
·.verview Qf~:,
" ''\.,-" .. ,"

PIC"K,:<" _
Operaf"~ ~~,

.... <' ' y

88AOO1&1A03

ZEBRABVGA

RECORD OF REVISIONS

Title: Overview of the PICK Operating System

Document No. 88A00751A03

,
Date Issue

- , ~

l -
Nov 82 Original Issue ! -

Sep 83 Revision B
! '

lwlar 84 Revision C - A03

NOTICE

The information contained in this document is subject'to change without notice,.

General Automation 'makes no warranty or representation with regard to this
material, ineludlng; but not limited to, the implied warranties of merchanta- ;'-; ., , - !:- ,

bility and fitness for a particular purpose. General Automation 'shall not be : ·';:·'t·· .'-'; .
• ~,' : l ~:~,' t.." ~ ~ . . Uable for errorscon~t'ained herein. '

General Automation assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by General Automation.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied or
reproduced without the prior written consent of General Automation.

This document embodies confidential information proprietary to PICK Systems,
and shall not be used, reproduced, copied, disclosed, or transferred in any
manner except under written agreement.

ii

e'verview of,tb",\,.
" " ,,: ''\.-' .., ..

PIC'K,
Opera_~~,

.... .,'"

88AOO1&1A03

C~[ightO by '~'1feral Auto~ation, I~c .. '
~~.§outn e. Street ?O~~~:4881-.!,

Ana"'eim, California 928'S!?' ,
'(,714)i+a-4s00 (800)854-*':1104

l"WX91Q·591·1695 TeLEX O~!.5J3
, ~J "

RECORD OF REVISIONS

Title: Overview of the PICK Operating System

Document No. 88A00751A03

NOTICE

The information contained in this document is subject' to' change without notic~,.

General Aut6lDation'makes no warranty Cir representation with regard to this
material, in¢luding; Dut not limited to, the implied warranties of merchanta-::: ~ ,; - S. ,

bility and fitness for a particular purpose. General Automation 'shall not be ~ 'i" .C;' ,

Uable for errorsc'on,t'ainedherein~ , . _ ~,. :-i--.:,"' f~ ~ ~

General Automation assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by General Automation.

This document contains proprietary information which is protected by copyright.
All rights are reserved. No part of this document may be photocopied or
reproduced without the prior written consent of General Automation.

This document embodies confidential information proprietary to PICK Systems,
and shall not be used, reproduced, copied, disclosed, or transferred in any
manner except under written agreement.

ii

88A00751A

FOREWORD

, .,.

This manual has been created for the individual wh<1-ts"'n~t""familiar with the
PICK Operating System, which is part of the GeneralA~tomation ZEBRA™
series. The intent is to provide as much information as possible covering the
capabilities ·of the system, in general, and the data base management facility,
in parti~ular. Because of this approach, the manual has a different flavor '
that should be explained.

First, it is .!!2! a "working" manual in the sense that one can sit down and
actually program or otherwise use the computer with the manual as a tutorial
guide. In almost every case, the syntax and many details of a given function
have been omitted, and many functions have been glossed over, or left out
altogether. The intent here is to provide, in brief, a feel for the
capabilities of the system, not to explain precisely how to use it. For the
latter, the reader is referred to the PICK Operator Guide and the PICK
processor reference manuals listed below.

This manual is slanted towards the unusual systems software and data base
capabilities, rather than the hardware and more conventional software functions
that are a part of most computers. There is much about the PICK Operating
System that is truly different and unique; the sections on the BASIC language,
and certain other functions, have been dealt with briefly with the assumption
that most readers will already be familiar with the general principles.

On the o~:he.r hand, the. sections .. on ·Ule structure which then lead tnto ths -. - c ~.~;

section "'Data Base Architecture" and' the Access Process If digress into great
detail. The reasoning here is that the.system is quite different., ·~and..,~:'ba,$:ic .. ;; '=<~'':'o;,
understanqing of .data base principles 1srie~essa'ry ;before. one ~an app·t'e~1a~e :.1: .>: :": ''''~
the speci~{c impleme~tat:ton •. These f;i.rst section.s a~e~l.~,o the k~y tCk< .~.; I 'f ,::,:;._ ~~f
understanding the rest of the system, and the reader<,~.s .~;~cc"l·rag~4Ito ,;. :~ .. > '~.: ~;6i:;.i
concentrate on these first before attempting to read further.

:::".' .. '
... ,~', -, ~'. ~ .,

, "'. .L.J·

-:','-'-:i 'j

. I' .!.~ ,' .. ~'

. (0: y"

iii

88A00751A

Other ZEBRA documentation that is available from General Automation:

Document No.

88A00751A
88A00758A
88A00759A
88A007·60A
88A00774A
88A00776A
88A00777A
88A00778A
88A00779A
88A00780A
88A00781A
88A00782A
88A00783A

Title

PICK Operator Guide
ACCU-PLOT Operator Guide
COMPU-SHEET Operator Guide
Quick Guide for the PICK Operating System
PICK Utilities Guide
PICK ACCESS Reference Manual
PICK SPOOLER Reference Manual
PICK BASIC Reference Manual
PICK EDITOR Reference Manual
PICK PROC Reference Manual
PICK RUNOFF Reference Manual
Introduction to PICk TCL and FILE STRUCTURE
PICK JET Word Processor Guide

TMACCU-PLOT is a trademark of ACCUSOFT Enterprises

TMCOMPU-SlIEET is a trademark of Raymond-Wayne Corporation

TMpICK is a trademark of PICK Systems

TMZEBRA is a trademark of General Automation, Inc.

iv

neA00751A

TABLE OF CONTENTS

Section Title "--P-age-'
1 INTRODUCTION • 1-1: - I.

1.1 VIRTUAL MEMORY OPERATING SYSTEM. 1-1
1.2 DICTIONARY-BASED FILE STRUCTURE. · · · · · · 1-1 f .. ~

1.3 RETRIEVAL LANGUAGE • · · · · 1-2'
1.4 SUMMARY. . . · · 1-2'

2 FILE STRUCUTRE • · ·
,

· • 2-1
2.1 INTRODUCTION • · • . • · · · · · · · • · 2-1
2.2 BASIC DATA DIVISION CONCEPTS · · · 2-1

2.2.1 ITEMS. · · • 2-1
2.2.2 DICTIONARIES · · · 2-1
2.2.3 GROUPS · • · · · 2-1

2.3 DISK STORAGE ALLOCATION. 2-2
2.4 THE lIDDULO AND THE SEPARATION. · 2-2
2.5 NATURE OF AN ITEM. · · 2-6
2.6 SUMMARY. • · 2-8

3 DICTIONARY SYSTEM. · · 3-1
3.1 INTRODUCTION . · . · · • 3-1
3.2 ITEMS AND ATTRIBUTES IN DICTIONARIES • 3-3
3.3 FILE DEFINITION ITEMS. · · · · · · · · 3-3

3.3.1 ATTRIBUTE 0, THE ITEM-ID · · · · · 3-3
3.3.2 ATTRIBUTE 1. • · · · 3-4
3.3.3 ATTRIBUTE 2. · · 3-4
3.3.4 ATTRIBUTE 3. 3-4
3.3.5 ATTRIBUTE 4. · · · 3-4
3.3.6 ATTRIBUTE 5. · · · · · · · · 3-4
3.3.7 ATTRIBUTE 6. · · · · · 3-5
3.3.8 ATTRIBUTE 7. · · 3-5
3.3.9 ATTRIBUTE 8. · • · 3-5
3.3.10 ATTRIBUTE 9. 3-5
3.3.11 ATTRIBUTE 10 · 3-5
3.3.12 ATTRIBUTE 11 · · · · • 3-5
3.3.13 ATTRIBUTE 12 · • · · · · · · 3-5
3.3.14 ATTRIBUTE 13 • · • · '. '3-5

3.4 FILE-SYNONYM DEFINITION ITEMS. · · · · · · 3-6
3.4.1 ATTRIBUTE 0, THE ITEM-ID • · · 3-6
3.4.2 ATTRIBUTE 1. · · · 3-&.~ 'I;'
3.4.3 ATTRIBUTE 2. · · 3":'6'
3.4.4 ATTRIBUTE 3. · · · · ~, . e. !. 3-6

3.5 ATTRIBUTE DEFINITION ITEMS · 3-7
3.5.1 ATTRIBUTE 0, THE ITEM-ID · · · ... 3-7
3.5.2 ATTRIBUTE 1. · · 3-7
3.5.3 ATTRIBUTE 2. · - · · · · 3-7
3.5.4 ATTRIBUTE 3. · · 3-8
3.5.5 ATTRIBUTE 4. · · · · · 3-8

v

Section

4

5

3.6

88A00751A

3.5.6
3.5.7
3.5.8
3.5.9
3.5.10
3.5.11
3.5.12

ATTRIBUTE 5. •
ATTRIBUTE 6. • • • • • • •
ATTRIBUTE 7 •••••
ATTRIBUTE 8. •
ATTRIBUTE 9 ••
ATTRIBUTE 10 •

. .

ATTRIBUTES 11-14 ••••••
SUMMARY ••••• . . .

. .
. . . .

.
DATA BASE ARCHITECTURE AND THE ACCESS PROCESS.
4.1 INTRODUCTION ••••••••••••

• •
4.2 DATA BASE APPROACH ••••••••••••••
4.3 ELEMENTS IN A DATA BASE SYSTEM ••••••••
4.4 DATA BASE FILE STRUCTURE, THE INTERNAL MODEL • • • • •

4.4.1 HIERARCHIES AND NETWORKS. • ••••
4.4.2 RELATIONAL SYSTEMS • • • • • • • • • •
QUERY LANGUAGE "ACCESS". • • • • • ••••••
ACCESS QUERY LANGUAGE. • • • • • • • • • • •
PICK OPERATING SYSTEM ACCESS LANGUAGE STRUCTURE. • • • • •
USING THE ACCESS PROCESSOR • • • • • • • • • • • • • • • •
ACCESS LANGUAGE COMMAND VOCABULARY • • • • • • • • • •
4.9.1 LIST, SORT, LIST-LABEL, AND SORT-LABEL VERBS.
4.9.2 COUNT VERB • • • • • • • •••••
4.9.3 SUM AND STAT VERBS • • • • • • • • • • • •
4.9.4 THE SELECT AND SSELECT VERBS • • • • • • • • • • •
4.9.5 OTHER VERBS •••••••••

4.10 ACCESS LANGUAGE COMMAND MODIFIERS AND OPTIONS.
4.10.1 RELATIONAL OPERATORS.
4.10.2 WITH AND IF MODIFIERS. • ••
4.10.3 STRING SEARCHING. • • ••

4.11 SELECTION OF OUTPUT ••••••••••••••
4.12 FORMATTING FOR OUTPUT •••••••••••

. .
. .

4.12.1 HEADINGS AND FOOTINGS. • • • • • • • • .'. • • • •
4.12.2 BREAKING. • • • • • • • • •••••
4.12.3 BREAK-oN TOTALING AND GRAND TOTALING . . .

4.13 SUMMARY. • • • • • • • •
SYSTEM SOFTWARE AND UTILITIES. • • • • • • • •
5.1 INTRODUCTION................. • •••
5.2 SYSTEM USAGE ACCOUNTING. • • • • • • • • • • • • • •
5.3 INDIVIDUAL USER ACCOUNTS • • •••••••••••
5.4 MULTIPLE USER ACCOUNTS • • • • •••
5.5 LOGGING ON • • • • • • • • • • • • • • •
5.6 THE CHARGES AND CHARGE-TO COMMANDS • • •
5.7 SYSTEM BACKUP TO MAGNETIC TAPE. • • • ••••••
5.8 SYSTEM ERRORS AND MEMORY ERRORS FILE ••••••

vi

3-8
3-8
3-8
3-9
3-11
3-11
3-11
3-12

4-1
4-1
4-1
4-2
4-3
4-3
4-5
4-7
4-8
4-9
4-10
4-11
4-11
4-11
4-11
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16

5-1
5-1
5-1
5-2
5-2
5-4
5-5
5-5
5-6

Section

6

7

8

9

5.9

83A00751A

OTHER SYSTEM COMMANDS ••
5.9.1 LOGON.

OFF. • • • • • • •

. · · . . 5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.9.7
5.9.8
5.9.9

SYSTEM LOGON MESSAGE •
USER LOGON PROC •••••
WHO COMMAND. • • • • •

· · ·
LISTU COMMAND.
MSG CO~fAND. • • • • • • • • • •
SLEEP COMMAND. • • • • • • • • • • •

· · .
LISTVERBS AND LISTPROCS COMMANDS • • • • · . .

SYSTEM SECURITY ••••••
6.1 INTRODUCTION •••

. . .
6.2 PASSWORD FOR LOGON •••••

· . · · . .
6.3 SYSTEM PRIVILEGES LEVEL. • • • • ••••
6.4 FILE UPDATE AND RETRIEVAL PROTECTION CODES • • • • • • • •
6.5 S~RY.....................

TERMINAL CONTROL LANGUAGE.
7.1 INTRODUCTION.
7.2 THE TCL COMMAND VOCABULARY • • • • •
7.3 SOME COMMON TCL COMMANDS. . . .

7.3.1 SETTING TERMINAL CHARACTERISTICS.
7.3.2 SETTING TABS ••
7.3.3
7.3.4
7.3.5

COpy • • • • • • • •
SENDING MESSAGES •
TAP E ATTACH.

. . . · · · · .

. . . . ·
. . .

PROC LANGUAGE PROCESSOR. • • • • • • • • • • • • • • •
8.1 INTRODUCTION. • • • • • • • • • • • •••••••
8.2 THE STRUCTURE OF A PROC. • • • • • • • • • • • • • • •
8.3 PROC COMMAND LANGUAGE CAPABILITIES • • • • • • •
8.4 SCREEN FORMATTING WITH PROC •••••
8 • 5 SUMMARy...........

· . BASIC LANGUAGE PROCESSOR • •
9.1 INTRODUCTION •••••
9.2 RE-ENTRANT CODE •••

· . . .
9.3 SOURCE FILES •••••••
9.4 COMPILER FEATURES. • • • •

9.4.1 LIST OPTION ••••
9.4.2 LIST ERRORS ONLY OPTION ••
9.4.3 ASSEMBLED CODE OPTION.
9.4.4 CROSS REFERENCE OPTION •
9.4.5 MAP OPTION ••••• · .

. .

. . .

. .

·
. . . .

9.5
9.6

EXECUTING BASIC PROGRAMS • • • • • • • • • • • • • •
FILE HANDLING IN BASIC • • • •
9.6.1 DYNAMIC ARRAY (FILE) HANDLING FUNCTIONS •••

vii

5-6
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-7
5-7

6-1
6-1
6-1
6-1
6-2
6-2

7-1
7-1
7-1
7-2
7-2
7-2
7-2
7-2
7-2

8-1
8-1
8-1
8-1
8-2
8-2

.9-1
9-1
<9-1
9-1
'9-2
9-2
9-2
9-3
9-3
9-3
9-4
9-4
9-5

Section

10

11

88A00751A

.ru.J&. Page

9.7 OTHER FEATURES OF THE PICK OPERATING SYSTEM BASIC. . · · · 9-6
9.8 MULTI-USER FILE LOCKS. · · . . · · · · · · 9-7
9.9 INPUT AND OUTPUT CONVERSIONS • · · · 9-8

n n 1 n "'1'\ .. nTl:'nC!'TI'\~T 1~"nnt:'T A'T'Tn~T 9-8 :1.:1.~ JJ \JV1'.J;:.~.Vj," "'vn.j,"~n '"' .. ~ · 9.9.2 MC CONVERSION/CORRELATION. 9-8
9.9.3 MT CONVERSION/CORRELATION. · · · · 9-8
9.9.4 MX CONVERSION/CORRELATION. · . · · 9-8
9.9.5 P CONVERSION/CORRELATION · · · 9-9
9.9.6 T CONVERSION/CORRELATION • · . · · · · · · 9-9

9.10 MATH FUNCTIONS · · · . · · · 9-9
9.11 SUMMARY. · · . . · · · · · · 9-9

• 10-1 SYSTEM EDITOR AND TEXT PAGE FORMATTER.
10.1 INTRODUCTION •••••••••••
10.2 THE EDITOR • • •••••••••

· . . • 10-1

10.3
10.4

10.5

• • • • • • • • • • 10-2
10.2.1 BASIC EDITOR COMMANDS ••
10.2.2 SPECIAL EDITOR COMMANDS.
FORMATTER. • • • • • • • • •
SOME BASIC RUNOFF COMMANDS • • • • • •
10.4.1 PAGE FORMAT. • • •••
10.4.2 DOCUMENT STYLE • • ••••
10.4.3 INDEXING •••••••

• • • 10-2
• • 10-2
• • 10-3

• 10-3
• • • • • • • • 10-3

10-4
• 10-4

10.4.4 GRAPHIC DEVICES.. • •• · . . · . . • 10-4
10.4.5 MISCELLANEOUS COMMANDS • • • 10-4
10.4.6 SPECIAL COMMANDS • • • • • • • 10-5
S~Y ••••••••••• • • 10-5

PRINT SPOOLING SYSTEM. • • • 11-1
• 11-1 11.2 LINE PRINTER SPOOLER.

11.3 SPOOLER COMMAND VOCABULARY
11.3.1 DESTINATION COllMANDS •
11.3.2 FORMS CONTROL. • • • •
11.3.3 MULTIPLE COPIES •••

• • 11-2
• • • • • 11-2

• 11-2
• • 11-2

11.3.4 EDITING PRINT FILES •••••••••••• • • 11-3
11.3.5 RESTARTING ABORTED RUNS.
11.3.6 PHYSICAL PRINTER MANAGEMENT.
11.3.7 PRINTER STARTUP ••
11.3.8 PRINTER HALT.
11.3.9 SPOOLER STATUS •

viii

. . · . . . • 11-3
11-3

• • • • • • 11-3
• 11-3
• 11-3

Section

12

13

14

88A00751A

MAGNETIC TAPE SYSTEM • • • • • • •
12. 1 INTRODUCTION. • • • • • •
12.2 ACCESSING THE TAPE SYSTEM.

12.2.1 T-ATT AND T-DET VERBS ••
12.2.2 TAPE HANDLING VERBS ••

. . .
12.2.3 T-DUMP, S-DUMP, AND T-LOAD VERBS.
12.2.4 TAPE LABELS ••••

12. 3 S~Y. • • • • • • • • • • • • • • • •

COMPU-SHEET AND ACCU-PLOT.
13.1 COMPU-SHEET ••••••
13.2 ACCU-PLOT •••

JET WORD PROCESSOR •

.
.

ix/x

• 12-1
• •• 12-1
• • • 12-1

• 12-1
• •• 12-2

•• 12-2
12-2

• • 12-2

• • • 13-1
• 13-1

13-2

14-1

88A00751A

introduction

The PICK Operating System is a new kind of operating system, principally
oriented towards data base management applications. Computer users are
discovering, sometimes belatedly, that many applications, reduced to their
essence, are data base management tasks. Applications which use traditional
file structures are usually thought of as being."optimized," yet management
decision makers are finding that lack of flexibility in a data base is a far
from "optimum" condition, and is rapidly becoming regarded as an intolerable
misuse of a valuable asset. The decreasing cost of computational logic and
data storage, and the increasing awareness that a well-managed data base can
become a valuable decision making tool, is the driving force behind data base
management systems today. In this light, to say the PICK Operating System is a
data base management operating system is not to limit its application scope, or
to imply that it is somehow a special purpose operating system. Rather, it is
an operating system whose time has come.

1.1 VIRTUAL KEKORY OPERATING SYSTEM

The PICK Operating System "addresses" disk storage in 512 byte units called
"frames." This technique is similar to "paging" in virtual memory management
systems commonly used in very large scale mainframe computers. Frames are
moved in and out of semiconductor memory dynamically, on an as-needed basis.
This process is totally transparent to the individual user, who, for all
practical purposes, can manipulate data within the capacity range of the given
disk configuration.

1.2 DICTIONARY-BASED FILE STRUCTURE

A given file is defined by entries in a "file dictionary." A file is
subdivided into open ended "groups" and a hashing algorithm takes a keyword and
computes the group in which an individual "item" will be stored. On retrieval,
only one group, typically a very small sub-set of the entire file, must be
string searched to locate the item.

1-1

1

38A00751A

1.3 RETRIEVAL LANGUAGE

The PICK Operating System includes a high-level, non-procedural relational data
base query facility ("ACCESS"). This flexible software tool can be used by
non-technical personnel to make simple ad hoc inquiries, yet has powerful fea­
tures that can be used to formulate very complex reports in far less time than
would ordinarily be the case uSing conventional programming languages. This
translates directly into lower data processing costs, easier customization, and
modification of any given software, and faster development of new applications.

1.4 SUMMARY

The PICK Operating System represents a different approach to computing, and
provides a wide variety of fully-developed software products to implement that
approach. Most data processing tasks can benefit from the flexibility of the
PICK Operating System file structure and data base management tools, and few
systems offer the cost/performance of such sophisticated operating software on
a quality mini or micro computer configuration.

83A00751A

file structure 2
2.1 INTRODUCTION

The file management system that is central to the operation of the PICK
Operating System represents an unusual approach to the use of disk storage.
Using this system, the operating system can find the location of a given "item"
with a minimum number of disk seeks. Data within this item can be further
subdivided with special delimiter marks the system is optimized to search for.
The English-like ACCESS Processor is designed to make these operations as
simple, and as user oriented, as possible.

2.2 BASIC DATA DIVISION CONCEPTS

This section discusses the system file structure mechanics on a detailed
level. Certain basic concepts are briefly introduced here in order to make the
information in remaining sections more easily understood. Each of these
concepts are individually discussed in greater detail.

2.2.1 ITEMS

A PICK Operating System file is made up of "items." Items consist of a keyword
called the item-id that uniquely identifies the item from all other items in
the file. An item can consist of up to 32K of data, divided into a number of
"fields" called attributes, which can be further subdivided.

2.2.2 DICTIONARIES

Files have "file dictionaries" associated with them •. These dictionaries
contain, among other things, the location on disk of the related file.

2.2.3 GROUPS

Files are divided into one or more "groups." The item-id (keyword) of each
item in the file is run through a hashing algorithm to determine which group
that item will be stored in. Upon retrieval, only that group need be searched.

2-1

3SA00751A

2.3 DISK STORAGE ALLOCATION

Disk storage is divided into 512 byte "frames." Each one of these frames has a
logical address known as the "frame-id" and each frame contains twelve bytes of
information the system uses J including the number and location of forward and
backward "links" in the chain of frames that make up an individual file. Five
hundred bytes per frame are available for user data storage.

When a new file is created, space for it on disk is reserved in one contiguous
set of frames. These frames are chosen by consulting the available space pool
uSing two figures supplied by the user, the "modulo" and the "separation."
This space is called the "primary" space, and in no way represents a limit on
bow large the file can grow.

2.4 THE MODULO AND THE SEPARATION

The modulo and the separation are a method of dividing up a whole file into
smaller groups. The purpose of dividing a file into groups is to focus a
search for a given item of data in a smaller amount of storage, and thus
minimize the search time. The modulo represents the number of groups the file
is to be divided into. The separation represents the number of frames that
will initially be allocated to each group. If a file is "modulo three," that
means the file is divided into three groups. If the separation is three, then
each group is three frames long, and the file would reserve a total of nine
frames as the "primary" fi1espace.

In short, the modulo*separation represents the total number of frames allocated
for the file and these frames are always contiguous.

It is important to emphasize that this pre-allocation places no limit on the
growth potential in a file. Because each frame has forward and baCkward
linking pointers, new frames are automatically.added to an expanding group, as
required.

While using the modulo*separation to determine the amount of contiguous space
to allocate to a file, the system also uses these figures to build the file
dictionary. The file dictionary will contain the modulo, the separation, and
the disk address of the first frame in the file, called the "base frame" or
"filebase."

The conceptual effect of dividing a file into groups is to create a number of
separate files. Figure 2-1 diagrams the "primary" space of the modulo-3
separation-3 file mentioned earlier. This file is divided into three frames
each. The "base frame" is the first frame of the reserved, contiguous
"primary" filespace.

2-2

83A00751A

Notice the file effectively contains three "starting points" in frames 100,
103, and 106. These frames all "link backward" to frame 0, which is to say
they do not "link back" at all. Because only the first frame of Group 0 is
stored in the file dictionary as the "base frame" or "filebase," the starting
~rames of the following groups are computed. Since the "primary space" frames
are always contiguous, the base frame of any given group can easily be
determined using the following formula:

Base of any Group • (Group * Separation) + Filebase

Thus, the starting frame of Group 1 is 103:

103 • (1 * 3) + 100

Now suppose an item is to be added to the file. First the item-id is hashed to
determine which group it will be stored in. The hashing algorithm will return
a value within the range of the modulo (the number of groups in the file). In
this case, we will assume the result is Group 1. Also, we will assume that the
primary space allocated to Group 1 is almost full and the addition of this item
will cause it to overflow two frames. Figure 2-2 diagrams the result.

As Figure 2-2 shows, when Group 1 overflowed, the additional data was written
into frames 947 and 1106 and the linking information was used to chain these
frames to the last frame of the "primary" space in Group 1. Should the total
size of Group 1 be reduced by future deletions, frames 947 and 1106 would be
"un-linked" and returned to the free space pool. The "primary space" will
always be associated with the file, even if one group, or the entire file, has
all items deleted.

This process of defining the modulo and separation for a file can be used to
optimize the file access process. Utility programs are available to choose the
optimum modulo and separation based on average item size and the total number
of items stored. Since the search for anyone item is always limited to only
one group, it is group size, not file size, that determines the speed of
retrieval. The separation, involving reservation of contiguous space, is an
attempt to ensure that the "next access" will be physically the next sector on
the disk. Since most PICK Operating Systems are used in a timesharing environ­
ment, contention for the disk will almost always cause head movement before the
next access for anyone user. Therefore, in most instances, the separation is
left as one, and the linking process begins as soon as the first frame of a
group is filled; each group being free to grow and shrink independently.

2-3

MODULO 3
SEPARATION 3
BASE FRAME 100

GROUP 0

BASE --+-­ FRAHE-ID: 100
LINK BACKWARD: 0

LINK FORWARD: 101
FRAME
(100)

FRAME-ID: 101
LINK BACKWARD: 100

LINK FORWARD: 102

FRAME-ID: 102
LINK BACKWARD: 101

LINK FORWARD: 0

88A00751A

GROUP 1

FRAME-ID: 103
LINK BACKWARD: 0

LINK FORWARD: 104

FRAHE-ID: 104 '
LI NK BACKWARD: 103

LINK FORWARD: 105

FRAME-ID: 105
LINK BACKWARD: 104

LINK FORWARD: 0

Figure 2-1

2-4

GROUP 2

FRAME-ID: 106
LINK BACKWARD: 0

LINK FORWARD: 107

FRAME-ID: 107
LINK BACKWARD: 106

LINK FORWARD: 108

FRAME-ID: 108
LINK BACKWARD: 107

LINK FORWARD: 0

MODULO 3
SEPARATION 3
BASE FRAME 100

BASE
FRAME
(100)

FRAME-ID: 100
LINK BACKWARD: 0

LINK FORWARD: 101

FRAME-ID: 101
LINK BACKWARD: 100

LINK FORWARD: 102

FRAME-ID: 102
L INK BACKWARD: 10 1

LINK FORWARD: 0

88A00751A

FRAME-ID: 103
LINK BACKWARD: 0

LINK FORWARD: 104

FRAME-ID: 104
LINK BACKWARD: 103

LINK FORWARD: 105

FRAME-ID: 105
LINK BACKWARD: 104

LINK FORWARD: 947

FRAME-ID: 947
LINK BACKWARD: 105

LINK FORWARD: 1106

FRAME-ID:I106
LINK BACKWARD: 947

LINK FORWARD: 0

Figure 2-2

2-5

FRAME-ID: 106
LINK BACKWARD: 0

LINK FORWARD: 107

FRAME-ID: 107
LINK BACKWARD: 106

LINK FORWARD: 108

FRAME-ID: 108 ;
LINK BACKWARD: 107

LINK FORWARD: 0

88A00751A

2.5 NATUIlE OF AN ITEM

A "group" is a more or less conceptual division of a file into subdivided
space. After the proper modulo and separation is chosen, the fact that a file
is divided into groups becomes transparent to the user. The item is where the
real mechanics of the PICK Operating System file structure begin.

An item-id is a keyword that identifies a related group of fields called an
1l!!. A file is a collection of related~. A file can be any length,
consisting of any number of items, but anyone item is limited to 32K bytes.
An item is divided into attributes, and these attributes can contain any data
except for attribute 0, the Oth attribute, which contains the keyword that
identifies the item. This attribute 0, called the item-id, can be up to 50
bytes long. No other length restrictions apply to individual attributes other
than their collective limit of 32K bytes.

The data that follows the item-id, "attribute 0," can be further divided into
more attributes; attributes can contain multiple values; and values can contain
multiple subvalues. Attributes are delimited by physically writing the ~

character to disk between attributes. Multiple values within attributes are
delimited by the] character and multiple subvalues within values are delimited
by the \ character. Attributes, values, and 8ubvalues are individually
variable in length, can grow or shrink as required by the application, and
occupy only as much disk storage as they require plus the one-byte delimiter
marks that separate them. All of the information pertaining to what attributes
are in a file is contained in the file dictionary. Whereas attributes, values,
and subvalues can potentially contain the same data, attribute 0, the item-id,
must be unique within one file.

The special significance of attribute 0, or the item-id, is the further
refinements used to locate it. The item-id is a keyword referring to up to 32K
bytes of data that follows it, and it 1s limited to 50 or less alphanumeric
characters which are computed in a hashing algorithm along with the modulo.
The result of this computation is the number of the ~ in which the item
is stored.

The retrieval of a given item follows this basic procedure:

1. Given the file name and item-id of the data to be retrieved, the operating
system consults the file dictionary and determines the starting frame,
modulo, and separation of the file.

2. Using the item-id supplied by the user and the hashing algorithm, the
starting frame of the group in which the item must be stored is determined.

3. The starting frame and associated linking pointers to the following frames
are read and the group is searched until the item-id is found.

2-6

88A00751A

To illustrate the format of an individual item, Figure 2-3 shows a hypothetical
item in an inventory file.

Figure 2-3 illustrates the role of the attribute mark /\, the value mark], and
the subvalue mark \. Both attributes 1 and 2 contain one item of data or
"-value." Attribute 3 illustrates the full range of complexity that can be
managed by the operating system, it contains three values delimited by the
value mark], and the third of these, Value 3, consists of two subvalues.

Any attribute can contain multiple values, and any value can contain multiple
subvalues. In Figure 2-3, attribute 1 could be text listing a vendor name,
attribute 2 could be the vendor address, and attribute 3 could be multiple
parts supplied by the vendor. Subvalues of Value 3 of attribute 3 might list
color options for an individual part, if any. The following list graphically
illustrates the relationships between multiple values in this type of file:

/
Attribute 1 ---> VENDOR NAME
Attribute 2 ----> VENDOR ADDRESS
Attribute 3, Multi.values ---> 1 PART A

2 PART B
3 PART C

Attribute 3, Subvalues ---------------------> 3-1 SAFETY ORANGE
3-2 FLAT BLACK

PART-52900ADATA FIELD UIADATA FIELD U2 AVAL U1]VAL U2]VAL U3-1 VAL U3-2
I I I I
+Attribute l-+-Attribute 2-+-------+--Attribute 3-----------+

I I I
I I +--Subvalues 3-1&3-2
I +--Value 2
+--Value 1

Figure 2-3

2-7

88A00751A

The PICK Operating System BASIC, discussed in Section 9, includes many
commands for accessing attributes, values, and subvalues.

When the data is displayed via the editor, the attribute marks are usually
converted into carriage returns so the display is one of line entries. For
example, a simple "copy to terminal" image of the previous example on a user's
terminal might look like this:

PART-52900
001 DATA FIELD 11
002 DATA FIELD 12
003 VAL #llVAL #2]VAL 13-1\VAL 13-2

Notice that attribute 0, the item-id, is not given a line number. Although it
1s an attribute, it is reserved for its special purpose as a keyword. Because
the very location of the data is dependent on the contents of attribute 0, it
cannot be altered as a line item. Unlike attribute 0, the other line items
have no particular significance to the file system, since their meanings are
dependent upon human interpretation. Later we will show how entries in the
file dictionary can give special meaning to these line items for interpreta­
tion by the ACCESS Processor and how that processor can be used to format more
useful printouts than the above, somewhat mechanical, presentation.

2.6 SUMMARY

The PICK Operating System file structure provides a sophisticated system for
the storage of data by keyword, attributes of the keyword, multiple values per
attribute, and multiple subvalues per value. The storage technique assures
that, given the keyword and certain data stored in the file dictionary, a given
item can be located with a minimum number of disk seeks and string searching.
Although the file structure uses disk space reservation techniques, there is no
limit to the amount a file can grow. An individual item can also grow,
regardless of the amount of space originally allocated to it, as long as the
total item length does not exceed 32K bytes. Individual attributes, values,
and subvalues within an item can also shrink and grow within the 32K limit.

2-8

88A00751A

dictionary system 3
3.1 INTRODUCTION

The PICK Operating System revolves around a hierarchy of files called
"dictionaries." Dictionaries are used to describe the structure of other files
and to "point" to their location by storing the base frame, modulo, and separa­
tion. This pointer information is central to the purpose of the dictionary.
The existence of a file and its associated dictionary are integrally linked.
Access to a file is not possible without a dictionary to regulate that access;
and, where a single dictionary can serve several files, no single file can
exist without a dictionary to define its location·and structure.

In addition to storing the location of a file on disk, the information
con.tained in the file dictionary serves as a roadmap for retrieving data from
the associated data file when uSing the English-like ACCESS Processor. Entries
give mnemonic names for various attributes, describe the contents of an
attribute, the wayan attribute is to be printed out, conversion specifications
for dates and other entries, etc.

The hierarchy of the PICK Operating System dictionaries is as follows:

1. The System Dictionary contains the users who may log onto the system.
There is only one system dictionary per system. An item-id (attribute 0)
in the system dictionary is a user's name (or logon word); further
attributes describe passwords and security codes, etc. The most important
attributes of an item in the system dictionary are attributes 2, 3, and 4
which give the base frame, modulo, and separation of an individual account
master dictionary.

2. The Master Dictionary is assigned when a new account is put on the system.
Each account has only one master dictionary. The master dictionary, or
"MD," contains entries which describe, or point to, the system command
language a user has at his/her disposal. These items consist of system
commands, called verbs; stored procedures, called PROCS; and commands of
the ACCESS retrieval language. All of these elements will be discussed
in further detail in subsequent sections. For now, the important point
is that each user's command vocabulary can be customized, and sensitive
commands can be omitted from any given account, effectively preventing
use of that command. The MD also contains pointers to other files, called
file dictionaries.

3-1

38A00751A

3. The File Dictionary contains file and attribute definition statements that
describe the structure of the data file with which the dictionary is
associated. These definition items can describe, on an attribute-by­
attribute basis, the type of data in an attribute, conversion specifica­
tions, relationships between attributes, etc. The file dictionary can
either point to a single file, or multiple files having identical struc­
ture. However, no file can be without a dictionary pointing to it. A
special type of file, the "single-level" file, is a dictionary file with
no associated data file. All of the data is contained within the
dictionary itself, and it "points" to itself.

Figure 3-1 diagrams the hierarchy of dictionaries.

LOGON PROCESS-->

USER
MASTER

DICTIONARY

FILE
DICTIONARY

SYSTEM
DICTIONARY

I I I

I I I
I I L

I

"File Definition Items" in
the system dictionary establish
one or more user accounts.

USER
MASTER

DICTIONARY

USER
MASTER

DICTIONARY

"File Definition Items" in
a master dictionary establish
one or more files.

I

I I
L-

I
I

FILE
DICTIONARY

"Attribute Definition Items"
in a file dictionary define
the location and data layout
of the defined file.

FILE
DICTIONARY

I .
DATA
FILE

Figure 3-1.

(A file dictionary ~ define
more than one data file.)

The Dictionary Structure

3-2

G3A00751A

3.2 ITEMS AND ATTRIBUTES IN DICTIONARIES

As discussed earlier, all files consist of one or more items. Each is
identified by a keyword, the item-id, that can be located quickly through the
hashing algorithm. An entire item is, in reality, a string of attributes
delimited by the character A, the first one, attribute 0, serves as the key and
functions as the item-ide

An important concept to remember is that dictionaries are files too. Their
structure follows the same pattern of item-id followed by attributes, like any
other file. Dictionaries achieve special significance by following a
relatively rigid structure, unlike data files which follow whatever structure
the data is suited to. Dictionary files reserve certain characters for
attribute 1. If one of these reserved characters appear as attribute 1 in the
item, then the item-id and the following attributes in that item take on
special significance in the definition of the item and its purpose. There are
several different classes of items that can appear in a dictionary file, the
following is a discussion of the major types.

3.3· FILE DEFINITION ITEMS

When an item in a dictionary file is used to define another "lower level" file,
the item-id, or attribute 0, of the item becomes the name of the file being
pointed to. This lower level file can be either a true data file, or another
dictionary.

When a file definition item appears in the system dictionary, the "file" being
defined is the master dictionary of a user account. Some of the attributes
take on special roles in the system dictionary such as the establishment of
logon passwords.

When a file definition item appears in a master dictionary, the "file" being
defined is the dictionary establishing a data file. One dictionary file can
contain one or more file definition items pointing to data files that have
identical structure.

3.3.1 ATTRIBUTE 0, THE ITEM-IO

The item-id becomes the name of the file being defined.

3-3

88A00751A

3.~.2 ATTRIBUTE 1

Within a dictionary file, an item that has the character Q in attribute 1, also
referred to as a D-ITEM, indicates that the following attributes define the
structure of another file or dictionary. If the D in attribute 1 is fol~owed
by an X, the file will be erased during a system restore. This is useful when
creating temporary files, rather than writing special purging routines. If the
D is followed by a Y, the data within the file will be erased during a system
restore, but the pointer to the file in its related dictionary will remain;
thus the file still exists, it is just empty. If the D is followed by a C, the
data within the file is binary data (compiler object code) and the file
definition is actually stored in a pointer file, either the user's or the
system pOinter file (a pointer file is a file which contains special definition
items that pOint to the disk location of object code files and selected lists
of item-ids). DCX and DeY give these binary data files the X and Y purge
control flags.

3.3.3 ATTRIBUTE 2

Attribute 2 contains the base frame-id of the file being defined. When the
file is created and the contiguous space is reserved, the create file processor
automatically loads this attribute; it, of course, must not be altered by
the user.

3.3.4 ATTRIBUTE 3

Attribute 3 contains the modulo of the file being defined. When the file is
created and the contiguous space is reserved, the create file processor
automatically loads this attribute; it, of course, must not be altered by
the user.

3.3.5 ATTRIBUTE 4

Attribute 4 contains the separation of the file being defined. When the file
is created and the contiguous space is reserved, the create file processor
automatically loads this attribute; it, of course, must not be altered by
the user.

3.3.6 ATTRIBUTE 5

This is the retrieval lock code, a form of password protection discussed in
Section 6, System Security.

3-4

J3A00751A

3.3.7 ATTRIBUTE 6

This is the update lock code, a form of password protection discussed in
Section 6, System Security.

3.3.8 ATTRIBUTE 7

When the file definition item is used to define a data file, this attribute is
not used. When a file definition item in the system dictionary is used to
create a user's master dictionary, this attribute contains the logon password.

3.3.9 ATTRIBUTE 8

When the file definition item is used to define a data file, this attribute is
not used. When a file definition item in the system dictionary is used to
create a user's master dictionary, this attribute contains the system privilege
level of the defined user (refer to Section 6, System Security, for more
information).

3.3.10 ATTRIBUTE 9

When the file definition item is used to define a data file, this attribute
contains the type of data in the item-id field of the defined file. This
includes alphabetical or numeric, and the output specifications for the line
printer or terminal screen (flush left or right). The flush left/right option
is taken into consideration when sorting the file by item-ide

When a file definition item in the system dictionary is used to create a user's
master dictionary, this attribute contains the user-type code of the defined
user (refer to Section 5, System Software and Utilities, for more information).

3.3.11 ATTRIBUTE 10

Attribute 10 designates the space to be allowed when printing the item-ide

3.3.12 ATTRIBUTE 11

Reserved for system use.

3.3.13 ATTRIBUTE 12

Reserved for system use.

3.3.14 ATTRIBUTE 13

Attribute 13 contains the new modulo and separation when the file is
reallocated during the system restore process, called file-restore. If the
modulo and/or separation of a file needs to be changed, the user puts the new
values in this attribute. The next file-restore will examine these values and
reallocate the file accordingly.

3-5

88A00751A

3.4 FILE-SYNONYM DEFINITION ITEMS

When an item in a dictionary file is used to define another "lower level" file,
the item-id, or attribute 0, of the item becomes the name of the file being
defined. It is sometimes convenient to give a file more than one name, as in
giving the file "INVENTORY" the name "INV" for short. File synonyms can also
be useful in a master dictionary, M/DICT, to alter the command language termi­
nology and/or create abbreviations. The operating system makes this possible
with the "file-synonym definition" item. Aside from giving a file an alternate
name within the same user account, the file-synonym definition item can also
point "outside" its account and reference files in other accounts, provided
security restrictions are met. The item-id of the synonym definition item is
the new version of the name. The "real" name is placed in attribute 3. The
following is a summary of the attributes in file-synonym definition item.

3.4.1 ArrRIBUTE 0, THE ITEM-ID

The item-id becomes the synonym name of the file being defined. If the synonym
item is being used to point to a file in another account, the item-id is the
"real" name of the file.

3.4.2 ATTRIBUTE 1

Within a dictionary file, an item that has the character ~ in attribute 1, also
referred to as a Q-ITEM, indicates that the following attributes point to the
name and account location of another file.

3.4.3 ATTRIBUTE 2

Attribute 2 contains the account name where the file "pointed to" by the Q-ITEM
is located. This is also used to set up access to a file in another account.
In this case, the same name for both the original file, the "D-ITEM," and the
new synonym, the "Q-ITEM" might be the same. Thus the ability of a Q-ITEM to
become a synonym is not used, only its ability to "point" to a file in another
account. Access is still controlled by the security system. See Section 6,
System Security, for a more detailed discussion. If attribute 2 is null, the
file being pOinted to is assumed to be in the same account.

3.4.4 ATTRIBUTE 3

Attribute 3 contains the name of the file as defined in the liD-ITEM." When
referring to a file by its abbreviated "Q-ITEM" name, the system will search
back to the original file definition item for the base frame, modulo,
separation, and other attributes for purposes of file access.

3-6

d8A00751A

3.5 ATTRIBUTE DEFINITION ITEMS

A data file, like all files, consists of items identified by the item-id
followed by a number of other attributes, I-n (or no attributes). These attri­
butes make up -the data in the file. The purpose of the attribute definition
item in the file dictionary is to define the nature of the data contained
within a specific attribute. Thus, the data, and inter-data relationships, can
be defined on an attribute-by-attribute basis. The item-id, or attribute 0, of
the attribute definition item is a mnemonic "name" for that attribute. This
feature is used extensively by the PICK Operating System's English-like data
base ACCESS Processor as a user-oriented means to identify the data. For
instance, a user could refer to the "LIST-PRICE" rather than "ATTRIBUTE 14."
The following is a summary of the attributes in an attribute definition item.

3.5.1 ATTRIBUTE O. THE ITEM-ID

The item-id becomes the mnemonic label for the attribute being defined.

3.5.2 ATTRIBUTE 1

Within a dictionary file, an item that has the character ~ in attribute 1
indicates that the following attributes define the nature of the data in the
file or files the dictionary points to.

3.5.3 ATTRIBUTE 2

Attribute 2 is the attribute mark count, or AMC attribute. It refers to the
number of the attribute in the data file to which the attribute definition item
refers. Remember, the item-id gives the mnemonic label the user will refer to
the attribute by; this is the actual numerical pointer the system will use to
identify the attribute. Since the item-id is attribute a for every item,
attributes I-n are logically referred to by the AMC of I-n. If the AMC is 0,
then the item-id is being defined.

A "pseudo" AMC higher than the actual number of attributes in the file being"
referenced can be used to manage data that is computed, but not really stored
in the file. For instance, the attribute "DEALER-PRICE" might not be stored in
the file, but would be computed by taking the real attribute "AVERAGE-COST" and
multiplying it by the real attribute "DEALER-MARKUP." Once defined, this
"virtual data," which is never really stored, becomes as "real" and useful for
the user as any that is, in fact, stored as an attribute.

3-7

88A00751A

3.5.4 ATTRIBUTE 3

Attribute 3 contains an optional label that will be used as the heading for
printout. To save keystrokes, the item-id of the attribute definition item,
which is normally the label, might be "PN." Attribute 3 could contain
"INTERNAL INVENTORY PART NUMBER CODE" to make the printout mere readable for
the occasional user. The heading can be defined as having more than one line.

3.5.5 ATTRIBUTE 4

Attribute 4 contains the associative structure code. This code can be used to
identify "controlling" and "dependent" attributes. This relationship is used
primarily in printout formatting. For instance, if the controlling attribute
is suppressed during printout, the dependent attributes will be suppressed
too. This relationship extends to attributes containing multiple values. If
the 28th value of a controlling attribute is suppressed, the 28th values of
each dependent attribute will be suppressed also. Subvalues contained within
values are controlled according to the value in which they are contained. A
controlling attribute can control many dependents, but a dependent attribute
can only have one controller.

When defining a controlling attribute and the one or more dependent attributes
it controls, the format is "C" followed by the attribute mark count or "amc" of
the dependent attributes (e-g., Cjamc;amc; etc.).

When defining dependent attributes, the code Djamc is used in the attribute
definition item of each dependent attribute to identify the one attribute that
it is controlled by-

3.5.6 ATTRIBUTE 5

Attribute 5 is not used in attribute definition items.

3.5.7 ATTRIBUTE 6

Attribute 6 is not used in attribute definition items.

3.5.8 ATTRIBUTE 7

Attribute 7 contains the conversion specification that is used to convert from
processing format to output format. This code causes the data to be processed
in a variety of ways before being output. The operation is similar to the
process described in attribute 8 and the conversion codes are the same.

3-8

8~A00751A

3.5.9 ATTRIBUTE 8

Within the PICK Operating System, data can be stored on disk in a variety of
ways. For instance, the date is stored as a four-byte code, the time is stored
as the number of seconds since midnight, etc. Also, data could be stored one
way, but might need to be converted in a variety of different ways for output.
A check register might store check amounts in decimal form, but a printout
would include a leading dollar sign. The actual check might require a number
of leading asterisks. A summary financial report might use that data base, but
round up or down to even dollar amounts. Both attributes 7 and 8 provide
correlative conversions which are used to convert from the stored format to
processing format.

Using these functions, data can be altered from the stored format to an
intermediate format for computation, and then to another format for output.
Since these functions operate on an attribute-by-attibute basis, different data
within one file can be manipulated with complete flexibility.

The following is a summary of standard conversions provided with the operating
system:

1. The A Conversion/Correlation - A or arithmetic is used to compute
mathematical expressions. A is followed by an expression. A variety of
standard arithmetic and relational expressions are available in addition
to special functions.

2. The C Conversion - C or concatenate is used to concatenate attribute
values. An optional argument can be used to put one or more spaces or
other characters between the two concatenated strings.

3. The D Conversion - D or ~ is used to convert back and forth from the
internal format to a number of standard external formats. The date is
stored in the system as four bytes representing the number of days from a
fixed point in time.

4. The F Conversion/Correlation - F or function is used to compute a
mathematical function on attribute values. An A conversion is actually
converted to an F at run-time.

5. The G Conversion - G or ~ is used to extract one or more fields
separated by a user-defined delimiter other than one of the. normal system
delimiters. For instance, G with the delimiter argument of "_" could be
used to extract the department number only from an employee file where an
employee number was the form department-employee.

6. The L Conversion - L or length is used to extract only data that has a
length less than, or equal to, the argument. Multiple arguments can be
separated by the semicolon.

3-9

88A00751A

7. The R Conversion/Correlation - R or range is used to extract only data
that has a length which falls within the range of the argument. The
argument is two decimal numbers separated by a comma indicating the
range of data that is acceptable. Multiple ranges can be specified by
separation with the semicolon.

8. The Me Conversion - Me or mask character is used to convert strings to
upper or lower case or to extract alphabetic or numeric characters from
a string.

9. The ML and MR Conversions - ML and MR are the mask decimal left or right
conversions used to format decimal numbers. Optional arguments give the
number of digits to be printed to the right of the decimal point, control
the rounding off process, insert commas, cause negative numbers to be
printed with "CR" and positive numbers to be printed with "DB," append
dollar signs, insert text strings, etc. Land R control whether the
result will be printed left or right justified.

10. The HI Conversion - MT or mask time is used to convert the time of day
from the internal format to the various standard formats.

11. The MX Conversion - MX or mask hexadecimal is used to convert ASCII
character strings to their hexadecimal (base sixteen) representations.

12. The P Conversion - P or pattern match conversion is used to return only
data which matches a specified pattern. The argument can call for a
specific number of numeric characters, a specific number of alphabetical
characters, or a specific number of either. The argument can also call
for a specific pattern as in the following example:

P (3N-2N-4N); (9N)

This requests a pattern match of three digits, two digits, four digits
separated by hyphens (e.g., a social security nuober). This example also
illustrates the use of the semicolon in separating multiple arguments.
In this case, the second argument of nine digits without hyphens is also
acceptable, so both of the following would satisfy as a match:

410-96-5644 and 410965664

13. The S Conversion - S or substitute is used to test data to see if it is
null or zero. The argument is another attribute number and a string in
quotes. If the data is zero or null, then the string in quotes will
replace it on output; if it is non zero, then the other attribute will
replace it. For instance, an inventory report could print "OUT OF STOCK"
whenever the quantity value was zero.

3-10

88A00751A

14. The T Conversion - T or text extraction is used to extract a specified
number of characters from an attribute. The argument consists of the
starting character position and the number of contiguous characters to
extract.

15. The Translate Conversion/Correlation - Translate is'used to convert data
by examinin'g another file. The format of this attribute is ! followed by
the name of another file. On both input and output operations, data can
be converted. The incoming data to be translated represents an item-id
in the "other" file. A lookup is performed and the contents of the item­
id become the translation. Different attributes of the item-id can be
used on the input and output pass. As an example, standard abbreviations
can be processed in the following manner: On the input pass, Mastercharge
could be abbreviated MC and on the output, ~ could become Mastercharge.
A savings of 10 characters per entry in the data base is realized without
compromising the readability of the printout, and when the terminology
"Mastercharge" must be altered to "Master Card," the conversion is simply
and quickly realized.

3.5.10 ATTRIBUTE 9

Attribute 9 contains the output specifications for the line printer or terminal
screen (flush left or right) and is also taken into consideration during
sorting.

3.5.11 ATTRIBUTE 10

Attribute 10 contains the maximum length of values for the attribute. This
maximum is for columnar printout purposes and does not represent a limitation
on the length of the stored data. Data that exceeds this length will be folded
at word breaks during printout.

3.5.12 ATTRIBUTES 11-14

Reserved for system use.

3-11

88A00751A

3.6 SUMMARY

The dictionary system is an hierarchical structure which controls many aspects
of the PICK Operating System environment.

The system dictionary contains the system programmer's account SYSPROG, the
system error message file (ERRMSG), a library of standard PROCs (PROCLIB)
(refer to Section 8, PROC Language Processor, for more information), the
accounting history file (refer to Section 5, System Software and Utilities, for
more information), and the new account file (NEWAC), which is the prototype of
an individual master dictionary. The system dictionary also contains D-ITEMS
pointing to the individual master dictionaries of each user.

The existence of a master dictionary, defined in the system dictionary, is
synonymous with the existence of a user account. The master dictionary
contains the user's command vocabulary, on a user-by-user basis, thus making it
possible for different users to communicate in different languages, on the same
computer, at the same time. The master dictionary also points to file
dictionaries.

The existence of a file dictionary, defined in a user's master dictionary, is
synonymous with the existence of a file. File dictionaries define the nature
and structure of individual attributes within a file, on an attribute-by­
attribute basis. These attribute definition items, used in conjunction with
the English-like ACCESS Processor, assist in the retrieval process. Attributes
can be individually retrieval and update protected (refer to Section 6, System
Security, for further information), can give printout instructions, and can
define inter-attribute relationships including the existence of computed
"virtual" data that is, in fact, not really stored in the file at all.

3-12

4.1 INTRODUCTION

88A00751A-

data base architecture
and th.e a-ccess process 4

The mechanics of the PICK Operating System file structure has been discussed in
Section 2, File Structure, and Section 3, Dictionary System. The flexibility
of this file structure lays the foundation for the higher level data base
manage~ent facility within PICK Operating System and English-like ACCESS
Processor.

The first part of this section will discuss some of the precepts upon which
data base systems operate and the second part will discuss how these are
specifically implemented in the PICK Operating System.

4.2 DATA BASE APPROACH

A "data base" is an accessible collection of separate information values. The
purpose of a data base system is to manage all of the operational information
pertaining to an organization in one coherent way, using one set of standards.
Once this has been done, the information can be made accessible, thereby
useful, in a controlled manner.

In practice, the data base system replaces separate files and file management
code in individual applications programs with the "data base" and related
logic. Individual applications no longer access their own files, but simply
request data transactions to and from the data base system.

Replacing the file management responsibility in individual programs with one
centralized and standardized process provides an organizing force over the
total range of data processing activity. Two or more application programs no
longer maintain redundant data; they both share the same data base. This
process alone has the effect of increasing the accuracy of the data within the
system, since updating a value stored in the data base has the effect of
updating that value (or all users of the data. Integrity constraints on
additions and modifications to the data can be implemented in a controlled
way. This, too, has the effect of increasing the accuracy of the data base
and, by implication, improving the overall performance of the entire data
processing system.

4-1

88A00751A

The real purpose of the data base approach is to enhance the information
content of the data that drives the system. "Information" not only includes a
retrieval of stored data items, but analysis based on relationships between
them. A data base system is not a file cabinet, but an information resource.
True data base systems provide a query facility that allows a user to express
one or more relations between data items and request meaningful analysis and
output based on those relations. A relational approach to the data base can
produce new information where there was none before.

These points are keyed to the usefulness of data base systems in a business
computing environment. Running a complex business is, at best, like dealing
with a moving target. If a data base system is to assist the decision making
process, it must be flexible enough to deal with unanticipated requirements.
Such a system can be invaluable to the business executive dealing with dynamic
and highly competitive markets.

4.3 ELEMENTS IN A DATA BASE SYSTEM

A data base system can be broken down into roughly three components. The first
is the internal data model or storage system. This is how real data is
actually stored and physically managed, and this also includes the storage and
management of any associated directories necessary for data access. The second
is the external data representation or how the user "sees" data and manipulates
it. The third is the query language provided for inquiry into the data base.
This is one of the most important parts of the system, since the query language
is what makes the data base accessible and useful.

4-2

88A00751A

4.4 DATA BASE FILE STRUCTURE, THE INTERNAL MODEL

Various data base systems can be characterized by the manner in which files are
stored and retrieved. These techniques constitute the internal data model, and
greatly affect the other elements of the system, especially formulation of the
retrieval language. The structure of the internal data model also has a great
impact on how easily the system can be understood and managed. Data base
systems ~ complex, and elaborate internal systems can make a theoretically
useful system unmanagable in the real world.

4.4.1 HIERARCHIES AND NETWORKS

Hierarchical systems, as the name implies, have a hierarchy of data. Thus, a
vendor number might point to a city, which would point to a part number, which
would point to a weight. Such systems are generally represented by tree
structures and involve a number of different file types. A simple example is
shown in Figure 4-1.

Network systems are similar to hierarchical systems except the linking
structure is not a. vertical hierarchy or "tree," but a flexible series of
links. Unlike hierarchies, networks can have many links connecting data
elements. An example is shown in Figure 4-2.

Networks, like hierarchies, normally maintain at least two types of files:
"real data" files and "link" files.

Both networks and hierarchies suffer from a number of problems. Their inherent
structure is complex, and thus the associated supporting programming must be
complex; and they do not model the "real" world very well. Hierarchies are
excellent for modeling true hierarchical relationships, but they are only a
small fraction of the types of relationships a flexible data base system may be
called upon to manage. Network systems are really just a complex way of making
hierarchies more flexible and they do model the real world better than
hierarchies, yet the complexity of both of these data models makes the
formulation of a clear, user-oriented query language all the more difficult,
since both systems represent data relationships in several ways using several
different file types.

The real Achilles heel of these systems is the fact that relations between data
items are intrinsic to the structure and must normally be predetermined in the
systems analysis phase and built into the data model before they can be
supported in the external level. These systems offer high performance in
certain limited applications, but do not satisfy the requirements for a
generalized "information resource."

4-3

83A00751A

VENDOR NUMBER
I
I

CITY
I
I

PART NUMBERS
I
I

WEIGHTS

Figure 4-1. Hierarchical Data Representation

VENDOR NUMBER

~----------------- CITY ------------

PART NUMBERS ____ ~---_J

~-------------WEIGHTS

Figure 4-2. Network Data Representation

4-4

88A00751A.

4.4.2 RELATIONAL SYSTEMS

The PICK Operating System is a relational data base system. The relational
approach is based on the principal that "relations" between data elements are
the fundamental subject of concern when making a query into a data base, so it
is the most useful data model for most types of applications. A relational
data model is conceptually like a common "table" with various entries. An
example is shown in Figure 4-3.

Using the relational system, many different types of inquiries can be handled
easily by examining "rows" and "columns." On the PICK Operating System, the
file structure used to store data is also flexible enough to store the
dictionary files associated with the data files. In fact, every file on the
PICK Operating System is stored using the same file structure as is used when
storing data, and this feature provides a welcome level of simplicity.

The PICK Operating System internal file model is discussed in detail in Section
2, File Structure, but the important point here is the close relationship
between the internal file structure and the external appearance of the data.
This close relationship provides a further level of simplification, and makes
the "conceptual leap" between stored data and its meaning much less difficult
for the average user to comprehend.

VENDOR NUMBER CITY PART NUMBERS
!

WEIGHTS

xxxx-xxxx xx xx-xxxx-xx xx
xxxx-xxxx xx xx-xxxx-xx xx
xxxx-xxxx xx xx-xxxx-xx xx
xxxx-xxxx xx xx-xxxx-xx xx
xxxx-xxxx xx xx-xxxx-xx xx

Figure 4-3. Relational Data Representation

4-5

88A00751A

A PICK Operating System file contains ~ consisting of an item-id followed
by one or more attributes delimited by the attribute mark (character ~). Each
attribute can contain one or more values delimited by the value mark (character
]). Values can contain one or more subvalues delimited by the subvalue mark
(character \). Using this technique, we can have a data model consisting of a
flexible number of "rows" and "columns."

The following is an example of a PICK Operating System file shown using the
internal file model:

SUB-ASSEMBLY-A~5]6]7]8~100]200]214]1065~15]22]5]28

I I I I
ITEM-ID PART# PRICE WEIGHT

The first attribute delimited by the mark is the item-ide This attribute
indicates the following data pertains to "Sub-Assembly-A." The next attribute
is the "Part I" and it contains four values or part numbers. The remaining
fields also contain four corresponding values. In the PICK Operating System,
the structure of this data, and even the mnemonic ~ of the fields, are
stored in the file dictionary. Thus, the fact that the price field is decimal
dollars can be defined to the system by various attribute definition items. It
is easy to see how the internal model can be transformed into the
understandable external representation shown in Figure 4-4.

(item name) SUB-AS S EMBLY-A

(the three attributes) PARTH ••• PRICE ••• WEIGHT ••
5 $ 1.00 1.5

(various values) 6 $ 2.00 2.2
7 $ 2.14 .5
8 $10.65 2.8

Figure 4-4

4-6

88A00751A

4.5 QUERY LANGUAGE "ACCESS"

Data base query languages can be divided into t~10 major groups, procedural and
non-procedural. A procedural query language is one in which the procedure or
method used to come to a conclusion is part of the information the user is
required to supply before the language processor can begin to solve the
problem. Conversely, non-procedural languages allow the user to express what
the results are to be, not ~ the processor is to go about determining those
results. It is generally accepted that the non-procedural approach is more
desirable for use in formulating query languages for data base systems since
end users find them easier to work with. A procedural language is very much
like a "normal" programming language; knowledge of how a file is constructed is
almost mandatory before a procedure to read it can be developed. A powerful
non-procedural language, like PICK Operating System's English-like ACCESS
Processor can be used by a novice user, since no real understanding of the file
structure is required. A query concerning the file "Sub-Assembly-A" might be:

LIST PARTS-FILE "SUB-ASSEMBLY-A" PARTII PRICE> "$2.00"

The results might be displayed:

SUB-ASSEMBLY-A

Part# ••• PRICE •••
7 $ 2.14
8 $10.65

The fact the file also contains information concerning the weight of every part
is irrelevant to the query. To persons in the shipping department, the weight,
and possibly the warehouse location or vendor number, might be of great
concern. The price field might be password protected so certain personnel
could not access price data. A procedural query language would greatly inhibit
the ability of users to inquire into the data base freely, without concerning
themselves with extraneous or security-sensitive information.

4-7

88A00751A

4.6 ACCESS QUERY LANGUAGE

The PICK Operating System's English-like ACCESS Processor is a special purpose
data base inquiry language. The ACCESS Processor provides a programming tool
which can be used to quickly inquire into, and generate reports from, the data
base. The processor can be used by non-programmers to formulate simple, ad hoc
inquiries at a CRT terminal, or by programmers or trained personnel to generate
extremely complex reports.

The syntax of the PICK Operating System ACCESS Processor is close to standard
English in that commands called "verbs" are action-oriented operations and
generally "do what they say. t, The file system provides great flexibility in
providing mnemonic "names" for various data items so that the user has to deal
with a minimum of abstract concepts.

Stored ACCESS Processor commands can be used to efficiently generate all the
normal working reports required by a given application. When the format of
these reports requires revision, the task can be accomplished in a minimum
amount of time. This is in sharp contrast to conventional programming
languages, which might require several programmer hours to effect even a minor
format change.

When a special, one-time situation arises, the ACCESS Processor can produce a
custom report to assist the management decision making process. For instance,
a company has the opportunity to replace a sub-assembly in a product they
manufacture with a newer integrated circuit which can be purchased at a lower
cost. Switching over to this integrated circuit immediately can give them the
price advantage in a bid for 100,000 systems to a large customer. However, the
present inventory of parts used in this sub-assembly must then be scrapped.
Complicating matters further, some of the parts can be used in other products,
so those parts would not have to be scrapped, just amortized over a longer
period of time.

The management team charged with making a decision on this matter wants to know
the following by five o'clock:

What parts used in sub-assembly SA-19523 are in stock and not used
in any of our other products, and what is their wholesale value?

The management served by a conventional inventory system would probably be told
that an answer by five o'clock was simply impossible. A manager using the PICK
Operating System who was familiar with the ACCESS language processor might
formulate the following inquiry himself. If not, a properly trained assistant
could.

LIST PARTS-FILE "SA-19523" WITH SUB-PARTS-QTY '> "0" AND WITH NO
S.UB-PARTS SUB PARTII WHOLESALE-COST QUANTITY TOTAL INV-VALUE

4-8

88A00751A

The report might look something like this:

PARTS-FILE •••••• SUB-PART# ••• WHOLESALE-COST •• QUANTITY •• INV-VALUE ••
SA-19523 SB-1350 4.532 563 2551.52

SB-1468 10.250 18 184.50
SB-3971 .511 1587 810.96

3546.98

The management team has the cost data they were looking for in order to make an
intelligent decision. And the accounting department has satisfied a complex
requirement without spending an inordinate number of programmer hours
developing special software for a one-shot situation.

4.7 PICK OPERATING SYSTEM ACCESS LANGUAGE STRUCTURE

The theoretical foundation of the ACCESS Processor is relational calculus, a
mathematics of relations. The language is inherently non-procedural; the
desired results are simply stated, as in:

LIST PARTS-FILE "SUB-ASSEMBLY-A" PART# PRICE> "$2.00"

which simply asks for those parts with a price greater than $2.00. The
statement does not say how the results are to be determined.

Most of the mathematical roots have been hidden in the implementation of the
ACCESS Processor to make it as user oriented as possible. For example, the
concept "greater than" can be expressed with the usual > sign, or the letters
"GT," but for time concepts where a date in the future is technically "greater
than" and a date in the past is "less than" today's date, the words before and
~ can also be used. Thus, an easily understood query can be formed:

LIST ACCOUNTS-RECEIVABLE WITH ITEM-DATE BEFORE "JUNE 30 1980"

The language also has a number of extended functions that are 'not, strictly
speaking, data base query functions. These functions include sorting,
counting, statistical derivatives, and complex printout formatting.

The ACCESS Processor is also extended by way of interface to the rest of the
PICK Operating System. Most of the ACCESS functions can be accessed by other
processes, such as BASIC (Section 9) and PROC (Section 8). This ability to
interface expands the ACCESS Processor from a utilitarian report generator to a
powerful system tool that can be used in conjunction with other system
functions and thereby expand the file management and data base handling ability
of any other processor.

4-9

88A007S1A

4.8 USING THE ACCESS PROCESSOR

The PICK Operating System's English-like ACCESS Processor accepts commands from
the terminal control level or from a PROC command (Sections 7 and 8). These
commands consist of verbs which are identified as items in an individual user's
master dictionary, and modifiers and options standard to thOSe commands. The
options constitute reserved words, but the verbs can be renamed on a user-by­
user basis to reflect appropriate jargon, or otherwise enhance the clarity of a
special application.

A query command acts on a file via the file dictionary. Many of the attribute
definitions set up in a file dictionary are for the use of the ACCESS
Processor. The item-id of an attribute definition provides a mnemonic label
for a specific attribute in the data file. Thus, when formulating a query, the
user can refer to data fields by names like "part-number," "quantity," and
"price," rather than some abstract coding structure. A query statement
consists of a valid command-verb followed by a filename followed by an optional
list of selection criteria, sorting keys, output specifications, etc.

Selection criteria limit a command's action to those items which meet the
criteria. A variety of relational operators are available. Sorting keys can
be the item-id, or any attribute. Multi-keyed ascending and descending sort
capability is built into the ACCESS Processor. Output specifications indicate
which attribute definition items in the dictionary are to be consulted when
formatting the material for output. Also, various attributes can be
suppressed. Print ltmiters suppress the output of values and sub-values not
meeting certain selection criteria. Modifiers and options control the format
of the printout, double/single spacing, optional columnar headers, intermediate
totaling, page formatting, etc.

4-10

88A00751A

4.9 ACCESS LANGUAGE COMMAND VOCABULARY

The verbs that comprise the standard vocabulary of the ACCESS Processor are
briefly outlined below. Each verb name is an item-id in the users' master
dictionary so the command vocabulary can be modified to suit special
applications on a user-by-user basis.

4.9.1 LIST, SORT, LIST-LABEL, AND SORT-LABEL VERBS

These verbs produce formatted output. LIST reads items from the file in
sequential order; SORT produces a sort by item-id or one or more attributes.
Both verbs examine the maximum lengths of attributes which are to be output by
consulting attribute 10 of the attribute definition items in the file
dictionary. Then, taking into consideration the maximum width of the terminal
screen or line printer page, a listing is produced in either columnar format
with attribute names across the top of each page, or non-columnar format with
attribute names printed down the left-hand side next to each field of output
data.

The LIST-LABEL and SORT-LABEL verbs allow data from more than one item to
appear across one line. This is used in producing four-across mailing labels.
The system prompts for the count across, number of rows per label, number of
blank lines between labels, etc. The action of the LIST-LABEL and SORT-LABEL
verbs in selection and sorting is otherwise identical to LIST and SORT.

When sorting, the BY-EXP, or ''by-explosion,'' modifier can be used to "explode"
an attribute into mUltiple values (delimited by the value mark]) and cause
sorting on those values.

4.9.2 COUNT VERB

The COUNT verb counts the number of items which satisfy any selection
criteria. If no selection options are used, the whole file will be counted and
the total number of items in a file will be the result of the count.

4.9.3 SUM AND STAT VERBS

These verbs are more sophi,sticated versions of count. SUM will give the sum of
all specified attributes which satisfy the selection criteria. STAT will also
give the count and average as well as the sum.

4-11

88A00751A

4.9.4 THE SELECT AND SSELECT VERBS

SELECT and SSELECT both generate lists of data elements. These lists, which
are subsets of the total file, represent items which met the selection
criteria. The next query command input will act on this list rather than the
enC1re I1~e. Tne list may also be saved and used later via the SAVE=LIST, GET­
LIST, and DELETE-LIST commands. SELECT generates a normal list; SSELECT
generates a list sorted on whatever keys were specified.

4.9.5 OTHER VERBS

Other query verbs are T-DUMP and T-LOAD, magnetic tape handling verbs; ISTAT
and HASH-TEST, disk space utilization analyzers; and LIST-ITEM and SORT-ITEM,
which dump items to a user's terminal or a lineprinter according to selection
criteria, sorting criteria, and print ltmiting criteria.

4-12

88A00751A

4.10 ACCESS LANGUAGE COMMAND MODIFIERS AND OPTIONS

All of the ACCESS Processor verbs are normally used with modifiers and
options. Such modifiers typically include instructions on selection of a
subset of the file, sorting on specific keys, and instructions on how an
individual printout is to be formatted. The following is a brief discussion of
the most important modifiers and options.

4.10.1 RELATIONAL OPERATORS

Relational operators are available to construct selection criteria when
inquiring into a file. Such operators are:

Operator Expressed as:

Equality • or EQ

Greater than > or GT - for math concepts
AFTER - for time concepts

Less than < or LT - for math concepts
BEFORE - for time concepts

Less than or equal to <- or LE

Greater than or equal to >a or GE

Not equal to /I or NE or NOT or NO

The logical connectives AND and OR bind two relational operators together. If
a query consists of two relational operators connected by AND, then both must
be true for the statement to be true; if they are connected by OR, then either
may be true and both may be true for the statement to be true. Using
relational operators and logical connectives, extremely complex selection
criteria can be defined. For instance, the following statement requests all
items which are equal to "NEW" or "NEWO" or are greater than "NEW2" and less
than "NEWS" in the file called "NEW-ONES."

LIST NEW-ONES : "NEW" OR "NEWO" OR > "NEW2" AND < "NEW5"

4-13

88A00751A

4.10.2 WITH AND IF MODIFIERS

WITH and IF are synonymous modifiers that refer to an attribute of an item.
They may be followed by any of the relational modifiers. If an attribute
consists of multiple values, each value is tested. The modifiers EACH, EVERY,
and NO can also be used. EACH and EVERY are synonyms. In the following
example, the attribute called "DATE" is tested in the file called "NEt-l-ONES."
There may be more than one date stored in each item, but no date may fall
outside the range of 01/01/79-01/01/80. Thus, any item with a date outside
this range is excluded, regardless of how many values within that item satisfy
the selection criteria. Those items with dat'es between 01/01/79 and 01/01/80
are acceptable except for 03/26/79.

LIST NEW-ONES WITH EVERY DATE AFTER "01/01/79" AND BEFORE "01/01/80"
AND WITH NO DATE - "03/26/79"

4.10.3 STRING SEARCHING

Any item-id or attribute value may be specified as part of the selection
criteria. This selection can be accomplished by relational operations like
less than or greater than, or by searching and matching a specific string.
String searching can be invoked by the use of the character (and ~ in any
inquiry. The [character specifies "any number of any character" and the ~
specifies "anyone character." Thus, [ING would find a match with any string
ending in ING and ~~AING would find a match with any string starting with any
three characters and ending in ING.

4-14

88A00751A

4.11 SELECTION OF OUTPUT

Selection criteria are not automatically output, and the user may want to see
other attributes whether or not they were involved in a selection or sorting
process. Additional attributes may be referred to by simply typing in the
appropriate attribute name as defined in the file dictionary. Thus, the
following query acts on items with the attribute "QUANTITY" of less than 10,
but requests that only the part number and vendor telephone number be printed
out.

LIST PARTS WITH QUANTITY < "10" PART-NUMBER TELEPHONE

4.12 FORMATTING FOR OUTPUT

The ultimate goal ot any ACCESS Processor command is to output reports of some
type, either on the lineprinter or the screen of the user's terminal. Some
commands have built-in formatting, like the columnar/non-columnar output of the
list verb; and these defaults aid in the display of quick inquiries. However,
the query language provides a full range of print output formatting tools that
can generate even the most complex reports from the data base. These
formatting tools work in close conjunction with the attribute definition items
in the file dictionary, as do all of the ACCESS Processor commands. The
following summarizes the major formatting options.

4.12.1 HEADINGS AND FOOTINGS

When using the LIST, SORT, LIST-ITEM, and SORT-ITEM commands, headings and
footings can be specified to replace the default heading (page number, time,
and date). After the normal query commands and selection criteria are entered,
the command HEADING or FOOTING followed by a string in double quotes will take
that string as the heading or footing for each page of the report. Single
quotes can surround special commands within the heading to generate linefeeds,
center lines, insert the date or the time and date, page numbers, the file name
the report is taken from, and the name of the attribute presently flagged by
the breaking process described below.

4.12.2 BREAKING

The breaking process is used to insert a blank line, a special print.ed comment,
or a sub-total into a report periodically based on some value or value change.

The BREAK-oN modifier takes as an argument an attribute name. Every time the
value of this atribute changes, a "break-on heading" line with asterisks in the
column of that attribute will be generated or an. optional text string can be
inserted instead. Also, when a break occurs, the name of the attribute, or the
value of the attribute at the breakpoint, can be inserted in a heading or
footing, thus providing a quick reference type of indexing at the top or bottom
of the page. Other options include the ability to force a new page to begin on
the break.

4-15

88A00751A

4.12.3 BREAK-oN TOTALING AND GRAND TOTALING

The TOTAL modifier will print the total of all the attributes since the last
break. Another attribute can be totaled instead of the attribute being
monitored for break-on purposes. For example, a report could break on a
certain inventory class, but total the wholesale price attribute. Options
include the ability to surround the total wi~h user-defined text. The
GRAND-TOTAL modifier inserts the grand total on the last page of the report and
generates a page-eject.

4.13 SUMMARY

The PICK Operating System data base file structure is founded on relational
data base principles, resulting in a high level of storage efficiency
consistent with complete data management flexibility. The system incorporates
a high-level, non-procedural ACCESS Processor based on relational calculus and
includes extended functions like sorting and counting, and a user-oriented
English-like syntax. It can be easily used by non-programmers to formulate
simple inquiries into a file, yet provides a full array of powerful features
the experienced programmer can use to assemble, debug, and maintain complex
applications software. Using this query facility, data base reporting
requirements can be met within reasonable time periods, without the costly
custom software development normally associated with the use of traditional
programming languages.

4-16

88A00751A

system software and utilities 5
5.1 INTRODUCTION

In addition to the operating system task scheduler, memory management, and data
base management software, the PICK Operating System provides a number of
additional "utilities" which enhance the overall operation of the system. ?iany
of these functions are normally found only on elaborate mainframe computers.
Although PICK Operating System is priced like a mini-/micro-computer, it is
commonly used in timesharing services supporting 16 to 32 telecommunications
ports per CPU. The security and system accounting features go a long way
towards making these difficult applications possible.

5.2 SYSTEM USAGE ACCOUNTING

One of the standard files that constitute the operating software is the
Accounting History file. This file is used by the operating system to
accumulate statistics on each individual's use of system resources. This file
is divided into two sections: one part for "active user items," defining users
who are presently active on the system; and one part for "accounting history
items," defining past history.

Active user items include the name of the user, the port logsed onto, and the
logon time. This data can also be used to send messages to a specific person
by "finding" the port to which she/he is logged.

Accounting History consists of items that include the account name of the user
as defined in the system dictionary, the channel or port number to which the
user was logged on for that session, the date and time logged on, the total
connect time, CPU time charge units in tenths of a CPU second, and the number
of pages routed to the lineprinter.

Since the Accounting History file is structured like any other file on the
system, the ACCESS Processor can be used to generate reports on system loading
by port number, average connect time per user, average number of sessions per
account, etc., as well as totals for customer billing or internal chargebacks.

5-1

88A00751A

5.3 INDIVIDUAL USER ACCOUNTS

Each user of the PICK Operating System can be assigned an "account." This
process consists of defining the user as an item in the system dictionary,
which will point to a master dictionary for that user. Initially, a prototype
master dictionary is copied to form the user's caster dictionary. The account
information for each user in the system dictionary consists of the logon name,
a logon password, and the file access codes for read and write privileges
(refer to Section 6, System Security).

5.4 MULTIPLE USER ACCOUNTS

File synonym definition items can be established in the system dictionary to
allow multiple users to have access to the same "account." In this case, the
concept of an "account." is a group of files and the "user" is an individual
with access to those files. This distinction can be used to allow multiple
users, like a group of people in the accounting department, to have controlled
access to one set of files.

The file synonym definition item for each of these users points to the same
master dictionary, but each user will have a separate password, system
privileges level, and update and retrieval codes. Thus, some users might be
able to access all of the files in the account and some might be restricted to
certain files or read-only privileges. Figure 5-1 shows an item in a system
dictionary that identifies an account called "accounting." Figures 5-2 and 5-3
show two synonym definitions that give users "JWB" and "RHA2" access to
"accounting" with separate passwords and privilege levels.

ACCOUNTING <--------------- The Accounting Files
001 D <---This is the file
002 05412 <-------------- Base of Master Dictionary definition item that
003 3 <------------------ Modulo establishes a master
004 1 <------------------ Separation dictionary to the
005 ARAPPRGL <----------- Retrieval Codes accounting files
006 ARAPPRGL <----------- Update Codes
007 LG <--- Password*
008 SYS2 <--------------- System Privileges Level
009 RL <----------------- User Type

*Passwords are in fact hash-coded to maintain security and are displayed here
only for clarity.

Figure 5-1

5-2

88A00751A

JlVB <--------------------- The Account of user "JWB"
001 Q <---This is the synonym
002 ACCOUNTING <--------- "Host" Account definition item that
003 (Not Used) establishes user JWB
004 (Not Used) as someone who can
005 ARAPPR <------------- Retrieval Codes access the accounting

·006 ARAPPR <------------- Update Codes files
007 JWB <---------------- Password*
008 SYSI <--------------- System Privileges Level
009 R <------------------ User Type

*Passwords are in fact hash-coded to maintain security and are displayed here
only for clarity.

RHA2
001
002
003
004
005
006
007
008
009

Figure 5-2

<-------------------- The Account of user "RHA2"
Q <---This is the synonym
ACCOUNTING <-------- "Host" Account definition item that
(Not Used)
(Not Used)
AR <----------------- Retrieval Codes
<--------------------- Update Codes (None)
RA <----------------- Password*
SYSl <--------------- System Privileges Level
RU <----------------- User Type

establishes user RHA2
as someone who can
access the accounting
files

*Passwords are in fact hash-coded to maintain security and are displayed here
only for clarity.

Figure 5-3

5-3

88A00751A

In Figure 5-2, user JWB has been defined as a user who can access the files in
"accounting." The original file definition item in the system dictionary that
sets up the "accounting" account has a set of retrieval codes and update codes
that control access to the various files in accounting (refer to Section 6,
System Security, for further information). User JWB has only one of these
codes in the retrieval and update attributes, so access to only files locked
with "ARAPGL" is possible for user JWB. JWB has a private password and a lower
system privileges level than the original account.

In practice, the main account definition (a "D" in attribute 1) will be set up
for the person responsible for all the activity in that account. This
definition will include all the retrieval and update ''keys'' for all the files
in that account and will have a high system privileges code. The user
population that requires access to this account will be defined by synonyms (an
"Alf in attribute 1) and will have low system privilege levels and a subset of
the update and retrieval "k.eys" for selective file access. Each user can have
a private password.

In Figure 5-3, user "RHA2" is defined in a similar manner to user "JWB. 1f

However, RBA2 can access only those files locked with "AR" and cannot upate any
files at all.

s. S LOGGING ON

Simply typing a valid account name initiates the logon process. Upon logon,
the user's logon name is placed in the active user section of the accounting
file. If the entry in the system dictionary that describes the user's logon
name contains a "u" in attribute 9, use of the system will be reported in the
accounting history file; if attribute 9 contains an "L," no accounting of
system use-will be kept. This would normally be the case for the system
operator and other "free" users. An "R" will force the logon PRoe to be
re-started should the user's program abort at any time during the session.
This feature can be used to keep a security-restricted user in one account
doing one task. "RU" and "RL" combinations are also valid to indicate charge
and non-charge status to "R" class users.

5-4

88A00751A

5.6 THE CHARGES AND CHARGE-TO COMMANDS

The CHARGES command simply displays the accumulated charges for any session.
The CHARGE-TO command allows a user to separate charges into different projects
by typing CHARGE-TO plus any meaningful label. The user does not have to
logoff and logon again; the CHARGE-TO command is executable anytime during a
logged in session at TCL level (refer to Section 7, Terminal Control Language,
for further details). The different projects are treated as ordinary line
items in the Accounting History file, but instead of using the logon name only,
the logon name plus an asterisk plus the project name is entered. Thus the
account for user XYZ might look like this:

ACC ••••••••••••••••• DATE.
XYZ
XYZ*PROJECT-I0
XYZ*BASIC-PROGRAHS

07/01
07/02
07/05

TIME •••
16: 15
16: 27
15:58

CONN •••
00:10
02: 15
01:49

UNITS •• PAGES
9 1

89 11
174 6

The CHARGES and CHARGE-TO commands, of course, have no relevance for "L" class
users described above.

5. 7 SYSTEM BACKUP TO MAGNETIC TAPE

The FILE-SAVE command causes disk files to be copied to magnetic tape. Options
include the ability to copy individual files or the entire data base. The
FILE-SAVE process will also generate a statistical report on the data base.
This file, called the StAT-FILE, contains one item for each file on the
system. The report is broken down by account with the following information
about each file: the total and average item size, the total and average number
of items per group, the utilization of file-space including actual stored data
and reserved but unused space. Each account includes the total number of
items, total bytes, total frames, and total file errors.

The FILE-SAVE command steps the user through a sequence of questions and
answers that make the backup process as Simple as possible. The STAT-FILE can
be directed to a line printer for hardcopy reference and the magnetic tape reel
can be given a unique label in the first record, normally the date of the
FILE-SAVE.

The ACCOUNT-SAVE is like the FILE-SAVE process except that it saves only one
user account rather than the entire system.

5-5

88A00751A

5.8 SYSTEM ERRORS AND MEMORY ERRORS lILE

A file called SYSTEM-ERRORS is reserved for the automatic logging of disk
errors.· The system operator can examine this file periodically to check on
the performance of the system.

5.9 OTHER SYSTEM COMMANDS

Many other commands and miscellaneous functions are available, some for general
use and some for system maintenance normally performed only by the system
operator. The following is a rundown of some of the more important ones.

5.9.1 LOGON

LOGON is initiated by typing a valid account name at a logged off terminal.
The system then asks for a user-id and password before allowing execution of
any commands.

5.9.2 OFF

OFF terminates the user's session by deleting the entry in the active user's
section of the accounting file and placing it in the Accounting History
section. The user 1s presented with a display on the terminal showing the
total connect time,.the number of charge units (tenths of a CPU second), and
the number of line printer pages generated during the session.

5.9.3 SYSTEM LOGON MESSAGE

A logon message 1s stored as an item called LOGON in the system error message
file (ERRMSG) and is displayed upon logon. This can be used to "broadcast"
messages like "Line Printer 3 Down for Cleaning, 2PM to 3PM Today" to everyone
using the system. Or, an attractive message like '~elcome to XYZ Corporation
Data Processing Department" could be displayed instead.

5-6

88A00751A

5.9.4 USER LOGON PROe

If the user's master dictionary contains a PROe of the same name as the user
account, that PRoe will be automatically invoked upon successful logon. This
PROe normally contains attributes which set terminal characteristics like
maximum line length, backspace echo routines, etc., but it can also specify
another PRoe or program to be run immediately after the terminal commands
are set.

An "R" in attibute 9 of the user account item in the system dictionary will
force the logon PRoe to be restarted should the user's program abort at anytime
during the session. This is very useful when a restricted employee is assigned
to do only one thing, like accounts payable. When the employee logs on, the
accounts payable program is automatically invoked without unnecessary, and
potentially confusing, steps.

5.9.5 WHO eOMMAND

WHO displays the port number the user is logged into. WHO followed by a number
displays the user-id of the user at that port number.

5.9.6 LISTU eOMMAND

LISTU displays the account name of all users presently logged on to the system,
their logon time, and channel number.

5.9.7 MSG eOMMAND

MSG allows a user to send a message to another user by user name or port
number. Users with privilege levels of 2 (refer to Section 6, System Security,
for more information) can "broadcast" a message to all users.

5.9.8 SLEEP COMMAND

SLEEP will put a terminal to sleep for a specified period of time or until a
given clock time. SLEEP can be used in a PRoe before other commands to delay
those other commands until a specified time. For instance, an AeCOUNT-SAVE
could be run at 11:30 PM each night by invoking a command at 5:00 PM.

5.9.9 LISTVERBS AND LISTPROCS COMMANDS

These commands examine a specific dictionary and list all verbs (non-PROe
commands) or all PRoes in that dictionary.

5-7/5-8

88A00751A

system security

6.1 INTRODUCTION

The PICK Operating System security includes four levels of password and code
protection that guard the computer system and data base from unauthorized
tampering. Each user is identified to the system by establishment of a user-id
in the system dictionary. This user-id is the item-id of an item in the system
dictionary and some of the attributes of the item point to the user's master
dictionary and some tell the system how accounting for that user is to be
handled. A number of attributes are reserved for special codes and these are
discussed below.

By establishing synonym definition items in the system dictionary, different
levels of security can be assigned to users logging on to the same account.

6.2 PASSWORD FOR LOGON

Before a user can log on to the system, a password is requested. This password
is stored in attribute 7 of the system dictionary as part of the user
identification and can be as long or as short as desired.

6.3 SYSTEM PRIVILEGES LEVEL

The PICK Operating System includes a three-level system privileges code. One
is assigned to each user and is stored in attribute 8 of the system dictionary
as part of the user identification. Level 0 cannot update a master dictionary
or use magnetic tape. Level 1 cannot use the debugger, the dump processor, the
assembler and loader, or run FILE-SAVE and FILE-RESTORE. Level 2, the highest
level, is unrestricted. However, some commands can still only be executed from
the system programmer's account, SYSPROG.

6-1

6

88A00751A

6.4 FILE UPDATE AND RETRIEVAL PROTECTION CODES

Attribute 5 in the system dictionary contains a special code called the
retrieval code and attribute 6 contains the update code. These are password
"keys" and each uSer can have one in either or both of the retrieval or updat@
attributes. There are corresponding codes in each file dictionary in
attributes 5 and 6 of the file definition or "D" item and synonym definition or
"Q" item (refer to Section 3, Dictionary System, for more information). When
a file is created, these "lock" codes can be entered into the file dictionary
and only those persons with matching "key" codes in their user-id item can gain
access to that file. Using these codes, some users can be given retrieval
access only, some users can have update access only, and of course some users
can do both. This protection is monitored by every processor that can access a
file. Retrieval processors will only check the retrieval codes for a match;
other processors that can both retrieve and update a file, like BASIC, will
check the update codes on a write operation.

Codes are examined from left to right for a match, so a hierarchical "mask" can
be constructed for very elaborate security schemes. The following gives an
example:

File Protection Code

AR
!RAP
GL

6.5 SUMMARY

Users Code

ARAPGL
GL
ARAPGL

Evaluation

ACCESS OK
ACCESS DENIED
ACCESS DENIED

Since access is controllable on the file level as well as the system level and
file access is monitored separately for both retrieval and update operations,
even the most complex security requirements can be easily satisfied by the PICK
Operating System. By individual assignment of passwords on a user-by-user
basis and a corresponding file-by-file basis, careful control of data base use
can be established in even the most dynamic data processing environment.
System security is further enhanced, in a more general way, by the use of a
three-level restriction on sensitive commands, the restriction of very
sensitive operations to the system programmer's account, and by the use of a
password to gain initial entry into the system. .

88A00751A

terminal control language 7
7.1 INTRODUCTION

Terminal Control Language or TCL is the "monitor" or "command processor" level
of the PICK Operating System. TCL is present at each terminal at system start­
up prior to logon, but no function except logon is valid. Once logged on, full
TCL is invoked and further interaction is initiated from it. When a process is
complete, the user is returned to TCL level. The command vocabulary of both
the PROC and ACCESS language processors (refer to Section 8, PRoe Language
Processor, and Section 4, Data Base Architecture and the ACCESS Process, for
more information) is invoked from TCL. Movement from program to program within
a PROC, or processing initiated by an ACCESS statement, is under full control
of the related interpretive process, but when the process is finished, the user
is once again returned to TCL.

7.2 THE TCL COMMAND VOCABULARY

The TCL prompt symbol is >. Once a user is at TCL level, any valid command may
be entered. The command vocabulary of TCL is made up of items in the user's
master dictionary and basically consists of four types of commands; those which
do not access files, those that do access files, ACCESS Processor commands
(which also access files), and PROC commands. None of these commands are
inherent in TCL. For instance, data base queries are the command of the ACCESS
Processor which happen to be executed at TCL level. PROCs are stored
procedures interpreted by the PRoe interpreter, which for the most part is
governing the execution of logic in other system programs.

Items in the user's master dictionary can include synonym items, which allow a
user to customize his command vocabulary at the TCL level. This flexible
feature can allow "jargon" commands to enhance a special application, or
mUltiple language commands to be run in different accounts on the same system.

7-1

88A007S1A

7.3 SOME COMMON TCL COMMANDS

ACCESS Processor commands which execute at TCL level are discussed in Section
4, Data Base Architecture and the ACCESS Process; PROCs are discussed in
Section 8, PROC Language Processor. Since TCL is more of a classic "command
processor" which passes control to other program modules. there are no commands
which are truly inherent to it, in fact all of the system commands and
processes covered in other sections can be initiated from TCL. Some commands
which are not strongly associated with another processor are discussed below.

7 .3.1 SE1.'TIRG TDKIlW. C1WW:TE1lISTICS

The TERM command establishes the terminal handling protocol for a particular
user. Criteria like line length, number of printed lines per page or screen,
number of blank lines, line feed/form feed delay, backspace control procedures,
cursor addressing procedures, etc. are set using this command. These criteria
are also prestored and executed automatically by the logon PROC, so they do not
have to be repeated every session.

7.3.2 SETTING TABS

The TABS command allows input tabs to be set for CRT terminals and input and
output tabs to be set for hardcopy terminals.

7.3.3 COpy

COpy will "copy" a file (or item) to a CRT terminal, printer, or another file.
This is a quick way to see the contents of a file without making an ACCESS
Processor inquiry.

7 .3.4 SENDING MESSAGES

MSG allows a user to send a message to another user by user name. Users with
privilege levels of 2 (refer to Section 6, System Security, for more
information) can "broadcast" messages to all users.

7.3.5 TAPE ATTACH

The T-AT! function "attaches" a magnetic tape unit to a user's terminal in
preparation for any following read and write commands. Since the tape drive is
an inherently single user device, attach will lock out other users until the
T-DET detach command is issued. For more information on the operation of the
tape drive, refer to Section 12, Magnetic Tape System.

7-2

88A00751A

PROC language processor 8
8.1 INTRODUCTION

The PROC or stored procedure language is an interpreter which allows the
storage and execution of a lengthy series of commands or operations. Once
established, these operations can be'invoked simply by typing the name of the
PROC. Some of the PICK Operating System commands, CREATE-ACCOUNT for instance,
are PROCs stored in the system PROC library.

8.2 THE STRUCTURE OF A PROC

A PROC is stored as an item in the user's master dictionary and is a file like
any other on the PICK Operating System. The item-id is the name, :lnd attribute
1 consists of the letters "PQ" which signal that the following attributes are
to be processed by the PROC interpreter. Following attributes are PROC
statements, one statement per line. Lines can optionally be nucbered to
facilitate branching within the PROC program. Once stored, the PROC becomes a
one-yord command which may be executed by typing the PROC name (item-id) at TCL
level (refer to Section 7, Terminal Control Language, for mor~ information
about TCL). This one-word command can be followed by arguments which are
passed to the PROC for processing.

8.3 PROC COMMAND LANGUAGE CAPABILITIES

PROC provides four variable length buffers, two input and two output. Commands
provide for the transfer of data from one buffer to the next and then for
passing the contents of one of the output buffers "outside" the PROC to another
program or another PROC. Once this program has finished processing, control
and/or data is passed back to the PROC. Other commands can test relational
conditions such as equality (-), no-equality (#), less than «), greater than
(», string length, and pattern matching conditions (for example, a number
followed by three letters), then conditionally pass control to other lines
within the PROC.

Functionally, any command or process available on the PICK Operating System at
TCL level is available to PROC. Many of the system programs, such as the line
printer spooler, the English-like ACCESS Processor, BASIC, and the text editor,
which normally require human interaction, have pre-established protocols for
interacting with PROC. For instance, if an error occurs during processing
under the control of a PROC, the error code is placed in the input buffer. The
PROC can be programmed to test the value of this error and act accordingly.

8-1

88A00751A

8.4 SCREEN FORMATTING WITH PROC

One of the most powerful features of the PROC language is screen handling.
PROC commands can position the cursor, output proapting messages, manage
terminal attributes like background/foreground, blinking, etc., all independent
of the terminal driver. Using these tools and the conditional testing
commands, elaborate input forms can be built which can verify operator input,
thus providing a convenient interface to the data base. Since PROe can invoke
the ACCESS Processor commands (refer to Section 4, Data Base Architecture and
the ACCESS Process, for further details), data base input inquiry, retrieval,
and report generation can all be customized using PROCs.

8.5 SUMMARY

The PROC language can be used to automate repetitive and extremely complex
sequences of interaction with the system, and is one of the most 'important
software tools available on the PICK Operating System computer. Although
deceptively Simple, it is a highly utilitarian language which is easy to use
and allows rapid development of customized, user-oriented, system commands.

88A00751A

BASIC language processor

9.1 INTRODUCTION

The PICK Operating System includes a BASIC language processor as a general
purpose programming tool. The PICK Operating System BASIC is an extended
version of standard Dartmouth BASIC, the very popular programming language.
Since most computer professionals are at least acquainted with BASIC, and oany
documents discuss the features of this versatile language, this section will
cover only those functions of the PICK Operating System BASIC that are
specifically unique, or are otherwise standard functions which strongly
interact with other PICK Operating System unique software or hardware.

9.2 RE-ENTRANT· CODE

9

The BASIC processor generates re-entrant codes which can be shared among a
number of users. In practice, this means that if a program is used by a number

- of users simultaneously, only one copy of the program must be in memory.

9.3 SOURCE FILES

Program source listings are items in a file. The typical user will have one
file for all programs and each item will contain one program. The item-id is
the name of the program and each line of the program is an attribute. This is
the standard convention used with the text editor discussed in that section.

The object code produced is written to disk and a special pointer is written to
the dictionary of the source file. This pointer contains the location of the
object code on disk. Figure 9-1 diagrams this structure.

As Figure 9-1 shows, each object code module is stored independently in a
contiguous segment of one or more frames on disk, while the source code is
stored as an item in one file. Both are tracked by one dictionary. The
compiler creates the pointer for each object module in the file dictionary
associated with the source. The item-id is, or course, the name of the
program. Attribute 1 of this special file definition item is "cc" for compiled
~. Attribute 2 is the frame-id of the base of the compiled code. Attribute
3 is the total length in frames of the compiled code. Attribute 4 is always
left null and attribute 5 is the time and date of the compile.

9-1

88A00751A

9.4 COMPILER FEATURES

The compiler includes a number of options to assist the programmer in the
development and debugging of BASIC programs. All options that produce listings
can be optionally directed to the line printer.

9.4.1 LIST OPTION

The LIST option generates a line-by-line list as the program is compiled,
including error message.

9.4.2 LIST ERROllS ONLY OPTION

The LIST ERRORS ONLY option prints a list of the error lines in the source, the
source line itself, and a description of the error.

OBJECT CODE "A"

OBJECT CODE "B"

OBJECT CODE "e"

Each object code
module is stored
on disk separately

I DICTIONARY

I I

Figure 9-1

9-2

I
I BASIC-PROGRAMS FILE

SOURCE CODE "An (ITEM)

SOURCE CODE "B" (ITEM)

SOURCE CODE "e" (ITEM)

One file contains
multiple source programs
as mUltiple items

88A00751A

9.4.3 ASSEMBLED CODE OPTION

The ASSEMBLED CODE option generates a listing of source statements and the one
or more BASIC op codes generated by the compiler for that statement. BASIC op
codes are a form of "pseudo assembler" generated by the compiler.

9.4.4 CROSS REFERENCE OPTION

A special file called BSYM must be defined in the user's master dictionary
before the BASIC compiler cross reference option can be used. This file is
used exclusively to store the cross references of labels and variables when a
program is compiled. Each item-id in this file is a variable or label name,
and the one or more attributes that follow contain the line numbers in which
that label or variable appears. The ACCESS Processor inquiry SORT BSYM BY
LINE-NUMBER LINE-NUMBER will generate a printout from this file. This file is
cleared before each compilation that specifies this option.

9.4.5 MAP OPTION

The MAP option generates a variable map and a statement map showing where
program data is stored in the user's workspace. The variable map lists, in
decimal, the offsets from the top of the program of each variable (each
variable is "tokenized" into 10 bytes). The very powerful statement map
feature lists which statements are located in the operating system buffer
frames. The virtual memory manager of the PICK Operating System, like any
virtual memory computer, brings only a few program frames into memory at a
time. This "paging" makes it possible to run very long programs in a small
amount of memory. One of the drawbacks of paging in a heavily loaded
multi-user system is a phenomenon called "thrashing," where a program loops
back and forth between two sections of code which, because of a high user load,
cannot be loaded into memory at the same time. As this looping continues, the
virtual memory manager has to "page in" and "page out" the executing code so
much that little real work gets done. AnalYSis of the statement map can be

. used to carefully group program statements, minimize thrashing, and optimize
any given program.

9-3

88A00751A

9.5 EXECUTING BASIC PROGRAMS

Once a BASIC program has been compiled, it can be run by uSing the RUN cocmand
followed by the name of the dictionary containing the file definition item
pOinting to the object codee

The CATALOG command will create a pointer to the object code in the master
dictionary of the user. When this is done, the user no longer needs to use the
run command; simply typing the name of the program is all that is required.
From the user's point of view, the program becomes a system command or "verb"
like any other.

9.6 FILE HANDLING IN BASIC

The PICK Operating System BASIC provides a number of unique features for file
handling that take advantage of the data base management functions in the PICK
Operating System file manager. The BASIC programmer using the PICK Operating
System has a set of already developed, application independent data management
tools that can significantly reduce development time.

Section 2, File Structure, discusses the operating system's management of disk
files. However, a brief review is appropriate at this point.

A PICK Operating System file contains one or more~. These items are
identified by an item-ide Items contain one or more attributes and an
attribute can contain one or more values. Finally, values can contain one or
more subvalues. Attributes, values, and subvalues are all delimited by special
characters: A for attributes,] for values, and ~ for subvalues.

An item is a string consisting of combinations of these elements and can be up
to 32K bytes in length. In PICK BASIC, this string can be loaded into a
dynamically dimensioned array.

9-4

88A00751A

9.6.1 DYNAMIC ARRAY (FILE) HANDLING FUNCTIONS

Once an item has been loaded into a dynamic array, the EXTRACT function can
return the contents of a specific attribute, value, or subvalue. The EXTRACT
command then specifies the dynamic array, the attribute number, the value
number, and the subvalue number to be extracted. For instance:

x • EXTRACT (ARRAY-NAME 5,2,1)

This will extract the first subvalue of the second value of the fifth attribute
in the specified array. The extracted value is then assigned to variable
"X".

The REPLACE function provides the corresponding capability to change the
contents of a value in the array. DELETE allows for deletion of a specific
attribute, value, or subvalue. INSERT allows the insertion of new attributes,
values, or subvalues.

The LOCATE function allows the programmer to specify a location search. The
array is searched and the location is returned in a variable. If the string is
not found, the value returned is the location the string should be in if a
specified sorted order is to be maintained. The program can then insert the
string at this location, knowing sorted order will be maintained with no
further effort.

The COUNT function will count the number of attributes within an item, the
number of values within an attribute, or the number of subvalues within a
value.

Using these functions, the full range of data base management ability inherent
in the PICK Operating System file management system is available to the BASIC
programmer. This not only simplifies the BASIC program itself, but ensures
compatibility with the PICK Operating System ACCESS Processor, allowing the
development of applications that use BASIC for customized data base management
supervision, and the English-like ACCESS language for all associated report
generations.

9-5

88A00751A

9. 7 OTHER FEATURES OF THE PICK OPERATING SYSTEM BASIC

The t1ATCH statement provides pattern matching facilities in BASIC similar to
those available in the PROC processor. These include testing for a number of
alpha or numeric characters and literal string comparison.

The CHAIN function will transfer control to another BASIC program or any valid
TCL command including a PROC. Variables can be passed to the chained program.

The PRINTER ON, PRINTER OFF, and PRINTER CLOSE statements cause output to be
directed to the spooler or the user's terminal. When the program is finished
executing, the spooled file will become eligible for printing; if spooling
prior to the end of the program is desired, the PRINTER CLOSE statement will
immediately spool the accumulated output.

Output masking functions, similar to the same functions in the ACCESS
Processor, include justification, flush left, flush right, specification of the
number of digits to the right of the decimal point, descaling, suppression of
leading zeros, insertion of commas, printing "CR" or the minus sign after
negative numbers, printing "DB" after positive numbers, appending dollar signs,
and filling a fixed length field with any character.

The READING and FOOTING functions, similar to the same functions in the ACCESS
Processor, help format pages when output is being prepared for the line
printer. A heading or footing can be stored with the related BASIC statement,
and the PAGE statement activates the printing of a heading/footing on each
page. PAGE can also accept a variable as an argument to set the page number
counter. Optional arguments for heading and footing statements will
automatically incorporate the time and date, assign page numbers, center text,
~nd insert blank lines.

The PROMPT statement assigns a prompt character to be printed at the CRT
whenever the program stops for input from the CRT. The READNEXT statement
reads a list of item-ids from a list supplied by an ACCESS Processor SELECT or
SSELECT. These items can then be brought into a dynamic array for processing.
READNEXT statements can continue until the list is exhausted.

BASIC can access the magnetic tape unit by the READT, WRITET, WEOF (write end­
of-file mark), and REWIND statements (refer to Section 12, Magnetic Tape
System, for more information).

9-6

88A00751A

9.8 MULTI-USER FILE LOCKS

If one or more BASIC programs are running concurrently and they access the same
file, multi-user lockout protection is necessary to prevent two programs from
writing to the same data without coordination. Even a simple inventory system
cannot allow two clerks to run the same inventory program at the same time
unless this protection is available. This problem is somewhat compounded in a
data base oriented system, since an attribute like "part-number" might exist in
one file, but be accessed by many program modules. Without file lockout
protection, the entire inventory system might be accessible to only one user at
a time. The PICK Operating System BASIC provides a sophisticated set of locks
to coordinate multiple user access of the same files.

File locking is implemented with modified versions of the READ and WRITE
statements. When one of these modified statements is executed, the group in
which the read takes place is "locked" to other programs until released by the
locking program. A "group" is an arbitrary subset of a whole file, the modulo*
separation.

For the most part, a "group" is a user transparent concept. It is, however,
the fundamental block of data the PICK Operating System reads and writes, so it
is a handy pOint in which to implement file security. Since a "group" is a
subset of an entire file, two users might still be able to access the file at
the same time; they just couldn't access items in the same group at the same
time.

If a program attempts to read data from, or write to, a group that is locked by
another program, the program will wait until the group becomes unlocked. Use
of conditional arguments with the modified READ and WRITE statements can be
used to gracefully branch to another part of the program to deal with the
situation. The RELEASE statement unlocks groups, and all locked groups locked
by a specific BASIC program are unlocked when that program ends. The PICK
Operating System can keep track of up to 62 locked groups at a time.

9-7

88A00751A

9.9 INPUT AND OUTPUT CONVERSIONS

Some of the input and output conversion specifications intrinsic to the PICK
Operating System English-like ACCESS language are also available in BASIC. The
conversion codes, stored in attributes 7 and 8 of an attribute definition item,
can also be used as arguments in the ICONV and OCONV functions. The conversions
applicable to use in BASIC are described below.

9.9.1 D CONVERSION/CORRELATION

D or DATE is used to convert the date from internal to external format. The
date is stored in the system as four bytes representing the number of days from
a fixed point in time.

9.9.2 Me CONVERSION/CORRELATION

MC or Mask Character is used to convert strings to upper or lower case or to
extract alphabetic or numeric characters from a string.

9.9.3 MT CONVERSION/CORRELATION

MT or Mask Time is used to convert the time of day from the internal format to
either 12- or 24-hour format.

9.9.4 MX CONVERSION/CORRELATION

MX or Mask Hexadecimal is used to convert ASCII character strings to their
hexadecimal (base sixteen) representations, and to convert hexadecimal to
ASCII.

9-8

88A00751A

9.9.5 P CONVERSION/CORRELATION

P or Pattern Match conversion is used to return only data which matches a
specified pattern. The argument can specify a specific number of numeric
characters, a specific number of alphabetical characters, or a specific number
of either. The argument can also specify a specific pattern as in the
following example:

P(3N-2N-4N)j(9N)

This requests a pattern match of three digits, two digits, four digits
separated by hyphens (a social security number). This example also illustrates
the use of the semicolon in separating multiple arguments. In this case, the
second argument of nine digits without hyphens is also acceptable, so both of
the following would satisfy as a match:

410-96-5664 and 410965664

9.9.6 T CONVERSION/CORRELATION

T or Text Extraction is used to extract a specified number of characters from
an attribute. The argument consists of the starting character position and the
number of contiguous characters to extract.

9.10 MATH FUNCTIONS

The PICK Operating System BASIC contains a number of intrinsic math functions
including: square root, random number, sine, cosine, tangent, natural
logarithm, exponential, and power.

9.11 SUMMARY

The BASIC processor complements the PICK Operating System with this popular
procedural programming language. Since the full-range of data base management
functions are available to the BASIC programmer as implemented in the ACCESS
Processor, the complimentary combination of capabilities these two processes
provide can be used to bring new applications on-line faster than would be the
case using conventional file structures and totally procedural languages.

9-9/9-10

10.1 INTRODUCTION

88.A00751A

system editor and 10
text page formatter

The Editor is an important, and frequently used, tool on the PICK Operating
System. Although an editor is sometimes thought of as a text-processing
program, one to be used for creating source listings and documentation manuals,
the role of the Editor is somewhat expanded with the PICK Operating System.
Using the Editor, any attibute of any item in any file may be examined and
altered. While day-to-day data base management will normally occur under the
supervision of BASIC programs for input and inquiry, and the English-like
ACCESS Processor for report generation, the Editor can be a useful tool for
"touching up" the data base, fixing errors, etc. Since the Editor can be
controlled by a PROC (refer to Section 8, PROC Language Processor, for more
information), simple file alteration routines can be very quickly programmed in
PROC.

Runoff, the page formatter, is used in conjunction with the Editor to prepare
documentation, manuals, "form letters," etc. for line printer output. One
important capability of Runoff is that it can read a second file and insert
data from that file into the main file being prepared for printing. This can
be used in conjunction with the ACCESS Processor to prepare a list of addresses
that meet certain criteria (like 60 days past due) and incorporate those
addresses, and other data if desired, into an otherwise static body of text.
It is not to be associated with the JET word processing subsystem.

10-1

88A007S1A

10.2 THE EDITOR

The Editor can be instructed to read an entire file item by item, or a subset
of a file using the SELECT and SSELECT ACCESS Processor commands, or the file
dictionary. The Editor edits items one at a time. Remember, an item is a
string of attributes, separated by attribute marks, starting with attribute 0,
the key, which identifies the following attributes. Since attribute 0, the
item-id, is used to define the actual location of the file on disk, it cannot
be altered by the Editor; thus, editing begins with attribute 1. The Editor
numbers each attribute, starting with 001, and each attribute is treated as a
separate line on the terminal screen. The attribute marks on disk, A , are
effectively converted to carriage returns for the purpose of visualizing with
the Editor.

In a relatively free-format text file, the significance of an "item" may be
flexible and, while editing a file, new items may be inserted anywhere, at any
time. An "item" could be a section or a whole manual.

10.2.1 BASIC EDITOR COMMAHDS

The Editor "points" to a current line at all times. Several commands control
the pointer including: Up, Next, Goto, Top, and Bottom. Some of these also
take arguments (i.e., U1 would back up five lines, G121 would go to line 121).
List displays the current line. Input allows the user to insert new text
between existing lines or, with a new item, to give it a name and start
inputting text from line 001 of that new item. The MErge command allows a
block of text to be easily moved within an item, or moved from another item or
another file into the item being edited. Locate followed by a string argument
can be used to search for a string. Restrictions include searching no more
than X lines forward and searching only between two listed columns. The column
limitation is useful when preparing a program source listing with a label
field/statement field structure since the search can be focused on the label
itself, or the statement in which it is referenced. The Again command repeats
the previous search command, searching for all occurrences of a given string.
The Replace command performs a search operation and replaces the search string
with a specified replace string. The DElete command will delete specified
lines or, in a manner similar to search, delete lines which contain a specified
string in them. The X command will reverse the effect of any previous command,
so if an error was made, the user can type X to restore things to their former
state. The Prestore command will store a sequence of Editor commands to be
invoked later with one keystroke.

10.2.2 SPECIAL EDITOR COMMANDS

For assembly language programming, the Editor has a special columnar function
to assist in formatting source code. Normal assembler programs include a
hexadecimal display of the object binary code generated by the assembler in the
first field. This can be suppressed, if desired. The columnar restrictions in
the locate command '. described above, are also useful when preparing program
lis tings.

10-2

88A00751A

10.3 FORMATTER

Runoff is a formatter used to process text files for output to a printer. The
Runoff command vocabulary is inserted into the text stream and, as Runoff
processes this source file, it reads commands sequentially and creates an
output version accord to the embedded instructions. Runoff commands appear on
a line by themselves, each command starting with a period. Thus, any line
which begins with a period is assumed to contain one or more commands. Runoff
can justify text, print in bold face, and control pagination, running headings
and footings, etc. When Runoff output is directed to a CRT terminal, commands
for boldface and underlining may be temporarily suppressed.

10.4 SOME BASIC RUNOFF COMMANDS

10.4.1 PAGE FORMAT

The PAPER LENGTH ~ command sets the number of lines to be printed on a page to
~. LEFT MARGIN ~ causes the margin to be moved to the right ~ spaces. LINE
LENGTH ~ sets the printing line length used in the FILL and JUSTIFY commands.
The length starts from the left margin. The SPACE, SPACING, and SKIP commands
can be used to control single or double spacing and to create blank lines in a
document as required. The FILL mode causes the source text to be formed into
lines which are as long as possible, given the chosen line length. The JUSTIFY
mode causes filled lines to be padded with randomly inserted spaces so they are
all exactly as long as the chosen line length. The CENTER command causes the
next line to be centered rather than filled or justified. The CAPITALIZE
SENTENCES mode forces the first letter following a ~, 1, or 1 to be
capitalized. This mode will also force a double wordspace after a ~, 1, ~, or
i unless that character appears at the end of a line. The BEGIN PAGE command
breaks the page at the present line. The TEST PAGE ~ breaks the page only if
there are less than n lines left. This conditional command can be used to hold
charts, tables, captIons, and related text together on the same page.
PARAGRAPH ~ is used to control the formatting of paragraphs. The argument ~
controls positive or negative indenting. Paragraphs can be identified by
leaving blank lines between them, or starting the first line with one or more
blank spaces. The INDENT ~ command causes the following text to be indented £
spaces from the margin. A negative number may be used for "hanging" indents.

10-3

88A00751A

10.4.2 DOCUMENT STYLE

The CHAPTER ~ command creates a beginning of chapter page taking the argument n
as the title. CHAPTER also assigns chapter numbers sequentially and accumulates
chapter starting pOint page numbers for the table-of-contents processor.
SECTION.!!. "text" is uSed to sequentially number paragraphs within a c.hapter.
The sectional sequence is determined by a number~. The text following the
section number, "text," is printed as a paragraph topic heading. Like the
CHAPTER command, each topic heading and paragraph number is passed on to the
print table-of-contents processor. The FOOTING ~ command has special
arguments, which appear in quotes, and can be inserted anywhere in!!!!. These
include X which will output the current page number, ~ which forces a blank
line, ! which prints out the current ite~id, Q which prints the date only, and
~ which causes a given line to be centered. The HEADING ~ command functions
exactly like FOOTING except the text is output at the top of every page.

10.4.3 INDEXING

INDEX ~ enters the item!!!! into the index under the page number the item
appears on. The index references are accumulated as pages are built by Runoff
and passed on to the printer index processor. PRINT contents prints a table of
contents based on the accumulated statistics from the chapter and section
commands after Runoff is finished producing the main body of the document.
PRINT ~ prints an index of topics and page numbers based on the accumulated
index references. The index is produced in two-column format.

10.4.4 GRAPHIC DEVICES

BOX man causes the following text to be surrounded by a box of the width nand
margin.!!. Text is "boxed" until a BOX command without the m,n arguments is
reached. The HILITE £ and HILITE OFF commands can be used to flag sections of
the text for review, to call attention to revisions, etc. The argument £ is
the character that will be printed at the extreme right margin for every line
until the HILITE OFF command.

10.4.5 MISCELLAREOUS COMMANDS

Most of the commands discussed above have related opposites which negate their
effect (i.e., NOJUSTIFY which turns off the effects of the JUSTIFY command).
Other commands direct output to the user's CRT or to a line printer, allow
boldface and underline printing, change tab settings, etc.

10-4

88A00751A

10.4.6 SPECIAL COMMANDS

A number of functions are available to access data in other files during
Runoff. These can be used to address form letters from a sorted address list
stored in another file, or to totally customize a series of letters that access
account balances, past due amounts, etc., as well as a basic name and address.

The INPUT command causes the Runoff process to stop for a line of text to be
input from the user's terminal before proceeding to process the rest of the
stored file. The CHAIN ~ file command at the end of a file causes Runoff to
begin reading a new file. This can be used to "gang" a group of files into one
printout, as in a chapter oriented document where each chapter is logically a
separate file. Since Runoff formats a file brought in by the CHAIN command
using the same parameters that have been accumulated from the previous file,
only the first file needs to have parameters like line length, margins, header
definitions, etc. CHAIN can also chain to the same file and form a loop. In
conjunction with the REAnNEXT command described below, this feature can be used
to reprint the "same" letter to different addresses on a pre-selected list.
The READ item-id command causes Runoff to use item-id as the source text until
the contents of the item-id are exhausted, at which point control is then
passed back to the "host" file. Optional arguments specify which file is to be
read unless the item-id is in the same file as the "host" text. The REAnNEXT
command is used in conjunction with the ACCESS Processor functions SELECT and
SSELECT which prepare a list of items as a subset of a file (refer to Section
4, Data Base Architecture and ACCESS Process, for more information on the
capabilities of SELECT and SSELECT). READNEXT reads attributes one at a time
from this preselected list. This command can be used to insert unique data
into an otherwise standard body of text. The CHAIN command, described earlier,
can force Runoff to "loop back" for another pass through the file, where the
READNEXT commands will indeed read the next attribute from the pre-selected
list. This process will continue until the list is exhausted and the Runoff
program ends.

10.5 SUMMARY

Both the Editor and Runoff provide powerful tools that enhance operations of
the PICK Operating System. Aside from the manipulation of data base files, the
Editor is used to input source statements for Assembler, BASIC, and PROC
programs. The Editor, in conjunction with the formatter Runoff, provides text
processing tools for the preparation of lengthy documents and, in conjunction
with the data retrieval facilities of the ACCESS Processor, can prepare "form
letters" which include information fields taken from other files.

10-5/10-6

88A00751A

print spooling system 11
11.1 PURPOSE OF PRINT SPOOLING

Unlike much of the computer system, the printer can only service one user at a
time, and since a printer is often used to print on a variety of different
forms which must be manually changed, there is often a conflict between the
computer's ability to generate large amounts of output and the bottleneck which
can accumulate at the line printer. The sophisticated line printer spooling
system provided with the PICK Operating System is designed to make the printing
function as efficient as possible and performs two basic functions to this
end. It allows data which is destined for the printer to be written to disk or
tape immediately as it is created, regardless of whether a printer is available
at the time, and it allows the printer or printers to be properly managed by
the personnel responsible for them.

11.2 LINE PRINTER SPOOLER

The PICK Operating System spooler software is an elaborate, flexible, yet easy­
to-use system for the generation, management, and printing of reports. The
spooler will accommodate up to 125 different queues, up to 16 serial printers,
and 600 individual files. The queue structure allows print requests that call
for special forms to be sent to different queues set up for those forms.
Personnel in charge of operating a high-speed printer may examine the various
queues, mount the necessary forms, and print all the files in those queues
before going on to the next form. Special queues can also be established for
high- or low-priority jobs, high- or low-speed printers, and local or remote
printers. An individual printer can be assigned to "work for" up to three
different queues and a print file can be moved from queue to queue at will.

An individual file can be "spooled" to an active queue and printed on a
next-in-line basis, to a hold file to be dealt with later, or directly to an
available printer or the magnetic tape drive. The first 500 bytes of a file
can be examined, alignment can be checked before beginning a long run, and
aborted runs can be restarted on any page. All commands which allow the
inspection of print files or the modification of their status are security
protected, and typically only function for files from the user's own account,
or for the system operator.

The number of pages spooled is recorded in the accounting history file for
each user.

11-1

88A00751A

11.3 SPOOLER COMMAND VOCABULARY

The following commands are the most important and frequently used of the
spooler commands.

11.3.1 DESTINATION COMMANDS

Files which are to be printed can be given several destinations. Each user is
"assigned" printer 0 when he logs on and this is the "default" condition. This
can be changed at any time. Files may be created on disk and flagged to be
printed as soon as a printer is available, held for operator intervention
before printing, or the file can be sent to tape instead of disk. A print file
can be automatically deleted upon completion of printing, or held for manual
deletion. Combinations of these can also be performed. For instance, a print
file can be sent to tape and disk. The disk version could be used to print,
when convenient, and the tape version placed in the archive.

For extremely large print runs, another procedure is useful. A file can be
immediately printed; as it is being created, a choke mode is used to stall the
creating process when it gets 20 disk frames ahead of the printer. This
prevents more than 20 frames of disk space to be used in the storage of large
print files, while allowing several pages of "buffer" for a restart in the
event the printer fails. .

11.3.2 FORMS CONTROL

The form number specification routes a print file to a printer which services
that form. Up to 125 forms or "queues" can be handled by the spooler and a
printer may service up to three of these queues. The align function allows the
operator to print a specified number of lines to test form alignment before
starting the run. A queue does not necessarily have to represent a form.
Certain queues might be reserved for rush jobs or low-priority overnight
service.

11.3.3 MULTIPLE COPIES

The copy count specification indicates how many copies are to be printed, up to
a maximum of 125.

11-2

88A00751A

11.3.4 EDITING PRINT FILES

Files in the spooler system, whether held for printing on a next-in-line basis,
held after printing, or just waiting for operator intervention, can be "edited"
using the edit options. They can be deleted, moved to another queue, written
to tape, the first 500 characters can be examined, the number of copies
altered, etc. Most of the commands will act on logical groups of files. For
instance, if the accounting department generated several reports, all
accounting reports could be dispatched to the printer with one command.

11.3.5 RESTARTING ABORTED RUNS

The STRING function allows the spooler to search through a file and find a
unique string of characters. By answering this prompt, a file aborted because
of a paper jam, broken ribbon, etc. can be restarted by searching for an
appropriate restart point. The spooler will put the beginning of file marker
at this location and begin printing. Form alignment will occur automatically
on the next page.

11.3.6 PHYSICAL PRINTER MANAGEMENT

Several commands are available for the use of personnel actually involved in
setting up printers, change forms, etc.

11.3.7 PRINTER STARTUP

The STARTPTR function is used to bring a printer "on-line" and tell the spooler
it is available for use. Start printer allows the operator to assign the
printer to the queue or queues that match the form which is mounted on the
printer. Certain other parameters, such as the number of pages to skip between
jobs, the type of printer, etc., are aSSigned at this point.

11.3.8 PRINTER HALT

The STOPPTR and SP-KILL functions are used to delete printers from the system.
STOP can be used for form changes, ribbon changes, or other maintenance. STOP
halts a printer at the end of the current job; KILL halts the printer
immediately in the event of jamming or other malfunction.

11.3.9 SPOOLER STATUS

The LISTPEQS function displays the files which are in the spooler, the accounts
they came from, status information (printed, holding, etc.), the length of each
file, the number of copies to be printed, the form on which they are to be
printed, the time and date they were spooled, etc. Specific inquiries can also
be made, such as what files are waiting for a particular form.

11-3/11-4

88A00751A

magnetic tape system 12
12.1 INTRODUCTION

The magnetic tape drive subsystem is a integral part of the PICK Operating
System computer. Magnetic tape is an ideal medium upon which to archive large
but seldom used files and to provide "back-up" of valuable data in the event of
a system malfunction.

Total security requires that a duplicate set of back-up files be maintained off
the main computer site as a precaution in the event of fire or other massive
destruction. Increasing pressure from government regulatory agencies mandates
preservation of records for years. In either case, the amount of data involved
in a back-up program is large, and the convenience and cost of the secondary
storage system becomes a valid concern. Magnetic tape is, byte-for-byte, the
most inexpensive storage medium available and operation of the tape system does
not interfere with other processes on the system.

Because the PICK Operating System is so often used for data-base intensive
applications, the probability of a very large amount of important and volatile
data being on-line makes a well designed, convenient magnetic tape system a
must. The PICK Operating System tape handling system is a well integrated part
of the total computing environment. Over 15 commands are available for control
of this system, including many utility functions like ASCII to EBCDIC
conversions. Only the most significant functions are discussed here.

12.2 ACCESSING THE TAPE SYSTEM

Since the tape system cannot be used by more tha~ one user at a time, two verbs
are provided to control the status of the tape drive.

12.2.1 T-ATT AND T-DET VERBS

The T-ATT, or tape attach, verb "attaches" the tape drive to the user's job and
shuts out all other users until the T-DET, or tape detach, verb is executed.
Should the tape drive already be attached to someone else's job, an error
message to that effect is issued.

Optional arguments for the attach verb give the record length (variable between
80 and 8000 characters) that will be used for the session.

12-1

88A00751A

12.2.2 TAPE HANDLING VERBS

1. T-FWD and T-BCK provide forward and backward movement one or more
records at a time.

2. T-REW rewinds the tape to the Beginning-of-Tape (BOT) mark.

3. T-SPACE n moves the tape past the tape label area and on the End-of-File
mark n times.

4. T-EOD (end of data) moves the tape forward to the EOF mark at the end of
the last file on the tape.

5. T-WEOF writes an EOF mark on the tape.

6. T-READ reads from the tape to either the terminal or line printer.

7. SP-TAPEOUT reads from the tape and passes the file into the line printer
spooling system for ultimate disposition.

12.2.3 T-DUMP, S-DUMP, AND T-LOAD VERBS

The T-DUMP, S-DUMP, and T-LOAD verbs are ACCESS Processor verbs which provide
an access method to the tape system with a close relationship to the data base
file structure. T-DUMP and T-LOAD copies files to and from the tape system,
s-dump provides a selection capability similar in form to the ACCESS Processor
"SELECT" command. For instance, if a mailing list were to be transferred to
tape, the selection process could read the entire file, but only transfer those
names with the zip code between two values.

12.2.4 TAPE LABELS

The tape system can label each reel of tape with an 80-character label. This
label normally includes the file name and a user-supplied heading plus the
record length, time and date, and the reel number. The T-RDLBL verb can be
used to read the label of a tape; however, most tape processes automatically
create and write, or read the tape labels when appropriate. For instance, when
reading from a multi-reel volume, the system prompts with a mount for the next
reel automatically.

12.3 SUMMARY

The PICK Operating System magnetic tape handling facilities are a well­
integrated part of the system, and provide for off-loading data, backup, and
transporting data from one computer to another.

12-2

88A00751A

COMPU-SHEET and ACCU-· PLOT 13
13.1 COMPU-SHEET

COMPU-SHEET is an electronic worksheet which allows you to use the computer to
perform complex business analysis and print out reports. Since COMPU-SHEET can
retrieve data from any file in your system and use it for display and
calculation, it provides the ability to solve problems which cay take hours to
accomplish by hand.

The many uses of COMPU-SHEET include cash flow and other financial projections,
budget analysis, job costing, estimating, advertising analysis, planning,
proposals, investment analysis, sales forecasting, modeling and trust funds.

In effect, COHPU-SHEET gives you a large blank sheet of "paper" where you can
define and solve your business problems. The sheet is divided into columns and
rows. You choose the number of columns and rows, the width of each column, and
specify how the data should be displayed. You may begin at any location,
define headings and start to enter your information. A location may contain
any type of data (alphabetic or numeric) and may also contain a formula to
operate on data in that location or on data in any number of other locations.

There is no limit to the number of columns or rows you may use.
will scroll up and down and from side to side to let you create
worksheet than can appear between the limits of one screen. If
your screen as a window which displays only a portion of a much
worksheet, it is easy to visualize how this window may be moved
uncover any portion of the worksheet. Later, you may print out
in its entirety.

13-1

Your screen
a much larger
you think of
larger
around to
your worksheet

88A00751A

13.2 ACCU-PLOT

ACCU-PLOT is a user-friendly graphics software package that operates under the
PICK operating system to produce quality graphics. You can create bar charts,
line charts~ scatter-graph diagrams and pie charts.

To use ACCU-PLOT, you construct a single ACCESS sentence which contains a
special ACCESS verb followed by the filename of the file that contains the data
to be graphed. The sentence may include selection-criteria, sort-criteria,
print-limiters, output specifications, headings and footings. Multiple value
attributes are acceptable and any number of attributes may be plotted.

ACCU-PLOT interfaces with the BASIC processor so that you may include graphic
representations in your BASIC programs.

ACCU-PLOT also interfaces with COMPU-SHEET to allow you to represent your
worksheets as line graphs, bar graphs, pie charts, etc. Also, if you have a
color terminal, you can display your graphics in color.

13-2

88A00751A

JET word processor 14
JET is the PICK operating system word processor. It provides a full range of
word processing operations including document creation, format definition,
editing, and printing.

JET is implemented through a CRT terminal whose keyboard contains the
conventional typewriter character set as well as special function keys. The
CRT video screen displays the text during creation and editing essentially as
it will appear when printed. (There is an option to suppress or display format
and print control commands.) JET distinguishes between two types of
documentation:

1. Continuous line text; such as, books, reports, letters.
2. Single line text; such as, computer programs and lists of various kinds.

Continuous line documentation is handled by the JET-IN operating mode, single
line text is produced by the JET-EDIT operating mode, while printing of both
types of documentation is accomplished through JET-OUT operation.

The full text operations carried out by JET-IN are broken down into three
further modes: RULER, INPUT and EDIT. Passage from one operating code to
another and to the various modes within an operating mode is accomplished by
HODE TRANSITION commands.

All JET-IN and JET-EDIT functions are made easily accessible by use of
screen-displayed menus which identify the terminal keys to be used for each
function within the particular mode.

Terminal keys perform a multitude of functions. Not only do they create text,
define formats and perform editing tasks, but they are also used for cursor
control, mode entry and edit, and for viewing the various mode menus that tell
which keys do all of the above.

JET-IN mode text creation follows the same procedures you would follow when
creating a document on a typewriter. The three steps involved are:

1. Defining the format and organization of the document.
2. Creating the document.
3. Editing and modifying the document.

The JET-IN RULER mode handles the format and organization of the document.

14-1

88A00751A

The RULER mode provides screen-displayed menus that include a ruler scale and
a ruler template so that you may easily define the format of your document.
Definition functions include: margin positions, tab settings, title and
heading locations, end-of-line hyphen and automatic word-wrap zones.

Once a text ruler is defined (the definition of the format for a document is
called a "text ruler"), it can be saved in a text ruler menu or embedded in the
text it has defined. Up to 9 text rulers may be saved for subsequent display,
review and possible modification in the RULER mode menu. An unlimited number
of text rulers may be embedded in a document's text. These may also be viewed
and modified if desired.

The JET-IN INPUT mode handles full text creation (continuous sentences and
paragraphs as opposed to line-by-line listings).

Most of this is accomplished by simply typing in the text on the terminal
keyboard. As the text is created, it will appear on the CRT screen. A CRT
position indicator called a "cursor" identifies where the next character that
is typed in will be located on the screen. After the character is input, the
cursor automatically advances to the next character position. Other text
creation features handled by JET-IN INPUT mode include page numbering, page
headings and footings, hilighting, boldface, and underlining.

JET-IN EDIT mode allows you to modify the text created in JET-IN INPUT mode.
Editing functions include character deletion, replacement and transposition,
word deletion and replacement, line deletion and insertion, sentence deletion,
upper and lowercase changing, searching and replacing, spelling checking, and a
text move feature called "cut and paste."

The JET-IN INPUT mode for single line text creation operates in the same
manner as JET-IN INPUT for full text documents. However, JET-EDIT INPUT does
not implement page numbering, headings and footings, hilighting, boldface,
margin justification, line spacing or underlining.

JET-EDIT EDIT mode lets you modify the text created under JET-EDIT INPUT
mode. Most of the editing features with the commands that were used by JET-IN
EDIT are also used by JET-EDIT EDIT.

JET-QUT provides for the printing of both JET-IN and JET-EDIT created texts.
In addition, the Utility functions from both INPUT modes allow JET-OUT to
automatically insert text from other sources into the text it is printing.
These Utility functions include: append other text, insert other text, insert
item name, insert attribute values, insert text during printing, and halt
printer output.

Exiting from one mode and entering another, called "Mode Transition," is
accomplished by pressing certain specified keys. The screen-displayed Mode
Menus include this information, so there is never a question of what to do
next.

14-2

