
l 

- . 

GE-PAC* 30"·~·~. 
CONTROL COMPUTER 

- , 

GE-PAC 30-2 
MICRO-PROGRAMMING 

MANUAL 

GENERAL fl ELECTR IC 

*Registered Trademark of General Electric Company 

PCP - 174 



GE 29·047 

GE-PAC 30 
CONTROL COMPUTER 

GE-PAC 30-2 
MICRO-PROGRAMMING 

MANUAL 

General Electric reserves the right 
to make changes in the equipment 
(or software) and its characteristics 
(or functions) at any time without 
notice. 

GENERAL fl ELECTRIC 



CONTENTS 
INTRODUCTION 

PROCESSOR 

MICRO-INSTRUCTIONS 

ASSEMBLER 

ASSEMBLER OPERATION 

MICRO-SIMULA TOR 

ROMWA TS DESCRIPTION 



SECTION 1 

INTRODUCTION TO MICRO-PROGRAMMING THE GE-PAC 30-2 

The General Electric GE-PAC 30-2 computer is 
a very fast, simple and uncomplicated machine. 
This computer is controlled by a Read-Only-Mem­
ory (ROM). A series of programs wired into the 
ROM control the flow of information within the 
registers and core storage of the machine. 
These programs are a sequence of very simple 
and elementary steps. These steps, or micro­
instructions, perform functions such as trans­
ferring the content of one register to another. A 
series of these micro-instructions can be com­
bined to solve highly complex problems. The 
micro-program in the standard GE-PAC 30-2 is 
designed to emulate a third generation computer. 
This entire program, which handles all the in­
structions, interrupts and display function of the 
third generation computer represents less than 
one thousand micro-instructions in the ROM. 

Any computer could be emulated by changing 
the micro-program directing the operation of 
the GE-PAC 30-2. Spec.ial instructions or func­
tions can be added by developing a new micro­
program. It is evident that the micro-program 
replaces the costly, complicated and failure­
prone hardware of a much more sophisticated 
computer or controlling device. The basic speed 
and non-destructable characteristics of this tech­
nique combined with ease of implementation and 
fow cost make it the most attractive alternative 
to special purpose hardware yet available. 

The micro-instructions for the machine are quite 
similar to the instructions for a conventional 
machine. For example, they are located at 
various addresses in the Read-Only-Memory, 
and they consist of operation codes that operate 
on various operands. To write programs for 
the micro machine, it is convenient to use the 
same kind of symbolism that is used for writing 

·programs on conventional machines, and this 
means it is convenient to use an assembler. 

An assembler allows: 

1. Operation codes to have symbolic 
names. 

2. Operand to have symbolic names. 

3. Numbers to be written in a natural 
way. 

4. Memory locations to have symbolic 
names. 

5. Error checking to be performed. 

The GE-PAC 30-2 Micro-Code Assembler 
performs all of these functions and will 
run on any standard GE-PAC 30 computer 
with SK bytes of memory and a teletype­
writer. 

Each micro-instruction is represented by a 
wire strung through the U-core ferrite trans­
formers of the ROM. The data in a ROM is 
mechanically "loaded" during the manufactur­
ing process by weaving the wires through an 
array of 32 U-cores. Each transformer corres­
ponds to one binary bit of information. If the 
wire passes through the center of the U "'.'core, 
a "one" will be read out 0f that bit position 
when that wire is pulsed. If the wire passes 
on the outside of the transformer, a "zero" 
will be read. Each wire is assigned a consecu­
tive pair of hex addresses.. The wire is woven 
according to the data to be stored in those ad­
dresses. Hence, each wire contains two 16-bit 
micro-instructions. 

Since an error in a micro-program would re­
quire the restringing of the offending wires, it 
is highly desireable to wire a fully checked pro­
gram. The GE-PAC 30-2 Micro-Cod,e Simula­
tor is used for testing and debugging GE-PAC 30-2 

1 



2 

Micro-Code programs before they are 
wired into the ROM. It is an interactive 
program that enables the debugging pro­
cess to proceed from a Teletypewriter 
keyboard under full control and contin­
uous observation by the designer. The 
GE-PAC 30-2 Micro-Code Simulator 
will run on any standard GE-PAC 30 
computer with 8K bytes of memory and 
a Teletypewriter. 

To aid on the production of ROM 's, a 
machine called ROMWA TS (ROM Wiring 
Aid : ,1d Test Set) has been developed. 
This machine is directed by paper tapes 
produced from the object tapes output 

by the Micro-Code Assembler or the 
Simulator. The program that converts 
the object tape into the two tapes nec­
essary to drive the machine is referred 
to as the ROMWATS program. The first 
tape produced by the ROMW ATS program 
is used to wire the ROM. The second 
tape is used to check that the wires 
were strung correctly. The information 
presented in the GE-PAC 30-2 Micro­
Programming Reference Manual will 
assist the designer in the production of 
good object tape, the production of the 
ROMWATS tapes is usually left to the 
manufacturer and should be of no con­
cern to the user. 



SECTION 2 

THE MICRO-PROGRAMMED GE-PAC 30-2 PROCESSOR 

The first problem a potential micro-pro­
grammer must encounter is that of visual­
izing the architecture of the micro-pro­
grammable machine. The information that 
is necessary is usually buried in a descrip­
tion of the instruction set or must be extracted 
from documents containing many references to 
boards, connectors, diodes, transistors and 
other such devices. We will try to solve this 
problem he re and now. 

The first hurdle that must be overcome is the 
confusion between the emulated computer and 
the micro-programmable computer. The com­
puter that is described in most GE-PAC 30 
documentation (Reference Manual 29-004) is 
an emulated computer. This machine is sim­
ilar to the IBM 360 family of machines and 
has a very powerful instruction set. This 
machine does not exist in hardware. A small- · 
er and much less sophisticated micro-pro­
grammable computer has been programmed 
to appear as though it has the capabilities 
of the larger machine. The operation of the 
smaller machine is directed by a program 
wired into a Read-Only-Memory. (See 
GE-PAC 30-2 Hardware Block Diagram.) 
When executing the instructions of the emu-

_ lated computer, the micro-program directs 
the hardware to read from core memory the 
next instruction to be executed. The micro­
program then decodes the emulated instruc­
tion by performing logical and arithmetic 
operations on the data that was obtained 
from memory. Having decoded the instruc­
tion, the micro-program will then enter a 
micro-subroutine that has been designed to 
perform the emulated instruction. The loop 
is then closed by incrementing the in­
struction counter of the emulated ma­
chine and returning to the point in 
the micro-program that will fetch the 
next instruction from memory. By adding 

the logic necessary to start, stop and select a 
starting address to the micro-program, the 
small machine is made to appear much larger 
without expending significant sums on hardware. 
All of this would be highly impractical if the 
micro-instructions were stored in a core mem­
ory. Core memories are either relatively slow 
devices or very expensive. 

Read-Only-Memories (ROM) on the other hand 
are very fast, quite inexpensive and in addition, 
are non-volatile. It is evident, then, that this 
is an ideal device in which to store frequently 
used subroutines. 

The small machine that uses the ROM must be 
designed to match the ROM's performance. The 
GE-PAC 30-2 has, therefore, been designed to 
execute most micro-operations in 400 nano' 
seconds. 

Now, the basic architecture will be described. 
The fine detail is left to the remaining sections 
of the Micro-Programming Manual. 

The GE-PAC 30-2 . has ten basic micro-instruc­
tions. 

SYMBOL DEFINITION 

A ADD 
s SUBTRACT 
x EXCLUSIVE OR 
N AND 
0 INCLUSIVE OR 
L LOAD 
c COMMAND 
T TEST 
B BRANCH 
D DECODE 

1 



) 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION AND BLOCK DIAGRAM ANALYSIS............ 1 

CHAPTER 2. WORD FORMAT ...•••. •................. . • . • • • . • . • • . • . • . . . . 7 

CHAPTER 3. SOURCE AND DESTINATION REGISTERS..................... 9 

CHAPTER 4. MICRO-INSTRUCTIONS ..•.••.•..•••••••••.••••••.••.•••••.• 13 

4. 1 ADD . ................................................ 13 
4. 2 ADD IMMEDIATE •..•.•..•......••.•.•••••.•..•.•••••. 15 
4. 3 SUBTRACT ............ • .............................. 16 
4. 4 SUBTRACT IMMEDIATE ...•••.•..•.•.•••.•...•.•.•••• 18 
4. 5 EXCLUSIVE OR .......••.•...••••.• · ••..•..•.•..•.••• ·. 19 
4. 6 EXCLUSIVE OR IMMEDIATE .••..••..•.••..•.•••..•.•• 21 
4. 7 AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . 22 
4. 8 AND IMMEDIATE ..•..•.•••...•••.••.••.••.•.•...••••• 23 
4. 9 INCLUSIVE OR ...•.•..•••..•.•.••.•..•.••••..•.•••.•. 24 
4.10 INCLUSIVE OR IMMEDIATE ...••.••...••..•••••.•..••• 26 
4.11 LOAD ............................................... 26 
4.12 LOAD IMMEDIATE •.•..• · .•...•.••.•.•..•.••.•..•.•... 29 
4. 13 COMMAND . .......................................... 30 
4. 14 TEST . ................................................ 35 
4.15 BRANCH ON CONDITION ....•...•..••..•.•........•... 36 
4 • .16 BRANCH ON COUNTER .....•......................... 37 
4.17 DECODE ............................................. 37 

CHAPTER 5. USER ORIENTED PHASE DESCRIPTION ..••••••••.••••••.•..• 41 

CHAPTER 6. MICRO-PROGRAMMING INPUT/OUTPUT •.••..•.•..•••..•••• 45 

CHAPTER 7. ADDITIONAL SPECIFICATIONS •••••.•.•.••.•..•..••..••.••. 49 



APPENDICES 

APPENDIX 1. REGISTER ADDRESSES ..................................... A-1 

A"PPENDIX 2. CODES .......•.....................•••..•....•..•.......... A-2 

APPENDIX 3. INSTRUCTION EXECUTION TIMES .........•............ A-3 



CHAPTER 1 

INTRODUCTION AND BLOCK DIAGRAM ANALYSIS 

GE-PAC 30-2 Processor operation centers around the Read-Only-Memory (ROMO). 

ROM locations are addressed by a 12 bit register consisting of an 8 bit incre­

menting register (RAL) and a 4 bit non-incrementing page register (RAS) which 

is loaded from the 4 bit 'outer-rank' (RAH) register when RAL is loaded. 

IrU;ormation read from ROM is placed in a 16 bit Data Register (RD). Bits 0:3 of RD 

specify a micro-operation to be performed which, in turn, defines the meaning of the 

remaining bits. 

ROM with its pre-wired micro-program, directs the Processor through the control unit. 

RE_ncessor Control can, depending on the micro-operation code, set-up the Arithmetic 

Logic Unit (ALU) to the desired mode of operation, test for specified hardware condi­

tions, issue functional commands to establish hardware conditions, initiate memory 

cycles, or set-up micro-instruction loops, or load and unload selected registers in the 

hardware register stacks. 

There are five general purpose Micro-Registers labeled MRO through MR4. Each has 

a capacity of 16 bits and is directly addressable from RD. 

The Program Status Word (PSW) is a 16 bit register which indicates the system status 

relative to the user program being executed (see Reference Manual, Publication Number 

29-004). Bits 0:11 of PSW define machine status. Bits 12:15 are set apart in the Condi­

tion Code Register (CCR) which may be loaded only from the Flag Register (FLR). When 

PSW is loaded, bits 12 :15 of the S Bus are loaded into the FLR instead of the CCR. This 

1 



permutes user status to the micro-level. The Flag Register and ultimately the Condition 

Code Register reflect the results of the micro-instruction (or instructions in the case of 

a user micro-routine) just performed. 

The Location Counter (LOC) is a 16 bit appendum to PSW which holds the address of the 

next user instruction to be performed. J.,OC is directly addressable by RD, however, 

it mav be forciblv select(~d. regardless of RD in the Decode micro-instruction. 
·- ., 

The Memory Add_!·ess H.(~g_ij>ter (MAR) is a 16 bit register use~ to address core memory 

locations. MAR appears twice -- on the l\ilemory Interface and in the Processor regis-

ter stacks. When MAR is loaded, both registers are loaded at the same time. It was 

duplicated in the register stacks because the Address Register on the Memory Interface 

cannot be unloaded to the B Bus. 

Th<· M~~m<~rv ~~:_!:a Hcgistcr (MDR) is a 16 bit register used to hold data' re~d from or 

written into core memory. MDR is directly addressable by RD. It is separated into 

two bytes (MDH and MDL) which may be loaded separately on cross-shift operations. 

The Hi user's General Registers each have a capacity of 16 bits. The user's registers 

(TRO :TR15) are not directly addressable from RD. To access a particular user's regis-

ter, one must address the appropriate Instruction Register (IR) fields which contain the 

address of the desirf~d user's register (TRO:TR15). To access the register specified 

by m. bits 8:11, User'~; DesLinaHon (YD) is addressed; to access the register specified 

b.'- IR bits 12:15, Gscr'~: ;-!(:;·" . .''-' -~-;)ts addressed; therefore, user's register selection. 

is imJ; t't'ctly made. It '~ '•l<' .,r,~n~ ne~uwru:-y that IR contain the proper address before 

2 



a 'user's register' is used. This is an over simplified description; there are numerous 

conditions which affect indirect addressing and wHl be discussed further in Chapter 3. 

The Instruction Regi!3ter (IR) is a 16 bit register used to hold the user's instruction 

currently being processed. IR is directly addressable by RD. In addition, provision 

is made for unloading only bits 8:11 to the B Bus bits 12:15 (IR4) for comparison between 

the Mask (Ml) field and the Flag Register when executing user's branches. Bits 0:7 of 

IR (User's Operation Code) are used to address locations in the Decoder ROM (DROM). 

This is a separate Read-Only-Memory consisting of up to 128 pre-wired words, 

each 12 bits long. 

DROM is interrogated only on a Decode micro-instruction and the resulting 12 bit read­

out is immediately jammed into RAS and RAL. DROM holds the starting addresses of 

the micro-routines required to perform user's instructions. RAS and RAL may also be 

jammed with hardware generated addresses in the Decode micro-instruction. 

The Counter Register (CNTR) is a 4 bit decrementing register. It may be pre-loaded 

with any number from 0 to 15 to count the number of repetitions of a single micro­

instruction or a block of micro-instructions. The counter is used in the Multiply or 

Divide sequences to cause 16 interations of the micro-instruction sets. 

The Arithmetic Register (AR) is a 16 bit register used to hold the first operand in arith­

metic or logical micro-operations. It is one of two direct inputs to the Arithmetic Logic 

Unit (ALU). The other input to the ALU is the 16 bit B Bus which receives data from any 

3 



1 of 29 possible sources. The two bytes of the B Bus may .also be swapped with the 

cross shift logic. 

The ALU consists of a 16 bit parallel adder-subtracter logic network with a one bit look 

ahead carry. The 16 bit arithmetic or logical result is gated to the S Bus which in turn 

is gated to 1 of 33 possible destinations. 

Input-Output transfer (I/O) is accomplished by a single micro-instruction. The I/O 

control lines are decoded from RD bits 14 and 15. Input data is taken from the Data 

Request Lines (DRL 0:7) and placed directly on B Bus bits 8:15. Output data is taken 

from S Bus bits 8:15 and loaded directly to the Data Available Lines (DAL 0:7). 

4 



INPUT-OUTPUT 

DEVICE 

CONTROLLER 

DISPLAY 

CAT N 

SNGL 

s \e 15) 
·--LIO 

IO 

I/O 
CONTROL 

S(l2•15) S(B 15) 

~RAH 7 ·r-

READ ONLY MEMORY 

(ROM) 

16 

0 RD 

OP 

\_!' =Wr 
' I '-!-------T-l I ~ 

S BUS ( 16 BITS, PARALLEL) 

16 

I ---1 
I 0 MAR 15 i 1-·---1 \. __ 

I 
CORE MEMORY 

LMDH 

LMDR 
16 

LMDL 

L..9 MOH 7 C i.•)L 

! 1 I DECODER 
1 HARDWARE AN.0 IR (0•15) 

'-----+--~_.-<of READ ONLY 14----t-----,t---+-----------. 
16 

PROCESSOR 

CONTROL 

MEMORY 
(CROM) 

IMMEDIATE 
OR 

BRANCH 

-- -----------, 

16 

G=-- -~ MRO 5 
·---·-- ~----·- - -~ ! 

t-- ~-~---~~- 5 

l MR2 0 15 

0 MR3 
i e -------

0 MR4 15 

0 MAR 15 

0 LOC 15 

0 PSW II 

0 TROO 
15 

0 
TROI 

15 

-(' GENERAL REGISTERS 

r-~ 

0 

TRl4 15 

TRl5 15 

0 AR 

ENABLE 
AR TO ALU 

ARtTHMETlC 
LOGIC UNIT 

(ALU) 

S il2 15) 'SOZ 16 

15 

bB• 1~ ______ J~_<a_·_1_~ ________ ~e-10_-_,_1_~~e-1_e_1_5_1 _________ ~16_~_0_<_12_·_:_5_l ___ 16 __ ~_R_:_s~:-~·~:~~ 
- _ __._____ -~ 

B BUS ( 16 BITS, PARALLEL) 

FIGURE 1 GE-PAC 30-2 HARDWARE BLOCK DIAGRAM 



\ 
I 

CHAPTER 2 

WORD FORMAT 

The GE-PAC 30 micro-instruction can have any one of four machine language formats, 

depending on the operation that the Op-Code specifies. 

2.1 Arithmetic and Logic Format 

D s 
11 (12 

E 

s = Source field: the address of the register containing the second 

operand is in this field. The first operand comes 

from the A Register (AR). 

D = Destination field: the result of the operation will be placed into 

the register whose address is in this field. 

E = Extended Oper.ation field: specifies options within the same 

operation. 

Bit 3 (of the Op-Code) in this format is always reset. 

The following micro-instructions use the above format: Add, Subtract, Exclu-

sive OR, AND, Inclusive OR, Load, and Decode. 

2.2 Immediate Format 

Jo 3 f 4 
OP-CODE D DATA 

DATA = the second operand itself is in this field. The first operand 

comes from the A Register (AR). 

7 



D a Destination field: the result of the operation will be placed into 
the register whose address is in this field. 

Bit 3 (of the Op-Code) in this format is always set. 

The following micro-instructions use the above format: Add Immediate, Sub-

tract Immediate, Exclusive OR Immediate, AND Immediate, Inclusive OR Immediate, 

and Load Immediate. 

2.3 Test and Command Format 

10 314 
OP-CODE TC CODE 

TC CODE Test or Command Code: specifies the signal to be tested or 

specifies the command to be performed. 

2.4 Branch on Condition Format 

1°oP-CODE 
3 I ~ I ~ I ~ I Z I 8 

ADDRESS 

ADDRESS = if conditions (C, V, G, or L) are met, the program is transferred 

to the 8 bit address specified by this field. 

C = carry 

V == overflow 

G = greater, than zero 

L less, than zero 

If bits 4:7 are zero, the state of the Counter Register is examined. If the counter does 

not equal 'one', the counter is decremented by one and the program is transferred to 

the 8 bit address specified by the ADDRESS field. 

The "Branch on Condition" micro-instruction uses this format. 



CHAPTER 3 

SOURCE AND DESTINATION REGISTERS 

3.1 Source registers are only available to non-immediate micro-instructions, 

(RD03 =. 0). The following sources may be addressed. 

RD 8 9 10 11 SYMBOLIC 

0 0 0 0 MRO 
0 0 0 1 MRl 
0 0 1 0 MR2 
0 0 1 1 MR3 
0 1 0 0 MR4 
0 1 0 1 MAR 
0 1 1 0 LOC 
0 1 1 1 PSW 
1 0 0 0 NULL 
1 0 0 1 m 
1 0 1 0 MDR 
1 0 1 1 ffi4 
1 1 0 0 NULL 
1 1 0 1 IO 
1 1 1 0 YD 
1 1 1 1 YD Pl 

3.2 There are two NULL sources. When address X'S' (the A Register) or address 

X'C' (the Counter) appear in the source field (RD 8:11), zeros are gated to all 16 bits of 

the B Bus. 

3. 3 When PSW is used as the source, bits 0:11 of the stack PSW are gated to B Bus 

bits 0:11 and the Condition Code Register (CCR bits 12:15) is gated to B Bus bits 12:15. 

3. 4 When m4 is the source, m bits 8:11 are gated to B Bus bits 12:15. The re-

mainder of the B Bus is all zeros. 

3. 5 When IO (address X'D') appears as the source, an input operation is to be 

9 



performed. IO can only be a source in a Load instruction. The Processor is re­

questing a data response from an I/O device; IO is not a register. The nature of 

the request is encoded into the 'E' field of the Load instruction and will be discussed 

later in Chapter 4. The device response is gated from the Data Request Lines (DRL 

0:7) to B Bus bits 8:15. 

3. 6 The 16 general purpose user's registers do not have individual source 

addresses. Instead, common symbolic addresses - YD (address X'E') and YDP1· 

\aJdress X'F') - cause the general registers to be selected from the Instruction 

Register bits 8:11 or 12:15. The General Registers are Indirectly addressed. 

:L 7 There exists in the phase hardware, a flip-flop which specifies the IR field 

to be used for indirect source decoding. The flip-flop (PTYS), if set, causes the in­

direct source to be decoded from the User's Source (YS) field of IR, IR bits 12:15. Jf 

PTYS is reset, the indirect source is decoded from the User's Destination (YD) field 

of IR, IR bits 8:11. PTYS is set conditionally on a Decode micro-instruction and is 

reset when an indirect source is used. 

3. 8 If IR = X'nnA5 and PTYS is set when YD (address X'E') is the source, 

TR5 is unloaded to the B Bus. If PTYS is reset and YD is the source, TRIO is unloaded 

to the B Bus. 

3. 9 1f YD plus 1 (YDPl) is the source, the indirect register decoding is done from 

the IR field YD or YS specified by the PTYS flip-flop. If the selected address is even, the 

next sequential address is forced and that register is unloaded to the B Bus. If the selected 

10 



address is odd, the next sequential address is not forced and the selected register is 

unloaded to the B Bus. 

3.10 If IR = X'nn40' and PTYS is reset, YDPl (address X'F') will cause TR5 to 

be unloaded to the B Bus. If m = X'nn50' and YDPl is the source, TR5 is unloaded to 

the B Bus. 

3. 11 The following Destinations may be addressed: 

RD 4 5 6 7 SYMBOLIC 

0 0 0 0 RAH* MRO** 
0 0 0 1 RAL* MRl** 
0 0 1 0 YS * MR2** 
0 0 1 1 MR3 
0 1 0 0 MR4 
0 1 0 1 MAR 
0 1 1 0 LOC 
0 1 1 1 PSW 
1 0 0 0 AR 
1 0 0 1 m 
1 0 1 0 MDR 
1 0 1 1 FLR 
1 1 0 0 CNTR 
1 1 0 1 IO. 

1 1 1 0 YD 
1 1 1 1 YD Pl 

* The Bank flip-flop must be reset to Load RAH, RAL, or YS. 

** The Bank flip-flop must be set to Load MRO, MRl, or MR2. 

3.12 Loading RAH loads the outer rank page register only of ROM address register. 

ROM decodes page from the inner rank (RAS). When RAL is loaded, the data in RAH arc 

loaded into RAS at the same time. All 12 bits of ROM address are loaded. 

3.13 When User's Source (YS) is the destination, the S Bus is loaded to the 

11 



General Register specified by the YS field of IR, IR bits 12: 15. 

When User's Destination (YD) is the destination, the S Bus is loaded to the Gen-

eral Register specified by the YD field of m, IR bits 8:11. PTYS has no affect on destina-

tions. When User's Destination plus 1 (YDPl) is the destination, the same even/odd ano-

moly must be observed: if the address is even, the next sequential general register is 

loaded; if the address is odd, that register is loaded. 

3.14 When the Program Status Word (PSW) is loaded, S Bus bits 12:15 are loaded 

into the Flag Register (FLR). 

3.15 When IO appears as the destination, an output operation is to be performed. 

IO can only be a destination in a Load micro-instruction. The Processor will transmit 

data to an external device. IO is not a register. The nature of the output data is en-

coded into the 'E' field of the Load instruction and will be discussed fully later in Chapter 

4. The output byte is gated from S Bus bits 8:15 onto the Data Available Lines (DAL 0:7). 
. ' 

3.16 For the cross shift option only 

If MDR is the source 

and MAR is even, the cross shift operates normally. 

and MAR is odd, the cross shift is inhibited; the instruc~ 
tion behaves as a normal load. 

If MDR is the destination 

- and MAR is even, the lower byte bf the source is stored as 
the higher byte in MDR - the lower byte of MOR remains 
unchanged. 

- and MAR is odd, the lower byte of the source is stored as 
the lower byte in MDR - the upper byte of the MOR remains 
unchanged, 

This option is used with MOR to get and store bytes in user memory. 

12 



"' \ I CHAPTER4 

MICRO-INSTRUCTIONS 

4.1 ADD 

1 0 D s 
11112 

E 
1~ 

4.1. 1 Description: the contents of the A Register (AR) a.re algebraically added 

to the contents of the register specified by the Source (S) field. The sum is then gated 

into the register specified by the Destination (D) field. For register addresses, see 

Appendix 1 and Chapter 3. 

4.1. 2 Options: Note that the character "x" in any bit position indicates a '1don't 

care" state. 

E field 

lxxx 

xlxx 

xxlx 

xxxl 

Definition 

AR is not gated to the adder (Arithmetic 
Logic Umt, ALU): zero is added to the 
contents of the register specified by the 
Source (S) field. 

Set the flags. 

Carry flag (C), if set before this instruction, 
is added to the operands. 

If there is a carry from the most significant 
bit position, the Carry flag (C) is set. 

4. 1. 3 Assembler Format: A DSE 
' ' 

A = symbol for Add 

D = in this place there ia a register symbol (e.g. : MAR, PSW, MRl), 
followed by a comma. 

13 



S = register symbol (e.g.: MR4, MDR, PSW), followed by a comma 
only if an assembler option is specified in the E field. 

Symbol 

CI 

co 

NC 

NF 

NA 

Definition 

Carry in, but not carry out. Bits 14 and 15 
of the instruction = 10. 

Carry out, but not carry in. Bits 14 and 15 
of the instruction = 01. 

No carry. Bits 14 and 15 of the instruction 
= 00. 

No flags. Bit 13 of the instruction = 0. 

No AR to ALU. Bit 12 of the instruction = 1. 

If there are no options stated in the E field of the symbolic assembler instruction, the 

following options are generated automatically: Carry in and out (bits 14 and 15 = 11), 

AR is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1). 

4.1. 4 Examples: Binary ::: Decimal 

Sign Data ~ Data 

0 011 0101 0010 1000 AR + 13, 608 . 
0 010 1110 1001 0100 B Bus :!- 11! 924 
0 110 0001 1011 1100 S Bus + 25,532 

0 011 0101 0010 1000 AR + 13,608 
1 101 0001 0110 1100 B Bus 11! 924 
0 000 0110 1001 0100 S Bus + 1, 684 

0 010 1110 1001 0100 AR + 11,924 
1 100 1010 1101 1000 B Bus 131608 
1 111 1001 0110 1100 S Bus 1,684 

0 111 1111 1111 1111 + 32,767 
0 000 0000 0000 0101 + 5 

Overflow! 1 000 0000 0000 0100 33,472 

14 



) 
Unlike carrys from the sign (bit 0) and the most significant magnitude bit (bit 1) result 

in overflow: the sum is greater than 16 bits (including sign). 

4. 2 ADD IMMEDIATE 

I~ 1 0 D DATA 

4. 2. 1 Description: the contents of the A Register (AR) are algebraically added to 

the 8 bits in the DATA field of this instruction. The sum is then gated into the register 

specified by the Destination (D) field. For register addresses, see Appendix 1. 

4. 2. 2 Options: None. Note that the flags (C, V, G, or L) are not changed by this 

micro-instruction. 

4. 2. 3 Assembler Format: A D, DATA 

A symbol for Add Immediate 

D = in this place there is a register symbol (e.g.: MR4, FLR, MAR), 
followed by a comma. 

DATA = either the operand expressed in hexadecimal (e.g.: X19A') or as 
the low order 8 bits, L (DATA), or the high order 8 bits, H(DATA), 
of the value of a symbol defined by DATA. 

4.2.4 Examples: Binary = Decimal 

~ Data ~ Data 

0 011 0101 0010 1000 AR + 13,608 
0 000 0000 1011 1100 B Bus + 188 
0 011 0101 1110 0100 S Bus + 13,796 

1 100 1010 1101 1000 AR 1:3, fi08 
0 000 0000 1011 1100 B Bus + 188 
1 100 1011 1001 0100 S Bus 13,420 



Note: A negative .B Bus i:s impossible. 

Binary = Decimal 

S!i! Data s· Data --- ~ 

() 111 1111 1111 1111 AR + 32,767 
0 ()00 OQOO 0000 0101 B Bus + 5 

Overflow! l BOO 0000 0000 0100 s Bui; + 33,472 

4. 3 SUBTRACT 

I~ 1 1 
314 

D 
11112 

E 

4. 3.1 Desc·riptwn: the .contents <>f the register specified by the Source (S) field 
~ .. 

are algebraically subtracted fr.om the contents of the A Regi.ste~ (AR). The difference 

is the.n .gated into the :r~gister specified by the Destination (D) field. For register ad-

dresses, see Appendix 1. 

4. 3. 2 Options: ;Note, that the character "x'' in any bit position indicates a "don't 

care" state. 

E field 

lxxx 

xlxx 

xxxl 

Definition 

AR is not gated to the subtracter (ALU): 
the contents of the register specified by 
the Source (S) field are subtracted from 
zero. 

Set flags. 

Carry flag .(C), if set before this instruc­
tion is also subtracted from the AR. 

If there is a borrow from the most signi.;,. 
ficant bit position, the Carry flag (C) is 
set. 

16 



4. 3. 3 Assembler Format: S D, S, E 

S = symbol for subtract 

D = in this place there is a register symbol (e.g.: MR4, AR, MAR), 
followed by a comma. 

S = register symbol (e.g.: MR3, MDR, MR.2), followed by a comma 
only if an assembler option is specified in the E field. 

The following symbolic options can appear in the E field: 

Symbol 

CI 

co 

NC 

NF 

NA 

Definition 

Carry in, but not. carry out. Bits 14 and 15 
of the instructions = 10. 

Carry out, but not carry in. Bits 14 and 15 
of the instructions = 01. 

No carry. Bits 14 and 15 of the instruction 
= 00. 

No flags. Bit 13 of the instruction = 0. 

No AR to ALU. Bit 12 of the symbolic 
instruction = 1. 

If there are no options stated in the E field of the symbolic assembler instruction, the 

following options are generated automatically: carry in and out (bits 14 and 15 = 11), 

AR is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1). 

4.3.4 Examples: Binary = Decimal 

~ Data ~ Data 

0 011 0101 0010 1000 AR + 13,608 
0 010 1110 1001 0100 B Bus + 11 2 924 
0 000 0110 1001 0100 S Bus + 1,684 

0 010 1110 1001 0100 AR + 11, 924 
0 011 0101 0010 1000 B Bus + 13 2 608 
1 111 1001 0110 1100 S Bus 1, 684 

17 



Binary = Decimal 

Sign Data - ~ Data 

0 011 0101 0010 1000 AR + 13,608 
1 101 oooi 0110 1100 B Bus 11. 924 
0 110 0001 1011 1100 S Bus + 25,532 

0 111 1111 1111 1111 AR + 32,767 
1 111 1111 1111 1011 5 

Overflow! 1 000 0000 0000 0100 + 33,472 

Unlike borrows from the Sig!) (bit 0) al'.ld the most significant magnitude bit (bit 1) result 

in overflow: the difference is greater than 16 bits (including sign). 

4. 4 SUBTRACT IMMEDIATE 

.l 1 D DATA 

4. 4.1 Description: the contents.of the DATA field are algebraically subtracted 

from the contents of the A Register (AR). The difference is then gated to the register 
. ' ' -

specified by the Destination {D) field. For register addresses, see ApPendix 1. 

4. 4. 2 Options: None. Note, that the flags (C, V, G, or L) are not changed by 

this micro-instructfon, 

4. 4. 3 Assembler Format: S D, DATA 

D 

DATA 

symbol for Subtract Immediate 

there is a register symbol in this position (e.g.: MR4, LOC, MAR), 
followed by a comma 

either the operand expressed in hexadecimal (e.g.: X'9A') or as. the 
low order 8 bits, L (DATA), or the high order 8 bits, H (DATA, of 

the value of a symbol defined by DATA. 

18 



~\ 
) ,,, 

4.4.4 Examples: Bina~ ::: Decimal 

~ Data ~ Data 

0 011 0101 0010 1000 AR + 13,608 
0 000 0000 1011 1100 B Bus + 188 
0 011 0100 0110 1100 S Bus + 13,420 

1 100 1010 1101 1000 AR 13,608 
0 000 0000 1011 1100 B Bus + 188 
1 100 1010 0001 1100 S Bus 13,796 

Note: A negative B Bus is impossible. 

1 000 0000 0000 0001 AR 32,767 
0 000 0000 0000 0101 B Bus + 5 

Overflow! 0 111 1111 1111 1100 33,472 

Unlike borrows from the sign (bit 0) and the most significant magnitude bit (bit 1) result 

in Overflow: the differenGe is greater than 16 bits (including sign). 

4. 5 EXCLUSIVE OR 

I~ 0 1 D s 
11112 

E 

4. 5.1 Description: the contents of the register specified by the Source (S) field 

are logically subtracted (Exclusive ORed) from the contents of the A Register (AR). The 

logical difference (result) is then gated into the register specified by the Destination (D) 

field. For register addresses, see Appendix 1. 

4. 5. 2 Options: Note, that the character "x'' in any bit position indicates a "don't 

care" state. 

E field 

lxxx 

Definition 

AR is not gated to the ALU: the contents of 
the register specified by the Source (S) field 

19 



E field 

xlxx 

xxlx 

xxxl 

Definition 

is gated into the register specified by the 
Destination (D) field without any change. 

Set flags. 

No effect on this instruction. 

No effect on this instruction. 

4. 5. 3 Assembler Format: X D,S,E 

X = symbol for Exclusive OR 

D = in this place there is a register symbol (e.g.: MR4, LOC, MAR), 
followed by a comma 

s register symbol (e.g.: MR3, MDR, MRO), followed by a comma 
only if an assembler option is specified in the E field 

The following symbolic options call appear in the E field. 

Symbol 

CI 

co 

NC 

NF 

NA 

Definition 

Carry in, but not carry out. Bits 14 and 15 
of the instruction = 10. 

Carry out, but not carry in. Bits 14 and 15 
of the instruction = 01. 

No carry. Bits 14 alld 15 of the instruction 
= 00. 

No flags. Bit 13 of the instruction = 0. 

No AR to ALU. Bit 12 of the instruction = 1. 

If there are no options stated in the E field of the symbolic assembler instruction, the 

following options are gcnC'rated automatically: carry in and out (bits 14 and 15 = 11), AR 

is an input to 'the ALU (bil 12 = 0), flags are changed (bit 13 = 1). 

20 



4. 5. 4 Example: 

0 101 
0 010 
0 111 

4. 6 EXCLUSIVE OR IMMEDIATE 

I~ 0 1 D 

1101 
1000 
0101 

0010 
0101 
0111 

0101 
1110 
1011 

DATA 

AR 
B Bus 
S Bus 

4. 6. 1 Description: the contents of the DATA field are logically subtracted (Exclu-

sive ORed) from the contents of the A Register (AR). The logical difference (result) is 

gated into the register specified by the Destination (D) field. For register addresses, see 

Appendix 1. 

4. 6. 2 Options: None. Note that the flags (C, V, G, or L) are not changed by this 

micro-instruction. 

4. 6. 3 Assembler Format: X D, DATA 

X = symbol for Exclusive OR Immediate 

D = there is a register symbol in this position (e.g.: MR*, YD, MAR,) 
followed by a comma 

DATA = either the operand expressed in hexadecimal (e.g.: X'9A'), or as the 
low order 8 bits, L (DATA), or high order 8 bits, H (DATA), of the 
value of a symbol defined by DA TA. 

4. 6. 4 Example: 

0 101 
0 000 -·--· 
0 101 

1101 
0000 
1101 

21 

-
0010 
0101 
0111 

0101 
1110 
1011 

AR 
B Bus 
S Bus 



4. 7 AND 

'~ 0 0 D s 
11112 

E 

4. 7. 1 Des.cription: the contents of the register specified by the Source .{S) field 

are logically multiplied (ANDed) by the contents of the A Register (AR). The logical pro-

duct (result) is then gated into the register specified by the Destination (D) field. For 

register addresses, see Appendix 1. 

4. 7. 2 Options: Note, that the character "x" in any bit ppsitiqn in,dipat~sa "don't 

care" state. 

E field 

lxxx 

xlxx 

xxlx 

xxxl 

Definition 

AR is not gated to the ALU: the logical pro­
duct is zero, and zero is. gated into the register 
specified by the Destination (D) field. 

Set flags. 

No effect· on this· instruction. 

No effect on this instruction. 

' . . ' 

4. 7. 3 Assembler Format: N D,S,E 

N = symbol for AND 

D = in this place there is a register symbol (e.g.: MR4, YD, MAR,) 
followed by a comma · 

S register symbol (e.g.: MRO, MDR, LOC,) followed by a comma 
only if an assembler option is specified in the E field 

The following symbolic options can appear in the E field. 

22 



Symbol 

CI 

co 

NC 

NF 

Definition 

Carry in, but not carry out. Bits 14 and 15 
of the instruction = 1 O. 

Carry out, but not carry in. Bits 14 and 15 
of the instruction = 01. 

No carry. Bits 14 and 15 of the instruction 
= 00. 

No flags. Bit 13 of the instruction = O. 

If there are no options stated in the E field of the symbolic assembler instruction, the 

following options are generated automatically: carry in and out (bits 14 and 15 = 11), 

AR is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1). 

4. 7. 4 Example: 

4. 8 AND IMMEDIATE 

I~ 0 0 

0 101 
0 010 
0 000 

D 

1101 0010 0101 
1000 0101 1110 --------
1000 0000 0100 

DATA 

AR 
B Bus 
s nus 

4. 8.1 Description: the contents of the DATA field are logically multiplied (ANDed) 

by the contents of the A Register (AR). The logical product (result) is gated into the register 

specified by the Destination (D) field. For register addresses, see Appendix 1. 

4. 8. 2 Options: None. Note that the flags (C, V, G, or L) are not changed by this 

micro-instruction. 

4. 8. 3 Assembler Format: N D. DATA 

2.3 



4.9 

1~ = · symbol for AND Immediate 

D = there is a register symbol in this position (e.g.; MR4, FLR, MAR~) 
followed by a comma 

DATA = either the operand expressed in hexadecimaL(e. g.,: X'9A!.), or as the 
low order 8 bits, L (DATA), or high order 8 bits, H (DATA), of the 
value of a symbol defined by DATA. 

3. 8. 4 Examples: 

0 101 1101 0010 0101. AR 
0 000 0000 0101 1110 B Bus 
0 000 0000 0000 0100 S Bus 

INCL US IVE OR 

1 1 D s 
11112 

E 

4. 9. 1 Description: the contents of the register sp.ecified by the Source (S) field 

arc logically added (ORed) by the contents of the A Register (AR). The lOgicalsum (re-

sult) is then gated''into the register specified·by the Destination (D) field. For register 

addresses, see Appendix 1 .. 

4. 9. 2 Options: Note that the character "x" in any bit position indicates a "don't 

care" state. 

E field Definition 

AR is not gated to the. ALU: the.cdntents 
of the register specified by the Sourc.e: (8), 
field is gated into the· register specified. 
by the Destination (D) field without an:t 
change. 

24 



E field Definition 

xlxx Set flags. 

xxlx No effect on this instruction. 

xxxl . No effect on this instruction. 

4. 9. 3 Assembler Format: 0 D, S, E 

0 == symbol for Inclusive OR 

D = in this place there is a register symbol (e. g. : MRO, LOC, MAR, ) 
followed by a comma 

S = register symbol (e.g.: MR4, MDR, YD,) followed by a comma only 
if an assembler option is specified in the E field 

The following symbolic options can appear in the E field. 

Symbol 

CI 

co 

NC 

NF 

NA 

Definition 

Carry in, but not carry out. Bits 14 and 15 
of the instruction = 10. 

Carry out) but not carry in. Bits 14 and 15 
of the instruction = 01. 

No carry. Bits 14 and 15 of the instruction 
== 00. 

No flags. Bit 13 of the instruction = 0. 

No AR to ALU. Bit 12 of the instruction = 1. 

If there are no options stated in the E field of the symbolic assembler instruction, the 

following options are generated automatically: carry in and out (bits 14 and 15 = 11), AR 

is an input to the ALU (bit 12 = 0), flags are changed (bit 13 °= 1). 

25 



4. 9. 4 Examples: 

0 101 
0 010 
0 111 

1101 
1000 
1101 

0010 
0101 
0111 

0101 
1110 
1111 

AR 
BBus 
S Bu,s 

4. ro· INCLUSIVE OR IMMEDIATE 

1 D DATA 

4.10.1 Description: the contents of the DATA field are logically added (ORed) with 

the contents of the A Register (AR). The logical sum. (result) is then gated into the, register 
' ' I 

specified by the Destination (D) field. For register addresses, see Appendixl. 

4.10. 2 Options: None. Note that the flags (C, V, G, or L) are not changed by thi.s 

micro-instruction. 

4.11 

4.10. 3 Assembler Form.at: 0 D,DATA 

O symbol for Inclusive OR Immediate 

D .. there is a register symbol in this position (e.g. : MR3, CNTR, MAR,) 
followed by a comma 

DATA = either the operand expressed in hexadecimal (e. g;; .: X'9A'), or as the 
low order 8 bits, L (DATA), or high ordel'. 8 bits,, H(DAU'A},, of the 
value of a symbol defined by DATA. 

4.10.4 Examples: 
0 101 1101 0010 0101 AR 
0 000 0000 0101 1110 B Bus 
0 101 1101 0111 1111 S Bus 

LOAD 

h·-() ~14 D 
718 

s 
11112 

E 
151 



4.11.1 The contents of the register specified by the Source (S) field are loaded 

unaltered into the register specified by the Destination (D) field. For register addresses, 

see Appendix 1. 

4.11. 2 Note that the character "x" in any bit position indicates a "don't care" 

state. If the Destination or Source is not IO, the E field has the following meaning: 

E field 

OOxx 

Olxx 

lOxx 

llxx 

xxlx 

xxxl 

Definition 

Load, no other options. 

The contents of the Source register are shifted 
right one bit and the shifted number is loaded 
into the Destination register. Contents of 
source register are unchanged unless same 
register is both source and de9tination. 

The contents of the Source register are shifted 
left one bit and the shifted number is loaded in­
to the Destination register. Contents of source 
register are unchanged unless same register is 
both source and destination. 

The source Data is byte swapped and loaded to 
the Destination register. If MDR is either 
Source or Destination, the cross shift will 
occur only if MAR is even. See Chapter 3. 

' This is valid with the shift options only; if the 
Carry flag (C) is set prior to this instruction, 
a one will be shifted into the most significant 
bit on a shift right, or into the least significant 
bit on a shift left. 

With shift options only: if a one is shifted out, · 
the Carry flag (C) is set. Non-shift options: 
the Carry flag (C) is reset. 

4.11. 3 If IO is Source or Destination, the E field takes on the following meaning. 

IO is Destination: 

27 



E field 

xxOl 

xxlO 

xxll 

IO is Source: 

E field 

xxOl 

xxlO 

xxll 

Definition 

The S Bus is loaded to the DAL's as Address 
(ADRS). 

The S Bus is loaded to the DAL's as Data (DA). 

The S Bus is loaded to the DAL' s as a Command 
(CMD). 

Definition 

Device interrupt is Acknowledged (ACK). The 
interrupting device address is loaded from the 
DRL's to the Destination register. 

Device Data is requested (DR). The data is loaded 
from the DRL's to the Destination Register. 

Device Status is requested (STAT). The Status 
byte is loaded from the DRL's to the Destination 
Register. 

4. 11. 4 Assembler Format: L D, S, E 

L = symbol for Load 

D in this place there is a register symbol (e.g. : MR4, IO, MAR,) 
followed by a comma 

S = register symbol (e.g.: MR4, MDR, IO,) followed by a comma 
only if an assembler option is specified in the E field. 

The following symbolic options can appear in the E field. 

Symbol 

CI 

co 

Definition 

Carry in, but not carry out. Bits 14 and 15 
of the instruction = 10. 

Carry out, but not carry in. Bits 14 and 15 
of the instruction = 01. 

28 



Symbol 

NC 

SR 

SL 

cs 

ADRS 

DA 

CMD 

ACK 

DR 

STAT 

Definition 

No carry. Bits 14 and 15 of the instruction 
== 00. 

Shift Right option. 

Shift Left option. 

Cross Shift option. 

I/O Address. I 0 in Destination. 

I/O Data Available. I 0 in Destination. 

I/O Command. I 0 in Destination. 

Acknowledge Interrupt. I 0 in Source. 

Data Request. I 0 in Source. 

Status Request. I 0 in Source. 

If there are no options stated in the E field of the symbolic assembler instruction, the 

following options are generated automatically: carry in and out (bits 14 and 15 = 11), 

no shifts (bits 12 and 13 = 00). 

4. 11. 5 Examples: 
Symbolic 

Before Instruction After 

MR4 X'1234' L MR4,MR4,NC MR4 :::: X'l234' 
MR4 :::: X'l234' L MR4,MR4,SL MR4 X'2468' 
MR4 = X'l234' L MR4,MR4,SR MR4 = X'091A' 
MR4 = X'1234' L MR4,MR4,CS MR4 X'3412' 

4.12 LOAD IMMEDIATE 

29 



4. 12.1 Description: The 8 bits from the DATA field of this instruction are 

loaded into the register specified by th(;l Destination (D) field. For register addresses, 

see Appendix l. , I/O is forbidden. 

4.12. 2 Options: None. Note that the flags (C, V, G, or L) are not changed 

by this micro-instruction. 

4.13. 3 Assembler Format: L D, DATA 

L = symbol for Load Immediate 

D = regi.ster symbol (e. g. : R5, SOR, MAH,) followed bya comma 

DATA = either the operand expressed in hexadecimal (e.g.: X'9A') or as 

the low order 8 bits , L (DATA), or the high order 8 bits, H (DATA) of the value of a 

symbol defined by DATA. 

4. 13 COMMAND 

I~ 0 1 COMMAND CODE 

4.13.1 Description: The command micro-instruction results in the performance 

of the following machine functions as specified by the state of the COMMAND CODE bits. 

30 



4. 13. 2 Options: 

Bits set Definition 

5 Multiply Mode 

4 Divide Mode 

4,5 Repeat Mode 

7 Memory Read, Full Cycle 

6,7 Memory Write, Full Cycle 

9 Reset Bank* 

8 Set Bank* 

8,9 Trigger Bank 

11 Reset Utility* 

10 Set Utility* 

10, 11 Trigger Utility* 

12 Clear Memory Parity Fail* 

13 Set Wait Alarm* 

14 Reset Wait Alarm* 

15 Power Down (this Command_ initializes 
the system) 

>:< = flip -flops 

4.13. 3 Assembler Format: C F 

C symbol for Command 

F symbol for machine function 

31 



Symbol Definition 

MPY Multiply 

DIV Divide 

RPT Repeat 

MR Memory Read, Full Cycle 

MW Memory Write, Full Cycle 

CB Reset Bank* 

SB Set Bank* 

TB Trigger Bank~ 

CUT Reset (clear) Utility* 

SUT Set Utility* 

TUT Trigger Utility* 

CMP Clear Memory Parity Fail* 

SWA Set Wait Alarm* 

CWA Reset (clear) Wait Alarm* 

POW Power Down 

* = flip-flops 

A memory cycle consists of two half cycles: memory read, and memory write - in that 

order. 

On a memory read, the memory location is read out, its contents are destroyed, then the 

memory location is restored and data is not lost. 

On a memory write, the memory location is read out, but the data is not saved. Instead, the 

32 



contents of the data register MDR are written back into the addressed memory location. 

The following rules should be followed when programming around memory Commands: 

1. Memory address register must always be loaded with the desired 
address before the memory command. 

2. If a write operation is intended, the data register must always be 
loaded with the desired data before the memory command. 

3. Observe this general rule: If memory registers are addressed by 
any micro-instruction when a memory cycle is in progress, that 
operation is inhibited until the memory cycle is completed. 

The Bank flip-flop controls the addressing of certain registers. See Appendix 1. 

The Utility flip-flop has no hardware function assigned 'to it, it is only for program control. 

Its condition can be tested with the Test micro-instruction. 

The Wait Alarm is a flip-flop whose output is tied to the "wait" lamp on the display. Its 

purpose is to give a visual indication to the programmer when the Processor is halted or 

idling. 

The Power Down Commaiid initializes the entire system, and is generally used when 

"house keeping" operations are completed after the detection of a power failure. 

The Multiply command locks the Processor into a tight three instruction loop which is 

transversed 16 times until the Multiply function is completed. The command must be 

wired into an odd address. The Multiply loop would then follow: 

odd address 
even address 
odd address 

c 
L 
A 

33 

MPY 
YD, YD,SR 
YD, YD,CO 

not part of the loop 



The third instruction is not wired in. Instead, the Load is done twice: first with YD as 

Source and Destination, then with YDPl as Source and Destination. 

The add is done only if the hidden load resulted in a carry. If the above instruction set is 

not used, the results cannot be guaranteed. 

The Divide command locks the Processor into a three instruction loop which is traversed 16 

times until the Divide function is completed. The command must be wired into an odd ad-

dn">s. The Divide loop would then follow: 

C DIV 
L YD, YD,SL 
A YD, YD,CO 

not part of the loop 

The third instruction is not wired in. Instead, the load is done twice: first with YDPl as 

Source and Destination, then with YD as Source and Destination. The Add modifies YD 

only if it results in a carry. If the above instruction set is not used, the results can-

not be guaranteed. 

The Repeat command, if the counter is not empty, causes the Processor to repeat the next 

sequential micro-instruction the number of times previously set in the counter register. 

Each execution causes the counter to decrement until zero is reached when the Processor 

resumes normal instruction sequencing. If the counter is zero when the repeat command is 

given, the next sequential micro-instruction is skipped. 

The command Repeat must be wired into an odd address. Any instruction may be repeated 

that does not result in a branch, e.g. Branch, Load RAL, Decode. Also, it is suggested 

that memory commands r1tit be repeated. 

34 



4.14 TEST 

1 TEST CODE 

4.14.1 Description: If any of the machine functions specified by the TEST CODE 

is true, the Greater flag (G) is set and the Less flag (L) is reset. If the function specified 

by the TEST .CODE is false, the Less flag (L) is set and the Greater flag (G) is reset. 

4.14:. 2 Options: The testable functions are: 

Bit set Definition 

5 110 1nternipt 

6. Auto Restart 

7 Console Interrupt 

8 Console Single Instruction 

9 Utility flip-flop 

10 Memory Parity Fail flip-flop 

11 Primary Power Fail 

4.14. 3 Assembler Format: T F 

T symbol for Test 

F = symbol for machine fUI1ction 

Symbol 

ATN 

ARST 

CATN 

DefiDitiOll 

1/0 Interrupt 

Auto Restart 

Console Interrupt 

35 



Symbol Definition 

SNGL Console Single Instruction 

UT Utility flip-flop 

MPF Memory Parity Fail 

PPF Primary Power Fail 

4.15 BRANCH ON CONDITION 

I~ 0 0 ADDRESS 

4.15. l Description: the Branch on Condition micro-instruction results in a transfer 

in the micro-program sequence, if any of the specified conditions (Carry, oVerflow, Greater 

than zero, Less than zero) are true. The flags (in the Flag Register) are tested against 

the flags specified by bits (4:7) of the instruction. If any flag and its corresponding bit in the 

instruction are both set, control' of the program is given to the location specified by the 

ADDRESS field, otherwise the next sequential instruction will be performed. 

4. 15. 2 Options: None. 

4. 15. 3 Assembler Format: B CC, ADDRESS 

B == symbol for Branch on Condition 

CC Condition Code (C, V, G, or L: any one, any two e.g.: CV or VL 
etc., any three e.g.: CVG or VGL etc., or all four, CVGL, may 
be specified) 

ADDRESS = symbolic or hexadecimal address where the micro-program transfers 
if conditions are met 

36 



4.16 BRANCH ON COUNTER 

I~ 0 0 0 0 ADDRESS 

4.16.1 Description: the Branch on Counter micro-instruction results in a trcrnsfcr 

in the micro-program sequence, if the Counter Register does not equal 'one'. If the condi-

tion is met, the Counter Register is decremented by 'one' and control of the program is 

given to the location specified by the ADDRESS field. If the counter does equal 'one', it is 

decremented to zero and the next sequential instruction will be performed. 

4.16. 2 Options: None. 

4.16. 3 Assembler Format: B CTR, ADDRESS 

B = symbol for Branch 

CTR = Counter Register 

ADDRESS = symbolic or hexadecimal address where the micro-program transfers 
if conditions are met. 

4.17 DECODE 

I~ 0 0 D s 
11112 

E 

4. 17 .1 Qualifications: all zeros in RD are interpreted by the hardware as illegal 

and will result in an unconditional branch to location X'200' in ROM. Therefore, Decode is 

qualified by zeros in RD 0:3 and bits 4:15 are not all zeros. Only two sets of Destinations 

and Sources are allowed: the A Register (AR) as Destination and User's Destination (YD) 

as Source; or the Location Counter (LOC) as both Destination and Source. 



4.17. 2 Description: the Decode micro-instruction is primarily used to generate a. 

phase change (see Chapter 5 for phase descriptions) although other option&. are available. 

Decodes are treated by the hardware as an Add or a Load. The Decode instruction ter-

minating the Phase Zero micro-instruction set must have AR as its destination and YD 

as source. If the Instruction Register (IR) holds a user's Register to Register (RR) in.,. 

strnction, the contents of the General Register specified by IR 8:11 (YD) are loaded to 

the AR. If IR does not hold a user's RR instruction, the Location Counter (LOC) is forced 

to be both Source and Destination. The AR input to the ALU is forced to X'0002' and an 

Add is performed. 

Only one Decode instruction is allowed in Phase Zero. Only the Phase Zero decode may 

result in a load or an add. Only the Phase Zero decode is written with AR the Destination 

and YD the Source. All other Decodes must have LOC as Source and Destination and are 

treated as Adds. '!he LOC will be incremented by two AR input to ALU = X'0002' 

unless we are exiting Phase Zero with user's RR instruction, exiting.Phase One, or 

entering Phase Three. If the Decode is not to increment LOC, the AR input to ALU is 

X'OOOO' and LOC does not change. Other actions peculiar to the Decode micro-operation 

follow under options. 

4. 17. :l Options: Note that the character "x" in any bit position indicates a, "don't 

are" state. 

E field 

lxxx 

Definition 

A Memory read is generated unless the 
conditions Phase Zero and RR user for­
mat exist. 

38 



E field 

xlxx 

xxlx 

xxxl 

Definition 

The contents of the Flag Register (FLR) are 
jammed to the Condition Code Register (CCR) 

The Flag Register ( FLR), Counter (CTR), 
Utility Switch (UT), and Register Bank (BANK) 
are cleared. 

The Phase Pointer and ROM Address will change. 
The indirect Source Pointer (PTYS) will set if we 
are exiting Phase Zero with an RR or indexed RS 
or RX user's operation in the Instruction Register. 
PTYS will reset the first time an indirect source 
is used. 

CURRENT NEW NEW ROM 
PHASE IR INDEX? PHASE PTYS ADDRESS 

0 RR NA 2 Sets * 
0 RX YES 1 Sets X'OOG' 
0 RX NO 1 Stays Reset X'008' 
0 RS YES 1 Sets X'004' 
0 RS NO 2 Stays Reset * 
1 NA NA 2 Resets * 

*ROM Address generated by DROM 

On exiting Phase Two, the Decode instruction tests for ATN, CATN, SNGL, MPE, and 

PPF. If any condition is true, Phase Three is entered and ROM Address is forced to 

X'Ol4'. If none are true, Phase Zero is entered and ROM Address is forced to X'OlO'. 

4. 17. 4 Assembler Format: D D, S, E 

D = symbol for Decode 

D = A register symbol, either AR or LOC, followed by a comma 

S = A register symbol, either YD or LOC, followed by a comma 
if an assembler option is specified in the E field 

39 



The following symbolic options may appear in the E field: 

Symbol 

MR 

JAM 

CL 

PC 

PO 

Pl 

Definition 

Memory Read. Bit 12 = 1 

\ 
Load CCR from FLG. Bit 13 = 1 

Clear FLR, CNTR, UT, and BANK. 
Bit 14 = 1 

Phase Change. Bit 15 = 1 

Phase Zero. Bits 12:15 = 1011 

Phase One. Bits 12:15 = 1011 

P2J Phase Two, Jam. Bits 12:15 = 1111 

P2N Phase Two, No Jam. Bits 12:15 = 1011 

P3 Phase Three. Bits 12:15 = 1011 

; 



\ 
) 

CHAPTER 5 

USER ORIENTED PHASE DESCRIPTION 

The GE-PAC 30-2 'Micro-Processor' is, to a certain extent, oriented toward the 

standard GE-PAC 30 user's instruction set. The user's instruction is decoded 

to define many hardware and firmware functions before actually entering the 

micro-routine that will execute the instruction. 

In the GE-PAC 30-2 there are four hardware conditions known as ''phases". Each 

phase has corresponding sets of micro-instructions. In general, Phase Zero is 

dedicated to user's instruction fetch and class decoding• Phase One to index-

ing for the second operand; Phase Two to user's instruction execution; and 

Phase Three for interrupt service and display support. These phases effect and 

in-turn are effected only by the Decode micro-instruction. When the Decode 

micro-instruction is used to bring about a phase change, the subsequent state 

of the phase pointer is dependent on user's instruction format; whether or not 

the instruction is indexed and the current state of the phase pointer. (See 

Figure 1.) 

User instruction format is specified by bits 0:3 of the instruction word. The three formats 

are: 

1. Register to Register (RR) 

r OP T Rl 
Ml 

R2 

OP is an 8 bit field specifing, in all formats, the operation to be performed. Rl in all 

formats, is a 4 bit field containing the address of the register which holds the first 

operand or the mask (Ml) for Branch,s. R2 is a 4 bit field containing the address of the 

41 



register which holds the second operand. Operation codes X'On', '2n' and '9n' are 

recognized by the Processor as RR. 

2. Register to Indexed Memory (RX) 

ADDRESS 

X2 is a 4 bit field containing the address of the register which holds the index value. 

Bits 16:31 specify an address which can be modified by the index value to specify where 

in core memory the second operand resides. Operation codes X'4n', '6n', and 'Dn' are 

recognized by the Processor as RX. 

3. Register to Storage (RS) 

10 718 11112 15_,16 
OP Rl X2 DATA. 

Bits 16:31 contain the data constant to be used as the second operand (immediate). Opera-

tion codes X'Cn' and 'En' are recognized by the Processor as RS. 

If bits 12:15 of RX and RS instructions are zero, no indexing is to take place. 

Within the user oriented firmware environment, user :iristruction execution begins when 

Phase Zero is entered. Memory has been read from the focation specified by the Location 

Counter; the Location Counter has been incremented by two and the ROM address register 

was forced to X'OlO', the starting address of the Phase Zero micro-instruction sequence. 

In Phase Zero, the Instrudion Register (IR) is loaded from MDR and MAR is loaded from 

LOC. The instruction format is determined and on the Decode instruction terminating 

42 



Phase Zero, either Phase One or Phase Two will be entered. (See Figure 2.) 

Phase One will be entered if the user's instruction format is RX or indexed RS. When 

Phase One is entered, memory is read putting the second half of the user's instruction 

in MDR, and LOC is incremented by two . . 
There are 3 Phase One instruction sets: 

1. If indexed RX, ROM Address is forced to X'OOC' where the contents 
of the General Register specified by bits 12:15 of IR (YS) are fetched 
and added to MDR. This 'effective address' is then loaded to MAR. 

2. If non-indexed RX, ROM Address is forced to X'008' where MDR is 
loaded unaltered to MAR. 

3. If indexed RS, ROM Address is forced to X'004' where the contents 
of the General Register specified by IR bits 12:15 (YS) are fetched 
and added to MDR, creating the 'effective data'. 

Phase One is exited by a Decode micro-instruction which sets the Phase Pointer to Phase 

Two, and only for the two RX micro-routines, issues a memory read to fetch the second 

operand. 

Phase One is skipped if the user's instruction format is RR or non-indexed RS. If RR, 

the AR is loaded from YD,setting up the first operand; the LOC is not inc:remented; and 

Phase Two is entered. If non-indexed RS, the Location Counter is incremented by two 

and Phase Two is entered. 

Anytime Phase Two is entered, either from Phase Zero or Phase One, the Decoder ROM 

(DROM) is interrogated. DROM is addressed by the operation code (bits 0:7) of IR. Each 

user's instruction has a unique 12 bit word wired into DROM. This word is the starting 

address of the micro-routine which will execute the specific user's instruction. The DROM 

readout is automatically jammed into ROM Address. 

43 



Illegal user'sinstruotions do not have a DROM word. lnterrogating·a non-existant word 

results in zeros, which are jammed into ROM Address. ROM Location X'OOO' is wired 

with aU zeros. When location zero is read, a hardware defined illegal condition arises, 

forcing ROM Address to X'200' and setting the Phase Pointer to Phase Three. 

Phase Two is dedicated to the execution of user's instructions. When Phase Two is exited, 

the Decode instruction automatically tests for IO interrupt, Console Attention, Console 

Single Mode, Memory Parity Fail, and Primary Power Fail. If any of these conditions 

exists, the Phase Pointer is set to Phase Three, the Location Counter is !!Q_! incremented, 

and ROM Address is jammed to X'014', where attempt is made to service the interrupting 

condition. 
\ 

If none of the tested items are true, no interrupts are pending so the Phase Pointer is 

set to Phase Zero, the Location Counter is incremented by two, the next user's instruction 

is extracted from memory, and ROM Address is jammed to X'OlO' to re-enter the Phase 

Zero micro-instruction set. 

In Phase Three, after successfully servicing the interrupting condition, the Phase Pointer 

is set to Phase Zero, the Location Counter is incremented by two, the next user's instruc­

tion is extracted from memory and ROM Address is jammed to X'OlO' to re-enter the Phase 

Zero micro-instruction set. If the interrupt cannot be resolved, the Processor remains in 

Phase Three. 

44 



INITIALIZE 

PHASE 3 
DISPLAY AND 

INTERRUPT SUPPORT 

PHASE 0 
INSTRUCTION 

CLASS DECODING 

ILLEGAL 
OR ATN 
OR CATN 

OR SNGLOR 
MP£ Oft PPf' 

RR OR 
NON INDEXED 

RS 

RX OR 
INOEXl!D 

RS 

PHASE 2 
INSTRUCTION PERFORMANCE 

PHASE I 

ADDRESS ARITHMETIC 

FIGURE I. GENERAL PHASE ANALYSIS 

45 



INITIALIZE 

PHASE 3 ·-----· OtSPLAY 

SW-PORT 

·-----INSTRUCT tON 
,ETCH 

••••• 

·-----INTERRUPT 

SW-lltORT 

·--....... --ILLl.AL 
INSTRUCTION 

TRAP 

PHASE: f 

YES 

• FIRMWARE OPERATIONS 

PHASE 2 

NO 

INSTRUCTION 
FETCH 

PHASE I 

•r----
USER•s 

8U8AOUTINE 

DROM SUPPLIES 
PHASE 2 ENT1'Y 

POINT 

·-----

·-----INDEX 
,__..__ .... FETCH SECOND to---+-.. 

OPERAND 

·-----

FIGURE 2. GENERAL FLOW OF USER INSTRUCTION 

46 



CHAPTER 6 

MICRO-PROGRAMMING INPUT/OUTPUT 

All input/output support in the GE-PAC 30-2 is done via single load micro-

instructions. The position of IO in the Load instruction - Destination or Source -

plus the encoding of the E field, define the operation of the interface. Specifically, 

one of eight control lines is activated. 

control line 

*PPF is generated not by the Load 1/0 instruction, but by the system Primary 
Power Fail detection networks. 

If IO is the destination and the E field equals xxOl, then the source register contains 
the address of a device. 

xxlO, then the source register contains 
data for the device previously ad­
dressed. 

xxll, then the source register contains a 
command for the device previously 
addressed. 

If the IO is the source and the E field equals xxOl, then the existing external interrupt is 
recognized and the address of the in­
terrupting device is gated to the destina­
tion register. 

47 

xxlO, then the Processor is requesting data 
from the device previously addressed. 
The Data byte is gated to the destination 
register. 

xxll, then the Processor is requesting the status 
of the device previously addressed. The 
status byte is gated into the destination 
register. 



To address a device, the address must be established in some register prior to entering 

the I/O instruction, e.g. 

L MR2,X'nn' 
L IO, MR2,ADRS 
B V,ERROR 

DEVICE ADDRESS 

TEST FOR FSYN 

If the device is operational, it responds with a sync (SYN). If sync is not received in 

approximately 50 microseconds, a false sync (FSYN) is generated which sets the V flag 

iu . _:_,R. Note that I/O operations will not t€rminate until a SYN is received or a FSYN 

j s gene rated. Devices must be addressed before a command or Data byte can be sent. 

L MR2,X'nn' 
L IO, MR2,ADRS 
B V,ERROR 
L MR3, IO, STAT 

DEVICE ADRS 
ADDRESS THE DEVICE 
TEST FOR FSYN 
STATUS REQUEST 

The micro-program can test for external interrupts, If an interrupt is indicated, the 

micro-program can find out which device interrupted by loadµig from I/O with Acknow-

ledge (ACK) specified. The sync resulting from ACK loads the interrupting devices 

address to the Destination Register. The ACK line is not fanned out to all device con-

trollers as are ADRS, DA, DR, STAT, CMD, and PPF. Instead, it is connected to the 

Device Controller of highest priority. If an interrupt condition is not present in the first 

Device Controll0r, the signal (ACK) is passed on to the next Device Controller. The inter-

rupting Device Co!1Lro11er captures the ACK signal and responds with a sync and its address. 

T ATN 
B G,SRVC 

SRVC L MH3,IO,ACK ACKNOWLEDGE 

48 



NOTE: It takes somewhat less than 100 nanoseconds to pass ACK through a 
non-interrupting device controller. 

The delay of sync response is 200 nanoseconds to cover any skew on 
the data lines during transfer. 

49/50 



CHAPTER 7 

ADDITIONAL SPECIFICATIONS 

7. 1 Multiple E field definitions are connected with the + sign in the assembler 

format, e.g.: L MRl, MR2, SL+cO+cI. 

7. 2 The following registers, if they are specified by the Source field, will result 

in zeros as the Source Operand: AR, CTR. 

7. 3 In order for MRO, MRl, or MR2 to be addressed as a Destination Register, 

the Bank flip-flop must be set. 

7. 4 In order for RAL, RAH, or YS to be addressed as a Destination Register, the 

Bank flip-flop must be reset. 

7. 5 IO must not be both a Source and a Destination in the same micro -instruction. 

7.6 On flags: In general, the flags remain unchanged except as follows: 

A. Load (with no shift) clears the C flag if Carry Out is specified 

in the E field unless the load involves IO. 

B. Load (with shift) adjusts the G flag if Carry Out is specified in 

the E field unless the Load involves IO. 

c. Add and Subtract adjust all flags if Set Flags is specified in the 

E field. See item E. 

D. AND, OR, and Exclusive OR adjust the G and L flags and clear the V 

flag if Set Flags is specified in the E field. See item E. 

51 



E. The adjustement of the G and L flags by A, S, N, O, X instructions 

is governed by the following rules: 

G • So ,. (S1 + s2 + --- +S14 + S15 + Gp + Lp) 

L • So 

where Sn = bit n of resulting data 
Gp = previous setting of G flag 
Lp = previous setting of L flag 

F. Test adjusts the G and L flags as follows: 

If any tested-for condition is true, G = 1 and L = O. 

If all tested-for conditions are false, G = 0 and L = 1. 

7.7 When FLR is the destination register of an instruction that modifies flags, 

the result in FLR will be the logical OR of the resulting data and the 

resulting condition code bits (CVGL). 

7.8 Flags are not changed by any "immediate" operation unless FLR is the 

destination register. 

7. 9 On a Status Request (STAT), FSYN in addition to setting the V flag, sets only bit 

13 in the Destination. 

7 .10 The Initialize Button and the Initialize Relay preset the starting conditions. 

On power-up, the Initialize Relay remains closed to ground until voltages 

have reached normal levels. A short period after opening, the system clock 

starts. 

52 



The initialized state is as follows: 

BANK flip-flop Cleared 

RAL Cleared 

Utility flip-flop Clean~d 

RAS Cleared 

RAH Cleared 

FLR Cleared 

CNTR Cleared 

Phase Pointer Phase 3 

PTYS Reset 

Memory Control Cleared (inactive) 

ROM Data Register Cleared 

Core Current Drivers Off 

Note that the ROM initialized will not cause any problems. All zeros in RD 

do not cause an illegal, if it is the result of Initialize. 

All other registers are in a non-defined state. 

The initialize line is also distributed to the I/O devices. 

7. 11 PPF is a condition testable by the T instruction. It is generated by an optional 

Primary Power Fail Detector. ROM sequences can test this and take appropriate 

action. A set of contacts on the POWER switch parallels the PPF condition, thus 

initializing an orderly shutdown. PPF is distributed to I/O devices on Control 

Line 7. 

53 



7.12 The ROM sequence is allowed about 1 millisecond for orderly shutdown, after 

which it sets the POW flip-flop (see Command instruction). This stops the system · ~ 

clock and closes the initialize contacts. 

7. 13 On memory parity fail (option) the mem<:>ry sets the parity fail (MPF) flip-flop. 

This can be te11rted by the ROM Program with a TEST instruction. It can be cleared 

with a COMMAND instruction. 

7. 14 The Wait flip-flop is associated with a front panel lamp that is on when the Wait 

flip-flop is set. If the ROM is waiting for further inputs from the console, it 

goes into a minor loop and sets this flip-flop with a SW A command. It is cleared 

with a CWA command. 

7, l5 The Utility flip-flop can be used by the ROM for program control. It can be set, 

cleared, or triggered (complemented) via the COMMAND instruction. 

7 .16 If, during a memory cycle, the attempt is made to use MDR as a Source Register, 

the execution of the micro-instruction is inhibited, until the "read" portion of the 

memory cycle is finished. 

7 .17 If, during a memory cycle, the attempt is made to use MDR or MAR as Destina­

tion Registers, the execution of the micro-instruction is inhibited, until the entire 

memory cycle is finished. 

7 .18 If, during a memory cycle, the attempt is made to initiate another memory 

cycle with a Command or Decode micro-instruction, the execution of the micro­

instruction is inhibited, until the current memory cycle is finished. 

54 



7. 19 To implement a transfer within the ROM micro-program, special care should be 

taken in the loading of the ROM address registers (RAL, RAH). 

The decoding network, to fetch an instruction from the ROM, has inputs from 

the RAL and RAS registers. The RAS register receives information from the 

RAH register at the same time that the RAL register is loaded. 

Consequently, two items are of importance: 

A. Loading RAH has no immediate affect on the address for the 
ROM. 

B. Before loading RAL, the RAH register must contain the cor­
rect page number. 

7 .20 One and only one Decode micro-instruction may be used in Phase Zero. That 

Decode must have AR as the Destination and YD as the Source. All other Decode 

micro-instructions must have LOC as Destination and Source. There are no 

quantity restrictions in any other phases. 

55/56 



\ 
) 

CODE 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

* Bank must be reset 
** Bank must be set 

*** Not a register 

APPENDIX 1 

REGISTER ADDRESSES 

DESTINATION 

RAH*MRO** 

RAL*MRl** 

YS* MR2** 

MR3 

MR4 

MAR 

LOC 

PSW 

AR 

m 

MDR 

FLR 

CNTR 

IO*** 

YD 

YD Pl 

A-1 

SOURCE 

MRO 

MRl 

MR2 

MR3 

MR4 

MAR 

LOC 

PSW 

NULL 

m 

MDR 

ffi4 

NULL 

IO*** 

YD 

YD Pl 



A-2 
APPENDIX 2 

GE-PAC 30-2 MICRO-CODE SUMMARY 

OP-CODE INSTRUCTION 

0 0 0 0 DECODE 
0 0 0 1 BRANCH 
0010 TEST 
0 0 11 COMMAND 
0 1 0 0 LOAD 
0 101 LOAD IMMEDIATE 
0 11 0 OR 
0 111 OR IMMEDIATE 
1 0 0 0 AND 
1 0 0 1 AND IMMEDIATE 
1 0 1 0 EXCLUSIVE OR 
1011 EXCLUSIVE OR IMMEDIATE 
1 1 0 0 ADD 
11 0 1 ADD IMMEDIATE 
1 1 1 0 SUBTRACT 
11 11 SUBTRACT IMMEDIATE 

Com~ds 

Bits Set Definition -
5 Multiply 
4 Divide 
4,5 Repeat 
7 Mem. Read 
6,7 Mem. Write 
9 Reset Bank* 
8 Set Bank* 
8,9 Trigger Bank* 
11 Reset Utility* 
10 Set Utility* 
10, 11 Trigger Utility* 
12 Clear Mem. Parity* 
13 Set Wait Alarm* 
14 Reset Wait Alarm* 
15 Power Down 

* = flip-flops 

.E FIELD DEFINITION 

For A,S,X,N,O: 

lxxx No AR to ALU 
xlxx Set Flags 
xxlx Carry Into ALU 
xxxl Carry Out of ALU 

For L ONLY: 

OOxx Load 
Olxx Shift Right 
lOxx Shift Left 
llxx Cross Shift 

On Shifts Only: 
xxlx Carry Into ALU 
xxxl Carry Out of ALU 

On Non-Shifts: 
x x x 1 Clear Carry 

x = "don't care" condition 

Tests 

Bits Set 
5. 
6 
7 
8 
9 

10 
11 

Load, I/O 

E field 
xxOl 
xxlO 
xxll 

Definition 
I/O Int. (ATN) 
Auto-restart (ARST) 
Cons. Ex. (CA TN) 
Cons. Sngl. (SNGL) 
Utility flip-flop (UT) 
Mem. Par. Fail (MPF) 
Prim. Pwr. Fail (PPF) 

:::;: Destination 

Definition 
Address 
Data Available 
Command 

Load, I/0 = Source 

x x O 1 Acknowledge 
x x 1 0 Data Request 
x x 1 1 Status Request 



A-3 

APPENDIX 3 

GE-PAC 30-2 INSTRUCTION EXECUTION TIMES 

Add 800 nsec 

Add Immediate 800 nsec 

Subtract 800 nsec 

Subtract Immediate 800 nsec 

Exclusive OR 400 nsec 

Exclusive OR Immediate 400 nsec 

AND tl 00 nsec 

AND Immediate 400 nsec 

Inclusive OR 400 nsec 

Inclusive OR Immediate 400 nsec 

Load 400 nsec 

Load Immediate 400 nsec 

Load I/O 1200 nsec 

Command 400 nsec 

Test 400 nsec 

Branch on Condition 800 nsec 

Decode 800 nsec 

Exceptions: The instruction takes 800 nsec: if RAL is specified as a 
Destination Register. 



GE-PAC 30-2 MICRO-INSTRUCTION ASSEMBLER MANUAL 

TABLE OF CONTENTS 

CHAPTER 1. INTRODUCTION TO THE MICRO-CODE ASSEMBLER ••..••••. 1-1 

1. 1 INTRODUCTION. • . • . . • . • . . • . . . . • . . . • • . . • . • • • • • • . . . • . . 1-1 
1. 2 FEATURES OF THE MICRO-CODE ASSEMBLER .....••. 1-1 
1. 3 INPU'I' FORMA.T . . . . . • . • . . . • • • . • . . . • • . . • • • • • • . . . . . • . • 1-1 

CHAPTER 2. GE-PAC 30-2 MICRO-CODE ASSEMBLY LANGUAGE ..•. 2-1 

2.1 LABELS ..........•.•..•.•.......•....•..•••......••. 2-1 
2. 2 OPERATIONS •.......•..•.••••.•.••••.•••••.••......• 2-1 

CHAPTER 3. INSTRUCTION AND FORMATS .............................. 3-1 

3.1 LOAD INSTRUCTIQN .•.......•....•.••.••.•.•..•...•• 3-1 
3. 2 INSTRUCTIONS A, S, N, 0, X ......................... 3-1 
3. 3 IMMEDIATE INSTRUCTIONS .•..•.....•...••.•..•.•.•. 3-4 
3. 4 BRANCH INSTRUCTIONS .•..•.••.•.••.•..•.•..•.••.•.• 3-5 
3. 5 COMMAND INSTRUCTIONS ..••.•.•.•••..•.•.•••••••••. 3-5 
3. 6 TEST INSTRUCTIONS ........•.•.•..•.••••.......••... 3-7 
3. 7 DECODE INSTRUCTIONS ..................••••••...... 3-8 

CHAPTER 4. PSEUDO INSTRUCTIONS ...........•....................... 4-1 

4 o 1 ORG . u ••••••• (I • o ................ o ••••• " •••• o ......... o • 4-1 
4. 2 EQU AND SYN ............•..........••............••• 4-1 
4.3 z ...................... Q•···············•o•••••••••04-1 
4.4 P ..•.•.•..•..•....•.. 111••0·····"····················· 4-1 
4. 5 END . o • • • • • o • • • • ., • • • • • • • • • o • • • • • • • o • • • • " • • • • • ~ • o • • • • 4 - 2 

CHAPTER 5. OUTPUT FORMAT AND ERROR MESSAGES •..•....•..•...... 

5.1 OUTPUT FORMATS ....•...••..•.•••••.•.•.••.•....•. 
5. 2 ERROR. MESSAGES ........•...•.....•..•.••..•.•••.•. 

CHAPTER 6. MICRO-ASSEMBLER SYNOPSIS ........•...........•...•••.. 

6. 1 INPUT FORMAT ..........••....••.•.•.....•.••••••.• 
6. 2 OUTPUT LISTING FORMAT .•...........•••••••.•..... 
6. 3 OUTPUT PAPER TAPE FORMAT ..............•.•.•... 
6. 4 INSTRUCTION FOHMATS ................•...•........ 
6. 5 PSEUDO OPERA TJONS ... , ..............•..•.••.•..... 
f>. G HEGISTER NAMES AND EQUIVALENTS ............... . 

G-1 

5-1 
5-1 

6-1 

6-1 
6-1 
6-1 
6-2 
fi-2 

6-3 

i 



ii 

TABLE OF CONTENTS 
(Continued) 

6. 7 ADD CLASS SUBFIELD MODIFIERS (A, S, N, 0, X) .•••• 6-4 
6. 8 MODIFIERS FOR L OP-CODE . • • . • • • • • • . • • • • • • • • • • . • • • 6-4 
6. 9 MODIFIERS FOR D OP-CODE . • .. .. • .. • . • .. .. • .. • • • • • • 6-4 
6.10 SYMBOLIC CONDITION .CODE FOR BOP-CODE .•••••••• 6-5 
6.11 MODIFIERS FOR C OP-CODE ......................... 6-5 
6.12 MODIFIERS FOR T OP-CODE ......................... 6-5 

APPENDIX 1. REGISTER ADDRESSES .................................... Al-1 

APPENDIX 2. SUMMARY OF INSTRUCTIONS •••••..••••••••••••.•.•.••••.• A2-1 

APPENDIX :L TELETYPEWRITER/ASCII/HEX CONVERSION TABLE •. A3-1 

APPENDIX 4. ASCII/CARD CODE CONVERSION TABLE ••••.•..•.••••.••••• A4-1 



CHAPTER 1 

INTRODUCTION TO THE MICRO-CODE ASSEMBLER 

1. I INTRODUCTION 

The GE-PAC 30-2 computer is controlled by 
Read-Only-Memory programs. These programs 
control the flow of information within the reg­
isters and core storage. The instructions 
that make up these micro-programs are quite 
similar to the instructions for a conventional 
machine. Micro-instructions are located at 
various addresses in the ROM and bear the 
same grammatical structure as more conven­
tional instructions. It is convenient to use 
the same kind of symbolism that is used in 
conventional assembler programming. There­
fore, micro-programs may be written in a 
more natural way using symbolic operation 
codes, operands, and memory locations. 

1. 2 FEATURES OF THE MICRO-CODE 
ASSEMBLER 

The GE-PAC 30 Micro-Code Assembler as­
sembles Source instructions that have been 
prepared as a tape or a deck of cards. A 
listing is generated on the teletype­
writer or line-printer. This listing 
lists the input statements and the gen­
erated code. An object tape is produced 
in a machine readable form. This tape 
is used as an input to a simulator so 
that the logic may be checked before the 
ROM is built. The same tape, or a modi­
fied version produced by the simulator, 
is then used in the manufacturing of the 
specified Read-Only-Memory. 

An ::i.sAcmhly iR performed in two "passes". 
ThiA means that the source tape or cards 
must he read twice. On the first pass, a 
symbol table is built. This table contains 

,., definitions of all names that occur in the 

program. On the second pass, code is gen­
erated. The generated code is placed in a 
buffer as the listing is created. The buffer 
holds 256 micro-instructions. The contents 
of this buffer are punched either when it be­
comes full, or when an ORG pseudo-instruc­
tion changes the origin of code generation. 

During the first pass the user has the op­
tion of stopping on recognized errors. This 
permits corrections to be made as the pass 
proceeds. 

1. 3 INPUT FORMAT 

The micro-program may be prepared as a 
deck of cards or as a source tape. If cards 
are to be the source input, they will be pre­
pared with one instruction per card. The 
following format is recommended, although 
the assembler will accept free format. 

1. Columns 1 through 6 Label 

2. 

4. 

5. 

6. 

7. 

Column 9 
character 

0. 2. 8 "space" 

Columns 10 through 14 
Symbolic Operation Code 

Column 15 0-2-8 "space" 

character 

Column 16 on Symbolic 
Operands 

Column 35 0-2-8 "space" 
character 

Column 36 on Comments 

1-1 



Items 1, 6, and 7 are optional. Items 2, 4, 
and 6 are optional depending on the type of 
card reader uHcd. If the card reader used 
generates a column strobe, the 0-2-8 "space" 
character may be replaced by blank columns 
- keypunch space bar. The cards must be 
front slashed (IBM form X28-6509-2), and 
prepared on an IBM 029 keypunch. If the 
operands occupy more space than that sugges­
ted above, the comment field may be moved 
right. 

The comment field is restricted in 
length because of the narrow pages that 

·a teletypewriter types. Longer state­
ments will be truncated to 67 listing 

· space 3 total. 

The Assembler needs to see only one 
space between source statement fields. 
Superfluous blank columns (Spaces) are 

1-2 

ignored. The Assembler reformats the 
input instructions which may cause the 
appearance of the listing to differ from 
the appearance of the source cards. 

Source tapes are prepared by the Edi­
tor in the same format as the user code 
assembler. Each field of the source 
tape is separated by one or more blank 
characters. The code is A SCI!. Each 
instruction is terminated by a carriage 
return. If the teletypewriter is the 
source input device, each instruction 
on the source tape will be separated 
from the next by a minimum of six 
delete characters. This is necessitated 
because of the start and stop character­
istics of the teletypewriter paper tape 
reader. This format is normally pro­
duced by the Editor and is of no real · 
concern to the user. 



\ 

CHAPTER 2 

GE-PAC 30-2 MICRO-CODE ASSEMBLY LANGUAGE 

2.1 LABELS 

The Read-Only-Memory contains sixteen.-
. bit words. Each word forms one instruction. 
The words are referred to by addresses. 
The purpose of the label field is to give sym­
bolic names to the addresses. Labels are 
formed by using one to six alphanumeric 
characters. Longer labels are truncated to 
six characters. The following symbols are 
valid labels: 

T2 
LOOP25 
N 
STOP 

The fo11owing symbols are invalid as labels 
for the reasons given: 

2TOP 

COMMAND 

first character is not 
alphabetic 

more than six charac­
ters 

A to D contains a blank 

X4. 2 contains a special 
character, a period 

2. 2 OPERATIONS 

The micro-assembler will interpret the fol­
lowing micro-operations: 

SYMBOL DESCRIPTION 

L Load 
A Add 
s Subtract 
N AND 
0 OR 
x Exclusive OR 
B Branch 
T Test 
c Command 
D ~code 

The single letter symbols are the mnemonics 
that must be used in the operation field to de­
scribe a micro-operation. 

2-1/2-2 



CHAPTEH 3 

INSTRUCTION FORMATS 

:J.1 LOAD INSTRUCTION 

The basic action of the Load instruction is to 
load one register with the contents of another. 
At the same time, one or more optional oper­
ations may be performed. Thus, there may 
be a one place shift, or a Carry may be shift­
ed in. The Load instruction is written: 

L HEG1,HEG2 
or L REGl, REG2, OPT 
or L REGl, REG2, OPTl +OPT2+ •.. OPTn 

where REGl and HEG2 are Register names 
and OPT, OPTl, OPT2, ..• OPTn are the 
names of extended field options. 

Tho format of the assembled instruction is: 

0 ll 4 7 8 

0 I 0 0 Dl!ITINATION SOURCE 

II 12 IS 
EXTENDE 0 

FIELD 

Tho names and hexadecimal addresses of the 
registers that are used in the Load instruction 
are shown on Table 1. 

[n the absence of specific extended field op­
tions, the L instruction assumes Carry In 
and Out only. The extended option field of 
the instruction is split into subfields. Each 
subfield controls a specific operation. The 
occurrence of an extended option in the Source 
in:c;truction causes the appropriate subfield 
to be set with the appropriate value. The 
list of extended field options is scanned from 
left to right, and accordingly the right-most 
operation is used in the event of conflict. 

In the absence of further specification, the 
extended operation field contains a 3. The 
set of extended field options is listed in Table 
2. 

Typical instructions are: 

L MAR, LOC 
L AH, YD, SR 
L IO, MDR, ADRS+CS 
L FLR, IO, STAT+SL 

3. 2 INSTRUCTIONS A, S, N, 0, X 

The basic action of the instructions A, S, N, 
0, and X is to combine the contents of the 
Source and the AR Registers, and to return 
the result to the Destination Register. At 
the same time, one or more extended field 
options may be performed. Accordingly, 
these instructions are written: 

or 
or 

I 
I 
I 

REGl, REG2 
REGl, REG2, OPT 
REGl, REG2, OPTl +OPT2+ ..• OPTn 

where REGl and REG2 are register names; 
OPT, OPTl, OPT2, and OPTn are names of 
extended field options; and I stands for the 
Op-Code. 

The format of an assembled instruction is: 

0 7 8 

OP 0 DESTINATION SOURC! 

II 12 115 

!XTENDED 
l"IELD 

3-1 



'fAHLE 1. LOAD INSTRUCTION REGISTER ASSIGNMENTS 

FUNCTION NAME ADDRESS 

Micro-Register 0 MRO 0 

ROM address high RAH 0 

Micro-Register 1 MRl 1 

ROM address lower RAL 1 

Micro-Register 2 MR2 2 

The General Register addressed by 
the YS field of ffi YS 2 

Micro-Register 3 MR3 3 

Micro-Register 4 MR4 4 

Memory Address Register MAR 5 

Location Counter LOC 6 

Program Status Word PSW 7 

A Register AR 8 

Instruction Register IR 9 

M<'mory Data Register MDR A 

Flag Register FLR B 

The YD field of IR IR4 B 

Counter CNTR c 

I/O Bus IO D 

The General Register addressed by 
the YS or YD field of IR YD E 

The odd member of the General Reg-
ister pair addressed by the YS or YD 
field of IR YD Pl F 

3-·2 



TABLE 2. EXTENDED FIELD OPERATIONS FOR LOAD 

FUNCTION 

Carry In but not Out 

Carry Out but not In 

No Carries 

Carry In and Out 

Shift Left 

Shift Right 

Cross Shift 

Address 

Data Available 

Command 

Acknowledge 

Data Request 

Status Request 

whore the operation codes are such that the 
Jeading four bits are as follows: 

SYMBOL 

A 
s 
N 
0 
x 

HEX CODE 

c 
E 
8 
6 
A 

AII the registers permitted on the Load in­
struction and listed on Table 1 except IQ, 
may be used by these instructions. 

NAME MASK VALUE 

CI 3 2 

co 3 1 

NC 3 0 

c 3 3 

SL c 8 

SR c 4 

cs c c 

ADRS 3 1 

DA 3 2 

CMD 3 3 

ACK 3 1 

DR 3 2 

STAT 3 3 

In the absence of specific extended field op­
tions, this set of instructions assumes Carry 
In and Out and set flags. The extended field 
of the instruction is split into subfields. Each 
subfield controls a spN~ifk operation. The 
occurence of an extended option in the Source 
instruction causes the appropriate subfield 
to be set to the corresponding value. Table 
3 lists the extended options and shows both 
the values and masks defining the subfields. 
If conflicting options are specified, those to 
the right take precedence. In the absence of 
further specification, the extended field 
equals 7. 

3-3 



TABLE 3. EXTENDED OPTIONS FOR A, S, N, 0, X 

FUNCTION 

Carry Jn but not Out 

Carry Out but not In 

No Carries 

Carry Jn and Out 

No flags 

No A Register 

Typical instructions are: 

A MH2, MR3, NA+NF+CI 
S YD, MR4,CO 
8 MAH, MAR, Cl+NF 
N AH, MHO 
0 MOR, MOR, NA+NC 
X MAR,LOC 

3. 3 IMMEDIATE INSTRUCTIONS 

The set of operations L, Ai S, N, 0, and X 
also occur in an immediate form. In this 
form, t.he Source Data docs not come from a 
register, hut from eight hits of the instruc­
tion itHelf. When this happens, extendedfield 
optionH are forbidden. The format of an as­
sembled Immediate instruction is: 

DATA 

where the operation code generates the first 
four bits as followH: 

SYMBOL HEX CODE 

L !) 

A D 
s F 
N !) 
() 7 
x B 

3-4 

NAME MASK VALUE 

CI 

co 

NC 

c 

NF 

NA 

3 2 

3 1 

3 0 

3 3 

4 0 

8 8 

The assembler allows the eight-bit Immedi­
ate constant to be specified in a variety of 
ways. The simplest is a hexadecimal con­
stant, in which case the instruction takes the 
form: 

or 
I 
I 

REG,X'n' 
REG, =X'n' (the equal 

sign is optional) 

The 'n' is a number written as one or more 
hexadecimal digits. A single digit produces 
a right-justified constant. If more digits are 
written, the right-most two of the numeric 
field, truncated to four digits are used to 
generate the eight-bit Immediate operand 

SYMBOLIC GENERATED CODE 

L MR3,X'l' 5301 
L MR3,X'3F' 533F 
L MR3,X'26A' 536A 
L MR3,X'A5672' 5367 

It is convenient to use the Immediate constant 
to represent an address. Addresses in the 
micro-machine are sixteen bits long, and 
the Immediate constant is only eight. There­
fore, provision is made to select either the 
high or low order eight-bits of an address as 
an lmmediale constant. Instructions with such 
Immediates are written: 



\lo, 
,/ 

' 

I REG, L(S) 
or I HEG, H(S) 
or I REG, ==L(S) the equal sign is 
or I REG, =H(S) optional 

where L stands for the low order byte, and 
H for the high order byte. S is a symbol that 
is defined in the label field of another instruc-
ti on. Typical instructions are: 

GENERATED 
SYMBOLIC CODE 

Name Op Operand Adrs Data 

ABX L RAH,H(CDY) 0408 5004 
CDY s MR4,=X'2A 0409 F42A 

L MR4, L(ABX) 040A 5408 

3. 4 DRANCH INSTRUCTIONS 

The Branch instruction is written: 

B COND, S 

where COND is the name of a condition, S 
is the label of the instruction to which con­
trol may be given. The format of the assem­
bled instruction is: 

0 5 4 7 I 15 

0 0 0 I CONDITION BRANCH ADDRESS 

The Branch instruction contains only an eight­
bit field for the Branch address, the eight low 
order bits of the required address. Typical 
Branch instructions are: 

GENERATED 
SYMBOLIC CODE 

Name Op Operand Ad rs Data 
----· 

POS n G,LOC 0027 1235 
LOC B CG, POS 0035 1A27 

The Branch instruction may cause the Flag 
Register to he teHted. The output of the test 
causes either the next Hcquential instruction 
to be performed, or control to pass to the 
specified place in the Head-Only-Memory. 

The tests made have the symbolic names lis­
ted on Table 4. Compound conditions are also 
listed. 

The Branch instruction may also test the state 
of the Counter register. This is done by spec­
ifying CTH. as the condition. The output of the 
test causes either the next sequential instruc­
tion to be performed, or control to pass to the 
specified place in the Read-Only-Memory. 

MEANING SYMBOL HEX CODE 

Counter not 
ONE 

CTR 0 

3. 5 COMMAND INSTRUCTIONS 

The Command instruction is written: 

or 
or 

c 
c 
c 

COM 
COMl+cOM2+ ..••. COMn 
X'n' 

where COM, COM!, COM2 ..... COMn are 
the names of specific commands, and 'n' is 
a hexadecimal constant useful for setting up 
non-standard bit configurations. The first 
form is used for a single command, and the 
second form is used for multiple commands. 
If conflicting multiple commands are given, 
the ones to the right in the string of com­
mands take precedence. The format of the 
assembled instruction is: 

COMMAND LITERAL 

Typical Commands nrc: 

C MR 
C HPT +CUT 
C X'GAA' 

The CommandH listed on Table G may be 
given. The mask indicates the hit positions 
of the twC'lve-hit command literal that are 
cleared before insertion of the value. 

3-5 



TABLE 4. BRANCH TESTS 

MEANING iYMBOL HEX CODE 

Less than zero L 1 

Greater than zero G 2 

Greater than or less than zero GL 3 

Overflow v 4 

Overflow or less than zero VL 5 

Overflow or greater than zero VG 6 

Overflow or greater than or less 
than zero VGL 7 

Carry c 8 

Carry or less than zero CL 9 

Carry or greater than zero CG A 

Carry or greater than or less 
than zero CGL B 

Carry or Overflow CV c 

Carry or Overflow or less than 
zero CVL ·n 

Carry or Overflow or greater 
than zero CVG E 

Carry or Overflow or greater than 
or less than zero CVGL F 

-

3-6 



TABLE 5. 

FUNCTION 

Divide 

Multiply 

Repeat 

Memory Read 

Memory Write 

Priviledged Write 

Clear the Bank 

Set the Bank 

Clear Utility flip-flop 

Set Utility flip-flop 

Trigger Utility flip-flop 

Power Down 

Clear Wait Alarm 

Set Wait Alarm 

Clear Memory Parity 

3. (; TEST INSTHUCTJONS 

The Test instruction is written: 

or 
or 

T TEST 
T 
·r 

TES Tl +TEST2 ..•. +TESTn 
X'n' 

where TEST, TESTl, TEST2, ...• TESTn 
are the names of specific tests and 'n' is a 
hexadecimal constant useful for creating non-

COMMANDS 

NAME MASK VALUE 

DIV coo 800 

MPY coo 400 

RPT coo coo 

MR 300 100 

MW 300 200 

PW 300 300 

CB oco 040 

SB oco 080 

CUT 030 010 

SUT 030 020 

TUT 030 030 

POW 001 001 

CWA ooc 004 

SWA ooc 008 

CMP 002 002 

standard configurations. The first form is 
used for a single test and the second form is 
used for multiple tests. Al I the tests are in­
dependent, and there is no possibility of con­
flict. The format of the assembled instruc­
tion is: 

TEST L.ITEIUL 

3-7 



Typical TN;t instructionR an~: 

T UT 
T 
T 

ATN+CATN+PPF 
X'108' 

The Tests that may be made arc listed on 
Table 6. 

3. 7 DECODE fNSTRUCTIONS 

The action of the Decode instruction is de­
termined by the hardware at execution time. 
Ono or more extended field options may be 
rwrformc'd. The Decode instruction is written. 

D H.EGl, HEG2 
or D REG1,HEG2,0PT 
or D HEGl, HEG2, OPTl+OPT2+ ... OPTn 

where rn:ca and REG2 are register names 
and OPT, OPTl, OPT2 .... OPTn are exten­
ded field options. The format of the assem­
bled instruction is: 

0 a 4 1 a 
0 0 0 0 DUTINATION SOU"CI! 

II 12 18 

!XTl!NDl!D 
I'll! LO 

All registers allowed on A, S, N, 0, and 
X may be used on Decode. 

The extended field is split into single-bit 
subfields, each bit controlling a specific oper­
ation. The occurrence of an extended field 
option in the Source instruction causes the 
appropriate subfield to be set to the corres­
ponding value. The list of m,'i:ended options 
on Table 7 shows both the values and masks 
defining the subfields. If conflicting options 
are specified, those to the right take prece­
dence. In the absence of further specifica­
tion, the extended field is set to zero. 

Typical instructions are: 

D 
D 
D 
D 

AR, YD,PO 
LOC,LOC 
LOC, LOC,MR 
LOC, LOC, P2J 

TABLE 6. TESTS 

FUNCTION NAME MASK VALUE 

Unassigned 800 800 800 

I/O Interrupt ATN 400 400 

Auto Hostart ARST 200 200 

Console Interrupt CATN 100 100 

Console Single Mode SNGL 080 08.0 

ULility flip-flop UT 040 040 

Memory Parity :Fail MPF 020 020 

I 
Primary Power Fail 

' 
PPF 010 010 

I 

Fast l/O Interrupt FAST 008 008 

l In:1 ssigncd 004 004 004 

lln: 1 ~; s i p;ncct 002 002 002 

Un:t.'-i ~ii h'11ed 001 001 001 .....__ _______ -



TABLE 7. DECODE EXTENDED OPTIONS 

FUNCTION NAME MASK VALUE 

Memory Read MR 008 008 

Jam FLR to CCR JAM 004 004 

Clear FLR, CNTR, BANK, UT CL 002 002 

Phase Change PC 001 001 

Phase Zero PO 09F OOB 

Phase One Pl OOF OOB 

Phase Two Jam P2J OOF OOF 

-
Phase Two, No Jam P2N OOF OOB 

. 
Phase Three P3 OOF OOB 

3-9/3-10 



CHAPTEH 4 

PSEUDO INSTRUCTIONS 

4. 1 OHG 

ORG specifies the position in the Read-Only­
Memory where the assembled program will 
begin. ORG pseudo-instructions can be used 
freely to cause different parts of the program 
to be located in different places. The format 
of the OllG instruction is: 

ORG X'n' 

whcrc'n' is a number of four or fewer digits 
written in hexadecimal form. (Longer num­
bers arc truncated to the left most four digits. ) 
Typical ORG instructions are: 

OHG X'12B' 
ORG X'62' 

4. 2 EQU AND SYN 

EQU and SYN are used to define new symbols. 
Once a symbol is defined, it may be used in 
exactly the way labels are used. EQU is used 
to define a symbol to have a literal value. 
SYN is used to <'quatc a new symbol to a pre­
viously defined one. The formats are: 

s 
Sl 

EQU 
SYN 

X'n' 
S2 

where S, SJ, and S2 are names of symbols 
composed of one to six alphanumeric charac­
ters, and 'n' is a hexadecimal number com­
poHed of four or fewer digit:s. Typical cxa m­
p I cs of EQU and SYN arc: 

SYMBOLIC GENERATED 
CODE 

CONSl EQU X'lA98' (no code 
generated) 

SUBK SYN CONSl (no code 
generated) 

L AR, H(CONSl). 581A 
0 MAR, L(SUBK) 7598 

4.3 p 

The P pseudo-instruction is used to output 
the current content of the punch buffer and 
suppress punching origin addresses when 
subsequent punching occurs. The format of 
the P instruction is: 

P (no argument is necessary) 

4. 4 z 

The Z pseudo-instruction is used to define 
a hexadecimal constant. This instruction 
has an argument which is either a hexadeci­
mal constant or a symbolic address. The 
format of the Z instruction is: 

or 
z 
z 

X'n' 
s 

where 'n' it> a hexadecimal constant of four 
or fewer dig·itH and S is a prc·viou:sly defined 
symbol of one to six alphanumeric characters. 

4-1 



Typical Z instructions are: 

SYMBOLIC GENERATED 
CODE 

Adrs Data 
TALLY z TOTAL 0282 0283 
TOTAL z X'A12F' 0283 A12F 
SUM z TALLY 0284 0282 

In normal use, the P instruction is followed 
by a block of Z pseudo-instructions defining 
Decoder ROM data. For example: 

p 

z X'OOOO' 
z SYMBl 
z SYMB2 
z SYMBn 
END 

4-2 

The P instruction causes that executable part 
of the micro-program remaining in the punch 
buff er to be output. 

The subsequent Z pseudo-instructions begin 
filling the punch buffer with their respective 
hexadecimal arguments. 

The END statement causes the assembly 
process to terminate. Depressing the 
EXECUTE switch will cause the data in the 
punch buffer to be output without an origin 
address. 

4.5 END 

The END pseudo-operation is used to indicate 
the end of a Source program. No special in­
struction is required at the beginning of a micro­
code Source program. 



CHAPTEH. 5 

OUTPUT FORMAT AND ERROR MESSAGES 

5.1 OUTPUT FORMAT 

The listing is printed on the teletype­
writer or line printer. The listing 
contains two columns of four hexadecimal 
digits each. The left hand column con­
tains the address of the instruction in 
storage. The right hand column contains 
the sixteen bits of the instruction in 
hexadecimal form. Following the gener­
ated data, and on the same line, the 
corresponding source data is printed. 

Paper tape object code is punched on the 
teletypewriter or high speed punch. The 
tape is punched in blocks; each block 
corresponding to a 256 word section of 
code or a partial page of code that is 
headed by an ORG pseudo-instruction. 
Blocks are separated by biank tape. 
Each character on the tape represents 
a hexadecimal digit. Four tape charac­
ters are punched in the tape for each 
sixteen bit word; most significant hexa­
decimal digit first. The first four 
characters in a bl~ck give the starting 
address of the block. Subsequent groups 
of characters give successive words of 
the generated code. The paper tape 
codes used for the hexadecimal digits 
are listed on Table 8. 

A block of object information generated 
by P and Z pseudo-instructions uses the 

same paper tape codes as instruction 
data, but no orgin addresses appear. 

5. 2 ERROR MESSAGES 

The following errors are detected and flagged 
by the characters shown. 

ERROR CHARACTER 

Illegal operation code 0 
Instruction format error F 
Multiple defined symbol M 
Undefined symbol U 
Bad character in source card B 

When the error option is used to detect er­
rors on the first pass, multiple defined 
symbols are not flagged until their second 
occurrence. Undefined symbols are not de­
tected until the symbol table is printed. 

Errors generally cause an instruction word 
of all zeros to be generated. A source card 
that contains an illegal (bad) Hollerith char­
acter is listed up to the illegal chal,'acter for 
easy identification. 

If the symbol table overflows, the message 
"OVERFLOW" is printed and the assembly 
process terminates. 

TABLE 8. PAPER TAPE CODES 

HEX DIGIT CODE HEX DIGIT CODE 

0 1001 0000 8 1001 1000 
1 1000 0001 9 1001 1001 
2 1000 0010 A 1001 1010 
3 1000 0011 B 1001 1011 
4 1000 0100 c 1001 1100 
!) 1001 0101 D 1001 1101 
() 1001 0110 E 1001 1110 
7 1001 0111 F 1001 1111 

5-1/5-2 



CHAPTER 6 

MICRO-ASSEMBLER SYNOPSIS 

6.1 INPUT FORMAT 

If tape is the source, the normal Editor out­
put is accepted as the input format. If cards 
are the source, the following format is sug­
gested. 

COL DESCRIPTION 

1-6 *Symbolic Label 

9 *0-2-8 "space" 

10-14 Symbolic operation code 

15 *0-2-8 "space" 

H;-71 Symbolic operand field term­
inated by (0-2-8)* if comments 
follow 

*optional 

If column 1 is an asterisk (*), the card gen­
erates no code, but is listed. 

6. 2 OUTPUT LISTING FORMAT 

The output listing contains the following infor­
mation for each input source statement: 

1. AbsoJutc location in hexadecimal 

2. Absolute content of the location, 
in the form: 

xxxx 
where X is a hexadecimal digit~ 

3. Error messages: 

F Format Error 
0 - Op-Code Error 
U - Undefined Symbol 
M - Multiple Defined Symbol 
B - Bad Hollerith Character 

4. Symbolic (source) image. 

6. 3 OUTPUT PAPER TAPE FORMAT 

The paper tape is organized into blocks, each 
representing: 

I. all words between one ORG 
pseudo-instruction and the 
next. 

2. all words up to page en(jl. 

3. P pseudo-generated data. 

Each sixteen-bit number is punched in four 
frames of paper tape, each frame represent­
ing one hexadecimal digit. Each block on 
paper tape, in item 1 and 2 above, begins 
with a sixteen-bit word (four frames) giving 
the initial location of the block. The punched 
address must be a halfowrd address. It is 
therefore punched as twice the actual ROM 
address. Succeeding words on paper tape 
represent succeeding locations in memory. 

Eight inches of blank tape arc left between 
blocks. The paper tape code used for the 
hexadecimal digits is as shown earlier on 
Table 8. 

6-1 



,) 

fi. 4 INSTHUGTION FORMATS 

Instruction Class 1 

A OP D s . E (Hegi ster to 
Hegister) 

B OP D c 
' 

or OP D,=C 
(Immediate) 

where OP is A Add 
N AND 
s Subtract 
0 OR 
x Exclusive OR 
L Load 
D Decode 

D is n register name (sec 6. 6) 
S is a register name (see 6. 6) 
E is the extended option field which has the 
form M, + . • . . • +Mn where M are modifiers 
C is an eight-bit constant which can take the 
form: 

1. X'nn' 

2. H(s) 

3. ·L (s) 
~ 

Ai-rncmhlcd format: 
A. 

to OP 21: 14 D 

B. 

t 0 OP 2 l ~ 14 D 

(n is a hexadecimal digit) 

(High order address of a 
word in ROM; 's' is a 
symbolic name of a ROM 
location 

(Low order address of a 
word in ROM) 

11• 
8 

·· 1 •2 
E "I 

718 
.c 

.. 151 

Instruction Clai-;s ~: 

Symbolic Format: 

B CC, A 
where II i H the Branch Op-Code (0001) 

CC is the symbolic condition 

. 6-:.2 

A is the symbolic address (always uses low 
order address bits) 

Assembled Format: 

cc 
711 

A 

Instruction Class 3: 

Symbolic Format: 

OP E or OP X'n' 
where OP is C - command (0011) 

T - test (0010) 

E is the extended form M, + ..... +Mn are 
modifiers for test or command. 

'n' is a hexadecimal constant 

Assembled Format: 

OP 

6. 5 PSEUDO-OPERATIONS 

ORG ORG X'N' 

set assembly location counter to N (hexadec­
imal). 

EQU s EQU 

Set the symbol S to the hexadecimal value N. 

SYN SYN 

Set the symbol St to the same value as S2, 
which must have been previously defined. 

z z X'N' 

Define Constant. Set the current assembly 
location to Hexadecimal Nor the hexadeci­
mal address associated with symbol s2 . 
The assembled form becomes XXXX where 
X are hexadecimal digits . 



p p 

Punch the content of the buffer and suppress 
punching origin address when subsequent 
punching occurs. 

END END 

End current pass of assembly. 

6. 6 REGISTER NAMES AND EQUIVALENTS 

Table 9 lists all register names and equiva­
lents. 

TABLE 9. REGISTERS 

SYMBOLIC ABSOLUTE. 1\'.IEANING 

MRO 0 Micro-Register 0 

RAH 0 ROM address High 

MRl 1 Micro-Register 1 

RAL 1 ROM address low 

MR2 2 Micro-Register 2 

YS 2 General Register addressed 
by YS field of IR 

MR3 3 Micro-Register 3 

MR4 4 Micro-Register 4 

MAR 5 Memory Address Register 

LOC 6 Location Counter 

PSW 7 Program Status Word 

AR 8 A Register 

IR 9 Instruction Register 

MDR A Memory Data Register 

FLR B Flag Register 

IR4 B YD field of IR 

CNTR c Counter 

IO D 1/0 Bus 

YD E General Register addressed by 
the YS or YD field of IR 

YD Pl F Odd member of the General register 
pair addressed by the YS or YD field 
of m. 

6-3 



6. 7 ADD CLASS SUBFIELD MODIFIERS 
(A, S, N, 0, X) 

E field is normally 0111 unless further speci­
fied. Each modifier has a mask Mand a 
value V as shown on Table 10. Each modifier 
converts current E code from Eb to Ea as 
follows: 

6. 8 MODIFIERS FOR L OP-Code 

E code is normally 0011. Table 11 lists the 
modifiers. 

6. 9 MODIFIERS FOR D OP-CODE 

E code is normally 0000. Table 12 lists the 
modifiers. 

TABLE 10. ADD CLASS MODIFIERS 

SYMBOLIC 
MODIFIER MASKM VALUE V MEANING 

CI 0011 0010 Carry In but not Out 
co 0011 0001 Carry Out but not In 
NC 0011 0000 No Carries 
c 0011 0011 Carry In and Out 
NF 0100 0000 No Flags 

,NA 1000 1000 No A Register 

TABLE 11. LOAD MODIFIERS 

SYMBOLIC 
MODIFIER MASK M VALUE V MEANING 

CI 0011 0010 Carry In but not Out 
co 0011 0001 Carry Out but not In 
NC 0011 0000 No Carries 
c 0011 0011 Carry In and Out 
SL 1100 1000 Shift Left 
SH 1100 0100 Shift Right 
cs 1100 1100 Cross Shift 
ADRS 0011 0001 Address 
D.\ 0011 0010 Data Available 
CMD 0011 0011 Command 
ACK 0011 0001 Acknowledge 
Dll 0011 0010 Data Request 
STAT 0011 0011 Status Request 

~·· --·· 

6-4 



TABLE 12. DECODE MODIFIERS 

SYMBOLIC 
MODIFIER MASK VALUE MEANING 

MR 1000 1000 Memory Read 
JAM 0100 0100 Jam FLR to CCR 
CL 0010 0010 Clear 
PC 0001 · 0001 Phase Change 
PO 1111 1011 Phase Zero 
Pl 1111 1011 Phase One 
P2J 1111 1111 Phase Two, JAM 
P2N 1111 1011 Phase Two, No JAM 
P3 1111 1011 Phase Three 

6.10 SYMBOLIC CONDITION CODE FOR B The conditions C, V, G, and L may be speci-
OP-CODE fied in any combination. 

The foJlowing coding applies to the Branch 
micro-op. 

SYMBOLIC ABS 
cc VALUE MEANING 

CTR 0000 . Counter not ONE 
L 0001 Less than zero 
G 0010 Greater than zero 
v 0100 Overflow 
c 1000 Carry 

6. 11 MODIFIERS FOR C OP-CODE 

Table 13 lists the modifiers for the Command 
op-code. 

6. 12 MODIFIERS FOR T OP-CODE 

Table 14 lists the modifiers for the Test 
micro-op. 

TABLE 13. COMMAND MODIFIERS 

SYMBOLIC MASK VALUE MEANING 

DIV coo 800 Divide 
MPY coo 400 Multiply 
RPT coo coo Repeat 
MR 300 100 Memory Read 
MW 300 200 Memory Write 
PW 300 300 Priviledge Write 
CB oco 040 Clear Register Bank 
SB oco 080 Set Register Bank 
TB oco oco Trigger Register Bank 

6-5 



•, 

TABLE 13! COMMAND MODIFIERS (Continued) 

SYMBOLIC MASK VALUE MEANING 

CUT 030 l 010 Clear Utility flip-flop 
SUT 0'30 020 set Utility flip-flop 
TUT 000 03G Trigger Utility flip-flop 
POW 0:01 001 Power Down 
CWA ooc 004 Clear Wait Alram 
SWA ooc 008 Set Wait Al ram 
CMP 002 002 Clear Memory Parity 

TABLE 14. TEST MODIFIERS 

SYMBOLIC MASK VALUE MEANING 

800 800 800 unassigned 
ATN 400 400 1/0 Interrupt 
ARST 200 2.00 Auto-Restart -
PATN 100 100 Console Interrupt 
SNGL 080 080 Console ·single mode 
UT' 040 040 Utility flip-flop 
MPE! 020 020 Memory Parity Error 
PPF 010 010 Primary Power Fail 
FAST 008 008 Fast _I/0 Interrupt 
004 004 004 unassigned 
002 002 002 unassign~d 
001 001 001 unassigned 

6-6 



APPENDIX 1 

GE-PAC 30-2 REGISTER ADDRESSES 

CODE 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

* Bank must be reset 
** Bank must be set 

*** Not a register 

DESTINATION 

RAH*MRO** 

RAL*MRl** 

YS* MR2** 

MR3 

MR4 

MAR 

LOC 

PSW 

AR 

IR 

MDR 

FLR 

CNTR 

IO*** 

YD 

YD Pl 

SOURCE 

MRO 

MRl 

MR2 

MR3 

MR4 

MAR 

LOC 

PSW 

NULL 

m 

MDR 

IR4 

NULL 

IO***· 

YD 

YD Pl 

Al-1/Al-2 



OP-CODE 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 11 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 111 
1 0 0 0 
1 0 0 1 
1 0 1 0 
1011 
1 1 0 0 
11 0 1 
1 1 1 0 
1 1 1 1 

Commands 

Bits Set 
5 
4 
4,5 
7 
() 

6,7 
9 
8 
8,9 
11 
10 
10,11 
14 
12 
l:l 
15 

APPENDIX 2 

GE-PAC 30-2 SUMMARY OF INSTRUCTIONS 

INSTRUCTION 

DECODE 
BRANCH 
TEST 
COMMAND 
LOAD 
LOAD IMMEDIATE 
OR 
OR IM MEDIA TE 
AND 
AND IM MEDIA TE 
EXCLUSIVE OR 
EXCLUSIVE OR IMMEDIATE 
ADD 
ADD IMMEDIATE 
SUBTRACT 
SUBTRACT IMMEDIATE 

Definition 
Multiply 
Divide 
Repeat 
Mem. Read 
Mem. Write 
Privileged Write 
Reset Bank* 
Set Bank* 
Trigger Bank* 
Reset Utility* 
Set Utility* 
Trigger Utility* 
Clear Mem. Parity* 
Set Wait Alarm* 
Hcset Wait Alarm* 
Power Down 

E FIELD DEFINITION 

For A,S,X,N,O: 

lxxx 
xlxx 
xxlx 
xxxl 

No AR to ALU 
Set Flags 
Carry Into ALU 
Carry Out of ALU 

For L ONLY: 

OOxx 
Olxx 
lOxx 
llxx 

Load 
Shift Right 
Shift Left 
Cross Shift 

On Shifts Only: 
xx 1 x Carry Into ALU 
x x x 1 Carry Out of ALU 

On Non-Shifts: 
x x x 1 Clear Carry 

x --, "don't care" condition 

Tests 

Bits Set 
5 
6 
7 
8 
9 

10 
11 
12 

Load 1 

E field 
xxOl 
xxlO 
xx 1 1 

1/0 

Load 1 I/0 

xx 0 1 
xx 1 0 

Definition 
1/0 Int. (ATN) 
Auto- restart (ARS,(l') 
Cons. Ex. (CATN) 
Cons .. Sngl. (SNGL) 
Utility flip-flop (UT) 
Mem. Par. Fail (MPF) 
Prim. Pwr. Fail (PPF) 
Fast I/ 0 Int- (FAST) 

= Destination 

Definition 
Address 
Data Available 
Command 

- Source 

Acknowledge 
Data Request 

* -- flip-flops xx 1 1 Status Request 

A2-1/A2-2 



) 

"\ 
' iW; 

' ~ 

l 

L 

! 

APPENDIX 3 . 
TELETYPEWRITER/ASCII/HEX CONVERSION TABLE 

HEX (MSD) 8 9 A B c D E 

(LSD) Teletype- 8 DEPENDS UPON PARITY 
writer 

7 Tape 0 0 0 0 1 1 1 

Channels--+- 6 0 0 1 1 0 0 1 

! 5 0 1 0 1 0 1 0 

4 3 2 1 

0 0 0 0 0 NULL DC 0 SPACE 0 @ p 

1 0 0 0 1 SUM X-ON ' 1 A Q . 
2 0 0 1 0 EOA 

TAPE 
" 2 B R 

ON 

a 0 0 1 1 EOM X-OFF # 3 c s 

4 0 1 0 0 EOT 
TAPE 

$ 4 T 
OFF 

D 

!) 0 1 0 1 WRU ERR (I/ !i 1~; u /(I 

(j 0 1 1 0 RU SYNC & 6 F v 

7 0 1 1 1 BELL LEM I 7 G w 

8 1 0 0 0 FE0 So ( 8 H x 
9 1 0 0 1 HT/SK S1 ) 9 I y 

A 1 0 1 0 LF S2 * : J z 

B 1 0 1 1 VT 83 + ; K [ 

c 1 1 0 0 ·FF S4 ' < L \ 

D 1 1 0 1 CR S5 - = M ] 

1•; 1 1 1 0 so 86 . ) N r 
F 1 1 1 1 SI 87 I ') () 

.__ 

F 

1 

1 

1 

I 

L 
I_ 
1 

ACK 

ALT. 
MODE 

ESC 

DEL 

A3-l/A3-2 



APPENDIX 4 
ASCII/CARD CODE CONVERSION TABLE 

.8-BIT 7-BIT 8-BIT 7-BIT 
ASCII ASCII CARD ASCII ASCII CARD 

GRAPHIC CODE CODE CODE GRAPHIC CODE CODE CODE --
SPACE AO 20 0-8-2 @ co 40 8-4 

Al 21 12-8-7 A Cl 41 12-1 

" A2 22 8-7 B C2 42 12-2 
# A3 23 8-3 c C3 43 12-3 
$ A4 24 11-8-3 D C4 44 12-4 
% AS 25 0-8-4 E cs 4S 12-5 
& A6 26 12 F C6 46 12-6 

A7 27 8-5 G C7 47 12-7 
( A8 28 12-8-5 H C8 48 12-8 
) A9 29 11-8-5 I C9 49 12-9 

* AA 2A 11-8-4 J CA 4A 11-1 
+ AB 2B 12-8-6 K CB 4B 11-2 

AC 2C 0-8-3 L cc 4C 11-3 
AD 2D 11 M CD 4D 11-4, 
AE 2E 12-8-3 N CE 4E 11-'5 

I AF 2F 0-1 0 CF 4F 11..:6 
() BO 30 0 p DO 50 tl-7 
1 Bl 31 1 Q Dl 51 (11-8 
2 B2 32 2 R 02 52 1-9 
3 B3 33 3 s D3 53 0-2 
4 B4 34 4 T D4 54 I 0-3 '!._ 

5 B5 35 5 u DS 55 \ 0-4 ; 6' B6 36 6 v D6 56 0-5 
7 B7 37 7 w D7 57 

' 
0-6 

8 B8 38 8 x D8 58 0-7 
~) B9 39 9 y D9 59 0-8 

BA 3A 8-2 z DA 5A 0-9 
BB 3B 11-8-6 [ DB 5B 12-8-2 

< BC 3C 12-8-4 \ DC 5C 11-8-1 
BD 3D 8-6 ] DD 5D 11-8-2 

> BE 3E 0-8-6 t DE 5E 11-8-7 
? BF 3F 0-8-7 +--- DF 5F 0-8-5 

A4-1/ A4-2 



..,, 

TP]Oq-11-;-, 

MICHO-/\SSEMBLEH OPEHATING PHOCEDl.'HES 

I. GE-PAC 30 Micro-Assemblers are 
:1l>solutc and 111ay he loaded by any of 

the GE-PAC 30 loaders. Instructions 
for loading tapes are contained in the 
Loader Descriptions, Publication Num­
l><'t' on-02sA12. 

2. Place the tape or deck to be assembled 
in the symbolic input device. 

:: . Sd data Switch 1:) on the computer's 
('onsolc if error dl'tcction on the first 
pass of the asseml>l.\ is not required. 
< >t lwnvis<'. m:tkl' sure tk1t data Switch 
I:) i :-; t'('S(•f. 

1. Th<' Micro-Assembler begins at location 
X'HO'. The p:tper is advanced one page 
and :1 titl<· is prilited. It is important. 
to position the pap<'r l1dore starting. 

:1. The first p::iss proceeds with the source 
st:1t<·11u·nts IK·ing l'<'ad until the END 
~:t;dcnH•n! is r<·:1clH'd. lf data Switch 15 
is not set, ('l'l'ors cause the system to 
halt. When this happens, the offending 
instruct.ion is listed together with an 
('JTor flag which d('scribes the error. 

( i. II Switch Ei is not. Het and error detee­
lio11 caUHl'S a halt, the offending state­
ment muHt be reprocessed either by 

J'('pl:1cing the <'rroncous statement with 
a <·ot'l'<'<'t('(I oil<', or 1·<·-rcacling the had 
Ht.aterncnt. with Switch 15 set. Process­
ing is r<'sumed b:v depressing the EXE­
CUTE button. 

7. Whc11 th(' I·:Nf>l':1nl is reached, the 
sy111bol i<' t:tfik is printed. Errors arc 
fl:igg<'d. II' <'tTor <·01Tcction is being 
:ttf<'mpt<•d, and tlH· symbol table con­
t:lins "undcfilled" syn1l>olH, abandon the 
assembly. 

8. Replace the tape or deck in th<' symbol­
ic input dcviec. When th(· computc1· 
halts after printing the s.\·mbnl table, 
press EXECVTE to perform thf• second 
pass. 

9. During the second pass, listing is f)('l'­

formcd. If the computC'r halts, it is 
because it is read.\' to rroducc an object 

tape. With the GE-PAC 30-1 Micro­
Assembler only, verify that the previous 
instruction listed was ROM or END. 
Prcpn re the binary out.put device fq 1· 

operation. Press EXEC 1rn:. The 

tape is produced and thl' computer will 
again halt. 

10. Clw<'k that the syrnholic output d('ViCC' 
is n•ady for rrinting. J>n·Hs EXECUTE, 
Jistir1:~ again proceeds. 

11. . Hepeat steps 9 and 10 as many times 
as necessary. 

12. 

1· 
After step l 0 has been pcrfoW"cd the 
final time, the system t,vpcsfASSE:\J HLY 

COMPLETE. /( 

( 

l:L To perform anoth('r ass<'1?bl.v~ :place 
the new tape or d<·<'k in th~ s.vi}ibolic 
input device :me! press EXECUTE. 
Hern~at tlw nn·\·i1111s steps. 

14. Jf, for anv reason, the sdtond pa~s 
must. IK' aborted and restarted with\_ 
out n~pNlt.ing pass one, addre~~ X'i-14~1.r, 
will rcrmit this restart without chang­
ing the symbol table. 



) 

1. 

TABLE OF CONTENTS 

GENERAL DESCRIPTION •..•.•..•..•....•.••.••...•••• 

Purpose ....•.•.•.... 
Micro-Code Software . 
Operation ........ . 

.,.,' 
!',• 

·i' 

·~. 

.f-1 

.1-1 
. ... 1-1 

.1-1 

1.1 
1. 2 
1. 3 
1. 4 Related Documents ••••••••••••••••••••••o•o••o••l-2 

2. ORGANIZATION OF THE SYSTEM ......•.•.••••..•.••.•...•.•.......•.. 2-1 

2.1 Major Components .. 
2.2 Simulator Registers 
2.3 Processor Registers. 
2.4 User's Registers. 
2.5 DROM .. 
2.6 ROM • 0 ••••• 0 

2.7 Core Memory . •• 0 ••••• 

• • • • • • • • • 0 •• 0 0 ...... 0 ••• 

........ 
••••• 0 •• 

0 ••••••• ••11••••• 

• 0 0 •••• 0 

• 0 0 G e e 

•• 0 0 •• 0 •• 0 • 0 • 0 

. 2-1 
.. 2-1 

0 •••• 2-3 
• ~ 2-5 
• • 2-5 

••••. 2-5 
•• 0 •• 2-5 

3. USER COMMANDS .............................. o ••••••••••••••••••••• 3-1 

3.1 
3.2 
3.3 
3.4 
3.5 

General Syntax .... 
Cell Examination. 
Cell Change .•..... 
Letter Commands . 
Special Controls .•• 

.. 3-1 

.. 3-1 
. 3-2 

.. 3-2 
..................................... 3-5 

4. MICRO-INSTRUCTIONS ................................ o. 1111 •• o ••••••••• 4-1 

4.1 Execution Cycle. . . . . . . • •• 0 •• ••••••••• 0 • 0 • .• 4-1 
4.2 Memory Operations .•• or;iaooo ••• 0 ••••• . . 4-2 
4.3 Register Addressing. .. • ••••• 0 •• 0 ..... 4-2 
4.4 Flag Settings. 0 0 •• 0 0 •• 0 0 oooaaooo••••• .4-2 
4.5 Input/Output . • • e • o o •• 0 ••• 000000 ...... 0000000000000 .4-3 
4.6 Other Micro-Instructions. • • • • • • 0 • ••••• 0 •••• •• 0 ••••••••••• 4-4 

5. USE OF SIMULATOR ................•.......... o •••••••••••••••••••••• 5-1 

5. I 
5.2 
5.3 
G.1 
5.5 
5. {j 

5.7 
5.8 
5.9 
5.10 

Configuration .....•..•. 
Loading the Simulator ... 
Starting Procedures .. 
Memory Allocation .•. 
Loading the ROM ..••••.••. 
Loading the DROM .•••.•. 
Loading the Core .••.•.. 
Execution ... 
ROM Output. 

• • • • • • • • • • • • • Q •••• 0 • •••••• 0 •••• •• 5-1 
• • 5-1 

•••• 5-1 
. . . . . . . . . . ... ........ 5-1 

............. • • • • • • • • • • • • • • 0 ••• 5-2 
. ................. 5-2 

......... . 5-2 
5-2 
5-3 

Other Output Operations •......... ••••••••••••• 0 •••••••••••••••••• 5-4 

.• 

i 



APPENDICES 

·~ 
,·if~,;!' 

.,;·, ';_·_,:.:.,, "-) 

1. , C~MAND SUMMARY ...•••••.••.•.••••.•..•..••.•.•••.•..••.•........ Al-1 
$i I( 

2. ERROR MESSAGES .•.....••..••.••..•...•....•.••.•••...•••..•.•.....• A2-1 

3. DISPLAY PANEL STATUS ..•.•...........•.•.•....••..•...•.••••...••. A3-1 

4. MICRO-INSTRUCTION SUMMARY ...................................... A4-l 

ILLUSTRATIONS 

Figure 1-1. Primary Data Areas ............•.•...••..••.•..........•..••.. 1-2 

Figure 2-1. Major Components of GE-PAC 30-2 Simulator············.·· 2-1 

Figure 2-2. GE-PAC 30-2 Simulator Data Areas ............ , ..•......• , . 2-2 

Figure 2-3. Simulated Processor Registers ..•.•..•.••.•.............•.•.•.• 2-4 

Figure 4-1. Execution Cycle ..............•.....•.•..•...•..•....••.•.•..•• 4-1 

Figure '1-2. Post Ex<'cution Counter Mode Handler ...•..............•.••.•..• 4-5 

Figure 4-3. Source/Destination Logic ....••...•............•.•..••.•.•.••.. 4-8 

ii 



CHAPTER 1 

GENERAL DESCRIPTION 

1. 1 PUHPOSE 

The GE-PAC 30-2 Micro-Code Simulator is 
used for testing and debugging GE-PAC 30-2 
micro-code programs. Micro-cade programs, 
when implemented, become permanently wired 
instructions in a Read-Only-Memory (ROM). 
The purpose of the Simulator is to enable 
a micro-code program to be tested before 
it is wired into an ROM. The use of the 
Simulator minimizes the testing and debug­
ging of a program in its wired form. 

1. 2 MICRO-CODE SOFTWARE 

The Simulator is but on program in a 
family of GE-PAC 30 micro-code sup­
port programs, all of which run on any 
GE-PAC 30 Processor which has at least 
8K bytes of core. A standard GE-PAC 
30-2 Processor, therefore, can be used 
to develop and test special micro-code 
programs for use with any GE-PAC 30 
Processor. Other support programs are: 

l. The GE-PAC 30-2 Micro-Code 
Assembler, which accepts 
micro-code instructions 
in symbolic form and gen­
erates an ROM binary ob­
ject tape. This Assem­
bler is described in Pub­
lication Number 05-012Al2. 

2. The HOMWATS program, 
which accepts an ROM binary 
object tape and generates a 
wiring tape for the machine 
used to wire and test the physi­
cal ROM. This program is de­
scribed in Publication Number 
29-047. 

1. 3 OPERATION 

The Simulator is interactive in nature, 
with many similarities to CLUB, the Hex­
adecimal. Debug Program. It is operated 
and controlled from the teletypewriter 
keyboard. All numerical quantities are 
expressed in hexadecimal notation. Most 
directives are expressed with a single 
letter codes, many of which conform to 
the repertoire of CLUB commands. 

The Simulator is organized around a set of 
data areas which are maintained in core 
memory. The five principal data areas are 

1. Simulator rq.{istcrs and 
parameters 

2. simulated Processor registers 

3. simulated ROM 

1. simulated DH.OM 

G. simulated core memory 

1-1 



;flcfcr to Figure 1-1. 

so ;;ii' 
Slf!IU&".tTOR 

$i e ~--"-R4.·_··G_•_s_r_E_R_s __ ~ 
TO 

TIE 
T20 

T3E 
QO 

PROCESSOR 

,__..~~_..__.__,_-<--._._-<.--~ 

DROM 
OFF ELEMENTS OF 

RO SIMULATED MACHINE 
ROM 

R3FF u 0 t------------l 

CORE 

U7FE 

Fi1~u1·<· I· I. Prirna1·y Data Areas 

1-~ 

The data al'f'.:JS q,u:;·,_'': ·_); ihe various 
elements of the rn~,_chine beh1g simulated. 
Commands arc provided for the display and 
manipulation of the various data areas. 
Other commands cause the Simulator to 
fetch micro-code instructions from the 
simulated ROM and perform the action 
specified. Features are provided for con­
tinuous or single-step execution. 

l. 4 RELATED DOCUMENTS 

This document assumes a knowledge of the 
GE-PAC 30-2 Processor. For more infor­
mation on the GE-PAC 30-2, refer to the 
Ge-PAC 30 Reference Manttal, Publication 
Number 29-004, or the Micro-Instruction 
Reference Manual, Publication Number 
29-032. For a description of CLUB, re­
fer to the Hexadecimal Debug Program 
Description, Publication Number 03-
002R03Al2. 



CHAPTER 2 

ORGANIZATION OF THE SYSTEM 

2. 1 MAJOR COMPONENTS 

The system is composed of three major 
components: 

1. The interaction control 

2. The micro-code execution control 

3. The data areas 

INTERACTION 
CONTROL 

EXECUTION 
CONTROL 

SIMULATOR 
REGISTERS 

PROCESSOR 
REGISTERS 

DR OM 

ROM 

CORE 

DATA AREAS 

Figlirc 2-1. Major Components of 

GE-PAC 30-2 Simulator 

These major components are represented 
in Figure 2-1. The interaction control por­
tion accepts commands from the teletype, 
and performs the action specified. All of 
the interactive features of the Simulator 
reside in this section. Control remains 
in this section unless micro-code execution 
is explicitly started by a keyboard command. 

The execution control portion contains 
the routines which simulate the GE-PAC 
30-2 Processor. When given control, 
the execution routines operate on the 
data areas as though they were the ele­
ments o[ ri machine. A number of methods 
are provi.ded [or termLnating execution 
and returning control to the user at the 
keyboard. Specific methods are discus­
sed in the next chapter. The details of 
the data areas, shown in Figure 2-2, are 
discussed in the following sections. 

2. 2 SIMULATOR REGISTERS 

Twelve halfwords are used as special regis­
ters by the Simulator. The first four half­
words concern Display Panel parameters: 

so 

82 

Display Panel switches. When 
a micro-code program inputs 
data from Device Number 1, 
the data is obtained from this 
halfword. 

Di::-;play Byte Count/Status. 
The byte count is used for in­
put/output transfers with Dc­
vice Number 1. The Simulator 
adjusts this count as needed. 
The status byte is used when­
('Ver a micro-code program 
reads status from D<•vicc 
Number 1. 

2-1 



2-2 

so 
92 

S4 

BYTE 

,, 

,, 
syw1'fcHES 

q,9\JNT 1 DSPV STATUS 

IND Rt::GISfER I 
} DISPLAY PA .. L PARAM!TERS 

" IND ... E.GISTE R 2 

1 
~,,.; 

·'fa 
. ! SA 

SC 

SE 

SIO 

512 

Sl4 

Sl6 

TO 

T2 

T4 

T6 

TS 

TA 

TC 

TE 

TIO 

Tl2 

Tl4 

Tl6 

TIS 

TIA 

TIC 

TIE 

T20 

• 
• 
• 
• 
• 
• 

T3E 

00 

• 
• 

OFF 

RO 

• 
• 

R3FF 

uo 

• 
• 
• 

UTFE 

SEL DEV ATN DEV 

BREAKPOINT 

LOW LIM IT 

HIGH LIMIT 

s I!LL2777 //LZ 
TI TRACE-POINT 

ROM SIZE 

CORE SIZE 

AR 
I------ ·-· 

± 
RAH 0 

~-----

RAS RAL 

RDA 

MAR 
I--· 

MD R 

RO 

RI 

R2 
0 I 2 3 4 5 8 7 8 9 10 II 12 13 

R3 
A c s 

~ 
--·-·- A u M p 

R4 

1.---9' 8 N M T R A N p p 
~-

N s T G T E F MSR T N L 

FC P r---·~ ~ l cc c v • L CNTR PSW ~ LOC 

IR 

USER REG 0 

• 
• 
• 
• 
• 
• 

U,SER REG l!I 

OROM 

f--- -

ROM 

1---- ·-------~ 

CORE 

L--..........__ ____________ .. .. -·---

Figure 2-2. GE-PAC 30-2 Simulator Data Areas 

14 "' 
I 

w N 
T I 

T 

p 



84 Display Panel indicator regis-
Sfi tcrs. Data outputs to Device 

Number 1 are stored here. 

The remaining halfwords are as follows: 

88 ·c Selected Device/ Attention De-. 
vice. The Selected Device 
field is used by the Simulator 
to remember which device was 
last selected. The Attention 
Device is used by the Simula­
tor to define which device was 
the source of an ATN signal. 
The Attention Device should 

SA 

be specified hy the user. 

Breakpoint location. This half­
word can contain an address of 
a micro-instruction in the ROM 
data area. During micro-code 
execution, the contents of the 
simulated RAS/RAL is com­
pared to this breakpoint value. 
When a match is found, execu-. 
tion terminates, and a message 
is typ~d. 

SC Low Limit. 

SE 

SlO 

High Limit. These values can 
be set by the operator. These 
limit values are used during 
print, output, and trace opera­
tions. 

Single Step Flag. Bit 0 of this 
halfword is set for single step 
execution. In this mode, exe­
cution of micro-instructions 
tc rminatcs at the completion 
of each instruction. 

812 Tr31pe Mode Flag. Bit 0 of this .. 
halfword is set for Trace mod~f\>· 
during execution. In thl\j mode', 
following the execution of'each 
micro:.;.. instruction; .th~ Simula­
tor prints the data between the 
Low and High limits .. If Bit 0 
is not set, this halfword can 
contain an address of a micro­
instruction in the ROM data 
area. During micro-code exe­
cution, the content of the simu­
lated RAS/RAL is compared to 
this tracepoint value. When a 
match is found, the Simulator 
prints the data between the Low 
and High limits. 

S14 = ROM Size. This halfword con·· 
tains the number of micro-in­
structions to be stored in the 
simulated ROM. When the 
Simulator is loaded, this 
number is set at 400, which 
defines a lK ROM. 

SIG Core 8izc·. This halfword 
eontains the number of bytes 
required for the simulated 
core memory. When the Sim­
ulator is loaded, this num­
ber is set at 800, which de­
fines a 2K byte core memory. 

2. 3 PROCESSOR REGISTERS 

Each halfword in this area contains the pro­
cessor registers as shown in Figure 2-3. 
With two exceptions, each halfword contains 
one processor register. The exceptions are: 

T2 = RAH/O. The left half of this 
half word contains the high­
order ROM Address Register. 
Note that this is the outer rank 
of the Address Register. The 
right half of this halfword is 
always zero. 

2-3 



2-4 

0 

RAL 

MOR 

C RO 

TE RI 

TIO R2 O t 2 3 4 15 8 7 8 9 10 II 12 13 14 Ill 

Tl2 R3 ~ 
Tl 4 R 4 j..---" B N M ; : ~ : U ; = ~ W ~ 

NSTGTEF //TIT 
Tl8 MSR T N L h 

~:: 1------: :-=---j --1cc r---..1--+s ~..,.._,~,_.,,.~_,,,....L -+c -+-v ca-+-L-+--'-c_._NT R~f§§_....,..· '\+--Pi...-.; 

TIC LOC 

Tl E IR 

T20 USER REG 0 

• • 
• • 
• • 
• • 
• • 
• • 

T3E USER REG 115 

Figure 2-3. Simulated Processor Registers 

T4 RAS/RAL. The left half of 
this halfword contains the 
high-order ROM Address Reg­
i stcr. Note that this is the 
inner rank of the ROM address 
pagc register. The right half 
or this halfword contains the 
HOM Address Lower Register 
(H.AL). 

TlG c Mino-Status Register (MSR) 
fklds arc as follows: 

B Bank ~'witch which affects 
Rcgi::->tcr Destination Address­
es 0, 1, ;md 2. When Bis set, 
addresses 0, I, ancl 2 mean 
MIW, "PvHU, and M H2. When 
B is reset, addresses O, 1, 
and 2 mean RAIT, RAL, and 
YS. 

M = Mode definition. This 2-bit 
field contains 1 for MPY 
mode, 2 for DIV mode, 3 for 
RPT mode and 0 when no 
counter modes are in affect. 

N 

ATN 

ARST 

CATN 

SNGL 

UT 

A number associated with the 
counter modes. This field is 
adjusted by the Simulator and 
should not be changed by the 
user. 

Device Attention. 

Auto Restart. 

Console Attention. 

Console Single Mode 

Utility flip-flop 



MPE 

PPF 

WT 

JNIT 

TIH 

s 

CVGL 

CNTR 

p 

Memory Parity Error 

Primary Power Fail 

Wait Indicator 

Initialize Switch. This bit is 
set by the I kS keyboard command 
or a POW command. This 
switch is reset by the first 
0000 ROM micro-instruction. 

Flags, Counter, Phase (FC P). 

The fields contained in this 
register are: 

Source Flag. When this switch 
is set, the source reference ad­
dresses E or F imply the YS 
field of IR. When reset, the 
E or F source addresses are 
taken from the YD field of IR. 

Flag Register (FLR) 

Four-Bit Counter Register. 

Phase Pointer associated with 
Decode instructions. 

2. ·1 USER'S REGISTERS 

Data areas T 20 through T 3E contain the 
sixteen 16-bit general purpose User.'s 
Registers. 

2. 5 DROM 

Each halfword in the DROM data area con­
tains the Phase Two ROM entry point asso­
ciated with a particular user's operation 
code. DROM data can be loaded from a 
binary object tape. This data can be dis­
played or changed usin!!,' keyboard operations. 

2. 6 ROM 

Each halfword in the ROM data area contains 
one micro-instruction. The micro-instruc­
tions can be loaded from an ROM binary ob­
ject tape. These instructions can be displayed 
and changed using keyboard operations. These 
instructions are accessed during micro-code 
execution. 

2. 7 CORE MEMORY 

Each halfword of the COHE data area con­
tains one halfword of the core memory for 
the simulated machine. Whenever the micro­
program accesses core memory, this data 
area is used. 

2-5/2-6 



CHAPTER 3 

USER COMMANDS 

3.1 GENERAL SYNTAX 

The command format is very similar to 
CLUB. All numbers and addresses are ex­
pressed in hexadecimal. Commands from 
the keyboard are buffered and not processed 
until a delimiter character is typed. The 
principal delimiters are: 

~ blank (space bar) 

CR carriage return 

LF line feed 

decimal point 

In this discussion, the term cell refers to a 
halfword in memory. Whenever a cell is 
displayed, it becomes the open cell. The 
open cell is then available for modification. 

The RUB OUT key can be used to correct 
typing mistakes. Whenever RUB OUT is de­
pressed, the current command is ignored, 
and the open cell is closed. 

Keyboard commands can be up to 8 charac­
tc,rs long. H more than 8 characters are 
entered before a delimiter, or if the com­
mand is not proper, the Simulator will 
type a question mark (?) and not pro­
cess the command. After an error mes­
sage, the open cell is closed. 

~L 2 CELL EXAMINATION 

The space bar (}'}) is the delimiter used for 
cell examination. The general command is 
of the form 

address )S 

where the address specifies which cell to 
open. The address is expressed in hexa­
decimal with an optional prefix letter which 
identifies the data area of interest. The 
prefix letters are: 

Q DROM 

R ROM 

S Simulator Registers 

T Processor Registers 

U (User) Core Memory 

Sample commands are: 

R27}'} 

S16}') 

T4)S 

U678)S 

345}') 

open cell 2B in the DROM 

open eel 1 27 in the ROM 

open Simulator register 
16 (Core Size) 

open cell 4 of the Proces­
sor registers (RAS/RAL) 

open halfword 678 of 
simulated core 

open halfword 345 of actual 
core 

When a cell is opcn(•d, the system responds 
by typing the adclrcss of the opened cell, and 
the contents of the open cell. For example: 

Ufi7H>S 

U0678 C820 

3-1 



/ 
,,J 

The line focd (LF) key can bf-' used to open 
the next sequential cell iu,A'f(cmory. For 

,· .~ 

· · cxarnplc: 

T4kS ~ 
·~ ',.. /,j 

LF 

53FF 

Similarly, the carriage return (CR) key can 
be used to open the previous cell in memory. 
For exa mplc 

Cl{ 

Note that lhe HOM and DROM data areas are 
rtddrvss('d by word; that is a 1K ROM has ad­

dt'<.'SS('8 HO, Ill, m~, R:~ •.•. ' H:3FF. The 
2:J(i word DH.OM area has addresses QO, Ql, 

Q2, ... , QFF. Other data areas in memory 
~re :1ddrcssed hy byte; that is, a 2K Core 
has :1ddr<'SSC'S uo, U2, U4, •.. , U7FE. 

When LF or Cit commands arc us<.·d, any 
characters which precede the LF or CR 
arc ignored. The LF or CR operations 
should not he used to cross boundaries from 
one data area to another. If this is attempt­
ed, the data displayed will be correct, hut 
the address inclicated will not be correct. 

:3. 3 CELL CHANGE 

The decimal point (. ) is the delimiter used 
to change the content of a cell. The general 
command is of the form 

data. 

where the specified data is to be deposited 
in the open cell. A cell must have been 
previously opened to use this command. 
The data must be expressed in hexadecimal 
form, composed of the characters 0 - 9 and 
A - F. Leading zeros arc not required. 
When this command is used, the Simulator 
responds with the address of the open cell 
and the new content of that cell. For 
example: 

T8kS 

T0008 0123 7777. 

T0008 7777 LF 

T000A 4567 89. 

T000A 0089 

3. 4 LETTER COMMANDS 

Other commands to the .Simulator are expres­
sed with one or two characters, followed 
by a space. These commands are listed on 
Table 3-1 in alphabetical order. 

TABLE 3-1. LETTER COMMANDS 

-

c ommancl Meaning Explanation 
~-· 

Gt5 GO Begin micro-code execution with the micro-
instruction specified by RAS/RAL. 

HM Sd I li~h Limit The address of the open eel 1 is defined as the . 
high limit. This limit is used in print, output, 
and trace operations. A cell must be open 
when the H command is used. The high limit 
is recorded in Simulator cell SE . 

.. ··--.. ·----



Command 

Iii\ 

IQJ.6 

rut) 

JI;) 

TABLE 3-1. LETTER COMMANDS 
(CONTINUED) 

Meaning 

Initialize 

Input to DROM 

Input to ROM 

Input to Core 

Set Tracepoint 

Explanation 

The simulated processor is initialized as 
follows: 

1. The HAH, RAS, RAL, CNTR, FLR 
and T-U) r1:gisters are cleared. The 
Phase Pointer is set to X'3 '. 

2. The INIT indicator is set, but all other 
bits of the Micro -Status Register are 
cleared. (See Figure 2 -2. ) 

The Simulator con ta ins n in icro -code loader 
which reads a Dl{,01\:1 tap1~ l'rom the binary 
input device ancl loads t.lw clata into the 
simulated DROlVI. \\'lien tlii.s command is 
used, the Simulator halts .tu allow a tape to 
be placed in the tape reader. When the 
EXECUTE button is pushed, the loader 
reads the DROM binary tape. Refer to 
Chapter 5 for details. 

The Simulator contains a micro-code loader 
which reads an ROM object tape from the 
binary input device and loads the data into 
the simulated ROM. When this command 
is used, the Simulator halts to allow a 
t.:ip1· to lie placed in the reader. When the 
i';~ i':c lJ'l'I': button is pushed, the loader 
reads the !{OM binary tape. Refer to 
Chapter 5 for details. 

The Simulator contains an 8 -bit loader 
which reads an 8 -bit binary tape into 
memory as specified by the Low and High 
Limits. When this command is used, the 
Simulator halts to allow a tape to be placed 
in the reader. When EXECUTE is pushed, 
the tape is read into memory. llel'er to 
Chapter 5 for details. 

The address of the open l'.Cli is used to de­
fine a tracepoint. '!'Ill' open cell must lie 
within the 1\0'\I data ;11·ca. The address 
of the ROM t.1·:1<'1•point. is stored in Simu­
lator cell :-:1:~. 11u1·ing execution, the Sim­
ulator prints IH'!WP<m Low and High Limits 
whenever 1:.:\:->/ii."\L matches the trace­
point, or wJi .. 111·ver the Trace mode is sel. 

3 -3 



Comtnaml 

I 
us . 

; 

~. / 
""'/ 

MI~ 

M216 
M:~J6 

M4J6 
M:i~ 
M<i~ 

.. M716 
;iJii 

MH;) 

OQ~ 
OHk:) 
ouk:) 

·~ 

/ 
·.~ TABLE 3 ... 1. L. ETTER.· COMMANDS 

/ (CON'TINUEp) 
.L'-

Expl anntion 
""".... -;=-

Ji Kill 'l'rttce 

Set Low Limit 

Set VARI FIX Mode 
Set HALT FIX Mode 
Sd JU JN Mode 
Set A DHS Mode 
S<•t MEMR Mode 
Sc•t ME MW Mode 
8et HALT FLT Mode 
Set VARI FLT Mode 

Output DROM 
Output ROM 
Output Core 

Prillt 

Query Core 
Location 

Set Single Mode• 

Meaning 

1'he Trace mode is reset, or the tracepoint is 
cleared. The Simulator cell 812 will contain 
7FFF after the Kill operation. 

The address of the open cell is defined as the 
low limit. This limit is used in print, output, 
and Trace operations. A cell must be open 
when the L command is used. The low limit 
is recorded in Simulator cell SC. 

These commands set the Display Panel Status 
Byte in Simulator cell S2 to reflect the speci­
fied mode. The right-most four bits of the 
status byte are unchanged. 

The contents of the DROM, ROM, or Core 
as defined by the low and high limits are 
punched on to paper tape. When this com­
mand is used, the Simulator halts to allow 
the punch to be prepared. When EXECUTE 
is pushed, the specified area of memory is 
punched with both leader and trailer. De­
tails of device selection and tape format 
are discussed in Chapter 5~ 

The contents of the cells defined by the low· and 
high limits (inclusive) are printed on the tele­
type. The print format consists of one address 
and 8 values per line. 

This command causes the Simulator to 
type out the address in actual core mem­
ory at which the simulated core memory 
begins. This address may be needed by 
loader programs to load binary object 
tapes into simulated core. The address 
is typed in hexadecimal. If the ROM 
Size specified in Simulator cell S 14 is 
changed, the location of simulated 
core in actual core also changes. 

In single mode, execution of micro-instructions 
is performed one-at~a-timc. That is, after each 
rn i c r·o~ope ration is exccu tcd, control returns 
to tho user at the teletype. Bit 0 of Simulator cell 
810 is set during single mode. 



Command 

W)') 

XJ6 

z;s 

Meaning 

Wipe Out Single 

Set Breakpoint 

- .,' ,, ,\ t 

(CUNTINUCD/ 

Explanation 

This command resets single mode. Simulator 
cell SlO contains zero after this operation. 

The address of the open cell is used to define a 
breakpoint. The open eel I must lie within the 
ROM data area. The addrci:-;s of the ROM break­
point is stored in Simulator cell SA. During exe­
cution, RAS/HAL is coniparcd to cell SA following 
each micro-instruction. When a match is detected, 
execution terminates and a message is typed. 

Set Trace Mode In the Trace mode, the Simulator prints all cells 
between the low and high ~imits after each micro­
instruction is executed. Bit 0 of Simulator cell 
S12 is set during Trace mode. 

Zap the Breakpoint This command clears any existing ROM breakpoint. 
Simulator coll ::;A contains FFFF after this operation. 

~-----_...._ ___________ __._ _______________ _ 

3. 5 SPECIAL CONTROLS 

The Micro-Status Register (MSR) represents 
various signals and indicators associated with 
the Processor. Some of the MSR bits must be 
set by the user to simulate the occurrence of 
the corresponding signals. For operator con-

Vl'Jli(•twc', iht• commanc-h-; listed on Table 3-2 

arc provided. 

No delimiter is required for these commands, 
and any characters which precede the special 
command characters (!, *, ", #, %) are ig­
nored. The Simulator responds with a 
carriage return and line advance to 
acknowledge these special controls. 

TABLE 3-2. SPECIAL CONTHOLS 

Command Meaninµ; Explanation 

---

% Set AHST This command sets bit <i of the Micro-Status Register 

(MSH, T16) to simulat<• tlw Automatic Hestart function. 

r Set ATN This command sets hit G of the MSR to simulate the 

occurrence of :1 dc:v ic (' int<•rrupt. 

3-5 



-""' 
,# 

_',j'I" 

Command Meaning 
' y ' 

* Set CATN 

" Set MPF 

ii Sd PPF 

Table 3-2. SPECIAL CONTROLS 
(Continued} 

Explanation 

This command sets bit 7 of the MSR to simulate the 
display panel EXECUTE button. If the display status 
byte in Simulator cell S2 contains 4X, which means 
VAHI mode, then SNGL in bit 8 of the MSR is also set. 
If the display status byte does not equal 4X, then bit 8 
of the MSR is reset. 

This command sets bit 10 of the MSR to simulate the 
occurrence of memory parity failure. 

This command sets bit 11 of the MSR to simulate the 
occurrence of primary power failure. 



CHAPTER 4 

MICRO-INSTRUCTIONS 

4. 1 EXECUTION CYCLE 

Execution of micro-instructions is started 
with the GO (GkS) command at the keyboard. 
The execution cycle for each micro-instruc­
tion is illustrated in Figure 4-1. The micro­
op to he executed next is indicated hy RAS/ 
HAL. Before• fetching the micro-op, the 
contents of HAS/RAL is compared to the 
HOM Size specified by Simulator cell S14. 
If the HAS/RAL exceeds the ROM Size, 
the Simulator types 

HOM ADRS ERR 

and terminates execution. If the RAS/RAL 
is within limits, the micro-op is fetched 
from the simulated ROM, and stored in RD. 
At this time, RAL is incremented by 1. 
Note that there is no carry to RAS. This 
results in a page wrap-around effect. The 
specific instruction fetched is then executed. 
When the instruction is complete, the tests 
indicated in Fig-ure 4-1 are performed. A 
print between limits results if either the 
Trace mode is in effect, or a tracepoint has 
b(•cn encountered. Control returns to the 
keyboard is either f?ingle mode prevails, 
Switch 15 is depressed, or a breakpoint has 
been encountered. In the case of Switch 15 
being set, or the breakpoint being found, 
the message 

BREAKPOINT 

is typed. For single mode, the Simula­
tor simply outputs a carriage return and 
line advance to indicate that control 
has returned to the keyboard. 

The execution of specific micro-instructions 
• is discussed in the following sections. Only 

special features or exceptions are mentioned; 
the Simulated execution in most cases is iden­
dcal to that of a GE-PAC 30-2 Processor. 

FETCH NEXT 
MICRO-OP 

RAL- RAL+I 

STORE OP IN RD 

I 
I 

YES 

EXECUTE MICRO-OP 

TYPE 
ROM ADRS ERR 

TYPE 
BREAKPOINT 

Figure 1-1. Execution Cycle 

INPUT 

4-1 

.·,. 



4. 2 MEMOHY OPERATI\)NS 
,/ 

All memory operations ~ith simulated core 
memory act exagtl}', the same as with an ac­
tual memory. These operations are listed 
on Table 4'-1. , 

I 

Memory/Write (MW) and Priviledged Write 
(PW) are not separate to the Simulator as 
memory protect hardware is not simulated. 

If the core address exceeds the Core Size 
parameter in Simulator cell S16 during Read 
operations, zero data is frtchcd. If the ad­
dress exceeds the Core Size during Write 
operations, the information is deposited into 
the bit bucket. 

4. ;3 J{EGISTE I{ ADDHESSING 

The Simulator includes the same source and 
destin:1tion rc:->trictions as an actual machine. 
Th(·se restrictions are: 

I. 

') 
~. 

The Bank ,Switch (Bit o in MSR) 
affects the destination address 
only, not the source address. 
The Bank Switch must he set to 
sto1·(• into MH<l, l\11U, or MR2 
and reset to store into HAH, 
RA L, or YS. If the source ad­
dress 0, 1, or 2 is used, the 
MRO, MRI, or MR2 is implied 
independent of the Bank Switch. 

If the AR or CTR registers are 
addressed as Source registers, 
1.(•ro data will be fetched. 

3. 

4. 

IO c::urnct bt' used aE a source 
and destination of one instruc­
tion. If attempted, the Simula­
tor types 

IO ERROR 

and the instruction is not 
executed. 

When the RAL is loaded with 
data, the RAH is copied into 
the RAS. 

4. 4 FLAG SETTINGS 

The C, V, G, L flags reside in bits 4 through 
7 of the FCP register. These flags get set as 
a result of various micro-instructions, or by 
explicitly loading the FLR register. In gen­
eral, if the FLR is not the explicit destination, 
the flags remain unchanged except as follows: 

1. Load adjusts C flag if Carry Out 
is specified in the E field. 

2. Add, Subtract adjust the C flag if 
Carry Out is specified in the E 
field. 

3. Add, Subtract adjust the V, G, L 
flags if Set Flags is specified in 
the E field. 

4. AND, OR, Exclusive OR adjust 
the G, L flags if Set Flags is 
specified in the E field. 

5. Test Adjusts the G, L flags. 

TABLE 4-1. MEMORY OPERATIONS 
- ·-· - - -

before after 
Operati<rn MD Memory MD Memory 

I 
Full !lead A B B B 

I 

I 
Full A B A A 

! I 'r·ivi lecii..;<~d Write J\ B A /\ i 
~""~---~-----.---- ---

1-2 



If the FLR is the explicit destination, the 
flags get set by either the destination data 

0 SWH 
$2 N 

SWL 
STA TU 

or the setting conditions as defined previous­
ly in items 1-4. 

S4 83 
S6 Bl 
$8 SELDEV 

82 
BO 

AT ND EV 

When executing A, S, N, 0, X instructions 
with Set Flags specified in the E field, the 
G and L flags are adjusted as follows: 

L So 

bit n of resulting data 

Gp previous G flag 

L previous L flag 
p 

4. G lNPUT-OUTPUT 

The result of an IO load is summarized in 
Table 4-2. 

The Simulator differs from a real processor 
in that it does not rely on an external device 
to return sync. Note that there is no such 
thing as a time-out with the Simulator. 

This technique of combining a sequence of 
micro-instructions into one user-instruction 
makes I/O possible with certain restrictions. 
Namely, the timing will not be realistic. 

A l1 input-output operations are initiated when 
fl Load instruction is done with IO as source 
or destination. The first five cells in the 
Simulator data area are: 

The simulated I/O operations will run much 
slower than normal. No test is made in the 
Simulator for SELDEV = 0. A zero or im­
proper device number or an unavailable de­
vice should not be referenced. 

IO is the Source 

E field 

xxOO 

xxOl 

xxlO 

xxll 

TABLE 4-2. IO SUMMAHY 

Operation 

none 

Acknowledge 

Data Request 

Status Request 

Explanation 

IO ERROR message. 

Copy ATNDEV to Destination, and clear A TN 
(bit 5 of MSR). 

If SELDEV rfl, execute a Read Data instruc­
tion with device number from SELDEV and put 
data into' the Destination Regi stc r specified. 
If SELDEV = 1, copy SWH into Destination if 
N is odd; copy SWL into SDR if N is even. In­
crement N, and reset if N = 4. 

If SELDEV i- 1, (•xec·utc a Sense Status instruc­
tion with device numlx~r from SELDEV and put 
the status into the· Destination Register. If 
SELDEV = 1, copy STATUS into the Destination. 

.. 



TABLE 4-2. IO SUMMARY 
(CONTINUED) 

Jt IO is the Destination 
<.~~~__:~~~~-,-~~~~~~~~-.~~~~~~~~~~~~~~~~~~~~~~~~--; 

I 

E. field Operation 

xxOO none 

xxOl Address 

XXlO Data J\ vailable 

XXJ J Command 

1. () OTHER MICRO-INSTRUCTIONS 

1f a ('<Jmmand instructim1 is cxccutcd with 
bit l!l 1, which spccifi<'s POW, the Simula-
tor types 

POWER DOWN 

and l<'nninatcs execution. 

·L (). I Counter Modes 

The Counter 111odC's (lVIPY, DIV, RPT) affect 
execution in t lw l'o 1 lnwing ways. 

·l-1 

1. The Command operation sets the 
M field of the MSI{ :1<·c·ordini.; to 
tlw mod<· sp('('ified, arid l'l<'ars 
N, the counti·r phatH' t·oun1. The 
1\1 field is set to l for 1\1 PY, ~ 

for DIV, and :1 for H.PT. 

Explanation 

IO ERROR message. 

Copy Source Register into SELDEV. If Source 
byte = 1, reset CA TN and clear N, the byte 
count. 

lf SELDEV =f 1, execute a Write Data instruction 
with the device number from SELDEV and data 
from the Source Register specified. If SELDEV 
= 1, copy the Source byte into ~. incremented 
N and reset if N = 4. 

Execute an Output Command instruction with 
Device Number from SELDEV and data from 
the Source Register specified. If SELDEV ;= 

1, the· command is disregarded. 

2. At the end of each instruction, 
the M field is tested. If a counter 
mode is specified by a non-zero 
M, the action shown in Figure 
4-2 occurs. 

3. During the micro-op fetch from 
the simulated ROM, the incremen­
ting of the RAL is suppressed if 
MPY Mode with N = 1 or 3, DIV 
Mode with N = 1 or 3, or RPT 
Mode with N = 1. 

4. During data fetch from the source 
registers, any reference to YD 
implies YDPl if MPY Mode with 
N = 2, or DIV Mode with N = 1. 

5. During data store into the destina­
tion register, any rcfe rcnce to 
YD implies YDPl if MPY Mode 
with N ""' 2, or DIV Mod<' with 
N == 1. If DIV Mode with N = 3, 
the store is suppressed if Carry 
in FLG register is zero. 



NO 

A~ IR(IZ-15) 
(USER SOURCE) 

NO 
'>-.;.;..;;- --:--

NO 

A+-IR(l-11) 
(USER DESTINATION) 

YES 

YES 

YES 

A~A OR I 

GET USER REG.A 

RESET SOURCE FLAG 

DONE 

Yigurc 4-2. Post Execution Counter Mode Handler 

._ .. ,·, 

4-5 



4. <i. 2 Decode Instru~tion 

I no 1 .. IS RO O!~, 9 -=· 0 ? 

DILL [
no :· 

: do 
. 

4. 

IS INITL (MSR 15) 1 ? 

MSR 15~0 ------Done 

n-i12f~ ~----42 

(P already= 3~ 

Illegal 

DOTE no !) • RD 12 = 1 ? Test E field 

[no (i. 

IXYI'Y.:.1 7. 

MDR.-C.ore (MAR~ 

RD 13 = 1 ? [-H. 

DOTE2 no 9. 

CC.....____,. FLG 

RD 14 = 1 ? 

10. FLG......._0 

11. C N TR..,.._._,.,_ t 

12. 

13. 

DOTP 14. P = ~ or 1 ? no • 33 Test PhafBe 

' ~. ' 

15. RD15 1 ? no • ERROR 

16. P = 1 ? __ .,_ye::..:s::.,_ __ ., 23 

17. D/S :-:: AR/YD ? __ .,.._,,,.n,,,.o __ • ERROR 

1 H. 

19. IRl = 1 ?--..1..Ye.:;::..s=----• 24 

20. AH--.-(YD) 

·1-(i 



4. 6. 2 Decode Instruction (Continued) 

DECODE 21. D-DROM (IH0 - 7) 

22. P-2 44 

DNRR yes 23. D/S = LOC/LOC ?~ERROR 

24. LOC-LOC + 2 not RR format 

25. IR0 1 ? no 30 

I 26. IR3 1 ? yes .. 30 

~27. IH12-15 0 ? 

28. D-0004 

DGTl 29. P-1 44 

1mx :w. JH12-15 0 ? yes 2X format 

31. n-000c 

DRXN :32. n-0008 .. 

OP2:~ ;33. D/S = LOC/LOC no •EH.HOH Phase 2 or 3 

34. RD15 1 no ... 46 

ves 35. p = 3 ? c36. (ATN. PSWl +CATN+SNGL+MPE+PPF) 1 ? yes .,.41 

"/ 
DGT0 37. LOC-LOC + 2 

:rn. n-0010 

:rn. Source Flag- 0 

40. P-0 44 

DGT:~ 41. n-0014 

12. Source Flag- 0 

4-7 



,, 
• 

') 

4. 6. 2 Decode Instruction (Contil'lued) 

45, 

ii 

DZ:1NE i<L 
./ 

RAS/RA L .--- D ___,.,.,,..DONE 

LOC.....,.,..,.._LOC + 2~PONE 

4. 6. 3 T<'$1 Instruction 

The Test micro+bp tests bits in the JVIicro­
Status Register. The ATN bit is tested only 
if specified by the Test micro-op and bit 4 
of 1.h<' P8W is set. 

PY 

DONE 

r RESET RAL. 

N • 0 
N • I 
N • 2 
N•5 

N•O 
N • I 
N • 2 
N: 5 

TP,e use of addresses E or F in the Source 
field of a micro-op can refer to either the 
user's Destination or Source register. The 
logic associated with this register selection 
is shown in Figure '4-3 . 

Recall that with the Decade instruction, 
the Source Flag is set ~ when leaving 
Phase 0, and reset on entry to Phase 0 
or Phase 3. 

A 
A 
8 
c 

A 
A 

~ A 
c 

D 
E 
ERROR 
ERROR 

CNTR +- Cl\tTR -1 

YES 

M+-0 DONE 

N ...,_ 0 t:~ 
~J RAl,.+-RAL +I 

DON~ QONE. 

1" i 1~111·1 • 1-:~. Som·t~o/Dcstination Logic 

4-8 



,. 
; 

' .. 
I' 

CiJA PTER 5 

USE OF THE SIMULATOR 

5. 1 CONFIGURATION 

The GE-PAC 30-2 Simulator program, 05-014, 
runs on any GE-PAC 30 Processor which has 
8K bytes or more of core memory. The Sim­
ulator assumes that a teletypewriter is 
interfaced to the Processor as Device Num­
ber 2; the Display Panel is referenced as 
Device Number 1. 

5. 2 LOADING THE SIMULATOR 

The Simulator Tape, 05-014R02M09, is an 
absolute tape using the normal binary object 
tape format. The Simulator can be loaded by 
either the SK Absolute Loader or the General 
Loader. Refer to the Loader Descriptions, 
Publication Number 06-025A12, for a detailed 
explanation of the loading procedures. 

5. 3 ST AR TING PROCEDURES 

The starting location is 100. The specific 
procedures to start are: 

1. Set the Display Panel switches 
to X'OlOO'. 

2. Select ADRS mode and depress 
EXECUTE. 

:L Select RUN mode and depress 
EXECUTE. 

When started, the Simulator types a carriage 
return and line advance on the teletypwriter 
which makes an audible click. This sound 
means the Simulator is ready for use. When 
started at 100, the current state of the 

~ data areas is unchanged. This means that 
immediately_ .i:tfter loading, the content of 

the simulated ROM, DROM, and Core areas is 
unpredictable. Once the ROM, DROM, and 
Core data areas have been set up, h<>Wever, 
their state is not affected by restarting 
at 100. 

5.4 MEMORY ALLOCATION 

The Simulator itself requires a little less 
that 5K bytes of memory, starting at 100. 
The remaining core memory can be allo­
cated such that 

2*(ROM Size) + (Core Size) 5 M 

where ROM Size is defined in Simulator cell 
S14, Core Size is defined in Simulator cell 
Sl6, and Mis the remaining memory avail­
able. In an BK memory, Mis about 3K, and 
the equation becomes: 

2*(ROM Size) + (Core Size) < 3K 

After loading, ROM Size is lK and Core 
Size is 2K. If these numbers are satisfac­
tory for the job at hand, the parameters do 
not have to be adjustco. If a different al­
location is perferrcd, the HOM Size para­
meter should be adjusted prior to loading 
the Simulated Core ar<•a with data. Once 
the Core area has been loaded, the ROM 
Size parameter iR 8imulator cell 814 should 
not be changed. The Core Size parameter 
affects only simulated memory operations, 
and can lx• changed anytime. Memory opera­
tions arc discussed in Section 4. 2 

5-1 



) 
./ 

5. 5 LOADING THE ROM '\ 
.! ~I 

~ ~ 

.) ·The keyboard command IR16 is used to input 
data to the ROM data are~. When this com.,. 
mand as used, the Simulator will read a -· 
ROM bina~y .· Jbject tape from the Binary In• · 
put Devic_ as defined in'.t-the Device. Defini­
tion Tab. from X'78' to X'7F'. Specific­
ally, th · halfw()rd at X' 78' is interpreted 
as follows.: 

78 I Dev No. I Command! 

This halfword for various devices is shown 
below. 

TTY 0294 

llSPTI{ 

The ROM binary tape format must conform to 
that generated by the GE-PAC 30-2 Micro­
Code Assembler, as defined in Publication 
Number OS-012Al2. 

Basically, tho tape must be· organized in 
blocks, where each block begins with .an ad­
dress. The address is to be the ROM ad­
dn'ss times 2. Each block must be followed 
l>y bl;111k tape. 

When the IR16 command is given, the Simula­
tor will halt to allow the tape to be placed 
in the tape reader. When the EXECUTE but­
ton is depressed, the tape is read. Leading 
blank tape is skipped. Data is reaci and 
stored in the ROM data area until blank tape 
is encountered. If the data on the tape was 
t1')t an even multiple of 4 characte-rs, the 
Simulator types· a question mark (?) to in.,. 
dicate an improper tape format. Tf the 
tape format was proper, the Simulator types 
the ROM address and content of the last 
ROM instruction loaded from the tape. 

r: ') .)-...., 

T~ Keyboard command, IQ16, is used to in­
·.·.~. put data to the DROM data area. The Sim.,. 
~ulator will read a DROM binary object tape 

· from the Binary Input Device. The tape 
read must be one continuous block. The 
tape format should be identical to that of 
an ROM tape. 

When the IQ16 command is given, the Simula­
tor will halt to allow the tape to be placed 
in the tape reader. When the EXECUTE but­
ton is depressed, the tape is read~ Lead­
ing blank tape is skipped. At completion 
of the Load, the Simulator types the DROM 
address and content of the last word 
loaded from the tape. 

5. 7 LOADING THE CORE 

The Simulator contains an s:...bit loader which 
can be used to load the simulated core mem­
ory. The loader reads 8-bit tapes from the 
Binary Input Device as defined in the Device 
Definition Table from X'78' to X17F'. No ad­
dress information is required on the tape. 
The tape is loaded into the area of memory 
as indicated by the Low and High Limits. 
When the EXECUTE button is depressed, the 
tape is read. Leading blank tape is skipped. 
Loading proceeds until the High Limit is 
reached. 

5. 8 EXECUTION 

Once an ROM program has been loaded, the 
simulated machine should be prepared for 
execution. The Initialize (I}:S) command is 
available for this purpose. Other items 
which may requi:r:c set-up arc: 

S2 Display Panel Status 

SO Display Panel Switches 

SS ATN Device Definition 



l· igurc~ 2-2 shnul:I ht: !<cpt in view during n, 
simulation process to assist in the identifiea­
tion of the data areas. 

Tlw corn rnand Gk) causes HOM execution to 
begin at the micro-instruction indicated by 
RAS/RAL. Note that if RAS is changed to 
some value from the keyboard, it is in gen­
eral, wise to give RAH the same value. 

The techniques available to control and moni­
tor the c'xccution process are summarized 
below. 

Technique 

breakpoint 
tracepoint 
trace mode 
single mode 

Set Command 

Rnnnnk)----Xl6 
Rnnnnl')- - - -J k5 
Y}1 

VkS 

Clear Command 

Z)') 
Kl') 
K)') 
Wl') 

In addition, Switch 15 on the (actual) Dis­
play Panel can be used to interrupt execu­
tion and return control to the keyboard.· 
When Switch 15 is depressed, the Simulator 
types 

BREAKPOINT 

and terminates execution. 

5. 9 ROM OUTPUT 

After a program has been tested, it may be 
desirable to punch a new ROM binary tape. 
The keyboard command OR~ is for this pur­
pose. When this command is used, the Sim­
ulator punches an ROM binary tape to the 
Binary Output Device as defined in the De­
vice Definition Table from X'78' to X'7F'. 
Specifically, the halfword at X'7A' is 
interpreted as follows: 

7A I Dev No. Command I 

This halfword for various devices is shown 
below. 

TTY 0298 

HSPTP 0392 

The information to be rmnched is defined by 
the Low and High limits inclusive. The 
tape is punched in a proper HOM binary for­
mat. Note that if this tape is to be used as 
HOMW A TS input, unused locations in the 
ROM should contain zero. This procedure to 
dump an ROM tape, therefore is as follows: 

1. Set Low Limit with LkL 

2. Set High Limit with H)'). 

3. Clear unused locations in the 
ROM block to be punched. 

4. Make sure cell X'7 A' defines 
the proper device. 

5. Give OR16 command. The 
Simulator will halt to 
allow device preparation. 
Turn tape punch on. 

6. Depress EXECUTE to start 
punching. Leader and 
trailer are punched before 
and after the data. The 
Simulator will halt after 
punching is complete. 

7. DC'prcss EXECUTE to regain 
control at the keyboard. 

5-3 

'•, 



5.10 OTHER OUTPUT O~ERATIONS 

The contents of the DROM can be punched on 
tape with the OQ'f5 command. The procedure 
for this operation is exactly the same as for 
ROM 04tpL1ts. 

The. contents of the Core can be punched on 
tape with •the OUl'S command. The procedure 
for this operation is similar to the above, ex­
cept that an 8-bit tape will be punched. It is 
not necessary in this case to clear any unused 

5-4 

core locations. Due to certain punch charac­
. teristics, it will not be possible to use this 
operation with some ASR 33 Teletypes. 

Following all output operations, it is possible 
to verify that the tape was punched properly. 
To verify a tape, the proper input operation 
should be performed with Switch 15 on the 
Display Panel depressed. With this switch 
set, the IQ, IR, or IU commands will com­
pare rather than load. If any errors are 
detected, a COMPARE FAIL message is 
typed. 



) 

' ;) 

APPENDIX 1 
COMMAND SUM:i"1ARY 

Display halfword of actual core 
Display simulated DROM location 
Display simulated ROM location 
Display Simulator Register 

... 

nnnn )S 
Qnnnn J'S 
Rnnnn;) 
Snnnn J'S 
Tnnnn J'S 
Unnnn;) 

Display two simulated Mod 4 registers 
Display halfword of simulated col'~ 

nnnn. 
nnnn LF 
nnnn CR 
nnnn RO 

deposit nnnn into open cell • 
ignore nnnn, display next cell 
ignore nnnn, display previous ceU 
ignore nnnn, close the open cell 

Notethatn = O,l,2, ..... ,9,A,B,C,D,E,F 

G J'S 
H;) 
I )} 

IQ)} 
IR;) 
IU}? 
J;) 
K;) 
L;) 

Ml;) 
M2;) 
M3;) 
l\'I 4 )S 
M5;) 
MG )} 
M7;) 
MS}? 
OQ Ji) 
OR>) 
OU l6 

p}? 
Q)'S 
v;) 
w )S 
x;) 
y }') 

z y; 

* 
" 
11 
% 

)} = blank (space bar) 
LF = line feed 
CR = carriage return 
RO -= rub out 

Go, start micro-code execution 
High; set high limit 
Simulate Processor power-up 
Input DROM binary tape 
Input ROM binary tape 
Input 8-bit Core tape 
Set tracepoint 
Kill tracepoint or trace mode 
Low; set low limit 
Set V AIU F'IX mode 
Set HALT FIX mode 
Set RUN mode 
Set ADRS mode 
Set MEMR mode 
Set MEMW mode 
Set HALT FLT mode 
Set VARI FLT mode 
Output DROM binary tape 
Output ROM binary tape 
Output 8-bit Core tape 
Print between limits 
Query Core location 
Set Single mode 
Wipe out Single mode 
Set breakpoint 
Set trace mode 
Zap breakpoint 

Set ATN 
Set CATN 
Set MPF 
Set PPF 
Set ARST 

Al-1/ Al-2 



BREAKPOINT 

HOM ADRS ERR 

POWER DOWN 

IR RACE CONDITION 

IO ERROR 

MODE ADRS ERR 

NO SUCH MODE 

MODE CONFLICT 

DO IT ERR 

COMPARE FAIL 

APPJ:;NDIX 2 
ERROR 'MESSAGES 

.,, An ROM breakpoint was encountered during 
simulated ROM execution. The inst.ruction 
at the breakpoint was not executed. •This f 
message also occurs when Switch 15 on the 
Display Panel is depressed to interrupt 
ROM execution. 

During execution, this mesAage occurs if 
the contents of RAS/RA L are not less than 
the ROM Size defined in Simulator cell S14. 

A Command micro-instruction set the POW 
bit in the Micro-Status Register. In acutal 
operation, this action would shut down the 
Processor power. 

The command following an IR load refers to 
a user register as a data source. 

The IO code was used as Source and Destina­
tion, or the operation was not a Load, or the 
E field specified XXOO. 

A RPT or MPY or DIV Command did not fall 
on an odd address. 

The N field in the Micro-Status Register con­
tains an improper value. The occurrence of 
this message implies a problem in the Simula­
tor itself. 

A command specifying a Counter mode occurred 
during a Counter mode. 

A Do micro-op occurred during phase 0 or 1 
with RD15 not set, or during phase 0 and the 
Destination/Source field did not contain AR/ 
YD, or during phase 1, 2, or 3 and the Des­
tination/Source field did not contain LOC/LOC. 

An ROM Input (IR~), DROM Input (IQ~), or 
Core Input (IU~) operation with Switch 15 de­
pressed detected a mismat.ch between the 
tape and memory. 

A2-1/A2-2 

,. 



STATUS BYTE 

Mode Control Switch 

VARI FLT 
HALT FLT 
VARI FIX 
HALT FIX 
RUN 
ADRS 
MEMR 
MEMW 

0 

0 
1 
0 
1 
1 
0 
0 
0 

APPENDIX 3 
DISPLAY PANEL STATUS 

1 2 3 4 5 6 

MODE REG 

1 1 0 
1 1 0 
1 0 0 
1 0 0 
0 0 0 
0 1 1 
0 1 0 
0 0 1 

0 0 0 
0 0 0 
0 0 1 
0 1 0 
1 0 0 
1 0 0 
1 0 ·1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 

7 

0 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 
1 

Register Select Switch 
OFF 
Register Display 
INST 
PSW 
R0/1 
R2/3 
R4/5 
R6/7 
RS/9 
Rl0/11 
R12/13 
R14/15 

A3-l/A3-2 



OP-CODE 

0 0 0 0 
0001 
0 0 1 0 
0 0 11 
0 1 0 0 
0 101 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
101 0 
1 0 1 1 
1 1 0 0 
11 0 1 
1 1 1 0 
1 1 1 1 

Commands 

Bits Set 
5 
4 
4,G 
7 
6 
G,7 
9 
8 

8,9 
11 

10 
10, 11 
12 
13 
14 
15 

APPENDIX 4 

MICRO-INSTRUCTION SUMMARY' 

INSTRUCTION 

DECODE 
BRANCH 
TEST 
COMMAND 
LOAD 
LOAD IMMEDIATE 
OR 
OR IMMEDIATE 
AND 
AND IMMEDIATE 
EXCLUSIVE OR 
EXCLUSIVE OR IMMEDIATE 
ADD 
ADD IMMEDIATE 
SUBTRACT 
SUBTRACT IMMEDIATE 

Definition 
Multiply 
Divide 
Repeat 
Mem. Read 
Mem. Write 
Priv. Write 
Reset Bank* 
Set Bank* 
Trigger Bank* 
Reset Utility* 
Set Utility* 
Trigger Utility 
Clear Mom. Parity* 
Set Wait Alarm* 
Heset Wait Alarm* 
Power Down 

E FIELD DEFINITION 

For A, S, X, N, 0: 

lxxx 
xlxx 
xxlx 
xxxl 

For L ONLY: 

OOxx 
Olxx 
lOxx 
llxx 

No AR to ALU 
Set Flags 
Carry Into ALU 
Carry Out of ALU 

Load 
Shift Right 
Shift Left 
Cross Shift 

On Shifts ONLY: 

xxlx 
xxxl 

On Non-Shifts: 

Carry Into ALU 
Carry Out of ALU 

xx x 1 Clear Carry 

x ' "don't care" condition 

Tests 

Bits Set 
5 
6 
7 
8 
9 

10 
11 
12 

Load, I/O = 

E field 
xxOl 
xxlO 
xxll 

Load, J/O 

Definition 
I/O Int. (ATN) 
Auto-restart (ARST) 
Cons. E. (CATN) 
Cons. Sngl. (SNGL) 
Utility flip-flop (UT) 
Mem. Par. Fail (MPF) 
Prim. Pwr. Fail (PPF) 
Fast I/O Int. (FAST) 

Destination 

Definition 
Address 
Data Available 
Command 

Source 

* flip-flops 

xxOi 
xxlO 
xxll 

Acknowledge 
Data Request 
Status Request 

A4-1/A4-2 



\ 
) 

ROMWATS PROGRAM (05-005) 

1. PURPOSE 

This program converts ROM object tapes as 
generated from the Micro-Code Assembler 
or Micro-Code Simulator into a form which 
is acceptable to the automated ROM wiring 
machine. 

2. PHOGHAM DESCRIPTION 

The ROMWATS program requires 2724 bytes 
of core in addition to 2048 bytes for storage 
of the HOM program. 

Two ROMWATS tapes are generated for each 
ROM program. The first tape (wire tape) is 
used to wire the ROM; The second tape 
(check tape) is used to check the ROM after 
it has been wired. 

3. PROGRAM INPUT 

The ROMWATS program consists, in part, 
of a loader which is able to accept ROM ob­
ject tapes. Figure 1 shows the form of this 
tape. 

The object tap<' input must possess the fol­
lowing characteristics; no other limitations 
are imposed. 

1. Four-kvol code. Tape channels 
H-5 arc ignored, hexadecimal data 
resides in channels 1-4. 

.; 

2. Each non-contiguous block of data 
must be preceded l;>y a minimum of 
six frames of blltnlt' ta~ind a four 
frame ROM address. ......... , 

' 3. Since core memory is byte address-
able and ROM is halfword addres,~­
able, ROM addresses which are 
punched on the object tape must be . 
multiplied by two (left shifted one 
place). 

4. The ROM object image buffer 
allows storage of 1024 ROM words 
segmented into four pages of 256 
words each. In order to allow for 
ROM programs of 2048 words, 
each core buffer page is assigned 
two ROM addresses as shown in 
Table l. Once a core buffer page 
has been filled, a ROMWATS tap"e 
will be dumped before the buffer 
can be utilized for the other ROM 
page. For this reason, it is rec­
ommended that the addresses on 
the ROM object tape be in ascend­
ing order. 

5. Since each ROMWATS tape gener­
ates a full 1024 words of ROM 
wiring data, it is imperative that 
the ROM object tape contain only 
that data which is to be wired. 
Extraneous data appearing on the 
object tape will be wired; unused 
ROM locations should be signified 
by not appearing on the obj<'ct tape 
or by containing zeros. 

1 



TABLE 1. ROM ADDRESSES 

"' 

--c?mF. BUFFER CORE LOC. 
PAGE HEX 

0 800-9FE 

1 Aoo!"'AFE 

,c 

2 COO-DFE ,, 

' 

,,Jlt a EOO-EFE 

Jhc ROMWATS program reserves storage 
space for Ahf'wlute CLUB W /O Output (03-
00~). The location in core of the object im­
age can he found by taking the ROM address 
as it appears on the Micro-Code Assembler 
listing, shifting it left once and adding a dis­
placement of X'HOO'. CLUB may he used to 
modify its contents. Changes should be made 
after ROMWATS prints the message "TURN 
PUNCH ON". After making the necessary 
changes, turn the punch on and execute at 
location (X'l84A '). 

4. PH.OGRAM OUTPUT 

The output of the ROMW A TS program will 
consist of two tapes for each 1024 words of 
ROM code. The first tape is a wire tape 
which is used to wire the HOM. The second 
tape is a check tape which is used to check 
the ROM once it is wired. Two sets of 
ROMWATS tapes must be generated for ROM 
programs that :1 re' in excess of 1024 words. 

Figure 2 shows a section of ROMWATS out­
put tape corresponding to the object input 
tape section shown in Figure 1. Figure 3 
shows the core memory allocation for 
ROMW A TS. Each record on the ROMW A TS 
output tape consists of the data shown on 
Table 2. 

2 

"·~~,,lliH"'• 

CORRESPONDING ROM PAGES 
UNSlllFTED SHIFTED 

7 
000-0FF, 000-lFE or 
400-4FF, 800-9FE 

orlOO-lFF, 200-3FE 
500-5FF, AOO-BFE 
200-2FF, 400-5FE 

or 600-6FF, COO-DFE 
or300-3FF, 600-7FE 

700-7FF, 

1. Odd parity is punched in column 
8 and generated over columns 4 
through 1 only. 

2. Records are normally separated 
by 10 frames of leader. Every 
thirty second record is followed 
by 20 frames of leader. This 
signifies an address bank change. 

3. The addresses generated by the 
ROMW A TS tape are not linear. 
This is done to facilitate wiring 
of the ROM whose address decod­
ing is non-linear due to hardware 
considerations. 

5, OPERATING PROCEDURE 

Use the following procedure to generate the 
ROMWATS tape. 

1. The ROMWATS program is in ab­
solute form and should be loaded 
with the ABSOLUTE LOADER. 
The program occupies location 
X'l010' to X'1AB4' inclusive. 
Locations X'800' to X'lOOO' are 
reserved for the ROM object 
image. Locations X'80' to X' 800' 
are reserved for Absolute CLUB 
W /0 Output (03-003) if it is neces­
sary. 



'lfC ... 

------ TAPE TRAVEL 

CHANNEL I e e •• e e 
CHANNEL 2 e : : e e 
CHANNILI e e ....... · ..................... l ............ . 
CHANNEL 4 ,, e e e . 
CHANNEL II .••• e • • • · • • e e SPROCKET FEED 

g =::::t ~ .. "·~ "'' - HOLIS 
CHANNELi eeeeeee eeee, ' 

T '!-' '-I' ~ 
DATA DATA LEADER 
H7F 10811 . 

SHIFTED ROM ADRS. 
(0200) 

,.,,,; 

Figure 1. ROMWATS Object Tape Input 

PAGE 1/0 
WIRE SIGNIFIER 

-------TAPE TRAVEL 

CHANNEL I e e ee e e e 
CHANNEL2 Fl9ED ··11 e l:SPROCKETFEEDHOLEI ., 
CHANNEL I e e ; •••••••••••• •• • •••••••••••••••••••••••• 
CHANNEL 4 e • e e 
CHANNEL II 
CHANNEL 8 
CHANNEL7 
CHANNEL 8 ee e ee e ee 

INITIALIZE CHARACTER--.- F 7 8 9 II 8 0 
I I " I 

1001 

000 PARITY OVER CHANNELS 
I TO 4 

START OF ROM IMA8E 

DATA DATA 
FOR FOR 
100 IOI 

''!--' 
ltOM 

AOIUI 
100 

U:ADER 

Figure 2. HOMWATS Output Tape 

ao 

CLUB 

x'aoo' 

PAGE 0/4 lllA8E 

START OF ROM PA8E I IMA8E X'AOO' X'9FE' END OF ROM,PA8E 0 IMA8E 

PAGE I/II lllA8E 

START OP' ROM PA8E 2 IMAGE x'coo' X'BFE' END OF ROM, PAGE I IMA8E 

PASE 2/8 IMA8E 

START OF ROM PAGE I IMA8E X'EOO' X 1 DFE 1 END OF ROM,PA8E 2 IMA8E 

PAGE 1/7 IMAH 

START OF ROMWATS PROGRAM x'1010' JC' FF E' END OF ROM 1 PAGE I IMAtE 

ROM WATS 

X 11A84 1 

r END OF ROMWATS 

Figure 3. Core Memory Allocation 

3 



\ 

.. -~ 

TABLE 2. ROMWATS TAPE FORMA~-"""" 
~ 

TA-PE COLUMNS 

FHAME TY PE C HAHACTER PURJ>a* Ps 7 6 5 4 . 3 2 l 

7 ··,~ ~NIFIES RECORD 
/ 

l INITIALIZE l 0 l 0 0 0 0 0 .; 

j1 j• TO FOLLOW 

4 

2 Di:r~ctivc 
""'\·;::y.-~., .,.,;·-'' 

·. ,,;l "'~!::<,;, .,.I 

I} 
,, 

3-10 8 Frames of data: 
3-<i even ADRS data, 
MSBfi. 7-10 odd ADRS 
data-1. MSB 10 

11-1 :i :~ frames of ADRS 
SJH•cifying <'V<'n 
ADHS MSB 1~1 

14-23 10 frames of 
leader 

2. Location X'78' specifies the input 
device number. Location X'79' 
Hpecifies the input device command. 
The input device is used to read 
the HOM object tape into the ROM 
image buffer. Location X' 7 A' speci­
fies the output device number. Lo­
cation X'7B' specifies the output 
device command. The input device 
is normally a paper tape reader. 
The output dcvic<' is always S<)me 
sort of paper tape punch. Location 
X'78' to X'7B' must he set by the 
01wr:ito1· before the program can 
be executed. Table :J lii::;ts the 
most used device numbers and 
commands. 

Signifies wire or 
check record, page 
0, l or 2, 3 
page 0, 1 wire l 0 0 0 1 0 1 0 
page 2, 3 wire 1 0 0 0 0 l l 0 
page 0. l check 0 0 0 0 1 0 1 1 
pa_ge 2,, 3 check 0 0 0 0 0 1 1 1 

Words to be wired 

ADHS where data 
is to be wired 

inter- record 
_g_a_Q 

3. The printing of all messages is 
done on a TTY (Device 2). If the 
ASR 35 is used as the output device, 
the mode selector should be switched 
to TTR when the message "TURN 
PUNCH ON" is received. If the 
ASR 35 is used as an input device, 
the mode switch should be in the 
TTS position after the message 
"INITIALIZE, EXECUTE AND 
HEADER ON" is received. other­
wise, the ASR 35 should be left in 
the K mode to rece.ive printed 
messages. 



TABLE 3. DEVICE NUMBERS 

IN Pl IT (X'7H'). INPUT (X'79'} 
DEVICE NUMBER DEVICE :CMND 

"''~~ 

TTY X'02' X'94' 

HIGH 
SPEED X'03' X'99' 
HEADER 

1. After the program has been loaded, 
address X'lllO' should be selected 
and the program executed in RUN 
mode. 

!i. The message "PLACE OBJECT 
TAPE lN READER INITIALIZE, 
EXECUTE AND HEADER ON" will 
be printed out and the machine will 
go into a Wait state. Load the tape 
with the leader over the read heads, 
release Data Switch 15 (far right 
switch) and depress EXECUTE. 

G. If a message stating "THE BUFFER 
FOR THIS PAGE IS FULL" is print­
ed and the full object tape has not 
been read, it means that the object 
program is in excess of 1024 words 
and two ROMW A TS passes will be 
nee es sa ry. 

7. If no message is printed out during 
the loadin~ procedure, the system 
will remain in the Read mode until 
Data Switch l!i is depressed. This 
is done to allow multiple tapes to be 
loaded. 

OUTPUT (X'7 A') OUTPUT (X'7B') 
.DEVICE NUMBER DEVICE CMND 

$• . . . 

~··.·· .... 

HS 
PUNCH 

X'02' X'18' 
(lb. 

;-"." 

X'05' ... ,, X'9A' 

'1'li1 

-1.:: 
"i .,,. 

8. In any case, after the statement 
"TURN PUNCH ON" is printed, 
either by virtue of Data Switch 15 
being depressed, or buffer full 
condition, the punch should be 
turned on and the EXECUTE switch 
depressed (the machine will be in 
thc Wait stat<' after the punch on 
statement). The· IlOMWATS tape 
will then be punched. 

9. If the ROM object image must be 
modified before dumping the 
ROMWATS tape, this should be 
done after the statement "TURN 
PUNCH ON", but prior to depress­
ing the EXECUTE switch. This 
procedure is described in Section 
3. After modification of the object 
program, address X'184A' should 
be selected, the punch turned on 
and the program executed in the 
Hun mode. 

10. The output tape will consist of two 
sections spaced by about one foot 
of leader. The first section is a 
wire tape, and the second section 
is a check tape. The tapes should 
be separated and identified by job 
title, data, and pass number, if 
applicable. 

5 



~···' 

6 

\ 

11. If the buffer full nfossagc was re­
Ct'ived, another pass will be neces­
sary to ge~erate the full complement 
oLRQ~lWATS tapes. The tapes just 
ge'ncratcd should be removed and 

. marked Pass 1 wire tape and Pass 
:}I. check tape. The input object ta ,.. 

·" should be repositioned to the lea, 
just preceding the four ad r s,s .. 
frame:,; which were road· 
EXECUTE hutt9 ,depr ~~:q .. StcIJ:~ ... 

9 lllld l~ild i"ePeal'llill " ·· 
and 'U . .re .. ltJn the v;eneration of 

' rnor .. n~fs. These tapes should 

12. 

13. 

•#i 

be m.,,p.,., wire ta~ and PasH 
2 che tape. ·· · ·~'. 

(;} . ... 
-t·· 

After completion of the program, 
the machin~ill be left in a Wait 
state ~J;-ation X'lllO'. Depress­
ing «ECUTE will cause re-execu­
tion of the program. 

If a tape jam occurs during the pun­
ching of the ROMW A TS tape, or 
for some reason another set of 
ROMWA TS tapes is desired, ad­
dress X'184A' should be selected 
and the program executed. 



) 

\ 

4 :a SS !$,£ :u Ill I !Ill 

READER COMMENTS 
~. ·. 

The Generafi'Electric Company solicits your help in providing complete and accurate technical 

publications co.ng 'our Process Computer equipment. Please answer the questions listed 

here by checking the appropriate block. If your answer to any of these questions is "NO", please 

explain in "Comlllents" section below. Your comments and suggestions become the property of 

General Electric.'b0rnpany. 

• 
• 

• 

• 

• 

• 

• 

PC 228 

'' .. ,. " .. ~.i'~1>·;;· 

Is this publication adequate for your needs?, 
It. ,, •. ~"''; 

Is the material 

Presented in clear text? 

Conveniently organized? 

Adequate detail? 

Adequately illustrated? 

~ 

Suitable for the technical level desired? 

What is your computer application? 

YES 

D 

~' 
D 
D 
D 
D 

NO 

D 

D 
:~ . .'· .. 

D 
D· 
D 
D 

What is your position? (Supervisor, Programmer, 

Technician, etc.) 

How is this publication used: 

Familiarization of the subject? D 
For training purpu;;('s? D 

As reference material? b 
For ma'intenance of equipment? ( D 

Other (explain) ~~~~~~~~~~~~~~~~~~~~~~..-~..-~..-..--
Please give completr· r<'fcrcnces (page number, line, etc.) with your comments . 

Please indicate if a reply is desired and include your proper mailing address. 

Your cooperation will be appreciated . 

COMMENTS: 

No postage necessary if mailed in the U. S. A. 



YOURASSISTANC:E, PLEASE 

This ;¢oenment has been generated to help us serve you better. Your answers to t)re questions 
on the reverse side of this form, together with comments and ;recommendationS)/will be of great 
value to us in providing the best possible publications for your use. Your a~ers and comments 
~ill be carefully reviewed by the person who generated,;_th~s .Pu)lication, and may result in a 
r~vised publication. Your comments and re~~mmei:ldat~ecome the property of General 

. Jiil.ectric Company. .,. :~ 

Communications concern~ng Technical ~i<:ations should be 9irected to: 
' .. ,J 

Manager, Technical Publications 
9E Proc~s Computer Department 
~·55 West Desert Cove Road 
Phoenix, Arizona 85029 

J' 

Staple 

I 
I 

Fo1d Fold I 
J ,,< 

/ 
,J' 

BUSINESS RE'Pl Y MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ••• 

GENERAL ELECTRIC COMPANY 
PROCESS COMPUTER DEPARTMENT 
2255 West Desert Cove Road 
Phoenix, Arizona 85029 

Attention: Technical PuWications 

Fold 

FIRST CLASS 
Permit No. 4091 

Phoenix, Arizona 

Fold 

:s+uawwo;) l'!!UOHJPPV , 

I 

• c 

I~ c 

I~ 
·1 

I 
I 
I 
I 
~ 

I 
I 
I 

,I 

I 
I 
I 
I 
l 
I 

.. 
:t v 


