GET-3471

CEIRACI020,

COMPACT COMPUTER FOR PROCESS CONTROL

GENERAL @3 ELECTRIC

*Reg. Trademark of General Electric Co.

e

CONTENTS

Chapter Page
1 INTRODUCTION ... ittt ettt teataas e eeeeeeeanssenneaansenenensenasenns 1
300 > PO 1
FEATURES AND CHARACTERISTICS ittt ittt tttaetiieeeneeenaaanes 1

9 INTERNAL ORGANIZATION OF THE CENTRAL PROCESSORo iitiiiiiiiiiiannnnnnns 3
10011 1 30 2 P PP 3

11,8 24 (0. 3" 3
ARITHMETIC UNIT ..ottt ittt ta et ettt inattieaneteaanaseneenaseasennsonesnanns 3

INPUT AND OU T PU T ..ottt i ittt ettt ettt ettt ettt a s nannareennnaesss 4

3 THE REAL-TIME MULTIPROGRAMMING OPERATING SYSTEM ittt iirinnnrennnnns 5
PHILOSOPHY AND FUNCTIONS OF RTMOS ittt iiiiiieitiianiaeennannnnns 5

4 GE-PAC PROGRAMMING LANGUAGES it ittt iiatenaaranaanrasoananans 7
5 PROGRAMMING IN PAL ittt ittt ittt inaeanaaasaesannsoseneesaneneens 9
GENE RAL RULE S ... it ittt ettt ittt iaenaen e neaneaaanseanss 9

6 PAL PSEUDO-INSTRUCTIONS ..ttt ttttttttienatnttnstnmaesnsraeeeneeaesnsanesnoeancsneennss 11
SINGLE-WORD CONSTANTS - ctvttenntttiioonanenneannesennnresssansnnsssssnnssosnansssos 11
EQUIVALENCE ittt ittt tierateaeensenoeenssonesenenassnssensssesnssnassnss 12
GENERATING BLOCK STORAGE ...ttt ittt ittt ttannsaneeesanaessannsssnns 13
SPECIFYING PROGRAM STARTING ADDRESSES -« tct it ittt iiten sttt nonss 13
ENDING PAL PROGRAMS .ottt ittt ittt aeate et tasietaeiiaanaasseranseranonesenas 13
OTHER PSEUDO-INSTRUCTIONSt tittttitntinetsneonenenennensoenoeassonioeneenns 13

7 PAL FUNCTIONAL INSTRUCTIONS ittt ittt ittt titei i iiaannennnoannteenasesseaonaes 15
LOADING AND STORING ...ttt ittt tteentanaete et aeeneonanenseaaennennsnneesns 15
MEMORY ADDRESSING TECHNIQUES ittt ittt inreananneancoeanneennens 15
ARITHMETIC OPE RATIONS ...ttt ittt iittttitittiatiaenatenstennsasanaesaeeeeeaeenneanss 18
LOGICAL OPE RATION S . .. ittt ittt et ettt e e ettt ittt tsenaaseanasoaaanessas 31

TEST INST RUC TION Sttt ettt ittt it etaataatesasoaaseatnnesaneenassnenneeacnssss 38
BRANCH INST RUCTIONS ..t ittt it tit i tee ettt it enaa et nasaasnarssnaneeneaassannnsss 41

B 700 1 2J 1, (€ 43

8 AUTOMATIC PROGRAM INTERRUPT S i i it ittt et nae s 45
O SUBROUTINE S ..ttt ititttte ettt reeat e aaataaseeaaneetnanaeeeeaseneesneasnnessnassssnnseess 47
10 CIRCULAR LIS S oottt ittt ettt ittt it ittt esate s et eassanaseaaeesesaansensnesonnns 51
11 PROGRAM INTERCOMMUNICATION | ittt ettt in e aiennaaeaanas 55
INPUT AND OU T PU T ..ttt ittt e ittt ittt totaie s aaee o esessenetoaneasennases 55

12 SPECIAL DISCUSSIONS ..ttt iit it teeteeeaeetenttstereenneeanasnesnnmenaenasetnnennsnneenns 57
FLOW CHARTING ittt atretaeeettetettae e ieasiaraanaeesnaeeennnnneeenss 57
BINARY ARITHME T TICttt it itetiteittn it eneatanssnasnnnsoneeneeaneenanneenns 59
APPENDIX I MIXED PROGRAMS ...ttt ettt ittt ettt iniiaaaaeaanannenneannes 63
APPENDIX II OTHER PSEUDO-INSTRUCTIONS i ittt ii it ieeananas 65
APPENDIX III INSTRUCTION FORMA TS ittt it ittt i aa e e 71
APPENDIX IV ASSEMBLER ERROR FLAGS ittt iiieti e inaanacosenneans 73
APPENDIX V OCTAL/DECIMAL CONVERSION TABLE ittt 75

INDEX TO INSTRUCTIONS & PSEUDO INSTRUCTIONSo it 85

CHAPTER 1

INTRODUCTION

SCOPE

This manual will familiarize the GE-PAC 4020
programmer with the registers, commands and tech-
niques used to solve the computational and logical
portions of typical process control computing
problems.

All input/output functions in the GE-PAC 4020
computer are performed by the Real-Time Multi-
programming Operating System (RTMOS). RTMOS
does the actual code conversion, queueing, diag-
nosing, and machine-level I/O work. The philosophy
and functions of RTMOS are described on page 5 of
this manual. For the details of RTMOS, consult the
GE-PAC 4020 RTMOS manual (YPG 53M). This and
other manuals of interest to the GE-PAC 4020
programmer are described below:

1. The Instruction Reference Manual - YPG10M.
This manual shows the detailed instruction
formats, the octal operation codes, the
timing, the effects on each register, and
other details of each PAL instruction,
arranged alphabetically.

2. The GE-PAC Process FORTRAN Manual -
YPG14M. This publication presents a second
language in which the GE-PAC 4020 computer
may be programmed. It assumes a knowledge
of basic off-line FORTRAN and concentrates
on the added features and capabilities of
GE-PAC Process FORTRAN.

3. The GE-PAC 4020 System Manual - GET-
3460. This manual covers the characteris-
tics, specifications and machine-level
programming details of input/output sub-
systems and devices, as well as remote
communications between GE-PAC remote
scanners and other computers.

FEATURES AND CHARACTERISTICS

The GE-PAC 4020 computer follows in the tra-
dition of earlier GE-PAC 4000 series central
processors (the 4040, 4050, and 4060) and extracts
from them those elements proved by experience to
be of most value in process control and general

*Reg. trademark of General Electric Co.

computational work. Combining these features with
the higher speeds, reduced size and simplified con-
struction possible with monolithic integrated cir-
cuits, the GE-PAC 4020 computer offers an
unequalled combination of speed, ease of program-
ming, reliability, and attractive environmental and
mechanical characteristics.

The GE-PAC 4020 computer offers the user
GE-PAC Process FORTRAN as well as Process
Assembler Language, called PAL. Where running
time and memory requirements are not critical, the
programmer can enjoy the ease of coding, docu-
mentation and program modification inherent in
Process FORTRAN. Alternatively, the programmer
can gain the advantages of assembly-level
programming — maximum efficiency in running time
and program size and maximum control of machine
operations. The programmer may also mix PAL
and Process FORTRAN on a statement-by-statement
basis and take advantage of the best features of each
language.

The GE-PAC 4020 computer's 24-bit word and
extensive command repertoire help it perform any
given function in less memory and less time than
competitive short-word machines. The 24-bit word
can directly address up to 16, 384 core locations
with one instruction, can hold two 12-bit process
readings or limits, and provides precise single- or
double-word floating-point arithmetic capability.
Even fixed-point arithmetic is comparatively easy
to program thanks to the simplicity of long-word
scaling.

Related GE products compatible with the
GE-PAC 4020 computer include the GE 100, 200,
400 and 600-series business (and scientific) com-
puter systems, GE-MAC* instruments, GE-TAC
telemetering and remote supervisory equipment,
Directo-Matic* II wired program analog and digital
control systems, Mark Century numerical control,
X-ray emission gauges, and the full line of GE
communication and microwave products. To meld
these products into systems, several organizational
components of General Electric such as the Indus-
trial Process Control Division, the Internal Manage-
ment Operation, and the Industrial Drive Systems
Division have the application engineers and knowhow
to provide working systems on schedule and within
budget.

CHAPTER 2

INTERNAL ORGANIZATION OF THE CENTRAL PROCESSOR

GE-PAC 4020 computer systems are organized
as shown in Figure 1. The following discussion
examines each functional block in more detail.

CONTROL

ARITHMETIC
UNIT
(A.U.)

MEMORY

OUTPUT

Figure 1

CONTROL

The control function governs the operation of
system hardware. Knowledge of its operation is
seldom necessary to a programmer.

MEMORY

The GE-PAC 4020 central processor includes a
fast access (1.6 us) magnetic core memory, which is
available in 8K, 12K, 16K, 24K or 32K sizes. Each
word contains 24 bits of information, plus an addi-
tional odd-parity bit which is generated when the
word is written in core and checked upon retrieval.

As an auxiliary to core memory, bulk storage
devices are normally used to provide storage for
large volumes of programs and data when they are
not required in core. The following bulk storage
devices are available with the GE-PAC 4020 com-
puter system:

® Magnetic Drum

capacity - 16,384 to 262,144 words per
controller

typical access time - 8.3 ms
maximum access time - 16.6 ms

transfer rate - 15,360 or 30,720 24-bit words
per second

@ Magnetic Disc

capacity - 1,048,576 to 8,388,608 words per
controller

typical access time - 87 ms
maximum access time - 180 ms

transfer rate - 40,960 24-bit words per second

e Magnetic Tape

available in standard speeds and packing
densities

All of these devices communicate directly with
core memory. Odd parity is generated and checked
by drum and magnetic tape controllers to insure re-
liable data transfer. The disc controller generates
and verifies checksums of both addresses and data.

ARITHMETIC UNIT

All arithmetic and logical data manipulation
takes place within the arithmetic unit, which also
performs medium-speed input and output.

To perform these functions, the programmer
uses registers in the arithmetic unit. A register is
a group of related flip-flops, each of which can hold
either a one or a zero. If a flip-flop is set, it con-
tains a one; if it is reset, it contains a zero.

24 Flip-flops
A
f N
23]22[21{20]19}18]17]16[15 |14 131211 }10(9 |8 |7 |6 |54 |3 |2 [1]0
00]110000000000000001111
Flip-flop

1=Set
0= Reset

24 Bit Register

This method of showing the contents of registers
will be used throughout this manual — the shaded
portion indicates the relative position of the flip-flop,
or bit, within the word; the unshaded portion indi-
cates the state of that bit (zero, or one).

Shown below is a simplified diagram of the
principal registers in the arithmetic unit and an
explanation of their purpose.

B register — a 24-bit (flip-flop) register which acts
as a buffer between core memory and the arithmetic
unit.

A register — also 24 bits long; the computer’s
primary data register. Most commands affect its
contents.

g

DATA BUFFER | MEMORY | ADDRESS BUFFER

8
a
e e d

pTTE R

B REGISTER | » REGISTER

I REGISTER

A REGISTER

Figure 2

Q location (not shown) — a 24-bit memory location
that acts as an extension of the A register.

I register — a 25-bit register; holds the instructions
during their execution.

P register — a 15-bit register; holds the address of
the next instruction to be executed.

Besides these arithmetic unit registers, there
are also seven index, or X, locations, which are
core locations one through seven. These aid in the
execution of program loops.

INPUT AND OUTPUT

The GE-PAC 4020 computer permits I/O from
memory through two types of channels: direct
memory access channels and medium-speed channels
through the arithmetic unit. Direct memory access
channels permit data transfer to and from core
memory at a maximum speed of 625,000 words per
second. Because these channels are so fast, they
are normally used only for the transfer of data be-
tween core and bulk memory, and between core
memory and the arithmetic unit.

Since direct memory access channels require
complex controllers and are needed only for the
efficient operation of high-speed peripherals and bulk
storage devices, most I/O devices use medium-
speed I/O channels through the arithmetic unit.
These channels transfer information into or out of
core memory through the B register of the arith-
metic unit at maximum speeds of 29,000 or 56,000
words per second. These channels may be dedicated
to a single, medium-speed device, or shared by
several lower-speed devices through an I/O buffer
as shown in Figure 3. This arithmetic unit I/O
arrangement coupled with unique TIM/TOM (Table
Input to Memory/Table Output from Memory) hard-
ware enables the GE-PAC 4020 computer to drive the
peripherals simultaneously at full-rated speed, while
requiring a minimum of central processor time.

CORE
MEMORY

MULTIPLEXER

BULK
STORAGE
DEVICE

A.U. CHANNEL EXPANDER
1/0 BUFFER

ANALOG
INPUT - 1/0 TYPER
SCANNER

CARD READER

Figure 3

Process 1/O subsystems or programmer periph-
erals can also communicate with the GE-PAC 4020
computer by means of its A register. This feature
is used only for a few special functions and for situ-
ations where compatibility with the earlier GE-PAC
4040 machine is important, because it requires
much more central processor time than the normal
TIM/TOM operations.

CHAPTER 3

THE REAL-TIME MULTIPROGRAMMING OPERATING SYSTEM

There are two general types of software in a
GE-PAC 4020 system — a process control system
and an operating system. The process control sys-
tem usually consists of many functional programs
which perform the brainwork necessary to control a
particular process. They typically examine inputs,
perform computational and logical operations, and
call for output. Functional programs vary in im-
portance, some being more critical to system oper-
ation than others.

Operating systems vary significantly in scope
and efficiency. They may only consist of a program
to schedule the running of functional programs, or
they may also perform a variety of other functions.
The GE-PAC 4020 Real-Time Multiprogramming
Operating System is the most complete process con-
trol operating system available today. RTMOS con-
sists of a custom-tailored combination of standard
program modules that correspond to the peripherals,
subsystems, and functions of a particular system.

A typical RTMOS schedules the running of programs,
determines which programs should be in core at a
given time, supervises process, peripheral, and
bulk I/0, and performs a number of other useful
functions to aid the programmer and increase the
efficiency and reliability of the system. The philos-
ophy and functions of the RTMOS are described
briefly below. Consult the GE-PAC 4020 RTMOS
manual (YPG53M) for further information.

PHILOSOPHY AND FUNCTIONS OF RTMOS

In the RTMOS multiprogramming environment,
each functional program is assigned a priority rela-
tive to all other programs. Programs generally
reside on bulk memory (drum or disc) until brought
into core to be run.

An on-line snapshot of the GE-PAC 4020 com-
puter's core memory at a given instant would reveal
an unpredictable combination of programs in various
stages of completion. One would be using the arith-
metic unit, one might be coming in from bulk
memory, and the others would either be awaiting
their turn or using peripherals or process input/
output devices. ‘

This mode of operation assures a high load factor
on all system resources — central processor speed,
core capacity, bulk transfer and I/O speeds — and
also assures that the system is working on the most
important combination of programs.

RTMOS decides what mixture of programs to
have in core and which one to execute on the basis of
time, events and program priorities. It reviews this

critical decision every time one of three things
happens: 1/4 second passes; a bulk/core transfer is
completed; or a functional program finishes.

The highest priority program that wants to run
and is in core gets control of the central processor
and keeps it until it calls for input/output, delays
itself, shuts itself off, or until the RTMOS finds that
another program has become more important.

In some cases, RTMOS may decide to overwrite
low-priority programs and use their core area to
run a higher-priority program. Before overwriting
a program RTMOS will save selected registers and,
if necessary, any intermediate data used by the
program and store this on bulk memory. It does not
waste time, however, by rewriting the entire pro-
gram back onto bulk. After the high priority work is
done, RTMOS reloads the overwritten programs from
bulk memory, restores all registers and inter-
mediate data, and continues where it left off.

Flexibility is the hallmark of RTMGS. The pro-
grammer can decide — statically or dynamically —
the relative priority of his program, whether he
wants to permit it to be interrupted or overwritten,
how much temporary storage he wants to save, and
whether or not it should be executed from a fixed
core area. By adjusting all these and other param-
eters, the programmer can optimize system
performance.

RTMOS takes care of these input/output func-
tions: data or new program input from cards or
paper tape; process instrument readings; analog and
contact process control inputs and outputs; printed
and punched outputs; and functions of GE-PAC Re-
mote Scanners.

RTMOS also permits running programs to delay
themselves, shut themselves off, share data areas,
and run large bulk-resident subroutines.

The GE-PAC 4020 programmer instructs
RTMOS to perform these functions by inserting
special calling sequences at appropriate points in his
program, saving himself time, work and confusion
while assuring high overall system efficiency and
performance.

An on-line operator package is also available
with the RTMOS. This allows on-line access to
memory through an input/output typewriter. It per-
mits on-line core dumps, loading, and, with its
on-line memory change capability, allows the
operator to turn programs on or off and make other
system modifications.

GE-PAC PROGRAMMING LANGUAGES

A program is a group of instructions describing
a task to be performed by a computer. Since the
computer cannot interpret words and sentences,
instructions must be presented to it in the form of
binary numbers. Since it would be a formidable
exercise to write programs in binary, assembly
languages like PAL exist to make programming
easier.

PAL is one step removed from binary code. It
is a symbolic language meaningful to the programmer
and, with some decoding, to the computer. The de-
coding is done by a computer program called an
assembler which translates PAL coding into binary
instructions and constants for the computer.

To make programming even easier, compiler
languages like Process FORTRAN have been de-
veloped. Process FORTRAN allows programmers
to write in a simple English/engineering language.
GE-PAC Process FORTRAN includes powerful bit
test and bit manipulation instructions. It is possible
to mix PAL and Process FORTRAN statements to
take advantage of the best features of each language.

Process FORTRAN programs are translated into
PAL by a program called a compiler. The resulting
PAL program is then translated into binary machine
code by the assembler. Since this manual deals
with programming in PAL, consult the GE-PAC
FORTRAN Reference Manual for detailed Process
FORTRAN information.

The GE-PAC 4020 computer uses binary machine
code, PAL, and Process FORTRAN. The sequence
in which these languages are decoded is shown in
Figure 4. System programs are written in PAL,
Process FORTRAN, or a combination of the two.

The following sections describe the PAL instruction
repertoire and some of its uses.

Before beginning these sections it may be helpful
to review flow-charting and computer number sys-
tems since they will be referred to throughout the
manual. The Special Discussion section in the back
of the manual provides adequate review material.

Problem: Y = (A-B+C-D)/E

Process FORTRAN
statement . . .

is translated by the
compiler into . . .

a group of PAL
statements . . .

which are translated
by the assembler
into. . .

000 000 000 001 111 000 110 100
111 010 000 010 110 010 001 100

binary
numbers . .

011 010 000 000 ilO 111 010 101

which can then
be used by the
computer.

CHAPTER 4

Y = (A*B+C*D)/E

COMPILER
PROGRAM

%

LDA A
FMP B
STA J
LDA C
FMP D
FAD J
FDV E
STA Y

Y

ASSEMBLER
PROGRAM

Y%

GE-PAC
4020

Figure 4. Simplified Compilation and
Assembly Procedure

CHAPTER 5

PROGRAMMING IN PAL

GENERAL RULES

PAL programs are written on the GE-PAC
Language Statement Coding Form shown in Figure 5.
One instruction is written on each line of this form.
Once a program is written, it is keypunched onto
data processing cards and processed by the GE-PAC
4020 PAL assembler program, The output of this
program is a list of binary-coded instructions and
data which are executed when the program is run.

Uses of the various fields of the coding form are
described below.

LOCATION FIELD (Columns 1-6) - The location
field associates a name with the address of the in-
struction or data written on that line. Names used
in the location field may consist of up to six alpha-
numeric characters starting in column one. The
first character must be alphabetic. Numbers,
letters, and decimal points are the only characters
normally used in a location name. A name may be
defined only once in the location field of each
program.

An asterisk (*) in column one of the coding form
indicates that the rest of the line is a comment by the
programmer and will not be interpreted by the
assembler,

Example:

* SCANNER VALIDITY CHECK
c317 :
PTO4

LOCATION CLASSIFICATION (Column 7) - If
this column is blank, the name in the location field
is assigned a relative value; if Column 7 contains a
minus sign (-), the name is assigned a specific,
absolute value.

If an asterisk (*) appears in column seven, the
name in the location field is assigned an absolute
value, and the name is added to the common system
symbol table.

PO BN (4-88) . KAKG, TRADEWARK OF

Figure 5. GE-PAC Coding Form

OP CODE FIELD (Columns 8 - 10) - This field
contains the two or three character instruction code
which identifies the operation to be performed.

Example:

LDA
AKA
"SUB

OPERAND FIELD (Columns 12 - 63) - The oper-
and field contains the information required by the
instruction in the OP CODE field. The operand field
may contain any of the following types of parameters:

LABEL - Same as permitted in location field

DECIMAL - A decimal integer value

OCTAL - An octal integer value, preceded by a
slash (/).

EXPRESSIONS - An operand may be composed
of one or a combination of the parameters described
above. These are combined using the following
operators: + add, * multiply, - subtract, / divide.
Expressions are evaluated by the PAL assembly
program.

The meaning of asterisk or slash depends upon
its relationship to the other parameters. For ex-
ample, an asterisk represents multiplication only if
it is connecting two parameters. Otherwise, it indi-
cates the address of the instruction in which it
appears, for use in relative addressing. The slash
indicates an octal value when it precedes a numeric
parameter; otherwise it is a division sign.

10

The first blank space in the operand field termi-
nates the assembly of the instruction. Characters
appearing after the first blank space are treated as
comments.

Example:

TEMP1 } LABELS
PTG ZZ

999 DECIMAL
0 INTEGERS
/177176 OCTAL
/24 INTEGERS

PHINT+10
~NEXT-1/2

} EXPRESSIONS
VALUE +1

KEY (Language Identification - Column 70) -
must contain a seven if the statement is written in
GE-PAC Process FORTRAN; a six if it is a PAL
statement.

PROJ. #, PROG. #, SEQUENCE # - may be used
for identification or left blank.

04LBJ 10
6 or7 04LBJ 20
04LBJ 30

CHAPTER 6

PAL PSEUDO-INSTRUCTIONS

Before a PAL program is run it must be trans-
lated into binary machine language by the assembler.
1t is frequently necessary to tell the assembler to
define constants, build storage areas, etc. This is
done with pseudo-instructions. Pseudo-instructions
are executed only when the program is assembled.

The following pseudo-instructions are commonly
used.

SINGLE-WORD CONSTANTS

Single-word decimal constants are created in a
program with the following pseudo-instruction.

CON D, (decimal number) (scale factor)

FIXED POINT DECIMAL CONSTANT - The
number specified in this statement is converted by
the assembler into a binary fixed point number in the
word format shown below. The CON D pseudo-
instruction is removed from the program after the
conversion has been made. The resulting data are
stored in its place. Negative numbers are repre-
sented in two's complement form.

Example:

CON D,-195.3B17

AN S
N

v

ASSEMBLER

4 TN

1001111001011 01

n: B17 B23

+

23]22
1J11111111

i

-0 W
I ag

The B factor, or scale factor*, indicates where
the data are to be positioned within the word. If B is
not specified it is assumed to be B23.

This conversion is done only once, when the
assembler executes a CON D pseudo-instruction.
The constant generated by the instruction is the only
thing used by the computer when it runs the program.

*See page 22 for discussion of scaling.

CON F, (decimal number)

FLOATING CONSTANT - The number specified
is converted to a binary floating-point number and
placed in a format as shown below.

23122 - e — ; . - T Y

%/__J YT
T Exponent

Sign of Fraction:
0=+

Magnitude of Fraction

The fraction field contains the normalized (left
justified) fraction in binary form.

The exponent field contains the binary exponent
of the fraction. Since this field has no sign bit, 40g
is considered to be an exponent of zero; 41g through
TTg represent positive exponents; and Og through 37
represent negative exponents. This is illustrated in
the table below. Zero in floating point is repre-
sented by all zeroes.

EXPONENT VALUE IN EXPONENT FIELD
2 42 8
1 41 8
0 408
-1 378
-2 368
CON F, 18
Example: v
Py
4180, = +10010.0, = +.10010,, x 2°
Sign of 10 2 2
. S
Fraction
Exponent +40g Magnitude of Fraction
A V A \
23]22 17|16 0

0t 001011 00100O0O0O0O0O0OO0OO0OO0OO0O0OO

11

Since most decimal/binary conversion is per-
formed by the assembler and RTMOS, the pro-
grammer uses it only in those few instances when he
must examine numbers at the binary level.

Examples:

CgN F,. 12ES5
C@GN F, 9
C@GN F, -8. 14E-2

(.12E5 - .12 x 109

The following pseudo-instruction is frequently
used to set up a desired bit pattern in a word.

CON O, (octal number)

OCTAL CONSTANT - The octal number specified
is converted to binary by the assembler and placed in
the format shown below. Octal constants must be
unsigned octal integers. A maximum of eight octal
digits (one 24-bit word) may be defined by a single
CON O.

~CQON ¢, 6712
I
ASSEMBLER

v

28 o e e
0000000000OGCOG11011100T10T10
- J
Y
DATA

(There is no sign)

Examples:

CON @, 6
C@N @, 31
CgN @, 171771771

It is often necessary to insert alphanumeric con-
stants into your program to explain information
output from the computer. To have the computer
type out 92.3 is meaningless. It needs to be ex-
plained with a statement. When the computer types
out "TEMPERATURE OUTSIDE IS 92.3 DEGREES"
the number becomes meaningful. These explanatory
statements are supplied with alphanumeric constants
by the pseudo-instruction described below. The use
of this pseudo-instruction is explained in the RTMOS
manual.

12

CON A, (no. of characters), (characters)

ALPHANUMERIC CONSTANT - The assembler
translates these characters into the American
Standard Code for Information Interchange (ASCII)
and packs them three per 24-bit word.

The format for packing characters is shown
below.

8 0 B I i 0
0 0] 0

U\ g N
4 4 4

T
Character Codes

Since a maximum of three characters may be
packed into a single word, a single CON A may gen-
erate several words of information. Always specify
the number of characters to be represented.

A maximum of 51 characters is allowed in a single
CON A statement. However, several CON A state-
ments may be strung together to form longer
messages.

Example:
CON A,16,VALVE(7) IS OPEN
- —

Number of characters
(including spaces)

Alphanumeric characters

To accommodate this statement the computer
generates six sequential words of data as shown
below. Incomplete words are filled out with delete
codes.

CGN A, 16, VALVE(7) IS @GPEN
N\
— J
ASSEMBLER
|23 15 , 7] 0
0 v 0 A 0 L
0 v 0 E 0 (
0 T 0) 0 SPACE
0 1 0 S 0 SPACE
0 g 0 P 0 E
0 N 0 DELETE CODE 0 DELETE CODE
EQUIVALENCE

Since many programmers find it easier to re-
member symbolic names than numbers, PAL in-
cludes the following pseudo-instruction to assign a
value to a symbol without having to define it as an
instruction label.

(symbol) EQL (integer number)

ASSIGN A SYMBOLIC EQUIVALENCE - Whenever
the assembler finds that symbol in the program, it
uses the numeric value assigned to it in place of the
symbol. A symbol may be equated to another symbol
as long as the symbol on the right is pre-defined in
the program.

Examples:

START EQL 20

A EQL /732
PGINT EQL /6320

GENERATING BLOCK STORAGE

Programs frequently generate data which must
be stored somewhere. The following pseudo-
instruction instructs the assembler to generate this
storage area.

BSSK

BLOCK STORAGE RESERVATION - This pseudo-
instruction causes the assembler to reserve K words
of storage area beginning at the location of the BSS
word.

Example:
TABLE
ASSEMBLER
By T e 0
TABLE Five words

TABLE + 1 of storage area

TABLE + 2
TABLE + 3
TABLE + 4

SPECIFYING PROGRAM STARTING ADDRESSES

GE-PAC 4020 programs may be immediately
preceded by a pseudo-instruction indicating where

the program is initially to be placed. All-core sys-
tems use the ORG pseudo-instruction to do this. On
systems with a drum or disc the DCW pseudo-
instruction is normally used. These are explained
below.

ORG (starting address)

PROGRAM STARTING ADDRESS - This pseudo-
instruction causes the assembler to specify for the
loader program the starting core address of the
program,

DCW (bulk address),0

PROGRAM STARTING ADDRESS - In a bulk/
core system programs are usually loaded onto the
drum or disc and brought into core just before they
are run. This pseudo-instruction causes the assem-
bler to specify for the loader program the beginning
drum or disc address where the program is to be
stored.

ENDING PAL PROGRAMS

END

END OF PROGRAM - Tells the assembler to
stop. There must be an END statement after the

last word of a PAL program, in columns 8 - 10 of
the coding form.

OTHER PSEUDO-INSTRUCTIONS

The following pseudo-instructions are described
in the Appendix.

DCN

DOUBLE WORD CONSTANT - Generates double
word decimal, octal, or floating-point constants.
The GENERAL constant is also discussed.

SLW

SLEW PRINTER PAGE - Shifts printer to next
page when the assembly listing is printed.

DEF
DEFINE - Used to define new operations.
GEN

GENERATE DUPLICATES - Generates duplicate
PAL instructions to save repetitive coding.

13

CHAPTER 7

PAL FUNCTIONAL INSTRUCTIONS

LOADING AND STORING

Most PAL instructions operate on data located in the A register and/or the Q location. A and Q also hold
the results of these operations. The following instructions are used to transfer information from core memory
to A and/or Q before an operation, and to store the results back into core afterward.

LDA Y

LOAD A WITH C(Y) — The contents of core location Y, C(Y), are copied into the A register. The C(Y) are not
changed.

STA Y

STORE C(A) IN Y — The contents of the A register are capied into core location Y. The C(A) are not changed.

LDO Y

LOAD Q WITH C(Y) — The contents of core location Y are copied into location Q. The C(Y) are not changed.

STQ Y

STORE C(Q) IN Y— The contents of location Q are copied into location Y. The C(Q) are not changed.

Greater precision in arithmetic operations may be obtained using double-word operations. In these cases
both the A and Q are combined to make up a 47-bit double-word. The following two instructions are used for
the transfer of double-words to and from core memory.

DLD Y

DOUBLE LENGTH LOAD - The contents of core locations Y and Y+1 are copied into A and Q respectively. The
C(Y) and the C(Y+1) do not change.

DST Y

DOUBLE LENGTH STORE — The contents of A and Q are copied into core locations Y and Y+1. The C(A) and
the C(Q) do not change.

MEMORY ADDRESSING TECHNIQUES

Each 24-bit word in core memory has a unique address. In order to bring a word into a register to
operate upon its contents it is necessary to specify its address. For example, if 'Y' specifies the exact
address of a word in core memory, we may bring that word into the A Register with the following instruction:

LDA Y
This technique is called direct, or absolute, addressing. It is used primarily for communication with RTMOS,
and other areas of permanent core memory. Besides direct addressing there are three other methods of

addressing core: relative addressing, which is used within functional programs; automatic index modification,
which is used to access elements of a table; and indirect addressing, which is rarely used.

15

Direct Addressing

In direct addressing of core memory, the number, symbol or expression in the operand field of a PAL
statement refers directly to the address of the desired 24-bit word.

It is possible to directly address the first 16,384 words of core memory. Since the RTMOS resides at fixed
locations in this area, all communications with it use direct addressing. Direct addressing is also used in pro-
gram intercommunication, described on page 55.

Examples:

14372 C (/14872)— A Register

ALVE -1 3 C(/1000) = A Register

1001

Relative Addressing

In relative addressing, the number, symbol, or expression in the operand field specifies a core location
relative to the address of the instruction being executed.

Relative addressing permits the addressing of 8191 locations above and 8192 locations below the point in
core memory at which the instruction using it is located. It may be explicitly called for by placing an asterisk
in the operand field of an instruction (normally in column 12). 1In this case, the number, symbol, or expression
in the operand field is added at execution time to the address of the instruction, so that the result specifies the
desired core address.

Examples:

-——— This operand references. .

«<—— The word at this location

-— this location 4}

This operand references. ’

Most functional programs use relative addressing for addresses within themselves, so that they may run
correctly from any area of core memory. This capability is integral to the power of the RTMOS.

To maximize the use of relative addressing, the PAL assembler program generates relative addresses
whenever possible.

16

Example:

The assembler will interpret this coding . .

ITEM

Automatic Address Modification

The GE-PAC 4020 Computer uses seven index locations called '"X'" locations which are core locations one
through seven. The first two are used for special purposes; the other five are available for general use.

In automatic address modification, the content of an X location, specified at the end of the statement, is
added to the location specified by the number, symbol, or expression in the operand field. The sum of these
specify the address of the desired word. Only one X location may be specified in a single statement.

Examples: Where C(4) = /10, and the LDA instruction is at core address /10000

C(/20010)—=A Register
C(/16710)—=A Register

C(/10012)—eA Register

A list of instructions that may use automatic address modification is included in the GE-PAC 4000 Instruc-
tion Reference Manual.

The primary use for automatic address modification is in looping through tables of data. This is discussed
on page 43. There are also many other uses for indexed addressing and X locations that will become apparent
later on.

The following instructions may be used to load and store the contents of X locations.

LDX Y,X

LOAD INDEX LOCATION X WITH THE C(Y) — The contents of core location Y are copied into the index location
specified by X. The C(Y) are unchanged.

STX Y,X

STORE C(X) INTO Y — The contents of the index location specified are copied into core location Y. The C(X) are
unchanged.

17

Indirect Addressing

Indirect addressing is seldom necessary in programming the GE-PAC 4020 computer because of its exten-
sive direct and relative addressing capabilities. When indirect addressing is desirable, the following two
instructions are used.

ILDI Y

LOAD A INDIRECTLY — The rightmost 15-bits of the word in core location Y refer to a core memory location Z.
The contents of core location Z are copied into the A register. The C(Y) and C(Z) are unchanged. Indexing and

relative addressing, if used in the LDI instruction, are completed prior to fetching C(Y). If bit 18 of the word at
location Y is set to one, the address specified within Y is relative to location Y.

STI Y

STORE A INDIRECTLY — The first 15-bits of the word in core location Y refer to a core location Z. The con-
tents of this core location are replaced by the contents of the A register. The C(Y) and C(A) are unchanged.
Indexing and relative addressing, when used in the LDI instruction, are completed prior to fetching Y. If bit 18
of the word at location Y is set to one, the address specified within Y is relative to location Y.

Indirect addressing is usually used to access areas of core memory above 16K. To do this the programmer
specifies the location he wants in one core location and then addresses it indirectly. Since other addressing
techniques are as powerful and more simply applied, indirect addressing is seldom used.

ARITHMETIC OPERATIONS

Add, subtract, multiply, and divide are the four arithmetic instructions used by the GE-PAC 4020 com-
puter. They may be performed in either floating-point or fixed-point arithmetic. Because it is the simplest to
use, floating-point is discussed first.

Floating- Point (Single-Word Precision)

Floating-point numbers are expressed as fractions raised to a power of ten, as opposed to fixed-point num-
bers which are expressed as decimals or integers.

Fixed Point Floating Point
+18346 = +.18346 X10™
+18.346 = +.18346 x 10*2
-.0018346 = -.18346 x 102

At assembly time, decimal floating-point numbers are converted to binary floating-point form and stored in
the format shown below.

- N /
Sign of fraction Exponent Magnitude of fraction
0=+
1=-

A detailed explanation of this format is shown on page 11. However, since most decimal/binary conversion
is done by the assembler and RTMOS, knowledge of formats is necessary only in those few instances when the
programmer must examine numbers at the binary level.

0:!:9

Single-word floating-point arithmetic allows expression of numbers in a range of +2.15 x1 with five deci-

mal place precision.

18

The following instructions are used in floating-point arithmetic calculations. All numbers used in floating-
point calculations must be in floating-point form.

FAD Y

FLOATING ADD — The contents of location Y are added to the contents of the A register. The result is placed in
the A register. The C(Y) are not changed.

FSU Y

FLOATING SUBTRACT — The contents of location Y are subtracted from the contents of the A register. The
result is placed in the A register. The C(Y) are not changed.

FMP Y

FLOATING MULTIPLY — The contents of location Y are multiplied by the contents of the A register. The result is
placed in the A register. The C(Y) are not changed.

FDV Y

FLOATING DIVIDE — The contents of the A register are divided by the contents of location Y. The result is
placed in the A register. The C(Y) are not changed.

Example:
LDA FC5 5—w=A reg
“FSU“FC3 5-3 =2 —=A reg
FAD FC38 2+8 =10—=A reg
FMP FC6 10*6 =60—=A reg
FDV FC3 60/3 =20—>A reg
STA TEMP C(Areg) —=TEMP

FC5 CON F,5

FC3 S CON F,3 DEFINITION OF

FC8 CON F,8 CONSTANTS

FC6 CON F,6 AND

TEMP BSS 1 S TORAGE

Floating-Point (Double-Word Precision)

Greater arithmetic precision may be obtained using double-word floating-point operations. Double-word
operations permit expression of numbers over a range of +5.8x 10*76, with eleven decimal place precision.

Double-word computations use the same operation code as single-word. Selecting the mode (single- or
double - precision) of floating-point arithmetic operations is discussed on page 20. To provide double-word
precision the Q location is used as an auxiliary to the A register. The binary format for double-word instruc-
tions is shown below. Remember that all data used in double-word floating-point computations must be in
double-word floating-point form.

A Q

N\ v A\ - J
Sign of Exponent Magnitude of fraction
fraction

0=+
1=- * Not used, always zero.

19

The following describes the execution of the floating-point instructions in the double-precision mode.

FAD Y

FLOATING ADD — The double-word expressed in the 47 bits of core locations Y and Y + 1 is added to the double-
word expressed by the combination of A and Q. The result is placed in A and Q.

FSU Y

FLOATING SUBTRACT — The double-word expressed in the 47 bits of core locations Y and Y + 1 is subtracted
from the double-word expressed by the combination of A and Q. The resulting double-word is placed in A and

Q.

FMP Y

FLOATING MULTIPLY — The double-word expressed in the 47 bits of core locations Y and Y + 1 is multiplied
by the double-word expressed by the combination of A and Q. The result is placed in A and Q.

FDV Y

FLOATING DIVIDE — The double-word expressed in A and Q is divided by the double-word expressed in core
locations Y and Y + 1. The result is placed in A and Q.

Shifting Between Single- and Double-Precision Operations

Since the same instructions are used to perform single and double precision floating-point operations, the
following instructions indicate which mode is to be used when executing a floating-point instruction.

FMS 1

FLOATING MODE SHIFT TO SINGLE-PRECISION — All floating-point instructions following this instruction will
be performed in single-word precision.

FMS 2

FLOATING MODE SHIFT TO DOUBLE-PRECISION - All floating-point instructions following this instruction

will be performed in double-word precision. Any even number in the operand field causes a shift to double-
word precision.

Example:

FMS 1
LDA“RDNG1

FAD CNST -—— Executed in single-word precision
. STA VALVE1

FMS 2
DLD RDNG2

FMP DBL CON -—— Executed in double-word precision
'DST VALVE2

20

It makes no difference where the floating mode shift instruction is used. Floating-point instructions will be
performed in the mode last specified. Be sure that the data used agrees with the mode specified. It is good
practice to set the desired floating mode at the beginning of each program using floating-point instructions

Overflow

An occasional source of grief to the programmer is a condition called ""arithmetic overflow.' This occurs
when the result of an arithmetic operation is too large to fit in the data portion of the A register, and a carry is
propagated into the sign bit.

For example, the maximum number that can be stored in a single floating-point word is 2.15 x 109 If we
multiply 2.0 x 109 by 2.0 x 10° we will obtain 4.0 x 1010 which is too lar §e to be held m the A register. Over-
flow will occur. If we were working in double-word precision 2.0 x 1040 by 2.0 x 1037 would also give us an
overflow. The GE-PAC 4020 computer detects overflow with an overflow flip-flop, named "OVRF." I overflow
occurs OVRF is set to one. If no overflow occurs OVRF is unchanged. The following instruction will test the
state of OVRF.

JNO
JUMP IF NO OVERFLOW — JNO tests the condition of the overflow flip-flop, OVRF. If it is set (overflow

occurred), the next instruction in the program is executed and OVRF is reset. If OVRF is reset (no overflow)
the computer jumps to the second sequential location.

Example:

~“RDN G
ONST1

FAD Y
FDV."CONST2
ING -
“BRU @OVRERR -—— Executed next if OVRF set
STA Z <—— Executed next if OVRF reset

If Overflow Occurred — The instruction that immediately follows JNO is executed. Any instruction may be
used here, but typically it is a branch to some program to correct, or at least note, the error.

If No Overflow — The computer skips over the first sequential instruction and continues on in the program
from the second.

Overflow conditions are detected after the execution of FAD, FSU, FMP, FDV, ADD, SUB, MPY, DVD,
AKA, SKA, FIX, FLO, SLA, and DLA instructions. These are the only instructions that may cause arithmetic
overflow.

The JNO instruction is most helpful in debugging programs. To perform spot checks for possible overflow
simply insert a JNO after each section of questionable arithmetic operations. Once any errors have been cor-
rected, the JNO's may be removed. To check for overflow in debugged and running programs, reset OVRF at
the beginning of the program and insert a single JNO at the end.

The procedure for resetting OVRF follows:
JNQ
. NQP -—— No OPeration - Indicates that no instruction

is to be executed. Computer moves to next
instruction.

21

Overflow problems can be a headache unless they are caught in the debugging stage. Although there is no
standard treatment for overflow, taking the following action during the debugging stages will eliminate most
occurrences.

® Rearrange arithmetic instructions and rescale the data.

® Check to be sure the data source (analog scanner, etc.) is giving correct data. Data reasonability
checks should be built into programs to help spot bad devices while a program is running.

This should cure most overflow problems. If overflow still occurs occasionally, take one or both of the
following actions:

@ Print a message identifying the error and where it occurred.

) Recalculate, using the last valid data obtained.

Another, but less bothersome, problem is arithmetic underflow. This occurs when the result of an arith-
metic operation is too small to be represented in a 24-bit register. To test for underflow, test the accumulator

register for all zeroes (see page 39).

Fixed Point (Single-Word Precision)

Fixed-point numbers do not use exponents to indicate their magnitude. The following format is used to
represent a fixed-point number in a GE-PAC 24-bit word. If a number is negative, the number is represented
in two's complement form and bit 23 will be a one.

Decimal numbers are converted to binary within the computer and are stored in the data portion of the word.
The exact position of the data within the word is determined by the B factor, or binary scale factor, which is
specified by the programmer.

Fixed-point arithmetic offers two advantages over floating point. First, it is faster (see Figure 6).

Operation Floating Point Fixed Point
ADD 203.0 us 3.2 pus
SUBTRACT 208.0 us 3.2 us
MULTIPLY 151.0 us 8.9-12.1us
DIVIDE 182.0 us 13.7 us

Figure 6. Comparison of Execution Times

Second, it provides an extra 6 bits of precision — 17 bits for floating point vs. 23 for fixed point.

There are two drawbacks to using fixed-point arithmetic. First, it does not easily permit double-precision
multiply and divide. Second, it is difficult to use. Because of this, programmers normally use it only when
computer time is critical.

Fixed-point arithmetic requires that the programmer keep track of the decimal point, just as he must when
using an adding machine, desk calculator, or paper and pencil.

Fixed-point quantities are represented in a GE-PAC computer by a sign bit and 23 bits of data. Positioning
this data within a word is called "scaling.'" The number of bit positions between a number’s binary point and the
machine's binary point is called its scale factor, abbreviated to '"B'". The machine's binary point (B0) is located
between the sign bit and the adjacent data bit.

22

Shown below is what 47.3g would look like if it were represented in a GE-PAC register at a scale factor (B)
of 6:

23] 17 18 0
o/t 0011101100000 00000O0O00O00O00O0
; 7
BO B6

+47.3

100./ 1?1 \’)11

It happens that B6 is the smallest scale factor that could be used, since putting this same number at B5
would have changed the sign bit to a one, erroneously suggesting a negative number. The maximum scale factor
would be B20 in this case, and anywhere between B6 and B20 would be acceptable. Choice of the best scale
factor for a number depends upon its possible range, and the calculations it will be subjected to. If a number is
positioned at the minimum scale factor at which it is correctly represented, it is said to be left justified.

To add or subtract two fixed-point numbers, they each must have the same scale factor, or B. If they are
different, one or the other must be shifted to put both at the same scale factor. The arithmetic shift commands
which are explained later on will do this.

In multiplying, the B of the product is the sum of the B's of the factors; in dividing, the B of the quotient is
the difference of the B's of the dividend and the divisor.

To preserve maximum precision, it is desirable to keep numbers as far to the left as possible without push-
ing data into the sign bit and causing overflow.

Negative B's occur when representing fractions with one or more significant zeroes. A negative B repre-
sents the distance to the left between BO and the binary point of the fraction.

Positive (or negative) B's greater than 23 are also possible. Positive B's above 23 indicate use of only the
23 most significant data bits of the number (or less, if the number is not left justified).

Scale factors are not represented within the computer; there is no binary point or any other indication of
their existence. The B factor simply describes how a binary number should be positioned within a word. The
programmer must keep track of this positioning by associating a B with every fixed-point number. By com-
paring the B factors and the range of the numbers he can determine whether or not the result of an arithmetic
operation will cause overflow. The computer will tell him if an operation does cause overflow, but the pro-
grammer himself must correct for it.

The following operation instructions are used to perform single precision fixed-point operations.

ADD Y

FIXED-POINT ADD — The contents of core location Y are added to the contents of the A register. The C(Y) are
not changed. The scale factors of both numbers must be the same.

SUB Y

FIXED-POINT SUBTRACT — The contents of core location Y are subtracted from the contents of the A register.
The C(Y) are not changed. The scale factors of both numbers must be the same.

MPY Y

FIXED-POINT MULTIPLY — The contents of core location Y are multiplied by the contents of the Q location.
The result is placed in A and Q with the most significant half in A, The C(Y) are not changed. The scale factor
of the result is the sum of the scale factors of the numbers being multiplied. Bit 23 of Q is not used and is
always set to zero.

23

NOTE: As a part of the fixed-point multiply instruction the original contents of A are algebraically added to Q.
Therefore, the program should normally load zeroes into the A register before multiplying. While this
feature can be useful in computing equations such are ab+c, it is omitted from the example for clarity.

Example:
5% 11

5 = /5 and resides in Q @ B4
11 = /13 and resides in Y @ B6
C(AReg) =0

23] - 0
0|01 01 0000O0O0OOOCOOOOOOOOO0O0

Q

¥
B4
*

JoJoo1 o1 100000000000000000

L)
B6
A \V/ Q

oJloooo1101110000O00O0O0O0O0O0O0OU0 FIOOOOOOOOOOOO00000000000

B10 * Not used, always zero.

The answer is /67 or 55, which appears in A and Q @ B10.

DVD Y

FIXED-POINT DIVIDE — The contents of the A and Q are taken as a single number and divided by the contents
of core location Y. The quotient is placed in Q; the remainder in A. The binary scale factor of the quotient is
equal to the scale factor of C(A and Q) minus the scale factor of the C(Y). The remainder carries the same
scale factor as the dividend less 23. Its sign is the same as that of the divisor.

Example:
641 - 24
641 = /1201 and resides in A and Q @ B30
24 = /30 and resides in Y @ B10
A Q
2322 0 23 0
0100000000000000000000101 «</l0 00O0OOO0OLl 00O0O0COCO0OOOCOOO0O0OOO0OTO 0O
N . 4 J
- B30 *not used
v 23|22 El
ofo o00011000000O0O0OOO0OO0O0O0O0 q
B10
A \/ Q
23]22 o] [esl22 0
00 01 0001000O0O0OCO0OO0OO0O0OOOO0O0O0O0OO0 0jlo 0o 00 O0OO0O0OOOOOOOOTI110100O0O0TC0
N 4) - 4 J
B7 Y B20
Remainder Quotient
Sign of remainder Sign of quotient

The answer is /32 with a remainder of /21, or 26 with a remainder of 17.

24

Use of Fixed Point Instructions

Example:

Compute: PRSRE = C1*RDNG + C2

where: 0 < RDNG <4000 @ B17

where: Cl=2
Working backward we first determine the B necessary to hold the
result by computing:

also determine B for C1 and C2 B?

PRSREmax = 2*4000 + 43 = 804310

804371 = 17553g which requires B13. C1 may be scaled at B2.
be at B19.

To add C2 to the results of C1*RDNG it must

Assume RDNG is placed in the program @ B17 by some other program.
Example:

ZEROES—~A

reg
RDNG—-Q reg @B17

C1*RDNG+A&Q @B19
@B19

C1*RDNG+C2—-PRERE@B19

Fixed-Point (Double-Word Precision)

Fixed-point double-precision arithmetic uses A and Q together to form a single word 47 bits long. This
allows expression of numbers ranging between plus and minus 70,368,744,177,6631

The format for represent-
ing a double-word fixed-point number is as follows:

I >
Y

Sign Data

0=+

* Not used. always zero.
The double word add and subtract instructions are explained below. There are no double-word fixed-point
multiply and divide instructions in PAL.
DAD Y

DOUBLE-LENGTH ADD - The contents of core locations Y and Y+1 are algebraically added to A and Q together
The result is placed in A and Q. The C(Y) and C(Y+1) are not changed.

DSU Y

DOUBLE-LENGTH SUBTRACT — The contents of core locations Y and Y+1 are algebraically subtracted from A
and Q. The results are stored in A and ©. The C(Y) and C(Y+1) are not changed.

25

Scale Modification By Arithmetic Shifts

Since fixed-point arithmetic requires the continual juggling of scale factors, it is helpful to have a means of
shifting data one way or the other within a register. The following instructions shift data in the A register, or
A and Q together.

SRA K
SINGLE RIGHT ARITHMETIC — The contents of the A register, with the exception of the sign bit are shifted

right K places. If the sign is positive (0), zeroes are inserted into the vacated positions. If the sign is negative
(1), ones are inserted into the vacated positions. Bits shifted out of the right end are lost.

Example:
A {23[22 0
0/1 100000000000 0000011000
’
B11
SRA 3
A |23]22 0
ofo o 0110000000000000000T1 I]-a
0
+ 0,
Bl4
Sign (0) is propagated to the right. Bits are lost out of the right side of
A. There is no overflow indication.
Example:

A 238122 0
14011111111 11111111101101
f
B15
SRA 3
A |29[22 0

l]lllOllll111111111111101

¥
B18

Sign (1) is propagated to the right. Notice that the propagation of ones when shifting a negative number does not
affect its value.

SLA K

SINGLE LEFT ARITHMETIC — The contents of the A register are shifted left K places. Vacated positions are
filled with zeroes. If the original sign of A was positive (0) and a one is shifted into bit 23, OVRF will be set.
If the original sign of A was negative (1) and a zero is shifted into bit 23, OVRF will also be set.

26

Example:

9

A
ofJio101000000000600010111 1]
B20
SLA 4
A
jal0f1 0000000000001011110000 0's
0 ¥
0! B16

Bits are lost out of the left side of A. OVREF is set, since original sign
was positive (0) and ones were shifted through bit 23.

DRA K

DOUBLE RIGHT ARITHMETIC — The contents of A and Q with the exception of their sign bits, are shifted K
places to the right. Bits shifted out of A are loaded into Q beginning at bit 22. Bits shifted out of Q are lost.
The sign of A is propagated into the vacated positions. The sign of Q is set to zero. A single DRA instruction
may shift up to 31 positions.

Example:

[1ffoooooo0o0o0000000000010011f [1Jooo1000000000000001 101
4

B40

DRA 4

11 1110000O0O0O0O0OO0OO0OOCO0O0OO0O0O0I1

00011000100()000000000001*.1

L)
B44 0

DLA K

DOUBLE LEFT ARITHMETIC — The contents of A and Q with the exception of the sign of Q are shifted left K
places. Bits shifted out of the left end of Q go into the right end of A. Bits shifted out of A are lost. Zeroes
are shifted into the right end of Q. If the sign of A was positive (0) and ones are shifted into that position, OVRF
will be set. If the sign of A was negative (1) and zeroes are shifted into that position, the OVRF will be set.

Bit 23 of Q is always reset to zero. A single DLA instruction may shift up to 31 positions.

Example:
A Q
el gL e Ty s T m - 0
|0|01000000000000000000111 1
3
B37
DLA 3
A Q
23|22 ' o] [a3f22 0
a]ojoooooo0000000000001 11011 o/t 0 0000000000000O0T110100 Op¢0s
0
0 4

B34

Since a one shifted through bit 23 of A and bit 23 was originally zero, OVRF is set.

27

Shifting to adjust scale factors is the most common use for arithmetic shift instructions — either to make
scale factors equal before an add or subtract instruction, or to prevent possible overflow while obtaining maxi-
mum precision in calculations.

Example: Y=X+2U Where constants are defined as shown:

ER@
Z—-Q@B6
U*Z—-AandQ@B12
RESULT—=Y@B1 2
X—=A@B11
Bl11—=B12
X+Y—=A@B 12 .
RESULT—Y@B1 2

Y

X ,1000B11
z ,50B6

U ,52B6
ZERO , 0

Why not SLA 1 to B11 instead? Overflow would occur.

Example: Y=C+D Where constants are defined as shown:

D — A reg
... B6—B1O
C+D== A reg@Bl11
RESULT—-—=Y@H11

D,1000B10)\ CONSTANTS
..D,50B6

el -]

VARIABLE STORAGE

Other Fixed-Point Instructions

Besides the basic add, subtract, multiply, and divide instructions used in fixed-point arithmetic, the
following instructions provide an added degree of computational flexibility and efficiency.

AKA K
ADD K TO A - The integer K is added to the contents of the A register. OVRF will be set if overflow occurs.

SKA K

SUBTRACT K FROM A — The integer K is subtracted from the contents of the A register. OVRF will be set if
overflow occurs.

LDK K
LOAD A WITH K — The integer K replaces the contents of the A register.

28

Example: Y=5+7-2

5= A reg
5§+7=12—+=A reg
12-2=10—"A reg

K is always loaded, added, or subtracted at B23.

General Utility Instructions

[y

The following instruction is particularly prior to performing a fixed-point multiply. It shifts the contents of

the A register to Q, thus setting up registers for a multiply instruction, and then loads zeroes into A.

MAQ

MOVE A TO Q — The contents of the A register replace the contents of Q. Zeroes are loaded into A.
Example: Y = 10*PICON

- 10—A reg . .
C(A reg)—~Q,ZEROES —A reg
SN peE) g RN RR TR L L
RN Ll LR Ry

,3.1416B5

When a program is first written, it is helpful to occasionally insert dummy instructions to make future
addition of instructions easier. It is also helpful to have dummy instructions to insert in place of instructions
that must be removed. The following instruction is used as a dummy.

NOP

NO OPERATION — No operation is performed, program control moves to the next instruction.

Occasionally, when available core area is scarce, but computer time is plentiful, the following instructio
may be useful.

OOM Y.
OPERATE ON MEMORY — Core location Y serves as the A register for the first instruction following OOM.
The C(Q) are destroyed.
Example: Add one to C(CNTVAL). Would look like this if coded conventionally . . .
SAVE A reg

} PE RFORM OPERATION

RESTORE A reg

@gNE

Required core locations - 5 words, execution time - 16 us

n

29

or like this, using OOM:

¢g@M CNTV AL

ADD . §NE OPERATION PERFORMED
o WI THOUT DISTURBING A
gNE "C¢N D, -1
.

Required core locations - 2 words, execution time - 65. 21

The use of OOM increases execution time but saves core. Consult the Instruction Reference Manual for instruc-
tions that may be OOM'ed.

Changing Arithmetic Modes

Fixed-point operations may be performed only with fixed-point numbers. Floating-point operations may be
performed only with floating-point numbers. For example, we cannot add fixed point 12.4 to floating point .5 x
102. To work with these numbers we must either convert .5 x 102 into a fixed-point number and ADD it to 12.4,
or convert 12.4 into a floating-point number and FAD it to .5 x 102,

To convert numbers from one mode to another use the following instructions.

FIX K

FIX A FLOATING POINT NUMBER — The contents of the A register are converted from a floating-point number
to a fixed-point number with a scale factor of K.

FLO K

FLOAT A FIXED POINT NUMBER — The contents of the A register are converted from a fixed-point number
with a scale factor of K to a normalized floating-point number.

NOTE: The instructions above describe the operation as it occurs in single-word precision (FMS 1). In
double-word precision (FMS 2) these instructions will act upon the double word expressed in A and Q.

Example: Y=D+F

D = fixed point number @ B17

F = floating-point number

Performing the operation in floating point;

LDA-.D D—=ATreg
FLG 17 D CONVERTED TO FLOATING POINT
FAD. F D+F——ATeEQ
STA Y RESULT S—=Y
H
D 'C¢N_D,50.0B17
F C@N F,.25E2
Y B§s‘1

30

or, in fixed point;

LDA . F F——Areg
CFIX 17 F CONVERTED TO FIXED POINT@B17
_ADD D F+D—Areg
STA Y RESULT§ —Y
D “D,50., 0B17
F " F,.25E2
Y

1

In conjunction with the FMS instruction, FIX and FL® may also be used for the conversion of double-word
numbers to single-word and vice-versa.

Example: FXN@ = double-word fixed-point number @ B17
FLONG = single-word floating-point number that could be represented in fixed point @ B12

Convert: FXNQ@ to a single-word floating-point number
FL@NQ@ to a double-word fixed-point number @ B12

FXN@—~A, FXN@+1—Q

SHIFT TO SINGLE-WORD PRECISION
FLOAT C(Areg)@B17

RE SU LT S——+=FXN(

ZEROES——Areg

ZEROES —=Q

FLBNG —=Areg , ‘ N
SHIFT TO DOUBLE-WORD PRECISION
FIX C(Areg)@B12 ;)
RESULTS—FL@GN@G and FLONG+1 '

LOGICAL OPERATIONS

A major feature of the GE-PAC 4020 computer is the number and variety of its logical operations. The
following sections cover the PAL repertoire of bit manipulation, word logical, masking, logical shifting, and
bit counting instructions.

Bit Manipulation Instructions

Instructions that manipulate individual bits of a 24-bit word are often useful. With them it is possible to
dictate the sequencing of a series of process operations, set bit flags for inter/intra-program communication,
or create any desired bit pattern within a word. These instructions are explained below.

SBK K

SET BIT K — Bit K of the word in the A register is set to one. All other bits are unchanged.

RBK K

RESET BIT K — Bit K of the word in the A register is reset to zero. All other bits are unchanged.

31

CBK K

CHANGE BIT K — If Bit K was set to one, it is then reset to zero. If it was reset to zero, it is then set to one.
All other bits are unchanged.

Examples of SBK, RBK and CBK:

011111000061 01011100000711

11111100001 0111110000011

IBK K

ISOLATE BIT K — Bit K of the word in the A register is unchanged. All other bits are reset to zero.

LBM K

LOAD BIT MASK — Bit K of the word in the A register is reset to zero. All other bits are set to one.

LDO K

LOAD ONE INTO BIT K OF A — Bit K of the A register is set to one. All other bits are reset to zero.

ADO K

ADD ONE TO BIT K OF A — Plus one is algebraically added to the number represented by bits 23-K of the A
register. This instruction will not affect OVRF.

Register Manipulation

These instructions set the A register to all zeroes, all ones, or take the one's or the two's complement of
its contents.

LDZ

LOAD A WITH ZEROES — All bits of the A register are reset to zero.

LMO

LOAD A WITH MINUS ONE — All bits of the A register are set to one.

32

CPL

ONE'S COMPLEMENT OF C(A) — Each bit of the A register is inverted. Ones are replaced by zeroes; zeroes
by ones.

NEG

NEGATE C(A) — Each bit of the A register is inverted and one is added to bit position zero, thus forming the
two's complement (negative value) of the original number.

Word Logical Operations

In process control programming it is frequently helpful to look at particular parts of a word that contain
information concerning particular areas of your process. Word logical masking techniques make this possible.

ORA Y

OR C(Y) WITH C(A) — Each bit of the contents of core location Y is compared with the corresponding bit of the
A register. If either or both contain a one, that bit of A is set to one. Otherwise, it is reset to zero. The
C(Y) are unchanged.

Example:
0110001010001 110001
- —
~—
Logical OR
A
A |
000101000000O0O0O0O0OO0O0O101110
A 4
0111011010001 11000101110
ANA Y

AND C(Y) WITH C(A) — The corresponding bits of core location Y and the contents of the A register are com-
pared. If corresponding bits in A and Y are ones, that bit of the A register is set. If either or both of the
corresponding bits are reset to zero, that bit of the A register is reset. The C(Y) are unchanged.

33

Example:

Y § 4
1100101010011 01001000101
N J
~
Logical AND
A
-
A
0000O0OO0OO0OOCOT1111110000000O0O00
A

0000000000011 010000000O000

Notice that by setting certain bits in A it is possible to determine which segment of Y will be copied into A.

ERA Y

EXCLUSIVE OR OF C(Y) WITH C(A REG) — If corresponding bits of Y and the A register are alike, a zero is
placed in that position in the A register. If they are unlike, that position is set to one. The C(Y) areunchanged.

Example:

0101111011111 10000100
. J
Y
Exclusive OR
A
N\
A
0001010011011 0111000111
A

01111010110 1]

fo1001010001

Logical Shifting

Logical shifts differ from arithmetic shifts in that they make no effort to preserve the sign bit or set OVRF
when overflow occurs. Logical shift instructions are described below.

SRL K

SINGLE RIGHT LOGICAL — The contents of the A register are shifted K places to the right. Zeroes are shifted
into A; the bits shifted out are lost. A single SRL instruction may shift up to 23 places.

34

Example:

A P f ROE o
f1o1000000000000000011101
SRL 3
—*oo0o010100000000000000001 1]—a

0y

SLL K

SINGLE LEFT LOGICAL — The contents of the A register are shifted K places to the left. Zeroes are shifted
into A; the bits shifted out are lost. A single SLL instruction may shift up to 23 places.

Example:
0110110000000000O0O00O00O000O0101
SLL 3

rFa T I &'
&«]01100000000000000010100 H
1! :
0 0's

DRL K

DOUBLE RIGHT LOGICAL — The contents of A and Q together are shifted K places to the right. The bits
shifted out of A are loaded into Q. The bits shifted out of Q are lost. Zeroes are loaded into A. A single DRL
instruction may shift up to 31 places.

Example:

A Q

0110000000O0O0CO0OO0OOCOODODOOOT110 101000000O0O0CO0COOO0OCOOOO0OOTIT10

DRL 3

23 . % i B) R . 0
0O's#0000110000O000O0O0O0O0OO0OOOO0OOO}]—}]11010100000O0O0CO0OCO0OGO0CO0O0O0OO0OOOTOLO

DLL K
DOUBLE LEFT LOGICAL — The contents of A and Q are shifted K places to the left. The bits shifted out of Q

are loaded into A. The bits shifted out of A are lost. Zeroes are loaded into Q. A single DLL shift may shift
up to 31 places.

35

Example:

1010000000O0O0O0OCO0OO0OO0OO0OO0OO0OO0OO0CT10

Circular Shifting

Circular shifts allow repositioning data without losing any of it. They are frequently used for packing input
data and unpacking data for output. Circular shift instructions are described below.

SRC K

SHIFT RIGHT CIRCULAR — The contents of the A register are shifted right K places. The bits leaving the
right end of the register are loaded back into the left end.

Example:
A
0100000000000O0O0LO00O0LO0O0O0TI1TILOI
SRC 3
1011oooooooooooooooooo1—I
DRC K

DOUBLE RIGHT CIRCULAR — The contents of A and O are shifted together K places to the right. Bits shifted
out of A are loaded into Q. Those shifted out of Q are loaded into the left end of A. A single DRC instruction
may shift up to 31 places.

Example:

|)

[t o1 000000000000000001101

]

0100000000

S

0000000000110 1]

DRC 3

ok
101101000000000000000001—’101010000000000000000001—1

36

Bit Counting

Process alarm conditions are often represented by the condition of a particular bit in a data word. The
diagram below shows a typical alarm word. Each bit in the word that is set to one represents the alarm

00000100O0O0O0O0O0COO0O0OO0OO0OO0OO00O0O0O0O0

Alarm Data Word

condition of a particular device. If bit 18 is set when a certain temperature is out of limits, we may use the
following bit counting instructions to isolate that alarm condition (see example on page 42).

Bit counting instructions accumulate their total count in a five-bit register called the J register. After
executing a counting instruction, the J register is interrogated to find the total count. ’

CLZ

COUNT LEAST SIGNIFICANT ZEROES — The number of least significant zeroes in the A register is placed in
the J register.

Example:
A : : Sl
0001 00O00O0O0O0O0O0O00O0CO00O0O00O00O00O0O
204 0
cLz J Register
CMZ

COUNT MOST SIGNIFICANT ZEROES — The number of most significant zeroes in the A register is placed in
the J register.

Example:

J Register

CLO

COUNT LEAST SIGNIFICANT ONES — The number of least significant ones in the A register is placed in the J
register.

37

Example:

A 23 o 4 0
1111110110000 00000011111
54——0

CI['O , .. 0 J Register
00101

CMO

COUNT MOST SIGNIFICANT ONES — The number of most significant ones in the A register is placed in the J
register.

Example:
111100000100000000000000
0o—»4
CIYIO J Register
ILXC X

LOAD X REGISTER WITH C(J) — The contents of the J register are placed in the rightmost five bits of the index
location specified. The other 19 bits of that index location are reset to zero. An LXC should immediately
follow any count instruction, to avoid loss of the count.

Example:

LDA Y
CMZ COUNTS———J Register
L).(C 3 C(J)——>index location 3

TEST INSTRUCTIONS

Every process computer program does a great deal of testing — testing for alarm conditions, testing to
determine the size of numbers, testing to determine the number of times an event has occurred or a program
loop has been completed, testing to determine what a previous program did or a future program should do, and
testing for a myriad of other reasons. To fill these needs, the GE-PAC 4020 computer has an unparalleled
group of word and bit test instructions.

38

The result of a test instruction may be thought of as either a true, or a false condition. A test flip-flop
named TSTF records the result of a test. If the result of a test is true, TSTF is set to one; if false TSTF is
reset to zero. There are also tests that affect TSTF for one condition but leave it unchanged for the other.
These and other test instructions are explained below.

Setting and Resetting the TSTF Directly

These instructions are used to set TSTF to a known condition.

SET

SET TSTF — The test flip-flop, TSTF, is set.

RST

RESET TSTF — The test flip-flop, TSTF, is reset.

Word Tests

These tests operate on the entire A register.

TZE

TEST A EQUAL ZERO — TSTF is set if all bits in the A register are zero. TSTF is reset if any bit is a one.

TNZ

TEST A NOT ZERO — TSTF is set if any bit in the A register is a one. TSTF is reset if all bits are zero.

RNZ

RESET IF A NOT ZERO — TSTF is reset if any bit in the A register is a one. TSTF is unchanged if all bits
are zero.

SNz

SET IF A NOT ZERO — TSTF is set if any bit in the A register is a one. TSTF is unchanged if all bits are zero.

TNM

TEST A NOT MINUS ONE — TSTF is set if any bit in the A register is a zero. TSTF is reset if all bits in A
register are ones (minus one).

TZC

TEST A ZERO AND COMPLEMENT — TSTF is set if all bits in the A register are zeroes. If any bit is a one
TSTF is reset and the contents of the A register are replaced by its one's complement (all bits are inverted).

TSC K

SHIFT RIGHT CIRCULAR AND TEST FOR K ZEROES — The contents of the A register are shifted right circu-
lar K places. Bits shifted out of the right end of A are loaded back into the left end. If all K bits shifted out of
A are zeroes TSTF is set. If any of the K bits is a one, TSTF is reset.

39

Bit Tests

The following tests are performed on a specific bit in the A register.

TEV K

TEST BIT K EVEN — TSTF is set if bit K of the A register is a zero. TSTF is reset if it is a one.

TOD K

TEST BIT K ODD — TSTF is set if bit K of the A register is a one. TSTF is reset if it is a zero.

SEV K

SET TSTF IF BIT K EVEN — TSTF is set if bit K of the A register is a zero. If it is a one, TSTF remains
unchanged.

REV K

RESET TSTF IF BIT K EVEN — TSTF is reset if bit K of the A register is a zero. If it is a one, TSTF remains
unchanged.

SOD K

SET TSTF IF BIT K ODD — TSTF is set if bit K of the A register is a one. If it is a zero, TSTF remains
unchanged.

ROD K

RESET TSTF IF BIT K ODD — TSTF is reset if bit K of the A register is a one. If it is a zero, TSTF remains
unchanged.

TES K

TEST EVEN AND SET BIT K — If bit K of the A register is a one, TSTF is reset. If bit K is a zero TSTF is
set and bit K is set to one.

TER K

TEST EVEN AND RESET BIT K — I bit K of the A register is a zero, TSTF is set. If it is a one, TSTF is
reset and bit K is changed to a zero.

TOS K

TEST ODD AND SET BIT K — If bit K of the A register is a zero, TSTF is reset and bit K is changed to a one.
If it is a one, TSTF is set.

TOR K

TEST ODD AND RESET BIT K — If bit K of the A register is a one, TSTF is set and bit K is changed to a zero.
If it is a zero, TSTF is reset.

40

BRANCH INSTRUCTIONS

After executing a test instruction it is usually necessary to do one thing if TSTF is set, and another if it is
reset. The conditional branch instructions described below will jump to another part of a program for a given
condition of TSTF. The unconditional branch instruction described always transfers program control when
executed. Program control is the logic that determines which instruction will be executed next.

BTS Y

BRANCH IF TSTF SET — If TSTF is set, program control will branch and begin executing instructions starting
at location Y. If reset, it will execute the instruction immediately following the BTS. TSTF is unchanged.

BTR Y

BRANCH IF TSTF RESET — If TSTF is reset, program control will branch and begin executing instructions
starting at location Y. If set, it will execute the instruction immediately following the BTR. TSTF is
unchanged.

BRU Y

UNCONDITIONAL BRANCH — Program control will always branch and being executing instructions starting at
location Y.

Examples:

It is necessary to know if an analog scanner reading is within limits. The high limit is contained in core
location HILIM, the low limit is at LOLIM, the scanner reading is at SCANRD. These limits are in floating

point. The reading is in fixed point at B17. If the reading is high branch to HIROAD, if low branch to LOROAD,
if within limits branch to OKROAD.

" FLOAT SCANRD

'~ TEST de’i{ o

V;xr HIGH BRANCH

IF NO TB ST

" IF LOW BRANCH T T
_ SCANRD Is WITHIN Lm:'rs

Assume that one step in a startup procedure consists of determining that one and only one of two pumps is
on, that its valve is open, and a main valve is open. The condition of these motors and valves are held in five
bits of a word at location GROUP 1. If a bit is set to one the on, or open condition, exists. Bit assignments
are shown below.

Bit 1 — Motor for pump #1
Bit 2 — Valve for pump #1
Bit 3 — Motor for pump #2
Bit 4 — Valve for pump #2
Bit 5 — Main valve

41

Write a routine to check that the system is ready for startup. If it isn't ready, branch to ALARM.

GR@GUP1

BITA PUMP #1 MOTOR ON?
*4+ 5 IF NO+BRANCH
‘BITB I any of these
BITC conditions are not met TSTF
BITD is reset, indicating alarm
*4+ 5 BRANCH TO TEST E
SET TSTF
~BITB If any of these conditions are not
“FBITC met, TSTF is reset
. BITD indicating alarm
"BITE
@K If TSTF still set — everything OK
“ALARM If not, an alarm exists

BITA
BITB
BITC
BITD
BITE

A scan and limit check program finds alarms and indicates them in a word at location ALM. Each of the
24 bits indicate a unique alarm condition when set. Write the coding to isolate any alarm conditions.

NE XT LDA ALM ALM—>Areg

CLZ COUNTS—Jreg
LXC 3 cC(J)—=3
TXH 24,3 ANY ALARMS ?
BTS N@ALM NO
RBK 0,3 Y ES, Reset bit
STA ALM and service

H alarm condition.

After an alarm is serviced the program may go back to NEXT and determine if more alarms exist.

42

LOOPING

If a table of fifty values must be converted to engineering units with the equation, ENGRD = A*RDNG + B,
we certainly wouldn't want to write or provide storage for fifty programs to solve the equation. Looping per-
mits writing the program once and cycling through it fifty times. In flow chart form the procedure would look
like this:

I=0
ENGRD (1) =
A*RDNG (I) + B Where A and B are constants, ENGRD and RDNG
1 are fifty word tables, and I is an index to indicate
I=I+1 which reading is being converted.

YES

The following additional instructions are used in writing loops in PAL.

LXK K,X
LOAD INDEX LOCATION X WITH K — The constant K replaces the contents of the index location specified.

INX K,X
INCREMENT C(X) BY K — The constant K is added to the contents of the index location specified.

TXH K,X

TEST C(X) HIGH OR EQUAL TO K - If the contents of bits zero through 13 of index location X are equal to or
greater than K TSTF is set. If not, it is reset. The C(X) are not changed. Note: K is always represented in
its two's complement (negative) form within the computer.

DMT Y

DECREMENT MEMORY AND TEST — One is subtracted from the contents of memory location Y. If the original
value was zero, TSTF is reset. If the original value was non-zero, TSTF is set. When a DMT is the first
instruction following an automatic program interrupt, TSTF is not affected.

There are two methods of looping in PAL; incrementing, which begins with the first of a group of numbers
and loops through to the last; and decrementing, which begins with the last number and works back to the first.

Example:
Fifty scanner readings in a table beginning at core location 17000g must be converted to engineering units by

the equation(80 * RDNG)/4000 and stored in a table beginning at core location 17500g. The scanner readings are
in fixed-point form at B17. Perform the calculations in floating point.

/117000 - /17500 -
/117001 --- /11501 ---
/17061 --- /17561 ---

RDNG Table ENGRD Table 43

By incrementing:

Initialize Loop

Convert and store

" Count readings processed
 Have all Readings been Processed?
If no, go back; if yes, continue

} Copstants

By decrementing

 initialize Loop

S Cohv@ﬂ & St.ore

FFRNOUINE A P S SN A A U NS S S

Decrement; f C (5) - -1 TSTF io Reset
"M TSTF $et go back, If Reset continue

A}Coﬁé&aﬁté decdedd fud bk ek AR N N

44

CHAPTER 8

AUTOMATIC PROGRAM INTERRUPTS

Within the GE-PAC 4020 computer there are a group of flip-flops called automatic program interrupts, or
API's. There may be up to 128 API's in a system. These make the GE-PAC 4020 system responsive to pro-
cess disturbances, permit timekeeping, and monitor the operation of peripherals.

There are two types of interrupts; inhibitable, and non-inhibitable. Non-inhibitable interrupts usually indi-
cate relatively high-priority demands. Lower-priority demands are indicated by the occurrence of inhibitable
interrupts.

These interrupts set a flag for RTMOS, causing it to perform whatever function that interrupt requires. In
the case of non-inhibitable interrupts this is usually the execution of a single instruction, such as a DMT. After
the interrupt has been serviced RTMOS usually continues running the program that was interrupted.

Inhibitable interrupts frequently require more extensive service such as the running of another program. In
this case, RTMOS may run the program required by the interrupt and finish the interrupted program later on.
Usually this is acceptable, since information critical to the interrupted program is saved and the program will
be completed a few seconds later. However, there are times, in critical programs, or in critical steps of a
program, when interruption is undesirable. In these cases the servicing of inhibitable API's may be regulated
by manipulating the Permit Automatic Interrupt flip-flop, called PAIF.

The PAIF may be set to a one or reset to zero. If reset, inhibitable interrupts will not be serviced until
PAIF is set.

Programs may permit or inhibit inhibitable API's with the following two instructions.

PAI

PERMIT AUTOMATIC INTERRUPT — PAIF is set to one, permitting interruption by either an inhibitable or
non-inhibitable interrupt. Programs are normally run with interrupts permitted.

IAI

INHIBIT AUTOMATIC INTERRUPTS — PAIF is reset to zero, permitting interruption only by non-inhibitable
interrupts. Inhibitable interrupts will be recorded, but not serviced until the PAIF is set to one.

There is also an instruction, IAI2, that will inhibit both inhibitable and non-inhibitable interrupts. 1t is
used in RTMOS I/O routines.

45

CHAPTER 9

SUBROUTINES

Various process control programs require that the same function be performed several times at different
points within a program. In such cases repetitive coding may be avoided by writing the function as a subroutine
for the program. Besides serving one program, a subroutine may also be shared by several different
programs.

The following instructions are used in writing subroutines:

SPB Y

SAVE PLACE AND BRANCH — Inhibit interrupts and branch to a subroutine located at Y. Before branching to
the subroutine, the following information is stored in index location one.

] To 0 o0 o C(P Reg) + 1
4 N -~ J
RETURN ADDRESS

TMFF STATUS
TSTF STATUS
PAIF STATUS
OVRF STATUS

OVRF STATUS — If OVRF is set when the branch occurs a one is placed in bit 22.

PAIF STATUS — If automatic program interrupts are permitted while the main program is running, PAIF is set
to one. The condition of this flip-flop at the time the branch occurs is recorded in bit 21.

TSTF STATUS — If TSTF is set when the branch occurs a one is placed in bit 20.

TMFF STATUS — TMFF is the name of the Trapping Mode flip-flop. If a program is running under Quadritect
memory protection, TMFF will be set to one; otherwise it is reset to zero.

RETURN ADDRESS — The return address is usually the contents of the P register plus one. If an SPB occurs
as the result of an automatic program interrupt one is not added to the C(P).

The SPB instruction always inhibits API's by resetting PAIF before the branch takes place.

417

LPR Y

LOAD PLACE AND RESTORE — This instruction is normally used to return to the main program from a sub-
routine. Usually Y refers to the address of the word built when the SPB instruction was executed.

~
RETURN ADDRESS

TMFF STATUS
TSTF STATUS
PAIF STATUS
OVRF STATUS

Program control will go to the address specified in bits 0 - 14 and restore the various flip-flops fo the
status indicated. The return address and the status of the flip-flops may be modified within the subroutine.

IDP Y

LOAD PLACE — This is an alternate to LDR. The conditions of OVRF, TMFF and TSTF are not restored.
Program control will go to the address specified and set PAIF as specified in the word at location Y. Usually
this word is the same one built when the SPB instruction was executed.

~
PAIF STATUS RETURN ADDRESS *not used

XEC Y

EXECUTE — The instruction at core location Y is executed. Program control does not change unless the XEC'd
instruction is a branch.

General procedure for writing PAL subroutines:

a. Locate necessary input variables where the subroutine expects to find them.

b. SPB to subroutine.

Inside the subroutine immediately:

1. Save index location 1 which contains the return address.

2. Save the contents of A, Q, and any index locations used in the subroutine which contain
information critical to the main program.

Write the subroutine, bringing in the input variables as required.

Locate output variables where the main program expects to find them.

Restore all the registers saved in step c. 2.

® oo oa

Return to main program via LPR or LDP instruction.

48

Example:

Since a conversion equation, VALVRD = A*Y*Y + B must be solved several times at different places in a
program it is desirable to write it as a subroutine.
Register.

The subroutine will look for the input variable, Y, in the A
It will also return the result in the A register. All data are in floating point form.

Position Input Variable
Branch

-<+— Return made here

MAIN

SEGMENT OF
} PROGRAM

Save Return Address

Calculate SUBROUTINE

Return k)

NOTE: Saving and restoring the contents of Q and index locations 3-7 was not necessary since they were not
used.

49

CHAPTER 10

CIRCULAR LISTS

Circular lists are used for output queues and for transferring data between programs.

Shown below is a diagram of a typical circular list.

core
address
/16700)
Item 5 / ‘\\
Item 6 |
Item 7 |
Item 8 ll
Item 9 I
Item 10 I
Ttem 11 '
/16710 [Item 12 (End of List) Y :
I |
|
VACANT :
l I
[
|
/16715 Ttem 1 (Beginning of List) |
Item 2]
Item 3 ,l
/16720 Item 4 i

Figure 7. Circular List

The first word of a circular list is the list control word. It specifies the length of the list, the number of
items currently in it, the address of the next beginning item, and whether or not the list is full or empty. The
description below tells how this information is stored within the word.

L — The length of the list is 2L, L may vary from one through eight. Therefore, the list may vary in length
from two to 256 words. In the above example L is four.

F — This field specifies the location of the next beginning item in the list relative to the first word following the
list control word. In the above example F is /13.

N — This field contains the number of items in the list. If the list is either full or empty N is zero. In the
above example N is /14.

e — This bit is set to one if the list is empty; zero if it is not.

f — This bit is set to one if the list is full; zero if it is not.

The following instructions are used with circular lists.

51

ABL Y

APPEND ITEM TO BEGINNING OF LIST - The list control word at core location Y is checked. If the list is
not full (f=0) the contents of the A register are appended to the beginning of the list (Figure 8), the list control
word is updated, and program control advances to the second sequential location. The C(A) becomes the new
beginning item of the list. If the list is full the instruction is ignored and program control advances to the first
sequential location.

~—— Next instruction if list is full
~—— Next instruction if list is not full

AEL Y

APPEND ITEM TO END OF LIST ~ The list control word at core location Y is checked. If the list is not full
(£=0) the contents of the A Register are appended to the end of the list (Figure 8), the list control word is updated,
and program control advances to the second sequential location. The C(A) becomes the new ending item of the
list. If the list is full the instruction is ignored and program control advances to the first sequential location.

~<—— Next instruction if list is full
-«—— Next instruction is list is empty

RBL Y

REMOVE BEGINNING ITEM FROM LIST — The list control word at core location Y is checked. If the list is not
empty (e=0) the beginning item of the list is extracted (Figure 8) and replaces the contents of the A register.
The list control word is then updated, and program control advances to the second sequential location. If the
list is empty the instruction is ignored and program control advances to the first sequential location.

RBL. Y
R -«+—— next instruction if list empty
R <—— next instruction if list not empty

52

REL Y

REMOVE ENDING ITEM FROM LIST — The list control word at core location Y is checked. If the list is not
empty (e=0) the ending item of the list is extracted (Figure 8) and replaces the contents of the A register. The
list control word is then updated, and program control advances to the second sequential location. If the list is
empty the instruction is ignored and program control advances to the first sequential location.

«—— next instruction if list empty
| <—— next instruction if list not empty

T

REL Removes This tem ———p End of List

4——AEL Appends an Item here

Vacant

4——ABL Appends an Item here

RBL Removes This Item ——p Beginning of List

~——

Figure 8. List Instructions

Example:

LISTA is the address of a sixty-four word list that is full. It is necessary to transfer its contents to two,
empty, thirty-two word lists at locations LISTB and LISTC.

Beginning item—— A

Branch out when transfer cbmpiete)
C(A)—End of LISTB
When List B full fill LISTC

Fetch next item from LISTA
C(A)—=End of LISTC

" N@P Will never be executed

" BRU_ . NEXWRD Fetch next item from LISTA

53

BUILDING A LIST — To build a list requires definition of a list control word and reservation of an appropriate
area to hold its contents. To build a list control word determine the contents of each field in binary, convert
the resulting word to octal, and define it in the program with a CON O pseudo-instruction. Reserve space with

a BSS pseudo-instruction.

Example:

Define an empty list thirty-two words long. Develop the list control word;

e 1T
[o 00000 000fooo0o0o00o0o0ofojiJo1o1
N ~ A J? ?H__J
F N f e L
00000025g

and then place it in the program with adequate block storage.

LIS TWD C@N. ©,25
“'BSS 32

When filling the list simply refer to LISTWD. With some further manipulation of the list control word and
the addition of constants following it, a list may be partially or entirely filled at the time it is defined.

One of the benefits of the DEF pseudo-instruction described in the Appendix is that it can be used to define
an operation which will set up list control words.

54

CHAPTER 11

PROGRAM INTERCOMMUNICATION

GE-PAC 4020 core memory is divided into two
parts; working core and permanent core. Working
core is used to run functional programs which are
moved into core as required. Permanent core
includes the RTMOS and an area called common core.

R C
(0
T M Working
M M Core
(o]
S (o]
N
[—
Permanent
Core

Figure 9. Division of Core Memory

Common core contains data, subroutines, etc.
that are frequently used by two or more system
programs.

The filling of common core is normally begun
during the earlier stages of programming a process
control system and continued throughout the project.
It contains constants, variables, and the like which
are labeled and appended to a common system sym-
bol (equals) table. Each label is written on the
coding form with an asterisk (*) in column 7. The
assembler program will equate each label with an
absolute address, and add that label and its address
to its common symbol table. Thereafter, programs
that are assembled against the common symbol table
may reference any common system symbol by simply
calling its name.

R COMMON PROGRAM 5

T LDA Y

M Y A

o) N PROGRAM 10
s ——— STAY

Fig. 10.Communicating variables through common core

Constants, subroutines, circular lists and tables
of data that are frequently used by several system
programs should be stored in common core.

Single variables, tables of variables, and logical
data that must be passed between programs should
also be stored in common core.

Bulk storage is organized in much the same way
as core memory. There is an area for RTMOS, com-
mon data storage, and functional program storage.
Constants, variables, subroutines, circular lists,
and tables that are infrequently used by several pro-
grams should be stored in the common area of bulk

storage. When a running program requires informa-
tion resident only in common bulk storage it will
request the RTMOS to transfer that information into
core.

Example: Build a common core area between /10000
and /10100. The following information
is to be loaded into this common area:

CONST = 5 x 10° (Floating Point)
PI = 3.1416 (Fixed Point)
X = Table of 30 variables to be filled later
SCANRD = To be determined later
DOUT = Table of 20 variables to be filled later
AOUT = Table of 10 variables to be filled later

The program written to do the job might look like
this:

10000
"CONST ,5E5
PI ,3.1416
X 3 0
SCANR
D@U T 0

0

AQUT

The asterisk (*) in column 7 designates those
labels as common system symbols which may be
used by any system program. An asterisk does not
automatically cause the data to be placed in common
core, however. To be placed in common core, data
must be loaded into that area.

The remaining locations of common in this ex-
ample are spares. After this program is assembled
the resulting information will be fed into the com-
puter, and loaded directly into CORE memory. For
backup protection an additional copy of this data may
also be placed on bulk. Future programs that use
these comri\on system symbols must be assembled
with an 'equals table' that specifies the location of
each common system symbol.

All input to and output from the GE-PAC 4020
computer is normally handled by the Real-Time Multi-
programming Operating System. Complete instruc-
tions for its use are in the RTMOS manual.

55

CHAPTER 12

SPECIAL DISCUSSIONS

FLOW CHARTING

Before writing a program, organize the task
using a flow chart. A flow chart logically describes

Example: Flow chart for a corrective action routine.

a series of operations to be performed, and permits
finding major logic flaws before wasting any pro-
gramming effort. An example of a flow chart is
shown below.

READJUST LIMIT
SETPOINTS FOR
PROCESS
CONTROLLERS

PRINT ALARM

SHUTDOWN
OFF-NORMAL
EQUIPMENT

CORRECTIVE

ACTION
ROUTINE

\ YES

NO OFF-NORMAL
DANGEROUS ? /
SPARE
EQUIPMENT }O
AVAILABLE?
YES
INTERCHANGE
SPARE WITH |jag———— STARTUP

OFF-NORMAL

NO

EMERGENCY

SPARE EQUIPMENT

YES

EMERGENCY

CONDITION?

CAN
YES OPERATION
CONTINUE WITHOUT
OFF-NORMAL
EQUIPMENT?

NO

NORMAL
SHUTDOWN

PROGRAM

SHUTDOWN
PROGRAM

57

The general rules governing the use of flow 2. Flow charts should contain only a general de-
charts are: scription of the operations to be performed.

The following symbols are typically used in
1. Always flow chart a program before writing flowcharting problems for the GE-PAC 4020 process
it. computer system.

Symbol Meaning Example
|

Operation Y=A+B

Decision
(2 way)

-
<>
O

Comparison

Connector

Multiple Switch

58

BINARY ARITHMETIC

Probably because he has ten fingers, man has
grown accustomed to a decimal (base ten) number
system. Similarly, because a computer's logical
components such as transistors and relays have two
modes of operation, on or off, digital computers can
easily use a binary number system. Since it is
difficult to remember and recognize binary numbers,
a third number system, octal, is used as an aid to
interpretation.

The following table shows how to count in binary
numbers. Where 12 means ''one to the base two' or
one represented in binary numbers, and

BINARY DECIMAL EQUIVALENT
Oy - %0
1, = Lo
10, - 210
11, - 340
100, - 44,
101, - 510
110, - 610
111, - 710
1000, - 810
1001, - 910
1010, - 10,

119 means "one to the base 10" or one represented
in decimal numbers.

The difference between the two is that in the
decimal system a carry does not occur until we
pass nine, whereas in a binary system a carry
occurs when we pass one.

Binary numbers are difficult to read. Since it
is alien to think in a system of ones and zeroes, we
naturally look at a binary number and try to convert
it to decimal in our head to more easily comprehend
its meaning. However, the job of converting from
binary directly to decimal is extremely difficult for
most people.

Realizing this problem someone developed a
simple method of interpretation, the use of a base
eight, or octal number system. Octal numbers are
very well adapted to representing binary numbers
and are close enough to the decimal system to be
easily comprehendable. The example below shows
the relationship between binary and octal numbers.

Notice that in the last step both systems had a
carry.

BINARY OCTAL

—
O = O

N DN DN DN DN DN DN NN
I

-
-

100
101
110
111
1000

It
-] O G b W N = O
© 0 0 & o o o © @

1l
ot
o

We can see the significance of this now when we
try to interpret the contents of a 24-bit GE-PAC
word. Now we find that we can simply interpret the
word three bits or binary numbers at a time. The
result gives us a much easier method of representing
24 bits of information.

Example:

23

oo1|101[000]110]111]010|010|011‘

NN NN N NN N

1 5 0 6 7 2 2 3

The general rule is to start at the binary point
and interpret in groups of three to the left to find the
whole number. Interpret to the right to find the
fraction.

Example:
Binary Point

10 101 100 001 000* 110 111 01 Binary Number

L e . s e e s
2 Octal

2 5 4 1 0. 6 7
Equivalent

Assume that leading and trailing digits are
zeroes when not shown. Remember that a binary
number and its octal representation both represent
the same numeric value.

Binary/octal translation is used in stepping
through a program at the computer console to find
an error. Through its console the computer will
display patterns of lights on (ones) and off (zeroes)
representing binary instruction codes, data, and
core addresses, which are normally converted into
octal numbers to work with.

59

Fortunately it is seldom necessary to make this
conversion. When dealing with quantities, as dis-
tinguished from arbitrary codes and addresses, the
computer nearly always performs the translation
automatically.

Octal/Decimal Conversion

It is occasionally necessary to convert octal
numbers to decimal numbers, and vice versa. The
easiest way to do this is to refer to the tables listed
in the Appendix. However, for reasons of size or
desired accuracy it may be necessary to convert
numbers not listed in the table. To do this we
recommend the two methods described below.

- DECIMAL TO OCTAL -

To convert from decimal integers to octal inte-
gers, successively divide the remaining integer por-
tions of any decimal integer by eight. The
remainders, in inverse order, are the digits of the
octal equivalent.

Example: Convert 76311 to its octal equivalent.

1. Set up the following diagram.

7631

2. Divide 7631 by 8. Put the remainder on the
right side of the line as shown below.

953 7
7631

3. Divide 953 by 8

119
953 7
7631

60

4. Divide 119 by 8

14 7
119 1
953 7

7631

5. Divide 14 by 8

14
119
953

7631

G = a o

6. Divide 1 by 8

14
119
953

7631

P RS B

When there is a zero on the left side of the
vertical line the conversion is complete.

The equivalent octal number is the string of re-
mainders, read from top to bottom:

763110 = 167178

To convert decimal fractions to octal fractions,
successively multiply the fractional parts of the
successive products by eight. Now the digits coming
into the integer column, in descending order, form
the digits of the equivalent octal fraction.

Example: Convert 0.7296; to octal

7296 X8 =
8368 x8 =
6944 x8=
5552 X8 =
4416

B

1S) B R) |

The conversion can be continued as long as it is
practical.

The most significant digits are placed in the
integer column. They are not used in the next multi-
plication. These digits, read from top to bottom,
form the octal fraction. Thus: 0.729610 = 0.56548

The laws of significant digits and the rough
similarity of the sizes of the bases suggest that the
conversion stop when you have generated the same
number of digits you were given.

- OCTAL TO DECIMAL -

Just as successive digits in a decimal number
represent coefficients of successive powers of ten,
so do successive octal digits represent coefficients
of successive powers of eight. Thus the decimal
equivalent of 16717g equals the sum of these terms:

1 x 8% = 4006
3 10

+6 x 87 = 3072
9 10
+7x 8" = 44810

1

+1 x 80 = 810
+7x8 = 710
’763110

Using the same principle we can convert octal
fractions to decimal fractions. For example the
decimal equivalent of 0'56548 equals the sums of
these terms:

5x8 1 = 6250,
-2

+6x8°2 = ,0036
3 10

+5 x 877 =.0100
4 10

+4x8 "= .001010

.729610

The powers of eight may be obtained from the
powers of two table in the Appendix.

In summary, to convert from decimal to octal
use the formula shown in the following example and
read off the octals in descending order.

Example: 4
0 7
5
-8 61 2
490 7
\ 3927 103610 \
0 28880
2 31040
2 48320
3 86560 %xg
6 92480
y

Thus: 3927.03610 0= 75217.02236

1 8

To convert from octal to decimal use a power of
eight table as shown in the example below:

Example:
1x8% = 4096.
3 10
+6 x 8° = 3072.
2 10
+7x 8" = 448
1 10
+1x8 = 8.10
+71 x 8_1 = 7.10
+5x8 " = .6250
9 10
+6x8 “ = .0936
3 10
+5x8° = .0100
-4 10
+4x8 " = .001010
7631.729610

61

Negative Binary Numbers (Fixed Point)

All fixed-point negative numbers are represented
in their two's complement form. The two's comple-
ment form of a given number is obtained by changing
all zeroes to ones and all ones to zeroes and adding
one as shown below.

Sign bit <0 010 111 011 100. = 2734,

8
0=+ 1101 000 100 O11. Reversing all
1=- digits
+1. Add one
1101 000 100 100. = -2'734.8

The one in the sign bit indicates that the data is nega-
tive and is represented in two's complement form.

It turns out that by adding the two's complement of a
number to given quantity you effectively subtract
from that quantity.

62

Example:
0001101011111 + 153’78
+
1111010100001 - 5378
lost 0001000000000 + 10008
1) Y Y YY
+ 1 0 0 08

Occasionally you may be faced with either expressing
a negative number in two's complement form, or
interpreting a number that is written in two's com-
plement. When converting either way follow these
two steps.

1. Change all zeroes to ones and ones to zeroes.

2. Add one to the least significant digit.

APPENDIX |

MIXED PROGRAMS

It is possible to freely mix PAL and Process FORTRAN statements in a GE-PAC 4020 program. Also,
Process FORTRAN library subroutines may be used by PAL programs.

Using the Coding Sheet

PAL and Process FORTRAN statements may be written together on the standard coding sheet. Use of the
fields vary somewhat as shown below.

Writing statements in Process FORTRAN:

A - Statement Number (C in column 1 indicates a comment; any non-zero character in column 6 indicates that
the line is a continuation of the previous line.)

B - Process FORTRAN Statement.

C - Column 70 must contain a 7.

D - May be used for program identification.

Writing in PAL:

12

<-—A———bi<cggf E F

A - Location name.

B - Location classification.

C - Instruction name.

D - Not used.

E - Operand.

F - Column 70 must contain a 6.

G - May be used for program identification.

Sharing Variables

Variables shared between the PAL and Process FORTRAN portions of a mixed program must be defined
only once; either in PAL or in Process FORTRAN. The programmer defines variables in PAL by allocating
storage areas for them either within the program, or in common core.

63

The compiler defines variables in Process FORTRAN by automatically allocating storage areas for them
within the program. Therefore, if a variable is defined in PAL and later used in a Process FORTRAN state-
ment, the programmer must tell the compiler not to re-define it. This is done with the Process FORTRAN
DEFINE Statement described below.

DE FINE FVI(PVI)’ FvZ(Pvz), .
where: Fvl, sz, ...are the names of the Process FORTRAN variables

Pvl, Pv2, ...are the names of the corresponding PAL variables

When a Process FORTRAN variable is named in a DEFINE statement the compiler will not allocate storage
area for it. Instead the compiler will use the storage area generated by the programmer for the PAL variable
named within the parentheses.

The names of the Process FORTRAN variable and the PAL variable may be the same. If a number is used
in place of a PAL name, the Process FORTRAN variable will use the core location referenced by that number
as its storage area. The DEFINE statement should be placed just prior to the program's END statement.

Follow these general rules for treatment of variables in a mixed program:

1. If a variable is used only in the PAL portion of the program, allocate storage for it with a PAL
pseudo-instruction.

2. If a variable is used only in the Process FORTRAN portion of the program, the compiler will auto-
matically generate the necessary storage area.

3. If a variable which has been defined as a common system symbol is to be shared between the PAL and
Process FORTRAN portions of a program, the PAL and Process FORTRAN names for the variable
must be mentioned in a DEFINE statement.

4, If the variable which will be defined within the program is to be used both in PAL and Process
FORTRAN either:

a. Allocate storage for it in PAL and mention it in a DEFINE statement, or,
b. Let the compiler allocate the required storage area.

Referencing Statements

PAL and Process FORTRAN statements may be freely interspersed. However, the following rules should
be followed when a PAL statement is referred to by a Process FORTRAN statement and vice versa.

To reference a PAL statement from a FORTRAN control statement, place an appropriately numbered
CONTINUE statement immediately ahead of the PAL statement.

To reference a FORTRAN statement from a PAL branch instruction, place an appropriately labeled
"BSS O" instruction immediately ahead of the FORTRAN statement.

Examples: Referencing Process FORTRAN from PAL: Referencing PAL from Process FORTRAN:
H IF (B-1000) 1,2,2
BTS CALC 1 “TR2 = A+TR2*B
CALC BSS 0 ‘ ‘
G@@DRD =(2*Z)+R*2 2 C@NT INUE
H . SPB A LARM

Saving Registers

When transferring from PAL into Process FORTRAN store the contents of A, Q, and index locations if they
contain information that must be preserved. Process FORTRAN uses all of these registers and makes no effort
to save and restore their contents.

64

APPENDIX I

OTHER PSEUDO-INSTRUCTIONS

The pseudo-instructions described below are extensions of the ones described in chapter 6.

Double-Word Constants

If, for reasons of greater precision, it is necessary to define decimal, floating point, or octal constants
that cannot be expressed adequately in a single GE-PAC 4020 word, the pseudo-instructions described below
may be used. The rules for their usage are essentially the same as those used to define their single-word
counterparts.

DCN D, (Decimal Number)(Scale Factor)
DOUBLE-WORD FIXED-POINT DECIMAL CONSTANT — The decimal number specified is converted by the

assembler into a binary number and stored in the double-word format shown below. The binary point is relative
to the sign bit of the first word. The sign bit of the second word is set to zero and not used.

Word 1 Word 2
A A

>
Sign Data * Not used, always zero.

Since Bit 23 of word two is not used, Bit 22 of word two and Bit zero of word one are contiguous. There-
fore, B23 is between Bit zero of word one and Bit 22 of word two. If B is not specified, B46 is assumed.

Example:

,22413.1796B30
,4918724

DCN F,(Decimal Number)

DOUBLE-WORD FLOATING-POINT CONSTANT - The number specified is converted to binary by the assembler
and stored in the format shown below.

Word 1 Word 2
A A

[XN v N g
Sign of Exponent +400 g Magnitude of fraction

fraction

0=+

1=~ * Not used, always zero.

65

A binary exponent of zero is represented as 400g. Numbers below 400g represent negative exponents;
numbers above represent positive ones.

Examples:

DCN F,-232764.5
DCNF, 49712. 34 1E4

DCN O, (Octal Integer)
DOUBLE-WORD OCTAL CONSTANT — The octal integer specified is converted to binary and entered, right

justified, into the double-word format shown below. All 48 bits of the two words are used for data, there is no
sign.

WORD 1 WORD 2
A A

Examples:

DCN @ ,777777777174
"DCN ¢ ,324017521

General Constant

CON G, (Label or Integer)

GENERAL CONSTANT — If a label is specified it must be defined as an integer value either in the program
where the CON G is used or in the common system symbol table. The CON G causes the assembler to insert
the integer or label value, right justified, into the program in place of the pseudo-instruction.

Example:
C@PN G,WO@RDA Where WORDA =/1732
23 : i i) Y
00000O000DO0DOOO0OO0OO0OT1I1T111011010
. J

~
DATA

66

Generating Duplicate Instructions

GEN K

GENERATE DUPLICATES — Specifies to the assembler that the next instruction must appear K times. Symbols
must be predefined.

Example:
~“GEN 3
CON @, 4 This coding . . .
. C¢N¢’ 4
C@N @, 4 is equivalent to this.
L CON @, 4

NOTE: The GEN instruction cannot be used to duplicate any of the following PAL instructions:

ORG CON A DEF LIB
BSS GEN SLW IDN
DCW EQL END

Page Positioning

SLW

SLEW PRINTER PAGE — Causes the assembler to position the listing at the top of the next page.

Defining a New Operation

Using the CON O pseudo-instruction it is possible to set up a fixed bit pattern within a word. Occasionally,
however, it would be convenient to be able to build a word with fixed fields but still be able to insert variable
data within those fields. For example, this capability would be handy in setting up list control words for cir-
cular lists. The format for a list control word is always the same as shown below it contains five operand
fields, each with a unique position and a fixed length. The data within the word, however, may change as we
specify different lists.

N fle

LIST CONTROL WORD

The DEF pseudo-instruction permits us to define an operation that will insert data into specific operand
fields within a word. The following procedure is used to define a new operation:

A. Set up the base octal.
B. Assign audit codes to operand fields.
C. Define the new operation.
This procedure is described in detail below.

A. Set up the base octal.

The base octal for an operation is normally determined by defining the contents of the word which are not
specified as operand fields. The contents of the operand fields themselves are usually set to zero. For
example, we wish to define a new operation which will construct words with three operands as shown below; the
bits not specified in operands must be set to one.

67

e

Operand Fields

The resulting base octal for this word would be 70174000, In the case of defining an operation to set up a
list control word the base octal would be 00000000, since all 24 bits of the word are included in operand fields.

B. Assign audit codes to operand fields.
Audit codes are used by the assembler program to determine operand field width and position within a word.
"There are 64 audit codes numbered from zero to sixty-three — the first 51 of these plus audit code 63 are

already defined for use by the assembler and the RTMOS; the rest may be used by the programmer to define
new operations.

In defining a new operation, each operand field width and its position must be assigned an audit code in the
following manner.

(AUDIT CODE) DEF (OPERAND FIELD WIDTH), (ANCHOR BIT)
o (AUDIT CODE) - any decimal number from 51 up to and including 62.
e DEF - pseudo-instruction which assigns a field width and anchor bit to an audit code.
e (OPERAND FIELD WIDTH) - specifies the maximum width of an operand field within the word. This
width is expressed as the largest octal number the field can contain; i.e., a five-bit operand width is

indicated by 37, a two-bit operand width is indicated by 3.

e (ANCHOR BIT) - specifies the placement of the operand within the word. It is the number of the right-
most bit in that operand field.

Example: In the process of defining an operation to set up list control words, the following audit code assign-
ment is necessary.

DEF /777,15 +—— specifies the ' F" operand field
DEF ’/ 77,6 -~ rspeci.fie‘s the ' N operand field

DEF /1,5 ~—— specifies the ' {" operand field
DEF /1,4 <~—— specifies the 'e" operand field
DEF /17,0 <—— specifies the ' L' operand field

C. Define the new operation.
To do this we use the following general form.
(OPERATION NAME) DEF (BASE OCTAL), (FIRST AUDIT CODE), (SECOND AUDIT CODE),ETC.

The operation name may be any three letter combination not already used for a PAL instruction or
pseudo-instruction.

If more than four audit codes are specified, they must be preceded by audit code No. 63. A maximum of
12 operand fields are permissible.

Example: With the information previously determined in steps one and two, the operation to build list control
words may be defined. Assume that the name of the new operation will be LCW.

68

0000000, 63,62, 61,60,59,58

\/ %{_J \ — J

Base Octal Audit Codes

Lew

Instruction Audit code required when more than four operands
name are specified

After this new operation has been defined it may be used to build any list control word.

Example: The new operation to build list control words has been previously defined and it is necessary to
define an empty list thirty-two words long. The following parameters for the word are necessary.
F = 0 since beginning item is at list location zero.
N = 0 since there are no items currently in the list.
0 since list is not full.
=1 since list is empty.
5 since list size is 32.

With these parameters, the list control word may be specified.

When this is read by the assembler it will generate the appropriate octal word (00000025) and insert it in
the place of LCW, and associate the name LISTA with that word.

We have used the definition of list control words as an example to show how an operation is defined. New
operations may also be defined for many other purposes — specifying scanner control words, packed tables,
and even defining instructions to be executed when the program is run.

The following general rules should be observed when defining new operations.

1. DEF may not be used to substitute new definitions for standard PAL instructions or
pseudo-instructions.

2. Operands of the DEF instruction itself may be written in decimal, octal, or symbolic. However, all
symbols must be previously defined. All operands are considered absolute.

3. Operands for newly defined op codes follow the usual rules for translation as absolute or relative
symbolics.

4, Audit codes must be numeric.

5. Audit codes 51-62 may be defined. It is recommended that the programmer start with 62 and number
in reverse.

6. Audit codes and op codes not reserved for PAL may be redefined within a program as often as the
programmer desires.

7. New op codes, audit codes, and their audit code definitions are made a part of the common system
symbol table which may be preserved for subsequent assemblies.

Error conditions — When an illegal attempt is made to define an op code or audit code the assembler will ignore
the attempt and print a location error flag (L) on the listing.

69

APPENDIX 1lI

INSTRUCTION FORMATS

Instructions, like data, must be represented in standard formats. It is helpful to know the formats for
these instructions when machine level decoding is necessary. The formats and instruction codes for specific
instructions are described in detail in the Instruction Reference Manual. There are four general types of
hardware instructions in the GE-PAC 4020 computer; full operand, GEN 1, GEN 2, and GEN 3.

Full Operand Instructions

Full operand instructions are used to perform arithmetic operations, data transfers, bit counting,
masking, etc.

I3 18[17 15[14[13 ~ ' 0
| op code X |* Kor Y

OP - Operation code for the instruction
X - Index location number, if used

* - If set, relative addressing occurs
K or Y - Operand

GEN 1 Instructions

GEN 1 instructions are used for bit manipulation of the A register; shifting right, bit counting,
masking, etc.

23 18/17 15[14 ' 5|4 of
Op Code X G K |

OP- Operation code for all GEN 1 instructions is 058
X - Index location number, if used
G - Micro-coding designating the function of the command

K - Operand

GEN 2 Instructions

GEN 2 instructions are used for certain forms of input and output.

23 w17 1sl1e 1211 0
Op Code l X G D

OP- Operation code for all GEN 2 instructions is 258
X - Index location number, if used
G - Subcommand to the computer or the I/0O device

D - I/O device address

GEN 3 Instructions

GEN 3 instructions are used for shifting A and Q in either direction or shifting A to the left.

71

OP- Operation code for all GEN 3 instructions is 458
X - Index location number, if used
G - Microcoding designating the function of the command

K - Operand

Examples: Where Y = /500

INSTRUCTION OCTAL REPRESENTATION
LDA Y 00 000500
STA Y +1 32 000501
STA Y+1,3 32 3005 01
BRU *+2 1404 00 02
LDA *Y+1,5 00540501
RBK 5 05045005
SRA 17,3 053140 47
SOD 14 0500 45 16
SLA 10,5 4550 20 52
MAQ 45 00 43 30

Quasi Instructions

A feature of the GE-PAC 4020 computer is its ability to use quasi instructions. Most instructions are
executed by hardware. Quasi's are implemented by software; instead of a hardware operation, they call for the
execution of a subroutine to perform their function. The Instruction Reference Manual points out the various
quasi's implemented on the GE-PAC 4020 computer.

72

APPENDIX IV

ASSEMBLER ERROR FLAGS

The PAL assembler performs validity tests on each instruction. When errors or suspected errors are
detected, one of the following indicators will appear on the output listing.

FLAG DEFINITION CAUSE
L Location Field Error 1. First character of the label is not alphabetic.
2. Using the DEF pseudo-instruction when:

a. The operation name assigned is a GE-PAC machine
operation.

b. Requesting ""extra operands' definition when operation
name has been previously defined as a machine
operation.

c. There is an illegal audit code number.

3. Location field is blank when a symbol is required.

4. Location field contains a symbol when not allowed.

5. Label not found in the table, probably due to overflow of the
table on the first pass.

(0] Operation Field Error 1. The op code not part of the language or was not added to the
table through the DEF pseudo-instruction. This often
occurs when definition was attempted but was illegal. Con-
sequently, it was not added to the operation table.

2. This op code cannot be GENerated.
I Illegal Operand 1. Blank operand when an operand is required.
2. Operand not blank when it should have been.
3. One or more required operands missing.
4. Too many operands.
5. Operand value too large.
6. Negative operand value in an instruction that will not accept
one.
7. Illegal constant.
X Index Word Error 1. Index word 1 or 2 specified.
2. Required index missing.
3. Specified index word is greater than seven.

73

ASSEMBLY ERROR FLAGS (CONT.)

FLAG DEFINITION CAUSE
U Undefined Symbol Occurs only when a symbol appears in the operand field and:
1. It never appeared in the location field or on the common
symbol tape.
2. It appeared in the location field, but the symbol table was
full at the time.
C Illegal Character An illegal character was found in the location, op code, or
operand field.
M Multiply-defined Symbol 1. A symbol in location field was flagged because:
a. It has appeared in the location field of a previous
statement.
b. It appeared on the requested EQL tape with a value
unequal to the one being assigned.
c¢. It was saved from a previous assembly with a value
unequal to the one being assigned.
2. Any record which references a multiply-defined symbol in
the operand field will also be flagged.
2 Second Pass Definition 1. Symbol was not defined prior to use in operand of a BSS,
of Symbol Different EQL, or GEN pseudo-instruction.
from First Pass
2. Occasionally the result of a Multiply-defined Symbol.
R Relative Operand Error Operand value was relative and should normally be absolute for
this operation.
F Tables Full Assembler has room to store a fixed number of symbols. This

flag occurs when a program, symbols exceed the capacity of the
assembler.

4

APPENDIX V

OCTAL/DECIMAL CONVERSION TABLE

There are two tables in this section, one for integers, and one for fractions. To convert a number from
octal to decimal, or vice versa:

1., Obtain the integer portion from the integer table.
2. Obtain the fractional portion from the fraction table.
Example:
Find the octal equivalent of 1794.36131¢

From the integer table on page 77.

Octal 0 1 2 3

3400 1792 1793 1794

3410 1800 1801

1’79410 = 34008 + 28 = 34028

From the fraction table on page 82.

Octal Decimal
.270 .35693175
271 .361328
272 .363281
273 .365234

.36110 =27 18

The accuracy of the conversion could be improved by interpolation. Putting the integer and fractional
portions together:

1794.361,, = 3402.2'718

10

When converting numbers greater than 40951 or 7777g use the block at the top of integer tables to break
out the largest portion of the number. Evaluate the rest using the integer tables.

Example: Find the decimal equivalent of 40741g

Octal 10000 20000 30000 40000
Decimal 4096 8192 12288 16384

400008 = 163 841

0
7418 = 48110
407418 = 1686510

76

OCTAL DECIMAL CONVERSION TABLES

Octal-Decimal Integer Conversion Table

Octal | 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal| 4096 8192 | 12288 | 16384 | 20480 | 24576 | 28672

| Octal J0000 10 0377] [Octal 1000 10 1377]

[Dacime1[0000 1o 0253]
Octal| 0 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 6 7
0000| 0000 0001 0002 0003 0004 0005 0006 0007 1000| 0512 0513 0514 0515 0516 0517 0518 0519
0010} 0008 0009 0010 0011 0012 0013 0014 0015 1010 0520 0521 0522 0523 0524 0525 0526 0527
0020|0016 0017 0018 0019 0020 0021 0022 0023 1020} 0528 0529 0530 0531 0532 0533 0534 0535
0030 0024 0025 0026 0027 0028 0029 0030 0031 1030 0536 0537 0538 0539 0540 0541 0542 0543
0040|0032 0033 0034 0035 0036 0037 0038 0039 1040)| 0544 0545 0546 0547 0548 0549 0550 0551
0050/ 0040 0041 0042 0043 0044 0045 0046 0047 1050| 0552 0553 0554 0555 0556 0557 0558 0559
0060|0048 0049 0050 0051 0052 0053 0054 0055| 1060} 0560 0561 0562 0563 0564 0565 0566 0567]
0070] 0056 0057 0058 0059 0060 0061 0062 0063 1070} 0568 0569 0570 0571 0572 0573 0574 0575
0100|0064 0065 0066 0067 0068 0069 0070 0071 1100|0576 0577 0578 0579 0580 0581 0582 0583
01100072 0073 0074 0075 0076 0077 0078 0079 1110|0584 0585 0586 0587 0588 0589 0590 0591
01200080 0081 0082 0083 0084 0085 0086 0087 1120|0592 0593 0594 0595 0596 0597 0598 0599
0130|0088 0089 0090 0091 0092 0033 0094 0095 1130/ 0600 0601 0602 0603 0604 0605 0606 0607
0140 {0096 0097 0098 0099 0100 0101 0102 0103 1140[0608 0609 0610 0611 0612 0613 0614 0615
0150|0104 0105 0106 0107 0108 0109 0110 0111 1150|0616 0617 0618 0619 0620 0621 0622 0623
0160[0112 0113 0114 0115 0116 0117 0118 0119 1160]0624 0625 0626 0627 0628 0629 0630 0631
0170|0120 0121 0122 0123 0124 0125 0126 0127 1170|0632 0633 0634 0635 0636 0637 0638 0639
0200|0128 0129 0130 0131 0132 0133 0134 0135 1200|0640 0641 0642 0643 0644 0645 0646 0647
0210]0136 0137 0138 0139 0140 0141 0142 0143 1210|0648 0149 0650 065! 0652 0653 0654 0655
0220|0144 0145 0146 0147 0148 0149 0150 0151 1220|0656 0657 0658 0659 0660 0661 0662 0663
023010152 0153 0154 0155 0156 0157 0158 0159 1230|0664 0665 0666 0667 0668 0669 0670 0671
0240]0160 0161 0162 0163 0164 0165 0166 0167 1240|0672 0673 0674 0675 0676 0677 0678 0679
02500168 0169 0170 0171 0172 0173 0174 0175 1250|0680 0681 0682 0683 0684 0685 0686 0687
0260{0176 0177 0178 0179 0180 0181 0182 0183 1260|0688 0689 0690 0691 0692 0693 0694 0695
0270|0184 0185 0186 0187 0188 0189 0190 0191 1270|0696 0697 0698 0699 0700 0701 0702 0703
0300|0192 0193 0194 0195 0196 0197 0198 0199 1300|0704 0705 0706 0707 0708 0709 0710 0711
0310{0200 0201 0202 0203 0204 0205 0206 0207 1310{0712 0713 07t4 0715 0716 0717 0718 0719
03200208 0209 0210 0211 0212 0213 0214 0215 1320]0720 0721 0722 0723 0724 0725 0726 0727
0330|0216 0217 0218 0219 0220 0221 0222 0223 1330|0728 0729 0730 0731 0732 0733 0734 0735
0340 | 0224 0225 0226 0227 0228 0229 0230 0231 1340 {0736 0737 0738 0739 0740 0741 0742 0743
0350 [0232 0233 0234 0235 0236 0237 0238 0239 1350 {0744 0745 0746 0747 0748 0749 0750 0751
0360 (0240 0241 0242 0243 0244 0245 0246 0247 1360|0752 0753 0754 0755 0756 0757 0758 0759
0370]0248 0249 0250 0251 0252 0253 0254 0255 13700760 0761 0762 0763 0764 0765 0766 0767

[_octal Jo400 10 0777]

[Decmei] 0736 15 0517)
Octal] 0 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 6 "
0400 [0256 0257 0258 0259 0260 0261 0262 0263 140010768 0769 0770 0771 0772 07713 0774 0775
0410|0264 0265 0266 CR67 0268 0269 0270 0271 1410{0776 0777 0778 0779 0780 0781 0782 0783
0420|0272 0273 0274 0275 0276 0277 0278 0279 1420|0784 0785 0786 0787 0788 0789 0790 0791
0430 (0280 0281 0282 0283 0284 0285 0286 0287 1430 {0792 0793 0794 0795 0796 0797 0798 0799
0440 {0288 0289 0290 0291 0292 0293 0294 0295 1440 (0800 0801 0802 0803 0804 0805 0806 0807
0450 { 0296 0297 0298 0299 0300 0301 0302 0303 1450 {0808 0809 0810 0811 0812 0813 0814 0815
0460|0304 0305 0306 0307 0308 0309 0310 0311 1460|0816 0817 0818 0819 0820 0821 0822 0823
0470(0312 0313 0314 0315 0316 0317 0318 0319 1470|0824 0825 0826 0827 0828 0829 0830 0831
0500 (0320 0321 0322 0323 0324 0325 0326 0327 1500 (0832 0833 0834 0835 0836 0837 0838 0839
05100328 0329 0330 0331 0332 0333 0334 0335 1510 {0840 0841 0842 0843 0844 0845 0846 0847
05200336 0337 0338 0339 0340 0341 0342 0343 1520 {0848 0849 0850 0851 0852 0853 0854 0855
05300344 0345 0346 0347 0348 0349 0350 0351 1530 |0856 0857 0858 0859 0860 0861 0862 0863
05400352 0353 0354 0355 0356 0357 0358 0359 1540 |0864 0865 0866 0867 0868 0869 0870 0871
0550|0360 0361 0362 0363 0364 0365 0366 0367 1550 (0872 0873 0874 0875 0876 0877 0878 0879
0560 | 0368 0369 0370 0371 0372 0373 0374 0375 1560 |0880 0881 0882 0883 0884 0885 0886 0887
0570|0376 0377 0378 0379 0380 0381 0382 0383 1570 |0888 0889 0890 0891 0892 0893 0894 0895
0600|0384 0385 0386 0387 0388 0389 0390 0391 1600 | 0896 0897 0898 0899 0900 0901 0902 0903
06100392 0393 0394 0395 0396 0397 0398 0399 1610|0904 0905 0906 0907 0908 0909 0910 0911
06200400 0401 0402 0403 0404 0405 0406 0407 1620 (0912 0913 0914 0915 0916 0917 0918 0919,
0630|0408 0409 0410 0411 0412 0413 0414 0415 1630 (0920 0921 0922 0923 0924 0925 0926 0927
0640(0416 0417 0418 0419 0420 0421 0422 0423 1640 (0928 0929 0930 0931 0932 0933 0934 0935
0650 0424 0425 0426 0427 0428 0429 0430 0431 1650 | 0936 0937 0938 0939 0940 0941 0942 0943
0660|0432 0433 0434 0435 0436 0437 0438 0439 1660 [0944 0945 0946 0947 0948 0949 0950 0951
0670|0440 0441 0442 0443 0444 0445 0446 0447 1670 [0952 0953 0954 0955 0956 0957 0958 0959
0700 [0448 0449 0450 0451 0452 0453 0454 0455 1700 [0960 0961 0962 0963 0964 0965 0966 0967
0710|0456 0457 0458 0459 0460 0461 0462 0463 1710|0968 0969 0970 0971 0972 0973 0974 0975
0720|0464 0465 0466 0467 0468 0469 0470 0471 1720|0976 0977 0978 0979 0980 0981 0982 0983
0730 0472 0473 0474 0475 0476 0477 0478 0479 1730 {0984 0985 0986 0987 0988 0989 0990 0991
0740|0480 0481 0482 0483 0484 0485 0486 0487 1740|0992 0993 0994 0995 0996 0997 0998 0999
0750|0488 0489 0430 0491 0492 0493 0494 0495 1750 [1000 1001 1002 1003 1004 1005 1006 1007
0760|0496 0497 0498 0499 0500 0501 0502 0503 1760|1008 1009 1010 1011 1012 1013 1014 1015
0770]| 0504 0505 0506 0507 0508 0509 0510 0511 1770 1016 1017 1018 1019 1020 1021 1022 1023

Octal-Decimal Integer Conversion Table

Octol 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal 4096 8192 12288 | 16384 | 20480 | 24576 | 28672
Octal 2000 to 2377 Octal 3000 10 3377
Decimal | 1024 1o 1279 Decimal | 1356 1o 1791
Octal| 0 1 2 3 4 5 6 1 Octal] 0 1 2 3 4 5 6 7
2000 {1024 1025 1026 1027 1028 1029 1030 1031 3000|1536 1537 1538 1539 1540 1541 1542 1543
2010 {1032 1033 1034 1035 1036 1037 1038 1039 3010 [1544 1545 1546 1547 1548 1549 1550 1551
2020 {1040 1041 1042 1043 1044 1045 1046 1047 3020|1552 1553 1554 1555 1556 1557 1558 1559
2030 |1048 1049 1050 1051 1052 1053 1054 1055 3030|1560 1561 1562 1563 1564 1565 1566 1567
2040|1056 1057 1058 1059 1060 1061 1062 1063 3040 | 1568 1569 1570 1571 1572 1573 1574 1575
2050 | 1064 1065 1066 1067 1068 1069 1070 1071 3050 {1576 1577 1578 1579 1580 1581 1582 1583
2060 (1072 1073 1074 1075 1076 1077 1078 1079 3060 {1584 1585 1586 1587 1588 1589 1590 1591
2070 (1080 1081 1082 1083 1084 1085 1086 1087 3070|1592 1593 1594 1595 1596 1597 1598 1599
2100 (1088 1089 1090 1091 1092 1093 1094 1095 3100|1600 1601 1602 1603 1604 1605 1606 1607
21101096 1097 1098 1099 1100 1101 1102 1103 3110|1608 1609 1610 1611 1612 1613 1614 1615
2120 (1104 1105 1106 1107 1108 1109 1110 1111 3120|1616 1617 1618 1619 1620 1621 1622 1623
2130 (1112 1113 1114 1115 1116 1117 1118 1119 313011624 1625 1626 1627 1628 1629 1630 1631
21401120 1121 1122 1123 1124 1125 1126 1127 3140|1632 1633 1634 1635 1636 1637 1638 1639
2150 (1128 1129 1130 1131 1132 1133 1134 1135 3150 (1640 1641 1642 1643 1644 1645 1646 1647
2160 (1136 1137 1138 1139 1140 1141 1142 1143 3160 [1648 1649 1650 1651 1652 1653 1654 1655
2170 11144 1145 1146 1147 1148 1149 1150 1151 3170|1656 1657 1658 1659 1660 1661 1662 1663
2200 /1152 1153 1154 1155 1156 1157 1158 1159 3200 (1664 1665 1666 1667 1668 1669 1670 1671
2210{1160 1161 1162 1163 1164 1165 1166 1167 3210 {1672 1673 1674 1675 1676 1677 1678 1679
222011168 1169 1170 1171 1172 1173 1174 1175 3220 {1680 1681 1682 1683 1684 1685 1686 1687
2230|1176 1177 1178 1179 1180 1181 1182 1183 3230|1688 1689 1690 1691 1692 1693 1694 1695
2240|1184 1185 1186 1187 1188 1189 1190 1191 3240 (1696 1697 1698 1699 1700 1701 1702 1703
2250 (1192 1193 1194 1195 1196 1197 1198 1199 3250 (1704 1705 1706 1707 1708 1709 1710 1711
2260 (1200 1201 1202 1203 1204 1205 1206 1207 3260|1712 1713 1714 1715 1716 1717 1718 1719
227011208 1209 1210 1211 1212 1213 1214 1215 3270 {1720 1721 1722 1723 1724 1725 1726 1727
2300|1216 1217 1218 1219 1220 1221 1222 1223 3300 /1728 1729. 1730 1731 1732 1733 1734 1735
2310|1224 1225 1226 1227 1228 1229 1230 1231 3310 (1736 1737 1738 1739 1740 1741 1742 1743
2320|1232 1233 1234 1235 1236 1237 1238 1239 3320|1744 1745 1746 1747 1748 1749 1750 1751
2330|1240 1241 1242 1243 1244 1245 1246 1247 3330 (1752 1753 1754 1755 1756 1757 1758 1759
2340 {1248 1249 1250 1251 1252 1253 1254 1255 3340|1760 1761 1762 1763 1764 1765 1766 1767
2350 1256 1257 1258 1259 1260 1261 1262 1263 3350 {1768 1769 1770 1771 1772 1773 1774 1775
2360 {1264 1265 1266 1267 1268 1269 1270 1271 3360 (1776 1777 1778 1779 1780 1781 1782 1783
23701272 1273 1274 1275 1276 1277 1278 1279 337011784 1785 1786 1787 1788 1789 1790 1791
Octal 2400 t0 2777 Octal 3400 to 3777
Decimal | 1280 10 1535 Decimal | 1792 10 2047
Octal| 0 1 2 3 4 5 6 1 Octal| © 1 2 3 4 5 6 7
2400(1280 1281 1282 1283 1284 1285 1286 1287 3400 1792 1793 1794 1795 1796 1797 1798 1799
2410]1288 1289 1290 1291 1292 1293 1294 1295 341011800 1801 1802 1803 1804 1805 1806 1807
24201296 1297 1298 1299 1300 1301 1302 1303 3420|1808 1809 1810 1811 1812 1813 1814 1815
24301304 1305 1306 1307 1308 1309 1310 1311 3430|1816 1817 1818 1819 1820 1821 1822 1823
2440(1312 1313 1314 1315 1316 1317 1318 1319 3440 [1824 1825 1826 1827 1828 1823 1830 1831
2450(1320 1321 1322 1323 1324 1325 1326 1327 3450 {1832 1833 1834 1835 1836 1837 1838 1839
2460|1328 1329 1330 1331 1332 1333 1334 1335 3460 [1840 1841 1842 1843 1844 1845 1846 1847
24701336 1337 1338 1339 1340 1341 1342 1343 3470 | 1848 1849 1850 1851 1852 1853 1854 1855
2500|1344 1345 1346 1347 1348 1349 1350 1351 3500 (1856 1857 1858 1859 1860 1861 1862 1863
25101352 1353 1354 1355 1356 1357 1358 1359 3510 (1864 1865 1866 1867 1868 1869 1870 1871
25201360 1361 1362 1363 1364 1365 1366 1367 3520 11872 1873 1874 1875 1876 1877 1878 1879
253071368 1369 1370 1371 1372 1373 1374 1375 3530 |1880 1881 1882 1883 1884 1885 1886 1887
254011376 1377 1378 1379 1380 1381 1382 1383 3540 [1888 1889 1890 1891 1892 1893 1894 1895
2550|1384 1385 1386 1387 1388 1389 1390 1391 3550|1896 1897 1898 1899 1900 1901 1902 1903
2560|1392 1393 1394 1395 1396 1397 1398 1399 3560 |1904 1905 1906 1907 1908 1909 1910 1911
2570|1400 1401 1402 1403 1404 1405 1406 1407 3570 11912 1913 1914 1815 1916 1917 1918 1919
2600|1408 1409 1410 1411 1412 1413 1414 1415 3600|1920 1921 1922 1923 1924 1925 1926 1927
26101416 1417 1418 1419 1420 1421 1422 1423 3610 {1928 1929 1930 1931 1932 1933 1934 1935
262011424 1425 1426 1427 1428 1429 1430 1431 3620|1936 1937 1938 1939 1940 1941 1942 1943
2630|1432 1433 1434 1435 1436 1437 1438 1439 3630 | 1944 1945 1946 1947 1948 1949 1950 1951
264011440 1441 1442 1443 1444 1445 1446 1447 3640|1952 1953 1954 1955 1956 1957 1958 1959
2650 {1448 1449 1450 1451 1452 1453 1454 1455 3650 | 1960 1961 1962 1963 1964 1965 1966 1967
26601456 1457 1458 1459 1460 1461 1462 1463 3660 11968 1969 1970 1971 1972 1973 1974 1975
2670 [1464 1465 1466 1467 1468 1469 1470 1471 3670 {1976 1977 1978 1979 1980 1981 1982 1983
2700|1472 1473 1474 1475 1476 1477 1478 1479 3700 (1984 1985 1986 1987 1988 1989 1390 1991
271011480 1481 1482 1483 1484 1485 1486 1487 3710|1992 1993 1994 1995 1996 1997 1998 1999
2720|1488 1489 1490 1491 1492 1493 1494 1495 3720 (2000 2001 2002 2003 2004 2005 2006 2007
27301496 1497 1498 1499 1500 1501 1502 1503 3730|2008 2009 2010 2011 2012 2013 2014 2015
2740 (1504 1505 1506 1507 1508 1509 1510 1511 3740|2016 2017 2018 2019 2020 2021 2022 2023
27501512 1513 1514 1515 1516 1517 1518 1519 3750 {2024 2025 2026 2027 2028 2029 2030 2031
276011520 1521 1522 1523 1524 1625 1526 1527 3760 {2032 2033 2034 2035 2036 2037 2038 2039
2770{1528 1529 1530 1531 1532 1533 1534 1535 3770 | 2040 2041 2042 2043 2044 2045 2046 2047

77

78

Octal-Decimal Integer ConversionTable

Octal 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000
Decimal 4096 8192 12288 | 16384 | 20480 | 24576 | 28672

Octal 4000 10 4377 Octal 5000 to 5377

Decimal {2048 to 2303 Decimal | 2560 to 2815
Octal| 0 1 2 3 4 5 6 1 Octal| 0 1 2 3 4 5 6 1
4000 | 2048 2049 2050 2051 2052 2053 2054 2055 5000 | 2560 2561 2562 2563 2564 2565 2566 2567
4010 2056 2057 2058 2059 2060 2061 2062 2063 5010 | 2568 2569 2570 2571 2572 2573 2574 2575
4020|2064 2065 2066 2067 2068 2069 2070 2071 5020 | 2576 2577 2578 2579 2580 2581 2582 2583
403012072 2073 2074 2075 2076 2077 2078 2079 5030 | 2584 2585 2586 2587 2588 2589 2590 2591
40402080 2081 2082 2083 2084 2085 2086 2087 5040 {2592 2593 2594 2595 2596 2597 2598 2599
4050 | 2088 2089 2090 2091 2092 2093 2094 2095 5050 | 2600 2601 2602 2603 2604 2605 2606 2607
4060|2096 2097 2098 2099 2100 2101 2102 2103 5060 | 2608 2609 2610 2611 2612 2613 2614 2615
407012104 2105 2106 2107 2108 2109 2110 2111 5070|2616 2617 2618 2619 2620 2621 2622 2623
41002112 2113 2114 2115 2116 2117 2118 2119 5100 | 2624 2625 2626 2627 2628 2629 2630 2631
4110{2120 2121 2122 2123 2124 2125 2126 2127 511012632 2633 2634 2635 2636 2637 2638 2639
4120]2128 2129 2130 2131 2132 2133 2134 2135 5120|2640 2641 2642 2643 2644 2645 2646 2647
4130|2136 2137 2138 2139 2140 2141 2142 2143 513012648 2649 2650 2651 2652 2653 2654 2655
41402144 2145 2146 2147 2148 2149 2150 2151 5140|2656 2657 2658 2659 2660 2661 2662 2663
41502152 2153 2154 2155 2156 2157 2158 2159 5150|2664 2665 2666 2667 2668 2669 2670 2671
41602160 2161 2162 2163 2164 2165 2166 2167 5160|2672 2673 2674 2675 2676 2677 2678 2679
4170)2168 2169 2170 2171 2172 2173 2174 2175 5170|2680 2681 2682 2683 2684 2685 2686 2687
4200|2176 2177 2178 2179 2180 2181 2182 2183 5200 {2688 2689 2690 2691 2692 2693 2694 2695
421012184 2185 2186 2187 2188 2189 2190 2191 52102696 2697 2698 2693 2700 2701 2702 2703
42202192 2193 2194 2195 2196 2197 2198 2199 5220|2704 2705 2706 2707 2708 2709 2710 2711
423012200 2201 2202 2203 2204 2205 2206 2207 5230 {2712 2713 2714 2715 2716 2717 2718 2719
424012208 2209 2210 2211 2212 2213 2214 2215 5240|2720 2721 2722 2723 2724 2725 2726 2727
42502216 2217 2218 2219 2220 2221 2222 2223 5250|2728 2729 2730 2731 2732 2733 2734 2735
4260|2224 2225 2226 2227 2228 2229 2230 2231 52602736 2737 2738 2739 2740 2741 2742 2743
4270|2232 2233 2234 2235 2236 2237 2238 2239 5270|2744 2745 2746 2747 2748 2749 2750 2751
4300] 2240 2241 2242 2243 2244 2245 2246 2247 5300 | 2752 2753 2754 2755 2756 2757 2758 2759
4310|2248 2249 2250 2251 2252 2253 2254 2255 5310|2760 2761 2762 2763 2764 2765 2766 2767
4320|2256 2257 2258 2259 2260 2261 2262 2263 532012768 2769 2770 2771 2772 2773 2774 2775
4330|2264 2265 2266 2267 2268 2269 2270 2271 5330|2776 2777 2778 2779 2780 2781 2782 2783
4340|2272 2273 2274 2275 2276 2277 2278 2279 5340]2784 2785 2786 2787 2788 2789 2790 2791
4350)2280 2281 2282 2283 2284 2285 2286 2287 5350 | 2792 2793 2794 2795 2796 2797 2798 2799
4360|2288 2289 2290 2291 2292 2293 2294 2295 5360 | 2800 2801 2802 2803 2804 2805 2806 2807
4370}2296 2297 2298 2299 2300 2301 2302 2303 537012808 2809 2810 2811 2812 2813 2814 2815

Octal 4400 10 4777 Octal 5400 to 5777

Decimal | 2304 1o 2559 Decimal | 2816 1o 3071
Octal| 0 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 6 7
4400|2304 2305 2306 2307 2308 2309 2310 2311 5400|2816 2817 2818 2813 2820 2821 2822 2823
4410]2312 2313 2314 2315 2316 2317 2318 2719 5410|2824 282> 2826 2827 2828 2829 2830 2831
4420|2320 2321 2322 2323 2324 2325 2326 2327 542012832 2833 2834 2835 2836 2837 2838 2839
44302328 2329 2330 2331 2332 2333 2334 2335 5430 | 2840 2841 2842 2843 2844 2845 2846 2847
444012336 2337 2338 233y 2340 2341 2342 2343 5440 [2848 2849 2850 2851 2852 2853 2854 2855
4450|2344 2345 2346 2347 2348 2349 2350 2351 5450|2856 2857 2858 2859 2860 2861 2862 2863
44602352 2353 2354 2355 2356 2357 2358 2359 54602864 2865 2866 2867 2868 2869 2870 287t
4470|2360 2361 2362 2363 2364 2365 2366 2367 547012872 2873 2874 2875 2876 2877 2878 2879
4500|2368 2369 2370 2371 2372 2373 2374 2375 5500|2880 2881 2882 2883 2884 2885 2886 2887
4510(2376 2377 2378 2379 2380 2381 2382 2383 5510{2888 288y 2890 2891 2892 2893 2894 2895
4520|2384 2385 2386 2387 2388 238y 2390 2391 5520|2896 2897 2848 28Y9 2900 2901 2902 2903
453012392 2393 2394 2395 2396 2397 2398 2399 5530|2904 2905 2906 2907 2908 2909 2910 2911
4540 2400 2401 2402 2403 2404 2405 2406 2407 55402912 2913 2914 2915 2916 2917 2918 2919
4550|2408 2409 2410 2411 2412 2413 2414 2415 5550 { 2920 2921 2922 2923 2924 2925 2926 2927
4560|2416 2417 2418 2419 2420 2421 2422 2423 556012928 2929 2930 2931 2932 2933 2934 2935
45702424 2425 2426 2427 2428 2429 2430 2431 5570|2936 2937 2938 2939 2940 2941 2942 2943
4600|2432 2433 2434 2435 2436 2437 2438 2439 5600 | 2944 2945 2946 2947 2948 2949 2950 2951
46102440 2441 2442 2443 2444 2445 2446 2447 561012952 2953 2954 2955 2956 2957 2958 2959
4620|2448 2449 2450 2451 2452 2453 2454 2455 5620|2960 2961 2962 2963 2964 2965 2966 2967
4630|2456 2457 2458 2459 2460 2461 2462 2463 5630 | 2968 2969 2970 2971 2972 2973 2974 2975
4640|2464 2465 2466 2467 2468 2469 2470 2471 5640|2976 2977 2978 2979 2980 2981 2982 2983
4650|2472 2473 2474 2475 2476 2477 2478 2479 5650 | 2984 2985 2986 2987 2988 2989 2990 2991
4660|2480 2481 24B2 2483 2484 2485 2486 2487 5660|2992 2993 2994 2995 2996 2997 2998 2999
4670|2488 248Y 2490 2491 2492 2493 2494 2495 5670 { 3000 3001 3002 3003 3004 3005 3006 3007
470012496 2497 2498 2499 2500 2501 2502 2503 5700|3008 3009 3010 3011 3012 3013 3014 3015
471012504 2505 2506 2507 2508 2509 2510 2511 57103016 3017 3018 3019 3020 3021 3022 3023
4720|2512 2513 2514 2515 2516 2517 2518 2519 5720|3024 3025 3026 3027 3028 3029 3030 3031
4730|2520 2521 2522 2523 2524 2525 2526 2527 57303032 3033 3034 3035 3036 3037 3038 3039
4740) 2528 2529 2530 2531 2532 2533 2534 2535 57403040 3041 3042 3043 3044 3045 3046 3047
4750 2536 3537 2538 2539 2540 2541 2542 2543 5750|3048 3049 3050 3051 3052 3053 3054 3055
4760|2544 2545 2546 2547 2548 2549 2550 2551 5760|3056 3057 3058 3059 3060 3061 3062 3063
4770) 2552 2553 2554 2555 2556 2557 2558 2559 5770|3064 3065 3066 3067 3068 3069 3070 3071

Octal-Decimal Integer Conversion Table

Octal | 10000 | 20000 | 30000 | 46000 | 50000 | 60000 | 70000
Decimal 4096 8192 12288 | 16384 | 20480 | 24576 | 28672
[0ctal_J6000 10 6377] Octal |7000 10 7377
{Do:imul 3072 1o 3321] Decimol | 3584 to 3839
Oeall 0 1 2 3 4 5 6 7 Ocall 0 1 2 3 4 5 6 71
6000 | 3072 3073 3074 3075 3076 3077 3078 3079 7000 | 3584 3585 3586 3587 3588 3589 3590 3591
6010|3080 3081 3082 3083 3084 3085 3086 3087 7010|3592 3593 3594 3595 3596 3597 3598 3599
6020|3088 3089 3090 3091 3092 3093 3094 3095 7020|3600 3601 3602 3603 3604 3605 3606 3607
6030|3096 3097 3098 3099 3100 3101 3102 3103 7030|3608 3609 3610 3611 3612 3613 3614 3615
6040|3104 3105 3106 3107 3108 3109 3110 3111 7040|3616 3617 3618 3619 3620 3621 3622 3623
60503112 3113 3114 3115 3116 3117 3118 3119 7050 [3624 3625 3626 3627 3628 3629 3630 3631
6060 (3120 3121 3122 3123 3124 3125 3126 3127 7060|3632 3633 3634 3635 3636 3637 3638 363y
60703128 3129 3130 3131 3132 3133 3134 3135 7070 | 3640 3641 3642 3643 3644 3645 3646 3647
6100|3136 3137 3138 3139 3140 3141 3142 3143 7100 (3648 3649 3650 3651 3652 3653 3654 3655
61103144 3145 3146 3147 3148 3149 3150 3151 7110|3656 3657 3658 3659 3660 3661 3662 3663
6120|3152 3153 3154 3155 3156 3157 3168 3159 7120|3664 3665 3666 3667 3668 3669 3670 3671
6130|3160 3161 3162 3163 3164 3165 3166 3167 7130|3672 3673 3674 3675 3676 3677 3678 3679
6140|3168 3169 3170 3171 3172 3173 3174 3175 7140 | 3680 3681 3682 3683 3684 3685 3686 3687
61503176 3177 3178 3179 3180 3181 3182 3183 7150 { 3688 3689 3690 3691 3692 3693 3694 3695
6160 (3184 3185 3186 3187 3188 3189 3190 3191 7160|3696 3697 3698 3699 3700 3701 3702 3703
6170|3192 3193 3194 3195 3196 3197 3198 3199 71703704 3705 3706 3707 3708 3709 3710 3711
6200|3200 3201 3202 3203 3204 3205 3206 3207 7200|3712 3713 3714 3715 3716 3717 3718 3719
6210|3208 3209 3210 3211 3212 3213 3214 3215 72103720 3721 3722 3723 3724 3725 3726 3727
6220|3216 3217 3218 3219 3220 3221 3222 3223 7220 (3728 3729 3730 3731 3732 3733 3734 3735
6230|3224 3225 3226 3227 3228 3229 3230 3231 7230|3736 3737 3738 3739 3740 3741 3742 3743
6240|3232 3233 3234 3235 3236 3237 3238 3239 7240|3744 3745 3746 3747 3748 3749 3750 3751
6250|3240 3241 3242 3243 3244 3245 3246 3247 7250 {3752 3753 3754 3755 3756 3757 3758 3759
6260|3248 3249 3250 3251 3252 3253 2354 3255 7260 {3760 3761 3762 3763 3764 3765 3766 3767
6270|3256 3257 3258 3259 3260 3261 3262 3263 72703768 3769 3770 3771 3772 3773 3774 3775
6300|3264 3265 3266 3267 3268 3269 3270 3271 7300 [3776 3777 3778 3779 3780 3781 3762 3783
6310|3272 3273 3274 3275 3276 3277 3278 3279 7310|3784 3785 3786 3787 3788 3789 3790 3791
6320|3280 3281 3282 3283 3284 3285 3286 3287 7320|3792 3793 3794 3795 3796 3797 3798 3799
6330|3288 3289 3290 3291 3292 3293 3294 3295 7330|3800 3801 3802 3803 3804 3805 3806 3807
5340|3296 3297 3298 3299 3300 3301 3302 3303 7340|3808 3809 3810 3811 3812 3813 3814 3815
6350|3304 3305 3306 3307 3308 3309 3310 3311 7350|3816 3817 3818 3819 3820 3821 3822 3823
6360|3312 3313 3314 3315 3316 3317 3318 3319 7360 | 3824 3825 3826 3827 3828 3829 3830 3831
6370(3320 3321 3322 3323 3324 3325 3326 3327 7370|3832 3833 3834 3835 3836 3837 3838 3839
Octal [6400 10 6777 [ocal [7400 10 7777]
Decimal [3328 1o 3583 [Decimal [3840 1o 4095]
Octall 0 1 2 3 4 5 6 7 Octal| 0 1 2 3 4 5 6 7
6400 | 3328 3325 3330 3331 3332 3333 3334 3335 7400|3840 3841 3842 3843 3844 3845 3846 3847
6410|3336 3337 3338 3339 3340 3341 3342 3343 7410|3848 3849 3850 3851 3852 3853 3854 3855
6420 | 3344 3345 3346 3347 3348 3349 3350 3351 7420|3856 3857 3858 3859 3860 3861 3862 3863
6430 | 3352 3353 3354 3355 3356 3357 3358 3359 7430|3864 3865 3866 3867 3868 3869 3870 3871
6440|3360 3361 3362 3363 3364 3365 3366 3367 7440 {3872 3873 3874 3875 3876 3877 3878 3879
6450 | 3368 3369 3370 3371 3372 3373 3374 3375 7450 | 3880 3881 3882 3883 3884 3885 3886 3887
6460|3376 3377 3378 3379 3380 3381 3382 3383 7460 [3888 3889 3890 3891 3892 3893 3894 3895
6470|3384 3385 3386 3387 3388 3389 3390 3391 7470|3896 3897 3898 3899 3900 3901 3902 3903
6500 | 3392 3393 3394 3395 3396 3397 3398 3399 7500 | 3904 3905 3906 3907 3908 3909 3910 3911
6510|3400 3401 3402 3403 3404 3405 3406 3407 7510{3912 3913 3914 3915 3916 3917 3918 3919
6520|3408 3409 3410 3411 3412 3413 3414 3415 7520|3920 3921 3922 3923 3924 3925 3926 3927
6530(3416 3417 3418 3419 3420 3421 3422 3423 7530|3928 3929 3930 3931 3932 3933 3934 3935
6540|3424 3425 3426 3427 3426 3429 3430 3431 7540|3936 3937 3938 3939 3940 3941 3942 3943
6550|3432 3433 3434 3435 3436 3437 3438 3439 7550|3944 3945 3946 3947 3948 3949 3950 3951
6560|3440 3441 3442 3443 3444 3445 3446 3447 7560|3952 3953 3954 3955 3956 3957 3958 3959
6570|3448 344y 3450 3451 3452 3453 3454 3455 7570|3960 3961 3962 3963 3964 3965 3966 3967
6600 | 3450 3457 3458 3459 3460 3461 3462 3463 7600|3968 3969 3970 3971 3972 3973 3974 3975
6610|3464 3465 3466 3467 3468 3469 3470 3471 7610 (3976 3977 3978 3979 3980 3981 3982 3983
6620|3472 3473 3474 3475 3476 3477 3476 3479 76203984 3985 3986 3987 3988 3989 3990 3991
6630|3480 3481 3482 3483 3484 3465 3486 3487 7630|3992 3993 3994 3995 3996 3997 3998 3999
6640 | 3488 3489 3490 34u1 3492 3493 3494 3495 7640 | 4000 4001 4002 4003 4004 4005 4006 4007
6650|3496 3497 3498 3499 3500 3501 3502 3503 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
6660|3504 3505 3506 3507 3508 3509 3510 3511 7660 | 4016 4017 4018 4019 4020 4021 4022 4023
66703512 3513 3514 3515 3516 3517 3518 3519 7670 | 4024 4025 4026 4027 4028 4029 4030 403
6700|3520 3521 3522 3523 3524 3525 3526 3527 77004032 4033 4034 4035 4036 4037 4038 4039
67103528 3529 353C 3531 3532 3533 3534 3535 7710[4040 4041 4042 4043 4044 4045 4046 4047
672013536 3537 3538 3539 3540 3541 3542 3543 7720 | 4048 4049 4050 4051 4052 4053 4054 4055
6730|3544 3545 3546 3547 3548 3549 3550 3551 7730|4056 4057 4058 4059 4060 4061 4062 4063
6740|3552 3553 3554 3555 3556 3557 3558 3559 7740|4064 4065 4066 4067 4068 4069 4070 4071
6750|3560 3561 3562 3563 3564 3565 3566 3567 7750 [4072 4073 4074 4075 4076 4077 4078 4079
6760|3568 3569 3570 3571 3572 3573 3574 3575 7760 [4080 4081 4082 4083 4084 4085 4086 4087
6770|3576 3577 35768 3579 3580 3581 3582 3583 7770|4088 4089 4090 4091 4092 4093 4094 4095

79

Octal-Decimal Fraction Conversion Table

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000000 .000000 .000100 .000244 .000200 .000488 .000300 .000732
.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736
.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740
.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743
.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747
.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751
.000006 .000022 .000106 .000267 .000206 .000511 .000306 .000755
.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759
.000010 .000030 .000110 .000274 .000210 .000518 .000310 .000762
.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766
.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770
.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774
.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778
.000015 .000049 .000115 .000283 .000215 .000537 .000315 .000782
.000016 .000053 .000116 .000297 .000216 .000541 .000316 .000785
.000017 .000057 .000117 .000301 .000217 .000545 .000317 .000789
.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793
.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797
.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801
.000023 .000072 .000123 .000316 .000223 .000560 .000323 .000805
.000024 .000076 .000124 .000320 .000224 .000564 .000324 .000808
.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812
.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816
.000027 .000087 .000127 .000331 .000227 .000576 .000327 .000820
.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823
.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827
.000032 .000099 .000132 .000343 .000232 .000587 .000332 .000831
.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839
.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843
.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846
.000037 .000118 .000137 .000362 .000237 .000606 .000337 .000850
.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854
.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858
.000042 .000129 .000142 .000373 .000242 .000617 .000342 .000862
.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865
.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869
.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873
.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877
.000047 .000148 .000147 .000392 .000247 .000637 .000347 .000881
.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885
.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888
.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892
.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896
.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900
.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904
.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907
.000057 .0001179 .000157 .000423 .000257 .000667 .000357 .000911
.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915
.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919
.000062 .000190 .000162 .000434 .000262 .000679 .000362 .000923
.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926
.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930
.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934
.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938
.000067 .000209 .000167 .000453 .000267 .000698 .000367 .000942
.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946
.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949
.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953
.000073 .000225 .000173 .000469 .000273 .000713 .000373 .000957
.000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961
.000075 .000232 .000175 .000476 .000275 .000720 .000375 .000965
.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968
.000077 .000240 .000177 .000484 .000277 .000728 .000377 .000972

80

Octal-Decimal Fraction Conversion Table

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708
.000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712
.000402 .000984 .000502 .001228 .000602 .001472 .000702 .001716
.000403 .000988 .000503 .001232 .000603 .001476 .000703 .001720
.000404 .000991 .000504 .001235 .000604 .001480 .000704 .001724
.000405 .000995 .000505 .001239 .000605 .001483 .000705 .001728
.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731
.000407 .001003 .000507 .001247 .000607 .001491 .000707 .001735
.000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739
.000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743
.000412 .001014 .000512 .001258 .000612 .001502 .000712 .001747
.000413 .001018 .000513 .001262 .000613 .001506 .000713 .001750
.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754
.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758
.000416 .001029 .000516 .001274 .000616 .001518 .000716 .001762
.000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766
.000420 .001037 .000520 .001281 .000620 .001525 .000720 .001770
.000421 .001041 .000521 .001285 .000621 .001529 .000721 .001773
.000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777
.000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781
.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785
.000425 .001056 .000525 .001300 .000625 .001544 .000725 .001789
.000426 .001060 .000526 .001304 .000626 .001548 .000726 .001792
.000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796
.000430 .001068 .000530 .001312 .000630 .001556 .000730 .001800
.000431 .001071 .000531 .001316 .000631 .001560 .000731 .001804
.000432 .001075 .000532 .001319 .000632 .001564 .000732 .001808
.000433 .001079 .000533 .001323 .000633 .001567 .000733 .001811
.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815
.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819
.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823
.000437 .001094 .000537 .001338 .000637 .001583 .000737 .001827
.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831
.000441 .001102 .000541 .001346 .000641 .001590 .000741 .001834
.000442 .001106 .000542 .001350 .000642 .001594 .000742 .001838
.000443 .001110 .000543 .001354 .000643 .001598 .000743 .001842
.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846
-.000445 .001117 .000545 .00136t .000645 .001605 .000745 .001850
.000446 .001121 .000546 .001365 .000646 .001609 .000746 .001853
.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857
.000450 .001129 .000550 .001373 .000650 .001617 .000750 .001861
.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865
.000452 .001136 .000552 .001380 .000652 .001625 .000752 .001869
.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873
.000454 .001144 .000554 .001388 .000654 .001632 .000754 .001876
.000455 .001148 .000555 .001392 .000655 .001636 .000755 .001880
.000456 .001152 .000556 .001396 .000656 .001640 .000756 .001884
.000457 .001155 .000557 .001399 .000657 .001644 .000757 .001888
.000460 .0011569 .000560 .001403 .000660 .001647 .000760 .001892
.000461 .001163 .000561 .001407 .000661 .001651 .000761 .001895
.000462 .001167 .000562 .001411 .000662 .001655 .000762 .001899
.000463 001171 .000563 .001415 .000663 .001659 .000763 .001903
.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907
.000465 .001178 .000565 .001422 .000665 .001667 .000765 .001911
.000466 .001182 .000566 .001426 .000666 .001670 .000766 .001914
.000467 .001186 .000567 .001430 .000667 .001674 .000767 .001918
.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922
.000471 001194 .000571 .001438 .000671 .001682 .000771 .001926
.000472 .001197 .000572 .001441 .000672 .001686 .000772 .001930
.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934
.000474 .001205 .000574 .001449 .000674 .001693 .000774 .001937
.000475 .001209 .000575 .001453 .000675 001697 .000775 .001941
.000476 .001213 .000576 .001457 .000676 .001701 .000776 .001945
.000477 .001216 .000577 .001461 .000677 .001705 .000777 .001949

81

Octal-Decimal Fraction Conversion Table

OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL OCTAL DECIMAL
.000 .000000 .100 .125000 .200 .250000 .300 .375000
.001 .001953 .101 .126953 .201 .251953 .301 .376953
.002 .003906 .102 .128906 .202 .253906 .302 .378906
.003 .005859 .103 .130859 .203 .255859 .303 .380859
.004 .007812 .104 .132812 .204 .257812 .304 .382812
.005 .009765 105 .134765 .205 .259765 .305 .384765
.006 011718 .106 .136718 .206 .261718 .306 .386718
.007 .013671 .107 .138671 .2017 .263671 .307 .388671
.010 .015625 .110 .140625 .210 .265625 .310 .390625
.011 .017578 111 .142578 211 .267578 311 .392578
.012 .019531 112 .144531 212 .269531 312 .394531
.013 .021484 113 .146484 213 271484 .313 .396484
.014 .023437 .114 .148437 .214 .2734317 314 .398437
.015 .025390 .115 .150390 .215 .275390 .315 .400390
.016 .027343 .116 .152343 .216 .277343 .316 .402343
.017 .029296 117 .154296 217 279296 317 .404296
.020 .031250 .120 .156250 .220 .281250 .320 .406250
.021 .033203 121 .158203 221 .283203 .321 .408203
.022 .035156 .122 .160156 .222 .285156 .322 .410156
.023 .037109 .123 .162109 .223 .287109 .323 .412109
.024 .039062 124 .164062 224 .289062 .324 .414062
.025 .041015 125 .166015 .225 .291015 .325 .416015
.026 .042968 126 .167968 .226 .292968 326 417968
.027 .044921 127 .169921 .227 .294921 327 .419921
.030 .046875 .130 .171875 .230 .296875 .330 .421875
.031 .048828 131 .173828 .231 .298828 .331 .423828
.032 .050781 .132 .175781 .232 .300781 .332 .425781
.033 .052734 .133 177734 .233 .302734 .333 .427734
.034 .054687 134 .179687 .234 .304687 .334 .429687
.035 056640 .135 .181640 .235 .306640 .335 .431640
.036 .058593 .136 .183593 .236 .308593 .336 .433593
.037 .060546 137 .185546 .237 .310546 337 .435546
.040 .062500 .140 .187500 .240 .312500 .340 .437500
.041 .064453 .141 .189453 .241 .314453 .341 .439453
.042 .066406 142 .191406 .242 .316406 342 .441406
.043 .068359 .143 .193359 .243 .318359 .343 .443359
.044 .070312 144 .195312 244 .320312 344 .445312
.045 .072265 .145 .197265 .245 .322265 .345 .447265
.046 .074218 .146 .199218 .246 .324218 .346 .449218
.047 076171 .147 .201171 247 326171 .347 .451171
.050 .078125 .150 .203125 .250 .328125 .350 .453125
.051 .080078 151 .205078 .251 .330078 .351 .455078
.052 .082031 .152 .207031 .252 .332031 .352 .457031
.053 .083984 153 .208984 .253 .333984 .353 .458984
.054 .085937 154 .210937 .254 .335937 .354 .460937
.055 .087890 .155 .212890 .255 .337890 .355 .462890
.056 .089843 .156 .214843 .256 .339843 .356 .464843
.057 .091796 .157 .216796 .257 .341796 .357 .466796
.060 .093750 .160 .218750 .260 .343750 .360 .468750
.061 .095703 .161 .220703 .261 .345703 .361 .470703
.062 .097656 .162 .222656 .262 .347656 .362 .472656
.063 .099609 163 .224609 .263 .349609 .363 .474609
064 .101562 .164 .226562 .264 351562 .364 .476562
.065 .103515 .165 .228515 .265 .353515 .365 .478515
.066 .105468 .166 .230468 .266 .355468 .366 .480468
.067 .107421 167 .232421 .267 .357421 .367 .482421
.070 .109375 170 .234375 .270 .359375 .370 .484375
071 .111328 17 .236328 .27 .361328 .37 .486328
072 .113281 172 .238281 272 .363281 372 .488281
.073 .115234 173 .240234 273 .365234 373 .490234
074 117187 .174 .242187 274 .367187 374 .492187
075 .119140 175 .244140 275 .369140 375 .494140
.076 .121093 .176 .246093 276 .371093 .376 .496093
077 .123046 177 .248046 277 .373046 31 .498046

82

2
4
8

16
32
64

128
256
512

1024
2 048
4 096

8 192
16 384
32 768

65 536
131 072
262 144

524 288
1 048 576
2 097 152

4 194 304
8 388 608
16 777 216

33 554 432
67 108 864
134 217 728

268 435 456
536 870 912
1073 741 824

2 147 483 648
4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368
68 719 476 736

137 438 953 472
274 877 906 944
549 755 813 888

1 099 511 627 776

D O LW N =

© o3

Table of Pcwers of 2

2-l'l

(=R =Nl
ol %

25
125
0.062 5
0.031 25
0.015 625

0.007 812 5
0.003 906 25
0.001 953 125

0.000 976 562 5
0.000 488 281 25
0.000 244 140 625

0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625

0.000 001 907 348 632 812 5
0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25
0.000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 695 312 5
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625

0.000 000 000 465 661 287 307 739 257 812 5
0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125

0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625

0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 9893 403 545 856 475 830 078 125

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

83

84

INDEX TO INSTRUCTIONS AND PSEUDO-INSTRUCTIONS

Instruction

Page

Instruction

Page

Instruction

Page

85

86

Rvgress /s Ovr Most Important Prodvct

GENERAL @3 ELECTRIC

PROCESS COMPUTER BUSINESS SECTION
PHOENIX, ARIZONA

e

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	xBack

