
Reference
Manual ~ Information

~Systems

Time-Sharing
Service

GENERAL. ELECTRIC
INFORMATION SERVICE DEPARTMENT

TIME-SHARING

EDITING COMMANDS

Reference Manual

August 1967

Revised January 1968

GENERAL _ ELECTRIC
INFORMATION SERVICE DEPARTMENT

708209A

PREFACE

The editing commands described in this manual are an integral part of the Time-Sharing Service
of General Electric's Information Service Department. Six of the commands have been available
for some time, but the majority are powerful additions to the Service. The manual thoroughly
describes each editing command and provides examples of how the commands work.

I This manual is written for present users of the Service, and familiarity with the Time-Sharing
Service:Reference Manual (229116A) is assumed.

If this reference manual is used as a self-teaching aid, it may be desirable to consider the editing
functions in the following order:

Line Functions

EDIT LIST
EDIT PAGE
EDIT DELETE
EDIT RESEQUENCE
EDIT EXTRACT
EDIT MOVE
EDIT DUPLICATE
EDIT MERGE
EDIT WEAVE
EDIT RUNOFF

® General Electric Company 1968

String Functions

$FIND
$INSERT
$END
$REPLACE
$LIST
$RUNOFF
$MOVE
$DUPLICATE
$LOCATE
$BEGIN
$BREAK
$IGNORE
$TIME
$TEXT
$PROGRAM
$STRING
$SUBSTITUTE
$MULTIPLE
$ABORT
$TRANSLATION

TIME-SHARING SERVICE------- ..;;;;;,;;ED;;;....;;;.IT,;;;",;;;IN~G
COMMANDS

- ii -

1. INTRODUCTION

CONTENTS

Page
1

2. LINE FUNCTIONS. • • • . . • • • • • • • • • • . • . • • • • • •• 2

DELETE ••••••••••.•••••.•••..••••.••.••••••••••.•••••••••••• 2
DUPLICATE • • • • • • • • • • • . . • . • . • • • • • • . • . • • • • . • • • • • • • . • • • • • • • • • • •• 4
EXTRACT ••.••••••••••••.•••••••••..•.••••••••••••••••••••••• 5
LIST • • • • • • . • . . • • • . • • • . • • • • • . • • • • • • • • •• 6
MERGE • • • • • • • . • • . • • • • • . . • . . • • • • • • • • • . . • . • • • • • • • • • • • • • • • • • • •• 8
MOVE .••..•••••••..••••••....•.••••••••••.•.•••••••••••••••• 12
PAGE •••.•.••••••••••••••••.••.••••••••.•••••••••••••••••••• 14
RESEQUENCE. • • . • . • • . • • • • • • • • • • • • • • 14
RUNOFF •••••••••••••••••••.••••••••••••••••.••••••••••••.••• 19
WEAVE •.••.••••••••••••••••••.••••••••••••••••••••••.••••••. 25

3. STRING FUNCTIONS. • • • • . • • • . . • . • • • • • • . • • . • • • • • • . • • • • • • • • • • . • • • • . • • 27

$ABORT. • 29
$BEGIN • . • . • • • • • . • 30
$BREAK. • • • . • . • . • • • • • • • • • • • . • • • • • • • • • • • • • • 30
$DUPLICATE . • • • • • • • • • • • . • • • • • • • • • • • • • • • . • . • • • • • • • • • • • • . • • • • • • 31
$END. . • • • • • • . • • • • • • . • • . • • • • • • • • • • • • • • • . • • • • • • • . • • • • • • • • • • • • • 33
$FIND ••••••••••••••••••.••••••••••••••.••••••••••••••••••••• 33
$IGNORE • . • • • • • • • . • • • • • • • • . • . • • • • • • . • . • • • • 33
$INSERT. • . • • • • • • • • • • • . • • • • • • • • • • • • • . • • 34
$LIST ..•••.••••••••••• 35
$LOCATE .•••••••.••••••••••••••••••••••••••.••••••••••••••••• 36
$MOVE .••••••••••• 0 • 38
$MULTIPLE . • • • • • • • • • • • • • • • • • • . • 38
$PROGRAM • 40
$REPLACE •• 40
$RUNOFF. • 42
$STRING •• • . • . • 42
$SUBSTITUTE. • • • • • • • • • • • • • • • • . • • • • • • • • • • . • 43
$TEXT. • • • • • • • • • • • • . • 44
$TIME . • . 44
$TRANSLATION • 44

4. ABBREVIATIONS. • . • • • • • • • • • • . • • • • • • • • • • 46

5. ERROR MESSAGES ••. 0 •••••• 47

TIME-SHARING SERVICE----------------E~D..;;;.,,;;;IT~IN~G
COMMANDS

- iii -

1. INTRODUCTION

The editing commands described in this manual permit you to retrieve, modify, and manipulate in­
formation stored in the time-sharing system.

These commands are an expansion of editing functions that were previously available with time­
sharing. Even though you are an experienced user of time-sharing and are familiar with some of
the commands, you should read the fuller descriptions of their usefulness and application contained
in these pages.

The commands operate on files of information and are not concerned with the subj ect matter of the
files. It makes very little difference, therefore, whether you are working in BASIC, FORTRAN,
ALGOL or in none of these. When you resequence line numbers while using BASIC, all references to
line numbers in your file will be changed to reflect the new sequence. This is the case only with
BASIC and is not true of FORTRAN or ALGOL. Except for this, the effect of the commands is the
same in any of the systems or in an English text. Since the commands operate on files of information
and these files are normally programs and have line numbers for reference, line numbers are used
to control certain editing processes. other processes, however, do not depend on line numbers but
operate on designated strings of information so that purely textual information can be edited.

Bear in mind that many of the commands modify working copies of time-sharing programs. You should
take the precaution of saving important programs before editing them. Similarly, none of these com­
mands automatically save programs after editing has been completed. You must do this yourself.

If you have occasion to need them, you can obtain immediate hints regarding the use of editing com­
mands while at the teletypewriter. Simply type EDIT and the system will type a summary of the
commands with an option to receive more information about any of them.

The format illustrations at the beginning of the description of each command are meant to show the
components of the particular commands and should not be considered models for entering the com­
mands on a teletypewriter, as to the use of spaces or particular characters. The examples for each
of the commands that follow the descriptions show the proper formats for entering on the teletype­
writer.

TIME-SHARING SERVICE~~~~~~~~~~~~~~~~E~D~IT~~~G
COMMANDS

- 1 -

DELETE

2. LINE FUNCTIONS

Line functions enable you to edit a program on a line-by-line or group-of-lines (block) basis. In addi­
tion to line functions, there are several commands which are concerned with entire programs or a
series of programs. These commands are included under LINE FUNCTIONS since they are most
frequently used while performing EDIT changes by lines or by groups of lines.

The function formats require a blank between the word I EDIT' and the command word and also a
blank between the command word and the argument list. These functions are listed alphabetically
and no order of importance should be given to the grouping of the commands. Ten functions are
described and illustrated under LINE FUNCTIONS.

1. Deletions within a Program,
EDIT DELETE
EDIT EXTRACT

2. Duplicating Program Lines,
EDIT DUPLICATE

3. General Functions,
EDIT RUNOFF

4. Listing Program Lines,
EDIT LIST

5. Listing Programs on Numbered Pages,
EDIT PAGE

6. Merging Programs Together,
EDIT MERGE
EDIT WEAVE

7. Rearranging Program Lines,
EDIT MOVE

8. Resequencing Line Numbers of a Program,
EDIT RESEQUENC E

DELETE

EDIT DELETE Nl, N2-N3, N4 ...

Single lines and blocks of lines can be removed from a program file. Only the specified lines are de­
leted; all others are saved. To remove a series of successive lines, specify the inclusive beginning
and ending line numbers separated by a hyphen. The parameters (Nl, N2-N3, and N4 .••) must be
separated by commas in the command instruction.

The line numbers must be in increasing numerical order. Use a single space between the word
DELETE and the first parameter (Nl).

TIME-SHARING SERVICE-------- E_D_IT_IN_G
COMMANDS

- 2 -

DELETE

CAUTION: An EDIT DELETE command permanently changes your current program. For a new pro­
gram, it is recommended that you save it before issuing an EDIT DELETE command. To save the
edited version of an old program, rename the program and save it. This enables you to retain the
old version of this program as well as the new one.

Example 1: Deleting Single Lines

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+1
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0~LY

100 IF X = 10 THEN 120
110 G0 T0 40
120 END

EDIT DELETE 30,60,70,90

READY.

LISTN~;

10 LE.T X = a
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X
80 PR I NT SUM 0F FIRST X; "I NTEGERS IS " Y
100 IF X = 10 THEN 120
11 0 G0 T0 40
120 END

Example 2: Deleting Consecutive Lines and Single Lines

10 LE T X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+1
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X: "INTEGERS IS
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 Hl 40
120 END

Y

- 3 -

DELETE
DUPLICATE

EDIT DELETE 30,60-70,90

READY.

LISTNH

10 LET X : 0
20 LET Y : 0
40 LET X : X+l
50 LET Y .. Y+X
80 PRI NT SUM 0F FIRST" .. ; X; "INTEGERS IS .. Y
100 IF X : 10 THEN 120
110 G0 T0 40
120 END

DUPLICATE

EDIT DUPLICATE N1-N2, N3, N4 .
or Nl, N2, N3, N4 .

Use EDIT DUPLICATE to repeat a single line or a series of lines in an existing program. With this
command, all duplicated lines are retained in their original positions as well as duplicated in the

I required positions. Another command, EDIT MOVE, causes the designated line or block of lines to
be removed from their original location and inserted at the new location.

The block of lines between Nl and N2 inclusive are inserted in the original program after the lines
specified N3, N4 ••• As many insert lines can be utilized as can be specified on the input command
line.

If you wish to duplicate a single line, you need only give the line number to be duplicated as the first
parameter. In the command EDIT DUPLICATE 10, 25, 40, 50 ••• , line 10 will be duplicated following
lines 25, 40 and 50. The insert line numbers may be given in any order.

After duplication, the new program is resequenced. If you are editing a BASIC program, the line­
number references are changed to reflect the resequenced line numbers. If you are using any operat­
ing system other than BASIC, the line-number references of the new program will not reflect the
resequenced line numbers.

Example: Duplicating Lines in a BASIC Program

10 LET X = 0
20 LET Y : 0
25 REM •• REM
30 REM INITIALIZE X AND Y
40 LET X : X+l
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST .. ; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0~LY

100 IF X : 10 THEN 120
110 G0 T0 40
120 END

TIME-SHARING SERVICE~~~~~~~~~~~~~~~~~ED~IT~~~G
COMMANDS

- 4 -

DUPLICATE
EXTRACT

EDIT DUPLICATE 25,50,80

READY.

LISTNH

100 LET X : 0
11 0 LET Y : 0
120 REM •• REM
130 REM INITIALIZE X AND Y
140 LET X = X+1
150 LET Y = Y+X
160 REM •• REM
170 REM INCREMENT X BY 0NE
180 REM SUM C0NSECUTIVE INTEGERS
190 PRINT MSUM 0F FIRST M; X; MINTEGERS IS M; Y
200 REM •• REM
210 REM SUM FIRST TEN INTEGERS 0~LY

220 IF X = 10 THEN 240
230 G0 T0 140
240 END

EXTRACT

EDIT EXTRACT Nl, N2-N3, N4 •..

You can retain single lines and series of lines in a program file by using EDIT EXTRACT. The lines
to be retained are specified; all others are deleted. To retain a series of lines, specify the inclusive
beginning and ending line numbers separated by a hyphen.

As many lines, or series of lines, will be retained as specified on a single command line. The line
numbers must be in increasing order.

CAUTION: An EDIT EXTRACT command permanently changes your current program. If your program
is new, save it before issuing an EDIT EXTRACT command. To retain the edited version of an old
program, rename the program and save it. This enables you to retain the old version of this program
as well as the new one.

Example 1: Extracting Specified Lines

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+1
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT MSUM 0F FIRST M; X; MINTEGERS IS
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

Y

TIME-SHARING SERVICE----------------E-D-rT-IN~G
COMMANDS

- 5 -

I

EXTRACT
LIST

EDIT EXTRACT 30,60-70,90

READY.

LISTNH

30 REM INITIALIZE X AND Y
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
90 REM SUM FIRST TEN INTEGERS 0NLY

Example 2: Extracting Blocks of Lines

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+1
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT ·SUM 0F FIRST -; X; -INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
11 0 G0 T0 40
120 END

EDIT EXTRACT 0-20,40-50,80,100-99999

READY.

LISTNH

10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X
80 PRI NT "SUM 0F FIRST Xl ·INTEGERS IS " Y
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

LIST

EDIT LIST
EDIT LIST Nl, N2-N3, N4 •.•
EDIT LIST NI-N2, N3, N5-N4 •••

This command lists single lines or blocks of lines from a current working program. This list can be
printed in either forward or reverse order. Aline number may occur more than once as a parameter.
Block numbers do not have to be in ascending order. As many lines or blocks can be listed as desig­
nated on one input command line.

TIME.SHARING SERVICE----------------.=ED::.:I~TIN::.;",.:=.G
COMMANDS

- 6 -

LIST

If parameters are not given following the words EDIT LIST, the entire program will be typed in re­
verse order starting from the end of the program file. A reverse-order list is also obtained for a
block of lines when the block numbers are given as N2-N1 where N2 is greater than N1.

Example 1: Use of EDIT LIST without Line Numbers

10 LET X : 0
20 LET Y : 0
30 REM INITIALIZE X AND Y
40 LET X : X+l
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 Gr3 T0 40
120 END

EDIT LIST

120 END
11 0 Gr3 T0 40
100 IF X - 10 THEN 120
90 REM SUM FIRST TEN INTEGERS 0NLY
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
70 REM SUM C0NSECUTIVE INTEGERS
60 REM INCREMENT X BY 0NE
50 LET Y = Y+X
40 LET X = X+1
30 REM INITIALIZE X AND Y
20 LET Y : 0
10 LET X = 0

Example 2: Use of EDIT LIST with Lines and Blocks of Lines

10 LET X : 0
20 LET Y : 0
30 REM INITIALIZE X AND Y
40 LET X : X+l
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM r3F FIRST "; X; "INTEGERS 0NLY
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X : 10 THEN 120
110 Gr3 T0 40
120 END

EDIT LIST 0-20,40-50,80,100-200

10 LET X = 0
20 LET Y : 0

40 LET X : X+1
50 LET Y = Y+X

80 PRINT " SUM 0F FIRST

100 IF X : 10 THEN 120
110 G0 T0 40
120 END

X; "INTEGERS IS" Y

TIME-SHARING SERVICE---------- E--::D....:;;,.,;IT~IN~G
COMMANDS

- 7 -

LIST
MERGE

Example 3: EDIT LIST with Blocks of Lines in Reverse Order

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
11 0 G0 T0 40
120 END

EDIT LIST 50-40,20-10

50 LET Y = Y+X
40 LET X = X+l

20 LET Y = 0
10 LET X = 0

MERGE
EDIT MERGE MAIN, SUBl, SUB2, SUB3 ...

or ·MAIN, SUBl, Nl, SUB2, N2, SUB3 ...

I From two to nine programs can be merged within a main program. This enables you to combine
several programs, either saved programs or library programs, into one (up to 6144 characters).

The word MAIN in the command represents the primary program and SUBl, SUB2, etc., represent
subprograms to be merged into the primary program. N1, N2, etc., represent line numbers in MAIN
after which SUB1, SUB2, etc. are to be inserted. Program names and line numbers must be sepa­
rated by commas.

The EDIT MERGE command resequences the merged program by increments of 10 starting with 100.
All programs are merged in the order specified in the command. Insert line numbers are optional.
If they are omitted from the command, the designated programs are sequentially inserted after the
last line of the MAIN program.

The current program in working storage is ignored and does not have to be one of those merged. If
you want to use the current program in the EDIT MERGE command, you must save it before the
command is given.

EDIT MERGE does not affect the saved versions of the programs merged. After you have merged
the programs, you should list the new version to insure that the merging was executed correctly. If
you want to save the new merged program, rename it before placing it in permanent storage, keeping
the original and the merged programs intact.

Example 1: Merging Two Programs

Program A

10 LET X : 0
20 LET Y = 0
40 LET X = X+l
50 LET Y = Y+X
80 PRINT "SUM 0F FIRST "; X; INTEGERS IS Y
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

TIME-SHARING SERVICE~~~~~~~~~~~~~~~~~ED~~~~~G
COMMANDS

- 8 -

MERGE

Program C

10 REM THIS BASIC PR~GRAM SUMS
20 REM THE FIRST N C0NSECUTIVE
30 REM INTEGERS, WHERE N IS LESS
40 REM THAN 0R EQUAL T0 TEN.

ED I T ME RGE C, A

READY.

LISTNH

100 REM THIS BASIC PR0GRAM SUMS
110 REM THE FIRST N C0NSECUTIVE
120 REM INTEGERS, WHERE N IS LESS
130 REM THAN 0R EQUAL T0 TEN.
140 LET X = 0
150 LET Y = 0
160 LET X = X+I
170 LET Y = Y+X
180 PRINT "SUM 0F FIRST X; "INTEGERS IS" Y
190 IF X = 10 THEN 210
200 G0 T0 160
210 END

Program A is merged following C. Notice that C does not have an END line. If it had, since MERGE
does not delete lines, the merged program would have two END lines resulting in an error message
when the program is run. You must delete any superfluous END lines that result from merging pro­
grams.

Example 2: Merging Two Programs with a Line Number of Zero

Program A

10 LET X = 0
20 LET Y : 0
40 LET X = X+I
50 LET Y : Y+X
80 PRINT SUM 0F FIRST X; INTEGERS IS Y
100 IF X : 10 THEN 120
11 0 G0 T0 40
120 END

- 9 -

I

MERGE

Program C

10 REM THIS BASIC PR0GRAM SUMS
20 REM THE FIRST N C0NSECUTIVE
30 REM INTEGERS, WHERE N IS LESS
40 REM THAN 0R EQUAL T0 TEN.

EDIT MERGE A,C,O

READY.

LISTNH

100 REM THIS BASIC PR0GRAM SUMS
110 REM THE FIRST N C0NSECUTIVE
120 REM INTEGERS~ WHERE N IS LESS
130 REM THAN 0R ~QUAL T0 TEN.
140 LET X = 0
150 LET Y = 0
160 LET X = X+1
170 LET Y = Y+X
180 PRINT "SUM 0F FIRST X; "INTEGERS IS" Y
190 IF X = 10 THEN 210
200 G0 T0 160
210 END

Program C is merged with A following line 0, or at the beginning of the merged program. Omission
of the zero line number would have resulted in C being after line 120 of program A.

Example 3: Merging Two Programs without a Line Number

Program A

10 LET X = 0
20 LET Y = 0
40 LET X : X+l
50 LET Y = Y+X
80 PRINT ·SUM 0F FIRST
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

X; ·INTEGERS IS· Y

- 10 -

MERGE

Program C

10 REM THIS BASIC PR0GRAM SUMS
20 REM THE FIRST N C0NSECUTIVE
30 REM INTEGERS~ WHERE N IS LESS
40 REM THAN 0R ~QUAL T0 TEN.

EDIT MERGE A,C

READY.

LISTNH

100 LET X : 0
110 LET Y : 0
120 LET X = X+l
130 LET Y Y+X
140 PRINT " SUM 0F FIRST X; INTEGERS IS Y
150 I F X = 10 THE N 170
160 G0 T0 120
170 END
180 REM THIS BASIC PR0GRAM SUMS
190 REM THE FIRST N C0NSECUTIVE
200 REM INTEGERS, WHERE N IS LESS
210 REM THAN 0R EQUAL T0 TEN.

In the merged program above, the END statement is not the final statement. This violates BASIC pro­
gramming rules. You must be careful when using MERGE to make sure the END statement appears
as the final statement.

Example 4: Merging Two Programs with a Line Number Designation

Program A

10 LET X : 0
20 LET Y : 0
40 LET X = X+I
50 LET Y = Y+X
80 PR I NT "SUM 0F FIRST X; INTEGERS IS Y
100 1F X = 10 THEN 120
110 G0 10 40 I120 END

TIME-SHARING SERVICE--------- --.:....:ED:..:..1T:.:,IN=-::.G
COMMANDS

- 11 -

MERGE
MOVE

Program C

10 REM THIS BASIC PR0GRAM SUMS
20 REM THE FIRST N C0NSECUTIVE
30 REM INTEGERS, WHERE N IS LESS
40 REM THAN 0R EQUAL T0 TEN.

EDIT MERGE A,C,110

READY.

LISTNH

100 LET X = 0
110 LET Y = 0
120 LET X = X+l
130 LET Y .. Y+X
140 PRINT SUM 0F FIRST X;

..
INTEGERS IS Y

150 IF X = 10 THEN 210
160 G0 Te 120
170 REM THIS BASIC PR0GRAM SUMS
180 REM THE FIRST N C0NSECUTIVE
190 REM INTEGERS, WHERE N IS LESS
200 REM THAN 0R EQUAL T0 TEN.
210 END

Program C is inserted following line 110 of program A.

MOVE

/

EDIT MOVE N1-N2J N3 /'
or N7 N3

You can use EDIT MOVE to move a single line or block of lines from its original position to a new
position.

N1 or NI-N2 represent the numbers of the lines to be moved. N3 represents the line number after
which the line(s) are to be inserted.

When moving a block of lines, the upper and lower limits of the series, N1-N2, must be such that N3
does not fall between the limits. For example, block lines 5-10 can be moved to any place beyond
line 11 or preceding line 5.

Following EDIT MOVE for a block of lines, the lines moved are incremented by one when reinserted
,!nto the text. If the moved lines fit numerically between the insert number and the line number follow­
ing the inserted lines, only the inserted lines are resequenced. Should the inserted block of lines be
too long to fit between these numbers, the block and the lines that would otherwise be overlapped
are resequenced and the message BLOCK TOO LARGE is given. This message only informs you that
a larger portion of the program has been resequenced by ones to allow for the insertion.

TIM~SHARmGSERVreE~~~~~~~~~~~~~~~~_E_D_IT_rn_G
COMMANDS

- 12 -

Y

MOVE

Example: Line and Block Moves within a Single Program

10 LET X : 0
20 LET Y : 0
30 REM INITIALIZE X AND Y
40 LET X : X+ 1
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X : 10 THEN 120
110 G0 T0 40
120 END

EDIT M0VE 30,0

READY.

LISTNH

1 REM INITIALIZE X AND Y
10 LET X : 0
20 LET Y : 0
40 LET X : X+ 1
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

EDIT M0VE 60-7~1

READY.

LISTNH

1 REM INITIALIZE X AND Y
2 REM INCREMENT X BY 0NE
3 REM SUM C0NSECUTIVE INTEGERS
10 LET X : 0
20 LET Y = 0
40 LET X : X+l
50 LET Y = Y+X
80 PRINT "SUM 0F FIRST ; X; "INTEGERS IS
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

TIME-SHARING SERVICE ED_IT_IN_G
COMMANDS

- 13 -

MOVE
PAGE
RESEQUENCE

EelT M0VE 90,3

READY.

1 REM INITIALIZE X AND Y
2 REM INCREMENT X BY 0NE
3 REM SUM C0NSECUTIVE INTEGERS
4 REM SUM FIRST TEN INTEGERS 0NLY
10 LET X : 0
20 LET Y : 0
40 LET X : X+ 1
50 LET Y = Y+X
80 PRINT "SUM 0F FIRST X; INTEGERS IS Y
100 IF X : 10 THEN 120
110 G0 T0 40
120 END

PAGE

EDIT PAGE PI, N, P2, P3, ... P9

Up to nine programs saved under your user number or from a system library can be listed by the
EDIT PAGE command. The list is consecutively numbered on 8-1/2 in. by 11 in. pages. Up to 50
lines may appear on one page and ten blank lines separate the programs. Each page is separated
by dashed lines to indicate trimming edges when subsequently cut into sheets.

The designations PI, P2 •••. P9 represent program names and N designates the first page number.
If this first page designation is omitted, page 1 is assumed and printed at the top of the first page.
When there are fewer than 20 lines left at the bottom of a page, the successive program starts on the
next page.

RESEQUENCE

EDIT RESEQUENCE Nl, N2, N3
or Nl, N2-N3, N4

Often when creating a program you find it necessary to resequence the line numbers. This occurs
most frequently after you have inserted several lines into the original number sequence or where
you move a block from one part of a program to another.

The two formats shown above for the EDIT RESEQUENCE command are as follows:

N1 represents the first line number in the resequencedportion of your file.
N2 represents the first line number of the portion of the file you are resequencing.
N3 represents the increment between the line numbers of the resequenced portion of the file.
N2-N3 represents an inclusive block of numbers to be resequenced (in which case N4 represents
the increment).

Line numbers, or series of numbers, are separated by commas. When an inclusive block (N2-N3)
is to be resequenced, the numbers are separated by a hyphen.

- 14 -

RESEQUENCE

When you use EDIT RESEQUENCE without parameters, the system resequences the program start­
ing with line number 100 followed by increments of 10. This is identical to issuing the command
EDIT RESEQUENCE 100, 0, 10.

CAUTION: When the current program is a BASIC program and there are line number references
within the program, be sure the operating system designated is BASIC. This will change the program
line references to agree with the resequenced line numbers.

General Rules for using EDIT RESEQUENCE:

1. All line numbers must be separated by commas.

2. The hyphen can only appear in the second parameter.

3. The command given without line numbers or an increment will resequence the program from
100 in increments of 10.

4. The command given without an increment will resequence in increments of 10.

5. Negative resequences within a block are obtained when N3 is less than N2.

6. Do not choose resequence numbers that will produce either a line number less than zero or
larger than 99999.

Example 1: Resequencing without Line Numbers or an Increment

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+1
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
to REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

EDIT RESEQUENCE

READY.

LISTNH

100 LET X = 0
110 LET Y : 0
120 REM INITIALIZE X AND Y
130 LET X = X+I
140 LET Y = Y+X
150 REM INCREMENT X BY 0NE
160 REM SUM C0NSECUTIVE INTEGERS
170 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
180 REM SUM FIRST TEN INTEGERS 0NLY
190 IF X = 10 THEN 210
200 G0 T0 130
210 END

TIM~SHARING SERVreE~~~~~~~~~~~~~~~~~ED_IT_IN~G
COMMANDS

- 15 -

RESEQUENCE

Example 2: Resequencing with Only the starting Line Number

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

EDIT RESEQUENCE 200

READY.

LISTNH

200 LET X = 0
210 LET Y = 0
220 REM INITIALIZE X AND Y
230 LET X = X+l
240 LET Y = Y+X
250 REM INCREMENT X BY 0NE
260 REM SUM C0NSECUTIVE INTEGERS
270 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
280 REM SUM FIRST TEN INTEGERS 0NLY
290 IF X = 10 THEN 310
300 G0 T0 230
310 END

Example 3: Resequencing Part of a Program

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
~O REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
11 0 G0 T0 40
120 END

Y

TIME-SHARING SERVICE---------- ED_IT_IN_G
COMMANDS

- 16 -

EDIT RESEQUENCE 50,40

READY.

LISTNH

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
50 LET X = X+ 1
60 LET Y = Y+X
70 REM INCREMENT X BY 0NE
80 REM SUM C0NSECUTIVE INTEGERS
90 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
100 REM SUM FIRST TEN INTEGERS 0NLY
110 IF X = 10 THEN 130
120 G0 T0 50
130 END

Example 4: Resequencing Part of a Program in Increments of 100

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X : X+l
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X : 10 THEN 120
11 0 G0 T0 40
120 END

EDIT RESEQUENCE 100,100,100

READY.

LISTNH

RESEQUENCE

10 LET X : 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+ 1
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X : 10 THEN 300
200 G0 T0 40
300 END

Y

- 17 -

RESEQUENCE

Example 5: Resequencing a Block within a Program

10 LET X : 0
20 LET Y : 0
30 REM INITIALIZE X AND Y
40 LET X : X+l
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X : 10 THEN 120
110 G0 T0 40
120 END

EDIT RESEQUENCE 20,20-100,5

READY.

LISTNH

10 LET X : 0
20 LET Y : 0
25 REM INITIALIZE X AND Y
30 LET X : X+l
35 LET Y : Y+X
40 REM INCREMENT X BY 0NE
45 REM SUM C0NSECUTIVE INTEGERS
50 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
55 REM SUM FIRST TEN INTEGERS 0NLY
60 IF X : 10 THEN 120
110 G0 T0 30
120 END

Example 6: Resequencing a Block in Reverse Order

10 LET X : 0
20 LET Y : 0
30 REM INITIALIZE X AND Y
40 LET X : X+l
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

; y

TIME-SHARING SERVICE ED_iT_IN_G
COMMANDS

- 18 -

RESEQUENCE
RUNOFF

EDIT RESEQUENCE 80,80-60

READY.

LISTNH

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 PRINT "SUM 0r rIRST X; "INTEGERS IS Y
70 REM SUM C0NSECUTIVE INTEGERS
80 REM INCREMENT X BY 0NE
90 REM SUM rIRST TEN INTEGERS 0NLY
100 Ir X = 10 THEN 120
11 0 G0 T0 40
120 END

RUNOFF
EDIT RUNOFF
EDIT RUNOFF N

A printed copy of your saved program may be obtained by the EDIT RUNOFF command. This is
printed in a page format, and paginated with line numbers deleted. The optional line number, repre­
sented by N in the command, designates the starting line for the text runoff.

The printout format can be governed by control words inserted in the saved program. Should there
be no control words in the program, the printout will be in the following format:

1. The left margin is established by the first print position of the teletypewriter.

2. Each single-spaced line contains 60 characters.

3. There are no line numbers.

4. All pages, except the first, have a one-inch top and bottom margin. The first page has a two­
inch top margin.

5. Whenever possible, the right margin is justified.

Control Words:

When typing a program in text, it is possible to control the format of the printout. This control is
established by the following control words imbedded in the program text. Each control word must be
preceded by a period. An entire line must be devoted to the control word.

Control Word

• LEFT MARGIN N

• RIGHT MARGIN N

Definition

Starts the output N spaces to the right of the first print position of the
teletypewriter. This is initially preset to zero.

Places no more than N characters (including the left margin) on a line•
Normally, the line will be spaced so that exactly N characters will oc­
cur on it. The use of this command corresponds exactly to setting the
right margin on a typewriter.

TIME-SHARING SERVICE-------- E:;";.:D:.,::.IT...:.;,,IN--:..G
COMMANDS

- 19 -

RUNOFF

Control Word

.SPACE N

• BREAK

.INDENT N

• UNDENT N

•CENTER N

• PAGE

•SLEW N

• IGNORE N

• LITERAL

Example:

Definition

Sets the number of line-feeds following a carriage return. The command
•SPACE 2 means double spacing, etc.

Terminates the line preceding . BREAK. The text following the control
word begins on a new line. This is executed automatically for a para­
graph, a blank line and certain commands.

Indents the next line N spaces. The break function is automatically
called.

Undents the next line N spaces (i.e., pushes it out into the left margin)•
The designation N must be less than the size of the left margin. If N is
not present, it will be taken as equal to the size of the left margin. The
break function is automatically called•

Centers the next N input lines between the left and right margins. If any
of the input lines do not fit between the margins, they will generate two
output lines with each line centered. When N is not present, it is as­
sumed to be one. The position of the left margin remains as established
by the previous • INDENT and •UNDENT commands. This command
calls the break function•

Starts the following line at the top of the next page. This control word
calls the break function before paging•

Spaces N lines down the page. If there are fewer than N lines left before
the bottom margin, you will continue to the top of the next page•

Ignores no more than N leading blanks after the line number on each
line. It takes N+l leading blanks on a line to declare a new paragraph.
No non-blank characters are ignored•

Enables you to start a line of text with a period. In typography this is
sometimes called a bullet.

The first three pages of the following example show the control words imbedded in a program of text
named EDffiUN. These pages are followed by the RUNOFF version of the same program.

EDIRUN 1~118

I 1 .IGN0RE 3
2 .CEN 1
3 EDIT RUN0FF
~

6 THIS IS A DESCRIPTI0N 0F THE EDIT RUN0FF FUNCTI0N.
8

I 9 .IGN0RE 2
10 CALLS. EDIT RUN0F;
II EDIT RUN0;; N
12
13 .BREAK
I~ THE N SPECIFIES A STARTING LINE NUMBER. IT IS 0PTI8NAL
IS AND WILL BE DESCRIBED IN AN0THER PARAGRAPH.
16
28 THE BASIC PURP0SE 0F THE FUNCTI0N IS T0 PR00UCE ;R0M
29 A SAVED FILE A NEAT. PAGINATED C0PY 0; TEXTUAL MATERIAL WITH LINE
30 NUMBERS DELETED.
31

- 20 -

RUNOFF

EDIT RUN0;;

THIS IS A DESCRIPTI0N 0; THE EDIT RUN0;; ;UNCTI0N.

CALLSa EDIT RUN0FF
EDIT RUN0;; N

THE N SPECIFIES A STARTING LINE NUMBER. IT IS 0PTI0NAL AND
WILL BE DESCRIBED IN AN0THER PARAGRAPH.

THE BASIC PURP0SE 0; THE ;UNCTI0N IS T0 PR0DUCE FR0M A SAVED
FILE A NEAT. PAGINATED C0PY 0; TEXTUAL MATERIAL WITH LINE
NUMBERS DELETED.

Y0U CAN C0NTR0L THE ;0RMAT 0; THE 0UTPUT THR0UGH THE USE 0;
C0NTR0L W0RDS IMBEDDED IN THE TEXT. 1; THERE ARE N0 SUCH
C0NTR0L W0RDS. THE 0UTPUT WILL BE IN THE ;0LL0WING ;0RMATa
N0 LE;T MARGIN. AND A 60 CHARACTER LINE. THE T0P MARGIN 0;
ALL PAGES EXCEPT THE FIRST WILL BE 1 INCH AND THE B0TT0M
MARGIN 0F ALL PAGES WILL BE 0NE INCH. WHENEVER P0SSIBLE THE
RIGHT MARGIN WILL BE JUSTIFIED. THIS IMPLIES ;ILLING LINES
WITH W0RDS FR0M F0LL0WING LINES AND INSERTING EXTRA SPACES
BETWEEN W0RDS. A PARAGRAPH IS REC0GNIZED BY M0RE THAN THE
SPECI;IED NUMBER 0F LEADING BLANKS 0N A LINE (0NE LEADING
BLANK WILL BE IGN0RED.) A PARAGRAPH CAUSES A BREAK IN THE
PRICESS I; ;ILLING BETWEEN LINES. AND THE LAST SENTENCE IN
THE PRECEDING PARAGRAPH WILL N0T BE RIGHT JUSTI;IED.

A BLANK LINE WILL PR0DUCE A BLANK LINE IN THE 0UTPUT. AND
WILL CAUSE THE SAME BREAK AS A NEW PARAGRAPH.

CINTR0L W0RDS

F0RMATa AN ENTIRE LINE IS DEV0TED T0 0NE C0NTR0L W0RD, AND
THE FIRST N0N-BLANK CHARACTER 0N THE LINE MUST BE A PERI0D.
THE THREE LETTERS A;TER THE PERI0D ARE ALL THAT ARE L00KED
AT. EXCEPT ;0R NUMERICAL PARAMETERS.

(IN ALL THE FILL0WING ;0RMS THE QU0TES AR0UND THE C0NTR0L
WIRD SH0ULD N0T APPEAR IN THE TEXT. NUMERICAL PARAMETERS
BETWEEN PARENTHESES ARE 0PTI0NAL.)

".LITERAL" 1; Y0U SH0ULD F0R S0ME REAS0N HAVE A CASE IN
WHICH THE FIRST N0N-BLANK CHARACTER 0N A LINE
ACTUALLY IS A PERI0D, THIS MUST BE 0N THE
PRECEDING LINE, 0R ELSE THE LINE WILL BE IGN0RED.

2

".RIGHT MARGIN Nfl
00 N0T PUT M0RE THAN N CHARACTERS (INCLUDING THE
LE;T MARGIN) 0N A LINE. N0RMALLY THE LINE WILL
BE SPACED 0UT 50 THAT EXACTLY N CHARACTERS WILL
0CCUR 0N IT. THIS C0MMAND C0RRESP0NDS EXACTLY T0
SETTING THE RIGHT MARGIN 0N A TYPEWRITER.

TIME-SHARING SERVICE------ ---=ED:..:.IT=-=IN~G
COMMANDS

- 23 -

I

RUNOFF

".LEFT MARGIN N" 0UTPUT N SPACES BEFeRE THE FIRST
CHARACTER eF EACH LINE. THIS IS PRESET T0 O.

".SPACE N" SETS THE NUMBER eF LINE-FEEDS AFTER A CARRIAGE
RETURN. "SPACE 2" IS DeUBLE SPACING.. ETC.

".BREAK" De NOT RUN THE W0RDS FROM THE FOLLOWING LINE
INTO THE PRECEDING LINE. THIS IS EXECUTED
AUTeMATICALLY FeR A PARAGRAPH .. A BLANK LINE AND
CERTAIN C0MMANDS.

".INDENT N"
INDENT THE NEXT LINE N SPACES.
FUNCTleN IS AUT0MATICALLY CALLED.

THE BREAK

I

".UNDENT CN)"
UNDENT THE NEXT LINE N SPACES (IE ... PUSH IT INT0
THE LEFT MARGIN.) N MUST BE LESS THAN THE SIZE 0F
THE LEFT MARGIN. IF N IS N0T PRESENT IT WILL BE
TAKEN AS EQUAL T0 THE SIZE OF THE LEFT MARGIN.
THE BREAK FUNCTI0N IS AUT0MATICALLY CALLED.

".CENTER CN)"
CENTER THE NEXT N INPUT LINES BETWEEN THE LEFT
AND RIGHT MARGINS. IF ANY 0F THE INPUT LINES D0
N0T FIT BETWEEN THE MARGINS THEY WILL GENERATE
TW0 0UTPUT LINES.. EACH CENTERED IF N IS NeT
PRESENT IT IS ASSUMED T0 BE 0NE. THE P0SITI0N 0F
THE LEFT MARGIN IS SET AFTER THE INDENT AND
UNDENT C0MMANDS HAVE BEEN EVALUATED. THIS C0MMAND
CALLS THE BREAK FUNCTI0N.

".PAGE"
SPACE T0 THE T0P 0F THE NEXT PAGE. PAGE CALLS THE
BREAK FUNCTI0N BEF0RE PAGING.

".SLEW N"
SPACE N LINES D0WN THE PAGE. IF THERE ARE FEWER
THAN N LINES LEFT BEF0RE THE B0TT0M MARGIN.. THE
TEXT WILL C0NTINUE T0 THE T0P 0F THE NEXT PAGE.

".IGN0RE N"
IGN0RE eNLY N LEADING BLANKS AFTER THE LINE
NUMBER 0N EACH LINE. IE... IT WILL TAKE N+l
LEADING BLANKS eN A LINE T0 DECLARE A NEW
PARAGRAPH. N0N-BLANK CHARACTERS ARE N0T IGN0RED.

3

THE PARAMETER IN THE CALLING LINE <EDIT RUN0FF N)
SPECIFIES THE FIRST LINE WHICH C0NTAINS INF0RMATI0N
THAT Y0U WANT PRINTED. RUN0FF PReCESSES ALL THE
PRECEDING MATERIAL EDITING IT AND EXECUTING THE
C0NTR0L W0RDS.. BUT THE FIRST LINE WHICH IT PRINTS
WILL BE THE LINE C0NTAINING THE W0RDS WHICH 0CCUR IN
LINE N 0F THE INPUT MATERIAL. THIS LINE MAY C0NTAIN
W0RDS WHICH 0CCURRED 0N THE PREVI0US LINES 0~ INPUT
MATERIAL SINCE THE WH0LE LINE WILL BE PRINTED.

EDITING
TIME-SHARING SERVICE COMMANDS

- 24 -

RUNOFF

32 Y0U CAN C0NTR0L THE F0RMAT 0F THE 0UTPUT THR0UGH THE
33 USE 0F C0NTR0L W0RDS IMBEDDED IN THE TEXT. IF THERE ARE N0
34 SUCH C0NTR0L W0RDS. THE 0UTPUT WILL BE IN THE F0LL0WING
35 F0RMAT. N0 LEFT MARGIN, AND A 60 CHARACTER LINE. THE T0P
36 MARGIN 0F ALL PAGES EXCEPT THE FIRST WILL BE I INCH AND THE
37 B0TT0M MARGIN 0F ALL PAGES'WILL BE 0NE INCH. WHENEVER
38 P0SSIBLE THE RIGHT MARGIN WILL BE JUSTIFIED. THIS IMPLIES
39 FILLING LINES WITH W0RDS FR0M F0LL0WING LINES AND INSERTING
40 EXTRA SPACES BETWEEN weRDS. A PARAGRAPH IS REC0GNIZED
41 BY MeRE THAN THE SPECIFIED NUMBER 0F LEADING
42 BLANKS eN A LINE (eNE LEADING BLANK WILL BE IGN0RED.)
43 A PARAGRAPH CAUSES A BREAK IN
44 THE PR0CESS eF FILLING BETWEEN LINES. AND THE LAST SENTENCE
45 IN THE PRECEDING PARAGRAPH WILL N0T BE RIGHT JUSTIFIED.
46
41 A BLANK LINE WILL PR0DUCE A BLANK LINE IN THE 0UTPUT. AND WILL
48 CAUSE THE SAME BREAK AS A NEW PARAGRAPH.
49 .SlEW I
50
51 .CEN
52 C0NTR0L W0RDS
53
54 F0RMAT. AN ENTIRE liNE IS DEV0TED T0 0NE ceNTRel W0RD.
55 AND THE FIRST N0N-BLANK CHARACTER eN THE LINE MUST BE A
56 PERI0D. THE THREE LETTERS AFTER THE PER~0D ARE ALL THAT ARE
51 L00KED AT. EXCEPT FeR NUMERICAL PARAMETERS.
58
59 (IN ALL THE F0LL0WING F0RMS THE QUeTES AR0UND THE ceNTR0L
60 weRD SH0ULD N0T APPEAR IN THE TEXT. NUMERICAL PARAMETERS
61 BETWEEN PARENTHESES ARE ePTIeNAL.)
62 .LEF 8
63 .RIG 51
64
65 .UND
66 ".LITERAL"
61 IF yeu SH0ULD FeR S0ME REAS0N HAVE A CASE IN WHICH THE FIRST
68 NeN-BLANK CHARACTER eN A .LINE ACTUALLY IS A PERI0D. THIS MUST
69 BE eN THE PRECEDING LINE. eR ELSE THE LINE WILL BE IGN0RED.
70
11 .UND
72 ".RIGHT MARGIN N"
73 .BREAK
14 00 NeT PUT MeRE THAN N CHARACTERS (INCLUDING THE LEFT MARGIN)
15 eN A LINE. NeRMALLY THE LINE WILL BE SPACED 0UT se THAT EXACTLY
16 N CHARACTERS WILL eCCUR eN IT. THIS C0MMAND
71 ceRRESP0NDS EXACTLY T0 SETTING THE RIGHT MARGIN 0N A TYPEWRITER.
18
19 .UND
80 ".LEFT MARGIN Nfl
81 0UTPUT N SPACES BEF0RE THE FIRST CHARACTER eF EACH LINE.
82 THIS IS PRESET T0 o.
83
84 .UND
85 ··.SPACE N"
86 SETS THE NUMBER 0F LINE-FEEDS AFTER A CARRIAGE RETURN.
87 "SPACE 2" IS D0UBlE SPACING, ETC.
88
89 .UND
90 ··.BREAK··
91 00 N0T RUN THE W0RDS FR0M THE F0Ll0WING lINE INT0 THE PRECEDING
92 LINE. THIS IS EXECUTED AUT0MATICALLY FeR A PARAGRAPH, A BLANK
93 LINE AND CERTAIN C0MMANDS.
94
95 .UND
96 ".INDENT N··
91 .BREAK
98 INDENT THE NEXT LINE N SPACES. THE BREAK FUNCTI0N IS
99 AUT0MATICAlLY ~ALlED.

100

EDITING
TIME-SHARING SERVICE COMMANDS

- 21 -

I

RUNOFF

101 .1 GN0RE
102 .UND
103 ".UNDENT (N)"
10~ .BREAK
105 UNDENT THE NEXT LINE N SPACES (IE., PUSH IT INT0 THE LEFT
106 MARGIN.) N MUST BE LESS THAN THE SIZE 0F THE LEFT MARGIN. IF
107 N IS N0T PRESENT IT WILL BE TAKEN AS EQUAL T0 THE SIZE 0F THE
108 LEFT MARGIN. THE BREAK FUNCTI0N IS AUT0MATICALLY CALLED.
110
III .UNO
112 ".CENTER (N)"
113 .BRE
11~ CENTER THE NEXT N INPUT LINES BETWEEN THE LEFT AND RIGHT
115 MARGINS. IF ANY 0F THE INPUT LINES D0 N0T FIT BETWEEN
116 THE MARGINS THEY WILL GENERATE TW0 0UTPUT LINES, EACH CENTERED
117 IF N IS N0T PRESENT IT IS ASSUMED T0 BE 0NE.
118 THE P0SITI0N 0F THE LEFT MARGIN IS SET AFTER THE
119 INDENT AND UNOENT C0MMANOS HAVE BEEN EVALUATED.
120 THIS C0MMAND CALLS THE BREAK FUNCTI0N.
121
122 .UNO
123 ".PAGE"
12~ .BRE
125 SPACE T0 THE T0P 0F THE NEXT PAGE.
126 PAGE CALLS THE BREAK FUNCTI0N BEY0RE PAGING.
127
128 .UNO
129 ".SLEW N"
130 .BREAK
131 SPACE N LINES D0WN THE PAGE. IF THERE ARE FEWER THAN N LINES LEFT
132 BEF0RE THE B0TT0M MARGIN, THE TEXT WILL C0NTINUE T0 THE T0P
133 0F THE NEXT PAGE.
13~

135 .IGN 5 THIS IS AN EXAMPLE 0F THE USE 0F THE IGN0RE FUNCTI0N
136 .UND
137 ".IGN0RE Ntt

138 .BREAK
139 IGN0RE 0NLY N LEADING BLANKS AFTER THE LINE NUMBER
I~O 0N EACH LINE. IE •• IT WILL TAKE N+I LEADING BLANKS 0N
1~1 A LINE T0 DECLARE A NEW PARAGRAPH. N0N-BLANK CHARACTERS
142 ARE N0T IGN0RED.
143
144 .LEF 5
145 THE PARAMETER IN THE CALLING LINE (EDIT RUN0FF N) SPECIFIES
146 THE FIRST LINE WHICH C0NTAINS INF0RMATI0N THAT yeU WANT
147 PRINTED. RUN0YF PReCESSES ALL THE PRECEDING MATERIAL
148 EDITING IT AND EXECUTING THE C0NTR0L W0RDS. BUT THE FIRST LINE
149 WHICH IT PRINTS WILL BE THE LINE C0NTAINING THE W0RDS WHICH
ISO 0CCUR IN LINE N 0F THE INPUT MATERIAL. THIS LINE MAY C0NTAIN
151 W0RDS WHICH 0CCURRED 0N THE PREVI0US LINES 0F INPUT MATERIAL
152 SINCE THE WH0LE LINE WILL BE PRINTED.
153

SAVE

READY.

EDIT RUN0FF

EDITINGTIME-SHARING SERVICE COMMANDS

- 22 -

WEAVE

WEAVE

EDIT WEAVE PROGl, PROG2, PROG3 ...

You may use EDIT WEAVE to combine from two to nine saved programs. These programs are woven
together in the sequence of existing line numbers. All original line numbers are retained. The EDIT
WEAVE function operates in a manner similar to EDIT MERGE. In EDIT MERGE, however, specific
programs can be combined within a main program and the new program is resequenced.

PROG1, PROG2, etc., designate program names. These program names can be given in any order
since they are combined sequentially by line numbers.

CAUTION: When weaving programs, there should be no duplicate line numbers in the entire group.
If line numbers are duplicated, only one will be retained. Normally, the line that is retained comes
from the last program in the list that contains that line number. However, if insert line numbers
are used, the line that is retained could possibly come from one of the other programs. You must
also take care to avoid duplicate END statements. See comments under MERGE.

Example 1: Weaving Two Programs

Program A

10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X
80 PRINT "SUM 0F FIRST
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

Program B

X; "INTEGERS IS" Y

30 REM INITIALIZE X AND Y
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
90 REM SUM FIRST TEN INTEGERS 0NLY

EDIT WEAVE A,B

READY.

LISTNH

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+1
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

TIME-SHARING SERVICE--- ED_IT_I_NG
COMMANDS

- 25 -

WEAVE

Example 2: Weaving Two Programs with a Common Line Number

Program A

10 LET X : 0
20 LET Y = 0
40 LET X : X+l
50 LET Y : Y+X
80 PRINT "SUM 0F FIRST" X; "INTEGERS IS" ~
100 IF X : 10 THEN 120
11 0 G0 T0 40
120 END

Program B

30 REM INITIALIZE X AND Y
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X;
85 PRINT "INTEGERS IS "; Y
90 REM SUM FIRST TEN INTEGERS 0NLY

EDIT WEAVE A,B

READY.

LISTNH

10 LET X : 0
20 LET Y : 0
30 REM INITIALIZE X AND Y
40 LET X : X+ 1
50 LET Y : Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST "; X;
85 PRINT "INTEGERS IS "; Y
90 REM SU~ FIRST TEN INTEGERS 0NLY
100 IF X : 10 THEN 120
110 G0 T0 40
120 END

Line 80 in program B is printed. Line 80 in program A disappears.

TIME-SHARING SERVICE--------- .:::.:ED::.::,ITI.:::.=.:.=NG
COMMANDS

- 26 -

3. STRING FUNCTIONS

Definition of a string

A string is defined as a group of consecutive characters. There are certain Editing Commands that
have been specially designed to operate on information of this type, independent of any line number
orientation. These commands do not require the use of file line numbers for reference or control.
They deal only with strings of information that you specify, and therefore are said to perform "string
functions."

Types of strings

A closed string is one in which all the characters in the string are explicitly defined (up to the limits
of the Editing Command). A closed string cannot begin and end with a comma since commas are
used as control characters in certain commands.

An open string is one in which only some of the beginning and ending characters of the string are
explicitly defined. An open string is composed of two closed strings separated by a comma. The first
closed string defines the beginning characters, and the second closed string defines the ending char­
acters of the text string being specified.

DelimIters

To define where a string begins and ends a character called a "delimiter" is used. The position of
this character in the format of the Editing Command identifies it as the delimiter. There are certain
restrictions in the choice of a delimiter character; it cannot be a blank, or cannot be numeric, nor
can it be a dollar sign.

Argument List

Many of the Editing Commands that perform string functions require that certain information follow
the command word itself. This information is called the Argument List and it consists of one or more
of the following elements:

• a line number (L)
• a strmg, including its delimiter characters (S)
• a repetition count (R)

Each of these elements is explained below:

The line number is optional. It consists of one to five numerics. Its meaning depends upon the function
of the individual Editing Command with which it is associated. When a line number enters into the
function of a command, its role is explained in the definition of the command which is discussed
below.

The string has the form / ABCXY Z/ where / is the delimiter character. The string may include
numerics, blanks, and dollar signs; anything except the delimiter character. Any Carriage Return
character included in the string is not considered to be an integral part of the string, but rather is
treated as a control character which allows you to continue the string on the next line. Each char­
acter in the string is examined upon input to determine if and how its entry should be allowed to pro­
ceed. Unless something to the contrary has been specified by a previous Editing Command (such as
$SUBSTITUTE, $MULTIPLE, or $BREAK), the identity of the character is maintained.

- 27 -

The repetition count is optional. If it is not given, it is assumed to be llone." The specific function
of the repetition count depends on the command with which it is used and these are discussed below.

The argument list can contain a variety of combinations of line numbers, strings, and repetition
counts. Only certain combinations are acceptable, however, and these are shown in the following
table.

ACCEPTABLE ARGUMENT LISTS

(Brackets indicate that the command assumes
"1" if no repetition count is specified)

Closed strings:

Ll Sl Rl L2 S2 R2- - - -
100 "" [1]
- "STRING" [1]
- "STRING" 2

100 "STRING" [1]
100 "STRING" 2

Open Strings:

100 "STRINGI" 2 200 "" [1],
100 "STRINGl" 2 , - "STRlNG2" [1]
100 "STRINGI" [1] - "STRING2" 3
100 "S'rRINGl " 2 , 200 "STRING2" [1]
100 "STRING1" 2 , 200 "STRING2" 3
- "STRING1" 2 200 "" [II,
- "STRING1" [1] - "STRING2" [1)
- "STRING1" [1] - "STRING2" 3
- "STRINGI " 2 , 200 "STRING2" [1]
- "STRlNGl" 2 , 200 "STRING2" 3

String Pointers

The user has two imaginary pointers which he can place at each end of a string in the file by using
various Editing Commands. Initially, the pointers are at the beginning of the file. All searches for
strings begin at the current position of the beginning string pointer and continue to the end of the file.
If the pointers are not at the beginning of the file, there will be no search from the beginning of the
file to the place where the pointer had been set. The pointers can be reset to the beginning of the
file at any time by using the command $BEGIN which is described below.

String Search

A string search consists of comparing the specified string in the argument list to the text characters
in a file to determine if a one-to-one correspondence exists. (The one-to-one relationship can be
modified, however, in certain commands such as $IGNORE or $BREAK).

EDITING
TIME-SHARING SERVICE COMMANDS

- 28 -

$ABORT

string Function Commands

The twenty Editing Commands performing string functions are grouped below according to the type
of editing for which they are used.

1. Character Definition 5. Scan Control

$MULTIPLE $ABORT
$SUBSTITUTE $BREAK

$IGNORE
2. Major Editing $PROGRAM

$TEXT
$DUPLICATE 6. Termination
$INSERT
$MOVE $END
$REPLACE

3. Pointer Manipulation 7. User Aid and Status

$BEGIN
$FIND $LIST

$LOCATE
4. Printing $STRING

$TIME
$RUNOFF $TRANSLATION

Each of the above Editing Commands will now be described in detail. The Commands are arranged in
alphabetical order for your easy reference.

$ABORT

EDIT $ABORT S1

This function acts as a watchdog on your input. You can specify a single abort character (in essence,
a one-character string) with the $ABORT command. Whenever a subsequent function encounters this
abort character as part of its input string, that particular function is discontinued and the rest of
the input line is ignored.

In the above format, S1 represents the abort character. This abort character is preset to the back­
slash" located as the upper case L. You can replace this with another character, for example the =,
by typing: $ABORT / =/. By following this parameter specification, your function request is aborted
whenever you use = in the input.

To restore $ABORT to its normal value type $ABORT/ / •

TIME-SHARING SERVICE------ E_D_IT_IN_G
COMMANDS

- 29 -

$ABORT
$BEGIN
$BREAK

Example:

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

I EDIT $AB0RT It I $F'IND IA B t CI $REPLACE IX Y Z I $END

AB0RTING $FI
RETRY?

All instructions are aborted after t appears in the argument of $FIND.

$BE6IN

EDIT $BEGIN

The $BEGIN function requires no parameters after the command word. This function resets the
string pointers to the beginning of the program. It is used when you wish to perform an operation in
a location previous to the current position of the string pointers. When in doubt about the location
of the string pointers, use the $BEGIN command.

Although initially set to the beginning of a program, the string pointers may be moved by using
$FIND, $REPLACE, $INSERT, $MOVE or $DUPLICATE. The only way you can be sure that a string
search starts from the beginning of a file is to issue $BEGIN.

You can issue a $BEGIN before or after any other command. However, the functions that require
a string for their application ($STRING, $REPLACE, $INSERT, $MOVE, $DUPLICATE) are not
executed if they immediately follow a $BEGIN command.

$BREAK

EDIT $BREAK/ABCDEF ... /

The $BREAK function allows you to specify characters to be overlooked in the text when searching
for a specific string. The primary difference is in the means of specification. With the $BREAK
command you specify a break character, which in an input string, takes the place of several char­
acters in the text search.

In the above format, the letter A is the break character which represents the characters in the
text indicated by BCDEF •••. You can specify as many break characters as you can designate on one
line.

- 30 -

$BREAK
$DUPLICATE

A break character may represent itself or any other character in the $BREAK string of which it
is the first character. To return all break characters to their initial values, type: $BREAK/I.

Example: $BREAK Command Substituting * for IIspace" and,

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $BREAK 1* ,I $FIND IF*AI $REP IZI $FIND IL*GI ~REP IXI $END

TIME: 0:01

READY.

LISTNH

100 ABC D E Z BCD E F
110 G,H,I,J,K,X,H,l,J,K,L
120 M N N N N N N N N N N N

Observe that * was substituted for space and, so that the text string IF AI was interpreted as
equivalent to the input string IF*AI and the text string IL,GI was interpreted as IL*G/.

$DUPLICATE

EDIT $DUPLICATE L1 S1 R1 L2 S2 R2 ...

Use $DUPLICATE to duplicate a string (defined by $FIND) in one or more locations within a file.
Not only is the string retained in its original position but it is also placed immediately following the
strings(S1, S2 ••.) defined by $DUPLICATE. $DUPLICATE must always be preceded by $FIND.

Definition of Parameters:

Ll - Optional line number used to locate Sl.
S1 - First string. after which the $FIND string is to be placed.
R1 - The $FIND string is to be placed after the Rlth occurrence of 8l.
L2 - Optional line number used to locate S2.
82 - Second string after which the $FIND string is to be placed.
R2 - The $FIND string is to be placed after the R2th occurrence of 82.

TIME-SHARING SERVICE-----------------ED-ITI-N-G
COMMANDS

- 31 -

I

$DUPLICATE

Example 1: $DUPLICATE with R Set at 2

100 ABC 0 E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $FIND IAI $DUPLICATE IHI 2 $END

TIME: 0: 01

READY.

LISTNH

100 ARC 0 E f A 8 C 0 E f
I 110 G.lH.I I.lJ.lK.lL.I G,HA, I. J,K,L

120 M N N N N N N N N N N N

Example 2: $DUPLICATE with R Set at 7

100 ABC 0 E fAR COr. f
110 r"H,I,J,K,L,G.. H.. I .. J .. K.. L

I 120 M N N N N N N N N N N N

EDIT $FIND IAI $DUPLICATE INI 7 $END

TIME: 0:01

REALY.

LISTNH

100 ABC L E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N NA N N N N

In the first example A was found and duplicated after the second occurrence of H. In the second
example A was duplicated after the seventh occurrence of N. Both times A was retained in its original
position.

TIME-SHARING SERVICE---------------~~ED~ITI~N~G
COMMANDS

- 32 -

$END
$FIND

$IGNORE

$END

EDIT $END

When you have finished entering string commands, the string mode is terminated by $END. $END is
a no-parameter function which incorporates your completed string editing into the working file. To
place these revisions into your permanent file, type SAVE.

$END destroys the string pointers and all character definitions in the translation table. Following
the execution of this command, the system prints the time in minutes and seconds.

$FIND

EDIT $FIND L1 S1 H1
or L1 S1 H1 , L2 S2 H2

$FIND, without doubt, is the most commonly used string function. It must precede the functions
$REPLACE, $INSEHT, $MOVE and $DUPLICATE.

There are two string pointers. Upon entering string mode, the'two pointers are initially set at the
beginning of the file. If you search for one string and find it, the string pointers are then located
around this string. When you search for the next string, one pointer stays with the first string.
Should the new string not be found, the second pointer returns to the point where the search began
(the first string). If the new string is found, the two string pointers are then placed around it.

Ll represents the optional line number of the desired string; SI the delineated string; and Rl the
optional repetition count. Similarly, the designations L2, S2, and R2 used in conjunction with Ll,
SI, and HI, represent an open string.

A string search using $FIND will begin at the current location of the string pointers. If you are in
doubt concerning the location of the string pointers issue $BEGIN. This returns the string pointers
to the beginning of the program.

$IGNORE

EDIT $IGNOHE S1

$IGNORE is one of two scan-control functions (see $BHEAK) which allows you to specify characters
to ignore when searching for a particular string. SI represents a string of from one to thirteen
characters which the scan will ignore. The order in which the characters are specified is not relevant.

When an input string is compared with a text string, there must be a one-to-one correspondence be­
tween input string characters and text string characters (within the limits of the character definition
functions). However, it is possible to allow characters to occur in the text string which are not speci­
fied in the input string. These characters are referred to as the ignore characters.

- 33 -

$IGNORE
$INSERT

All characters in the string 81 of $IGNORE will be ignored in succeeding string searches. If there
are no characters in 81, then nothing will be ignored. Individual characters may not be added to or
subtracted from the set of ignore characters because the set is redefined with each $IGNORE. The
$IGNORE characters must be defined for each search. They are erased as soon as the $LOCATE
or $FIND for which they were defined has terminated.

Example: Use of $IGNORE

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $IGN0RE 1,1 $FIND IJKLI $REPLACE IMNPI 2 $END

TIME: 0: 0 1

READY.

LIST

HRHI

100 ABC D E F ABC D E F
110 G,H,I,MNP,G,H,I,MNP
120 M N N N N N N N N N N N

The $IGNORE command allowed the searchto find JKL by.ignoring the commas. Otherwise the search
would have been unsuccessful.

$INSERT

EDIT $IN8ERT 81 R1 82 R2 83 R3 ...

$INSERT allows you to insert one character or several characters after the string specified by
$FIND. The text is automatically expanded to accommodate the insert. $FIND must always precede
$IN8ERT.

In the above format, string S1 is inserted after the string specified by $FIND. The symbols R1, R2,
R3 represent an optional repetition count which specifies the number of times that the strings 81,
82 and 83 are to be inserted after sequential occurrences of the string specified by $FIND.

TIME-SHARING SERVICE----------------..;;;;;.;;ED;;;.;,,;.ITI.;;;.::,N~G
COMMANDS

- 34 -

$INSERT
$LlST

Example: Use of $IN8ERT

100 A 0 C D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT SFIND 1,1 SINSERT 1'1 3 1+1 2 1:1 S~ND

TIME: 0:01

READY.

LISTNH

100 ABC D E F ABC D E F
11 0 G, I H, t I , t J , +K , +L , : G, H, I , J , K, L
120 M N N N N N N N N N N N

The search found the first comma, inserted , after the first three occurrences, + after the next two,
and: after the next one (R when omitted is always assumed to be one).

$LIST

EDIT $LI8T Ll 81

In string mode, the $LI8T allows you to list a portion of your file or your entire file to check the ac­
curacy of your editing. The $LI8T command prints the text beginning with the first character of the
string currently specified by the string pointers. The list ends with the last character of the string
specified by 81. Therefore, to list selected portions of your file, use $FIND to set the string pointers
where you want to begin listing and use 81 to indicate the end of the list.

If no current string is specified, $LI8T begins with the first character of the file. The output ends
with the last character of the file if 81 is not specified.

The output is enclosed in quotation marks which are not part of the text. $LIST does not change the
position of the current string pointers or the translation table. It may precede or follow any string
function.

Example 1: Entire File Listed

100 ABC 0 E F ABC D E F
110 G,H,I,J,K,l,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDI T $LIST

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
!20 M N N N N N N N N N N N

TIME-SHARING SERYICE----------------E-D-IT-IN-G
COMMAND8

- 35 -

I

$ LIST
$ LOCATE

Example 2: Using $FIND to List Part of a File

100 A 6 C D E F ABC C E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

I EDIT SF"IND ILl $LIST

"L , G, H, I , J , K, L
120 M N N N N N N N N N N N

$FIND sets the string pointers at L and the remainder of the file is listed.

$LOCATE

EDIT $LOCATE Ll 81 HI
or Ll 81 HI , L2 82 H2

Use $LOCATE to search your file from beginning to end for the specified string 81. This will print
a double-spaced list of all lines containing this string of characters. If the optional line number Ll
is given, the search begins at that line number and continues through the rest of the file. The desig­
nation Rl represents an optional repetition count which directs the printing to begin with the Rl'th
occurrence of string 81, and to print only lines containing each Rl'th occurrence of 81.--

The use of $LOCATE does not affect the location of the string pointers. It can precede or follow any
other string function.

Example 1: Use of $LOCATE to Print All Occurrences of a Designated String

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT ·SUM 0F FIRST "; X;

..
INTEGERS IS Y

90 REM SUM FIRST TEN INTEGERS ONLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

- 36-

$LOCATE

$LOCATE prints all occurrences of the string X.

EDIT SL~CATE IXI

L0CATING:

"X"

10 LET X = 0

30 REM INITIALIZE X AND Y

40 LET X = X+l

50 LET Y = Y+X

60 REM INCREMENT X BY 0NE

80 PRINT
.t

SUM 0F FIRST X; I~TEGERS IS

100 I F X = 10 THEN 120

Y

Example 2: Use of $LOCATE with Repetition Count

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 REM I~CREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT "SUM 0F FIRST .. ; X; "INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

EDIT $L0CATE IXI 2
WAIT.

L0CATING:

"X" 2

30 REM INITIALIZE X AND Y

40 LET X = X+l

SO REM INCRE~ENT X BY 0NE

100 IF X = 10 THEN 120

$LOCATE prints all lines containing every second occurrence of the string X beginning with the I
second occurrence.

- 37 -

$MOVE
$MULTIPLE

$MOVE

EDIT $MOVE L1 81 R1

Use the $MOVE command to move a single string from one location to another in a file. Specified by
$FIND, this string is deleted from its original position and placed immediately following the string
defined by $MOVE. $MOVE must always be preceded by $FIND. The string specified by $FIND is
inserted after the RUh occurrence of the string 81. Optional parameter Ll represents the line num­
ber associated with string 81.

Example: Use of $MOVE

100 ABC D E F A 8 C C E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $FIND I MI $M0VE INI 5 $END

TIME: 0:02

READY.

LIST

HRH 1

100 ABC D E f ABC D E r
110 G,H, I,J,f<,L, G,H, I,J,K,L

I 120 N N ~ N N M N N N N N N

Observe that the string following $FIND consists of two characters: space and M. This string is in­
serted after the fifth occurrence of string N.

$MULTIPLE

EDIT $MULTIPLE 81 82 83 ...

$MULTIPLE is one of three character definition functions (refer to $8UBSTITUTE and $BREAK).
$MULTIPLE allows you to define one character to have the value of two other characters. If char­
acter A is the multiple of character Band C, then all strings with B or C in a corresponding posi­
tion to A in the input string will match the input string, and A will lose its identity as A. If a two­
character string is used with $MULTIPLE, the first character does not lose its identity. Thus,

I EDIT $MULTIPLE /XY/ $FIND /XY/

Found

XY
YY

Not Found

AY (unless A has been defined as equal to X or Y)

I EDIT $MULTIPLE /XYZ/ $FIND /XYZ/

Found

YYZ
ZYZ

Not Found

XYZ ex does not keep its identity as X)
AYZ (unless A has been defined as equal to Y or Z)

- 38 -

$MULTIPLE

If X is a multiple of Y and Z, then Yand Z may have their initial values. In addition, either Y or Z
or both may be substitute characters. Where Y or Z is a $BREAK character, it is assumed by
$MULTIPLE that Y or Z only have their regular input values.

When a $MULTIPLE string has more than three characters, the first character is the multiple of the
last two. If the $MULTIPLE string is one character in length, that character is restored to its initial
value.

Initially, there are no multiple characters. When $MULTIPLE is issued, the translation changes
which have been defined remain in effect until (1) a vacant $MULTIPLE is issued, or (2) the values
of the multiple characters are redefined by another $MULTIPLE, $SUBSTITUTE, or $BREAK.

Unlike other character definition functions, strings defined by one set of $MULTIPLE cha:racters
may be changed by issuing character definition functions which modify the characters to which the
$MULTIPLE characters refer. For example, if X is a multiple of Y and Z, and X is entered in an
input string, then the input string will not be affected by redefinition of X, but redefinitions of Yand
Z will change the value of the input string.

The series of commands:

EDIT $SUBSTITUTE /X/ $MULTIPLE /YX/ $SUBSTITUTE $FIND /XY/

• defines X to be a carriage return ($SUBSTITUTE /X/)

• defines Y to be Y and a carriage return ($MULTIPLE /XY/)

• defines X to be X and also defines Y, to be Y and X ($SUBSTITUTE)

• finds the string XY where Y is Y or X ($FIND /XY/)

A $MULTIPLE with or without parameters may precede or follow any other function.

Examples:

I
I

1. $MULTIPLE /XYZ/

2. $MULTIPLE /XY/ /YZ/

3. $MULTIPLE /X/

4. $MULTIPLE

X matches Y and Z

X matches X and Y
so X matches X, Y, and Z

Y matches Y and Z
Z matches Z
Note that Z may be a substituted character.

X is restored to its initial value.

All multiple characters are restored to their initial values.

EDITINGTIME-SHARING SERVICE~~~~~~~~~~~~~~~~c~~~M~~~S
- 39 -

$MULTIPLE
$PROGRAM
$REPLACE

Example: Use of $MULTIPLE

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

• EDIT SMULTIPLE /*#/ $FIND /*/ $REPLACE /---/ 11 $END

TIME: 0: 0 1

READY.

LISTNH

100 ABC u E F ABC D E F
110 G---H---!---J---K---L---G---H---!---J---K---L
120 M N N N N N N N N N N N

Observe that * became the multiple of , after which $FIND and $RE PLACE replaced eleven occur­
rences of , with ---.

$PR06RAM

EDIT $PROGRAM

The $PROGRAM command, always expressed without parameters, establishes one of two scan­
control modes. This mode, known as the program mode, allows you to search through a file as a
continuous string of characters. No characters are ignored when you are locating a string, not even
carriage returns or line numbers. This is the normal mode of operation when utilizing string functions.
The program mode is automatically established whenever you begin using string functions.

You remain in the program mode of operation until you initiate text mode which is the second scan­
control mode (refer to EDIT $TEXT).

$REPLACE

I
EDIT $RE PLACE 81 R1 82 R2 83 R3 ...

or $REPLACE 81 *
The $REPLACE command replaces a text string with an input string or it replaces several text
strings by one or more input strings. The text strings are identical, and may be dispersed through­
out your file. The file expands or contracts automatically to accommodate the replacement strings.

This command replaces the current string, specified by the string pointers, with the input string.
After the replacement has occurred, the string pointers are placed around the next occurrence of the
text string. If there are no further occurrences of the text string, the pointers are returned to the
beginning of the file.

nM~SHAmNGSERVreE~~~~~~~~~~~~~~~~_E_D_IT_IN~G
COMMAND8

- 40-

$REPLACE

For more than one text string, the replacements are executed in the following manner: the first Rl
occurrences of the text string are replaced by the input string SI, the next R2 occurrences of the
text string are replaced by the input string S2, etc. If the repetition counts (Rl R2 R3 .••) are not
given, they are assumed to be one.

In the format, EDIT $REPLACE SI *, the * indicates that the specified text string will be replaced
by the string SI at every location where it occurs in the file, from the current location of the string
pointers to the end of the file.

$REPLACE must always be preceded by $FIND. If there is some doubt concerning the location of
the string pointers, issue $BEGIN before you issue the $FIND command.

Example 1: Replacement of Several strings with Three Input strings.

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $FIND 1,1 $REPLACE 1*1 5 ITI 2 1:1 3 $END

TIME: 0:01

READY.

LISTNH

100 ABC D E F ABC D E F
110 G*H*l*J*K*LTGTH:I:J:K L
120 M N N N N N N N N N N'N

The string I, I is replaced in five occurrences with 1*1, in two occurrences with It I, and in three
with 1:/.

Example 2: Replacement of a string in All of Its Occurrences.

100 ABC D E F ABC 0 E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $FIND 1,1 $REPLACE ITI * $END

TIME: 0:01

READY.

LISTNH

100 ABC D E F ABC D E F
110 GTHTI1J1KTLTGTHTI1JTKTL
120 M N N N N N N N N N N N

The string 1,1 is replaced with ItI every time it occurs by adding * to the $REPLACE command.

TIME-SHARING SERVICE------- E_D_IT_IN_G
COMMANDS

- 41 -

$RUNOFF
$STRING

$RUNOFF

EDIT $RUNOFF Ll

While operating in string mode, you can obtain a printed copy of your file by using $RUNOFF. It
is exactly the same as EDIT RUNOFF except that it is called from the string mode. In the $RUNOFF
command, Ll is optional and when specified represents the line number where you wish to begin
your runoff.

For an example of EDIT $RUNOFF, refer to EDIT RUNOFF in the preceding section of line functions.

$STRING

EDIT $STRING

$STRING is a no-parameter function which allows you to find where the string pointers are currently
located by listing the current string. This listed string is part of the file (the text string) and not
merely a copy of the input string.

When the current string is listed, the printed copy is enclosed in quotation marks. These quotation
marks are not part of the text string.

The $STRING does not modify the string pointers or the translation table. It may precede or follow
any other function.

Example: Use of $STRING

100 ABC D E F ABC D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N N N N N N N N N

EDIT $FIND IH,I,I $STRING

CURRENT STRING:

Observe that $STRING prints the string delineated by the current position of the string pointers.

TIME-SHARING SERVICE--- E-D.......,IT-IN-G
COMMANDS

- 42-

$SUBSTITUTE

$SUBSTITUTE

EDIT $SUBSTITUTE Sl

$SUBSTITUTE allows you to assign the value of a printable character to the carriage return. The
substituted character may be entered into an input string in place of the carriage return. It may be
necessary to represent the carriage return in this manner, since the computer does not recognize
the depression of the carriage return key as part of an input string. This function enables you to lo­
cate a text string which begins on one line and continues on the next line while operating in the pro­
gram mode (refer to EDIT $PROGRAM).

In the command format string 81 contains the substitute character. To return the substitute character
to its original value, issue only the command words EDIT $SUBSTITUTE without the parameter S1
or exit string mode.

Example: Use of $SUBSTITUTE

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 REM INCREMENT X BY 0NE
70 REM SUM C0NSECUTIVE INTEGERS
80 PRINT -SUM 0F FIRST -; X; -INTEGERS IS Y
90 REM SUM FIRST TEN INTEGERS 0NLY
100 IF X = 10 THEN 120
110 G0 T0 40
120 END

EDIT $SUBSTITUTE/:/ $FIND /0NE:70 REM/ $REPLACE /0NE ANL/ $END

TIME: 0: 01

READY.

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 RE~ INCREMENT X BY 0NE AND SUM C0NSECUTIVE INTEGERS
80 PRINT -SUM 0F FIRST -; X; -INTEGERS IS -; Y
90 REM SUM FIRST TEN INTEGERS 0~LY

100 IF X - 10 THEN 120
110 Ge Te 40
120 END

Observe that $SUBSTITUTE allows the combining of two lines of text by translating the carriage re­
turn into a character which will be recognized by the scan.

TIME-SHARING SERVICE----------------E-D-ITI_N_G
COMMANDS

- 43 -

$TEXT
$TIME
$TRANSLATION

$TEXT

EDIT $TEXT

$TEXT, always expressed without parameters, establishes one of two scan-control modes, the text
mode, which allows you to search through a file ignoring all carriage returns and line numbers.

Often there are instances when you want to locate a string extending from one line to another. By
entering text mode, such strings are quickly located.

To leave the text mod~ and enter the program mode, type $PROGRAM (refer to EDIT $PROGRAM).
If you have completed your work with string functions, type $END.

$TIME

EDIT $TIME

$TIME, expressed without parameters, will give you the current run time since initial entrance into
the string mode of operation. This function may precede or follow any other string function and it
does not affect the location of string pointers (if any) or the translation table.

This command gives you the central processor time only (not the terminal time) and is expressed
in minutes and seconds. The central processor time is automatically given after $END.

$TRANSLATION

EDIT $TRANSLATION

$TRANSLATION is a no-parameter command which allows you to list the translation table. This
table contains the characters whose initial values have been modified by the character definition
functions ($MULTIPLE or $SUBSTITUTE). In addition, IGNORE, BREAK, and ABORT characters
(if any) are listed.

All characters in the translation table are listed according to type. For all types, the input character
is listed to the left of the equal sign and its equivalent values are on the right.

The $TRANSLATION command may precede or follow any other string function. It does not affect
either the string pointers or the translation table.

Example:

100 ABC D E F A 0 C D E F
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N N ~ N N N N N N ~

- 44-

$TRANSLATION

EDIT $SUB 1:1 $IGN0RE IDI $BREAK 15 CI $MULTIPLE IAK,I $TRA~SLATI0N

SUBSTITUTE:

:=CR

IGN0RE:

D

BREAK:

INPUT E
6
SPACE
C

MULTIPLE:

A=,K

AB0RT:

TIME-SHARING SERVICE------------------=E~D;,,;:,,:IT:.:::.IN.:..::G
COMMANDS

- 45 -

•

4. ABBREVIATIONS

Both the command and control words can be abbreviated. During the preparation of a program, these
abbreviations can save you time since it is not necessary to type the entire command.

Command

DELETE
DUPLICATE
EXTRACT
LIST
MERGE
MOVE
PAGE
RESEQUENCE
RUNOFF
WEAVE
$ABORT
$BEGIN
$BREAK
$DUPLICATE
$END
$FIND
$IGNORE
$INSERT
$LIST
$LOCATE
$MOVE
$MULTIPLE
$PROGRAM
$REPLACE
$RUNOFF
$STRING
$SUBSTITUTE
$TEXT
$TIME
$TRANSLATION
• LEFT MARGIN N
• RIGHT MARGIN N
.SPACE N
• BREAK
.INDENT N
• UNDENT N
• CENTER N
• PAGE
.SLEW N
.IGNORE N
• LITERAL

Abbreviation

DEL
DUP
EXT
LIS
MER
MOV
PAG
RES
RUN
WEA
$AB
$BE
$BR
$DU
$EN
$FI
$IG
$IN
$LI
$LO
$MO
$MU
$PR
$RE
$RU
$ST
$SU
$TE
$TI
$TR
.LEF N
• RIG N
• SPA N
.BRE
.IND N
• UND N
.CEN N
.PAG
.SLE N
.IGN N
• LIT

TIME-SHARING SERVICE---- E....;;;;,D~IT;.:::",,:,IN.....:.G
COMMANDS

- 46-

5. ERROR MESSAGES

This section contains a list of EDIT error messages that you might receive from the system. The
descriptions list possible reasons for their occurrence.

ILLEGAL COMMAND FORMAT
USE: •• (FOLLOWED BY FUNCTION EXPLANATION)

You have not properly entered the information required for this function. You have given too few
parameters (MERGE, WEAVE, DELETE, EXTRACT) or too many (RESEQUENCE, MOVE); the
order is incorrect (MOVE, DELETE, EXTRACT); or you have entered alphabetic information
for a function :permitting only numeric input.

REISSUE COMMAND

Usually given in conjunction with another error message. This indicates that your request can
probably be fulfilled if (1) the parameters are slightly modified or (2) system traffic decreases.

DELETE-EXTRACT PARAMETERS MUST BE IN INCREASING ORDER

THESE PARAMETERS HAVE PRODUCED A 6-DIGIT LINE NUMBER

The quantity 99999 is the largest line number allowed. A resequence can produce a larger number if
(1) the beginning sequence number is too large or (2) the increment is too large.

THESE PARAMETERS HAVE PRODUCED A NEGATIVE LINE NUMBER

Because of the negative increment, a line number less than zero was produced. The problem can
be corrected by:

1. Choosing a larger beginning sequence number
2. Choosing a smaller block or
3. Choosing a larger increment (smaller absolute value).

INCREMENT BY ZERO

This is not an error message in the same sense as the other messages listed. If you did not intend
to increment by zero, you can probably repair the damage. Do not try to add lines to your program
until you have resequenced again or all lines with the same number will be replaced by only the
last line with that number.

UPPER BLOCK LIMIT MUST BE EQUAL TO OR GREATER THAN LOWER LIMIT

When using MOVE or DUPLICATE you must specify a block as Nl-N2, where N1 is less than or
equal to N2.

N3 MUST LIE OUTSIDE THE INTERVAL (N1, N2)

When using MOVE, you must select an insert number N3 which is either less than the lower block
limit Nl or greater than the upper block limit N2.

TIME-SHARING SERVICE~~~~~~~~~~~~~~~~E~D~IT~IN~G
COMMANDS

- 47 -

PROGRAM TOO LONG

Your program has been resequenced because you have either chosen the resequence function or
your resequencing is part of the function you have chosen. In the process your program has

I grown to more than 6144 characters. The solution according to the function chosen is:

1. Resequence
A. Select a smaller starting value
B. Select a smaller increment
C. Resequence a smaller block

2. Merge
A. Resequence the programs in such a way that WEAVE may be used and achieve the

same result.
B. Delete one or more statements in one or more of the programs.

3. Move
A. Delete one or more lines.
B. Resequence only the blocks being moved.

4. Duplicate
A. Duplicate at fewer points.
B. Duplicate a smaller block.
C. Remove a line in the program before duplicating.

PROGRAM TOO LONG AT XXX

I During a duplicate, the size of your program increased to more than 6144 characters. The line
number given is the last line at which an insertion was performed.

MODIFIED PROGRAM HAS TOO MANY LINES

A maximum of 255 lines are permitted. The MERGE, WEAVE, or DUPLICATE will not be per­
formed unless the resulting program is within this limit.

PROGRAMS NOT SAVED •••

The programs listed were not found under your user number or in the library (if applicable). In
the case of library programs, if you asked for a program in a system other than that which you
are currently using, the program will not be found.

MERGED PROGRAM TOO LONG WITH •••

I The merged program must not be more than 6144 characters. If there are more than two programs
in the merge list, it may be possible to merge them all by merging two at a time.

TIME-SHARING SERVICE--- ED_ITI_N_G
COMMANDS

- 48-

.

708209A (lOM) 1-68

Computer Centers and offices of the Information Service
Department are located in principal cities throughout the
United States.

Check your local telephone directory for the address and
telephone number of the office nearest you. Or write ...

General Electric Company
Information Service Department
7735 Old Georgetown Road
Bethesda, Maryland 20014

GENERALe ELECTRIC
INFORMATION SERVICE DEPARTMENT

o

	Preface
	Contents
	1. Introduction
	2. Line Functions
	3. String Functions
	4. Abbreviations
	5. Error Messages

