
ACCESS

reference manual
88AOO776A02

__ .,_,...,.... ,... •• r,.... ~,...r.,....,

RECORD OF REVISIONS

Title: ACCESS Reference Manual

Document No. 88A00776A02

I
1 Date 1 Revision Record . 1
1--------------+---1

Mar 84 Original Issue

Feb 85 Revision A02 - Change Package (85A00516A01)

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS,
OR USED FOR MANUFACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

ACCESS

reference manual
88AOO776A02

CopyrightC by General Automation, Inc,
1045 South East Street P.O. Box 4883

Anaheim, California 92803
(7141778-4800 18001854-6234

TWX 910-591.1695 TELEX 685.S13

RECORD OF REVISIONS

Title: ACCESS Reference Manual

Document No. 88A00776A02

I
I Date I Revision Record . I
I~------------~~---------~~~----~-~~----------~~-------------I

I
Mar 84 I Original Issue

I
Feb 85 I Revision A02 - Change Package (85A00516A01)

I
I
I
I
I
I
I
I
I
I
I

THIS DOCUMENT CONTAINS PROPRIEtARy INFORMATION WHICH SHALL NOT BE
REPRODUCED OR TRANSFERRED TO OTHER DOCUMENTS OR DISCLOSED TO OTHERS J

OR USED FOR MANDl ACTURING OR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN
PERMISSION OF GENERAL AUTOMATION, INC.

ii

88A00776A

FOREWORD

This document is one of a family of ZEBRA reference manuals devoted to PICK
processors that are on call within the PICK operating system. Before reading
this docucent and using the processor described. it is recommended that you
first become familiar with the PICK terminal control language and file
structure. These subjects are thoroughly covered in 88A00782A. listed below
with other documents covering PICK processors.

Document No.

88A00757A
88A00758A
88A00759A
88A00760A
88A00774A
88A00777A
R8A00778A
88A00779A
88A00780A
88A0078lA
88A00782A
88A00783A

Title

PICK Operator Guide
ACCU-PLOT Operator Guide
COMPU-SHEET Operator Guide
Quick Guide for the PICK Operating System
PICK Utilities Guide
PICK SPOOLER Reference Hanual
PICK BASIC Reference l1anual
PICK EDITOR Reference r1anual
PICK PROC Reference Manual
PICK RUNOFF Reference Manual
Introduction to PICKTCL and FILE STRUCTURE
PICK JET Word Processor Guide

TMACCU-PLOT is a trademark of ACCUSOFT Enterprises

TMCOMPU-SlmET is a trademark of Raymond-Wayne Corporation

TMpICK is a trademark of PICK Systems

TMZEBRA is a trademark of General Automation. Inc.

iii/iv

Section

1

88A00776A

TABLE OF CONTENTS

Title

INTRODUCTION • • • • • • • • • • • • • • • •
1.1 FORMING ACCESS INPUT SENTENCES ••••
1.2 RULES FOR GENERATING ACCESS SENTENCES. . .
1.3 AN OVERVIEW OF THE ACCESS VERBS ••••••• . . .
1.4 THE LIST VERB. • • • • • • • • • • • • • • •
1.5 THE SORT VERB. • • • • • • • • • • • • • • •

.
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

1.16
1.17
1.18

1.19

1.20

1.21
1.22

1.23
1.24

1.25

1.5.1 EXPLODING SORT ON MULTIVALUED FIELDS;
BY-EIP AND BY-EIP-DSND • • • • • • • • • • •

THE LIST-LABEL AND SORT-LABEL VERBS. • • •••
THE REFORMAT AND SREFORMAT VERBS •
THE COUNT VERB • • • • • • • • • • • • •
THE SUM AND STAT VERBS • • • • • • • • •
THE CHECK-SUM VERB • • • • • • • • • • • • •
THE SELECT, SSELECT, AND QSELECT VERBS • • • • • •
THE SAVE-LIST, GET-LIST AND DELETE-LIST VERBS.
THE COPY-LIST AND EDIT-LIST VERBS. • • • • • • • • •
THE ISTAT AND HASH-TEST VERBS. • • • • • • •••
THE T-DUMP, S-DUMP AND T-LOAD VERBS,
AND THE TAPE MODIFIER. • • • • • • • • •
THE LIST-ITEM AND SORT-ITEM VERBS. • • •••
OSING RELATIONAL OPERATORS AND LOGICAL CONNECTIVES •
FO RKING I TEM-LIS TS • • • • • • • • •
1.18.1 EXPLICIT ITEM-LISTS ••••••••••••••••
1.18.2 IMPLICIT ITEM-LISTS •••••••••
FORMING SELECTION-CRITERIA • • • • • • • • •
1.19.1 SELECTION-CRITERlA: STRING SEARCHING.
FORKING OUTPUT-SPECIFICATIONS. • • • • • • •

. . .

1.20.1 DEFAULT OUTPUT-SPECIFICATIONS •••••••••••
PRINT-LIMITERS • • • • • • • • • • • • • • • • • • •
MODIFIERS AND OPTIONS. • • • • • • • • • • •
1.22.1 ACCESS AND THE OPTIONS PROCESSOR.
GENERATING HEADINGS AND FOOTINGS •
GENERATING TOTALS AND GRAND-TOTALS • • • • •
1.24.1 THE SEQUENCE OF EVALUATION •••••••
CONTROL-BREAKS • • • • • • • • • • • • • • •
1.25.1 BREAK-oN MODIFIER •••••••••
1.25.2 GENERATING SUBTOTALS USING CONTROL-BREAKS •••
1.25.3 OUTPUT OPTIONS FOR CONTROL-BREAKS •••••

v

1-1
1-1
1-3
1-4
1-6
1-8

1-10
1-13
1-16
1-19
1-20
1-22
1-23
1-27
1-30
1-32

1-36
1-39
1-40
1-43
1-43
1-46
1-48
1-50
1-52
1-54
1-56
1-58
1-61
1-62
1-64
1-64
1-67
1-67
1-69
1-71

88A00776A

Section Title

2 DATA ENTRY • 2-1
2.1 ACCESS DICTIONARIES AND ATTRIBUTE-DEFINITION ITEMS. 2-1
2.2 ACCESS AND THE FILE STRUCTURE. • • • • • • • 2-4

2.2.1 THE USING CONNECTIVE. • • • • • • • 2-4
2.2.2 THE MASTER DICTIONARY DEFAULT. • • • 2-5
2.2.3 THE SEQuENCE OF RETRIEVAL OF ITEMS FROM FILES. 2-5
2.2.4 ITEM-ID DEFINITION WITH Q-POINTERS TO THE DATA FILE 2-6
2.2.5 ITEM-IO STRUCTURE. • • • • • • • • • • • • • 2-6

2.3 CONTROLLING AND DEPENDENT ATTRIBUTES • • • • • • • • 2-9

2.4

2.3. 1 MORE ON CONTROLLING (C) AND DEPENDENT (0)
ATTRIBUTES •

CONVERSION AND CORRELATIVE CODES • • • • •
2.4.1 GROUP EXTRACTION CODE (G) • ••••
2.4.2 OUTPUT CONSTRAINT CODES (L AND R).
2.4.3 OUTPUT CONSTRAINT CODES (P AND S) •••••••••
2.4.4 CONCATENATIONS CODE (C).
2.4.5 TEXT EXTRACTION CODE (T) • • •
2.4.6 DATE FORMAT CODE (D) •••••••

. . .
2.4.6.1 Time Formats ••••••••

2.4.7 FILE TRANSITION CODE (Tfi!e) •••
. . . .

2.4.8 ASCII AND USER CONVERSION CODES (MX AND U) • ..
2.4.9 MATHEMATICAL OR STRING FUNCTIONS CODE (F) •••••

2.4.9.1 Multivalued and Special Operands
(Code F) • •• • • • • • • • • • • •

2.4.9.2 The Load Previous Valu~ (LPV) Operator.
2.4.9.3 Summary of Code F Stack Operations •

2.4.10 MATHEMATICAL FUNCTION CORRELATIVE (A) ••

2.4.11

2.4.12

2.4.10.1 Operands • • • • • • • • • •
2.4.10.2 Functions •••••••••
2.4.10.3 Operators ••••••••••••••••
PROCESSING AND FORMATTING NUMBERS -
CODES (MR AND ML). • • • • • • • • • • •
MASK CHARACTER CODE (MC) • • • • • • •

vi

2-11
2-13
2-15
2-16
2-17
2-18
2-19
2-20
2-22
2-23
2-25
2-26

2-29
2-31
2-32
2-34
2-34
2-35
2-36

2-37
2-39

Section

3

88A00776A

Title

ADVANCED ACCESS •••••• • • • • . . . 3-1
3-1
3-1
3-1
3-2
3-3
3-3
3-5

3.1 USING THE SELECTION PROCESSOR. • • . . .
3.1.1 ITEK-ID SELECTION. • • • • • • • • • • • . .
3.1.2
3.1.3
3.1.4
3.1.5

3.1.1.1 Explicit Item-ids ••••••••••
ITEM-ID TESTS. • • • • • • • • • • • • • • • •
THE USE OF DELIMITERS IN THE ACCESS SENTENCE • • •
ITEM-ID SELECTION CRITERIA • • • • • • • • • • • •
SELECTION BY DATA VALUE ••••••••••••
3.1.5.1 Evaluation of Data by the Selection

. .
Processor. • • • • • • • • • • •• 3-5

3.1.5.2 Obtaining a Value to Test. • • • •• 3-6
3.1.5.3 The Test for Existence. • • • • • • 3-6

3.1.6 THE VALUE STRING. • • • • • • • • • • • • • • • • 3-8
3.1.6.1 The Relational Connectives • • • • • 3-8

3.1.7 THE SPECIFIED VALUE AND ATTRIBUTE 7. • •• 3-9
3.1.7.1 Allowable Conversions - Date. • • • • • 3-9
3.1.7.2 Allowable Conversions - Time. • •• 3-9
3.1.7.3 The Mask Conversions. • • • • • • • • • 3-10
3.1.7.4 Other Masking Functions. • • 3-10
3.1.7.5 Translate Conversions. • • • • • • • 3-10

3.1.8 SUMMARY OF CONVERSIONS FOR SELECTION. • • • • • • 3-12
3.1.8.1 Forming Conditional Values. • • • • •• 3-13

3.1.8.1.1 The Special Characters and the

3.1.9

Relational Connectives • • • 3-14
3.1.8.1.2 Justification and Evaluation 3-15

3.1.8.2 Value Strings Containing Many
Value Phrases. • • • • • • • • • • • •• 3-16
3.1.8.2.1 The AND Connective Within a

Value String • • • • • • • •
3.1.8.3 The Evaluation of One Selection Item ••
THE RELATIONSHIP OF SELECTION CRITERIA WITHIN
A SENTENCE • • • • • • • • • • • • • • • . . .
3.1.9.1 Selection-Criteria AND Clauses.
3.1.9.2 Data Selection-Criteria. • ••
3.1.9.3 Item Selection-Criteria •••••••••

LIST OF APPENDIXES

3-17
3-18

3-18
3-19
3-19
3-19

Appendix Title

A ASCII CODES. A-1

I INDEX. • • • • 1-1

vii/viii

88A00776A

introduction 1
1.1 FORMING ACCESS INPUT SENTENCES

ACCESS is the data base portion of PICK. Access allows the user to make
various types of listings and queries quickly and easily by using simple
English words. It may also be used to select items from a file for use by
other processors. The first part of the ACCESS manual (Section 1) describes
the retrieval of data from the ACCESS·processor. Entry of data into the ACCESS
processor may be accomplished most efficiently by a BASIC program. Necessary
information for a data entry program is included in Section 2. The final
portion of ACCESS (Section 3) gives an extended technical description of the
ACCESS selection processor.

ACCESS is directed by English sentences. The user types in various command
sentences at the terminal to perform particular tasks. Like normal English,
each ACCESS sentence contains a verb.

The ACCESS input sentence has the following general form:

~ {DICT} file-name {item-list} {selection-criteria}
{sort-keys} {output-specifications {print-limiters}}
{modifiers} {(options)}

A verb and a file-name are required; all other elements are optional. Thus,
the minimum ACCESS sentence consists of a verb followed by a file-name. The
verb specifies generally what type of processing will be performed on the file.
For example,

>LIST INVENTORY [CR]

Facilities are provided for selecting, listing, or sorting items and for
generation of certain file usage statistics. The file-name must be of one of
the following standard forms:

Form of File-Name

file-name
dict-name,data-name
OICT file-name

Example

BP
PROJ,GREEN-ACRES
nICT MID

1-1

88A00776A

Note that file names may not start with a left parenthesis (n(n) and may not
contain commas (,).

The optional item-list specifies those items eligible for consideration (the
absence of an item-list implies all items). An item-list consists of
specifically enumerated item-ids, each enclosed within quotes (, or n) or
backslashes (\).

Selection criteria, if present, further limit the items for output to those
meeting the specified conditions. Many different specifications may be
combined logically in order to select only those items meeting a certain set of
criteria.

Any attribute name or the item-id may be specified as either an ascending or a
descending sort key. Multiple sort keys may be specified.

Output specifications indicate which attribute-defining items in the dictionary
of the file are to be used to format the listing. The user indicates exactly
which values (fields) in the items (records) he wishes to see.

Print limiters suppress the listing of data not meeting certain specifications
when an attribute has many values but only those values meeting a set of
criteria are to be printed.

Various modifiers and/or options specify how output is listed. This includes
spacing, how to handle totals, control breaks, suppression of item-ids,
headings, or default messages.

A standard set of verbs, modifiers, and relational operators are supplied to
each user. These special words are defined as items in the user's Master
Dictionary (MD). Modifiers and relational operators (but not verbs) are
reserved words. A user may define any number of synonyms for these words (and
even remove the system defined entries), thereby creating his own semantics for
the language. Thus, the user can rewrite the ACCESS language as long as the
new language he creates follows the rules defined in the following section.

1-2

88A00776A

1.2 RULES POR GEHElATIHG ACCESS SENTENCES

The follow general rules apply to the use of ACCESS input sentences:

1. ACCESS input sentences are entered at the TCL level (when the system
prompts with the sign ")") or a PROC may be written to perform ACCESS
functions.

2. The first word of any ACCESS input sentence must be an ACCESS verb
defined in the user'. MD.

3. A sentence is terminated by a carriage return. A sentence may be
continued to multiple lines by use of the line continuation character
(control-underline), followed by a carriage return.. Additional lines will
be prompted for with a colon (:) prompt.

4. The data in only one file may be directly referenced by an ACCESS sentence.
Therefore, only one file-name may be used to specify the data source in an
ACCESS sentence. File-names may consist of any sequence of nonblank
characters and must be unique within the MD. The modifier "DICT" may be
included in the sentence (just preceding the file-name) to specify opera­
tion on the dictionary section of the file, as opposed to the data section.

5. Any number of attribute names may be used in a sentence. Attribute names
may consist of any sequence of nonblank characters. They must be contained
in the dictionary of the file being listed, or in the file specified by the
USING modifier, or in the user's MD. If the OICT modifier is used with the
data-file name, then the attribute names must be in the HD or in the
specified file if the USING connective is employed.

6. Any number of modifiers and relational operators, which have been
predefined in the MD, may be used_

7. Verbs, file-names, attribute names, modifiers, and relational operators
are delimited (separated) in an ACCESS sentence by blanks.

8. Specific items to be listed are described by their item-ids, which are
enclosed. in' quotes or backslashes (e-g-, "SC-128", "'0123', \MD\) and must
appear immediately following the file-name. Elements enclosed in single
quotes (') will be considered to be item references anywhere in the
sentence.

9. Specified values are enclosed in double quotes or backslashes (e.g.,
"12.50", \DISCOUNT\) and apply to the previous attribute name.

*The character used to generate the continuation character may vary on some
terminals. Rowever, whatever character corresponds to the ASCII US code will
perform this function.

1-3

88A00776A

1.3 AN OVERVIEW OF THE ACCESS VERBS

Each ACCESS sentence must begin with one ACCESS verb. These action-oriented
English words will invoke specific ACCESS processors with the verbs specifying
what is to be done to the data in the file. The common ACCESS verbs are
briefly discussed below.

LIST and SORT; LIST-LABEL and SORT-LABEL - The LIST and SORT verbs are used to
generate formatted output. LIST takes items from the file in the same order as
they are stored, group for group. SORT will sort the items by item-id, or by
any number of other specified sort keys. Generated output is formatted into a
columnar output if possible, taking into account the maximum defined size of
the specified attibutes and their associated names, along with the page width
as defined by the TCL verb TERM. If more attributes have been specified than
will fit across the page, a noncolumnar output is generated with the attribute
names down the left side and the associated attribute values to the right.
LIST-LABEL and SORT-LABEL are analogous to LIST and SORT, but allow more than
ODe item to appear on one line of output.

REFORMAT and SREFORMAT - These verbs perform the same functions as the LIST and
SORT verbs, respectively, except that the output is directed to another file or
to tape or cartridge disk instead of to the terminal or printer. These verbs
may be used to update items in a file, change the arrangement of attributes in
a file, or to write tape or cartridge disk records.

COUNT - The COUNT verb counts the number of items meeting the conditions as
specified by the combination of item-list and selection-criteria. The output
generated by this verb is simply the number of items counted.

SUM and STAT - The SUM and STAT verbs provide a facility for summing (totaling)
one specified attribute name. The STAT verb additionally provides a count and
average for the specified attribute name. The output generated by these verbs
are the derived statistics.

SELECT, SSELECT and QSELECT - The SELECT verb provides a facility to select a
set of item-ids or values using the item-list and the selection-criteria.
SELECT generates a list of item-ids or values; SSELECT generates a sorted
list. QSELECT creates a list from attribute(s) within item(s) in a file. The
list is then available to other ACCESS or TCL-II processors. The very next
ACCESS or TCL-II verb executed will have access to this list, so the set of
item-ids or values processed by the next verb will be those selected by the
SELECT, SSELECT or QSELECT verb.

SAVE-LIST, GET-LIST, and DELETE-LIST - The SAVE-LIST, GET-LIST, and DELETE-LIST
verbs are used to save, restore, and delete lists created by SELECT and SSELECT
statements. SAVE-LIST will save a list of item-ids or values generated by a
SELECT or SSELECT verb by "cataloging" the list in the POINTER-FILE. The GET­
LIST verb retrieves a list from the POINTER-FILE, at which time the retrieved
list is handled exactly like a list generated by a SELECT or SSELECT verb.
DELETE-LIST will remove a cataloged list from the POINTER-FILE.

1-4

88A00776A

COPY-LIST and EDIT-LIST - These verbs are used to copy and edit saved
select-lists. COPY-LIST will copy a saved select-list to the terminal, to
another select-list, or to a file as a new item. EDIT list will let you edit a
saved select-list.

T-DUMP, S-DUHP, and T-LOAD - The T-DUMP verb allows the user to selectively
dump his dictionaries and data files to the tape or cartridge disk. The S-DUMP
verb performs the same as the T-DUMP verb, but sorts the data before dumping.
The T-LOAD verb allows the selective reloading of data or dictionary items that
have been previously dumped to tape or disk cartridge using T-DUMP or S-DUMP.
Data on T-DUMPed or S-DUMPed media may also be listed by using the LIST,
LIST-ITEM, or LIST-LABEL verbs with the TAPE modifier.

LIST-ITEM and SORT-ITEM - The LIST-ITEM and SORT-ITEM verbs facilitate the
dumping of the contents of selected items to the user's terminal or to the line.
printer. The items will be dumped in EDITOR format, with line numbers to the
left. This kind of dump differs from a COpy dump in that SORT-ITEM and
LIST-ITEM are ACCESS verbs, whereas COPY is a TCL-II verb. This means that
SORT-ITEM and LIST-ITEM sentences may contain selection criteria, headings, and
footings, none of which are available to the COpy processor.

ISTAT and RASH-TEST - HASH-TEST and ISTAT provide useful file management
information. These verbs give a file hashing histogram and file utilization
statistics; the ISTAT verb provides information for an existing file and the
HASH-TEST verb uses a test modulo to provide information about a file typically
prior to the reallocation of the extents of the file.

CHECK-SUM - This verb generates a checksum for items in a file so that you can
dete~ne whether data in a file has been changed.

Examples of the use of ACCESS verbs:

)LIST ACCOUNT NAME CURR-BALNC WITH CURR-BALNC [CR1

)SORT ACCOUNT)"10000" WITH CURR-BALNC [CR]

)LIST-LABEL ACCOUNT NAME ADDRESS (N) [CR1

)SORT-LABEL ACCOUNT NAME ADDRESS BY BILL-RATE LPTR [CR]

)SUM FILE4 QUAN [CR]

)SELECT DICT MD WITH DlcODE "0" [CR]

)SELECT ACCOUNT WITH BILL-RATE • "10.03" [CR]

)ISTAT ACCOUNT (P) [CR1

)SORT-ITEM BP # ".]" AND # "$1" (PF) [CR1

1-5

88A00776A

1.4 THE LIST VERB

LIST is used to generate a formatted output of selected items and attributes
from a specified file. An ACCESS sentence using the LIST verb has the
following general form:

LIST {DICT} file-name {item-list} {selection-criteria}
{output-specifications {print-limiters}}
{modifiers} {(options)}

The optional DICT modifier specifies that the dictionary section of the file,
as opposed to the data section, is to be listed. The file-name is the name of
the file, and must be present in the user~ ter dictionary (Me). The
optional item-list enumerates specific items to be listed. The optional
selection-criteria will limit the items to be listed to those meeting some
user-defined set of specifications. A detailed discussion of the selection
processor is given in Section 1.18. The output-specifications, if present,
indicate to the LIST processor just which attributes (fields) of the selected
items (records) are to be listed.

The selected items will be listed on the user~s terminal, unless the LPTR
modifier or ~p~ option was used. If an item-list is used, items will be listed
in the same order as the item-ids appear in the item-list. If no item-list is
specified, all items in the file will be listed, and they will appear in order
of the group they hash into, and within groups by order of when they were added
to the file.

The LIST verb will provide information on any or all items in a file. It can
be particularly useful if the user only wishes to see information on a small
number 0 f items.

Consider the following example:

)LIST ACCOUNT "35000""35050" NAME ADDRESS [Cal

This LIST sentence specifies that the attributes (fields) named NAME and
ADDRESS in the items (records) having item-ids (keys) "35000" and "35050" in
the file ACCOUNT are to be listed.

To query the file for items meeting a set of specifications, selection criteria
are used. For example:

)LIST ACCOL~rr WITH NAME "J J JOHNSON" [CR]

The LIST sentence specifies that all items whose NAME is "J J JOHNSON" in the
file named ACCOUNT are to be displayed, along with their item-ids. Thus, the
entire file will be queried to discover which items meet these user-defined
specifications.

1-6

88A00776A

Further examples of the LIST verb:

)LIST ACCOUNT WITH BILL-RATE "30" NAME ADDRESS BILL-RATE [CR]

PAGE 1 11:08:37 13 SEP 1982

ACCOUNT ••• NAl1E ••••••••••••• ADDRESS ••••••••••••• BILL-RATE

11115 o R MASTERS 100 AVOCADO 30
11085 A B SEGUR 101 BAY STREET 30
11040 B G MCCARTHY 113 BEGONIA 30
11050 J R MARSHECK 125 BEGONIA 30
11020 J T O'BRIEN 124 ANCHOK PL 30
11095 J B STEINER 124 AVOCADO 30
11110 o L WEISBROD 106 AVOCADO 30
11015 L K HARMAN 118 ANCHOR PL 30
11105 C G GREEN 112 AVOCADO 30
11090 J W JENKINS 130 AVOCADO 30
23030 L J DEVOS 201 CARNATION 30

11 ITEMS LISTED.

)LIST ACCOUNT) "23080" AND <- "23095" NAME ADDRESS [cs 1_ [CRl
:START-DATE CURR-BALNC DEPOSIT [CRl

PAGE 1

ACCOUNT
NAME
ADDRESS
START-OATE
CURR-BALNC
DEPOSIT

ACCOUNT :
NAl1E
ADDRESS
START-DATE
CURR-BALNC
DEPOSIT

ACCOUNT
NAME
ADDRESS
START-DATE
CURR-BALNC
DEPOSIT

23095
W E ZUMSTEIN
224 BEGONIA
02 JAN 1980
$23.50
11.00

23081
J W YOUNG
207 COVE STREET
27 MAR 1975
$89.32
10.00

23090
W J HIRSCHFIELD
230 BEGONIA
01 JAN 1968
$20.45
10.00

3 ITEMS LISTED.

11:19:58 13 JUL 1982

1-7

88A00776A

1.5 THE SORT VERB

SORT is used to generate a sorted and formatted output of selected items and
attributes from a specified file. The general form of the SORT verb is:

SORT {DICT} file-name {item-list} {selection-criteria}
{sort-keys} {output-specifications {print-limiters}}
{modifiers} {(options)}

The output produced by a SORT operation is identical to the output produced by
a LIST operation except that the SORT orders the output in a user-specified
order. Sort-keys are specified by the following modifiers:

ay attribute-name
BY-DSND attribute-name
BY-EXP attribute-name
BY-EXP-DSND attribute-name

The attribute name immediately following one of these modifiers in the SORT
sentence will be used as a sort-key. The "-DSND" suffix to a modifier
specifies descending order; the default is ascending order. The "-EXP·· suffix
specifies that the attribute specified by the attribute name has multiple
values, so that multiple sort-keys may be generated for each item.

If no sort-keys are specified, the item-ids will be used as sort-keys, and
sorting will be in ascending order. A descending sort on ite~ids may be
produced by sorting on an attribute name that is synonymous with the ite~id
(has a a in attribute 2). Multiple sort-keys may be intermixed at will, with
the leftmost sort-key being the most significant. That is, the items will
first be sorted by the sort-key which appears first in the ACCESS sentence,
then by the next sort-key on the right, and so on.

If the sort-key attribute(s) is left-justified, (has an L in attribute 9),
sequencing of a SORT operation is accomplished by comparing the ASCII character
representations of the sort-key attribute(s) specified from left to right.

If the sort-key attribute name is right-justified, (has an R in attribute 9),
then a numeric comparison is performed; if the data is alphanumeric, numeric
portions of the keys are compared numerically, and non-numeric portions are
compared left to right. (Note the difference in this comparison technique from
that used in selection-criteria.) Consider the following example:

>SORT INV BY QUAN BY PRICE [CR]

This sentence specifies that all items in the file named INV are to be sorted,
first by the attribute named QUAN and within that by the attribute named PRICE.

1-8

88A00776A

Additional examples are shown below:

>SORT ACCOUNT GE "23000" AND LE "23020" NAME START-DATE [CR1

PAGE 1

ACCOUNT •••

23000
23005
23010
23015
23020

NAl£ ••••••••••••••.

H T LEE
VI B THOMPSON
W E MCCOY
R M COOPER
S L UNDERLEIDER

5 ITEMS LISTED.

START-DATE.

01 JAN 1978
29 DEC 1979
01 JAN 1978
01 JAN 1978
23 APR 1982

14:11:02 22 NOV 1982

>SORT ACCOUNT WITH CURR-BALNC > "95000" NAME CURR-BALNC [cs]_ [CR1
:BY-DSND CURR-BALNC HDR-SUPP [CR1

ACCOUNT •••

11055
35080
11020
23040
23045

N.Al-fE •••••••••••••••

VI H KOONS
G A BUCKLES
J T O'BRIEN
P B SCIPMA
P F KUGEL

CURR-BALNC.

$ 958,343. 75
$447 ,765.48
$306,755.54
$123,423.22
$ 99,422.34

>SORT ACCOUNT> "25070'· NAME DEPOSIT BILL-RATE [cs]_ [CR]
:BY DEPOSIT BY-DSND BILL-RATE [CR]

PAGE 1 14:15:47 25 OCT 1982

ACCOUNT. •• N~ ••••••••••••••

35090
35100
35110
35080
35095
35105
35075
35085

D U WILDE
R W FORSTROlol
H E DAPLOWITZ
G A BUCKLES
A W FEVERSTEIN
S J FRYCKI
J L CUNNINGHAM
J F SITAR

8 ITEMS LISTED.

DEPOSIT BILL-RATE

3.17
8.00

10.00
10.00
10.00
10.00
10.00
12.00

10.03
10.03
10.03

.35

.35

.35

.30

.02

In generating the values used in sort-key comparison,correlatives in the
attribute definition are processed, but conversion specifications are not.
Note that conversion codes (MR, ML, and D) do not affect the sort results and
should not be used as correlatives in the attribute names which make up
sort-keys in order to save processing time.

1-9

88A007}6A

1.5.1 EXPLODING SOEr ON MULTIVALUED FIELDS; BY-EXP AND BY-EXP-DSND

The Exploding Sort on multivalues allows system processors to access individual
values in a multivalued item and to sort that item according to any specified
value or values.

This capability "explodes" the item into effectively multiple items, with the
explosion being controlled by the multi valued attribute(s) in the data.

The exploding sort modifiers may be used in SORT or SSELECT sentences. If
SSELECT is used with the exploding modifiers, the select-list that is generated
will have not only the item-id. but the value-number of the value within its
multi valued set stored in the string. This value-number is accessible to BASIC
programs via the REAnNEXT var, vtDC form of the BASIC READNEXT statement.

Explosion is specified by using the BY-EXP modifier instead of the BY modifier
(or the BY-EXP-DSND instead of the BY-DSrID). The attribute that follows the
BY-EXP may be multivalued; there will be as many pseudo-items created as there
are values in the attribute. If multiple BY-EXPs are specified, the attribute
with the maximum number of multiple values will be used to create the items;
the fields where there is no data for a value will be treated as null.

The general form of the BY-EXP is:

BY-EXP attribute-name {"explosion-limiter"}

where the explosion-limiter is of the same form as the print-limiter (see
Section 1.20, PRINT LIMITERS), and serves to limit the explosion to only those
multivalues that pass the limiting condition.

A Single-valued attribute that is specified with an exploding sort modifier
will have its single value repeated in each occurrence of the item.

Sorts may be performed in ascending order using the "BY-EXP" modifier or in
descending order, using the "BY-EXP-DSND" modifier. The following example
demonstrates how an Exploding Sort may be used to sort items according to one
value.

A publisher's mailing-list file is comprised of items which contain the names,
addresses, special type code and subscription dates of its customers. The
item-id of each item is a last name concatenated with a first initial, and the
item contains the information for customers whose last name and first initial
are the same as the item-ide

1-10

88A00776A

The attributes in the item are ordered as follows:

Attr. 1 First Name and Middle Initial
Attr. 2 First Line of Addres's
Attr. 3 Second Line of Address
Attr. 4 Zipcode
Attr. 5 Special Type Code
Attr. 6 Subscription Date

Each attribute contains a number of values; one value per customer. For the
sake of demonstration, we will assume the file 'MASTER' contains only the
following two items:

Item-Id: SMITH*J
Attr. 1 JOHN T]JIM W]JANET]JOSEPH K
Attr. 2 755 PARK]BOX 301] 77 SUNSET]405 NASTER
Attr. 3 N.Y. NY] PLAINS GA1MIAMI FLl IRVINE CA
Attr. 4 10022]31780]33147]92714
Attr. 4 4D]7D]9E13E
Attr. 6 6/66]8/72]4/76]11/82

Item-Id JONES*!
Attr. 1 TOM F1TERRY]TEDDY]TIM
Attr. 2 1 APPLE]56 FIRST]45 HOLLY] 112 ELM
Attr. 3 AKRON OH]MODESTO CA]TAMPA FL]JACKSON KS
Attr. 4 44306]95351]33624]39211
Attr. 5 6D]2D]7D]5D
Attr. 6 4/75]3/76]11/81]4/73

A listing of the mailing list sorted by zip code can be obtained with the
following ACCESS statement:

SORT MASTER ID-SUPP BY-EXP ZIP FNAME LNAME ADR1 ADR2 ZIP TCODE DATE

The listing is sorted in the order of the zip codes of each value as shown
below:

FIRST NAME LAST NAME ADDRESS STATE ZIP CODE DATE

JOHN T SMITH 755 PARK N.Y. NY 10022 4D 6/66
JIM W SMITH BOX 310Y PLAINS GA 31780 7D 8/72
JANET SMITH 77 SUNSET MIAMI FL 33147 9E 4/76
TEDDY R JONES 45 HOLLY TAMPA FL 33624 7D 11/81
TIM JONES 112 ELM JACKSON MS 39211 5D 4/73
TOM F JONES 1 APPLE AKRON OH 44306 6D 4/75
JOSEPH K SMITH 405 NASTER IRVINE CA 92714 3E 11/82
TERRY JONES 56 FIRST MODESTO CA 95351 2D 3/76

1-11

88A00776A

If the preceding sort had employed the BY-EXP-DSND modif1er, then the data
would have sorted in the reverse sequence, that 1s, from the highest zip code
to the lowest.

The exploding-sort modifiers may also be used with explosion limiters. For
example, the ACCESS statement:

SORT MASTER BY-EXP ZIP > "39999" ID-SUPP FNAME LNAME ADRl ADR2 ZIP CODE DATE

yields only those values whose corresponding zip code is greater than 39999:

FIRST NAME LAST NAME ADDRESS STATE ZIP CODE DATE

TOM F
JOSEPH K
TERRY

JONES
SMITH
JONES

1 APPLE AKRON OH 44306 6D
405 RASTER IRVINE, CA 92714 3E
56 FIRST MODESTO CA 95351 2D

1-12

4/75
11/82
3/76

88A00776A

1.6 THE LIST-LABEL AND SORT-LABEL VERBS

LIST-LABEL and SORT-LABEL are ACCESS verbs that will print mailing labels or
produce other special purpose listings.

The LIST-LABEL aDd SORT-LABEL verbs are almost identical in function to the
LIST and SORT verbs, the only difference is that the LIST-LABEL and SORT-LABEL
listings may have more than one item on each line. Thus, the data associated
with each item can be grouped into blocks, and several of these blocks may be
placed across each page of the listing.

LIST-LABEL and SORT-LABEL sentences have exactly the same format as LIST and
SORT sentences respectively, except that an additional set of parameters is
requested from the user after the ACCESS sentence has been entered. The ACCESS
sentence is entered in the same manner as any other ACCESS sentence, either
through the user's terminal or in a PROC. The additional parameters are then
entered either through the user's terminal or in a PROC and passed through the
Secondary Output Buffer. The system prompts for the additional parameters on
the terminal with a question mark (1) prompt until a null line of data ([CR])
is entered.

The formats for the LIST-LABEL and SORT-LABEL sentences are:

LIST-LABEL {OICT} file-name {item-list} {selection-criteria}
{output-specifications {print-limiters}}
{modifiers} {(options)}

••• and •••

SORT-LABEL {OICT} file-name {item-list} {selection-criteria}
{sort-keys} {output-specifications {print-limiters}}
{modifiers} {(options)}

Refer to LIST and SORT verbs for information on all parameters shown above.

The first additional line of parameters, which must be input after any ACCESS
sentence containing a LIST-LABEL or SORT-LABEL verb, has the following format:

?count,rows,skip,indent,size,space{,C}

1-13

88A00776A

These parameters determine the arrangement of attribute data into lines of
labels. They are entered in the following order, with values separated by
commas:

Parameter

count

rows

skip

indent

size

space

C

Meaning

The number of items (labels) across each page

The number of lines printed for each label (height of
each label, in rows)

The number of lines to skip between labels (horizontal
spacing between labels, in rows)

The number of spaces to indent the data from the left
margin

The maximum width allowable for the data associated with
each attribute name (width of each label, in columns)

The number of spaces between labels (vertical
spacing between labels, in columns)

Optional; if present, specifies that null attributes are
not to be printed. If the C is not specified, null
values will be printed as all blanks.

Values must conform to the range:

(count * (size + space) + indent) <- (current page width)

where "current page width" is the number defined for the current output device
(terminal or line-printer) by the TERM verb. Otherwise, the system will
respond with error message 290:

[290] THE RANGE OF THE PARAMETER "parameter" IS NOT ACCEPTABLE.

The normal non-columnar list heading (page number, time and date) will print
on the top of each page, unless suppressed by the COL-HDR-SUPP modifier or (C)
option. If headings are suppressed, pagination and all top-of-forms are
suppressed, which produces a continuous forms format without page breaks.

If the parameter "indent" is non-zero, a set of row header data lines will be
requested. These requests will immediately follow the first request for the
six numeric parameters, and are prompted for with question marks. The
parameter "rows" specifies how many t'ow headers will be requested, because one
raw header will be printed for each row in the labels. When the listing is
printed, these headers will appear in the left-hand margin or "indent" area.
Null headers may be specified by entering null lines ([CR]) to the header data
requests.

1-14

88A00776A

An example of an ACCESS sentence containing a SORT-LABEL verb:

>SORT-LABEL NAMES WITH LAST.NAME • "[SON" BY LAST.NAME [cs]_ [CR]
: BY PIRST • NAME NAME ADDRESS CITY/STATE ZIP [CR]

?3,4,I,13,14,5,C
?CUST.NAME.
?ADDRESS •••
?CITY/STATE
?ZIP CODE ••

PAGE 1

CUST.NAME.
ADDRESS •••
CITY/STATE
ZIP CODE ••

CUST.NAME.
ADDRESS •••
CITY/STATE
ZIP CODE ••

CUST.NAME.
ADDRESS •••
CITY/STATE
ZIP CODE ••

9 ITEMS LISTED.

AARON AARONSON
1213 N. ELAINE
DAYTON, OHIO

45414

J ACIt JOHNSON
845 AVOCADO
PHOENIX, ARIZ.

85019

MABELL JOHNSON
210 9TH STREET
SANTA t.fAlUA, CA

93454

11:22:33 25 OCT 1982

ABE AARONSON CITY OP CARSON
18236 FOXGLOVE P.O. BOX 9905
BOSTON, MASS. CARSON, CALIF.

02122 90712

KELLY JOHNSON LARRY JOHNSON
20650 MARCHETA 525 DU~mEGAN
ALBUQ., N MEX. BOSTON, MASS.

87105 02158

NEDLIE JOHNSON TOM THOMPSON
4333 N. MAIN 1881 MITCHELL
SANTA MONlCA,C SAN DIEGO, CA

90402 92126

1-15

88A00776A

1. 7 THE UPOBMAT AND SI.!POIMAT VERBS

REFORMAT and SREFORMAT are equivalent to LIST and SORT, except that the output
is directed to another file or to tape or cartridge disk instead of a terminal
or line printer.

The REFORMAT and SREFORMAT verbs are almost identical in function to the LIST
and SORT verbs, the only difference is that the output is not made into a
listing. Instead, the output can be used as data to update items in a file, to
change the arrangement of attributes in a file, or to write tape or cartridge
disk records.

REFORMAT and SREFORMAT sentences have exactly the same format as LIST and SORT
sentenees, respectively. However, the user must supply another file name after
the ACCESS aentence is provided.

The formats for the REFORMAT and SREFORMAT sentences are:

REFORMAT {OICT} file-uame {ite~list} {selection-criteria}
{output-specifications {print-limiters}}
{modifiers} {{options)}

••• and •••

SREFORMAT {OICT} file-nama {ite~list} {selection-criteria}
{sort-keys} {output-specifications {print-limiters}}
{modifiers} {{options)}

Note that exploding sort-keys are valid, but control breaks and totals are not.

The REFORMAT or SREFORMAT ACCESS sentence is entered in the same manner aa any
other ACCESS aentence. either at the terminal or in a PROC.

On execution of REFORMAT or SREFORMAT, the user~s terminal will be prompted
with:

FILE NAME:

At this point, the user enters the name of the destination file where the
output of the list processor will be stored, or enters the word TAPE for tape
or cartridge disk. The destination file-name is passed through the Secondary
Output Buffer when using a PROC. A null response will indicate that the file
specified in the ACCESS sentence will be used as a destination file.

NOTE: To REFORMAT a file onto itself, you must specify an item-list or have a
select-list present; otherwise, an infinite loop in which items are
continuously added to the f11e may result.

1-16

88A00776A

Reformatting To Another File

When reformatting a file onto another file, the first value defined by the
output specifications (i.e., the first column that would appear in a listing)
is u8ed as an item-ide The remaining values make up the item. Thus, each line
that would have occurred in a listing becomes one item in the destination
file. An example of reformatting a file onto another file:

>LIST EMPLOYEE NAME SSN (H) [CR.]

EMPLOYEE •••••••
572-08-3839
215-54-4351
684-34-1100

NAME •••••••••••••••
GR.OMAN,M.
IlOSE, J.
CHAPEL,B.

>REFORMAT EMPLOYEE NAME SSN [CR.]

FILE NAME:NAMES

Item-id

CHAPEL,B.
GROHAN,M.
ROSE,J.

[CR.]

Attribute 1

684-34-1100
572-08-3839
215-54-4351

Reformatting to Tape or Cartridge Disk

SSN •••••••••
572-08-3839
215-54-4351
684-34-1100

When reformatting a file to tape or cartridge disk, the values are concatenated
together, and either truncated or padded at the end with nulls (hex ~OO~s) to
obtain a tape block the .ame length as the current tape block 8ize, a.
specified by the T-ATT verb. (When using cartridge disk, the block size is
always 1024 bytes.)

One tape or cartridge disk record will be written for each line that would
have appeared in the listing. A label, which contains the file name, tape
block size (in hex), time and date, is written on the tape or cartridge disk
first, unless the HOR-SUPP or COL-RDR-SUPP modifiers (H or C options) are
specified. Two End-of-File marks (EOF~s) terminate the tape or cartridge
disk. Item-ids will be printed as items are dumped, unless the (I)
(ID-SUPPress) option is used.

1-17

88A00776A

An example of reformatting a file to tape:

)SOIlT VENDORS NAME PHONE ADDRESS RDR-SUPP [CR]

VENDORS. • • NAME •••••••••••••••••

12345 JACKSON ENTERPRISES
12888 ACHE BOLT CO.
12900 SPACE PRODUCTS, INC.

PHONE •••

523-3688
444-8819
444-3122

ADDRESS ••••••••••••••••••••

P.O. BOX 322 JACKSON, MISS
17911 SKY PARK CIR IRVINE. CA.
99 E. 15TH ST. MOBILE, AL.

)T-ATT (80) [Cll)
TAP! ATTACHED

(Specifies 8o-byte tape records.)

)SREFORMAT VENDORS NAME PHONE ADDRESS [CR]

FILE NAME:TAPE [Cll]

1 12345
2 12888
3 12900

3 ITEMS DUMPED.

)T-REW [CR]

)T-llEAD [CR]

L 0050 12: 18: 15 28 JUNE 1982 VENDORS

RECORD • 1

1 JACKSON ENTERPRISES 523-3888P.0. BOX 322 JACKSON,
51 MISS. • ••••••••••••••••••••

RECORD • 2

1 ACME BOLT CO. 444-881917911 SKY PARK CIR tRV
51 INE. CA. _. • • • • • • ••••••••••••••

RECORD • 3

1 SPACE PRODUCTS. INC.444-312299 E. 15TH ST. MOBILE.
51 AL. • ••••••••••••••••••••

[94] END OF FILE

1-18

88A00776A

1 .8 THE COUNT VERB

COUNT is an ACCESS verb which counts the number of items in a file. The items
may be limited to those that meet the conditions of an item-list,
selection-criteria, or a combination of these.

An ACCESS sentence uSing the COUNT verb may contain any item-lists or
selection-criteria valid for a LIST or SORT sentence, but no sort-keys,
break-ona, totals or output specifications will be processed. This gives the
COUNT sentence the following general form:

COUNT {DICT} file-name {item-list} {selection-criteria}
{(options)}

The COUNT verb will generate error message 407:

n ITEMS COUNTED.

where "n" is the number of items meeting the specifications set down by the
item-list and selection-criteria, if present. If neither item-list nor
selection-criteria are specified, the number (n) returned will be the number of
items in the specified file. The maximum number of items which can be counted
is 2,147,483,647 (Hex tf7FFFFFFFtf).

Consider the following example:

COUNT AFILE > "553" WITH A3 - "ABC"

This sentence counts the items in the file named AFILE which have item-ids
greater than 533 and also have a value of ABC for the attribute named A3.

Other examples of COUNT usage:

>COUNT TEST [CRl
10 ITEMS COUNTED .•

>COUNT ACCOUNT WITH BILL-RATE "30" [CRl
11 ITEMS COUNTED.

>COUNT ACCOUNT GE "11115" WITH CURR-BALNC AND WITH BILL-RATE "30" [CRl
2 ITEMS COUNTED.

1-19

88A00776A

1 .9 THE SUM AND STAT VERBS

SUM generates the total of all the values of one attribute-name for a selected
set of items in a file. STAT works like SUM, but STAT also provides a count of
the number of items selected and an average value for the attribute-name. If
only the file-name is given, SUM and STAT will give the total byte count for
the file.

An ACCESS sentence using the SUM or STAT verbs has the same general form as a
sentence using the COUNT verb:

SUM {DICT} file-name {ite~list} {selection-criteria}
{(options)}

STAT {DICT} file-name {item-list} {selection-criteria}
{ (options)}

The output produced by a SUM operation has the following general form:

TOTAL OF aaaa • xxxx

where aaaa is the header for the attribute-name, (the text from line 3 of the
attribute-name dictionary, or the item-id if line 3 is null), and xxxx is the
computed total for the attribute-aame. Examples of the use of the SUM verb:

>SUM ACCOUNT CURR-BALNC [CR]

TOTAL OF CURR-BALNC IS : $2,405,118.10

>SUM ACCOUNT CURR-BALNC WITH CURR-BALNC > "100000" (CR]

TOTAL OF CURR-BALNC IS : 1,836,287.99

>SUM ACCOUNT > "35055" CURR-BALNC [CR]

TOTAL OF CURR-BALNC IS $605,916.48

>SUM DICT ACCOUNT V/MAX (CR]

TOTAL OF V/MAX IS : 2887

>SUM ACCOUNT DEPOSIT WITH CURR-BALNC LT "50000" [CR]

TOTAL OF DEPOSIT IS : 542.17

>SUM ACCOUNT DEPOSIT WITH CURR-BALNC <"50000"& WITH NO SEWER.-ASMT [CR]

TOTAL OF DEPOSIT IS : 460.00

1-20

88A00776A

The output of the STAT verb has the following general form:

STATISTICS OF aaaa :
TOTAL • xxxx AVERAGE • yyyy COUNT • z zz z

where aaaa is the header for the attribute name, xxxx is the generated sum of
all the values for the attribute-name (total), zzzz is the number of items
selected (count), and yyyy is the average value for the attribute-name (total
divided by count). Examples of the use of the STAT verb:

>STAT ACCOUNT TRASH-CHGS [CR]

STATISTICS OF TRASH-CHGS
TOTAL • 504.94 AVERAGE • 7.4255 COUNT • 68

>STAT ACCOUNT CURR-BALNC WITH TRASH-CHGS GE "7.4255" [CR]

STATISTICS OF CURR-BALNC :
TOTAL • 1,199,466.82 AVERAGE • $57,117.4676 COUNT • 21

>STAT ACCOUNT "11065" "23055" "35050" "35085" BILL-RATE [CR]

STATISTICS OF BILL-RATE :
TOTAL • 57 AVERAGE • 14.25 COUNT • 4

>STAT ACCOUNT DEPOSIT WITH NO CURR-BALNC [CR]

STATISTICS OF DEPOSIT :
TOTAL • 39.00 AVERAGE • 7.8000 COUNT • 5

NOTE: Correlatives are processed in determining totals for the SUM and STAT
verbs, but conversions are not processed. Any conversions present will be
applied just before the total is printed. (See Section 2.4, CONVERSION AND
CORRELATIVE CODES.)

1-21

88A00776A

1.10 THE CHECK-SUM VERB

This verb generates a checksUM for file items, which lets you see 1f data 1n
file has been changed. The general form of the CHECK-SUM verb is as follows:

CHECK-SUM {DICT}file-name{item-list}{attribute}
{selection-criteria}

where:

DICT
file-name
item-list
attribute
selection-criteria

dictionary portion of file is checked.
name of file being checked.
checks only those items specified.
checks only specified attribute.
checks only those items which satisfy specified
criteria.

The CHECK-SUM command generates a checksum for file items, thus providing a
means to determine if data in a file has been changed. A checksum is the
arithmetic total, disregarding overflow, of all bytes in the selected items.

A checksum is generated for items in the specified file, or subset of items if
the optional "item-list" and/or "selection-criteria" appear. Furthermore, the
checksum may be calculated for one specified attribute. The dictionary portion
is checksummed if {DICT} appears. If no attribute is specified, the first
default attribute will be used. If there is no default attribute, or if the
AMC is 9999, the entire item will be included. The checksum will include the
binary value of each character times a positional value.

This yields a checksum which has a high probability of being unique for a
given character string. A message is output giving checksum statistics in the
following form:

BYTE STATISTICS FOR file-name (or attribute name):
TOTAL • t AVERAGE • a ITEMS • i CKSUM • c BITS • b
t is the total number of bytes in the attribute (or item) included
a is the average number of bytes
i is the number of items
c is the checksum
b is the bit count

The attribute mark trailing the specified attribute (or item) will be included
in the statistics. To use checksums, the user should issue CHECK-SUM commands
for all files or portions of files to be verified and keep the output
statistics. Subsequently, the CHECK-SUM commands can be reissued to verify
tl~t the checksum statistics have not changed. The checksum must be
recalculated whenever the user updates the file.

1-22

88A00776A

1.11 THE SELECT, SSELECT AND gSELECT VERBS

SELECT allows you to select a set of items or attribute values from a file and
generate a select-list of the selected item-ids or values. The SSELECT verb
combines the SORT capability with the SELECT capability. The gSELECT verb is
used to quickly generate a select-list from attribute(s) within item(s) in a
file.

A sentence constructed with the SELECT or SSELECT verb will have the same
general form as a sentence using a LIST or SORT verb, respectively:

SELECT {DICT} file-name {item-list} {selection-criteria}
{output-specifications {print-limiters}}
{modifiers} {(options)}

••• and •••

SSELECT {DICT} file-name {item-list} {selection-criteria}
{sort-keys} {output-specifications {print-limiters}}
{modifiers} {{options)}

The difference between the SELECT and LIST verbs (or between the SSELECT and
SORT verbs) is in the handling of the attribute name output as specified by the
output specifications. With the LIST or SORT verbs, the output for each
attribute name is directed to the user~s terminal, a line printer, a tape or
cartridge disk unit, or a SPOOLER hold file. With the SELECT or SSELECT verbs,
the atttribute values and/or item-ids in the output specifications are saved in
a select-list. This ·select-list· is a temporary list which is stored in the
user~s workspace until the execution of one more verb. (To permanently save
select-lists, see the following section.) The next verb executed will use the
select-list as its implicit item list.

If a numeric value is used in the options parameter of the SELECT or SSELECT
statement, the select will stop after the number of items found is equal to the
specified value.

Examples of the use of SELECT and SSELECT:

>SELECT ACCOUNT WITH SEWER-ASHT [CR]

11 ITEMS SELECTED.
)EDIT ACCOUNT [CR]

>SELECT ACCOUNT) "11045" WITH CURR-BALNC LE "0" [CR]

3 ITEMS SELECTED.
>COPY ACCOUNT (P)

1-23

88A00776A

)SSELECT ACCOUNT WITH BILL RATE "30" BY NAME [CR]

11 ITEMS SELECTED.
)RUN BP TEST [CR]

)SSELECT ACCOUNT) "11025" WITH DEPOSIT "10" BY-DNSND ADDRESS [CR]

63 ITEMS SELECTED.
)ED ACCOUNT [CR]

)SSELECT ACCOUNT BY BILL-RATE BY-DSND DEPOSIT BY NAME [Ci]

67 ITEMS SELECTED.
)COpy ACCOUNT (T,N) [Ci]

The output from a SELECT or SSELECT sentence is the select-list and error
message 404:

n ITEMS SELECTED.

where "nit is the number of item-ids or values selected and placed in the
select-list.

SELECT is analogous to the LIST verb in that there is no sequencing of the
items. SSELECT will order the selected item-ids or values according to the
sort keys in the ACCESS sentence, exactly like the SORT verb.

The elements of the select-list may be used as item-ids to reference data in
any file, not just the file referenced in the SELECT or SSELECT sentence. For
instance, if a SSELECT on one flle ls followed by a LIST operation on a
different file, the sorted list of ltem-ids generated by the SSELECT will be
used as an item list ln the LIST. The LIST processor will attempt to look up
and list the items ln the second file with the same item-ids selected in the
first file. If the LIST processor cannot find an item, it will append error
message 780:

[7801 ITEM 'Oitem-id" NOT ON FILE.

to the end of the listing for each ltem not found.

In the special case where the SSELECT verb ls used with a BY-EXP or BY-DSND-EXP
modifier, the elements of the select-llst will be multlvalued, with the first
value being the select data, and the second value belng a three-digit value
mark count. In BASIC, the two values are retrieved by use of the REAnNEXT
IO,VMC form of the REAnNEXT statement.

1-24

88A00776A

The general form of the QSELECT statement is:

QSELECT file-name {item-list} {(n)}

where the data is to be extracted from the item(s) contained in the file
file-name. The item-list consists of ite~ids separated by blanks, or an
asterisk(.) specifying all items. All data from the items is stored in the
select-list, unless optional (n) specification is used; in this case, only data
from the n-th attribute of each item is used. Multiple values or sub-values
are stored as separate elements in the select-list.

The message "n ITEMS SELECTED" will appear at the conclusion of the selection,
just as if a SELECT or SSELECT statement has been executed; the generated
select-list may then be saved using SAVE-LIST, or used in an ACCESS statement
or BASIC program.

The item-list may be omitted by preceding the QSELECT statement with a SELECT,
SSELECT, GET-LIST or another QSELECT statement.

Note the complementary nature of the QSELECT verb (which creates a select-list
from an item or items).and the COPY-LIST to a file (which creates an item from
a select-list).

Sample usage of QSELECT verb:

>QSELECT INV-TRANS 0123-889 987-0999 111-5690 (2) [CR]

3 ITEMS SELECTED. A select-list is built from the second
attribute of the three specified items
from the INV-TRANS file.

>QSELECT SYSPROG-PL COLD-LIST [CR]

31 ITEMS SELECTED. A select-list is built from all of the
attributes in the item COLD-LIST in the
file SYSPROG-PL.

>SSELECT INVENTORY WITH QUANTITY > "200" BY QUANTITY [CR]

123 ITEMS SELECTED.
>QSELECT INV-TRANS (2) [CR]

123 ITEMS SELECTED.
>SAVE-LIST XYZ [CR]

Generates a temporary select-list.

Generates a new select-list from the
data in attribute 2 of those items in
the INV-TRANS file previously selected.
Saves this new select-list.

A select-list may be permanently saved by use of the SAVE-LIST verb, or it may
be padded as a parameter to another ACCESS operation a BASIC program, or a
RUNOFF operation.

1-25

88A00776A

The following notes apply to other processes on the system immediately after
execution of a SELECT or SSELECT sentence.

BASIC

ACCESS

RUNOFF

SAVE-LIST

TCL-II

The select-list is available to the BASIC program via the
REAnNEX! STATEMENT. The select-list will override the first
SELECT statement in a BASIC program. (See BASIC Manual.)

The select-list is available to ACCESS verb processors as an
implicit item-list, and will override any item lists in the
ACCESS sentence. The selection-criteria are still processed.
(Refer to Section 1.18, FORMING ITEM-LISTS.)

The select item-ids or values may be inserted into a RUNOFF
text by use of the READNEXT command.

The select-list may be catalogued into the POINTER-FILE or a
user-specified file by use of the SAVE-LIST verb. This saved
select-list is now available to any process on any line through
the GET-LIST verb.

Same as ACCESS.

It is important to note that only the sentence immediately following the
SELECT or SSELECT sentence will have access to the temporary select-list. This
means that if the user marks an error entering the next sentence, then the
select-list will be lost and must be selected again. This can be avoided by
putting both sentences inside a PROC.

Some of the available disk space will be used to store the temporary
select-list. This space will be released to the overflow pool (made available
again) after the select-list has been processed.

1-26

88A00776A

1.12 THE SAVE-LIST, GET-LIST AND DELETE-LIST VERBS

The verbs SAVE-LIST, GET-LIST and DELETE-LIST are used to save, retrieve, and
delete selected item-lists. These verbs are useful if several processing
passes are to be made on the same set of item-ids or attribute values.

The SAVE-LIST verb provides the facility to make a permanent select-list out
of a temporary select-list produced by the SELECT, SSELECT and QSELECT verbs.
These permanent select-lists are retrievable via the GET-LIST verb, and may be
deleted via the DELETE-LIST verb.

The general form of the SAVE-LIST verb is as follows:

SAVE-LIST list-name {(F)}

The SAVE-LIST verb will catalog the select-list, (save it in overflow frames)
and add or update the pointer to the select-list in the POINTER-FILE. You may
specify a file other than POINTER-FILE so long as the file exists and has a
"OC" in attribute 1 of its dictionary. To do this, use the (F) option and you
will be prompted "FILE-NAME:" for the name of your file.

The system will respond with error message 243:

[243] ~list-name~ LIST SAVED. n FRAMES(S) USED.

where "n" is the number of overflow frames used to store the list. A
previously existing catalogued select-list with·the same name will be overlaid
by the newly catalogued select-list, and any extra disk space thereby released
will be returned to the overflow pool.

If a SAVE-LIST command is entered at TCL level, it must immediately follow the
SELECT or SSELECT sentence that· generated the desired temporary select-list.
If the SAVE-LIST sentence is used in a PROe, it must be placed in the PROC
Secondary Output Buffer.

The GET-LIST verb looks up a pointer in the POINTER-FILE (or optional
file-name if the F option is used) and retrieves the select-list to which it
points. The general form of the GET-LIST verb is as follows:

GET-LIST list-name {(F)}

where list-name specifies which saved list is requested.

1-27

88A00776A

A POINtER-FILE item-id will be generated exactly as for a SAVE-LIST verb, and
the POINTER-FILE item will be used to find the saved select-list. If the item
cannot be found, the system will respond with error message 202:

'list-name' NOT ON FILE.

If the item is found, the system will respond with error message 404:

n ITEMS SELECTED.

where "n" is the number of item-ids or attribute values in the saved
select-list. The select-list is now available for use by various processors.
Only one processor will have access to the select-list, just as if a regular
select-list had been generated by a SELECT or SSELECT verb.

The DELETE-LIST verb removes a pointer to a select-list from the POINTER-FILE
or a user-specified file-name and returns the frames containing the catalogued
list to the overflow pool. The F option specifies that the list(s) are in a
user-specified file instead of the POINTER-FILE. The user will be prompted to
enter the name of this file by the prompt: FILE-NAME: The general form of the
DELETE-LIST verb is as follows:

DELETE-LIST list-name(s) {{F)}

A POINTER-FILE item-id will be generated, just as if a SAVE-LIST verb had been
generated, and the item will be looked up in the POINTER-FILE.

If the item is found, the system will respond with error message 245:

[245] LIST 'list-name' DELETED

The pointer item in the POINTER-FILE will be deleted, and the frames used to
store the select-list will be released to the overflow pool.

1-28

88A00776A

Sample usage of SAVE-LIST, GET-LIST, and DELETE-LIST:

>SSELECT ACCOUNT WITH BILL-RATE> ... 35" BY NAUE [CR]

24 ITEMS SELECTED.
>SAVE-LIST OVER.35 (CR]

[243] 'OVER.35' LIST SAVED. 1 FRAME(S) USED.

>GET-LIST OVER.35 (CR]

24 ITEMS SELECTED.
>COpy ACCOUNT [CR]
TO: (NEW-ACCOUNT) (CR]

24 ITEMS COPIED.

>GET-LIST OVER.35 [CR]
24 ITEMS SELECTED.
>RUN BP BILLINC-DVER.35 (CR]

>DELETE-LIST OVER.35 [CR]
[245] LIST 'OVER.35' DELETED.

1-29

88A00776A

1.13 THE COPY-LIST AND EDIT-LIST VERBS

COPY-LIST allows you to copy a saved select-list to the terminal. to an6ther
select-list. or to a file as a new item. EDIT-LIST allows you to edit a saved
select-list.

The COPY-LIST statement has the following format:

COPY-LIST list-name(s) {(options)}

where file-name and list-name are the names specified in the SAVE-LIST. If the
F option is not specified, the list is retrieved from the POINTER-FILE.

Option

D

F

N

0

p

T

X

Description

When copying a select-list to another list. the original
select-list is deleted after the copy.

The list(s) are to be found in a user-specified file
instead of the POINTER-FILE. The user will be prompted
to enter the name of this file by the prompt: FILE NAME:

When copying a select-list to the terminal. the
automatic end-of-page wait is inhibited.

Overwrites existing item-ids.

The select-list is copied to the line printer.

The select-list is copied to the terminal.

The data is displayed in hexadecimal.

If the T or P options are NOT specified. the select-list is to be copied to
another select-list or to an item; in this case, the system will respond with

TO:

The general response to this message is of the form:

{list-name}
or,

{(file-name {item-id}}

If the list-name form is specified. the original select-list is copied to the
newly specified list-name. If (file-name is specified. the list is copied to a
user-specified file instead of the POINTER-FILE. If a [CR] is entered instead
of list-name, the list is copied to the terminal.

1-30

88AQ0776A

The original select-list will be deleted if the D option had been specified.
Note that the new select-list will only overwrite an existing select-list with
the same list-name if the 0 option has been specified.

If the form (file-name is specified. the select-list will be converted to
standard item format. with each element of the select-list being stored as an
attribute. If the resulting item exceeds the maximum size of 32.267 bytes. it
will be truncated at that point. If item-id is not specified. the list-name
will be used as the item-ide

The EDIT-LIST statement may be used to edit a previously saved select-list;
its general form is:

EDIT-LIST list-name(s) {(F)}

The system EDITOR will be entered. and each element in the select-list will be
treated as a line in the EDITOR. If the F option is not specified. the list
will be retrieved from the POINTER-FILE. If F is spcified, the user will be
prompted to enter the name of the file where the list is to be found. All
normal EDITOR functions, including HERGE, are valid.

Sample usage of COPY-LIST. and EDIT-LIST verbs:

>COPY-LIST ABC [CR]
TO: DEF [CR]

'DEF' LIST SAVED. 7 FRAMES USED.

)COPY-LIST ALIST (T) [CR]

001 0123-889
002 987-0999
003 111-5690

)COPY-LIST ALIST [CR]
TO: (TEST-FILE At [CR]

)EDIT-LIST ALIST [CR]
TOP

Copies select-list ABC to another
list called DEF.

Copies list ALIST to the terminal.

Data from the select-list elements.

Copies list ALIST to item "AL"
in the TEST-FILE.

Edits the select-list ALIST in the
POINTER-FILE. EDITOR message; top of
item.

1-31

88A00776A

1.14 THE ISTAT AND HASH-TEST VERBS

ISTAT and HASH-TEST are ACCESS verbs which provide file utilization
information.

A sentence using the ISTAT verb has the following general form:

ISTAT {DICT} file-name {item-list} {selection-criteria}
{modifiers} {(options)}

where #file-name# is the name of the file for which the user desires to see the
hashing statistics. The ISTAT verb provides a file hashing histogram (bar
graph) for the selected items in the selected file, as well as the item count,
the total number of bytes in all the items tested, the average number of bytes
per item, the average number of items per group and standard deviation. and the
average number of bytes per group.

The average number of bytes per group is an excellent indicator as to how well
the file space is being utilized. If each group is less than 500 bytes, no
additional frames of overflow are needed for the file.

Rowever, if each group is 501 bytes, an additional frame will be linked to
each group in the file in order to contain the extra byte, and the remaining
499 bytes in the linked frame will be wasted. (See the second example of the
RASH TEST verb.)

If S is entered in the options parameter, the histogram output will be
suppressed.

1-32

88A00776A

Sample usage of the ISTAT verb:

>ISTAT TEST-FILE [CR]

FILE- TEST-FILE MODULO- 29 SEPAR- 1
FRAMES BYTES ITMS

16:11:30 27 DEC 1982

2 05644 023 *»»»»»»»»»»»>
1 05645 022 *»»»»»»»»»»»
1 05646 018 *»»»»»»»»»

1 05671 017 *»»»»»»»»
3 05672 025 *»»»»»»»»»»»»
1 05763 020 *»»»»»»»»»

ITEM COUNT- 365, BYTE COUNT- 15993, AVG. BYTES/ITEM-
AVG.ITEMS/GROUP- 12.5, STD. DEVIATION- 3.7, AVG. BYTES/GROUP-

>ISTAT TEST-FILE > "100" AND < "400" [CR]

43.8
551.4.

FILE- TEST-FILE MODULO- 29 SEPAR- 1 16:11:30 27 DEC 1982
FRAMES BYTES ITMS

1 05644 003 *»>
1 05645 001 *>
1 050646 000 *

1 05671 002 *»
1 05672 004 *»»

ITEM COUNT- 15, BYTE COUNT- 512, AVG. BYTES/ITEM- 46.3
AVG.ITEMS/GROUP- 2.6, STD. DEVIATION- 2.3, AVG. BYTES/GROUP- 93.3.

1-33

88A00776A

The HASH-TEST verb can be used to determine the best modulo for a given file.
It shows how any or all of the items in the file would hash into groups for any
given modulo, as well as for the other figures and averages provided by the
ISTAT verb. The HASH-TEST verb has the following general form:

HASH-TEST {DICT} file-name {item-list} {selection-criteria}
{modifiers} {(options)}

where 'file-name' is the name of the file to be tested at a new modulo. The
optional item-list specifies which particular items are to be tested. If the
item list is not specified, all items in the file will be tested. After the
HASH-TEST sentence has been entered, the system will prompt for an additional
parameter. This parameter, the modulo to be tested, must be entered by the
user either from the terminal, or by use of the Secondary Output Buffer in a
PROC. The user's terminal will be prompted with:

TEST MODULO:

to which the user enters the modulo (number of groups) with which he wishes to
HASH-TEST the specified file. The HASH-TEST verb will then generate a
histogram (bar graph) showing the number of items which would hash into each
group if the file had the test modulo and a separation of 1. It will also show
the statistics generated by the ISTAT verb.

1-34

Sample usage of the HASH-TEST verb:

>HASH-TEST JUNK-1 [CR]
TEST MODULO:3 [CR]

88A00776A

FILE- JUNK-1 MODULO- 3 SEPAR- 1
FRAMES BYTES ITMS

12:33:13 22 FEB 1982

1 00400 001 *»>
1 00455 001 *»>
1 00345 001 *»>

ITEM COUNT- 9, BYTE COUNT-
AVG.ITEMS/GROUP- 3.0, STD. DEVIATION-

1200, AVG. BYTES/ITEM­
.0, AVG. BYTES/GROUP-

(This is perfect hashing and perfect file utilization.)

>HASH-TEST JUNK-2 [CR]
TEST MODULO: 3 [CR]

133.3
400.0.

FILE- JUNK-2 MODULO- 3 SEPAR- 1
FRAMES BYTES ITMS

12:33:13 22 FEB 1982

2 00600 001 *»>
2 00655 001 *»>
2 00845 001 *»>

ITEM COUNT- 9, BYTE COUNT- 2100, AVG. BYTES/ITEK-
AVG.ITEMS/GROUP- 3.0, STD. DEVIATION- .0, AVG. BYTES/GROUP-

(Note that there are now 2 frames in each group.)

1-35

233.3
700.0.

88A00776A

1.15 THE T-DUHP, S-DOKP AND T-LOAD VERBS, AND THE TAPE MODIFIER

T-DUMP is an ACCESS verb which dumps a specified file to tape or cartridge
disk. S-DUHP is the same as T-DUMP except the items in the file are sorted
before they are dumped. T-LOAD is used to restore data from a previously
generated T-DUMP tape or cartridge disk. The TAPE modifier may be used to list
or otherwise access data from a T-DUMP or S-DUHP tape or cartridge disk. Note
that a cartridge disk must be formatted before it is used for the first time.

An ACCESS sentence uSing the T-DUHP verb may specify selection criteria, but no
output-specifications. Such a sentence has the following general form:

T-DUHP {DICT} file-name {item-list} {selection-criteria}
{HEADER "name"} {modifiers} {(optional}

S-DUMP {DICT} file-name {ite.-list} {selection-criteria}
{HEADER "nam~"} {sort-keys} {modifiers} {(options)}

The tape or cartridge disk unit must be attached by the user before the T-DUMP
or S-DUMP commands are issued. The T-ATT command will also set up the tape
block size to be used in the T-DUHP or S-DUKP. (The cartridge disk block size
is always 1024 bytes.) See T-ATT command in UTILITIES Manual.

T-DUHP and S-DUMP cause a label to be written, followed by a dump of the
selected items. If the optional HEADER "name" is specified, the text is added
to the standard heading, which is of the form "{DICT} file-name". If the
optional DICT is included, the dictionary section of the file will be dumped,
and no File Definition Items (with attribute 1 • "D", "OX", "DY", "DC", "DCX"
or "DCY") will be dumped. An EOF (End-of-File) mark is written to the tape or
cartridge disk after the dump.

The HDR-SUPP connective or (H) option may be used to suppress the label. The
ID-SUPP connective, or the (I) option may be used to suppress the listing of
item-ids that are being dumped. Sample usage of the T-DUHP and S-DUMP verbs:

>T-DUMP ACCOUNT > "23060" WITH CURR-BALNC ID-SUPP [CRl

31 ITEMS DUMPED

This sentence dumps to tape or cartridge disk all items in the ACCOUNT
file which have items with item-ids greater than "23060" as well as
values for attribute CURR-BALNC.

1-36

)T-DUMP TEST-FILE [CR]

1 A-002
2 A-088
3 C-999
4 A-560
5 C-888

5 ITEMS DUMPED [CR]

58A00776A

This sentence dumps the entire TEST-FILE file to tape or cartridge
disk.

S-DUMP FILES [CR]

This command will sort the file into ascending sequence by item-ids,
transfer the file to tape or cartridge disk, list the item-ids on the
terminal, and write an EOP at the end of the file.

An ACCESS sentence using the T-LOAD verb may specify selection criteria, but
no output-specifications. Such a sentence has the following general form:

T-LOAD {DICT} file-name {item-list} {selection-criteria}
{modifiers} {(options)}

T-LOAD causes the label to be read from the tape or cartridge disk; this will
also set up the tape block size from the label. If unlabeled tapes, or other
than the current PICK release tapes are used, the appropriate tape block size
must be set up in a T-AT! statement.

The appropriate items, as restricted by the selection criteria or item-list,
will be loaded into the file. To overwrite existing items, the (0) option must
be specified.

If the ID-SUPP connective, or the (I) option is used, the item-ids of the
items being loaded will not be listed.

The tape or cartridge disk will be positioned at the EOF marker at the
conclusion of the load. Sample use of the T-LOAD verb:

)T-LOAD TEST-FILE [CR]
~A-002~ EXISTS ON FILE.

1 A-088
2 C-999
3 A-560
4 C-888

4 ITEMS LOADED.

This sentence loads all items from the tape or cartridge disk to the
TEST-FILE; one item already existed on file, and was not overwritten.

1-37

88A00776A

Sample use of the T-LOAD verb: (Continued)

)T-LOAD TEST-F "100" AND < "400" (10) [CR]

17 ITEMS LOADED

This sentence loads only those items from the T-DUMP tape or cartridge disk
that have item-ids in the range 100 through 400, even if they already exist
on file, and the item-ids are not listed during loading.

The TAPE modifier may be used to read data from a T-DUMP or S-DUMP tape or
cartridge disk. The TAPE modifier may be used in any LIST, LIST-LABEL,
LIST-ITEM, SUM, STAT, ISTAT, HASH-TEST or COUNT statement; the data items will
be retrieved from the tape or cartridge disk file. Note that a file-name must
be specified as usual when using the TAPE moditier; the dictionary of this file
is still used as the source for the dictionary definitions.

Sample use of TAPE modifiers:

)LIST TEST-FILE TAPE [CR]

This sentence will use the dictionary of the TEST-FILE to generate the
default output-specifications. It will then read the T-DUMP tape or
cartridge disk and format the data items it finds there in the standard
listing format.

)LIST ACCOUNT WITH CURR-BALNC) "100.00" CURR-BALNC BILL-RATE TAPE [CR]

This statement will select data items from the T-DUMP tape or cartridge
disk with CURR-BALNC greater than 100.00, and list the CURR-BALNC and
BILL-RATE fields. CURR-BALNC and BILL-RATE are attribute definition items
in the dictionary of the ACCOUNT file.

1-38

88A00776A .

1.16 THE LIST-ITEM AND SORT-ITEM VERBS

The LIST-ITEM and SORT-ITEM verbs combine the action of the COpy verb with the
selection criteria and heading/footing capabilities of ACCESS verbs.

An ACCESS sentence using the LIST-ITEM or SORT-ITEM verb has the same general
form as a sentence using a LIST or SORT verb, except that no output
specifications are used. This gives them the following· general forms: ,

LIST-ITEM {DICT} file-name {item-list} {selection-criteria}
{modifiers} {(options)}

SORT-ITEM {DICT} file-name {item-list} {selection-criteria}
{sort-keys}{modifiers} {(options)}

Options available for the LIST-ITEM and SORT-ITEM verbs:

Option Meaning

N

P

F

S

If output is to terminal, inhibits the wait at the end
of each page (NOPAGE).

Output is to line printer (LPTR).

Starts a new page (a form-feed) for each item.

Suppresses line numbers.

The rules for item lists, selection-criteria, sort-keys, modifiers and options
for LIST-ITEM and SORT-ITEM sentences are the same as those for LIST and SORT
sentences. No output-specifications are given, because instead of listing
!ttribute data, the entire contents of the data items are p!!n~ The items
are copied to the userls terminal or to the line printer or spooler just as the
COpy verb would copy them, with three-digit line numbers on the left margin.
LIST-ITm1 differs from COpy in that LIST-ITEM is an ACCESS verb, while COpy is
a TCL-II verb. This means that a sentence using the LIST-ITEM verb can specify
selection-criteria, and heading and footing text. Sample usage of the
LIST-ITEM and SORT-ITEM verbs:

)LIST-ITEM BP 11 ...] .. AND II "$]'" (P) [CR]

Selects those items in the file named BP which start with characters
other than • or $, and copies them to the printer.

)SORT-ITEM MD WITH 1 '"PQ"" HEADING "PROC: 1[10' PAGE'P I

.. (P,F) [CR]

Copies all the userls PROCs (those items in his MD with a PQ
in attribute 1) to the line printer, one PROC per page, using
the specified heading, in sorted order by item-ide

1-39

88A00776A

1.17 USING RELATIONAL OPERATORS AND LOGICAL CONNECTIVES

Relational Operators (defined in Table 1-1) may be used in an item-list to
constrain the items eligible for processing (see Section 1.17, Forming Item­
Lists) or may be used in selection-criteria to limit items to those whose
attribute values meet the specified conditions (see Section 1.18, Forming
Selection-Criteria). Relational operators apply to the item-id or value
immediately following the operator. The absence of a relational operator
implies an equality operator.

To resolve a relational condition, every item-id (or attribute value) is
compared to the item-id (or value) specified in the item-list (or selection­
criteria) of the ACCESS input sentence.

If the attributes or item-ids are left-justified (type code "L" in the
dictionary definition), character pairs (one from the specified item-id or
value and one from the item-id or attribute currently being compared) are
compared one at a time from leftmost characters to rightmost. If no unequal
character pairs are found, then the item-ids or values are considered to be
"equal." If an unequal pair of characters are found, the characters are ranked
according to their numeric ASCII code equivalents. The item-id or value
contributing the higher numeric ASCII code equivalent is considered to be
"greater" than the other.

If attributes or item-ids are right-justified, a numeric comparison is
attempted,first. If either or both of the item-ids (values) are non-numeric,
the character pair comparison for left-justified attributes is used.

Logical connectives (defined in Table 1-2) bind together sets of item-ids into
item-lists, sets of values into value-lists, and sets of selection-criteria
into complex selection-criteria. The AND connective specifies that both
connected parts must be true, while the OR connective specifies that either (or
both) connected parts must be true. In all cases where neither AND nor OR are
specified, OR will be assumed.

An ASCII up-arrow (A) may be used as an 'ignore' character in any value or
item-ide All comparisons made against the value or item-id then ignore the
characters in the corresponding positions. Thus, an up-arrow matches any
character.

A left-bracket ([) is a multiple 'ignore' character, which means that all
characters to the left of the value or item-id being compared are ignored.
Similarly, a right-bracket (]) is a multiple ignore character for the right of
the item-id or value being compared. This means that a left-bracket will match
any string occurring on the left of a value, including a null string, and a
right-bracket will match any string on the right.

The use of the up-arrow and the brackets is further discussed in Section
1.19.1, Selection-Criteria: String Searching.

1-40

88A00776A

Table 1-1. Relational Operators

Operator Meaning

- or EQ

> or GT or AFTER

< or LT or BEFORE

<- or LE

or NE or NOT or NO

Equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

Not equal to or null attribute value

If a relational operator is not given.
EQ is assumed

Table 1-2. Logical Connectives

Connective Meaning

AND

OR

Both connected parts must be true.

Either connected part (or both) must be true.
If a logical connective is not given, OR is
assumed.

1-41

88A00776A

The following examples of relational and logical connectives provide the user
a general view of these operators. Complete ACCESS sentences using these
operators are presented throughout the remainder of the manual.

Example

- "ABC" OR > "DU"

Explanation

Item-list which selects item "ABC" as well
as all items with item-ids greater than
'DEF'.

WITH Al -"X" AND WITH A2 -"I\Z" Complex selection criterion which selects
all items having a value of "X" for attri­
bute A1 and a value for A2 which consists
of any character followed by a Z.

WITH NAME - "[SMITH" "MEL]" Selection criterion which selects all items
having a value for attribute NAME which
either ends with the letters SMITH or
begins with the letters MEL.

LT "100" GT "200" Item-list which selects all items with
item-ids either less than "100" or greater
than "200".

1-42

88A00776A

1.18 FORMING ITEM-LISTS

An item-list specifies those items eligible for consideration by the specified
processor (verb). There are two types of item-lists: 1) explicit item-lists,
which are part of the input ACCESS sentence and 2) implicit item-lists, which
are created by the SELECT, SSELECT, QSELECT, and GET-LIST verbs.

1.18.1 EXPLICIT ITEM-LISTS

Explicit item-lists consist of one or more specifically enumerated item-ids,
enclosed in double quotes (") or backslashes (\).

An item-list defines those items desired for processing. Absence of an
item-list implies all items on the file. A simple item-list consists of any
number of specified item-ids surrounded by quotes or backslashes (e.g., \XYZ\
or "100-600 100-500 300-000 ..) or a relational operator followed by a single
value in quotes (e.g., <"100" or >-"Sl-lITH"). A complex item-list consists of
sets of simple item-lists bound together with logical connectives (ANOs and
ORs) •

An explicit item-list, if present, should come right after the file name in the
ACCESS sentence. For example, consider the following ACCESS sentence, in which
the complex item-list has been underlined:

>LIST TEST-FILE "ABC""XYZ" OR > "DEF" AND < "GHI"

This item-list selects items "ABC" and "XYZ" J as well as all items with
item-ids both greater than "DEF" and less than "GHI":

Use of the complex item-list causes all items in the file to be accessed for
examination, as does absence of an item-list. If a simple item-list is used,
only those items in the list will be accessed and processing will be faster.

This means that the ACCESS sentence:

>LIST-ITEM BP "STAR-TREK" [CR]

will cause only one item in the BP file, namely, the one whose item-id is
"STAR-TREK", to be accessed. Since the item-id is the retrieval key for the
item, the item will be accessed immediately. However, the ACCESS sentence:

>LIST-ITEM BP - "STAR-TREK" [CR]

will cause the entire BP file to be searched, with every item-id in the file
being matched against the explicit item-list "STAR-TREK". Note that this can
be very time consuming for large files.

1-43

88A00776A

The hierarchy (precedence) of the logical connectives in an item-list is AND
aver OR, and left to right. For example, consider the following item-list:

< "A" OR > "B" AND < "c" OR > "D" AND < "E"

This item-list selects all items with item-ids less than "A", or with item-ids
greater then "B" but less than "C", or with item-ids greater than "DIt but less
than "E". Since the AND connective has a higher precedence or binding strength
than the OR connective, ANDs will be evaluated before ORs, and the above
item-list would be evaluated like the following:

<"A" OR (>"B" AND <"C") OR (>''D'' AND <"En)

Note that the parentheses ,,(n and ft)" are not part of the ACCESS grammer, but
are added in the above illustration for clarity.

Since the OR connective is implied if no connective is used, ORs may be omitted
from ACCESS sentences. Therefore, the above item-list could have been
specified by:

<"A" > "B" AND < "C" > "D" AND < "E"

The item-lists may also specify a string-searching capability; this is
discussed in Section 6.18.1, Selection Criteria: String Searching.

Further examples of item-lists are-illustrated on the following page. Rere the
SORT verb is used to select and sequence the item-ids in file TEST. (TEST
contains ten items, with item-ids "10" through "19".) The word ONLY, as used
in these examples, specifies that only the item-ids are to be listed.

1-44

88A00776A

>SORT ONLY TEST> "13" AND < "17" [CR]

PAGE 1 15:32:19 20 AUG 1982

TEST ••••••••

14
15
16

3 ITEMS LISTED.

>SORT ONLY TEST >- "13" AND <-"16" OR >-"18" AND <"19" [CR]

PAGE 1

TEST •••••••

13
14
15
16
18

5 ITEMS LISTED.

15:33:01 20 AUG 1982

>SORT ONLY TEST NOT "13" AND NOT "15" AND NOT "17" AND NOT "19" [CR]

PAGE 1

TEST •••••••

10
11
12
14
16
18

6 ITEMS LISTED.

I ~

1 r~·' I /1
, I,

>SORT ONLY TEST BEFORE "13" [CR1

PAGE 1

TEST •••••••

10
11
12

3 ITEMS LISTED.

1-45

15:33:31 20 AUG 1982

I~

/

15:34:24 20 AUG 1982

J
/

88A00776A

1.18.2 IMPLICIT ITEM-LISTS

Implicit item-lists are formed by the verbs SELECT, SSELECT, QSELECT, and
GET-LIST. The next ACCESS sentence executed after the execution of one of
these verbs will use the list of items generated by the first verb.

Execution of a SELECT, SSELECT, QSELECT, or GET-LIST verb will result in the
message 'n ITEMS SELECTED', where "n" is the number of items selected and put
into the item-list. In the case of a SELECT or SSELECT, the items put into the
item-list will be those satisfying the selection criteria (if any) of the
SELECT or SSELECT sentence. The item-list generated by a GET-LIST verb is the
same item-list that was saved by the use of a SAVE-LIST verb. The item-list
generated by a QSELECT depends on the data stored in the items specified in the
QSELECT statement.

It is important to note that the use of an implicit item-list will override a~y
explicit item-list. This means that an ACCESS sentence executed after a
SELECT, SSELECT, QSELECT, or GET-LIST will use the implicitly specified list
and will ignore any explicit item-list.

Selection criteria specified in the statement will, however, be applied as
usual to the items in the implicit item-list.

Other SELECT or SSELECT functions can be used on the implicit list obtained
from one SELECT, SSELECT, QSELECT, or GET-LIST statement (see the last example
on the following page).

1-46

88A00776A

Examples of use of an implicit item-list:

>SSELECT TEST [CR]

10 ITEMS SELECTED.

>SAVE-LIST T [CR]
[214] 'T' CATALOGED, 1 FRAME(S) USED.

>SELECT TEST "11 12" [CR]

2 ITEMS SELECTED.
>SORT ONLY TEST [CR]

PAGE 1

TEST •.••••

11
12

2 ITEMS LISTED.

>GET-LIST T

10 ITEMS SELECTED.
>LIST ONLY TEST <- "13" [CR]

15:32:19 20 AUG 1982

PAGE 1 15:32:19 20 AUG 1982

10
11
12
13

4 ITEMS LISTED.

1-47

88A00776A

1.19 FORKING SELECTION-CRITERIA

Selection-criteria specify a set of conditions which must be met by an item
before it is eligible for output. Complex selection-criteria are made up of
one or more simple selection-criteria.

The general form of a selection is as follows:

WITH {EVERY}
{NO}

IF {EACH}
{
relat ional }

attribute-name operator {value-list}

Each selection-criterion must begin with the word WITH or IF followed by a
single attribute name. (WITH and IF are synonymous.) The attribute name may
then be followed by a value-list. The rules for fOrming value-lists are iden­
tical to those for forming ite~lists (see Section 1.17, Forming Ite~Lists);
double quotes must surround the actual values. For example, the following
selection-criterion is met by those items which have at least one value for the
attribute DESC which is either equal to "ABC" or is both greater than "DEF" and
less than "GHl".

WITH DESC "ABC" OR > "DEF" AND < "GHI"

If a selection-criterion does not include a value-list, then it is true for all
those items which have at least one value for the specified attribute name.
The selection-criterion may be further modified by using either or both of the
modifiers EVERY or NO immediately following the WITH. The modifier EVERY
requires that every value for the attribute meet the specified condition (i.e.,
if the attribute has multivalues, then each value must meet the condition.
(The modifier EACH is a synonym for EVERY.) The modifier NO reverses (inverts)
the sense of the entire selection-criterion.

Several selection-criteria may be bound together by logical connectives to form
a complex selection-criterion. When used in this fashion, the AND connective
has a higher precedence than the OR connective. An AND clause is made up of
any number of selection-criteria bound by AND connectives. The AND clause is
terminated when an OR connective 1s found in the left to right scan. Note that
the absence of an AND connective implies an OR connective. In order for an
item to pass the selection-criteria, the conditions specified by anyone of the
AND clauses I!1US t be met. .

1-48

88A00776A

An example of the logical hierarchy of AND clauses is shown in the complex
selection-criterion below which contains two AND clauses.

WITH DESC "ABC" AND WITH VALUE "1000" OR WITH DESC "ABC" AND WITH
NO VALUE

Further examples of selection-criteria are:

>LIST ACCOUNT NAME WITH AVG-USAGE "20" OR "25" AND [cs] [CR]
:WITH SEWER-ASMT "150" OR WITH AVG-USAGE "20" OR "30" Tcs] [CR]
:AND WITH BILL-RATE < "30" [CR] -

PAGE 1

ACCOUNT •••

23100
23080
11045

NAl-fE ••••••••••

G J PACE
J W YOUNG
F R DRESCH

3 ITEMS LISTED.

AVG-USAGE

30
20
30

17:36:04 20 AUG 1982

SEWER-ASUT

1.50

BILL-RATE

10.30
8.40

10.03

>COUNT ACCOUNT WITH CURR-BALNC >"100" AND WITH SEWER-ASMT [cs_] [CR]
:OR BILL-RATE • "30" [CR]

7 ITEMS COUNTED.

>LIST ACCOUNT TRNS-DATE WITH EVERY TRNS-DATE BEFORE "3/18/70" [CR]

PAGE 1 17:40:57 20 AUG 1982

ACCOUNT ••• TRNS-DATE ••
35090 17 l1AR 1970

28 FEB 1970
17 FEB 1970
30 JAl~ 1970
16 JAN 1970
29 DEC 1969

END OF LIST

1-49

88A00776A

1.19.1 SELECTION-cRlTEllIA: STRING SEARCHING

Selection-criteria may be used to search an attribute or an item-id for a
string of characters, or to choose attribute values (item-ids) that begin or
end with a certain character string.

ACCESS has the ability to search an attribute value or item-id for any string
of characters. The left-bracket character ([) and the right-bracket character
(]) may be used within the double-quotes in a selection-criterion, or complex
item-list to specify a match on any string to the left or right of the given
string.

A left-bracket indicates that there may be any (or no) characters to the left
of the string. A right-bracket indicates that there may be any (or no)
characters to the right of the string. Used separately. the left-bracket
specifies that the value must end with the character string, while a
right-bracket specifies that the value must begin with the character string.
If both brackets are used, the character string may appear anywhere in the
attribute value. Examples of the use of string searching selection-criteria:

LIST ACCOUNT WITH NAME "[MAN" NAME [CR]

PAGE 1
ACCOUNT... NAME ••••••

23025
23055
11015

D C BINGAMAN
S l-i NEWMAN
L K HARMAN

3 ITEMS LISTED.

LIST ACCOUNT WITH NAME "A A A]" NAME [CR]

PAGE 1
ACCOUNT. •• NAME •••••

11070 A A ALTHOFF

END OF LIST

LIST ACCOUNT WITH NAME "[INE]" NAME [CR]

PAGE 1
ACCOUNT. .• NAME

11095
35065

J B STEINER
L J RUFFINE

2 ITEMS LISTED.

1-50

18:13:37 20 AUG 1982

18:14:09 20 AUG 1982

18:16:56 20 AUG 1982

88A00776A

The up-arrow (A) indicates a match on any character. An example of the use of
the up-arrow is:

LIST ONLY BP • "A STAR-TREK" [CRl

PAGE 1

BP •••••••

$STAR-TREK
*STAR-TREK

18:16:56

2 ITEMS LISTED.

NOTE

This string searching capability may not be
used in a simple item-list, but may be used
with a complex item-list. That is, the simple
item-list "[JONES" will only select the item-id
"[JONES", if such an item-id is present. The
complex item-list • "[JONES" will select any
items ending in the string "JONES."

20 AUG 1982

An extended advanced discussion on the use of the selection processor is given
at the end of the ACCESS section. See Section 3.1, Using the Selection
Processor.

1-51

88A00776A

1.20 FORMING OUTPUT-SPECIFICATIONS

Output-specifications select the attributes to be listed.

All attribute names in an ACCESS ~entence which are not part of a selection­
criterion (i.e., preceded by the modifier WITH or IF) or are not modified by
certain control modifiers are considered as part of the output specification.
These attribute names specify the attribute values which are to be printed out
as a result of the specified operation.

If no output-specifications are in the sentence, the system will use the
default output-specifications. These default specifications are the attribute
names contained in line 3 of the item dictionaries of the file being listed.
The dictionary item-ids MUst be the numbers 1, 2, 3, 4 •••• The system will
sequentially search the dictionary for these numeric items (starting with 1)
until it comes to an item-id which is not in the dictionary.

Selected attribute definition items (either specified or default) will be
displayed in an automatically generated system format. This format will
include a heading line displaying the date, time, and page number (unless
supressed) at the beginning of each new page. The page size is set through the
use of the TERM command.

The LIST, SORT, LIST-LABEL and SORT-LABEL verbs will attempt to format the
output into a columnar format with each specified attribute name as a column
heading. A columnar output format example:

>SORT ACCOmrr WITH CURR-BALNC > "100000" NAME ADDRESS CURR-BALNC [CR]

PAGE 1

ACCOUNT ••• NAl£ • • • • • • •• ADD'RESS •••••••••••••••

11020 J T O'BRIEN
11055 W H KOONS
23040 P B SCIPMA
35080 G A BUCKLES
4 ITEMS LISTED.

124 ANCHOR PL
131 BEGONIA
213 CARNATION
307 DOCK WAY

09:09:19 20 AUG 1982

CURR -BALNC ••

$306,755.54
$958,343.75
$123,423.22
$447,765.48

The column width (number of spaces) reserved for each attribute definition
item will be the size specified in line 10 of the attribute dictionary, or the
length of the heading in line 3, whichever is greater. If the sum of the
column widths (adding one blank separator for each specified attribute name)
does not exceed the page width as set by the TERM command, then a columnar
format will be generated. In a columnar format, the specified attribute names
are displayed in a heading across the top of the page. The values for each of
the items are then displayed in their respective columns. If an attribute has
multiple values, each multi value will be listed on a new line. The heading is
repeated at the top of each page.

1-52

88A00776A

If the requested output exceeds the page width, then the attribute names are
listed down the side of the output with their respective values immediately to
the right. A noncolumnar format example:

>LIST ACCOUNT "35060" NAME ADDRESS CURR-BALNC BILL-RATE AVG-USAGE (CR]

PAGE 1

ACCOUNT
NAME
ADDRESS
CURR-BALNC
BILL-RATE
AVG-USAGE

END OF LIST

35060
J A SCHWARTA
331 DOCK WAY
$33,822.34
2
31

09:11:53 20 AUG 1982

A significant difference between the two formats is that for the columnar
format all headings are listed only once for each page, whether or not values
exist for the columns, while in the noncolumnar format, headings are only
displayed for attribute definition items if the item being listed has values
for the specified attribute.

1-53

88A00776A

1.20.1 DEFAULT OUTPUT-SPECIFICATIONS

If no output-specifications appear in a sentence, a set of default attribute
definition items are used to determine the output specifications. The ACCESS
processor will look up the items with the sequential item-ids 1,2,3,4 ••• in
the dictionary of the file being listed. The search for items will continue
until an item-id which is not in the dictionary is reached.

If the item with item-id "1'· is not found, no output specifications will be
used.

The attribute definition dictionary items should have an "Att in line one if
the attributes they define are to be listed; an "X" may be specified in line
one if the attribute name is not to be listed, but the search for other items
is to continue.

Note that the AMC's of these special items 1, 2, etc. need not be in sequence,
though typically, the item whose item-id is "1" will have an AMC of 1, the item
whose item-id is "2" will have an AMC of 2, etc.

An example of the use of the default set of attribute definition items:

)LIST SM82 [CR]

PAGE 1

SM82 ••••••••.

WHERESUBS
A-CORRl
BRPl
IDATE

17:45:10 17 NOV 1982

FRM CLASS •••• SUB-cLASS.. REV DATE REV CKSM LINES OBJ

121 SYSTEM
231 ENGLISH
181 BASIC
091 ENGLISH

UTILITY
CONVERSION
RUN-TIME
CONVERSION

250CT82
12SEP82
310CT82
22SEP82

82A C5BE
82A 8BE2
82B FF37
82A B520

234 1FB
43 008

325 1FF
224 1B6

)LIST SM82 HDR-SUPP [CRl

SM82 •••••••••

WHERESUBS
A-CORRl

FRM CLASS •••• SUB-CLASS.. REV DATE REV CKSM LINES OBJ

121 SYSTEM UTILITY 250CT82 77A C58E
231 ENGLISH CONVERSION 12SEP82 77A 8BE2

234 1FB
43 OD8

)LIST SM82 (C) [CR]

WHERE SUBS
A-CORRl

121 SYSTEM UTILITY
231 ENGLISH CONVERSION

1-54

250CT82
12SEP82

77A C5BE
77A 8BE2

234 1FB
43 OD8

88A00776A

The ID-SUPP modifier and the I option. Item-ids of the data items will appear
leftmost on the listing, underneath the file name in the heading, unless the
ID-SUPP modifier or 'I' option is used. (The Io-SUPP, or 'I' option is also
used to suppress the listing of item-ids in the T-DUMP and T-LOAD process.)

The HDR-SUPP and COL-HOR-SUPP modifiers. The HDR-SUPP modifier (or 'H'
option) will suppress the system generated page heading (time and date on the
left, page number on the right). (Note that a HEADING modifier will have this
same effect.) The COL-HOR-SUPP (or 'c' option) will suppress the column
headers (names from line 3 of the dictionary items) and also suppress the
system page heading, and the "n ITEMS LISTED" message at the end of the
listing.

The ONLY modifier. Use ~f the modifier ONLY just before the file name in an
ACCESS sentence will cause the default set of attribute definition items to be
ignored. An example of the use of ONLY modifier:

)LIST ONLY SU82 [CR]

PAGE 1

SM82 ••••••••••••

WHERESUBS
A-CORR1
BRP1
IDATE

23:32:41 14 DEC 1982

The general forms of output-specification shown below will be discussed in the
following sections.

attribute-name {"print limiters"}

BREAK-oU attribute-name {"text {'options'} text"}

TOTAL attribute-name {"total limiters"}

1-55

88A00776A

1.21 PRINT- LIMITERS

Print-limiters may be used to select only certain values from multivalued
attributes for printing. The values can be limited to those satisfying
specified criteria, and dependent values in associative data sets can be
suppressed if the value they depend on is not printed.

Specific values from multi valued attributes can be selected for output by
placing the relational operator(s), followed by the desired value (or values)
in double-quotes (") or backslashes (\), immediately following the attribute
name. If the attribute is an associative controlling attribute then the
corresponding values from the dependent attributes will also be returned.
Likewise, if the controlling value does not match any of the desired values in
quotes, then the dependent values associated with those controlling values will
not be printed.

For example, to limit the printing of an attribute called TRAN-DATE (which is
a date field) to dates in the range 1/1/82 through 12/1/82 inclusive, the
following print-limiting condition may be specified:

TRAN-DATE > • \ 1 JAN 82\ AND <- "12/1/82" •••

Note that the form of the print-limiter follows the general form used for
selection-criteria; in fact, the only difference between a selection-criterion
and a print-limiting output specification is the absence of the WITH modifier.

The following example lists all the items in the INV file which contain any
value for the attribute TRAN-DATE:

>LIST INV TRAN-DATE !RAN-TYPE TRAN-QTY [CRl

PAGE 1 18:18:36 20 AUG 1982

INV ••••••••• nAN-DATE !RAN-TYPE TRAN-QTY

* *
1242-22 11 FEB I 100

R 48
S 31

12 FEB I 144
R 43
S 66

1242-11 11 FEB I 19
R 122
S 33

12 FEB I 97
R 39
S 7

2 ITEMS LISTED.

1-56

88A00776A

A search for a single value may be used in the print-limiter format. For
example, the TRAN-DATE "11 FEB 82" portion of the ACCESS sentence following
indicates to the processor that only the dates equal to 11 FEB 82 are to be
retrieved.

<LIST INV TRANS-DATE "11 FEB 82" TRAN-TYPE TRAN-QTY [CR]

PAGE 1 18:20:04 20 AUG 1982

INV •••• TRAN-DATE IRAN-TYPE IRAN-QTY

* *
1242-22 11 FEB I 100

R 48
S 31

1242-11 11 FEB I 19
R 122
S 33

2 ITEMS LISTED.

Since TRAN-DATE is a controlling attribute, only the values associated with 11
FEB 82 for TRAN-TYPE and TRAN-QTY (which are dependent attributes) are
retrieved.

1-57

88A00776A

1.22 MODIFIERS AND OPTIONS

Modifiers or options may be used to further modify the meaning of ACCESS
sentences, and to generate more elaborate listings and reports. Some modifiers
appear before attribute names in the ACCESS sentence, and some appear at the
end of a sentence and may be replaced by an option in the option string. The
option string always appears last in an ACCESS sentence, and consists of single
letters, optionally separated by commas, and enclosed in parentheses.

The modifiers which ~y be used in an ACCESS sentence, and their equivalent
options, if any, are listed in alphabetical order below:

Modifier

BREAK-oN

BY

BY-DSND

BY-EXP

BY-EXP-DSND

COL-aDR-SUPP

DBL-SPC

DET-SUPP

DICT

Equivalent
Option Meaning

(C)

(D)

Defines control. (See Section 1.25, CONTROL­
BREAKS.)

Designates the attribute name immediately following
as a sort-key for the SORT operation. Sequencing
is in ascending order comparing ASCII values. See
Section 1.5, SORT.

Specifies sorting in descending instead of
ascending order.

Sorts by exploding attribute values; ascending
order.

Sorts by exploding attribute values; descending
order.

Suppress the output of the time/date heading, the
column headings, and the end-of-list message.

Causes an extra blank line to be inserted between
items to double-space a listing.

Suppresses detail output when used with TOTAL or
BREAK-oN modifiers. See Section 1.25.2, GENERATING
SUBTOTALS USING CONTROL-BREAKS.

Specifies the DICT (dictionary) portion of a file
is to be listed, as opposed to the DATA file. (See
Section 1.1, FORMING ACCESS INPUT SENTENCES.)

1-58

Modifier

EVERY or EACH

FOOTING

GRAND-TOTAL

HOR-SUPP or
SUPP

READING

to-SUPP

LPTR

NO PAGE

ONLY

TAPE

TOTAL

USING

WITH or IF

Equivalent
Option

(H)

(I)

(P)

(N)

88A00776A

Meaning

Modifies a selection-criterion so that every value
for a multivalued attribute must meet the speci­
fied condition for the criterion to be true for
that item. This modifier must immediately follow
the modifier WITH. See Section 1.18, FORMING
SELECTION-CRITERIA.)

Indicates that the following text string is to be
processed and used for a footing on the bottom of
each page of output.

Indicates the following text is to be printed on
grand total lines.

Suppresses the output of the time/date heading and
the end-of-list message.

Indicates that the following text string is to be
processed and used for a heading on the top of each
page of output.

Suppresses the display of item-ids for LIST and
SORT operations.

Routes output to line printer.

When output is to the terminal. this modif.ier will
prevent the halt of output at the end of each page.

Inhibits the use of default attribute definition
items when no output specification is given.
When used, must precede the file-name.

Causes the data to be obtained from a tape or
cartridge disk file in a T-DUMP or S-DUMP format.

Causes totals for the attributes which follow to be
accumulated.

Causes the attributes to be obtained from a file
other than the dictionary-level file.

Designates that the following attribute name is
part of a selection criterion.

1-59

Modifier

WITHIN

WITHOUT

Equivalent
Option

88A00776A

Meaning

Designates tha~ items may contain additional
ite~ids relating to the primary item-ide

Is a synonym for WITH NOT or WITH NO.

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, and THE are throwaway modifiers
which do not affect the meaning of the ACCESS sentence. They may be used
anywhere in the .entence and are included to provide a degree of naturalness to
the language. Any other worda not otherwise defined in an account~s master
dictionary may be included as throwaways by copying the definition of an
existing throwaway to the new throwaway.

The following example demonstrates alternative ways of saying the same thing.
In the first case, the tet"'1118 ~TH!~ and ~FIL!~ are throwaways and may be
included or omitted. The modifier DBL-SPC has no option form. Note that the
default is to pause at the end of each page when the output is to a terminal.
If you wish to terminate the listing at this point, type a CONTROL-X. If you
prefer that the listing not pause at the end of each page, use the NOPAGE
modifier or the N option.

)LIST THE ACCOUNT FILE DBL-5PC [CR)

)LI5T ACCOUNT DBL-5PC [CR)

These sentences cause the ACCOUNT file to be listed. The listing will be
double-spaced, and the output will halt at the end of each page.

>SORT INVENTORY WITH PRICE GT "500" Io-5UPP (P) [CR]

This sentence causes items in the INVENTORY file with PRICE greater than
500 to be sorted and listed. The output will be to the line printer and
the time/date heading will not be printed.

)LIST ACCOUNT ITEMS > "35000" NAME ADDRESS NOPAGE ID-SUPP [CR]

)LIST ACCOUNT) "35000" NAME ADDRESS (IN) [CR]

These sentences cause the'values for NAME and ADDRESS (in items with
item-ids greater than ~35000') to be listed. Item-ids will not be listed.
The listing will not halt at the end of each page.

>SORT-ITEM PROCS LPTR (F) [CR)

>SORT-ITEM PROCS (P,F) [CR]

These sentences cause all items in the PROC file to be output to the
spooler, sorted by item-id, one item per page.

1-60

88A00776A

Note that "'SUPP'" is a synonym for "'HDR-SUPP'" and that the option H has the
same effect.

The third case included the NOPAGE modi-fier, which causes a listing which is
sent to a terminal to not pause at the end of each page. The option associated
with this modifier is N. The option associated with the ID-SUPP modifier is I.

In the fourth case, note that the modifier LPTR may be replaced by the option
P, and that the option F, which is applicable to the LIST-ITEM and SORT-ITEM
verbs only, and which causes a page-eject to be executed before the beginning
of each item, does not have a modifier item.

1.22.1 ACCESS AND THE OPTIONS PROCESSOR

Options are decoded during the initial instruction scan. The call to the
options processor is initiated by the left parenthesis which must be used
before the first option. The option processor will accept any uppercase
alphabetic character. All other characters in the string will be ignored by
the options processor. The following is a list of the options of use in
ACCESS.

Option

B

C

D

F

H

I

N

o

P

Meaning

Causes the line feed at the end of the compile phrase to be
avoided.

Equivalent to COL-HDR-SUPP. Relevant to LIST-class verbs.

Equivalent to DET-SUPP. Relevant to verbs capable of BREAK-oN
and TOTAL.

Causes page eject for each item. Relevant only to the
LIST-ITEM and SORT-ITEM verbs. (No equivalent modifier.)

Equivalent to HDR-SUPP. Relevant to LIST-class verbs.

Equivalent to ID-SUPP. Suppresses the item-id in LIST-class
verbs. Suppresses the item-id in the terminal output with
T-LOAD, T-DUMP, and S-DUMP ve rbs •

Equivalent to NOPAGE. Relevant to terminal output with
LIST-class verbs.

Overwrite items. Relevant to the T-LOAD verb.

Equivalent to LPTR. Relevant to LIST-class verbs.

1-61

88A00776A

1.23 GENERATING HEADINGS AND FOOTINGS

The user can specify his own headings and footings with the ACCESS verbs LIST,
SORT, LIST-ITEM and SORT-ITEM. This is done with the READING and FOOTING
modifiers, which specify that the string that follows them is to be used as
heading or footing text. Special characters inside the text string specify
special operation on the heading. During generation of the listing, the
special characters in the heading or footing text string will be replaced by
the current value of the page number, the item-id of the item being listed,
break-on data or other parameters. A provision for centering headings, even
variable length ones, is provided. The specified heading or footing will be
printed at the top or bottom of every page of output.

If an ACCESS input sentence contains a READING modifier, then the normal
heading, which consists of a page number and the current time and date, and the
usual t' n ITEMS LISTED" message will not be printed.

A READING (FOOTING) specification may appear anywhere in the LIST type
statement. To specify a heading, the user enters the word HEADING (FOOTING)
followed by a string of characters enclosed in double quotes ("), or
backslashes (\). Special option characters may appear, enclosed in single
quotes (' '). The READING (FOOTING) specification has the general form:

HEADING or FOOTING "text {'options'} text {'options'} ••• "

Special option characters to be enclosed in single quotes are:

Option Meaning

BREAK. Inserts the value causing a control-break, if the 'B'
option has been specified along with the control-break field.
See Section 1.25.3, OUTPUT OPTIONS FOR CONTROL-BREAKS). Has no
effect otherwise.

CENTER. Causes the current line of the READmG or FOOTING to be
centered on the output page.

DATE. Inserts the current date at this point in the heading in
the form: dd mmm yyyy, where dd is the day of the month, mmm is
the abbreviation for the name of the month, and yyyy is the
4-digit year.

'F' FILE-NAME. Inserts the name of the file being LISTed or SORTed.

'Fn' FILE-NAME NO. I. (Where 'n' is a decimal number.) Causes the
file-name to be left-justified in a field of n blanks at that
point in the READING or FOOTING.

'L' LINE. Specifies the start of a new line in the HEADING or
FOOTING.

1-62

88A00776A

Option Meaning

'Pin}' PAGE. Inserts the current page number, right justified in a
field of 4 (or n) blanks.

'PN{n}' As above, left justified.

'T' TIME. Inserts the current time and date in the format: hh:mm:ss
dd mmm yyyy, where hh is the hour in 24-hour (or "military")
format, mm is the number of minutes and ss is the number of
seconds past the hour, dd is the day of the month, mmm is the
abbreviation for the name of the month, and yyyy is the 4-digit
year.

For example:

Two successive single quotes are used to print a single quote
mark in heading text.

which will center the heading "INVENTORY LIST" at the top of each page; or,

(

which will skip a line, center the message "STATUS REPORT", go to the next line
and center the word "PAGE", with the current page number at the foot of each
page. (The page number is printed right-justified in a field of 4 blanks.)

An example of HEADING usage is:

>SORT ACCOUNT NAME HEADING "NAME LIST AT 'TL' PAGE NO. 'PL'" [CRl

NAME LIST AT 10:29:39 20 AUG 1982
PAGE NO. 1

ACCOUNT •••

11000
11015
11020
11025

MAl-!!: ••••••••

M H KEENER
L K HARMAN
J T O'BRIEN
P R BAGLEY

1-63

88A00776A

1.24 GENERATING TOTALS AND GRAND-TOTALS

LIST and SORT sentences may generate subtotals and totals for attribute
values. The TOTAL modifier is used to generate sub- and grand-totals; the
GRAND-TOTAL modifier is used to specify special formatting on the grand-total
line. The general form of these modifiers is: .

• • TOTAL attribute-name {"total limiters"}

•• GRAND-TOTAL "{text} {'options'} {text}"

The total modifier causes a total to be computed for the attribute whose name
immediately follows the word "TOTAL". For example:

LIST AFILE TOTAL A7

This sentence causes values for attribute A7 to be listed, followed by a total
(sum) of these values. On the output, the default total identification is
three asterisks (***) in the item-id column.

The total-limiter may be used to limit the total-ing to values that pass the
limiting criterion. The form of the total-limiter is the same as that for the
print-limiter (see Section 1.21, PRINT-LI1~ITERS), and the total-limiter will
also cause a print-limiting function.

It is possible to total fields of length O. Nothing will be printed at detail
time. At break time, the value will appear at its appointed location, unless
the output value is cleared to null with an F;"" in attribute 7 of the data
definition item.

1.24.1 THE SEQUENCE or EVALUATION

Totals are generated from the number that results after the execution of a
correlative (attribute 8) of the data definition item, and after the test for
the print- or total-limiter. If the result after the execution of attribute 8
is non-numeric, then the total will remain as it was before the current value
was processed.

At output time, that is, on a control break or at the grand total, the data in
the related control-break item and all of the totals are composed into an
item. Each element of this item is obtained from the control-break or total
record. The element is then used as input for the conversion in attribute 7 of
the data definition item. Conventionally, this has the effect of masking the
total according to the same MR-class mask as was used on the detail-time data
in this field.

1-64

88A00776A

It is possible, however, to use F- or A-correlatives in attribute 7 to generate
compositions of totals. In this case, the attribute-mark-count number specified
in the F-correlative refers to the attribute-mark-count number in attribute 2
of the data defining items. In other words,· if an F-correlative stipulates an
AMC of 17, at detail-time, the processor will look in attribute 7 of a data
item for the value requested. At total-time, the processor will look for the
data defining item in the compiled process controlling string which has '17' as
its AMe specifier. This is the number in attribute 2 of the data defining item
in the dictionary file.

The processor will then retrieve the total related to that item at the current
break level for processing in the F-correlative. It is, therefore, possible to
generate data which is the result of arithmetic manipulations on totals.

It is in this context that the operand 'NO' and 'NB' (see Section 2.4.9.1,
F-correlatives) are of use. The NO operand obtains the number of items
processed since the last break at this level. (Note that BY-EXP SORTS and
LISTS that are run using lists created with a BY-EXP modifier consider the
collection of values obtained at each value mark to be an item.) The NO is
useful for obtaining the number of values included in a total if there is a
one-to-one correspondence between the values and the item count represented by
ND. If there is not, a separate totaled data definition item whose definition
includes F;"l" in attribute 8 should be included in the sentence and referenced
in attribute 7 of the data definition item which is generating the composition
at total times.

The NB operand returns the break level at which processing is currently
occurring. NB is zero at detail-time, and is 255 at grand total time. The
lowest level break yields 1; and for each succeeding break level the number is
incremented by one. The processor is capable of at least 127 break levels, and
may be capable of 250 levels. This means that a different class of number may
be constructed at each break level.

The GRAND-TOTAL connective may be used in reports that have TOTALs and/or
BREAK-ONs to specify special action when printing the grand-total line. The
use of GRAND-TOTAL is similar to the BREAK-oN connective; the difference is
that the GRAND-TOTAL connective may appear anywhere within the statement, and
that it must be followed immediately by a value string enclosed in
double-quotes.

The general form is:

GRAND-TOTAL " text ••• {'options'} •• {text}"

1-65

88A00776A

The optional "text" is any literal string that is to be printed as a substitute
for the normal ft ••• " that appears as the item-id of the GRAND-TOTAL line. The
literal string will be printed left-justified, starting at column 1, regardless
of the actual justification of the item-id, even if "ID-SUPP" has been used.

The 'options' string is enclosed within single-quotes, and is used to specify
the 'u' (underline), 'L' (line-suppress), and 'P' (page-eject) options. The
page-eject feature is particularly useful when the GRAND-TOTAL line of a report
is actually meaningless; by specifying page-eject, the GRAND-TOTALs appear on a
new page, and may be discarded. If the underline option is used, all total-ed
fields in the report will be underlined with a row of equal-signs (-).

An illustration of the use of TOTAL and GRAND-TOTAL with an example from the
ACCOUNT file is:

)LIST ACCOUNT AFTER "35090" NAME ADDRESS TOTAL DEPOSIT [cs] _ [CR]
: GRAND-TOTAL "'U' GRAND-TOTAL IS :" [CR]

PAGE 1

ACCOUNT •••

35100
35095
35110
35105

NA!-fE ••••••••••••••

R W FORSTROM
A W FEVERSTEIN
R E KAPLOWITZ
S J FRYCK!

GRAND TOTAL IS :

4 ITEMS LISTED.

ADDRESS ••••••••

318 CARNATIOtf
324 CARNATION
306 CARNATION
312 CARNATION

10:31:23 20 AUG 1982

DEPOSIT.

8.00
10.00
10.00
10.00

38.00

The TOTAL modifier may be used in conjunction with the BREAK-oN modifier to
output subtotals. See Section 1.25.2, GENERATING SUBTOTALS USING
CONTROL-BREAKS.

1-66

88A00776A

1.25 CONTROL-BREAKS

1.25.1 BBEAK-oN MODIFIER

The BREAK-ON modifier may be used to group items in a listing according to the
value of the BREAK-oN attribute-name(s). The BREAK-oN modifier is used in the
following form:

BREAK-oN attribute-name {"text ••• {'options'} •• text,a}

The attribute-name indicates the attribute on which a break will occur. The
optional text string, if specified, will be printed instead of the normal
break-on line. Options are provided to put additional information in the
break-on text.

During the LIST or SORT operation, a control-break occurs whenever there is a
change in the value of the specified attribute. Value comparison is made on a
left-to-right, character-by-character basis. In generating the value for
comparison, correlatives in the attribute definition are processed but
conversions are not. See Section 2.4, CONVERSION AND CORRELATIVE CODES~

The hierarchy of the breaks is specified by the sequence of the BREAK-oNs in
the input line, the first being the highest level.

When a control-break occurs, three asterisks (***) are displayed in the
BREAK-oN attribute column (i.e., the attribute whose value has changed, thus
causing the break), preceded and followed by blank lines. If the optional text
string is specified, the processed text string will be substituted for the
asterisks.

For multiple control-breaks, output proceeds from lowest level BREAK to
highest level. The data associated with the lowest level control-break is
printed on the current page (even if the end of the page has been reached). If
multiple BREAKS occur, normal pagination proceeds on the second and subsequent
data lines, unless an option prevents this.

The BREAK-oN modifier may be used in conjunction with the TOTAL modifier.

The data associated with the break-on attribute may be suppressed in the
detail lines by using a t1AX length of zero in the dictionary attribute
definition (attribute 10 in the data definition item). If suppression of the
data associated with the control break is desired at total time, it must be
done with an F;n" in attribute 7 of the data definition associated with the
control break.

1-67

88A00776A

The following example illustrates the use of the BREAK-oN modifier.
Additional output formatting capabilities are described in Section 1.25.3,
OUTPUT OPTIONS FOR CONTROL-BREAKS.

>SORT ACCOUNT> "35000" BY STREET NAME \BREAK~N STREET CURR-SALNC1 [CR]

PAGE 1 ~) 09:34:01 02 APR 1982

ACCOUNT. • • NAME. • • • • • • STREET. • • • • • • • • CURR-BALNC •••

35090
35095
35100
35105
35110

35005
35010
35015
35025

35030
35035
35040
35055
35055

35060
35065
35070
35075
35080
35085

20 ITEMS LISTED.

D U WILDE
A W FEVERSTEIN
R W FORSTROM
S J FRYCKI
H E KAPLOWITZ

J S ROWE
S R KURTZ
W F GRUNBAUM
J D GUETZINGER

CARNATION
CARNATION
CARNATION
CARNATION
CARNATION

COVE
COVE
COVE
COVE

F M HUGO DAHLIA
M J LANZENDORPHER DAHLIA
C E ESCOBAR DAHLIA
P J WATT DAHLIA
J W ROMEY DAHLIA

J A SCHWARTA
L J RUFFlNE
F R SANBORN
J L CUNNINGHAM
G A BUCKLES
J F SITAR

DOCK
DOCK
DOCK
DOCK
DOCK
DOCK

1-68

$ 884.53
$ 19.25

$ 5,569.53
$ 94,944.55

$
$
$
$

464.72-
467.33
88.47
3.45

$ 123.48
$ 445.89
$ 38,822.12-
$ 337.18
$ 33,478.95

$ 33,822.34
$ 558.43
$ 22,144.67
$ 7.70
$ 447,765.48
$ 200.00

88A00776A

1.25.2 GENERATING SUBTOTALS USING CONTROL-BREAKS

The TOT.~ modifier may be used with the BREAK-oN modifier for the purpose of
generating subtotals in LIST and SORT statements when control-breaks occur.
The GRAND-TOTAL modifier is used to print a heading or otherwise modify the
grand TOTAL data line. .

The TOTAL modifier is used to generate and print subtotal values (in addition
to a total) when it appears in the same sentence as BREAK-oN. The form is the
same as for generating totals, for example:

TOTAL attribute-name {"total-limiter"}

Values for the specified attribute are accumulated and printed as subtotals
whenever a control-break occurs. Multiple TOTAL modifiers may appear.

When a control-break occurs, a line of data is output, preceded and followed
by blank lines. Three asterisks (***) are displayed in the BREAK-oN attribute
column, and a subtotal is displayed in the appropriate column for each
attribute specified in a TOTAL modifier. Subtotals are the values accumulated
since the last control-break occurred.

At the end of the listing, a TOTAL line is printed for every BREAK used. All
end of listing sums are printed on the current page.

In computing the value for accumulation, correlatives are processed but
conversion specifications are not (see Section 2.4, CONVERSION AND CORRELATIVE
CODES). Conversion is applied only when the value being accumulated is
actually printed.

The GRAND-TOTAL modifier is used to control the format of the grand total
line. Its general form is:

GRAND-TOTAL "text ••• {'options'} ••• text"

The text, if specified, replaces the "***" field normally printed at the
extreme left of the GRAND-TOTAL line. Output formatting capabilities are
described in Section 1.25.3, OUTPUT OPTIONS FOR CONTROL-BREAKS.

1-69

88A00776A

Sample use of control-breaks:

)SORT ACCOUNT WITH BILL-RATE "2" "40" NAME BREAK-oN BILL-RATE [csl_ [CR]
:TOTAL CURR-BALNC BY BILL-RATE [CR]

PAGE 1

ACCOUNT •••

35060
35085

11100
35075

4 ITEMS LISTED.

NA!-tE ••••••••••

J A SCHWARTA
J F SITAR

E F CHALMERS
J L CUNNINGHAM

BILL-RATE

2
2

40
40

1-70

09:28:03 23 AUG 1982

CURR-BALNC ••

$ 33,822.34
$ 200.00

$ 34,022.34

$ 17.50
$ 7.50

$ 25.20

$ 34,047.54

88A00776A

1.25.3 OUTPUT OPTIONS FOR CONTROL-BREAKS

Headings and output, control options may be specified for control-breaks. The
DET-SUPP modifier may be used to suppress detail in listings.

A user-generated heading can be specified to be printed in place of the
default name CONTROL-BREAK HEADING (***) by following the BREAK-QN
attribute-name with the desired heading, enclosed in double quote marks (Of ").
Within the heading, output control options may be specified, enclosed in single
quote marks (' '). This gives the BREAK-QN specification the following form:

BREAK-QN attribute-name {"text ••• {'options'} ••• text"}

The text, if specified, replaces the default asterisk field ("***") in the
attribute-name column when the control-break printout line occurs. Options are
used to modify some of the actions' taken at control-break time, and are
specified as one or more characters. BREAK-QN options are:

Option

'B'

'D'

'N'

'U'

'v'

Meaning

BREAK. Specifies this control break attribute name as the one
whose value is to be inserted in the ACCESS page heading in
place of the 'B' option in the HEADING specification (see
GENERATING HEADINGS). It may not be meaningful to specify this
option within more than one BREAK-QN specification.

DATA. Suppresses the break data line entirely if there was
only one detail line since the last time this control-break
occurred.

LINE. Suppresses the blank line preceding the break data line.
This option is ignored when the 'u' option (see below) is used.

NUMBER. Resets the page number to one on this break.

PAGE. Causes a page eject after the data associated with this
break has been output.

ROLLOVER. Inhibits page rollover, thus forcing all the data
associated with this break to be current on the same page.

UNDERLINE. Causes the underlining of all specified TOTAL
fields.

VALUE. Causes the value of the control-br,eak to be inserted
at this point in the BREAK-QN heading.

1-71

88A00776A

If the modifier DET-SUFP is used in the sequence with TOTAL and/or BREAK-oN,
then all detail will be suppressed and only the subtotal and total lines will
be displayed. This is shown in the second ACCESS sentence of the following
example:

(J)
)SORT AC~UNT WITH BILL-~ ~2","40" BY BILJ-rltATE NAME [cs] [CR]
: BREAK-o~ILL-RAri"~SUB-TOTALFOR 'v,'t TOTAb!tURR-BALNC [ca] [CRl
: GRAND-TOTAL "GRAND TOTAL :"--,'U · feR 1 -

PAGE 1

ACCOUNT •••
~ ~
NAME •••••••••• BILL-RATE

11:22:33 22 FEB 1982

Q)CURR.-BALNC ••

35060
35085

11100
35075

GRAND-TOTAL:

4 ITEMS LISTED.

J A SCHWARTA
J F SITAR

2
2

-~--

,SJ1B-TOTAL FOR 2
. ',.,,",,-- ." ...

E F CHALMERS 40
J L CUNNINGHAM 40

SUB-TOTAL FOR 40

:BREAK-oN BILL-RATE

PAGE 1

ACCOUNT... BILL-RArE CURR-BALNC ••

SUB-TOTAL FOR 2 $ 34,022.34

SUB-TOTAL FOR 40 $ 25.20

*** $ 34,047.54

4 ITEMS LISTED.

1-72

$ 33,822.34
$ 200.00

$ 34,022.34

$
$

$

17.50
7.70

25.20

$ 34,047.54

09:39:20 20 AUG 1982

88A00776A

data entry

2.1 ACCESS DICTIONARIES AND ATTRIBUTE-DEFINITION ITEMS

The information in sections 2.1 through 2.4 deals with getting information
into the ACCESS data base. This documentation is more technical and is
provided for the person who wishes to write a program for data entry into
ACCESS. Another way to get data into ACCESS is to create the dictionary and
associated files structures described using the EDITOR. Although this is not
an efficient method of data entry, it gives the newcomer to PICK a simple way
to experiment with ACCESS data entry and become familiar with the operation of
PICK at the same time.

2

ACCESS uses dictionary items to define the data structure in the file. Each
data file has an associated dictionary, which "may contain a set of items used
to define the data. The item-ids of these dictionary items are the "attribute­
names" used in ACCESS statements in selection-criteria, sort-specifications,
and other specifications. These names may be of any form and length, but must
not be the same as any of the modifiers and connectives that are defined in the
tiD and are, therefore, reserved words. For example, in the statement:

>LIST ACCOUNT WITH CURR-BALNC NAME CURR-BALNC LPTR [CR]

ACCOUNT
WITH
CURR-BALNC and NAME

LPn

Each dictionary item serves to:

is the file-name
is a modifier and is in the MD
are items in the ACCOUNT dictionary and,
therefore, attribute-names
is a modifier and is in the MD

Define the location of the data field within the data item.
Define a "tag" or heading field for output.
Define interrelationships between attributes.
Define output formats, table look-ups, etc.

The dictionary items that define the data format for ACCESS processing are
called "attribute-definition" items. The item-id is the attribute-name which
mayor may not be the same as the tag in line 3. Line 1 of an attribute­
definition item contains the code "A" (therefore, these dictionary items are
also called "A" items). Other lines contain data as described below. Note
that "line" refers to a line in the EDITOR, and that PICK considers each new
line to be a new attribute. Therefore, when creating the PICK data files with
the EDITOR, line 1 will contain the data for attribute-namel, line 2 the data
for attribute-name2, and so on.

2-1

88A00776A

~ Name Description

1 D/CODE At S or X. Defines attribute-definition item. "Att indicates
"attribute," "S" indicates synomym attribute," and "X" means
"skip this attribute now".

2 A/~~ Numeric value giving the location of data defined by this item
(attribute mark count). May contain 0 if referencing the
item-id, or a dummy value if. the data referenced is computed
or generated, but not actually stored. It is used to identify
controlling and dependent attibutes. Also, an amc of 9999 is
used to access the SIZE or count field of the item; an &mc of
9998 to access the current item counter (item sequence number).

3 S/NAME Textual data used as tag to appear in headings in LIST or SORT
statements. If null, the item-id is used as the tag. May
contain blanks for formatting purposes. The reserved character
" " is used to specify a null tag. Multiple line tags for
COLUMNAR listings only may be specified by storing multiple
values (separated by a value-mark, control-]) in this field.

4 STRUCT This defines the "controlling-dependent" relationship.

5,6 Not Used.

7 V/CONV This is the Conv attribute; it contains the conversion
specification(s) which is (are) used to convert from the
processing format to the external (displayed) format. Multiple
specifications are separated by value-marks (control-]).

8 V/CORR This is the Corr attribute; it contains the correlative
specification(s) which is (are) used to convert from the internal
format to the processing format. Multiple specifications are
separated by value-marks (control-]).

9 V/TYP This defines the justification (left or right). An entry may
be an "R", "L", '"T" , or "U". This code is used both in
formatting the output and in determining the sort sequence when
sorting data. An "R" is used to specify a right-justified
numeric sort (even for alphanumeric fields). An "L" will always
sort left to right and will left-justify, folding at the end of
the field. A "T'" will left-justify and, if the value exceeds the
specified maximum length, will fold at blanks. A "Un code causes
left-justification without foldings. V/TYP defaults to 'L' if it
is null.

10 V/MAX This defines the maximum length of values for the attribute. The
entry is a decimal number. A value of 0 may be used to suppress
the listing of a control-break field on detail lines. V/MAX
defaults to 10 if it is null.

2-2

88A00776A

Typically, there are several dictionary items that can refer to a particular
data field in the file, since different formatting, sorting, or selection
requirements may require them. Multiple items are commonly called "synonym"
items and there is no limit to the number of such synonyms. For example, you
may also want to sort a field using a right-justified (numeric) sorting
sequence, but may want to output the data left-justified, which requires two
different dictionary items. An example of such statements:

1. >SORT INVENTORY BY PART' PART' [CR]

2. >SORT INVENTORY BY ONE ONE [CR]

5 amp le PARTII's

P2000-99C
P2000-12A
P2000-105B

Sorted output (statement 1)
P2000-12A
P2000-99C

P2000-105B

Dictionary items in INVENTORY FILE:

Itet11-Id PART fI
Line-No 001 A

002 1
003 PART'
004
005
006
007
008
009 R
010 10

ONE
001 A
002 1
003 ONE
004
005
006
007
008
009 L
010 10

2-3

(statement 2)
P2000-105B
P2000-12A
P2000-99C

88A00776A

2.2 ACCESS AND THE FILE STRUCTURE

ACCESS files are made up of elements found in files and values related to the
actual data to be retrieved. The verb definitions, file definitions,
modifiers, and relational operators must be in the MD. Usually, the data will
be found in the data section of the file and attribute-definition items in the
dictionary of the data file. However, other alternatives are available.

2.2.1 THE USING CONNECTIVE

The dictionary look-up process may be directed to a file other than the file
dictionary by use of the USING connective. The USING connective allows you to
specify what file is to be used as the dictionary in the ACCESS sentence.

This explicit dictionary file may be either a dictionary-level file, specified
by the modifier DICT, or a data-level file.

The USING statement may be anywhere in the sentence. It will be used for all
data definition item look-ups executed by the ACCESS compiler.

The USING modifier may be used when retrieving a dictionary-level file.

The form of the USING phrase is:

USING DICT FILENAME

USING FILENAME

The first form references the dictionary of the file FILENAME; the second
references the data-level file FILENAME. Note that the data-level file may be
of the form FILENAME,SUBFlLENAME. In these cases, all data definition items
will be taken from the file referenced by the USING connective. Any items not
found, will be looked for in the ~m.

Only one USING connective is allowed in the ACCESS sentence. The USING
connective must be immediately followed by either DICT FILENAME or FILENAME.
The source of the data processed is still specified by the conventional file­
name which must also appear in the sentence. Q-pointers may be used for either
or both references.

2-4

88A00776A

Default daOta definition items will come from the file referenced by the USING
connective only. Some examples are:

LIST WORKFILE USING DICT TESTDICT The data source will be WORKFILE.
The data definition items will be
retrieved from the dictionary of
TESTDICT. The default data
definition items will be used.

LIST DICT WORKFILE USING DICT WORKFILE The data and data definition items
have the same source.

LIST WORKFILE USING WORKFILE, WFDICTl The data comes from WORKFILE. The
data definition items come from a
data-level subfile of WORKFILE
named WFDICTl. There raay be an
indefinite number of these.

2 0.2.2 THE MASTEl. DICTIONAllY DEFAULT

If the data definition item is not found in the dictionary specified for the
file, in the dictionary-level file if no USING connective is included in the
sentence, or in the file specified by the USING connective, then the ACCESS
compiler will search the 1m for "the data definition item and will include it if
found.

2.2.3 THE SEQUENCE OF RETRIEVAL OF ITEMS FROM FILES

The ACCESS compiler takes two passes to retrieve all the definitions from files
which it needs to execute a sentence. The first pass uses the ~m to find the
file names and all modifiers and relational operators in the sentence. Any
data definition items found in the MD will be ignored on this pass. When the
input string is exhausted, the compiler proceeds to look up all undefined terms
in the dictionary-level file either impliCitly defined by the sentence or
explicitly defined by the USING connective. Items which are found are included
in the string in the proper location. If an item is not found in the specified
dictionary, then the compiler will look it up in the MD. If it still does not
find the item in the MD, it will concatenate a blank and the next data
definition item-id in the string to the missing item-ide The compiler will
attempt to look up this new key in the dictionary-level file and the ~m. This
process will terminate either when a data definition is retrieved or the list
of data definition items is exhausted. If an item cannot be found, ERRMSG 24
THE WORD 'A' CANNOT BE IDENTIFIED, will be issued.

The compiler does not look up elements in the string which are enclosed in
double quotes, single quotes, or backslashes. These are taken to be literals
rather than variables. They have the effect of terminating a string of data
definition item-ids.

2-5

88A00776A

2.2.4 ITEM-ID DEFIlII"fIOH WITH Q-POIlITEIS TO THE DATA FILE

The file definition item in an ACCESS sentence allows the use of attributes 7,
9, and 10 as meaningful elements in the data definition. The label comes from
the D- or Q-pointer name because attribute 3 of the D- or Q-pointer is, in
general, otherwise occupied. Attribute 2 is obviously forced to O. Note that
the selection, sort, and output processors all ignore attribute 8. The
selection and sort processors take the item-id as it is; the output processor
allows the use of an attribute 7 conversion.

The justification is of importance to both the sort and output processors; the
field length is of importance to the output processor (especially if the
item-ids are significantly longer then the file name or its nominal field
length), and especially to the columnar processor. Note that item-ids do not
fold, unlike other data processed by the columnar processor. All of the
characteristics of item-id handling may be got around by using a data
definition item which references data attribute 0 with ID-SUPP.

In the case that a Q-pointer is used to reference a file, the contents of
attributes 7, 9 and 10 in the Q-pointer definition take precedence over those
attributes in the D-pointer if they exist in the Q-pointer. Those that do not
exist in the Q-pointer will be retrieved from the D-pointer. In the case that
they do not exist in either, attribute 7 will be defined as null, attribute 9
will become L, and attribute 10 will become 9. These defaults will be taken
for all data definition items processed by the ACCESS compiler.

This allows the creation of multiple Q-pointers which treat the item-id field
in different ways, as may be convenient. It remains that Q-pointers require at
most that the first three attributes be defined.

2.2.5 In:M-ID SnUC'r1JRB

In TCL, the universal delimiter is a blank. Verbs, file names, connectives,
and data definition names are normally delimited by blanks. Non-ACCESS verbs
which reference files and items will take a string of characters which is
delimited by blanks to be the file name or one of the item names, depending on
its location in the command sequence.

If one constructs an ACCESS sentence which references a data definition item
which the processor cannot find in either the specified file dictionary or the
MD, it will then generate another item-id by taking the item-id for which a
record did not exist and concatenating the next string delimited by blanks in
the sentence to it, with a blank be~een the two character strings. This will
now be used as an item-ide This is why the error message which is trying to
tell you that the data definition item is not on file may include elements of
the ACCESS sentence.

2-6

88A00776A

For example, if, in the example below, the data definition item DOG is not on
file.

LIST MD CAT DOG RAT

The error message:

[24] THE WORD "DOG RAT" CANNOT BE IDENTIFIED

will be returned.

The sequence of concatenated strings will terminate at the end of the sentence
or at the first connective, value, or item-id which succeeds the unidentified
word.

This means that a blank is, in general, a character which is allowable for
item-ids in the system. If you wish to EDIT an item-id which includes one or
more blanks, enclose the string in one of the value delimiters.

You may also use the delimiters within a string enclosed in delimiters. Simply
use a delimiter which is not part of the item-id as the value-surrounding
delimiter •. For example:

IF DOG RAT is an attribute-definition item in'~m, then

LIST MD DOG RAT Will return the one attribute-definition
item whose name is DOG RAT.

In order to modify the item DOG RAT, use the form:

EDIT MD "DOG RAT" Which will obtain the item.

If you have an item named O'HARA, use the form:

LIST MD "O'HARA" This will return the item O'HARA.

Similarly, the form:

SELECT CUSTOMERFILE WITH LASTNAME "O'HARA" Will find all the O'HARAs
in the file CUSTOMERFILE.

2-7

88A00776A

There are characters which are not acceptable for inclusion in item-ids. None
of the system delimiters is allowable. An attempt to retrieve an item-id which
contains a system delimiter will have the effect of terminating the key at the
delimiter. In other words. if you have an item-id with a system delimiter in
it. it can be accessed only by processors which use a sequential search rather
than retrieval by item-ide This means that you can list it or select it. but
you cannot Edit it. Copy it. Delete it. or otherwise update it. or retrieve it
using a list. It can be removed by using a file-to-file copy. since it will
not copy to the new file. The fragment of the errant item-id up to the
delimiter will be reported as not being on file at the end of the copy process
if the copy is driven from a selected list.

It is also not advisable to include the control characters X'OO' through X'lA'
in the item-ide

2-8

88A00776A

2.3 CONTROLLING AND DEPENDENT ATTRIBUTES

There is the facility in ACCESS to define a set of attributes that are
associated together for listing or other purposes. Such an associative set of
attributes have one "Controlling" attribute; the other attributes in the set
are called "Dependent."

An associative set of attributes is used where there is a definite
relationship between the attributes, and the attributes are typically
multivalued. The "Controlling" attribute has multiple values; associated with
each one of these multi values is a corresponding set of values in each of the
dependent attributes. The dependent attributes may in turn have sub-multi­
values; however, each set of submultivalues is considered one value for
associative purposes.

The controlling-dependent set must be maintained in a particular format by
whatever program is updating the file; see the sections on file structure in
the Introduction to PICK manual for a general discussion on the physical item
format and the use of value delimiters.

The controlling attribute may be used in several ways to improve formatting or
to limit or control the data output.

For example, if the controlling attribute of an associative attribute set has
a print-limiter on it, the dependent attributes will automatically be limited
also. That is, if only the first and the seventh multivalues of the
controlling attribute pass the print-limiting test, only the first and the
seventh multivalues of all associated dependent attributes will be output. In
columnar formats, there may be a blank line output when print-limiters are so
used.

The controlling-dependent attributes are specified by the "c" and "0"
structure codes in attribute 4 of the dictionary items. This is described in
the next section.

There may be more than one associative attribute set in a file.

Dependent attributes may not be specified in an output specification without
the controlling attribute also being specified. However, for special purposes,
a synonym attribute definition without the "D" code may be used for listing the
dependent attribute data by itself.

As an example, consider the system ACC file, which contains the accounting
history data. Attribute 4 of this file stores the dates that the user has
logged on; redundant values are not stored; that is, if a user logs on more
than once in the same day, only one date is stored. Thus, values in this
attribute are unique. This attribute is considered the Controlling attribute
of the associative attribute set.

2-9

88A00776A

Attributes 5, 6, 7 and 8 store the actual time that the user logged on, the
connect-time associated with each logon session, the number of CPU units used,
and the number of line printer pages printed, respectively. Since there may be
more than one of these sets associated with a particular date logged on, these
are stored as submultivalues.

For example, a listing of an item "SMITH#O" in the file may look like:

>LIST ACC "SMITH#O" (H) [CR]

ACC •••••••••••••• DATE •••• TIME •••• CONN ••• UNITS LPTR

* * * *
SMITHIO 03/01/78 10:33AM 00:10 222 11 1

04: lSPM 00:05 23 1
03/03/78 11:12AM 00:33 1123 78 2

12:13PM 00:04 34 2
01:01PM 01:03 3090 6 2

There are two dates in the Controlling attribute, 03/01/78 and 03/03/78;
associated with these two dates are two sets of values in the attributes TIME,
CONN, UNITS and LPTR. (These are marked as "1" and "2" on the far right.) The
data under the DATE column is stored as two multivalues; data under the other
columns is also stored as two multivalues, but each is further comprised of
submultivalues; ~o in the first set and three in the second.

The internal format of the item SMITHIO is shown below; the representation
here is not actual, since dates and times are actually stored in an internal
format, but they are shown as if stored in the format displayed below, for
clarity. The symbols [am], [vm] and [svm] stand for attribute mark, value mark
and subvalue mark, respectively.

SMITHIO[am] [am] [am] [am]03/01/78[vm]03/03/78[am1
•• Attribute 4 ••••••••

10:3lAM[svm]04:1SPM[vm]11:12AM[svm]12:13PM[svm]01:01PM[am]
•• Attribute 5 •••

00: 10 [svm] 00: 05 [·vm] 00: 33 [svm] 00: 04 [svm] 01:03[am]
•• Attribute 6 ••••••••••••••••••••••••••

222 [svm] 23[vm] 1123 [svm] 34 [svm] 3090 [am]
•• Attribute 7 •••••••••••••••••••••••

11[vm] 78 [svm] [svm16[am1
•• Attribute 8 ••••••••••

2-10

88A00776A

2.3.1 MOlE ON CONnOLLING (C) AND DEPENDENT (D) AtTRIBUTES

'c' and '0' structure code operators define controlling and dependent
attributes.

Attribute 4 of attribute definition items is reserved for 'c' and '0'
structure definition codes. A 'c' code indicates a controlling attribute; a
'0' code indicates a dependent attribute.

In order to be a controlling attribute, the attribute definition item must
have a 'c' code in line 4. This code must be followed by the attribute numbers
of all dependent attributes for the controlling attribute.

The general form of the 'c' (controlling) structure definition code is:

C;amc;amc; ••• amc

where 'c' is the capital letter C, and each 'amc' is a dependent attribute
number. For example, if attribute 30 was to be a controlling attribute for
(dependent) attributes 31, 32, and 33, then the attribute definition item for
attribute 30 would have the following 'c' code in attribute 4:

Cj31j32;33

This indicates a controlling attribute which controls dependent attributes 31,
32, and 33. Each of these dependent attributes must have a dependent
structure-definition code (a '0' code) in attribute 4.

The general form of the 'D' (dependent) structure-definition code is:

Djamc

where '0' is the capital letter '0', and 'amc' is the single attribute number
of the attribute which controls the dependent attribute. In the earlier
example, the attribute-definition items for attributes 31, 32, and 33 would
have the following '0' code in attribute 4:

0;30

In the following example, attribute 1, the check number, controls dependent
attributes 2, the check amount, and 3, the check date. In tne first ACCESS
sentence, all values for each attribute name are listed. In the second
sentence, the user only wishes to see data on check number 502, so he uses a
print limiter on the attribute name CK-NO. Since the attributes named
CK-AMOUNT and CK-DATE are dependent upon the attribute named CK-NO, only the
check amount and date for check number 502 are printed.

2-11

88A00776A

The dictionary of the CHECK-REGISTER file looks like:

item-id CK-NUMBER CK-AKlUNT CK-DATE
001 A A A
002 1 2 3
003 Check Number Amount Date
004 Cj2j3 D ;1 Dj 1
005
006
007 MR2$ D
008
009 R R L
010 3 12 15

The item with item-id "JAN" in the CHECK-REGISTER file looks like:

item-id
001
002
003

JAN
501 [VIl] 502 [VIIl]50 3
12300[vm] 400[VIIl] 4488
3289[vm] 3291[vm] 3291

(Multivalued check numbers)
(Multivalued check amounts)
"(Multivalued check dates)

>LIST CHECK-REGISTER "JAN" CK-NUMBER CK-AMOUNT CK-DATE 1D-SUPP [CR]

CHECK-REGISTER CHECK NUMBER AMOUNT •••••• DAtE ••••••••••••

JAN 501
502
503

-$123.00 01 JAN 1977
$4.00 03 JAN 1977

$44.88 03 JAN 1977

>L1ST CHECK-REGISTER "JAN" CK-NUMBER "502" CK-AMOUNT CK-DATE 1D-SUPP [CR]

JAN 502 $4.00 03 JAN 1977

2-12

88A00776A

2.4 CONVERSION AND CORRELATIVE CODES

Processing codes may be specified as either CORRELATIVE codes or CONVERSION
codes, depending upon when the user wants the codes to be applied to the data.

An ACCESS attribute-name dictionary item may specify a processing code either
in line 7, where it is called a CONVERSION code, or in line 8, where it is
called a CORRELATIVE code.

During execution of an ACCESS sentence, the data in the items being listed is
represented in three different formats. The first is the "stored" format,
which is the format of the attributes exactly as they appear in the items in
the file. Whenever a piece of data is retrieved from a file, it is picked up
in stored format.

The CORRELATIVE code, if any, may then be applied to the data, converting it
to "intermediate" format. The intermediate format is used whenever:

1. The attribute name is part of a sort key.
2. The data is compared to a selection criterion.
3. The attribute name has a print ltmiter.
4. The attribute name has a TOTAL or GRAND-TOTAL connective.
S. The data produces a control break.
6. The data is printed, except on break lines.

CONVERSION codes are applied as output conversions to the intermediate format
data whenever the data is printed, including the break lines. This transforms
the data from "intermediate lt format to Itexternal" format. The data is printed
in external format.

If a CONVERSION is specified for an attribute name which is followed by a
selection-criterion, the conversion is applied as an input conversion to the
values in the ACCESS sentence to form the selection criterion value.

Conversions and correlatives may be multivalued, in which case they are
separated by a value-mark (vm -] - hex 'FD').

A summary of conversion and correlative codes is provided in Table 2-1.

2-13

88A00776A

Table 2-1. Conversion and Correlative Code Summary

~ Description

A ARITHMETIC. Used to compute mathemat ical expressions. Converted to
an "," code at run-time.

C CONCATENATE. Used to concatenate attribute values.

D DATE. Used to convert dates to external format.

F FUNCTION. Used to compute a mathematical function on attribute values

G GROUP. Used to extract one or more fields separated by a given
delimiter.

L LENGTH. Used to place constraints on what kind of data will be
returned, based on the length.

MC MASK CHARACTER. Used to convert strings to upper and lowercase, or to
extract alphabetic or numeric characters from strings.

MASK DECIMAL. (Left justified) used to format and scale numbers and
dollar amounts (same as BASIC format string).

1-tR MASK DECIMAL. (R.ight jus t if ied) Same as ML.

MT MASK TIME. Used to convert time of day from internal to external
format.

MX MASK HEXADECIMAL. Used to convert ASCII character strings to their
hexadecimal (base 16) representations.

P PATTERN MATCH. Used to return only those data values which match the
specified pattern.

R RANGE. Used to return only those data values which fall within the
specified ranges.

S SUBSTITUTION. Used to substitute the data value for non null or
zero values.

T TEXT EXTRACTION. Used to extract a fixed field from an attribute
value.

Tfile FILE TRANSLATION. Used to convert attribute values by translating them
through another file.

U USER DEFINED. Used to evoke assembly language routines to perform
special user-written conversions or correlatives.

2-14

88A00776A

2.4.1 GROUP EXTRACTION CODE (G)

The ~G' code is used to extract one or more fields from an attribute value.

If an attribute value consists of mUltiple fields separated by a delimiter,
the 'G' code will extract one or more contiguous fields. The general form of
the 'G' (Group Extraction) code is:

G{m}*n

where:
G
m

*

n

is the capital letter G (the Group Extraction code)
specifies the number of fields to skip.
If m is not specified, zero is assumed and no fields are skipped.
represents any single non-numeric character, except a minus sign
(-), which is the field. separator. System delimiters should not be
used.
is a decimal number which is the number of contiguous fields to
be extracted.

Sample usage of 'G' code:

G Code Attribute Value Out~t Value

G/1 04/02/1956 04
G1/1 04/02/1956 02
G2/1 04/02/1956 1956
G/2 04/02/1956 04/02
G1/2 04/02/1956 02/1956

GO*l 123*888*444 123
G1*2 123*888*444 888*444
G2*1 123*888*444 444
G3*1 123*888*444 (null)

G1*1 *WRITTEN 21 DEC 1977 WRITTEN 21 DEC 1977

2-15

88A00776A

2.4.2 OUTPUT CONSTRAINT CODES (L AID R)

The 'L' and 'R' codes place restrictions on output based on the R(ange) and the
L(ength) of a value.

The Length code places length constraints on what kind of data will be
returned, or returns the length of the data. The user may select a fixed
length Ln (number of characters) necessary to meet output criteria, or a length
range Ln,m.

Examples of the L code are:

LO

Ln

Returns the length of the data string submitted to the
length processor.

Returns the data value if it is equal to n characters long.
If the data does not meet the criteria then null is returned.

Returns the data value if it is greater than or equal to n
characters long and less than or equal to m, where n<m.

The Range code returns data values. which fall within the specified ranges,
where multiple ranges are allowed.

The format of the Range code is:

Rn,m{;n,m ••• } Returns the data value if it is greater than or equal to n
and less than or equal to m. Multiples of ranges may be
specified as shown, in ascending order. Note that when
negative range sets are used, the more negative number must be
stated first.

Note that any delimiter (except system delimiters) may be used to separate the
numbers in a range. However, for the sake of clarity, a minus sign should not
be used, as the minus sign may refer to the number(s) in the range.

In all cases, if the range(s) specifications are not met, null is returned.

2-16

88A00776A

2.4.3 OUTPUT CONSTRAINT CODES (P AND S)

The 'P' and'S' codes place restrictions on output based on P(attern) matching
and S{ubstitution) of the value of an attribute.

When an attribute is requested, the Pattern Match code returns only those data
values within the attribute which match the specified pattern. If the data
does not match the specified pattern, then null is returned. The Pattern Match
consists of any combination of the following:

penN) An integer number followed by the letter "'N', which
tests for that number of numeric characters.

P(nA) An integer number followed by the letter "'A"', which
tests for that number of alpha characters.

P(nX) An integer number followed by the letter 'X ... , which
tests for that number of alphanumeric characters.

P('literal') A literal string, which tests for that literal string.

For example, if the user wished to have only social security numbers returned,
the following Pattern Matching code could be used:

P(9N)j(3N-2N-4N)

This specifies that only those data values comprised of 9 numeric or a string
match of 3 numeric, a hyphen, 2 numeric, a hyphen, 4 numeric are returned.

The Substitution code .substitutes the data value of the referenced attribute
with a specified attribute if the data value is not null or zero. If the data
value is null or zero, it will be substituted with a literal string specified
by the user. For example:

This specifies that if the data value is not equal to zero or null then it
fAill be replaced by the contents of attribute 4. If it is equal to zero or
null, it will be replaced by the string 'XXX Note that if the Substitution
code is used in conjunction with the Function Processor, it may serve to test
for null or zero, and take different actions according to what kind of data it
encounters. For example:

Fl(Sj*j'NORMAL VALUE')

This specifies that if attribute 1 is null or zero, the string "NORMAL VALUE"
will be used, otherwise the contents of attribute 1 will be used.

Note that the S code should only be used in attribute 8.

2-17

88A00776A

2.4.4 CONCATENATIONS CODE (C)

The 'c' code provides the facility to concatenate attributes and/or literal
values prior to output. The general form of the 'c' code is:

C x op x {op x op ••• } C op x op {x op x ••• }

where:

C
x

op

is the code name.
is the character to be inserted between the concatenated
attributes and/or literals. A semicolon (;) is a reserved
character that means no separation character is to be used.
Any .non-numeric character (except a system delimiter or an
asterisk) is valid, including a blank.

is an attribute mark count (amc) or any string enclosed in
single quotes ('), double quotes (,') or backslashes (\), or
is an asterisk (*) which specifies the last generated value
(from a previous Conversion or Correlative operation).

Examples of the Concatenate code are:

CI0;" ";11

which will concatenate the values from attributes 10 and 11, separated by two
spaces.

C2-*

which will concatenate the value from attribute 2, to a previously generated
value from a preceding conversion or correlative code.

A safe practice for getting correct results is to create a dummy attribute
dictionary item with AMC-D. Place your C code in this.

Sample usage of 'c' (Concatenate) code:

ATTRIBUTE VALUES

014 SMITH
015 JOHN H.

001 DIME
002 DOZEN

C CODE

C; ''NAME'': 14, 15

C;1/2

2-18

RESUL!ANT OUTPUT

NAME:SMITH,JOHN H.

DIl1:E/DOZEN

88A00776A

2.4.5 TEXT EXTRACTioN CODE (T)

The 'T' code is used to extract a fixed number of contiguous characters froD an
attribute value. This is useful for fixed field data, or for truncating data
when you wish to prevent folding. Note that the attribute value that contains
the characters to be extracted must not exceed 500 bytes. The general form of
the 'T' (Text Extraction) code is:

T{m, }n

where:
T is the code name
m is the optional starting column number

is the separator necessary between 'm' and 'n'
if 'm' is specif ied

n is the number of characters to extract

If the form 'Tn' is specified, 'n' characters will be extracted, either from
the left or the right, depending upon the attribute definition item's V/TYPE
(attribute 009). If the V/TYPE is 'L', the 'Tn' form code will extract the
first 'n' characters of the attribute value. If the V/TYPE is 'R', the'Tn'
code will extract the 'n' rightmost characters of the attribute value.

If the form 'Tm,n' is specified, then 'n' characters, starting at column 'm',
will be extracted. The 'Tm,n' form always counts columns and extracts
characters from left to right. This means that the extraction will be from
left to right, regardless of the attribute definition item's V/TYPE. Examples
of T code:

T CODE ATTRIBUTE VALUE JUSTIFICATION V ALOE OUTPUT

T3 ABCDEF L ABC
T3 ABCDEF R DEF
T3,5 HELLO OUT THERE L LLO 0
T3,5 HELLO OUT THERE R LLO 0

T1,11 THIS IS A LONG STRING L THIS IS A L

T2,9 *12 DEC 77 L 12 DEC 77

T4,7 123SMITH CR L SMITHbb *
T4,7 848JOHNSONDB L JOHNSON
T3 123SMITH CR L 123
T3 848JOHNSONDB L 848
T2 123SMITH CR R CR
T2 848JOHNSONDB R DB

(* The bb represents two blanks)

2-19

88A00776A

2.4.6 DATE FOKHAT CODE (D)

Dates are stored in an internal format. 'D' (Date Conversion) code converts
dates to or from this format. Dates may be stored in items as numbers and
printed in different formats. This allows you to store dates with fewer bytes
of disk space and to do mathematical calculations with stored dates. The
internal format of any date is the integer number of days between that date and
the zero date, December 31, 1967. Dates before 12/31/67 are stored as negative
numbers; dates after 12/31/67 as positive numbers. For example:

INTERNAL FORMAT
-100
-10
-1
o
1

10
100

1000
10000

EXTERNAL (LISTING) FORMAT
22 SEP 1967
21 DEC 1967
30 DEC 1967
31 DEC 1967
01 JAN 1968
10 JAN 1968
09 APR 1968
26 SIP 1970
18 MAY 1995

D codes are entered in attribute 7 of the dictionary which describes the
attribute of the items which store the date in internal format. Different
external formats which may be specified for the 'D' code are given below.

D CODE INTERNAL FORMAT EXTERNAL ~LISTINGl FORMAT
D 5744 22 SEP 1983
D/ 5744 09/22/1983
D- 5744 09-22-1983
DO 5744 22 SEP
00/ 5744 09/22
02* 5744 09*22*83
D%1 OUE%5744 DUE%22 SEP 1983
D%1/ BAL%5744 BAL%09/22/1983
011- CHG#5744 CHGI09-22-1983
00$1 SALE$5744 SALE$22 SEP
DO SALE$5744 SALE$5744
D4- 5744 09-22-1983
DY 5744 1983 (4-digit year)
D2Y 5744 83 (2-digit year)
DQ 5744 3 (3rd quarter)
DD 5744 22 (22nd day)
DM 5744 9 (9th month)
DMA 5744 SEPTEMBER
OJ 5744 265 (265th day of year)
DW 5744 4 (4th day of week)
DWA 5744 THURSDAY
DI 9/22/83 5744 (Reverse conversion)
DI]D2 9/22/83 22 SEP 83 (Multivalue conversion)

2-20

88A00776A

The 'D' (Date conversion) code has the following general form:

D{n}{*m}{s}

where:
D is the code name

n is an optional single digit number which specifies the number of digits
to occur in the year on output. If 'n' is 0, no year will appear in the
date. n· 0, 1, 2, 3, or 4 is valid; if 'n' is omitted, n • 4 is
assumed.

* stands for any single non-numeric character which specifies the
delimiter between fields for group extraction. (* may not be a system
delimiter.)

m is a single digit number that must accompany * (if * is specified).
m specifies the number of fields to skip for group extraction.

s stands for either any single non-alphanumeric character (such as ' ,
or '-') that may be specified to separate the day, month and year on
output, or a special subcode, either D, H, Q or Y. If's' is
specified as a separator character, the date will be in the format
12-31-1982. If's' is not specified (and a subcode is not used), the
date will be in the format 31 DEC 1982. If a subcode is specified,
then only the number of the day, month, quarter or year is displayed.
Some examples of the use of the subcode:

o Subcode

DO
OM
DQ
D{n}Y
DY

Display

day of month
month of year
quarter of year
n-digit year (n • 1 - 4)
4-digit year

Note the use of the '*m' option which will perform a Group Extration before
applying the date conversion. (See Section 2.4.1, GROUP EXTRACTION CODE G.)

A special note for using the '0' (Date conversion) code on input: if no year
is specified, the current year will be used. If only two digits are specified
for the year, then years entered as 30 to 99 Will be stored as 1930 through
1999, and years entered as 00 to 29 will be stored as 2000 through 2029.

2-21

88A00776A

2.4.6.1 Time Formats

Time is stored in an internal format that is suitable for arithmetic
processing. The MT code provides the facility for converting time to or from
this compact internal format.

The internal time format is the number of seconds from midnight. The external
time is 24-hour military format (e.g., 23:25:59) or 12 hour format (e.g.,
11:25:59PM). The general form of the MT code is as follows:

l<lT{H}{S}

where:
MT is the Mask Time code specification

R is the capital letter H which optionally specifies 12 hour format.
If 'R' is omitted, 24 hour (military) format is assumed.

S is the capital letter S which optionally specifies seconds on output.
If'S' is omitted, seconds are not listed on output.

When codes MTH and MTHS are used, 12 hour external format is specified. For
input conversion, then, the time is entered with AM or PM immediately following
the numeric time (AM is optional). On output, AM or PM is always printed
immediately following the numeric time.

NOTE: 12:00 AM is considered midnight, and 12:00 PM is considered noon. AM
and PM will be ignored on input if code MT is specified. Illegal values are
converted to null on input. Sample usage of MT:

MT CODE INPUT VALUE STORED V ALOE OUTPUT V ALOE

MT 12: 43200 12:00
MTH 12PM 43200 12:0OPM
MTH 12AK 0 12:00AM
MTS 12AM 0 00:00:00
MTHS 12AK 0 12:00:00AM
MT 12:15AM 900 00:15
MTH 12:15AM 900 12:15AM
MT lAM 3600 01:00
MTH lAM 3600 01:00AM
MT 6AM 21600 06:00
MTH 6AM 21600 06:00AM
MT 1PM 46800 13:00
MTH 1PM 46800 01 :OOPM
MT 13: 46800 13:00
MTH 13: 46800 01 :OOPM
MT XYZ 0 00:00

2-22

88A00776A

2.4.7 FILE TRANSLATION CODE (Tfile)

The Tfile code provides a facility for converting a value by translating
through a file. The value to be translated is used as an item-id for
retrieving an item from the defined translation file. The translation value is
retrieved from the specified attribute of the item. The general form of the
Tfile (Translate) code is:

T{DICT}fileicnji-amcio-amC{ib-amc}

where:

T is the code name.

file is the name of the file through which translation takes place,
The file name may be preceded by "DIeT" to indicate a dictionary.

c is the translate subcode, which must be one of the following:

V Conversion item must exist on file, and the specified attribute
must have a value. Aborts with an error message if translation
is impossible.

C Convert if possible; use original value if item in translate
file does not exist or has null conversion attribute.

t Input verify only (functions like 'V' for input and like
'c' for output).

o Output verify only (functions like 'c' for input and like
'V' for output).

X Convert if possible; otherwise return a null value.

n is an optional value mark count specification. If the c element is
followed by a number, the translate will return only the value in
VMC n, instead of the complete collection of values concatenated
together with blanks. Subvalues will be returned with included
blanks.

i-amc is the decimal attribute number for input conversion (in BASIC or .
BATCH). The input value is used as an item-id in the specified
file, and the translated value is retrieved from the attribute
specified by the i-amc. (If the i-amc is omitted, no input
translation takes place.)

o-amc is the attribute mark count for output translation. l~en ACCESS
creates a listing, the attribute values will be looked up in the
specified file, and the attribute specified by the o-amc will be
listed instead of the original value. .

b-amc if specified, will be used instead of o-amc during the listing of
break-on and total lines.

2-23

88A00776A

Sample usage of the Tfile (Translate) code:

Item CARDS in DICT MUNCH is:

001 S
002 4
003 CREDIT CARDS
004
005
006
007 TCARD-FILE;C;;l
008
009 L
010 20

Data section of MUNCH f1le is:

Item-id:
001:
002:
003:
004:

COCOS
iWfBURGERS
MAC ARTHUR BLVD.
5583233
MC]V

Data section of CARD-FILE 1s:

Item-id:
001:

MC
MASTER CHARGE

CARLS-JR
HAMBURGERS
BR.ISTOL STREET
9792231
NONE

V
VISA

MEYERHOFS
SANDWICHES
S.COAST VILLAGE
8830002
MC]V]BA

SA
BANKAMERICARD

>LIST MUNCH "COCOS""CARLS-JR""MEYERHOFS" CARDS HDR.-SUPP [CR]

COCOS MASTER CHARGE
VISA

CARLS-JR NONE
MEYERHOFS MASTER CHARGE

VISA
BANKAMERICARD

2-24

88A00776A

2.4.8 ASCII AND USER CONVERSION CODES (HI AND U)

The HI code is used to convert strings to or from their hexadecimal
equivalents. The 'u' code allows the user to write his own conversions in
assembly language.

The MX code specifies that character strings are to be converted, one
character (byte) at a time, into their hexadecimal (base sixteen)
representations. Each character will be converted to a 2-digit (one byte)
hexadecimal number. This feature is useful in finding non-printable characters
in data strings. The general form of the HI (Mask Hexadecimal) code is:

The mask decimal codes may be combined with the mask character code as shown:

MCDX
MCXD

Action

Converts decimal data to hexadecimal equivalent.
Converts hexadecimal data to decimal equivalent.

Sample usage of the MX (Mask Hexadecimal) code:

INPUT VALUE

ABC
JOHN
john
HI THERE

CONVERTED VALUE

414243
4A41484E
6A61686E
4849205448455245

The 'u' code specifies an entry point into a user-written piece of software.
the general form of the 'u' (User-defined) code is:

Unxxx

where:

U is the code name

n is the entry point number, and

xxx is the hexadecimal FID (Frame ID) of the frame containing the
user's assembly codes.

WARNING: Do not use U code unless you fully understand its action at the
assembly-code level.

2-25

88A00776A

2.4.9 MATHEMATICAL 01. STRDlG FURCTIOHS CODE (P)

The 'P' code is used to perform mathematical operations on the attribute values
of an item, or to manipulate strings.

All operations specified by an 'P' code operate on the last two entries in a
pushdown stack. This pushdown stack may be visualized as follows:

- -- . --.---
StACKl

StACK2

StACD

StACK4

STACKS

etc.

STACKl is the top position in the stack, STACK2 is the next position, etc. As
a value is pushed onto the stack, it is pushed into position STACKl; the
original value of STACKl is pushed down to STACK2; and so on.

An 'P' code is comprised of any number of operands or operators in reverse
Polish format separated by semicolons. When an operand specification (a
numeric attribute number or constant, or a string) is encountered, the value is
"pushed" onto the top of the stack. When an operator is encountered, the
specified operation is carried out on the top one or two entries in the stack,
depending upon the operator. When the entire 'P' code has been processed, the
value printed is the value in the top of the stack.

The general form of the 'F' code is as follows:

Felement;element;element •••

An "element" may be any of the following: a numeric AMC specifying an
attribute value to be pushed onto the stack (optionally followed by an "a" to
specify that the first value or subvalue of an attribute is to be used
repeatedly when using it against a multivalued value or subvalue).

An element may also be of the form 'Cn' where 'n' is a numeric constant to be
pushed onto the stack; a 'D'which specifies that the current date is to be
pushed onto the stack; a 'T' which specifies that the current time is to be
pushed onto the stack; a special 2-character operand; or an operator which
specifies an operation to be performed on the top two entries in the stack.
The operators are listed in the following table.

2-26

Operator

*{n}

/

R

+

[]

s

P

(...)

88A00776A

Operation

Multiplication of the top two entries in the stack. If the
optional "n" is used, the result is "descaled" by n, that is,
it is divided by 10**n.

Division of STACK2 by STACKl, result to STACKl.

Same as "/" but remainder is returned to top of stack
(instead of quotient).

Addition of the top two entries in the stack, result to STACK1.

Subtraction of STACKl from STACKl, result to STACKl.

Concatenate; the string value from STACKl is concatenated
onto the end of the string value from STACKl.

Substring; a subset of the string value from STACKJ is
extracted, USing STACK2 as the starting character position,
and STACKl as the number of characters to extract; the result
is placed on top of the stack. This is equivalent to the
BASIC [m,n] operator, where "m" is in STACKl and 'n' in
STACKl.

A total sum of all previous computations is placed at the top
of the stack.

Underline. Exchanges top two positions in stack.

Pushes the top stack value back onto the stack; that is,
it duplicates the top stack value.

Conversion operator; a standard conversion operator such
as D (date), G (group), etc. may be specified and will operate
on the top stack value; the result will replace the original
top stack value.

The following operators operate on the top 2 stack entries, and a result
of zero or one is placed on the top of the stack, depending on whether the
condition is not or is satisfied.

•
>
<
II
]
[

"Equal" relational operator •
"Greater than·' relational operator.
"Less than" relational operator.
"Not equal" relational operator.
"Equal to or greater than" relational operator.
·'Equal to or less than" relational operator.

2-27

88A00776A

The relational operators compare STACK1 to STACK2; after the operation, STACK1
will contain either a 1 or 0, depending upon whether the result is true or
false, respectively (e.g., if the 'F' code were F;C3;C3;- then STACK 1 would
contain a 1). Examples of Fare:

F2;3;4;*;+ is equivalent to:

(attribute3 * attribute4) + attribute2

F23;24;*;CI00;+;P;CO;<;* is equivalent to:

(attribute23 * attribute24) + 100 ;
If this result is < zero, final result is zero; else the above value
is returned as the result. (The above value is generated, and is
repeated in the stack via the P operator; it is then compared to zero,
which gives a result of 0 or 1 depending on whether it was less than
zero or not; this is muliplied by the original value, giving a zero
or the original value.)

F3;4;*;6R;+;S is equivalent to:

(attribute3 * attribute4) + attribute6
If attributes 3 and 4 are multivalued, and 6 is not, the single value
in attribute 6 will be used repeatedly in the addition (if the "R" is
not present, it will be used only once, and zeros will be used for
other computations); a sum of such computations for all multivalues
in attribute3 or attribute4 (whichever has the greater number of
multivalues) is returned.

F3;" ";: ;4;: ;5;Cl ;C10; [];: is equivalent to:

attribute3:" ":attribute4:attribute5 [1,10]
That is, the value from attribute 3 is concatenated to that from
attribute 4, with a space between them; the first through the
10th characters from attribute 5 are then concatenated to the
end of that result.

2-28

88A00776A

2.4.9.1 Multivalued and Special Operands (Code F)

The 'F' code operands may be mUltivalued, may contain conversion
specifications, or may be a special 2-character operand specifying one of
several counters. Different interpretations are given to an 'F' correlative
versus an 'F' conversion for an attribute with a TOTAL modifier.

When arithmetic operations are performed on two multivalued lists (vectors),
the answer will also be multivalued and will have as many values as the longer
of the two lists. Zeros will be substituted for the null values in the shorter
list. For example, suppose attribute 10 had values of "5]10]15" and attribute
15 had values of "20]30]40]50"; if the correlative F;10;15;+ were processed,
the result in STACK1 would be "25]40]55]50". If a single valued attribute is
to be repetitively added (or subtracted, etc.) with a multivalued attribute,
then the single letter R should immediately follow the AMC in the 'F' code
(e.g., F;10;25R;+).

Any conversion may be specified in the body of a Function correlative. The
conversion specification must be enclosed by parentheses. Examples of F
correlation with conversions:

F;10;11;(TDICT SALES;X;3;3);.

Places the data from attribute 10 in the stack; translates the data
from attribute 11 through the dictionary of file-name SALES and stacks
it; then multiplies the two numbers together.

F;D;(DY);3;(DY);-

Computes the difference in years between the current date and the
date in attribute 3.

F; 1; (ML#10); 2;:

Concatenates the data in attribute 2 with the result of applying the
format string "LIIO" to attribute 1.

2-29

88A00776A

Special 2-character operands may be used as 'F' code elements as listed below:

Operand

NI

ND

NV

NS

NB

LPV

lor example:

';ND;3;/

Description

Current item counter (number of items listed or selected).

Number of Detail lines since last BREAK on a Break line. On a
detail line it has a value of 1. On a grand-total line, it
equals the item counter. (Used to generate averages in
conjunction with control breaks.)

Current multivalue counter for columnar listing only.

Current submultivalue counter for columnar listing only.

Current Break level number; 1 - lowest level break; this has a
value of 255 on the grand-total line and a value of zero at
detail time. The lowest level control-break, the one on the
right in the sentence, will have a value of 1.

Will load the result of the last conversion onto the stack.

On every detail line, this returns the value from attribute 3; on every Break
line (including the grand-total line), the average value of the data in
attribute 3 is returned. (This must be specified as a conversion in line 7.)

The Function code operates in two different fashions on an attribute with a
TotAL modifier, depending on whether it is specified as a correlative or as a
conversion. As a correlative, the function is applied before the accumulation
of the total, and is ignored on the Break data line; therefore, the total of
the functioned value is computed. As a conversion, the function is ignored on
detail lines, and is applied only on the Break data line and other subtotal
fields in the output. Therefore, the function of other totaled values is
obtained. If the function is specified as a conversion, the numeric operand
(AMe) in the Function code must correspond to an attribute that is being
totaled within the statement. If such an attribute does not exist, a value of
zero is returned. Note that the numeric operators may be dummy AMCs in that
they may reference other attributes within the statement that have function
correlatives.

2-30

88A00776A- A

2.4.9.2 The Load Previous Value (LPV) Operator

The function processor commences operation with no prior data. If attribute 8
commences with an F-correlative, there is no prior data set up by any processor
in the system. Entering attribute 7 there is the result of attribute 8 or at
least the data retrieved from the item according to the specification in
attribute 2 of the data definition item. It is possible to load this data into
the function correlative stack using the LPV instruction. Noting that a
conversion may call a function correlative, we may also load the last result of
a series of conversions within a given attribute definition line into a
function which follows the conversion in the line. For instance:

DATA DEFINITION ITEM
001 A
002 3

007 F;LPV;"lOO";1

008 Fj2j3;*

Data definition item mark.
Specifies data attribute 3.

Will divide the result of
attribute 8 by 100.
Contents of data attribute 2
times the contents of data
attribute 3.

If this data definition item is totaled, the total generated will be loaded
into attribute 7 and di7ided by 100 prior to output on the break line.

002 5 Data attribute 5.

008 G* 1] MR.%8] F jLPV;" 52" jR; "*C"; :] !FILE;C; ;3

This has rather less motivation, since it is equivalent to:

008 Fj5(G*1]MR%8) j"52"jR;"*C";:; (TFILE;Cj ;3)

The LPV should not be used as the first operator in a F-correlative, because
it has the effect of loading the contents of the temporary data area into the
stack. If the LPV is used at other points in an F-correlative, strange things
will happen.

The LPV operator is available for use in A-correlatives.

2-31

88A00776A

2.4.9.3 Summary of Code P Stack Operations

The following operands are pushed onto the stack, and all other stack elements
are pushed down one level.

Operand

n{R}

Cn

"String"

"'String'"

D

T

p

NI

ND

HS

HB

Action

A decimal number. The attribute value for the corresponding
attribute number is stacked. The optional R specifies that the
value is to be repeated if it is a single value and there are
multiple values in other attributes which are part of the stack
operation.

(where "'u'" is a decimal number) The integer constant "'n'" is
stacked.

The literal string enclosed in double quotes is stacked.

The literal string enclosed in single quotes is stacked.

the current date (in internal format) is stacked.

The current time (in internal format) is stacked.

the top stack element is pushed back onto the stack.

The current item counter is stacked.

The number of detail lines since the last control break is
stacked. (This number is 1 on detail lines, and is the same
as the item counter on grand-total lines.)

The current submultivalue counter is stacked.

The current control-break number is stacked.

The following operator pops three entries off the stack, computes a result,
and pushes it onto the top of the stack.

[1 The substring from the string value, in the third stack element
is extracted, starting from the character position defined in
the second stack element, and the number of characters to
extract is defined in the first stack element. For example,
the operation F4;C5jC8j[] extracts the string in attribute 4
and places its fifth through twelfth characters on the top of
the stack.

2-32

88A00776A

The following operators pop the top two operands from the stack, compute a
result, and push the result onto the stack. All other stack elements are
popped up one level.

+ The top two elements are added together and the sum is stacked.

The first stack element is subtracted from the second and the
difference is stacked.

*{n} The top two elements are multiplied and the result is stacked.
If n is specified, the result is divided by 10**n before it
is stacked.

/ The second stack element is divided by the top stack element
and the dividend is stacked.

R The second stack element is divided by the top stack element
and the remainder is stacked.

The top stack element is concatenated onto the end of the
second stack element and the resultant string is stacked.

The following relational operators compare the two top elements of the stack,
pop them both off the stack and then push a 1 (TRUE) or 0 (FALSE) onto the
stack.

•

>

<

The top two elements of the stack are compared, a 1 is stacked
if they are equal, a 0 is stacked if they are not equal.

Stacks a 1 if the top two stack elements are unequal; stacks
a 0 if they are equal.

Stacks a 1 if the top stack element is greater than the second
stack element', stacks 0 otherwise.

Stacks a 1 if the top stack element is less than the second,
a 0 otherwise.

Stacks 1 if the top element is greater than or equal to the
second element, 0 otherwise.

Stacks 1 if the top element is less than or equal to the second
element, 0 otherwise.

The following operators function on just the top one or two stack entries and
have no effect on the rest of the stack.

S Sums the multiple values (if any) of the top stack element.

Underline. Exchanges the first and second stack elements.

2-33

88A00776A

2.4.10 MA'rHEK.UICAL PUBClION COlUlELATlVE (A)

The A-code is designed to perform the same function as the F-code, but its
format is both simpler to write and easier to understand than the format of the
F-code. The general form of the A-code is:

A(expression)

where an expression is made up of operands, functions and operators. Like any
mathematical expression, parentheses may be used to indicate the precedence of
the operations.

2.4.10.1 Operands

1. AMC Numbers - An Attribute Mark Count (AMe) is specified by putting the
number in the A-code, just like in the P-code. An AMC of 0 (zero) will
indicate the It..-Id. The special AMes 9999 and 9998 retain their original
functions and can be legally inserted into an A-code. An AMC can
optionally be followed by the letter "R", which indicates repetition of the
value just like in F-codes.

2. AMC Names - An attribute name can be used instead of an MiC in an A-code
as long as the name exists in the dictionary of the file being listed. The
dictionary name is used as an argument to the "N" function of the A-code.
The format of the "N" function is N(attribute-name). For example, if the
name INVOICE-AH)UN'r exists in the dictionary, the corresponding "N"
function would be N(INVOICE-AMOUNT).

The operation of the ''N'' function is:

The attribute-name is referenced in the dictionary of the file and an error
message is printed if it is not found. The AMC of the dictionary item
(attribute 2) is used as the AMC in the A-code.

Any correlatives existing in attribute 8 of the dictionary item, whether
F-codes or A-codes, will be used in the A-code. If an A-code or F-code exists
in attribute 8 of the dictionary item, the AMC from attribute 2 is ignored.

Note that an A-code can call another A-code by name and that the second A-code
can specify a third A-code, and so on. However, no attempt is made to assure
that an A-code does not call itself. If this is attempted, or any time that
"nested" calls are made more than seven levels deep, the ACCESS compiler will
abort with a RTN STACK FULL message.

3. Literal Numbers - A number is specified by enclOSing the number in quotes,
either single (') or double (If). For example, the number 10 could be
specified by "10" or '10'. Any integer, pOSitive, negative or zero is
legal inside quotes.

2-34

88A00776A

4. Literal Strings - Any literal string, enclosed in single quotes (') or
double quotes (..) is a legal operand.

5. Special Operands - The A-code has several special system operands which
are the same as the ones for F-codes.

NI is the item counter
NV is the value counter
NS is the subvalue counter
ND is the detail line counter
NB is the break level counter
LPV is the load previous value
D is the system date (in internal format)
T is the system time (in internal format)

These special operands can be used exactly like an !MC, attribute name or
literal. Also, any of the above legal operands preceded by a minus sign,
(-) is a legal operand.

2.4.10.2 Functions

1. Remainder Function: "R" - The remainder function takes two expressions as
operands and returns the remainder of the first operand divided by the
second. The format of the "R" function is R(expression,expression). For
example, R(2,"5") returns the remainder when the value of attribute 2 is
divided by 5.

2. Summation Function: "S" - The summation function takes one expression as an
operand and works the same way as the S operator in the F-codes. For
example, S(4) will sum any multivalues of attribute 4. The summation
operator may appear anywhere in an A-code. A maximum of 2 summations
is allowed.

3. Substring Function - A subtring may be specified by using square brackets.
The numbers inside the brackets may be literal numbers, AMCs, or entire
expressions. For example, 1[.. 2 .. , 3] means the 3-character long string
starting at position 2 of attribute 1. The expression 1[.. 1 .. ,'99 *(2-4)]
will evaluate to the value of attribute one, unless attributes two and four
are different, in which case the expression evaluates to a null string.

2-35

88A00776A

2.4.10.3 Operators

1. Arithmetic Operators - The operators +, -, * and/ denote addition,
subtraction, multiplication and division, respectively. All of the
arithmetic operators take two expressions as operands, and return the sum,
difference, product or quotient of the two operands. It is important to
note that division in an A-code always returns an integer result, just like
in F-codes, so that "3"/"2" evaluates to 1, not 1.5.

2. Relational Operators - The relational operators >, <, >-, <-, -, and ,
denote the logical relations greater than, less than, greater than or equal
to, less than or equal to, equal and not equal, respectively. Each of the
relational operators takes two expressions as operands, and evaluates to
1 (TRUE) or 0 (FALSE) depending whether or not the indicated relation holds
between the two operands. For instance, "1">-"2" evaluates to 0 (FALSE)
because the number 1 is not greater than or equal to the number 2.
Expressions involving these and other A-code operators are written much
like BASIC expressions.

NOTE: The precedence of the operators is important to keep in mind when
writing an A-code and not USing parentheses to indicate the order
in which operators are to be applied. Multiplication and division
have greater precedence than addition and subtraction, which in turn
have greater precedence.than the relational operators. If two operators
have the same precedence, they are applied from left to right. For
example, 1*2+3<4 will evaluate as «1*2)+3)<4, but 1>-2-3/4 will
evaluate as 1>-(2-(3/4». Also, 1+2-3 will evaluate as (1+2)-3, and
4/5*6 will evaluate as (4/5)*6. 20 levels of parentheses nesting
are allowed in A-codes.

A-Code operator examples:

A-Code Meaning

Al+2 Adds attributes 1 and 2.

A"10"*3 Imltiplies the value of attribute 3 by 10.

AS(4+"25") Adds 25 to each value of attribute 4, then sums
the multivalues.

AN(INV-AMT)-N(BAL.DUE) Subtracts the value of the attribute defined by
BAL.DUE in the dictionary from the value of the
attribute defined by INV-AMT.

AN(SS-NUM) ['4','2'] Returns the 4th and 5th digits of the attribute
specified by SS-NOM.

2-36

88A00776A

2.4.11 PROCESSING AND FORMATTING NUMBERS - CODES (MR AND ML)

The MR and ML codes allow special processing and formatting for numbers or
dollar amounts. These codes should be used in the conversion attribute
(attribute 7) of the item dictionary for best results.

The ACCESS MR and ML codes function exactly like the .'R' and 'L' format strings
in BASIC. The general form of the !-fR and ML codes is:

M(R/L){n{m}}{Z}{,}{C/D/M/E/N}{$}{(format-mask)}

where:

M is the code name. MR specifies the number to be right justified;
ML specifies left justification. Note that the L or R justification
specification in attribute 9 of the dictionary item will override the
t~ or ML except when a format-mask is also used.

n is a single decimal digit (0-9) which specifies the number of digits to
be printed to the right of the decimal point. If 'n' is not specified,
o is assumed. If 0 is assumed or specified, no decimal point will be
printed.

m is a single digit number (0-9) which specifies that the number on file
is to be 'descaled' (divided) by that power of ten. (That is, if m-2,
the number is divided by 100, if m-3, the number is divided by 1000,
and so on.) The number 'm' is the number of implied digits to the
right of the decimal point for the number as it is stored in the file.
If m>n, then the number will be rounded off, either up or down, to
'n' digits.

Z is the optional zero-suppress parameter. If 'z' is specified, the
o (zero) numbers will be printed as blanks.

specifies insertion of commas every three digits to the left of the
decimal point.

C causes negative values to be followed by the letters CR.

D causes positive values to be followed by the letters DB.

M causes negative numbers to be followed by a minus sign .(-).

E causes negative numbers to be enclosed inside angle brackets « and ».

N causes the minus sign on negative numbers to be suppressed.

$ appends a dollar sign ($) to the number before justification.

2-37

88A00776A

The format mask specification, which is enclosed in parentheses, consists of
format codes and literal data. A format code is one of the characters I, *, or
%, optionally followed by a number to indicate that number of repetitions of
the characters.

Format Mask
(#n) specifies data to be justified in a field of 'n' blanks.

(*n) specifies data to be justified in a field of 'n' asterisks (*).

(%n) specifies justification in a field of 'n' zeros (0) •

• \ny amount of alphabetic data may also be specified inside the parentheses in
the format mask specification. The data will be printed exactly as specified
in the format mask, with the number being processed appearing either right or
left justified in the place of the #'s, *'s, or %'s. Any #'s, *'s, or %'s not
overwritten by the number will appear either to the left or right of the number
as specified.

Note the $ option apends a dollar sign to the number and then justifies the
number, so the dollar sign will always appear just before the first digit of
the number on output.

Sample usage of the MR and ML codes:

~ Conversion

1234 MR2
1234 MR
1234 Mll(%10)
1234 MR(*10)

12345678 Ma2,E
-12345678 MR,2,E
-12345678 M1l2,C$

572082394 MR24
572082394 MR2, $(120)
572082394 MR2,($#20)
572082394 MR2,$(*20)

572082394 ML (#11-111-11111/)
572082394 MR(#3-12-'4)
572082394 HL(#3-14 EXT.12)

2-38

Result

12.34
1234
0000001234
******1234

123,456.78
<123,456.78>
$123,456.78CR

57208.24 (Note rounding)
$5,720,823.94

$ 5,720,823.94
*******$5,720,823.94

572-08-2394
572-08-2394
572-0823 EXT.94

88A00776A

2.4.12 MASK CHARACTER CODE (MC)

The MC (Mask Character) code allows the user to change attribute data to upper
or lowercase or to select certain classes of characters.

The following is a list of the forms of the MC code and their function:

MCU Converts data to uppercase. Will change all lowercase letters to
uppercase; has no effect on uppercase letters or non-alphabetic
characters.

MCL Converts data to lowercase. Will change all uppercase letters to
lowercase; has no effect on lowercase letters or non-alphabetic
characters.

MCT Converts uppercase characters to lowercase, starting with the
second letter in each word.

KCP Converts all nonprintable characters to periods (i.e., X'OO'-X'lF').

MCA Extracts and prints all alphabetic characters, either uppercase or
lowercase; non-alphabetic characters will be deleted from the data.

MCN Extracts all numeric characters (0-9) from the data; deletes all
other characters.

MC/A Extracts all non-alphabetic characters from the data; deletes all
alphabetic characters.

l.fC/N Extracts all non-numeric characters; deletes all numeric
characters.

Sample usage of the MC (Mask Character) code:

!!!!!!. MC Code OutEut Value

JOHN SMITH 1234 MCL john smith 1234
John Smith 1234 MCU JOHU SMITH 1234

John Smith 1234 MCA JohnSmith
John Smith 1234 MCN 1234

572-08-2394 MCN 572082394
(714) 552-4275 11CN 7145524275

abc 123$%XYZ MC/A 123$%
abc 123$%XYZ MC/N abc$%XYZ

2-39/2-40

88AQ0776A

advanced access

3.1 USING THE SELECTION PROCESSOR

This section gives an advanced description of the operation of the selection
processor. You should be familiar with Section 1.19, Forming Selection­
Criteria, before reading this section.

3.1.1 lTEM-ID SELECTION

3

ACCESS allows you to select item-ids in differe~t ways. The default is to
select the whole file, unless item-ids were previously specified in a list, and
that list is active. Otherwise, item-ids may be selected by putting
restrictions on them in two ways which are syntactically similar, but which
operate differently.

3.1.1.1 Explicit Item-ida

If explicit item-ids are specified, then only those item-ids will be returned.
This will take precedence over any list in effect, which will be ignored.

Explicit item-ids are specified as follows:

LIST FILENAHE ... ITEMl ITEM2 ITEM3 ...

or

LIST FILENAME "ITEMl" "ITEM2." "ITEM3"

or even

LIST FILENAME \ITEMl\\ITEM2\\ITEM3\

Each sentence will yield a listing of the three items, ITEMl, ITEM2, and ITEM3.
The processor will retrieve each of these items direcly from the file
referenced. This collection of explicit item-ids then becomes a list which the
processor uses to obtain successive item-ids until the list is exhausted, at
which time the process terminates.

The delimiter ... is reserved for item-id specification. The delimiters II and
space are normally used for value specification, but will be taken as item-ids
under certain circumstances.

3-1

88A00776A

3.1.2 ItEM-ID TESTS

ACCESS allows tests to be used on item-ids as a method of selecting them. Be
aware that all tests are on the item-id as it stands in the file. No
conversions or correlatives will be applied to the item-id before the test is
made.

To specify an item-id test rather than the retrieval of a specified set of
items you include a relational operator, hereinafter referred to as a
relational connective, in the ite~id specification string. lor example:

LIST FILENAME 'ITEM1' • 'ITEM2"ITEM3'

or

L 1ST FILENAME "ITEM1" "ITEM2" • "ITEM3"

or even

LIST FILENAME • \ITEM1\\ITEK2\\ITEK3\

will all have the same effect. ACCESS will search the whole file or all the
items in a list, if there is one in effect, looking for items which have the
item-ids ITEM1, ITEM2, or ITEM3. (An active list will take precedence over the
file.) This will take longer than USing the simpler explicit item-id
reference, and is not recommended when you know which item-ids you want.
Note that in these examples, only one relational connective was included in
each sentence. All the elements not preceded by a connective are automatically
assigned the connective '.'. This is true throughout ACCESS in cases when
values are used.

Relational connectives are used to allow specifications of the form

LIST FILENAME < 'CA!'

which will have the effect of selecting all items which are lexicographically
less than CAT, presuming that the file is left-justified. The full effect of
justification will be considered later.

Spaces between the item, or value strings, and the file name are optional.
Data definition items or connectives may be concatenated to a value in the
input sentence in the form:

-"ITEM!"

In all other cases, all elements in an ACCESS sentence which are to be
retrieved from a dictionary or dictionary-equivalent file must be surrounded by
blanks.

3-2

88A00776A

You may either specify an explicit list of item-ids for retrieval or a test on
item-ids. It is not possible to retrieve certain items directly and test other
items for admissability using item-id tests. In other words, the item-id list
is either a list of explicit item-ids or a sequence of values against which to
test each item-id in the file. The difference is the inclusion of a relational
connective in the item-id list.

3.1.3 THE USE OF DELIKltEIS IN THE ACCESS SENTENCE

In previous examples, the delimiters' J ", and \ were used equivalently to
delimit item-ids or values. In general, only the delimiter ' is reserved for
item-ids or item-id-related values. The" and \ may be used for values related
to data definition item selection criteria and print-limiters as well. It is
preferable to use them with data selection-criteria rather than with item-id
selection-criteria. In general, values delimited by either " or \ will be
treated as item-id selection-criteria only if they follow the file reference
and precede a data definition item.

The delimiter ' will cause the value which it surrounds to be treated as an
item-id selection criterion wherever that value may be in the sentence.

3.1.4 ITEM-m SELEerION Cl.rrmtIA

Presume that we have a set of values with an associated relational connective,
so that ACCESS is scanning the whole file in order ~o test the item-ids for
acceptability. Be aware that the item-id test is logically ANDed with all
other selection criteria. If an item-id fails the item-id test, the item will
be discarded. If one wishes to 'OR' an item-id test with other selection
criteria, then a data definition item must be included which references the
item-ide For an example, see the next page.

3-3

88A00776A

Consider the following dictionary attribute items.

o
001 A
002 0
003
004
005
006
007
008
009 L
010 10

1
001 A
002 1
003
004
005
006
007
008
009 L
010 10

and the following ACCESS. sentences:

LIST MD < "CAT" AND WITH 1 • "0"

LIST MD WITH 0 < "CAT" WITH 1 • "D"

item-id
typifier
!MC specifier
Null label

Justification
Length

This will select all items whose
item-ids are characters whose
sorting evaluation is less than
'CAr' AND which have a 'D' in
attribute 1.

This will select all items whose
item-ids are evaluated les8 than
'CAr' OR which have a 'D' in
attribute 1. Note that by refer­
ring to the item-id as attribute 0,
the item-id is considered like any
other attribute.

LIST MD WITH 0 < "CAT" AND WITH 1 • "D'· This will select all items whose
item-ids are evaluated less than
'CAr' AND which have a 'D' in
attribute 1, as in the first case.

LIST MD WITH 0 < "CAT" OR 1 • "D"

LIST MD < "CAT" AND WITH 1 - "0"

3-4

This is erroneous. It will have
the effect of selecting all items
whose item-ids satisfy the CAT
criterion only. The rest of the
sentence will be ignored.

This is erroneous. It will
terminate in the ACCESS compiler
with an error, because the AND
connective must be followed by
another value which may be ANDed
with CAT, and because the AND
connective may not immediately
precede the first WITH connective
in the ACCESS sentence.

88A00776A

3.1.5 SELECTION BY DATA VALUE

Attributes may be used as selection-criteria in the ACCESS sentence by pre­
ceding the attribute-name with the connective WITH. The standard form of a
WITH phrase is

WITH {NOT} {EACH} attribute-name {"value-list"}

and is called a selection-criterion. For convenience, the connectives NOT and
EACH following the WITH are referred to as selection modifiers. The basic form
of select ion

WITH attribute-name

will select an item if it contains any value for the named attribute other than
null. On the other hand,

WITH NOT attribute-name or WITHOUT attribute-name

will select an item only if the attribute named contains null. The modified
form:

WITH EACH attribute-name

will only succeed if each value in the named attribute is non-null. However,
the form:

WITH NOT EACH attribute-name or WITHOUT EACH attribute-name

will accept all items that contain at least one null value returned for the
named attribute.

The meaning of the term 'value' in this context will be considered after the
next section.

3.1.5.1 Evaluation of Data by the Selection Processor

The selection processor processes the data according to attribute 8 of the
attribute definition item. That is, it executes any conversions or
correlatives which are in attribute 8. The result of this calculation is
returned to the selection processor. Any conversions or correlatives in
attribute 7 of the data definition are not applied to data values. The
contents of attribute 7, however, may have a significant effect on the success
of the selection process (see Section 3.1.7).

3-5

88A00776A

3.1.5.2 Obtaining a Value to Test

The selection processor will ignore leading null subvalues within each value.
That is, if an attribute of a data item contains multiple values which
themselves contain subvalues, as shown below,

" \\35\4]603\\7] 1\2\3011 \ \ "

then the processor will retrieve one subvalue string (the first non-null) from
each value. In this case, the strings returned will be:

35; 603; 1; null; null

The strings returned may be original strings or strings computed by an A or F
correlative. In either case, if the search for the string results in a null
followed by a subvalue mark, the processor will proceed to the next subvalue in
the value. It will end the data search if a non-null string has been retrieved,
if it encounters a null followed by a value mark, or if it encounters a null
followed by an attribute mark.

If the search results in a null data value, the process returns to the value
test routine. If a non-null data value is returned, the process will then
execute any conversions remaining in attribute 8 of the attribute definition
item. The data resulting from the conversion, if any, will then be returned to
the value test.

This is the 'value' referred to above. Note particularly that only the first
non-null subvalue is returned. If another value is requested, then the next
value is taken from the next value (i.e., from the right side of the next value
mark if there is one). All subvalues which follow the first non-null subvalue
are never inspected by the selection processor.

3.1.5.3 The Test for Ezistence

What occurs at the value test level when testing for existence depends upon the
selection modifiers. If there are no modifiers, then if any non-null subvalue
is returned from the item, the selection phrase will succeed. If a null value
is returned, then the tester will request the next value in the item, unless
the last null value was terminated by an attribute mark. In this case, the
values within this attribute of this item have been exhausted and the item does
not have the required value. Therefore, this selection phrase fails.

If the selection modifier is NOT, then all values defined by the attribute
definition must be inspected in order that the selection phrase succeed. If
any value is returned which is non-null, then the selection clause will fail.

3-6

88A00776A

If the selection modifier is EACH, then all values defined by the data
definition must be inspected in order to succeed. If any value is returned
which is null, then the clause will fail.

If the modifiers WITH NOT EACH or WITHOUT EACH are used, then the clause will
succeed if any value is null. It will fail only if all values are non-null.
Success and failure conditions for WITH and its modifiers are summarized below.

Success conditions for WITH and its modifiers under the test for existence:

WITH attribute-name succeeds if

(valuel 11 NULL) OR (value2' NULL) OR (value3' NULL) OR •••

WITHOUT attribute-name succeeds if

(valuel • NULL) AND (value2 • NULL) AND value3 • NULL) AND •••

WITH EACH attribute-name succeeds if

(valuel , NULL) AND (value2 I NULL) AND (value3) , NULL) AND •••

WITHOUT EACH attribute-name succeeds if

(valuel • NULL) OR (value2 • NULL) OR (value3 • NULL) OR •••

Failure.conditions for WITH and its modifiers under the test for existence.

WITH attribute-name fails if

(valuel • NULL) AND (value2 • NULL) AND (value3 • NULL) AND •••

WITHOUT attribute-name fails if

(valuel 11 NULL) OR (value2 , NULL) OR (value3 11 NULL) OR •••

WITH EACH attribute-name fails if

(valuel • NULL) OR (value2 • NULL) OR (value3 • NULL) OR •••

WITHOUT EACH attribute-name fails if

(valuel , NULL) AND (value2 I NULL) AND (value3 I NULL) AND •••

3-7

88A00776A

3.1.6 THE VALUE SnING

In the syntax of the WITH phrase, there is an optional value-list which has not
been mentioned since all of the tests for existence assume a null list as the
value. A value-list is made up of value phrases of the following form:

{relational connectives} "value"

The relational connectives are optional in the sense that the relation will
default to '-' if there is no relational connective preceding the value.

A value is of the form:

"text-string"

or

Itext-stringJ

(Remember that the delimiter' specifies an item-id reference.)

The contents of the text string may be any characters with the exception of the
system delimiters. Avoid the control characters, if possible. There are three
special symbols, ~, [, and] which have a special meaning to the selection
processor, and will be considered in Section 3.1.8.1.

3.1.6.1 The Relational Connectives

The master dictionary contains definitions of the usual relational connectives:
-, I, <, >, ->, >-, <-, -<, EQ, NE, GT, GE, LT, and LE. All of these except'
may be used in any combination (# must be used by itself). Note that all
normal combinations are already defined. The form - < may be used as well as
-<, for example. However, the form with the space between the connectives
requires that two look-ups must be done, while the -< is retrieved in a single
master dictionary reference. If you have a preference for the form <>, you may
copy the item '1' in the master dictionary to the item '<>'. The operators are
logically equivalent.

3-8

88A00776A

3.1.7 THE SPECIFIED VALUE ABO ATTRIBUTE 7

It was noted that the contents of attribute 7 may affect the results of the
selection processor. This is because attribute 7 is designed to produce output
conversions. For this reason, the ACCESS compiler will execute an inverse
conversion on the data values defined in the value string, so that the output
conversion does not need to be done for each value in the file referenced by
the data definition item. The compiler then throws away the contents of
attribute 7.

The ACCESS compiler will not attempt to execute an F- or an A-correlative in
attribute 7. These will be ignored.

There are conversions which will yield unexpected results, however, and should
be avoided.

3.1.7.1 Allowable Conversions - Date

Conversions which may be used are primarily the date and time conversions. The
data conversion will take a date in display form and return it in internal
form, which is a decimal number representing the number of days since December
31, 1967. In this case, you would not wish to execute a date output conversion
in attribute 8, since it is unlikely that you would ever get a match. Note
that an input date conversion will only transform the external form of a date
into the internal form, and that an outP~t conversion will only transform an
internal date into the external fo~ of the date. The only time that an input
conversion is done in ACCESS is for the evaluation of values associated with
selection phrases according to attribute 7.

It is preferable to do the date conversion associated with selection in
attribute 7 because it only needs to be done once, at compile time, and
because, if it i. done in attribute 8 on each value. it will be necessary to
remember the precise form which will result. Also, the form which derives from
attribute 8 will be evaluated according to the alphanumeric form of an external
date. rather than the numeric form of the internal date. Since the internal
date is represented as an increasing integer, the less than and greater than
relational connectives have the expected meaning of before and after. The
external date does not have this characteristic. It is therefore advisable to
store dates in files in the internal form.

3.1.7.2 Allowable Conversions - Time

Time conversions are allowable. Time is represented in the machine as an
integer which is the time since midnight in seconds. Again, it is preferable
to use the attribute 7 form.

3-9

88A00716A

3.1.7.3 The Mask Conversions

In general, the forms MR, ML, and MD will treat only the scaling and decimal
location characteristics available with these masks. Nothing else will be
touched. This means that they will have an effect only if they are immediately
followed by one or two numeric digits. Also, they will have an effect only on
a value string which represents a number. If the value is a number, it is
scaled and the decimal place 1s attended to. ltemember that the internal form
is an integer. That is, there is no decimal point in the number. If there are
some numeric digits at the front of the value, then these will be taken as the
number, and the rest of the value will be thrown away, unless the number is
attended to in an attribute-8 '-correlative. If the first character of the
specified value is not numeric, then the value string will be taken without
"dification.

Thus, if attribute 7 has a MR, ML, or MD conversion in it, numeric values are
recommended. Note especially that masks of the form 'ML#20' and 'MillO' have
no effect.

3.1.7.4 Other Masking !Unctions

Since the functions of the form MCA, MCN and so on bave the effect of stripping
non-admissable characters from the string which they process, they should not
be used.

The MCXD (convert from hex to deeimal) and MCDX (convert from decimal to hex)
cODversions bave inverse functions, so that tbey may be used in attribute 7 of
a data definition item being used for selection. The MeXD will convert decimal
to hex as an input conversion, and the MCXD will convert hex to decimal as an
input conversion_

3.1.7.5 Translate Conversions

If there is a translate conversion in attribute 7, then it will be executed as
an input conversion. This means that the first of the translate attribute mark
count numbers in the translate syntax will be used. If the field is null, and
if the translate found an item-id, it will return the item-ide

If the value specified does not yield an item-id, and if the translate option
byte is an 'X', then the value for which the processor will search will be a
null. If the option byte is a 'C', then the value for which the processor will
search will be the specified value.

What the input translate will not do is search the file specified by ~he
translate for an item which has the specified value in the correct attribute,
and return the item-id as the value.

3-10

88A00776A

If there is a direct one-to-one correspondence between the source and
destination items, then it is possible to have a set of translate elements
within the file which are an inverse transformation. That is, if you supply
the value generated by the output translation, and if that value is an item in
the file which has as contents the item-id of the value which translates to the
value supplied, then a translation in attribute 7 is valid. For example-:

In a file called CUST01iER,

232 Pacific Printing (the item names)
001 Pacific Printing 001 232 (the translate references)

Then if attribute 7 of the data definition item CUSTTRANS is

TCUSTOMERjCjljl

and the data file reference to Pacific Printing is '232', then

LIST FILENAME WITH CUSTTRANS • "Pacific Printing" ••• CUSTRANS •••

will yield the desired result, because Pacific Printing will be
translated into 232 for the selection, and 232 will be translated
into Pacific Printing for output.

If the output translate function translates several different strings to a
single output result, such that is would require an inverse function which is
multi-valued, then a translate in attribute 7 is inappropriate, because only
the first value found by the attribute 7 manipulation will be included in the
resultant value string. In this case, the translate must be put in attribute
8, so that the processor is comparing the translated value to the value
originally specified in the value string.

3-11

88A00776A

3.1.8 SUMMARY OF CONVERSIONS FOa SELECTION

It is generally a good idea to use the date and time conversion in attribute
7. The MCXD and MCDX conversions will work. The MR., MI., and MD conversions
will only work in some cases.

The translate conversion will work if the data structure is just right.

The various other masks and conversions which have no natural inverse functions
will tend to fail, and are not recommended.

The processor will not deal with A- and F-correlatives. In all cases, the
contents of attribute 7 are discarded during the compilation process.

3-12

88A00776A

3.1.8.1 Forming Conditional Values

As noted previously, there are three special characters associated with value
specification: '[', '~', and ']'. These are not optional and they are not
modifiable. They have the following meanings:

stipulates that any leading string is acceptable.
~ stipulates that any character is acceptable in this position.

stipulates that any trailing character is acceptable.

The test point for these characters will always meet with success. For
purposes of evaluation, the inclusion of a special character forces evaluation
from 1eft-to-right, on a character-by-character basis. For example:

=- "[6"

'6' or 'ABC6' or '123456'.

- "3~5"

'305' or 'lAS' or '3'5.

=- "6]"

'6' or '6ABC' or '654321'.

- "[6]"

'6' or 'ABC6' or '6ABC' or 'ABC6XYZ'

=- tt[3~5]"

will accept any data value which
terminates in a '6', such as

will accept any three-character
string which begins with a '3'
and ends with a '5', such as

will accept any string which
starts with a '6', such as

will accept any string which
contains a '6', such as

will accept any string which
contains any three-character
string which starts with a '3'
and ends with a '5', such as

'335' or '305XYZ' or 'ABC3X5' or 'ABC3X5XYZ'.

There are certain forms which will not work. If the '[' is used in the value
specification, it must be the first character in the string, and it must be the
only' [' in the string. If the ']' character is used in the string, it will
terminate the specified string at that point. Any characters which may occur
after a ']' will never be inspected. The ~ may be used anywhere, and any
number of them may be included in the value specification. The form '~/~' may
be used to retrieve all three-character strings, for instance, although there
is a length conversion, 'L', which performs this function.

3-13

88A00776A

3.1.8.1.1 The Special Characters and the Relational Connectives

The special characters '[', 'A', and ']' are used with the relational
connectives < (less than), > (greater than) and ., since the other permutations
can be derived from these.

The case of equality was shown in the preceding section. If the form:

WITH 2 < "5]"

is used, the test is on the first character, and is straightforward. If the
form:

WITH 2 < "[5"

is used, the test is on the last character, and is straightforward. If the
form:

WITH 2 < "[5]"

is used, then, if there is a '5' anywhere in the string, equality will be true,
and inequality will fail. If there is no '5' in the data string, then the
condition 'less than' will hold if the last character is less than the 5, and
the condition 'greater than' will apply if the last character in the data
string is greater than '5'.

Similarly, if the string of actual data specified is several digits long, the
test which generates the type of equality will be as follows: if the process
reaches the end of the data string when it is on the first real character of
the test string, it will compare that character and yield a result as above.
If the it is on a character other than the first real character in the
specified string, it will generate the result expected if the compare were on
the first k characters in the specified string against the last k characters in
the data string. Other examples of inequality with [and]:

"[567] " < "12486" because 5 < 6.

"[567]" > "12484" because 5 > 4.

" [567] " < "12457" because 56 < 57.

"[567]" > "12455" because 56 > 55.

"[567]" < "12568" because 567 < 568.

" [5671" > " 12566" because 567 > 566.

Equality will not occur unless all of the real character string is found in the
data string.

3-14

88A00776A

3.1.8.1.2 Justification and Evaluation

If the attribute definition item is left-justified or if there is a special
character in the value specification string, then comparison will proceed from
left to right, and inequality will be declared as soon as characters in the
same location in the two strings are different. The collating sequence is that
of the ASCII character set, with the particular characteristic that numbers
precede letters, and capital letters precede lowercase letters. An absolute
null is less than any character, including an ASCII null. An absolute null
occurs when the end of a string is reached, with the result that 'ABC' comes
before 'ABCO'. Also note that blanks are the non-control character with the
lowest value.

If the attribute definition item is right-justified, and there are no special
characters in the string, and the data string and value string are numeric,
then the test will be on the magnitude of the two numbers such that 12 > 2. If
these were left-justified, 12 < 2 because 1 collates before 2. If the data are
not numeric, then they will be compared in the usual lef~-to-right manner until
either inequality is discovered, the strings terminate, or numeric fields are
found. If both the data and the specified value are equal up to the start of
numeric fields, then the numeric fields will be evaluated as binary integers
and compared. If inequality is found, then the string with the smaller
embedded integer is taken as less. If they are equal and both strings
terminate at this point, then the strings are equal. If the strings continue
with non-numeric data, the left-to-right process continues until inequality
occurs or the strings terminate.

Note that for numeric data to sort in correct ascending order, and to print
with flush right alignment, it must be right-justified. (An 'R' must be
specified in line 9 of the attribute definition item.) Since alphabetic data
will sort in alphabetical order whether it is left or right justified, an 'L'
or an 'R' may be placed in line 9 of the attribute definition item. However,
the usual form of printing for alphabetic data is flush left.

3-15

88A00776A

3.1.8.2 Value Strings Containing Many Value Phrases

It is possible to have selection-criteria based on more than one value. The
relation associated with each value is the relational connective which
immediately precedes the value. If there is no relational connective which
precedes the value, then a default '.' will be inserted into the value string.
The implicit relation between the value phrases is 'OR'. If the data value
must pass both of two criteria, then there must be an 'AND' specified between
the two value phrases. The examples which follow show ORed values with
relational connectives. Note that the letter values are evaluated in ascending
alphabetic sequence.

WITH X "A""C"nE''''G'' is equivalent to

... ~~ITH X - "A" OR • "c" OR - "Eft OR - "G"

which will succeed if

(data • "An) OR (data - "C") OR (data • "Eft) •••

where data in each case represents only one value which may be returned
to the value comparison processor. Therefore,

IF (data • "Aft) OR (data - "C") OR (data - "E") ...
THEN data is TRUE ELSE data is FALSE.

A data value is said to succeed i£ the test returns TRUE.

The cases of inequality are similar:

••• WITH X < "A" > "C" , "E" <. "G"

is equivalent to

IF (data < "An) OR (data > "Cit) OR (data # nEn)

OR (data <- "GIt
) •••

THEN data 1s TRUE ELSE data is FALSE.

(This particular case will succeed in all cases.)

3-16

88A00776A

3.1.8.2.1 The ARD Connective within a Value String

If you desire to specify a range of values which will be acceptable, or a
collection of conditions on a given data value such that they must all be true
in order for the condition to succeed, then the specified values may be ANDed
together. The required form is:

••• "value" AND {relational connective} "value"

For example:

••• WITH X >- "A]" AND <- "C]" will accept all values which start
with A, B or C as in

IF «data >- "A] tI) AND (data <- "C] "))

THE dat a is TRUE ELSE data is FALSE.

••• WITH X - "1]" AND < "[5" will have the effect of accepting all
values which start with 1 and end
with a character less than 5, as in

IF «data - "1] fI) AND (data < "[5"»

THE data is TRUE ELSE data is FALSE.

3-17

88A00776A

3.1.8.3 The Evaluation of One Selection Ites

An indefinite collection of value phrases may be ANDed together into one AND
value specification phrase. Further, several AND value specification phrases
may be ORed together into a value string.

Essentially, an AND phrase, which may consist of subconditions, acts as a
single entity which can either pass or not pass. For an AND value
specification phrase to pass, all elements must pass. For the ORad value
specification phrases, if any element succeeds, then the selection criterion
succeeds.

3.1.9 THE RELATIONSHIP OF SELECT lOB CUTEtlIA WITHIN A SEliTDCE

As noted, if one ORad value specification allows a data element to pass, the
selection criterion will pass. It is posaible to have aeveral selection
criteria within a sinale sentence. The default connective between the
selection criteria will be an OR, so that if any of the criteria pass, the item
will pass. This may be modified by the selection modifiers NOT and EACH. The
NOT modifier will cause the criterion to fail in the case that the value string
succeeds and vice-versa. Therefore, the table of success and failure under the
conditions of WITH, WITHOUT, WITH EACH, and WITHOUT EACH which was displayed
for the case of existence also applies here. Note that the case of existence
is equivalent to the value string I •• , although using the explicit string is
inefficient. In the following lists of failure and success conditions below,
the form '# NULL' is replaced by the form 'IS TRUE', and the form '. NULL' is
replaced by the fora 'IS FALSE', for values returned from the value test
processor.

Success conditions for WITH and its modifiers under test against a value-list:

WITH attribute-name value-list succeeds if

(valuel is TRUE) OR (value2 is TRUE) OR (value3 is TRUE) OR •••

WITHOUT attribute-name value-list succeeds if

(valuel is FALSE) AND (value2 is FALSE) AND (value3 is FALSE) •••

WITH EACH attribue-name value-list succeeds if

(valuel is TRUE) AND (value2 is TRUE) AND (value3 is TRUE)

WITHOUT EACH attribute-name value-list succeeds if

(valuel is FALSE) OR (value2 is FALSE) OR (value3 is FALSE)

3-18

88A00776A

Failure conditions for WITH and its modifiers under test against a value list:

WITH attribute-name value-list fails if

(value1 is FALSE) AND (value2 is FALSE) AND (value3 is FALSE) AND •••

WITHOUT attribute-name value-list fails if

(value1 is TRUE) OR (value2 is TRUE) OR (value3 is TRUE)

WITH EACH attribute-name value-list fails if

(value1 is FALSE) OR (value2 is FALSE) OR (value3 is FALSE) •••

WITHOUT EACH attribute-name value-list fails if

(value1 is TRUE) AND (value2 is TRUE) AND (value3 is TRUE) •••

3.1.9.1 Selection-Criteria AND Clauses

The term selection-criterion is of the form:

WITH {NOT} {EACH} attribute-name {value-list},

such that each criterion tests the data in one attribute against the optional
value-list, and modifies it as specified, across the data values that are
present within each item. An AND clause is of the form:

selection-criterion AND selection-criterion AND selection-criterion

The criterion for success of an AND clause is that each selection-criterion
succeed (see the previous lists of success conditions).

3.1.9.2 Data Selection-Criteria

Data selection-criteria are made up of one or more selection-criterion that are
ORed together. These may include any number of ORed selection-criterion that
are not members of AND clauses. The condition for success of the data
selection-criteria is that at least one of the selection criteria which are
ORed together succeeds.

3.1.9.3 Item Selection-Criteria

The condition for item selection is that the item-id tests succeed, and that
the data selection-criteria succeed. In other words, the item-id test is
implicitly ANDed with the data selection test.

3-19/3-20

88A00116A

ASCII codes A
The ASCII codes used by the PICK System are:

DEC Hex Character DEC Hex Character
~~~-----~-----------i-------- - - I -----~--f----... ~-----

0 0 NULL 36 24 $ 
1 1 SOH 37 2S % 
2 2 STX 38 26 & 
3 3 ETX 39 27 
4 4 EOT 40 28 ( 
S 5 ENQ 41 29 ) 
6 6 ACK 42 2A * 
1 7 BEt 43 2B + 
8 8 BS 44 2C , 
9 9 HTl 45 2D 

10 A LF1 46 2E • 
11 B VT1 47 2F I 
12 C Fp1 48 30 0 
13 D cal 49 31 1 
14 E SO 50 32 2 
15 F SI Sl 33 3 
16 10 DLE 52 34 4 
17 11 DC1 S3 35 5 
18 12 DC2 54 36 6 
19 13 DC3 S5 37 7 
20 14 DC4 S6 38 8 
21 15 NAK S7 39 9 
22 16 SYN 58 3A 
23 17 ETB S9 3B ; 
24 18 CAN 60 3C < 
25 19 EM 61 3D • 
26 1A SUB 62 3£ > 
27 IB ESC 63 3F ? 
28 1C FS 64 40 @ 
29 1D GS 65 41 A 
30 lE RS1 66 42 B 
31 IF USl 67 43 C 
32 20 SPACE 68 44 .D 
33 21 I 69 45 E 
34 22 70 46 F 
35 23 I 11 47 G 

A-l 



1 

88A00776A 

DEC Hex Character DEC Hex 

--~-- I ----- ----------+------------+-------
72 48 
73 49 
74 4A 
75 4B 
76 4C 
77 4D 
78 4£ 
79 4F 
80 50 
81 51 
82 52 
83 53 
84 54 
85 55 
86 56 
87 57 
88 58 
89 59 
90 5A 
91 5B 
92 5C 
93 5D 
94 5£ 
95 5F 
96 60 
97 61 
98 62 
99 63 

100 64 
101 65 
102 66 
103 67 

For special use on L5I-ll 
BS Cursor Backspace 
HT Cursor Tab 
LF Cursor Down 
VT Cursor UP 

B I 104 I 68 
I I 105 I 69 
J I 106 I 6A 
K I 107 I 6B 
L I 108 I 6C 
K I 109 I 60 
N I 110 I 6E 
0 I 111 I 6F 
P 112 I 70 
Q 113 I 71 
R 114 I 72 
S 115 I 73 
T 116 I 74 
U 117 I 75 
V 118 I 76 
W 119 I 77 
X 120 I 78 
y 121 79 
Z 122 7A 
[ 123 7B 
\ 124 7C 
1 125 70 

" 126 7E 
127 7F 

, 
a 
b 
c 251 FB 
d 252 FC 
e 253 Fe 
f 254 FE 
g 255 FF 

and -12 terminals: 
FF Cursor Forward 
CR Cursor Carriage Return 
RS Cursor Rome 
US Cursor New Line 

2For special use by PICK: 
SB Start buffer 

SVM Secondary value mark (displays \) 
VM Value mark (displays 1) 
AM Attribute mark (displays ,,) 
SM Segment mark (displays _) 

A-2 

Character 
.....-.-----.. -

h 
i 
j 
k 
1 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ . . 
} 
'lI 

DEL 

SB2 
SVM2 
VM2 
AK2 
5M2 



ACCESS dictionaries 2.1 
ACCESS file structure 2.2 
ACCESS input sentences 1.1, 1.2 
ACCESS verbs 

CHECK -SIDt 1 • 10 
COPY-LIST 1.13 
COUNT 1.8 
DELETE-LIST 1.12 
EDIT-LIST 1.13 
GET-LIST 1.12 
HASH-TEST 1.14 
I STAT 1.14 
LIST 1.4 
LIST-LABEL 1.6 
QSELECT 1. 11 
REFORMAT 1.7 
S-DUMP 1.15 
SAVE-LIST 1.12 
SELECT 1.11 
SORT 1.5 
SORT-LABEL 1.6 
SREFORMAT 1.7 
SSELECT 1.11 
STAT 1.9 
SUM 1.9 
T-DUMP 1.15 
T-LOAD 1.15 

ACCESS verbs, overview 1.3 
ASCII Conversion 2.4.8 
Attribute Definition 2.1, 2.3 

BREAK-oN Modifier 1.25.1 
BY-EXP, BY-EXP-DSND modifiers 1.5.1 

CHECK-SUM 1.10 
Concatenations (C Code) 2.4.4 
Conditional Values, forming 3.1.8.1 
3.1.8.1.1 

Controlling Attributes 2.3, 2.3.1 
Control-Breaks 1.25 
Control-Breaks, generating subtotals 
with 1.25.2 

Control-Breaks, options 1.25.3 
Conversion Codes 2.4 
Conversions 2.4, 3.1.7 
COPY-LIST 1.13 
Correlative Codes 2.4 
COUNT 1.8 

88A00776A 

INDEX 

I-I 

Date Conversion 2.4.6, 3.1.7.1 
Decimal Editing 2.4.11 
DELETE-LIST 1.12 
Dependent Attributes 2.3, 2.3.1 
Dictionaries 2.1 
Disk-to-Tape Files 1.15 
Dollar Editing 2.4.11 

EDIT-LIST 1.13 
Editing 2.4.11 

Footings, generating 1.23 
File Structure 2.2 
File Translation 2.4.7 

GET-LIST 1.12 
Grand-Totals, generating 1.24 
GRAND-TOTAL modifier 1.24 
Group Extraction 2.4.1 

HASH-TEST 1.14 
Headings, generating 1.23 
Hexadecimal Conversion 2.4.8 

Input Sentences 1.1, 1.2 
I STAT 1.14 
Item Retrieval 2.2.3 
Item-id Definition 2.2.4 
Item-id Selection 3.1.1, 3.1.1.1, 3.1.9.3 
Item-id Structure 2.2.5, 3.1.3 
Item-id Testing 3.1.2 
Item-Lists, forming 1.18, 3.1.1.1 

Justification and Evaluation 3.1.8.1.2 

Labels, Printing Hailing 1.6 
LIST 1.4 
LIST-LABEL 1.6 
Lists 1.11 thru 1.13 
Loading Previous Values 2.4.9.2 
Logical Connectives 1.17, 3.1.8.1, 
3.1.8.1.1, 3.1.9.1, 3.1.9.2 

Mask Characters 2.4.12 
Mask Conversions 3.1.7.3, 3.1.7.4 
Mathematical Operations 2.4.9 
2.4.9.2, 2.4.10, 2.4.20.3 

Modifiers, overview 1.22 



88A00776A 

Options 1.22, 1.22.1, 
Output Constraints 2.4.2, 2.4.3 
Output-Specification 1.20 
Output Specification, Default 1.20.1 

Print-Limiters 1.21 

QSELECT 1.11 

REFORMAT 1 .7 
Reformatting Files 
Relational Operators 

3.1.8.1.1 

S-DUMP 1.15 
SAVE-LIST 1.12 
SELECT 1.11 

1.7 
1 • 18, 3. 1.8. 1 , 

Selection Processor, use of 1.31 
Selection-Criteria, forming 1.18, 
3.1.4, 3.1.5, 3.1.9.1 

Select-List Generation 1.11 
Sentences, ACCESS Input 1.1, 1.2 
Sentences, ACCESS, Input, modifiers 1.22 
Sentences, ACCESS Input, options 
1.22, 1.22.1 

SORT 1.5 
SORT-LABEL 1.6 
Sorting 1.5 
Sorting on Multivalued Fields 1.5.1 
SREFOBMAT 1 • 7 
SSELECT 1.11 
STAT 1.9 
String Searching 1.19 
Sub-Totals, generating 1.25.2 
SUM 1.9 

T-DtntP 1.15 
T-LOAD 1.15 
Tape-to-Disk Files 1.15 
Text Extraction 2.4.5 
Time Conversion 2.4.6.1, 3.1.7.2 
Totals, Evaluation Sequence 1.24.1 
Totals, generating 1.24 
Translate Conversions 3.1.7.5 

USING Connective 2.2.1, 2.2.2 

Value Strings 3.1.6, 3.1.8.2, 3.1.8.2.1 
Value Testing 3.1.5.2, 3.1.5.3, 3.1.9 
Verbs, see ACCESS Verbs 

I-2 


