PCP-174

i GE-PAC 30
CONTROL COMPUTER

GE-PAC 30-2
MICRO-PROGRAMMING

MANUAL

GENERAL @3 ELECTRIC

*Registered Trademark of General Electric Company

GE-PAC 30

CONTROL COMPUTER

GE-PAC 30-2
MICRO-PROGRAMMING

MANUAL

General Electric reserves the right
to make changes in the equipment
(or software) and its characteristics

(or functions) at any time without
notice.

GENERAL @ ELECTRIC

GE 29-047

CONTENTS

INTRODUCTION
PROCESSOR
MICRO-INSTRUCTIONS
ASSEMBLER

' ASSEM BLER OPERATION
MICRO-SIMULATOR
ROMWATS DESCRIPTION

SECTION 1

INTRODUCTION TO MICRO-PROGRAMMING THE GE-PAC 30-2

The General Electric GE-PAC 30-2 computer is
a very fast, simple and uncomplicated machine.
This computer is controlled by a Read-Only-Mem-
ory (ROM). A series of programs wired into the
ROM control the flow of information within the
registers and core storage of the machine.
These programs are a sequence of very simple
and elementary steps. These steps, or micro-
instryctions, perform functions such as trans-
ferring the content of one register to another. A
series of these micro-instructions can be com-
bined to solve highly complex problems. The
micro-program in the standard GE-PAC 30-2 is
designed to emulate a third generation computer.
This entire program, which handles all the in-
structions, interrupts and display function of the
third generation computer represents less than
one thousand micro-instructions in the ROM.

Any computer could be emulated by changing

the micro-program directing the operation of

the GE-PAC 30-2. Special instructions or func-
tions can be added by developing a new micro-
program. It is evident that the micro-program
replaces the costly, complicated and failure-
prone hardware of a much more sophisticated
computer or controlling device. The basic speed
and non-destructable characteristics of this tech-
nique combined with ease of implementation and
low cost make it the most attractive alternative
to special purpose hardware yet available.

The micro-instructions for the machine are quite
similar to the instructions for a conventional
machine. For example, they are located at
various addresses in the Read-Only-Memory,
and they consist of operation codes that operate
on various operands. To write programs for

the micro machine, it is convenient to use the
same kind of symbolism that is used for writing
“programs on conventional machines, and this
“means it is convenient to use an assembler.

An assembler allows:

1. Operation codes to have symbolic
names.

2. Operand to have symbolic names.

3. Numbers to be written in a natural
way.

4. Merhory locations to have symbolic
names. ~

5. Error checking to be performed.

The GE-PAC 30-2 Micro-Code Assembler
performs all of these functions and will
run on any standard GE-PAC 30 computer
with 8K bytes of memory and a teletype-
writer.

Each micro-instruction is represented by a
wire strung through the U-core ferrite trans-
formers of the ROM. The data in a ROM is
mechanically '"loaded" during the manufactur-
ing process by weaving the wires through an
array of 32 U-cores. Each transformer corres-
ponds to one binary bit of information. If the
wire passes through the center of the U-core,

a "one'" will be read out of that bit position
when that wire is pulsed. If the wire passes

on the outside of the transformer, a '"zero"
will be read. Each wire is assigned a consecu-
tive pair of hex addresses. The wire is woven
according to the data to be stored in those ad-
dresses. Hence, each wire contains two 16-bit
micro-instructions.

Since an error in a micro-program would re-
quire the restringing of the offending wires, it

is highly desireable to wire a fully checked pro-
gram. The GE-PAC 30-2 Micro-Code Simula-
tor is used for testing and debugging GE-PAC 30-2

Micro-Code programs before they are
wired into the ROM. It is an interactive
program that enables the debugging pro-
cess to proceed from a Teletypewriter
keyboard under full control and contin-
uous observation by the designer. The
GE-PAC 30-2 Micro-Code Simulator
will run on any standard GE-PAC 30
computer with 8K bytes of memory and
a Teletypewriter.

To aid on the production of ROM's, a
machine called ROMWATS (ROM Wiring
Aid : ad Test Set) has been developed.
This machine is directed by paper tapes
produced from the object tapes output

by the Micro-Code Assembler or the
Simulator. The program that converts
the object tape into the two tapes nec-
essary to drive the machine is referred
to as the ROMWATS program. The first

- tape produced by the ROMWATS program

is used to wire the ROM. The second
tape is used to check that the wires
were strung correctly., The information
presented in the GE-PAC 30-2 Micro-
Programming Reference Manual will
assist the designer in the production of
good object tape, the production of the
ROMWATS tapes is usually left to the
manufacturer and should be of no con-
cern to the user,

SECTION 2

THE MICRO-PROGRAMMED GE-PAC 30-2 PROCESSOR

The first problem a potential micro-pro-
grammer must encounter is that of visual-
izing the architecture of the micro-pro-
grammable machine. The information that

is necessary is usually buried in a descrip-
tion of the instruction set or must be extracted
from documents containing many references to
boards, connectors, diodes, transistors and
other such devices. We will try to solve this
problem here and now.

The first hurdle that must be overcome is the
confusion between the emulated computer and
the micro-programmable computer. The com-
puter that is described in most GE-PAC 30
documentation (Reference Manual 29-004) is
an emulated computer. This machine is sim-
ilar to the IBM 360 family of machines and
has a very powerful instruction set. This
machine does not exist in hardware. A small-
er and much less sophisticated micro-pro-
grammable computer has been programmed
to appear as though it has the capabilities

of the larger machine. The operation of the
smaller machine is directed by a program
wired into a Read-Only-Memory. (See
GE-PAC 30-2 Hardware Block Diagram.)
When executing the instructions of the emu-
lated computer, the micro-program directs
the hardware to read from core memory the
next instruction to be executed. The micro-
program then decodes the emulated instruc-
tion by performing logical and arithmetic -
operations on the data that was obtained

from memory. Having decoded the instruc-
tion, the micro-program will then enter a
micro-subroutine that has been designed to
perform the emulated instruction. The loop
is then closed by incrementing the in-
struction counter of the emulated ma-
chine and returning to the point in

the micro-program that will fetch the
next instruction from memory. By adding

the logic necessary to start, stop and select a
starting address to the micro-program, the
small machine is made to appear much larger
without expending significant sums on hardware.
All of this would be highly impractical if the
micro-instructions were stored in a core mem-
ory. Core memories are either relatively slow
devices or very expensive.

Read-Only-Memories (ROM) on the other hand
are very fast, quite inexpensive and in addition,
are non-volatile. It is evident, then, that this
is an ideal device in which to store frequently
used subroutines.

The small machine that uses the ROM must be
designed to match the ROM's performance. The
GE-PAC 30-2 has, therefore, been designed to
execute most micro-operations in 400 nano:
seconds.

Now, the basic architecture will be described.
The fine detail is left to the remaining sections
of the Micro-Programming Manual.

The GE-PAC 30-2 . has ten basic micro-instruc-
tions.

SYMBOL DEFINITION
ADD
SUBTRACT
EXCLUSIVE OR
AND

INCLUSIVE OR
LOAD
COMMAND
TEST

BRANCH

DECODE

CwHQEE OZ K®

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION AND BLOCK DIAGRAM ANALYSIS..... e 1
CHAPTER 2. WORD FORMAT e, e, s e 7
CHAPTER 3. SOURCE AND DESTINATION REGISTERS..... e, 9
CHAPTER 4. MICRO-INSTRUCTIONS. Ceeereeeeeeanan teiieoe... 13
A.1 ADD. ettt ee... 13
4.2 ADD IMMEDIATE..... e, ettt 15
4.3 SUBTRACT e e eeeee et 16
4.4 SUBTRACT IMMEDIATE ...ovvoerrnnnnnns e eeeanes 18
4.5 EXCLUSIVEORcuuuvunn. ettt 19
4.6 EXCLUSIVE OR IMMEDIATE et eenetee e 21
4.7 AND....'vveeureeennnn. o et ee et et aea e ven.. 22
4.8 AND IMMEDIATE.............. e eeere e ve.. 23
4.9 INCLUSIVE OR.....ovvvvennnnnn. e ve... 24
4.10 INCLUSIVE OR IMMEDIATE0vveennnn. e 26
4,11 LOAD . .ovieereennnnnnns et oo e e neeneeae e, 26
4.12 LOAD IMMEDIATE e o e 29
4,13 COMMAND.u.... e e e ereaneaeas ee.. 30
B 14 TEST . ottt ee ettt eeee e e teeeeessneeeenaseeneennansnnns 35
4.15 BRANCH ON CONDITION . ..ttt ttteeeee e eneenrannns 36
4.16 BRANCH ON COUNTER ..t tttten e tteeeeeeemeeeen e, 37
4.17 DECODE...... e, et 37
CHAPTER 5. USER ORIENTED PHASE DESCRIPTION. ..vvvereerecanen. ... 41
CHAPTER 6. MICRO-PROGRAMMING INPUT/OUTPUT e, 45

CHAPTER 7. ADDITIONAL SPECIFICATIONS ... vt tituterataenconsenncnans 49

APPENDIX 1.
APPENDIX 2.

APPENDIX 3.

APPENDICES

--

CHAPTER 1

INTRODUCTION AND BLOCK DIAGRAM ANALYSIS

GE-PAC 30-2 Processor operation centers around the Read-Only-Memory (ROMO).
ROM locations are addressed by a 12 bit register consisting of an 8 bit incre-
menting register (RAL) and a 4 bit non-incrementing page register (RAS) which

is loaded from the 4 bit 'outer-rank' (RAH) register when RAL is loaded.

Information read from ROM is placed in a 16 bit Data Register (RD). Bits 0:3 of RD
specify a micro-operation to be performed which, in turn, defines the meaning of the

remaining bhits.

ROM with its pre-wired micro-program, directs the Processor through the control unit.

Processor Control can, depending on the micro-operation code, set-up the Arithmetic

Logic Unit (ALU) to the desired mode of operation, test for specified hardware condi-
tions, issue functional commands to establish hardware conditions, initiate memory
cycles, or set-up micro-instruction loops, or load and unload selected registers in the

hardware register stacks.

s

There are five general purpose Micro-Registers labeled MRO through MR4. Each has

a capacity of 16 bits and is directly addressable from RD.

The Program Status Word (PSW) is a 16 bit register which indicates the system status

relative to the user program being executed (see Reference Manual, Publication Number
29-004). Bits 0:11 of PSW define machine status. Bits 12:15 are set apart in the Condi-
tion Code Register (CCR) which may be loaded only from the Flag Register (FLR). When

_PSW is loaded, bits 12:15 of the S Bus are loaded into the FLR instead of the CCR. This

permutes user status to the micro-level. The Flag Register and ultimately the Condition

Code Register reflect the results of the micro-instruction (or instructions in the case of

a user micro-routine) just performed.

The Location Counter (LOC) is a 16 bit appendum to PSW which holds the address of the
next user instruction to be performed. LOC is directly addressable by RD, however,

it may be forcibly selected, regardless of RD in the Decode micro-instruction.

The Memory Address Register (MAR) is a 16 bit register used to address core memory

locations. MAR appears twice -- on the Memory Interface and in the Processor regis-
ter stacks. When MAR is loaded, both registers are loaded at the same time. It was
duplicated in the register stacks becauss the Address Register on the Memory Interface

cannot be unloaded to the B Bus.

The Memory Data Register (MDR) is a 16 bit register used to hold data read from or

written into core memory. MDR is directly addressable by RD. It is separated into
two bytes (MDH and MDL) which may be loaded separately on cross-shift operations.

'

The 16 user's General Registers each have a capacity of 16 bits. The user's registers

(TRO:TR1G) are not dirvectly addressable from RD. To access a particular user's regis-
ter, one must address the appropriate Instruction Registei' (IR) fields which contain the
address of the desired user's register (TVROZTR15). To access the register specified

by IE bits 8:11, User's Destination (YD) is addresse(;; to access the register specified
by IR bits 12:15. User's Horoe "8 s :a,ddresseﬁ; therefore, user's register selection

is indivecetly made. It f¢ ‘oo fore necceresry that IR contain the proper address before

a 'user's register' is used. This is an over simplified description; there are numerous

conditions which affect indirect addressing and will be discussed further in Chapter 3.

The Instructicn Register (IR) is a 16 bit register used to hold the user's instruction

currently being processed. IR is directly addressable by RD. In addition, provision
is made for unloading only bits 8:11 to the B Bus bits 12:15 (IR4) for comparison between
the Mask (M1) field and the Flag Register when executing user's branches. Bits 0:7 of

IR (User's Operation Code) are used to address locations in the Decoder ROM (DROM).

This is a separate Read-Only-Memory consisting of up to 128 pre-wired words,

each 12 bits long.

DROM is interrogated only on a Decode micro-instruction and the resulting 12 bit read-
out is immediately jammed into RAS and RAL. DROM holds the starting addresses of
the micro-routines required to perform user's instructions. RAS and RAL may also be

jammed with hardware generated addresses in the Decode micro-instruction.

The Counter Register (CNTR) is a 4 bit decrementing register. It may be pre-loaded

with any number from 0 to 15 to count the number of repetitions of a single micro-
instruction or a block of micro-instructions. The counter is used in the Multiply or

Divide sequences to cause 16 interations of the micro-instruction sets.

The Arithmetic Register (AR) is a 16 bit register used to hold the first operand in arith-

metic or logical micro-operations. It is one of two direct inputs to the Arithmetic Logic

Unit (ALU). The other input to the ALU is the 16 bit B Bus which receives data from any

1 of 29 possible sources. The two bytes of the B Bus may also be swapped with the

cross shift logic.

The ALU consists of a 16 bit parallel adder-subtracter logic network with a one bit look
ahead carry. The 16 bit arithmetic or logical result is gated to the S Bus which in turn

is gated to 1 of 33 possible destinations.

Input-Output transfer (I/0) is accomplished by a single micro-instruction. The 1/0
control lines are decoded from RD bits 14 and 15. Input data is taken from the Data
Request Lines (DRL 0:7) and placed directly on B Bus bits 8:15. Output data is taken

from S Bus bits 8:15 and loaded directly to the Data Available Lines (DAL 0:7).

S BUS (16 BITS, PARALLEL)

]

J

fstss) o s(12:15) [s(8:15) $(0:7) {16 s (8:15) 16 si1215) sazJ }!s
——— LI
16
— 0 I s
RAH N
4 RAM 7 op i o MR s
MAR - B \
MR2 -t -
0 15 pps
DAL (0:7) { 1 PR Lz “TR
: MR3 " ’
4 RAS 7 ’ o RAL 7 CORE MEMORY . ° = AN
CL (0:7 I0 R4 (4] MR4 15
0 MAR 15
READ ONLY MEMORY
e (ROM) 0 Loc 15
LMDH 1;
) PSW |,
o LMDR ‘
16
1/0 L RD (14:15) TROO
7
NPUT— OUTPUT CONTROL] LMDL 0 15
DEVICE o TRO! s
CONTROLLER RD -
0 15 .
DRL (0:7) ” GENERAL REGISTERS
o (5 5]
L o TRI4 "
_'.__/ p—
N h j MDH NOL ‘i o e 15
- c 7
! - mit 3 —uic ‘
i N DECODER r AR
! - HARDWARE AND| IR (0:1 o
STNC READ ONLY , LR (0:15)
Al MEMORY ENABLE
(DROM) AR TO ALU
ATN
_;D‘ IMMEDIATE :
' OR i
IPROCESSOR BRANCH X
CONTROL
ARITHMETIC
CATN LOGIC UNIT
(ALY)
DISPLAY .
SNGL I
CROSS SHIFT &
& .8:15}) B (8:15) {5(9-7) B (8:15) 8 (12:35) 16 8(0:7) B8 (12 5)
-—
I B BUS (16 BITS, PARALLEL) ;

FIGURE 1 GE-PAC 30-2 HARDWARE BLOCK DIAGRAM

CHAPTER 2

WORD FORMAT

The GE-PAC 30 micro-instruction can have any one of four machine language formats,

depending on the operation that the Op-Code specifies.

2,1 Arithmetic and Logic Format

[0 3]4 ' 718 11 (12 15
| opP-CODE | D f S | E |

S = Source field: the address of the register containing the second
operand is in this field. The first operand comes

from the A Register (AR).

D = Destination field: the result of the operation will be placed into

the register whose address is in this field.

E = Extended Operation field: specifies options within the same

operation.

Bit 3 (of the Op-Code) in this format is always reset.

The following micro-instructions use the abbve format: Add, Subtract, Exclu-

sive OR, AND, Inclusive OR, Load, and Decode.
2.2 Immediate Format

fo 3l4 718 15|
| opP-CODE | D | DATA l

DATA = the second operand itself is in this field. The first operand

comes from the A Register (AR).

D = Destination field: the result of the operation will be placed into
the register whose address is in this field.

Bit 3 (of the Op-Code) in this format is always set.
The following micro-instructions use the above format: Add Immediate, Sub-
tract Immediate, Exclusive OR Immediate; AND Immediate, Inclusive OR Immediate,

and Load Immediate.

2.3 Test and Command Format
[0 3|4 15|
[oP-cODE | TC CODE |

TC CODE = Test or Command Code: specifies the signal to be tested or
specifies the command to be performed.
2.4 Branch on Condition Format

10 3|4|5|16}|7]8 15|
[op-copE IclvIiclL] ADDRESS |

ADDRESS = if conditions (C, V, G, oi‘ L) are met, the program is transferred
to the 8 bit addréss specified by this field.
C = carry
V = overflow
G = greater, than zero
L = less, than zero

If bits 4:7 are zero, the state of the Counter Register is examined. If the counter does
not equal 'one', the counter is decremented by one and the program is transferred to

the 8 bit address specified by the ADDRESS field.

The "Branch on Condition" micro-instruction uses this format.

PN

CHAPTER 3

SOURCE AND DESTINATION REGISTERS

3.1 Source registers are only available to non-immediate micro-instructions,
(RD03 = 0). The following sources may be addressed.

RD

loo
le©
In--

o
=

SYMBOLIC

MRO
MR1
MR2
MR3
MR4
MAR
LOC
PSW
NULL
IR
MDR
IR4
NULL
I0

YD
YDP1

H RN - N OO0 000 0O
HHHREOOOOHMMMOO OO
HHOOHMOOKRMOOMNKOO
HOHOFROMROHOHOMOROS

3.2 There are two NULL sources. When address X'8' (the A Register) or address
X'C' (the Counter) appear in the source field (RD 8:11), zeros are gated to all 16 bits of

the B Bus.

3.3 When PSW is used as the source, bits 0:11 of the stack PSW are gated to B Bus

bits 0:11 and the Condition Code Register (CCR bits 12:15) is gated to B Bus bits 12:15.

3.4 When IR4 is the source, IR bits 8:11 are gated to B Bus bits 12:15. The re-

mainder of the B Bus is all zeros.

3.5 When IO (address X'D') appears as the source, an input operation is to be

performed. IO can only be a source in a Load instruction. The Processor is re-
questing a data response from an I/0 device; IO is not a register. The nature of
the request is encoded into the 'E' field of the Load instruction and will be discussed
later in Chapter 4. The device response is gated from the Data Request Lines (DRL

0:7) to B Bus bits 8:15.

3.6 The 16 general purpose user's registers do not have individual source
addresses. Instead, common symbolic addresses - YD (address X'E') and YDP1
{address X'F') - cause the general registers to be selected from the Instruction

Register bits 8:11 or 12:15. The General Registers are Indirectly addressed.

3.7 There exists in the phase hardware, a flip-flop which specifies the IR field
to be used for indirect source decoding. The flip-flop (PTYS), if set, causes the in-
direct source to be decoded from the User's Source (YS) field of IR, IR bits 12:15. If
PTYS is reset, the indirect source is decoded from the User's Destination (YD) field
of IR, IR bits 8:11. PTYS is set conditionally on a Decode micro-instruction and is

reset when an indirect source is used.

3.8 HIR = X'nnA5 and PTYS is set when YD (address X'E') is the source,
TR5 is unloaded to the B Bus. If PTYS is reset and YD is the source, TR10 is unloaded

to the B Bus. \

3.9 If YD plus 1 (YDP1) is the source, the indirect register decoding is done from
the IR field YD or YS specified by the PTYS flip-flop. If the selected address is even, the

next sequential address is forced and that register is unloaded to the B Bus. If the selected

10

address is odd, the next sequential address is not forced and the selected register is

unloaded to the B Bus.

3.10 IR = X'nn40' and PTYS is reset, YDP1 (address X'F') will cause TR5 to

be unloaded to the B Bus. IR = X'nn50' and YDP1 is the source, TR5 is unloaded to

the B Bus.
3.11 The following Destinations may be addressed:

RD SYMBOLIC

[
{o
lo
1=

RAH* MRO**
RAL* MR1**
YS * MR2**
MR3

MR4

MAR

LOC

PSW

AR

IR

MDR

FLR

CNTR

10

YD

YDP1

i H N e HOOOOO OO O
- O OO ORMHMREROO SO
HF R OO HHOOMMOORRGOOS
H O H O OROMHOMOIRMO MO

* The Bank flip-flop must be reset to Load RAH, RAL, or YS.

** The Bank flip-flop must be set to Load MR0, MR1, or MR2,

3.12 Loading RAH loads the outer rank page register only of ROM address register.
ROM decodes page from the inner rank (RAS). When RAL is loaded, the data in RAH arc
loaded into RAS at the same time. All 12 bits of ROM address are loaded.

3.13 When User's Source (YS) is the destination, the S Bus is loaded to the

11

General Register Specified by the YS field of IR, IR bits 12:15.

When User's Destination (YD) is the destination, the S Bus is loaded to the Gen-
eral Register specified by the YD field of IR, IR bits 8:11. PTYS has no affect on destina-
tions. When User's Destination plus 1 (YDPl) is the destination, the same even/ Qdd ano-
moly must be observed: if the address is even, the next sequential general register is
loaded; if the address is odd, that register is loaded.

3.14 When the Program\ Status Word (PSW) is loaded, S Bus bits 12:15 are loaded

into the Flag Register (FLR).

3.15 When IO appears as the destination, an output operation is to be performed.
IO can only be a déstihation in a Load micro-instruction. The Processor will transmit
data to an external device. IO is not a register. The nature of the output data is en-
coded into the 'E' field of the Load instructioﬁ and will be discussed fully later in Chapter

4. The output byte is gated from S Bus bits 8:15 onto the Data Available Lines (DAL 0:7).

3.16 For the cross shift option only

If MDR is the source
- and MAR is even, the cross shift operates normally.

- and MAR is odd, the cross shift is inhibited; the instruc=
tion behaves as a normal load.

If MDR is the destination
- and MAR is even, the lower byte dbf the source is stored as
the higher byte in MDR - the lower byte of MDR remains
unchanged.
- and MAR is odd, the lower byte of the source is stored as
the lower byte in MDR - the upper byte of the MDR remains

unchanged.

This option is used with MDR to get and store bytes in user memory.

12

PN

CHAPTER 4

MICRO-INSTRUCTIONS

4.1 ADD

) 314 718 11)12 15|

4.1.1 Description: the contents of the A Register (AR) are algebraically added
to the contents of the register specified by the Source (S) field. The sum is then gated
into the register specified by the Destination (D) field. For register addresses, see

Appendix 1 and Chapter 3.

4.1.2 Optioné: Note that the character "x" in any bit position indicates a "don't

care' state.

E field - Definition
Ixxx ‘ AR is not gated to the adder (Arithmetic

Logic Unit, ALU): zero is added to the
contents of the register specified by the
Source (S) field.

x1xx Set the flags.

xx1x Carry flag (C), if set before this instruction,
is added to the operands.

XXX 1L if there is a carry from the most significant
bit position, the Carry flag (C) is set.

4.1.3 Assembler Format: A D.S,E

]

A symbol for Add

D

ii

in this place there ig a regisier symbol (e.g.: MAR, PSW, MR1),
followed by a comma.

S = register symbol (e.g.: MR4, MDR, PSW), followed by a comma
only if an assembler option is specified in the E field.

Symbol Definition
CI Carry in, but not carry out. Bits 14 and 15

of the instruction = 10.

cO Carry out, but not carry in. Bits 14 and 15
of the instruction = 01.

NC No carry. Bits 14 and 15 of the instruction
= 00.

NF No flags. Bit 13 of the instruction = 0.

NA No AR to ALU. Bit 12 of the instruction = 1.

If there are no options stated in the E field of the symbolic assembler instruction, the
following options are generated automatically: Carry in and out (bits 14 and 15 = 11),

AR is an input to the ALU (bit 12 = 0), flags are ché.nged (bit 13 = 1).

4.1.4 Examples: Binary

= Decimal
Sign Data Sign Data
0 011 0101 0010 1000 AR + 13,608 .
0 010 1110 1001 0100 B Bus + 11,924
0 110 0001 1011 1100 S Bus + 25,532
0 011 0101 0010 1000 AR + 13,608
1 101 0001 0110 1100 B Bus - 11,924
0 000 0110 1001 0100 S Bus + 1,684
0 010 1110 1001 0100 AR : + 11,924
1 100 1010 1101 1000 B Bus - 13, 608
1 111 1001 0110 1100 S Bus - 1,684
0 111 1111 1111 1111 + 32,767
0 000 0000 0000 0101 + 15}
Overflow! 1 000 0000 0000 0100 33,472

14

Unlike carrys from the sign (bit 0) and the most significant magnitude bit (bit 1) result

in overflow: the sum is greater than 16 bits (including sign).

4.2 ADD IMMEDIATE

15|
|

|0 3] 4 718
I DATA

4.2.1 Description: the contents of the A Register (AR) are algebraically added to

the 8 bits in the DATA field of this instruction. The sum is then gated into the register

specified by the Destination (D) field. For register addresses, see Appendix 1.

4.2.2 Options: None. Note that the flags (C, V, G, or L) are not changed by this

micro-instruction.

4.2.3 Assembler Format: A D, DATA
A =- symbol for Add Immediate

D = in this place there is a register symbol (e.g.: MR4, FLR, MAR),
followed by a comma.

DATA = either the operand expressed in hexadecimal (e.g. : X'9A‘)‘or as
the low order 8 bits, L (DATA), or the high order 8 bits, H(DATA),
of the value of a symbol defined by DATA.

4.2.4 Examples: Binary = Decimal
Sign Data ' Sign Data
0 011 0101 0010 1000 AR + 13,608
0 000 0000 1011 1100 B Bus + 188
0 011 0101 1110 0100 S Bus + 13,796
1 100 1010 1101 1000 AR - 13,608
0 000 0000 1011 1100 B Bus + 188
1 100 1011 1001 0100 S Bus 13,420

Note: A negative B Bus is impossible.

Binary = Decimal
Sign Data Sign Data
0 111 1111 ° 1111 1111 AR + 32,767
0 000 0000 0000 0101 B Bus + | 5
Overflow! 1 000 0000 0000 0100 S Bus + 33,472
4.3 SUBTRACT
0 3]4 718 1112 15|
1 1 o D I S l E I

4.3.1 Description: the contents of the register specified by the Source (S) field
are algebraicélly subtracted from the contents of the A Reg‘istef' (AR). The difference
is then gated into the register specified by the Destination (D) field. For register ad-

dresses, see Appendix 1.

4.3.2 Options: Note, that the character 'x" in any bit position indicates a '"don't

care' state.

E field Definition
Ixxx AR is not gated to the subtracter (ALU):

the contents of the register specified by
the Source (S) field are subtracted from

zero.
x1xx Set flags.
xxX1x Carry flag (C), if set before this instruc-

tion is also subtracted from the AR.
xxx1 If there is a borrow from the most signi-

ficant bit position, the Carry flag (C) is
set.

16

N

4.3.3 Assembler Format: S

D,

S = symbol for subtract
D =

followed by a comma.
S =

S,E

in this place there is a register symbol (e.g.: MR4, AR, MAR),

register symbol (e.g.: MR3, MDR, MR2), followed by a comma

only if an assembler option is specified in the E field.

The following symbolic options can appear in the E field:

Symbol Definition

CI Carry in, but not carry out. Bits 14 and 15
of the instructions = 10.

CO Carry out, but not carry in. Bits 14 and 15
of the instructions = 01.

NC No carry. Bits 14 and 15 of the instruction
= 00. _

NF No flags. Bit 13 of the instruction = 0.

NA No AR to ALU. Bit 12 of the symbolic

instruction = 1.
If there are no options stated in the E field of the symbolic assembler instruction, the
following options are generated éutomatically: carry in and out (bits 14 and 15 = 11),

AR is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1).

4.3.4 Examples: Binary = Decimal
Sign Data ' Sign Data
0 011 0101 0010 1000 AR + 13, 608
0 010 1110 1001 0100 B Bus + 11, 924
0 000 0110 1001 0100 S Bus + 1,684
0 010 1110 1001 0100 AR + 11,924
0 011 0101 0010 1000 B Bus + 13, 608
1 111 1001 0110 1100 S Bus - 1,684

17

Binary = Decimal

Sign Data Sign Data
0 011 0101 0010 1000 AR + 13, 608
1 101 0001 0110 1100 B Bus - 11,924
0 110 0001 1011 1100 S Bus + 25,532
0 111 1111 1111 1111 AR + 32,767
1 111 1111 1111 1011 - 5
Overflow! 1 000 0000 0000 0100 + 33,472

Unlike borrows from the sign (bit 0) and the most significant magnitude bit (bit 1) result

in overflow: the difference is greater than 16 bits (including sign).
4.4 SUBTRACT IMMEDIATE

10 314 718 | 15)
o1 1l D | ~ DATA l

4.4.1 Description: the contents of the DATA field are algebraically subtracted
from the contents of the A Register (AR). The difference is then gated to the register

specified by the Destination (D) field. For register addresses, see Appendix 1.

4.4.2 Options: None. Note, that the flags (C, V, G, or L)"aré hof changed by

this micro-instruction.

4.4.3 Assembler Format: 8 D, DATA
§ = symbol for Subtract Immediate

D = ihere is a register symbol in this position (e.g.: MR4, LOC, MAR),
followed by a comma

either the operand expressed in hexadecimal (e.g.: X'9A') or as the
low order 8 bits, L (DATA), or the high order 8 bits, H (DATA, of

the value of a symbol defined by DATA.

DATA

H

18

4.4.4 Examples:

Note: A negative B Bus is impossible.

Overflow!

Binary

Sign Data

0 011 0101 0010 1000
0 000 0000 1011 1100
0 011 0100 0110 1100
1 100 1010 1101 1000
0 000 0000 1011 1100
1 100 1010 0001 1100
1 000 0000 0000 0001
0 000 0000 0000 0101
0 111 1111 1111 1100

Il

AR
B Bus
S Bus

AR
B Bus
S Bus

AR
B Bus

Decimal

Sign

Data

+
+

13,608
188

+

13,420

13,608
188

13,796

32,767
5

33,472

Unlike borrows from the sign (bit 0) and the most significant magnitude bit (bit 1) result

in Overflow: the difference is greater than 16 bits (including sign).

4.5 EXCLUSIVE OR

314

718

11112

h o

1

ol D

15|
!

4.5.1 Description: the contents of the register specified by the Source (S) field

are logically subtracted (Exclusive ORed) from the contents of the A Register (AR). The

logical difference (result) is then gated into the register specified by the Destination (D)

field. For register addresses, see Appendix 1.

4.5.2 Options:

care'' state.

Note, that the character '"x'" in any bit position indicates a "don't

E field

Ixxx

Definition

AR is not gated to the ALU: the contents of
the register specified by the Source (S) field

E field Definition

is gated into the register specified by the
Destination (D) field without any change.

x1xx Set flags.
xx1x No effect on this instruction.
xxx1 No effect on this instruction.

4.5.3 Assembler Format: X D,S,E

X = symbol for Exclusive OR

D = in this place there is a register symbol (e.g.: MR4, LOC, MAR),
followed by a comma

S = register symbol (e.g.: MR3, MDR, MRO0), followed by a comma

only if an assembler option is specified in the E field

The following symbolic options can appear in the E field.

Symbol Definition
CI Carry in, but not carry out. Bits 14 and 15

of the instruction = 10.

CO Carry out, but not carry in. Bits 14 and 15
of the instruction = O01.
NC No carry. Bits 14 and 15 of the instruction
= 00.
NF No flags. Bit 13 of the instruction = 0.
NA No AR to ALU. Bit 12 of the instruction = 1.

If there are no options stated in the E field of the symbolic assembler instruction, the
following options are gcnerated automatically: carry in and out (bits 14 and 15 = 11), AR

is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1).

20

4.5.4 Examplei

0 101 1101 0010 0101 AR
0 010 1000 0101 1110 B Bus
0 111 0101 0111 1011 S Bus
4.6 EXCLUSIVE OR IMMEDIATE
|0 314 718 15|
h o 1 1i D I DATA |

4.6.1 Description: the contents of the DATA field are logically subtracted (Exclu-

sive ORed) from the contents of the A Register (AR).

The logical difference (result) is

gated into the register specified by the Destination (D) field. For register addresses, see

Appendix 1.

4.6.2 Options: None. Note that the flags (C, V, G, or L) are not changed by this

micro-instruction.

4.6.3 Assembler Format: X D,DATA

X = symbol for Exclusive OR Immediate
D = there is a register symbol in this position (e.g.: MR4, YD, MAR,)
followed by 2 comma
DATA = either the operand expressed in hexadecimal (e.g.: X'9A'), or as the

low order 8 bits, L (DATA), or high order 8 bits, H (DATA), of the
value of a symbol defined by DATA.

4.6.4 Example:

0101 AR
1110 B Bus

0 101 1101 0010
0 000 0000 0101
0o 101 1101 0111

21

1011 S Bus

[0 3 |4 718 1112 15|
h o o ol D | S I E |

4.7.1 Description: the contents of the register specified by the Source (S) field
are logically multiplied (ANDed) by the contents of the A Register (AR). The logical pro-
duct (result) is then gated into the register specified by the Destination (D) field. For

register addresses, see Appendix 1.

4.7.2 Options: Note, that the character "x'" in any bit position in_dipka,te‘s‘ a "don't

care' state.

E field Definition
1xxx AR is not gated to the ALU: the logical pro-

duct is zero, and zero is gated into the register
specified by the Destination (D) field.

x1xx Set flags.
xx1x No effect on this instruction.
xxx1 No effect on this instruction.

4.7.3 Assembler Format: N D,S,E
N = symbol for AND

D = in this place there is a register symbol (e.g.: MR4, YD, MAR,)
followed by a comma

S = register symbol (e.g.: MR0, MDR, LOC,) followed by a comma
only if an assembler option is specified in the E field

The following symbolic options can appear in the E field.

4

22

Symbol Definition

CI Carry in, but not carry out. Bits 14 and 15
of the instruction = 10.

co Carry out, but not carry in. Bits 14 and 15
of the instruction = 01.

NC No carry. Bits 14 and 15 of the instruction
= 00.

NF No flags. Bit 13 of the instruction = 0,

If there are no options stated in the E field of the symbolic assembler instruction, the

following options are generated automatically: carry in and out (bits 14 and 15 = 11),

AR is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1).

4.7.4 Example:

0 101 1101 0010 0101 AR
010 1000 0101 1110 B Bus
0 000 1000 0000 0100 S Bus

o

4.8 AND IMMEDIATE

|0 314 7!{8

15|
i o o 1l D -

DATA |

4.8.1 Description: the contents of the DATA field are logically multiplied (ANDed)
by the contents of the A Register (AR). The logical product (result) is gated into the register

specified by the Destination (D) field. For register addresses, see Appendix 1.

4.8.2 Options: None. Note that the flags (C,V, G, or L) are not changed by this

micro-instruction.

4.8.3 Assembler Format: N D, DATA

23

"N = symbol for AND Immediate

D = there is a register symbol in this position (e.g.: MR4, FLR, MAR,)
followed by a comma

Il

either the operand expressed in hexadecimal (e.g.: X'9A'), or as the
low order 8 bits, L (DATA), or high order 8 bits, H (DATA), of the
value of a symbol defined by DATA.

DATA

3.8.4 Examples:

0 101 1101 0010 0101 AR
000 0000 0101 1110 B Bus
0 000 0000 0000 0100 S Bus

(=]

4.9 INCLUSIVE OR

o 3i4 718 11]12 15|
b 1 1 ol D | S | E ,l

4.9.1 Description: the contents of the register specified by the Source (S) field
arc logically added (ORed) by the contents of the A Register (AR). The logical sum (re-
sult) is then gated into the register specified by the Destination (D) field. For register

addresses, see Appendix 1.

4.9.2 Options: Note that the character '"'x" in any bit position indicates a "don't

care'' state.

E field Definition
Ixmx AR is not gated to the ALU: the contents

of the register specified by the Source (S)-
field is gated into the register specified
by the Destination (D) field without any
change.

24

E field
x1xx
xx1x

xxx1

Definition
Set flags.
No effect on this instruction.

‘No effect on this instruction.

4.9.3 Assembler Format: O D,S,E

O =
D =

followed by a comma
s =

symbol for Inclusive OR

in this place there is a register symbol (e.g.: MR0, LOC, MAR,)

register symbol (e.g.: MR4, MDR, YD,) followed by a comma only

if an assembler option is specified in the E field

The following symbolic options can appear in the E field.

Symbol

CI

CO

NC

NF

NA

Definition

Carry in, but not carry out. Bits 14 and 15
of the instruction = 10.

Carry out, but not carry in. Bits 14 and 15
of the instruction = 01.

No carry. Bits 14 and 15 of the instruction
= 00.

No flags. Bit 13 of the instruction = 0.

No AR to ALU. Bit 12 of the instruction = 1.

If there are no options stated in the E field of the symbolic assembler instruction, the

following options are generated automatically: carry in and out (bits 14 and 15 = 11), AR

is an input to the ALU (bit 12 = 0), flags are changed (bit 13 = 1).

25

4.9.4 Examples:

0 101 1101 0010 0101 AR
0 010 1000 0101 1110 B Bus
0 111 1101 0111 1111 S Bus

4.10 INCLUSIVE OR IMMEDIATE

o 314 718 15
fo 1 1 1] D I DATA E

4.10.1 Description: the contents of the DATA field are logically added (ORed) with

the contents of the A Register (AR). The logical sum (result) is then gated into the register -

specified by the Destination (D) field. For register addresses, see Appendix 1.

4.10.2 Options: None. Note that the flags (C, V, G, or L) are not changed by this

micro-instruction.

4.10.3 Assembler Format: O D,DATA
O = symbol for Inclusive OR Immediate

D = there is a register symbol in this position (e.g.: MR3, CNTR, MAR,)
followed by a comma

DATA

i

either the operand expressed in hexadecimal (e. g. : X'9A'), or as the
low order 8 bits, L (DATA), or high order 8 bits, H(DATA), of the
value of a symbol defined by DATA.

4.10.4 Examples: 7
0 101 1101 0010 0101 AR
0 000 0000 0101 1110 B Bus
0 101 1101 0111 1111 S Bus

4.11 LOAD

|0 314 7]8 11]12 15|
o 1 o ol D |

wn
=

26

4.11.1 The c'ontents of the register specified by the Source (S) field are loaded

unaltered into the register specified by the Destination (D) field. For register addresses,

see Appendix 1.

4.11.2 Note that the character "x" in any bit position indicates a "don't care"

state. I the Destination or Source is not 10, the E field has the following meaning:

E field

00xx

01xx

10xx

11lxx

xx1x

xxx1

Definition
Load, no other options.

The contents of the Source register are shifted
right one bit and the shifted number is loaded
into the Destination register. Contents of
source register are unchanged unless same
register is both source and destination.

The contents of the Source register are shifted
left one bit and the shifted number is loaded in-
to the Destination register. Contents of source
register are unchanged unless same register is
both source and destination.

The source Data is byte swapped and loaded to
the Destination register. If MDR is either
Source or Destination, the cross shift will
occur only if MAR is even. See Chapter 3.

This is valid with the shift options only; if the
Carry flag (C) is set prior to this instruction,
a one will be shifted into the most significant
bit on a shift right, or into the least significant
bit on a shift left.

With shift options only: if a one is shifted out,
the Carry flag (C) is set. Non-shift options:
the Carry flag (C) is reset.

4.11.3 I IO is Source or Destination, the E field takes on the following meaning.

IO is Destination:

27

E field

xx01

xx10

xx11

IO is Source:
E field

xx01

xx10

xx11

4.11.4 Assembler Format:

L

symbol for Load.

Definition

The S Bus is loaded to the DAL's as Address

(ADRS).

The S Bus is loaded to the DAL's as Data (DA).

The S Bus is loaded to the DAL's as a Command

(CMD).

Definition

Device interrupt is Acknowledged (ACK). The
interrupting device address is loaded from the
DRL's to the Destination register.

Device Data is requested (DR). The data is loaded
from the DRL's to the Destination Register.

Device Status is requested (STAT). The Status
byte is loaded from the DRL's to the Destination

Register.

L D,S,E

D = in this place there is a register symbol (e.g.: MR4, 10, MAR,)
followed by a comma

S = register symbol (e.g.: MR4, MDR, I0,) followed by a comma
only if an assembler option is specified in the E field.

The following symbolic options can appear in the E field. -

Symbol

CI

CO

Definition

Carry in, but not carry out.

of the instruction = 10.

Carry out, but not carry in.

of the instruction = 01.

28

Bits 14 and 15

Bits 14 and 15

SR

SL

CS

ADRS

DA

CMD

ACK

DR

STAT

Definition

No carry. Bits 14 and 15 of the instruction
= 00.

Shift Right option.

Shift Left option.

Cross Shift option.

1/0 Addfess. I O in Destination.

1/0 Data Available. 1 O in Destination.
I/0 Command. I O in Destination.
Acknowledge Interrupt. I O in Source.
Data Request. IO in Source.

Status Request. I O in Source.

If there are no options stated in the E field of the symbolic assembler instruction, the

following options are generated automatically: carry in and out (bits 14 and 15 = 11),
no shifts (bits 12 and 13 = 00).
4.11.5 Examples:
Symbolic)
Before Instruction After
MR4 = X'1234' L MR4, MR4, NC MR4 = X'1234'
MR4 = X'1234' L MR4, MR4,SL MR4 = X'2468'
MR4 = X'1234' L MR4, MR4,SR MR4 = X'091A'
MR4 = X'1234' L. MR4,MR4,CS MR4 = X'3412'
4.12 LOAD IMMEDIATE
0 314 8 15
0 1 1 D DATA

29

4.12.1 Description: The 8 bits from the DATA field of this instruction are
loaded into the register specified by the Destination (D) field. For register addresses,

see Appendix 1.. *1/0 is forbidden.

4.12.2 Options: None. Note that the flags (C, V, G, or L) are not changed

by this micro-instruction.

4.13.3 Assembler Format: L D,DATA

L = symbol for Load Immediate
D = register symbol (e.g.: R5, SDR, MAH,) followed by a comma
DATA = either the operand expressed in hexadecimal (e.g.: X'9A') or as

the low order 8 bits ,‘ L (DATA), or the high order 8 bits, H (DATA) of the value of a

symbol defined by DATA.

4.13 COMMAND

[0 314 : 15|
o o 1 1] COMMAND CODE l

4.13.1 Description: The command micro-instruction results in the performance

of the following machine functions as specified by the state of the COMMAND CODE bits.

30

4.13.2 Options:

Bits set Definition

5 Multiply Mode

4 - Divide Mode

4,5 Repeat Mode

7 | Memory Read, Full Cycle
6,7 Memory Write, Full Cycle
9 Reset Bank*

8 Set Bank*

8,9 Trigger Bank

11 Reset Utility*

10 Set Utility*

10,11 - Trigger Utility*

12 Clear Memory Parity Fail*
13 | Set Wait Alarm*

14 Reset Wait Alarm*

15 Power Down (this Command initializes

the system)

* = flip-flops

4.13.3 Assembler Format: C F
C = symbol for Command

F = symbol for machine function

31

Symbol Definition

MPY Multiply

DIV Divide

RPT Repeat

MR Memory Read, Full Cycle
- MW Memory Write, Full Cycle

CB Reset Bank*

SB Sét Bank*

TB Trigger Bank*

cutT Reset (clear) Utility*

SUT Set Utility*

TUT Trigger Utility*

CMP - Clear Memory Parity Fail*

SWA Set Wait Alarm*

CWA | Reset (clear) Wait Alarm*

POW Power Down

* = flip-flops

A memory cycle consists of two half cycles: memory read, and memor& write - in that

order.

On a memory read, the memory location is read out, its contents are destroyed, then the

memory location is restored and data is not lost.

On a memory write, the memory location is read out, but the data is not saved. Instead, the

32

contents of the data register MDR are written back into the addressed memory location.

LT

The following rules should be followed when programming around memory Commands:

1. Memory address register must always be loaded with the desired
address before the memory command.

2. If a write operation is intended, the data register must always be
loaded with the desired data before the memory command.

3. Observe this general rule: If memory registers are addressed by
any micro-instruction when a memory cycle is in progress, that

operation is inhibited until the memory cycle is completed.

The Bank flip-flop controls the addressing of certain registers. See Appendix 1.

The Utility flip-flop has no hardware function assigned to it, it is only for program control.

Its condition can be tested with the Test micro-instruction.

The Wait Alarm is a flip-flop whose output is tied to the "wait'" lamp on the display. Its
purpose is to give a visual indication to the programmer when the Processor is halted or
idling.

The Power Down Command initializes the entire system, and is generally used when

"house keeping' operations are completed after the detection of a power failure.

The Multiply command locks the Processor into a tight three instruction loop which is
transversed 16 times until the Multiply function is completed. The command must be

wired into an odd address. The Multiply loop would then follow:

odd address C MPY not part of the loop
even address L YD, YD, SR
odd address A YD, YD,CO

33

The third instruction is not wired in. Instead, the Load is done twice: first with YD as

Source and Destination, then with YDP1 as Source and Destination.

The add is done only if the hidden load resulted in a carry. If the above instruction set is

not used, the results cannot be guaranteed.

The Divide command locks the Processor into a three instruction loop which is traversed 16
times until the Divide function is completed. The command must be wired into an odd ad-
dress. The Divide loop would then follow:

C DIV not part of the loop

L YD, YD,SL

A YD,YD,CO
The third instruction is not wired in. Instead, the load is done twice: first with YDP1 as
Source and Destination, then with YD as Source and Destination. The Add modifies YD

only if it results in a carry. If the above instruction set is not used, the results can-

not be guaranteed.

The Repeat command, if the counter is not empty, caﬁses the Processor to repeat the next
sequential micro-instruction the number of times previously set in the counter register.
Each execution causes the counter to decrement until zero is reached when the Processor
resumes normal instruction sequencing. If the counter is zero when the repeat command is

given, the next sequential micro-instruction is skipped.

The command Repeat must be wired into an odd address. Any instruction may be répeated
that does not result in a branch, e.g. Branch, Load RAL, Decode. Also, it is suggested

that memory commands rnt be repeated.

34

4.14 TEST

lo , 314 15|
o o 1 ol TEST CODE |

4.14.1 Description: If any of the machine functions specified by the TEST CODE
is true, the Greater flag (G) is set and the Less flag (L) is reset. If the function specified

by the TEST CODE is false, the Less flag (L) is set and the Greater flag (G) is reset.

4.14.2 Options: The testable functions are:

Bit set Definition

5 1/0 Interrupt

6. ~ Auto Restart

7 Console Interrupt

8 .' Console Single Instruction

9 Utility flip-flop

10 Memory Parity Fail flip-flop
11 _ Primary Power Fail

4,14.3 Assembler Format: T F

T = symbol for Test

F = symbol for machine function
Symbol Definition
ATN 1/0 Interrupt
ARST Auto Restart
CATN Console Interrupt

35

Symbol Definition

SNGL Console Single Instruction
UT Utility flip-flop

) MPF Memory Parity Fail
PPF Primary Power Fail

4.15 BRANCH ON CONDITION

|0 314151617 : 15|
o o o 1fclviagluul ADDRESS l
4,15.1 Description: the Branch on Condition micro-instruction results in a transfer
in the micro-program sequence, if any of the specified conditions (Carry, oVerflow, Greater
than zero, Less than zero) are true. The flags (in the Flag Register) are tested against

the flags specified by bits (4:7) of the instruction. If any flag and its corresponding bit in the

instruction are both set, control of the program is given to the location specified by the

ADDRESS field, otherwise the next sequential instruction will be performed.
4.15.2 Options: None.

4.15.3 Assembler Format: B CC, ADDRESS

B = symbol for Branch on Condition
CC = Condition Code (C, V, G, or L: any one, any two e.g.: CV or VL
ctc., any three e.g.: CVG or VGL etc., or all four, CVGL, may
be specified)
= symbolic or hexadecimal address where the micro-program transfers

ADDRESS
. if conditions are met

36

4.16 BRANCH ON COUNTER

0 3]4 708 15(
b o o 10 o o o] ADDRESS l

4.16.1 Description: the Branch on Counter micro-instruction results in a transfer
in the micro-program sequence, if the Counter Register does not cqual 'one'. If the condi-
tion is met, the Counter Register is decremented by 'one' and control of the program is
given to the lécation specified by the ADDRESS field. If the counter does equal 'one', it is

decremented to zero and the next sequential instruction will be performed.

4.16.2 Options: None.

4.16.3 Assembler Format: B CTR, ADDRESS
B = symbol for Branch
CTR = Counter Register

symbolic or hexadecimal address where the micro-program transfcrs
if conditions are met.

ADDRESS

il

4.17 DECODE

4.17.1 Qualifications: all zeros in RD are interpreted by the hardware as illegal
and will result in an unconditional branch to location X'200' in ROM. Therefore, Decode is
qualified by zeros in RD 0:3 and bits 4:15 are not all zeros. Only two sets of Destinations
and Sources are allowed: the A Register (AR) as Destination and User's Destination (YD)

as Source; or the Location Counter (LOC) as both Destination and Scurce.

4.17.2 Description: the Decode micro-instruction is primariiy used to generate a.
phase change (see Chapter 5 for phase descriptions) although other options:are available..
Decodés are treated by the hardware as an Add or a Load. The Decode instruection ter-
minating.thé Phase Zero micro-instruction set must have AR as its destination and YD
as source. If the Instruction Register (IR) holds a user's Register to Register (RR) in-
struction, the contents of the General Register specified by IR 8:11 (YD) are loaded to
the AR. I IR does not hold a user's RR instru(;tion, the Location. Counter (L.OC) is forced:
to be both Source and Destination. The AR input to the ALU is forced to X'0002' and an

Add is performed.

Only one Decode instruction is allowed in Phase Zero. Only the Phase Zero decode may
result in a load or an add. Only the Phase Zero decode is written with AR the Destination
and YD the Source. All other Decodes must have LOC as Source and Destination and are
treated as Adds. The LOC will be incremented by two - AR inpﬁt.to ALU = X'0002'
- unless we are exiting Phase Zero with user's RR instruction, exiting Phase One, or
entering Phase Three. If the Decode is not to increment LOC, the AR input to ALU is
X'0000" and LOC does not change. Other actions peculiar to the Decode micro-operation

follow under options.

4.17.3 Options: Note that the character "x" in any bit position indicates a "don't

care' state.

E field Definition

Ixxx A Memory read is generated unless the
conditions Phase Zero and RR user for-
mat exist.

38

E field Definition
x1xx The contents of the Flag Register (FLR) are
jammed to the Condition Code Register (CCR)
xx1x The Flag Register (FLR), Counter (CTR),
Utility Switch (UT), and Register Bank (BANK)
are cleared.
xxx1 The Phase Pointer and ROM Address will change.
The indirect Source Pointer (PTYS) will set if we
are exiting Phase Zero with an RR or indexed RS
or RX user's operation in the Instruction Register.
PTYS will reset the first time an indirect source
is used.
CURRENT NEW NEW ROM
PHASE IR INDEX ? PHASE PTYS ADDRESS
0 RR NA 2 Sets *
0 RX YES 1 Sets X'00C'
0 RX NO 1 Stays Reset] X'008'
0 RS YES 1 Sets X'004'
0 RS NO 2 Stays Reset] * ‘
1 NA NA 2 Rescts *

*ROM Address generated by DROM

On exiting Phase Two, the Decode instruction tests for ATN, CATN, SNGL, MPE, and

PPF. If any condition is true, Phase Three is entered and ROM Address is forced to

X'014'. If none are true, Phase Zero is entered and ROM Address is forced to X'010'.

4.17.4 Assembler Format:

Il

1t

symbol for Decode

D D,S,E

A register symbol, either AR or LOC, followed by a comma

A register symbol, either YD or LOC, followed by a comma
if an assembler option is specified in the E field

39

The following symbolic options may appear in the E field:

Symbol
MR

JAM

CL

PC
PO
P1
P2J
P2N

P3

Definition

Memory Read. Bit12 =1

; \

Load CCR from FLG. Bit13 =1

Clear FLR, CNTR, UT, and BANK.
Bit14 = 1 '

Phase Change. Bit1l5 =1

Phase Zero. Bits 12:15 = 1011

Phase One. Bits 12:15 = 1011

Phase Two, Jam. Bits 12:15 = 1111
Phase 'i‘mro, No Jam. Bits 12:15 = 1011

Phase Three. Bits 12:15 = 1011

40 -

CHAPTER 5

USER ORIENTED PHASE DESCRIPTION

The GE-PAC 30-2 'Micro-Processor' is, to a certain extent, oriented toward the
standard GE-PAC 30 user's instruction set, The user's instruction is decoded
to define many hardware and firmware functions before actually entering the

micro-routine that will execute the instruction.

In the GE-PAC 30-2 there are four hardware conditions known as ''phases''. Each
phase has corresponding sets of micro-instructions, In general, Phase Zero is
dedicated to user's instruction fetch and class decoding: Phase One to index-
ing for the second operand; Phase Two to user's instruction execution; and
Phase Three for interrupt service and display support. These phases effect and
in-turn are effécted only by the Decode micro-instruction. When the Decode
micro-instruction is used to bring about a phase change, the subsequent state
of the phase pointer is dependent on user's instruction format; whether or not
the instruction is indexed and the current state of the phase pointer. (See

Figure 1.)

User instruction format is specified by bits 0:3 of the instruction word. The three formats

are:
1. Register to Register (RR)

[0 : 718 11]12 15|
oP ~ l R1 R2
M1

OP is an 8 bit field specifing, in all formats, the operation to be performed. R1 in all
formats, is a 4 bit field containing the address of the register which holds the first

operand or the maék (M1) for Branches. R2 is a 4 bit field containing the address of the

41

register which holds the second operand. Operation codes X'0n’, '2n' and '9n' are

recognized by the Processor as RR.
2. Register to Indexed Memory (RX)

[0 7y8 11[12 15]16 31
l OP l R1 I X2 l ADDRESS

X2 is a 4 bit field containing the address of the register which holds the index value.
Bits 16:31 specify an address which can be modified by the index value to specify where
in core memory the second operand resides. Operation codes X'4n', '6n', and 'Dn' are

recognized by the Processor as RX.

3. Register to Storage (RS)

[0 718 11]12 15]16 ‘ 31
[op | ®m1 | x2 | DATA - I

Bits 16:31 contain the data constant to be used as the second operand (immediate). Opera-

tion codes X'Cn' and 'En' are recognized by the Processor as RS.
If bits 12:15 of RX and RS instructions are zero, no indexing is to take place.

Within the user oriented firmware environment, user instruction execution begins when
Phase Zero is entered. Memory has been read from the location specified by the Location
Counter; the Location Counter has been incremented by two and the ROM address register

was forced to X'010', the starting address of the Phase Zero micro-instruction sequence.

In Phase Zero, the Instruction Register (IR) is loaded from MDR and MAR is loaded from

LOC. The instruction format is determined and on the Decode instruction terminating

a2

Phase Zero, either Phase One or Phase Two will be entered. (See Figure 2.)

Phase One will be entered if the user's instruction format is RX or indexed RS. When
Phase One is entered, memory is read putting the second half of the user's instruction

in MDR, and LOC is incremented by two.

There are 3 Phase One instruction sets:

1. If indexed RX, ROM Address is forced to X'00C' where the contents
of the General Register specified by bits 12:15 of IR (YS) are fetched
and added to MDR. This 'effective address' is then loaded to MAR.

2. I non-indexed RX, ROM Address is forced to X'008' where MDR is
loaded unaltered to MAR.

3. If indexed RS, ROM Address is forced to X'004' where the contents
of the General Register specified by IR bits 12:15 (YS) are fetched
and added to MDR, creating the 'effective data’.
Phase One is exited by a Decode micro-instruction which sets the Phase Pointer to Phase

Two, and only for the two RX micro-routines, issues a memory read to fetch the second

operand.

Phase One is skipped if the user's instruction format is RR or non-indexed RS. If RR,
the AR is loaded from YD:setting up the first operand; the LOC is not incremented; and
Phase Two is entered. I non-indexed RS, the Location Counter is incremented by two

and Phase Two is entered.

Anytime Phase Two is entered, either from Phase Zero or Phase One, the Decoder ROM
(DROM) is interrogated. DROM is addressed by the operation code (bits 0:7) of IR. Each
user's instruction has a unique 12 bit word wired into DROM. This word is the starting
address of the micro-routine which will execute the specific user's instruction. The DROM

readout is automatically jammed into ROM Address.

43

Illegal user's instructions do not have a DROM word. Interrogating a non-existant word
results in zeros, which are jammed into ROM Address. ROM Location X'000' is wired
'with all zeros. When location zero is read, a hardware defined illegal condition arises,

forcing ROM Address to X'200' and setting the Phase Pointer to Phase Three.

Phase Two is dedicated to the execution of user's instructions. When Phase Two is exited,
the Decode instruction automatically tests for 10 interrupt, Console Attention, Console
Single Mode, Memory Parity Fail, and Primary Power Fail. If any of these conditions
exists, the Phase Pointer is set to Phase Three, the Location Counter is not incremented,
and ROM Address is jammed to X'014', where attempt is made to service the interrupting

condition.

If none of the tested items are true, no interrupts are pending so the Phase Pointer is
set to Phase Zero, the Location Counter is incremented by two, the next user's instruction
is extracted from memory, and ROM Address is jammed to X'010' to re-enter the Phase

Zero micro-instruction set.

In Phase Three, after successfully servicing the interrupting condition, the Phase Pointer
is set to Phase Zero, the Location Counter is incremented by two, the next user's instruc-
tion is extracted from memory and ROM Address is jammed to X'010' to re-enter the Phase
Zero micro-instruction set. If the interrupt cannot be resolved, the Processor remains in

Phase Three.

44

PHASE 3

DISPLAY AND
INTERRUPT SUPPORT

(o)
4

ILLEGAL
OR ATN
OR CATN

OR SNGL OR
MPE OR PPF

"

C D

PHASE 2
INSTRUCTION PERFORMANCE

e /

f

RR OR

_ Y,

PHASE O NON i:!s)EXED
INSTRUCTION
CLASS DECODING T
RX OR
INDEXED
RS

_)

- N

ADDORESS ARITHMETIC

-/

FIGURE |I. GENERAL PHASE ANALYSIS

45

(INITIALIZE ’

PHASE 3

G-

(/’; e *
DISPLAY INTERRUPT
SUPPORT SUPPORT
% ILLEGAL
INSTRUCTION INSTRUCTION
FETCH

F—Cz00)
—/

USER'S
SUBROUTINE
NO
YE ILLEGAL
* \ A
INSTRUCTION
FETCH

o)

[

PHASE @

DROM SUPPLIES
PHASE 2 ENTRY

" INDEXED
?

-

/

¥ FIRMWARE OERATIONS

POINT
na
PHASE |
&
? ADDRESS FIELD
&
INDEX
(‘ggc') FETCH SECOND 2
OPERAND
® :
/c”.a\ FETCH SECOND o
OPERAND /

\.

FIGURE 2. GENERAL FLOW OF USER INSTRUCTION

46

CHAPTER 6

MICRO-PROGRAMMING INPUT/OUTPUT

All input/output support in the GE-PAC 30-2 is done via single load micro-

instructions. The position of IO in the Load instruction - Destination or Source -
plus the encoding of the E field, define the operation of the interface. Specifically,
one of eight control lines is activated.

control line 0 1 2 3| 4 5 6 7
ADRS IDA | DRISTATICMDIACK | - | PPF

*PPF is generated not by the Load 1/0 instruction, but by the system Primary
Power Fail detection networks.

If 10 is the destination and the E field equals xx01, then the source register contains
the address of a device.

xx10, then the source register contains
data for the device previously ad-
dressed.

xx11, then the source register contains a
command for the device previously
addressed.

If the IO is the source and the E field equals xx01, then the existing external interrupt is
recognized and the address of the in-
terrupting device is gated to the destina-
tion register. -

xx10, then the Processor is requesting data
from the device previously addressed.
The Data byte is gated to the destination

register.

xx11, then the Processor is requesting the status
of the device previously addressed. The
status byte is gated into the destination
register.

47

To address a device, the address must be established in some register prior to entering

the 1/0 instruction, e.g.

L MR2,X'mn’ DEVICE ADDRESS
L IO, MR2,ADRS
B V,ERROR TEST FOR FSYN

If the device is operational, it responds with a sync (SYN). If sync is not received in
approximately 50 microseconds, a false sync (FSYN) is generated which sets the V flag
in "ZR. Note that I/0 operations will not terminate until a SYN is received or a FSYN

is gencrated. Devices must be addressed before a command or Data byte can be sent.

L MR2,X'nn' DEVICE ADRS

L 10, MR2,ADRS ADDRESS THE DEVICE
B V,ERROR TEST FOR FSYN

L

MR3,1I0,STAT STATUS REQUEST

The micro-program can test for external interrupts. If an interrupt is indicated, the
micro~-program ca;l find out which device interrupted by 1oading from 1/0 with Acknow-
ledge (ACK) specified. The sync resulting from ACK loads the interrupting devices
address to the Destination Register. The ACK line is not fanned out to all device con-
trollers as are ADRS, DA, DR, STAT, CMD, and PPF. Instead, 1t is connected to the
Device Controller of highest priority. If an interrupt condition is not present in the first
Device Controller, the signal (ACK) is passed on to the next Device Controller. The inter-

rupting Device Coniroller captures the ACK signal and responds with a sync and its address.

T ATN
B G,SRVC
SRVC L MR2, 10, ACK ACKNOWLEDGE

48

NOTE:

It takes somewhat less than 100 nanoseconds to pass ACK through a
non-interrupting device controller.

The delay of sync response is 200 nanoseconds to cover any skew on
the data lines during transfer.

49/50

7.6

CHAPTER 7

ADDITIONAL SPECIFICATIONS

Multiple E field definitions are connected with the + sign in the assembler

format, e.g.: L MR1, MR2, SL+CO+CI.

The following registers, if they are specified by the Source field, will result

in zeros as the Source Operand: AR, CTR.

In order for MR0O, MR1, or MR2 to be addressed as a Destination Register,

the Bank flip-flop must be set.

In order for RAL, RAH, or YS to be addressed as a Destination Register, the

Bank flip-flop must be reset.

IO must not be both a Source and a Destination in the same micro -instruction

On flags: 1In general, the flags remain unchanged except as follows:

A.

D.

Load (with no shift) clears the C flag if Carry Out is specified

in the E field unless the load involves IO.

Load (with shift) adjusts the C flag if Carry Out is specified in

the E field unless the Load involves IO,

Add and Subtract adjust all flags if Set Flags is specified in the

E field., See item E,

AND, OR, and Exclusive OR adjust the G and L flags and clear the V

flag if Set Flags is specified in the E field. See item E.

51

E. The adjustement of the G and L flags by A, S, N, 0, X instructions
is governed by the following rules:
G = Sg +(S1 + Sz + -=- 4514 + S35 + G + Lp)

L= SO

where S, = bit n of resulting data
Gp = previous setting of G flag
Lp = previous setting of L flag

F. Test adjusts the G and L flags as follows:
If any tested-for condition is true, G =1 and L = 0.

If all tested-for conditions are faise, G= 0 and L = 1.

7.7 When FLR is the destination register of an instruction that modifies flags,
the result in FLR will be the logical OR of the resulting data and the

resulting condition code bits (CVGL).

7.8 TFlags are not changed by any "immediate'" operation unless FLR is the

destination register.

7.9 On a Status Request (STAT), FSYN in addition to setting the V flag, sets only bit

13 in the Destination.

7.10 The Initialize Button and the Initialize Relay preset the starting conditions.
On power-up, the Initialize Relay remains closed to ground until voltages
have reached normal levels. A short period after opening, the system clock

starts.

52

The jnitialized state is as follows:

'BANK flip-flop Cleared

RAL Cleared '
Utiiity flip-flop Clearnd

RAS . Cleared

RAH Cleared

FLR Cleared

CNTR Cleared

Phase Pointer Phase 3

PTYS Reset

Memory Control Cleared (inactive)
ROM Data Register Cleared

Core Current Drivers Off

Note that the ROM initialized will not cause any problems. All zeros in RD

do not cause an illegal, if it is the result of Initialize.
All other registers are in a non-defined state.
The initialize line is also distributed to the I/0 devices.

7.11 PPF is a condition testable by the T !instruction. It is generated by an optional
Primary Power Fail Detector. ROM sequences can test this and take appropriate
action. A set of contacts on the POWER switch parallels the PPF condition, thus
initializing an orderly shutdown. PPF is distributed to I/O devices on Control
Line 7.

53

7.12 The ROM sequence is allowed about 1 millisecond for orderly shutdown, after
which it sets the POW flip-flop (see Command instruction). This stops the system

clock and closes the initialize contacts.

7.13 On memory parity fail (option) the memory sets the parity fail (MPF) flip-flop.
This can be tested by the ROM Program with a TEST instruction. It can be cleared

with a COMMAND instruction.

7.14 The Wait flip-flop is associated with a front panel lamp that is on when the Wait
flip-flop is set. If the ROM is waiting for further inputs from the console, it
goes into a minor loop and sets this flip-flop with a SWA command. It is cleared

with a CWA command.

7.15 The Utility flip-flop can be used by the ROM for program control. It can he set,

cleared, or triggered (complemented) via the COMMAND instruction.

7.16 If, during a memory cycle, the attempt is made to use MDR as a Source Register,
the execution of the micro-instruction is inhibited, until the "read' portion of the

memory cycle is finished.

7.17 If, during a memory cycle, the attempt is made to use MDR or MAR as Destina-
tion Registers, the execution of the micro-instruction is inhibited, until the entire

memory cycle is finished.

7.18 If, during a memory cycle, the attempt is made to initiate another memory
cycle with a Command or Decode micro~instruction, the execution of the micro-

instruetion is inhibited, until the current memory cycle is finished.

54

7.19 To implement a transfer within the ROM micro-program, special care should be

taken in the loading of the ROM address registers (RAL, RAH).

The decoding network, to fetch an instruction from the ROM, has inputs from
the RAL and RAS registers. The RAS register receives information from the

RAH register at the same time that the RAL ‘register is loaded.

Consequently, two items are of importance:

A. Loading RAH has no immediate affect on the address for the
ROM. |

B. Before loading RAL, the RAH register must contain the cor-
rect page number.

7.20 One and only one Decode micro-instruction may be used in Phase Zero. That
Decode must have AR as the Destination and YD as the Source. All other Decode
micro-instructions must have LOC as Destination and Source. There are no

quantity restrictions in any other phases.

55/56

CODE
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

* Bank must be reset
** Bank must be set
*** Not a register

APPENDIX 1

REGISTER ADDRESSES

DESTINATION

RAH*MRO ok
RAL*MR1 **
YS* MR2**
MR3
MR4
MAR
LOC

PSwW

MDR
FLR
CNTR
TO***
YD

YDP1

SOURCE

MRO

MR1

MR2

MR3

MR4

MAR

LOC

PSW

NULL

MDR

IR4

NULL

JO***

YD

YDP1

APPENDIX 2

GE-PAC 30-2 MICRO-CODE SUMMARY

OP-CODE INSTRUCTION
0000 DECODE
0001 BRANCH
0010 TEST
0011 COMMAND
0100 LOAD
0101 LOAD IMMEDIATE
0110 OR
0111 OR IMMEDIATE
1000 AND
1001 AND IMMEDIATE
1010 EXCLUSIVE OR
1011 EXCLUSIVE OR IMMEDIATE
1100 ADD
1101 ADD IMMEDIATE
1110 SUBTRACT
1111 SUBTRACT IMMEDIATE
Commands
Bits Set Definition
5 Multiply
4 Divide
4,5 Repeat
7 Mem. Read
6,7 Mem. Write
9 Reset Bank*
8 Set Bank*
8,9 Trigger Bank*
11 Reset Utility*
10 Set Utility*
10,11 Trigger Utility*
12 Clear Mem. Parity*
13 Set Wait Alarm?*
14 Reset Wait Alarm*
15 Power Down

* = flip-flops

'E FIELD

DEFINITION

For A,S,X,N, O:

1xxx
x1xx
Xxx1x
xxx1

For L ONLY:

No AR to ALU

Set Flags

Carry Into ALU
Carry Out of ALU

00xx
01xx
10xx
11xx

Load

Shift Right
Shift Left
Cross Shift

On Shifts Only:

xx1x Carry Into ALU

xxx1 Carry Out of ALU

On Non-Shifts:

xxx1 Clear Carry

x = 'don't care' condition

Tests

Bits Set Definition

5 1/0 Int. (ATN)

6 Auto-restart (ARST)

7 Cons. Ex. (CATN)

8 Cons. Sngl. (SNGL)

9 Utility flip-flop (UT)
10 Mem. Par. Fail (MPF)
11 Prim. Pwr. Fail (PPF)

Load, 1/0O Destination

E field Definition

xx01 Address

xx10 Data Available

xx11 Command

Load, I/0 Source

xx01 Acknowledge

xx10 Data Request

xx11 Status Request

APPENDIX 3

GE-PAC 30-2 INSTRUCTION EXECUTION TIMES

Add

Add Immediate
Subtract

Subtract Immediate
Exclusive OR
Exclusive OR Immediate
AND

AND Immediate
Inclusive OR

Inclusive OR Immediate
Load

Load Immediate

Load I/0

Command

Test

Branch on Condition

Decode

800 nsec
800 nsec
800 nsec
800 nsec
400 nsec
400 nsec
400 nsec
400 nsec
400 nsec
400 nsec
400 nsec
400 nsec
1200 nsec
400 nsec
460 nsec
800 nsec

800 nsec

Exceptions: The instruction takes 800 nsec: if RAL is specified as a

Destination Register.

GE-PAC 30-2 MICRO-INSTRUCTION ASSEMBLER MANUAL

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

CHAPTER 4.

CHAPTER 5.,

CHAPTER 6.

TABLE OF CONTENTS

INTRODUCTION TO THE MICRO-CODE ASSEMBLER 1-1

INTRODUCTION. ...t iiiiiiiitieevinnoncesanns coeenans 1-

1.1 1
1.2 FEATURES OF THE MICRO-CODE ASSEMBLERo 1-1
1.3 INPUT FORMATc.iviiionneonnn cevans coeesnes eeo 1-1

GE-PAC 30-2 MICRO-CODE ASSEMBLY LANGUAGE 2-1
2.1 LABELS.....iiiiititiitiotesaosnnceas ceescsecsannens 2-1
2.2 OPERATIONS............. cescesccccacces cecesecanees 2-1
INSTRUCTION AND FORMATS . .. ciiuiecroennnnascansnnnos . 3-1
3.1 LOAD INSTRUCTIONccvvicueeenncnnanans cesessaes 3-1
3.2 INSTRUCTIONS A, S, N, O, X. .. itiiurerrnrncconannns 3-1
3.3 IMMEDIATE INSTRUCTIONScccvu... ceececenann 3-4
3.4 BRANCH INSTRUCTIONS............ Ceaecseecesascscas 3-5
3.5 COMMAND INSTRUCTIONS.c00n. I 7
3.6 TEST INSTRUCTIONS.ioicovusoceas ceessenaane oo 37
3.7 DECODE INSTRUCTIONS.cvtieitnerencoonoononns 3-8
PSEUDO INSTRUCTIONS .« ittt iiieionnennesennnnansenannnss 4-1
4,1 ORG ...civvervioninnnenenancnns . o cecsvasuons 4-1
4.2 EQUAND SYN tiiioneersonscccensacsaconscnss .o 4-1
N T/ P 4-1
S 4-1
4.5 END ...ttt iiiieiesnotsenascassoscasscaiasanns 4-2
OUTPUT FORMAT AND ERROR MESSAGES......cccovueunnnn 5-1
5.1 OUTPUT FORMATS ...ceivvvnneas csoseses ceeerouennan 5-1
5.2 ERROR MESSAGES.........cecoeveencccons cescccceanes 5-1
MICRO-ASSEMBLER SYNOPSIS. ...t vivticenreevioconeaosons 6-1
6.1 INPUT FORMAT ceeeen cececsetnsnnn sscseces 6-1
6.2 OUTPUT LISTING FORMAT ittt ernoeveonsncnnns 6-1
6.3 OUTPUT PAPER TAPE FORMATt iiiiiiennnnnns 6-1
6.4 INSTRUCTION FORMATS ¢ vvveivirnerrenonecaannsonns 6-2
6.5 PSEUDO OPERATIONS. ¢t iiiieineneenacooannsns 6-2
6.6

ii

APPENDIX 1.

APPENDIX 2,

APPENDIX 3.

APPENDIX 4.

TABLE OF CONTENTS
(Continued)

6.7 ADD CLASS SUBFIELD MODIFIERS (A, S, N, O, X)..... 6-4
6.8 MODIFIERS FOR L OP-CODE ..vevrorrrrerronnnneeens . 6-4
6.9 MODIFIERS FOR D OP-CODE Y . a0
6.10 SYMBOLIC CONDITION CODE FOR B OP-CODE..... ee.. 6-5
6.11 MODIFIERS FOR C OP-CODE Ceeennann Y
6.12 MODIFIERS FOR T OP-CODE0ouu.. eeeroeaeean 6-5
REGISTER ADDRESSES e eereeneannann e .. Al-1
SUMMARY OF INSTRUCTIONS....... e e eneceranteeranas ... A2-1

TELETYPEWRITER/ASCII/HEX CONVERSION TABLE.. A3-1

ASCII/CARD CODE CONVERSION TABLEc..0.... veeeees Ad-1

CHAPTER 1

INTRODUCTION TO THE MICRO-CODE ASSEMBLER

1.1 INTRODUCTION

The GE-PAC 30-2 computer is controlled by
Read-Only-Memory programs. These programs
control the flow of information within the reg-
isters and core storage. The instructions
that make up these micro-programs are quite
similar to the instructions for a conventional
machine. Micro-instructions are located at
various addresses in the ROM and bear the
same grammatical structure as more conven-
tional instructions. It is convenient to use

the same kind of symbolism that is used in
conventional assembler programming. There-
fore, micro-programs may be written in a
more natural way using symbolic operation
codes, operands, and memory locations.

1.2 FEATURES OF THE MICRO-CODE
ASSEMBLER

The GE-PAC 30 Micro-Code Assembler as-
sembles Source instructions that have been
prepared as a tape or a deck of cards. A
listing is generated on the teletype-
writer or line-printer. This listing
lists the input statements and the gen~-
erated code. An object tape is produced
in a machine readable form. This tape
is used as an input to a simulator so
that the logic may be checked before the
ROM is built. The same tape, or a modi-
fied version produced by the simulator,
is then used in the manufacturing of the
specified Read-Only-Memory.

An asscembly is performed in two ''passes''.
This mecans that the source tape or cards
must be read twice. On the first pass, a
symbol table is built. This table contains
definitions of all names that occur in the

program. On the second pass, code is gen-
erated. The generated code is placed in a
buffer as the listing is created. The buffer
holds 256 micro-instructions. The contents
of this buffer are punched either when it be-
comes full, or when an ORG pseudo-instruc-
tion changes the origin of code generation.

During the first pass the user has the op-
tion of stopping on recognized errors. This
permits corrections to be made as the pass
proceeds.

1.3 INPUT FORMAT

The micro-program may be prepared as a
deck of cards or as a source tape. If cards
are to be the source input, they will be pre-
parcd with one instruction per card. The
following format is recommended, although
the assembler will accept free format.

1. Columns 1 through 6 - Label
2, Column 9 - 0.2.8 "space"
character

3. Columns 10 through 14 -
Symbolic Operation Code

4. Column 15 = 0-2-8 "space"
character

5. Column 16 on - Symbolic
Operands

6. Column 35 ~- 0-2-8 "space"
character

7. Column 36 on - Comments

1-1

Items 1, 6, and 7 are optional. Items 2, 4,
and 6 arc optional depending on the type of
card recader used. If the card rcader used
generates a column strobe, the 0-2-8 "space"
character may be replaced by blank columns
- keypunch space bar. The cards must be
front slashed (IBM form X28-6509-2), and
prepared on an IBM 029 keypunch. If the
operands occupy more space than that sugges-
ted above, the comment field may be moved
right.

The comment field is restricted in
length because of the narrow pages that
a teletypewriter types. Longer state-
ments will be truncated to 67 listing
spacez total,

The Assembler needs to see only one

space between source statement fields.
Superfluous blank columns (Spaces) are

1-2

ignored. The Assembler reformats the
input instructions which may cause the
appearance of the listing to differ from
the appearance of the source cards.

Source tapes are prepared by the Edi-
tor in the same format as the user code
assembler. Each field of the source
tape is separated by one or more blank
characters. The code is ASCII. Each
instruction is terminated by a earriage
return, If the teletypewriter is the
source input device, each instruction
on the source tape will be separated
from the next by a minimum of six
delete characters. This is necessitated
because of the start and stop character-
istics of the teletypewriter paper tape
reader, This format is normally pro-
duced by the Editor and is of no real
concern to the user.

CHAPTER 2

GE-PAC 30-2 MICRO-CODE ASSEMBLY LANGUAGE

2.1 LABELS

The Read-Only-Memory contains sixteen-
'bit words. Each word forms one instruction.
The words are referred to by addresses.

The purpose of the label field is to give sym-
bolic names to the addresses. Labels are
formed by using one to six alphanumeric
characters. Longer labels are truncated to
six characters. The following symbols are
valid labels:

T2
LOOP25
N

STOP

The following symbols are invalid as labels
for the reasons given:

2TOP first character is not
alphabetic
COMMAND more than six charac-

ters

AtoD contains a blank

X4.2 contains a special
character, a period

2.2 OPERATIONS

The micro-assembler will interpret the fol-
lowing micro-operations:

SYMBOL DESCRIPTION
L Load
A Add
S Subtract
N AND
(@) OR
X Exclusive OR
B Branch
T Test
C Command
D

Decode
The single letter symbols are the mnemonics

that must be used in the operation field to de-
scribe a micro-operation.

2-1/2-2

CHAPTER 3

INSTRUCTION FORMATS

3.1 LOAD INSTRUCTION

The basic action of the Load instruction is to
load one register with the contents of another.
At the same time, one or more optional oper-
ations may be performed. Thus, there may
be a one place shift, or a Carry may be shift-
ed in. The Load instruction is written:

L REGI1,REG2
or L REG1,REGZ, OPT

or L REG1,REG2,OPT1+OPT2+,..0OPTn

where REG1 and REG2 are Register names
and OPT, OPT1, OPT2, ... OPTn are the
names of extended field options.

The format of the assembled instruction is:

4 718 1] 12 18

EXTENDED
O | O O |DESTINATION SOURCE FIELD

o]
o

The names and hexadecimal addresses of the
registers that are used in the Load instruction
are shown on Table 1.

In the absence of specific extended field op-
tions, the L instruction assumes Carry In
and Out only. The extended option field of
the instruction is split into subfields. Each
subfield controls a specific operation. The
occurrcnce of an extended option in the Source
instruction causcs the appropriate subfield
to be set with the appropriate value. The
list of extended field options is scanned from
left to right, and accordingly the right-most
operation is uscd in the event of conflict.

In the absence of further specification, the
extended operation field contains a 3. The
set of extended field options is listed in Table
2.

Typical instructions are:

L MAR, LOC
L AR, YD,SR

L 10,MDR, ADRS+CS
L FLR,IO, STAT+SL

3.2 INSTRUCTIONS A, S, N, O, X

The basic action of the instructions A, S, N,
O, and X is to combine the contents of the
Source and the AR Registers, and to return
the result to the Destination Register. At
the same time, one or more extended field
options may be performed. Accordingly,
these instructions are written:

I REGI1,REG2
or 1 REG1,REG2,OPT
or 1 REGI,REG2,OPT1+OPT2+. ..0PTn

where REG1 and REG2 are register names;
OPT, OPT1, OPT2, and OPTn are names of
extended field options; and I stands for the

Op-Code.
The format of an assembled instruction is:

2] 23] 4 718 njie 18

oP O |DESTINATION SOURCE

TABLE 1. LOAD INSTRUCTION REGISTER ASSIGNMENTS

NAME

_ADDRESS

FUNCTION

Micro-Register 0 MRO 0
ROM address high RAH 0
Micro-Register 1 MR1 1
ROM address lower RAL 1
Micro-Register 2 MR2 2
The General Register addressed by

the YS field of IR YS 2
Micro-Register 3 MR3 3
Micro-Register 4 MR4 4
Memory Address Register MAR 5
Location Counter LOC 6
Program Status Word PSW 7
A Register AR 8
Instruction Register 1R 9
Memory Data Register MDR . A
Flag Register FLR B
The YD field of IR IR4 B
Counter CNTR C
1/0 Bus 10 D
The General Register addressed by

the YS or YD field of IR YD E
The odd member of the General Reg-

ister pair addressed by the YS or YD

field of IR YDP1 F

TABLE 2. EXTENDED FIELD OPERATIONS FOR LOAD

FUNCTION NAME MASK VALUE
Carry In but nét Out CI 3 2
Carry Out but not In co 3 1
No Carries NC 3 0
Carry In and Out C 3 3
Shift Left SL C 8
Shift Right SR - C 4
Cross Shift CS C | C
Address ADRS 3 1
Data Available DA 3 2
Command CMD 3 3
Acknowledge ACK 3 1
~ Data Request DR 3 2
Status Requeét STAT 3 3

where the operation codes are such that the
leading four bits are as follows:

SYMBOL HEX CODE

XOozuwux
> O

All the registers permitted on the Load in-
gtruction and listed on Table 1 except 10,
may be used by these instructions.

In the absence of specific extended field op-
tions, this set of instructions assumes Carry
In and Out and set flags. The extended field
of the instruction is split into subfields. Each
subfield controls a specific operation. The
occurence of an extended option in the Source
instruction causes the appropriate subfield
to be set to the corresponding value. Table
3 lists the extended options and shows both
the values and masks defining the subfields.
If conflicting options are specified, those to
the right take precedence. In the absence of
further specification, the extended field
equals 7.

TABLE 3. EXTENDED OPTIONS FOR A, S, N, O, X

FUNCTION ‘ NAME MASK VALUE

Carry In but not Out CI 3 2

Cafry Out but not In CcoO 3 1

No Carries NC 3 0

Carry In and Out C 3 3

No flags NF 4 0

No A Register NA A 8 8

Typical instructions are: The assembler allows the eight-bit Immedi-
ate constant to be specified in a variety of

A MR2, MR3, NA+NF+CI ways. The simplest is a hexadecimal con-
5 YD, MR4, CO stant, in which case the instruction takes the
s MAR, MAR, CI+NF form:
N AR, MRRO
O MDR, MDR, NA+NC 1 REG, X'
X MAR, LOC or I REG,=X"n' (the equal

3.3 IMMEDIATE INSTRUCTIONS sign is optional)

The set of operations L, A, S, N, O, and X The 'n' is a number written as one or more
also occur in an immediate form. In this » hexadecimal digits. A single digit produces
form, the Source Data does not come from a a right-justified constant. If more digits are
register, but from eight bits of the instruc- written, the right-most two of the numeric
tion itsclf. When this happens, extended field field, truncated to four digits are used to
options are forbidden. The format of an as- generate the eight-bit Immediate operand

secmbled Tmmediate instruction is: .
SYMBOLIC GENERATED CODE

0 2|3 4 7|8 15
oP | |oESTINATION DATA L MR3,X'1’ 5301
L MR3,X'3F' 533F
where the opcration code generates the first L MR3, X'26A" 536A
four bits as follows: L MR3,X'A5672' 5367
SYMBOTL HEX CODE It is convenient to use the Immediate constant

to represent an address. Addresses in the

L 5 micro-machine are sixteen bits long, and

A D the Immediate constant is only eight. There-

S o fore, provision is made to select either the

N 9 ~ high or low order eight-bits of an address as |
O 7 an Immedia{e constant. Instructions with such
X B Immediates are written:

I REG, L(S)
or 1 REG, H(S)
or I REG, =L(S) the equal sign is
or I REG, =H(S) optional

where L stands for the low order byte, and

H for the high order byte. S is a symbol that
is defined in the label field of another instruc-
tion. Typical instructions are:

GENERATED
SYMBOLIC CODE
Name Op Operand Adrs Data

ABX L RAH, H(CDY) 0408 5004
CDY S MR4,=X'2A 0409 F42A
L MR4, L(ABX) 040A 5408

3.4 DBRANCH INSTRUCTIONS
The Branch instruction is written:
B COND, S

where COND is the name of a condition, S

is the label of the instruction to which con-
trol may be given. The format of the assem-
bled instruction is:

[*] 314 7|8 18
O O O || CONDITION BRANCH ADDRESS

The DBranch instruction contains only an eight-
bit ficld for the Branch address, the eight low
order bits of the required address. Typical
Branch instructions are:

GENERATED

SYMBOLIC CODE
Name Op Operand Adrs Data
POS B G,LOC 0027 1235
LOC B CG,POS 0035 1A27

The Branch instruction may cause the Flag
Register to be tested. The output of the test
causes cither the next sequential instruction
to he performed, or control to pass to the
specified place in the Read-Only-Memory.

The tests made have the symbolic names lis-
ted on Table 4. Compound conditions are also
listed. '

The Branch instruction may also test the state

of the Counter register. This is done hy spec-
ifying CTR as the condition. The output of the

test causes either the next sequential instruc-

tion to be performed, or control to pass to the
specified place in the Read-Only-Memory.

MEANING SYMBOL HEX CODE
Counter not CTR : 0
ONE

3.5 COMMAND INSTRUCTIONS

The Command instruction is written:

C COM
or C COM1+COM2+..... COMn
or C X'n' :
where COM, COM1, COM2 COMn are

the names of specific commands, and 'n' is
a hexadecimal constant useful for setting up
non-standard bit configurations. The first
form is used for a single command, and the
second form is used for multiple commands.
If conflicting multiple commands are given,
the ones to the right in the string of com-

- mands take precedence. The format of the

assembled instruction is:

COMMAND LITERAL

Typicél Commands are:

C MR
C RPT + CUT
C X'HAA'

The Commands listed on Table 5 may be
given. The mask indicates the bit positions
of the twelve-hit command literal that are
cleared before insertion of the value.

TABLE 4. BRANCH TESTS
MEANING SYMBOL HEX CODE
Less than zero L 1
Greater than zero G 2
Greater than or less than zero GL 3
Overflow \% 4
Overflow or less than zero VL 5
Overflow or greater than zero VG 6
Overflow or greater than or less
than zero VGL 7
Carry C 8
Carry or less than zero CL ‘9
Carry or greater than zero CG A
Carry or greater than or less
than zero CGL B
Carry or Overflow Ccv c
Carry or Overflow or less than
Zero CVL D
Carry or Overflow or greater
than zero CVG E
Carry or Overflow or greater than
or less than zero CVGL F

3-6

E—

TABLE 5. COMMANDS
FUNCTION NAME MASK VALUE
Divide DIV Co00 800
Multiply MPY Ccoo 400
Repeat RPT Co00 Co00
Memory Read MR 300 100
Memory Write MwW 300 200
Priviledged Write Pw 300 300
Clear the Bank CB 0Co 040
Set the Bank SB 0Co 080
Clear Utility flip-flop CcuT 030 010
Set Utility flip-flop SUT 030 020
Trigger Utility flip-flop TUT 030 030
Power Down POW 001 001
Clear Wait Alarm CWA 00C 004
Set Wait Alarm SWA 00C 008
Clear Memory Parity CMP 002 002

3.6 TEST INSTRUCTIONS
The Test instruction is written:

T TEST
or T TEST1+TEST2....+TESTn
or T X'

where TEST, TEST1, TEST2,TESTn
are the names of specific tests and 'n' is a
hexadecimal constant useful for creating non-

standard configurations.

The first form is

uscd for a single test and the second form is

used for multiple tests.

All the tests are in-

dependent, and there is no possibility of con-

flict.

The format of the assembled instruc-
tion is:

TEST LITERAL

3-7

Typical Test instructions are:

rl‘| l]"l‘
T ATN+CATN+PPF
T X'408'
The Tests that may be made are listed on

Table 6.

3.7 DECODE INSTRUCTIONS

The action of the Decode instruction is de-
termined by the hardware at execution time.
One or more extended field options may be
performead.

D REG1,REG2

The Decode instruction is written,

[*] 314 718 Ijle 18

EXTENDED
O O O O |DESTINATION SOURCE FIELD

All registers allowed on A, S, N, O, and
X may he used on Decode.

The extended field is split into single-bit
subfields, each bit controlling a specific oper-
ation. The occurrence of an extended field
option in the Source instruction causes the
appropriate subfield to be set to the corres-
ponding value. The list of extended options

on Table 7 shows both the values and masks
defining the subfields. If conflicting options

" are specified, those to the right take prece-

dence. In the absence of further specifica-

tion, the extended field is set to zero.

S or I REGI1,REG2,0PT

or D REGI,REGZ,O0PT1+OPT2+...0PTn Typical instructions are:

wherc REG1 and REG2 are register names D AR, YD, PO

and OPT, OPT1, OPT2....0PTn are exten- D LOC, LOC

ded ficld options. The format of the assem- D LOC, LOC, MR

bled instruction is: D LOC, LOC, P2J

TABLE 6. TESTS

FUNCTION NAME MASK VALUE
Unassigned 800 800 800
1/0 Interrupt ATN 400 400
Auto Restart ARST 200 200
Console Interrupt CATN 100 100
Console Single Mode SNGL 080 080
Utility ftip-flop UT 040 040
Memory Parity Fail MPF 020 020
Primary Power TFail PPF 010 010
Fast 1/0 Interrupt FAST 008 008
Unassigned 004 004 004
Unassipmed 002 002 002
Unassigned 001 001 001

3-8

TABLE 7.

DECODE EXTENDED OPTIONS

FUNCTION NAME MASK VALUE
Memory Read MR 008 | 008

Jam FLR to CCR JAM 004 064

Clear FLR, CNTR, BANK, UT CL 002 002

Phase Change PC 001 001

Phase Zero PO 00F 00B

Phase One P1 O0F 00B

Phase Two Jam pP2J 00F 00F

Phase Two, No Jam P2N 00F 00B)
Phase Three P3 00F 00B

3-9/3-10

CHAPTER 4

PSEUDO INSTRUCTIONS

4.1 ORG SYMBOLIC GENERATED
. | CODE
ORG specifies the position in the Read-Only- ’
Memory where the assembled program will CONS1 EQU X'1A98' (gl;gecr(::;id)
begin. ORG pseudo-instructions can be used
freely to cause different parts of the program SUBK SYN CONSI (no code
to be located in different places. The format generated)
of the ORG instruction is: L AR, H(CONS1). 581A
(@) MAR, L(SUBK) 17598
ORG X'
4,3 P
where'n' is 2 number of four or fewer digits
written in hexadecimal form. (Longer num- The P pseudo-instruction is used to output
bers are truncated to the left most four digits.) the current content of the punch buffer and
Typical ORG instructions are: suppress punching origin addresses when
: subsequent punching occurs. The format of
ORG X'12B' the P instruction is:
ORG X'62'

P is
4.2 EQU AND SYN (no argument is necessary)

EQU and SYN are used to define new symbols. 4.4 Z

Once a symbol is defined, it may be used in

exactly the way labels are used. EQU is used The Z pseudo-instruction is used to define
to define a symbol to have a literal value. a hexadecimal constant. This instruction
SYN is used to cquate a new symbol to a pre- has an argument which is either a hexadeci-
viously defined one. The formats are: mal constant or a symbolic address. The

format of the Z instruction is:

S EQU X'
S1 SYN S2 7 X!
v e ; or Z S

where S, S1, and S2 are names of symbols
composed of onc to six alphanumeric charac-
ters, and 'm' is a hexadecimal number com- where 'n' is a hexadecimal constant of four
poscd of four or fewer digits. Typical exam- or fewer digits and S is a previously defined
ples of EQU and SYN are: symbol of one to six alphanumeric characters.

4-1

Typical Z instructions are:

SYMBOLIC GENERATED
CODE

Adrs Data.
TALLY Z TOTAL 0282 0283

TOTAL Z X'A12F' 0283 Al2F
SUM Z TALLY 0284 0282

In normal use, the P instruction is followed
by a block of Z pseudo-instructions defining
Decoder ROM data. For example:

P

Z X'0000'
Z SYMBI1
7 SYMB2
Z SYMBn
END

4-2

The P instruction causes that executable part
of the micro-program remaining in the punch
buffer to be output.

The subsequent Z pseudo-instructions begin
filling the punch buffer with their respective
hexadecimal arguments.

The END statement causes the assembly
process to terminate. Depressing the
EXECUTE switch will cause the data in the
punch buffer to be output without an origin
address.

4.5 END

The END pseudo-operation is used to indicate

the end of a Source program. No special in-
struction is required at the beginning of a micro-
code Source program.

CHAPTER 5

OUTPUT FORMAT AND ERROR MESSAGES

5.1 OUTPUT FORMAT

The listing is printed on the teletype-
writer or line printer, The listing
contains two columns of four hexadecimal
digits each. The left hand column con~
tains the address of the instruction in
storage. The right hand column contains
the sixteen bits of the instruction in
hexadecimal form. Following the gener-
ated data, and on the same line, the
corresponding source data is printed.

Paper tape object code is punched on the
teletypewriter or high speed punch. The
tape is punched in blocks; each block
corresponding to a 256 word section of
code or a partial page of code that is
headed by an ORG pseudo-instruction.
Blocks are separated by blank tape.

Each character on the tape represents

a hexadecimal digit. Four tape charac-
ters are punched in the tape for each
sixteen bit word; most significant hexa-
decimal digit first. The first four
characters in a block give the starting
address of the block. Subsequent groups
of characters give successive words of
the generated code. The paper tape
codes used for the hexadecimal digits
are listed on Table 8.

A block of object information generated
by P and Z pseudo-instructions uses the

same paper tape codes as instruction
data, but no orgin addresses appear.

5.2 ERROR MESSAGES

The following errors are detected and flagged
by the characters shown.

ERROR CHARACTER

Illegal operation code
Instruction format error
Multiple defined symbol
Undefined symbol

Bad character in source card

Wwa22HO

When the error option is used to detect er-
rors on the first pass, multiple defined
symbols are not flagged until their second
occurrence. Undefined symbols are not de-
tected until the symbol table is printed.

Errors generally cause an instruction word

of all zeros to be generated. A source card
that contains an illegal (bad) Hollerith char-
acter is listed up to the illegal character for
easy identification.

If the symbol table overflows, the message
"OVERFLOW" is printed and the assembly
process terminates.

TABLE 8. PAPER TAPE CODES

HEX DIGIT CODE HEX DIGIT CODE
0 1001 0000 8 1001 1000
1 1000 0001 9 1001 1001
2 1000 0010 A 1001 1010
3 1000 0011 B 1001 1011
4 1000 0100 Cc 1001 1100
) 1001 0101 D 1001 1101
6 1001 0110 E 1001 1110
7 1001 0111 F 1001 1111

5-1/5-2

CHAPTER 6

MICRO-ASSEMBLER SYNOPSIS

6.1 INPUT FORMAT

If tape is the source, the normal Editor out-
put is accepted as the input format. If cards
are the source, the following format is sug-
gested.

COL DESCRIPTION

1-6 *Symbolic Label

9 *(0-2-8 ""space"

10-14 Symbolic operation code

15 *()-2-8 '"'space"

16-71 Symbolic operand field term-
inated by (0-2-8)* if comments
follow

*optional

If column 1 is an asterisk (*), the card gen-
crates no code, but is listed.

6.2 OUTPUT LISTING FORMAT

The output listing contains the following infor-
mation for each input source statement:

1. Absolute location in hexadecimal

2. Absolute content of the location,
in the form:
XXXX
where X is a hexadecimal digit.

3. Error messages:

- Format Error

- Op-Code Error.
Undefined Symbol

- Multiple Defined Symbol
- Bad Hollerith Character

W2 O
1

4. Symbolic (source) image.
6.3 OUTPUT PAPER TAPE FORMAT

The paper tape is organized into blocks, each
representing:

1. all words betwcen one ORG
pseudo-insiruction and the
next.

2. all words up to page enc;i.
3. P pseudo-generated data.

Each sixteen-bit number is punched in four
frames of paper tape, each frame represent-
ing one hexadecimal digit. FEach block on
paper tape, in item 1 and 2 above, begins
with a gixteen-bit word (four frames) giving
the initial location of the block. The punched
address must be a halfowrd address. It is
therefore punched as twice the actual ROM
address. Succeeding words on paper tape
represent succeeding locations in memory.

Eight inches of blank tape are left between
blocks. The paper tape code used for the
hexadecimal digits is as shown earlier on
Table 8.

6-1

6.4 INSTRUCTION FORMATS

Instruction Class 1

A or D .S ., E (Register to
Register)

B oP D , C , or OP D,=C

' (Immediate)

where OP is A Add

AND

Subtract

OR

Exclusive OR

Load

Decode

U XOowm=z

D is & register name (sec 6. 6)
S is a register name (sce 6. 6)
E is the extended option field which has the

form M, +..... +Mn where M are modifiers

C is an cight-bit constant which can take the
form:

1. X'nn' (n is a hexadecimal digit)

2. H(s) (High order address of a
word in ROM; 's' is a
symbolic name of a ROM
location

3. L(s) (Low order address of a

; word in ROM)

Assembled format:

A.
] 23] 7|8 ijiz2 18
oP (o] D 8 E
B.
0 2|3 14 T\]8 18
op | D N

Instruction Class 2:

Symbolic Format:

B cC, A
where DY is the Branch Op-Code (0001)

CC is the symbolic condition

6-2

A is the symbolic address (always uses low
order address bits) ‘

Assembled Format:

0 0 01 ccC . A

Instruction Class 3:

Symbolic Format:

OP E o OP Xu

where OP is C - command (0011)
T - test : (0010)
iE is the extended form M,+ | +Mn are

modifiers for test or command.
'n' is a hexadecimal constant

Assembled Formét: |

2] 314 18
oP E

6.5 PSEUDO-OPERATIONS
ORG ORG X'N'

set assembly location counter to N (hexadec-
imal)

EQU S EQU X'N'
Set the symbol S to the hexadecimal value N.

SYN 8, SYN 8,
Set the syrhbol S1 to the same value as Sg,
which must have been previously defined.

Z Z XlNl

Define Constant. Set the current assembly
location to Hexadecimal N or the hexadeci-
mal address associated with symbol Sy.
The assembled form becomes XXXX where
X are hexadecimal digits.

P P 6.6 REGISTER NAMES AND EQUIVALENTS

Punch the content of the buffer and suppress Table 9 lists all register names and equiva-
punching origin address when subsequent lents.
punching occurs.

END. END
End current pass of assembly.

TABLE 9. REGISTERS

SYMBOLIC ' ABSOLUTE MEANING

MRO 0 Micro-Register 0

RAH 0 ROM address High

MR1 1 Micro-Register 1

RAL 1 ROM address low

MR2 2 Micro-Register 2

YS 2 General Register addressed
by YS field of IR

MR3 3 Micro-Register 3

MR4 4 Micro-Register 4

MAR 5 Memory Address Register

LOC 6 Location Counter

PSW 7 - Program Status Word {

AR 8 A Register |

IR 9 Instruction Register

MDR A Memory Data Regﬁster

FLR B Flag Register

IR4 B YD field of IR

CNTR C Counter

10 D 1/0 Bus

YD E General Register addressed by
the YS or YD field of IR

YDP1 F Odd member of the General register
pair addressed by the YS or YD field
of IR.

6.7

E field is normally 0111 unless further speci-
fied. Each modifier has a mask M and a

ADD CLASS SUBFIELD MODIFIERS
(A, S, N, O, X)

6.8 MODIFIERS FOR L OP-Code

E code is normally 0011; Table 11 lists the

modifiers.

value V as shown on Table 10. Each modifier

converts current E code from Eb to Ea as

6.9 MODIFIERS FOR D OP-CODE

follows:
— E code is normally 0000, Table 12 lists the
E, =E) . M+ VM modifiers.
TABLE 10. ADD CLASS MODIFIERS

SYMBOLIC

MODIFIER MASK M VALUE V MEANING

CI 0011 0010 Carry In but not Out
CcO 0011 0001 Carry Out but not In
NC 0011 0000 No Carries

C 0011 0011 Carry In and Out

. NF 0100 0000 No Flags
NA 1000 1000 No A Register
P TABLE 11. LOAD MODIFIERS

SYMBOLIC

MODIFIER MASK M VALUE V MEANING

CI 0011 0010 Carry In but not Out
CO 0011 0001 Carry Out but not In
NC 0011 0000 No Carries

C 0011 0011 Carry In and Out
SL 1100 1000 Shift Left

SR 1100 0100 Shift Right

CS 1100 1100 Cross Shift

ATRS 0011 0001 Address

DA 0011 0010 Data Available

CMD 0011 0011 Command

ACK 0011 0001 Acknowledge

DR 0011 0010 Data Request

STA'T 0011 0011 Status Request

6-4

TABLE 12.

DECODE MODIFIERS

SYMBOLIC

MODIFIER MASK VALUE MEANING

MR 1000 1000 Memory Read
JAM 0100 0100 Jam FLR to CCR
CL 0010 0010 Clear

PC 0001 0001 Phase Change

PO 1111 1011 Phase Zero

Pl 1111 1011 Phase One

P2J 1111 1111 Phase Two, JAM
P2N 1111 1011 Phase Two, No JAM
P3 1111 1011 Phase Three

6.10 SYMBOLIC CONDITION CODE FOR B

OP-CODE

The following coding applies to the Branch

The conditions C, V, G, and L. may be speci-

fied in any combination.

micro-op. 6.11 MODIFIERS FOR C OP-CODE
SYMBOLIC ABS Table 13 lists the modifiers for the Command
CC VALUE | MEANING op-code.
CTR 0000 - Counter not ONE
G 0010 Greater than zero ' .
v 0100 Overflow Table 14 lists the modifiers for the Test
C 1000 Carry micro-op. 4
TABLE 13. COMMAND MODIFIERS
SYMBOLIC MASK VALUE MEANING
DIV Co00 800 Divide
MPY Ccoo 400 Multiply
RPT co00 Cco00 Repeat
MR 300 100 Memory Read
MwW 300 200 Memory Write
PW 300 300 Priviledge Write
CB 0CO 040 Clear Register Bank
sB 0Co 080 Set Register Bank
TB 0Co 0Co Trigger Register Bank

6-5

TABLE 13, COMMAND MODIFIERS (Continued)

SYMBOLIC MASK VALUE MEANING
cuT 030 010 Clear Utility flip-flop
SUT 030 020 Set Utility flip-flop
TUT 030 030 Trigger Utility flip-flop
POW 001 001 Power Down
CWA 00C 004 Clear Wait Alram
SWA 00C 008 Set Wait Alram
CMP 002 002 Clear Memory Parity
TABLE 14. TEST MODIFIERS
SYMBOLIC MASK VALUE MEANING
800 800 800 unassigned
ATN 400 400 I/0 Interrupt
ARST 200 200 Auto-Restart
CATN 100 100 Console Interrupt
SNGL - 080 080 Console single mode
UT - 040 040 Utility flip-flop
MPE 020 020 Memory Parity Error
PPF 010 010 Primary Power Fail
FAST 008 008 Fast I/0O Interrupt
004 004 004 unassigned
002 002 002 unassigned
001 001 001 unassigned

6-6

APPENDIX 1

GE-PAC 30-2 REGISTER ADDRESSES

CODE

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

* Bank must be reset
** Bank must be set
*** Not a register

DESTINATION

RAH*MRO **

RAL*MR1**

YS* MR2**

MR3

MR4

MAR

LOC

PsSwW

IR

MDR

FLR

CNTR

TO***

YD

YDP1

SOURCE

MRO

MR1

MR2

MR3

MR4

MAR

LOC

PSwW

NULL

MDR

IR4

NULL

TO*** .

YD

YDP1

Al1-1/A1-2

APPENDIX 2 :
GE-PAC 30-2 SUMMARY OF INSTRUCTIONS

OP-CODE INSTRUCTION
0000 DECODE
0001 BRANCH
0010 TEST
0011 COMMAND
0100 LOAD
0101 LOAD IMMEDIATE
0110 OR
0111 OR IMMEDIATE
1000 AND
1001 AND IMMEDIATE
1010 EXCLUSIVE OR
1011 EXCLUSIVE OR IMMEDIATE
1100 ADD
1101 ADD IMMEDIATE
1110 SUBTRACT
1111 SUBTRACT IMMEDIATE
Commands
Bits Set Definition
5 Multiply
4 Divide
4,5 Repeat
7 Mem. Read
6 Mem. Write
6,7 Privileged Write
9 Reset Bank*
8 Set Bank*
8,9 Trigger Bank*
11 Reset Utility*
10 Set Utility*
10,11 Trigger Utility*
14 Clear Mem. Parity*
12 Set Wait Alarm*
13 Reset Wait Alarm*
15 Power Down
* = flip-flops

E FIELD DEFINITION

For A,S,X N, O:

1xxx No AR to ALU
x1xx Set Flags

xx1lx Carry Into ALU
xxx1 Carry Out of ALU
For L ONLY:

00xx Load

01xx Shift Right

10xx Shift Left

11xx Cross Shift

On Shifts Only:

xx1x Carry Into ALU
xxx1 Carry Out of ALU
On Non-Shifts:
xxx1 Clear Carry
x = "don't care' condition
Tests
Bits Set Definition
5 I/0 Int. (ATN)
6 Auto-restart (ARSF)
7 Cons. Ex. (CATN)
8 Cons. .Sngl. (SNGL)
9 Utility flip-flop (UT)
10 Mem. Par. Fail (MPF)
11 Prim. Pwr. Fail (PPF)
12 Fast I/0 Int-(FAST)
Load, I/0 = Destination
E field Definition
xx01 Address
xx10 Data Available
xx11 Command
Load, I/0 = Source
xx01 Acknowledge
xx10 Data Request
xx11 Status Request

A2-1/A2-2

Soe?

APPENDIX 3 .
TELETYPEWRITER/ASCII/HEX CONVERSION TABLE

HEX (MSD)———>| 8 9 A B|C|D|E|F
(LSD) | Teletype-| 8 DEPENDS UPON PARITY
writer
Tape 7 0 0 0 0ol1]1]1]1
Channels™| ¢ 0 0 1 1joflo]1]1
1 5 0 1 0 1|01 0|1
Y 4 {3 |21
g 0|0o]o0o| o] NULL |DCqo SPACE [0 | @ | P
1 0{0|0| 1|SUM |X-ON ! 1| A]Q
| 2 0jo|1| o] EoA gﬁPE " 2| B|R
3 0j0|1| 1| EOM |X-OFF # 3|c|s
4 0|1/(0| 0| EOT g?ﬁE $ 4| D|T
5 0|1]0| 1| WRU [|ERR % 5l kU
6 0|1 |1]| 0]|RU SYNC & 6 | F|V
7 0l1|1| 1| BELL |LEM ' 76| W A
8 [1|0o]o| o] FE, [Sg (8 | H| X f
9 1 (ool 1| HT/SK|Sy) 9 |1]Y &
A 1lo]1| o] LF So * J |z
1jof1|1]vr 83 + kL g
C 1|1{0] o|FF S4 , < | L]\ ACK
D 1]1]0] 1]cR Ss - = M|] ﬁiﬁ;;
10 L |1 {1 0]SO Sg > | N1 ESC
F 1|1 1] 1]sI Sy / > | O | DEL

A3-1/A3-2

APPENDIX 4 :
A.SCII/ CARD CODE CONVERSION TABLE

8-BIT 7-BIT 8-BIT 7-BIT

ASCII ASCH CARD ASCIIT ASCII CARD

GRAPHIC CODE CODE CODE GRAPHIC CODE CODE CODE
SPACE A0 20 0-8-2 @ Co 40 8-4
' Al 21 12-8-7 A C1 41 12-1
" A2 22 8-17 B C2 42 12-2
A3 23 8-3 C c3 43 12-3
$ Ad 24 11-8-3 D C4 44 12-4
% A5 25 0-8-4 E C5 45 12-5
& A6 26 12 F C6 46 12-6
' AT 27 8-5 G C7 417 12-7
(A8 28 12-8-5 H Cs 48 12-8
) A9 29 11-8-5 I C9 49 12-9
* AA 2A 11-8-4 J cA 4A 11-1
+ AB 2B 12-8-6 K CB 4B 11-2
, AC 2C 0-8-3 L cc 4C 11-3
- AD 2D 11 M CD 4D 11-4
. AE 2E 12-8-3 N CE 4E 11-5
/ AT 2F 0-1. 0 CF 4F 11-6
0 BO 30 0 p DO 50 11-7
1 Bl 31 1 Q D1 51 A1-8
2 B2 32 2 R D2 52 #11-9
3 BS 33 3 S D3 53 4§ 0-2
4 B4 34 4 T D4 4 | 0-3
5 B5 35 5 U D5 55} 0-4
6 B6 36 6 v D6 56 § 0-5
7 B7 37 7 w D7 51, 0-6
8 B8 38 8 X D8 58 0-7
9 B9 39 9 Y D9 59 0-8
: BA 3A 8-2 Z DA 5A 0-9
; BB 3B 11-8-6 [DB 5B 12-8-2
< BC 3C 12-8-4 \ DC 5C 11-8-1
BD 3D 8-6] DD 5D 11-8-2
> BE 3E 0-8-6 t DE 5E 11-8-7
? BF 3F 0-8-7 «— DF 5F 0-8-5

A4-1/A4-2

.-
.

6.

TP109-11-5~

MICRO-ASSEMBLER OPERATING PROCEDURES

GE-PAC 30 Micro-Assemblers are 8.
absolute and -may he loaded by any ol

the GE-PAC 30 loaders. Instructions

for loading tapes are contained in the

lL.oader Desceriptions, Publication Num-

her 06-025A12,

Place the tape or deck to he assembled 9,
in the symbolic input device.

Sct data Switeh 15 on the computer's
console if error detection on the first
pass of the assembly is not required.
Otherwise, make sure that data Switch

IH 18 reset,

The Micro-Assembler begins at location

X'80'. The paper is advanced one page

and a title is printed. It is important

to position the paper hefore starting. 10.

The first pass proceeds with the source
statements being read until the END
statement is reached. I data Switeh 15
is not sct, errors cause the system {o

11.
halt. When this happens, the offending
instruction is listed together with an
crror flag which describes the error.

12,

I Switch 15 is not set and error detec- -
tion causes a halt, the offending state-
ment must be reprocessed either hy
replacing the erroncous statement with

a corrected one, or re-reading the bad 13.
statement with Switeh 15 set. Process-

ing is resumed by depressing the EXE-

CUTE button.

When the END card is reached, the

symbolic table is printed. FErrors are 14.
flagged. I error correction is being

attempted, and the symbol table con-

tains "undefined" symbols, abandon the

assembly. :

Replace the tape or deck in the symbol-
ic input device. When the computer
halts after printing the syvmbol table,
press EXECUTE to perform the second
pass.

During the second pass, listing is per-
formed. I the computer halts, it is
because it is ready to produce an object
tape. With the GE-PAC 30-1 Micro-
Assembler only, verify that the previous
instruction listed was ROM or END.
Prepare the binary output device for
operation, Press EXECUTE. The

tape is produced and the computer will
again halt.

Check that the symbolic output device
is ready for printing. Press EXECUTE,
listing again procceds.

- Repeat steps 9 and 10 as many times

as necessary.

ned the
SSEMDLY

After step 10 has been perfo
final time, the system types

COMPLETE. {(

To perform another :msmpbl‘?vi; place
the new tape or deck in thé Syy}hbolic
input device and press EXECUTE.,
Rencat the previous St(,‘nSj.‘

£
4

If, for any reason, the second pa&;s
must be aborted and restarted with*\‘
out repeating pass one, address X' 84ig.
will permit this restart without chang-
ing the symbol table. '

(]

&
.

TABLE OF CONTENTS

¥
GENERAL DESCRIPTION. .. c.cvveveocoss trueressesscessestes e e . ..?—1
1.1 Purpose........ teceseectcenoonns ceceencas ceoeesesceccose ees.1-1
1.2 Micro-Code Software e ireaeeens Ceoeccaceccecoscecensaeans 1-1
1.3 Operation............ tecesenaaens Seetcceccecn cescsecssasacsaenen 1-1
1. 4 Related DOCllmentS oooooooooooooooo ® 06060 009000000000 ©® 0606060600609 0000 1-2
ORGANIZATION OF THE SYSTEM........ ceeessteoeseesnena et aneseo .o 2-1
'2. 1 Major Components. ..c.cecuveenns Ctecoesccesisoeesoana ceceeseeeans 2-1
2.2 Simulator Registers et eeenann creeneas oo ceoee ceeens 2-1
2.3 pI‘OCGSSOI'Reg’isters..o-e........ . EEEEEEER] o e0eo0eeee0 e e 2_3
2.4 User's Registers...oe.cvvueon. cesoseovnnon ceecoesessosensenann .. 2-5
2.5 DROM......ciieitieernenenoonnns ceoesesesanea ot eececessooeeenes 2-5
2.6 ROM........coveeean e ecccesacassoeasenannn . .. cesoeonsan 2-5
2.7 COI'eMemOI'V v ceeeecec e ©coeeoceeeoe so 0600900006000 00s e s 0 . 2_5
USER COMMANDS............ cceeeceaaas et eoeossosenesssocaessecesnenn 3-1
3.1 General Syntax.......... ceeeees ceceecttcnno ceceecceceenoenciesane 3-1
3.2 Cell Examination......... cecsoceses cevnon - R |
3.3 CellChange.............. C e e eeee et e et oo 3-2
3.4 Letter Commands G o et eacesrasacersnaseensanaa e an 3-2
3.5 Special Controls............ veesncas cos ceceacersenenccenns «..3-5
MICRO"INSTRUCTIONS @G 008 ° 00 ecee 0 e e . o0 e oo0oo0a @0 o e e e 4-1
4.1 Execution Cycle........... eeseaes ceesaoes oeceeesetsceoaosnens .4-1
4.2 Memory Operations........ccceoeeeeeecsacons ceeescnans ceseceocann 4-2
4.3 Register Addressing..... crissceseescanacsessaonsasses J .
4.4 TFlag Settings.cooevevcenses . sosacocesas coocoosassesoens 4-2
4.5 Tnput/Outputc.... N
4.6 Other Micro-Instructions. cesoesessscsesson ceeesessnens 4-4
USE OF SIMULATOR 6ec0 000 M EEEE R I 0e e e e oo e 5-1
5.1 CODfiguratiOl’l e e 0 00 00 e e o000 eo0a o ° ° . o e e o0 o ’5-1
5.2 Loading the Simulator.......ccovvvevuss Ceeceeererosaas PN .5-1
5.3 Starting Procedures oo cesenoans . B 1 |
5.4 Memory Allocation coeens cesesceserssarauunse cosecse R
5.,5 LoadingtheROM oooooooooo o e e 0 ® 9 0000068 e 0 v @0 ® e e e0 0@ e e s 00 05-‘2
5.. 6 Loading the DROM 6o 060 0000000 s 0 e e . s 00000000 0-5_2
5.7 Loading the Core..oc.cvu. ... ceoesceennaianaans ceeeeane O
5.8 Execution....... Ce et ieeteaescsse et e ann et easeeeavesenannn 5-2
5.9 ROM Output.e.en... Creeeeeanan e Ceeeccecsessvanans 5-3
5.10 Other Output Operations.c..veetvererroecncoasonsssuessnaaseans 5-4

1i

APPENDICES

3"7 i
F

1. ﬁMANDSUMMARY Al-1
2. ERROR MESSAGES. e reeeeees et eeeunaeeas et erreaeean, A2-1
3 DISPLAY PANEL STATUS ... ivvinnerionnns Cecnusnen coseess ceescossenas A3-1
4 MICRO-INSTRUCTION SUMMARY cesecasons . cereeeas. Ad-1
ILLUSTRA T’IONS
Figure 1-1. Primary Data Areas................ vesescoas oveeeoesan cereanos 1-2
Figure 2-1. Major Components of GE-PAC 30-2 Simulator:ecceceesessesss 2-1
Figure 2-2. GE-PAC 30-2 Simulator Data Areas «veeeeireiionisnnnans 0e.2-2
Figure 2-3, Si‘mulated Processor Registers. ... v.iveeerieneeeereonennconoenas 2-4
Figure 4-1. Execution Cycle............ Ceescsccasassosoooae e roecesenaas 4-1
Figure 4-2. Post Execution Counter Mode Handler............. ceeen 4-5
Figure 4-3. Source/Destination Logic Ceeeens v...4-8

Yon

CHAPTER 1

GENERAL DESCRIPTION x

1.1 PURPOSE 2. The ROMWATS program,
‘ which accepts an ROM binary

The GE-PAC 30-2 Micro-Code Simulator is object tape and generates a
used for testing and debugging GE-PAC 30-2 wiring tape for the machine
micro-code programs, Micro-code programs, used to wire and test the physi-
when implemented, become permanently wired cal ROM. This program is de-
instructions in a Read-Only-Memory (ROM). : scribed in Publication Number

The purpose of the Simulator is to enable 29-047
a micro-code program to be tested before :
it is wired into an ROM, The use of the
Simulator minimizes the testing and debug-
ging of a program in its wired form.

1.3 OPERATION

The Simulator is interactive in nature,

with many similarities to CLUB, the Hex-

adecimal Debug Program. It is operated

and controlled from the teletypewriter

keyboard. All numerical quantities are
1.2 MICRO-CODE SOFTWARE expressed in hexadecimal notation. Most
' directives are expressed with a single
letter codes, many of which conform to
the repertoire of CLUB commands.

The Simulator is but on program in a
family of GE-PAC 30 micro-code sup-
port programs, all of which run on any
GE-PAC 30 Processor which has at least
8K bytes of core. A standard GE-PAC The Simulator is organized around a set of

30-2 Processor, therefore, can be used data areas which are maintained in core

to develop and test special micro-code memory. The five principal data areas are
programs for use with any GE-PAC 30 v
Processor. Other support programs are: 1. Simulator registers and

parameters

¢ 3 ate b) i
I. The GE-PAC 30-2 Micro-Code 2. simulated Processor registers

Assembler, which accepts

micro-code instructions v . 3. simulated ROM

in symbolic form and gen-

erates an ROM binary ob- 4, simulated DROM

ject tape., This Assem~

bler is described in Pub- 5. simulated core memory

lication Number 05-012A12,

1-1

‘giefer'to\Figurc 1-1.

S0 TR
mﬂﬁ&W¥OR
die @f%csrens
TO - h
PROCESSOR
rae7~ REGISTERS
rzo///“' J 77T
36 senl?sevstﬁ /4
Qo0
DROM
QFF | ELEMENTS OF
RO SIMULATED MACHINE
ROM
R3FF
uo
CORE
UTFE J
Figure 1-1. Primary Data Arcas

The data areous 2.0 - wages ol the various
clements of the maochine heing simulated.
Commands are provided for the display and
manipulation of the various data areas.

Other commands cause the Simulator to
fetch micro-code instructions from the
simulated ROM and perform the action
specified. Features are provided for con-
tinuous or single-step execution.

1.4 RELATED DOCUMENTS

This document assumes a knowledge of the
GE~PAC 30~2 Processor. For more infor-
mation on the GE~PAC 30-2, refer to the
Ge~-PAC 30 Reference Manwal, Publication
Number 29-004, or the Micro~Instruction
Reference Manual, Publication Number.
29-032, For a description of CLUB, re-
fer to the Hexadecimal Debug Program
Description, Publication Number 03-
002R03Al12,

CHAPTER 2

ORGANIZATION OF THE SYSTEM

2.1 MAJOR COMPONENTS

The system is composed of three major
components:

1. The interaction control
2. 'The micro-code execution control

3. The data areas

/

INTERACTION
CONTROL

SIMULATOR
REGISTERS

EXECUTION
CONTROL

PROCESSOR
REGISTERS

DROM

ROM

CORE

DATA AREAS

Figure 2-1. Major Components of
GE-PAC 30-2 Simulator

These major components are represented

in Figure 2-1. The interaction control por-
tion accepts commands from the teletype,
and performs the action specified. All of
the interactive features of the Simuiator
reside in this section. Control remains

in this section unless micro-code execution
is explicitly started by a keyboard command.

The execution control portion contains
the routines which simulate the GE-PAC
30-2 Processor. When given control,

the execution routines operate on the
data areas as though they were the ele-
ments of a machine. A number of methods
are provided for terminating execution
and returning control to the user at the
keyboard. Specific methods are discus-
sed in the next chapter. The details of
the data areas, shown in Figure 2-2, are
discussed in the following sections.

2.2 SIMULATOR REGISTERS

Twelve halfwords are used as special regis-
ters by the Simulator. The first four half-
words concern Display Panel parameters:

S0 Display Panel switches. When
a micro-code program inputs
data from Device Number 1,
the data is obtained from this

halfword.

i

S2 = Display Byte Count/Status.
The byte count is used for in-
put/output transfers with De-
vice Number 1. The Simulator
adjusts this count as necded.
The status byte is used when-
cver a micro-code program
reads status from Device
Number 1.

2-1

2-2

S0

S12
s14
S16
TO
T2
T4
Te
T8
TA
TC
TE
Tio
Ti2
T4
Tie
Ti8
TIA
TiC
TIE
T20

T3E
Qo

QFF
RO

R3FF
uo

UTFE

]

SWITCHES

BYTE CYUNT | DSPY STATUS

IND REGISTER |

IND REGISTER 2

SEL DEV | ATN DEV

BREAKPOINT

Low LIMIT

HIGH LIMIT

s VL LA

T TRACE —POINT

ROM SIZE

CORE SIZE

AR

RAH o

RAS RAL

RDR

MAR

MD R

RO

R

MSR

FCP

PSW ICC

LoOC

IR

USER REG O

USER REG 5

DROM

ROM

CORE

[

Figure 2-2,

DISPLAY PANEL PARAMETERS

2 3 45

10

1213 14 18

8
S
N
[}
L

®
F 3
=
zZ4>
—“0onp | ®
Z4PpO |~

mox

Mmoo

—“ =2+

CNTR

GE-PAC 30-2 Simulator Data Areas

S4
S6

i)isplzl,y Panel indicator regis-
ters. Data outputs to Device
Number 1 are stored here.

The remaining halfwords are as follows:

SC

SE

S10

1l

Selected Device/Attention De-
vice. The Selected Device
field is used by the Simulator
to remember which device was
last selected. The Attention
Device is used by the Simula-
tor to define which device was
the source of an ATN signal.
The Attention Device should
be specified by the user.

Breakpoint location. This half-
word can contain an address of
a micro-instruction in the ROM
data area. During micro-code
execution, the contents of the
simulated RAS/RAL is com-
pared to this breakpoint valuc.
When a match is found, execu-
tion terminates, and a message
is typed.

Low Limit.

High Limit. These values can
be set by the operator. These
limit values are used during
print, output, and tracc opera-
tions.

Single Step FFlag. Bit 0 of this
halfword is sct for single step
cxecution. In this mode, exe-
cution of micro-instructions
terminates at the completion
of cach instruction.

S12 = Trace Mode Flag. Bit 0 of this.
halfword is set for Trace mode
during execution. In thig mode,
following the execution of‘each
micro-instruction, the Simula-
tor prints the data between the
Low and High limits, . If Bit 0
is not set, this halfword can
contain an address of a micro-
instruction in the ROM data
arca. During micro-code exe-
cution, the content of the simu-
lated RAS/RAL is compared to
this tracepoint value. When a
match is found, the Simulator
prints the data between the Low
and High limits.

S14 = ROM Size. This halfword con-
tains the number of micro-in-
structions to be stored in the

simulated ROM. When the
Simulator is loaded, this
number is set at 400, which
defines a 1K ROM.

S16 = Core Size. This halfword
contains the number of bytes
required for the simulated

core memory., When the Sim-
ulator is loaded, this num-
ber is set at 800, which de-
fines a 2K byte core memory.

2.3 PROCESSOR REGISTERS

Each halfword in this areca contains the pro-
cessor registers as shown in Figure 2-3.
With two exceptions, each halfword contains
onc processor register. The exceptions are:

T2 = RAH/0. The left half of this
halfword contains the high-
order ROM Address Register.
Note that this is the outer rank
of the Address Register. The
right half of this halfword is
always zero.

2-3

T4

T16

B

Figure 2-3.

RAS/RAL. The left half of
this halfword contains the
high-order ROM Address Reg-
ister. Note that this is the
inncer rank of the ROM address
page register. The right half
of this halfword contains the
ROM Address Lower Register
(RAL).

Micro-Status Register (MSR)
ficlds are as follows:

Bank Switch which affects
Register Destination Address-
¢s 0, 1, and 2. When B is set,
addresses 0, 1, and 2 mean
MRO, MRI1, and MR2. When
Bis reset, addresses 0, 1,
and 2 mean RAIH, RAL, and
YS.

ATN

ARST

CATN

SNGL

UT

Il

il

T0) AR

T2 RAR’ 0

T4 - Ras RAL

Te 4 “ RDR
e MAR

TA MDR

TC RO

TE RI

Tio Re I 2 3 4 86 7 8 9 101 1213 14 18
TI2 R3 T // .
T4 R4 N M:RANU':; WIinN
Tie MSR] "?LETEFAT¥

P 4 N

::: :zw Icc\ ////c vie|L| cnTR \\ P
TIC LOC \

TIE IR

T20 USER RES 0

[] []

* L]

L] L]

[] []

[) L]

® []

T3E USER REG I8

Simulated Processor Registers

Mode definition. This 2-bit
field contains 1 for MPY
mode, 2 for DIV mode, 3 for
RPT mode and 0 when no
counter modes are in affect.

A number associated with the
counter modes. This field is
adjusted by the Simulator and
should not be changed by the
user.

Device Attention.

Auto Restart.

Console Attention.

Console Single Mode

Utility flip-flop

MPE -~

PPI -

wT

INIT -

T18

CVGL

CNTR =

P Tz

Memory Parity Error

Primary Power Fail

=~ Wait Indicator

Initialize Switch. This bit is
sct by the I b keyboard command
or a POW command. This
switch is reset by the first

0000 ROM micro-instruction.

I"'lags, Counter, Phase (FCP).
The fields contained in this
recister are:

Source Flag. When this switch
is set, the source reference ad-
dresses E or F imply the YS
fiecld of IR. When reset, the
E or F source addresses are
taken from the YD field of IR.

Flag Register (FLR)
Four-Bit Counter Register.

Phase Pointer associated with
Decode instructions.

2.+ USER'S REGISTERS

Data areas T 20 through T 3E contain the
sixteen 16-bit general purpose User's
Registers.

2.5 DROM

Each halfword in the DROM data area con-
tains the Phase Two ROM entry point asso-
ciated with a particular user's operation
code. DROM data can be loaded from a
binary object tape. This data can be dis-
played or changed using keyboard operations.

2.6 ROM

Each halfword in the ROM data area contains
one micro-instruction. The micro-instruc-
tions can be loaded from an ROM binary ob-
ject tape. These instructions can be displayed
and changed using keyboard operations. These
instructions are accessed during micro-code
execution.

2.7 CORE MEMORY

Each halfword of the CORE data area con-
tains one halfword of the core memory for
the simulated machine. Whenever the micro-
program accesses core memory, this data
area is used.

CHAPTER 3

USER COMMANDS

3.1 GENERAL SYNTAX

The command format is very similar to
CLUB. All numbers and addresses are ex-
pressed in hexadecimal. Commands from
the keyboard are buffered and not processed
until a delimiter character is typed. The
principal delimiters are:

) blank (space bar)
CR carriage return
LT line feed

decimal point

In this discussion, the term cell refers to a
halfword in memory. Whenever a cell is
displayed, it becomes the open cell. The

open cell is then available for modification.

The RUB OUT key can be used to correct
typing mistakes. Whenever RUB OUT is de-
pressed, the current command is ignored,
and the open cell is closed.

Keyboard commands can be up to 8 charac-
ters long. If more than 8 characters are
entered before a delimiter, or if the com-
mand is not proper, the Simulator will
type a question mark (?) and not pro-
cess the command. After an error mes-
sage, the open cell is closed.

3.2 CELL EXAMINATION
The space bar (B) is the delimiter used for
cell examination. The general command is

of the form

address P

where the address specifies which cell to
open. The address is expressed in hexa-
decimal with an optional prefix letter which
identifies the data area of interest. The
prefix letters are:

Q DROM

R ROM

S Simulator Registers
T Processor Registers
U (User) Core Memory

Sample commands are:

Q2B open cell 2B in the DROM
R27KH open cell 27 in the ROM
S16p open Simulator register

16 (Core Size)

T4p open cell 4 of the Proces-
sor registers (RAS/RAL)

U678k open halfword 678 of
simulated core

3451 open halfword 345 of actual
core

When a cell is opened, the system responds
by typing the address of the opened cell, and
the contents of the open cell. For example:

U678p

Ug678 Ccs2d

3-1

L
i
The line feed (LF) key can’?\z‘f used to open
the next sequential cell ipohemory. For

‘ exam ple: .
r N ,’/‘;};‘
F45,§fw“
g #2435 LF
THIHG 53FF

- Similarly, the carriage return (CR) key can
~ be used to open the previous cell in memory.
For example

R3GKH
RAIF36 2345 CR
RyA3H 5132

Note that the ROM and DROM data areas are
addressed by word; that is a 1K ROM has ad-
dresses RO, R1, R2, R3, ..., R3FF. The
256 word DROM area has addresses Q0, Q1,
W2, ..., QFF. Other data areas in memory
arce addressed by byte; that is, a 2K Core
has addresses U0, U2, U4, ..., UTFE,

When LLF or CR commuands are used, any
characters which precede the LF or CR

are ignored.. The LI or CR operations
should not be used to cross boundaries from
one data area to another. If this is attempt-
ed, the data displayed will be correct, but
the address indicated will not be correct.

TABLE 3-1.

3.3 CELL CHANGE

The decimal point (.) is the delimiter used
to change the content of a cell. The general
command is of the form

data.

where the specified data is to be deposited
in the open cell. A cell must have been
previously opened to use this command.
The data must be expressed in hexadecimal
form, composed of the characters 0 - 9 and

A - F. Leading zeros are not required.
When this command is used, the Simulator
responds with the address of the open cell

and the new content of that cell. For
example:

T8k

THdE8 #123 7771,

THgE8 7777 LF

THGFA 4567 89.

TEIGA #0989
3.4 LETTER COMMANDS;

Other commands to the Simulator are expres-
sed with one or two characters, followed
by a space. These commands are listed on
Table 3-1 in alphabetical order.

LETTER COMMANDS

Command Meaning Explanation
GW GO Begin micro-code execution with the micro-
instruction specified by RAS/RAL.
g Set High Limit The address of the open cell is defined as the

This limit is used in print, output,
and trace operations. A cell must be open
when the H command is used. The high limit
is recorded in Simulator cell SE.

high limit.

TABLE 3-1. LETTER COMMANDS

(CONTINUED)

Command

Meaning

Explanation

%

Q%

IRB

IU%

JB

Initialize

Input to DROM

Input to ROM

Input to Core

Set Tracepoint

The simulated processor is initialized as
follows:

1. The RAM, RAS, RAL, CNTR, FLR,
and RD rcgisters are cleared. The
Phase Pointer is set to X'3'.

2. The INIT indicator is set, but all other
bits of the Micro-Status Register are
cleared. (See IMigure 2-2.)

The Simulator contains a micro-code loader
which reads a DROM tape from the binary
input device and loads the data into the
simulated DROM. When this command is
used, the Simulator halts to allow a tape to
be placed in the tape reader. When the
EXECUTE button is pushed, the loader
reads the DROM binary tape. Refer to
Chapter 5 for details.

The Simulator contains a micro-code loader
which reads an ROM object tape from the
binary input device and loads the data into
the simulated ROM. When this command

is used, the Simulator halts to allow a

tape to be placed in the reader. When the
N ECUTE button is pushed, the loader
reads the ROM binary tape. Refer to
Chapter 5 for details.

The Simulator contains an 8-bit loader
which reads an 8-bit binary tape into
memory as specified by the Low and Tligh
Limits. When this command is used, the
Simulator halts to allow a tape to be placed
in the reader. When EXECUTT is pushed,
the tape is read into memory. Refer to
Chapter 5 for details.

'he address of the open cell is used to de-

fine a tracepoint. ‘The open cell must lie
within the ROM data arca. The address

of the ROM tracepoint is stored in Simu-
lator cell S12. During execution, the Sim-

ulator prints between Low and High Limits
whenever HAS/RAIL matches the trace-
point, or whenever the Trace mode is set.

3-3

!

Vi

Location

Set Single Modce

J
g/TABLE 3-1. LETTER COMMANDS
L (CONTINUED)
| command _,,Eic';)]am.tion Meceaning
Kb o Kill Trace - The Trace mode is reset, or the tracepoint is
;jf cleared. The Simulator cell S12 will contain
J TFFF after the Kill operation.

LK Set Low Limit The address of the open cell is defined as the
low limit. This limit is used in print, output,
and Trace operations. A cell must be open
when the L command is used. The low limit
is recorded in Simulator cell SC.

M1H Set VARI FIX Mode These commands set the Display Panel Status

M2} Set HALT FIX Mode Byte in Simulator cell S2 to reflect the speci-

M3} Set RUN Mode fied mode. The right-most four bits of the

M4} Scet ADRS Mode status byte are unchanged.

MG Set MEMR Mode ’

MGH Set MEMW Mode

M7k Set HALT FLT Mode

MSH Sct VARI FLT Mode

oK Output DROM The contents of the DROM, ROM, or Core

ORP Output ROM as defined by the low and high limits are

oup Output Core punched on to paper tape. When this com~-
mand is used, the Simulator halts to allow
the punch to be prepared. When EXECUTE
is pushed, the specified area of memory is
punched with both leader and trailer. De-
tails of device selection and tape format
are discussed in Chapter 5.

Ph Print The contents of the cells defined by the low and
high limits (inclusive) are printed on the tele-
type. The print format consists of one address
and 8 values per line.

QP Query Core This command causes the Simulator to

type out the address in actual core mem-
ory at which the simulated core memory
begins. This address may be needed by
loader programs to load binary object
tapes into simulated core. The address
is typed in hexadecimal. If the ROM
Size specified in Simulator cell S14 is
changed, the location of simulated

core in actual core also changes.

In single mode, execution of micro-instructions
is performed one-at-a-time. That is, after each
micro=operation is executed, control returns

to the user at the teletype. Bit 0 of Simulator cell
S10 is set during single mode.

3-4

TARPLE 2-1. i .7~ TR

(CONTINUED;

Command

Meaning

Explanation

WH

Xp

Yk

Zp

Wipe Out Single

Set Breakpoint

Set Trace Mode

Zap the Breakpoint

This command resets single mode. Simulator
cell S1G contains zero after this operation.

The address of the open ccll is used to define a
breakpoint. The open ccll must lie within the

ROM data area. The address of the ROM break-
point is stored in Simulator cell SA. During exe-
cution, RAS/RAL is compared to cell SA following
each micro-instruction. When a match is detected,
execution terminates and a message is typed.

In the Trace mode, the Simulator prints all cells
between the low and high limits after each micro-
instruction is executed. Bit O of Simulator cell
S12 is set during Trace mode.

This command clears any existing ROM breakpoint.
Simulator cell SA contains FFFF after this operation.

3.5 SPECIAL CONTROLS

The Micro-Status Register (MSR) represents

venienee, the commands listed on Table 3-2
arc provided.

No delimiter is required for these commands,
and any characters which precede the special

various signals and indicators associated with command characters (!, *, ", #, %) are ig-

the Processor.
set by the user to simulate the occurrence of

the corresponding signals.

For operator con-

Some of the MSR bits must be nored. The Simulator responds with a

carriage return and line advance to
acknowledge these special controls.

TABLE 3-2. SPECIAL CONTROLS

Command

Meaning

Explanation

%

Set ARST

Scet ATN

This command sets bit 6 of the Micro-Status Register
(MSR, T16) to simulate the Automatic Restart function.

This command scts bit 5 of the MSR to simulate the
occurrence of a devicee interrupt.,

3-5

) Table 3-2. SPECIAL CONTROLS
i

(Continued)

Meaning

Explanation

it

Set CATN

Set MPT

Set PPF

This command sets bit 7 of the MSR to simulate the
display panel EXECUTE button. If the display status
byte in Simulator cell S2 contains 4X, which means

VARI mode, then SNGL in bit 8 of the MSR is also set.

If the display status byte does not equal 4X, then bit 8
of the MSR is reset,

This command sets bit 10 of the MSR to simulate the
occurrence of memory parity failure.

This command sets bit 11 of the MSR to simulate the
occurrence of primary power failure.

3-6

ERCN

Ly

CHAPTER 4

MICRO-INSTRUCTIONS

4.1 EXECUTION CYCLE special features or exceptio;ns are mentioned;
the Simulated execution in most cases is iden-
Execution of micro-instructions is started tical to that of a GE-PAC 30-2 Processor.

with the GO (GB) command at the keyboard.
The execution cycle for each micro-instruc-
tion is illustrated in Figure 4-1. The micro-
op to he exccuted next is indicated by RAS/
RAIL. DBecfore fetching the micro-op, the
contents of RAS/RAL is compared to the
ROM Size specified by Simulator cell S14,

If the RAS/RAL exceeds the ROM Size,

the Simulator types FETCH NEXT
MICRO-0P

ROM ADRS ERR |

RAL @— RAL + 1

INPUT
TYPE NPU
ROM ADRS ERR

and terminates execution. If the RAS/RAL |

is within limits, the micro-op is fetched STORE OP IN RD
from the simulated ROM, and stored in RD. ;

At this time, RAL is incremented by 1. EXECUTE MICRO-oOP

Note that there is no carry to RAS. This
resulls in a page wrap-around effect. The
specific instruction fetched is then executed.
When the instruction is complete, the tests
indicated in Figure 4-1 are performed. A
print between limits results if either the

RAS/RAL = | PRINT BETWEEN

Trace mode is in effect, or a tracepoint has TRACE POIN LIMITS
been encountered. Control returns to the J
keyboard is either single mode prevails,
Switch 15 is depressed, or a breakpoint has S INGLE YES INPUT
been encountered. In the case of Switch 15 MODE -
being set, or the breakpoint being found,
the message
BREAKPOINT
TYPE INPUT
is typed. For single mode, the Simula- BREAKPOINT
tor simply outputs a carriage return and RAS/RAL
line advance to indicate that control BREAKPOIN YES
has returned to the keyboard.
The execution of specific micro-instructions
is discussed in the following sections. Only Figurce 4-1. Execution Cycle

4-1

1

)

4.2 MEMORY OPERATI;\QNS

~ All memory operations with simulated core

" memory act exaptly’the same as with an ac-
tual memory. These operations are listed
on Table 4-1.

/
Memory Write (MW) and Priviledged Write
(PW) are not separate to the Simulator as
memory protect hardware is not simulated.

If the core address exceeds the Core Size
parameter in Simulator cell S16 during Read
operations, zero data is fetched. If the ad-
dress exceeds the Core Size during Write
operations, the information is deposited into
the bit bucket.

4.3 REGISTER ADDRESSING

The Simulator includes the same source and
destination restrictions as an actual machine.
These restrictions are:

1. The Bank Switch (Bit 0 in MSR)
affects the destination address-
only, not the source address.
The Bank Switch must be set to
store into MR0O, MRI, or MR2
and reset to store into RAH,
RAL, or YS. If the source ad-
dress 0, 1, or 2 is used, the
MRO, MR1, or MR2 is implied
independent of the Bank Switch.

o

If the AR or CTR registers are
addressed as Source registers,
zero data will be fetched.

3. 10 cannct be used as a source
and destination of one instruc-
tion. If attempted, the Simula-
tor types

I0 ERROR

and the instruction is not
executed.

4, When the RAL is loaded with
data, the RAH is copied into
the RAS.

4.4 FLAG SETTINGS

The C, V, G, L flags reside in bits 4 through
7 of the FCP register. These flags get set as
a result of various micro-instructions, or by
explicitly loading the FLR register. In gen-

eral, if the FLR is not the explicit destination,
the flags remain unchanged except as follows:

1. Load adjusts C flag if Carry Out
is specified in the E field.

2. Add, Subtract adjust the C flag if
Carry Out is specified in the E
field.

3. Add, Subtract adjust the V, G, L
flags if Set Flags is specified in
the E field. '

4, AND, OR, Exclusive OR adjust
the G, L flags if Set Flags is
specified in the E field.

5. Test Adjusts the G, L flags.

TABLE 4-1. MEMORY OPERATIONS
beforé after
Operation MD Memory MD Memory
Full Read A B B B
ull Write A B A A
Priviledged Write A B A A

If the FLR is the explicit destination, the
flags get set by either the destination data

or the setting conditions as defined previous-
ly in items 1-4.

When executing A, S, N, O, X instructions
with Set Flags specified in the E field, the
G and L flags are adjusted as follows:

G = So.(S;+Sy+.. . +815+Gp+Ly)
L = So
where S, bit n of resulting data
Gp = previous G flag
Lp = previous L flag

4.5 INPUT-OUTPUT

All input-output operations are initiated when
a Load instruction is done with I0 as source
or destination. The first five cells in the
Simulator data area are:

so! swh SWL | DISPLAY PANEL SWITCHES|
N = BYT

S2 N STATUS COUNT
S4 83 B2 INDICATOR REGISTER |
$6 B BO INDICATOR REGISTER 2

S8| SELDEV | ATNDEV

The result of an IO load is .summarized in
Table 4-2.

The Simulator differs from a real processor
in that it does not rely on an external device
to return sync. Note that there is no such
thing as a time-out with the Simulator.

This technique of combining a sequence of

micro-instructions into one user-instruction
makes I/0 possible with certain restrictions.
Namely, the timing will not be realistic.

The simulated I/0O operations will run much
slower than normal. No test is made in the
Simulator for SELDEV = 0. A zero or im-
proper device number or an unavailable de-
vice should not be referenced.

TABLE 4-2,

10 SUMMARY

10 is the Source

E field

Operation

Explanation

xx00

xx01

xx10

xx11

none

Acknowledge

Data Request

Status Request

10 ERROR message.

Copy ATNDEYV to Destination, and clear ATN
(bit 5 of MSR).

If SELDEV #1, execute a Read Data instruc-
tion with device number from SELDEV and put
data into the Destination Register specified.

If SELDEV =1, copy SWH into Destination if
N is odd; copy SWL into SDR if N is even. In-
crement N, and resct if N =4,

If SELDEV # 1, execute a Sense Status instruc-
tion with device number from SELDEV and put
the status into the Destination Register. 1If

SELDEV = 1, copy STATUS into the Destination.

TABLE 4-2. 10 SUMMARY

‘ (CONTINUED)
110 is the Destination

E field Opci‘ati(m Explanation

xx00 none 10 ERROR message.

xx01 Address Copy Source Register into SELDEV. If Source
byte = 1, reset CATN and clear N, the byte
count.

XX10 Data Available If SELDEV # 1, execute a Write Data instruction

with the device number from SELDEV and data
from the Source Register specified. If SELDEV
=1, copy the Source byte into B, incremented
N and reset if N = 4, '

XX11 Command Execute an Output Command instruction with
Device Number from SELDEYV and data from
the Source Register specified. If SELDEV =
1, the command is disregarded.

4.6 OTHER MICRO-INSTRUCTIONS 2. At the end of each instruction,

the M field is tested. If a counter
If a Command instruction is executed with mode is specified by a non-zero
bit 15 1, which specifies POW, the Simula- ' M, the action shown in Figure
tor types 4-2 occurs.

- 3. During the micro-op fetch from

POWER DOWN the simulated ROM, the incremen-
ting of the RAL is suppressed if
and terminates execution. MPY Mode with N =1 or 3, DIV

Mode with N =1 or 3, or RPT
Mode with N = 1.
4.6,1 Counter Mod
’ ounte odes 4. During data fetch from the source
registers, any reference to YD

The Counter modes (MPY, DIV, RP
oees { » RPT) affect implies YDP1 if MPY Mode with

cxeceution in the following ways. N =2, or DIV Mode with N = 1.
5. During data store into the destina-
1. The Command operation sets the tion register, any reference to
M field of the MSR according to YD implies YDP1 if MPY Mode
the mode specified, and elears : with N = 2, or DIV Mode with
N, the counter phasce count., The N =1. If DIV Mode with N = 3,
M field is sct to 1 for MPY, 2 the store is suppressed if Carry

for DIV, and 3 for RDPT. in FLG register is zero.

NO

(RR
FORMAT)

A @ IR(12—18)
(USER SOURCE)

SOURCE
FLAG = |

————

ADDRESS
MOoD)

Ae—IR(8—11)
(USER DESTINATION)

e]

SOURCE

MICRO

A@€e— A ORI

;__J

GET USER REG.A

I

RESET

SOURCE FLAG

Figurc 4-2. Post Execution Counter Mode Handler

DONE

4-5

4.6.2 Decode Instruction

DILL

DOTE

DOTEA

DOTI2

DOTP

4-6

: no 1
| no 2
,———————>4
—=no__ 5.
6.
——=no_ 7.
8.

L———no 9.
10.

11.

12,

13.

L =14,

16.

17.

I8,

19.

e

(P already = 3)

IS RD 0:3,9 = ¢ ?

IS INITL (MSR15) = 1 *?
De— @208 42
RD12 = 1 ?

MDR «— Core (MAR)

RD 13 = 1 ?
CC +— FLG

RD 14 = 1 ?

FLGe—#§ _

CNTRe— §§

g e—

UTe—¢

P = forl ?2—0O0 o 33
RDI5 = 1 ?__Do , ERROR
P = 1 ? yes 23

D/S = AR/YD ?— 0 o ERROR
Source Flag «—1

IRl = 1 2 yes > 24

ARe— (YD)

Test E field

Test Phase

Phase = @

4.6.2 Decode Instruction (Continued)

DECODE ———=21. D<——DROM (IR¢ - 7)
22, Pe—2— 544
DNRR yes 23. D/S = LOC/LOC ?-BO.ERROR

24. LOC«+—LOC + 2

25. IR = 1 °? no > 30
26. IR3 = 1 ? yes » 30
yes 27, IR12-15 = ¢ ?
28, De— g4
DGT1 ———= 29, Pe—1 .44
DRX 30. IR12-15 - ¢4 ? yes
31. De—g@ggcC
DRXN L 32, De—f@@sS=
or23 33. D/S = LOC/LQC——-EO-——ERROR
34. RD15 = 1 no > 46

ves 35. P = 3 ?

36. (ATN. PSW1+CATN+SNGL+MPE+PPF) =

DGT@ —— 37. LOC+——LOC + 2

38. De— @14

39. Source Flage—§
40. Pe—@——» 44
DGT3 41. De— gg14
DGTS 42, Source Flage—4§
13, Pe— 33

not RR format

2X format

Phase = 2 or 3

1 ?/__195_.41

4-17

4.6.2 Decode Instruction (Continued)
DOJ 44. RAHe—#
45._ RAS/RAL «=— D—+DONE

DZ3NE 46, LOCe—— LOC + 2 —+DONE

4, 6‘;3 Test Instruction

The Test micro-op tests bits in the Micro-
Status Register. The ATN bit is tested only
" if specified by the Test micro-op and bit 4
of the PSW is set.

4.6.4 User Dkestiration/Source

The use of addresses E or F in the Source
field of a micro-op can refer to either the
user's Destination or Source register. The
logic associated with this register selection
is shown in Figure 4-3

Recall that with the Decode instruction,
the Source Flag is set - when leaving
Phase 0, and reset on entry to Phase 0
or Phase 3.

N=O
f :|
BRANCH] N =2
k/ No3

IV
oo >>»

(K]

\N_N=1

BRANCH] N2

/ N=3

EEX)
OP> P>

N2O -
N= | > :
RANCH Nfg ~ ERROR
/ N: - ERROR
DONE
CNTR@— CNTR~—| CNTR @— CNTR ~1|
YES
RESET RAL DONE
BIT 7
Ne—0 Ne— O
Ne— N+ RAL ®«— RAL + |
DONE DONE
Figure 1-3. Source/bestination Logie

CHAPTER 5

USE OF THE SIMULATOR

5.1 CONFIGURATION

The GE-PAC 30-2 Simulator program, 05-014,
runs on any GE-PAC 30 Processor which has
8K bytes or more of core memory. The Sim-
tlator assumes that a teletypewriter is
interfaced to the Processor as Device Num-
ber 2; the Display Panel is referenced as
Device Number 1.

5.2 LOADING THE SIMULATOR

The Simulator Tape, 05-014R02MO09, is an
absolute tape using the normal binary object
tape format. The Simulator can be loaded by
either the 8K Absolute Loader or the General
Loader. Refer to the Loader Descriptions,
Publication Number 06-025A12, for a detailed
explanation of the loading procedures.

5.3 STARTING PROCEDURES

The starting location is 100. The specific
procedures to start are:

1. Set the Display Panel switches
to X'0100'.

2. Select ADRS mode and depress
EXECUTE.

3. Sclect RUN mode and depress
EXECUTE.

When started, the Simulator types a carriage
return and line advance on the teletypwriter

which makes an audible click. This sound
means the Simulator is ready for use. When
started at 100, the current state of the
data areas is unchanged. This means that
immediately after loading, the content of

the simulated ROM, DROM, and Core areas is
unpredictable. Once the ROM, DROM, and

Core data areas have been set up, however,
their state is not affected by restarting

at 100.

5.4 MEMORY ALLOCATION

The Simulator itself requires a little less
that 5K bytes of memory, starting at 100.
The remaining core memory can be allo-
cated such that

2*(ROM Size) + (Core Size) < M

where ROM Size is defined in Simulator cell
S14, Core Size is defined in Simulator cell
S16, and M is the remaining memory avail-
able. In an 8K memory, M is about 3K, and
the equation becomes:

2*(ROM Size) + (Core Size) < 3K

After loading, ROM Size is 1K and Core
Size is 2K. If these numbers are satisfac-
tory for the job at hand, the parameters do
not have to be adjusted. If a different al-
location is perferred, the ROM Size para-
meter should be adjusted prior to loading
the Simulated Core area with data. Once
the Core area has been loaded, the ROM
Size parameter is Simulator cell S14 should
not be changed. The Core Size parameter
affects only simulated memory operations,
and can be changed anytime. Memory opera-
tions are discussed in Section 4.2

5-1

/,’
s

5.5 - LOADING THE ROM >

" The keyboard command IRY is used to input
data to the ROM data area, When this com-
mand as used, the Simulator will read a -
ROM binary .object tape from the Binary In-
put Devicé as defined in:the Device Defini-
tion Table from X'78' to X'7F'. Specific~-
ally, thé halfword at X'78' is interpreted

~as follows:

78 Dev No. Command
This halfword for various devices is shown
below.
™Y 0294
HSPTR 0399

The ROM binary tape format must conform to
that generated by the GE-PAC 30-2 Micro-
Code Assembler, as defined in Publication
Number 05-012A12.

Basically, the tape must be organized in
blocks, where cach block begins with an ad-
dress. The address is to be the ROM ad-
dress times 2. Each block must be followed
by blank tape.

When the IRY command is given, the Simula-
tor will halt to allow the tape to be placed
in the tape reader. When the EXECUTE but-
ton is depressed, the tapeis read. Leading
blank tape is skipped. Data is read and
stored in the ROM data area until blank tape
is encountered. If the data on the tape was
not an even multiple of 4 characters, the
Simulator types a question mark (?) to in-
dicate an improper tape format. Tf the

tape format was proper, the Simulator types
the ROM address and content of the last

ROM instruction loaded from the tape.

i put data to the DROM data area.
“‘ulator will read a DROM binary object tape
~from the Binary Input Device.

5.6 LOAYLIMG VHE DR

The Keyboard command, IQ¥, is used to in-
The Sim-

The tape
read must be one continuous block, The
tape format should be identical to that of
an ROM tape.

When the IQ¥ command is given, the Simula~-
tor will halt to allow the tape to be placed
in the tape reader, When the EXECUTE but-
ton is depressed, the tape is read. Lead-
ing blank tape is skipped. At completion

of the Load, the Simulator types the DROM
address and content of the last word

loaded from the tape.

5.7 LOADING THE CORE

The Simulator contains an 8-bit loader which
can be used to load the simulated core mem-
ory. The loader reads 8-bit tapes from the
Binary Input Device as defined in the Device
Definition Table from X'78' to X'7F'. No ad-
dress information is required on the tape.
The tape is loaded into the area of memory
as indicated by the Low and High Limits.
When the EXECUTE button is depressed, the
tape is read. Leading blank tape is skipped.
Loading proceeds until the High Limit is
reached.

5.8 EXECUTION

Once an ROM program has been loaded, the
simulated machine should be prepared for
execution. The Initialize (I¥) command is
available for this purpose. Other items
which may require set-up are:

S2 Display Panel Status
S0 Display Panel Switches
S8 ATN Device Definition

\

iigure 2-2 should he kept in view during ¢
simulation process to assist in the identifica-
tion of the data arcas. ' :

The command G causes ROM execution to
begin at the micro-instruction indicated by
RAS/RAL. Note that if RAS is changed to
some value from the keyboard, it is in gen-
eral, wise to give RAH the same value.

The techniques available to control and moni-
tor the execution process are summarized
below.

Technique Set Command Clear Command
breakpoint Rnnnnp----X¥ Zp
tracepoint Rnnnnp----JB KK
trace mode YW KB
single mode VP wpH

In addition, Switch 15 on the (actual) Dis-
play Panel can be used to interrupt execu-
tion and return control to the keyboard. -
When Switch 15 is depressed, the Simulator
types

BREAKPOINT

and terminates execution.

5.9 ROM OUTPUT

. After a program has been tested, it may be

desirable to punch a new ROM binary tape.
The keyboard command ORY is for this pur-
pose. When this command is used, the Sim-
ulator punches an ROM binary tape to the
Binary Output Device as defined in the De-
vice Definition Table from X'78' to X'7F'.
Specifically, the halfword at X'7A' is
interpreted as follows:

TA Dev No. Command

This halfword for various devices is shown
below.

TTY 0298

HSPTP 0392

The information to be punched is defined by
the Low and High limits inclusive. The

tape is punched in a proper ROM hinary for-
mat. Note that if this tape is to be used as
ROMWATS input, unused locations in the
ROM should contain zero. This procedure to
dump an ROM tape, therefore is as follows:

1. Set Low Limit with LJ.
2. Set High Limit with HB.

3. Clear unused locations in the
ROM block to be punched.

4. Make sure cell X'7A"' defines
the proper device.

5. Give ORY command. The
Simulator will halt to
allow device preparation.
Turn tape punch on.

6. Depress EXECUTE to start
punching. Leader and
trailer are punched before
and after the data. The
Simulator will halt after
punching is complete,

7. Depress EXECUTE to regain
control at the keybhoard.

5-3

j J

5.10 OTHER OUTPUT OPERATIONS

The contents of the DROM can be punched on
tape with the OQB command. The procedure
for this operation is exactly the same as for
ROM outputs.

§
j
{

The contents of the Core can be punched on
tape withthe OUB command. The procedure
for this operation is similar to the above, ex-
cept that an 8-bit tape will be punched. 1t is
not neccssary in this case to clear any unused

52}
i
N

ccre locations. Due to certain punch charac-

‘teristics, it will not be possible to use this

operation with some ASR 33 Teletypes.

Following all output operations, it is possible
to verify that the tape was punched properly.
To verify a tape, the proper input operation
should be performed with Switch 15 on the
Display Panel depressed. With this switch
set, the IQ, IR, or IU commands will com-
pare rather than load. If any errors are
detected, a COMPARE FAIL message is
typed.

APPENDIX 1
COMMAND SUMMARY

nnnn ¥ Display halfword of actual core
Qnnnn ¥ Display simulated DROM location
Rnnnn B Display simulated ROM location.
Snnnn ¥ , Display Simulator Register
Tnonn B Display two simulated Mod 4 reglsters
Unnnn ¥ Display halfword of simulated core
nnnn. deposit nnnn into open cell © ‘
nnnn LF ignore nnnn, display next cell
mnnn CR ‘ ignore nnnn, display previous cell
nnnn RO ignore nnnn, close the open cell
Note thatn = 0,1,2,..... ,9,A,B,C,D,E, F
¥ = blank (space bar)
LF = line feed
CR = carriage return
RO = rub out
Gk | Go, start micro-code execution
H B High; set high limit
1B Simulate Processor power-up
QK Input DROM binary tape
IR ¥ Input ROM binary tape
IUK Input 8-bit Core tape
Jp Set tracepoint
Kp Kill tracepoint or trace mode
LK Low; sct low limit
M1 B Set VARI FIX modc
M2 ¥ : Set HALT FIX mode
M3 ¥ Set RUN mode
M4 ¥ Set ADRS mode
M5 B Set MEMR mode
M6 B : Set MEMW mode
M7 b Set HALT FLT mode
M8 B Set VARI FLT mode
oQ ¥ Output DROM binary tape
OR P Output ROM binary tape
ouU ¥ Output 8-bit Core tape
Pp Print between limits
QP Query Core location
VK ~ Set Single mode
W ¥ Wipe out Single mode
X B Set breakpoint
Y ¥ Set trace mode
7 b Zap breakpoint
! Set ATN
* Set CATN
" Set MPF
i Set PPF
% Set ARST

Al1-1/A1-2

BREAKPOINT

ROM ADRS ERR

POWER DOWN

IR RACE CONDITION

I0 ERROR

MODE ADRS ERR

NO SUCH MODE

MODE CONFLICT

DO IT ERR

COMPARE FAIL

APPENDIX 2
ERROR MESSAGES

. An ROM breakpoint was encountered during

simulated ROM execution. The instruction
at the breakpoint was not executed. *This
message also occurs when Switch 15 on the
Display Panel is depressed to interrupt

ROM execution.

During execution, this message occurs if
the contents of RAS/RAL are not less than
the ROM Size defined in Simulator cell S14. -

A Command micro-instruction set the POW
bit in the Micro-Status Register. In acutal
operation, this action would shut down the
Processor power.

The command following an IR load refers to
a user register as a data source.

The 10 code was used as Source and Destina-
tion, or the operation was not a Load, or the
E field specified XX00.

A RPT or MPY or DIV Command did not fall
on an odd address.

The N field in the Micro-Status Register con-
tains an improper value. The occurrence of
this message implies a problem in the Simula-
tor itself.

A command specifying a Counter mode occurred
during a Counter mode.

A Do micro-op occurred during phase 0 or 1
with RD15 not set, or during phase 0 and the
Destination/Source ficld did not contain AR/
YD, or during phase 1, 2, or 3 and the Des-
tination/Source ficld did not contain LOC/LOC.

An ROM Input (IR¥), DROM Input (IQ¥), or
Core Input (IUB) operation with Switch 15 de-
pressed detected a mismatch between the
tape and memory.

A2-1/A2-2

STATUS BYTE

Mode Control Switch

DISPLAY PANEL STATUS

APPENDIX 3

MODE

REG

VARI FLT
HALT FLT
VARI FIX
HALT FIX
RUN

ADRS
MEMR
MEMW

Qoo IoI-O

OIQC|IC|O |

(=3 Ll Ll =N FR =l N

=HIOIHICIC|IOIQO|O

Register Select Switch

HliR R == o lolo e

HiHIHIHIOIO|[C|loIH|IClo |

Lol Lol K= KB Lol |l K Ko [| Kool Ko

HIOIHIO|IRIOIR|O|olol=]|o

OFF
Register Display
INST
PSW
RO/1
R2/3
R4/5
R6/7
R8/9
R10/11
R12/13
R14/15

A3-1/A3-2

APPENDIX 4> ;
MICRO-INSTRUCTION SUMMARY

OP-CODE INSTRUCTION
0000 DECODE
0001 BRANCH
0010 TEST
0011 COMMAND
0100 LOAD
0101 LOAD IMMEDIATE
0110 OR
0111 OR IMMEDIATE
1000 AND
1001 AND IMMEDIATE
1010 EXCLUSIVE OR
1011 EXCLUSIVE OR IMMEDIATE
1100 ADD
1101 ADD IMMEDIATE
1110 SUBTRACT
1111 SUBTRACT IMMEDIATE
Commands
Bits Sct Definition
5 Multiply
4 Divide
4,5 Repeat
7 Mem. Read
6 Mem. Write
6,7 Priv. Write
9 Reset Bank*
8 Set Bank*
8,9 Trigger Bank*
11 Reset Utility*
10 Set Utility *
10,11 Trigger Utility
12 Clear Mem, Parity*
13 Set Wait Alarm*
14 Reset Wait Alarm*
15 Power Down
* flip-flops

E FIELD

I ks

DEFINITION

For A, S, X, N, O:

1xxx
x1xx
xx1x
xxx1

For L ONLY:

00xx
01xx
10xx
11xx

No AR to ALU

Set Flags

Carry Into ALU
Carry Out of ALU

Load

Shift Right
Shift Left
Cross Shift

On Shifts ONLY:

xx1x Carry Into ALU
xxx1 Carry Out of ALU
On Non-Shifts:

xxx1 Clear Carry

x '"don't care' condition
Tests

Bits Set Definition

5 I/0 Int. (ATN)

6 Auto-restart (ARST)
7 Cons, E. (CATN)

8 Cons. Sngl. (SNGL)
9 Utility flip-flop (UT)
10 Mem. Par. Fail (MPF)
11 Prim. Pwr. Fail (PPF)
12 Fast I/O Int. (FAST)

Load, 1/0 = Destination

E field Definition

xx01 Address

xx10 Data Available

xx11 Command

Load, 1/0 Source

xx01 Acknowledge

xx10 Data Request
xx11 Status Request

A4-1/A4-2

S

T — T v T qw ™ W
‘ " TP110-11-8

ROMWATS PROGRAM (05-005)

1. PURPOSE

This program converts ROM object tapes as
generated from the Micro-Code Assembler
or Micro-Code Simulator into a form which
is acceptable to the automated ROM wiring
machine.

2. PROGRAM DESCRIPTION

The ROMWATS program requires 2724 bytes
of core in addition to 2048 bytes for storage
of the ROM program.

Two ROMWATS tapes are generated for cach
ROM program. The first tape (wire tape) is
used to wire the ROM: The second tape
(check tape) is used to check the ROM after
it has been wired.

3. PROGRAM INPUT

The ROMWATS program consists, in part,
of a loader which is able to accept ROM ob-
ject tapes. Figure 1 shows the form of this
tape.

The object tape input must possess the fol-
lowing characteristics; no other limitations
are imposed.

1. Four-level code. Tape channels
8-5 arc ignored, hexadecimal data
resides in channels 1-4.

Each non-contiguous block of data
must be preceded by a minimum of
six frames of blank tape and a four
frame ROM address.
*v\

%
Since core memory is byte address-
able and ROM is halfword address-
able, ROM addresses which are
punched on the object tape must he
multiplied by two (left shifted one
place).

The ROM object image buffer
allows storage of 1024 ROM words
segmented into four pages of 256
words each. In order to allow for
ROM programs of 2048 words,
each core buffer page is assigned
two ROM addresses as shown in
Table 1. Once a core buffer page
has been filled, a ROMWATS tape
will be dumped before the buffer
can be utilized for the other ROM
page. For this reason, it is rec-
ommended that the addresses on
the ROM object tape be in ascend-
ing order.

Since each ROMWA'T'S tape gener-
ates a full 1024 words of ROM
wiring data, it is imperative that
the ROM object tape contain only
that data which is to be wired.
Extraneous data appearing on the
object tape will be wired; unused
ROM locations should be signified
by not appearing on the object tape
or by containing zeros.

T

TABLE 1. ROM ADDRESSES
"‘CORF BUFFER CORE LOC. CORRESPONDING ROM PAGES
PAGE HEX UNSHIFTED ~___SHIFTED
) 0 800-9FE orOOO—OFF, 000-1FE
' 400-4FF, 800-9FE
S 1 AOO-—éFE 100-1FF, 200-3FE
’ | 500-5FF, A00-BFE
2 . CO0-DFE oy 200-2FF, 400-5FE
; 600-6FF, C00-DFE
“ . 3 E00-EFE or300-3FF, 600-7FE
700-7FF,

'The ROMWA'I'S program reserves storage
space for Absolute CLUB W/O Output (03-
003). The location in core of the object im-
age can be found by taking the ROM address
as it appears on the Micro-Code Assembler
listing, shifting it left once and adding a dis~
placement of X'800'. CLUB may be used to
modify its contents. Changes should be made
after ROMWATS prints the message "TURN
PUNCH ON". After making the necessary
changes, turn the punch on and execute at
location (X'184A"),

4. PROGRAM OUTPUT

The output of the ROMWATS program will
consist of two tapes for each 1024 words of
ROM code. The first tape is a wire tape
which is used to wire the ROM. The second
tape is a check tape which is used to check
the ROM once it is wired. Two sets of
ROMWATS tapes must be generated for ROM
programs that are in excess of 1024 words.

Figure 2 shows a section of ROMWATS out-
put tape corresponding to the object input
tape section shown in Figure 1. Figure 3
shows the core memory allocation for
ROMWATS. Each record on the ROMWATS
output tape consists of the data shown on
Table 2.

1. Odd parity is punched in column
8 and generated over columns 4
through 1 only.

2. Records are normally separated
by 10 frames of leader. Every
thirty second record is followed
by 20 frames of leader. This
signifies an address bank change.

3. The addresses generated hy the

ROMWATS tape are not linear.
This is done to facilitate wiring
of the ROM whose address decod-
ing is non-linear due to hardware
considerations.

5. OPERATING PROCEDURE

Use the following procedure to generate the

ROMWATS tape.

1. The ROMWATS program is in ab-
solute form and should be loaded
with the ABSOLUTE LOADER.

The program occupies location
X'1010' to X'1AB4' inclusive.’
Locations X'800' to X'1000' are
reserved for the ROM object
image. Locations X'80' to X'800'
are reserved for Absolute CLLUB
W /O Output (03-003) if it is neces-
sary.

FRA —_7 @——————— TAPE TRAVEL
CHANNEL | ® 000 o0
CHANNEL 2 ® 000 ®
CHANNEL 3 [X X} ®
00000000000000000000000000000Pp00COCOOOOOOCOPOEOO
CHANNEL 4 ° ® ® . /
CHANNEL 8 00000006 0000 P
— srnogker reeo
CHANNEL N ¥
CHANNEL 8 0000000 0000O
N J »)) gy
| I i
DATA DATA LEADER
967F 1088
SHIFTED ROM ADRS.
(0200)
N
Figure 1. ROMWATS Object Tape Input oy
PAGE 1/0 6“’)
rwme SIGNIFIER .
«@—————————— TAPE TRAVEL
CHANNEL | FIELD ¢e0 000 o °
CHANNEL 2 [X ® SPROCKET FEED HOLES /
CHANNEL 3 e e "/— ¥
00000000000 000 0000000000000 0000000000000
CHANNEL 4 (X o o
CHANNEL 8
CHANNEL 6
CHANNEL 7
CHANNEL 8 e 000 O o0
INITIALIZE CHARACTER —— FT8698801 001
(- I\ J\\ J J
| T T T
0DD PARITY OVER CHANNELS DATA DATA ROM LEADER
170 4 FOR FOR ADRS
100 101 100
Figure 2. ROMWATS Output Tape
80
cLus
START OF ROM IMAGE x'800'
PAGE 0/4 IMAGE
START OF ROM PAGE | IMAGE x'a00' X'®FE' END OF ROM,PAGE O IMAGE
PAGE 1/8 IMAGE
START OF ROM PAGE 2 IMAGE x'coo' X'BFE' END OF ROM,PAGE | IMAGE
PAGE 2/6 IMAGE
START OF ROM PAGE 3 IMAGE x'Eoo’ X'DFE' END OF ROM,PAGE 2 IMAGE
PAGE 3/7 IMAGE
START OF ROMWATS PROGRAM x'1010' X'FFE' END OF ROM,PAGE 3 IMAGE
ROMWATS
x'1AB4'

L— END OF ROMWATS

Figure 3. Core Memory Allocation

_f__'I;A'PE COLUMNS
FRAME TYPE CHARACTER | PURPOSE |8 7 65 4 .
| INITIALIZE 3 WL"‘S‘I‘(}MFIES RECORD|1 0100 . 000
o F TO FOLLOW
F;/
9 Dm%tiyg Signifies wire or
I check record, page
4 0,1or2, 3
MJ page 0, 1 wire 10001 . 010
,j page 2, 3 wire 10000. 110
page 0.1 check 000O01. 011
: page 2, 3 check 00000 . 111
3-10 8 Frames of data: Words to be wired
’ 3-6 even ADRS data,
MSB6. 7-10 odd ADRS
data, MSB 10
11-13 3 frames of ADRS ADRS where data
gpecifying even is to be wired
ADRS, MSB 13
14-23 10 frames of inter-record
leader gap
2. Localion X'78' specifies the input 3. The printing of all messages is
device number. Location X'79' done on a TTY (Device 2). If the
specifics the input device command. ASR 35 is used as the output device,
The input device is used to read the mode selector should be switched
the ROM object tape into the ROM to TTR when the message "TURN
image buffer. Location X'7A' speci- PUNCH ON" is received. If the
fies the output device number. Lo- ASR 35 is used as an input device,
cation X'7B' specifies the output the mode switch should be in the
device command. The input device TTS position after the message
is normally a paper tape reader. "INITIALIZE, EXECUTE AND
The output device is always some READER ON" is received. Other-
sort of paper tape punch. Location wise, the ASR 35 should be left in
X'78" to X'"TB' must he set by the - the K mode to receive printed
operator before the program can messages.
be executed. Table 3 lists the
most used device numbers and
commands.
4

1]
.

6.

i TABLE 3.

DEVICE NUMBERS

INPUT | (X'78") - | INPUT (X'79")
DEVICE | NUMBER | DEVICE CMND

o

OUTPUT
DEVICE |

(X'TA")

OUTPUT (X'7B'")

rlw]\y X|02| X1941 X!02| X|18|
HIGH
SPEED X'03' X'99' X'05' b0 X'9A"
READER PUNCH “

After the program has been loaded,
address X'1110' should be selected
and the program executed in RUN
mode.

The message "PLACE OBJECT
TAPE IN READER INITIALIZE,
EXECUTE AND READER ON" will
be printed out and the machine will
go into a Wait state. Load the tape
with the leader over the read heads,
release Data Switch 15 (far right
switch) and depress EXECUTE.

If a message stating "THE BUFFER
FOR THIS PAGE IS FULL" is print-
ed and the full object tape has not
been read, it means that the object
program is in excess of 1024 words
and two ROMWATS passes will be
necessary,

If no message is printed out during
the loading procedure, the system
will remain in the Read mode until
Data Switch 15 is depressed. This
is done to allow multiple tapes to be
loaded. '

10.

In any case, after the statement
"TURN PUNCH ON" is printed,
either by virtue of Data Switch 15
being depressed, or buffer full
condition, the punch should he
turned on and the EXECUTE switch
depressed (the machine will be in
the Wait state after the punch on
statement)., The ROMWATS tape
will then be punched.

If the ROM object image must be
modified before dumping the
ROMWATS tape, this should be
done after the statement "TURN
PUNCH ON", but prior to depress-
ing the EXECUTE switch. This
procedure is described in Section
3. After modification of the object
program, address X'184A' should
be selected, the punch turned on
and the program executed in the
Run mode.

The output tape will consist of two
sections spaced by about one foot
of leader. The first section is a
wire tape, and the second section
is a check tape. The tapes should
be separated and identified by job
title, data, and pass number, if
applicable.

6

11.

1 check tape.
- should be repositioned to the lead

If the buffer full message was re-
ccived, another pass will be neces-
sary to generate the full complement
of ROMWATS tapes. The tapes just
generated should he removed and
marked Pass 1 wire tape and Pass
The input object ta

just preceding the four addres

frames which were ready ‘and®he
EXECUTE button deprgsed. Steps,+ -
9 and 10 should repeated

1t in the generation of
These tapes should

. After completion of the program,('

ﬁ?i

be marked Pag ‘

wire tape and Pass
2 chec tape e

%

T

the machin ill be left in a Wait
state at J8cation X'1110'. Depress-
ing E‘s(ECUTE will cause re-execu-
tion of the program.

If a tape jam occurs during the pun-
ching of the ROMWATS tape, or

for some reason another set of
ROMWATS tapes is desired, ad-
dress X'184A' should he selected
and the program executed.

READER COMMENTS

The Generaf‘”‘Electmc Company solicits your help in providing complete and accurate technical

publications co‘mamg our Process Computer equipment, Please answer the questions listed

here by checking the appropriate block.

explain in '"Comments''

General Electric Company.

PC 228

YES

4
o

&
Is this publication adequate for your needs?
Is the material S
Presented in clear text?

Conveniently organized?

J
v
3
Adequate detail? ‘ D
(.
(.

Adequately illustrated?

0oooo O

Suitable for the technical level desired?

What is your computer application?

What is your position? (Supervisor, Programmer,

Technician, etc.)

How is this publication used:
Familiarization of the subject? —d As reference material?
For training purposcs?] For maintenance of equipment? -

Other (explain)

If your answer to any of these questions is ''NO",

please

section below. Your comments and suggestions become the property of

&
(-

Please give complete references (page number, line, etc.) with your comments.

Please indicate if a reply is desired and include your proper mailing address,

Your cooperation will be appreciated.

COMMENTS :

No postage necessary if mailed in the U, S, A,

Attention: Technical Publications

4

Staple

YOUR ASSISTANCE, PLEASE

This document has been generated to help us serve you better. Your answers to the questions

on ‘the reverse side of this form, together with comments and recommendations,will be of great
value to us in providing the best possible publications for your use. Your ‘ag;s""\?vers and comments
will be carefully reviewed by the person who generated, this pujh’cation, #nd may result in a
revised publication. Your comments and recomme {dat‘i%‘hWecome the property of General
Electric Company. iy

Ty
Communications concerning Technical mj?lications should be directed to:
e il T

S Manager, Technical Publications
‘ i GE Process Computer Department
Cen® 2255 West Desert Cove Road
Phoenix, Arizona 85029

FIRST CLASS
Permit No. 4091

Phoenix, Arizona

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY...

GENERAL ELECTRIC COMPANY -
PROCESS COMPUTER DEPARTMENT
2255 West Desert Cove Road
Phoenix, Arizona 85029

Fold

{SIUBW WO [BUOTHPPY .

|
|
l
I
|
|
|
I
l
l
l
1
|
|

Cut Along Line

