Information

Time-Sharing Service

Elementary Instruction Guide

-
-
-
”f’*‘w&@azig:@
e

ggﬂ@&'
. . '
o . - - ’ o s B

-
e

| -
-
e

o . s

. ‘E;? ,Jm =g

.
S e :
o :; i ’ﬁ: ; -
-
.

.

e
?@*PW;@_S

-
i

‘ -

- e _ - - . .
- : : - - - e i . - ‘
g . o - - - -

-

ELECTRIC

INFORMATION SERVICE DEPARTMENT

Time-Sharing Service

INTRODUCTION TO
TIME-SHARING FORTRAN

Elementary Instruction Guide

November 1966
Reprinted 6-67, 9-67, & 6-68

GENERAL &B ELECTRIC

INFORMATION SERVICE DEPARTMENT
227106

PREFACE

This manual provides an introduction to Time-Sharing FORTRAN. Its purpose is to give
the user already familiar with Time-Sharing the information he needs to write programs in
the FORTRAN language. Once familiar with the information in this manual, he can better
understand the more advanced material contained in 206046, Time-Sharing FORTRAN:
Reference Manual.

Computer Time-Sharing Service: System Manual (229116) provides information on the use
of the Computer Time-Sharing Service of General Electric’s Information Service Department.
The manual should be used in conjunction with this one.

() 1966 by General Electric Company

COMPUTER TIME-SHARING SERVICE FORTRAN

INTRODUCTION

CONTENTS

Page
1. WHAT IS APROGRAM . 4 4 vt vt s e ot e ot e st oo o noeaosneensneeens 1
2, A FORTRAN PRIMER
Sample Problemt i ittt ittt it e et e e e 2
Using FORTRAN Statementsttt renseas 3
How the Computer Treats the Statements 3
Numbers, Variables, and Equationst eennenn. 4
Rules for Writing a FORTRAN Programt v v eusaeennenn 6
Loops and Flowchartsttt eens 6
FORTRAN Statements Used for Looping v v v o v v vt vt v v v oo v v e 8
Errorsand Debugging i it ittt ittt eeeeenonoennas 9
The Process of Writing and Debugging a Program 10
Actual Input and Error Detection 11
3. MORE ADVANCED FORTRAN
More About Print . . . oo v vttt i it it e e e e e e e e e e e e 14
Advanced Output . .o . v vt v i i e e e e e e e e e e e e e e e e 14
Lists and Tables v v v v it ittt e it et ot e s s e o et s o oon e 15
A Sample Program UsSing ATTaysS . . . v v v v v v o v v v v v oo v v v v vsoonn 15
First Solution Using Arrayso oo vt o v o vt tv v nennnenenns 16
Another Method for Using Arrays v v o v v v v vttt v v v i o v v e 17
Second Solution Using Arrays. . . o v v v v ot v v vt vttt v ot o v oo v oo 18
SUDPIrOgramS. & . v v v vttt ettt e e e e e e e e e e e e 18
FUNCTION and SUBROUTINE Statements. 18
SUBROUTINE Example . . . o o vt vt ittt e ittt et ottt neenannn 19
How to ""Call" a Subroutine into the Main Program................ 20
FUNCTION Example v ittt e it ettt e i ot ot o an o s s e 21
Points to Remember When Using Subprograms 22
Some Ideas for More Advanced Programmersoeoeeeoneons 22
Documenting a Program i vt vt vt v v v ot a vt oo oo nonenns 22
Round-Off Errors . v v v v v v i ittt ot ot ettt oo e n oo oononeeenos 23
Methods for Checking Programs e et ee v eoneeseens 23
APPENDIXES
A GENERAL INFORMATIONttt s ot ettt oo n oo o oo naenoenenas 25
B SUMMARY OF STATEMENTSttt it ittt ettt ensesnnnns 26
C. TABLE OF FUNCTIONS . .. i ittt et ettt o ittt oot neeneenn 27
D REFERENCE Sttt ittt e e it ettt et et e e et ot ia e 29
E ERROR MESSAGES it ittt it ettt ottt o as s toaseanens 30
FORTRAN
COMPUTER TIME-SHARING SERVICE e ETIOTIoN

iii

1. WHAT IS A PROGRAM?

A program is a setofdirections, a recipe, that is used to provide an answer to some problem.
It usually consists of a set of instructions to be performed or carried out in a certain order.
It starts with the given data and parameters as the ingredients, and ends up with a set of
answers as the cake. And, as with ordinary cakes, if you make a mistake in your program,
you will end up with something else--perhaps hash'

Any program must fulfill two requirements before it can even be carried out. The first is
that it must be presented in alanguage that is understood by the “computer.” If the program
is a set of instructions for solving linear equations, and the “computer” is a person, the
program will be presented in some combination of mathematical notation and English. If
the person solving the equations is a Frenchman, the program must be in French. If the
“computer” is a high speed digital computer, the program must be presented in a language
the computer can understand.

The second requirement for all programs is that they must be completely and precisely
stated. This requirementis crucial whendealing with a digital computer, which has no ability
to infer what you mean. The computer can act only upon what you actually present to it.

We are, of course, talking about programs that provide numerical answers to numerical
problems. To present a program in the English language, while easy on the programmer,
poses great difficulties for the computer because English, or any other spoken language, is
rich with ambiguities and redundancies. Instead, you present your program in a language
that resembles ordinary mathematical notation, which has a simple vocabulary and grammar,
and which permits a complete and precise specification of your program. The language that
you will use is FORTRAN, which is at the same time precise and easy to understand in its
simplest form.

Your first introduction to the FORTRAN language will be through an example. You will
study the language in more detail with emphasis on its rules of grammar and on examples
that show the application of computing to a wide variety of problems. '

This manual is intended only to getyou started. The best way to learn how to use computers
is to use one to solve your problem. This brings up an important point. A computer, whether
a person or a machine, can solve only problems that you know how to solve and can give
explicit instructions for each step toward the solution. You need to know the numerical
methods as well as a computer language.

A list of references on numerical methods and FORTRAN programming is included in
Appendix D.

COMPUTER TIME-SHARING SERVICE e

2. A FORTRAN PRIMER

SAMPLE PROGRAM

The following example is a complete FORTRAN program for solving two simultaneous linear

equations in twounknowns with several possible different right hand sides. The equations to
be solved are

Al X1+A2XQ=B1
A; X, +A, X, =8B,
Since there are only two equations, we may find the solution by the formulas

=(B1 A4 -B: Ap) Xe=(A1 B: - As; B,)
(A1 Ay - Az Az) (A, As - Aj A)

X,

Study the example carefully--in most cases the purpose of each line in the program is self-
evident,

00 30 INPUT, Al, A2, A3, A4, Bl, B2
10 D = Al*A4 = A3%A2

20 X1 = (BI1%xA4 - B2%A2)/D

30 X2 = (A1*B2 = A3%B1)/D

40 PRINT, X1, X2

50 GBT@ 30

60 END

We immediately observe several things about the above sample program. First, all lines
in the program start with a line number. These serve to identify the lines in the program,
each one of which is called a statement. A program is made up of statements, most of which
are instructions to be performed by the computer. These line numbers also serve to specify

the order in which the statements are to appear in the program, which means that you could
type your program in any order.

Before the program is run by the computer, it sorts out and edits the program, putting the
statements into the order specified by their line numbers. (This editing process makes the
correcting and changing of programs extremely simple, as will be explained in later sections.)

COMPUTER TIME-SHARING SERVICE T

Using FORTRAN Statements

The second observation is that some of the statements start with English words. They are
practically self-explanatory. The INPUT, READ, PRINT, G@T®, and END statements mean
just that. The other statements look like algebraic equations. They are. Rather than x for
multiplication we use *, The slash (/) is used for division. The minus (-) is used in
subtraction.

The third observation is that we use only capital letters.

How the Computer Treats the Statements

Turning now to the individual statements inthe program, we observe that the first statement,
numbered 00 is an INPUT statement. When the computer encounters an INPUT statement
while running your program, it will assign valuesof input data to the variables whose names
are listed after the INPUT statement in the order in which they are listed. Thus when you
ask for a run of our sample program you will then have to type numerical values for Al, A2,
A3, A4, Bl, B2. Note that these numerical values do not appear in the program itself.

The next line, numbered 10, is analgebraic statement. It causes the computer to compute the
value of the expression A; A, -A;A;, and to assign this value to the variable D. The
expression computed in an algebraic statement can range from the very simple (consisting
of only a single variable) to the very complex. The rules for forming these expressions are
given in detail in the next section, but for now we point out that:

1. Variable names always start with a capital letter.
2. The symbol * (asterisk) is always used to denote multiplication.

3. Parentheses may be needed to specify the order of the computation.

The lines numbered 20 and 30 complete the computation of the solution, X1 and X2. Notice
that the denominator has been previously evaluated as the variable D. Thus it is not
necessary to repeat the formula given in line 10. Notice also how parentheses are used to
specify that the numerator of the fraction consists of the entire quantity B1*A4 - B2*A2.
If the parentheses had been omitted by mistake, the expression computed would have been
B1*A4 - B2*A2/D, which is incorrect.

Now that the answers have been computed, they will be printed out for you to see when the
computer encounters line 40. Notice in the problem on page 2, that the comma is used to
separate the individual items in the list of quantities to be printed out at that time.

Having completed the computation, line 50 tells the computer to execute statement number 30,
which is online 00. The statementnumber is required whenever the next program step is .0t
on the next line. In this case, we are asking the computer to see if we have more data. If
there is none the user will indicate this by typing ST@P, followed by a carriage return.

FORTRAN

COMPUTER TIME-SHARING SERVICE TRTRODUCTION

NUMBERS, VARIABLES, AND EQUATIONS

Equations in FORTRAN look much like mathematical equations. They may contain variables,
functions, constants, and operations. Variables and constants represent numbers; functions
and operations result in numbers when evaluated.

In FORTRAN we must consider two kinds (or modes) of numbers: integers and real numbers.
These two modes have differentformats when storedin the computer. Consequently there are
different ways of representing them in FORTRAN. Integers, or “fixed point” numbers, are
written as a string of up to six digits without a decimal point (such as 123456 or -3). The
computer understands that the decimal point, if written, would come after the last digit;
hence the term “fixed point.” In Time-Sharing FORTRAN, integers may take on values be-
tween + 524287, inclusive. Integers are useful for counting, indexing, and simple compu-
tations. Real, or “floating point” numbers are written as a string of up to six digits with
a decimal point (such as 123.456 or -3.0). The decimal point may come before or after any
digit you wish, hence the term “floating point.” An alternate way to write real numbers,
called the exponential form, adapted from scientific notation, is explained below. This
makes it possible to express numbers between +5.7896 x 107 (57896 followed by 72 zeroes),
inclusive.

Numbers may be constants or variables. Constants have fixed values. Variables are any
quantities to which we assignnames andwhichwe allow to take on new values as the problem
proceeds. For example:

N=4
C=-2.+A

In these equations N, C, and A are variables. 4 and 2. are constants. Incidentally, 4 is a
fixed point constant (no decimal point) but -2. is a floating point constant. Notice that a
positive constant need not be preceded by a plus sign but a negative constant must have a
minus sign.

Floating point constants may be written in the exponential form. Indeed, they must be
written this way if the number has a very small magnitude or a very large magnitude.
The exponential form consists of three parts, in order: a real mantissa (decimal point
included), the character “E,” and an integer exponent (no decimal point) of up to two digits.
The mantissa contains up to eight of the most significant (leftmost) digits of the actual number.
The “E” simply serves as a marker to separate the mantissa from the exponent. The
exponent represents the power of ten by which the mantissa must be multiplied if we want
to write out all of the digits and place the decimal point properly. For example:

4.732E6 means 4,732,000.
3.52E-4 means .000352
4E-5 means .00004

Some possible errors in writing constants in FORTRAN are revealed below:

1,896.2 (comma not allowed)
E-3 (no mantissa)

COMPUTER TIME-SHARING SERVICE T TROSUCTION

Variables may be either fixed point or floatingpoint. In FORTRAN, the names of fixed point
variables must start with either I, J, K, L, M, or N. Names of floating point variables start
with any other letter. The names of either floating or fixed point variables may have as few
as 1 and as many as 30 letters or digits with the first character always a letter. Some
fixed point variables might be named NX@, NEGAT, or LIG2. Some examples of floating
point names are B, D1, XAR, AMP1, or X1.

The programmer can assign names to these variables to suit himself as long as he
distinguished between floating point and fixed point variables.

Equations are formed in FORTRAN by using these symbols (operators) in conjunction with
numbers and variables:

+ means addition

- means subtraction

* means multiplication

/ means division

t or ** means exponentiation (to the power)

Here are some examples of FORTRAN expressions and their mathematical meaning:

FORTRAN
EXPRESSION MEANING
C-D
(C-D)/E ===
C-D/E c-2
E
E/(C-D _E_
/(C-D) =5
A/B*D AxD
B
A
A/(B*D
/(B) BxD
A
A/B/D
/ / BxD
A+C*B**D A+C x BP
A-(C*B) 1D A-(C x B)D

COMPUTER TIME-SHARING SERVICE e

In the absence of parentheses, operators are applied according to the priority of application
each has. The order of priorities is as follows: Exponentiation, multiplication or division,
and addition or subtraction. Negation has the same level as addition and subtraction.

A few of the standard functions are available in FORTRAN by name. For example, to compute
SIN 3X you would simply write SIN (3*X). These standard functions are all used in this way.
Their names are listed in the table below:

Function Symbolic Name
TRIGONOMETRIC SINE SIN ()
TRIGONOMETRIC COSINE c@gs ()
NATURAL LOGARITHM LgG ()
EXPONENTIAL (e**X) EXP ()
SQUARE ROOT SQRT ()
TRIGONOMETRIC ARCTANGENT ATAN()

These six functions always produce floating-point results. Angles are in radians.

RULES FOR WRITING A FORTRAN PROGRAM

You now have all the information needed to write a simple program similar to the example.
Here are a few rules for communicating your program to the computer:

1. Each line must begin with a 1 to 5 digit line number. The first character after the
line number must be a blank, unless the entire line is a comment.

2. A line may contain one or more statements. If you enter more than one statement
on a line, terminate each statement except the last by a semicolon.

3. A statement may be continued on as many lines as desired. Enter a plus sign (+)
as the first nonblank character after the blank following the line number for each
continuation line.

4, A statement may or may not be labeled. The label may be a 1 to 5 digit number or
a one to 30 character name.

5. Comments may occupy an entire line by entering any nonblank as the first character
after the line number. In addition, a comment may be embedded anywhere within a
line. Introduce embedded comments with an apostrophe and terminate them with
another apostrophe, a semicolon, or the end of the line.

LOOPS AND FLOWCHARTS

One of the most important programming ideas is that of a loop. While we can write useful
programs in which each statement is performed only once, such a restriction places a
substantial limitation on the power of the computer. Therefore, we prepare programs that
have portions which are performed not once but many times, perhaps with slight changes
each time. This “looping back” is present in the first program, which can be used to solve
not one but many sets of simultaneous linear equations. When a lot of “looping back” is to
be done in a program, a flowchart will assist your thinking. Both looping and flowcharting
are best shown by an example.

COMPUTER TIME-SHARING SERVICE EORTRAN

INTRODUCTION

Suppose we want to calculate the steady state AC current in a series RLC cireuit for a range
of frequency from 10 to 1000 cycles per second, and for a range of resistance from 0
to 50 ohms.

For this program we can use these variables:

A = current (amperes) F = frequency
C = capacitance H = inductance (henrys)
E = volts R = resistance {ohms)

Z = impedance

A flowchart of the calculations might look like this.

READ E, H, C, SET R = 0
SET PI = 3.14159

SET F = 10
INCREASE
R BY 1
A
CALCULATE X, Z, A, and
PRINT F, A, R
Yes
Yes No
INCREASE F =< 1000 R =<50
F BY 10
No
STOP

Figure 1. Sample Flowchart

The flowchart shows the looping needed to do this, Notice that it need not be as specific as a
program. For instance, one block says calculate X, Z, and A but doesn’t give any formulas,
It will serve our purpose if we include in the flowchart at least these items:

1. Data that is needed to get started

2. Calculations that can be made with looping
3. Tests that are needed to get in and out of the loops.

COMPUTER TIME-SHARING SERVICE TNTRORORThaN

Our flowchart shows we must start with values of E, H, C, R, and frequency. Current A is
calculated and printed for frequencies up to 1000 in multiples of 10. Then R is increased;
F is reset and the process is repeated. This is done until R = 50 which is a signal to stop.

FORTRAN STATEMENTS USED FOR LOOPING

Because loops are so important, and because loopsof the type shown in the example arise so
often, FORTRAN provides three statements to aid in their programming: the G@ T@, the
IF, and the D@. Twoprograms willbe shown for our example problem. The first will use the
G@ T@ and IF statements; the next will accomplish the same result with fewer program steps
by means of the D@ statement.

The first of our two programs looks like this:

00 INPUT, E, H, C

10 PI = O

15R = 0

20 10 F = 10

30 30 X =-2%PI*xHkF = 1/(2%PIxCxF)
40 Z = SQRTCR*R + X*X)

50 A = E/Z

60 PRINT, F, R, A

70 IF(F = 1000) 20, 40, 40
0 20 F = F + 10

90 G&TH 30

100 40 IF(R - 50) 60, 90, 90
110 80 R = R + 1

120 G3T2 10

130 90 SToP

140 END

You will notice the program follows the flowchart explicitly. The statement on line 00 re-
quires that we input the voltage, the inductance, capacitance, and a starting value of resist-
ance. The next line caleculates PI. Thenstatement 10 establishes the initial frequency F = 10,
Lines 30 through 60 are used to calculate and print current. The next statement on line 70
does two things. First it tests whether frequency is less than, equal to, or greater than
1000 cycles per second. Then, depending on the outcome of the test, it branches to a different
part of the program, going to statement 20 if the test is negative or statement 40 if the test
is zero or plus.

Statement 40 is another IF statement to loop on resistance. Statement 20 increments
frequency; 60 increments resistance. They are both followed by G@ TQ@ statements to
complete the loops. Note that the statement numbers referred to in this discussion are not
line numbers. A Time-Sharing FORTRAN program can never, in any way, refer to a line
number.

COMPUTER TIME-SHARING SERVICE FORTRAN

INTRODUCTION
-8-

Our next program, using the D@ statement, looks like this:

00 INPUT, Z, H, C
10 PI = 3.14159

20 DG 20 R = 0, 50

30 D@ 20 F = 10, 1000, 10

40 X = 2%PIkH%F = 1/(2%PI*CxF)
50 Z = SQRT(R*R + XxX)

60 A = E/Z

70 20 PRINT, F, R, A

80 END

This program accomplishes the same result with five fewer program steps. The first D@
on line 20 tells the computer to execute all statements down through 20 for all values of the
variable R from 0 to 50 in increments of 1. The next D@ of line 30 tells the computer to
execute all statements down through 20 for all values of the variable F from 10 through
1000 in increments of 10. The calculations will be done like this: With R = 0 the current
will be calculated and printed for all values of frequency. Then R will be changed to 1 and
the process will be repeated. This continues until all values of R up through 50 are used.

This use of the D@ statements within a D@ loop is powerful when properly applied. Textbooks
on FORTRAN programming detail many additional uses of the D@ loop and identify many
common errors that can be made.

ERRORS AND DEBUGGING

It may occasionally happen that the first run of a new problem will be error-free and give
the correct answers. But it is much more common that errors will be present and have to
be corrected. Errors are of two types: (1) errors of form, or grammatical errors, that
prevent even the running of the program; (2) logical errors in the program which cause
wrong answers or even no answers to be printed.

Errors of form will cause error messages to be printed out instead of the expected answers.
These messages give the nature of the error, and the line number in which the error
occurred. Logical errors are often much harder to uncover, particularly when the program
appears to give nearly correct answers. In any case, when the incorrect statement or
statements are discovered, the correction is made by retyping the incorrect line or lines,
by inserting new lines, or by deleting existing lines. These three kinds of corrections are
made as follows:

Changing a line Type it correctly with the same line
number.
Inserting a line Type it with a line number between

those of the two existing lines.

Deleting a line Type the line number only.

FORTRAN

COMPUTER TIME-SHARING SERVICE TNTRODUCTION

To be able to insert a line make sure that the original line numbers are not consecutive
numbers. In other words, start out by using line numbers that are multiples of five or ten.

Corrections can be made at any time, either before or after a run. They may even be made
in an earlier part of the program while you are typing the later lines. Simply retype the
offending line with its original line number, and then continue typing the rest of the program.

The Time-Sharing FORTRAN Reference Manual contains a complete list of the Time-Sharing
FORTRAN error messages. The messages listed in Appendix E are those which you will
most often encounter.

The Process of Writing and Debugging a Program

The whole process of locating errors or “debugging” a program is illustrated by a case
history which starts on the next page. It takes us from the introductory sequence to the
final successful printing of the correct answers.

The problem is to locate the maximum point of the sine curve between 0 and 3 by searching
along the x-axis. The searching will be done three times, first with a spacing of 0.1,
then with spacings of 0.01, and 0.001. In each case the following will be printed a) the
location of the maximum, b) the maximum, and c) the spacing. The program as first
written down on paper was:

oo INPUT, D

/o /oD@ A0 X = O, 3, D

%0 IF SINMX) M GeT# J0
22 Xo=X

4o M= SINMeo)

So 40 PRINT X0, M, D
60 END

Before typing the program, it was noticed that M is a fixed-point variable. It was decided
to substitute P as the program was typed.

COMPUTER TIME-SHARING SERVICE TNTRODUCTTON

-10-

Actual Input and Error Detection

USER NUMBER--P23456
SYSTEM=<FBRTRAN

NEW QR @LD--NEW
PROBLEM NAME-=MAXSIN
WAIT,

READY,

00'MAXSIN A.B.PROGRAMMER
10 5 INPUTHw, Do~~~
20 10 D@ 20 X = 0, 3, D

40
50 P = SINCX)

60 PRINT, X0, P, D
70 20 CONTINUE

80 END
RUN
MAXSIN 11248
2.
30 IF (SIN(X) =P 20,20
NOT A STMT ,===ccccceny
ERRORS, N@ EXEC,
TIME AT LINE N@, 80, 10/6
30 IF (SIN(X) =P) 20,20
RUN
MAXSIN 11250 -3
20.1
.10 .0998 .10
.20 . 1987 10
+30 «2955 .10
<40 L3894 o
STOP
STOP.
READY,
60 20 CANTINUE - 5
70 PRINT, X0, P, D)
RUN
MAXSIN 11352
20.1
1,60 +9996 .10

COMPUTER TIME-SHARING SERVICE

1.
30 IF (SIN(X) =P 20,20 4._,,,,,_,—»——*”'
X0 - GO eeeeeeX0 = X

Notice the use of the backward arrow
to correct mistakes as you go along.

An inspection of line 30 shows that a
parenthesis is missing so we correct
the line.

This time we compiled without error.
We type in our first value for D.

Only one line of output was planned.
We stop the output by typing ST@P.

We reverse the order of lines 60 and
70, placing the PRINT statement after
the CONTINUE statement. (The
C@NTINUE statement is often used as
the statement labeled with a D@ -end
label.)

FORTRAN

-11-

INTRODUCTION

AT LINE NO, 80: STOP END,
RUN

MAXSIN 11253

? 0,01
1.57 1,00

AT LINE NO. 80: ST@OP END,
RUN
MAXSIN 11253

? 0,001
1.571 1.00

AT LINE NO. 80: ST@P END,

80 GOTR 5 -

«01

.001

S0 END

LIST —=

MAXSIN 11254

00'MAXSIN A.B.PROGRAMMER
10 5 INPUT, D

20 10DB 20 X =0, 3, D
30 IF(SINCX) -P) 20,20

40 X0 = X

50 P = SINC(X)

60 20 CONTINUE

70 PRINT, X0, P, D

80 GATO 5

90 END

RUN

COMPUTER TIME-SHARING SERVICE

The output looks good this time but the
program was interrupted and we have
to type RUN again. The identification
line is printed again before each ? for
input data.

In order to continue with additional
values of D, we must return to the
INPUT statement. We insert a G@TQ
5 for line 80 and move END to line 90.

To check the program as it now exists,
we LIST it.

FORTRAN

-19-

INTRODUCTION

MAXSIN 11254

2@D =
2 @0
?@.00D

1.60 «9996
1457 1.00
1,574 1.00

»10
«01
«00]

? STOP =

S1@P.
READY.

SAVE =
READY.

BYE =
*x%x%x @FF AT 11855

COMPUTER TIME-SHARING SERVICE

10.

11.

12.

Following the program listing we type
RUN. Fine! At the end of each line
we get a new request to insert data.
The circled values were all typed by the
user.

We type ST@P to stop program
execution,

Then we SAVE the program for future
use.

We sign off by typing BYE. The time
off is printed and we are disconnected
from the system.

FORTRAN

-13-

INTRODUCTION

3. MORE ADVANCED FORTRAN

MORE ABOUT PRINT

In the previous discussion, the method of printing numerical answers has been explained;
however, the programmer may also want to print out alphabetic information such as titles,
column headings, and messages. With the Computer Time-Sharing Service it is quite simple
to do so.

Suppose we want to title our first example problem shown on page 2. It could be done as
follows.

05 PRINT "SOLUTION OF TWd EQUATI@NS”

Examining this statement, we see that instead of a comma in the PRINT statement we have
substituted a message. The message printed will be exactly what the programmer includes
between the two quotation marks. This means all the spaces, punctuation, and even mis-
spellings will be printed out when we reach this print statement.

ADVANCED OUTPUT

One of the conveniences of the Computer Time-Sharing Service is that the formatting of
results is done automatically for the beginner. The FORTRAN language does, however,
permit a greater flexibility for the more advanced programmer who wishes to specify a
more elaborate output.

In the use of the PRINT statement, the beginner may not realize that he is specifying a
definite format for his answers. The specification is actually within the quotation mark in
the statement. Advanced programmers may insert a statement label before the comma
and then compose their own individual format.

As an example,

120 PRINT 50, Al, G, M
130 50 FORMAT (E14.6, F6.3, 13)

will cause Al = -22300.5, G = 7.6, and M = 12 to be printed as

~0.223005E+05 7,600 |2

COMPUTER TIME-SHARING SERVICE TROSUGTION

-14-

Actually the rules for using these various formats are too involved for this presentation
and the reader is referred to the Time-Sharing FORTRAN Reference Manual. However,
to familiarize the reader, we give the following table of the various types of format statements
available with Time-Sharing FORTRAN,

Type Data Representation
I Integer Integer
F Real Fixed-point decimal
E Real Floating-point decimal
(0] Integer Octal integer
G Real Fixed-point or floating point
H Alphabetic Titles, headings
X Alphabetic Skips, spaces
A Alphabetic Identification, dates

LISTS AND TABLES

In addition to the ordinary variables used by FORTRAN, there are variables that can be
used to designate lists or tables. For instance, A(7) would be denote the seventh item in a
list called A; B(3,7) denotes the item in the third row and seventh column of the table called
B. We commonly write A, and Bs, - for those same items, and use the term subscripts to
denote the numbers that point to the desired items in the list or table. (The reader may
recognize that lists and tables are called arrays by mathematicians.)

The name of an array islike any other variable name; it begins with a letter. The subscripts
may be any expression, no matter how complicated, as long as they have non-negative integer
values. The following are acceptable examples of array items, though not necessarily in
the same program:

B(I + K) B(I, K) Q(A(3, 7), B-C)

A Sample Program Using Arrays

The example on the next page shows a simple use of arrays. We might think of this program
as one that computes the total sales for each of five salesmen selling three different goods.
The P gives the price of the three goods. The table S gives the individual item sales of
the five salesmen, where the rows stand for the items and the columns for the salesmen.
We assume that the items sell for $1.25, 4.30, and 2.50, respectively, and that salesman
1 sold 40 of item 1, 10 of item 2, and 35 of item 3, and so on.

COMPUTER TIME-SHARING SERVICE eI

-15-

First Solution Using Arrays

SALES 10:52

00
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

RUN

DIMENSI@N P(3),5(3,5)

PRINT "ITEM PRICES"
INPUT, P

PRINT "N@, OF ITEMS PER SALESMAN"

DB 201 = 1,5

PRINT "MAN NO,”
PRINT, I

PRINT "N@. @F ITEMS™

20 INPUT, SC1,1), S(2,1), S(3,D)

PRINT "SALESMAN N@, SALES”
DB 40 J = 1,5

SALES = O,

Do 301 = 1,3

30 SALES = SALES + P(I) % S(I,J)

40 PRINT, J, SALES
END

SALES 10253

ITEM PRICES
? 1.25,4.30,2,50

NG,
MAN

@F ITEMS PER SALESMAN
ND.

1
oF 1TEMS

? 40,10,35

MAN
NO.

NG,
2
oF 1TEMS

? 20,16,47

MAN
NO.

NO.
3
OF 1TEMS

? 37,3,29

MAN
N@.

NG,
4
@F ITEMS

7 29,21,16

MAN
NO.

ND.
5

oF ITEMS

742,8,33
SALESMAN N@, SALES

180,50
211,30
131.30
166.55
165.40

VN —

COMPUTER TIME-SHARING SERVICE

FORTRAN

-16-

INTRODUCTION

By way of explanation, lines 10 through 20 read in the values of the list P. Lines 30 through
80 read in the values of the table S. Lines 90 through 140 compute the total sales for the
five salesmen and print each answer as it is computed. The computation for a single
salesman takes place in lines 110 through 130. In lines 100 through 140, the letter I stands
for the item number, and the letter J stands for the salesman number,

FORTRAN provides that each variable is assigned storage for one number. Thus to use
arrays, the programmer must tell the computer to assign more space. To do this, the
programmer uses the DIMENSIQN statement. For example,

00 DIMENSION ACIT)

indicates to the computer that the subscript of the list A runs from 1 to 17, inclusive;
similarly,

10 DIMENSI®N B(15,20), S(3)

means that the subscripts of Brunfrom 1 through 15 for rows, and 1 through 20 for columns,
and that the subscript of the list S runs from 1 through 3. The numbers used to denote the
size of an array in a DIMENSIQN statement must be integer numbers.

It should be mentioned that using a DIMENSI@N statement does not require the user to use
all of the spaces so allocated.

Another Method for Using Arrays

This same problem might have been solved using a READ statement and a $DATA control
line. The Time-Sharing FORTRAN Reference Manual explains the use of control lines.
As you begin to write more complex programs you will find these lines useful. The
following sample program illustrates the use of READ and the $DATA control line.

FORTRAN

COMPUTER TIME-SHARING SERVICE TNTRODUCTION

-17-

Second Solution Using Arrays

SALES! 15314

100 DIMENSI®N P(3),S(3,5)

110 READ,P(1),P(2),P(3)

12008 20 1 = 1,5

130 20 READ, S(1,1),5(2,1),S(3,1)
140 PRINT “SALESMAN N8, SALES"
150 D@ 40 J = 1,5

160 SALES = 0.

170 D@ 30 I = 1,3

180 30 SALES = SALES + P(I) * S(I,J)
190 40 PRINT,J, SALES

200 END

210 $DATA

220 1.25,4,30,2.50

230 40,10,35

240 20,16,47

250 37,3,29

260 29,21,16

270 42,8,33

RUN

SALESI 15216

SALESMAN N@, SALES

1 180,50
2 211.30
3 131.65
4 166.55
5 169,40
SUBPROGRAMS

So far we have talked about writing a single FORTRAN program. You can write several
programs in such a way that they fit together and form a large program. We call the
program which controls the other ones the mainprogram. The main program may reference
another program which we call a subprogram, or sometimes a subroutine. Two FORTRAN
statements, FUNCTI@N and SUBRESUTINE, define these other programs as subprograms.
Although a subprogram is used by the main program, such a set of instructions can be
considered as a complete program in itself,

Subprograms save space in the computer because they may be executed many times, under
control of the main program but need only be stored once.

FUNCTION and SUBROUTINE Statements

Subprograms must begin with the FUNCTION or SUBROUTINE statement and must end with
an END statement. The form of the FUNCTION and SUBROUTINE statements is as follows.

FUNCTI@N FNAME (Arg 1, Arg 2, ..., Arg n)
SUBRQUTINE SNAME (Arg 1, Arg 2, ..., Arg n)

COMPUTER TIME-SHARING SERVICE RSOGO

-18-

FNAME or SNAME can be any name by which we wish to refer to the subprogram we write.
The name must begin with a letter, and otherwise conform to the rules for writing the names
of variables. The items enclosed in parentheses are parameters known as formal or
“dummy arguments.” They represent constants, variables, arrays, and other subprogram
names, defined or known in the mainprogram, which will be used in the current subprogram.
In other words, the main program will “pass” necessary information to our subprogram by
means of the “parameterlist” we establishinparentheses in the FUNCTI@N or SUBR@GUTINE
statement. If our subprogram does not require any information from the main program the
parameter list, including parentheses, may be omitted.

After the FUNCTI@N or SUBRQ@UTINE statement, we write any number of FORTRAN
statements which define the procedure we wish the computer to execute. We may use
quantities from the main program by writing the appropriate parameter name(s) in our
statements. We may “pass back” values to the main program by writing a parameter
name to the left of an equality sign. Somewhere in our instructions we must write the one-
word statement “RETURN.” This tells the computer to stop executing instructions in our
subprogram and return to where it was processing in the main program. We may put as
many RETURN statements in a subprogram asweneed. The last statement in a subprogram
must be the one-word statement “END.” No more than one END may be specified in a
subprogram.

SUBROUTINE Example

Let us now consider an example of a subroutine. Suppose we have a problem in statistics
and at several points in the main program we need to know the standard deviations of
several sets of numbers. Now we could, if we desired, write the equations in the main
program to calculate each standard deviation. We note, however, that the form of all the
equations is the same. The only things that can change are the names and sizes of the
arrays where our numbers are stored, plus the arithmetic means of those numbers.
Hence we would have duplicate coding if we were to calcuate our standard deviations in the
main program. On the other hand, by writing a subroutine we need write the equations only
once. Then the main program could pass the name, size, and mean of an array to our sub-
routine; the subroutine would run the calculation and pass back to the main program
the desired standard deviation.

We pick a name for our subroutine, say SIG (since statisticians normally use the Greek
letter sigma to represent a standard deviation). Next we need names for our parameters,
say A for an array name, I for the array size, AMEAN for the arithmetic mean, (MEAN
BEGINS WITH “M” and so would be interpreted as an integer, unusable for us), and SD
for the standard deviation. Our subroutine follows:

100 SUBRGUTINE SIG(A,I,AMEAN,SD)

110 DIMENSI@N A(200) °INDICATE A IS AN ARRAY

120 IF(200-1)BAD,5,5 'CHECK ARRAY SIZE

130 5 sumM = O,

140 D@ 10 J = 1,1 °SET INDEX J TO STEP THROUGH A

150 10 SUM = (A(J)-AMEAN)**2+SUM *TAKE SUM @F SQUARES @F DIFFERENCES
160 SD = SQRT(SUM/(I-1)) °*PASS SD T@ MAIN PROGRAM

170 RETURN "C@NTINUE PRBCESSING IN MAIN PRBGRAM

180 BAD:PRINT "INVALID ARRAY SIZE.” °TELL USER ABOUT ERR®R
190 ngP *THIS COULD BE "RETURN® INSTEAD OF "ST@P"

200 N

COMPUTER TIME-SHARING SERVICE TRTRODICT o

-19-

How to ‘“Call” a Subroutine into the Main Program

Having defined our subroutine, we must now insert statements into the main program to
1) cause our subroutine to be executed, 2) pass needed information to the subroutine and
3) set up storage in the main program to receive information back from the subroutine.
All three functions are performed simultaneously by the CALL statement. The form of the
CALL statement, strangely enough, corresponds to the form of the SUBRQUTINE statement,
i.e.

CALL SNAME (Arg 1, Arg 2, ..., Arg n)

Here SNAME must be the name of a defined subroutine, such as SIG in our hypothetical
case. Also the parameter list will contain actual arguments from the main program rather
than the dummy arguments specified in the SUBR@UTINE statement. The actual arguments
must be listed in the same order and correspond to the same types of items as those in the
dummy argument list.

If a dummy argument is an array of real numbers, the actual argument specified in the
corresponding CALL statement must also be an array of real numbers. Likewise for
integer arrays, real and integer arrays elements, real and integer variables, and constants.
(It should be noted thatarray elements, variables and constants used as actual arguments in a
CALL statement may all correspond to variables in a dummy argument list. However,
array elements and constants may not themselves be used as dummy arguments in a
SUBRQ@UTINE or FUNCTI@N statement.)

Let us now continue our statistical example by considering various features of a main
program which might call our SIG subroutine. Suppose we have four sets of numbers
A, B, C and D, consisting of 73, 200, 150, and 100 numbers, respectively. We calculate the
arithmetic mean of each set and store them as variables ABAR, BBAR, CBAR, and DBAR
(since mathematicians often indicate that a variable is an average by drawing a line over
it, like X). We also want the standard deviations stored in an array, say, called DEVS.
Forgetting what other computations might be provided in our main program, the portions
necessary to obtain the four standard deviations would look as follows:

1000 DIMENSI®N A(73),B(200),C(150),D(100),DEVS(4)

1200 CALL SIGCA,73,ABAR,DEVS(1))
1210 I = 200

1220 CALL SIG(B,1,BBAR,BD)

1230 DEVS(2) = BD§ J = 3

1240 CALL SIG(C,150,CBAR,DEVS(J))
1250 Q@ = DBAR

1260 CALL SIG(D,100,R,%)

1270 DEVS(J = J + 1) =z @

° *
) .
[4 .

COMPUTER TIME-SHARING SERVICE T e

-20-

Note that we have great flexibility in specifying our actual arguments. Referring to our
original SUBR@UTINE definition of SIG, notice that the dummy argument A is known to the
computer as an array of real numbers because 1) it appears in a dimension statement in
the subroutine and 2) its name does not begin with I, J, K, L, M, or N. The corresponding
actual arguments A, B, C, and D appearing in the first position of the parameter list are
likewise identified in the main program as arrays of real numbers. One of the actual
arrays has the same name as the dummy array, namely A. The other three arrays do not.
Note also that the dummy array A is dimensioned to have 200 elements, the maximum array
size dimensioned in the main program. Look at the second position. The dummy argument
is an integer variable, I. It is not an integer array because there is no dimension statement
for I in the subroutine. Likewise inthe main program an integer I is used once and constants
are used the other times. We shall leave a detailed analysis of the other two arguments
to the reader.

FUNCTION Example

Next let us recast our SIG subroutine into a function. The main feature of a function is that
the function name itself represents a value. In our example to follow we shall let our
function name SIG represent the standard deviation. Hence we can omit one parameter.
The function follows:

100 FUNCTI@N SIG(A,I,AMEAN)

110 DIMENSIBN A(200)

120 1F(200-1)BAD,5,5

130 S5 sSum =0

140 DO 10 J = 1,1

150 10 SUM = (A(J)=AMEAN)*%2+SUM

160 SIG = SQRT(SUM/(I-1)) "FUNCTI®N NAME GIVEN DEVIATION
170 RETURN

180 BAD:PRINT “INVALID ARRAY SIZE.”

égg g;gr "THIS SHOULD N@T BE "RETURN",SIG IS UNDEFINED

At line 160 above note our use of the intrinsic function SQRT to take the square root of
SUM/(I-1). An intrinsic function is like any other function except that it is already defined
in the FORTRAN System. Thus the user does not have to write a function definition sub-
program for SQRT like we have just finished for SIG. Further examination of line 160
also gives a clue as to the use of functions in a main program. We do not use a call
statement; we merely reference the function name in an equation (with its actual arguments
listed inside parentheses following the name).

Recasting our last example of main program features so as to use our new SIG function we
have the following:

1000 DIMENSI®N A(73),B(200),C(150),D(100),DEVS5(4)

L] *

1200 DEVS(l) = SIGCA,73,ABAR)
1210 I = 200

1220 BD = SIG(B,I,BBAR)

1230 DEVS(2) = BD§ J = 3

1240 DEVS(J) = SIG(C,150,CBAR)
1250 Q = DBAR

1260 @ = SIG(D,100,Q)

1270 DEVS(W = J + 1) = Q

L4 L4
L] L]
. e

FORTRAN

COMPUTER TIME-SHARING SERVICE TNTRODUGTION

-21-

Points to Remember When Using Subprograms

Before leaving the subject of functions and subroutines it might be well to mention points
that are not immediately obvious about the samples.

1. At line 1250 of both main programs, we assigned an arithmetic mean to the
variable Q, Then at line 1260 we called for execution of our subprograms with
Q as the actual argument where each subprogram expects an arithmetic mean.
So far so good. However, we wrote the statements in such a way that upon completion
of our subprograms, the standard deviation would be assigned to Q! Thus upon
entering each subprogram, Q represents the arithmetic mean; and when we come
back from each subprogram and execute the next statement, Q represents the
standard deviation. This unusual usage does not lead to any difficulty because
both of our subprograms are written in such a way that all references to the
dummy argument for an arithmetic mean are completed before the subprograms
pass back any values for the standard deviation.

2. Note that the line numbering scheme to the left of each FORTRAN statement is
designed to prevent duplication and/or intermixing of line numbers. This is
because the computer, prior to compiling our total program, sorts all of the
statements in ascending line number order. If line numbers were written to
overlap, we could get subroutine statements mixed in with main program statements
and vice versa.

SOME IDEAS FOR MORE ADVANCED PROGRAMMERS

Documenting a Program

An important part of any computer program is the description of what it does, and what
data should be supplied. This description is commonly called documentation. One of the
ways a computer program canbe documentedis by supplying remarks along with the program
itself. FORTRAN provides for this capability with the comment line. To do this, we follow
the line number with a nonblank character. For example,

00C THIS PROGRAM SOLVES LINEAR EQUATIONS @F

05C THE FPRM

10C Al=X1+A2%X2 = BI, A3%XI+A4%X2 = B2,

20C THE DATA MUST FIRST LIST THE FOUR VALUES oF
30C A IN ORDER, THEN THE DESIRED RIGHT HAND SIDES
40C FBR WHICH S@LUTI@NS ARE NEEDED,

might reasonably be added to the original example for solving linear equations. For longer
programs, more detailed comment may be needed, especially ones spotted throughout the
program to remind you what each of the parts does. The embedded comment, introduced
by an apostrophe and terminated by another apostrophe, a semicolon, or the end of the line,
will also prove helpful for program documentation.

Each user quickly learns how much documentation he needs to permit him to understand his
program, and where to put comments. But it is certain that comments are needed in any
saved program. It should be emphasized that these comments have absolutely no effect on
the computation.

COMPUTER TIME-SHARING SERVICE EORTRAN

INTRODUCTION

-99.

Round-Off Errors

One of the most difficult problems in computing is that of round-off error. It exerts its
influence in subtle ways, and sometimes in ways not so subtle. A full treatment of the
effects of round-off error is beyond the scope of this presentation, but one fairly common
situation will be discussed.

Most programmers eventually write or encounter a program something like this:

00 S =0

i0 X=0

20 10 S =5+ X

30 IF (x-2) 20, 30, 30
40 20 X = X+0,1

50 GATO 10

60 30 PRINT, S

70 END

for computing the sum of all the non-negative multiples of .1 less than or equal to 2. The
correct answer is 21, but invariably the program will produce 23.1 as the answer. What is
wrong? The explanation is that the computer works in the binary number system, and
cannot express .1 exactly. Just as 1/3 cannot be expressed in terms of a single decimal
number, neither can .1 be expressed in terms of a single binary number. It turns out that
.1 in the computer is a number very slightly less than .1. Thus, when the loop in the above
example has been performed 21 times, the value of X is not 2 exactly, but is very slightly
less than 2. The IF statement in line 30 determines that the final value, exactly 2, has not
yet been achieved or exceeded, and so calls for one more passage through the loop.

If the programmer had known that the computer treats .l as a number slightly less, he
could have compensated by writing 1.95 in place of 2 in statement 30. The computer
performs exactly correct arithmetic for integers. The user may thus count the number
of times through the loop with integers. The example may be rewritten with a DO loop
as follows:

00 S=0
10 DB ION =1, 20, I
20 10 S = S+ 0,1%N
30 PRINT, S

40 END

Methods for Checking Programs

One of the most exasperating problems confronting programmers is that of a fairly long
and complex program that looks as if it should work, but simply refuses to do so.
(Presumably, all errors of form have been detected and removed.) The locating and
removing of logical errors is called debugging, and the methods to be used depend on the
nature of the program and also on the programmer himself.

COMPUTER TIME-SHARING SERVICE R

-23-

The first thing to do with an apparently incorrect program is to check very carefully the
method used. Calculate the problem by alternate means and compare the results with the
output program. If that doesn’t uncover the bug, then examine very carefully your
programming to see if you have mixed up any of the variables. It is often difficult to spot
such errors because one tends to see in a program what he expects to see rather than what
is there,

Another method that is extremely useful in providing clues as to the nature and location
of the bug or bugs is tracing. In FORTRAN this tracing may be accomplished by inserting
superfluous PRINT, statements at various places in your program to print the values of
some of the intermediate quantities. When the program is RUN, the values of these
intermediate quantities often suggest the exact nature of the error. When the program has
been debugged and is working properly, these statements are removed.

COMPUTER TIME-SHARING SERVICE NTRODUGTION

-24-~

APPENDIX A. GENERAL INFORMATION

1. The name of a floating point variable must not begin with I, J, K, L, M, N, or a number.
The name must have no more than 30 characters.

2. A variable name must not be the same as any of the listed intrinsic names.

3. A symbol for a variable must appear in an input list or be defined by an arithmetic
statement before the first statement in which it is used.

4. Use a nonblank character as the next character after the line number for comments
to be printed with the source program listing only. Or use embedded comments,
introduced by an apostrophe and terminated by another apostrophe, a semicolon, or
the end of the line.

5. If astatementistoolongtofiton a single line it can be continued over as many additional
lines as necessary. Continuation lines must have a plus (+) sign as the first nonblank
character after the blank following the line number.

6. Arithmetic operations are performed in the following order: exponentiation; multipli-
cation and division; addition, subtraction and negation. Operations are performed
from left to right.

7. All floating point data numbers must contain a decimal point. They must lie in the
range +5.7896 x 107 (57896 followed by 72 zeroes), inclusive.

FORTRAN

COMPUTER TIME-SHARING SERVICE TNTRODUCTION

-95-

APPENDIX B. SUMMARY OF STATEMENTS

This appendix summarizes the Time-Sharing FORTRAN statements and arithmetic operators.

STATEMENTS STATEMENTS cont’'d
Statements Examples Statements Examples
Arithmetic 100 A=B=1. : C=D=E=5. ; GC=AS/1+2/TLA IF(...) 100 IF(A) 25, 26, 27
110 F(T+B/3) = FR+(Fl=FS$*GS/3)*COS(F]) 110 IF(A*SIN(B)) AGAIN, EXCEPT
120 ML=MAN-"LIC" 120 IF(J=K/3) 3
Arithmetic Statement 100 SINH(X)=.5*EXP(X)-EXP(-X)) 130 IF(IFR-"YES") TRUST,UNT
Function
IF(ENDFILE) 100 IF(ENDFILE 3) EOF, 45
Internal Function 100 RUST(X): ...
110 IF(ENDFILE J) ENDF
110 KANS(A,B): ...
INPUT 100 INPUT REPLY, QUAN
120 REAL,JUST(): ... (terminal)
110 INPUT,(COEF(1), 1=2, L,2)
130 INTEGER,FIRST(L): ...
INTEGER 100 INTEGER J(3), TRUD(12,2,3)
ASSIGN ...TO ... 100 ASSIGN 6 TOJ
110 INTEGER A, S, TLA(16), TLB(16)
110 ASSIGN FORMAL, TO R
$OPT 100 $OPT SS
120 ASSIGN A5, TO A6
110 $OPT SIZE
BACKSPACE 100 BACKSPACE
120 SOPT REAL
110 BACKSPACE 3
130 $§ SUM
120 BACKSPACE T
140 SOPT IFF BOTH
CALL 100 CALL FEN(S, A(5), B(L/2))
PAUSE 100 PAUSE
110 CALL OUT
110 PAUSE SENSESWITCH3
120 CALL B(N)
120 PAUSE "YES"
COMMON 100 COMMON A(12). B,C(3,2), K, J(4,3,2,2)
PRINT 100 PRINT 45,A
110 INTEGER COMMON SUM, LINE, BSL(15) (terminal)
110 PRINT REP, (A(), 1=1,10)
CONTINUE 100 25 CONTINUE
{Not needed because empty statements may be labelled.) 120 PRINT, A, A*B, A/BCA+3.2
110 NEXT:CONTINUE 130 PRINT "MORE OR LESS", % TABLE,T(I+2)*B
120 NEXT: READ 100 READ, A, F, G
(temporary file}
$DATA 100 $DATA 110 READ TITLE
110 $DATA PAYNOS, CASES 120 READ 12, F, SYT
DIMENSION 100 DIMENSION A(5), LOST(45,12) READ(...) 100 READ (3,TITLE)
(permanent file)
DO 100 DO 161 = 1,10 110 READ (N, 12) VAL, COST, PRICE
110 DO ALL, L - K,J,2 120 READ (UNIT) (T(J), J=1,N),§
120 DO 25, X = 3.5,17., 5 REAL 100 REAL A(10), K, NET(6,2,2)
END 100 END (Not needed except before main program.) RETURN 100 RETURN
END internal 100 END INTERNAL REWIND 100 REWIND
110 END RUST 110 REWIND 2
ENDFILE 100 ENDFILE 120 REWIND KRAK
110 ENDFILE 5 STOP 100 STOP
120 ENDFILE UNIT 110 STOP "UGH"
ENTRY 100 ENTRY BACKALWAYS (TO,FROM) 120 STOP V
110 ENTRY AFTI(X) SUBROUTINE 100 SUBROUTINE KRUG
120 ENTRY SUMPKB 110 SUBROUTINE LIMP(V,W,X)
130 ENTRY REPEAT(N) $USE 100 $USE EXCEPN
EQUIVALENCE 100 EQUIVALENCE(BEGIN, START, INITIATE), (D(3), B(S), 110 $USE MATRIX*
L(2), K(-5))
WRITE 100 WRITE 16, B, D
110 INTEGER EQUIVALENCE (TFG, TFD, TFR) (temporary file)
110 WRITE "FIRST TABLE VALUE"
EXTERNAL 100 EXTERNAL HUNCH. DRAG
120 WRITE, (T(K)K=1,25),X,X%3
$FILE 110 $FILE MP ,MCOST,VENDOR,INV1 INV2 INV3 INV4,SUM
WRITE (...) 100 WRITE (3) "MONTHLY SUMMARY"
FORMAT 100 LINE:FORMAT (permanent file)
110 WRITE (3,12) ¢4 LNO, "REPORT TO DATE",F1,F2,F4,F7
110 77 FORMAT ('NO. OF CASES", 12, 3A3)
FUNCTION 100 FUNCTION AFT
110 INTEGER FUNCTION HUNCH(L,T) OPERATORS
Goro 100 GOTO 13 Operator Symbol Operation Specified
= A
110 GOTO EXTRA + A:I?i‘lﬂ‘o"rxlem
- Subtraction or negation
GOTO(...) 100 GOTO(12,LAST,KONLY, 15)AFTER . Multiplication €
/ Division
110 GOTO (M1,M2,MT3),M ** or-¢ Exponentiation

COMPUTER TIME-SHARING SERVICE

FORTRAN

-26-

INTRODUCTION

APPENDIX C. TABLE OF FUNCTIONS

The following functions are available in Time-Sharing FORTRAN. (The terminating F
is to provide compatibility with FORTRAN II. The functions performed are identical.)

No. of Arguments Result

Name and Assumed Mode Mode Definition

ABS 1 Real Real Absolute Value

ABSF 1 Real Real of argument

XABSF 1 Integer Integer

LABS 1 Integer Integer

ATAN 1 Real Real Principal angle in radians

ATANF 1 Real Real whose tangent is argument

CcPS 1 Real Real Cosine of angle in radians

C@SF 1 Real Real

EXP 1 Real Real e raised to the given

EXPF 1 Real Real power

FIX 1 Real Integer Given real converted to an

FIXF 1 Real Integer integer

IFIX 1 Real Integer

XFIXF 1 Real Integer

FLPAT 1 Integer Real Given integer converted to

FLOATF 1 Integer Real a real

AINT 1 Real Real Sign of argument times

INTF 1 Real Real largest integer less
than or equal to argument
in magnitude

L2G 1 Real Real Natural Logarithm of

L@GF 1 Real Real argument

ALGG 1 Real Real

AMAX] 22 Real Real Maximum of arguments

MAX1F 22 Real Real

MAX1 22 Real Integer

XMAX1F 22 Real Integer

AMAXO >2 Integer Real

MAXOF >2 Integer Real

MAXO 22 Integer Integer

XMAXOF >2 Integer Integer

COMPUTER TIME-SHARING SERVICE RGO

-97-

No. of Arguments Result
Name and Assumed Mode Mode Definition
AMIN1 >2 Real Real Minimum of arguments
MINIF >2 Real Real
MIN1 22 Real Integer
XMIN1F >2 Real Integer
AMINO >2 Integer Real
MINOF >2 Integer Real
MINO 22 Integer Integer
XMINOF >2 Integer Integer i
AM@D 2 Real Real Remainder on dividing
M@DF 2 Real Real argument 1 by argument
MOD 2 Integer Integer 2
XMODF 2 Integer Integer
RND 1 Real Real 1. 1If arg = 0, provides next
in sequence of pseudo-
random numbers uniformly
distributed, O < n =1
2. 1If arg >0, initiates a
new sequence and provides
a number as above;
starting value of
sequence depends on arg
3. If arg <0, as above
except starting value
chosen arbitrarily
SIGN 2 Real Real Magnitude of argument 1 with
SIGNF 2 Real Real sign of argument 2
ISIGN 2 Integer Integer
XSIGNF 2 Integer Integer
SIN 1 Real Real Sine of angle given in
SINF 1 Real Real radians
SQRT 1 Real Real Square root of argument
SQRTF 1 Real Real
TIME=> 1 Real Real 1. If arg <0, gives elapsed
chargeable time for
execution (including
compilation).
2. 1If arg 2 0, gives hours

COMPUTER TIME-SHARING SERVICE

since midnight.

FORTRAN

-28-

INTRODUGTLON

APPENDIX D. REFERENCES

J. B. Scarborough - Numerical Mathematical Analysis - John Hopkins, Press, 1950,

Cecil Hastings, Jr. - Approximations for Digital Computers, Princeton University Press,
1955 (Chebyshev Polynominals).

Grabbe Ramo Wooldridge - Handbook of Automation, Computation and Control, Wiley, 1958.
Vol. 1 - Section A - General Mathematics
Vol. 1 - Section B - Numerical Analysis
Vol. 1 - Section C - Operations Research
Vol. 2 - Computers and Data Processing

W. E. Milne - Numerical Solution of Differential Equations, Wiley, 1953.

M. G. Salvadori - Numerical Methods in Engineering, Prentice-Hall, 1952,

D. R. Hartree - Numerical Analysis, Oxford Clarendon Press, 1952.

Hildebrand, Forsythe & Wasow - Finite Difference Methods for Partial Differential Equations,
Wiley, 1960.

McCracken & Dorn - Numerical Methods and FORTRAN Programming, Wiley.

McCormick and Salvadori - Numerical Methods in FORTRAN, Prentice-Hall.

Time-Sharing FORTRAN Reference Manual (206046), General Electric, 1966.

Time-Sharing System Manual (229116), General Electric, 1966.

FORTRAN

COMPUTER TIME-SHARING SERVICE INTRODUGTION

~29-

APPENDIX E. ERROR MESSAGES

The following error messages are those which most frequently occur during execution of a

FORTRAN program.

Execution is aborted after the following messages:

Message

Meaning

BEYQND

N@TREAL

SUBSCRIPT

Attempt made to store outside storage
space. Line number is of statement in
which storage is attempted.

Output data supposed to be real not in
correct form for a real number. Line
number is of output statement. Data may
be alphabetic or obtained from outside of
storage space.

Subscript error. Value of subscript smaller
than one or exceeds size specified for
dimension. Line is of statement in which
the subscript is given.

Execution is continued after the following messages:

DIVBYZERY

EXP

I+1

Real division by zero. Thelargestpossible
positive number is provided. Line number
is of statement in which division occurs.

Raising of exponent to a magnitude greater
than 176. Zero is provided if raising to a
negative value. Largest possible number
provided if raising to a positive value.
Line number is of statement containing call
to EXP,

Raising of zero integer to zero or negative
integer. Zero is provided.

FORTRAN

COMPUTER TIME-SHARING SERVICE

=30~

INTRODUCTION

Message

Meaning

INTEGER

LG

M@D

@VERFLGW

‘R

R*'R

REALINPUT

SIN/C@S

COMPUTER TIME-SHARING SERVICE

Real value of too large a magnitude to be
used as an integer. Number of same sign
and magnitude 524287 is used. Line number
is of statement in which one of the following
oceurs:

Storage as integer

Call to function requires an integer
argument

Subscript

Logarithm requested for zero or negative
value. Zero or logarithm of positive
number of same magnitude, respectively, is
provided. Line number is of statement in
which division occurs.

Call to MOD in which (argument one/
argument two) is too large in magnitude.
Quotient of largest possible magnitude and
same sign is used. Line number is of
statement containing call to MOD.

Any real calculation, not reported else-
where, that results intoo large a magnitude.
The largest possible magnitude is used.
Line number is of statement containing
calculation.

Raising to a real power of a negative real
or integer. Positive real or integer of
same magnitude is used. Raising of a
real or integer zero to a zero or negative
real. Zero is provided.

Raising of a real zero to a zeroor negative
integer zero is provided.

Real input data has magnitude too large or
too small to be represented. If too large,
the largest possible magnitude is used;
if too small, zero is used. Line number is
of input statement.

Sine or cosine requested for value with
magnitude too large. Result of same sign
and largest possible magnitude isprovided.
Line number is of statement containing
call to SIN or COS,

FORTRAN

-31-

INTRODUCTION

Message

Meaning

SQRT

UNDERFLGW

Square root requested for negative value.
Square root of positive value with same
magnitude provided. Line number is of
statement containing call to SQRT.

Any real calculation, not reported else-
where, that results in too small a mag-
nitude. A zero is used. Line number
is of statement containing calculation.

Execution stops after the following messages:

STGPEND

STQP xxx

Execution of the last statement in the main
program. Execution of a RETURN state-
ment in the main program when main
program has not been called (viaan ENTRY
statement).

Where xxx represent any three quotable
characters. Execution of a STOP statement
with xxx as the alphabetic value of the
constant or variable written after the word
STOP.

Execution is suspended after the following message:

PAUSE xxx

COMPUTER TIME-SHARING SERVICE

Where xxx represent three quotable charac-
ters. Execution of a PAUSE statement
with xxx as the alphabetic value of the
constant or variable written after the word
PAUSE. Execution resumed when carriage
return is provided. If a value is entered
before the carriage return, and xxx is the
value of a variable, the entered value
replaces xxx as the value of that variable.
If the value entered is negative, it is stored
as a numeric value. Otherwise, as an
alphabetic.

FORTRAN

-32-

INTRODUCTION

227106

&Mﬁvw;{m“:,;
m;sw‘.m,‘)%’w
G ia:ﬂ&%"ﬁf

i

-

e
deme
=

- 'M«uﬁi%kw
e

e
o

-

s

S p e Bl

e

il
-
S
-

e

N???gr,@,,@ﬁq,

-

‘“‘*%m%.pg»s
. ‘fm%ﬁ'@*!‘fﬁ s
- x\w,',);z,.masggxgr

-

o e

-%tﬁ?dﬁ&*gnm&’a’&fx
*“‘ﬁﬁa‘l'j&u.é aEEcEEL
. »'H,Mg
-
G

o e
Mam@w o
‘a% e

.
i - e
- ?-Wﬁ.fik@.ﬁws;;
- - S
e A
‘«ﬁm@wv&g
e "H.%«-@w?&»;
o %,mx&s&wun

ixé“e;ww:ﬁg*i
e
vﬁ*%@éh@¢@$
e
S Mo&»&*%
o L
. {3‘4.&’@ ;gt»ﬁz
L f@””;ﬂ%»&»ﬁs
2&:3:(

vms.uvsng;q
,%"qa‘}‘w‘sgsr‘

.

-
@H?Q@E@@g;

“W'ﬁ?&k»pu e

o “f;?;{ﬁk%?é”%h?%*ﬁﬁ -
sa«m»g»tﬂw%éw ifmré“:é&béwgugg,s‘
;M&@@%;%&@%? -

o

T
-
o

'%ﬁihe;’i%n%bé.ia

Bibw’?s‘% o

-
zww - y
- .
-
- t;vlg
S e
=

e

e -

ngn@a’f“‘?‘

?é».;.
- }g@stge
: }.< .

T

e &z*“ﬁ"‘x&ga
4&9,;&:%@4;.@‘;;@ o

xw;«fva
o *wa”‘t?vw L
‘;\&:{’Ei’

- 34:@ e
'§jw‘§qg‘~J& e

W{-&{A

-
e e
. %?‘;:?‘;m«wwv, g
L *.F‘e{‘%;x-a&iﬂg e
Bk >{“!‘Y‘ﬁ&ygg
ey
= R s s
PR L -
S G eki@x‘g‘@@,&i
f?”’i?g«%&u} %‘"i’f*i%

V:@%"&‘*xmamw
i

- B |

= (B
i

-

'wr&’.q«e}

,vxgu{{&ggﬂv&*«?f?*&g
- B

e i
T

efss%%%%i@gamfari
exsvrwga,g it

C

-
%e;c’g

ﬁé’&»
&

- .
f &g; -

dedumae o

v&&{}<'f??~§‘ -

-

Sl

B

%&
mﬁ,;k

e

-
o
Gt
-
e

-
S

- o

Sommnl g

-
cteﬁs‘e e

*'m*f«‘ L

S
&’swwwﬁ&t:@%
e?zé;.)vwig§

%ﬁ%i%%

e

=
i)

" e
e
B ﬁ}?é‘ia@yy§a,
e e -
-

i
aowuvvé S s

&H»“gb« }f; -
?%%V»EX&A§YE\~
;sm@ ?‘g‘wﬁ.
%%x,&@wew?&»
. %}fgﬁg%&%m
-
o L
s

-

G

-

%&:
&é*é@t

.

-

Sl
.
o
J-z':’jﬂ@‘fw‘
e o
s S
-

o e T o

i
-

-
-
=
gw(ag
B g

o

e

-

o

“@a'ﬁ»estﬁ

- :‘fk‘%*%ia’}‘ia_

o b o

e ““‘“%z&i’?‘*w;
-
8%&{*"(**&“”.

Hi

- -
- §ff#~‘ze$&ne§(z§*4§yﬁ’

.
4‘?*&?&&«, -
'wthee’\f& -
e s
o
- e

sl gvu’a_;lgg

o
L

o

ié!*}wr«se‘li
.

G
ﬁwvﬁré:asﬁa
.

e -
e
e W""%.fy?&
e G
= u)»%m{;{?

- -

- e
- B
et
ﬁofaéd’ﬁki“ En
-

f*ri&&?w wc:»

e
- :r«iz‘,‘,‘”y
e
-

<$3*§’g;§
e
s
e
gsti«}‘«; {&&gi“gx@
E i
e
SEees e
'3@""?&?‘
e

e u
-

- &.i.eﬁa@w;s“‘ i

a“’wgav
RaiEame
8{"@‘1&3(&.3;’&3”
B e SR
!wﬁ@,-,;,;ewz
ﬁiﬁkuxmgzﬂ"ég
-
J;e“,ggf i

o
-

e =t’mn<‘3
ﬁﬂw‘&“‘s?(ﬁ!fﬁ
s L
5»5;??%‘5#&.»»«’!(,o§

- g)azzﬁ'
”“"‘z"f“fﬂi@‘";ﬁwi
o *%?.%%*
'f@,ve&f&&jv
e S
e
5:&,1&:@“&‘&
‘&mgﬁxg@‘
§$§£x@a&

3,““}‘%“&&»’-;&5;3%;(9‘
b?ﬁﬁﬂ,ﬁky;@;f e
3%”3;“«»*)&.
?ﬂ*&s&é
?e*x?z

L
L
-
-
z*f

&
-
-
0

Aé‘d sz}u a
-
-
o
sk ;:e“g‘
P

.
e e *: et

e .
e ‘iini;"’vs e
e e e S
e e, s
?r‘fg\yéu«ilﬂ

-

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	xBack

