Mark I Information
Time-Sharing Service =

Reference Manual

e
Ee e

L
.

o

Ay

o

e
e

.

o
o
:@mxﬁfggx

GENERAL @ ELECTRIC

INFORMATION SERVICE DEPARTMENT

7082098

Editing
Commands

August 1967
Revised 1-68, 7-68

INFORMATION SYSTEMS

GENERAL @3 ELECTRIC

Preface

The editing commands described in this manual are an integral part of the Time-Sharing Service of
General Electric’s Information Service Department, The manual thoroughly describes each editing
command and provides examples of how the commands work. This revision describes the new com-
mand EDIT TEXT, the new control word, LINK, and the increased flexibility of the DELETE and

EXTRACT functions.

This manual is written for present users of the Service, and familiarity with the Command System:

Reference Manual (229116A) is assumed.

If this reference manual is used as a self-teaching aid, it may be desirable to consider the editing

functions in the following order:

Line Functions

EDIT LIST

EDIT PAGE

EDIT TEXT

EDIT DELETE
EDIT RESEQUENCE
EDIT EXTRACT
EDIT MOVE
EDIT DUPLICATE
EDIT MERGE
EDIT WEAVE
EDIT RUNOFF

String Functions

$FIND
$INSERT
$END
SREPLACE
$LIST
$RUNOFF
$MOVE
$DUPLICATE
$LOCATE
$BEGIN
$BREAK
$IGNORE
$TIME

$TEXT
$PROGRAM
$STRING
$SUBSTITUTE
$SMULTIPLE
$ABORT
$TRANSLATION

@ General Electric Company 1968

(20¥1) 7-68

EDITING COMMANDS

Contents

INTRODUCTION ..ttt t ittt teneeesasnesesnsassssoeacnosnasnnsaess I |
1. LINE FUNCTIONSot veunn et e et et et e 2

DELETE ...ttt e it it eeeesasoecenenateasossnescsassscssssensasassse 2
DUPLICATE & ¢ i ¢t st ot e ot s oo oo oseaenensessasosensasensesosscnsess 4
EXTRACT ...t iii ittt etnteeeeseanoenasassssas c e e et st 5

PAGE & i vttt iiiennnnn ettt ettt ettt e e ettt e 14
RESEQUENCE. ettt e e ettt ettt ettt e 14
RUNOFF .t ittt et teennncennnns et e e e et e 19
1 09 < A et e et e ..25 1
WEAVE et e e ettt et e e e e e e 26

2. STRING FUNCTIONS. e et e e et e et e e 28

BABORT . . ¢ ¢ st vt v eetensenseseaneasosnanansoancasosasssse B 11}
$BEGIN e e e s eean
BBREAK. « « v ittt ettt tsnnseesosensnseneesasnsossassesansansacnees 31
$DUPLICATE

.) e e
SFIND ..t ivveetnvnnceeennnnanenaas cee s eeen e ettt 34
PIGNORE . .ttt ittt it s nnesesoessenasacsasesnssssasaseanosas ce.. 34

SLIST ..t i ittt i tnneeascnnnnasas ettt e e 36
$LOCATE. ce e s e esanae Ch e cacasenaanenccesensenes e 37
$MOVE et e et ettt S, .. 39
SMULTIPLE . . . vttt vttt eennnonns ceeseens c e ceaseacerensneesens 39
SPROGRAMiieeeveroneanen e s s aersenacseuenescanenes e 41
BREPLACE. . . ittt ittt itetaoanoasanononssannsnsas .o .
SRUNOFF. ...t nuvenesn et e e e et e e e et 43
FSTRING & o vttt ittt neacesoneassssnnensnenosennesns ce e 43
BSUBSTITU T E . o v vttt ittt e ettt oneeeasoenstoononeesanansssssansss 43
$TEXT. .. oo vv e, ce e Gt e et e e et e e ettt e e et 44
3 10 Secee s o ee. 45
$TRANSLATIONccvvue. ce et cee e cereaasseeanens s 45

3. ABBREVIATIONS . &t 4 v e vttt ittt seetooeseenaasossossseosossasosonsoes 46

4. ERROR MESSAGES e aees C e s e e s e e e e s e s s e e e et 417

EDITING COMMANDS

Introduction

The editing commands described in this manual permit you to retrieve, modify, and manipulate in-
formation stored in the time-sharing system.

These commands are an expansion of editing functions that were previously available with time-
sharing. Even though you are an experienced user of time-sharing and are familiar with some of
the commands, you should read the fuller descriptions of their usefulness and application contained
in these pages.

The commands operate on files of information and are not concerned with the subject matter of the
files. It makes very little difference, therefore, whether you are working in BASIC, FORTRAN,
ALGOL or in none of these. When you resequence line numbers while using BASIC, all references to
line numbers in your file will be changed to reflect the new sequence. This is the case only with
BASIC and is not true of FORTRAN or ALGOL. Except for this, the effect of the commands is the
same in any of the systems or in an English text. Since the commands operate on files of information
and these files are normally programs and have line numbers for reference, line numbers are used
to control certain editing processes. Other processes, however, do not depend on line numbers but
operate on designated strings of information so that purely textual information can be edited.

Bear in mind that many of the commands modify working copies of time-sharing programs. You should
take the precaution of saving important programs before editing them. Similarly, none of these com-
mands automatically save programs after editing has been completed. You must do this yourself.

H you have occasion to need them, you can obtain immediate hints regarding the use of editing com-
mands while at the teletypewriter. Simply type EDIT and the system will type a summary of the
commands with an option to receive more information about any of them.

The format illustrations at the beginning of the description of each command are meant to show the
components of the particular commands and should not be considered models for entering the com-
mands on a teletypewriter, as to the use of spaces or particular characters. The examples for each
of the commands that follow the descriptions show the proper formats for entering on the teletype-
writer.

DELETE

1. Line Functions

Line functions enable you to edit a programon a line-by-line or group-of-lines (block) basis. In addi-
tion to line functions, there are several commands which are concerned with entire programs or a
series of programs. These commands are included under LINE FUNCTIONS since they are most
frequently used while performing EDIT changes by lines or by groups of lines.

The function formats require a blank between the word ‘EDIT’ and the command word and also a
blank between the command word and the argument list. These functions are listed alphabetically and

no order of importance should be given to the grouping of the commands. Eleven functions are
described and illustrated under LINE FUNCTIONS.
1. Deletions within a Program, 5. Listing Programs on Numbered Pages,
EDIT DELETE EDIT PAGE
EDIT EXTRACT EDIT TEXT
2. Duplicating Program Lines, 6. Merging Programs Together,
EDIT DUPLICATE EDIT MERGE
EDIT WEAVE

3. General Functions,

EDIT RUNOFF 7. Rearranging Program Lines,

EDIT MOVE
4, Listing Program Lines, 8. Resequencing Line Numbers of a Program,
EDIT LIST EDIT RESEQUENCE

DELETE

EDIT DELETE N1, N2-N3, N4 ...

Single lines and blocks of lines can be removed from a program file. Only the specified lines are de-
leted; all others are saved. To remove a series of successive lines, specify the inclusive beginning
and ending line numbers separated by a hyphen. The parameters (N1, N2-N3, and N4 ...) must be
separated by commas in the command instruction.

Line numbers, indicating the beginning and ending of a series of line numbers, should be listed in
sequential order. However, single line numbers need not be listed sequentially.

DELETE

CAUTION: An EDIT DELETE command permanently changes your current program. For a new pro-
gram, it is recommended that you save it before issuing an EDIT DELETE command. To save the
edited version of an old program, rename the program and save it. This enables you to retain the
old version of this program as well as the new one.

Example 1: Deleting Single Lines

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM CONSECUTIVE INTEGERS .

80 PRINT "SuM @F FIRST "; X; INTEGERS IS "; Y
90 REM SUM FIRST TEN INTEGERS ONLY

100 IF X = 10 THEN 120

110 Ge T@ 40

120 END

EDIT DELETE 60,30,70,50 "
READY.

LISTNK

10 LET X = 0

20 LET Y = 0

40 LET X = X+1

50 LET Y = Y+X

"

80 PRINT “SUM @F FIRST "3 X3 "INTEGERS IS "3 Y
100 IF X = 10 THEN 120

110 G& T8 40

120 END

Example 2: Deleting Consecutive Lines and Single Lines

10 LET X = 0

20 LET Y =0

30 REM INITIALIZE X AND Y
40 LET X = X+l

50 LET Y = Y+X

60 REM INCREMENT X BY BNE

70 REM SUM CBNSECUTIVE INTEGERS .

80 PRINT "SUM @F FIRST "; X; INTEGERS IS "; Y
S0 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 GB T@ 40

120 END

DELETE
DUPLICATE

EDIT DELETE 30,60-70,90

READY.

LISTNH

10 LET X = 0
20 LET Y = 0
40 LET X = X+I
50 LET Y = Y+X

80 PRINT "SuM @F FIRST "3 X3 "INTEGERS IS "5 Y
100 IF X = 10 THEN 120

110 GO Te 40

120 END

DUPLICATE

EDIT DUPLICATE N1-N2, N3, N4 ...
or N1,N2, N3, N4 ...

Use EDIT DUPLICATE to repeat a single line or a series of lines in an existing program. With this
command, all duplicated lines are retained in their original positions as well as duplicated in the
required positions. Another command, EDIT MOVE, causes the designated line or block of lines to
be removed from their original location and inserted at the new location.

The block of lines between N1 and N2 inclusive are inserted in the original program after the lines
specified N3, N4 ... As many insert lines can be utilized as can be specified on the input command
line.

If you wish to duplicate a single line, you need only give the line number to be duplicated as the first
parameter. In the command EDIT DUPLICATE 10, 25, 40, 50 ..., line 10 will be duplicated following
lines 25, 40 and 50. The insert line numbers may be given in any order,

After duplication, the new program is resequenced. K you are editing a BASIC program, the line-
number references are changed to reflect the resequenced line numbers. If you are using any operat-
ing system other than BASIC, the line-number referencesofthe new program will not reflect the
resequenced line numbers.

Example: Duplicating Lines in a BASIC Program

10 LET X 0

20 LET Y 0

25 REM...............-.‘.."......l..............‘........l......II.REm
30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY ONE

70 REM SUM CONSECUTIVE INTEGERS .

80 PRINT SUM @F FIRST ; X3 INTEGERS IS ;Y
S0 REM SUM FIRST TEN INTEGERS ONLY

100 IF X = 10 THEN 120

110 G& Te 40

120 END

EDIT DUPLICATE 25,50,80
READY.
LISTNH
100 LET X = 0
110 LET Y = 0
lzo REM...‘........‘..I..........l.....Q....ll....‘.........'......REpl
130 REM INITIALIZE X AND Y
140 LET X = X+l
150 LET Y = Y+X
160 REM.'....‘..l.‘...‘.'........l..'.'...................O.....Q'.REM
170 REM INCREMENT X BY ONE
180 REM SUM CONSECUTIVE INTEGERS .
190 PRINT "SUM @F FIRST "3 X; INTEGERS IS "; Y
200 REM..'.................0...0...l...........‘..l..QDQOCOIOOOQCQOREM
210 REM SUM FIRST TEN INTEGERS @NLY
220 IF X = 10 THEN 240
230 G@ To 140
240 END
EXTRACT

EDIT EXTRACT N1, N2-N3, N4 ...

DUPLICATE
EXTRACT

You can retain single lines and series of lines in a program file by using EDIT EXTRACT. The lines
to be retained are specified; all others are deleted. To retain a series of lines, specify the inclusive
beginning and ending line numbers separated by a hyphen.

numbers indicating a series of lines must be in sequential order, all single line numbers have no

As many lines, or series of lines, will be retained as specified on a single command line. Only those |

restriction as to listed order.

CAUTION: An EDIT EXTRACT command permanently changes your current program, If your program
is new, save it before issuing an EDIT EXTRACT command. To retain the edited version of an old
program, rename the program and save it. This enables you to retain the old version of this program
as well as the new one.

Example

10
20
30
40
50
§0
70
80

1: Extracting Specified Lines
LET X = 0

LETY =0

REM INITIALIZE X AND Y
LET X = X+1

LET Y = Y+X

REM INCREMENT X BY @NE

REM SUM CONSECUTIVE INTEGERS .
PRINT "SUM @F FIRST ;3 X; INTEGERS IS "5 Y

90 REM SuM FIRST TEN INTEGERS @NLY
100 IF X = 10 THEN 120

110 GO TO 40

120 END

EXTRACT
LIST

EDIT EXTRACT 30,60-70,90

READY.

LISTNH

30
60
70
S0

REM INITIALIZE X AND Y

REM INCREMENT X BY @NE

REM SUM CONSECUTIVE INTEGERS
REM SUM FIRST TEN INTEGERS @NLY

Example 2: Extracting Blocks of Lines

10 LET X = 0
20 LET Y = 0
30 REM INITIALIZE X AND Y
40 LET X = X+l
50 LET Y = Y+X
60 REM INCREMENT X BY @NE
70 REM SUM C@NSECUTIVE INTEGERS .
80 PRINT "SUM @F FIRST 3 X; INTEGERS IS "3 Y
S0 REM SUM FIRST TEN INTEGERS @NLY
100 IF X = 10 THEN 120
110 GO Tg 40
120 END
n EDIT EXTRACT 0-20,80,40-50,100-99999
READY .
LISTNH
10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X

80

PRINT "SumM oF FIRST "3 x3 "INTEGERS IS "3 Y

100 IF X = 10 THEN 120
110 GO T@ 40
120 END

LIST

EDIT LIST
EDIT LIST N1, N2-N3, N4 ...
EDIT LIST N1-N2, N3, N5-N4 ...

This command lists single lines or blocks of lines from a current working program. This list can be
printed in either forward or reverseorder. Aline number may occur more than once as a parameter.
Block numbers do not have to be in ascending order. As many lines or blocks can be listed as desig-
nated on one input command line.

LIST

If parameters are not given following the words EDIT LIST, the entire program will be typed in re-
verse order starting from the end of the program file. A reverse-order list is also obtained for a
block of lines when the block numbers are given as N2-N1 where N2 is greater than N1,

Example 1: Use of EDIT LIST without Line Numbers

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y
40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE
70 REM SUM CONSECUTIVE INTEGERS .

80 PRINT "SUM BF FIRST 5 X; INTEGERS IS "3 Y
90 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 G2 T@ 40

120 END

EDIT LIST

120 END
110 G2 T2 40

100 IF X - 10 THEN 120

90 REM SUM FIRST TEN INTEGERS @NLY .

80 PRINT "SUM @F FIRST ; X; "INTEGERS IS "5 Y
70 REM SUM CONSECUTIVE INTEGERS

60 REM INCREMENT X BY BNE

50 LET Y = Y+X

40 LET X = X+l

30 REM INITIALIZE X AND Y

20 LET Y = 0

10 LET X = 0

Example 2: Use of EDIT LIST with Lines and Blocks of Lines

10 LET X = 0

20 LET Y = O

30 REM INITIALIZE X AND Y
40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE
70 REM SUM CBNSECUTIVE INTEGERS

80 PRINT "SUM @F FIRST "3 X3 INTEGERS @NLY
90 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 GO Te 40

120 END

EDIT LIST 0-20,40-50,80,100-200

10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X

- "

80 PRINT "SUM @F FIRST "3 X3 "INTEGERS IS "; Y

100 IF X = 10 THEN 120
110 Gg Te 40
120 END

LIST
MERGE

Example 3: EDIT LIST with Blocks of Lines in Reverse Order

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+l

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM C@NSECUTIVE INTEGERS .
80 PRINT "SUM PF FIRST "; X; INTEGERS IS "3 Y
SO REM SUM FIRST TEN INTEGERS ONLY

100 IF X = 10 THEN 120

110 G T 40

120 END

EDIT LIST 50-40,20-10

50 LET Y = Y+X
40 LET X = X+l
20 LET Y = 0
10 LET X = 0
MERGE

EDIT MERGE MAIN, SUB1, SUB2, SUBS3 . ..
or MAIN, SUB1, N1, SUB2, N2, SUB3. ..

From two to nine programs can be merged within a main program. This enables you to combine
several programs, either saved programs or library programs, into one (up to 6144 characters).

The word MAIN in the command represents the primary program and SUBI, SUB2, etc., represent
subprograms to be merged into the primary program. N1, N2, etc.,represent line numbers in MAIN
after which SUB1, SUB2, etc. are to be inserted. Program names and line numbers must be sepa-
rated by commas.

The EDIT MERGE command resequences the merged program by increments of 10 starting with 100.
All programs are merged in the order specified in the command. Insert line numbers are optional,
If they are omitted from the command, the designated programs are sequentially inserted after the
last line of the MAIN program.

The current program in working storage is ignored and does not have to be one of those merged. If
you want to use the current program in the EDIT MERGE command, you must save it before the
command is given.

EDIT MERGE does not affect the saved versions of the programs merged. After you have merged
the programs, you should list the new version to insure that the merging was executed correctly. If
you want to save the new merged program, rename it before placing it in permanent storage, keeping
the original and the merged programs intact.

Example 1: Merging Two Programs

Program A
10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X

80 PRINT "SUM @F FIRST "3 X; "INTEGERS IS "3 Y
100 IF X = 10 THEN 120

110 G@ T® 40

120 END

MERGE

Program C

10 REM THIS BASIC PR2GRAM SUMS
20 REM THE FIRST N CONSECUTIVE
30 REM INTEGERS, WHERE N 1S LESS
40 REM THAN @R EQUAL T8 TEN.

EDIT MERGE C,A
READY.

LISTNH

100 REM THIS BASIC PR@BGRAM SUMS
110 REM THE FIRST N CBNSECUTIVE
120 REM INTEGERS, WHERE N IS LESS
130 REM THAN @R EQUAL T@ TEN.

140 LET X = 0
150 LET Y = 0

160 LET X = X+l
170 LET Y = Y+X

180 PRINT "SUM @F FIRST "3 X; "INTEGERS IS "; Y
190 IF X = |0 THEN 210

200 G@ TO 160

210 END

Program A is merged following C. Notice that C does not have an END line. K it had, since MERGE
does not delete lines, the merged program would have two END lines resulting in an error message
when the program is run. You must delete any superfluous END lines that result from merging pro-
grams.

Example 2: Merging Two Programs with a Line Number of Zero

50 LET Y = Y+X . . .
80 PRINT "SUM @F FIRST "; X; "INTEGERS IS "; Y
100 IF X = 10 THEN 120

110 GB T 40

120 END

Program A
10 LET X = 0
20 LET Y = 0
40 LET X = X+1

MERGE

Program C

10 REM THIS BASIC PROGRAM SUMS
20 REM THE FIRST N CONSECUTIVE
30 REM INTEGERS, WHERE N IS LESS
40 REM THAN OR EQUAL T@ TEN.

EDIT MERGE A,C,0

READY.

LISTNH

100 REM THIS BASIC PROGRAM SUMS
110 REM THE FIRST N CONSECUTIVE
120 REM INTEGERS, WHERE N IS LESS
130 REM THAN @R EQUAL T@® TEN.

140 LET X = 0
150 LET Y = O
160 LET X = X+!
170 LET Y = Y+X

180 PRINT "SUM @F FIRST "3 X3 "INTEGERS 1S "3 Y
190 IF X = 10 THEN 210

200 GO 18 160

210 END

Program C is merged with A following line O, or at the beginning of the merged program, Omission
of the zero line number would have resulted in C being after line 120 of program A.

Example 3: Merging Two Programs without a Line Number

Program A
10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X

80 PRINT "SuMm @F FIRST "3 X; "INTEGERS IS "3 Y
100 IF X = 10 THEN 120

110 G? T@ 40

120 END

10

MERGE

Program C

10 REM THIS BASIC PRBGRAM SUMS
20 REM THE FIRST N CBNSECUTIVE
30 REM INTEGERS, WHERE N IS LESS
40 REM THAN @R EQUAL T@ TEN.

EDIT MERGE A,C

READY.

LISTNH

100 LET X = 0
110 LET Y = 0
120 LET X = X+l
130 LET Y = Y+X

140 PRINT "SUM @F FIRST "3 X3 "INTEGERS IS "3 Y
150 IF X = 10 THEN 170

160 G2 T® 120

170 END

180 REM THIS BASIC PR@GRAM SUMS

1S0 REM THE FIRST N C@NSECUTIVE

200 REM INTEGERS, WHERE N IS LESS

210 REM THAN @R EQUAL T@ TEN.

In the merged program above, the END statement is not the final statement. This violates BASIC pro-
gramming rules. You must be careful when using MERGE to make sure the END statement appears
as the final statement.

Example 4: Merging Two Programs with a Line Number Designation

Program A
10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X

80 PRINT "SUNM @F FIRST "3 X3 "INTEGERS IS "5 Y
100 IF X = 10 THEN 120

110 G@ T@ 40

120 END

11

MERGE
MOVE

Program C

10 REM THIS BASIC PRBGRAM SUMS
20 REM THE FIRST N C@NSECUTIVE
30 REM INTEGERS, WHERE N IS LESS
40 REM THAN PR EQUAL T® TEN.

EDIT MERGE A,C,110

READY.

LISTNH

100 LET X = 0
110 LET Y = 0
120 LET X = X+l
130 LET Y = Y+X

140 PRINT "SUM @F FIRST "3 X; "INTEGERS IS "3 Y
150 IF X = 10 THEN 210

160 Go To 120

170 REM THIS BASIC PROGRAM SUMS

180 REM THE FIRST N C@NSECUTIVE

190 REM INTEGERS, WHERE N IS LESS

200 REM THAN @R EQUAL T@® TEN.

210 END

Program C is inserted following line 110 of program A.

MOVE
EDIT MOVE N1-N2, N3
or N1, N3
You can use EDIT MOVE to move a single line or block of lines from its original position to a new
position.

N1 or N1-N2 represent the numbers of the lines to be moved. N3 represents the line number after
which the line(s) are to be inserted.

When moving a block of lines, the upper and lower limits of the series, N1-N2, must be such that N3
does not fall between the limits. For example, block lines 5-10 can be moved to any place beyond
line 11 or preceding line 5.

Following EDIT MOVE for a block of lines, the lines moved are incremented by one when reinserted
into the text. i the movedlines fit numerically between the insert number and the line number follow-
ing the inserted lines, only the inserted lines are resequenced. Should the inserted block of lines be
too long to fit between these numbers, the block and the lines that would otherwise be overlapped
are resequenced and the message BLOCK TOO LARGE is given. This message only informs you that
a larger portion of the program has been resequenced by ones to allow for the insertion.

12

MOVE

Example: Line and Block Moves within a Single Program

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y
40 LET X = X+I

50 LET Y = Y+X

60 REM INCREMENT X BY ONE

70 REM SUM CONSECUTIVE INTEGERS .

80 PRINT "SUM @F FIRST "3 X; INTEGERS IS 5 Y
90 REM SUM FIRST TEN INTEGERS ONLY

100 IF X = 10 THEN 120

110 G T@ 40

120 END

EDIT MBVE 30,0

READY.

LISTNH

1 REM INITIALIZE X AND Y
10 LET X = 0

20 LET Y = 0

40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY BNE
70 REM SUM CONSECUTIVE INTEGERS .
80 PRINT ~SUM @F FIRST ~; X; INTEGERS IS "5 Y
90 REM SUM FIRST TEN INTEGERS @NLY
100 IF X = 10 THEN 120
110 GO T@ 40
120 END

EDIT M@VE 60-70,1

READY.

LISTNH

1 REM INITIALIZE X AND Y

2 REM INCREMENT X BY @NE
3 REM SUM C@NSECUTIVE INTEGERS
0

10 LET X =

20 LET Y = 0
40 LET X = X+l
50 LET Y = Y+X

80 PRINT "SUM @F FIRST "3 X; "INTEGERS IS "3 Y
90 REM SUM FIRST TEN INTEGERS BNLY

100 IF X = 10 THEN 120

110 Gg Te 40

120 END

13

MOVE
PAGE
RESEQUENCE

EDIT M@VE 90,3
READY.

I REM INITIALIZE X AND Y

2 REM INCREMENT X BY @NE

3 REM SUM C@NSECUTIVE INTEGERS

4 REM SUM FIRST TEN INTEGERS @NLY

10 LET X = 0
20 LET Y = 0
40 LET X = X+1
50 LET Y = Y+X

80 PRINT "SUM @F FIRST "3 X; "INTEGERS IS "3 Y
100 IF X = 10 THEN 120

110 G8 T@ 40

120 END

PAGE

EDIT PAGE P1, N, P2, P3, ... P9

Up to nine programs saved under your user number or from a system library can be listed by the
EDIT PAGE command. The list is consecutively numbered on 8-1/2 in. by 11 in, pages. Up to 50
lines may appear on one page and ten blank lines separate the programs. Each page is separated
by dashed lines to indicate trimming edges when subsequently cut into sheets.

The designations P1, P2....P9 represent program names and N designates the first page number.
If this first page designation is omitted, page 1 is assumed and printed at the top of the first page.
When there are fewer than 20 lines left at the bottom of a page, the successive program starts on the
next page.

RESEQUENCE

EDIT RESEQUENCE N1, N2, N3
or N1, N2-N3, N4

Often when creating a program you find it necessary to resequence the line numbers. This occurs
most frequently after you have inserted several lines into the original number sequence or where
you move a block from one part of a program to another.

The two formats shown above for the EDIT RESEQUENCE command are as follows:

N1 represents the first line number in the resequenced portion of your file,

N2 represents the first line number of the portion of the file you are resequencing.

N3 represents the increment between the line numbers of the resequenced portion of the file,
N2-N3 represents an inclusive block of numbers to be resequenced (in which case N4 represents
the increment).

Line numbers, or series of numbers, are separated by commas. When an inclusive block (N2-N3)
is to be resequenced, the numbers are separated by a hyphen.

14

RESEQUENCE

When you use EDIT RESEQUENCE without parameters, the system resequences the program start-
ing with line number 100 followed by increments of 10. This is identical to issuing the command
EDIT RESEQUENCE 100, 0, 10.
CAUTION: When the current program is a BASIC program and there are line number references
within the program, be sure the operating system designated is BASIC. This will change the program
line references to agree with the resequenced line numbers.
General Rules for using EDIT RESEQUENCE:

1. All line numbers must be separated by commas.

2. The hyphen can only appear in the second parameter,

3. The command given without line numbers or an increment will resequence the program from
100 in increments of 10.

4. The command given without an increment will resequence in increments of 10.
5. Negative resequences within a block are obtained when N3 is less than N2.

6. Do not choose resequence numbers that will produce either a line number less than zero or
larger than 99999.

Example 1: Resequencing without Line Numbers or an Increment

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y
40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM C@NSECUTIVE INTEGERS .

80 PRINT "SUM @F FIRST '3 X3 INTEGERS IS 3 Y
90 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 G@ T® 40

120 END

EDIT RESEQUENCE

READY .,
LISTNH
100 LET X = 0
110 LET Y = 0

120 REM INITIALIZE X AND Y

130 LET X = X+1

140 LET Y = Y+X

150 REM INCREMENT X BY BONE

160 REM SUM C@NSECUTIVE INTEGERS .
170 PRINT "SUM @F FIRST 3 X3 INTEGERS IS Y
180 REM SUM FIRST TEN INTEGERS @NLY

190 IF X = 10 THEN 210

200 GP Teg 130

210 END

15

RESEQUENCE

Example 2: Resequencing with Only the Starting Line Number

10 LET X
20 LET Y

0
0

"nn

30 REM INITIALIZE X AND Y

40 LET X = X+l

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM CONSECUTIVE INTEGERS

80 PRINT "SUM @F FIRST ~; X; INTEGERS IS
90 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 G@ Tp 40

120 END

EDIT RESEQUENCE 200

READY.

LISTNH

200 LET X = 0

210 LET Y = 0

220 REM INITIALIZE X AND Y
230 LET X = X+l

240 LET Y = Y+X

250 REM INCREMENT X BY ONE
260 REM SUM CONSECUTIVE INTEGERS

270 PRINT "SUM @F FIRST "3 X3 INTEGERS IS

280 REM SUM FIRST TEN INTEGERS @NLY
250 IF X = 10 THEN 310

300 G T8 230

310 END

Example 3: Resequencing Part of a Program

16

10
20
30
40
50
80
70
80
S0

LET X = 0

LET Y = 0

REM INITIALIZE X AND Y
LET X = X+lI

LET Y = Y+X

REM INCREMENT X BY @NE

REM SUM C@NSECUTIVE INTEGERS
PRINT SUM @F FIRST "3 X; INTEGERS IS
REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120
110 Gg T@ 40
120 END

.
14

9’

Y

Y

Y

RESEQUENCE

EDIT RESEQUENCE 50,40
READY.

LISTNH

10 LET X = 0
20 LET Y = 0

30 REM INITIALIZE X AND Y

50 LET X = X+1

60 LET Y = Y+X

70 REM INCREMENT X BY ONE

80 REM SUM CONSECUTIVE INTEGERS .

90 PRINT "suM @F FIRST 3 X; INTEGERS IS ; Y
100 REM sUM FIRST TEN INTEGERS @NLY

110 IF X = 10 THEN 130

120 G8 T® 50

130 END

Example 4: Resequencing Part of a Program in Increments of 100

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y
40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM CONSECUTIVE INTEGERS .

80 PRINT ~SUM @F FIRST '3 X; INTEGERS IS "5 Y
S0 REM SUM FIRST TEN INTEGERS BNLY

100 IF X = 10 THEN 120

110 GO Te 40

120 END

EDIT RESEQUENCE 100,100,100

READY.
LISTNH
10 LET X = 0
20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM C@NSECUTIVE INTEGERS .

80 PRINT "SuUM @F FIRST "3 X3 INTEGERS IS 5 Y
S0 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 300

200 GO T@ 40

300 END

17

RESEQUENCE

Example 5: Resequencing a Block within a Program

"INTEGERS IS

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY BONE

70 REM SUM C@NSECUTIVE INTEGERS
80 PRINT "SUM BF FIRST s X3

S0 REM SUM FIRST TEN INTEGERS BNLY
100 IF X = 10 THEN 120

110 G@ T@ 40

120 END

EDIT RESEQUENCE 20,20-100,5

READY.

LISTNH

10
20
25
30
35
40
45
50
55
60

LET
REM
LET
LET
REM
REM
PRIN

X
Y
IN
X

Y

" IIHII "

0
0
TIALIZE X AND Y
X+1
Y+X

INCREMENT X BY @NE
SUM CONSECUTIVE INTEGERS

T

"sum @F FIRST H

x.

"INTEGERS IS "

REM SUM FIRST TEN INTEGERS ONLY

IF X

10 THEN 120

110 Go T@ 30
120 END

Example 6: Resequencing a Block in Reverse Order

18

10
20
30
40
50
§0
70
80
S0

120 END

LET
REM
LET
LET
REM
REM

X
Y
IN
X

Y

Hon ’—'ll "

0
0
TIALIZE X AND Y
X+1

Y+X

INCREMENT X BY @NE
Sut CONSECUTIVE INTEGERS
PRINT "SUM @F FIRST
REM sSUM FIRST TEN INTEGERS ONLY
100 IF X
110 GO T@ 40

10 THEN 120

Xo

"INTEGERS 15 ~

°
’

b4

13
’

Y

Y

Y

EDIT RESEQUENCE 80,80~60

READY.

LISTNH

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X . . .
60 PRINT "SUM @F FIRST "3 X; "INTEGERS IS

70
80

REM SUM CONSECUTIVE INTEGERS
REM INCREMENT X BY @NE

50 REM SUM FIRST TEN INTEGERS @NLY
100 IF X = 10 THEN 120
110 GB To 40
120 END
RUNOFF

EDIT RUNOFF

.
’

Y

EDIT RUNOFF N

RESEQUENCE
RUNOFF

A printed copy of your saved program may be obtained by the EDIT RUNOFF command. This is
printed in a page format, and paginated with line numbers deleted. The optional line number, repre-

sented by N in the command, designates the starting line for the text runoff.

The printout format can be governed by control words inserted in the saved program. Should there

be no control words in the program, the printout will be in the following format:
1. The left margin is established by the first print position of the teletypewriter.
2.
3.
4,

3.

Each single-spaced line contains 60 characters.

There are no line numbers.

All pages, except the first, have a one-inch top and bottom margin, The first page has a two-
inch top margin.

Whenever possible, the right margin is justified.

Control Words:

When typing a program in text, it is possible to control the format of the printout. This control is
established by the following control words imbedded in the program text. Each control word must be

preceded by a period. An entire line must be devoted to the control word.

Control Word

. LEFT MARGIN N

.RIGHT MARGIN N

Definition

Starts the output N spaces to the right of the first print position of the
teletypewriter. This is initially preset to zero.

Places no more than N characters (including the left margin)on a line.

Normally, the line will be spaced so that exactly N characters will oc-
cur on it. The use of this command corresponds exactly to setting the

right margin on a typewriter.

19

RUNOFF

Control Word

.SPACE N

.BREAK

.INDENT N

. UNDENT N

.CENTER N

. PAGE

.SLEW N

.IGNORE N

.LINK P N

.LITERAL

Example:

Definition

Sets the number of line-feeds following a carriage return, The command
.SPACE 2 means double spacing, etc.

Terminates the line preceding . BREAK. The text following the control
word begins on a new line., This is executed automatically for a para-
graph, a blank line and certain commands.

Indents the next line N spaces. The break function is automatically
called.

Undents the next line N spaces (i.e., pushes it out into the left margin).
The designation N must be less than the size of the left margin. If N is
not present, it will be taken as equal to the size of the left margin. The
break function is automatically called.

Centers the next N input lines between the left and right margins. If any
of the input lines do not fit between the margins, they will generate two
output lines with each line centered. When N is not present, it is as-
sumed to be one. The position of the left margin remains as established
by the previous .INDENT and .UNDENT commands. This command
calls the break function.

Starts the following line at the top of the next page. This control word
calls the break function before paging.

Spaces N lines down the page. I there are fewer than N lines left before
the bottom margin, you will continue tothetop of the next page.

Ignores no more than N leading blanks after the line number on each
line. It takes N+1 leading blanks on a line to declare a new paragraph.
No non-blank characters are ignored.

Retrieves the saved file named P and continues the EDIT RUNOFF
at the next output line, The optional line number N designates the new
starting input line. This control word calls the break function before
linking to the new file. All other parameters are preserved and con-
tinued over to the new file. Any user saved file or listable library file
may be linked by .LINK for EDIT RUNOFF.

Enables you to start a line of text with a period. In typography this is
sometimes called a bullet.

The first pages of the following example show the control words imbedded in a program of text.
These pages are followed by the RUNOFF version of the same program.

20

U RN D WN —

.IGNBRE 3
.CEN 1
EDIT RUNBFF

THIS IS A DESCRIPTI@ON @F THE EDIT RUNGFF FUNCTI®@N.

+IGNBRE 2

CALLS: EDIT RUNGFF
EDIT RUNQFF N

RUNOFF

.BREAK
THE N SPECIFIES A STARTING LINE NUMBER. IT IS OPTI@NAL
AND WILL BE DESCRIBED IN ANBTHER PARAGRAPH.

THE BASIC PURP@SE @F THE FUNCTI®N IS T@ PRODUCE FR@M
A SAVED FILE A NEAT, PAGINATED C@PY @OF TEXTUAL MATERIAL WITH LINE
NUMBERS DELETED.

YU CAN CaNTR@L THE F@RMAT OF THE @UTPUT THROUGH THE

USE @F CONTROL WORDS IMBEDDED IN THE TEXT. IF THERE ARE N@
SUCH CONTRZL W@RDS, THE QUTPUT WILL BE IN THE FOLL@WING
FORMAT: N@ LEFT MARGIN, AND A 60 CHARACTER LINE. THE T@P
ARGIN OF ALL PAGES EXCEPT THE FIRST WILL BE | INCH AND THE
B2TT2M MARGIN @F ALL PAGES WILL BE @ONE INCH. WHENEVER
PZSSIBLE THE RIGHT MARGIN WILL BE JUSTIFIED. THIS IMPLIES
FILLING LINES WITH W@RDS FR@M FOLLOWING LINES AND INSERTING
ZXTRA SPACES BETWEEN WORDS. A PARAGRAPH IS RECBGNIZED

BY WgRE THAN THE SPECIFIED NUMBER OF LEADING

BLANKS @N A LINE (@NE LEADING BLANK WILL BE IGN@RED.)

A PARAGRAPH CAUSES A BREAK IN

THE PR@2CESS @QF FILLING BETWEEN LINES, AND THE LAST SENTENCE
IN THE PRECEDING PARAGRAPH WILL N@T BE RIGHT JUSTIFIED.

A BLANK LINE WILL PRQDUCE A BLANK LINE IN THE QUTPUT, AND WILL
CAUSE THE SAME BREAK AS A NEW PARAGRAPH.
+SLEW 1

+CEN
CONTROL WORDS

FORMAT: AN ENTIRE LINE IS DEVQPTED T@ ONE W@RD,

AND THZ FIRST NON-BLANK CHARACTER @N THE LINE MUST BE A
PERI®D. THE THREE LETTERS AFTER THE PERI®GD ARE ALL THAT ARE
L@OKED AT, EXCEPT FBR NUMERICAL PARAMETERS

(IN ALL THE FOLLBWING F@RMS THE QUATES ARGUND THE CO@NTRGL
WORD SHAULD N@T APPEAR IN THE TEXT. NUMERICAL PARAMETERS
BETWEEN PARENTHESES ARE @PTIB@NAL.)

JLEF 8

LRIG 57

LUND

"LLITERAL"

IF YOU SHZULD FBR SUME REASON HAVE A CASE IN WHICH THE FIRST
N@N-BLANK CHARACTER 8N A LINE ACTUALLY IS A PERI@D, THIS MUST
BE @N THE PRECEDING LINE, @R ELSE THE LINE WILL BE IGN@RED.

S UND
LRIGHT MARGIN N”
BREAK
D3 N2T PUT M2RE THAN N CHARACTERS (INCLUDING THE LEFT MARGIN)
PN A LINE. NZ2MALLY THE LINE WILL BE SPACED QUT S@ THAT EXACTLY
N CHARACTERS WILL @CCUR @8N IT. THIS C@MMAND
CORRESP@NDS EXACTLY T® SETTING THE RIGHT MARGIN ON A TYPEWRITER.

2 UND .

SLEFT [MARGIN N
gUTPUT N SPACES BEF@RE THE FIRST CHARACTER @F EACH LINE,
THIS IS PRESET T2 0.

L UND .

JLEFT MARGIN W
SETS THE NUM3ER @F LINE-FEEDS AFTER A CARRIAGE RETURN.
SPACE 2" IS DJUBLE SPACING, ETC.

JuND
.BREAK

21

RUNOFF

78 DB NOT RUN THE WORDS FROM THE FOLLOWING LINE INT® THE PRECEDING
79 LINE, THIS IS EXECUTED AUT@MATICALLY FBR A PARAGRAPH, A BLANK
80 LINE AND CERTAIN CBMMANDS.

81
82 L UND .
83 ", INDENT N
84 ,BREAK

85 INDENT THE NEXT LINE N SPACES. THE BREAK FUNCTI®N IS
86 AUT@MATICALLY CALLED.

88 .IGNORE 1

89 ,UND i}

90 "LUNDENT (N)

91 .BREAK

92 UNDENT THE NEXT LINE N SPACES (IE., PUSH IT INT@ THE LEFT

93 MARGIN.) N MUST BE LESS THAN THE SIZE @F THE LEFT MARGIN. IF
94 N IS N@T PRESENT IT WILL BE TAKEN AS EQUAL T® THE SIZE OF THE
95 LEFT MARGIN. THE BREAK FUNCTI@N IS AUT@MATICALLY CALLED.

97 LUND

98 ".CENTER (N)"

99 .BRE

100 CENTER THE NEXT N INPUT LINES BETWEEN THE LEFT AND RIGHT

101 MARGINS., IF ANY @F THE INPUT LINES D2 N@T FIT BETWEEN

102 THE YARGINS THEY WILL GENERATE TW@ @UTPUT LINES, EACH CENTERED
103 IF N IS NOT PRESENT IT IS ASSUMED T& BE ONE.

104 THE P@SITIGON @F THE LEFT MARGIN IS SET AFTER THE

105 INDENT AND UNDENT C@MMANDS HAVE BEEN EVALUATED.

106 THIS COMMAND CALLS THE BREAK FUNCTI®N.

108 ,UND _

105 “,PAGE

110 .BRE

11 SPACE T? THE T@P OF THE NEXT PAGE.

112 PAGE CALLS THE BREAK FUNCTI@N BEFZRE PAGING.

3

4 UND)

5 "L,SLEW N

5 .BIEAK

7 SPACE N LINES D@WN THE PAGE. IF THERE ARE FEWER THAN N LINES LEFT
8 BEF@IE THE BATT@M MARGIN. THE TEXT WILL C@NTINUE T® THE T@P

119 9F THE NEXT PAGE.

121 ,IGN 5 THIS IS AN EXAMPLE @F THE USE @F THE IGN@RE FUNCTION
122 LUND

123 ".IGNZRE N

124 .BREAK

125 IGNERE BNLY N LEADING BLANKS AFTER THE LINE NUMBER

126 @N EACA LINE., IE., IT WILL TAKE N+! LEADING BLANKS ON

127 A LINE T2 DECLARE A NEW PARAGRAPH. NON-BLANK CHARACTERS
128 ARE N2T IGNSRED.

130 ,UND .

131 ".LINK P N

132 .BREAK

133 PRINT THE CONTENTS @F FILE P AT THIS POINT IN THE RUNOFF
134 STARTING WITH LINE N @F THE FILE P.

136 .LEF 5

137 THE PARAMETER IN THE CALLING LINE (EDIT RUN@FF N) SPECIFIES
132 THE FIRST LINE WHICH C@NTAINS INFORMATION THAT YOU WANT

139 PRINTZ>., RUNIFF PROCESSES ALL THE PRECEDING MATERIAL

140 EDITING IT AND EXECUTING THE CANTROL W23DS, BUT THE FIRST LINZ
141 WHICH IT PRINTS WILL BE THE LINE CONTAINING THE WORDS WHICH
142 2CCUR I4 LINE N 2F THE INPUT MATERIAL. THIS LINE MAY CZNTAIN
143 Wwg<DS WHICH @CCURRED #N THE PREVIAUS LINES OF INPUT MATERIAL
144 SINCZ [HE WHZLE LINE WILL BE PRINTED,

145

22

SAVE

READY.

EDIT RUNJFF

EDIT RUNOFF
THIS IS A DESCRIPTI@N BF THE EDIT RUNGFF FUNCTIG@N.

CALLS: EDIT RUNOFF
EJIT RUNDFF N

THE N SPECIFIES A STARTING LINE NUMBER. IT IS OPTIBNAL AND
WILL BE DESCRIBED IN ANUTHER PARAGRAPH.

THE BASIC PURP@SE @F THE FUNCTI@N IS T@ PRODUCE FROM A SAVED

FILE A NEAT, PAGINATED C@PY @F TEXTUAL MATERIAL WITH LINE
NUMBERS DELETED,

YOU CAN CoONTROL THE FORMAT @F THE QUTPUT THROUGH THE USE @F
CONT2@L WoRDS IMBEDDED IN THE TEXT. IF THERE ARE Ng@ SUCH
CONTRBL WeRDS, THE BUTPUT WILL BE IN THE FALL@WING FORMAT:
N@ LEFT MARGIN, AND A 60 CHARACTER LINE. THE T@OP MARGIN @F
ALL PAGES EXCEPT THE FIRST WILL BE | INCH AND THE BeTTgM
MARGIN 2F ALL PAGES WILL BE @NE INCH. WHENEVER P@SSIBLE THE
PIGHT MARGIN WILL BE JUSTIFIED, THIS IMPLIES FILLING LINES
JITH WBRDS FROM FOLLBWING LINES AND INSERTING EXTRA SPACES
BETVEEN W#R0S. A PARAGRAPH IS RECGGNIZED BY M@RE THAN THE
SPECIFIED NUMBZIR @F LEADING BLANKS @N A LINE (@NE LEADING
BLANK WILL BE IGNORED.) A PARAGRAPH CAUSES A BREAK IN THE
PR@CESS ©@F FILLING BETWEEN LINES, AND THE LAST SENTENCE IN
THE PRECEDING PARAGRAPH WILL N@T BE RIGHT JUSTIFIED.

A BLANK LINE WILL PRODUCE A BLANK LINE IN THE BUTPUT, AND
WILL CAUSZ THE SAME BREAK AS A NEW PARAGRAPH.

CBNTROL WBRDS
Fo:iMAT: AN ENTIRE LINE IS DEV@TED T2 ONE W@PRD, AND THE
FIRST NBN-BLANK CHARACTER @N THE LINE MUST BE A PERI®D. THE
THREE LETTERS AFTER THE PERI@D ARE ALL THAT ARE L@@KED AT,
EXCEPT F@: NUMERICAL PARAMETERS

(IN ALL THE FOLLBWING F@RMS THE QU@TES ARQUND THE CONTROL

RUNOFF

23

RUNOFF

WZiD SHEULD N@T APPEAR IN THE TEXT. NUMERICAL PARAMETERS
BITWEEN PARENTHESES ARE @PTI@NAL.)

".LITERAL" IF YQU SHZULD F@3 SOME REAS@N HAVE A CASE IN
WHICH THE FIRST NON-BLANK CHARACTER ©@N A LINE
ACTUALLY IS A PERI®D, THIS MUST BE 8N THE
PRECZDING LINE, @R ELSE THE LINE WILL BE IGNPRED.

" RIGHT MARGIN N7
07 N@T PUT M@RE THAN N CHARACTERS (INCLUDING THE
LEFT MARGIN) ON A LINE. NORMALLY THE LINE WILL
3Z SPACED SUT S@ THAT EXACTLY N CHARACTERS WILL
@CCUR @N IT. THIS CZMMAND COPRRESPONDS EXACTLY TO
SETTING THE RIGHT MARGIN @N A TYPEWRITER.

".LEFT “ARGIN N" QUTPUT N SPACES BEFORE THE FIRST
CHARACTER @F EACH LINE. THIS IS PRESET T2 0.

".LEFT YARGIN N~ SETS THE NUMBER @F LINE-FEEDS AFTER A
CARRIAGE RETURN. "SPACE 2" IS DOUBLE SPACING,
ETC.

“.BREAK" Dz N@T RUN THE WBRDS FROM THE FOLLBWING LINE
INTé THE PRECEDING LINE. THIS IS EXECUTED
AUTZMATICALLY F2R A PARAGRAPH, A BLANK LINE AND
CEXTAIN CZMMANDS.

" JINDENT N~
INDENT THE NEXT LINE N SPACES. THE BREAK
FUNCTI®ZN IS AUTBMATICALLY CALLED.

" JUNDENT (WO
UNDENT THE NEXT LINE N SPACES (IE., PUSH IT INT®
THE LEFT MARGIN.) N MUST BE LESS THAN THE SIZE @F
THE LEFT MARGIN. IF N IS N@T PRESENT IT WILL BE
TAKZIN AS ERUAL ToQ THE SIZE @F THE LEFT MARGIN.
THE BREAK FUNCTI®N IS AUT@MATICALLY CALLED.

" CENTER (M)

CENTER THE NEXT N INPUT LINES BETWEEN THE LEFT
AND RIGHT MARGINS. IF ANY @F THE INPUT LINES D®
N@T FIT BETWEEN THE MARGINS THEY WILL GENERATE
TW@ GUTPUT LINES, EACH CENTERED IF N IS NOT
PRESENT IT IS ASSUMED TQ BE @NE. THE P@SITION OF
THE LEFT MARGIN IS SET AFTER THE INDENT AND
UNDENT COMMANDS HAVE BEEN EVALUATED. THIS C@MMAND
CALLS THE BREAK FUNCTI®N.

SPACE T@ THE T@P @OF THE NEXT PAGE. PAGE CALLS THE
BREAK FUNCTI@N BEF@RE PAGING.

24

TEXT

PARAGRAPH. NON-BLANK CHARACTERS ARE N@T IGN@RED.

“JLINK P 0"
PRINT THE CE@NTENTS @F FILE P AT THIS P@INT IN THE
RUNDFF STARTING WITH LINE N @F THE FILE P.

THE PARAMETER IN THE CALLING LINE (EDIT RUNGFF N)
SPECIFIES THE FIRST LINE WHICH C@NTAINS INF@RMATION
THAT Ye¢U WANT PRINTED. RUN@GFF PROCESSES ALL THE
PRECEDING MATERIAL EDITING IT AND EXECUTING THE
CONTROL WQRDS, BUT THE FIRST LINE WHICH IT PRINTS
WILL BE THE LINE CNTAINING THE W@RDS WHICH BCCUR IN
LINE N OF THE INPUT MATERIAL. THIS LINE MAY CONTAILN
WORDS WHICH @CCURRED @N THE PREVIQUS LINES 8F INPUT
MATERIAL SINCE THE WH@LE LINE WILL BE PRINTED.

TEXT |

EDIT TEXT P1, N, P2, P3, ... P9

This command performs the same function as EDIT PAGE on up to nine files saved under a user
number or listable from the system library. EDIT TEXT substitutes blanks for line numbers and
therefore produces a clean paged copy of thosefiles which are more readable without line numbers.

The designations P1, P2, P3,...P9 represent the program names. The letter N designates the first
page number. When N is not specified page 1 is printed at the top of the first page.

" GLEW N”
SPACE N LINES D@WN THE PAGE., IF THERE ARE FEWER
THAN N LINES LEFT BEFZRE THE B@TT@M MARGIN, THE
TEXT WILL CONTINUE T@ THE TSP OF THE NEXT PAGE.

" IGNBRE N”
IGN@RE ONLY N LEADING BLANKS AFTER THE LINE
NUMBER ©N EACH LINE. IE., IT WILL TAKE N+l
LEADING BLANKS &N A LINE T@ DECLARE A NEW

25

WEAVE

WEAVE

EDIT WEAVE PROG1, PROG2, PROGS ...

You may use EDIT WEAVE to combine from two to nine saved programs. These programs are woven
together in the sequence of existing line numbers. All original line numbers are retained. The EDIT
WEAVE function operates in a manner similar to EDIT MERGE. In EDIT MERGE, however, specific
programs can be combined within a main program and the new program is resequenced,

PROG1, PROG2, etc., designate program names. These program names can be given in any order
since they are combined sequentially by line numbers.

CAUTION: When weaving programs, there should be no duplicate line numbers in the entire group.
If line numbers are duplicated, only one will be retained. Normally, the line that is retained comes
from the last program in the list that contains that line number. However, if insert line numbers
are used, the line that is retained could possibly come from one of the other programs. You must
also take care to avoid duplicate END statements. See comments under MERGE.

Example 1: Weaving Two Programs

Program A
10 LET X = 0
20 LET Y = 0
40 LET X = X+1I
50 LET Y = Y+X

80 PRINT "SUM BF FIRST "; X; "INTEGERS IS "3 Y
100 IF X = 10 THEN 120

110 G@ T8 40

120 END

Program B

30 REM INITIALIZE X AND Y

60 REM INCREMENT X BY ONE

70 REM SUM CBNSECUTIVE INTEGERS

90 REM SUM FIRST TEN INTEGERS ONLY

EDIT WEAVE A,B
READY.

LISTNH

10 LET X = 0
20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X

60 KEM INCREMENT X BY @NE

70 REM SUM CBNSECUTIVE INTEGERS .

80 PRINT 'SUM @F FIRST "3 X3 "INTEGERS IS HE ¢
90 REM SUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 GB To 40

120 END

26

Example 2: Weaving Two Programs with a Common Line Number

50 LET Y

Y+X

Program A
10 LET X = 0
20 LET Y =0
40 LET X = X+I

80 PRINT "SUM @F FIRST "3 X3 "INTEGERS IS "5 Y
100 IF X = 10 THEN 120

S0

110 G& T® 40
120 END
Program B
30 REM INITIALIZE X AND Y
60 REM INCREMENT X BY ONE
70 REM SUM C@NSECUTIVE INTEGERS
80 PRINT SUM @F FIRST_ 3 X3
85 PRINT INTEGERS IS ; Y

REM SUM FIRST TEN INTEGERS @NLY

EDIT WEAVE A,B

READY.

LISTNH

10 LET X = ©

20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+l

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM CONSECUTIVE INTEGERS
80 PRINT _SuM @F FIRST_ 3 X3

85 PRINT INTEGERS IS 5 Y

S0 REM SUNM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120
110 GB T2 40
120 END

Line 80 in program B is printed. Line 80 in program A disappears.

WEAVE

27

2. String Functions

Definition of a String

A string is defined as a group of consecutive characters. There are certain Editing Commands that
have been specially designed to operate on information of this type, independent of any line number
orientation. These commands do not require the use of file line numbers for reference or control.

They deal only with strings of informationthat you specify, and therefore are said to perform ‘‘string
functions.’’

Types of Strings

A closed string is one in which all the characters in the string are explicitly defined (up to the limits
of the Editing Command). A closed string cannot begin and end with a comma since commas are
used as control characters in certain commands.

An open string is one in which only some of the beginning and ending characters of the string are
explicitly defined. An open string is composed of two closed strings separated by a comma. The first
closed string defines the beginning characters, and the second closed string defines the ending char-
acters of the text string being specified.

Delimiters

To define where a string begins and ends a character called a ‘‘delimiter’’ is used. The position of
this character in the format of the Editing Command identifies it as the delimiter. There are certain
restrictions in the choice of a delimiter character; it cannot be a blank, or cannot be numerie, nor
can it be a dollar sign.

Argument List

Many of the Editing Commands that perform string functions require that certain information follow
the command word itself. This information is calledthe Argument List and it consists of one or more
of the following elements:

e 2 line number (L)
e 2 string, including its delimiter characters (S)
e 2 repetition count (R)

Each of these elements is explained below:
The line number is optional. It consists of one to five numerics. Its meaning depends upon the function

of the individual Editing Command with which it is associated. When a line number enters into the

function of a command, its role is explained in the definition of the command which is discussed
below,

28

The string has the form /ABCXYZ/ where / is the delimiter character. The string may include
numerics, blanks, and dollar signs; anything except the delimiter character. Any Carriage Return
character included in the string is not considered to be an integral part of the string, but rather is
treated as a control character which allows you to continue the string on the next line. Each char-
acter in the string is examined upon input to determine if and how its entry should be allowed to pro-
ceed. Unless something to the contrary has been specified by a previous Editing Command (such as
$SUBSTITUTE, $MULTIPLE, or $BREAK), the identity of the character is maintained.

The repetition count is optional, If it is not given, it is assumed to be ‘‘one.’”’ The specific function
of the repetition count depends on the command with which it is used and these are discussed below.

The argument list can contain a variety of combinations of line numbers, strings, and repetition
counts. Only certain combinations are acceptable, however, and these are shown in the following
table.

ACCEPTABLE ARGUMENT LISTS

(Brackets indicate that the command assumes
¢¢1*’ if no repetition count is specified)

Closed Strings:

L1 s1 Rl L2 s2 R2
100 c¢r3 [1 l
- “STRING’’ [1]
- “STRING’’ 2
100 “STRING”’ [1]
100 “STRING”’ 2

Open Strings:

100 “‘STRING1”’ 2, 200 e {11
100 “‘STRING1”’ 2, - ““STRING2”’ (1]
100 ‘‘STRING1”’ [1] - ““STRING2”’ 3
100 ‘“‘STRING1”’ 2, 200 ““STRING2”’ [1]
100 ‘“‘STRING1”’ 2, 200 “‘STRING2”’ 3
- “‘STRING1” 2, 200 € (1]
- “‘STRING1”’ [1] - ““STRING2”’ [1]
- ‘“‘STRING1”’ [1] - “STRING2”’ 3
- ‘‘STRING1”’ 2, 200 “STRING2”’ 1]
- ‘““STRING1”’ 2, 200 “STRING2”’ 3

String Pointers

The user has two imaginary pointers which he can place at each end of a string in the file by using
various Editing Commands. Iitially, the pointers are at the beginning of the file. All searches for
strings begin at the current position of the beginning string pointer and continue to the end of the file.
If the pointers are not at the beginning of the file, there will be no search from the beginning of the
file to the place where the pointer had been set. The pointers can be reset to the beginning of the
file at any time by using the command $BEGIN which is described below.

29

$ABORT

String Search
A string search consists of comparing the specified string in the argument list to the text characters

in a file to determine if a one-to-one correspondence exists. (The one-to-one relationship can be
modified, however, in certain commands such as $IGNORE or $BREAK).

String Function Commands

The twenty Editing Commands performing string functions are grouped below according to the type
of editing for which they are used.

1, Character Definition 5. Scan Control
$MULTIPLE $ABORT
$SUBSTITUTE $BREAK

$IGNORE

2. Major Editing $PROGRAM

$TEXT
$DUPLICATE s
$INSERT 6. Termination
$MOVE
SREPLACE $END

3. Pointer Manipulation 7. User Aid and Status
$BEGIN
$FIND $LIST

$LOCATE

4, Printing $STRING

$TIME
$RUNOFF $TRANSLATION

Each of the above Editing Commands will now be described in detail, The Commands are arranged in
alphabetical order for your easy reference,

$ABORT

EDIT $ABORT S1

This function acts as a watchdog on your input. You can specify a single abort character (in essence,
a one-character string) with the SABORT command. Whenever a subsequent function encounters this
abort character as part of its input string, that particular function is discontinued and the rest of
the input line is ignored.

In the above format, S1 represents the abort character. This abort character is preset to the back-
slash \ located as the upper case L. You can replace this with another character, for example the =,
by typing: $ABORT /=/. By following this parameter specification, your function request is aborted
whenever you use = in the input.

To restore $ABORT to its normal value type SABORT//.

30

$ABORT

$BEGIN
$BREAK
Example
I0O00ABCDEFABCDETF
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N N NNNNNNNNN

EDIT $AB@RT /t/ SFIND /A B t+C/ $SREPLACE /X Y Z / S$END

ABBRTING $FI
RETRY?

All instructions are aborted after t appears in the argument of $FIND.

$BEGIN
EDIT $BEGIN

The $BEGIN function requires no parameters after the command word. This function resets the
string pointers to the beginning of the program. It is used when you wish to perform an operation in
a location previous to the current position of the string pointers. When in doubt about the location
of the string pointers, use the $BEGIN command.

Although initially set to the beginning of a program, the string pointers may be moved by using
$FIND, SREPLACE, $INSERT, $MOVE or $DUPLICATE. The only way you can be sure that a string
search starts from the beginning of a file is to issue $BEGIN.

You can issue a $BEGIN before or after any other command. However, the functions that require
a string for their application ($STRING, $REPLACE, $INSERT, $MOVE, $DUPLICATE) are not
executed if they immediately follow a $BEGIN command.

$BREAK

EDIT $BREAK/ABCDEF .../

The $BREAK function allows you to specify characters to be overlooked in the text when searching
for a specific string. The primary difference is in the means of specification. With the $BREAK
command you specify a break character, which in an input string, takes the place of several char-
acters in the text search.

In the above format, the letter A is the break character which represents the characters in the

text indicated by BCDEF... . Youcanspecifyas many break characters as you can designate on one
line.

31

$BREAK
$DUPLICATE

A break character may represent itself or any other character in the $BREAK string of which it
is the first character. To return all break characters to their initial values, type: $BREAK//.

Example: $BREAK Command Substituting * for ‘‘space’’ and ,

160 ABCDEFABCDEF
110 G6,H,I,J,K,L,G,H,I,J,K,L
120M N N NNNNNNNNN

EDIT $BREAK /% ,/ $FIND /FxA/ S$REP /Z/ $FIND /L*G/ $REP /X/ S$END
TIME: 0:01

READY.

LISTNH

100 ABCDEZBCDEF
110 G,H,I,J,K,X,H,I,J,K,L
120 M NN N NN NNNNNN

Observe that * was substituted for space and , so that the text string /F A/ was interpreted as
equivalent to the input string /F*A/ and the text string /L,G/ was interpreted as /L*G/.

$DUPLICATE
EDIT $DUPLICATE L1 S1 R1 L2 S2 R2 ...

Use $DUPLICATE to duplicate a string (defined by $FIND) in one or more locations within a file.
Not only is the string retained in its original position but it is also placed immediately following the
strings(S1, S2 ...) defined by $SDUPLICATE. $DUPLICATE must always be preceded by $FIND.

Definition of Parameters:

L1 - Optional line number used to locate S1,

S1 - First string after which the $FIND string is to be placed.

R1 - The $FIND string is to be placed after the R1th occurrence of S1.
L2 - Optional line number used to locate S2,

S2 — Second string after which the $FIND string is to be placed.

R2 - The $FIND string is to be placed after the R2th occurrence of S2.

32

$DUPLICATE

Example 1: $DUPLICATE with R Set at 2

EDIT $FIND /A/ S$DUPLICATE /H/ 2 $END
TIME: 0:01

READY.

LISTNH

100 ABCDEFABCDETF
110 GsH, I,J5K>Ls GsHA, I JsKsL
120 M N N NNNNNNRNRNN

Example 2: $DUPLICATE with R Set at 7

100 ABCDEFABC CDE F
110 GsHs IsJsKsLs GoHs I Js KoL
120 M N N N NNNRNRNNN N

EDIT $FIND /A/ $DUPLICATE /N/ 7 S$END
TIME: 0:01

READY.
LISTNH
100 ABCLDEFABCDETF
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M NN NN NNNANNANN

In the first example A was found and duplicated after the second occurrence of H. In the second
example A was duplicated after the seventhoccurrence of N. Both times A was retained in its original
position,

33

$END
$FIND
$IGNORE

$END

EDIT $END

When you have finished entering string commands, the string mode is terminated by $END. $END is
a no-parameter function which incorporates your completed string editing into the working file. To
place these revisions into your permanent file, type SAVE.

$END destroys the string pointers and all character definitions in the translation table. Following
the execution of this command, the system prints the time in minutes and seconds.

$FIND

EDIT $FIND L1 S1 R1
or L1 S1 R1, L2 S2 R2

$FIND, without doubt, is the most commonly used string function. It must precede the functions
$REPLACE, $INSERT, $MOVE and $DUPLICATE.

There are two string pointers. Upon entering string mode, the two pointers are initially set at the
beginning of the file. If you search for one string and find it, the string pointers are then located
around this string. When you search for the next string, one pointer stays with the first string.
Should the new string not be found, the second pointer returns to the point where the search began
(the first string). If the new string is found, the two string pointers are then placed around it.

L1 represents the optional line number of the desired string; S1 the delineated string; and R1 the
optional repetition count. Similarly, the designations L2, S2, and R2 used in conjunction with L1,
S1, and R1, represent an open string.

A string search using $FIND will begin at the current location of the string pointers. If you are in
doubt concerning the location of the string pointers issue $BEGIN. This returns the string pointers
to the beginning of the program.

$IGNORE

EDIT $IGNORE S1

$IGNORE is one of two scan-control functions (see $BREAK) which allows you to specify characters
to ignore when searching for a particular string. S1 represents a string of from one to thirteen
characters which the scan will ignore. The order in which the characters are specified is not relevant.

When an input string is compared with a text string, there must be a one-to-one correspondence be-
tween input string characters and text string characters (within the limits of the character definition
functions). However, it is possible to allow charactersto occur in the text string which are not speci-
fied in the input string. These characters are referred to as the ignore characters.

34

$IGNORE
$INSERT

All characters in the string S1 of $IGNORE will be ignored in succeeding string searches, If there
are no characters in S1, then nothing will be ignored. Individual characters may not be added to or
subtracted from the set of ignore characters because the set is redefined with each $IGNORE. The
$IGNORE characters must be defined for each search. They are erased as soon as the SLOCATE
or $FIND for which they were defined has terminated.

Example: Use of $IGNORE

I00ABCDEFABCDEF
110 G,H,I,J,K,L,G,H,I,J,K,L
120M NNNNNNNNNNN

EDIT $IGNQRE /,/ $FIND /JKL/ $REPLACE /MNP/ 2 $END
TIME: 0:01

READY .

LIST

HRH 1 13:34 LAl THU 6/29/67
100ABCDEFABCDEF

110 G,H,I,MNP,G,H,I,MNP

120 N NNNNNNNNNN

The $IGNORE command allowed the searchtofind JKL by ignoring the commas. Otherwise the search
would have been unsuccessful.

$INSERT

EDIT $INSERT S1 R1 S2 R2 S3 R3...

$INSERT allows you to insert one character or several characters after the string specified by
$FIND. The text is automatically expanded to accommodate the insert. $FIND must always precede
SINSERT.

In the above format, string Sl is inserted after the string specified by $FIND. The symbols R1, R2,

R3 represent an optional repetition count which specifies the number of times that the strings S1,
52 and S3 are to be insertedafter sequential occurrences of the string specified by $FIND.

35

$INSERT
$LIST

Example: Use of $INSERT

100ABCDEFABCDEF
110 G,H,I1,J,K,L,G,H,I,J,X,L
120M N NNNNNNNNANKN

EDIT SFIND /s/ SINSERT /t/ 3 /+/ 2 /:/ %FND
TIME: 0:01
READY.

LISTNH

100 ABCDEFABCDEF
110 G,TH,1I,1d,+K,+L,:G,H,I,J,K,L
120 M NNNNNNNNNNKN

The search found the first comma, inserted rafter the first three occurrences, + after the next two,
and : after the next one (R when omitted is always assumed to be one).

$LIST

EDIT $LIST L1 S1

In string mode, the $LIST allows you to list a portion of your file or your entire file to check the ac-
curacy of your editing. The $LIST command prints the text beginning with the first character of the
string currently specified by the string pointers. The list ends with the last character of the string
specified by S1. Therefore, to list selected portions of your file, use $FIND to set the string pointers
where you want to begin listing and use S1 to indicate the end of the list.

If no current string is specified, $LIST begins with the first character of the file. The output ends
with the last character of the file if S1 is not specified.

The output is enclosed in quotation marks which are not part of the text. $LIST does not change the
position of the current string pointers or the translation table. It may precede or follow any string
function,

Example 1: Entire File Listed

100 ABCDEFABCDETF
110 G,H,1,J,K,L,G,H,I1,J,K,L
120 M N NNNNNNNNNN
EDIT $LIST

"1I00 ABCDEFABCDEFTF
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M NN NN NNNNNNN

36

$LIST
$LOCATE

Example 2: Using $FIND to List Part of a File

I00ABCDEFABCDEF
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N NNNNNNNNNN

EDIT SFIND /L/ $LIST

"L,G,H,I,d,K,L
120M N N NNNNNNNNN

$FIND sets the string pointers at L and the remainder of the file is listed.

$LOCATE

EDIT $LOCATE L1 S1 R1
or L1 S1 R1, L2 S2 R2

Use $LOCATE to search your file from beginning to end for the specified string S1. This will print
a double-spaced list of all lines containing this string of characters. If the optional line number L1l
is given, the search begins at that line number and continues through the rest of the file. The desig-
nation R1 represents an optional repetition count which directs the printing to begin with the R1’th
occurrence of string S1, and to print only lines containing each R1’th occurrence of Si.

The use of $LOCATE does not affect the location of the string pointers. It can precede or follow any
other string function.

Example 1: Use of $LOCATE to Print All Occurrences of a Designated String

10 LET X = O

20 LET Y = 0O

30 REM INITIALIZE X AND Y
40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

70 REM SUM C@NSECUTIVE INTEGERS .

80 PRINT SUM @F FIRST ¢ X3 INTEGERS IS 3 Y
90 RENM SUM FIRST TEN INTEGERS ONLY

160 IF X = 10 THEN 120

110 G& Te 40

120 END

37

$LOCATE

$LOCATE prints all occurrences of the string X.

EDIT $L@CATE /X/

LOCATING:

..

X 1

10 LET X = 0
30 REM INITIALIZE X AND Y

40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE

80 PRINT "SUM @F FIRST "3 X; "INTEGERS IS "3 Y
100 IF X = 10 THEN 120

Example 2: Use of SLOCATE with Repetition Count

10 LET X = 0

20 LET Y = 0

30 REM INITIALIZE X AND Y

40 LET X = X+l

50 LET Y = Y+X

§0 REM INCREMENT X BY ONE

70 REM SUM C@NSECUTIVE INTEGERS .
80 PRINT SUM @F FIRST ; X3 INTEGERS IS s Y
S0 REM sUM FIRST TEN INTEGERS @NLY

100 IF X = 10 THEN 120

110 Go T@ 40

120 END

EDIT $L@CATE /X/ 2
WAIT.

LZCATING:

)

X 2

30 REM INITIALIZE X AND Y
40 LET X = X+1
§0 REM INCREMENT X BY @NE

100 IF X = 10 THEN 120

$LOCATE prints all lines containing every second occurrence of the string X beginning with the
second occurrence.

38

$MOVE
$MULTIPLE

$MOVE

EDIT $MOVE L1 81 R1

Use the $MOVE command to move a single string from one location to another in a file. Specified by
$FIND, this string is deleted from its original position and placed immediately following the string
defined by $MOVE. $MOVE must always be preceded by $FIND. The string specified by $FIND is
inserted after the R1th occurrence of the string S1. Optional parameter L1 represents the line num-
ber associated with string S1.

Example: Use of SMOVE

I00ABCDEFABCDETF
110 G,H,I,J,K,L,G,H,I,J,K,L
120M N NNNNNNNNNN

EDIT $FIND /7 M/ S$MOVE /N/ 5 $END
TIME: 0:02
READY.

LIST

HRH1

100 ARCDEF ABCDETF
!lo GJH’I}J’K}LIG’H}IJJ’K!L
120 N NN NNMNNNNNN

Observe that the string following $FIND consists of two characters: space and M. This string is in-
serted after the fifth occurrence of string N.

$MULTIPLE

EDIT $MULTIPLE S1 S2 S3...

$MULTIPLE is one of three character definition functions (refer to $SUBSTITUTE and $BREAK).
$MULTIPLE allows you to define one character to have the value of two other characters. If char-
acter A is the multiple of character B and C, then all strings with B or C in a corresponding posi-
tion to A in the input string will match the input string, and A will lose its identity as A. If a two-
character string is used with SMULTIPLE, the first character does not lose its identity. Thus,

EDIT $SMULTIPLE /XY/ $FIND /XY/

Found Not Found
XY AY (unless A has been defined as equal to X or Y)
YY

EDIT $MULTIPLE /XYZ/ $FIND /XYZ/

Found Not Found
YYZ XYZ (X does not keep its identity as X)
ZYZ AYZ (unless A has been defined as equal to Y or Z)

39

$MULTIPLE

If X is a multiple of Y and Z, then Y and Z may have their initial values. In addition, either Y or Z
or both may be substitute characters. Where Y or Z is a $BREAK character, it is assumed by
$MULTIPLE that Y or Z only have their regular input values.

When a $MULTIPLE string has more than three characters, the first character is the multiple of the

last two. If the SMULTIPLE string is one character in length, that character is restored to its initial
value.

Initially, there are no multiple characters. When $MULTIPLE is issued, the translation changes
which have been defined remain in effect until (1) a vacant $MULTIPLE is issued, or (2) the values
of the multiple characters are redefined by another $MULTIPLE, $SUBSTITUTE, or $BREAK.
Unlike other character definition functions, strings defined by one set of $MULTIPLE characters
may be changed by issuing character definition functions which modify the characters to which the
$MULTIPLE characters refer. For example, if X is a multiple of Y and Z, and X is entered in an
input string, then the input string will not be affected by redefinition of X, but redefinitions of Y and
Z will change the value of the input string.
The series of commands:

EDIT $SUBSTITUTE /X/ $MULTIPLE /YX/ $SUBSTITUTE $FIND /XY/

« defines X to be a carriage return ($SUBSTITUTE /X/)

¢ defines Y to be Y and a carriage return (SMULTIPLE /XY/)

o defines X to be X and also defines Y to be Y and X ($SUBSTITUTE)

o finds the string XY where Y is Y or X ($FIND /XY/)

A $MULTIPLE with or without parameters may precede or follow any other function.

Examples:
1. SMULTIPLE /XYZ/ X matches Y and Z
2. $SMULTIPLE /XY/ /YZ/ X matches X and Y
so X matches X, Y, and Z
Y matches Y and Z
Z matches Z
Note that Z may be a substituted character.
3. $SMULTIPLE /X/ X is restored to its initial value.
4, SMULTIPLE All multiple characters are restored to their initial values.

40

$MUI TIPLE
$PROGRAM
$REPLACE

Example: Use of SMULTIPLE

100 ABCDEFABCDEF
110 G,H,I,J,K,L,G,H,I,J,K,L
120M NN NNNNNNNNN

EDIT SMULTIPLE /%*,/ SFIND /%/ SREPLACE /---/ 11 SEND
TIME: 0:01
READY.

LISTNH

100 ABCDEFABCDEF
110 G===H===l-==J===K===l===Go==H-o=-o=J-o=K-=-L
120M N NNNNNNNNNN

Observe that * became the multiple of , after which $FIND and $REPLACE replaced eleven occur-
rences of , with ---,

$PROGRAM
EDIT $PROGRAM

The $PROGRAM command, always expressed without parameters, establishes one of two scan-
control modes. This mode, known as the program mode, allows you to search through a file as a
continuous string of characters. No characters are ignored when you are locating a string, not even
carriage returns or line numbers. This isthenormal mode of operation when utilizing string functions,
The program mode is automatically established whenever you begin using string functions.

You remain in the program mode of operation until you initiate text mode which is the second scan-
control mode (refer to EDIT $TEXT).

$REPLACE

EDIT $REPLACE S1 R1 S2 R2 S3 R3 ...
or SREPLACE S1 *

The $REPLACE command replaces a text string with an input string or it replaces several text
strings by one or more input strings, The text strings are identical, and may be dispersed through-
out your file. The file expands or contracts automatically to accommodate the replacement strings.

This command replaces the current string, specified by the string pointers, with the input string.
After the replacement has occurred, the string pointers are placed around the next occurrence of the
text string. If there are no further occurrences of the text string, the pointers are returned to the
beginning of the file.

41

$REPLACE

For more than one text string, the replacements are executed in the following manner: the first R1
occurrences of the text string are replaced by the input string S1, the next R2 occurrences of the
text string are replaced by the input string S2, etc. If the repetition counts (R1 R2 R3...) are not
given, they are assumed to be one.

In the format, EDIT $REPLACE S1 *, the * indicates that the specified text string will be replaced
by the string S1 at every location where it occurs in the file, from the current location of the string
pointers to the end of the file.

$REPLACE must always be preceded by $FIND. If there is some doubt concerning the location of
the string pointers, issue $BEGIN before you issue the $FIND command.

Example 1: Replacement of Several Strings with Three Input Strings.

I00ABCDEFABCDEF
110 G,H,I,d,K,L,G,H,I,J,K,L
120 M NN NNNNNNNNN

EDIT $FIND /,/ $REPLACE /%/ 5 /1'/ 2 /3/ 3 $END
TIME: 0:01
READY.

LISTNH

100ABCDETFABC
110 G*H*I*J*K*L1GTH:Is
120 M N NN NN NNN

2L O
=Z2xm
2.,

The string /,/ is replaced in five occurrences with /*/, in two occurrences with /1/, and in three
with /:/.

Example 2: Replacement of a String in All of Its Occurrences.

100ABCDEFABCDEF
110 G,H,I,J,K,L,G,H,I,J,K,L
120 M N NNNNNNNNNN

EDIT $FIND /,/ $REPLACE /1/ % $END
TIME: 0:01
READY.

LISTNH

100 ABCDEFABCDEF
110 GTHTITJ'KTLTGIHIITJTKTL
120 M N NN NNNNNNNN

The string /,/ is replaced with /1/ everytime it occurs by adding * to the $SREPLACE command.

42

$RUNOFF
$STRING
$SUBSTITUTE

$RUNOFF

EDIT $RUNOFF L1
While operating in string mode, you can obtain a printed copy of your file by using $SRUNOFF, It
is exactly the same as EDIT RUNOFF except that it is called from the string mode. In the $RUNOFF
command, Ll is optional and when specified represents the line number where you wish to begin
your runoff,

For an example of EDIT $RUNOFF, refer to EDIT RUNOFF in the preceding section of line functions.

$STRING

EDIT $STRING
$STRING is a no-parameter function which allows you to find where the string pointers are currently
located by listing the current string. This listed string is part of the file (the text string) and not
merely a copy of the input string.

When the current string is listed, the printed copy is enclosed in quotation marks. These quotation
marks are not part of the text string.

The $STRING does not modify the string pointers or the translation table. It may precede o. follow
any other function.

Example: Use of $STRING

100 ABCDEFABCDEF
110 G,H,I,dJ,K,L,G,K,I,J,K,L
120 M N NNNNNNNNNN

EDIT SFIND /H,I,/ $STRING

CURRENT STRING:

H,I,

Observe that $STRING prints the string delineated bythe current position of the string pointers,

$SUBSTITUTE
EDIT $SUBSTITUTE S1

$SUBSTITUTE allows you to assign the value of a printable character to the carriage return. The
substituted character may be entered into an input string in place of the carriage return. It may be
necessary to represent,the carriage return in this manner, since the computer does not recognize
the depression of the carriage return key as part of an input string. This functionenables you to lo-
cate a text string which begins on one line and continues on the next line while operating in the pro-
gram mode (refer to EDIT $PROGRAM).

43

$SUBSTITUTE
$TEXT

In the command format string S1 containsthe substitute character. To return the substitute character
to its original value, issue only the command words EDIT $SUBSTITUTE without the parameter S1
or exit string mode.

Example: Use of $SUBSTITUTE

10 LET X = 0

20 LET Y = O

30 REM INITIALIZE X AND Y
40 LET X = X+l

50 LET Y = Y+X

50 REM INCREMENT X BY ONE

70 REM SUW C@NSECUTIVE INTEGERS .

80 PRINT "SUM BF FIRST "; X; INTEGERS IS "5 Y
90 REM SUM FIRST TEN INTEGERS BNLY

100 IF X = 10 THEN 120

110 GO T@ 40

120 END

EDIT $SUBSTITUTE /:/ $FIND /ONE:70 REM/ $REPLACE /ONE ANL/ $END
TIME: 0:01

READY,

10 LET X = 0

20 LET Y = O

30 REM INITIALIZE X AND Y
40 LET X = X+1

50 LET Y = Y+X

60 REM INCREMENT X BY @NE ANL SUM CBNSECUTIVE INTEGERS
80 PRINT SUM @F FIRST ;3 X3 INTEGERS IS 5 Y

S0 REM SUM FIRST TEN INTEGERS @KLY

100 IF X = 10 THEN 120

110 Gg Te 40

120 END

Observe that $SUBSTITUTE allows the combining of two lines of text by translating the carriage re-
turn into a character which will be recognized by the scan.

$TEXT

EDIT $TEXT

$TEXT, always expressed without parameters, establishes one of two scan-control modes, the text
mode, which allows you to search throughafile ignoring all carriage returns and line numbers.

Often there are instances when you want to locate a string extending from one line to another. By
entering text mode, such strings are quickly located.

To leave the text mode and enter the program mode, type $PROGRAM (refer to EDIT $PROGRAM).
If you have completed your work with string functions, type $END.

44

$TIME
$TRANSLATION

$TIME

EDIT $TIME

$TIME, expressed without parameters, will give you the current run time since initial entrance into
the string mode of operation. This function may precede or follow any other string function and it
does not affect the location of string pointers (if any) or the translation table.

This ecommand gives you the central processor time only (not the terminal time) and is expressed
in minutes and seconds. The central processor time is automatically given after $END.

$TRANSLATION

EDIT $TRANSLATION

$TRANSLATION is a no-parameter command which allows you to list the translation table. This
table contains the characters whose initial values have been modified by the character definition
functions ($MULTIPLE or $SUBSTITUTE). In addition, IGNORE, BREAK, and ABORT characters
(if any) are listed.

All characters in the translation table are listed according to type. For all types, the input character
is listed to the left of the equal sign and its equivalent values are on the right.

The $TRANSLATION command may precede or follow any other string function. It does not affect
either the string pointers or the translation table.

Example:
100 ABCLEFABCDEF
110 G,H,I,d,K,L,G,H,I,J,K,L
120 M N N N N NNNNNNN

EDIT $SUB /:/ $IGNPRE /D/ $BREAK /B C/ $MULTIPLE /AK,/ $TRANSLATION
SUBSTITUTE:
$=CR

IGN@RE:
D

BREAK:
INPUT B
B

SPACE
c

MULTIPLE:

45

3. Abbreviations

Both the command and control words can be abbreviated. During the preparation of a program, these
abbreviations can save you time since it is not necessary to type the entire command.

Command Abbreviation
DELETE DEL
DUPLICATE DUP
EXTRACT EXT
LIST LIS
MERGE MER
MOVE MOV
PAGE PAG
RESEQUENCE RES
RUNOFF RUN
TEXT TEX
WEAVE WEA
$ABORT $AB
$BEGIN $BE
$BREAK $BR
$DUPLICATE $DU
$END $EN
$FIND $FI
$IGNORE SIG
SINSERT $IN
$LIST $LI
$LOCATE $LO
$MOVE $MO
$MULTIPLE $MU
$PROGRAM $PR
$REPLACE $RE
$RUNOFF $RU
$STRING $ST
$SUBSTITUTE $SU
$TEXT $TE
$TIME $TI
$TRANSLATION $TR
.LEFT MARGIN N .LEF N
.RIGHT MARGIN N .RIG N
.SPACE N .SPA N
. BREAK . BRE
. INDENT N .IND N
. UNDENT N .UND N
.CENTER N .CEN N
. PAGE .PAG
.SLEW N .SLE N
.IGNORE N .IGN N
- LINK . LIN
. LITERAL . LIT

46

4. Error Messages

This section contains a list of EDIT error messages that you might receive from the system. The
descriptions list possible reasons for their occurrence.

ILLEGAL COMMAND FORMAT
USE: . . (FOLLOWED BY FUNCTION EXPLANATION)

You have not properly entered the information required for this function. You have given too few
parameters (MERGE, WEAVE, DELETE, EXTRACT) or too many (RESEQUENCE, MOVE); the
order is incorrect (MOVE, DELETE, EXTRACT); or you have entered alphabetic information
for a function permitting only numeric input.

REISSUE COMMAND

Usually given in conjunction with another error message. This indicates that your request can
probably be fulfilled if (1) the parameters are slightly modified or (2) system traffic decreases.

THESE PARAMETERS HAVE PRODUCED A 6-DIGIT LINE NUMBER

The quantity 99999 is the largest line number allowed. A resequence can produce a larger number if
(1) the beginning sequence number is too large or (2) the increment is too large.

THESE PARAMETERS HAVE PRODUCED A NEGATIVE LINE NUMBER

Because of the negative increment, a line number less than zero was produced. The problem can
be corrected by:

1. Choosing a larger beginning sequence number

2. Choosing a smaller :block or
3. Choosing a larger increment (smaller absolute value).

INCREMENT BY ZERO
This is not an error message in the same sense as the other messages listed. If you did not intend
to increment by zero, you can probably repair the damage. Do not try to add lines to your program
until you have resequenced again or all lines with the same number will be replaced by only the
last line with that number.

UPPER BLOCK LIMIT MUST BE EQUAL TO OR GREATER THAN LOWER LIMIT

When using MOVE or DUPLICATE you must specify a block as N1-N2, where N1 is less than or
equal to N2.

N3 MUST LIE OUTSIDE THE INTERVAL (N1, N2)

When using MOVE, you must select an insert number N3 which is either less than the lower block
limit N1 or greater than the upper block limit N2,

47

PROGRAM TOO LONG

Your program has been resequenced because you have either chosen the resequence function or
your resequencing is part of the function you have chosen. In the process your program has
grown to more than 6144 characters. The solution according to the function chosen is:

1. Resequence
A. Select a smaller starting value
B. Select a smaller increment
C. Resequence a smaller block
2. Merge
A. Resequence the programs in such a way that WEAVE may be used and achieve the
same result.

B. Delete one or more statements in one or more of the programs.
3. Move

A. Delete one or more lines.

B. Resequence only the blocks being moved.
4, Duplicate

A. Duplicate at fewer points.
B. Duplicate a smaller block.
C. Remove a line in the program before duplicating.

PROGRAM TOO LONG AT XXX

During a duplicate, the size of your program increased to more than 6144 characters. The line
number given is the last line at which an insertion was performed.

MODIFIED PROGRAM HAS TOO MANY LINES

A maximum of 255 lines are permitted. The MERGE, WEAVE, or DUPLICATE will not be per-
formed unless the resulting program is within this limit.

MERGED PROGRAM TOO LONG WITH ...

The merged program must not be morethan 6144 characters. If there are more than two programs
in the merge list, it may be possible to merge them all by merging two at a time.

48

9B (20M) 7-68

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	xBack

