
COMPUTER ~
TIME-SHARING

SERVICE....

r

.

1PC-2..02026 A

BASIC
LANGUAGE

REFERENCE MANUAL

JA1J fo 7

,.

GENERAL. ELECTRIC
INFORMATION SERVICE DEPARTMENT

BASIC

LANGUAGE

REFERENCE MANUAL

June 1965

Rev. January 1967

Reprinted May, 1967

GENERAL e ELECTRIC

INFORMATION SERVICE DEPARTMENT

PREFACE

This manual is a reference for the BASIC language used with the General Electric Computer
Time-Sharing Service.

The development of the BASIC language and the original version of this manual were supported by
the National Science Foundation under the terms of a grant to Dartmouth College. Under this
grant, Dartmouth College, under the direction of Professors John G. Kemeny and Thomas E. Kurtz,
developed the BASIC language compiler and the necessary executive routines for the GE-235 and
the DATANET-30*.

The printing of this manual by General Electric does not necessarily constitute endorsement of
General Electric products by Dartmouth College.

This edition does not obsolete the previous edition dated May 1966. It does, however, contain
several minor revisions which are indicated by a bar in the margin opposite the change.

Copyright 0 1965 by the Trustees of Dartmouth College. Reproduced with the permission of
the Trustees of Dartmouth College.

* DATANET is a Reg. Trademark of the General Electric Company.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~s~Ic

1. WHAT IS A PROGRAM

Page

1

2. A BASIC PRIMER

2.1 An Example .•..••....................................... 2
2. 2 Formulas . • 6

2.2.1 Numbers•................. 7
2.2.2 Variables •.. 8

2.3 Loops ...•......•..................................... 8
2.4 Lists and Tables • . • .. 10
2.5 Use of the Time-Sharing System•....... 12
2.6 Errors and "Debugging" •....•.............................. 14
2.7 Summary of Elementary Basic Statements•...........•... 18

2.7.1 LET•.................................•.••.. 19
2.7.2 READ and DATA •..•............................•..• 19
2.7.3 PRINT •.•....•................................... 19
2. 7. 4 GO TO •....................••......•............. 20
2. 7. 5 IF THEN • . . . • .. 20
2.7.6 FOR and NEXT••............ 21
2.7.7 DIM •.....................•.•.•••...•........•.. 21
2. 7. 8 END •...............•...................•....... 22

3. ADVANCED BASIC

3. 1 More About Print .
3.2 Functions •............................•.....•.•...•.....
3.3 GOSUB and RETURN •............•...............••........
3.4 INPUT •........................•......................
3.5 Some Miscellaneous Statements•.......
3. 6 Matrices

APPENDIXES

23
25
28
29
30
31

A. ERROR MESSAGES . 35

B. LIMITATIONS ON BASIC•.........•...•.......•........... 38

c. USING THE TIME-SHARING SYSTEM 39

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B~~~Ic
iii

1. WHAT IS A PROGRAM?

A program is a set of directions, or a recipe, that is used to tell a computer how to provide an
answer to some problem. It usually starts with the given data as the ingredients, contains a set
of instructions to be performed or carried out in a certain order, and ends up with a set of
answers as the cake. And, as with ordinary cakes, if you make a mistake in your program, you
will end up with something else--perhaps hash!

1:7X Any program must fulfill two requirements before.. it can be carried out. The first is that it musto be presented in a language that is under~tood by_the Clcomputer." If the program is a setof
instructions for--so!ving -a-system 6flinear equations and the tlcomputer" is an English-speaking
person, the program will be presented in some combination of mathematical notation and English.
If the tlcomputer" is a French-speaking person, the program must be in his language; and if the
tlcomputer" is a high-speed digital computer, the program must be presented in a language which
the computer tlunderstands."

® The second requirement for all ro rams is that be 0 ta ed.
is requirement is crucial when dealing with a digital computer which has no ability to infer

what you mean--it does what you tell it to do, not what you meant to tell it.

We are, of course, talking about programs which provide numerical answers to numerical
problems. It is easy for a programmer to present a program in the English language, but such
a program poses great difficulties for the computer because English is rich with ambiguities and
redundancies, those qualities which make poetry possible, but computing impossible. Instead,
you present your program in a language which resembles ordinary mathematical notation, which
has a simple vocabulary and grammar, and which permits a complete and precise specification of
your program. The language you will use is BASIC (Beginner's All-purpose Symbolic Instruction
fode) which is, at the same time, precise, simple, and easy to understand. - -

A first introduction to writing a BASIC program is given in Chapter 2. This chapter includes all
that you will need to know to write a wide variety of useful and interesting programs. Chapter
3 deals with more advanced computer techniques, and the Appendices contain a variety of
reference materials.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~B~~~re

-1-

2. A BASIC PRIMER

2.1 AN EXAMPLE

The following example is a complete BASIC program for solving a system of two simultaneous
linear equations in two variables:

ax + by = c
dx + ey = f

and then solving two different systems, each differing from this system only in the constants c
and f.

You should be able to solve this system, if ae - bel is not equal to 0, to find that

ce - bf
x = ae - bel and

at - cd
y = ae - bd .

If ae - bd = 0, there is either no solution or there are infinitely many, but there is no unique
solution. If you are rusty on solving such systems, take our word for it that this is correct. For
now, we want you to understand the BASIC program for solving this system.

Study this example carefully--in most cases the purpose of each line in the program is self­
evident--and then read the commentary and explanation.

10 READ A, B, D, E
15 LET G = A * E - B * D
20 IF G = 0 THEN 65
30 READ C, F
37 LET X = (C*E - B*F) / G
42 LET Y = (A*F - C*D) / G
55 PRINT X, Y
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTIONn

70 DATA 1, 2, 4
80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END

We immediately observe several things about this sample program. First, we see that the program
uses only capital letters, since the teletypewriter has only capital letters.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B~As~Ic
-2-

Asecond observation is that each line of the program begins with a number. These numbers are
called line numbers and serve to identify the lines, each of which is called a statement. Thus, a
program is made up of statements, most of which are instructions to the computer. Line numbers
also serve to specify the order in which the statements are to be performed by the computer.
This means that you may type your program in any order. Before the program is run, the
computer sorts out and edits the program, putting the statements into the order specified by their
line numbers. (This editing process facilitates the correcting and changing of programs, as we
shall explain later.)

A third observation is that each statement starts, after its line number, with an English word.
This word denotes the type of the statement. There are several types of statements in BASIC,
nine of which are discussed in this chapter. Seven of these nine appear in the sample program
of this section.

A fourth observation, not at all obvious from the program, is that spaces have no significance in
BASIC, except in messages which are to be printed out, as in line number 65 on preceding page.
Thus, spaces may be used, or not used, at will to ((pretty up" a program and make it more
readable. Statement 10 could have been typed as 10READA,B,D,E and statement 15 as
15LETG=A*E-B*D.

With this preface, let us go through the example, step by step. The first statement, 10, is a
READ statement. It must be accompanied by one or more DATA statements. When the computer
encounters a READ statement while executing your program, it will cause the variables listed
after the READ to be given values accordingto the next available numbers in the DATA statements.
In the example, we read A in statement 10 and assign the value 1 to it from statement 70 and,
similarly with Band 2, and with D and 4. At this point, we have exhausted the available data in
statement 70, but there is more in statement 80, and we pick up from it the number 2 to be
assigned to E.

We next go to statement 15, which is a LET statement, and first encounter a formula to be
evaluated. (The asterisk "*" is obviously used to denote multiplication.) In this statement we
direct the computer to compute the value of AE- BD, and to call the result G. In general, a LET
statement directs the computer to set a variable equal to the formula on the right side of the
equals sign. We know that if G is equal to zero, the system has no unique solution. Therefore,
we next aSk, in line 20, if G is equal to zero. If the computer discovers a llyes" answer to the
question, it is directed to go to line 65. where it prints llNO UNIQUE SOLUTION". From this
point, it would go to the next statement. But lines 70, 80, and 85 give it no instructions, since
DATA statements are not "executed", and it then goes to line 90 which tells it to "END" the
program.

If the answer to the question "Is G equal to zero?" is "no", as it is in this example, the computer
goes on to the next statement, in this case 30. (ThUS, an IF- THEN tells the computer where to
go if the "IF" condition is met, but to go on to the next statement if it is not met.) The computer
is now directed to read the next two entries from the DATA statements, -7 and 5, (both are in
statement 80) and to assign them to C and F respectively. The computer is now ready to solve
the system

x + 2y = -7 4x + 2y = 5

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~B~As~Ic

-3-

In statements 37 and 42, we direct the computer to compute the value of X and Y according to the
formulas provided. Note that we must use parentheses to indicate that CE - BF is divided by G;
without parentheses, only BF would be divided by G and the computer would let X = CE _ Bci.

The computer is told to print the two values computed, that of X and that of Y, in line 55. Having
done this, it moves on to line 60 where it is directed back to line 30. If there are additional
numbers in the DATA statements, as there are here in 85, the computer is told in line 30 to take
the next one and assign it to C, and the one after that to F. Thus, the computer is now ready to
solve the system

x + 2y = 1
4x + 2y = 3.

As before, it finds the solution in 37 and 42 and prints them out in 55, and then is directed in 60
to go back to 30.

In line 30 the computer reads two more values, 4 and -7, which it finds in line 85. It then proceeds
to solve the system

x + 2y = 4
4x + 2y =-7

and to print out the solutions. It is directed back again to 30, but there are no more pairs of
numbers available for C and F in the DATA statements. The computer then informs you that it
is out of data, printing on the paper in your teletypewriter "OUT OF DATA IN 30" and stops.

For a moment, let us look at the importance of the various statements. For example, what would
have happened if we had omitted line number 55? The answer is simple; the computer would
have solved the three systems and then told us when it was out of data. However, since it was
not asked to tell us (PRINT) its answers, it would not do it, and the solutions would be the
computer's secret. What would have happened if we had left out line 20? In this problem just
solved, nothing would have happened. But, if G were equal to zero, we would have set the computer
the impossible task of dividing by zero in 37 and 42, and it would tell us so emphatically, printing
"DIVISION BY ZERO IN 37" and "DIVISION BY ZERO IN 42." Had we left out statement 60, the
computer would have solved the first system, printed out the values of X and Y, and then gone on
to line 65 where it would be directed to print "NO UNIQUE SOLUTION". It would do this and
then stop.

One very natural question arises from the seemingly arbitrary numbering of the statements:
Why this selection of line numbers? The answer is that the particular choice of line numbers
is arbitrary, as long as the statements are numbered in the order which we want the machine to
follow in executing the program. We could have numbered the statements 1, 2, 3, ... , 13,
although we do not recommend this numbering. We would normally number the statements
10, 20, 30, ... , 130. We put the numbers such a distance apart so that we can later insert
additional statements if we find that we have forgotten them in writing the program originally.
Thus, if we find that we have left out two statements between those numbered 40 and 50, we can
give them any two numbers between 40 and 50--say 44 and 46; and in the editing and sorting
process, the computer will put them in their proper place.

Another question arises from the seemingly arbitrary placing of the elements of data in the
DATA statements: why place them as they have been in the sample program? Here again, the
choice is arbitrary and we need only put the numbers in the order that we want them read (the

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B~~~Ic
-4-

A',' "I) & .; ';- c' r. C'
75 DATA 1, 2, 4, 2, -7, 5, 1, 3, 4, -7

first for A, the second for B, the third for D, the fourth for E, the fifth for C, the sixth for F,
the seventh for the next C, etc.). In place of the three statements numbered 70, 80, and 85, we
could have put

or we could have written, perhaps more naturally,

70 DATA 1, 2,4, 2
75 DATA -7, 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various pairs of right­
hand constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the teletypewriter:

10 READ A, S, 0, E
15 LET G = A * E - 8 * 0
20 IF G = 0 THEN 65
30 READ C, F
37 LET X = (C * E - B * F / G
42 LET Y = (A * F - C * 0 / G
55 PRINT X, Y
60 GO TO 30
65 PRINT" NO UNIQUE SOLUTION"
70 DATA 1, 2, 4
BO DATA 2, -7, 5
85 DATA 1, 3, 4,--7
90 END
RUN

LINEAR 10:37 DEC. 17, 1965

4
.666667

-3.66667

OUT OF DATA IN

-5.5
.166667
3.83333

.30

TIME: o SEeS.

After typing the program, we type RUN followed by a carriage return. Up to this point the
computer stores the program and does nothing with it. It is this command which directs the
computer to execute your program.

Note that the computer, before printing out the answers, printed the name which we gave to the
problem (LINEAR) and the time and date of the computation. At the end of the printed answers
the machine tells us, to the nearest second, the amount of computing time used in our problem.
Since it took (considerably) less than one-half of a second for the computer to solve the three
systems, the time is recorded as 0 seconds.

CO~PUTER TI~E·SHARING SERVICE~~~~~~~~~~~~~~S~IC

-5-

2.2 FORMULAS

The computer can perform a great many operations--it can add, subtract, multiply, divide, extract
square roots, raise a number to a power, and find the sine of a number (on an angle measured in
radians), etc. - -and we shall now learn how to tell the computer to perform these various operations
and to perform them in the order that we want them done.

The computer performs its primary function (that of computation) by evaluating formulas which
are supplied in a program. These formulas are very similar to those used in standard mathe­
matical calculation, with the exception that all BASIC formulas must be written on a single line.
Five arithmetic operations can be used to write a formula, and these are listed in the following
table:

Symbol

+

*
/

Example

A+B

A-B

A*B

A/B

X t 2

Meaning

Addition (add B to A)

Subtraction (subtract B from A)

Multiplication (multiply B by A)

Division (divide A by B)

Raise to the power (find X2)

We must be careful with parentheses to make sure that we group together those things which we
want together. We must also understand the order in which the computer does its work. For
example, if we type A + B * C t D, the computer will first raise C to the power D, multiply this
result by B, and then add A to the resulting product. This is the same convention as is usual for
A + BCD. If this is not the order intended, then we must use parentheses to indicate a different
order. For example, if it is the product of Band C that we want raised to the power D, we must
write A + (B * C) t D; or, if we want to multiply A + B by C to the power D, we write
(A + B) * C tD. We could even add A to B, multiply their sum by C, and raise the product to the
power D by writing «A+B) *C) t D. The order of priorities is summarized in the following rules:

1.

3.

The formula inside parentheses is computed before the parenthesized quantity is used in
further computations.

In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to a power, the computer fi!,-sua.1~~§_th_~number to the-R.0we:r,.J~en

perfG-rms the m~J.QplicaliOi1, and the addl11~mes last. Divislon-lias· the·same priority
as multiplication, andsubtraction the same as addItIon.

In the absence of parentheses in a formula involving only multiplication and division, the
operations are performed from left to right, even as they are read. So also does the
computer perform addition and subtraction from left to right.

These rules are illustrated in the previous example. The rules also tell us that the computer,
faced with A - B - C, will (as usual) subtract B from A and then C from their difference; faced
with A/B/C, it will divide A by B and that quotient by C. Given A tB fC, the computer will raise
the number A to the power B and take the resulting number and raise it to the power C. If there
is any question in your mind about the priority, put in more parentheses to eliminate possible
ambiguities.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~s~lc
-6-

In addition to these five arithmetic operations, the computer can evaluate several mathematical
functions. These functions are given special 3-letter English names, as the following list shows:

Functions

SIN (X)

COS (X)

TAN (X)

ATN (X)

Interpretation

Find the sine of X

Find the cosine of X

Find the tangent of X

Find the arctangent of X

X interpreted as
a number, or as
an angle measured
in radians

EXP (X)

LOG (X)

ABS (X)

SQR (X)

Find eX

Find the natural logarithm of X (In X)

Find the absolute value of X (IXI)
Find the square root of X (VX)

Two other mathematical functions are also available in BASIC: INT and RND; these are reserved
for explanation in Chapter 3. In place of X, we may substitute any formula or any number in
parentheses following any of these formulas. For example, we may ask the computer
to find J4 + X 3 by writing SQR (4 + X t3), or the arctangent of 3X - 2e X + 8 by writing I
ATN (3 * X - 2 * EXP (X) + 8).

If, sitting at the teletypewriter, you need the value of (~)17 , you can write the two-line program.

10 PRINT (5/6) t 17
20 END

and the computer will find the decimal form of this number and print it out in less time than it
took you to type the program.

Since we have mentioned numbers and variables, we should be sure that we understand how to
write numbers for the computer and what variables are allowed.

2.2.1 Numbers

A number may be positive or negative and it may contain up to nine digits, but it must be expressed
in decimal form. For example, all of the following are numbers in BASIC: 2, -3.675, 123456789,
-.987654321, and 483.4156. The following are not numbers in BASIC: 14/3, ~and .00123456789.
The first two are formulas, but not numbers, and the last one has more than nine digits. We may
ask the computer to find the decimal expansion of 14/3 or J7:'3.nd to do something with the
resulting number, but we may not include either in a list of DATA. We gain further flexibility
by use of the letter E, which stands for "times ten to the power. n Thus, we may write
.00123456789 in a form acceptable to the computer in any of several forms: .123456789E-2 or
123456789E-11 or I234.56789E-6. We may write ten million as IE7 and 1965 as 1.965E3. We do
not write E7 as a number, but must write IE7 to indicate that it is 1 that is multiplied by 107

•

'-

COMPUTER TI~E·SHARING SERVICE~~~~~~~~~~~~~~~sI~c

-7-

2.2.2Variables

I

A variable in BASIC is denoted by any letter, or by any letter followed by a single digit. Thus,
the computer will interpret E7 as a variable, along with A, X, N5, !O, and 01. A variable in
BASIC stands for a number, usually one that is not known to the programmer at the time the
program was written. Variables are given or assigned values by LET, READ, or INPUT statements.
The value so assigned will not change until the next time a LET, READ, or INPUT statement is
encountered with a value for that variable.

Although the computer does little in the way of tlcorrecting," during computation, it will sometimes
help you when you forget to indicate absolute value. For example, if you ask for the square root
of -7 or the logarithm of -5, the computer will give you the square root of 7 with the error
message that you have asked for the square root of a negative number, or the logarithm of 5 with
the error message that you have asked for the logarithm of a negative number.

Six other mathematical symbols are provided for in BASIC, symbols of relation, and these are
used in IF-THEN statements where it is necessary to compare values. An example of the use of
these relation symbols was given in the sample program in section 1. Any of the following six
standard relations may be used:

Symbol Example Meaning

= A=B Is equal to (A is equal to B)

< A< B Is less than (A is less than B)

<= A <= B Is less than or equal to
(A is less than or equal to B)

> A>B Is greater than (A is greater than B)

>= A >= B Is greater than or equal to
(A is greater than or equal to B)

<> A<> B Is not equal to (A is not equal to B)

2.3 LOOPS

We are frequently interested in writing a program in which one or more portions are performed
not just once but a number of times, perhaps with slight changes each time. In order to write
the simplest program, the one in which this portion to be repeated is written just once, we use
the programming device known as a loop.

The programs which use loops can, perhaps, be best illustrated and explained by two programs
for the simple task of printing out a table of the first 100 positive integers together with the
square root of each. Without a loop, our program would be 101 lines long and read:

10 PRINT 1, SQR (1)
20 PRINT 2, SQR (2)
30 PRINT 3, SQR (3)

990 PRINT 99, SQR (99)
1000 PRINT 100, SQR (100)
1010 END

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~BA~sI~c

-8-

With the following program, using one type of loop, we can obtain the same table with far fewer
lines of instruction, 5 instead of 101:

10 LET X ::: 1
20 PRINT X, SQR (X)
30 LET X ::: X + 1
40 IF X <::: 100 THEN 20
50 END

Statement 10 gives the value of 1 to X and "initializes" the loop. In the line 20 is printed both 1
and its square root. Then, in line 30, X is increased by 1, to 2. Line 40 asks whether X is less
than or equal to 100; an affirmative answer directs the computer back to line 20. Here it prints
2 and ,.n:; and goes to 30. Again X is increased by 1, this time to 3, and at 40 it goes back to
20. This process is repeated--line 20 (print 3 and ~ line 30 (X ::: 4), line 40 (since 4s 100 go
back to line 20), etc. -- until the loop has been traversed 100 times. Then, after it has printed
100 and its square root has been printed, X becomes 101. The computer now receives a negative
answer to the question in line 40 (X is greater than 100, not less than or equal to it), does not
return to 20 but moves on to line 50, and ends the program. All loops contain four characteristics:
initialization (line 10), the body (line 20), modification (line 30), and an exit test (line 40).

Because loops are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simply. They are the FOR and NEXT
statements and their use is illustrated in the program:

10 FOR X ::: 1 TO 100
20 PRINT X, SQR (X)
30 NEXT X
50 END

In line 10, X is set equal to 1, and a test is set up, like that of line 40 above. Line 30 carries out
two tasks: X is increased by 1, and the test is carried out to determine whether to go back to
20 or go on. Thus lines 10 and 30 take the place of lines 10, 30, and 40 in the previous program-­
and they are easier to use.

Note that the value of X is increased by 1 each time we go through the loop. If we wanted a
different increase, we could specify it by writing

10 FOR X ::: 1 TO 100 STEP 5

and the computer would assign 1 to X on the first time through the loop, 6 to X on the second
time through, 11 on the third time, and 96 on the last time. Another step of 5 would take X
beyond 100, so the program would proceed to the end after printing 96 and its square root. The
STEP may be positive or negative, and we could have obtained the first table, printed in reverse
order, by writing line 10 as

10 FOR X ::: 100 TO 1 STEP -1

In the absence of a STEP instruction, a step size of +1 is assumed.

More complicated FOR statements are allowed. The initial value, the final value, and the step
size may all be formulas of any complexity. For example, if Nand Z have been specified earlier
in the program, we could write

FOR X ::: N + 7*Z TO (Z-N) 13 STEP (N-4*Z)/10

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B~d~re

-9-

For a positive step-size, the loop continues as long as the control variable is less than or equal
to the final value. For a negative step-size, the loop continues as long as the control variable
is greater than or equal to the final value.

If the initial value is greater than the final value (less than for negative step-size), then the body
of the loop will not be performed at all, but the computer will immediately pass to the statement
following the NEXT. As an example. the following program for adding up the first n integers
will give the correct result 0 when n is O.

10 READ N
20 LET S = 0
30 FOR K = 1 TO N
40 LET S = S + K
50 NEXT K
60 PRINT S
70 GO TO 10
90 DATA 3, 10,0
99 END

It is often useful to have loops within loops. These are called nested loops and can be expressed
with FOR and NEXT statements. However, they must actually be nested and must not cross, as the
follOWing skeleton examples illustrate:

Allowed

FOR X

[
FOR Y

NEXT Y

NEXT X

Not Allowed

NEXTY

2.4 LISTS and TABLES

Allowed

FOR X

FOR Y

[
FOR Z

NEXT Z

[
FORW

NEXT W

NEXT Y

[
FOR Z

NEXT Z

'----NEXT X

In addition to the ordinary variables used by BASIC, there are variables which can be used to
designate the elements of a list or of a table. These are used where we might ordinarily use a
subscript or a double subscript, for example the coefficients of a polynomial (ao • a l , a2 , ...)

or the elements of a matrix (b 1 '.l). The variables which we use in BASIC consist of a single letter,
which we call the name of the list, followed by the subscripts in parentheses. Thus, we might
write A(O), A(l), A(2), etc. for the coefficients of the polynomial and B(l, 1), B(l,2), etc. for
the elements of the matrix.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~B~As~Ic
-10-

We can enter the list A(O) , A(l), ... A(lO) into a program very simply by the lines:

10 FOR I =0 TO 10
20 READ A(I)
30 NEXT I
40 DATA 2, 3, -5, 7, 2.2, 4, -9, 123, 4, -4, 3

We need no special instruction to the computer if no subscript greater than 10 occurs. However,
if we want larger subscripts, we must use a dimension (DIM) statement, to indicate to the computer
that it has to save extra space for the list or table. When in doubt, indicate a larger dimension
than you expect to use. For example, if we want a list of 15 numbers entered, we might write:

10 DIM A(25)
20 READ N
30 FOR I = 1 TO N
40 READ A(I)
50 NEXT I
60 DATA 15
70 DATA 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

Statements 20 and 60 could have been eliminated by writing 30 as FOR I =1 TO 15, but the form
as typed would allow for the lengthening of the list by changing only statement 60. so long as it
did not exceed 25.

We would enter a 3x5 table into a program by writing:

,---10
,20

30
·40
50
60
70
80

,,-
FOR 1_= 1 TO 3
FOR-J = LTO 5
READ B (UJ)
NEXTJ
NEXT I
DATA 2, 3, -5, -9, 2
DATA 4, -7, 3, 4, -2
DATA 3, -3, 5, 7, 8

I /

Here again, we may enter a table with no dimension statement, and it will handle all the entries
from B(O,O) to B(10, 10). If you try to enter a table with a subscript greater than 10, without a
DIM statement, you will get an error message telling you that you have a subscript error. This
is easily rectified by entering the line:

5 DIM B(20,30)

if, for instance, we need a 20 by 30 table.

The single letter denoting a list or a table name may also be used to denote a simple variable
without confusion. However, the same letter may not be used to denote both a list and a table
in the same program. The form of the subscript is quite flexible, and you might have the list
item B(I + K) or the table items B(I,K) or Q (A(3,7). B - C).

On the next page is a list and rWl of a problem which uses both a list and a table. The program
computes the total sales of each of five salesmen, all of whom sell the same three products.
The list P gives the price/item of the three products and the table S tells how many items of
each product which each man sold. You can see from the program the product number 1 sells
for $1.25 per item, number 2 for $4.30 per item, and number 3 for $2.50 per item; and also that
salesman number 1 sold 40 items of the first product. 10 of the second, and 35 of the third, and

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~~~s~Ic
-11-

so on. The program reads in the price list in lines 10, 20, 30, using data in line 900. and the sales
table in lines 40-80, using data in lines 910-930. The same program could be used again. modifying
only line 900 if the prices change, and only lines 910-930 to enter the sales in another month.

This sample program did not need a dimension statement, since the computer automatically saves
enough space to allow all sUbscripts to run from 0 to 10. A DIM statement is normally used to
save more space. But in a long program, requiring many small tables, DIM may be used to save
less space for tables, in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the program on any line before
END; it is convenient, however, to place DIM statements near the beginning of the program.

SALESI 10:49 20 DEC. 1965

(10 FOR I = 1 TO 3
~20 READ PCI)

30 NEXT I
40 FOR I = 1 TO 3
50 FOR J = 1 TO 5
60 READ SCI,J)
70 NEXT J
80 NEXT I
90 FOR J = 1 TO 5
100 LET S = 0
110 FOR I = 1 TO 3
120 LET S = S + PCI) * SCI,J)
130 NEXT I
140 PRINT "TOTAL SALES FOR SALESMAN "J, "$" S
150 NEXT J
900 DATA 1.25, 4.30, 2.50
910 DATA 40, 20, 37, 29, 42
920 DATA 10, 16,3,21,8
930 DATA 35, 47, 29, 16, 33
999 END

RUN

SALESI 10:50 20 DEC. 1965

TOTAL SALES FOR SALESMAN 1 $ 180.5
TOTAL SALES FOR SALESMAN 2 $ 211.3
TOTAL SALES FOR SALESMAN 3 $ 131.65
TOTAL SALES FOR SALESMAN 4 $ 166.55
TOTAL SALES FOR SALESMAN 5 $ 169.4

TI ME: o SECS.

2.5 USE OF THE TIME-SHARING SYSTEM

Now that we know something about writing a program in BASIC, how do we set about using a
teletypewriter to type in our program and then to have the computer solve our problem?

COMPUTER nME·SHARING SER~CE~~~~~~~~~~~~M_s~re
-12-

There are more details of the Time-Sharing System in Appendix C. but we shall learn enough in
this section to handle a simple problem.

Sitting down at the teletypwriter, you first push the button labeled ORIG. This turns on the
teletypewriter. You wait for the dial tone and then dial the computer number. The computer
answers with a "BEEP" tone. The computer will then type USER NUMBE'R--on the next line.
You are to type in your user number. Press the RETURN key. (You must push the RETURN
key after typing any line--only then does your line enter the computer.)

The computer will type SYSTEM--and you should type BASIC before hitting the return key next.

The computer then types NEW OR OLD--and you type the appropriate adjective: NEW if you are
about to type a new problem and OLD if you want to recover a problem on which you have been
working earlier and have stored in the computer's memory.

The computer then asks NEW PROBLEM NAME--{or OLD PROBLEM NAME, as the case may be)
and you type any combination of letters, characters, and digits you like, but no more than six. In
the sample problem preceding you will remember that we named it SALES 1. If you are recalling
an old problem from the computer's memory, you must use exactly the same name as that which
you gave the problem before you asked the computer to save it.

The computer then types READY and you should begin to type your program. Make sure that
each line begins with a line number which contains no more than five digits and contains no spaces
or non-digit characters. Also be sure to start at the very beginning of a line and to press the
RETURN key at the completion of each line.

If, in the process of typing a statement, you make a typing error and notice it immediately, you
can correct it by pressing the backward arrow (shift key above the letter "oh"). This will delete
that which is in the preceding space, and you can then type in the correct character. Pressing
this key a number of times will erase from this line the characters in that number of preceding
spaces. The control key (to the left of the letter A) depressed with the X key will delete the entire
line being typed.

After typing your complete program, you type RUN, press the RETURN key, and hope. The
computer will type the name of your program, the time of day, and the date, and then analyze
your program. If the program is one which the computer can run, it will then run it and type
out any results for which you have asked in your PRINT statements. This does not mean that your
program is correct, but that it has no errors of the type known as "grammatical errors." If it
has errors of this type, the computer will type an error message (or several error messages) to
you. A list of the error messages is contained in AppendiX A, together with the interpretation of
each.

If you are given an error message, informing you of an error in Hne 60, for example, you can
correct this by typing a new line 60 with the correct statement. If you want to eliminate the
statement on line 110 from your program, you can do this by typing 110 and then the RETURN key.
If you want to insert a statement between those on lines 60 and 70. you can do this by giving it a
line number between 60 and 70.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~B=u~w

-13-

If it is obvious to you that you are getting the wrong answers to your problem. even while the
computer is running, you can type STOP and the computation will cease. (If the teletypewriter
is actually typing. there is an express stop--just press the itS" key.) It will then type READY and
you can start to make your corrections.

After you have all of the information you want, and are ready to leave the teletypewriter, you
should type GOODBYE (or even BYE). The computer then types the time. and moves up your
paper for ease in tearing off.

A sample use of the time-sharing system is shown below. The message itWAIT" was typed by the
computer; it indicates that someone else was being served at the moment. The delay is usually
no more than 10 seconds.

~N 4T 16:47 PX M0N 08/29/66

USER NU~ER--123456

SYST EM--BA SI C
NEI.I} 0R 0LD--NEW
NEW PR0BLEM NAME--SA~PLE

READY

10 F'0R N = 1 T 0 7
20 PRINT N, SQR ·CN)
30 NEXT N
40 PRINT toD0NE"
50 F.ND
RUN

SAMPLE 16: 48 PX M0N 08/29/66

1 1
2 1 .41421
3 1.13205
4 2
5 2.23601
6 2.44949
7 2.64515

DONE

TIME: o SEeS.

2.6ERRORS and "DEBUGGING"

It may occasionally happen that the first run of a new problem will be free of errors and give the
correct answers. But it is much more common that errors will be present and will have to be

COMPUTER TIME·SHAmNG SER~CE~~~~~~~~~~~~B~M~~
-14-

corrected. Errors are of two types: errors of form (or grammatical errors) which prevent the
running of the program; and logical errors in the program which cause the computer to produce
wrong answers or no answers at all.

Errors of form will cause error messages to be printed, and the various types of error messages
are listed and explained in Appendix A. Logical errors are often much harder to uncover,
particularly when the program gives answers which seem to be nearly correct. In either case,
after the errors are discovered, they can be corrected by changing lines, by inserting new lines,
or by deleting lines from the program. As indicated in the last section, a line is changed by
typing it correctly with the same line number; a line is inserted by typing it with a line number
between those of two existing lines; and a line is deleted by typing its line number and pressing
the RETURN key. Notice that you can insert a line only if the original line numbers are not
cons~cutive integers. For this reason, most programmers will start out using line numbers that
are multiples of five or ten, but that is a matter of choice.

These corrections can be made at any time--whenever you notice them--either before or after
a run. Since the computer sorts lines out and arranges them in order, a line may be retyped out
of sequence. Simply retype the offending line with its original line number.

As with most problems in computing, we can best illustrate the process of finding the errors (or
"bugs") in a program, and correcting (or "debugging") it, by an example. Let us consider the
problem of finding that value of X between 0 and 3 for which the sine of X is a maximum, and ask
the machine to print out this value of X and the value of its sine. If you have stUdied trigonometry,
you know that 'IT/2 is the correct value; but we shall use the computer to test successive values
of X from 0 to 3, first using intervals of .1, then of .01, and finally of .001. Thus, we shall ask the
computer to find the sine of 0, of .1, of .2, of .3, of 2.8, of 2.9, and of 3, and to determine
which of these 31 values is the largest. It will do it by testing SIN (0) and SIN (.1) to see which is
larger, and calling the larger of these two numbers M. Then it will pick the larger of M and
SIN (.2) and call it M. This number will be checked against SIN (.3), and so on down the line.
Each tim l3 a larger value of M is found, the value of X is "remembered" in XO. When it finishes,
M will have been assigned to the largest of the 31 sines, and XO will be the argument that
produced that largest value. It will then repeat the search, this time checking the 301 numbers
0, .01, .02, .03, ... , 2.98, 2.99, and 3, finding the sine of each and checking to see which sine is
the largest. Lastly, it will check the 3001 numbers 0, .001, .002, .003, , 2.998, 2.999, and 3,
to find which has the largest sine. At the end of each of these three searches, we want the
computer to print three numbers: the value XO which has the largest sine, the sine of that number,
and the interval of search.

Before going to the teletypewriter, we write a program and let us assume that it is the following:

10 READ D
20 LET XO : 0
30 FOR X : 0 TO 3 STEP 0
40 IF SIN (X) <: M THEN 100
50 LET XO : X
60 LET M = SIN (XO)
70 PRINT XO, X, D
80 NEXT XO
90 GO TO 20
100 DATA .1, .01, .001
110 END

COMPUTER TI~E·SHARING SERVICE~~~~~~~~~~~~~~~s~Ic

-15-

We shall list the entire sequence on the teletypewriter and make explanatory comments on the
right side.

NEW OR OLD -- NEW
NEW PROBLEM NAME--MAXSIN
READY.

10 READ 0
20 LWR XO=O
30 FOR X = 0 TO 3 STEP 0
40 IF SINE~eX) <= M THEN 100
50 LET XO=X
60 LET M = SINeX)
70 PRINT XO, X, 0
80 NEXT XO
90 GO TO 20
20 LET XO=O
100 DATA .1, .01, .001
110 END
RUN

MAXSI N 11: 15, 0 EC • 17 , 1965

Notice the use of the backwards
arrow to erase a character in line
40, which should have started IF
SIN (X) etc.

After typing line 90, we notice that
LET was mistyped in line 20, so we
retype it, this time correctly.

After recelvmg the first error
message, we inspect line 70 and find
that we used XO for a variable
instead of XO. The next two error
messages relate to lines 30 and 80,
where we see that we mixed
variables. This is corrected by
changing line 80.

I LLEGAL FORMULA
NEXT WITHOUT FOR
FOR WITHOUT NEXT

TIME: o SECS.

IN 70
IN 80

We make both of these changes by
retyping lines 70 and 80. In looking
over the program, we also notice
that the IF-THEN statement in 40
directed the computer to a DATA
statement and not to line 80 where
it should go..

70 PRINT XO, X, 0
40 IF SINeX) <= M THEN 80
80 NEXT X
RUN

MAXSI N

• 1
.2
.3

STOP.
READY.

11 : 16 DEC. 17, 1965

• 1
.2

.1
• 1

This is obviously incorrect. We
are having every value of Xprinted,
so we direct the machine to cease
operations by typing STOP, even
while it is rWlning. We ponder the
program for a While, trying to
figure out what is wrong with it.
We notice that SIN (0) is compared
with M on the first time through
the loop, but we had assigned no
value to M. So we wonder if
giving a value less than the maxi­
mum value of the sine will do it,
say -1.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~B_~~re
-16-

20 LET M= -1
RUN

We see that we initialized XO instead
of M in line 20, so we change line
20 to give an initial value to M.

MAXSI N

o
• 1
.2
.3
• 4

11:11 DEC.l1,1965

o .1
• 1 • 1
.2 .1
.3 .1

Weare about to print out almost the
same table as before. It is printing
out XO. the current value of X, and
the interval size each time that it
goes through the loop .

11:18 DEC.17,1965

.999514 .1

.999514 .1

.999514 .1

STOP.
READY.

10
85 PRINT XO, M, D
RUN

MAXSIN

1.6
1.6
1.6
1• V

STOP.
READY.

90 GO TO 10
5 PRINT "X VALUE", "SIN", RESOLUTION""
RUN

We fix this by moving the PRINT
statement outside the loop. Typing
70 deletes that line, and line 85
is outside of loop. We also realize
that we want M printed and not X.

We see that we are performing the
same operation (the case for D =.1)
over and over again. So we stop it
and inspect the program again.

Of course, line 90 sent us back to
line 20 to repeat the operation and
not back to line 10 to pick up a
new value for D. We also decide
to put in headings for our columns
by a PRINT statement.

MAXSIN 11: 19 DEC. 11,1965
There is an error in our PRINT
statement: no left quotation mark
for the third item.

I LLEGAL FORMULA IN 5

TIME: o SECS.
Retype line 5, with all of the
required quotation marks.

5 PRINT "X VALUE", "SINE", "RESOLUTION"
RUN

COMPUTER TI~E·SHARING SERVICE~~~~~~~~~~~~~~~S~IC

-17-

MAXSI N 11 : 19 DEC. 17 f 1965 Exactly the desired results. Of

X VALUE SINE RESOLUTION
the 31 numbers (0, .1, .2, .3, ... ,

1.6 .999574 .1
2.8, 2.9, 3), it is 1.6 which has the

1.57 1• .01 largest sine, namely .999574.
1.571 1• .001 Similarly for the finer subdivisions.

OUT OF DATA IN 10

TIME:

LIST

MAXSIN

13 SEeS.

The whole process took little more
than 13 seconds of the computer's
time.

Having changed so many parts of the
program, we ask for a list of the
corrected program.

5 PRINT "X VALUE" f "SINE", "RESOLUTION"
10 READ D
20 LET M= -1
30 FOR X = 0 TO 3 STEP D
40 IF SIN(X) <= M THEN 80
50 LET XO=X
60 LET M = SIN(X)
80 NEXT X
85 PRINT XC, Mf 0
90 GO TO 10
10a DA TA • 1, • 0 1, • 00 1
110 END

SAVE

READY.

The program is saved for later
use. This should not be done unless
future use is necessary.

In solving this problem, there are two common devices which we did not use. One is the insertion
of a PRINT statement when we wonder if the machine is computing what we think we asked it to
compute. For example, if we wondered about M, we could have inserted 65 PRINT M, and we
would have seen the values. The other device is used after several corrections have been made
and you are not sure just what the program looks like at this stage-- in this case type LIST, and
the computer will type out the program in its current form for you to inspect.

2.7 SUMMARY OF ELEMENTARY BASIC STATEMENTS

In this section we shall give a short and concise description of each of the types of BASIC state­
ments discussed earlier in this chapter. In each form, we shall assume a line number, and shall
use brackets to denote a general type. Thus, [variable] refers to a variable, which is a single
letter, possibly followed by a single digit.

CO~TER TlME·SHARING SERVICE
-18-

BASIC

2.7.1 LET

This statement is not a statement of algebraic equality, but is rather a command to the computer
to perform certain computations and to assign the answer to a certain variable. Each LET state­
m ent is of the form: LET [variable] = [formula].

Examples: 100 LET X = X + 1
259 LET W7 = (W-X4 t 3)*(Z - A/(A - B)) - 17

2.7.2 READ and DATA

We use a READ statement to assign to the listed variables values obtained from a DATA state­
ment. Neither statement is used without one of the other type. A READ statement causes the
variables listed in it to be given. in order, the next available numbers in the collection of DATA
statements. Before the program is run, the computer takes all of the DATA statements in the
order in which they appear and creates a large data block. Each time a READ statement is
encountered anywhere in the program, the data block supplies the next available number or
numbers. If the data block runs out of data, with a READ statement still asking for more, the
program is assumed to be done.

Since we have to read in data before we can work with it, READ statements normally occur near
the beginning of a program. The location of DATA statements is arbitrary, as long as they occur
in the correct order. A common practice is to collect all DATA statements and place them just
before the END statement.

Each READ statement is of the form: READ [sequence of variables] and each DATA statement
of the form: DATA [sequence of numbers]

Examples: 150
330
340

READ X, Y, Z, Xl, Y2, Q9
DATA 4, 2, 1.7
DATA 6.734E-3, -174.321, 3.14159265

234 READ B (K)
263 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4

10 READ R (I,J)
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5
450 DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15/7 andJ"3are formulas,
not numbers.

2.7.3PRINT

The PRINT statement has a number of different uses and is discussed in more detail in Chapter 3.
The common uses are:

a. To print out the result of some computations
b. To print out verbatim a message included in the program
c. To perform a combination of a and b
d. To skip a line

COMPUTER TIME-SHARING SER~CE~~~~~~~~~~~~M~s~re

-19-

I

We have seen examples of only the first two in our sample programs. Each type is slightly
different in form, but all start with PRINT after the line number.

Examples of type A: 100 PRINT X, SQR (X)
135 PRINT X, Y, Z, B*B - 4*A*C, EXP (A - B)

The first will print X and then, a few spaces to the right of that number, its square root.
The second will print five different numbers: X, Y, Z, B2 -4AC, and eA- B. The computer
will compute the two formulas and print them for you, as long as you have already given
values to A, B, and C. It can print up to five numbers per line in this format.

Examples of type b: 100 PRINT "NO UNIQUE SOLUTION"
430 PRINT "X VALUE", "SINE". "RESOLUTION"

Both have been encountered in the sample programs. The first prints that simple state­
ment; the second prints the three labels with spaces between them. The labels in 430
automatically line up with three numbers called for in a PRINT statement--as seen in
MAXSIN.

Examples of type c: 150 PRINT "THE VALUE OF X IS" X
30 PRINT "THE SQUARE ROOT OF" X, "IS" SQR (X)

If the first has computed the value of X to be 3, it will print out: THE VALUE OF X IS 3.
If the second has computed the value of X to be 625, it will print out: THE SQUARE
ROOT OF 625 IS 25.

Example of type d: 250 PRINT

The computer will advance the paper one line when it encounters this command.

2.7.460 TO

There are times in a program when you do not want all commands executed in the order that they
appear in the program. An example of this occurs in the MAXSIN problem where the computer
has computed XO, M, and D and printed them out in line 85. We did not want the program to go
on to the END statement yet, but to go through the same process for a different value of D. So we
directed the computer to go back to line 10 with a GO TO statement. Each is of the form GO TO
[line number] .

Example:

2.7.5IF--THEN

150 GO TO 75

There are times that we are interested in jumping the normal sequence of commands, if a certain
relationship holds. For this we use an IF--THEN statement, sometimes called a conditional
GO TO statement. Such a statement occurred at line 40 of MAXSIN. Each such statement is of
the form

IF [formula] [relation] [formula] THEN [line number]

Examples: 40 IF SIN (X) < = M THEN 80
20 IF G = 0 THEN 65

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~s~Ic
-20-

The first asks if the sine of X is less than or equal to M, and directs the computer to skip
to line 80 if it is. The second asks if G is equal to 0, and directs the computer to skip to
line 65 if it is. In each case, if the answer to the question is No, the computer will go to
the next line of the program.

2.7.6FOR and NEXT

We have already encountered the FOR and NEXT statements in our loops, and have seen that they
go together, one at the entrance to the loop and one at the eXit, directing the computer back to the
entrance again. Every FOR statement is of the form

FOR [variable] = [formula TO formula STEP formul~

Most commonly, the expressions will be integers and the STEP omitted. In the latter case, a step
size of one is assumed. The accompanying NEXT statement is simple in form, but the variable
must be precisely the same one as that following FOR in the FOR statement. Its form is NEXT
variable.

Examples: 30 FOR X = 0 TO 3 STEP D
80 NEXT X

120 FOR X4 = (17 + COS (Z))/3 TO 3*SQR (10) STEP 1/4
235 NEXT X4

240 FOR X = 8 TO 3 STEP -1

456 FOR J = -3 TO 12 STEP 2

Notice that the step size may be aformula (1/4), a negative number (-1). or a positive number (2).
In the example with lines 120 and 235, the successive values of X4 will be .25 apart, in increasing
order. In the next example, the successive values of X will be 8, 7, 6, 5, 4, 3. In the last example,
on successive trips through the loop, J will take on values -3, -1, 1, 3, 5, 7, .9, and 11.

If the initial, final, or step-size values are given as formulas, these formulas are evaluated once
and for all upon entering the FOR statement. The control variable can be changed in the body
of the loop; of course, the exit test always uses the latest value of this variable.

If you write 50 FOR Z = 2 TO -2, without a negative step size, the body of the loop will not be
performed and the computer will proceed to the statement immediately following the corresponding
NEXT statement.

2.7.7DIM

'Whenever we want to enter a list or a table with a subscript greater than 10, we must use a DIM
statement to inform the computer to save us sufficient room for the list or the table.

Examples: 20 DIM H (35)
35 DIM Q (5,25)

The first would enable us to enter a list of 35 items (or 36 if we use H (0)), and the latter a table
5 x 25, or by using row 0 and column 0 we get a 6 x 26. table.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~M=s~re

-21-

2.7. BEND

Every program must have an END statement! and it must be the statement with the highest line
number in the program. Its form is simple: a line number with END.

Example: 999 END

COMPUTER nME·SHARING SER~CE~~~~~~~~~~~~~M~sI~c

-22-

3. ADVANCED BASIC

3.1 MORE ABOUT PRINT

The uses of the PRINT statement were described in 2.7.3, but we shall give more detail here.
Although the format of answers is automatically supplied for the beginner, the PRINT statement
permits a greater flexibility for the more advanced programmer who wishes a different format for
his output.

The teletypewriter line is divided into five zones of fifteen spaces each. Some control of the use
of these comes from the use of the comma: a comma is a signal to move to the next print zone
or, if the fifth print zone has just been filled, to move to the first print zone of the next line.

Shorter zones can be manufactured by use of the semicolon, and the zones are six spaces long
for 1-digit, 2-digit, and 3-digit numbers, nine spaces long for 4-digit, 5-digit, and 6-digit numbers,
and twelve spaces long for 7-digit, a-digit, and 9-digit numbers. As with the comma, a semicolon
is a signal to move to the next short print zone or, if the last such zone has just been filled, to
move to the first print zone of the next line.

For example, if you were to type the program

10 FOR I = 1 TO 15
20 PRINT I
30 NEXT I
40 END

the teletypewriter would print 1 at the beginning of a line, 2 at the beginning of the next line, and
so on, finally printing 15 on the fifteenth line. But, by changing line 20 to read

20 PRINT I,

you would have the numbers printed in the zones, reading

1
6
11

2
7
12

3
8
13

4
9
14

5
10
15

If you wanted the numbers printed in this fashion, but more tightly packed, you would change line
20 to replace the comma by a semicolon:

20 PRINT I;

and the result would be printed

1
12

2
13

3
14

4
15

5 6 7 8 9 10 11

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B=~~re

-23-

You should remember that a label inside quotation marks is printed just as it appears and also
that the end of a PRINT signals a new line. unless a comma or semicolon is the last symbol.

Thus, th~ instruction

50 PRINT X, Y

will result in the printing of two numbers and the return to the next line, while

50 PRINT X, Y,

will result in the printing of these two values and no return--the next number to be printed will
occur in the third zone, after the values of X and Y in the first two.

Since the end of a PRINT statement signals a new line, you will remember that

250 PRINT

will cause the typewriter to advance the paper one line. It will put a blank line in your program,
if you want to use it for vertical spacing of your results. or it causes the completion of partially
filled line, as illustrated in the following fragment of a program:

50 FOR M = 1 TO N
110 FOR J = 0 TO M
120 PRINT B(M,J);
130 NEXT J
140 PRINT
150 NEXT M

This program will print B(1,0) and next to it B(1.1). Without line 140, the teletypewriter would
then go on printing B(2,0), B(2.1), and B(2,2) on the same line, and even B(3,0), B(3.1), etc .. if
there were room. Line 140 directs the teletypewriter, after printing the B(I,l) value corresponding
to M = 1, to start a new line and to do the same thing after printing the value of B(2.2) corre­
sponding to M = 2, etc.

The following rules for the printing of numbers will help you in interpreting your printed results:

1. If a number is an integer, the decimal point is not printed. If the integer contains more
than nine digits, the teletypewriter will give you the first digit, followed by (a) a decimal
point, (b) the next five digits, and (c) an E followed by the appropriate integer. For
example, it will take 32.437,580,259 and write it as 3.24376 E 10.

2. For any decimal number, no more than six significant digits are printed.

3. For a number less than 0.1. the E notation is used unless the entire significant part of
the number can be printed as a six decimal number. ThUS, .03456 means that the number
is exactly .0345600000, while 3.45600 E -2 means that the number has been rounded to
.0345600.

COMPUTER TI~E·SHARING SERVICE~~~~~~~~~~~~B_~~re

-24-

4. Trailing zeros after the decimal point are not printed. The following program, in which
we print out the first 45 powers of 2, shows how numbers are printed. Note that the
semicolon "packed" form sometimes causes the last few characters in a number to be
printed on top of each other. BASIC checks to see if there are 12 or more spaces at the
end of a line before printing a number there, buf some numbers require 15 spaces.

to FOR I = 1 TO 45
20 PRINT 2tl;
30 NEXT I
40 END
RUN'

,.

PR I NTE 15:45 PX MON 08/29/66

2 4 8 16 32 64 128 256 512 1024 2048
4096 192 16384 32768 65536 131072 262144 524288
1048576 2097152 4194304 8338608 16777216 33554432
67108864 134217728 268435456 536870912 1.07374 E 9 2.147489:
4.29497 E 9 8.58993 E 9 1.71799 E 10 3.43597 E 10 6.87195 E (1l
1.37439 E 11 2.74878 E 11 5.49756 E 11 1.09951 E 12 2.19902 E t
4.39805 E 12 8.79609 E 12 1.75922 E 13 3.51844 E 13

TIME:

3.2 FUNCTIONS

o SEeS.

I

There are two functions which were listed in Section 2.2 but not described. These are INT
and RND. I

The INT function is the function which fre'1uently appears in algebraic computation' as [X], and it
gives the greatest integer not greater than x. Thus INT(2.35) = 2, INT (-2.35)'= -3, and
INT (12) = 12.

One use of the INT function is to round numbers. We may use it to round to the nearest integer by
asking for INT (X + .5). This will round 2.9, for example. to 3, by finding:

I.NT (2.9 + .5) = INT (3.4) = 3.

You should convince y6urself that this will indeed do the rounding guaranteed for it (it will round
a number midway betw~en two integers up to the larger of the integers).

It can also be used to round to any specific number of decimal places. For example,
INT (10*X + .5)/10 will round X correct to one decimal place, INT (100*X + .5)/100 will round X
correct to two decimal places, and INT (X*10 t D + .5)/10 t D round X correct to D decimal
places.

The function RND produces a random number between 0 and 1. The form of RND requires an
argument, although the argument has no significance, and so we write RND(X) or RND (Z).

COMPUTER TIME-SHARING SER~CE~~~~~~~~~~~~~B=M~re

-25-

If we want the first twenty random numbers, we write the program below and we get twenty
six-digit decimals. This is illustrated in the following program.

10 FOR L = 1 TO 20
20 PRINT RNDeX),
30 NEXT L
40 END
RUN

RNDTES 10:56 20 DEC. 1965

.746489 • 196691 5.33676 E-2 .32369 . .244322

.625169 .19313 .935845 .445447 .26231

.218802 .783032 .4026 .84835 .558119

.980484 .918514 .873523 .388814 .393435

TIME: o SECS.

On the other hand. if we want twenty random one-digit integers, we could change line 20 to read

20 PRINT INT (lO*RND(X»,

and we would then obtain

RNDTES 10:58 20 DEC. 1965

7 1 O.
6 1 9
2 7 4
9 9 8

TIME: o SECS.

3
4
8
3

2
2
5
3

We can vary the type of random numbers we want. For example, if we want 20 random numbers
ranging from 1 to 9 inclusive, we could change line 20 as shown

20 PRINT INTe9*RND(X) +1);
RUN

RNDTES 11:00 20 DEC. 1965

7 2 1 3 3 6 2 9 5 3 2
8 4 8 6 9 9 8 4 4

TIME: 0 SEeS.

or we can obtain random numbers which are the integers from 5 to 24 inclusive by changing line
20 as in the example on the following page.

COMPUTER TIME·SHAmNG SERYICE~~~~~~~~~~~~M~s~~

-26-

20 PRINT 1NTC20*RNOeX) + 5);
RUN

20 DEC. 1965RNDTES

19 8
20 . 13

11 : 01

6
21

11
16

9
24

17
23

8
22

23
12

13
12

10 9

TI t'jE:

In general, if we want our random numbers to be chosen from the A integers of which B is the
smallest, we would call for

INT (A*RND(X) + B).

If you were to run the first program of this section again, you would get the same twenty numbers
in the same order. But we can get a different set by "throwing away" a certain number of the
random numbers. For example, in the following program we find the first ten random numbers
and do nothing with them. We then find the next twenty and print them. You will see, by comparing
this with the first program, that the first ten of these random numbers are the second ten of the
earlier program.

10 FOR I = 1 TO 10
20 LET Y = RND ex)
30 NEXT I
40 FOR I = 1 TO 20
50 PRINT ijNDeX),
60 NEXT I
70 END
RUN

RNDTES 11 :03 20 DEC. 1965

.218802 .783032 .4026 .84835 .558119

.980484 .918514 .873523 .388814 .393435

.545924 .578063 .638623 .637121 .587565

.952204 .985279 7.67761 £-2 9.61704 E-2 .736181

T1 ME: 0 SEes.

In addition to the standard functions, you can define any other function which you expect to use
a number of times in your program by use of a DE F statement. The name of the defined function
must be three letters, the first two of which are FN. Hence, you may define up to 26 functions,
e.g., FNA, FNB, etc.

The handiness of such a function can be seen in a program where you frequently need the function
e-x2

• You would introduce the function by the line

30 DEF FNE (C) = EXP(-X t 2)

and later on call for various values of the function by FNE(.l), FNE(3.45), FNE(A+2), etc. Such
a definition can be a great time-saver when you want values of some function for a number of
different values of the variable.

COMPUTER TIME~SHARING SERYICE~~~~~~~~~~~~~~s~Ic

-27-

The DE F statement may OCCur anywhere in the program, and the expression to the right of the
equal sign may be any formula which can be fit onto one line. It may include any combination of
other fWlctions, including ones defined by different DEF statements, and it can involve other
variables besides the one denoting the argument of the fWlction. Thus. assuming FNR is defined
by

70 DEF FNR(X) =SQR (2 + LOG (X) - EXP (Y*Z) * (X + SIN (2*Z)))

if you have previously assigned values to Yand Z, you can ask for FNR (2.175). You can give new
. values to Y and Z before the next use of FNR.

The use of DE F is generally limited to those cases where the value of the fWlction can be computed
within a single BASIC statement. Often much more complicated fWlctions, or even pieces of a
program, must be calculated at several different points within the program. For these fWlctions,
the GOSUB statement may frequently be useful, and it is described in the next section.

3.3605UB and RETURN

When a particular part of a program is to be performed more than one time, or possibly at
several different places in the overall program, it is most efficiently programmed as a subroutine.
The subroutine is entered with a GOSUB statement, where the number is the line number of the
first statement in the subroutine. For example,

90 GOSUB 210

directs the computer to jump to line 210, the first line of the subroutine. The last line of the
subroutine should be a return command directing the computer to return to the earlier part of the
program. For example,

350 RETURN

will tell the computer to go back to the first line numbered greater than 90 and to continue the
program there.

The following example, a program for determining the greatest common divisor of three integers
using the Euclidean Algorithm, illustrates the use of a subroutine. The first two numbers are
selected in lines 30 and 40 and their GCD is determined in the subroutine, lines 200-310. The
GCD just fOWld is called X in line 60, the third number is called Y in line 70. and the subroutine
is entered from line 80 to find the GCD of these two numbers. This number is, of course, the
greatest common divisor of the three given numbers and is printed out with them in line 90.

You may use a GOSUB inside a subroutine to perform yet another subroutine. This would be called
"nested GOSUBs". In any case, it is absolutely necessary that a subroutine be left only with a
RETURN statement, using a GOTO or an IF-THEN to get out of a subroutine will not work
properly. You may have several RETURNs in the subroutine so long as exactly one of them will
be used.

The user must be very careful not to write a program in which a GOSUB appears inside a
subroutine which refers to one of the subroutines already entered. (Recursion is.!!2! allowed!)

COMPUTER TIME-SHARING SER~CE~~~~~~~~~~~~~M~sI~c

-28-

GCN3NO 11:08 20 DEC. 1965

10 PRINT" A", " B", " C", "GCD"
20 READ A, B, C
30 LET X = A
40 LET Y = B
50 GOSUB 200
60 LET X = G
70 LET Y = C
80 GOSUB 200
90 PRINT A, B, C, G
IDa GO TO 20
II 0 DA TA 60, 90 , 120
12Q DATA 38456, 64872, 93765
I30 DA TA 32, 3 B4, 72
200 LET Q : INT(X/Y)
210 LET R : X - Q*Y
220 IF R : 0 THEN 300
230 LET X : Y
240 LET Y : R
250 GO TO 200
300 LET G : Y
310 RETURN
320 END

RUN

GCN3NO 11 : 09 20 DEC. 1965

A B C GCD
60 90 120 30
38456 64872 98765 1
32 384 72 8

OUT OF DATA IN 20

TI ME: o SECS.

3.4INPUT

There are times when it is desirable to have data entered during running of a program. This
is particularly true when one person writes the program and enters it into the machine's memory,
and other persons are to supply the data. This may be done by an INPUT statement, which acts
'as a READ statement but does not draw numbers from a DATA statement. If, for example, you
want the user to supply values for X and Y into a program, you will type

40 INPUT X, Y

before the first statement which is to use either of these numbers. When it encounters this
statement, the computer will type a question mark. The user types two numbers, separated by
a comma, presses the return key, and the computer goes on with the rest of the program.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~~s~Ic

-29-

Frequently an INPUT statement is combined with a PRINT statement to make sure that the user
knows what the question mark is asking for. You might type

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z

and the machine will type out

YOUR VALUES OF X, Y, AND Z ARE?

Without the semicolon at the end of line 20, the question mark would have been printed on the next
line.

Data entered via ~ INPUT statement is not saved with the program. Furthermore, it may take
a long time to enter a large amoWlt of data using INPUT. Therefore, INPUT should be used only
when small amounts of data are to be entered, or when it is necessary to enter data during the
rWlning of the program such as with game-playing programs.

3.5 SOME MISCELLANEOUS STATEMENTS

Several other BASIC statements that may be useful from time to time are STOP, REM, and
RESTORE.

STOP is entirely equivalent to GOTO xxxxx, where xxxxx is the line number of the END statement
in the program. It is useful in programs having more than one natural finishing point. For
example, the following two program portions are exactly equivalent.

250

340

999

GO TO 999

GO TO 999

END

250 STOP

340 STOP

999 END

REM provides a means for inserting explanatory remarks in a program. The computer
completely ignores the remainder of that line, allowing the programmer to follow the REM with
directions for using the program, with identifications of the parts of a long program, or with
anything else that he wants. Although what follows REM is ignored, its line number may be used
in a GOSUB or IF-THEN statement.

100 REM
11 0 REM
120 REM

200 REM

INSERT DATA IN LINES 900-998. THE FIRST
NUMBER IS N, THE NUMBER OF POINTS. THEN
THE DATA POINTS THEMSELVES ARE ENTERED, BY

THIS IS A SUBROUTINE FOR SOLVING EQUATIONS.....
300 RETURN

520 GOSUB 200

Sometimes it is necessary to use the data in a program more than once. The RESTORE statement
permits reading the data as many additional times as it is used. 'Whenever RESTORE is

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~~s~lc
-30-

encountered in a program, the computer restores the data block pointer to the first number. A
subsequent READ statement will then start reading the data all over again. A word of warning--if
the desired data are preceded by code numbers or parameters, superfluous READ statements
should be used to pass over these numbers. As an example, the following program portion reads
the data, restores the data block to its original state, and reads the data again. Note the use of
line 570 to lIpass over" the value of N, which is already known.

100 READ N
110 FOR I = 1 TO N
120 READ X

200 NEXT I

560 RESTORE
570 READ X
580 FOR I : 1 TO N
590 READ X

3.6 MATRICES

Although you can work out for yourself pr grams which involve matrix computations, there isa
special set of eleven instructions for such c mputations. They are identified by the fact that each
instruction must start with the word 'MAT'. They are

MAT READ A, B, C

MAT PRINT A, B; C

MAT C = A + B

MAT C = A - B

MAT C =A*B

MAT C = INV (A)

MAT C =TRN (A)

MAT C =(K)*A

MAT C =ZER

IMAT C =CON

MAT C =ION

Read the three matrices, their dimensions haVing been
previously specified.

Print the three matrices, with A and C in the regular format,
but B closely packed.

Add the two matrices A and B.

Subtract the matrix B from the matrix A.

Multiply the matrix A by the matrix B.

Invert the matrix A.

Transpose the matrix A.

Multiply the matrix A by the number K. The number K, which
must be in parentheses, may also be a formula.

Fill out C with zeroes.

Fill out C with ones.

Set up C as an identity matrix.

Special rules apply to the dimensioning of matrices which occur in MAT instructions. To begin
With, each such matrix must be declared in a DIM statement (not a MAT DIM statement, just a
DIM statement). This statement is to~~_enoughspace for th!LIDatrix aneL. hence, the only care

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~s~Ic
-31-

at this point is that the dimensions declared are large enough to accommodate the matrix. Then,
before any computation is carried out, the precise dimensions must be specified. This may be
accomplished by anyone of four MAT instructions:

MAT READ C(M,N)
MAT C = ZER (M,N)
MAT C = CON(M,N)
MAT C = IDN (N,N).

Since each matrix has a column numbered.Q... and a row numbered~ the first three instructions
would specify matrices of size '<M+I) x(~+l) and the last, since an identity matrix must be square,
a matrix (N+l) x (N+l). These same instructions may also be used to change the dimension of a
matrix, as long as it does not exceed the dimensions declared in the DIM statement.

row numbered 0, the instruction
1, and 2, and columns 0, 1, 2, and 3:

1)
'l.

1
1
1

a column numbered ° and a
up a 3x4 matrix with rows 0,

~
~ i

\ 1 1
'1 1

Since each matrix has
MAT C = CON(2,3) sets

While the combination of ordinary BASIC instructions and MAT instructions makes the language
much more powerful, the user has to be very careful about his dimensions. In addition to having
both a DIM statement, and a declaration of current dimension, care must be taken with the 11
MAT instructions. For example, a matrix product MAT C = A*B may be illegal for one of two
reasons: A and B may have dimensions such that the product is not defined, or even if it is
defined, C may have the wrong dimensions for the answer. In either case a "DIMENSION ERROR"
message results.

Vectors may be used in place of matrices, as long as the above rules are observed. Since a
vector like X (I) is treated as a column vector by BASIC, a row-vector has to be introduced as a
matrix that has only one row, namely row 0. Thus

DIM X(7), Y(0,5)

introduces an a-component column vector and a 6-component row-vector.

~ There is room for a total of about 2000 components in all vectors and matrices--less if the
program is long.

The same matrix may occur on both sides of an MAT equation in case of addition, subtraction,
or constant multiplication; but not in any of the other instructions. Thus

MAT A =A+B MAT A =(2.5)*A MAT A =A-A MAT B =A*A

are all legal. Note that the fourth example (matrix multiplication) is also legal, but that

MAT A = B*A

will result in nonsense. At the moment there is no instruction of the form: MAT A =B, but the
same goal is achieved by

MAT A = (1) *B

Also, only a single arithmetical operation is allowed; MAT A = A+B-C is illegal, but may be
achieved by 2 MAT instructions.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~B~As~Ic
-32-

We close with two illustrations of matrix programs. The first one reads in A and B, and uses C
for answers. First A+A is computed, then A*B. Note that correct dimensions are set up in lines
30 and 40. Note also that M =1, N =2 results in A being 2X3 and B being 3X3. Both MAT PRINT
formats are illustrated, and one method of labeling a matrix print is shown.

MA TRIX 11 :32 20 DEC. 1965

10 DIM AC20,20>, 8C20,20>, C(20,20>
20 READ M,N
30 MAT READ ACM,N>, 9CN,N>
40 MAT C = ZERCM,N>,
100 MAT C : A+A
120 NA T PR I NT C;
140 -MAT C : A*B
150 PRINT "A*B :"
160 FRINT .1
170 ~IA T PR I NT C
190 DA TAl , 2 . r'

19 1 DA TAl , 2 , 3
192 DA TA 4,5,6
193 DATA 1,0,-1
19 4 DA TA 0, - 1 , - 1
195 DA TA-I ,0, 0
199 END

RUN

MATRIX

2

8

-2

-2

4

10

11 :32 20 DEC. 1965

6

12

-2

-5

-3

-9

Tl ME: 1 SECS.

The second example inverts an (N+1) x (N+1) Hilbert Matrix:

1
1/2
1/3

1/2
1/3
1/4

1/3 . . . 1/(N+1)
1/4 . 1/(N+2)
1/5 . 1/(N+3)

1/(N+1) 1/(N+2) . 1/(2N+l)

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~s~Ic
-33-

Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this occurs
after correct dimensions have been declared. Then a single instruction results in the computation
OT'tiie inverse, and one more instruction prints it. In this example, we have supplied 3 for N in
the DATA statement and have made a run for the 4x4 case.

MATRIX 11:42 20 DEC. 1965

10 DIM A(20,20), 8(20,20)
20 READ N
30 MAT A = CON(N,N)
40 MAT B = CON(N,N) .
50 FOR I = 0 TO N
60 FOR J = 0 TO N
70 LET A(I , J) = 1/ <I +J +1)

80 NEXT J
90 NEXT I
100 MAT 8 = INV(A)
110 MA T PR I NT 8;
190 DATA 3
199 END

RUN

11 : 42 20 DEC. 1965

6480.01 -4200.

MATRIX

16.

-120.

240.

-140.

TIME:

-120.

1200.

-2700.

1680.

1 SECS.

240.

-2700.

-4200.

-140.

1680.

2800.

It may be of interest that a 20 x 20 matrix is inverted in about 6 seconds, but the reader is warned
that beyond N = 6 (the 7 x 7 case) the Hilbert matrix cannot be inverted because of severe roundoff
errors.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~~B~As~u
-34-

APPENDIX A
ERROR MESSAGES

The various error messages that can occur in BASIC, together with their interpretation, are now
given:

Error Message

DIMENSION TOO LARGE

ILLEGAL CONSTANT

ILLEGAL FORMULA

ILLEGAL RELATION

ILLEGAL LINE NUMBER

ILLEGAL INSTRUCTION

ILLEGAL VARIABLE

INCORRECT FORMAT

END IS NOT LAST

NO END INSTRUCTION

NO DATA

UNDEFINED FUNCTION

UNDEFINED NUMBER

PROGRAM TOO LONG

Interpretation

The size of a list or table is too large for the available storage.
Make them smaller. (See Appendix B.)

More than nine digits or incorrect form in a constant number,
or a number out of bounds (> 5.78960E76),

Perhaps the most common error message, may indicate
missing parentheses, illegal variable names, missing multiply
signs, illegal numbers, or many other errors. Check the
statement thoroughly.

Something is wrong with the relational expression in an
IF-THEN statement. Check to see if you used one of the six
permissable relational symbols.

Line number is of incorrect form, or contains more than five
digits.

Other than one of the sixteen legal BASIC instructions has
been used following the line number.

An illegal variable name has been used.

The format of an instruction is wrong, See especially
IF-THEN's and FOR's.

Self-explanatory, it also occurs if there are two or more END
statements in the program.

The program has no END statement.

There is at least one READ statement in the program, but no
DATA statements.

A function such as FNF () has been used without appearing in
a DEF statement. Check for typographical errors.

The statement number appearing in a GOTO or IF-THEN state­
ment does not appear as a line number in the program.

Either the program itself is too long for the available storage,
or there are too many constants. (See Appendix B,)

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~M~s~re
-35-

TOO MUCH DATA

TOO MANY LOOPS

NOT MATCH WITH FOR

FOR WITHOUT NEXT

CUT PROGRAM OR DIMS.

There is too much data in the program. (See Appendix B.)

There are too many FOR-NEXT combinations in the program.
The upper limit is 26. (See Appendix B.)

An incorrect NEXT statement, perhaps with a wrong variable
given. Also, check for incorrectly nested FOR statements.

A missing NEXT statement. This message can also occur in
conjunction with the previous one.

Either the program is too long, or the amount of space reserved
by the DIM statements is too much, or a combination of these.
·This message can be eliminated by either cutting the length of
the program, or by reducing the size of the lists and tables,
reducing the length of printed labels, or reducing the number
of simple variables.

The following error me~sages can occur after your program has run for awhile. Thus, they may
conceivably occur after the first part of your answers have been printed. All of these errors
indicate the line number in which the error occurred.

OUT OF DATA

SUBSCRIPT ERROR

RETURN BEFORE GOSUB

GOSUB NESTED TOO DEEPLY

DIVISION BY ZERO

DIMENSION ERROR

NEARLY SINGULAR MATRIX

A READ statement for which there is no DATA has been
encountered. This may mean a normal end of your program,
and should be ignored in those cases. Otherwise, it means
that you haven't supplied enough DATA. In either case, the
program stops.

A subscript has been called for that lies outside the range
specified in the DIM statement, or if no DIM statement applies,
outside the range 0 through 10. The program stops.

Occurs if a RETURN is encountered before the first GOSUB
during the running of a program. (Note: BASIC does not
require the GOSUB to have an earlier statement number--only
to perform a GOSUB before performing a RETURN.) The
program stops.

Too many GOSUBS without a RETURN. It may mean that
subroutines are being exited by GOTO or IF-THEN statements
rather than by RETURNs. The program stops.

A division by zero has been attempted. The computer assumes
the answer is + (X) (about 5.78960E76) and continues running
the program.

A dimension inconsistency has occurred in connection with
one of the MAT statements. The program stops.

The INV operation in MAT has encountered a matrix with
zero or nearly zero pivotal elements. The matrix being
inverted is singular or nearly so. The user is warned,
however, that this error check is not 100 percent reliable.
For instance, this error message need not occur even if the
inverse is meaningless, as with high order Hilbert matrices.
If this error occurs, the program stops.

COMPUTER TIME-SHARING SERYICE~~~~~~~~~~~~B~AsI~c

-36-

ZERO TO A NEGATIVE POWER A computation of the form 0 t (-1) has been attempted. The
computer supplies + ex> (about 5.78960E76) and continues running
the program.

ABSOLUTE VALUE RAISED A computation of the form (-3) t 2.7 has been attempted. The
TO POWER computer supplies (ABS(-3» t 2.7 and continues. Note:

(-3) t 3 is correctly computed to give -27.

OVERFLOW A number larger than about 5.78960E76 has been generated.
The computer supplies + (or -) 0) (about + 5.78960E76) and
continues running the program. -

UNDERFLOW A number in absolute size smaller than about 4.31809E-78
has been generated. The computer supplies 0 and continues
running the program. In many circumstances, underflow is
permissable and may be ignored.

EXP TOO LARGE The argument of the exponential function is ~ 176.753.
+ ex> (5.78960E76) is supplied for the value of the exponential.
and the running is continued.

LOG OF NEGATIVE NUMBER The program has attempted to calculate the logarithm of a
negative number. The computer supplies the logarithm of
the absolute value and continues.

LOG 0 F ZERO The program has attempted to calculate the logarithm of O.
The computer supplies - ex> (about -5.78960E76) and continues
running the program.

SQUARE ROOT OF A NEGATIVE The program has attempted to extract the square root of a
NUMBER negative number. The computer supplies the square root of

the absolute value and continues running the program.

COMPUTER TIME·SHA~NG SERVICE~~~~~~~~~~~~M=s~Ic

-37-

APPENDIX B
LIMITATIONS ON BASIC

There are some limitations imposed on BASIC by the limited amount of computer storage. Listed
below are some of these limitations, in particular, those that are related to the error messages
in Appendix A. The reader should realize that while the -BASIC language itself is fixed, in time
some of these limitations may be relaxed slightly.

Item

Length of program

Constants

Data

FOR statements

GO TO and IF-THEN
statements

Lists and Tables

Limitation

Difficult to relate to the BASIC program, but in general about
two feet of teletypewriter paper filled with BASIC statements
is about it.

The total number of different constants must not exceed 75.

There can be no more than 1280 data numbers.

There can be no more than 26 FOR statements in a program.

The total number of these statements combined cannot exceed
80.

The total number of elements in all the lists and tables
combined cannot exceed something less than 2000.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B~As~Ic
-38-

APPENDIX C
USING THE TIME-SHARING SYSTEM

The Time-Sharing System consists of a GE-235 computer with a number of input-output stations
(currently, models 33 and 35 teletypewriter machines). Individuals using the input-output stations
are able to "share" the use of the computer with each other in such a way as to suggest that
each has sole use of the computer. The teletypewriters are the devices through which the user
communicates with the computer.

THE KEYBOARD

The teletypewriter keyboard is a standard typewriter keyboard for the most part. There are
3 special keys that the user must be familiar with.

RETURN

Control plus X

This key is located at the right-hand end of the third row of
keys, and does more than act as an ordinary carriage return.
The computer ignores the line being typed until this key is
pushed.

The Control key is located at the left-hand end of the third row
of keys. When it is depressed in conjunction with the X key,
the computer deletes the entire line being typed. This also
acts as a carriage return.

This key is located on the "oh" key when either SHIFT key is
pressed. It is used to delete the character or space
immediately preceding the "~". If this key is pressed N times,
the characters or spaces in the N preceding spaces will be
deleted.

ABCWT~~DE appears as ABCDE when RETURN is pushed.
AB C~~~ CDE appears as ACDE when RETURN is pushed.

(Some languages available on the time-sharing system use the three characters U\", U[",
and U J." They are located on the keys ttL", ttK", and "M" respectively when either SHIFT
key is pushed.)

TELETYPEWRITER OPERATION

Besides the keyboard itself there are 4 buttons necessary to operate the machine.

BUTTON

ORIG

CLR

LOCATION

leftmost of six
small buttons on
the right.

next to ORIG

FUNCTION

turns on the teletypewriter and
connects it to the phone line.

turns off teletypewriter and dis­
connects the phone circuit.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~B~As~Ic

-39-

BUTTON

LOC LF

BUZ-RLS

LOCATION

left of the space
bar on model 35
teletypewriters
only.

rightmost of six
small buttons on
the right.

FUNCTION

feeds paper to permit tearing off.

turns off buzzer, which signals low
paper supply.

If the teletypewriter is on a direct line to the computer, pushing the ORIG button is all that is
necessary to connect up with the computer. To disconnect from the computer, type GOODBYE
or BYE. If that fails, push CLR.

In order to connect with the computer from a teletypewriter, follow this routine:

1. Push the ORG button and wait for dial tone.

2. Dial one of the dataphones at the Time-Sharing Center.

In order to disconnect from a long distance teletypewriter, type GOODBYE or BYE. If that
fails, push CLR.

REQUIRED STATEMENTS AT SIGN-ON

Once the teletypewriter is connected to the computer, you will be asked for certain information
which you .will supply by typing the information when asked for it. Remember to follow each
response with a carriage return.

First the computer asks for the user's number, which is assigned by the Time-Sharing
Center. Next it asks for the system to be used (BASIC, ALGOL, etc.). Then it will ask
whether it is a new or old program you will be working on. A new program is one which the
user is about to start on, while an old program has saved in memory for future use.

Finally, it will ask for the new or old problem name. After the machine types READY the
user may begin with his new program or pick up where he left off on his old program. A
typical sign-on sequence follows. (~he underline indicates information typed by the user.)

USER NUMBER--999999 ®
SYSTEM--BASIC ®
NEW OR OLD--NEW ®
NEW PROBLEM NAME--M36-2 ®
READY.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~~~s~Ic
-40-

CONTROL COMMANDS

There are a number of commands that may be given to the computer by typing the command at
the start of a new line (no line number) and following the command with a carriage return
(RETURN).

COMMAND

CATALOG

EDIT

LENGTH

LIST

LIST --xxxxx

NEW

OLD

RENAME

RUN

RUN (typed during
a computation)

SAVE

SCRATCH

STATUS

STOP

SYSTEM

TTY

MEANING

The computer types a list of the names of all programs
currently being saved by that user.

Gives a brief explanation of the format used in the EDIT
commands.

Gives the user some idea of the length of the program to the
nearest 200 characters. A maximum length of 6400 characters
is permitted in anyone program.

Causes an up-to-date listing of the program to be typed out.

Causes an up-to-date listing of the program to be typed out
beginning at line number xxxxx and continuing to the end.

Erases the program currently being worked on and asks for
a NEW PROBLEM NAME.

Erases the program currently being worked on and asks for
an OLD PROBLEM NAME.

Permits you to change the problem name of the program
currently being worked on, but does not destroy the program.

Begins the computation of a program.

Gives an indication that a program is running and how much
machine time has elapsed since the run began.

Saves the program intact for later use. (To retrieve saved
programs, type OLD).

Destroys the problem currently being worked on, but leaves
the user number and problem name intact. It gives the user
a "clean sheet" to work on.

Gives an indication of the status of the teletypewriter you are
using (running, idle, or disconnected).

Stops the computation at once. It can be typed even when the
teletypewriter is typing at full speed.

Permits the user to change systems (BASIC, ALGOL, etc.)
without going through the sign-on sequence again.

Supplies the folloWing information: teletypewriter number,
user number, language being used, program being used, and
status of teletypewriter.

COMPUTER TIME-SHARING SERVICE~~~~~~~~~~~~M~s~ro
-41-

COMMAND

UNSAVE

MEANING

Erases a saved program from memory. The memory of the
computer is finite and this command should be used to free
space in memory for programs of other users.

-42-

---------- ---~--_.. _- - --

LITHO IN U.S.A.

COMPUTER TI~E-SHARING SERVICE.

Computer centers and offices of the

Information Service Department are

located in principal cities throughout

the United states.

-Check your local telephone directory

for the address and telephone number

of the office nearest you. Or write

to ...

General Electric Company

Information Service Department

7735 Old Georgetown Road

Bethesda, Maryland 20014

~ Is o",Most Im~1If'PtoWcf

GENERAL. ELECTRIC
INFORMATION SERVICE DEPARTMENT

	Preface
	Contents
	1. What is a Program?
	2. A BASIC Primer
	3. Advanced BASIC
	Appendixes
	A. Error Messages
	B. Limitations on BASIC
	C. Using the Time-Sharing System

