instruction is privileged.

The Rl field of a load PSW instruction should
contain 0.

4.11.2 Exchange Program Status

EPSR Rl,R2

95
718

The Current Program Status, PSW (0:15), is stored
into the register specified by Rl. The content of R2
then becomes the Current Program Status, PSW (0:15).
Note that if Rl = R2, this results in the Program
Status being copied into Rl, but otherwise remaining
unchanged. This instruction is useful for capturing
the running Program Status, enabling or disabling
interrupts, or loading the Condition Code with a
specified value.

EPSR PSW (0:15)----- Rl
PSW (0:15) R2

Resulting Condition Code:

Determined by New PSW.

Programming Note:

This instruction is privileged.

The Exchange Program Status instruction is
unique to the GE-PAC 30-2E.

4.11.3 Simuleite Interrupt

SINT A(X2)

I° E2
7r A

The least significant 8-bit of the second operand,

[RS]
311

A + (X2), is presented to the Interrupt Handler as a
device number. The device number indexes the
Service Pointer Table at X'OODO' and results in
either an Immediate Interrupt or an I/O operation.

Programming Note:

This instruction is privileged.

The Simulate Interrupt instruction is unique to the
GE-PAC 30-2E.

The Rl field of a Simulate Interrupt instruction
should contain 0.

4-25

4.11.4 Supervisor Call

SVC Rl, A(X2) ,,.
El A

The Supervisor Call Instruction is used to initiate
certain functions in the Supervisor program. The sec­
ond operand address, A + (X2) may be a pointer to
the core location of the parameters the Supervisor
program will need to complete the function specified.

The value, A + (X2), is stored in core location
X'0094 1• The Current Program Status Word is stored
in the fullword core location at X'0096 '. Core loca­
tion X'009A 1 contains the New Program Status value.
Core locations X'0090' through X 1008B 1 contain six­
teen new location counter values, one for each type of
Supervisor call.

The type of Supervisor call is specified in the R 1 field
of the instruction. Sixteen different calls are provided

4-26

for. Return from the Supervisor is made by executing
a Load Program Status Word Instruction specifying the
stored "Old" PSW in location X'0096'.

(X'0094')---------A + (X2)
(X'0096') PSW (0:31)
(X'OQ9A) PSW (b:l5)
(X'009C + 2 *Rl) PSW (i6:31)

Resulting Condition Code:

Defined by New PSW.

Programming Note:

The Supervisor Call instruction is unique to the
GE-PAC 30-2E.

This instruction provides a convenient means of
switching from the Protect Mode to the Supervisor
Mode. Return to the Protect Mode is accomplished
by a Load Program Status Word or Exchange Pro­
gram status instruction.

SECTION 5
CONSOLE OPERATING PROCEDURES

5.1 INTRODUCTION

The GE-PAC 30 display panel and the various con­
trols associated with it, are shown in Fig. 5. 1. The
control console includes the following;

1. Control Switches: OFF-ON, INT and EXE

2. Mode Controls: RUN, ADR, etc.

3. Sixteen latching Data/Address Switches

4. Display Control Switch

5. Two 16-bit Display Registers

R E61STER DISPLAY RO THAU Rl4 l~~~:RACTERISTIC

5.2 CONTROL SWITCHES

The OFF-ON switch controls power to the Processor
and peripheral device controllers. Associated with
the switch is a POWER indicator lamp in the lower
left corner of the Display Panel. Whenever power is
applied, the POWER indicator is illuminated.

The momentary INT switch is used to bring the Pro­
cessor and device controllers to an initial state. De­
pressing this switch turns off power to the system for
approximately a 2-second interval. When the power
is restored, the initial state for the system is estab­
lished. This switch is normally used when the Pro­
cessor is in a Halt or Wait condition. The effect of
the INT switch on a running program is discussed in
Section 5. 6. The momentary EXE switch causes the
Processor to perform the function specified by the
Mode Control switch as discussed in the next section.

INSTRUCTION l~;o;AT,.,IO=N~co,,,0.,,1 ~-======='--"c:::J-= ... •=l/=M=I ~-'------'·mi!!"'•s,..s __________________ ~

SPEED CONTROL

MODE CONTROL

0 0
UECUTE POWElt

INITIAt.tZE

RO THAU Rl4
11 THAU A 15

MEMORY
HAD/WRITE

fillRESS
AJA

0 6 9 10 II

CONDITION CQ.DLJ
I

12 13 14 IS

~E-PAC 30 _ GEN-ERAL fj ELECTRIC

Fig. 5. 1 Display Panel

5-1

5.3 MODE CONTROL

The Mode Control switch is labeled VARI, RUN, ADRS,
MEMR, MEMW, and HALT. The Processor is con­
trolled by selecting the appropriate switch position,
and then depressing the EXE switch to activate the
function. The meaning of each of the latching Mode
Control switches is as follows:

5-2

VARI:

The Variable switch specifies variable speed exe­
cution of programs. When VARI is selected, and
the SPEED CONTROL is in the single position, the
Processor executes a single instruction each time
the EXE switch is depressed. When VARI is se­
lected, and the SPEED CONTROL is between
FAST and SLOW, the Processor executes instruc­
tions at a variable rate from 1 to 1000 instructions
per second. The speed is governed by the Speed
Control knob. The Display Registers are active
during either single or variable rate execution.
The Display Registers are updated as specified by
the Display Control Switch following the execution
of each instruction.

RUN:

The RUN position specifies program execution at
normal speed. Note that in this case, the Display
Registers are not activated or controlled by the
Processor. Rather, during normal program exe­
cution, the display panel is available for use as an
I/ 0 device. If the running program does not out­
put to the Display Registers, then these registers
retain the last value displayed prior to starting the
execution of the program.

ADRS:

The Address position is used to enter a 16-bit ad­
dress from the Data/Address switches into the
address portion of the Current Program Status
Word PSW (16:31). The address specified can be
used to read data from memory, write data into
memory, or start the execution of a program.
When the address is transferred from the switches
to the PSW, the least significant bit (PSW bit 31)
is cleared so that the resulting address is always
even. Display Registers 1 and 2 reflect the New
PSW contents if the PSW display position is
selected.

MEMR:

The Memory Read position is used to read data
from the specified address in memory. After EXE
is depressed, the memory address is shown in
Display Register 1 (top) and the contents of that ·
location are shown in Display Register 2 (bottom).
After the values are displayed, the address por­
tion of the PSW is incremented by 2. Depressing
EXE repeatedly displays consecutive locations
from core memory.

MEMW:

The Memory Write position is used to enter data
from the Data/Address switches into a specified
location in memory. After EXE is depressed, the
memory address is shown in Display Register 1
(top) and the data written into .that location is shown
in Display Register 2 (bottom). After the values
are displayed, the address portion of the PSW is
incremented by 2. Depressing EXE repeatedly
writes data into consecutive memory locations.

HALT:

To stop program execution, select the HALT
position and depress EXE. This action puts the
GE-PAC 30-2E into a Halt Mode, which is non­
interruptible. Performing ADRS, MEMR, or
MEMW operations also puts the Processor into
the Halt Mode. In the Halt Mode, the Wait indica­
tor over the EXE switch is illuminated. The Wait
indicator is also on between instructions during
either single or variable speed execution, or when
an executing program enters the Wait state by
setting bit 0 of the PSW. Note that the program­
initiated Wait state in interruptible, while the
console-initiated Halt Mode is not interruptible.

5.4 DISPLAY REGISTERS

The two 16-bit Display Registers are used as de­
scribed above for Address, Memory Read, and Memo­
ry Write operations. Whenever EXE is depressed
with Mode Control switch On the Halt Mode, or follow­
ing each instruction during either single or variable
speed execution, the Display Registers are used as
specified by the Display Control Switch. The Display
Control Switch Positions are INS, PSW, 0-1, 2-3,
4-5, 6-7, 8-9, A-B, C-D, and E-F. These positions
select the registers within the Processor to be dis-

played in the Display Registers. The information
displayed is as follows:

INS:

When the Instruction position is selected, the Pro­
cessor displays the contents of two consecutive
halfwords from memory as specified by the ad­
dress portion of the PSW. This information is the
next instruction to be executed if program execu­
tion is in progress. The first halfword from
memory is shown in Display Register 1, and the
second halfword is shown in Display Register 2.

PSW:

When the PSW position is selected, the Processor
displays the contents of the Current Program
Status Word. Display Register 1 contains the
program status and condition code, and Display
Register 2 contains the location counter.

0-1, 2-3, .. E-F:

When the FLT on the Mode Switch is not selected,
these switches cause the Processor to display the
General Registers as indicated on the switch. For
example: switch 2-3 causes General Register 2 to
be shown in Display Register 1, and General Reg­
ister 3 to be shown in Display Register 2. When
the FLT on the Mode Switch is selected, these
switches refer to the 32-bit Floating-Point Regis­
ter indicated by the even number on the switch.
For example: switch E-F causes the most signif-

Location Function Suggested
(hex) Setting

0022 pointer to 0058
register
save area

0034 New PSW 8000
0036 for Illegal 0050

Instruction
Interrupts

003C New PSW 8000
003E for Machine 0050

Malfunction
Interrupts

0050 Auto-load D500
0052 sequence OOCF
0054 for loading 4300
0056 programs 0080

0078 XXYY

icant half of floating register E to be shown in
Display Register 1, and the least significant half
to be shown in Display Register 2.

When the Display Control Switch is in the OFF posi­
tion, the Display Registers are considered OFF by
the Processor, and no information is displayed. In
this case, the Display Registers may still reflect
data written to the display panel from a running
program. The OFF position is also used in relation
to console interrupts. See Section 5. 6.

5.5 OPERATING PROCEDURES

5.5.1 Initialization

To bring up power and initialize the system:

1. Place the Mode Control switch in the HALT
position.

2. Push the Power Switch in.

3. Depress the momentary Initialize (INT) switch.

This action establishes electrical power, and leaves
the Processor in the Halt Mode. Before the system
can be used, it is necessary to initialize a few impor­
tant pointers and New PSWs in core memory. The
locations in memory to be adjusted are shown in
Table 5. 1.

Comment

This pointer should contain the address of
a block of 32 bytes which are available for
register save and restore operations.

If an illegal instruction occurs, this New
PSW clears all interrupts and puts the
Processor into Wait state with location
counter = 0050.

This New PSW treats machine malfunction
interrupts the same as illegal instructions
for purposes of initialization.

This sequence uses the Auto-load instruc-
tion at 50 followed by an unconditional
branch to 80 to perform initial program
loads. With this sequence, location 78
should be loaded with device number XX
and command byte YY. Refer to Appen-
dix 8 for information on I/O devices.

Table 5. 1 Memory Core Locations

5-3

The previous locations mentioned in memory can be
set using Memory Write operations as follows:

5~4

1. Enter 0022 (0000 0000 0010 0010) into the
Data/Address switches, select Mode Control
switch position ADRS, and depress EXE.

2. Enter 0058 (0000 0000 0101 1000) into the
Data/Address switches, select Mode Control
switch position MEMW, and depress EXE.
This enters value 0058 into location 0022.

3. Enter 0034 into the Data/Address switches,
select Mode Control switch position ADRS,
and depress EXE.

4. Enter 8000 into the Data/Address switches,
select Mode Control switch position MEMW
and depress EXE.

5. Enter 0050 into the Data/Address switches,
and depress EXE. These steps enter values
8000 and 0050 into memory starting at 0034.

6. Follow similar steps until all specified loca­
tions in memory have been set properly.

Once the above locations are set, their contents
can be verified using Memory Read operations as
follows:

1. Enter 0022 into the Data/Address switches,
select Mode Control switch position ADRS,
and depress EXE.

2. Select Mode Control switch position MEMR,
and depress EXE. At this point, the address
(0022) should be displayed in Display Register
1, and the contents (0058) should be displayed
in Display Register 2.

3. Enter 0034 into the Data/Address switches,
select Mode Control switch position ADRS,
and depress EXE.

4. Select Mode Control switch position MEMR,
and depress EXE. At this point, Display
Register 1 should show the address (0034)
and Display Register 2 should show its
contents (8000).

5. To examine the next location, depress EXE.
At that time, Display Register 1 should show
the address (0036), and Display Register 2
should show the contents (0050).

6. Follow similar steps until all appropriate
locations have been verified.

Once core memory locations a.re set and verified, it
is still necessary to initialize the Current PSW. Note
that while the location counter PSW (16:31) can be set
using the ADRS Mode Control, there is no way to di­
rectly adjust the program status PSW (0: 15) from the
display panel. When power is turned on, the program
status is loaded from memory location 0024, the PSW
save area. Following a cold start, ·this initial setting
is arbitrary. The program status can be set in two
ways: either by executing an LPSW or EPSR instruc­
tion, or by servicing an interrupt with a PSW swap.
For system initialization, the recommended procedure
is to execute an illegal instruction, which forces the
illegal instruction PSW swap. Using core memory
settings suggested above, this PSW initialization can
be performed by starting program execution at loca­
tion 0034, whic.h is an illegal instruction. The· specific
steps are:

1. Enter 0034 into the Data/Address switches,
select Mode Control switch position ADRS,
and depress EXE.

2. Select Mode Control switch position RUN,
and depress EXE.

The result of performing these two steps is that the
Processor attempts to execute the contents of location
0034 (8000) which is an illegal in.struction. An illegal
instruction PSW swap occurs, which loads the program
status with 8000, loads the location counter with 50,
and leaves the Processor in the Wait state. At this
point, if EXE is depressed, the Processor executes
the Auto-load sequence at 0050.

5.5.2 Program Loading

There are many ways to load the GE-PAC 30-2E
memory with programs and/or data. Most programs
are loaded using one of the program loaders associ­
ated with the GE-PAC 30-2E system software. Refer
to programming publications for details on loaders or
other software programs.

The Auto-load sequence, referred to in the previous
section, is useful for loading programs when the sys­
tem is being initially loaded, or when no other pro­
gram loaders are in memory. The sequence recom­
mended in the previous section is described in Table
5. 2.

This sequence is based on the Auto-load instruction,
which is described in Section 4. 10. This instruction
reads 8-bit data bytes from device XX into memory,
starting at location 0080. The load operation proceeds
until the device indicates a termination status, or until
a specified upper limit is reached. In the sequence
above, the limit is defined as location OOCF, which
allows 80 bytes to be read. With the Auto- Load

f
Location Contents Instruction

! 50 D500 AL 0, X'CF' AUTO LOAD

OOCF

54 4300 B X'80' BRANCH TO 80

0080

78 XXYY DC X'XXYY' DEV NO AND CMND

Table 5. 2 Core Memory Description

instruction, the device address to be used is specified
in byte location 78, and the command byte which starts
the device is specified in byte location 79. Leading
zero data bytes are skipped and not loaded. This se­
quence is appropriate with teletype. paper type, or
magnetic tape devices that transfer 8-bit data bytes.
When the Auto-Load instruction terminates, the Branch
instruction transfers control to location 0080. This
Auto-Load sequence can be easily changed to meet
other requirements. The upper limit (OOCF), at 0052,
can be changed to load programs of different length.
The transfer address (0080). at 0056, can be changed
to branch to a different location. Following the Auto­
Load instruction, it is possible to test the condition
code to determine exactly how the Auto-Load operation
terminated. An all zero condition code implies the
specified program length was loaded. A non-zero
condition code implies the device terminated the load.
sequence before the program length was satisfied.

5.5.3 Program Execution

To start a program executing at normal speed. two
steps are required:

1. Enter the starting address of the program into
the Data/Address switches. select the Mode
Control switch position ADRS, and depress
EXE.

2. Select the Mode Control switch position RUN
and depress EXE.

To halt the execution of a running program. select
Mode Control switch position HALT and depress EXE.
When the Processor enters the Halt Mode, the Display
Registers are updated as specified by the Display
Control Switch. For example: if EXE is depressed
with the Mode Control switch position HALT, and the

Display Control Switch position PSW, execution is
halted and the Current PSW is displayed in the Display
Registers. Each time EXE is depressed in the Halt
Mode. the Display Registers are updated as specified
by the Display Control Switch. Therefore, to alter
the Display Registers. once the Processor is in the
Halt Mode. simply change the Display Control Switch
and depress EXE to change the data displayed.

To execute a program a single instruction at a time.
the following steps are required:

1. Enter the starting address of the program intci
the Data/Address switches. select the Mode
Control switch position ADRS. and depress
EXE.

2. Select the Mode Control switch position VARI,
and depress EXE. This executes one instruc­
tion at the address specified. and returns the
Processor to the Halt Mode with the Display
Registers updated as specified by the Display
Control Switches.

3. Depress EXE for each subsequent instruction
of the program to be executed.

At any time during the single-step sequence. the Dis­
play Control Switch can be adjusted to change the
selection of registers to be displayed. After any
instruction execution. to examine more than one reg­
ister without executing more instructions, pl<1.ce the
Mode Control switch in the Halt Mode. Then select
the Display Control Switch position desired and de -
press EXE to look at other registers. Place the Mode
Control Switch in VARI to resume single-step
execution.

5-5

5.6 PRO.GRAMMING
CONSIDERATIONS

5.6.1 Display Panel 1/0

The Dbplay Panel is available to any running program
as an I/O device with device address 01. The status
and command bytes for the display panel are summa­
rized in Appendix 8. The status byte for the display
indicates the setting of the Mode Control and the Dis-

play Control Switches. The command byte specifies
either Normal or Incremental mode, which pertains to
data transfers. In the Normal mode, the selection
logic -- which determines which half of the Data/
Address switches and which byte of the Display Regis­
ters is transferred -- is reset every time the Display
Panel is addressed on the Multiplexor Bus. The Dis­
play Panel is addressed by every I/O instruction
using device address 01. Subsequent read or write
instructions transfer subsequent bytes as shown .in
Fig. 5. 2. Normal I/O instructions, therefore, can
be used to input data from the Data/Address switches,
and output data to the display regi.sters.

DISPLAY REGISTER I I 0 0 0 0 I [o""o 0 o I (o 0 0 ol lo 0 0 0 I
04 03

DISPLAY REGISTER 2 I 0 0 0 0 I lo 0 0 ol lo 0 0 ol lo 0 0 0 I
02 DI

OAT A I ADDRESS SWITCHES [] I I I I I I I ·I I I I I I I I I I I
S2 SI

Data Transferred

Instructions
Executed Normal l\Iode Incremental ;\lode

(RR or RX)

RD SI SI
RD SI S2
HD SI SI
RD SI S2
RH SI, S2 SI, S2
m1 Sl S2 SI, S2
RB* Sl, S2, Sl, S2 Sl, 82, SI, S2
\VD Dl DI
WD Dl D2
\VD Dl D3
WD DI D4
\VII DI, D2 DI, D2
WH D~ D2 D3 D4
\VB .. DI, D2, D3, _D4 Dl, D2, D3, D4

"'Block Lcn1,rth = '1 bytes

Fig. 5. 2 Display Panel/Data Transferred

S-6

5.6.2 Console Interrupt

In the GE-PAC 30-2E, an interrupt can be generated
from the display panel as follows:

1. The program must have bit 4 of the Current
PSW set which specifies Automatic I/O Ser­
vice Mode.

2. The operator must have the Mode Control
Switch in the RUN position, and the Display
Control Switch OFF, and then depress EXE.

This feature enables an operator to inform the running
program that some operator se.rvice or function is .
needed. No acknowledgement of the interrupt is
needed by the running program. If the Automatic I/ 0
Service Mode is not enabled, console interrupts are
not generated and are not queued.

5.6.3 Wait State

The running program can put the GE-PAC 30-2E Pro­
cessor into the Wait State by setting bit 0 of the Cur­
rent PSW. The operator is informed of this action by
the Wait indicator being illuminated. The processor
can leave the Wait State and resume execution in two
ways:

1. An interrupt can occur, causing a PSW swap
an:d execution of a routine to service the inter­
rupt. When the routine restores the original
PSW, the Wait State will be re-established.

2. The operator selects RUN and depress EXE
on the display panel, which causes execution
to resume at the address specified by the lo­
cation counter PSW (16:31).

Note that the use of the programmed Wait State must
be considered carefully when using single-step or
variable-speed executions. That is, with single-step
execution it is possible to "step through" the Wait State
inadvertently through rapid or continuous use of the
EXE switch. Similarly, variable-speed execution re­
sults from automatic generation of EXE signals from a
hardware timer, and the same phenomenon can occur.

5.6.4 Power Fail

Depressing the INT switch of the display panel causes
removal of electrical power from the system for a
brief interval (about 2 seconds). When power is re­
moved, the Processor saves the Current PSW in mem­
.ory locations 0024 and 0026, and the 16 General Regis­
ters in the block indicated by the contents of 0022,
and then follows an orderly shut-down sequence, which
preserves the data within core memory. When power
is restored, the PSW and General Registers are re­
loaded from core memory, and the device controllers
are all initialized. At this point, the Processor inter­
rogates the Display Panel mode control switches. If
Mode Control switch RUN is not selected, the Proces­
sor enters the Halt Mode and the Wait indicator is
illuminated. If Mode Control switch RUN is selected,
the Processor examines bit 2 of the restored Current
PSW. If bit 2 (the machine malfunction interrupt en­
able,) is set, the Processor then performs the appro­
priate PSW swap for machine malfunction interrupts.
The purpose of this interrupt is to inform the running
program that a power fail/restore has occurred. The
program must compare the Old PSW for machine mal­
functions with the PSW save area at 0024 to make this
determination. If bit 2 of the PSW is not set, program
execution resumes where it left off, with no machine
malfunction interrupt.

The use of the INT switch on the display panel should
be considered carefully when bit 2 of the Current PSW
is enabled.

5-7

~

~

~

~

~

~

~

~

APPENDIX 1

INSTRUCTION SUMMARY - ALPHABETICAL

INSTRliC TION OP CODE MNEMONIC

Acknowledge Interrupt DF AI
Acknowledge Interrupt RR 9F AIR

Add Halfword 4A AH
Add Halfword Immediate CA AHI
Add Halfword RR OA AHR
Add Halfword Memory 61 AHM
Add Immediate Short 26 AIS

Add to Bottom of List 65 ABL
Add to Top of List 64 ATL

Add with Carry Halfword 4E ACH
Add with Carry Halfword RR OE ACHR

AND Halfword 44 NH
AND Halfword Immediate C4 NHI
AND Halfword RR 04 NHR

Auto load D5 AL

Branch and Link 41 BAL
Branch and Link RR 01 BALR

*Branch on False Condition 43 BFC
*Branch on False Condition RR 03 BFCR

*Branch on True Condition 42 BTC
*Branch on True Condition RR 02 BTCR

Branch on True Backward Short 20 BTBS
Branch on True Forward Short 21 BTFS
Branch on False Backward Short 22 BFBS
Branch on False Forward Short 23 BFFS

Branch on Index High co BXH
Branch on Index Low or Equal Cl BXLE

*See Extended Branch Mnemonics Section for thirty (30) additional symbolic instructions for
the GE-PAC 30-2E.

~ Extended GE-PAC 30-2E Feature.

Al-1

INSTRUCTION OP CODE MNEMONIC

~ Compare Halfword 49 CH
~ Compare Halfword Immediate C9 CHI
~ Compare Halfword RR 09 CHR

\

~ Compare Logical Byte D4 CLB

Compare Logical Halfword 45 CLH
Compare Logical Halfword Immediate C5 CLHI
Compare Logical Halfword RR 05 CLHR

Divide Halfword 4D DH
Divide Halfword RR OD DHR

..,... Exchange Byte RR 94 EXBR

~Exchange Program Status RR 95 EPSR

Exclusive OR Halfword 47 XH
Exclusive OR Halfword Immediate C7 XHI
Exclusive OR Halfword RR 07 XHR

Floating - Point Add 6A AE
Floating - Point Add RR 2A AER

Floating - Point Compare G9 CE
Floating - Point Compare RR 29 CER

Floating - Point Divide GD DE
Floating - Point Divide RR 2D DER

Floating - Point Load GS LE
Floating - Point Load RR 28 LER

Floating - Point Multiply GC ME
Floating - Point Multiply RR 2C MER

Floating - Point Store GO STE

Floating - Point Subtract GB SE
Floating - Point Subtract RR 2B SER

Load Byte D3 LB
Load Byte RR 93 LBR

~ Load Complement Short 25 LCS

~ Extended GE-PAC 30-2E Feature.

Al-2

INSTRUCTION OP CODE MNEMONIC

Load Halfword 48 LH
Load Halfword Immediate cs LHI
Load Halfword RR 08 LHR

~Load Immediate Short 24 LIS

Load Multiple Dl LM

Load Program Status Word C2 LPSW

:Multiply Halfword 4C MH
Multiply Halfword RR oc MHR

~Multiply Halfword Unsigned DC MHU
~ l\Iultiply Halfword Unsigned RR 9C MHUR

OR Halfword 46 OH
OR Halfword Immediate C6 OHi
OR Halfword RR 06 OHR

Output Command DE oc
Output Command RR 9E OCR

Read Block D7 RB
Read Block RR 97 RBR
Read Data DE RD
Read Data RR -~ RDR

~Read Halfword D9 RH
~Read Halfword RR 99 RHR

~Rotate Left Logical EB RLL
~Rotate Right Logical EA RRL

~Remove from Bottom of List 67 RBL
~Remove from Top of List 66 RTL

Sense Status DD SS
Sense Status RR 9D SSR

~Shift Left (Fullword) Arithmetic EF SLA
~Shift Left (Fullword) Logical ED SLL

Shift Left (Halfword) Arithmetic CF SLHA
Shift Left (Halfword) Logical CD SLHL

~ Shift Left Logical Short 91 SLLS

~Shift Right (Fullword) Arithmetic EE SRA
~Shift Right (Fullword) Logical EC SRL

Shift Right (Halfword) Arithmetic CE SRHA
Shift Right (Halfword} Logical cc SRHL

~Shift Right Logical Short 90 SRLS

~ Extended GE-PAC 30-2E Feature.
Al-3

I:L\STRl.CTION

~Simulate Interrupt

Store Brte
Store Byte RH

Store Halfword

Store l\Iultiple

Subtract Ha lfo·orrl
Subtract Ha lfo·9rd Immediate
Subtract Halfword RR

.._.. Subtract Immediate Short

Subtract with Carr~· Halfword
Subtract with Carry Halfword RR

....... SuperYisor Call

....... Test Halfword Immediate

Write Block
Write Block RR
\Vrite Data
Write Data RR

....... \\"rite Halfword

._ Write Halfword RR

OP CODE

F'' -~

D2
fl:!

·~O

DO

-m
CB
OB
27

4F
OF

El

C3

D6
96
DA
9A v
D8
98

.._.. Extended GE-PAC 30-2E Feature.

Al-4

:\I .\'El\!01'\1 C .. _,,, _________
SJNT

STD
STBR

STH

STM

SH
SHI
SHR
SIS

SCH
SCHR

SVC

THI

WB
WBR
WD
WDR
WH
WHR

APPENDIX 2

INSTRUCTION SUMMARY -NUMERICAL
OP CODE MNEMONIC II\STH UCTION ..

01 BALR Branch and Link RR
02 BTCR Branch on True Condition RR
03 BFCR Branch on False Condition RR
04 NHR AND Halfword RR
05 CLHR Compare Logical Halfword RR
06 OHR OR Halfword RR
07 XHR Exclusive OH Halfword RR
08 LHR Load Halfword RR
09 CHR Compare Halfword RR
OA AHR Add Halfword RR
OB SHR Subtract Halfword RR
oc MHR Multiply Halfword RR
OD DHR Divide Halfword RR
OE ACHR Add with Carry Halfword RR
OF SCHR Subtract with Carry Halfword RR

.20 BTBS Branch on True Backward Short
21 BTFS Branch on True Forward Short
22 BFBS Branch on False Backward Short
23 BFFS Branch on False Forward Short
24 LIS Load Immediate Short
25 LCS Load Complement Short
26 AIS Add Immediate Short
27 SIS Subtract Immediate Short
28 LER Floating- Point Load RR
29 CER Floating- Point Compare RR
2A AER Floating-Point Add RR
2B SER Floating-Point Subtract RR
2C MER Floating-Point Multiply RR
2D DER Floating- Point Divide RR

40 STH Store Halfword
41 BAL Branch and Link
42 BTC Branch on True Condition
43 BFC Branch on False Condition
44 NH AND Halfword
45 CLH Compare Logical Halfword
46 OH OR Halfword
47 XH Exe lusive OR Halfword
48 LH Load Halfword
49 CH Compare Halfword
4A AH Add Halfword
4B SH Subtract Halfword
4C MH Multiply Halfword

A2-1

OP CODE :\INE:-.IOXIC INS TH l'C TION
··-·---·------·-·

4D DH Divide Halfword
4E ACH Add with Carry Halfword
4F SCH Subtract v..:ith Carr:': Halfwnrcl

60 STE Floating-Point Store
61 AHl\1 Add Halfword Memory
64 ATL Add to Top of List
65 ABL Add to Bottom of List
66 RTL Remove from Top of List
67 RBL Remove from Bottom of List
68 LE Floating-Point Load
69 CE Floating-Point Compare
6A AE Floating-Point Add
GB SE Floating-Point Subtract
6C ME Floating-Point Multiply
6D DE Floating-Point Divide

90 SRLS Shift Right Logical Short
91 SLLS Shift Left Logical Short
92 STBR Store Byte RR
93 LBR Load Byte RR
94 EXBR Exchange Byte RR
95 EPSR Exchange Program Status RR
96 WBR Write Block RR
97 RBR Read Block RR
98 WHR Write Halfword RR
99 RHR Read Halfword RR
9A WDR Write Data RR
9B RDR Read Data RR
9C MHUR Multiply Halfword Unsigned RR
9D SSR Sense Status RR
9E OCR Output Command RR
9F AIR Aclmowledge Interrupt RR

co BXH Branch on Index High
Cl BXLE Branch on Index Low or Equal
C2 LPSW Load Program Status Word
C3 THI Test Halfword Immediate
C4 NHI AND Halfword Immediate
C5 CLHI Compare Logical Halfword Immediate
C6 OHi OR Halfword Immediate
C7 XHI ·Exclusive OR Halfword Immediate
cs LHI Load Halfwood Immediate
C9 CHI Compare Halfword Immediate
CA AHi Add Halfword Immediate
CB SHI Subtract Halfword Immediate
cc SRHL Shift Right (Halfword) Logical

A2-2

OP CODE MNEMONIC INSTRUCTION

CD SLHL Shift Left (Halfword) Logical
CE SRHA Shift Right (Halfword) Arithmetic
CF SLHA Shift Left (Halfword) Arithmetic

DO STM Store Multiple
Dl LM Load Multiple
D2 STB Store Byte
D3 LB Load Byte
D4 CLB Compare Logical Byte
D5 AL Auto Load
D6 WB Write Block
D7 RB Read Block
D8 WH Write Halfword
D9 RH Read Halfword
DA WD Write Data
DB RD Read Data
DC MHU Multiply Halfword Unsigned
DD SS Sense Status
DE oc Output Command

DF AI Acknowledge Interrupt

El SVC Supervisor Call
E2 SINT Simulate Interrupt
EA RRL Rotate Right Logical
EB RLL Rotate Left Logical
EC SRL Shift Right (Fullword) Logical
ED SLL Shift Left (Fullword) Logical
EE SRA Shift Right (Fullword) Arithmetic
EF SLA Shift Left (Fullword) Arithmetic

A2-3

APPENDIX 3

EXTENDED BRANCH MNEMONICS

INSTRUCTION OP CODE (Ml) MNEMONIC

Branch on Carry 428 BC
Branch on Carry RR 028 BCR
Branch on No Carry 438 BNC
Branch on No Carry FR 038 BNCR

Branch on Equal 433 BE
Branch on Equal RR 033 BER
Branch on Not Equal 423 BNE
Branch on Not Equal RR 023 BNER

Branch on Low 428 BL
Branch on Low RR 028 BLR
Branch on Not Low 438 BNL
Branch on Not Low RR 028 BNLR

Branch on Minus 421 BM
Branch on Minus RR 021 BMR
Branch on Not Minus 431 BNM
Branch on Not Minus RR 031 BNMR

Branch on Plus 422 BP
Branch on Plus RR 022 BPR
Branch on Not Plus 432 BNP
Branch on Not Plus RR 022 BNPR

Branch on Overflow 424 BO
Branch on Overflow RR 02'4 BOR

Branch Unconditional 430 B
Branch Unconditional RR 030 BR

Branch on Zero 433 BZ
Branch on Zero RR 033 BZR
Branch on Not Zero 423 BNZ
Branch on Not Zero RR 033 BNZR

No Operation 4200 NOP
No Operation RR 0200 NOPR

OPERANDS

A(X2)
R2
A(X2)
R2

A(X2)
R2
A(X2)
R2

A(X2)
R2
A(X2)
R2

A(X2)
R2
A(X2)
R2

A(X2)
R2
A(X2)
R2

A(X2)
R2

A(X2)
R2

A(X2)
R2
A(X2)
R2

A3-l

EXTENDED StrORT BRANCH MNEMONICS

INSTRUCTION OP CODE MNEMONIC (l) OPERANDS <2:

Branch Absolute Back 220 BABS
Branch Absolute Forward 230 BAFS
Branch on Zero Back 223 BZBS
Branch on Zero Forward 233 BZFS

Branch on Not Zero Back 203 BNZBS
Branch on Not Zero Forward 213 BNZFS
Branch on Plus Back 202 BPBS
Branch on Plus Forward 212 BPFS

Branch on Not Plus Back 222 BNP BS
Branch on Not Plus Forward 232 BNPFS
Branch on Minus Back 201 BMBS
Branch on Minus Forward 211 BMFS

Branch on Not Minus Back 221 BNMBS
Branch on Not Minus Forward 231 BNMFS
Branch on Carry Back 208 BCBS
Branch on Carry Forward 218 BCFS

Branch on Overflow Back 204 BOBS
Branch on Overflow Forward 214 BOFS
Branch on Low Back 208 BLBS
Branch on Low Forward 218 BLFS

Branch on Not Low Back 228 BNLBS
Branch on Not Low Forward 238 BNLFS
Branch on Equal Back 223 BEBS
Branch on Equal Forward 233 BEFS

Branch on Not Equal Back 203 BNEBS
Branch on Not Equal Forward 213 BNEFS

Notes:

1. These Mnemonics are not recognized by the Stand Alone Assembler.

2. The Operand may be a displacement number or the present location
minus a label or a label minus the present location.

A3-2

"«-A
A-*
>:•-A
A-*

*-A
A->'f.
>:•-A
A-*

*-A
A-':'
"""-A
A-*

*-A
A-*
*-A
A-*

:>:r:-A
A->:c
*-A
A-*

*-A
A-*
*-A
A-*

*-A
A-*

2 . 4

0 BTBS STH

1 BALR BTFS BAL

2 BTCR BFBS ETC

3 BFCR BFFS BFC

4 NHR LIS NH

5 CLHR LCS CLH

6 OHR AIS OH

7 XHR SIS XH

8 LHR LER LH

9 CHR CER CH

A AHR AER AH

B SHR SER SH

c MHR MER MH

D DHR DER DH

E ACHR ACH

F SCHR SCH

RR RR RX

P = Privileged Instructions

APPENDIX 4
OP CODE MAP

6 9

STE SRLS

AHM SLLS

STER

LBR·

ATL EXBR

ABL EPSR p

RTL WBR p

RBL RBR p

LE WHR
p

CE RHR
p

AE WDR
p

SE RDR p

ME MHUR

DE SSR p

OCR p

AIR p

RX RR

c D E

BXH STM

BXLF LlVl SVC

LPS\v p STE SINT p

THI LB

NHI

CLHI AL

OHI WB

XHI

LHI

CHI

AHI WD p RRL

SHI RD p RLL

SRHL MHl1 SRL

-
SLHL SS p SLL

-
SRHA oc p SRA

SLHA AI P SLA

RS RX RS

A4-1

APPENDIX 5

INSTRUCTION EXECUTION TIMES

RR or SF RS RS Indexed RX RX Indexed

ABL s. 4/23. 6/23. 6 8. 8/24. 0/24. 0 OVF /NORM/WRAP
ACH 3.6 G. 0 6.4
AE 47.6/54.4/72.4 46. 8/53. 6/71. 6 47.2/54.0/72.0 MIN/AVE/MAX
AH 3.2 4.0 6.0 5.6 6.0
AHl\l 6. 8 7.2
AI 6.8 9.2 9.6
AIS -!. 4
AL 11. 2+9. 2n 11. 6+9. 2n n=no. of bytes
ATL 8.4/21. 6/22. 0 8.8/22.0/22.4 OVF /NORM/WRAP

BAL 4.8 6.0 6.4
BFBS 4.4/8.8 No BR/BR
BFC 4.8/4.8 6.0/6.0 6. 4/6. 4 . No BR/BR
BFFS 4.4/8.4 No BR/BR
BTBS 4. 8/9. 2 No BR/BR
BTC 4.4/5.2 5.6/6.4 6.0/6.8 No BR/BR
BTFS 4,8/8.8 No BR/BR
BXH 10. 4/11. 2 12. 4/13. 2 No BR/BR
BXLE 11. 2/11. 2 13.2/13.2 No BR/BR

CE 20. 0/23. 2/28. 0 19. 2/22. 4/27. 2 19.6/22.8/27.6 +,-/+,+/-,-
CH 7. 2/6. 8 6.8/6.4 8.8/8.4 8, 4/8. 0 8.8/8.4 Signs differ/

Signs alike
CLB 6.8 7.2
CLH 3.2 4.0 6. 0 5.6 6.0

DE 182.0/204.0/239.6 181.2/203.2/238.8 181.6/203.6/239.2 MIN/AVE/MAX
DH 38,0/39.2/41.6 39. 2/40. 4/42. 8 39,6/40.8/43.2 MIN/ A VE/Jl.iiAX

I
I

EPSR 7.6
EXBR 2,8

LB 3.2 5.2 5.6
LCS 4.0
LE 24. 8/28. 8/35. 6 25. 2/29. 2/36. 0 25. 6/29. 6/36. 4 MIN/ A VE/MAX
LH 2. 8 3.2 5.2 4.8 5.2
LIS 3.6
LM 8.0+3.2n 8.4+3.2n n=no. of regs.
LPSW 8. 8 10.8

ME 131.2/144.0/173.6 130.4/143.2/172.8 130.8/143.6/173.2 MIN/ A VE/MAX
MH 22. 8/28. 4/36. 8 24.0/29.6/38.0 24. 4/30. 0/38. 4 MIN/AVE/MAX
MHU 18.4/24.8/30.8 20. 0/25. 6/32. 0 20. 4/26. 0/32. 4 MIN/AVE/MAX

NH 2.8 3.6 5.6 5.2 5. 6

oc 5.6 6.8 7.2
OH 2.8 3.6 5.6 5.2 5.6

RB 14.0+6.4n 12.8+6.4n 13.2+6.4 n=no. of bytes
RBL 8. 8/22. 8/~3. 2 9. 2/23. 2/23. 6 OVF /NORM/WRAP
RD 5.6 8.0 8.4
RH 7.2 9. 6 10.0
RLL 10.4+2n 12.4+2n n=no. of shifts Note 1
RRL 10.4+2n 12.4+2n n=no. of shifts Note 1
RTL 8.8/24.4/24.4 9.2/24.8/24.8 OVF /NORM/WRAP

A5-l

S.CH
SE
S" L

SD\T

SIS
SLA
SLHA
SLHL
SLL
SLSL
SRA
SRHA
SHHL
SHL
SRSL
SS
STB
STE
STH

STM
SVC

THI

WB
\VD

WH

XH

Note 1:
Note 2:
Note 3:
Note 4:
Note 5:

A5-2

RH or SF HS

3 ... G
-Vi. (i/f>2. 8/72. 8
..., •)
~) l.. ()

J,8

10. 4-'-1, 611
5. 2+. 4n
4.0+.4n
10.4+1.Gn

4.4-'-.411

10.4+211
4.8+.4n
4.0+.411
10. 4+1. 611

-±. 4-". 4n
G.4
·1. 4

14.0

3. 6

13.2+6.011
5.6
6. 8

2.8 3.6

Add • 4 if 11 > 0, add • 8 if n > 16
Add 3. 2 if n > 0, add 6. 4 if n > 16
Add . 8 if n > 0, add 1. 6 if n > 16
Add 1.2 if n >0, add 2.4 ifn> Hi

RS Indexed

G. 0

12.4+1.Gn
7,2+.4n
6. O+. ·in
12. 4+1. 6n

12.4+2n
6.8+,4n
6.0+.411
12. 4+1. 6n

15. 6

5.6

5.6

HX HX Indcx0d

G. 0 6. 4
46. 8/62. 0/72. 0 47. 2/62. 4/72. ·± l\UN/ AVE/MAX
5. G G. O
See Note 5

n=no. of shifts Note 2
n=no. of shifts
n=no. of shifts
n==no. of shifts Note 3
n=no. of shifts
11=no. of shifts Note 4
11=no. of shifts
n=no. of shifts
n=no. of shifts Note 2
n=no. of shifts

s. 0 8. 4
G.4 6. 8
12.4 12.8
G.4 G.8
8, 0+3. G11 8. 4+3. 6n n=110. of regs.

12.0+6.0n 12.4+6.0n n=no. of bytes
6.8 7.2
8.4 8,8

5.2 5.6

SINT Execution times same as Automatic I/O processing times. Add 2.0 if indexed.

NOTE

These times assume the standard 1 microsecond core
memory with no interference from a Selector Channel
or any other device on the memory bus.

APPENDIX 6

ARITHMETIC RE FE RE NCES

TABLE OF POWEHS OF TWO

zn n :rn
1 0 1.0
2 1 o.s
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 o.ooo 488 281 25

4 096 12 o.ooo 244 140 625
8 192 13 o.ooo 122 070 312 5

16 384 14 o.ooo 061 035 156 25
32 768 15 o.ooo 030 517 578 125

65 536 16 o.ooo 015 258 789 062 5
131 072 17 o.ooo 007 629 394 531 25
262 144 18 o.ooo 003 814 697 265 625
524 288 19 o.ooo 001 907 348 632 812 5

1 048 576 20 o.ooo 000 953 674 316 406 25
2 097 152 21 o.ooo 000 476 837 158 203 125
4 194 304 22 o.ooo 000 238 418 579 101 562 5
8 388 608 23 o.ooo 000 119 209 289 550 781 25

16 777 216 24 o.ooo 000 059 604 644 775 390 625
33 554 432 25 o.ooo 000 029 802 322 387 695 312 5
67 108 864 26 o.ooo 000 014 901 161 193 847 656 25

114 217 728 27 o.ooo 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 o.ooo 000 001 862 645 149 230 957 031 25

1 073 741 824 30 o.ooo 000 000 931 322 574 615 478 515 625
2 147 483 648 31 o.ooo 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 o.ooo 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 o.ooo 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 o.ooo 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 o.ooo 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 o.ooo 000 000 001 818 989 403 545 856 475 830 078 125

l 099 511 62 7 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

A6-l

TABLE OF POWERS OF SIXTEEN

16n n

1 0

16 1

256 2

4 096 3

65 536 4

1 048 576 5

16 777 216 6

268 435 456 7

4 294 967 296 8

68 719 476 736 9

1 099 511 627 776 10

17 592 186 044 416 11

281 474 976 710 656 12

4 503 599 627 370 496 13

72 057 594 037 927 936 14

1 152 921 504 606 846 976 15

Decimal Values

A6-2

HEXADECIMAL ADDITION TABLE

1 2 3 4 5 6 7 8 9 A B c D E F

1 2 3 4 5 () 7 8 9 A B c D E F 10 1

2 3 4 5 6 7 8 9 A B c D E F 10 11 2

3 4 5 6 i 8 9 A B c D E F 10 11 12 3

4 5 6 7 8 9 A B c D E F 10 11 12 13 4

5 6 7 8 9 A B c D E F 10 11 12 13 14 5

6 7 8 9 A B c D E F 10 11 12 13 14 15 6

7 8 9 A B c D E F 10 11 12 13 14 15 16 7

8 9 A B c D E F 10 11 12 13 14 15 16 17 8

9 A B c D E F 10 11 12 13 14 15 16 17 18 9

A B c D E F 10 11 12 13 14 15 16 17 18 19 A

B c D E F 10 11 12 13 14 15 16 17 18 19 lA B

c D E F 10 11 12 13 14 15 16 17 18 19 lA lB c

D E F 10 11 12 13 14 15 16 17 18 19 lA lB lC D

E F 10 11 12 13 14 15 16 17 18 19 lA lB lC lD E

F 10 11 12 13 14 15 16 17 18 19 lA lB lC lD lE F

1 2 3 4 5 6 7 8 9 A B c D E F

A6-3

HEXADECIMAL Ml1LTIPLICATION TABLE

1 2 3 4 1---:-r G 7 8 ~) At;Tl D E F ,, l

I --+----

1 1 2 3 4 ;) 6 7 8 9 A B C D E F 1

+
2 2 4 6 8 A c E 10 12 14 16 18 lA lC lE 2

3 3 6 9 c F 12 15 18 lB lE 21 24 27 2A 2D 3
-

l
4 4 8 c 10 14 18 lC 20 I 24 28 2C 30 34 38 3C 4

5 5 A F 14 19 lE 23 28 2D 32 37 3C 41 46 4B 5

6 6 c 12 18 lE 24 2A 30 36 3C 42 48 4E 54 5A 6

7 7 E 15 lC 23 2A 31 38 3F 46 I 4D 54 5B 62 69 7

s s 10 18 20 2S 30 38 40 48 50 58 60 68 70 78 8

9 9 12 lB 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 9

A A 14 lE 28 32 3C 46 50 5A 64 6E 78 82 SC 96 A

B B 16 21 2C 37 42 4D 58 63 6E 79 84 . SF 9A A5 B

c c lS 24 30 I 3C 4S 54 60 6C 78 84 90 9C AS B4 c

D D lA 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 D

E E lC 2A 38 46 54 62 70 7E SC 9A A8 B6 C4 D2 E

F F lE 2D 3C 4B 5A 69 78 S7 96 A5 B4 C3 D2 El F
.

1 2 3 4 5 6 7 8 9 A B c D E F

A6-4

APPENDIX 7

AUTOMATIC 1/0 OPERATION AND TIMING DATA

A-x·oo40'

NOP, INIT, DMT
AND NULL

RESET

NO

ATN

ACKNOWLEDGE

FETCH
SERVICE POINTER

Q FLAG-0

FETCH FW

DATA TRANSFER

SINT

DEV NO= At{X2)

RESET

STORE STATUS
AT PTR ADDR
STORE LOC AT
PTR ADDR + 2
GET STATUS
FROM PTR ADDR
+4 SET LOC TO
PTR ADDR+6

A7-1

NO

A7-2

READ

READ DATA STORE
IN CUR ADDR. :INCR.
CUR ADDR. DEC.
BYTE COUNT

YES

NO

DONE

DATA TRANSFER

LOAD CURRENT
AO.DR AND FINAL
ADDR FROM ISB

SET BYTE COUNT
FROM FW

ADDRESS DEVICE
GET STATUS

STORE CUR. ADDR.
INTO ISB

DONE

NO

WRITE

YES

YES

YES

WRITE DATA FROM
CUR ADOR. :INCR
CUR ADDR. DEC
BYTE COUNT

NO

SET rNrT, NOP,
Q BITS; RESET
CHAIN, CONTINUE
IN FW

SET NOP
:IN FW

STORE FW
ZN ISB

STORE DEVNO
ANO STATUS

IN ISB

TERMINATION

TERMINATION

NOP, INIT, DMT AND NULL

B

RESET IN'IT
STORE FW

IN 158

FETCH COUNT
FROM IS8

DECREMENT
AND RESTORE

DONE

YES

NO

YES

DONE

DATA TRANSFER
ADDRESS DEVICE

DONE

TERMINATION

A7-3

A7-4

DONE:

A-x'ooe 2'

PSW EXCHANGE
FROM A

PSW
EXCHANGE

RESET

NO

NO

NO

TERMINATION

SET Q FLAG

PUT CHAIN VALUE

IN SERVfCE
POINTER TABLE

YES

Q RE-ENTER

Q- MEANS EXECUTE NEXT INSTRUCTION AS SPECIFIED BY PSW.

*-IF INTERRUPT SIGNAL IS PRESENT, FIRMWARE WILL
SERVICE IT BEFORE EXECUTION OF NEXT INSTRUCTION.

PUT A (FW)
INTO x 'ooeA'

A-x·ooec'

PSW EXCHANGE

:KOP

Base 16.4

INIT -
TCHAR no -
match

j TCHAR match
1

Count=O
l or CVR=finnl

-

-

Ql.EUE hi -

QUEUE lo\v -
2 CHAIN -

CONTINUE -
QSVC INT. 10.4

J • Reason for termination

2. Termination procedure

AUTOMATIC 1/0
INTERRUPT SERVICE TIMES

Nl"LL Dl\IT OCI

19.6 20.4 2 ·t. 8

6. 8 6. 0 -

- - -

- - -

- 2. 8 --

21. 6 21. 6 -

23.6 23.6 -

8.4 8.4 -

-9.6+ -9.6+ -

10.4 10.4 10.4

READ WRITE

32.0 32. 0

8. 0 8. 0

4.8 4. 8

12.4 12.4

6.8 (), 8

21. 6 21. 6

23.6 23.6

8.4 8.4

- 9. 6+ -9.6+

10.4 10.4

BAD
STATUS

52.4

8.0

-

-
-

-

-

-

-

10.4

All times are given in microseconds. To determine the execution time of a particular inter­
rupt, add to the base time the time for each pertinent option. For example: a Write of one
character using a termination character (TCHAR) with no match takes 32. 0 (base)

SINT Execution time is same. Add 1. 6 microseconds if indexed.
Read and Write times are for one byte per interrupt.
Add 6. 0 microseconds for each additional byte on Read.
Add 4. 0 microseconds for each additional byte on Write.
Note that Continue contains a negative number.

plus 4. 8 (TCHAR no match)
36. 8 microseconds

A7-5

BIT
NUMBER

APPENDIX 8

1/0 REFERENCES

DISPLAY STATCS AND COi\E\iAND BYTE DA TA
(HEX ADDRESS Ol)

0 1 2 3 4 5 6 7

STATUS
BYTE MODE REGISTER DISPLAY.

COMMAND
BYTE

STATUS:

VARI (FIX)
VARI FLT

MODE RUN
CONTROL HALT (FIX)
SWITCH HALT FLT

MEM WRITE
MEM READ
ADRS
OFF

NORM

0
0
1
1
1
0
0
0

REG DISPLAY
REGISTER INST
DISPLAY PSW
SWITCH RO, Rl

R2, R3
R4, R5
R6, R7
RS, R9
RIO, Rll
R12, Rl3
Rl4, Rl5

COMMAND:

INC

1
1
0
1
1
0
0

.o

0 0
1 0
0 0
0 0
1 0
0 1
1 0
1 1

0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

NORM In the Normal Mode, Byte 0 of the registers or switches is accessed
each time an I/O operation is directed to the Display Panel.

INC In the Incremental Mode, subsequent I/O operations access subsequent
bytes of the registers or switches.

AS-1

BIT
NUMBER

STATUS
BYTE

COMMAND
BYTE

BRK

BSY

EX

DU

DISABLE

ENABLE

UNBLOCK

BLOCK

WRT i
READ~

r

A8-2

TELETYPEWRITER STATUS AND COMMAND BYTE DATA
(HEX ADDRESS 02)

0 1 2 3 4 5 6 7

BRK BSY EX DU
-

DISABLE 1 ENABLE UNBLOCK BLOCK WRT READ

The Break bit is set when the Break key on the Teletypewriter is
depressed, or the Teletypewriter is logically disconnected from
the Controller.
The significance of the Busy bit depends upon whether a Read or a Write
operation is in progress, During Write mode, BSY is normally low, and
goes high only while data is being received by the device. During Read
mode, BSY is normally high, and goes low only when data has been re­
ceived from the device, but not yet been transferred to the Processor.
During Read mode, BSY goes high again as soon as the Processor accepts
the data.

The Examine bit is set whenever BRK is set.

The Device Unavailable bit is set whenever the Teletypewriter is in the
OFF or LOCAL mode, or power is not connected to the Teletypewriter.

This command disables the Device Interrupt to the Processor from the
DeVice Controller.

This command enables the Device Interrupt to the Processor from the
Device Controller.

This command enables the printer to print data entered via either the key­
board or the tape reader.

This command disables the feature described above.

The Write and Read commands are used to define the significance of the
BSY bit,

TELETYPEWRITER/ASCII/HEX CONVERSION TABLE

HEX (MSD) s 9 A B c D E F

(LSD) Teletype- 8 DEPENDS UPON PARITY +
writer -·-----.-·
Tape 7 0 0 0 0 1 1 1 1
Channels-

G 0

!
0 1 1 0 0 1 1

5 0 1 0 1 0 1 0 1

4 3 2 1

0 0 0 0 0 NULL DC 0 SPACE 0 @ p

1 0 0 0 1 SOM X-ON ' 1 A Q

2 0 0 1 0 EOA
TAPE

" B R
ON

2

--·
3 0 0 1 1 EOM X-OFF # 3 c s

. '.;;-

4 0 1 0 0 EOT
TAPE

$ 4 D T
OFF

5 0 1 0 1 WRU ERR % 5 E u

6 0 1 1 0 RU SYNC & 6 F v
7 0 1 l 1 BELL LEM ' 7 G w ..

8 1 0 0 0 FE 0 So (8 H x
9 1 0 0 1 HT/SK s1) 9 I y

A 1 0 1 0 LF S2 * : ,J z
B 1 0 1 1 VT S3 + ; K [

c 1 1 0 0 FF S4 ' < 'L \ ACK

D 1 1 0 1 CR S5 M J ALT.
- = MODE

E 1 1 1 0 so s6 .) N T ESC

F 1 1 1 1 SI S7 I ? 0 - DEL

*Parity bit adjusted for even parity (even number of 1 's) on input from Teletype key-
board. Parity bit is ignored on output to Teletype printer. ·

AS-3

ll!UH ~PFFD PAPFn TAPF rn:.\DFll/Pl l\Cll
STXrl s :\:\D CCl:ll:'>!Al\O BYTE D:\T.\ (HEX 1\Dnru:ss l:l)

BIT
NUMBER 0 1 2 3

STATUS
BYTE ov NMTN

COl\lMAND
BYTE

BIT

ov

NJ\ITN

DISABLE ENABLE STOP RUN

READER

The Overflow bit is set when the Buffer Register
is loaded from the Reader before the previous
character has been transferred. This condition
can only happen in the SLEW iliode.

The No Motion bit is set when the Reader has been
issued a STOP Command and the tape has stopped
on the next character.

BSY The Busy bit is set when the Buffer Register is emp­
ty, waiting for an output from the Reader.

EX The Examine bit is set whenever OV = 1 or NMTN = 1.

DU The Device Unavailable bit is set when the power
to the Reader motor is off, or the Reader lever
is in the LOAD position (straight up).

DISABLE This command inhibits interrupts from the Device
Controller from interrupting the Processor. In­
terrupts are queued.

ENABLE This command permits interrupts from the Device
Controller to interrupt the Processor.

STOP This Command bit halts the motion of the tape after
the next character has been read. The next charac­
ter to be read is positioned over the sense lights when
the tape stops.

RUN

INCR

SLEW

WRITE

READ

AS-4

This Command starts the tape moving and leaves
the Controller in the RUN Mode.

In this mode of operation, the tape is advanced one
character when the controller is in the RUN Mode
and BSY = 1. The tape stops after encountering one
character. The tape remains stopped until a Read
Data Instruction, which resets BSY and starts the
tape moving again.

In this mode of operation, the tape is advanced con­
tinuously until stopped.

Designates the High Speed Paper Tape Reader.

4
1-

5 6 7

BSY EX DU

INCR SLEW WRITE READ

PUNCH

The Overflow bit is always reset in the Write
Mode.

The No Motion bit is always reset in the Write
Mode.

The Busy bit is set when the Buffer Register
is full, waiting for an Unload signal from the
Punch.

The Examine bit is always reset in the Write
Mode.

The Device Unavailable bit 'is set when the Punch
is in the LOCAL state (switch is released), or a
low tape condition exists on the tape reel inside
the cabinet. There is no low tape sensor on the
fan fold bins.

Same as for the HSPTR.

Same as for the HSPTR.

This Command bit turns the Punch motor off.

This bit starts the Punch motor.

Not used.

Not used.

Designates the High Speed Paper Tape Punch.

BIT
NUMBER

STATUS
BYTE

COMMAND
BYTE

CARD READER STATUS AND COJ\fMAND BYTE DATA
(HEX ADDRESS 04)

0 1 2 3 4 5

EOV TBL HE NMTN BSY EX

DISABLE ENABLE J FEED

6 7

EOM DU

EOV The EOV bit is set when the data is not taken from the Device Controller
buffer before the next column of data arrives from the read station. This
bit is reset by a FEED Command.

TBL/DU

HE

NMTN

BSY

EX

EOM

DISABLE

ENABLE

FEED

These bits are set when the Card Reader fails to pick a card upon command,
or when an error condition occurs in the Card Reader. The error conditions
are:

1. Card Motion Error
2. Light Current Error
3. Dark Current Error

These error conditions prevent the reading of any more cards until manually
reset by the operator.

The HE bit is set when the last card in the input hopper has been read. When
HE sets, NMTN is set. The HE bit must be manually reset by the operator.

The NMTN is set except for the time between a FEED command and the time
it takes for a card to pass through the read station.

The BSY bit is set while the Device Controller is awaiting data from the Card
Reader. It resets when the data is available to be transferred.

The EX bit sets when any one of the upper four (4) bits of the Status byte is
set.

The EOM bit is set whenever NMTN is set, and when the input hopper becomes
empty. Reset wheri FEED command is issued.

This command disables the Card Reader Device Interrupt.

This command enables the Card Reader Device Interrupt.

This command initiates a new card feed cycle; however, no action occurs if
TBL, DU, or HE is set.

A8-5

ASCII CARD CODE CONVERSION TABLE

8-BIT 7-BIT \ 8-BIT 7-BIT
ASCII ASCil CARD ASCil ASCII CARD

GRAPHIC CODE CODE CODE GRAPHIC CODE CODE CODE ----
SPACE AO 20 0-8-2 @ co 40 8-4

Al 21 12-8-7 A Cl 41 12-1

" A2 22 8-7 B C2 42 12-2
A3 23 8-3 c C3 43 12-3
$ A4 24 11-8-3 D C4 44 12-4
% A5 25 0-8-4 E C5 45 12-5
& A6 26 12 F C6 46 12-6

A7 27 8-5 G C7 47 12-7
(A8 28 12-8-5 H C8 48 12-8
) A9 29 11-8-5 I C9 49 12-9

* AA 2A 11-8-4 J CA 4A 11-1
+ AB 2B 12-8-6 K CB 4B 11-2

AC 2C 0-8-3 L cc 4C 11-3
AD 2D 11 M CD 4D 11-4
AE 2E 12-8-3 N CE 4E 11-5

I AF 2F 0-1 0 CF 4F 11-6
0 BO 30 0 p DO 50 11-7
1 Bl 31 1 Q Dl· 51 11-8
2 B2 32 2 R D2 52 11-9
3 B3 33 3. s D3 53 0-2
4 B4 34 4 T D4 54 0-3
5 B5 35 5 u D5 55 0-4
6 B6 36 6 v D6 56 0-5
7 B7 37 7 w D7 57 0-6
8 B8 38 8 x D8 58 0-7
9 B9 39, 9 y D9 59 0-8

BA 3A 8-2 z DA 5A 0-9
BB 3B 11-8-6 [DB 5B 12-8-2

< BC 3C 12-8-4 ' DC 5C 11-8-1
= BD: 3D 8-6] DD 5D 11-8-2
> BE 3E 0-8-6 t DE 5E 11-8-7
? BF 3F 0-8-7 ~ DF 5F 0 ... 8-5

A8-o

BIT NUl\IBER

STATl'S BYTE

COl\Il\IAND BYTE

SELECT<m CHANNEL STATFS /\ 1\"D
COl\BlAND BYTE DATA

0 1 2 3
;--, ;)

BSY

READ GO STOP

6

BSY This bit is set when the Selector Channel is in the process of transferring data.

7

READ This command changes the mode of the Selector Channel from WRITE to READ. In
the READ mode, data is transmitted from the active device on the Selector Channel
and written into core memory. Whenever a data transmission has been completed,
the Selector Channel is placed in the 'WRITE mode. Each time a READ operation is
required, a READ Command must be issued.

GO This command initiates a data transmission. This command can be issued at the
same time the READ/WRITE mode is established.

STOP This command halts any data transmission in process, and initializes the Selector
Channel for starting a new operation. It should be given when the Selector Channel
terminates.

DEVICE NUMBER
The Selector Channel is normally assigned device number X'FO', but may easily be
changed by a minor wiring modification on the Selector Channel device controller
board. Refer to the maintenance manual for specific details.

INITIALIZATION
Whenever the INITIALIZE pushbutton on the Processor is depressed, or a STOP
command is issued, the following actions occur:

1. Any data transmission in process is halted and the stop mode is effected.

2. The Selector Channel is placed in the Write Mode.

3. The Selector Channel is made idle.

4. The Selector Channel interrupt is reset.

AS-7

BS

PON

PWF

EX

DISARM

ARM

PON

POFF

BS ON

BS OFF

A8-8

PROGRAMMABLE MEMORY PROTECT
STATUS AND COMMAND BYTE DATA

BIT 0 1 2 3 4 l NUMBER

STATUS
BS

p
PWF

BYTE I ON
I

COMMAND
DISARM ARM 1 p p BS

BYTE J ON OFF OFF

5 6 7

EX

BS
ON

The Block Switch bit is set when the upper 64KB of a 128KB memory
system is selected. This bit has no meaning with 64KB or less memory.

This status bit is set when memory protection is enabled.

The Protected Write Flag is set when an attempt has been made to write
into a protected area of memory. PWF is reset only by an Output
Command (OC or OCR), an Acknowledge Interrupt (AI or AIR), or the
INITIALIZE pushbutton.

The Examine bit is set whenever the PWF bit is set.

This Command bit disables the device interrupt feature and prevents
interrupts from being queued.

This Command bit enables a device interrupt to occur when an attempt is
made to write into a protected area of memory.

This Command bit enables memory to be protected as per the protection
pattern.

This Command bit overrides all memory protection.

This Command bit sets the Block Switch to select the upper block of
memory in a large memory system (over 64K bytes).

This Command bit resets the Block Switch to select the lower block of
memory in a large memory system (over 64K bytes).

READER COMMENTS
The General Electric Company solicits your comments on publications covering Process Computer

equipment. Please explain any "no" responses in the COMMENTS section. Your comments and

suggestions become the property of the General Electric Company.

• Name of Manual:

• What is your computer application: ------------------------

• How is this publication used:

Familiarization

Training
D
D

Reference

Maintenance

CJ
CJ

Other (Explain) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

• Does this publication meet your requirements

• Is the material:

1) Presented in clear"1:ext

2) Conveniently organized

3) Adequately detailed

4) Adequately illustrated

5) Presented at appropriate technical level

YES

CJ
NO

c:J

CJ
CJ
CJ
CJ
CJ

• Please provide specific text references (page number, line, etc.) with your comments.

NAME DATE

TITLE_~~~~~~~~~~~~~~~

COMPANY NAME-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-

AND ADDRESS

COMMENTS:

PC 228 (3/71) No postage necessary if mailed in the U. S. A.

Fold

Communications concerning Technical Publications should be directed to:

Manager, Technical Publications
GE Process Computer Products Dept.
2255 West Desert Cove Road
Phoenix, Arizona 85029

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

GENERAL ELECTRIC COMPANY
PROCESS COMPUTER PRODUCTS DEPT
2255 West Desert Cove Road
Phoenix, Arizona 85029

Attention: Technical Publications

Fold

Staple

I
I

Fold J

FIRST CLASS
Permit No. 4091

Phoenix, Arizona

Fold

I

GI
c

I~
c

I~
18
I
I
I
I

~

'Progress Is Ovr Mosf lmporlanf Proa'vcf

GENERAL. ELECTRIC

- ·.

