
EDITOlt
·reference~manual

88AOO119A01

RECORD OF REVISIONS

: -t,

Title: EDITOR Ref erence Manual:~· [j l'

Document No. 88A00779AOl

Date Issue
! .., .~

March 1984 Original Issue

NOTICE

The information contained in this document is subject to change without notice.

General Automation makes no warranty or representation with regard to this
material, including, but not limited to, the implied warranties of merchanta­
bility and fitness for a particular purpose. General Automation shall not be
liable for errors contained herein.

General Automation assumes no responsibility for the use or reliability of its
. software on equipment that is not furnished by General Automation.

This document contains proprietary :~information which i.s protected by copY1;'ight.
All rights are re~ved. No part of this document may be photocopied or
reproduced without the prlor written consent of General Automation.

This document embodies confidential information proprietary to PICK Systems
Inc., and shall not be used, reproduced, copied, disclosed, or transferred in
any manner except under written ~greement.

ii

E.D~I·TOR
. ;,' '. ",

·referenc,~manul.
88AOO179Ao1

Copyri~t~ bV Ge~"Otq~.i¢f:'.' Inc,
1045 Soutl\;ea$t Street P.O,·B'o-~ 4883

Anif\eim. California 92803
(7141718-4800 (a00l8!4~t5234

TWX 91~591.1596· TEI..EX 6a5-51~

RECORD OF REVISIONS

Title: EDITOR Reference Manual:(' .'. [1 J.. I

Document No. 88A00779AOl

Date Issue

Marc.h 1984 Original Issue

NOTICE

The information contained in this document is subject to change without notice.

General Automation makes no warranty or representation with regard to this
material, including, but not limited to, the implied warranties of merchanta­
bility and fitness for a particular purpose. General Automation shall not be
liable for errors contained herein.

"General Automation assumes no responsibility for the use or reliability of its
:>·'software on equipment that is not furnished by General Automation.

This document contains proprietary :~information which is protected by copY1;'ight.
All rights are re~ved. No part of this document may be photocopied or
reproduced without the pri-orwritten consent ,of General Automation.

This document embodies confidential information proprietary to PICK Systems
Inc., and shall not be used, reproduced, copied, disclosed, or transferred in
any manner except under written ~greement.

ii

88A00779A

FORE\lORD

This document is one of a family of ZEBRA reference manuals devoted to PICK
processors that are on call within the PICK operating system. Before read.ifng OJ

this document and using the processor described, it is recommended that you
first become familiar with the PICK terminal c.ontrol l·al).guage and fi~le jt:::JT,:]L~ ," .'''~'.'

structure. These subjects are thoroughly covered in 88A00732A, listed below
with other documents covering o~!!:~.J'.Eoo~~o!~.?-':.~':_._o .. ___ o .. __ 0.._

Document No.

88A00757A
88A00758A
88A00759A
88A00760A
88A00774A
88A00776A
8 8A00777 A
88A00778A
88A00780A
88A0078lA
88A00782A
88A00783A

Title

PICK Operator Guide
ACCU-PLOT Operator Guide ~

COMPU-SHEET Operator Guide
Quick Guide for the PICK Operating System
PICK Utilities Guide
PICK ACCESS Reference Manual
PICK SPOOLER Reference Manual
PICK BASIC Reference Manual
PICK PROC Reference Manual
PICK RUNOFF Reference Hanual
Introduction to PICK TCL and FILE STRUCTURE
PICK JET Word Processor Guide

~-.': .. ' .
- ..", ..

,'~:~tl 'r::. .'.·~·~,~~Cl ... ~jj:-rf: .. ~.~':'.~' '". u· . ~ 1 of, \I .:; :-. ~ i .. :'" ~:: -' . -~' .', '. ~ ..

TMACCU-PLOT is a trademark of ACCOSOFT. EnteriJt:tses· ,'. :.:'

TMCOMPU-SHEET is a trademark of Raytilond;-Wa:y-ne Corpotatiort

TMpICK is a trademark of PICK Systems

TMZEBRA is a trademark of General Automation, 'Inc! 1',.

iii/iv

, .~. c' ~ L >

Section

1

88A00779A

TABLE OF CONTENTS

Title

EDITOR • • • • • • • • • . . • . . .
1 • 1 INTRODUCTION........ . • • . • .
1.2 OPERATION OF THE EDITOR. • • • . • • . . • . •
1.3 ENTERING THE EDITOR: THE EDIT AND EDIT-LIST VERBS.
1 .4 ED ITOR COlon-lANDS SYNTAX • • . • • • • • • • • . .
1.5 CONTROLLING THE LINE POINTER: B,[CR], G, L, N, T,

1.6
1.7
1.8
1.9

AND U COMMANDS • • • • • . • • .
EDITOR COt-IMANDS: LOCATE (L) AND AGAIN (A) •
INPUT (I) COt-1l-lAND. • • • • • • • •
INSERT (I) COt-ft.lAND • • • • • • •
UERGE (ME) COMMAND • • • • • • • •
1.9.1 MERGING FROM OTHER FILES.

1.10 DELETE (DE) COMMAND •••.••••••••••
1.11 REPLACE (R) COMMAND •••••••

1.11.1 MULTIPLE REPLACEMENTS WITHIN A LINE.
1.11.2 REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT.
1.11.3 CORRECTING INPUT •••••.••••.
1.11.4 A NOTE ON COLU~lN SPECI FICATION • • •
1.11.5 COLUMN SPECIFICATION AND THE REPLACE

UNIVERSAL COMMAND. • • • • • • . . • . ••
1.12 F, FILE ITEM (FI), FILE SAVE (FS), FILE DELETE (FD)

AND EXIT (EX) COMMANDS • • • • • • • • • • • • . • • •
1.12.1 FILING ITEMS IN OTHER ITEMS AND OTHER FILES.

1.13 TAB (TB), ZONE (Z), AND SUPPRESS (S) COt-~~S •••.
1 • 14 AS COMMAND • • • • . • • • • • • • • • . • . • .

1 • 14. 1 M COMl1AND. • . • • • • • • • • • • • . • . •
1.15 C (COLUMN), S?, X, XF, ? (CURRENT LINE) AND 1\ COMMANDS

1.15.1 PRINTING UNPRINTABLE CHARACTERS.
1.16 PRESTORE CO~1AND (Pn). . • • • • • • • . . . •

1.16.1 PRESTORE COt-~1AND DEFINITION. • • • . •
1.16.1.1 Prestore Command Defaults

1.16.2 REPEATING PRESTORE COMMANDS ••••••
1.16.3 DISPLAYING CURRENT PRESTORE COMMANDS.

1.16.3.1 Using Prestores in PROCs .
1.17 RECOVER-FD. • • • • •••
1.18 EDITOR MESSAGES. • • • • • • • • • • • • • •

v/vi

1-1
1-1
1-2
1-4
1-7

1-9
1-12
1-14
1-16
1-17
1-17
1-20
1-22
1-23
1-23
1-25
1-25

1-26

1-28
1-30
1-32
1-34
1-35
1-36
1-37
1-38
1-38
1-39
1-39
1-40
1-40
1-42
1-44

88A00779A

EDITOR 1
1.1 INTRODUCTION

The EDITOR is a processor which permits on-line interactive modification of any
item in the data base. The EDITOR may be used to create and/or modify BASIC
programs, PROCs, assembly ·programs, data files, and file dictionaries. The
EDITOR uses the current line concept (i.e., at any given time, there is a
current line that can be listed, altered, deleted, etc.). The EDITOR includes
the following features:

Two variable length temporary buffers
Absolute and relative current line positioning
Line number prompting on input
Herging of lines from the same or other items
Character string location and replacement
Conditional and unconditional line deletion
Input/Output (I/O) formatting
Prestoring of commands

Conventions used in EDITOR command formats are as follows:

Convention

UPPER CASE
Characters

Lower case
Characters

{ }

"string"

Meaning

Characters printed in upper case are required and must
appear exactly as shown.

Characters or words printed in lower case are parameters
to be supplied by the user (i.e., line number, data, etc.).

Braces surrounding a parameter indicate that the parameter
is optional and may be included or omitted at the user's
option.

A "string" is a sequence of characters delimited by any
non-numeric character (except a blank or a minus sign)
that does not appear within the body of the "string"
itself. (A further description of "string" is presented
in Section 1.4.)

1-1

88A00779A

1.2 OPERATION OF THE EDITOR

The EDITOR uses two data areas (buffers) to edit an item. The item is copied
into one buffer and updates are assembled in the other. An F command merges
the updates with the item and then toggles the function of the buffers.

The EDITOR uses two variable length temporary buffers (Buffer 1 and Buffer 2)
to create or update an item. When the EDITOR is entered, the item to be edited
is copied from the file to Buffer 1 (the current buffer). Each line (attri­
bute) of the item is associated with a line number. A current line pointer .
points to the current line of the item, and an End-of-Item (EOI) pointer points
to the last line of the item. EDITOR operations are performed on one line at a
time (the current line) in an ascending line number sequence from TOP (line 0
to EOI. As an EDITOR operation is performed on a line, the modified line and
all previous lines are copied to Buffer 2 (the update buffer).

The editing process continues working on Buffer 1. As lines in the item are
changed (or lines are inserted or deleted), the EDITOR builds a new updated
version of the item in Buffer 2. Updating must thus continue in an ascending
line number sequence until an F command is entered. The F command merges the
updates with the previously existing item and an automatic resequencing of the
item takes place. Functionally,the EDITOR stores the updates and only applies
them to the item when the F command is entered. The F command does not
permanently file an item; it completes the copy to the update buffer, causing
all lines to be resequenced and the EOI pointer to be repositioned. It then
switches (toggles) the function· of the buffers, so that Buffer 1 becomes the
update buffer and Buffer 2 becomes the current buffer. Editing then occurs in
Buffer 2 with new modifications assembled in Buffer 1. This toggling of
buffers can go on indefinitely until the item is permanently filed away via a
File Item (FI) or File Save (FS) command.

This editing process is shown in Figures 1-1 and 1-2. Figure 1-1 shows a
four-line item in Buffer 1 (the current buffer) with the current line pointer
positioned at line 2. Two lines ("1234" and "567") are then inserted after
line 2 as can be seen in Buffer 2 (the update buffer). Then the original line
4(DDDD), which became line 6, is replaced by NEW DATA. When an F command is
issued, the buffers are toggled and the situation is as shown in Figure 1-2.
Here Buffer 2 has become the current buffer. Further modifications made to the
item will be assembled in Buffer 1 which has now become the update buffer.

1-2

1

2

3

4

88A00779A

Buffer 1 Buffer 2
(Current Buffer) (Update Buffer)

Top Top

AAAAA 1 AA.AAA
current

BBBB <---- line 2 BBBB
pointer

CCCC 3 1234

DDDD <---- EOl 4 567
pointer

5 CCCC

last -----> 6 NEW LINE 6
updated line

Figure 1-1. Editing Example Before F Command

Buffer 1 Buffer 2
(Update Buffer) (Current Buffer)

Top <--
I
I
I

current
line -->
pointer

I last
l--- updated

line

EOI ------->
pointer

1-

2

3

4

5

6

Top

AAAA

BBBB

1234

567

CCCC

NEW LINE

Figure 1-2. Editing Example After F Command

1-3

6

88A00779A

1.3 ENTERING THE EDITOR: THE EDIT AND EDIT-LIST VERBS

The verb used to enter the EDITOR has the following general forms:

EDIT {DICT} file-name {item-list} {(options)}

ED {DICT} file-name {item-list} {(options)}

EDIT-LIST list-name(s) {(F)}

The "item-list" parameter consists of one or more item-ids separated by blanks
or an asterisk character (*) specifying all items in the specified file. If
multiple item-ids are specified, then the first item specified will be edited
first; when the EDITOR then is terminated via a File Item (FI), File Delete
(FD), or Exit (EX) command, the EDITOR will automatically be re-entered and the
next item will be edited, and so on.

If the DICT option is used, the specified item(s) in the dictionary section of
the specified file will be edited. If DICT is omitted, the specified item(s)
in the data section of the specified file will be edited.

If a select-list is in effect (by using a SELECT, SSELECT, QSELECT, or
GET-LIST), the item-list is omitted; the item-ids are obtained from the
select-list in this case.

The EDIT-LIST form is used to edit a select-list that has been previously saved
by the SAVE-LIST command (see the ACCESS Manual for further details). If F is
specified, the user will be prompted to enter the name of the file where the
list is to be found (Default • POINTER-FILE).

Editor options are specified as a single character; multiple options may be
separated by commas. For example:

(A,M,S)

Valid editor options are:

A Turns on the assembly-code formatting option (see "AS" command).

M Turns on the macro expansion flag (see "M" command).

P Outputs to printer all lines executed by an FI command.
(Only periods will be displayed on CRT.)

5 Turns on the suppress-line numbers, or suppress object-code option
if the A option is in effect (see "5" command).

Z Suppresses TOP and EOI lines.

1-4

88A00779A

Once the EDITOR has been entered, the following will be printed:

TOP

the current line pointer is set to 0 and an EDITOR command is awaited
(i.e., the period prompt character (.) indicates that an EDITOR command is to
be entered).

If the specified item does not already exist on file, the message "NEW ITEM"
will be printed prior to the "TOP" message. Furthermore, if multiple item-ids
were specified, then the item-id of item currently being edited will be
printed.

Items are subsidiary to files. Structurally, they are made up of attributes
and, functionally, they all are seen by some processor as data, but
intuitively, one may consider items to be of two types: text or data. A data
item is typified by the condition that the meaning of a data string depends
upon which attribute it is in. A text item is a sequential string using the
attribute mark and count at most to delimit substrings. Data strings include
attribute defining items found in dictionaries and occasionally referred to as
attributes for brevity, and data items in files to be processed by ACCESS,
BASIC, or User exits, wherein individual lines are properly referred to as
attributes. Text items are made up _of ___ lines, which are structurally identical
to the attributes of data items, but which do not have meaning by virtue of
their attribute location. Text items include BASIC and Assembler language
programs, PROCs, and the items processed by RUNOFF. .

The EDITOR has the capacity to create, modify, and delete both data and text
items anywhere in the system, within the constraints of the user's account
privilege level and UPDATE/RETRIEVAL lock codes, without respect to the type of
item or its end use.

The EDITOR displays attributes as lines, so that the attribute mark count
within the item and the line number displayed by the EDITOR are identical.
Note that attribute 0 is the item-ide

1-5

88A00779A

Sample use of the EDIT verb is:

*)ED XYZ ITEM1 feR] (----------- EDIT verb.
TOP (--------------------------- TOP message from EDITOR.

(----------------------------- User enters any EDITOR command here.

*)EDIT DIeT XYZ PRO feR] (------ EDIT verb (specifies dictionary
section here).

TOP (--------------------------- TOP message from EDITOR.
(----------------------------- User enters any EDITOR command here.

*)EDIT FILES ITEM3 feR] (------- EDIT verb.
NEW ITEM (---------------------- This message specifies that ITEM3 is
TOP a new item.

*)ED F1 11 12 13 (eR1 (--------- EDIT verb (with multiple item-ids).
11 (---------------------------- Item II is edited first.
TOP

* .EX
EXIT
12
TOP

(--------------------------- Exit command (exits EDITOR).

(---------------------------- EDITOR automatically reentered to edit
next item (12).

* .EX (--------------------------- Exit command.
EXIT
13 (---------------------------- EDITOR automatically reentered.
NEW ITEM (---------------------- Shows that 13 is a new item.
TOP

* .EX (--------------------------- Exit command.
EXIT
) (------------------------------ Returns to TCL level.

1-6

88A00779A

1.4 EDITOR COMMANDS SYNTAX

EDITOR commands (Table 1-1) are one- or two-letter mnemonics which must appear
as the first non-blank input character. Command parameters follow the command;
blanks may be inserted between parameters for clarity, but embedded blanks in
parameters are not permitted. Any EDITOR command may be optionally preceded by
a period (.), which will suppress all EDITOR output for that command.

EDITOR commands can be entered either in upper or lowercase. This is
convenient for editing text items when the terminal is in lowercase Inode.

Certain EDITOR commands use a "string" which may be defined as a series of
characters surrounded, or delimited, by a pair qf identical, non-numeric
characters that do not appear within the string itself. For example, valid
strings are:

/123 AB/
.EFG.
;For example, valid strings are:;
PThis is a test stringP

The "string" is used in EDITOR commands that specify a search for matching data
in the item. The colon <:) is a reserved delimiter; if used, it indicates that
a first column correspondence between the first character in the string and the
first character in the line is necessary for a match. For example, the "L"
command with string:

L:LOOP :

would attempt to find the matching characters "LOOP "in columns 1 through 5
of the line; however, the string:

L/LOOP /

would attempt to find the matching characters "LOOP " anywhere within the line.

The up-arrow (1\) is a reserved character within the body of the "string"; if
used, it indicates that any character in the corresponding position in the line
is acceptable as a match. Note that this feature may be nullified by using the
"1\" command to turn the command to its "/,,\ON" setting. For example, the "L"
command with the string:

L/AB CD/

would attempt to find the matching characters "AB", then any character
whatsoever, then "CD" in the line.

For convenience, the terminal delimiter of the "string" is necessary only if
further parameters follow the string specification, or trailing blanks are to
be included as part of the "string."

1-7

Table 1-1.

Command Name

Again
Assembler Format ON/OFF
Bottom
Column Number List
Current Line
Delete
Delete
Exit
File Delete
File Item
File Save
Toggle Buffer
Goto
Goto
Input
Insert
List
Locate
Macro expansion
Merge
Next
Prestore
Pres tore Call
Replace
Replace{Universal}
Suppress ON/OFF
Size
Tab
Top
Up
Cancel
Zone

"

88A00779A

EDITOR Command Summary

A
AS
B
C
?

Command Format

DE{n}
DE{n}"string"{p{-q} }
EX{K}
FD
FI{K}
FS
F
Gn
n
I
I data
L{n}
L{n}"string"{p{-q}}
M
ME{n} "item" {m}
N{n}
Pin} command
Pin}
R{n}
R{U}{n}"string 1"string 2"{p{-q}}
S
S?
TB xx xx xx •.• xx
T
U{n}
X{F}
Z{p{-q}}
Suppresses "any character" match when

ON, enables it when OFF

1-8

88A00779A

1.5 CONTROLLING THE LINE POINTER: B, [CR], G, L, N, T AND U COMMANDS

There are seven commands provided for controlling the current line pointer and
for listing the item being edited. The general form of these commands is:

Command

B

[CR] Carriage Return

Gn or n

L{n}

N{n}

T

U{n}

Description

Positions current line pointer at bottom (EOI)

Lists next line.

Positions current line pointer at line n.

Lists the next line or the next n lines.

Moves line pointer DOWN n lines, and lists
current line.

Positions current line pointer at TOP.

I·foves line pointer UP by n lines, and lis ts
current line.

The Bottom command positions the current line pointer at the end of the item
(EOI) •

The [CR] or Null command is.executed by entering a carriage return only. This
command lists the next line and advances the line pointer one line, which is
identical to a List command where n is omitted. The [CR] command is included
for convenience when stepping through lines in an item.

The Goto command positions the current line pointer at the line indicated by n
and lists that line. If n is omitted or is 0, the current line pointer will be
positioned at TOP. If G is omitted, positions the current line pointer at the
line indicated by n.

The List command causes n lines to be listed, starting from the current line
plus one. If n is omitted, only one line is listed. If n is greater than or
equal to the number of lines from the current line to the EOI, then all the
lines down to the EOI will be listed. If a List command is issued when the
current line pointer is at the EOI, then the next n lines starting from line 1
will be listed. The List command positions the current line pointer at the
last line listed.

The Next command increments the current line pointer by n lines and then lists
the new current line. If n is omitted or is 0, the current line will be
listed.

The Top command positions the current line pointer at the TOP of the item.

1-9

88A00779A

The Up command decrements the current line pointer by n lines and then lists
the new current line. If n is omitted or is 0, the current line will be
listed.

For all of the above commands, the message TOP will be printed if the current
line pointer is set to 0, and the message EOI m (where m is the last line
number of the item) will be printed if the pointer is set to the EOl.

Examples of the use of these commands:

*)EDIT FILE1 ITEM [CR]
TOP

* .L99 [CR] <---------------------- List command (lists 99 lines).
001 AAAAA

*

*

002 BBBBB
003 CCCCC
004 DDDDD
005 EEEEE
006 FFFFF
EOI 6

<----------------- Item consists of only 6 lines, so
entire item is listed.

[CR] <------------------------- Null command (since current line
TOP pointer is at EOI, the 1st line
001 AAAAA is listed).

[CR] <------------------------- Null command (lists next line).
002 BBBBB

* .N2 [CR] <----------------------- Next command (goes down 2 lines
004 DDDDD and lists line).

* .U2 [CR] <-------------------- Up command (goes up 2 lines and
002 BBBBB lists line).

* .N9 [CR] <----------------------- Next command; since the item has
006 FFFF only six lines, the last line
EOI 6 is listed.

*.L [CR] <------------------------ List command (since current line
TOP pointer is at EOl, the 1st line
001 AAAAA is listed.

* .L3 [CR] <----------------------- List command (lists next 3 lines).
002 BBBBB
003 CCCCC
004 DDDDD

*.T [CR] <------------------------ Top command (goes to line 0).
TOP

1-10

88A00779A

* >EDIT FILE1 ITEM [CR]
TOP

* .L99 [CR] <---------------------- List command (lists 99 lines).
001 AAAAA
002 BBBBB
003 CCCCC
004 DDDDD
005 EEEEE
006 FFFFF
EOI 6

<----------------- Itam consists of only 6 lines, so
entire item is listed.

* .G5 [CR] <----------------------- Goto command (lists line 5).
005 EEEEE

*.B [CR] <------------------------ Bottom command (goes to EOI).
EOI 6

*.L [CR] <------------------------ List command (since current line
TOP pointer is at EOI, the 1st line
001 AAAAA is listed).

*.3 [CR] <------------------------ Goto command (lists line 3).
003 CCCCC

*.T [CR] <------------------------ Top command (goes to line 0)
TOP

. 1-11

88A00779A

1.6 EDITOR COMMANDS: LOCATE (L) AND AGAIN (A)

The Locate command causes a search for characters that match a specified
string. The Again command repeats the last Locate command issued. These
commands have the following general form:

Command

L{n}"string"{p{-q}}

A

Description

Locates lines containing "string"; search
may optionally be restricted to n lines
and/or columns p through q.

Repeats last Locate command issued.

The Locate command causes a search for characters matching the "string." The
search is restricted to a string starting in column p and beyond, or starting
in columns p through q, if these parameters are specified. If q<p, q-p is
assumed. If the delimiter used in the Locate command is a colon ":", then only
matching strings starting in the first column will be located. (This is a
useful tool for locating labels.)

If n is not specified, the next occurrence of "string" is located, and that
line is listed; the current line pointer is set at the line that is listed. If
n is specified, n lines (starting from the current line plus one) are scanned
for the occurrence of "string"; all lines in which the "string" is found are
listed. Note that the current line pointer will be incremented by n, and
therefore mayor may not be located at the last line listed.

Also note that the scan always begins from the current line plus one.

1-12

88A00779A

Examples of the use of these comments:

* >ED F1 ABC [CR]
TOP

* .L99 [CR]
001 ABCDEFG
002 12ABCDEFG
003 BCDEFG <---------------- This is what item ABC look like.
004 ABC
005 ABCDEFG
EO! 5

*.T [CR]
TOP

* .L"ABC" [CR] <-------------------- Locate command (locates next line
with "ABC").

* 001 ABCDEFG <--------------------- Line 1 located.
*.T [CR]

TOP
* .LS/ABC/ [CR] <------------------ Locate command (scans 5 lines and

001 ABCDEFG locates lines containing "ABC").
002 12ABCDEFG
004 ABC
005 ABCDEFG
EO! 5

*.T [CR]
TOP

* .L5<A<3-4

<--------------- Lines 1, 2, 4, and 5 located.

[CR] <---------------- Locate command (locates
3 through 4).

"A" in columns

* 002 12ABCDEFG <------------------- Line 2 located.
EO! 5

* .LS:ABCD:
TOP

001 ABCDEFG
005 ABCDEFG
Eor 5

[CR] <----------------- Locate command (locates "ABCD" column
dependent (i.e., must be in columns 1
through 4».

--!
--1 <-------------- Lines 1 and 5 located.

1-13

88A00779A

1 • 7 INPUT (I) COMMAND

The Input command is used for data entry. The user may create a new item, or
may insert or add lines to an already existing item.

The Input command, when issued, causes the EDITOR to enter the input
environment. All subsequent lines input by the user are then considered as
data input lines to the item until the user exits the input environment. The
general form of the Input command:

Command Description

I Enters Input Environment

If the Input command is issued for a new item which has not previously been
edited, the new lines will be input to the item starting at line 1. The EDITOR
will request data lines by prompting with the line number to which data is to
be entered.

l~en the input environment is initially exited for a new item, an automatic F
command will be executed by the EDITOR, thus toggling the function of the
EDITOR buffers and allowing the newly entered lines to be listed. For example:

* >EDIT AFILE AITEM [CRl
NEW ITEM <----------------------- Note that this is a new item.
TOP

.1 [CRl <----------------------- Input command.
* 001 INPUT --1 <--------------- Input command.
* 002 DATA [CRl --1

* 003 [CRl <----------------------- Input terminated.
TOP <----------------------------- Automatic F command has been executed.

* .L2 <----------------------------- List command.
001 INPUT
002 DATA
EOI 2

If the Input command is issued for an item already containing data, then the
new lines will be inserted following the current line. Input will be prompted
with the line number after which the lines are to be inserted, followed by a
plus sign. If the current line pointer is at line 0 (TOP), input lines will be
inserted before the first line of the item with a prompt of "000+".

A null input (carriage return or line feed only) will cause the EDITOR to exit
the input environment and await the next EDITOR command. (If a null line is
required in the item, it is necessary to create the line with a fill character
and then replace the fill character with a null via the Replace command.)

1-14

88A00779A

If there is an error in the current input line, the user can execute a
carriage return twice (to enter the line and exit the input' environment), then
execute a Replace-string operation to fix the error, and then re-enter the
input environment without executing an F command (except on initial input when
it is executed automatically).

When new lines are input to an existing item, an F command may be entered by
the user. This will perform in the same manner as the automatic F for new
input and allow the new input to be listed. For example:

* >EDIT TESTFILE TESTITEM [CR]
TOP

* .L99 [CR]
001 LINE 1
002 LINE 2 <----------------- This is what item currently
003 LINE 3 contains.
EOI 3

*.T [CR] <------------------------ Top command.
TOP

*.1 [CR] <------------------------ Input command.
* 000+ NEW LINE A [CR] <----------- New line input.
* 000+ [CR] <---------------------- Input terminated.
* .G2 [CR] <----------------------- Gato command.

002 Line 2

*.1 [CR] <------------------------ Input command.
* 002+ NW~ LINE B - [CR] <----------- New line input.
* 002+ [CR] <---------------------- Input terminated.
*.F [CR] <------------------------ F command toggles buffers.

TOP

* .L99 [CR] <---------------------- List command.
001 NEW LINE A
002 LINE 1
003 LINE 2
004 NEW LINE B
005 LINE 3
EOI 5

1-15

88A00779A

1.8 INSERT (I) COMMAND

The Insert command is used to insert one new line. The command has the
following general form:

Command Description

I data Inserts data following current line.

For Insert, the user enters an "I", followed by one blank, followed by the data
to be inserted. The specified data will be inserted as a new line after the
current line. Note that the data to be inserted must be separated from the "I"
by only one blank; all other blanks will be considered as part of the line to
be inserted. The line continuation character (control-Underline) cannot be
used to continue data beyond one physical line.

The Insert command is most convenient for either inserting only one line of
data (rather than using the Input command), or for inserting a null line; the
latter is done by entering "I" and one space, followed by a carriage return.
One may also insert a string of attribute marks (control t) after the I space
to generate a string of null lines. This feature is particularly useful when
entering Dictionary items that use null lines within their structure.

An example of the use of Insert:

* >EDIT ABC ITEM5 [CR]
TOP

* .L99 [CR]
001 ABCDEFG --1 <----------------- This is what ITEM5 looks like.
002 HIJK --1
EOI 2

* .G1 [CR] <----------------------- Goto command.
001 ABCDEFG

* .1 12345 [CR] <------------------ Insert command.
*.F [CR] <------------------------ F command (toggles buffers).

TOP
* .L99 [CR]

001 ABCDEFG
* 002 12345

003 HIJK
EOI 3

<--------------- Here is ITEM5 after insertion.

1-16

88A00779A

1 .9 MERGE (ME) COMMAND

The Merge command is used to insert one or more lines by merging lines from the
same item, or from another item in the same file. The Merge command has the
following form:

Command Description

ME {n}/item-id/{m} }1erges n lines of "item" starting at line m.

The Merge command causes n lines (starting from line number ~) of the item
whose item-id is specified by litem-idl to be merged (inserted) into the item
being edited. The lines will be inserted following the current line. The item
specified by litem-idl must be in the same file as the item being edited. A
value of one will be assumed for both nand m if either or both are omitted.
If litem-idl is null (II), lines will be merged from the item being edited as
it stands in the current buffer, thus duplicating the specified lines in the
item. The user should note that if the item from which lines are to be merged
is not on file, the message "NOT ON FILE" will be printed.

1.9.1 MERGING FROM OTHER FILES

The extended syntax requires the use of the delimiters (and) in place of the
I delimiter described above. These delimiters become reserved when using the
merge command in the sense that the colon (:) is reserved when using the
Locate, Replace, and Delete commands. In this case, there is the further
peculiarity that (and) are not the same character, whereas any character may
normally be used as a delimiter, so long as all the delimiters in a particular
string are identical. This feature allows the following general forms:

MEnumber-of-lines (DICT file-name item-id) starting-line-number

MEnumber-of-lines (file-name item-id) starting-line-number

MEnumber-of-lines (DICT file-name) starting-line-number

MEnumber-of-lines (file-name) starting-line-number

where:
numbe r-of -Ii nes
file-name
item-id
starting-line-number

is number of lines to merge from item.
is name of file containing item.
is item-id of item to be merged.
is starting line in item to merge.

The use of DICT is conventional. It means the same thing here as it does at
the TCL level when referencing files, and when using the COpy processor. If
there is no item-id specified, then the processor defaults the item-id of the
item being edited at the moment.

1-17

88A00779A

(If there is no item-id with the default item-id in the file-name, you will
receive the "NOT ON FILE" message.) This is useful if you wish to get a copy
of an item into a test file and edit it quickly, or if you wish to assure that
the item will not be filed inadvertently over the old copy.

There are certain other defaults which apply to the Merge command which will
be noted below.

MEnumber-of-lines (DICT file-name item-id

MEnumber-of-lines (file-name item-id

MEnumber-of-lines (DICT file-name

MEnumber-of-lines (file-name

These forms do the same thing as general forms, except that the starting line
number defaults to line 1 in the merge source item.

ME(DICT file-name item-id) starting-line-number

ME(file-name item-id) starting-line-number

ME(DICT file-name) starting-line-number

ME(file-name) starting-line-number

These do the same thing as the general forms, except that starting-line-number
is the only line which is merged into the destination item. As such, the line
may then be modified using the Replace command.

ME(DICT file-name item-id)

ME(file-name item-id)

ME(DICT file-name)

ME (file-name)

These forms simply return the first line of the merge source item. Note that
the trailing right parenthesis is optional if the starting line number defaults
to the first line of the source.

These defaults also apply to the normal merge statement, leading to the minimal
form 'ME/', which simply inserts the first line of the item currently being
edited into the current location in the item. (This is useful if you wish to
put a given line in several different places in an item.)

1-18

88A00779A

An example of the use of Merge:

* >EDIT FILE1 ITEM1 [CR]
TOP

* .L99 [CR]
001 11111
002 22222 <----------------- This is what ITEM1 looks like.
003 33333
EOI 3

* .EX [CR] <----------------------- Exit command (exits EDITOR).
EXIT

* >EDIT FILE1 ITEM2 [CR]
TOP

* .L99 [CR]
001 AAAAA

* 002 BBBBB
003 CCCCC
EOI 3

<----------------- This is what ITEM2 looks like.

* .G2 [CR] <----------------------- Goto command.
002 BBBBB

* .ME2"ITEM1"1 [CR] <-------------- Merge 2 lines from ITEM1 starting
at line 1.

* .F
TOP

[CR] <------------------------ F command (toggles buffers).

* .L99 [CR]
001 AAAAA
002 BBBBB
003 11111
004 22222
005 CCCCC
EOI 5

<----------------- Here is ITEM2 after the 2 lines
from ITEM1 have been merged.

1-19

88A00779A

1.10 DELETE (DE) COMMAND

The Delete command causes one or more lines to be deleted from the item. The
Delete command takes on two general forms:

Command

DE{n}

DE{n}"string"{p{-q}}

Description

Deletes n lines, starting with current line.

Deletes lines containing "string"; search may
optionally be restricted to n lines and/or
columns p through q.

The first form of this command causes n lines to be deleted (one if n is
omitted), starting from the current line. The current line pointer is set to
the line after the deletion, allowing command sequences of the form DE ••• ;
ME ••• , or I ••••

The second form of the Delete command causes a search for characters matching
the specified "string" ("string" is defined in Section 1.4). If n is not
specified, the next occurrence of "string" is located and that line is
deleted. If n is specified, n lines, starting with the current line are
scanned for the occurrence of "string"; all lines in which the "string" is
found are deleted. Lines that are deleted are listed. The current line
pointer is set to the line after the span of the Delete command.

If a colon is used for the string delimiter, the search will be restricted to
column 1 to the length of the string. With any other delimiter, the search may
be restricted to certain columns by specifying p-q. In this case, only
string(s) in columns p-q will be deleted. If q<p, q-p is assumed.

1-20

88A00779A

An example of the use of the Delete command:

*)ED TEST ITl [CR]
TOP

* .L99 [CR]
001 123XYZ
002 AAAAAAA
003 XYZ123 <--------------- This is what item ITI looks like.
004 ABABABAB
005 12345
006 AA
EOI 6

* .GS [CR] <----------------------- Goto command.
005 12345

* .DE2
EOI 6

[CR] <---------------------- Delete command (deletes 2 lines).

*.F [CR] <------------------------ F command (toggles buffers).
TOP

* .L99 [CR]
001 123XYZ
002 AAAAAAA
003 XYZl23
004 ABABABAB
EOI 4

*.T [CR]
TOP

* .DE99/l23/

001 l23XYZ
003 XYZ123
EOI 4

*.F [CR]
TOP

* .L99 [CR]
001 AAAAAAA
002 ABABABAB
EOI 2

! <--------------- This is item ITl after lines 5
and 6 have been deleted.

[CR] <---------------- Delete command (deletes lines
containing "123").

--I (----------------- Deleted lines are listed.
--I

--I (--------------- Here is item ITI after deletion.
--I

* .DE: B: 2 [CR] (------------------ Delete command (deletes lines
with "B" in column 2).

002 ABABABAB (-------------------- Deleted line is listed.
EOI 2

* . F [CR]
TOP

* .L99 [CR]
001 AAAAAAA (-------------------- Here is item ITI after deletion.
EOI 1

1-21

88A00779A

1.11 REPLACE (R) COMMAND

The Replace command may be used to replace a number of lines or to replace one
character string with another character string (in one or more lines). Several
executions of the replace on a single line are permitted. An option allows
replacement of all copies of a string within a line with the specified
replacement string. The Replace command takes on two general forms:

Command

R{n}
R{U}{n}/string1/string2/{p{-q}}

Description

Replaces current line or n lines.
Replaces the first occurrence of string1
with string2 in current line, optionally
searching for n lines in columns p
through q. If U is specified, replaces
all occurrences of string1 with string2
in current or in n lines.

The simple form causes the input environment to be entered. Input is requested
for data to replace n lines (one if n is omitted), starting from the current
line. The input environment is exited when either: 1) data for the specified
number of lines has been entered, or 2) a null line (carriage return or line
feed only) is entered. In the latter case, the remainder of the lines
(including the line which received the null input) will remain unchanged. The
current line pointer points to the next line in the current buffer to be
edited.

The complex form of the Replace command causes a search for characters matching
"string 1". If n is not specified, then only the current line is scanned for
"string 1". If "string 1" is located, then it is replaced by "string 2". If n
is not specified, only the current line is scanned. If n is specified, then n
lines (starting from the current line) are scanned. The first occurrence of
"string 1" in each line is replaced by "string 2", unless the U form is used,
in which case all occurrences of "string 1" are replaced by "string 2". Lines
that are changed are listed in their updated form. The current line pointer
points to the next line in the current buffer to be edited.

The search is restricted to column p, or columns p through q, if specified; if
q<p, q-p is assumed. The user should note that only one delimiter separates
"string I" and "string 2" in the complex form of this command, and that the
third delimiter may be left out if the column specification is not needed. Any
character not in "string 1" and "string 2" may be used as the delimiter.

Multiple string replacements in a single line are possible without executing an
F command if the preceding update instruction was an Input command or a
Replace-string command. The resulting form will be displayed after each
replacement, and the current line pointer will remain on the next line to be
edited. Re-listing the modified line before an F command will display the
current form rather than the modified form.

1-22

88A00779A

1.11.1 MULTIPLE REPLACEMENTS WITHIN A LINE

PICK allows you to execute multiple replacements within a line in order to
minimize typing and buffer switching (the F command). If there are several
elements of a line you wish to change, you may change them one at a-time, using
the R cOinmand for each, without using the F command in between. On each use of
the R command in this case, the command operates on the result of the last
command. Only the first use of the R command operates on the original line.
This means that if the X command is used, you move back to the original line)
rather than the line as it was before the last use of the R command, because
the last copy is not saved. In general, you can modify a line indefinitely.

The column limit parameters and the U option to replace all cases of a string
may be used with Multiple R commands.

If the replacement ~;ras a full-line replacement of the form R, (carriage return,
followed by the line number prompt, followed by the text and a carriage
return), the line may not be modified by a string replace until the buffers
have been exchanged using the F command. In this case, the X command can be
used to undo the last change, and this may be followed by another replace.

1.11.2 REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT

It is possible to replace a given string in several lines by using the form Rn.
It is also possible to replace text in the last line in the Rn group using
another R command without first flipping the buffers (the F command) in the
same way as modification after a single-line replacement command. It is not
possible to access lines prior to the last without using either the F command,
which exchanges the buffers, or the X command.

The Replace command may be used to create null lines. This is accomplished by
using the Input command to create lines, each containing a fill character (such
as tt &"), and then prior to permanently filing the item, replacing each fill
character with a null via a Replace command (such as R99/&//).

1-23

88A00779A

An example of the use of R:

* >ED Fl ABC [CR]
TOP

* .L99
001 ABCDEF
002 ABCDEF <--------------- This is what item ABC looks like.
003 ABCDEF
EOl 3

*.T [CR]
TOP

* .R2 [CR] <--------------- Replace command (replaces 2 lines).
* 001 123ABC [CR] --1 <-------- Replacement lines being input.

002 XXXXXAB [CR] -1
*.F [CR] <-------------------------F command (toggles buffers).

TOP
* .L99 [CR]

001 123ABC
002 XXXXXAB
003 ABCDEF
EO! 3

*.T [CR]
TOP

* .R3"AB"HHH"
001 123HHHC
002 XXXXXIniH
003 HHHCDEF
EO! 3

*.F [CR]
TOP

* .R3/HHH/S/1-3

! <-------------- Here is item ABC after replacement.

[CR] <------------- Replace command (replaces "AB" with
"HHH").

<--------------- The 3 lines in which replacement took
place are listed.

[CR] <----------- Replace command (replaces "HHH" in
columns 1 through 3 with "Sit).

003 SCDEF <---------------------- Line in which replacement took place
EO! 3 is listed.

*.F [CR]
TOP

* .R3/HHH/ /

001 123C
002 XXXXX
EO! 3

[CR] <-------------- Replace command (replaces "HHH" with
null).

--1 <------------------ Lines in which replacement took place
-1 listed.

1-24

88A00779A

1.11.3 CORRECTING INPUT

When inputting a body of text, you eight make a typographical error or change
your mind as to the text being entered. You can either use the XF command to
cancel all of the lines input, or the F command to flip the buffers to make the
text available for correction, but either action is time consuming and
destructive of the natural flow of the text. Instead, it is possible to
execute two carriage returns, one to terminate the current line and one to
return to command level, and then commence executing R commands to modify the
last line of text inserted. Lines preceding the last line inserted cannot be
modified in this manner for the same reasons that the lines before the last
line after a multiple-line replacement cannot be modified.

After the last line is modified to the point that it is satisfactory, you may
re-enter the input process by executing the usual I, followed by a carriage
return.

Input may be corrected by using the R command after a single-line insertion
generated by the form:

I text [CR]

1.11.4 A NOTE ON COLUMN SPECIFICATION

In the PICK system, the first column is referenced by 1. Columns may be easily
referenced according to the numbers returned by the C command. If a
single-column reference is executed using the form:

R/X/Y/20

Then the first 'x' in line after column 19 will be replaced with a 'Y'. The
search will continue to the end of the line.

If a two-column reference is executed using the form:

R/X/Y/2o-22

Then an 'X' in columns 20, 21, or 22 will be replaced with a 'Y'. If the form:

R/CAT/DOG/20-22

is used, then the whole source string 'CAT' must be in the field starting at
column 20 and ending at column 22. This is equivalent to looking for the
string 'CAT' which starts in column 20. In other words, if the field being
located by the Locate, Replace, or Delete commands is longer than one character
and if it is being searched for in more than one column, then the ending column
value must be the beginning column plus the length of the string plus the
number of columns in which the string may start minus 1. See the example of the
use of column specification with the Replace command on the following page.

1-25

88A00779A

1.11.5 COLUMN SPECIFICATION AND THE REPLACE UNIVERSAL COMMAND

The Replace Universal command allows the replacement of all cases of the first
string in the Replace command with the second string in the line or lines
specified. This option is indicated by simply using the form RU for the
command where R would be used in the normal case. The option allows
multiple-line replacements using the form RUn for the form Rn, and it allows
column specification, as above.

An example of the Replace Universal command:

084 the difference between the beginning and ending

RU/the/any

084 any difference between any beginning and ending

This approach may be faster in real time, since it requires less thought, and
avoids typing the trailing delimiter in the replace statement and calculating
or estimating the location of the target string in the line.

1-26

88A00779A

An example of the use of column specification with the Replace command:

If the line being considered is the following:

084 the difference between the beginning and ending

C [CR]

and you wish to replace the second 'the' with
'any', then

1 2 345
1234567890123456789012345678901234567890123456789012345

R/t~e/any/24 [CR]

allows you to observe that the second 'the'
commences at column 24. You may then use
the form

which will yield

084 the difference between any beginning and ending

R/the/any/24-26 [CR]

In order to use the column range
specification, you must use the form

which will yield

084 the difference between any beginning and ending

R/the/any/24-25 [CR]

R/the/any/22-25 [CR]

R/the/any/25-27 [CR]

If the form

is used, then the process will return to the
prompt character without doing anything. The
same will occur with

or

In general, success will occur if the
beginning column is prior to or on the first
character to be identified in the line, and
the ending column is greater than or on the
last character'to be identified in the line.

1-27

88A00779A

.
1.12 F, FILE ITEM (FI), FILE SAVE (FS), FILE DELETE (FD) AND

EXIT (EX) COMMANDS

Five commands are provided for merging updates into the item, filing the item,
deleting the item, and exiting the EDITOR. The general form of these commands:

Command

F

FI {options}

FS {options}

FD{K}

EX{K}

Description

Toggles function of EDITOR buffers.

Files item and returns control to TCL.

Files item and returns control to EDITOR.

Deletes item and returns control to TCL.

Returns control to TCL (does not file item).

The F (F) command merges updates with the previously existing item, and sets
the current line pointer to O.

The File Item (FI) command updates the edited item to the disk file and returns
control to TCL. When the item has been filed, the following message is printed:
'item-name' FIELD.

The File Save (FS) command updates the edited item to the disk file, returns
control to the EDITOR, and sets current line pointer to O.

The File Delete (FO) command deletes the item from the disk file and returns
control to TCL. When the item has been deleted, the following message is
printed: 'item-name' DELETED.

The Exit (EX) command terminates the EDITOR session and returns control to
TCL. The item being edited will neither be updated to nor deleted from the
disk file unless an FS command has been issued prior to the EX. Upon exit, the
message 'item-name' EXITED is printed.

Note that if multiple item-ids were specified in the EDIT verb at the TCL
level, then any of the above commands which ordinarily return control to TCL
will instead return control to the EDITOR to edit the next item which was
specified.

1-28

Options

K

L

88A00779A

Description

Exits EDITOR and returns control to TCL after filing item even
if other item-ids were specified.

Converts item to list format.

o item-name Overwrites existing items with same item-name.

Options may be used with FI, FS, and EX commands, however, only the K option
may be used with FI, FD and EX.

The purpose of the K option is to exit from the EDITOR and return to TCL.
When multiple item-ids have been specified, you will not exit the EDITOR until
the last item-id has been filed unless a K option is used on the current item.
In that case, you will exit immediately from the EDITOR and be returned to TCL.

The L optuion is used when you need to file an item that is over 32K long.
(The maximum size for an item is 32K.) In this case, you must have DC pointers
in the MD and file directionary of the file to contain the item. Then the item
will be filed in list format and may be retrieved and converted back to regular
form.

The 0 option is used when you wish to overwrite an existing item with the new
item. In this case, you use the 0 option and specify the item-name of the item
to be ovewritten with the new item.

1-29

88A00779A

1.12.1 FILING ITEMS IN OTHER ITEMS AND OTHER FILES

You may file the item currently being edited to either a different item-name in
the current file, or to the same item-name or to a different item-name in a
different file. The syntax for the FI and FS commands are identical, but FS
returns you to the top of the item currently being edited. You can only FD an
item which you are currently editing. Massive use of the FD can be
accomplished with the DELETE verb or a Prestore command. The Delete verb is
faster. The form of the File command to other items or files is:

FI(DICT file-name item-name

FI(DICT file-name

FI(file-name item-name

FI(file-name

FI item-name

where:
file-name is the name of the file into which to file the item, which is

different from the file currently being used.

item-name is the item-id of the item into which to file the item, which
is different from the item-id currently being used.

In the list of FI commands, the first command will file the item you are
currently editing into the dictionary of a different file under a different
item-name. The second will file the item under its current item-name into the
dictionary of a different file. The third will file the item into the data
section of a different file under a different item-name. The fourth will file
the item into a different file under the same item-name. The fifth will file
the item into the file currently being edited under a new item-name. Other
possible commands are:

FS(file-name item-name

FIO(file-name item-name

FSO(file-name item-name

FIL(file-name item-name

Note that the left parenthesis must immediately follow the I, L, S, or 0
(except in one case), because the delimiter which specifies that this is not a
file reference is a blank. It is therefore possible to generate items
commencing with a left parenthesis in the file which you are currently
referencing. Item-ids may have embedded blanks. To retrieve them in the
EDITOR, surround the entire item-id with quotes and the item will appear.

1-30

88A00779A

An example of the use of these commands:

* >ED AFILE ABC [CRl
TOP

* .L99 [CRl
001 AAAAAAAAA --1 <-------------- This is what item ABC looks like.
002 12121212 --1
EOI 2

* .DEI [CRl <---------------------- Delete command (deletes line 2).
EOI 2

*.F [CR] <------------------------ F command (toggles buffers).
TOP

* .L99 [CRl
001 AAAAAAAAA <------------------- Here is item ABC after deletion.
EOI 1

* .EX [CRl <----------------------- Exit command (returns control to TCL
8XIT but does not file updated item).

* >ED AFILE ABC [CRl
TOP

* .L99 [CRl
001 AAAAAAAAA --1
002 12121212
EO! 2

-1
<-------------- Item ABC still contains 2 lines since

Exit command above did not file
updated item.

* .DE1
EO! 2

[CR] <---------------------- Delete command (deletes line 2).

* .FI [CRl <---------------------- File Item command (files item and
'ABC' FILED. returns control to TCL).

* >ED AFILE ABC [CRl
TOP

* .L99 [CR]
001 AAAAAAAAA <------------------ Here is item ABC (note that line 2 is
EO! 1 now permanently deleted).

* .FS [CR1 <---------------------- File Save command (files item and
TOP returns control to EDITOR).

*.FD [CRl <----------------------- File Delete command (deletes item
'ABC' DELETED. and returns control to TCL).

> <------------------------------ TCL verb awaited.

1-31

88A00779A

1.13 TAB (TB), ZONE (Z), AND SUPPRESS (S) COMMANDS

The Tab command sets tab positions for input. The Zone command sets column
limits for output listing. The Suppress command may be used to suppress
printing of line numbers on output. The general form of these commands:

Command Description

TB xx xx xx xx xx ••• xx Sets tab stops at each position xx; a total
of 15 allowed.

Z{p{-q}} Sets column limits (p through q) for listing.

S Suppresses/enables listing of line numbers.
Suppresses listing of object code of Assembly
language program when AS option is in effect.

Tabs may be preset via the Tab command.

The xx's consist of up to 15 tab settings (in ascending order) separated by
blanks. The following command, for example, sets four tab stops at columns 15,
20, 31, and 40:

TB 15 20 31 40

Tabbing is activated whenever the EDITOR is in the input environment and a
control-I or, on some terminals, a TAB key is pressed. This will cause a
series of blanks to be output, thus moving the cursor (or printer) to the next
specified tab stop. A backspace and cancel will backspace over tabs.

Tabs set by the EDITOR are identical to those set by the external TAB command.

The Zone command sets print column limits for listing output of lines (i.e.,
only column positions p through q of each line will be listed). If p and q are
omitted, the Zone is reset so that the entire line will be listed on output.
If q<p, q-p is assumed. Setting a Zone does not affect the search for a
"string" in the Locate, Delete, or Replace commands.

When used with the AS command, the S command (or the (S) option) causes the
suppression of the object code of an Assembly language program when output to
the terminal or to the printer.

Each entry of a Suppress command acts as an alternate-action toggle switch. By
entering an S internally (or (S) externally), the system will respond with
"SUPPRESS ON". This may be 'turned off' by entering S again, to which the
system will respond "SUPPRESS OFF" and the printing of the object code, if the
AS command is in effect, or line numbers will be resumed. When used with the
AS-DFF, the S command will cause the line numbers to be
suppressed.

1-32

88A00779A

An example of the use of these commands:

*)ED FN5 XX [CR]
NEW ITEM <------------------------ This is a new item.
TOP

* .TB 9,18 [CR] <------------------ Tab command (sets 2 tab stops).
*.1 [CR] <------------------------ Input command.
* 001 ABC [CR]
* 002 ABCD EF [CR] <------------ Lines being input; note that for line

2, a control-I (which does not print)
was entered after "ABCD" causing the
EDITOR to tab over to the first stop.

* 003 123456789 [CR]
* 004 [CR]

TOP
* .Z2-3 [CR]
* .L99 [CR]

001 BC
002 BC
003 23
EOI 3

* . T [CR]
TOP

<--------------------- Zone commands (limits listing output
to columns 2 through 3).

<------------~--------- Only columns 2 through 3 are listed.

*.Z [CR] <------------------------- Zone command (restores full line).
*.S [CR] <------------------------- Suppress command (suppresses line

SUPPRESS ON numbers).
* .L99 [CR]

ABC
ABCD EF
123456789
EOI 3

<------------------ Line numbers are suppressed.

* .S '[CR] <------------------------ Suppress command (restores line
SUPPRESS OFF numbers).

* .L99 [CR]
TOP
001 ABC
002 ABCD EF
003 123456789
EOI 3

<-------------- Line numbers are listed.

1-33

88A00779A

1.14 AS COMMAND

The AS command is used to format assembly code source programs in the standard
assembly listing format. The AS command acts as an alternate-action toggle
switch to either format assembly code source program lines in the assembly
listing format, or to revert to unformatted form.

The general form of the command:

Command

AS

Description

Acts as an alternate action switch to turn
the Assembly listing format on or off.

The EDITOR will respond with the message "AS-ON" or It AS-OFF, ,. depending on the
previous state.

This mode may also be turned on when entering the EDITOR by using the (A)
option on the EDIT command.

Assembly-code source programs contain the assembled object code and macro
expansions along with the original source text. If displayed in normal form, a
line might look like:

007 LOOP STORE Dl SAVE ACCUMULATOR/01B A00499

If the AS mode is set ON, the same line will be displayed as:

007 OlB A00499 LOOP STORE D1 SAVE ACCUMULATOR

•• • object code ••• • •• source code ••• ••• comment field •••

This display format does not affect the search columns in Locate, Delete, or
Replace commands, which use the internal (unformatted) form.

When the AS mode is ON, the S (Suppress) command will act to suppress object
code, not line numbers.

1-34

88A00779A

1.14.1 M COMMAND

When in the AS mode, the M command will cause macros to be expanded. It is
normally off. Execution of the M command will cause the EDITOR to respond with
the message "MACRO-ON" or "MACRO-OFF," depending on the previous state.

An example of the use of the AS command:

*
*
*

*

*
*

*)ED S~1 TERMIO [CR]
TOP

* .L3 [CR]
001 FRAME 006] FRM: 006 001 7FF00006] ORG 1 001
002 *SYSTEM*UTILITY
003 *30SEP77

* .AS [CR] <----------------------- Turns Assembly formatting mode ON.
AS-ON

*.T [CR]
TOP

* .L3 [CR]
001 001 7FF00006

001
FRAME 006

002 *SYSTEM*UTILITY
003 *30DEC77
.S [CR] <------------------------ 3uppress object code.
SUPPRESS ON
• T [CR]
.L3 [CR]
001 FRAME 006
002 *SYSTEM*UTILITY
003 *3OSEP77
.AS [CR] <----------------------- Clear Assembly formatting mode.
AS-OFF <------------------------- With Assembly formating mode off,
.T [CR] the previous suppress command will
TOP now suppress line numbers.
.L3 [CR]
FRAME 006] FROM: 006 001 7FF0006] ORG 1 001
*SYSTEM*UTILITY
*30SEP77

1-35

88A00779A

1.15 C (COLUMN), S1, X, Xl p 1 (CURRENT LINE) AND 1\ COMMANDS

The C command will list column numbers. The X command may be used to delete
the effect of certain update commands. The Current Line command interrogates
the current line number. The 1\ command turns on or off the effect of 1\ within
a string. The general form of these commands:

Command Description

C Prints list of column numbers.

51 Displays size of item being edited.

X Deletes effect of last Input, Insert, Delete, Merge or Replace
Command.

XF Deletes effect of all updates since last F command.

1 Returns current line number.

1\ Turns on or off the effect of the "1\" character within a string.

The C command will print out a list of column numbers so that the user can
readily determine the column positions of data in a line. This is particularly
helpful when editing fixed-field data or RUNOFF documentation.

The S1 command gives the total length in bytes of the item being edited.

The X command deletes the effect of the last Input, Insert, Delete, or Replace
command that was issued. This is useful if one of these commands has been
erroneously entered. When the effect of the update command has been deleted,
the message "L not will be printed (where n is the line number of the line whose
update was deleted). The X command will not work after multiple string
replacements within a single line.

The XF command will reverse the effect of all updates executed since the last
buffer exchange (F command).

The ? command outputs the name of the item being edited and the location of the
line pOinter. When a 1 command is entered, the editor will respond with the
file-name, item-id and the current line number.

The ",," command acts as an alternate-action toggle switch to turn off or on the
special effect of the ",," character within a "string." The EDITOR will respond
wi th the message "/" \ ON" or It / 1\\ OFF". When / 1\ \ is OFF, a match may be found
on any character that corresponds with the" character in a string. This
feature will be nullified by /1\\ OFF.

1-36

88A00779A

1.15.1 PRINTING UNPRINTABLE CHARACTERS

Characters which are unprintable include the control characters between X'OQ'
and X'lF', inclusive. The EDITOR marks control characters by inserting a
period (.) where the control character stands in the text line; it does not
indicate what the character is, however. It may then be removed by replacing a
unique string which includes the control character with the string of your
choice. The control character should be marked with an' in the first string
in the replace.

1-37

88A00779A

1.16 PRESTORE COMMAND (Pn)

The Prestore facility allows the storage of up to ten strings of EDITOR
commands, and the execution of the string by using the name of the string as
the command. The general form of this command:

Command Description

P{n} command Prestores specified command.

P{n} Calls Prestored command into effect.

The allowable string names are PO, P1, ••• ,P9. There are therefore a maximum
of ten prestored commands available at anyone time. Further, each prestored
command is allocated 100 bytes; so that, if you wish to generate a prestored
command which exceeds 100 bytes, simply do not initialize the command whose
name is ordinally next. In other words, if P1 is 150 bytes long, do not use
P2. This may be inconvenient on rare Qccasions, but it makes things run
faster. If n is not specified, O. is assumed.

1.16.1 PRESTORE COHHAND DEFINITION

In order to create a prestored command, type in the name of the prestored
command (PO, P1, ••• , P9) followed by a space, followed by the first command
to be executed, followed by the Prestore command delimiter, which is a start
buffer mark (X'FB'), which may be input by typing CONTROL-[(control-left­
bracket) or ESCAPE (esc), followed by the next command, etc. Note that the
ACCESS verbs S-DUMP, T-DUMP and T-LOAD will interpret the start buffer mark as
a new item. Therefore, ACCOUNT-SAVE and ACCOUNT-RESTORE should be used to save
and restore any accounts where these Prestore delimiters are used and stored in
an item (PROC).'

Any valid EDITOR command may be prestored, including Prestore command names.
Examples of single Prestores:

PO L22

P1 R100/DOG/CAr[F[RIOO/dog/cat[FI

This is loaded when you enter the
EDITOR. Therefore, whenever you type
'PO' or its synonym, 'P', in a file
where no Prestore commands have been
issued, you will get an automatic
listing of the next 22 lines.

This has the effect of changing dogs
to cats, in both upper and lower case,
in the first 100 lines of text.

1-38

88A00779A

1.16.1.1 Prestore Command Defaults

In the examples in Section 4.16.1, note first that 'P' is a synonym for 'PO'.
It is automatically loaded with 'L22' at entry to the EDITOR. PI through P9
are null at entry. Executing them will cause a CMND? response. All prestores
created since the entry to EDITOR by use of the EDIT verb are retained until
the EDITOR is exited. Any of them may be changed by creating another prestore
command string with the same name. The prestores persist from item to item,
whether the EDITOR is using an explicit item list, a selected list, or the
whole file.

1.16.2 REPEATING PRESTORE COMMANDS

If one is going to use a prestore command for a repetitive task, it may either
be activated each time it is to be used or it may call itself, at which time

. its termination conditions must be considered. A Prestore command which calls
itself will terminate only when it runs out of items to process. This means
that a Prestore which calls itself must have an EX, FI, or FD in the command
string. If it does not have such an item iteration command in the string, it
will loop indefinitely in the current item. The only exit from this loop is a
BREAK-and-END. The primary use of the Prestore calling itself is to manipulate
many items with a single instruction string initiated once. It is particularly
useful for searching for specified strings in text files and replacing them as
necessary. The following example searches a BP (BASIC program) file for the
name GENERAL. LEDGER.

ED SP *
ITEMNAME
TOP
.Pl LSOO/GENERAL.LEDGER[EX[Pl[CR]
• Pl [CR]

EOI nnn
, I TEMNAME' EXITED
NEW IT EMNAME
TOP

Edit the file.
The first item.
Standard mark.
Define the search •
Initiate the run.

At this pOint, the EDITOR will exhibit
all lines in the current item with the
desired string, and then display
the number of lines in the item and
the name of the item exited.
The name of the next item.
The top mark.
All the lines with the string, if
any, and so on, until the list is
exhausted, at which time the
process will return to TCL.

The same maneuver may be executed to the printer by appending the P option to
the EDIT verb. In this case, all information which would have been displayed
on the terminal will be sent to the printer.

1-39

88A00779A

1.16.3 DISPLAYING CURRENT PRESTOBE COMMANDS

It is possible to display all currently initialized Prestore commands by using
the Prestore Display (PD) command.

In the example in the previous section, if the PD command was executed before
the P1 command, the following would result:

PD The Prestore Display command
will yield:

PO L22 The default, a.nd the following
P1 LSOO/GENERAL.LEDGER[EX[Pl which is the command defined in the

previous section.

1.16.3.1 Using Prestores in PROCs

It is possible to create the desired Prestored command strings in PROCs in the
same manner that instructions are sent to the various processors from a PROC.
For example:

PQ
RED BP *
STON
RPl L500/GENERAL.LEDGER<
RPl<
P

The FROC definition.
The verb.
Turn the stack on.
Specify the Prestore.
Execute the Prestore.
Execute the verb.

This example assumes that a list is in existence. The verb activation may
include an explicit item list or specify the whole file using the conventional
asterisk. On entry to the first item after using the EDIT verb, the Prestore
is automatically set up and is available for use. All ten prestores may be
initialized this way, allowing the development of powerful customized EDITOR
commands.

1-40

An example of Prestore:

*)ED CARS TEN [CR]
TOP

* .L99 [CR]
001 A1234

88A00779A

002 C1234 <-------------- This is what item TEN looks like.
003 Xxxxx1234
004 ABCDE1234
Eor 4

* .G1
001 A1234

* .DE [CR] <----------------------- Delete command (deletes line 1).
*.x [CR] <------------------------ X command (cancels effect of Delete

command) •
1. 1

.. * .F
<---------------------------- Uessage indicates that update on line

[CR] 1 was cancelled.
TOP

* .L99 [CR]
001 A1234 <----------------------- Line
002 C1234
003 XXXXX1234
004 ABCDE1234
Eor 4

1 was not deleted.

*.1 [CR] <------------------------ Current Line command.
L 4 <----------------------------- Current line is line 4.

* .P DEtl1234"6-9 feR] <------------ Prestore command (prestores Delete
* . G3 [CR] command) •

003 XXXXX1234
*.P [CR] <------------------------ Prestore Call command (calls Delete

into effect).
003 XXXXX1234 <------------------- Line 3 deleted.

*.F [CR]
TOP

* .G3
003 ABCDE1234

*.P [CR] <------------------------ Prestore Call command.
003 ABCDE1234 <------------------- New line 3 deleted.
Eor 3

*.F [CR]
TOP

* .L99 [CR]
001 A1234 -! <----------------- Here is item TEN after deletions.
002 C1234 -1
Eor 2

1-41

88A00779A

1.17 RECOVER-FD

RECOVER-FD is a TCL-I verb which recovers an item after it has been
accidentally deleted or exited by the FD command or, if it is a new item, by
the EX command in the EDITOR. Note that once an FS command is issued to a new
item, it is no longer considered a new item, and will be treated as an existing
item. RECOVER-ID will recover an existing item that was deleted by an FD
command, but will not recover any of the changes or additions made to the item
in the last edit. It will recover a new item that was deleted by the FD
command, but will not recover the changes or additions that were made to the
item in the last toggle of the buffers by an F or FS command. However, a new
item will retain all data even if the buffers were not toggled, if the new item
was exited via EX rather than deleted via the FD command. The general form of
the verb is as follows:

RECOVER-FD

RECOVER-FD must be used immediately after the EDITOR is exited via the FD or EX
commands or the item is lost. The item-id will be asked for and must be the
same as the item that was just deleted. If the item-id matches the last one
used by the EDITOR, the item will be restored. The message 'item-id' FILED
will be printed and control will return to TCL. If it does not match, the
item-id will be asked for again. A carriage return or line feed entered as a
response to the ENTER ITEM-ID* prompt will return the process to TCL without
recovering the item. If anything else has been done since the FD, recovery of
the item becomes improbable. Examples of RECOVER-FD:

)ED MD XYZ
NEW ITEM
TOP
.1
001 THIS IS A SAMPLE RECOVERY
002
TOP
.FD
'XYZ' DELETED.

>RECOVER-FD

ENTER ITEM-ID* XYZ
'XYZ' FILED.

>ED r.m XYZ
TOP

001 THIS IS A SAMPLE RECOVERY
EOI 1
.EX
EXIT
>

1-42

)ED MD XYZ
TOP
• P [CR]
001 THIS IS A SAMPLE RECOVERY
EOI 001
· I [CR]
001+ THIS IS LINE 2 [CR]
001+ THIS IS LINE 3 [CR]
001+ [CR]
.FS [CR]
TOP
.P [CR]
001 THIS IS A SAMPLE RECOVERY
002 THIS IS LINE 2
003 THIS IS LINE 3
EOI 003
.FD
"'XYZ'" DELETED

)RECOVER-FD

ENTER ITEM-ID. XYZ
"'XYZ FILED.

)ED MD XYZ
TOP
• P [CR]
001 THIS IS A SAMPLE RECOVERY
.EX
"'XYZ'" EXITED.,

88A00779A

1-43

88A00779A

1.18 EDITOR MESSAGES

Messages possible in the use of EDITOR are summarized below:

Message

CMND?

STRING?

COLiI?

SEQN?

EOI m

TOP

-L nnn

Description

Illegal EDITOR command. May also
occur when trying to file an item
under an item-id that does not
exist.

Illegal specification, or missing
string (e.g., required string
missing for Merge; second string
missing for Replace). This
message may also occur as a result
of an illegal numeric parameter
specification that causes a part
of the numeric parameter to appear
as if it were a string.

Illegal characters follow the
recognized end of the command, or
illegal format for a column­
number limit specification, or
non-numeric characters used for p
and q in Locate, Replace, Delete,
or Merge commands.

Out-of-sequence update; updating
must be done in an ascending line
number sequence until an F ~ommand
is entered.

End-of-item reached at line m.

Top-of-item "(line 0) reached.

Specifies that n is the current
line number (in response to Current
Line command), or specifies that
update action on line was deleted
via an X command.

1-44

Example Causing Error

XYZ
FS NEWITEM

l1E 10
RS/ABC/

L.10.23%
R/ABC/DEF/X
R/M/DICT/MD
L,SMITH,JOHN,

88A00779A

Message Description

NOT ON FILE Item specified in ~terge command is
not on the disk file.

'item-id' EXITED Editor exited via EX command.

Example Causing Error

'item-id' DELETED Item with name shown has been deleted
from the disk file.

'item-id' FILED Item with name shown has been updated
to the disk file.

1-45/1-46

Assembly Code Formatting 1.14

Column Specification 1.11.4
Commands, see EDITOR commands

EDIT verb 1.3
EDITOR commands

AGAIN (A) 1.7
Assembly code format 1.14
C (print column numbers) 1.15
DELETE (DE) 1.10
EXIT (EX) 1.12
F 1.12
FILE DELETE (FD) 1.12
FILE ITEM (FI) 1.12
FILE SAVE (FS) 1.12
INPUT (I) 1.7
INSERT (I) 1.8
LOCATE (L) 1.6
Macro expansion 1.14.1
MERGE (ME) 1.9
Pn (prestore) 1.16
REPLACE (R) 1.11
REPLACE-UNIVERSAL (RU) 1.11.5
SUPPRESS (S) 1.13
S? (print size of item) 1.15
TAB (TB) 1 • 13
X, XF (delete last command) 1.15
ZONE (Z) 1.13
? (name of item being edited/

current line number) 1.15
A (switch special effects) 1.15

EDITOR Commands Syntax 1.4
EDITOR, entering the 1.3
EDITOR, exiting the 1.12
EDITOR Messages 1.18
EDITOR, operation of 1.2
EDIT-LIST verb 1.3

88A00779A

INDEX

I-1/I-2

Filing Items in Other Items/Files
1.12.1

Line Pointer Control 1.5
Line Pointer Control Commands

BOTTOM (B) 1. 5
GOTO (G) 1.5
LIST (L) 1.5
NEXT (N) 1.5
NULL [CR] 1.5
TOP (T) 1.5
UP (U) 1.5

Macro Expansion 1.14.1
Merging from other files 1.9.1
Messages, Editor 1.18
Multiple Replacements in a line

1.11.1

Prestoring Coomands 1.16
Printing unprintable characters
1.15.1

Recovering aCCidentally deleted
items 1.17

RECOVER-FD 1.17

IiENENRL RllTllMRTlllN

